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Abstract

This paper offers an extension to TrueSkill, a Bayesian method for ranking players
and predicting outcomes of multiplayer games, for cases where a game is high-
dimensional. TrueSkill was originally developed by Microsoft Research to rank
and match XBox Live players, but offers a general method for inferring player skill
based almost exclusively on the win-loss outcome of a match. Although such a
method works well for relatively simple games like Halo, the framework is limited
in its ability to incorporate information-rich features — often called boxscores —
commonly used to describe high dimensional games, such as basketball. Our work
extends TrueSkill for these types of games by reformulating its underlying graphical
model as the internal dynamics of a recurrent neural network cell in addition to
using neural networks as expressive function approximators to map between high-
dimesional boxscores and a player’s weight when conducting TrueSkill updates.
Experimental results on NBA data shows that our method improves upon the
original TrueSkill algorithm for predicting the outcome of basketball games.

1 Introduction

In recent years, deep learning has played a central role in achieving state-of-the-art accuracy for many
supervised learning problems across several key disciplines of artificial intelligence, namely computer
vision, natural language processing and audio recognition. Since neural networks constitute highly
expressive function approximators, they have an ability to learn features from high-dimensional
datasets that are otherwise unfeasible for humans to craft by hand. Although this ability to auto-
matically learn features from data is instrumental to deep learning’s success, it is often the source
of its greatest criticism: the decisions made by neural networks are obscured by layers of complex
non-linearities and are therefore hard to interpret. On the contrary, probabilistic graphical models are
usually easier to interpret since they break down inference problems by expressing joint distributions
in terms of conditional independence relationships between sets of random variables. By explicitly
defining relationships between component random variables, a graphical model is typically more
constrained in the family of functions it can represent, and therefore limited in its ability to learn
features. This work proposes an extension to TrueSkill, a graphical model for ranking players and
predicting outcomes of multiplayer games, by using neural networks as function approximators to
map between high-dimensional boxscores and input weights used during TrueSkill updates. By
overlaying deep components on top of the original TrueSkill algorithm, we are able to improve
prediction accuracy for games by incorporating more information specific to individual players’
performances.

TrueSkill was originally developed by Microsoft Research as a Bayesian method for a) ranking XBox
live players and b) generating competitive online matches. Although it was motivated in the video
game domain, the algorithm is general to any multiplayer competitive activity. It was offered as an
improvement over the more classical Elo rating system, which was first proposed in 1959 by Arpad



Elo as a statistical method for ranking Chess players. Whereas Elo based systems model entities at
the team level, TrueSkill based systems further break teams down by modeling individual players.
TrueSkill style systems therefore lend themselves to modeling players and teams in professional sports
leagues since the performance of a team mostly reflects its roster of currently active players rather
than the institution or franchise which it represents. In other words, from a statistical perspective it is
much more important to have an understanding of who is playing on a team like the Golden State
Warriors rather than merely constructing an understanding of how the Warriors team played in the
past. In this paper, we closely examine TrueSkill, and our proposed extension, through the context of
evaluating and predicting NBA games. We chose professional basketball due to its popularity and
high number of regular season games, which provide for an abundance of training and test data.

This paper is organized as follows. Section 2 presents an overview of the original TrueSkill algorithm,
section 3 shows have to reformulate TrueSkill as a recurrent neural network, section 4 extends
TrueSkill for high-dimensional games, section 5 discusses our NBA dataset, section 6 outlines the
experimental approach, section 7 presents results and finally section 8 provides concluding remarks.

2 Vanilla TrueSkill

The TrueSkill algorithm models posterior distributions over skill levels for players in a game. Skill

here is an abstract measure, expressed as a random variable, of a player’s ability for the particular
game in question. For a given match, a player’s performance is modeled as a random variable
centered at the player’s skill. Performance, again, is an abstract measure of the player’s contribution
to his or her team performance in a match. Team performance is a weighted sum of a team’s players’
performances. Finally, the model compares team performances and assigns probabilities to pairs of
outcomes.

More formally, the TrueSkill model describes a set of random variables arranged in a factor graph [3].
We will describe the graph here, and Figure 1 provides a visualization. In our setting, we have two
teams, each with m players. For each player i, there is a skill node s

i

. Each s

i

is attached to a factor
representing its prior, which is distributed N (µ

i

,�

2
i

) for some mean and variance to be inferred.

For each skill node, there is a performance node, p
i

, which is distributed as a Gaussian centered at s
i
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where � is a model parameter that is the same for every player.

The team performance node, t is a weighted sum of performances:
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where the weights w
i

are also model parameters. In the factor graph representation, this relation is
represented as a single factor connected to all the p nodes and to the t node, where the factor function
is given by:

I
 
t =

X

i

w

i

p

i

!

Similarly, we compare team performances at a difference node d, which is distributed:

d ⇠ t1 � t2

The factor associated with this node connects to the t nodes and has the function

I(d = t1 � t2)

A positive value of d represents a win for Team 1, while a negative value represents a win for Team 2.
Note that performance difference here has no real-world interpretation. It is not tied to any actual
performance metric.

This set of variables describes a generative model for performance differences. When we want to
infer player skills, we would like to take evidence about the actual outcome of the game, represented
by d, and propagate that information back up the factor graph. To do this, we use sum-product on the
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Figure 1: The TrueSkill factor graph for two teams. S nodes represent the latent skill for each player.
A player’s performance P is a Gaussian centered at his true skill, with known variance �

2. A team’s
performance T consists of the weighted sum of the players’ individual performances. D compares
the two teams’ performances. A positive D corresponds to a win for Team 1.

factor graph to propagate information downward and get a prior over d. Since d is a difference of
independent Gaussians, which themselves are sums of independent Gaussians, d is itself a Gaussian.

When we incorporate evidence into the graph (i.e. the result of the game), we truncate d so that its
support equals the region that assigns positive probability to the true outcome. In other words, we
assign zero probability to the side of the origin that represents the losing team. Propagating this
message back up to the leaves of the graph amounts to taking products with a truncated Gaussian.
Since this is difficult to do in closed form, we shift to approximate message passing and use
expectation propagation. We approximate the posterior over d by a Gaussian method-of-moments
estimator, and use this as the message passed up. We will describe message passing in more detail in
the next section.

2.1 Sum-Product Messages

Message passing on the factor graph involves taking products of Gaussian distributed random

variables. For simplicity, TrueSkill parametrizes these Gaussians in terms of the precision, ⇡ =
1

�

2
,

and the precision-mean, ⌧ = ⇡µ. If we have two independent random variables x ⇠ N (⌧
x

,⇡

x

) and
y ⇠ N (⌧

y

,⇡

y

), then the random variable z = x⇥ y has the distribution z ⇠ N (⌧
x

+ ⌧

y

,⇡

x

+ ⇡

y

)
[5].

Skill inference on the factor graph consists of four steps. First, pass messages down to get a prior on
D. Second, incorporate knowledge about the outcome of a game to get a posterior over D. Third,
approximate this posterior with a new Gaussian via a method-of-moments estimator. Fourth, pass
messages back up the graph using posterior values to update skill nodes S

i

. The messages described
here are taken directly from [1]. The equations assume all messages are initialized to 1, so they take
on a simpler form than what is presented in the original paper.
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The first message passed is from each prior node to its corresponding skill node. In Figure 1, the prior
nodes are the boxes at the top of the image. The prior is parametrized in terms of µ

i

and �

i

, so the
message-passing update for s

i

is:

⇡

si =
1

�

2
i

⌧
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µ

i

�

2
i

(1)

The performance nodes P

i

are Gaussians centered at S
i

with variance �

2, where � is a hyper-
parameter controlling the spread in the distribution of realized performances based on skill. The prior
over P

i

is given by
⇡

pi =
⇡

si

1 + �

2
⇡

si

⌧

pi =
⌧

si

1 + �

2
⇡

si

(2)

The team performance nodes T
i

are weighted sums of the performance nodes of the players on the
team. The weights, w

i

, are parameters of the model. The message update for T
i

relies on the mean
and variance of the sum of Gaussians and on the definitions of ⇡ and ⌧ :
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Finally, since D is the difference of T1 and T2, we can use the same technique as (3) to come up with
our prior on D:

⇡
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=

✓
1
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◆�1
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⇡
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◆ (4)

The prior on D is a Gaussian that assigns probabilities to values of the difference in team performances,
T1 � T2. Positive values of D correspond to a win for Team 1. To incorporate knowledge of the
game outcome, we truncate this Gaussian to assign zero mass to values corresponding to wins for
the losing team. In other words, if Team 1 wins, D is truncated and re-normalized to assign zero
probability to values in (�1, 0]. If Team 2 wins, the same is done for [0,1).

Passing this truncated Gaussian back up is difficult to do analytically, so TrueSkill uses expectation-
propagation, which approximates the posterior over D with a Gaussian. This technique is part of
a larger class of approximate message passing schemes that use moment matching to approximate
messages [4].

The moment-matching approximation to the posterior over D [2] is given by a Gaussian parametrized
by:

⇡̂

new
d

=
⇡
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1�W (⌧
d

/

p
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d
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⌧̂

new
d
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⌧
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d

V (⌧
d

/

p
⇡

d

)

1�W (⌧
d

/

p
⇡

d

)

(5)

where the moment correction functions V and W are defined as:

V (t) =
N (t)

�(t)

W (t) = V (t) · (V (t) + t)

(6)
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Finally, the posterior over D is passed up the graph using the inverses of the downward messages to
get a posterior belief over each player’s skill. More details about the upward messages are available
in [1].

2.2 Handling Match Sequences

The previous section outlined TrueSkill messages for a single match update. Now we will address
updates over a sequence of games. The prior for each player’s skill in a match is initialized to the
posterior over skill from each player’s previous match. However, for numerical stability a dynamics
factor �2 is added to the prior variance of each player’s skill. Omitting this term would eventually lead
to variances collapsing to zero since the TrueSkill updates naturally tend towards smaller posterior
skill variance as the system gets more confident in its belief of players’ skills over time. Including the
dynamics factor is also a sensible modeling choice since it accounts for out-of-match uncertainly, such
as injury or fatigue, that may affect a player’s skill between games. Mathematically, if st

i

⇠ N(µt

i

,�

t

i

)
is the posterior skill distribution for player i after applying updates from a match at time t, then that
player’s prior skill going into a match at time t + 1 is st+1

i

⇠ N(µt

i

,�

t

i

+ �

2). Note that for each
player’s first game, µ0

i

and ⇡

0
i

are initialized to µ

init

and �

init

, which are model parameters.

3 TrueSkill RNN

Since TrueSkill updates often occur over sequences of matches, it is useful to reformulate the message
passing procedure as the internal state of recurrent nueral network. Doing so yields a powerful
abstract for overlaying deep components on top of the original TrueSkill machinery. Furthermore,
redefining the message passing procedure as an RNN cell makes coding the algorithm simpler and
more efficient when using autodiff libraries like tensorflow.

The internal state of a TrueSkill RNN consists of two vectors, µ and �, parameterizing the skill
Guassians for every player that appears in any of the games. At time t, the RNN receives as input two
vectors denoting the indices of players on team 1 and team 2. These values index into the state vectors
so that the proper skill priors are loaded into the factor graph. Downward messages are computed,
resulting in a prior over D. This prior also serves as a prediction for the outcome of a match, so it is
returned as the output of the cell at time t. Then upward messages are computed so that the internal
state reflects the posterior over player skills after timestep t. This process continues for every match
in a sequence. Figure 2 visualizes the RNN as well as the internals of a TrueSkill cell.

3.1 Training and Backpropogation

By reformulating TrueSkill as an RNN, we can run backpropogation through time to learn suitable
values for model parameters like � and �. While message passing defines the training procedure
for learning beliefs over player skill, backprogation defines a training procedure for learning model
parameters. This is possible since the message passing dynamics are fully known and deterministic,
meaning we can differentiate messages with respect to each parameter. Motivated by our interest in
predicting game outcomes, we can construct a training loss using maximum likelihood:

L(y, ŷ) = �
nX

i=1

[y
i

log(ŷ
i

) + (1� y

i

)log(1� ŷ

i

)] (7)

where y 2 {0, 1}n is a vector of indicators denoting whether team 1 won match i and ŷ 2 [0, 1]n

is a vector of predicted probabilities of team 1 winning match i. Additional details on training are
provided in section 6.

4 High-Dimensional TrueSkill RNN

TrueSkill RNN is the same model in form as vanilla TrueSkill besides the added ability to train model
parameters with backpropogation. In order to extend the framework for high-dimensional games,
we need a method for incorporating features specific to each player’s matches. A natural place to
do so is to use the weight parameters from (3). The team performance node is a weighted sum of
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Figure 2: The vanilla TrueSkill algorithm reformulated as a recurrent nueral network. Each RNN cell
performs the downward and upward message passes for a single match update. The internal state
of the RNN is (µ, �), both vectors parameterizing player skill distributions with length equal to the
number of players that appear in any match. At each timestep, the cell outputs a single probability,
taken from the D node prior, denoting the prediction for a match at that timestep.

players’ performances. Weighting each player’s contribution to a team is a sensible decision since not
every player on a roster influences a team’s overall outcome equally. In basketball, the five starters
are generally more influential to a match’s outcome than players substituting in from the bench. If a
boxscore consisted of a single statistic for each player, weighting players would be straightforward:
simply use the statistic, or perhaps its normalized value, for the weight. However, since by definition
high-dimensional games have boxscores with many statistics for each player, such a system will not
work. Instead, we have to learn a function, Rp ! R+, to map boxscores with p features to weights.
Specifically, we propose using a two hidden layer, fully connected, feed-forward neural network with
ReLU activations, as the function approximator. Each hidden layer has 64 nodes and the final output
layer is also passed through a ReLU activation to ensure that the TrueSkill weights are non-negative.

The High-Dimensional TrueSkill RNN (HDTSRNN) model extends TSRNN by incorporating boxs-
core features when calculating skill posteriors following a match. At each timestep, in addition to
the team 1 and team 2 player indices and winning team indicator inputs, the RNN cell receives two
tensors with player boxscores from both teams. Each tensor is normalized along feature axes, so
that a player’s weight is computed based on his or her relative contributions. For example, rather
than considering the total points scored by each player, normalizing the boxscore tensor results in the
network considering the fraction of team points scored by each player. Normalized values are better
to work with since the weight network is trying to learn a player’s relative contribution to the team
with respect to each facet of the game.

Rather than learning a single function to map between player boxscores and weights, we instead learn
two: one for the winning team and another for the losing team. Learning two functions allows for the
model to build an understanding of how credit among team players should be assigned depending
whether the team ultimately wins or loses. Committing many fouls, for example, may be a good or
bad thing for a player depending on how his or her team fares.
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Figure 3: The High-Dimensional TrueSkill RNN cell. First a downward pass (1) is conducted with
uniform TrueSkill weights to produce a prediction for the game. Then, a full downward and upward
pass (2) is conducted to produce skill posteriors following the game. Pass 2 feeds winning and losing
player boxscores through their respective neural networks to map boxscores to TrueSkill weights.

The final, and perhaps most subtle, detail in defining the HDTSRNN model is necessary for avoiding
look-head bias: weights used at inference-time cannot consider boxscore features from the very game
the model is trying to predict. Thus, for a cell at time t we can only use the boxscores from game t

to perform skill updates and not to perform prediction. Therefore, inside each HDTSRNN cell we
first conduct a downward pass using uniform weights to arrive at a prior over D, which becomes our
prediction, and then conduct a full downward and upward pass using boxscore data to determine
update weights for computing skill posteriors. Because the training loss is a function of predicted
values, training HDTSRNN will teach the underlying TrueSkill algorithm how to update skills in
order to improve likelihoods of future games. The model learns how to best take boxscores from a
game at time t to determine optimal skill updates in order to improve predictions for games at times
t+ 1 and beyond. Figure 3 visualizes the HDTSRNN cell.

5 Dataset

We scraped player boxscore and game outcome data from all NBA games occurring during the 12
seasons ending in years 2006 through 2017 from Basketball-Reference.com. Our data consist of
boxscore records for 1,273 players from 15,524 games. Table 1 lists and describes the 15 player
boxscore statistics we consider.

7



Feature Description
sp seconds played
fg field goals made
fga field goal attempts
fg3 3 pointers made
fg3a 3 pointer attempts
ft free-throws made
fta free-throw attempts
orb offensive rebounds
drb defensive rebounds
ast assists
stl steals
blk blocks
tov turnovers
pf personal fouls
plus-minus net score differential while playing

Table 1: Player Boxscore Features

6 Approach

To evaluate our model, we compare HDTSRNN to vanilla TrueSkill as well as to a few baselines.
This section will address evaluation metrics, baseline methods, NBA specific adjustments to the
underlying TrueSkill framework, and further specifics about training HDTSRNN.

6.1 Evaluation Metrics

A simple approach for evaluating match prediction systems would look at the fraction of matches
a model “got right.” A correct prediction is a game where the team that actually won received at
least a 50% predicted chance of winning. This metric is flawed, however, since it does not consider a
model’s confidence in its predictions. Consider two games where Team 1 wins the first and loses
the second. Model A predicts Team 1 will win both games with 3% and 45% chances, respectively.
Model B predicts Team 1 will win with 35% and 45%, respectively. Both models were 50% accurate.
They missed the first game and correctly predicted the second. Nevertheless, A was much more
confident in its incorrect decision for game 1 than B. Ideally, an evaluation metric would consider
this observation. Therefore, we propose evaluating based on likelihood: the model’s predicted
chance of observing what actually happened in the real world. Likelihood methods reflect a model’s
confidence, and therefore can further distinguish two methods beyond accuracy. In this paper we
report log-likelihoods since they are numerically easier to calculate. We also report accuracy since
log-likelihoods are hard to intuitively interpret while accuracy can still paint a crude picture of how a
model fares.

6.2 Baseline Methods

We propose two naive baseline methods to ensure that vanilla TrueSkill and HDTSRNN outperform
techniques that are much simpler to understand and easier to implement. The first is home-team-

predictor, which predicts that the home team will win with probability equal to the empirical
home-team win rate from the period it is trained on. The second is overdog-predictor, which predicts
that the team with the better record will win with probability equal that team’s season win rate prior
to the game in question.

6.3 NBA Specific Adjustments

For both the vanilla TrueSkill and HDTSRNN, we adapt the underlying TrueSkill framework to better
reflect NBA conditions in two ways. First, between each season there are several factors that lead to
new uncertainty over a player’s skill. Trades, aging, and rule changes, among others, give reason to
be less confident about a player’s skill at the beginning of a season as compared to the models belief
at the end of the previous season. To reflect these dynamics we introduce �

2, a model parameter
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Method Test Accuracy Test Log-Likelihood

Overdog Predictor 61.96% -916.98
Home-Team Predictor 58.29% -890.03
Vanilla TrueSkill 63.41% -836.47
High-Dimensional TrueSkill RNN 64.63% -826.96

Table 2: Model Results on the 2017 Test Season

added to every player’s skill variance at the beginning of each season. Mathematically, � plays a
similar role to � in that both terms add uncertainly to a player’s skill through time. Second, because
home-team bias is a real phenomenon that is not captured by TrueSkill we add a linear term, ⌘, to
each predicted output from the RNN if team 1 is playing at home and subtract eta if team 1 is playing
away. Both � and ⌘ are learned using backpropogation like other model parameters.

6.4 Training Details

Since we are primarily interested in training the weight networks to learn how to best conduct
TrueSkill updates, we need to ensure that gradients do not vanish as they are being propagated back
through a long RNN. To combat this problem, we train in batches of 250 consecutive games. The
internal state of the RNN is carried over between batches, however at the beginning of each epoch
the state is reinitialized so that every player’s skill parameters are set to µ

init

= 25 and �

init

= 25
3 ,

default values taken from [1]. Reinitializing between epochs is important so that skill values learned
from later games are not then used to predict earlier games. Time-series models are difficult to train
because decisions made at time t affect all matches from t+ 1 onward, and therefore affect future
decisions. For this reason, we cannot train on random batches of games. Furthermore, because
the underlying TrueSkill model is deterministic, there is no source of randomness in the training
procedure. To avoid converging at poor local minima, we must on many random seeds to initialize
neural network weights and TrueSkill model parameters. We use a validation approach to pick final
model parameters because cross-validation is difficult on time-series data for the same reasons as
using random batches.

7 Results

Models were trained on data from the 2006 to 2015 seasons, validated with the 2016 season and
tested on 2017. Test results are summarized in Table 2. The HDTSRNN model outperforms vanilla
TrueSkill along with the two baselines both in terms of accuracy and log-likelihood. There were 1309
games played during the 2017 test interval. In addition to being more likely, HDTSRNN correctly
picked 16 more games than the next best approach.

8 Conclusion

We have shown that the TrueSkill algorithm can be improved for high-dimensional games by in-
corporating extra information specific to players from a match. Such boxscore features are useful
for learning a model to assist TrueSkill in weighting updates following a game. By reformulat-
ing TrueSkill as recurrent neural network, we are able overlay deep learning techniques upon an
underlying graphical model, leveraging a neural network’s powerful expressive capacity with the
interpretability of a factor graph. The method we proposed is general for any multiplayer competitive
activity and could be used build prediction systems for other professional sports leagues.

Because TrueSkill is able to evaluate players individually within team competitions, our framework
can eventually be used to build systems for determining relative player value for a franchise during
the course of a season. Such a tool could inform roster construction and trades within a professional
league. We leave this kind of analysis to future work.
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