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ABSTRACT

This paper presents BOOM version 2, an updated version of
the Berkeley Out-of-Order Machine first presented in [3]. The
design exploration was performed through synthesis, place
and route using the foundry-provided standard-cell library
and the memory compiler in the TSMC 28 nm HPM process
(high performance mobile).

BOOM is an open-source processor that implements the
RV64G RISC-V Instruction Set Architecture (ISA). Like most
contemporary high-performance cores, BOOM is superscalar
(able to execute multiple instructions per cycle) and out-of-
order (able to execute instructions as their dependencies are
resolved and not restricted to their program order). BOOM
is implemented as a parameterizable generator written using
the Chisel hardware construction language [2] that can used
to generate synthesizable implementations targeting both
FPGAs and ASICs.

BOOMv2 is an update in which the design effort has been
informed by analysis of synthesized, placed and routed data
provided by a contemporary industrial tool flow. We also had
access to standard single- and dual-ported memory compil-
ers provided by the foundry, allowing us to explore design
trade-offs using different SRAM memories and comparing
against synthesized flip-flop arrays. The main distinguishing
features of BOOMv2 include an updated 3-stage front-end
design with a bigger set-associative Branch Target Buffer
(BTB); a pipelined register rename stage; split floating point
and integer register files; a dedicated floating point pipeline;
separate issue windows for floating point, integer, and mem-
ory micro-operations; and separate stages for issue-select and
register read.

Managing the complexity of the register file was the largest
obstacle to improving BOOM’s clock frequency. We spent
considerable effort on placing-and-routing a semi-custom 9-
port register file to explore the potential improvements over
a fully synthesized design, in conjunction with microarchi-
tectural techniques to reduce the size and port count of the
register file. BOOMv2 has a 37 fanout-of-four (FO4) inverter
delay after synthesis and 50 FO4 after place-and-route, a
24% reduction from BOOMv1’s 65 FO4 after place-and-route.
Unfortunately, instruction per cycle (IPC) performance drops
up to 20%, mostly due to the extra latency between load
instructions and dependent instructions. However, the new
BOOMv2 physical design paves the way for IPC recovery
later.
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Figure 1: A comparison of a three-issue (3i) BOOMv1

and four-issue (4i) BOOMv2 pipeline both which can

fetch two instructions every cycle (2f). Both show two
integer ALU units, one memory unit, and one floating

point unit. Note that BOOMv2 uses a distributed issue

window to reduce the issue port count for each separate
issue window. In BOOMv1 the floating point unit shares

an issue port and register access ports with an integer

ALU. Also note that BOOMv1 and BOOMv2 are param-
eterizable, allowing for wider issue widths than shown

here.

1 INTRODUCTION

BOOM was inspired initially by the MIPS R10K and Al-
pha 21264 processors from the 1990s, whose designs teams
provided relatively detailed insight into their processors’ mi-
croarchitectures [6, 7, 11]. However, both processors relied on
custom, dynamic logic which allowed them to achieve very
high clock frequencies despite their very short pipelines1 – the
Alpha 21264 has 15 fanout-of-four (FO4)2 inverter delays [4].

1The R10K has five stages from instruction fetch to integer instruction
write-back and the Alpha 21264 has seven stages for the same path.
Load instructions take an additional cycle for both processors.
2An inverter driving four times its input capacitance. FO4 is a useful,
relatively technology-agnostic measurement of a circuit path length.
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Table 1: The parameters chosen for analysis of
BOOM. Although BOOM is a parameterizable gen-
erator, for simplicity of discussion, we have limited
our analysis to these two instantiations.

BOOMv1 BOOMv2

BTB entries
40 64 x 4

(fully-associative) (set-associative)

Fetch Width 2 insts 2 insts

Issue Width 3 micro-ops 4 micro-ops

Issue Entries 20 16/16/16

Regfile 7r3w 6r3w (int), 3r2w (fp)

Exe Units

iALU+iMul+FMA iALU+iMul+iDiv

iALU+fDiv iALU

Load/Store FMA+fDiv

Load/Store

As a comparison, the synthesizable3 Tensilica’s Xtensa pro-
cessor, fabricated in a 0.25 micron ASIC process and contem-
porary with the Alpha 21264, was estimated to have roughly
44 FO4 delays [4].

As BOOM is a synthesizable processor, we must rely on
microarchitecture-level techniques to address critical paths
and add more pipeline stages to trade off instructions per
cycle (IPC), cycle time (frequency), and design complexity.
The exploration in this work is performed by using only the
available single-and dual-ported memory compilers, without
custom circuit design. It should be noted that, as process
nodes have become smaller, transistor variability has in-
creased, and power-efficiency has become restricting, many
of the more aggressive custom techniques have become more
difficult and expensive to apply [1]. Modern high-performance
processors have largely limited their custom design efforts to
more regular structures such as arrays and register files.

2 BOOMV1

BOOMv1 follows the 6-stage pipeline structure of the MIPS
R10K – fetch, decode/rename, issue/register-read, execute,
memory, and writeback. During decode, instructions are mapped
to micro-operations (uops) and during rename all logical reg-
ister specifiers are mapped to physical register specifiers. For
design simplicity, all uops are placed into a single unified
issue window. Likewise, all physical registers (both integer
and floating point registers) are located in a single unified
physical register file. Execution Units can contain a mix of
integer units and floating point units. This greatly simplifies
floating point memory instructions and floating point-integer
conversion instructions as they can read their mix of in-
teger and floating point operands from the same physical
register file. BOOMv1 also utilized a short 2-stage front-end
pipeline design. Conditional branch prediction occurs after
the branches have been decoded.

3A “synthesizable” design is one whose gate net list, routing, and place-
ment is generated nearly exclusively by CAD tools. For comparison,
“custom” design is human-created logic design and placement.

The design of BOOMv1 was partly informed by using
educational technology libraries in conjunction with synthesis
tools. While using educational libraries was useful for finding
egregious mistakes in control logic signals, it was less useful in
informing the organization of the datapaths. Most critically,
we lacked access to a commercial memory compiler. Although
tools such as Cacti [10] can be used to analytically model the
characteristics of memories, Cacti works best for reproducing
memories that it has been tuned against such as single-
port, cache-sized SRAMs. However, BOOM makes use of
a multitude of smaller SRAM arrays for modules such as
branch predictor tables, prediction snapshots, and address
target buffers.

Upon analysis of the timing of BOOMv1 using TSMC
28 nm HPM, the following critical paths were identified:

(1) issue select
(2) register rename busy table read
(3) conditional branch predictor redirect
(4) register file read

The last path (register-read) only showed up as critical
during post-place-and-route analysis.

3 BOOMV2

BOOMv2 is an update to BOOMv1 based on information
collected through synthesis, place, and route using a commer-
cial TSMC 28 nm process. We performed the design space
exploration by using standard single- and dual-ported mem-
ory compilers provided by the foundry and by hand-crafting
a standard-cell-based multi-ported register file.

Work on BOOMv2 took place from April 9th through Aug
9th and included 4,948 additions and 2,377 deleted lines of
code (LOC) out of the now 16k LOC code base. The following
sections describe some of the major changes that comprise
the BOOMv2 design.

3.1 Frontend (Instruction Fetch)

The purpose of the frontend is to fetch instructions for execu-
tion in the backend. Processor performance is best when the
frontend provides an uninterrupted stream of instructions.
This requires the frontend to utilize branch prediction tech-
niques to predict which path it believes the instruction stream
will take long before the branch can be properly resolved. Any
mispredictions in the frontend will not be discovered until
the branch (or jump-register) instruction is executed later in
the backend. In the event of a misprediction, all instructions
after the branch must be flushed from the processor and the
frontend must be restarted using the correct instruction path.

The frontend end relies on a number of different branch
prediction techniques to predict the instruction stream, each
trading off accuracy, area, critical path cost, and pipeline
penalty when making a prediction.
Branch Target Buffer (BTB) The BTB maintains a set
of tables mapping from instruction addresses (PCs) to branch
targets. When a lookup is performed, the look-up address
indexes into the BTB and looks for any tag matches. If there
is a tag hit, the BTB will make a prediction and may redirect
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Figure 2: The datapath changes between BOOMv1 and BOOMv2. Most notably, the issue window and physical
register file have been distributed and an additional cycle has been added to the Fetch and Rename stages.

the frontend based on its predicted target address. Some
hysteresis bits are used to help guide the taken/not-taken
decision of the BTB in the case of a tag hit. The BTB is a
very expensive structure – for each BTB entry it must store
the tag (anywhere from a partial tag of ≈20 bits to a full
64-bit tag4) and the target (a full 64 bit address5).
Return Address Stack (RAS) The RAS predicts func-
tion returns. Jump-register instructions are otherwise quite
difficult to predict, as their target depends on a register value.
However, functions are typically entered using a Function
Call instruction at address A and return from the function
using a Return instruction to address A+1.6 – the RAS can

4Actually, less than 64 bits since few 64-bit machines will support
using all 64-bits as part of the virtual address.
5An offset from the look-up address could be stored in the BTB table
entry instead but that adds an adder to the critical path.
6Actually, it will be A+4 as the size of the call instruction to jump
over is 4 bytes in RV64G.

detect the call, compute and then store the expected return
address, and then later provide that predicted target when the
Return is encountered. To support multiple nested function
calls, the underlying RAS storage structure is a stack.
Conditional Branch Predictor (BPD). The BPD main-
tains a set of prediction and hysteresis tables to make taken/not-
taken predictions based on a look-up address. The BPD only
makes taken/not-taken predictions – it therefore relies on
some other agent to provide information on what instruc-
tions are branches and what their targets are. The BPD can
either use the BTB for this information or it can wait and de-
code the instructions themselves once they have been fetched
from the instruction cache. Because the BPD does not store
the expensive branch targets, it can be much denser and thus
make more accurate predictions on the branch directions
than the BTB – whereas each BTB entry may be 60 to 128
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Figure 3: The frontend pipelines for BOOMv1 and
BOOMv2. To address critical path issues, BOOMv2
adds an extra stage. The branch predictor (BPD) in-
dex hashing function is moved to its own stage (F1),
pushing back the BPD predictor table accesses a cy-
cle as well (F2). BOOMv2 also utilizes a partially-
tagged, set-associative BTB (BOOMv1 uses a fully-
tagged fully-associative BTB). This requires adding
a checker module which verifies that the predic-
tions from the BTB matches the instructions being
fetched.

bits, the BPD may be as few as one or two bits per branch.7

A common arch-type of BPD is a global history predictor.
Global history predictors work by tracking the outcome of the
last N branches in the program (“global”) and hashing this
history with the look-up address to compute a look-up index
into the BPD prediction tables. For a sophisticated BPD,

7We are ignoring the fact that predictors such as TAGE [8] actually do
store partial tags which can allow them to predict which instructions
are branches.

this hashing function can become quite complex. BOOM’s
predictor tables are placed into single-ported SRAMs. Al-
though many prediction tables are conceptually “tall and
skinny” matrices (thousands of 2- or 4-bit entries), a genera-
tor written in Chisel transforms the predictor tables into a
square memory structure to best match the SRAMs provided
by a memory compiler.

Figure 3 shows the pipeline organization of the frontend.
We found the a critical path in BOOMv1 to be the con-
ditional branch predictor (BPD) making a prediction and
redirecting the fetch instruction address in the F2 stage, as
the BPD must first decode the newly fetched instructions and
compute potential branch targets. For BOOMv2, we provide
a full cycle to decode the instructions returning from the
instruction cache and target computation (F2) and perform
the redirection in the F3 stage. We also provide a full cycle
for the hash indexing function, which removes the hashing
off the critical path of Next-PC selection.

We have added the option for the BPD to continue to
make predictions in F2 by using the BTB to provide the
branch decode and target information. However, we found
this path of accessing the prediction tables and redirecting
the instruction stream in the same cycle requires a custom
array design.

Another critical path in the frontend was through the fully-
associative, flip-flop-based BTB. We found roughly 40 entries
to be the limit for a fully-associative BTB. We rewrote the
BTB to be set-associative and designed to target single-ported
memory. We experimented with placing the tags in flip-flop-
based memories and in SRAM; the SRAM synthesized at a
slower design point but placed-and-routed better.

3.2 Distributed Issue Windows

The issue window holds all inflight and un-executed micro-
ops (uops). Each issue port selects from one of the available
ready uops to be issued. Some processors, such as Intel’s
Sandy Bridge processor, use a “unified reservation station”
where all uops are placed in a single issue window. Other
processors provide each functional unit its own issue window
with a single issue select port. Each has its benefits and its
challenges.

The size of the issue window denotes the number of in-flight,
un-executed instructions that can be selected for out-of-order
execution. The larger the window, the more instructions the
scheduler can attempt to re-order. For BOOM, the issue
window is implemented as a collapsing queue to allow the
oldest instructions to be compressed towards the top. For
issue-select, a cascading priority encoder selects the oldest
instruction that is ready to issue. This path is exacerbated
either by increasing the number of entries to search across
or by increasing the number of issue ports. For BOOMv1,
our synthesizable implementation of a 20 entry issue window
with three issue ports was found to be aggressive, so we
switched to three distributed issue windows with 16 entries
each (separate windows for integer, memory, and floating
point operations). This removes issue-select from the critical
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path while also increasing the total number of instructions
that can be scheduled. However, to maintain performance
of executing two integer ALU instructions and one memory
instruction per cycle, a common configuration of BOOM will
use two issue-select ports on the integer issue window.

3.3 Register File Design

One of the critical components of an out-of-order processor,
and most resistant to synthesis efforts, is the multi-ported
register file. As memory is expensive and time-consuming
to access, modern processor architectures use registers to
temporarily store their working set of data. These registers
are aggregated into a register file. Instructions directly access
the register file and send the data read out of the registers
to the processor’s functional units and the resulting data is
then written back to the register file. A modest processor that
supports issuing simultaneously to two integer arithmetic
units and a memory load/store unit requires 6 read ports
and 3 write ports.

The register file in BOOMv1 provided many challenges
– reading data out of the register file was a critical path,
routing read data to functional units was a challenge for
routing tools, and the register file itself failed to synthesize
properly without violating the foundry design rules. Both
the number of registers and the number of ports further
exacerbate the challenges of synthesizing the register file.

We took two different approaches to improving the register
file. The first level was purely microarchitectural. We split
apart issue and register read into two separate stages – issue-
select is now given a full cycle to select and issue uops, and
then another full cycle is given to read the operand data out
of the register file. We lowered the register count by splitting
up the unified physical register file into separate floating
point and integer register files. This split also allowed us
to reduce the read-port count by moving the three-operand
fused-multiply add floating point unit to the smaller floating
point register file.

The second path to improving the register file involved
physical design. A significant problem in placing and routing
a register file is the issue of shorts – a geometry violation
in which two metal wires that should remain separate are
physically attached. These shorts are caused by attempting
to route too many wires to a relatively dense regfile array.
BOOMv2’s 70 entry integer register file of 6 read ports and
3 write ports comes to 4,480 bits, each needing 18 wires
routed into and out of it. There is a mismatch between the
synthesized array and the area needed to route all required
wires, resulting in shorts.

Instead we opted to blackbox the Chisel register file and
manually craft a register file bit out of foundry-provided
standard cells. We then laid out each register bit in an array
and let the placer automatically route the wires to and from
each bit. While this fixed the wire shorting problem, the
tri-state buffers struggled to drive each read wire across all
70 registers. We therefore implemented hierarchical bitlines;
the bits are divided into clusters, tri-states drive the read
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Figure 4: A Register File Bit manually crafted out of

foundry-provided standard cells. Each read port provides

a read-enable bit to signal a tri-state buffer to drive its
port’s read data line. The register file bits are laid out in

an array for placement with guidance to the place tools.

The tools are then allowed to automatically route the 18
wires into and out of each bit block.

ports inside of each cluster, and muxes select the read data
across clusters.

As a counter-point, the smaller floating point register file
(three read ports, two write ports) is fully synthesized with
no placement guidance.

4 LESSONS LEARNED

The process of taking a register-transfer-level (RTL) design
all the way through a modern VLSI tool flow has proven to
be a very valuable experience.

Dealing with high port count memories and highly-congested
wire routing are likely to require microarchitectural solutions.
Dealing with the critical paths created by memories required
microarchitectural changes that likely hurt IPC, which in
turn motivates further microarchitectural changes. Lacking
access to faithful memory models and layout early in the
design process was a serious handicap. A manually-crafted
cell approach is useful for exploring the design space before
committing to a more custom design.

Memory timings are sensitive to their aspect ratios; tall,
skinny memories do not work. We wrote Chisel generators to
automatically translate large aspect ratio memories into rect-
angular structures by changing the index hashing functions
and utilizing bit-masking of reads and writes.

Chasing down and fixing all critical paths can be a fool’s
errand. The most dominating critical path was the register
file read as measured from post-place and route analysis.
Fixing critical paths discovered from post-synthesis analysis
may have only served to worsen IPC for little discernible gain
in the final chip.

Describing hardware using generators proved to be a very
useful technique; multiple design points could be generated
and evaluated, and the final design choices could be commit-
ted to later in the design cycle. We could also increase our
confidence that particular critical paths were worth pursu-
ing; by removing functional units and register read ports, we
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could estimate the improvement from microarchitectural tech-
niques that would reduce port counts on the issue windows
and register file.

Chisel is a wonderfully expressive language. With a proper
software engineering of the code base, radical changes to the
datapaths can be made very quickly. Splitting up the register
files and issue windows was a one week effort, and pipelining
the register rename stage was another week. However, physi-
cal design is a stumbling block to agile hardware development.
Small changes could be reasoned about and executed swiftly,
but larger changes could change the physical layout of the
chip and dramatically affect critical paths and the associated
costs of the new design point.

5 WHAT DOES IT TAKE TO GO
REALLY FAST?

A number of challenges exist to push BOOM below 35 FO4.
First the L1 instruction and data caches would likely need to
be redesigned. Both caches return data after a single cycle
(they can maintain a throughput of one request a cycle to
any address that hits in the cache). This path is roughly 35
FO4. A few techniques exist to increase clock frequency but
increase the latency of cache accesses.

For this analysis, we used regular threshold voltage (RVT)-
based SRAM. However, the BTB is a crucial performance
structure typically designed to be accessed and used to make
a prediction within a single-cycle and is thus a candidate for
additional custom effort. There are many other structures
that are often the focus of manual attention: functional units;
content-addressable memories (CAMs) are crucial for many
structures in out-of-order processors such as the load/store
unit or translation lookaside buffers (TLBs) [5]; and the issue-
select logic can dictate how large of an issue window can be
deployed and ultimately guide how many instructions can be
inflight in an out-of-order processor.

However, any techniques to increase BOOM’s clock fre-
quency will have to be balanced against decreasing the IPC
performance. For example, BOOM’s new front-end suffers
from additional bubbles even on correct branch predictions.
Additional strategies will need to be employed to remove
these bubbles when predictors are predicting correctly [9].

6 CONCLUSION

Modern out-of-order processors rely on a number of memory
macros and arrays of different shapes and sizes, and many of
them appear in the critical path. The impact on the actual
critical path is hard to assess by using flip-flop-based arrays
and academic/educational modeling tools, because they may
either yield physically unimplementable designs or they may
generate designs with poor performance and power character-
istics. Re-architecting the design by relying on a hand-crafted,
yet synthesizable register file array and leveraging hardware
generators written in Chisel helped us isolate real critical
paths from false ones. This methodology narrows down the
range of arrays that would eventually have to be handcrafted
for a serious production-quality implementation.

BOOM is still a work-in-progress and we can expect further
refinements as we collect more data. As BOOMv2 has largely
been an effort in improving the critical path of BOOM, there
has been an expected drop in instruction per cycle (IPC)
performance. Using the Coremark benchmark, we witnessed
up to a 20% drop in IPC based on the parameters listed
in Table 1. Over half of this performance degradation is
due to the increased latency between load instructions and
any dependent instructions. There are a number of available
techniques to address this that BOOM does not currently
employ. However, BOOMv2 adds a number of parameter
options that allows the designer to configure the pipeline
depth of the register renaming and register-read components,
allowing BOOMv2 to recover most of the lost IPC in exchange
for an increased clock period.
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