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Abstract

We consider the problem of performing compositional verification of a system with machine learn-
ing components whose behavior cannot easily be formally specified. We present an approach involving
a system-level verifier communicating with a component-level analyzer wherein the former identifies a
subset of environment behaviors that might lead to a system-level failure while the latter identifies erro-
neous behaviors, such as misclassifications, of the machine learning component that might be extended
to a system-level counterexample. Results on cyber-physical systems with deep learning components
used for perception demonstrate the promise of this approach.

1 Introduction

Formal verification critically relies on having a formal specification — a precise, mathematical statement of
what the system is supposed to do, and how its environment is expected to behave. The challenge of coming
up with high-quality formal specification is well known, even in application domains such as digital design
in which formal verification has found considerable success (see, e.g., [3]). However, how can one deal
with situations where formally specifying the behavior of a system or a component within that system is
extremely difficult or arguably even impossible?

One setting in which to consider this question is that of compositional verification — verifying a system
by decomposing the overall verification problem into those of verifying the components of the system.
Compositional verification — also known as modular verification — has been a cornerstone of getting
techniques in formal verification to scale to large circuits and programs. However, compositional verification
relies on compositional specification, i.e., breaking up the overall system specification into those for its
components. The decomposition of the system specification must be performed in a manner such that
verifying that the components satisfy their component-level specifications implies that the system satisfies
its system-level specification. Frameworks such as assume-guarantee (or rely-guarantee) reasoning (see,
e.g., [2, 11]) and contract-based design [18] provide approaches to coming up with such a decomposition in
a principled manner.

The increasing number of systems that make heavy use of artificial intelligence (Al) and machine learn-
ing (ML) pose a particular challenge for compositional specification and verification. Consider, for example,
a deep learning [8, 13] based module in an autonomous vehicle that performs object detection and classifi-
cation, distinguishing cars from bicycles from pedestrians and other objects. One can think of formulating a
suitable system-level safety specification for such a system, e.g., that the autonomous vehicle must maintain
a safe distance from other objects while it is in motion. However, verifying whether the vehicle satisfies
such a system-level specification depends on whether its components work correctly in tandem, including
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whether the object detection system correctly identifies objects in the vehicle’s vicinity. Further, the veri-
fication of such a complex system will inevitably need to be compositional. For example, the rich set of
sensors used by an autonomous vehicle results in an extremely high-dimensional input space for verifica-
tion. Monolithic verification of the entire system is extremely difficult. Thus, the question arises: What is
the formal specification for the object detection module?

To answer this question, one will need to formalize visual and perceptual tasks, some of which may
involve a version of the Turing test. We believe that such tasks are, in general, not formally specifiable.
Even when one might formulate a formal specification for such a perceptual task, it is likely to be brittle
due to the inherent ambiguity in the task. As an example, consider Figure 1 which shows three images of
cars obtained via a web search. Which of these must an autonomous vehicle consider as a valid car in its
environment? Further, even in a simulated environment where “ground truth” may be known, it may be

Figure 1: Images of three cars obtained via a web search.

extremely difficult to capture it in a compact formal notation. For instance, using advanced simulators for
autonomous driving, one can specify an environment configuration where ground truth may be known for
specific environment states, but it is tricky to specify exhaustively and use for formal verification.

In this note, we formulate an alternative approach for the compositional verification of such systems
where compositional specification is not possible (at least in the traditional sense). We focus on learning-
based systems, i.e., systems which make substantial use of machine learning components. An initial demon-
stration of this approach has been made for verifying cyber-physical systems with machine learning com-
ponents [5]. This problem is one of the interesting problems arising from the application of formal methods
to Al-based systems. For a fuller discussion of the challenges for verified Al and some ideas for addressing
them, see [19].

2  Cooperating Verifiers

Let S denote the model of the system S under verification, E denote a model of its environment, and ®
denote the specification to be verified. @ is a set of behaviors of the closed system obtained by composing
S with E, denoted S||E (we limit ourselves to trace properties). Further, let C denote a component of S for
which we cannot (easily) write a formal specification — for instance, the deep learning module discussed in
Sec. 1 (and in more detail in Sec. 2.1 below). We focus in particular on the setting where C is designed for a
sensing/perceptual task on the environment E. We wish to verify whether the composite system S||E satisfies
@, and to do so compositionally by decomposing the verification problem between one that analyzes just the
component C and another than analyzes the behavior of S while abstracting away most or all of the details
of C.

In this section, we present some initial ideas for tackling this problem, beginning with a motivating
example (Sec. 2.1), the core approach (Sec. 2.2), and sample results (Sec. 2.3). We will assume a single
component C, although the ideas presented herein could be extended to multiple such components.
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Figure 2: Automatic Emergency Braking System (AEBS) in closed loop. An image classifier based on deep
neural networks is used to perceive objects in the ego vehicle’s frame of view.

2.1 Example Problem

As an illustrative example, let us consider a simple model of an Automatic Emergency Braking System
(AEBS), that attempts to detect objects in front of a vehicle and actuate the brakes when needed to avert
a collision. Figure 2 shows the AEBS as a system composed of a controller (automatic braking), a plant
(vehicle sub-system under control, including transmission), and an advanced sensor (camera along with an
obstacle detector based on deep learning). The AEBS, when combined with the vehicle’s environment,
forms a closed loop control system. The controller regulates the acceleration and braking of the plant using
the velocity of the subject (ego) vehicle and the distance between it and an obstacle. The sensor used to
detect the obstacle includes a camera along with an image classifier based on deep neural networks. In
general, this sensor can provide noisy measurements due to incorrect image classifications which in turn can
affect the correctness of the overall system.

Suppose we want to verify whether the distance between the ego vehicle and a preceding obstacle is al-
ways larger than 2 meters. Such a verification requires the exploration of a very large input space comprising
the control inputs (e.g., acceleration and braking pedal angles) and the machine learning (ML) component’s
feature space (e.g., all the possible pictures observable by the camera). The latter space is particularly
large — for example, note that the feature space of RGB images of dimension 1000 x 600px (for an image
classifier) contains 256!000%600x3 elements.

In the above example, S||E is the closed loop system in Fig. 2 where S comprises the deep neural network
and the controller, and E comprises everything else. C is the deep neural network used for object detection
and classification. The system-level specification @ can be captured in a metric temporal logic specifying
that the distance between the ego vehicle and a preceding obstacle is always larger than 2 meters.

This case study has been implemented in Matlab/Simulink' in two versions that use two different Con-
volutional Neural Networks (CNNs): the Caffe [9] version of AlexNet [12] and the Inception-v3 model
created with Tensorflow [14], both trained on the ImageNet database [1]. Further details about this example
can be obtained from [5].

2.2 Composition and Abstraction

Our approach rests on the twin notions of abstraction and compositionality that have been central to much
of the advances in formal verification. The high-level idea is to have a system-level verifier (or system-
level analyzer) that abstracts away the component C while verifying ® on the resulting abstraction. This
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Figure 3: Compositional Verification Approach. A system-level verifier cooperates with a component-level
analysis procedure (e.g., adversarial analysis of a machine learning component to find misclassifications).

system-level verifier communicates with a component-level analyzer that identifies interesting component-
level behaviors that could lead to violations of the system-level specification ®. Figure 3 illustrates this
approach.

We formalize this approach while trying to emphasize the intuition. Let 7 denote the set of all possible
traces of the composition of the system with its environment, S||E. Given a specification @, let Tp denote
the set of traces in T satisfying ®. Let Ug denote the projection of these traces onto the state and interface
variables of the environment E. Ugp is termed as the validity domain of ®, i.e., the set of environment
behaviors for which & is satisfied. Similarly, the complement set U_¢ is the set of environment behaviors
for which ® is violated.

Our approach works as follows:

1. The System-level Verifier initially performs two analyses with two extreme abstractions of the ML

component. First, it performs an optimistic analysis, wherein the ML component is assumed to be a
“perfect classifier”, i.e., all feature vectors are correctly classified. In situations where ML is used for
perception/sensing, this abstraction assumes perfect perception/sensing. Using this abstraction, we
compute the validity domain for this abstract model of the system, denoted Ug. Next, it performs a
pessimistic analysis where the ML component is abstracted by a “completely-wrong classifier”, i.e.,
all feature vectors are misclassified. Denote the resulting validity domain as U, . It is expected that
Ut DUg.
Abstraction permits the System-level Verifier to operate on a lower-dimensional search space and
identify a region in this space that may be affected by the malfunctioning of component C — a so-
called “region of uncertainty” (ROU). This region, US,,, is computed as Ug, \ Ug . In other words,
it comprises all environment behaviors that could lead to a system-level failure when component C
malfunctions. This region U 1?0U7 projected onto the inputs of C, is communicated to the ML Analyzer.
(Concretely, in the context of our example of Sec. 2.1, this corresponds to finding a subspace of images
that corresponds to U IgOU.)

2. The Component-level Analyzer, also termed as a Machine Learning (ML) Analyzer, performs a de-
tailed analysis of the projected ROU U,?OU. Several options are available for such an analysis. One
extreme is to perform an exhaustive search over all possible images (assuming suitable discretization
of the space), but this is not tractable for practical examples. Another approach, presented in [5],
uses systematic sampling techniques to explore the input space of C. We believe the growing litera-
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ture on adversarial analysis of machine learning systems, especially deep neural networks, could be
useful in designing the ML analyzer (see, e.g., [7, 17, 15, 16, 4]). Even though a component-level
formal specification may not be available, each of these adversarial analyses has an implicit notion of
“misclassification.” We will refer to these as component-level errors.

3. When the Component-level (ML) Analyzer finds component-level errors (e.g., those that trigger mis-
classifications of inputs whose labels are easily inferred), it communicates that information back
to the System-level Verifier, which checks whether the ML misclassification can lead to a viola-
tion of the system-level property ®. If yes, we have found a system-level counterexample. If no
component-level errors are found, and the system-level verification can prove the absence of coun-
terexamples, then it can conclude that ® is satisfied. Otherwise, if the ML misclassification cannot be
extended to a system-level counterexample, the ROU is updated and the revised ROU passed back to
the Component-level Analyzer.

The communication between the System-level Verifier and the Component-level (ML) Analyzer continues
thus, until we either prove/disprove ®, or we run out of resources.

2.3 Some Results

We have applied the above approach to the problem of compositional falsification of cyber-physical sys-
tems (CPS) with machine learning components [5]. For this class of CPS, including those with highly
non-linear dynamics and even black-box components, one cannot expect to prove system correctness. In-
stead, simulation-based falsification of temporal logic properties is an approach that has proven effective in
industrial practice (e.g., [10, 20]).

In [5], we discuss the application of our approach to the AEBS example discussed in Sec. 2.1 above.
We present just a few highlights of our results here, referring the reader to more detailed descriptions in our
other papers on the topic [, 6].

In Figure 4, we illustrate the validity domains obtained with the optimistic and pessimistic analyses
as well as the region of uncertainty. Each point in the ROU represents an environment configuration —
i.e., a combination of initial velocity of the ego vehicle and initial distance between the ego vehicle and
environment vehicle — for which a misclassification could potentially lead to a system-level safety violation.

In Figure 5 we show one result of our analysis for the Inception-v3 deep neural network. This figure
shows both correctly classified and misclassified images on a range of synthesized images where (i) the
environment vehicle is moved away from or towards the ego vehicle (along z-axis), (ii) it is moved sideways
along the road (along x-axis), or (iii) the brightness of the image is modified. These modifications constitute
the 3 axes of the figure. Our approach finds misclassifications that do not lead to system-level property
violations and also misclassifications that do lead to such violations. For example, Figure 5 shows two
misclassified images, one with an environment vehicle that is too far away to be a safety hazard, as well as
another image showing an environment vehicle driving slightly on the wrong side of the road, which is close
enough to potentially cause a violation of the system-level safety property (of maintaining a safe distance
from the ego vehicle).

For further details about this and other results with our approach, we refer the reader to [5, 6].

3 Conclusion

In this note, we discussed the challenge of applying compositional verification methods to a system with
components for which formal specification is extremely difficult or even impossible. We presented an ap-
proach based on cooperating analyzers involving a system-level verifier communicating information with
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Figure 4: Validity domain for system-level property with different abstractions of ML component. The initial
velocity and distance — initial environment configuration — are on the x and y axes respectively. The dotted (horizontal) line is
the distance at which the image classifier is active in this design. Green indicates combinations of initial velocity and distance for
which the property is satisfied and red indicates combinations for which the property is falsified. Our ML analyzer performs both
optimistic (left) and pessimistic (middle) abstractions of the neural network classifier. On the right-most image, the yellow region
denotes the region of uncertainty (ROU).
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Figure 5: Misclassified Images for Inception-v3 Neural Network (trained on ImageNet with TensorFlow).
Red crosses are misclassified images and green circles are correctly classified. Our system-level analysis
finds a corner-case image that could lead to a system-level safety violation.



component-level analyzers. Overall, our experience has been that the compositional approach is effective
at applying formal verification methods to the analysis of realistic systems with machine learning used in
perceptual tasks that are hard to formally specify.

There are several directions for future work (see [19] for details), including a further formalization of the
compositional architecture described in this article, as well as applying it more widely to a range of machine
learning-based systems where strong guarantees of safety and correctness are required.
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