
Compositional Falsification of Cyber-Physical Systems with
Machine Learning Components

Tommaso Dreossi
Alexandre Donze
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-165
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-165.html

November 26, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This technical report is an extended version of an article that appeared at
NFM 2017 and is under submission to the Journal of Automated Reasoning
(JAR).

Noname manuscript No.
(will be inserted by the editor)

Compositional Falsification of Cyber-Physical Systems
with Machine Learning Components

Tommaso Dreossi · Alexandre Donzé ·
Sanjit A. Seshia

the date of receipt and acceptance should be inserted later

Abstract Cyber-physical systems (CPS), such as automotive systems, are
starting to include sophisticated machine learning (ML) components. Their
correctness, therefore, depends on properties of the inner ML modules. While
learning algorithms aim to generalize from examples, they are only as good
as the examples provided, and recent efforts have shown that they can pro-
duce inconsistent output under small adversarial perturbations. This raises
the question: can the output from learning components lead to a failure of
the entire CPS? In this work, we address this question by formulating it as a
problem of falsifying signal temporal logic (STL) specifications for CPS with
ML components. We propose a compositional falsification framework where
a temporal logic falsifier and a machine learning analyzer cooperate with the
aim of finding falsifying executions of the considered model. The efficacy of
the proposed technique is shown on an automatic emergency braking system
model with a perception component based on deep neural networks.

Keywords Cyber-physical systems, machine learning, falsification, temporal
logic, deep learning, neural networks, autonomous driving

This work is funded in part by the DARPA BRASS program under agreement number
FA8750-16-C-0043, NSF grants CNS-1646208, CNS-1545126, and CCF-1139138, and by Ter-
raSwarm, one of six centers of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA. The second author did much of the work while affiliated
with UC Berkeley. We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPU used for this research.

T. Dreossi
University of California, Berkeley
E-mail: dreossi@berkeley.edu

A. Donzé
Decyphir, Inc.
E-mail: alex.r.donze@gmail.com

S. A. Seshia
University of California, Berkeley
E-mail: sseshia@berkeley.edu

2 Dreossi, Donzé, Seshia

1 Introduction

Over the last decade, machine learning (ML) algorithms have achieved impres-
sive results providing solutions to practical large-scale problems (see, e.g., [4,
25,18,15]). Not surprisingly, ML is being used in cyber-physical systems (CPS)
— systems that are integrations of computation with physical processes. For
example, semi-autonomous vehicles employ Adaptive Cruise Controllers (ACC)
or Lane Keeping Assist Systems (LKAS) that rely heavily on image classifiers
providing input to the software controlling electric and mechanical subsystems
(see, e.g., [5]). The safety-critical nature of such systems involving ML raises
the need for formal methods [33]. In particular, how do we systematically find
bugs in such systems?

We formulate this question as the falsification problem for CPS models with
ML components (CPSML): given a formal specification ϕ (say in a formalism
such as signal temporal logic [22]) and a CPSML model M , find an input for
which M does not satisfy ϕ. A falsifying input generates a counterexample
trace that reveals a bug. To solve this problem, multiple challenges must be
tackled. First, the input space to be searched can be intractable. For instance,
a simple model of a semi-autonomous car already involves several control sig-
nals (e.g., the angle of the acceleration pedal, steering angle) and other rich
sensor input (e.g., images captured by a camera, LIDAR, RADAR). Second,
CPSML are often designed using languages (such as C, C++, or Simulink),
for which clear semantics are not given, and involve third-party components
that are opaque or poorly-specified. This obstructs the development of formal
methods for the analysis of CPSML models and may force one to treat them as
gray-boxes or black-boxes. Third, the formal verification of ML components
is a difficult, and somewhat ill-posed problem due to the complexity of the
underlying ML algorithms, large feature spaces, and the lack of consensus on
a formal definition of correctness (see [33] for a longer discussion). Hence, we
need a technique to systematically analyze ML components within the context
of a CPS.

In this paper, we propose a new framework for the falsification of CPSML
addressing the issues described above. Our technique is compositional (mod-
ular) in that it divides the search space for falsification into that of the ML
component and of the remainder of the system, while establishing a connection
between the two. The obtained subspaces are respectively analyzed by a tem-
poral logic falsifier (“CPS Analyzer”) and a machine learning analyzer (“ML
analyzer”) that cooperate to search for a behavior of the closed-loop system
that violates the property ϕ. This cooperation mainly comprises a sequence of
input space projections, passing information about interesting regions in the
input space of the full CPSML model to identify a sub-space of the input space
of the ML component. The resulting projected input space of the ML compo-
nent is typically smaller than the full input space. Moreover, misclassifications
in this space can be mapped back to smaller subsets of the CPSML input
space in which counterexamples are easier to find. Importantly, our approach
can handle any machine learning technique, including the methods based on

Compositional Falsification of CPSML 3

Controller Plant

Environment

Learning‐Based Perception

Sensor Input

Fig. 1: Automatic Emergency Braking System (AEBS) in closed loop. A ma-
chine learning based image classifier is used to perceive objects in the ego
vehicle’s frame of view.

deep neural networks [15] that have proved effective in many recent appli-
cations. The proposed ML Analyzer is a tool that analyzes the input space
for the ML classifier and determines a region of the input space that could
be relevant for the full cyber-physical system’s correctness. More concretely,
the analyzer identifies sets of misclassifying features, i.e., inputs that “fool”
the ML algorithm. The analysis is performed by considering subsets of pa-
rameterized features spaces that are used to approximate the ML components
by simpler functions. The information gathered by the temporal logic falsifier
and the ML analyzer together reduce the search space, providing an efficient
approach to falsification for CPSML models.

Example 1 As an illustrative example, let us consider a simple model of an Au-
tomatic Emergency Braking System (AEBS), that attempts to detect objects
in front of a vehicle and actuate the brakes when needed to avert a collision.
Figure 1 shows the AEBS as a system composed of a controller (automatic
braking), a plant (vehicle sub-system under control, including transmission),
and an advanced sensor (camera along with an obstacle detector based on
deep learning). The AEBS, when combined with the vehicle’s environment,
forms a closed loop control system. The controller regulates the acceleration
and braking of the plant using the velocity of the subject (ego) vehicle and the
distance between it and an obstacle. The sensor used to detect the obstacle in-
cludes a camera along with an image classifier based on deep neural networks.
In general, this sensor can provide noisy measurements due to incorrect image
classifications which in turn can affect the correctness of the overall system.

Suppose we want to verify whether the distance between the subject vehicle
and a preceding obstacle is always larger than 5 meters. Such a verification
requires the exploration of a very large input space comprising the control
inputs (e.g., acceleration and braking pedal angles) and the ML component’s
feature space (e.g., all the possible pictures observable by the camera). The
latter space is particularly large — for example, note that the feature space
of RGB images of dimension 1000 × 600px (for an image classifier) contains
2561000×600×3 elements.

4 Dreossi, Donzé, Seshia

At first, the input space of the model described in Example 1 appears in-
tractably large. However, the twin notions of abstraction and compositionality,
central to much of the advances in formal verification, can help address this
challenge. As mentioned earlier, we decompose the overall CPSML model in-
put space into two parts: (i) the input space of the ML component, and (ii)
the input space for the rest of the system – i.e., the CPSML model with an
abstraction of the ML component. A CPS Analyzer operates on the latter
“pure CPS” input space, while an ML Analyzer handles the former. The two
analyzers communicate information as follows:

1. The CPS Analyzer initially performs conservative analyses assuming ab-
stractions of the ML component. In particular, consider two extreme ab-
stractions — a “perfect ML classifier” (i.e., all feature vectors are correctly
classified), and a “completely-wrong ML classifier” (all feature vectors are
misclassified). Abstraction permits the CPS Analyzer to operate on a lower-
dimensional input space (the “pure CPS” one) and identify a region in this
space that may be affected by the malfunctioning of some ML modules –
a so-called “region of interest” or “region of uncertainty.” This region is
communicated to the ML Analyzer.

2. The ML Analyzer projects the region of uncertainty (ROU) onto its input
space, and performs a detailed analysis of that input sub-space. Since this
detailed analysis uses only the ML classifier (not the full CPSML model),
it is a more tractable problem. In this paper, we present a novel sampling-
based approach to explore the input sub-space for the ML component. We
can also leverage other advances in analysis of machine learning systems
operating on rich sensor inputs and for applications such as autonomous
driving (see the related work section that follows).

3. When the ML Analyzer finds interesting test cases (e.g., those that trigger
misclassifications of inputs whose labels are easily inferred), it communi-
cates that information back to the CPS Analyzer, which checks whether
the ML misclassification can lead to a system-level safety violation (e.g., a
collision). If yes, we have found a system-level counterexample. If not, the
ROU is updated and the revised ROU passed back to the ML Analyzer.

The communication between the CPS Analyzer and ML Analyzer continues
until either we find a system-level counterexample, or we run out of resources.
For the class of CPSML models we consider, including those with highly non-
linear dynamics and even black-box components, one cannot expect to prove
system correctness. We focus on specifications in Signal Temporal Logic (STL),
and for this reason use a temporal logic falsifier, Breach [8], as our CPS An-
alyzer. Even though temporal logic falsification is a mature technology with
initial industrial adoption (e.g., [42]), several technical challenges remain. First,
we need to construct the validity domain of an STL specification — the in-
put sub-space where the property is satisfied — for a CPSML model with
abstracted (correct/incorrect) ML components, and identify the region of un-
certainty (ROU). Second, we need a method to relate the ROU to the feature
space of the ML modules. Third, we need to systematically analyze the feature
space of the ML component with the goal of finding feature vectors leading

Compositional Falsification of CPSML 5

to misclassifications. We describe in detail in Sections 3 and 4 how we tackle
these challenges.

In summary, the main contributions of this paper are:

• A compositional framework for the falsification of temporal logic properties
of arbitrary CPSML models that works for any machine learning classifier.

• A machine learning analyzer that identifies misclassifications leading to
system-level property violations, based on two main ideas:

- An input space parameterization used to abstract the feature space of
the ML component and relate it to the CPSML input space, and

- A classifier approximation method used to abstract the ML component
and identify misclassifications that can lead to executions of the CPSML
that violate the temporal logic specification.

• An experimental demonstration of the effectiveness of our approach on two
instantiations of the Automatic Emergency Braking System (AEBS) ex-
ample with multiple deep neural networks trained for object detection and
classification, including some developed by experts in the machine learning
and computer vision communities.

In Sec. 5, we give detailed experimental results on an Automatic Emergency
Braking System (AEBS) involving an image classifier for obstacle detection
based on deep neural networks developed and trained using leading software
packages — AlexNet developed with Caffe [18] and Inception-v3 developed
with TensorFlow [23]. In this journal version of our original conference pa-
per [10], we also present a new case study, an AEBS deployed within the
Udacity self-driving car simulator [2] trained on images generated from the
simulator.

Related Work

The verification of both CPS and ML algorithms have attracted several re-
search efforts, and we focus here on the most closely related work. Techniques
for the falsification of temporal logic specifications against CPS models have
been implemented based on nonlinear optimization methods and stochastic
search strategies (e.g., Breach [8], S-TaLiRo [3], RRT-REX [9], C2E2 [12]).
While the verification of ML programs is less well-defined [33], recent ef-
forts [36] show how even well trained neural networks can be sensitive to
small adversarial perturbations, i.e., small intentional modifications that lead
the network to misclassify the altered input with large confidence. Other ef-
forts have tried to characterize the correctness of neural networks in terms of
risk [39] (i.e., probability of misclassifying a given input) or robustness [13,
7] (i.e., a minimal perturbation leading to a misclassification), while others
proposed methods to generate pictures [28,11] or perturbations [26,28,16] in-
cluding methods based on satisfiability modulo theories (SMT) [20] in such
a way to “fool” neural networks. These methods, while very promising, are
mostly limited to analyzing the ML components in isolation, and not in the

6 Dreossi, Donzé, Seshia

context of a complex, closed-loop cyber-physical system. To the best of our
knowledge, our work is the first to address the verification of temporal logic
properties of CPSML—the combination of CPS and ML systems. The work
that is closest in spirit to ours is that on DeepXplore [31], where the au-
thors present a whitebox software testing approach for deep learning systems.
However, there are some important differences: their work performs a detailed
analysis of the learning software, whereas ours analyzes the entire closed-loop
CPS while delegating the software analysis to the machine learning analyzer.
Further, we consider temporal logic falsification whereas their work uses soft-
ware and neural network coverage metrics. It may be interesting to see how
these approaches can be combined.

2 Background

2.1 CPSML Models

In this work, we consider models of cyber-physical systems with machine learn-
ing components (CPSML). We assume that a system model is given as a gray-
box simulator defined as a tuple M = (S,U, sim), where S is a set of system
states, U is a set of input values, and sim : S×U ×T → S is a simulator that
maps a state x(tk) ∈ S and input value u(tk) ∈ U at time tk ∈ T to a new
state x(tk+1) = sim(x(tk),u(tk), tk), where tk+1 = tk + ∆k for a time-step
∆k ∈ Q>0.

Given an initial time t0 ∈ T , an initial state x(t0) ∈ S, a sequence of time-
steps ∆0, . . . ,∆n ∈ Q>0, and a sequence of input values u(t0), . . . ,u(tn) ∈ U ,
a simulation trace of the model M = (S,U, sim) is a sequence:

(t0,x(t0),u(t0)), (t1,x(t1),u(t1)), . . . , (tn,x(tn),u(tn))

where x(tk+1) = sim(x(tk),u(tk), ∆k) and tk+1 = tk +∆k for k = 0, . . . , n.
The gray-box aspect of the CPSML model is that we assume some knowl-

edge of the internal ML components. Specifically, these components, termed
classifiers, are functions f : X → Y that assign to their input feature vec-
tor x ∈ X a label y ∈ Y , where X and Y are a feature and label space,
respectively. Without loss of generality, we focus on binary classifiers whose
label space is Y = {0, 1}. A ML algorithm selects a classifier using a train-
ing set {(x(1), y(1)), . . . , (x(m), y(m))} where the (x(i), y(i)) are labeled exam-
ples with x(i) ∈ X and y(i) ∈ Y , for i = 1, . . . ,m. The quality of a clas-
sifier can be estimated on a test set of examples comparing the classifier
predictions against the labels of the examples. Precisely, for a given test set
T = {(x(1), y(1)), . . . , (x(l), y(l))}, the number of false positives fpf (T) and
false negatives fnf (T) of a classifier f on T are defined as:

fpf (T) = | {x(i) ∈ T | f(x(i)) = 1 and y(i) = 0} |
fnf (T) = | {x(i) ∈ T | f(x(i)) = 0 and y(i) = 1} |

(1)

Compositional Falsification of CPSML 7

The error rate of f on T is given by:

errf (T) = (fpf (T) + fnf (T))/l (2)

A low error rate implies good predictions of the classifier f on the test set T .

2.2 Signal Temporal Logic

We consider Signal Temporal Logic [22] (STL) as the language to specify
properties to be verified against a CPSML model. STL is an extension of
linear temporal logic (LTL) suitable for the specification of properties of CPS.

A signal is a function s : D → S, with D ⊆ R≥0 an interval and either
S ⊆ B or S ⊆ R, where B = {>,⊥} and R is the set of reals. Signals defined
on B are called booleans, while those on R are said real-valued. A trace w =
{s1, . . . , sn} is a finite set of real-valued signals defined over the same interval
D.

Let Σ = {σ1, . . . , σk} be a finite set of predicates σi : Rn → B, with
σi ≡ pi(x1, . . . , xn) C 0, C ∈ {<,≤}, and pi : Rn → R a function in the
variables x1, . . . , xn.

An STL formula is defined by the following grammar:

ϕ := σ | ¬ϕ |ϕ ∧ ϕ |ϕUIϕ (3)

where σ ∈ Σ is a predicate and I ⊂ R≥0 is a closed non-singular interval.
Other common temporal operators can be defined as syntactic abbreviations
in the usual way, like for instance ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ϕ2), FIϕ := >UIϕ, or
GIϕ := ¬FI¬ϕ. Given a t ∈ R≥0, a shifted interval I is defined as t + I =
{t+ t′ | t′ ∈ I}.

Definition 1 (Qualitative semantics) Let w be a trace, t ∈ R≥0, and ϕ
be an STL formula. The qualitative semantics of ϕ is inductively defined as
follows:

w, t |= σ iff σ(w(t)) is true

w, t |= ¬ϕ iff w, t 6|= ϕ

w, t |= ϕ1 ∧ ϕ2 iff w, t |= ϕ1 and w, t |= ϕ2

w, t |= ϕ1UIϕ2 iff ∃t′ ∈ t+ I s.t. w, t′ |= ϕ2 and ∀t′′ ∈ [t, t′], w, t′′ |= ϕ1

(4)

A trace w satisfies a formula ϕ if and only if w, 0 |= ϕ, in short w |= ϕ.
For given signal w, time instant t ∈ R≥0, and STL formula ϕ, the satisfaction
signal X (w, t, ϕ) is > if w, t |= ϕ, ⊥ otherwise.

Given a CPSML model M = (S,U, sim), M |= ϕ if every simulation trace
of M satisfies ϕ.

8 Dreossi, Donzé, Seshia

Definition 2 (Quantitative semantics) Let w be a trace, t ∈ R≥0, and ϕ
be an STL formula. The quantitative semantics of ϕ is defined as follows:

ρ(p(x1, . . . , xn) C 0, w, t) = p(w(t)) with C ∈ {<,≤}
ρ(¬ϕ,w, t) = − ρ(ϕ,w, t)

ρ(ϕ1 ∧ ϕ2, w, t) = min(ρ(ϕ1, w, t), ρ(ϕ2, w, t))

ρ(ϕ1UIϕ2, w, t) = sup
t′∈t+I

min(ρ(ϕ2, w, t
′), inf

t′′[t,t′]
ρ(ϕ1, w, t

′′))

(5)

The robustness of a formula ϕ with respect to a trace w is the signal ρ(ϕ,w, ·).
Given a CPSML model M = (S,U, sim), and a temporal logic formula ϕ,

the validity domain of ϕ for model M is the subset of U for which traces of M
satisfies ϕ. We denote the validity domain by Uϕ; the remaining set of inputs
U \Uϕ is denoted by U¬ϕ. Simulation-based verification tools (such as [8]) can
approximately compute validity domains via sampling-based methods.

3 Compositional Falsification Framework

In this section, we formalize the falsification problem for STL specifications
against CPSML models, define our compositional falsification framework, and
show its functionality on the AEBS system of Example 1.

Definition 3 (Falsification of CPSML) Given a model M = (S,U, sim)
and an STL specification ϕ, find an initial state x(t0) ∈ S and a sequence
of input values u = u(t0), . . . ,u(tn) ∈ U such that the trace of states w =
x(t0), . . . ,x(tn) generated by the simulation of M from x(t0) ∈ S under u does
not satisfy ϕ, i.e., w 6|= ϕ. We refer to such (x(t0),u) as counterexamples for ϕ.
The problem of finding a counterexample is often called falsification problem.

We now present the compositional framework for the falsification of STL
formulas against CPSML models. Intuitively, the proposed method decom-
poses a given model into two abstractions: a version of the CPSML model
under the assumption of perfectly correct ML modules and its actual ML
components. The two abstractions are separately analyzed, the first by a tem-
poral logic falsifier that builds the validity domain with respect to the given
specification, the second by an ML analyzer that identifies sets of feature vec-
tors that are misclassified by the ML components. Finally, the results of the
two analysis are composed and projected back to a targeted input subspace of
the original CPSML model where counterexamples can be found by invoking
a temporal logic falsifier. Let us formalize this procedure.

Let M = (S,U, sim) be a CPSML model and ϕ be an STL specification.
Consider creating an “optimistic” abstraction M+ of M : in other words, M+

is a version of M with perfect ML components, that is, every feature vector of
the ML feature space is correctly classified. Let us denote by ml the isolated
ML components of the model M .

Under the assumption of correct ML components, the lower-dimensional
input space of M+ can be analyzed by constructing the validity domain of ϕ,

Compositional Falsification of CPSML 9

that is the partition of the input space into the sets Uϕ and U¬ϕ that do and
do not satisfy ϕ, respectively. Note that considering the original model M , a
possible misclassification of the ML components ml might affect the elements
of Uϕ and U¬ϕ. In particular, we are interested in the elements of Uϕ that,
due to misclassifications of ml, do not satisfy ϕ anymore. This corresponds to
analyze the behavior of the ML components ml on the input set Uϕ. We refer
to this step as the ML analysis, that can be seen as the procedure of finding a
subset Uml ⊆ Uϕ of input values that are misclassified by the ML components
ml. It is important to note that the input space of the CPS model M+ and
the feature spaces of the ML modules ml are different, thus the ML analyzer
must adapt and relate the two different spaces. This important step will be
clarified in Section 4.

Finally, the intersection Uϕ ∩ Uml of the subsets identified by the decom-
posed analysis of the CPS model and its ML components targets a small set of
input values that are misclassified by the ML modules and are likely to falsify
ϕ. Thus, counterexamples in Uϕ ∩ Uml ⊆ U can be determined by invoking a
temporal logic falsifier on ϕ against M .

As explained below, we can pair the “optimistic” abstraction explained
above with a “pessimistic” abstraction as well, so as to obtain a further re-
striction of the input space.

Algorithm 1 CPSML falsification scheme (one iteration between CPS Ana-
lyzer and ML Analyzer)

1: function CompFalsfy(M,ϕ) . M CPSML, ϕ STL specification
2: [M+,ml]←Decompose(M) . M+ – perfect ML, ml – ML component
3: [U+

ϕ , U
+
¬ϕ]←ValidityDomain(M+, U, ϕ) . Validity domain of ϕ w.r.t. M+

4: [M−,ml]←Decompose(M) . M− – wrong ML, ml – ML component
5: [U−ϕ , U

−
¬ϕ]←ValidityDomain(M−, U, ϕ) . Validity domain of ϕ w.r.t. M−

6: Urou ← U+
ϕ \ U−ϕ . Compute ROU

7: Uml ← MLAnalysis(ml,Urou) . Find misclassified feature vectors in ROU

8: Uml
¬ϕ ←Falsify(M,Uϕ ∩ Uml, ϕ) . Falsify on targeted input

9: return U¬ϕ ∪ Uml
¬ϕ

10: end function

The compositional falsification procedure is formalized in Algorithm 1.
CompFalsfy receives as input a CPSML model M and an STL specification
ϕ, and returns a set of falsifying counterexamples. At first, the algorithm
decomposes M into M+ and ml, where M+ is an abstract version of M with
ML componentsml that return perfect answers (classifications) (Line 2). Then,
the validity domain of ϕ with respect to the abstraction M+ is computed by
ValidityDomain (Line 3). Next, the algorithm computes from M , M−, and
ml, whereM− is an abstract version ofM with ML componentsml that always
return wrong answers (misclassifications) (Line 4). Note that this step can be
combined with Line 2, but we leave it separate for clarity in the abstract
algorithm specification. Then, the validity domain of ϕ with respect to the
abstraction M− is computed by ValidityDomain (Line 5). The region of

10 Dreossi, Donzé, Seshia

Fig. 2: Compositional falsification scheme on AEBS model. The “score” in-
dicates the confidence level with which the classifier determines whether the
image contains a car or not.

uncertainty (ROU), where misclassifications of the ML components can lead
to violations of ϕ, is then computed as Urou (Line 6). From this, the subset
of inputs that are misclassified by ml is identified by MLAnalysis (Line 7).
Finally, the targeted input set Uϕ ∩ Uml, consisting in the intersection of the
sets identified by the decomposed analysis, is searched by a temporal logic
falsifier on the original model M (Line 8) and the set of inputs that falsify the
temporal logic formula are returned.

Note that the above approach can be implemented even without computing
M− (Lines 4-6), in which case the entire validity domain of ϕ is considered as
the ROU. For simplicity, we will take this truncated approach in the example
described below. In Section 5, we will describe results on the AEBS case study
with the full approach.

Example 2 Let us consider the model described in Example 1 and let us assume
that the input space U of the model M consists of the initial velocity of
the subject vehicle vel(0), the initial distance between the vehicle and the
proceeding obstacle dist(0), and the set of pictures that can be captured by
the camera. Let ϕ := G[0,T](dist(t) ≥ τ) be a specification that requires the
vehicle to be always farther than τ from the preceding obstacle. Instead of

Compositional Falsification of CPSML 11

analyzing the whole input space U (including a vast number of pictures), we
can adopt our compositional framework to target a specific subset of U . Let
M+ be the AEBS model with a perfectly working image classifier and ml
be the actual classifier. We begin by computing the validity subsets Uϕ and
U¬ϕ of ϕ against M+, considering only vel(0) and dist(0) and assuming exact
distance measurements during the simulation. Next, we analyze only the image
classifier ml on pictures of obstacles whose distances fall in Uϕ, say in [dm, dM]
(see Figure 2). Our ML analyzer generates only pictures of obstacles whose
distances are in [dm, dM], finds possible sets of images that are misclassified,
and returns the corresponding distances that, when projected back to U , yield
the subset Uϕ ∩ Uml. Finally, a temporal logic falsifier can be invoked over
Uϕ ∩ Uml and a set of counterexamples is returned.

Algorithm 1 and the above example show how our compositional approach
relies on three key steps: (i) computing the validity domain for an STL formula
for a given simulation model; (ii) falsifying an STL formula on a simulation
model, and (iii) a ML analyzer that computes a sub-space of its input feature
space that lead to misclassifications. The first two steps have been well-studied
in the literature on simulation-based verification of CPS, and implemented in
tools such as Breach [8]. We discuss our approach to Step (iii) in the next sec-
tion — our ML analyzer that identifies misclassifications of the ML component
relevant to the overall CPSML input space.

4 Machine Learning Analyzer

A central idea in our approach to analyzing CPSML models is to use abstrac-
tions of the ML components. For instance, in the preceding section, we used the
notions of perfect ML classifiers and always-wrong classifiers in computing the
region of uncertainty (ROU). In this section, we extend this abstraction-based
approach to the ML classifier and its input (feature) space.

One motivation for our approach comes from the application domain of
autonomous driving where machine learning is used for object detection and
perception. Instead of exploring the high-dimensional input space for the ML
classifier involving all combinations of pixels, we instead perform the key sim-
plification of exploring realistic and meaningful modifications to a given im-
age dataset that corresponds to the ROU. Autonomous driving groups spend
copius amounts of time collecting images and video to train their learning-
based perception systems with. We focus on analyzing the space of images
that is “close” to this data set but with semantically significant modifications
that can identify problematic cases for the overall system.

The space of modifications to input feature vectors (say, images) induces
an abstract space over the concrete feature (image) space. Let us denote the
abstract input domain by A. Given a classifier f : X → Y , our ML analyzer
computes a simpler function f̃ : A → Y that approximates f on the abstract
domain A. The abstract domain of the function f̃ is analyzed and clusters
of misclassifying abstract elements are identified. The concretizations of such

12 Dreossi, Donzé, Seshia

elements are subsets of features that are misclassified by the original classifier
f . We describe further details of this approach in the remainder of this section.

4.1 Feature Space Abstraction

Let X̃ ⊆ X be a subset of the feature space of f : X → Y . Let ≤ be a
total order on a set A called the abstract set. An abstraction function is an
injective function α : X̃ → A that maps every feature vector x ∈ X̃ to an
abstract element α(x) ∈ A. Conversely, the concretization function γ : A→ X̃
maps every abstraction a ∈ A to a feature γ(a) ∈ X̃.

The abstraction and concretization functions play a fundamental role in our
falsification framework. First, they allow us to map the input space of the CPS
model to the feature space of its classifiers. Second, the abstract space can be
used to analyze the classifiers on a compact domain as opposite to intractable
feature spaces. These concepts are clarified in the following example, where a
feature space of pictures is abstracted into a three-dimensional unit hyper-box.

Example 3 Let X be the set of RGB pictures of size 1000 × 600, i.e., X =
{0, . . . , 255}1000×600×3. Suppose we are interested in analyzing a ML image
classifier in the context of our AEBS system. In this case, we are interested
in images of road scenarios rather than on arbitrary images in X. Further,
assume that we start with a reference data set of images of a car on a two-lane
highway with a desert road background, as shown in Figure 3. Suppose that
we are interested only in the constrained feature space X̃ ⊆ X comprising this
desert road scenario with a single car on the highway and three dimensions
along which the scene can be varied: (i) the x-dimension (lateral) position of
the car; (ii) the z-dimension (distance from the sensor) position of the car,
and (iii) the brightness of the image. The x and z positions of the car and the
brightness level of the picture can be seen as the dimensions of an abstract set
A. In this setting, we can define the abstraction and concretization functions α
and γ that relate the abstract set A = [0, 1]3 and X̃. For instance, the picture
γ(0, 0, 0) sees the car on the left, close to the observer, and low brightness;
the picture γ(1, 0, 0) places the car shifted to the right; on the other extreme,
γ(1, 1, 1) has the car on the right, far away from the observer, and with a high
brightness level. Figure 3 depicts some car pictures of S̃ disposed accordingly
to their position in the abstract domain A (the surrounding box).

4.2 Approximation of Learning Components

We now describe how the feature space abstraction can be used to construct
an approximation that helps the identification of misclassified feature vectors.

Given a classifier f : X → Y and a constrained feature space X̃ ⊆ X, we
want to determine an approximated classifier f̃ : A→ Y , such that errf̃ (T) ≤
ε, for some 0 ≤ ε ≤ 1 and test set T = {(a(1), y(1)), . . . , (a(l), y(l))}, with
y(i) = f(γ(a(i))), for i = 1, . . . , l.

Compositional Falsification of CPSML 13

Fig. 3: Feature Space Abstraction. The cube represents the abstract space A
with the three dimensions corresponding to three different image modifica-
tions. The displayed road images correspond to concretized elements of the
concrete feature space X̃.

Intuitively, the proposed approximation scheme samples elements from the
abstract set, computes the labels of the concretized elements using the ana-
lyzed learning algorithm, and finally, interpolates the abstract elements and
the corresponding labels in order to obtain an approximation function. The
obtained approximation can be used to reason on the considered feature space
and identify clusters of potentially misclassified feature vectors.

Algorithm 2 Approximation construction of classifier f : X → Y

1: function Approximation(A, γ, ε) . A abstract set (γ : A→ X̃), 0 ≤ ε ≤ 1
2: TI ← ∅
3: repeat
4: TI ← TI∪ sample(A, f)

5: f̃ ← interpolate(TI)
6: TE ← sample(A, f)
7: until errf̃ (TE) ≤ ε
8: return f̃
9: end function

The Approximation algorithm (Algorithm 2) formalizes the proposed
approximation construction technique. It receives in input an abstract domain
A for the concretization function γ : A→ X̃, with X̃ ⊆ X, the error threshold
0 ≤ ε ≤ 1, and returns a function f̃ : A → Y that approximates f on the
constrained feature space X̃. The algorithm consists in a loop that iteratively
improves the approximation f̃ . At every iteration, the algorithm populates the
interpolation test set TI by sampling abstract features from A and computing

14 Dreossi, Donzé, Seshia

the concretized labels accordingly to f (Line 4), i.e., sample(A, f)= {(a, y) |
a ∈ Ã, y = f(γ(a))}, where Ã ⊆ A is a finite subset of samples determined
with some sampling method. Next, the algorithm interpolates the points of
TI (Line 5). The result is a function f̃ : A → Y that simplifies the original
classifier f on the concretized constrained feature space X̃. The approximation
is evaluated on the test set TE . Note that at each iteration, TE changes while
TI incrementally grows. The algorithm iterates until the error rate errf̃ (TE)

is smaller than the desired threshold ε (Line 7).
The technique with which the samples in TE and TI are selected strongly

influences the accuracy of the approximation. In order to have a good cover-
age of the abstract set A, we propose the usage of low-discrepancy sampling
methods that, differently from uniform random sampling, cover sets quickly
and evenly. In this work, we use the Halton and lattice sequences, two common
and easy-to-implement sampling methods, which we explain next.

4.3 Sampling Methods

Discrepancy is a notion from equidistribution theory [41,32] that finds applica-
tion in quasi-Monte Carlo techniques for error estimation and approximating
the mean, standard deviation, integral, global maxima and minima of compli-
cated functions, such as, e.g., our classification functions.

Definition 4 (Discrepancy [27]) Let X = {x(1), . . . ,x(m)} be a finite set
of points in n-dimensional unit space, i.e., X ⊂ [0, 1]n. The discrepancy of X
is given by:

D(X) = sup
B∈J
| #(X,B)

m
− vol(B) | (6)

where #(X,B) = |{x ∈ X | x ∈ B}|, i.e., the number of points in X that fall
in B, vol(B) is the n-dimensional volume of B, and J is the set of boxes of
the form {x ∈ Rn|ai ≤ xi ≤ bi}, where i = 1, . . . , n and 0 ≤ ai < bi < 1.

Definition 5 (Low-discrepancy sequence [27]) A low-discrepancy sequence,
also called quasi-random sequence, is a sequence with the property that for all
m ∈ N, its subsequence X = {x(1), . . . ,x(m)} has low discrepancy.

Low-discrepancy sequences fill spaces more uniformly than uncorrelated
random points. This property makes low-discrepancy sequences suitable for
problems where grids are involved, but it is unknown in advance how fine
the grid must be to attain precise results. A low-discrepancy sequence can
be stopped at any point where convergence is observed, whereas the usual
uniform random sampling technique requires a large number of computations
between stopping points [38]. Low-discrepancy sampling methods have im-
proved computational techniques in many areas, including robotics [6], image
processing [14], computer graphics [34], numerical integration [35], and opti-
mization [30].

We now introduce two low-discrepancy sequences that will be used in this
work. For more sequences and details see, e.g., [29].

Compositional Falsification of CPSML 15

1. Halton sequence [27]. Based on the choice of an arbitrary prime number p,
the i-th sample is obtained by representing i in base p, reversing its digits,
and moving the decimal point by one position. The resulting number is
the i-th sample in base p. For the multi-dimensional case, it is sufficient to
choose a different prime number for each dimension. In practice, this pro-
cedure corresponds to choosing a prime base p, dividing the [0, 1] interval
in p segments, then p2 segments, and so on.

2. Lattice sequence [24]. A lattice can be seen as the generalization of a multi-
dimensional grid with possibly nonorthogonal axes. Let α1, . . . , αn−1 ∈
R>0 be irrational numbers and m ∈ N. The i-th sample of a lattice se-
quence is (i/m, {iα1}, . . . , {iαn−1}), where the curly braces {·} denote the
fractional part of the real value (modulo-one arithmetic).

Example 4 We now analyze two Convolutional Neural Networks (CNNs): the
Caffe [18] version of AlexNet [21] and the Inception-v3 model of Tensor-
flow [23], both trained on the ImageNet database [1]. We sample 1000 points
from the abstract domain defined in Example 3 using the lattice sampling tech-
niques. These points encode the x and z displacements of a car in a picture
and its brightness level (see Figure 3). Figure 4 (a) depicts the sampled points
with their concretized labels. The green circles indicate correct classifications,
i.e., the classifier identified a car, the red circles denote misclassifications, i.e.,
no car detected. The linear interpolation of the obtained points leads to an ap-
proximation function. The error rates errf̃ (TE) of the obtained approximations

(i.e., the discrepancies between the predictions of the original image classifiers
and their approximations) computed on 300 randomly picked test cases are
0.0867 and 0.1733 for AlexNet and Inception-v3, respectively. Figure 4 (b)
shows the projections of the approximation functions for the brightness value
0.2. The more red a region, the larger the sets of pictures for which the neural
networks do not detect a car. For illustrative purposes, we superimpose the
projections of Figure 4 (b) over the background used for the picture gener-
ation. These illustrations show the regions of the concrete feature vectors in
which a vehicle is misclassified.

The analysis of Example 4 on AlexNet and Inception-v3 provides useful
insights. First, we observe that Inception-v3 outperforms AlexNet on the con-
sidered road pictures since it correctly classifies more pictures than AlexNet.
Second, we notice that AlexNet tends to correctly classify pictures in which
the x abstract component is either close to 0 or 1, i.e., pictures in which the
car is not in the middle of the street, but on one of the two lanes. This suggests
that the model might not have been trained enough with pictures of cars in
the center of the road. Third, using the lattice method on Inception-v3, we
were able to identify a corner case misclassification in a cluster of correct pre-
dictions (note the isolated red cross with coordinates (0.1933, 0.0244, 0.4589)).
All this information provides insights on the classifiers that can be useful in
the hunt for counterexamples.

16 Dreossi, Donzé, Seshia

(a) Sampling.

(b) Interpolation projection.

(c) Feature space analysis.

Fig. 4: ML analysis of AlexNet network developed with Caffe (top) and
Inception-v3 network developed with Tensorflow (bottom) on a road scenario.

Compositional Falsification of CPSML 17

5 Experimental Results

In this section we present two case studies, both involving an Automatic Emer-
gency Braking System (AEBS), but differing in the details of the underlying
simulator and controller. The first is a Simulink-based AEBS, the second is a
Unity-Udacity simulator-based AEBS.

The falsification framework for the first case study has been implemented
in a Matlab toolbox.1 The framework for the second case study has been writ-
ten in Python and C#.2 Our tools deal with models of CPSML and STL
specifications. They mainly consist of a temporal logic falsifier and an ML
analyzer that interact to falsify the given STL specification against the de-
composed models. As an STL falsifier, we chose the existing tool Breach [8],
while the ML analyzer has been implemented from scratch. The ML analyzer
implementation has two components: the feature space abstractor and the ML
approximation algorithm (see Section 4). The feature space abstractor imple-
ments a scene generator that concretizes the abstracted feature vectors. The
algorithm that computes an approximation of the analyzed ML component
gives the user the option of selecting the sampling method and interpolation
technique, as well as setting the desired error rate. Our tools are interfaced
with the deep learning frameworks Caffe [18] and Tensorflow [23]. We ran our
tests on a desktop computer Dell XPS 8900, Intel (R) Core(TM) i7-6700 CPU
3.40GHz, DIMM RAM 16 GB 2132 MHz, GPUs NVIDIA GeForce GTX Titan
X and Titan Xp, with Ubuntu 14.04.5 LTS and Matlab R2016b.

5.1 Case Study 1: Simulink-based AEBS

Our first case study is a closed-loop Simulink model of a semi-autonomous
vehicle with an Advanced Emergency Braking System (AEBS) [37] connected
to a deep neural network-based image classifier. The model mainly consists
of a four-speed automatic transmission controller linked to an AEBS that
automatically prevents collisions with preceding obstacles and alleviate the
harshness of a crash when a collision is likely to happen (see Figure 5). The
AEBS determines a braking mode depending on the speed of the vehicle vs, the
possible presence of a preceding obstacle, its velocity vp, and the longitudinal
distance dist between the two. The distance dist is provided by radars having
30m of range. For obstacles farther than 30m, the camera, connected to an
image classifier, alerts the AEBS that, in the case of detected obstacle, goes
into warning mode.

Depending on vs, vp, dist, and the presence of obstacles detected by the
image classifier, the AEBS computes the time to collision and longitudinal
safety indices, whose values determine a controlled transition between safe,
warning, braking, and collision mitigation modes. In safe mode, the car does

1 https://github.com/dreossi/analyzeNN
2 https://bitbucket.org/sseshia/uufalsifier

18 Dreossi, Donzé, Seshia

Fig. 5: Simulink model of a semi-autonomous vehicle with AEBS.

ML always correct ML always wrong Region of Uncertainty (yellow)

Fig. 6: Validity domain for G(¬(dist(t)) ≤ 0) and AEBS model with different
abstractions of ML component. The initial velocity and distance are on the x and y axes

respectively. The dotted (horizontal) line is the image classifier activation threshold. Green

indicates combinations of initial velocity and distance for which the property is satisfied and

red indicates combinations for which the property is falsified. Our ML analyzer performs

both optimistic (left) and pessimistic (middle) abstractions of the neural network classifier.

On the right-most image, the yellow region denotes the region of uncertainty (ROU).

not need to brake. In warning mode, the driver should brake to avoid a colli-
sion. If this does not happen, the system goes into braking mode, where the
automatic brake slows down the vehicle. Finally, in collision mitigation mode,
the system, determining that a crash is unavoidable, triggers a full braking
action aimed to minimize the damage.

To establish the correctness of the system and in particular of its AEBS
controller, we formalize the STL specification G(¬(dist(t)) ≤ 0), that requires
dist(t) to always be positive, i.e., no collision happens. The input space is
vs(0) ∈ [0, 40] (mph), dist(0) ∈ [0, 60] (m), and the set of all RGB pictures of
size 1000× 600. The preceding vehicle is not moving, i.e., vp(t) = 0 (mph).

At first, we compute the validity domain of ϕ assuming that the radars
are able to provide exact measurements for any distance dist(t) and the image
classifier correctly detects the presence of a preceding vehicle. The computed
validity domain is depicted in Figure 6 (left-most image): green for Uϕ and
red for U¬ϕ. Next, we try to identify candidate counterexamples that belong
to the satisfactory set (i.e., the inputs that satisfy the specification) but might
be influenced by a misclassification of the image classifier. Since the AEBS

Compositional Falsification of CPSML 19

Fig. 7: Analysis of Region of Uncertainty (ROU) for AEBS and property
G(¬(dist(t)) ≤ 0). Red crosses in the ROU denote misclassifications gener-
ated by the ML analyzer that leads to a system-level counterexample. A circle
denotes a “benign” misclassification.

relies on the classifier only for distances larger than 30m, we can focus on the
subset of the input space with dist(0) ≥ 30. Specifically, we identify potential
counterexamples by analyzing a pessimistic version of the model where the
ML component always misclassifies the input pictures (see Figure 6, middle
image). From these results, we can compute the region of uncertainty, shown in
Figure 6 on the right. We can then focus our attention on the ROU, as shown
in Fig. 7. In particular, we can identify candidate counterexamples, such as,
for instance, (25, 40) (i.e., vs(0) = 25 and dist(0) = 40).

Next, let us consider the AlexNet image classifier and the ML analyzer
presented in Section 4 that generates pictures from the abstract feature space
A = [0, 1]3, where the dimensions of A determine the x and z displacements
of a car and the brightness of a generated picture, respectively. The goal now
is to determine an abstract feature ac ∈ A related to the candidate coun-
terexample (25, 40), that generates a picture that is misclassified by the ML
component and might lead to a violation of the specification ϕ. The dist(0)
component of uc = (25, 40) determines a precise z displacement a2 = 0.2 in
the abstract picture. Now, we need to determine the values of the abstract x
displacement and brightness. Looking at the interpolation projection of Fig-
ure 4 (b), we notice that the approximation function misclassifies pictures with
abstract component a1 ∈ [0.4, 0.5] and a3 = 0.2. Thus, it is reasonable to try
to falsify the original model on the input element vs(0) = 25, dist(0) = 40, and
concretized picture γ(0.5, 0.2, 0.2). For this targeted input, the temporal logic
falsifier computed a robustness value for ϕ of −24.60, meaning that a falsifying
counterexample has been found. Other counterexamples found with the same
technique are, e.g., (27, 45) or (31, 56) that, associated with the correspondent
concretized pictures with a1 = 0.5 and a3 = 0.2, lead to the robustness values
−23.86 and −24.38, respectively (see Figure 7, red crosses). Conversely, we
also disproved some candidate counterexamples, such as (28, 50), (24, 35), or

20 Dreossi, Donzé, Seshia

(25, 45), whose robustness values are 9.93, 7.40, and 7.67 (see Figure 7, green
circles).

For experimental purposes, we try to falsify a counterexample in which we
change the x position of the abstract feature so that the approximation func-
tion correctly classifies the picture. For instance, by altering the counterexam-
ple (27, 45) with γ(0.5, 0.225, 0.2) to (27, 45) with γ(1.0, 0.225, 0.2), we obtain
a robusteness value of 9.09, that means that the AEBS is able to avoid the car
for the same combination of velocity and distance of the counterexample, but
different x position of the preceding vehicle. Another example, is the robust-
ness value −24.38 of the falsifying input (31, 56) with γ(0.5, 0.28, 0.2), that
altered to γ(0.0, 0.28, 0.2), changes to 12.41.

Finally, we test Inception-v3 on the corner case misclassification identi-
fied in Section 4.2 (i.e., the picture γ(0.1933, 0.0244, 0.4589)). The distance
dist(0) = 4.88 related to this abstract feature is below the activation thresh-
old of the image classifier. Thus, the falsification points are exactly the same as
those of the computed validity domain (i.e., dist(0) = 4.88 and vs(0) ∈ [4, 40]).
This study shows how a misclassification of the ML component might not affect
the correctness of the CPSML model.

5.2 Case Study 2: Unity-Udacity Simulator-based AEBS

We now analyze an AEBS deployed within Udacity’s self-driving car simula-
tor.3 The simulator, built with the Unity game engine4, can be used to teach
cars how to navigate roads using deep learning. We modified the simulator
in order to focus exclusively on the braking system. In our settings, the car
steers by following some predefined waypoints, while acceleration and braking
are controlled by an AEBS connected to a CNN. An onboard camera sends
images to the CNN whose task is to detect cows on the road. Whenever an
obstacle is detected, the AEBS triggers a brake that slows the vehicle down
and prevents the collision against the obstacle.

We implemented a CNN that classifies the pictures captured by the on-
board camera in two categories “cow” and “not cow”. The CNN has been im-
plemented and trained using Tensorflow. We connected the CNN to the Unity
C# class that controls the car. The communication between the neural network
and the braking controller happens via Socket.IO protocol.5 A screenshot of
the car braking in presence of a cow is shown in Figure 8a. A video of the AEBS
in action can be seen at https://www.youtube.com/watch?v=Sa4oLGcHAhY.

The CNN architecture is depicted in Figure 9. The network consists of
eight layers: the first six are alternations of convolutions and max-pools with
ReLU activations, the last two are a fully connected layer and a softmax that
outputs the network prediction. The dimensions and hyperparameters of our

3 Udacity’s Self-Driving Car Simulator: https://github.com/udacity/

self-driving-car-sim
4 Unity: https://unity3d.com/
5 Socket.IO protocol: https://github.com/socketio

Compositional Falsification of CPSML 21

(a) Correct detection and braking. (b) Misclassification and collision.

Fig. 8: Unity-Udacity simulator AEBS. The onboard camera sends images
to the CNN. When a cow is detected a braking action is triggered un-
til the car comes to a complete stop. Full videos available at https://

www.youtube.com/watch?v=Sa4oLGcHAhY and https://www.youtube.com/

watch?v=MaRoU5OgimE.

Fig. 9: CNN architecture.

0 1 2 3 4 5 6 7 8

n
[l]
H × n

[l]
W 128× 128 128× 128 64× 64 64× 64 32× 32 32× 32 16× 16 128× 1 2× 1

n
[l]
C 3 32 32 32 32 64 64 1 1

f [l] - 3 2 3 2 3 2 - -

p[l] - 1 0 1 0 1 0 - -

s[l] - 1 2 1 2 1 2 - -

Table 1: CNN dimensions and hyperparameters.

neural network are shown in Table 1, where l is a layer, n
[l]
H × n

[l]
W × n

[l]
C is the

dimension of the volume computed by the layer l, f [l] is the filter size, p[l] is
the padding, and s[l] is the stride.

Our dataset, composed by 1k road images, was split into 80% train data
and 20% validation. We trained our model using cross-entropy cost function
and Adam algorithm optimizer with learning rate 10−4. Our model reached
0.95 accuracy on the validation set.

In our experimental evaluation, we are interested in finding a case where
our AEBS fails, i.e., the car collides against a cow. This requirement can be

22 Dreossi, Donzé, Seshia

(a) Grid-based sampling. (b) Halton sequence sampling.

Fig. 10: CNN analysis.

formalized as the STL specification G(‖xcar − xcow‖ > 0) that imposes the
Euclidean distance of the car and cow positions (xcar and xcow, respectively)
to be always positive.

We analyzed the CNN feature space by considering the abstract space
A = [0, 1]3, where the dimensions of A determine the displacement of the cow
of ±4m along the x-axis, its rotation along the y-axis, and the intensity of the
red color channel. We sampled the elements from the abstract space using both
Halton sequence and a grid-based approach. The obtained results are shown
in Figure 10. In both figures, green points are those that lead to images that
are correctly classified by the CNN; conversely, red points denote images that
are misclassified by the CNN and can potentially lead to a system falsification.
Note how we were able to identify a cluster of misclassifying images (lower-
left corners of both Figures 10a and 10b) as well as an isolated corner case
(upper-center, Figure 10a).

Finally, we ran some simulations with the misclassifying images identified
by our analysis. Most of the them brought the car to collide against the cow.
A screenshot of a collision is shown in Figure 8b. The full video is available
at https://www.youtube.com/watch?v=MaRoU5OgimE.

6 Conclusion

We presented a compositional falsification framework for STL specifications
against CPSML models based on a decomposition between the analysis of ma-
chine learning components and the system containined them. We introduced
an ML analyzer able to abstract feature spaces, approximate ML classifiers,
and provide sets of misclassified feature vectors that can be used to drive
the falsification process. We implemented our framework and showed its effec-
tiveness for an autonomous driving controller using perception based on deep
neural networks.

Compositional Falsification of CPSML 23

This work lays the basis for future advancements. There are several direc-
tions for future work, both theoretical and applied. In the remainder of this
section, we describe this landscape for future work. See [33] for a broader dis-
cussion of these points in the context of the goal of verified intelligent systems.
Improvements in the ML Analyzer: We intend to improve our ML Analyzer
exploring the automatic generation of feature space abstractions from given
training sets. One direction is to exploit the structure of ML components, e.g.,
the custom architectures that have been developed for deep neural networks in
applications such as autonomous driving [17]. For instance, one could perform
a sensitivity analysis that indicates along which axis in the abstract space
we should move in order to change the output label or reduce the confidence
of the classifier on its output. Another direction is to improve the sampling
techniques that we have explored so far, ideally devising one that captures
the probability of detecting a corner-case scenario leading to a property vio-
lation. Of particular interest are adaptive sampling methods involving further
cooperation between the ML Analyzer and the CPS Analyzer. We are also
interested in integrating other techniques for generating misclassifications of
ML components (e.g., [26,16,7]) into our approach.
Impacting the ML component design: Our falsification approach produces in-
put sequences that result in the violation of a desired property. While this
is useful, it is arguably even more useful to obtain higher-level interpretable
insight into where the training data falls short, what new scenarios must be
added to the training set, and how the learning algorithms’ parameters must
be adjusted to improve accuracy. For example, one could use techniques for
mining specifications or requirements (e.g., [19,40]) to aggregate interesting
test images or video into a cluster that can be represented in a high-level fash-
ion. One could also apply our ML Analyzer outside the falsification context,
such as for controller synthesis.
Further Applications: Although our approach has shown initial promise for
reasoning about autonomous driving systems, much more remains to be done
to make this practical. Real sensor systems for autonomous driving involve
multiple sensors (cameras, LIDAR, RADAR, etc.) whose raw outputs are often
fused and combined with deep learning or other ML techniques to extract
higher level information (such as the location and type of objects around the
vehicle). This sensor space has very high dimensionality and high complexity,
not to mention streams of sensor input (e.g., video), that one must be able to
analyze efficiently. To handle industrial-scale production systems, our overall
analysis must be scaled up substantially, potentially via use of cloud computing
infrastructure. Finally, our compositional methodology could be extended to
other, non-cyber-physical, systems that contain ML components.

References

1. Imagenet. http://image-net.org/.
2. Udacity self-driving car simulator built with unity. https://github.com/udacity/

self-driving-car-sim.

24 Dreossi, Donzé, Seshia

3. Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-taliro: A tool
for temporal logic falsification for hybrid systems. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, pages 254–257, 2011.

4. A. L. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artificial intelligence, 97(1):245–271, 1997.

5. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

6. M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-randomized path plan-
ning. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 2, pages 1481–1487. IEEE, 2001.

7. N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on, pages 39–57, 2017.

8. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In Computer Aided Verification, CAV, pages 167–170, 2010.

9. T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. Deshmukh. Efficient guid-
ing strategies for testing of temporal properties of hybrid systems. In NASA Formal
Methods, NFM, pages 127–142, 2015.

10. T. Dreossi, A. Donzé, and S. A. Seshia. Compositional falsification of cyber-physical
systems with machine learning components. In NASA Formal Methods Conference
(NFM), May 2017.

11. T. Dreossi, S. Ghosh, A. L. Sangiovanni-Vincentelli, and S. A. Seshia. Systematic
testing of convolutional neural networks for autonomous driving. In ICML Work-
shop on Reliable Machine Learning in the Wild (RMLW), 2017. Published on Arxiv:
abs/1708.03309.

12. P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2E2: a verification tool
for stateflow models. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 68–82. Springer, 2015.

13. A. Fawzi, O. Fawzi, and P. Frossard. Analysis of classifiers’ robustness to adversarial
perturbations. arXiv preprint arXiv:1502.02590, 2015.

14. B. Hannaford. Resolution-first scanning of multidimensional spaces. CVGIP: Graphical
Models and Image Processing, 55(5):359–369, 1993.

15. G. Hinton et al. Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97,
2012.

16. X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural
networks. CoRR, abs/1610.06940, 2016.

17. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

18. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM
Multimedia Conference, ACMMM, pages 675–678, 2014.

19. X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia. Mining requirements from closed-
loop control models. IEEE Transactions on Computer-Aided Design of Circuits and
Systems, 34(11):1704–1717, 2015.

20. G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In 29th International Conference
on Computer Aided Verification (CAV), pages 97–117, 2017.

21. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

22. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In For-
mal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages
152–166. Springer, 2004.

23. Mart́ın Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

24. J. Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science
& Business Media, 2009.

Compositional Falsification of CPSML 25

25. R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine learning: An artificial
intelligence approach. Springer Science & Business Media, 2013.

26. S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: a simple and accurate
method to fool deep neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2574–2582, 2016.

27. W. J. Morokoff and R. E. Caflisch. Quasi-random sequences and their discrepancies.
SIAM Journal on Scientific Computing, 15(6):1251–1279, 1994.

28. A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Computer Vision and Pattern
Recognition, CVPR, pages 427–436. IEEE, 2015.

29. H. Niederreiter. Low-discrepancy and low-dispersion sequences. Journal of number
theory, 30(1):51–70, 1988.

30. H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM,
1992.

31. K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore: Automated whitebox testing of
deep learning systems. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), pages 1–18, 2017.

32. J. Rosenblatt and M. Wierdl. Pointwise ergodic theorems via harmonic analysis. In
Conference on Ergodic Theory, number 205, pages 3–151, 1995.

33. S. A. Seshia, D. Sadigh, and S. S. Sastry. Towards verified artificial intelligence. CoRR,
abs/1606.08514, 2016.

34. P. Shirley et al. Discrepancy as a quality measure for sample distributions. In Proc.
Eurographics, volume 91, pages 183–194, 1991.

35. I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford University
Press, 1994.

36. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv:1312.6199, 2013.

37. L. Taeyoung, Y. Kyongsu, K. Jangseop, and L. Jaewan. Development and evaluations of
advanced emergency braking system algorithm for the commercial vehicle. In Enhanced
Safety of Vehicles Conference, ESV, pages 11–0290, 2011.

38. Trandafir, Aurel and Weisstein, Eric W. Quasirandom sequence. From MathWorld–A
Wolfram Web Resource.

39. V. Vapnik. Principles of risk minimization for learning theory. In NIPS, pages 831–838,
1991.

40. M. Vazquez-Chanlatte, J. V. Deshmukh, X. Jin, and S. A. Seshia. Logical clustering
and learning for time-series data. In Computer Aided Verification - 29th International
Conference (CAV), pages 305–325, 2017.

41. H. Weyl. Über die gleichverteilung von zahlen mod. eins. Mathematische Annalen,
77(3):313–352, 1916.

42. T. Yamaguchi, T. Kaga, A. Donzé, and S. A. Seshia. Combining requirement mining,
software model checking, and simulation-based verification for industrial automotive
systems. In Proceedings of the IEEE International Conference on Formal Methods in
Computer-Aided Design (FMCAD), October 2016.

