
Serving CS Formative Feedback on Assessments Using
Simple and Practical Teacher-Bootstrapped Error Models

Kristin Stephens-Martinez

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-166
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-166.html

November 28, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Serving CS Formative Feedback on Assessments Using Simple and Practical
Teacher-Bootstrapped Error Models

by

Kristin Victoria Stephens-Martinez

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Armando Fox, Chair
Professor Marcia Linn

Assistant Teaching Professor John DeNero

Fall 2017

Serving CS Formative Feedback on Assessments Using Simple and Practical
Teacher-Bootstrapped Error Models

Copyright 2017
by

Kristin Victoria Stephens-Martinez

1

Abstract

Serving CS Formative Feedback on Assessments Using Simple and Practical
Teacher-Bootstrapped Error Models

by

Kristin Victoria Stephens-Martinez

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Armando Fox, Chair

The demand for computing education in post-secondary education is growing. However,
teaching staff hiring is not keeping pace, leading to increasing class sizes. As computers
are becoming ubiquitous, classes are following suit by increasing their use of technology.
These two defining factors of scaled classes require us to reconsider teaching practices that
originated in small classes with little technology. Rather than seeing scaled classes as a
problem that needs management, we propose it is an opportunity that lets us collect and
analyze large, high dimensional data sets and enables us to conduct experiments at scale.

One way classes are increasing their use of technology is moving content delivery and
assessment administration online. Massive Open Online Courses (MOOCs) have taken this to
an extreme by delivering all material online, having no face-to-face interaction, and allowing
the class to include thousands of students at once. To understand how this changes the
information needs of the teacher, we surveyed MOOC teachers and compared our results
to prior work that ran similar surveys among teachers of smaller online courses. While our
results were similar, we did find that the MOOC teachers surveyed valued qualitative data
– such as forum activity and student surveys – more than quantitative data such as grades.
The potential reason for these results is that teachers found quantitative data insufficient
to monitor class dynamics, such as problems with course material and student thought
processes. They needed a source of data that required less upfront knowledge of what the
teacher wanted to look for and how to find it. With such data, their understanding of the
students and class situation could be more holistic.

Since qualitative data such as forum activity and surveys have an inherent selection
bias, we focused on required, constructed-response assessments in the course. This reduced
selection bias had the advantages of needing less upfront knowledge and focused attention
on measuring how well students are learning the material. Also, since MOOCs have a high
proportion of auditors, we moved to studying a large local class to have a complete sample.

We applied qualitative and quantitative methods to analyze wrong answers from constructed-
response, code-tracing question sets delivered through an automated grading system. Using

2

emergent coding, we defined tags to represent ways that a student might arrive at a wrong
answer and applied them to our data set. Since what we identified as frequent wrong answers
occurred at a much higher rate than infrequent wrong answers, we found that analyzing only
these frequent wrong answers provides a representative overview of the data. In addition,
a content expert is more likely to be able to tag a frequent wrong answer than a random
wrong answer.

Using the wrong answer to tag(s) association, we built a student error model and de-
signed a hint intervention within the automated grading system. We deployed an in situ
experiment in a large introductory computer science course to understand the effectiveness
of parameters in the model and compared two different kinds of hints: reteaching and knowl-
edge integration [28]. A reteaching hint re-explained the concept(s) associated with the tag.
A knowledge integration hint focused on pushing the student in the right direction without
re-explaining anything, such as reminding them of a concept or asking them to compare two
aspects of the assessment. We found it was straightforward to implement and deploy our in-
tervention experiment because of the existing class technology. In addition, for our model, we
found co-occurrence provides useful information to propagate tags to wrong answers that we
did not inspect. However, we were unable to find evidence that our hints improved student
performance on post-test questions compared to no hints at all. Therefore, we performed a
preliminary, exploratory analysis to understand potential reasons why our results are null
and to inform future work.

We believe scaled classes are a prime opportunity to study learning. This work is an
example of how to take advantage of this chance by first collecting and analyzing data from
a scaled class and then deploying a scaled in situ intervention by using the scaled class’s
technology. With this work, we encourage other researchers to take advantage of scaled
classes and hope it can serve as a starting point for how to do so.

i

To Christopher Satoaki Martinez

Who supported me throughout this process.

To Varick Takashi Martinez

Who came in at the end of this work to brighten my days.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Related Work 5

3 Monitoring MOOCs: Which Information Sources Do Teachers Value? 7
3.1 Introduction . 7
3.2 Related Work . 9
3.3 Survey Procedure . 11
3.4 The Metrics Tab and Visualization MockUps 11
3.5 Survey Results . 15
3.6 Metrics Tab Usage Experiences . 23
3.7 Discussion . 23
3.8 Summary . 25

4 Taking Advantage of Scale by Analyzing Frequent Constructed-Response,
Code-Tracing Wrong Answers 26
4.1 Introduction . 26
4.2 Terminology . 27
4.3 Related Work . 28
4.4 Data Collection and Analysis . 29
4.5 Results . 33
4.6 Discussion . 42
4.7 Applications . 43
4.8 Future Work . 44
4.9 Summary . 45

iii

5 Delivering Hints on Constructed-Response, Code-Tracing Assessments
Based on Wrong Answers 47
5.1 Introduction . 47
5.2 Related Work . 48
5.3 Data . 49
5.4 Student Error Model . 50
5.5 Kinds of Hints . 53
5.6 Experimental Setting . 55
5.7 Results . 57
5.8 Exploratory Analysis of Data . 59
5.9 Discussion . 64
5.10 Future Work . 65
5.11 Summary . 67

6 Future Work 69
6.1 Data Sources to Apply Mixed Methods . 70
6.2 Rich, Robust Insights from Large Data . 70
6.3 Deployable Scaled Experiment . 71

7 Conclusion 72

Bibliography 73

A Constructed-Response, Code-Tracing Wrong Answer Tags 81

B Reteaching Hints 109

C Knowledge Integration Hints 125

iv

List of Figures

3.1 Mockup of a single section in the prototype edX Metrics Tab with a tooltip visible
for each graph. 12

3.2 Mockups shown to survey participants. The callout bubbles display the tooltip
if the user hovers the mouse over a part of the graph. 14

3.3 Platform usage statistics. 16
3.4 For each information source, the number of participants who use it or would use

if available (combined into a single category), do not use, or did not answer. Did
not answer indicates that the participant chose an answer for a subset of the
information sources for that Monitoring Goal. It is shown here to see the relative
rate of responses. 17

3.5 Percent of participants that answered for each usage option, as well as the percent
that answered part of the question but not for that information source option.
The Monitoring Goals are grouped based on their usage distributions. Each goal
has a short description and the number corresponds to Table 3.4. Letters along
the x-axis stand for the information source, see Table 3.5. 19

3.6 Likert scale responses to the statement “This visualization is useful.” Letters
correspond to Figure 3.2’s subfigures. 21

3.7 Likert scale responses to the statement “This visualization is easy to understand.”
Letters correspond to Figure 3.2’s subfigures. 21

3.8 Responses to the question “When would you use this mockup,” with choices in
terms of three phases in a “MOOC cycle”: preparing new material, preparing
by reviewing the previous course runs, and while the class is running. Letters
correspond to Figure 3.2’s subfigures. 22

4.1 The flow of assigning categories and tags to MMWAs. Left: question set example
with two questions on control flow with the correct answers in dark green round-
corner rectangles. MMWAs for these questions are in the middle, all with a
bold red border. These MMWAs are categorized as: “conceptually correct”,
“not an answer”, or “student error”; the top two categories are false positives.
Wrong answers with yellow/non-transparent rounded-corner rectangles are either
taggable (top three answers have tags, shown in blue circles) or not taggable
(bottom answer). 29

v

4.2 Distribution of the number of unique MMWAs for each course offering and each
question set. Ex: Question Set 6 had ≈1,000 unique MMWAs for Fall 2015 and
Spring 2016 but ≈2,250 for Fall 2016. 32

4.3 Frequency of the unique MMWAs in Spring 2016. Each line represents a ques-
tion set. The x-axis (log scale) is the 1,000 most frequently occurring MMWAs
ordered by frequency. Upper: Cumulative percent of responses covered by up
to the Xth most frequent answer, e.g., Question Set 1’s top 10 MMWA covered
≈80% of wrong responses. Lower: Percent of students that submitted the Xth
most frequent MMWA, e.g., Question Set 11’s 10th most frequent MMWA was
submitted by ≈42% of the students that submitted a wrong response to this
question set. 34

4.4 CDF showing the percent of students that have at least the x-axis percentage of
their MMWAs in the top 100. Ex: For Question Set 10, ≈75% of students have
at least ≈80% of their MMWA in this question set’s top 100. 35

4.5 Percent of MMWAs that appear in a pair of course offering’s X most frequent
MMWAs, e.g., comparing Fall 2015 and Spring 2016, ≈85% of Question Set 6’s
top-100 MMWAs overlapped between the course offerings. Note: Fall 2016 did
not have Question Set 11. 36

4.6 Empirical Monte Carlo analysis results when sampling the x-axis value of students
50 times and plotting the mean overlap across the samples with the entire course
offering’s top-100 most frequent wrong answers for each question set. Ex: For
Question Set 5, when we sampled 100 students 50 times, the mean overlap of the
top-100 MMWA with the entire cohort’s top-100 MMWA was ≈90%. 37

4.7 Number of MMWAs in each MMWA set per question set. All MMWAs in the Fre-
quentSet also appeared in the StudentSet and therefore are counted in both bars.
Ex: For Question Set 6, the FrequentSet had ≈50 MMWA and the StudentSet
had ≈250. 39

4.8 Percent of taggable wrong answers between the frequent and infrequent wrong
answers in the StudentSet. Ex: For Question Set 6, ≈67% of the frequent wrong
answers in the StudentSet were taggable and 40% of the infrequent wrong answers
were taggable. Note: All MMWA in the FrequentSet are the frequent wrong
answers in the StudentSet. 40

5.1 Dot plot comparing the modified AUC for each question set across the metrics
and baseline. The decimal number for each question set represents first the lab it
was in (left of the decimal) and its order in the lab (right of the decimal). Note:
The x-axis range is not 0 to 1. 52

5.2 Boxplot showing the distribution of the number of hints each student received
per question set. Note: Since the data is integral, outlier points may represent
more than one student. 61

vi

List of Tables

3.1 Types of information and related work that visualizes each. 9
3.2 Survey respondents’ MOOC experience for running and creating 1 to 4+ MOOCs. 15
3.3 Cross between the estimated number of students in the course and the course’s

area. 15
3.4 Short descriptions of Course Monitoring Goals. 16
3.5 Resources Potentially Used for Course Monitoring. 17

4.1 Statistics on the question sets used for this analysis for all course offerings. “HOF”
stands for Higher Order Functions and “OOP” for object-oriented programming.
“Students” is the number of students attempting that question set; low values
are often due to the question sets being optional in certain course offerings. “%
Students Wrong” is the percentage of students who made at least one error on
any question in the question set. 31

4.2 Human-expert time required for each tagging step. Total time was ≈87 tagger-
hours to create tags and ≈36 expert-hours to tag the FrequentSet. We also spent
≈127 expert-hours to tag the StudentSet, required only for validation and not
integral to the technique. 38

4.3 Statistics on the % of MMWA per category for the FrequentSet and StudentSet. 39
4.4 The number of our tags per topic in Sorva’s catalog [73] with exemplars. Those

with * are topics we created. 41

5.1 Each question set’s chosen model parameters and statistics. The decimal number
next to each question set represents first the lab it was in (left of the decimal)
and its order in the lab (right of the decimal). Row lines separate question sets
by lab. 56

5.2 The number of students in treatment per question set and the amount lost due
to missing information or computer error. 57

vii

5.3 Statistics when looking at the number of wrong answers after a (student, question,
event) tuple, where the event is from a set of hint(s) or wrong answers. The table’s
lines separate different types of sets. For example, of the 4,072 times the system
delivered a reteaching message, 49.1% of the time a student answered correctly
immediately after, 18.1% of the time a student submitted a wrong answer and
then submitted the correct answer, and 32.7% of the time there was more than
one wrong answer until the student was correct for that question. 62

A.1 The Scheme tags are in one table because this work’s primary focus was Python. 102
A.2 The Scheme tags are in one table because this work’s primary focus was Python. 103
A.3 The Scheme tags are in one table because this work’s primary focus was Python. 104
A.4 The Scheme tags are in one table because this work’s primary focus was Python. 105

viii

Acknowledgments

I want to first acknowledge my advisor Armando Fox for his invaluable support throughout
my years in graduate school. Also, I want to recognize the other professors that mentored
me in grad school. Marti Hearst served as my advisor for a time and significantly shaped my
thinking. Marcia Linn taught me how to conduct education research. Vern Paxson advised
me on my master’s work in computer networking and gave me the push I needed to find
I wanted to research computer science education. John DeNero gave me insight into the
pedagogy of introductory computer science learning and machine learning. Dawn Song gave
me my first taste of computer science education research. Additionally, the department staff
that supported me throughout my time at UC Berkeley deserve a special acknowledgement.

Next, I want to acknowledge my friends. My Thrive in Science graduate student group
supported me through the hard times, gave me perspective, and helped celebrate my tri-
umphs. In addition, my fellow department graduate students encouraged me in this crazy
shared experience called graduate school. Also, thank you to my friends and family for
helping me polish this text. Finally, I want to explicitly acknowledge edX and Coursera
colleagues as invaluable in helping with this work.

In my research, I want to give a special acknowledgment to Mario Martinez, who served
as a fantastic sounding board and gave me so much advice on my statistical analysis. In
addition, I could not have accomplished so much without all the undergraduate students
that worked with me: Michelle Tian, Hannah Huang, Kelly Liu, Hayden Sheung, Spenser
Chiang, Steven Chi, Krishna Parashar, Regina Ongowarsito, Sreesha Venkat, Nikunj Jain,
Maia Rosengarten, Anwar Baroudi, and Kavi Gupta.

Finally, this work was supported by the UC Berkeley Chancellor’s fellowship, the Na-
tional Science Foundation Graduate Research Fellowship under Grant No. DGE 1106400, a
summer internship with Stanford’s edX development team, and another summer internship
at Coursera.

1

Chapter 1

Introduction

Computing education is experiencing growing demand for post-secondary education [61],
but teaching staff growth is not keeping pace [60]. This disparity is leading to increasing
class sizes, with some brick and mortar classes reaching over 1,000 students [1, 4]. At
the same time, Massive Open Online Courses (MOOCs) create large online classes, which
enable enrollments of tens of thousands of students1 at once [13]. Due to the size of these
classes, it is harder for teachers to understand how well students are learning both from the
perspective of the whole class and for each student. A teacher’s time is valuable because of
her deep understanding of course dynamics and how to teach the class material. However,
this precious time is spread thinly across the students. We need to find ways to best utilize
this resource that is growing more and more limited.

Another vital factor to consider is the increased use of technology in the class enabled
by the ubiquity of computers. This increase has been due to: (1) the need to manage larger
classes, (2) convenience, and (3) pedagogical innovations, such as clickers [17]. This increased
use of technology also means teachers and researchers can collect more data than ever before
and this data is highly dimensional. This data can enable teachers to create a fine-grained
view of each student’s learning and a better aggregate view of the entire class. How can
teachers navigate this data deluge to determine what information is important?

We define a scaled class as having these two aspects: a large number of students and high
use of technology. These scaled classes are part of the modern computer education class and
require us to reconsider our teaching practices, which originated in non-scaled, small classes
with minimal technology. However, rather than merely asking how teaching practices should
change, we need to take advantage of the unique opportunity presented by the scaled class.
We argue that the two factors of a scaled class enable us to better study learning. The large
class size enables us to identify class trends that previously had insufficient evidence because
they were discernible from only a few outlier data points. Additionally, technology enables
us to collect highly dimensional data and run experiments at a large scale. This scale will

1MOOC platforms usually refer to students as learners for consistency, however, we will refer to all those
taking a course of some kind as a student.

CHAPTER 1. INTRODUCTION 2

require fewer meta-analyses and reduce confounding variables such as cohort and teacher
differences.

Given a scaled class, we propose a research process where we first use the technology
already in place to collect data from a large class. Next, we apply a mix of quantitative and
qualitative methods to gain pedagogical insights. Then, we use these insights to (1) provide
teachers with feedback on the state of learning from individual students to the entire cohort
and (2) design pedagogically grounded intervention experiments.

This work is one instantiation of this research process. To begin, in Chapter 3, we report
on the results of surveying MOOC teachers to understand what information sources they
value during a particular phase of running or preparing for their MOOC, with the goal of
creating an information display for MOOC teachers. Through our survey, we found that:

1. Quantitative data sources, such as assignment grades, although useful, are not enough.
Instead, understanding the activity in discussion forums and student surveys were of
interest to 97% of the surveyed MOOC teachers who answered questions on the use of
information sources.

2. Teachers do not believe chat logs are a valuable information source for understanding
student behavior.

3. Generally, MOOC teachers want the same sources of information as teachers of smaller-
scale, distance-learning courses, based on prior work.

4. Respondents reacted positively to mockups of both previously-used and novel visual-
ization techniques, indicating they would use these while monitoring a running course
and for review when preparing for a new offering.

5. Teachers expressed widely varying views on the types of data and visualizations they
would find useful.

This keen interest in the qualitative forum and survey data is surprising because it has
an inherent biases. Prior work shows forum use is typically limited to a small percentage of
students [13, 20], and survey data has inherent self-selection bias. However, one likely reason
for this interest is because MOOC teachers found quantitative data insufficient to monitor
class dynamics, such as problems with course material and student thought processes. To see
such issues using quantitative data the teacher had to know: (1) that such problems could
happen and (2) how to check if they were happening. With qualitative data, the MOOC
teachers were potentially seeking a data source that required less upfront knowledge to find
problems. This way their understanding of the students and the class could be more holistic.

Therefore, to have the advantages of qualitative data’s less upfront knowledge require-
ment, reduce the selection bias, and focus attention on measuring how well students are
learning the material, we used code-tracing questions that were required, univalent (having
a single correct answer), and constructed-response. In addition, to address the potential

CHAPTER 1. INTRODUCTION 3

problems caused by the large number of auditors in MOOCs, we instead collected and an-
alyzed data from a large, in-person introductory computer science course. Compared to
MOOC data, this data is a much more complete sample of student behavior. Also, the
data’s constructed-response nature provides us with qualitative data that allows us to con-
sider student learning with less upfront knowledge compared to what a purely quantitative
approach would require.

In Chapter 4, we report our findings from analyzing this data collected from the auto-
graded, question-answer, code-tracing system in the large, in-person introductory computer
science course. In our analysis, we first sought to better understand whether it is possible
to analyze such qualitative data. Then, if we found it is possible, we investigated: (1) if we
could apply the results of analyzing one course offering’s data to subsequent course offerings,
(2) how best to analyze this data, and (3) what insights we can gain from this data. We
found:

1. Only a ≈5% subsample of the most frequent wrong answers cover ≈60% or more of the
wrong responses. This result meant we merely needed to inspect a small subsample of
wrong answers to understand the majority of student behavior.

2. The frequent wrong answers are consistent in how much they overlap for a given ques-
tion set and a pair of course offerings, but the level of overlap varies between question
sets and course offering pairs.

3. The wrong answer’s frequency should be taken into account to choose the subsample,
for which emergent coding is a reasonable analysis technique.

4. The student difficulties we found included misconceptions identified in prior work
and new difficulties not reported, such as ways students struggle with programming-
language-specific constructs and data structures.

To research the advantages of scaled classes, in Chapter 5, we report how we used the
insights gained from analyzing the students’ wrong answers to deploy a hint intervention
experiment. Our goal was to enable teachers to offload to the computer the task of delivering
hints for common difficulties. This offloading would then give teachers more time to focus
on students struggling with rarer difficulties.

In this experiment, we added a feature in the auto-grading system from the large in-
troductory computer science course that collected the original data set. This feature used
a student error model built from the results of Chapter 4 to automatically deliver hints to
students as they answered code-tracing questions. In addition, we compared two different
kinds of hints: reteaching and knowledge integration. Reteaching hints re-explain the con-
cept(s) associated with the tag. Our knowledge integration hints are inspired by Gerard et
al.’s work [28] with the goal to push the student in the right direction without re-explaining
the concept she is struggling with. We reach this goal with hints that remind the student of
an idea or ask her to compare two or more ideas. From our experiment we found:

CHAPTER 1. INTRODUCTION 4

1. It is straightforward to deploy an intervention experiment at scale by taking advantage
of technology that already exists in the class.

2. That co-occurrence between wrong answers yields useful information about machine-
marked-wrong answers without having to inspect them.

3. We can build our student error model to identify a student’s difficulties using both the
results of Chapter 4 and co-occurrence information.

4. That we currently do not have sufficient evidence that giving hints to students using
this model improves performance on post-test questions.

5. Preliminary results using qualitative and quantitative techniques provide a basis for us
to start understanding when hints do help.

Before these three chapters, we include an overview of related work in Chapter 2. In
Chapter 6 we discuss in more detail how a scaled class can help student learning, lessons
learned from this work, and potential directions for future work. Finally, in Chapter 7, we
conclude with some final thoughts on our research.

5

Chapter 2

Related Work

Research areas similar to our work include learning analytics (LA), education data mining
(EDM), Intelligent tutoring systems (ITSs), and online learning tools. We can characterize
research areas that analyze large education data sets using three aspects: (1) where the
data is from, (2) how the data is analyzed, and (3) how the insights from the analysis are
used. We can break down the data source further into how many courses it came from and
how many learning domains it covers. Our work’s characteristics overlap with each of these
related research areas, but does not share the same three with any.

For example, the three characteristics of LA [26] – and especially early warning sys-
tems [10, 62] that sought to predict student outcomes in time for an intervention – collect
their data from many courses and many learning domains. This data is usually collected at
the campus level from their online learning tools. Analysis techniques used in LA include
network analysis, information visualization, statistical tests, and machine learning with a
foundation in learning theory. LA’s goals are usually to predict student outcomes so that
we can improve learning with actionable recommendations.

Closely related is EDM [9, 65]. EDM data is collected from a single course or many,
usually from the same learning domain. EDM techniques include information visualiza-
tion, association analysis, clustering, classification, pattern analysis, and regression. EDM
research focuses on the technical challenges of processing the raw education data into infor-
mation that improves our understanding of learning.

ITSs also collect data from many classes on the same learning domain. However, their
data analysis focuses on creating student or knowledge models. ITS research then uses these
models to determine what feedback to give students within the ITS.

Finally, broader than ITSs are online learning tools. Researchers in this area [21, 37, 48]
collect data on the tool’s usage in many courses on the same learning domain. The data is
analyzed with a mix of quantitative and qualitative methods with the goal of improving the
tool.

Our work within the above framework has the source of data coming from a single course,
which by definition is on the same learning domain. We also use mix methods to analyze
the data, and the insights go towards improving the course. The critical difference is the

CHAPTER 2. RELATED WORK 6

data comes from a single course. In our case, it consists of mainly constructed responses –
where the student creates the answer – from code-tracing assessments – where the student
is predicting the output of code. Moreover, because these are code-tracing questions the
answer is univalent (only one answer) and easy to grade. As a result, we can automatically
grade student responses, which enables assigning many of these questions due to the low
cost per student.

The data is large because it comes from a scaled class and the answer space is technically
infinite due to the constructed nature of the answers. However, while the answer space
is unlimited, students are not randomly picking wrong answers from this space because
these answers are from code-tracing questions. The lack of randomness means a significant
portion of this “infinite space” will be unlikely to students because the code drives them
towards particular subspaces of wrong answers. All of this results in a large data set that
is qualitative yet quantitatively analyzable, meaning it is possible to analyze the data using
mixed methods. The primary methods we apply are: (1) analyzing the frequency of wrong
answers and (2) emergent coding [57]. We use the insights from this analysis to inform an
intervention experiment to improve the course by delivering hints to students as they answer
the formative, constructed-response, code-tracing assessments.

7

Chapter 3

Monitoring MOOCs: Which
Information Sources Do Teachers
Value?

3.1 Introduction

In brick-and-mortar classrooms, teachers often use face-to-face interaction with individual
students during lecture and office hours to understand student performance in the course
and how they interact with the course materials. Many recent Massive Open Online Courses
(MOOCs) including providers such as edX and Coursera have enrolled tens of thousands of
students per offering, with a few enrolling hundreds of thousands. At such scales, individual
interaction with every student is infeasible, and most interactions are through the software
platform, rather than face-to-face. Fortunately, a MOOCs’ large scale and the fact they are
offered via a heavily instrumented online environment provide teachers with a rich source
of information they previously lacked: instrumented activity from interactions with the e-
learning platform.

Historically, data visualization has been an effective way to explore large data sets in
which identifying interesting patterns is more productive than scrutinizing individual data
points. Since MOOCs are relatively new, little work has been done on visualizing the rich
sources of information available in them. Current MOOC platforms offer only a small set of
visualizations of basic quantitative information.

To help explore this space, we investigate it from two angles. First, we implemented a
prototype teacher dashboard for the edX platform called the Metrics Tab (see Figure 3.1)
that is currently available only to a small number of test users. Second, and the focus of
this paper, we administered a survey to investigate the following questions:

This work was done with Marti A. Hearst and Armando Fox [75].

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 8

1. What information sources do MOOC teachers prefer to help identify key trends and
behaviors in both student performance and student interaction with course content?

2. Which of these sources are most useful to teachers during the three phases of course
preparation, course administration, and course postmortem?

3. How should these sources be presented to develop tools and visualizations that teachers
will find most useful?

92 MOOC teachers answered the survey. Survey questions included visualizations of
information sources, two of which were modeled after those in the Metrics Tab, as well as
three additional designs. Teachers were asked to judge the understandability and usefulness
of each design.

The results support the following primary findings:

1. Quantitative data sources, such as assignment grades, are not enough: understanding
discussion forum activity was of interest to 97% of those surveyed that answered ques-
tions on the use of information sources. This interest is despite (1) a lack of related
work on visualizing discussion forum activity at scale and (2) previous work show-
ing that forum use is typically limited to a small percentage of students who are not
necessarily representative of the overall enrollment [13, 20].

2. Teachers do not think chat logs are a valuable information source for understanding
student behavior.

3. By and large, MOOC teachers want the same sources of information as teachers of
smaller-scale, distance-learning courses, as found in earlier surveys.

4. Respondents reacted positively to mockups of both previously-used and novel visual-
ization techniques, indicating they would use these to monitor a running course and
to review materials when preparing for a new offering, but were less likely to use them
in preparing new material.

5. Teachers expressed widely varying views on the types of data and visualizations they
would find useful: some preferred data and visualizations that would support quantita-
tive analysis such as correlation; others conducted courses focused more on discussion
than quantifiable grades and therefore considered quantitative analysis not useful, and
so on.

Below, we present related work in Section 3.2; describe the survey procedures in Sec-
tion 3.3; describe the visualizations in Section 3.4; present the results in Section 3.5 and 3.6;
discuss the ramifications of these results; and close with recommendations for future work
for the design of monitoring interfaces for MOOC teachers in Section 3.7.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 9

Information Visualized Related
Work

Performance: Grades on assignments, cumulative performance on
problems for a particular concept

[43, 27, 54, 53,
56]

Access and Activity Patterns : What, how much, and when content has
been opened, how long a student stays on a piece of content, student
navigational path through the content, when a student turned in an
assignment

[43, 2, 27, 30,
33, 34, 54, 53,
56, 84]

Forum Discussions : Author of a post, when the post was made, struc-
ture of follow-up posts, how many posts a student made, how many
follow-up posts are in threads each student made, number of posts
read by a student

[29, 30, 54, 53,
56]

Student Demographics : Location, reason for taking the course, age,
learning style

[34, 84]

Table 3.1: Types of information and related work that visualizes each.

3.2 Related Work

Teacher surveys

Monitoring student learning has been promoted as a best practice in education literature
since the 1970s [22]. Two surveys of e-learning teachers – one in 2003 by Mazza et al. [55]
(98 participants) and another in 2006 by Zinn et al. [87] (49 participants) – agreed broadly
on several points. Respondents stated that the most important phenomena to monitor are
individual students’ performance, per-student performance compared to the class as a whole,
common misconceptions shared by many students (as manifested by common wrong answers
to exercises, for example), and a range of metrics regarding student activity patterns. Mazza
et al.’s respondents also said that forum behavior was a valuable way to gauge participation,
but email or chat data was not.

Visualizations of student information

Visualizations have been used as a form of educational data mining [65]. However, very little
related work in visualizing student information has focused on MOOCs, and modern MOOC
platforms such as edX and Coursera provide limited teacher-facing visualizations. Table 3.1
shows information categories prior work has commonly visualized, ranging from standard
graphs to innovative designs.

Standard graphs used by prior work [43, 2, 27, 30, 33, 34, 54, 53, 56, 84] include:
scatter plots, bar indicators, bar and stacked bar charts, line graphs, Cumulative Distribution
Function (CDF) line graphs, pie charts, and heat maps. These graphs are used by prior work

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 10

in one of two ways: (1) to provide a set of visualizations showing different kinds of information
or (2) as a supporting graph in a complex visualization.

The prior work that provides visualizations for multiple categories of information [43,
27, 30, 34, 54, 53, 56] usually has the goal of giving teachers an overall picture of their
course’s e-learning experience. These visualization systems include: Goldberg et al.’s [30]
early WebCT [31] visualizations; Hardy et al.’s [34] e-learning tracking visualizations; Mazza
et al.’s Coursevis [54, 53] and GISMO [56]; Gaudioso et al.’s [27] visualizations for dotLRN
and PDinamet; and Khan Academy’s Coach monitoring system [43]. It is important to
note that while these systems provide an overview of the course, they often are intended for
courses of only tens to the low hundreds of students and visualize each student individually
(such as show each student as their own row in a heat map). As a result, a majority of these
visualizations would not scale to the size of a MOOC unless judicious filtering is applied
first.

Innovative visualizations used by prior work usually use known visualization tech-
niques in a novel way. These include directional and non-directional node graphs, three-
dimensional graphs, timeline spiral graphs, icons, and line graphs. Node graphs are used by
Hardless et al. [33] to show a timeline of student activity, which they call an activity line.
Williams and Conlan [84] use a node graph to show the navigational path through content.
Finally, Gibbs et al. [29] use a directional node graph, with node placement conveying time,
to show how forum posts relate to each other.

Mazza et al. [54, 53] also visualize forums with a three dimensional scatter plot that the
user could explore. The timeline spiral graph by Aguilar et al. [2] displays student access and
activity patterns. This graph used mainly bars for both supporting information and spiraled
around a center where each 360-degree spin was an easily understood unit of time (e.g., 24
hours, 1 week). Icons used by Khan Academy’s Coach tool [43] highlight points in bar charts
when students earned badges. Two prior works that use line graphs in innovative ways are
Hardy et al.’s [34] line graph with shading to depict a student’s path through the material
and Williams and Conlan’s [84] line graph as a connected sparse scatter plot depicting a
student’s learning style.

Four interaction techniques used in the prior work include sorting, filtering, drill
down, and clustering. Sorting was usually available in any visualization that provides a
tabular view of information, such as Goldberg et al.’s [30] WebCT tabular student views
and Khan Academy’s Coach tool [43] that shows students individually. Aguilar et al.’s [2]
timeline spiral allows users to filter by time, activity, course, and student. Hardy et al.’s [34]
e-learning tracking visualizations allow filtering by time and any subset of students. It
also incorporates an understanding of course hierarchy, which provides an ability to drill
down through this hierarchy. Gaudioso et al.’s [27] visualizations for dotLRN and PDinamet
includes a clustering feature that automatically groups students based on access patterns.
It provides a way to view aggregate information of the students in the groups and compare
these aggregates to each other. Huang et al. [38] also use clustering in their node graph to
show syntax similarity between student code submissions.

Evaluation in prior work mainly involved interviews and focus groups [29, 33, 54, 53,

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 11

56, 84] and usually reported a mix of both positive responses to the system and a need for
future improvements. Three prior works did not include an evaluation section [2, 30, 34].
Gaudioso et al.’s [27] work with dotLRN and PDinamet considered the dropout/success rate
of the classes before and after the visualizations were provided to the teachers and found
a marked improvement. However, there is no discussion of whether the improvement with
the dotLRN system is due to the visualizations or the revamped material that happened at
the same time. They also conducted a questionnaire on student and teacher satisfaction,
which found that a majority of both groups were satisfied with the course and system.
Mazza et al.’s [54, 53, 56] work on Coursevis and GISMO performed the most thorough
evaluation, looking at the system’s extent of required functionality, effectiveness, efficiency,
and usefulness through a combination of an experimental study, interviews, and a focus
group. Their results are positive across all their criteria.

3.3 Survey Procedure

We used SurveyMonkey to administer a survey estimated to take about 30 minutes. We
identified 539 potential participants by collecting teacher names from the web page of courses
offered on the three largest MOOC platforms: edX, Coursera, and Udacity.

The survey consisted of five parts:

1. Background information about the teachers.

2. Specific details about one MOOC. If a teacher taught multiple MOOCs, we asked
them to choose one and answer all following questions in terms of that MOOC.

3. Course Monitoring Goals and asking which information sources help achieve the
desired understanding.

4. Mockups of five different visualizations of information that may be useful for moni-
toring a MOOC and evaluating their efficacy.

5. Open-ended response for additional thoughts.

The next section describes the mockups in more detail.

3.4 The Metrics Tab and Visualization MockUps

The teachers were asked to evaluate the potential usefulness and understandability of five
visualizations of source information for monitoring MOOC activity. We derived two of these
visualizations from designs in the prototype Metrics Tab, a new tab in the edX Teacher
Dashboard. Figure 3.1 shows this visualization in detail.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 12

Figure 3.1: Mockup of a single section in the prototype edX Metrics Tab with a tooltip
visible for each graph.

We based both the mockup and the implemented prototype visualizations on ideas from
previous work and conversations with teachers before we administered the survey. The
mockups we decided to use also served as a preliminary evaluation of the Metrics Tab.

Metrics Tab

The goal of the Metrics Tab is to provide teachers a quick to consume dashboard display of
available information in their course. The Metrics Tab separates the course’s information
by section and shows the same dashboard display seen in Figure 3.1 for each section. The
section was chosen as the level of granularity because edX usually uses a section to contain
a week’s worth of material, with subsections allowing further division of the week’s content.

The left grey bar chart shows how many students opened each subsection in the section;
that is, viewed at least some of the content in that subsection at least once. When the user
hovers the cursor over a bar in this graph, the name of the subsection and the exact number
of students that opened that subsection will appear in a tooltip, as seen in Figure 3.1.

The upper right red and green stacked bar graph shows the grade distribution for each
problem in the section. It shows every problem regardless as to whether the problem is

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 13

included in the students’ course grade or not. If students are allowed to submit an answer
multiple times, as is common in MOOCs, it only shows the grade for their last submitted
answer (since the last submitted answer is used when calculating a student’s grade). For a
given bar in the graph, the color represents the grade for all the students in the bar, and the
height represents how many students received that grade. The color gradient for grades, seen
to the left of the graph, goes from red, grey, to green2 (0, 50, and 100 percent). Hovering
the cursor displays the teacher-defined description of the problem, the number of students
in the bar, their percentage grade, the number of points earned, and the number of possible
points.

Finally, the bottom right blue stacked bar graph shows the distribution of the number
of attempts per problem in the section. On both edX and Coursera, MOOC teachers can
choose the number of times students may attempt each problem. The color gradient is grey
to blue, which maps from 1 to 10+ attempts. Students that attempted more than 10 times
are grouped together because some problems allow unlimited attempts, which students do
take advantage of. Hovering over a bar reveals the teacher-defined description of the problem,
the number of students in the bar, and the number of attempts.

Visualization Mockups

The five mockups we presented to teachers in the survey appear in Figure 3.2. The callout
bubble in each mockup represents the tooltip if the user hovers the cursor over that or
a similar part of the graph. Mockup 3.2a is a boxplot diagram of grade distributions,
which is included as a standard visualization. The tooltip shows the name of the homework
assignment or assessment item, the high and low scores, the median score and the 75th and
25th percentile scores. Mockup 3.2b is very similar to the upper right graph in the Metrics
Tab, and Mockup 3.2c is similar to the lower right graph of the Metrics Tab. Mockup 3.2d
is similar to Mockup 3.2c but shows views of materials rather than attempts at homework
problems. Finally, Mockup 3.2e shows two line graphs of forum usage data: number of new
posts per day and number of views per day. The tooltip is for both graphs. On hover, the
points with the same date are highlighted. The tooltips text includes the date, the number
of posts for that day, the number of posts viewed on that day and the titles of the most
popular posts.

In the survey, each mockup in Figure 3.2 included a description on how to read the graph
and any interactions with it.

Participants were asked to provide Likert responses to (a) whether the mockup is useful
and (b) whether it is easy to understand. Next, we asked when the teacher might use it:
(1) when preparing new material, (2) when preparing by reviewing past courses, and (3)
while the course is running. We also ask if they have any other comments about the mockup
(open-ended response).

2This color scale is inappropriate for red-green color-blind viewers, and so in future iterations will be
changed.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 14

(a) Boxplot Assignment Grade Dis-
tribution

(b) Stacked Bar Graph Grade Dis-
tribution

(c) Stacked Bar Graph Attempts
Distribution

(d) Stacked Bar Graph Views Dis-
tribution

(e) Line Graph Forum

Figure 3.2: Mockups shown to survey participants. The callout bubbles display the tooltip
if the user hovers the mouse over a part of the graph.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 15

#
Run

(N=92)
Created
(N=91)

1 67% 85%
2 13% 9%
3 4% 1%

4+ 9% 1%
N/A 6% 4%

Table 3.2: Survey respondents’
MOOC experience for running and
creating 1 to 4+ MOOCs.

100s 1,000s 10,000s Total
Engineering 3 10 7 20
Science 2 25 10 37
Humanities 1 8 10 19
Other 1 3 7 11

Total 7 46 34 87

Table 3.3: Cross between the estimated number of
students in the course and the course’s area.

3.5 Survey Results

Of the 539 teachers solicited, 92 teachers (17%) started the survey and 67 (73%) completed
it. Of the 91 teachers that chose to answer the question about gender, 73% identified as
male, 25% as female, and 2% chose not to specify.

Characteristics of Courses

Of those teachers who ran a MOOC, more than two-thirds had done so only one time, while
13% had done so twice (see Table 3.2). That said, many of these teachers have experience
with large in-person courses. 31% said they had run courses with greater than 250 people
more than 4 times, and another 25% had done so 3 or fewer times. 85% of survey respondents
reported creating one MOOC, 9% created two, one individual created three, and one created
four courses (see Table 3.2). Teachers have used a wide range of platforms, with Coursera
and edX being the most frequent; Figure 3.3 shows the usage counts of the others reported.
“Other” refers to platforms the teachers provided to us in the survey. These platforms
include Google, Desire2Learn, and an institution-specific MOOC platform.

For the questions that followed, if teachers had taught more than one MOOC, they were
asked to choose one and answer in reference only to it. 91% of the courses completed with
1,000s to 10,000s of students. Table 3.3 shows the estimated number of students in the
course at the time of completion crossed with the subject matter of the course. The courses
marked “other” include social sciences, business, education, and interdisciplinary studies.
Interestingly, humanities courses were frequently among the largest MOOCs.

Course Monitoring Goals

We asked the survey participants to consider nine different tasks or goals they might have
when running or planning a MOOC, summarized in Table 3.4. We asked teachers to assess
ten information sources regarding their efficacy for these nine goals and rate them in terms
of if they currently use, would use if available, or do not use/would not use that resource.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 16

 0

 10

 20

 30

 40

 50

 60

 70

C
oursera

edX
B
lackboard

M
oodle

U
dacity

Piazza

W
ebC

T

C
anvas

O
ther

N
/A

N
u
m

b
er

 o
f

P
ar

ti
ci

p
an

ts

64

24

9
7 7

5 5 4 4
2

Figure 3.3: Platform usage statistics.

1 Problems with the current assignment.
2 Struggling students and what they are struggling with.
3 The difficulty of an exam problem.
4 Appropriateness of course difficulty level for students.
5 Most engaging content for the students.
6 Most difficult parts of the course.
7 Effectiveness of teaching assistants.
8 How to improve presentation of a topic.
9 Content students considered least interesting.

Table 3.4: Short descriptions of Course Monitoring Goals.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 17

F Discussion Forum
CS Class Survey
SD Discussion with Students
TA Ask the teaching assistants
AG Assignment grades
PAn Student answers to problems
VP Student’s view pattern of online content
PAt Number of times students attempt a problem
SCQ Grades for self-check questions
CL Chat room logs

Table 3.5: Resources Potentially Used for Course Monitoring.

 0

 100

 200

 300

 400

 500

 600

F C
S

S
D

T
A

A
G

P
A

n

V
P

P
A

t

S
C

Q

C
L

T
o
ta

l
R

es
p
o
n
se

s
A

cr
o
ss

 M
o
n
it

o
ri

n
g
 G

o
al

s

Use/Would Use
Not Answer
Not Use

Figure 3.4: For each information source, the number of participants who use it or would use
if available (combined into a single category), do not use, or did not answer. Did not answer
indicates that the participant chose an answer for a subset of the information sources for
that Monitoring Goal. It is shown here to see the relative rate of responses.

Asking about usage is different from prior work [55, 87], which asked survey participants to
rate the level of interest or importance of an information source. We also purposely chose
resources that teachers are likely familiar with to reduce the need for the teachers to guess
if a resource is useful. Table 3.5 shows this list of resources.

The main findings from this section of the survey are:
Qualitative information is important. Figure 3.4 shows the raw counts of responses

across monitoring goals for each information source. (Visual inspection did not reveal sig-
nificant differences when we examined subsets of courses by area, but we did not conduct
statistical tests to confirm this.) The lower segment (blue, solid border) indicates those who

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 18

currently use this resource or would use it if available. The top segment (red, dotted border)
indicates the counts of those who would not or do not use this resource across all tasks. For
some questions, participants chose to answer usage for a subset of information sources. We
assign the center (green, dashed-lines border) bar for the not-answer responses to show the
relative rate of response.3 The figure is ordered by highest to lowest raw response counts of
use or would use if available.

Figure 3.4 shows that across all tasks, teachers see discussion forums as the most useful
and chat logs as the least useful. In particular, the preference of forums over class surveys (the
second-highest-used information source) is significant (Fisher’s exact test, p < 0.001) as is
the difference between chat logs and self-check questions (the second-lowest-used information
source; Fisher’s exact test, p < 0.001).

If we visualize the responses by Course Monitoring Goal, the response patterns suggest
a grouping as shown in Figure 3.5. The figure suggests the relative usefulness of different
information sources within a group of goals is more uniform than it is outside the group. To
make comparison easier, each separate stacked bar graph is the same as Figure 3.4, except
it is the percent of teachers that answered for that Course Monitoring Goal instead of the
raw counts. Results are not significantly biased because 59 to 75 teachers answered each
question.

The first group of five Monitoring Goals (1, 2, 4, 6, and 8, in Figure 3.5a; the num-
bers correspond to Table 3.4), could be characterized as quantitative questions about course
material difficulty or presentation of course materials. For these Monitoring Goals, all infor-
mation sources but chat logs have 97% to 48% of question respondents say they use/would
use the information source. Chat logs have only 37% to 31% question respondents say they
use/would use it.

The second group of three Monitoring Goals (5, 7, and 9, in Figure 3.5b) could be
characterized as a qualitative assessment of student engagement or teacher effectiveness. In
these goals, participants were most enthusiastic about the “softer” information sources such
as forums, discussions with students, class survey, and discussions with TAs. The percent
of teachers that say they use/would use these information sources range from 94% to 46%.
While there was much less enthusiasm for quantitative performance such as assignment
grades, problem answers and attempts, and self-check question grades, use/would use range
from 41% to 15%. View pattern usage is the least similar between the goals, where it is used
very little for the TA effectiveness goal, but used much more for the other two engagement
goals.

Monitoring Goal 3 – gauging exam problem difficulty in Figure 3.5c – does not display a
similar pattern to the others, with no definite winners among the information sources.

Chat room logs are rarely used and considered unimportant. Chat room logs
are more not used than used. We can see this from the earlier discussion of Figure 3.4

3 Most participants completed the entire survey, 73%. However, because this section contained 9 ques-
tions requiring answers for 10 resources, some participants became fatigued (as indicated by their free-text
comments) and either skipped portions of this part of the survey or did not complete the survey beyond this
point.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 19

 0

 20

 40

 60

 80

 100

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

P
er

ce
n

t
o

f
In

st
ru

ct
o

rs

Assignment Issues (1) Find Trouble Students
and what Struggle with (2)

Course is Appropriate
Difficulty Level (4)

Struggling
Parts of Class (6)

Improve Topic
Presentation (8)

Use/Would use
Not Answer
Not Use

(a) Information Source Usage Distribution Group 1

 0

 20

 40

 60

 80

 100

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

F C
S

S
D

T
A

A
G

P
A

n
V

P
P

A
t

S
C

Q
C

L

P
er

ce
n
t

o
f

In
st

ru
ct

o
rs

Find most
Engaging Content (5)

TA Effectiveness (7) Least Interesting
Content (9)

(b) Information Source Usage Distribution Group 2

 0

 20

 40

 60

 80

 100

F C
S

S
D

T
A

A
G

P
A

n

V
P

P
A

t

S
C

Q

C
L

P
er

ce
n
t

o
f

In
st

ru
ct

o
rs

Gauge Difficulty of
Exam Problem (3)

(c) Information Source Usage
Distribution Group 3

Figure 3.5: Percent of participants that answered for each usage option, as well as the
percent that answered part of the question but not for that information source option. The
Monitoring Goals are grouped based on their usage distributions. Each goal has a short
description and the number corresponds to Table 3.4. Letters along the x-axis stand for the
information source, see Table 3.5.

and looking at chat logs across all questions in Figure 3.5. Across all Monitoring Goals the
percent of teachers saying they use/would use chat logs ranged between 39% and 24%. We
exclude chat logs from the remainder of the discussion.

Teachers’ opinions of what is useful largely confirm earlier surveys. Respon-
dents’ opinions as to what information they would find useful are mostly consistent with the
Mazza et al. [55] and Zinn et al. [87] surveys. In those surveys, the most important informa-
tion concerns overall student performance relative to the class and information about what
materials students interacted with and for how long (activity/view patterns). A majority of
respondents also identified that information as useful. Respondents also agree with Mazza
et al. that qualitative information from forum postings is important, but analysis of chat
logs is not. However, respondents of both prior surveys placed higher importance on viewing

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 20

per-student performance information and per-student mastery information. We speculate
that such information is less useful in MOOCs, in which attention to individual students is
rare.

Open-ended portions of the survey revealed a wide range of teacher views.
Most survey questions, and each section of the survey, solicited open-text comments. The
responses showed teachers’ preferences ranging from simple numbers with no visualization
to very complex data analysis. Complex analysis tool requests included A/B testing, cor-
relational analysis, auto-clustering of students by teacher-chosen parameters, and detailed
view pattern information including paths through the material.

An interesting dichotomy arises between courses where quantitative assessment is fore-
most and more experientially-oriented courses. Several teachers stated they were not inter-
ested in grades, problem answers, and other performance-based metrics because their goal
was to provide students with a learning experience and not the ability to quantitatively prove
they learned the material. These teachers stated they ran their course based on discussions
and team interactions.

Some teachers were not worried about certain monitoring goals. One teacher stated there
were too many students to worry about finding struggling individuals. Two teachers said
course difficulty was not a concern. While one teacher stated that the course difficulty was
fixed at the beginning and could not change while the course was running, the other said
they structured their course to work at multiple difficulty levels.

Responses to Mockups

Before going into detail of the mockups responses, it is important to note a caveat to these
results. As a reminder, the survey asked participants if they considered each mockup useful
and easy to understand and to predict when they would use the mockup. Since the survey
asked participants what they think they will like and do, as opposed to what they actually
liked and did, there are limitations to these result’s generalizability because what a person
thinks they will like or do does not necessarily match what they will actually like or do.

The results of the mockup section are:
At least a majority of teachers considered each mockup useful and under-

standable. Figures 3.6 and 3.7 show participants’ responses to the visualization mock-
ups. The familiar box plot (Mockup 3.2a), when applied to student grades, was most often
viewed as useful (74%) and understandable (78%), followed closely by the visualization
(Mockup 3.2c) showing the number of student attempts at assignments (71% useful and
73% understandable). The number of times materials were viewed (Mockup 3.2d) was also
considered useful information by two-thirds of respondents (66%). Multiple people expressed
concern that the stacked bar visualization of the grade distribution (Mockup 3.2b) was diffi-
cult to understand, with only 52% agreeing that it was easy to understand. The visualization
of the forum usage (Mockup 3.2e) was also not overwhelmingly supported, with only 55% of
respondents agreeing or strongly agreeing that it was potentially useful.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 21

 0

 10

 20

 30

 40

 50

 60

 70

a b c d e

N
u
m

b
er

 o
f

In
st

ru
ct

o
rs

Mockup

Strongly Agree/Agree
Neutral
Strongly Disagree/Disagree

46
39

35
44

40

10

13
16

9
12

6
10 12 9 8

Figure 3.6: Likert scale responses to the statement “This visualization is useful.” Letters
correspond to Figure 3.2’s subfigures.

 0

 10

 20

 30

 40

 50

 60

 70

a b c d e

N
u
m

b
er

 o
f

In
st

ru
ct

o
rs

Mockup

Strongly Agree/Agree
Neutral
Strongly Disagree/Disagree

50

33
42 45 47

9

13

15 12 10

5

18
5 5 2

Figure 3.7: Likert scale responses to the statement “This visualization is easy to understand.”
Letters correspond to Figure 3.2’s subfigures.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 22

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

a
N=46

b
N=37

c
N=32

d
N=40

e
N=37

P
er

ce
n
t

A
g
re

e
U

se
fu

l

Preparing new material
Preparing by reviewing prior courses
Class is running

Figure 3.8: Responses to the question “When would you use this mockup,” with choices in
terms of three phases in a “MOOC cycle”: preparing new material, preparing by reviewing
the previous course runs, and while the class is running. Letters correspond to Figure 3.2’s
subfigures.

There is a relative lack of interest in the forum visualization. Only 55% of teach-
ers stated the forum usage visualization would be useful. Comments about this visualization
stated it is not fine-grained enough, it is not more useful than current statistics, the number
of posts is not a useful indicator, and up-and-down votes are more important indicators.

Of those that considered the visualization useful, they would mainly use the
visualizations while the course is running and all visualizations but forums after
the course is over while preparing for a future offering. For those who did indicate
that a given visualization was potentially useful, they were asked to indicate which circum-
stances it would be best used. Figure 3.8 presents the results; participants could mark more
than one choice in each case. In all cases, at least two-thirds of respondents who found the
visualization useful wanted to use it while the course was running. Moreover, by an even
larger margin, teachers wanted to see every visualization except the forum visualization (c)
when reviewing a past course in preparation for a future offering.

Relatively fewer participants considered the visualizations useful while prepar-
ing new course material. 38% to 52% of respondents indicated preparing new material
for a course would be a good use of the visualizations.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 23

3.6 Metrics Tab Usage Experiences

We released a variation of the Metrics Tab to a small number of test users. This variation
included the open subsection count graph (Figure 3.1 left, grey) and grades graph (top right,
green and red); the attempts graph was not available. We interviewed two users that used
the Metrics Tab while their course was running. Also, at the time of publication, we became
aware of another publication that used the Metrics Tab [32]. We report the Metrics Tab
usage experiences below.

One user we interviewed was the TA of a MOOC that started with about 8,000 students
and ended with about 500 completing the course. The Metrics Tab was one of the TA’s
primary methods for tracking student activity. The open subsection count graph was used
to monitor how many students were still active in the course and if they were looking at
all of the content. The grades graph was closely monitored to see how many students were
doing the problems and which problems might have issues that needed to be resolved, such
as input errors or ambiguities in the question.

The second interviewee was a teacher that ran a small online course of about 100 students.
This teacher also used the open subsection count graph to see what content the students
looked at. This teacher shared a story in which the Metrics Tab drew their attention to a
student error. At the beginning of the course, many students were unaware of any but the
first subsection and had to be informed that there were other subsections. The teacher also
liked the grades graph and used it to monitor the students’ lecture quiz grades.

The final usage experience of the Metrics Tab is from Grover et al. [32]. They used the
edX platform to teach an introductory computer science course for middle and high school
students and reported on the pedagogy of their course and how they leveraged the Teacher
Dashboard for curriculum assessment. They used the Metrics Tab to monitor quiz data,
specifically using the grades graph to find what content the students found challenging and
what content needed revision.

All three experiences confirm the survey finding that student performance information
is important. The interviewees’ use of the open subsection graph aligns with the survey
results, which found that student viewing patterns are important. Although only 52% of
those surveyed found the Mockup 3.2b (which is based on the Metrics Tab’s grades graph)
easy to understand, neither of those interviewed had trouble interpreting the grades graph.
The two interviewees were both engineers and so may be more familiar with reading graphs
than other teachers.

3.7 Discussion

The survey results show that discussion forums were the most frequently preferred source
of information across monitoring tasks, suggesting that effort should be invested in making
forums more useful for students and more effective for providing information to teachers.

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 24

It is crucial to bear in mind, however, that prior work has found that only a small
proportion of MOOC students are active on forums [13, 20], and therefore forum posters are
not necessarily representative of all students in the course. Most likely teachers are aware of
these limitations, and this may explain why other methods for eliciting an understanding of
students’ views – including student surveys, student discussion, and asking TA’s for feedback
– follow discussion forums as the perceived most useful information resources.

Notwithstanding these caveats, research to improve forums could significantly aid teach-
ers’ goals. For example, better methods to automatically group similar issues – and to alert
students to previously posted issues as they type – will help consolidate issues for the benefit
of both teacher and student. User interface improvements can also help. At present, some
forum tools such as Piazza allow the teacher or students to mark individual issues as resolved
but do not make it easy to group a set of posts and mark them as similar and then resolved.
A more “dashboard-oriented” view of forum posts, oriented towards the teacher, could be
a significant time-savings improvement both for monitoring issues and topics in the forum
and for processing posts as they are responded to by the teacher and teaching assistants.

This idea can be taken still further to create more of a “bug report” or “issues tracker”
type interface approach to teaching a MOOC, similar to how problems are tracked with
software engineering projects. As the teacher or teaching assistants learn about problems –
whether via forum, survey, or quantitative metrics such as low scores on a homework problem
– the issue could be entered into such an interface. Quick surveys or polls could be issued to
see if the perceived gaps or problems are widespread and the results entered into the tool.
After the correction is made, the problem could be marked as resolved.

Since surveys are private, those students who are not comfortable posting on the forum
may be more willing to express their views in a survey in order to have them taken into
account.

Finally, automated methods can be used to find which students appear to be struggling
and send them survey questions or encourage them to read the posts on the forum or post
their questions, which will then be seen by the teachers.

A potential drawback of the work reported here is it primarily asked teachers about
familiar information sources. Researchers are developing very sophisticated log analysis tools
(e.g., [38, 44]) that can produce profiles of student behavior that could be surfaced to the
teacher in innovative ways. Future work must investigate the efficacy of these approaches.

Another drawback is that MOOC teachers who come primarily from in-person class
backgrounds may have preferences for technologies that work well in those environments
and against those that do not, such as chat rooms. It may be the case that online chat will
work better in MOOCs. More generally, after being exposed to new techniques in action,
teachers may form different opinions.

The open-ended comments written by respondents revealed an impressive diversity of
views that indicated what is useful to one teacher may not be as useful to another. Teachers
ranged from being very pressed for time and wanting to see just a few summary numbers to
wanting complex correlational analysis. While some courses are administered with a heavy
quantitative evaluation focus, others are more oriented around discussion. The emphasis on

CHAPTER 3. MONITORING MOOCS: WHICH INFORMATION SOURCES DO
TEACHERS VALUE? 25

student grades in the survey seemed inappropriate to the latter teachers. This diverse range
of teacher desires and course styles suggests that what is most useful and effective could be
teacher- or course-specific and that the ideal MOOC data visualization should be flexible
enough to meet these different needs.

3.8 Summary

This survey of 92 MOOC teachers confirmed the findings of prior surveys of teachers of
conventional online courses, which found that teachers value seeing student performance,
activity patterns such as what materials students look at, and forum behavior to gauge
participation. A standard boxplot of distribution of course grades was perceived to be both
understandable and useful by a large majority of respondents, as was a novel design in which
stacked bar charts show the number of repeated attempts at solving problems.

However, for those who wish to design visualizations for MOOC teachers, a major take-
away from this work is that views of quantitative measures are insufficient. Rather, teachers
believe they need to hear what students have to say – be it from discussion forums, student
surveys, or the impressions of their teaching assistants – to achieve their full range of course
monitoring goals. Thus future work should focus on how to obtain the thoughts of a wide
range of students taking the course, and how to summarize and present this information to
the teacher in a useful manner.

26

Chapter 4

Taking Advantage of Scale by
Analyzing Frequent
Constructed-Response, Code-Tracing
Wrong Answers

4.1 Introduction

The goals of formative assessment are to provide feedback to the student to improve their
attainment in cases of error and to inform the teacher as to how to modify or improve
pedagogy to address weaknesses in student attainment [12]. In large-enrollment courses,
selected-response questions (e.g., multiple choice) are often used as both formative and sum-
mative assessment instruments because they can be mechanically graded. However, it is
difficult to write selected-response questions whose distractors effectively target common
student misunderstandings [64]. Writing constructed-response questions (CRQs), such as
filling in blanks, is easier because the teacher does not need to create specific distractors.
Moreover, requiring the student to construct a response may also provide richer insight into
their level of understanding compared to asking them to identify a correct choice from a list
due to the qualitative nature of the data.

However, manually analyzing constructed responses to determine student errors can be
prohibitively time-consuming in large-enrollment courses. We considered the wrong con-
structed responses from code-tracing questions and set about to answer the following research
questions:

This work was done with An Ju, Krishna Parashar, Regina Ongowarsito, Nikunj Jain, Sreesha Venkat,
and Armando Fox [76].

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 27

• R1: Can analyzing a small subsample of wrong constructed responses yield information
about student difficulties that makes it worth the time investment?

– R1.A: If so, assuming the same questions are used in subsequent course offer-
ings, can the information so gained be applied to future course offerings, further
amortizing the time investment?

– R1.B: If so, how should that subsample be chosen and how large must it be?

• R2: What insights about student difficulties can be gained from analyzing the sub-
sample?

We address these questions by examining a corpus of 332,829 responses to 92 code-
tracing, univalent (having a single correct answer) CRQs administered on a terminal based
question-answer, auto-graded system. The data comes from responses by 4,068 students in 3
offerings of a large-enrollment introductory computer science (CS) course. We found that a
≈5% subsample of the most frequent wrong answers covers ≈60% of the wrong constructed
responses. The frequent wrong answers are consistent in how much they overlap for a given
question set and course offering pair, but the level of overlap varies between question sets
and course offering pairs. As a result, frequency should be taken into account when choosing
a sample to inspect.

In addition to discovering student difficulties similar to those found in prior work, we
also identify new difficulties not reported in prior work such as language-specific constructs
and data structures.

After defining terminology and surveying related work, we describe our data set and the
emergent coding process we used to analyze it. We then report on how our analysis informs
the answers to our research questions. We conclude with a discussion on known and potential
uses for our findings.

4.2 Terminology

• Machine-marked-wrong answer (MMWA) - A (question, string) pair the automated
system marks as incorrect.

• Wrong answer - A MMWA that is confirmed incorrect, as opposed to a false positive
marked incorrect by the automated system.

• Response - A (student, MMWA) pair; many students may give the same MMWA.

• Tag - Human experts’ interpretation of a specific student difficulty that could lead to
an observed student error.

• Taggable - A wrong answer is taggable if at least one tag can be applied to it.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 28

4.3 Related Work

Misconceptions leading to student programming errors have been intensively studied. Clancy [19]
reviews potential causes of programming misconceptions and inappropriate attitudes that
interfere with learning programming. Sorva [73] provides an extensive catalog of novice mis-
conceptions about introductory programming content. We find similar misconceptions, but
also new misconceptions about data structures and language-specific constructs less studied
in prior work. In addition, because we focused on how students got wrong answers, we also
found student difficulties with syntax and sloppy reading or writing.

While machine-gradable, selected-response exercises with carefully-constructed distrac-
tors can reveal common student errors, effective distractors are hard to create [64]. This dif-
ficulty in creating distractors is especially pronounced in introductory programming courses,
where teachers’ beliefs about student errors often only weakly correlate with the errors stu-
dents actually make [15]. Others have therefore attempted to extract information about CS
students’ misunderstandings from various types of CRQs, such as code explanations [50, 68]
or code submissions [41, 46, 58, 66], programming process byproducts such as error logs [18,
39], and univalent CRQs, as in our work. Univalent CRQs are particularly appealing: like
other CRQs, they can reveal useful information about student difficulties without requiring
the creation of distractors in advance, but unlike other CRQs, they can be easily machine-
graded.

The closest work to ours is Sirkiä and Sorva’s analysis of students’ missteps when using
a visual simulation tool for program tracing [70]. Students use the tool to indicate their
expectations of each execution step and the tool records every student mistake. The au-
thors identified 200 mistakes each made by at least 10 students, and they analyzed the 26
most popular mistakes to find them to be either a usability-related issue, previously-known
conceptual difficulty, or previously-unreported conceptual difficulty. In contrast, our code-
tracing questions elicit only a single answer from the student, namely the overall result of
running the code. In addition, our tags, which code the way(s) students could arrive at a
wrong answer, are the equivalent of student mistakes but we allow multiple tags that in com-
bination or separately could cause the wrong answer. Some questions include intermediate
print statements so we can gain more fine-grained information as the student traces the
code. In this regard, both systems encourage students to fix earlier errors before continuing
their code-tracing, so we view them as complementary.

Finally, others outside CS have also used the content of wrong answers to evaluate a
student’s current knowledge. For basic arithmetic problems, Tatsuoka categorized student
errors using a two-dimensional Rule Space, with regions of this space representing erroneous
rules students use to solve the problems [79, 78]. We instead assign as many tags as necessary
to capture the individual or combined student errors that would lead a student to arrive at
a wrong answer.

Another way to understand student difficulties is to construct a student model. This is
the approach of Repair Theory [14] and systems such as PROUST [40] and MARCEL [74].
Building such models requires enumerating both the student’s knowledge and a “bug” list

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 29

Question Set: What if?

> def how_big(x):
> if x > 10:
> print('huge')
> elif x > 5:
> return 'big'
> elif x > 0:
> print('small')
> else:
> print("nothin'")

> how_big(7)

?

> how_big(12)

?

'big'

huge

Categorize
Conceptually Correct

Tagging

'bgi'

Not an Answer

eixt()

Student Error

big

small

'small'

Error

String
not need
quotes

Sloppy if
condition

Print string
with quotes

∅

Figure 4.1: The flow of assigning categories and tags to MMWAs. Left: question set example
with two questions on control flow with the correct answers in dark green round-corner
rectangles. MMWAs for these questions are in the middle, all with a bold red border. These
MMWAs are categorized as: “conceptually correct”, “not an answer”, or “student error”; the
top two categories are false positives. Wrong answers with yellow/non-transparent rounded-
corner rectangles are either taggable (top three answers have tags, shown in blue circles) or
not taggable (bottom answer).

representing ways to mutate that knowledge. While our technique does not result in an
explicit student model, it provides insight into common student difficulties without this
up-front cost.

4.4 Data Collection and Analysis

Our data comes from three offerings of a large-enrollment introductory CS course. This
course teaches programming and the basics of programming abstraction using Python and
Scheme. One formative-assessment activity consists of univalent CRQs involving code-
tracing: a typical question (Figure 4.1, left) presents 1 − 20 lines of code and asks the
student what the interpreter’s state will be at various points during execution. A question

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 30

set groups questions about a similar topic, for example, lambda expressions.

Data Collection and Preprocessing

The questions are administered through an automatic system running in a terminal window.
This system poses each question and prevents the student from proceeding to the next
question until the current one has been answered correctly. Unlimited attempts are allowed.
Grading is based on completion of the question sets. We record and timestamp every student
response; this corpus forms the basis of our data set.

We cleaned the data by removing all blank answers and any duplicate responses made by
the same student. Since the questions are answer-until-correct, every student will have the
same set of correct responses, so we examine only their MMWAs. Therefore, the following
discussion of responses only concerns the MMWAs. We did not do any merging of answers,
as we found that fixing common typos such as ‘TRue’ for ‘True’ barely changed our results.

We collected data from the Fall 2015, Spring 2016, and Fall 2016 offerings of the course.
Different teachers taught the fall versus spring offerings, while the large teaching assistant
(TA) staffs were more similar between the Fall 2015 and Spring 2016 offerings than the two
fall offerings. We report our findings on 11 question sets.

As shown in Figure 4.1, one weakness of the automatic question administration system
is its inflexibility in grading, which can result in two types of false positives. A typo might
be the student entering ‘bgi’ rather than the correct answer ‘big’; a human teacher would
likely recognize that the student was trying to provide the correct answer. A mode error
might be a student typing ‘eixt()’ rather than ‘exit()’ when intending to exit a session.
These responses are also marked as wrong, even though the student was not attempting to
answer the question at all. In the next section, we explain how we deal with such responses
in our analysis process.

Figure 4.2 and Table 4.1 summarize information about the question sets we used, ordered
chronologically with some order swapping between course offerings. Although some question
sets showed significant variation in the total number of unique MMWAs across course offer-
ings (Figure 4.2) or percentage of students making at least one mistake when tackling that
question set (Table 4.1), we find that the properties of the frequent wrong answers remain
relatively consistent, as we describe in the next section. A noteworthy outlier is Question Set
1, which has outlier behavior in almost all of our analyses because it tests simple Boolean
logic and is, therefore, easier than the other question sets. In addition, in Fall 2016 that
question set was optional, and stronger students (who would be more likely to get all the
questions correct on the first attempt) may have simply skipped it.

Tagging Process

Three content experts inspected the MMWAs. Two were experts who did well in the course
and continued to higher-level courses; the third expert was a former TA for the course.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 31

F
al

l
20

15
S
p
ri

n
g

20
16

F
al

l
20

16

Q
u
es

ti
on

S
et

#
of

Q
u
es

-
ti

on
s

S
tu

d
en

ts
R

es
p

on
se

s
%

S
tu

-
d
en

ts
W

ro
n
g

S
tu

d
en

ts
R

es
p

on
se

s
%

S
tu

-
d
en

ts
W

ro
n
g

S
tu

d
en

ts
R

es
p

on
se

s
%

S
tu

-
d
en

ts
W

ro
n
g

1
B

o
ol

ea
n
s

3
1,

27
1

1,
33

7
54

84
8

1,
04

6
61

1,
09

3
3,

13
5

83
2

S
h
or

t
C

ir
cu

it
10

1,
28

3
9,

57
0

95
84

7
5,

23
4

94
1,

69
2

19
,0

32
99

3
if

..
.e

ls
e

11
1,

29
3

8,
14

5
97

84
0

5,
84

3
97

1,
02

2
6,

90
1

99
4

L
o
op

s
4

1,
27

8
4,

74
4

81
83

0
3,

76
6

87
1,

67
5

13
,1

03
96

5
L

am
b

d
as

12
1,

23
9

23
,1

24
99

82
7

19
,3

16
99

1,
61

4
37

,6
66

99
6

H
O

F
6

1,
20

3
9,

69
8

93
78

3
8,

62
4

96
1,

58
1

27
,1

21
99

7
O

O
P

5
90

7
4,

14
6

92
76

7
4,

14
7

94
1,

51
6

5,
43

1
90

8
O

O
P

19
1,

04
2

12
,3

44
99

76
7

10
,7

60
99

1,
51

0
28

,1
99

99
9

L
in

k
L

is
ts

9
1,

01
0

5,
54

3
91

75
3

4,
52

5
92

1,
47

9
6,

47
8

87
10

S
ch

em
e

L
is

ts
11

1,
04

0
17

,0
50

99
73

9
12

,7
91

99
35

9
3,

61
4

10
0

11
It

er
at

or
s

2
87

0
5,

83
4

92
72

2
4,

56
2

94
-

-
-

T
ab

le
4.

1:
S
ta

ti
st

ic
s

on
th

e
q
u
es

ti
on

se
ts

u
se

d
fo

r
th

is
an

al
y
si

s
fo

r
al

l
co

u
rs

e
off

er
in

gs
.

“H
O

F
”

st
an

d
s

fo
r

H
ig

h
er

O
rd

er
F

u
n
ct

io
n
s

an
d

“O
O

P
”

fo
r

ob
je

ct
-o

ri
en

te
d

p
ro

gr
am

m
in

g.
“S

tu
d
en

ts
”

is
th

e
n
u
m

b
er

of
st

u
d
en

ts
at

te
m

p
ti

n
g

th
at

q
u
es

ti
on

se
t;

lo
w

va
lu

es
ar

e
of

te
n

d
u
e

to
th

e
q
u
es

ti
on

se
ts

b
ei

n
g

op
ti

on
al

in
ce

rt
ai

n
co

u
rs

e
off

er
in

gs
.

“%
S
tu

d
en

ts
W

ro
n
g”

is
th

e
p

er
ce

n
ta

ge
of

st
u
d
en

ts
w

h
o

m
ad

e
at

le
as

t
on

e
er

ro
r

on
an

y
q
u
es

ti
on

in
th

e
q
u
es

ti
on

se
t.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 32

1 2 3 4 5 6 7 8 9 10 11

Question Set

0

500

1,000

1,500

2,000

2,500

3,000

3,500

#
 O

f
U

n
iq

u
e
 M

M
W

A

Fall 2015

Spring 2016

Fall 2016

Figure 4.2: Distribution of the number of unique MMWAs for each course offering and each
question set. Ex: Question Set 6 had ≈1,000 unique MMWAs for Fall 2015 and Spring 2016
but ≈2,250 for Fall 2016.

For each question set, we first chose a subset of MMWAs. For this subset of MMWAs, we
completed two phases with multiple steps each.

Our process uses emergent coding to create and assign the tags [57]. Section 4.5 includes
details of how much time each phase took, what MMWAs we inspected, inter-rater-reliability,
and results of the tagging process.

Phase 1: Tag Creation

1. Propose Tags: One expert inspects the MMWA set to generate a set of proposed tags
with a name, description, and example. (Time here recouped during Phase 2, Step 1
& 2)

2. Finalize Tags: All three experts discuss the proposed list until deciding on a revised
list of finalized tags.

Phase 2: Tagging Answer Set

1. Categorize: Two experts separately inspect the MMWA set and assigned each MMWA
a category (middle of Figure 4.1).

• conceptually correct: marked wrong due to a typo

• not an answer: marked wrong but was not intended as an answer because of a
mode error or misunderstanding what text contains the question.

• student error: conceptual errors and carelessness, further discussed in a later
section.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 33

2. Assign Tags: Those answers categorized as “student error” are assigned zero or more
tags (right of Figure 4.1).

3. Consolidate/Discuss: The two experts consolidate their assignments into a single set
of category and tag(s), discussing until they reach an agreement.

4. Review/Confirm: During initial training of experts, a third expert inspects consoli-
dated assignments and confirms them. If this expert disagrees, there is a discussion
among all three experts until they reach an agreement.

4.5 Results

R1: Useful to Examine Small Subset of MMWAs?

Our main findings are that frequent MMWAs appear much more frequently than infrequent
ones, and that, for most students, most of their wrong answers are in the frequent set.
Therefore, inspecting a small subset of these most frequent MMWAs results in good coverage
of cumulative responses covered, rapidly decreasing response coverage, and good coverage of
an individual student’s MMWAs. This section provides details to support the above findings,
which affirmatively answer R1. The results presented refer to the Spring 2016 offering, as
there was little difference among the three course offerings. We will note differences as
appropriate.

Frequent wrong answers are very frequent. Figure 4.3 shows the behavior of the
1,000 most frequent MMWAs. Even though Figure 4.2 shows a wide range in the number of
unique MMWAs per question set and per course offering, the cumulative percent of responses
covered quickly reaches 50% using no more than the top-100 MMWAs for each question set.
In other words, to cover the majority of responses from students, less than 100 MMWAs will
need to be inspected per question set, with most question sets needing less than 50. This
behavior is confirmed by the percent of students that submit a given unique MMWA quickly
dropping to below ≈5% by 100 MMWAs, even though almost all question sets have over 500
unique MMWAs.

For most students, most of their MMWAs are frequent. As a result, if we, use
the top-100 unique MMWAs as a simple definition of “frequent MMWAs,” we can ask how
many students have a given percentage of their MMWAs within that top-100 frequent set.
As the CDF in Figure 4.4 shows, for any given question set, 80% or more of the students
have the majority of their MMWAs in the top 100. Therefore, most of a student’s MMWAs
are in the top 100, and the infrequent wrong answers are coming from many students as
opposed to a concentrated subset of students. This result gives us greater confidence that
by inspecting only the most frequent MMWAs, we are examining at least some, if not the
majority of, MMWAs from every student.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 34

0

20

40

60

80

100

C
u
m

u
la

ti
v
e

%
 R

e
s
p
o
n
s
e
s

100 101 102 103

Rank

0

20

40

60

80

100

%
 S

tu
d
e
n
ts

1

2

3

4

5

6

7

8

9

10

11

Figure 4.3: Frequency of the unique MMWAs in Spring 2016. Each line represents a question
set. The x-axis (log scale) is the 1,000 most frequently occurring MMWAs ordered by
frequency. Upper: Cumulative percent of responses covered by up to the Xth most frequent
answer, e.g., Question Set 1’s top 10 MMWA covered ≈80% of wrong responses. Lower:
Percent of students that submitted the Xth most frequent MMWA, e.g., Question Set 11’s
10th most frequent MMWA was submitted by ≈42% of the students that submitted a wrong
response to this question set.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 35

0 20 40 60 80 100

% of Student's MMWA in Top 100

0

20

40

60

80

100

C
D

F
 S

tu
d
e
n
ts

1

2

3

4

5

6

7

8

9

10

11

Figure 4.4: CDF showing the percent of students that have at least the x-axis percentage
of their MMWAs in the top 100. Ex: For Question Set 10, ≈75% of students have at least
≈80% of their MMWA in this question set’s top 100.

R1.A: Are frequent MMWAs stable across course offerings?

Figure 4.5 shows the overlap of the most frequent MMWAs between a pair of course offerings.
(When ordering MMWAs, we broke ties arbitrarily by sorting the answer text alphabetically.)
The beginning of the graph is noisy due to a small denominator (the x-axis value). The
amount of non-overlapping frequent MMWAs is an estimate of how many MMWAs would
need to be inspected in a new offering of the course.

For some question sets, there is a high level of overlap between course offerings. Almost
all question sets for all pairs of course offerings stabilize starting at ≈50 MMWAs and stay
stable until ≈150 MMWAs or beyond. 150 is well past the number of MMWAs we need
to inspect to cover the majority of responses. Therefore, there will always be some tagging
that can be reused, but the amount depends on the question set and other factors that are
currently unclear.

The differences between the pairs of course offerings is also unclear, primarily because
the Fall 2015 and 2016 offerings were taught by the same teacher, yet have lower MMWA
overlap than Fall 2015 with Spring 2016. Since the course material did not change, we would
expect that a change of teacher would result in lower overlap than the same teacher teaching
the same material twice. Our best guess as to why this is happening is that the TA staff
between the Fall 2015 and Spring 2016 overlapped much more than with the Fall 2016 TA
staff. Each course offering had 50 to 87 TAs versus a single lecturer, so it is possible that a
teaching effect happening at the TA level is causing the differences in the MMWAs overlap.

Figure 4.6 shows the result of an empirical Monte Carlo simulation on the Spring 2016’s

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 36

0 50 100 150 200
0

20

40

60

80

100

%
 O

v
e
rl

a
p

(a) Fall 2015 - Spring 2016

0 50 100 150 200
0

20

40

60

80

100

%
 O

v
e
rl

a
p

(b) Fall 2015 - Fall 2016

0 50 100 150 200

Rank

0
20
40
60
80

100

%
 O

v
e
rl

a
p

1

2

3

4

5

6

7

8

9

10

11

(c) Spring 2016 - Fall 2016

Figure 4.5: Percent of MMWAs that appear in a pair of course offering’s X most frequent
MMWAs, e.g., comparing Fall 2015 and Spring 2016, ≈85% of Question Set 6’s top-100
MMWAs overlapped between the course offerings. Note: Fall 2016 did not have Question
Set 11.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 37

0 200 400 600 800

Number of students

0

20

40

60

80

100

%
 o

f
O

v
e
rl

a
p

1

2

3

4

5

6

7

8

9

10

11

Figure 4.6: Empirical Monte Carlo analysis results when sampling the x-axis value of students
50 times and plotting the mean overlap across the samples with the entire course offering’s
top-100 most frequent wrong answers for each question set. Ex: For Question Set 5, when
we sampled 100 students 50 times, the mean overlap of the top-100 MMWA with the entire
cohort’s top-100 MMWA was ≈90%.

data using the following steps and the simple definition of the top-100 unique MMWAs as
“frequent”: (1) sample successive values of N students (x-axis value), 50 times, (2) for each
sample compute the overlap of the top-100 most frequent MMWAs between the sample and
the entire offering, and (3) plot the mean overlap across the samples.

Figure 4.6 shows high overlap is achieved between 150 and 250 students, with marginal
returns afterward. Question Set 1 once again is an outlier, most likely due to how few unique
MMWAs it had. Therefore, given our data, frequent MMWAs are stable for a much smaller
course than the size we had available (enrollments between 800 and 1,700).

R1.B: How to choose subsample, and how large?

Using taggability (whether or not a wrong answer has a tag) as a proxy for information about
student difficulties, our main finding is that frequently-occurring wrong answers are more
likely to yield information about student difficulties than rarely-occurring ones, suggesting
that the subsample should be created by choosing the most “popular” wrong answers.

We arrived at this conclusion by applying our tagging process to two different MMWA
sets. One focused on only the frequent MMWAs per question set, hereafter the FrequentSet.
The other was all MMWAs submitted by a subsample of 50 randomly chosen students for
each question set, hereafter the StudentSet. The primary deciding factor for choosing each
MMWA set was how much human-expert resources we had to tag these MMWAs. For the

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 38

Tagging Step Human effort required
Finalize Tags ≈ 10 mins./tag
Assign Tags ≈ 1.5 mins./answer
Consolidate/Discuss ≈ 0.5 mins./answer
Review/Confirm ≈ 0.1 mins./answer

Table 4.2: Human-expert time required for each tagging step. Total time was ≈87 tagger-
hours to create tags and ≈36 expert-hours to tag the FrequentSet. We also spent ≈127
expert-hours to tag the StudentSet, required only for validation and not integral to the
technique.

FrequentSet, we chose ≈500 MMWAs to tag; for the StudentSet, after getting a better sense
of the resources required, we chose ≈2,000. Table 4.2 summarizes the person-hours required.

For each question set, we ranked the MMWAs by frequency and then used thresholds on
two metrics: (1) total coverage – which includes the most “popular” MMWAs that cover 60%
of all responses, and (2) marginal coverage – which then adds further MMWAs (still ranked
by frequency) as long as each additional MMWA covers at least 0.4% more responses. The
interaction between these metrics (Figure 4.3) led us to explore their value ranges jointly;
our parameter values resulted in 508 MMWAs to tag.

Our inter-rater agreements, when categorizing wrong answers in the FrequentSet and
StudentSet, were 96.2% and 86.7%, respectively. The fraction of tags given by both experts
was 33.2% for the FrequentSet and 46.3% for the StudentSet. The tag overlap is lower
than we would like, which could be for three possible reasons. First, since a question set
tested a main topic, a misapplied tag was usually misapplied for multiple answers. Second,
in some cases, one expert used a more specific tag than the other, for example, “sloppily
evaluating a variable” versus “sloppily evaluating an attribute of a variable” (an important
distinction in Python). During consolidation, we always used the more specific tag. We did
not compensate the inter-rater agreement scores for either of these situations. Third, taggers
might need more training. The FrequentSet was the first time tagging for our experts, so
training occurred while tagging. The increase in agreement between the FrequentSet and
StudentSet supports this reasoning, despite there being more wrong answers to tag in the
latter.

Despite the low agreement on tags, however, the agreement on categories is high, sup-
porting the assertion that frequent wrong answers are more likely to be taggable. In addition,
the primary focus of this work is on whether the wrong answer was tagged (and therefore
whether we can gain insights from it), as opposed to which tag(s) it received.

By design, there are many more MMWAs in the StudentSet than the FrequentSet (see
Figure 4.7). However, the number of MMWAs per question set is much more varied, making
this method of choosing MMWAs more likely to result in higher variability in which MMWAs
are chosen. In addition, we found the StudentSet included all the MMWAs in the FrequentSet
because (in accord with intuition) we were more likely to randomly choose a student that gave

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 39

1 2 3 4 5 6 7 8 9 10 11

Question Set

0

50

100

150

200

250

#
 O

f
U

n
iq

u
e
 M

M
W

A Frequent

Student

Figure 4.7: Number of MMWAs in each MMWA set per question set. All MMWAs in the
FrequentSet also appeared in the StudentSet and therefore are counted in both bars. Ex:
For Question Set 6, the FrequentSet had ≈50 MMWA and the StudentSet had ≈250.

Frequent Student
Not an
Answer

Conceptually
Correct

Student
Error

Not an
Answer

Conceptually
Correct

Student
Error

Mean 1.0% 5.8% 93.1% 4.4% 8.1% 87.5%
Median 0% 4.5% 94.6% 3.2% 4.9% 90.8%
Variance 0.1 0.3 0.4 0.2 0.4 0.4

Table 4.3: Statistics on the % of MMWA per category for the FrequentSet and StudentSet.

a particular frequent MMWA than a specific rare one. Therefore, Figure 4.7 represents the
Frequent MMWAs twice, once in the FrequentSet and once in the StudentSet. These findings
are further evidence that the frequent MMWAs would be sufficient to yield information on
student difficulties that is representative of all MMWAs.

Table 4.3 also shows that across question sets, we categorized more MMWAs as “con-
ceptually correct” or “not an answer” for the StudentSet than the FrequentSet. Since our
interests are mainly in MMWAs categorized as “student error” and the FrequentSet yields
relatively more of these, we have further support that frequency is a good way to choose
which MMWAs to inspect.

Finally, Figure 4.8 shows that the percentage of taggable MMWAs is higher for the
frequent wrong answers than the infrequent ones for all but one question set. While the
question sets are ordered chronologically, it is unclear why the percentages are converging
but not stabilizing. However, since almost all question sets have a higher percentage of
taggable wrong answers for the frequent wrong answers than infrequent wrong answers in
the StudentSet, we count this as further evidence that frequent MMWAs are more informative
than rare ones.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 40

1 2 3 4 5 6 7 8 9 10 11

Question Set

0

20

40

60

80

100

%
 T

a
g
g
a
b
le

Frequent

Infrequent

Figure 4.8: Percent of taggable wrong answers between the frequent and infrequent wrong
answers in the StudentSet. Ex: For Question Set 6, ≈67% of the frequent wrong answers
in the StudentSet were taggable and 40% of the infrequent wrong answers were taggable.
Note: All MMWA in the FrequentSet are the frequent wrong answers in the StudentSet.

R2: What insights can be gained from the subsample?

We created a total of 1662 tags, which is more than the catalog of novice misconceptions
provided by Sorva [73]. In addition, 65% of our tags did not fit the topics in the catalog.
This lack of fit is because our tags focus on what the student did to create the wrong answer,
as opposed to the conceptual idea the student misunderstood. In Table 4.4 we list the topics
from the catalog and ones we created, the number of tags for that topic, and an exemplar
tag. We only include exemplar tags due to space. A full list of our tags can be found in
Appendix A.

“Language-Specific Constructs” are tags about student difficulties specific to the lan-
guage, such as idioms, constructs, and implementations. “Syntax” tags focused on ways
students were wrong due to syntax errors or misunderstandings. “Sloppy” tags focused on
ways students either read the code poorly or submitted their answer without proofreading.
Finally, we created the topic “Data Structures” because, even though it is not as well studied
in prior work, we found student difficulties with data structures using our analysis. We were
able to do this because our data set included questions testing concepts with linked lists,
regular lists, dictionaries, sets, and trees.

These insights were gained from question sets created by teaching staff before this work
and without a rigorous, data-driven design process. We believe more insights could be gained
through an iterative process where current insights inform the design of new questions, whose
wrong answers are then analyzed, and hopefully more insights are gained. Such an iterative
process we leave to future work.

2In the published related work of this chapter [76], the tallies are different due to a counting error. The
values in this chapter are correct and do not otherwise affect the results.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 41

T
op

ic
#

of
T

ag
s

E
x
em

p
la

r
T

ag
N

am
e

D
es

cr
ip

ti
on

E
x
am

p
le

C
o
d
e

(i
n

P
y
th

on
)

G
en

er
al

,
C

on
tr

ol
,

O
O

P
,

R
ef

er
en

ce
s,

M
is

c

27
S
eq

u
en

ti
al

i
f

st
at

em
en

ts
ar

e
i
f
.
.
.
e
l
s
e

T
h
is

W
A

d
em

on
st

ra
te

s
th

at
th

e
st

u
d
en

t
b

el
ie

ve
s

tw
o
i
f
’s

n
ex

t
to

ea
ch

ot
h
er

ar
e

ac
tu

al
ly

an
if

..
el

se
cl

au
se

>
>
>
x
=
5

>
>
>
i
f
x
<
=
5
:
a
=
1

>
>
>
i
f
x
>
3
:
a
=
2

>
>
>
p
r
i
n
t
(
a
)

1

V
ar

ia
b
le

A
ss

ig
n
m

en
t

22
E

x
p
re

ss
io

n
n
ot

ev
al

u
at

ed
T

h
is

W
A

d
em

on
st

ra
te

s
th

at
th

e
st

u
d
en

t
d
o
es

n
ot

re
co

gn
iz

e
th

e
n
ee

d
to

ev
al

u
at

e
an

ex
p
re

s-
si

on
an

d
in

st
ea

d
a

co
d
e

sn
ip

p
et

is
“p

as
se

d
ar

ou
n
d
.”

>
>
>
a
=
1
+
2

>
>
>
a

1
+
2

C
al

ls
14

E
va

lu
at

in
g

a
fu

n
ct

io
n

n
am

e
is

a
fu

n
ct

io
n

ca
ll

T
h
is

W
A

d
em

on
st

ra
te

s
th

at
th

e
st

u
d
en

t
b

el
ie

ve
s

w
h
en

th
e

n
am

e
of

a
fu

n
ct

io
n

is
in

a
li
n
e

of
co

d
e

(b
u
t

n
ot

ca
ll
ed

)
th

e
fu

n
ct

io
n

is
b

ei
n
g

ca
ll
ed

.

>
>
>
f
=
l
a
m
b
d
a
x
:
1

>
>
>
f

1

L
an

gu
ag

e
S
p

ec
ifi

c
C

on
st

ru
ct

s*

34
L

is
t

co
m

p
re

h
en

si
on

d
o
es

n
ot

re
tu

rn
a

li
st

T
h
is

W
A

d
em

on
st

ra
te

s
th

at
th

e
st

u
d
en

t
b

el
ie

ve
s

a
li
st

co
m

-
p
re

h
en

si
on

d
o
es

n
ot

re
tu

rn
a

li
st

,
b
u
t

ju
st

a
va

lu
e.

>
>
>
[
x
f
o
r
x
i
n
r
a
n
g
e
(
3
)
]

0

S
y
n
ta

x
*

34
L

is
t

d
o
es

n
ot

n
ee

d
co

m
m

as
T

h
is

W
A

d
em

on
st

ra
te

s
th

at
th

e
st

u
d
en

t
b

el
ie

ve
s

a
li
st

d
o
es

n
ot

n
ee

d
co

m
m

as
.

>
>
>
[
x
f
o
r
x
i
n
r
a
n
g
e
(
3
)
]

[
0
1
2
]

S
lo

p
p
y
*

15
S
lo

p
p
y

so
rt

in
g

T
h
is

W
A

is
w

ro
n
g

b
ec

au
se

th
e

st
u
d
en

t
is

b
ei

n
g

sl
op

p
y

in
h
ow

th
ey

ar
e

so
rt

in
g

th
e

va
lu

es

>
>
>
s
o
r
t
e
d
(
[
’
b
’
,
’
a
’
,
’
c
’
]
)

[
’
a
’
,
’
c
’
,
’
b
’
]

D
at

a
S
tr

u
ct

u
re

s*
18

L
in

k
li
st

s
ca

n
n
ot

cy
cl

e
T

h
is

W
A

d
em

on
st

ra
te

s
th

at
th

e
st

u
d
en

t
b

el
ie

ve
s

li
n
ke

d
li
st

s
ca

n
n
ot

li
n
k

b
ac

k
to

th
em

se
lv

es
,

so
if

a
li
n
e

of
co

d
e

d
o
es

th
is

,
it

is
as

if
it

d
id

n
ot

h
ap

p
en

.

>
>
>
l
=
L
i
n
k
(
1
,
L
i
n
k
(
2
,
L
i
n
k
(
3
)
)
)

>
>
>
l
.
r
e
s
t
=
l

>
>
>
l
.
r
e
s
t
.
r
e
s
t
.
f
i
r
s
t

2

T
ab

le
4.

4:
T

h
e

n
u
m

b
er

of
ou

r
ta

gs
p

er
to

p
ic

in
S
or

va
’s

ca
ta

lo
g

[7
3]

w
it

h
ex

em
p
la

rs
.

T
h
os

e
w

it
h

*
ar

e
to

p
ic

s
w

e
cr

ea
te

d
.

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 42

Research Question Summary

R1: Can analyzing a small subsample of wrong constructed responses yield information
about student difficulties that makes it worth the time investment?

Yes, the frequent MMWAs constitute only a ≈5% subsample of the MMWAs in the data
set, yet the wrong answers in the FrequentSet are more likely to be taggable.

R1.A: If so, assuming the same questions are used in subsequent course offerings, can
the information so gained be applied to future course offerings, further amortizing the
time investment?

How much can be applied to another course offering is currently inconclusive. The amount
of overlap for a given question set and pair of course offerings is consistent between the most
frequent ≈50-150 wrong answers. However, how much it overlaps between a question set and
pair of course offerings is highly dependent on the question set and factors that are currently
unclear, such as teaching effects.

R1.B: If so, how should that sample be chosen and how large must it be?

We believe the best way to choose MMWAs is by first ordering them by their frequency
and then choosing the most frequent, thresholding based on both the cumulative percent of
responses covered and the marginal additional coverage of each additional MMWA. The pa-
rameter values can be chosen together based on the number of human-expert hours available
for tagging, with the understanding that a lower threshold will affect the results of the set’s
representativeness and stability.

R2: What insights about student difficulties can be gained from analyzing the sub-
sample?

Using MMWAs from univalent-constructed-response, code-tracing questions with our tagging
process, we found both misconceptions similar to those identified in prior work and new
misconceptions based on topics appearing in our assessments but not used in prior work,
such as difficulties with language-specific constructs and data structures. In addition, we
found many ways students can create wrong answers that are not necessarily misconceptions.

4.6 Discussion

It is possible the question quality affects our results. Our data comes from questions that
existed before this work, and they were designed by the course’s teaching staff without a
rigorous data-driven design process. Therefore, we had no control over the question quality.
Also, the teaching staff designed these question sets with the intention of students going
through them quickly for the sake of giving more class time to work on the code-writing

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 43

questions. However, even if we improved the question quality, we believe our results are likely
a lower bound. Higher quality questions would aim to reveal particular student difficulties.
This targeting would then push students to construct a smaller set of unique wrong answers
and therefore make the frequent MMWAs even more frequent.

Another concern is the “Sloppy” tags may represent genuine struggles with the material,
as opposed to the students not reading the code carefully. Therefore, such errors should be
taken seriously despite the potentially belittling name. In addition, we will gladly change
the name if future work demonstrates its inappropriateness.

Finally, there is a potential caveat when using this tagging process across course offerings.
If the wrong answers tagged in a previous offering of a course do not cover the current offering,
we would need to collect and tag more wrong answers. The stability we found across cohorts
leads us to believe we will eventually achieve the desired level of tagged frequent wrong
answers or the number of wrong answers will never be so high as the initial effort of tagging.
However, if the teacher is using the formative assessments to inform changes in teaching
strategies, which we hope is the case, she is now tracking a moving target. The target moves
because each student cohort is likely changing their common errors based on the instruction
received.

4.7 Applications

When we shared our tags with the course’s teaching staff, they used the tags to create uni-
valent CRQs for the exams. Another use of the wrong answer taggings is for identifying
common student errors in the class to develop targeted distractors for selected-response as-
sessments. Teachers can also use such knowledge to change the teaching materials to target
those errors proactively. In addition, we can analyze the MMWAs categorized as “conceptu-
ally correct” to reveal how the system is poor at marking answers correctly. These insights
can lead to improvements in the automated system or the questions to reduce such errors.
For the MMWAs categorized as “not an answer,” we can use them to understand ways to
improve the system or the questions. For example, this category led us to a confusing ques-
tion where students were answering a question in the code’s comment rather than predicting
the code’s output.

The tagging data could also become part of a continuous cycle of improving the code-
tracing questions. Wrong answers and the tagging process can inform which questions are
identifying actual student struggles versus noise by looking at the tags on a question’s wrong
answers and the ratio of the question’s tags to frequent wrong answers. This information
can then inform which questions to remove or change, as well as which tags need questions
specifically designed for them.

Furthermore, a teacher dashboard reporting the common student errors in the class –
informed by the work from Chapter 3 – could help the teacher target which student struggles
to focus on when teaching. Such a dashboard could show the entire large class’s everyday
struggles, as well as filter by a single TA’s discussion section or a particular group based

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 44

on exam performance, similar to Aguilar et al.’s [2] and Hardy et al.’s [34] work. Also,
the dashboard could update in real time as students work through the question sets. The
real-time updating would enable a TA to monitor her current section’s widespread errors
and interrupt the entire class when necessary.

Another potential application is from related work on parameterizing the auto-generation
of questions [16]. We can use tags to inform auto-question generation by targeting particular
tags, as well as auto-generate the wrong answers for those tags. This auto-generation would
allow a preliminary understanding of student struggles without first analyzing the student-
generated wrong answers.

Finally, we can use wrong answer taggings to develop a model to detect student difficulties
as they work through the automatically graded assessments. When the model detects a stable
difficulty in the student, it could trigger the delivery of formative feedback in situ.

4.8 Future Work

Pilot study: Directly asking students for answer rationales

Directly asking students why they submitted an answer is a way to improve understanding
of those wrong answers. Doing such would help us validate our existing tags, create new
tags, and better understand how to apply tags such that we have fewer MMWAs with no
tags.

We ran a pilot study asking students for a rationale for their most recent answer. Our
prompt was “To help the class provide better hints to future students, please take a moment
to explain your answer.” We showed this prompt about once per question set after both cor-
rect and wrong answers, mainly focusing on correct answers and wrong answers categorized
as student error but without tags. The student did not know the correctness of their answer
until after they submitted the rationale. Before inspecting these rationales, we first filtered
by removing all rationales with fewer than 20 characters.

When we inspected a sample of rationales collected after a wrong answer, we found we
were able to apply existing tags to wrong answers that before had no tag, as well as create and
apply new tags. In addition, we found three other trends: (1) non-normative generalizations,
(2) realization of mistake, and (3) articulation difficulty.

For the first trend, students’ rationales indicated they had formed a non-normative gen-
eralization about a programming concept. This trend is similar to generalizations found in
Clancy’s review [19]. These generalizations usually stemmed from an attempt to extrapolate
from examples in the teaching material. For instance, a student saw only an example of the
boolean and returning false when it arrives at the first false statement. This student then
extrapolated that and only ever returns false and otherwise returns an error.

We identified rationales where students realized their mistake by students beginning to
write text explaining their wrong answer then changing to a correct answer or an admission

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 45

they now understand things differently. These rationales show that prompting for a rationale
could also be a means of feedback.

Finally, articulation difficulty rationales are when the student’s rationale includes pieces
of code or keywords, but the rationale itself is incoherent. Rationales like this could be due
to a lack of fluency in the programming language itself or some deep-seated misunderstand-
ing of the concepts such that any explanation they attempt comes out too tangled to be
understandable.

For a future experiment, we can conduct think-aloud interviews with students as a case
study that will then inform a more systematic collection and study of rationales from stu-
dents.

Using tagging data to understand learning better

Other potential future work could investigate the relationship between tags and the rest of
the course material, such as what tags appear in multiple question sets or how often tags
appear together. We can also link a tags appearance to a particular teacher or TA. Such data
could bring insight into whether a specific teacher or TA influences what kind of struggles
students go through.

We can also take into account the relationship between tags and course material within
a student, such as investigating whether a student’s common tags correlate with exam score,
performance on particular questions, or proficiency on code writing assignments. In addition,
tag relationships within a student could reveal if students tend to have specific sets of tags.
If these “student tag profiles” exist, then teachers can design material with them in mind.

4.9 Summary

We set out to investigate if the information gained from analyzing responses from univalent-
constructed-response, code-tracing questions is worth the effort expended. We analyzed a
corpus of 332,829 responses to 92 questions by 4,068 students across 3 offerings of a large-
enrollment introductory CS course. We found inspecting the frequent wrong answers are
worth the opportunity cost because they are a small sample compared to all the unique
wrong answers and cover a majority of the wrong responses. When comparing the overlap
of the frequent wrong answers between two course offerings, our results show that the level
of overlap is almost always consistent for the frequent wrong answers, but that level varies
between question sets and course offering pairs.

In addition, we report on the insights we gained from inspecting these frequent wrong
answers. We found similar misconceptions discussed in prior work. Our inspecting process
focused on identifying ways students arrive at wrong answers, so we also identified student
difficulties with syntax and how students can be sloppy when they read the code or answer
questions. Finally, we readily found student difficulties with language-specific constructs

CHAPTER 4. TAKING ADVANTAGE OF SCALE BY ANALYZING FREQUENT
CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWERS 46

(Python and Scheme for this class) and data structures, areas with less prior work on student
misconceptions.

47

Chapter 5

Delivering Hints on
Constructed-Response, Code-Tracing
Assessments Based on Wrong
Answers

5.1 Introduction

Formative feedback is important. Specifically, we mean “information communicated to the
learner that is intended to modify his or her thinking or behavior to improve learning”
[67]. In computer science, code-tracing is an important, and potentially necessary, skill
that supports code writing [49, 51, 81]. Therefore, we set out to improve student’s code-
tracing skills by using the insights we gained from inspecting frequent wrong answers from
code-tracing questions in Chapter 4 to deliver formative feedback given as hints to students.

However, there is little work examining what kind of hints best helps with learning code-
tracing. Therefore, we also investigated the effectiveness of two kinds of hints: reteaching and
knowledge integration (KI) [28]. Reteaching hints re-explain the concept(s) associated with
what the student is struggling with. KI hints push the student to re-evaluate their answer
and understanding to help him overcome his difficulty without any more intervention.

In this chapter, we report on the process and results of conducting an in situ experiment
with 1,057 students, answering 9 question sets, during a 15-week course. We built a student
error model using the tags, representing student difficulties, from Chapter 4 and split the
students into three groups: control, reteaching, and KI. We found:

This work was done with Krishna Parashar, Regina Ongowarsito, Nikunj Jain, Kavi Gupta, and Ar-
mando Fox.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 48

• It is straightforward to deploy an intervention experiment at scale by taking advantage
of technology already existing in the class.

• That co-occurrence between wrong answers yields useful information about machine-
marked-wrong answers without having to inspect them.

• We can build our student error model to identify a student’s difficulties using both the
results of Chapter 4 and co-occurrence information.

• That we currently do not have sufficient evidence that giving hints to students using
this model improves performance on post-test questions.

• Through qualitative techniques, our current experimental setup has Human-Computer
Interaction (HCI) problems, allows students to brute-force guess the answer, and lets
the model deliver too many hints.

• Through quantitative techniques, there are areas for further investigation, such as
students submitting fewer wrong answers after a frequent wrong answer compared to
an infrequent one, reteaching hints may help students more than KI hints, and the hint
“Typo?” on conceptually correct wrong answers may also help students.

5.2 Related Work

Le et al.’s [47] review of AI-supported tutoring for learning programming noted that most CS
tutors give feedback on code writing. Keuning et al.’s [42] review of programming exercise
tools found a variety of feedback types that contained information on the assessed task,
concepts, mistakes in the code, and next steps.

However, there is mounting evidence that code tracing is an important – if not strictly
necessary – skill to learn how to write code [49, 51, 81]. Lopez et al. [51] studied student
exam responses and found a correlation between performance on code-tracing tasks and
code-writing tasks. They also used step-wise regression with code writing as a dependent
variable to create a path diagram and found code tracing to be an intermediary level in
the hierarchy with code explaining. Code constructs were at the bottom of the hierarchy.
Venables et al. [81] extended and replicated Lopez et al.’s work using their own multiple-
choice exam. Venables et al.’s results were broadly consistent in finding that code tracing
is an important skill for code writing, with noting some sensitivity to the code-explaining
questions. Lister et al. [49] performed a replication studying investigating the relationships
between code tracing, code explaining, and code writing. Their findings were consistent with
prior work, in that students who cannot trace code cannot usually explain it, while those
that can write code usually have the ability to both trace and explain code.

We were able to find two works related to tutor feedback on code tracing. Baffes and
Mooney’s [7] tool ASSERT used theory refinement to automatically alter a student model
to become consistent with a set of examples of a student’s behavior. The tool assessed the

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 49

students on C++ code-tracing using multiple-choice questions that asked students to classify
the behavior of a piece of code, such as if it would error out. The feedback had two parts.
One was a reteaching message that explained the knowledge altered in the student model to
fit the student’s answer. The second part was a counterexample pertinent to that knowledge.
Kumar’s [45] code-tracing feedback tool also used C++ code and assessed student under-
standing through multiple-choice questions. This tool allowed for assessing students with
multi-stage, multiple-choice questions such that subsequent questions are dependent on prior
ones. When a student is incorrect, a step-by-step explanation of the code is automatically
generated and presented to the student.

These two works barely begin an investigation on the use of feedback on code-tracing
assessments. Formative feedback in education literature has been long studied [35, 52, 59,
67]. There are multiple frameworks to inform feedback design and delivery and many factors
to consider, which include: the feedback itself, how to deliver the feedback, the assessment
the feedback is on, and aspects of the student receiving the feedback.

Our work adds to the current literature regarding the feedback given and the assess-
ment the feedback is on. We use two different kinds of hints: reteaching, which re-explains
the misunderstood concepts, and knowledge integration [28], which pushes the student to
re-evaluate their understanding of the material. Our tool delivered hints on code-tracing,
constructed-response assessments based on the results of analyzing wrong answers to ques-
tions in Python.

5.3 Data

We built a student error model that determined when to deliver hints to students on data
from prior work in Chapter 4. Please see that chapter for full details. Here are only the
details that pertain to Chapter 5.

First, below are terms we will use in this chapter, most of which we introduced in Chap-
ter 4.

• Machine-marked-wrong answer (MMWA) - A (question, string) pair the automated
system marks as incorrect.

• Response - A (student, MMWA) pair; many students may give the same MMWA.

• Wrong answer - A MMWA that is confirmed incorrect, as opposed to a false positive
marked incorrect by the automated system.

• Tag - Human experts’ interpretation of a specific student difficulty that could lead to
an observed student error.

• Taggable - A wrong answer is taggable if at least one tag can be applied to it.

• Conceptually correct - A category for MMWAs in the tagging process where it is marked
wrong due to a typo.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 50

• Not an answer - A category for MMWAs in the tagging process where it is marked
wrong but was not intended as an answer because of a mode error or misunderstanding
what text contains the question.

• Student error - A category for MMWAs in the tagging process where it is marked
wrong due to conceptual errors or carelessness.

• Inspected MMWA - A MMWA that has gone through the tagging process.

• Uninspected MMWA - A MMWA that has not gone through the tagging process.

The data is collected from an automatic, question-answer system running in a terminal,
called OK [11]. OK administers questions in question sets that are answer-until-correct, such
that the student cannot proceed to the next question until he answers the current one
correctly. Students have unlimited attempts per question. At a weekly lab, students receive
zero or more question sets and receive credit if they complete the question set. We record
and timestamp every response submitted by a student.

From work in Chapter 4, we have two sets of inspected MMWAs. Each MMWA in these
sets has a category (“conceptually correct,” “not an answer,” or “student error”) and, if
categorized as student error, assigned zero or more tags. One is the FrequentSet, which
consists of each question set’s most frequent MMWAs that cover a total of 60% of the
question set’s responses and all MMWAs that individually cover 0.4% of the responses. The
other is the StudentSet that includes all MMWAs from a random 50 student subsample per
question set.

5.4 Student Error Model

As we showed in Chapter 4, while tagging the frequent MMWAs covers a majority of the
data set, it is only ≈5% of all MMWAs. Tagging solely frequent MMWAs means most
MMWAs are not inspected and therefore not tagged. Also, inspecting more is not necessarily
worth the time and human resources. Therefore, all the uninspected MMWAs a student
submits is potentially lost information about that student. With this in mind, we decided to
create a model that inferred information about the student using the tagged MMWAs and
quantitative metrics about the MMWAs.

Why go beyond the frequent MMWAs?

To explain our rationale for going beyond the frequent MMWAs, we first need to define
some methodological assumptions. First, we define a student as having a tag when he gives
enough evidence that leads us to believe he is struggling with the difficulty represented by
that tag. Second, we designate two wrong answers sharing a tag as sufficient evidence that
a student has a tag. Third, we will understand precision as “how often the model correctly
tags a student” and recall as “of the tags each student should have, how many does the

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 51

model correctly assign.” As long as we do not try to infer information, our precision will
always be 1.0 (or perfect) with these assumptions. However, our recall may be lower than
desirable. Therefore, we should take advantage of any additional information to improve our
model, such that it allows us to trade some precision for an increase in recall.

In addition, because we are using data from assessments designed without our particular
tags in mind, the model may not tag students when the student does have that difficulty.
If the student answered more targeted assessments, she might have then provided sufficient
evidence to show she has a tag. However, we cannot determine this with our current data
set. Therefore, even if we make some inferences as to what tags students have, the tags we
assign are likely a lower bound of what tags the student has.

Tag propagation using co-occurrence

Tag propagation in this context means within a student, as opposed to a wrong answer. As
we mentioned above, we require a student to have two wrong answers that share a tag to
indicate the student has the tag. We chose two wrong answers because it allowed for students
to slip – where they have the knowledge to answer correctly but submitted a wrong answer
– and not receive a hint prematurely. How many wrong answers to ideally require we leave
to future work. We use co-occurrence, inspired from pattern mining, to propagate tags. The
co-occurrence metrics we considered include coherence, cosine, and Kulczynski explored in
Wu et al.’s [85] pattern mining work, as well as the odds ratio.

Our model with tag propagation applied tags to students at the lab level. We calculate
at the lab level (1) because question sets within a lab are usually related and (2) to take
advantage of all data within a student’s code-tracing session. The model applied a tag to a
student if the student has:

• Primary rule: Two wrong answers that share the tag OR

• Propagation rule: There is only one wrong answer for the tag and an uninspected
MMWA who’s co-occurrence metric with the tagged wrong answer is above a threshold.

To understand how well co-occurrence could help our model, we compared it to an un-
informed baseline. The uninformed baseline replaced the co-occurrence threshold in the
propagation rule with a probability to apply the tag to the student. We compared the mod-
els by plotting their precision vs. recall curve and calculating a modified area under the curve
(AUC). For each model, we used the FrequentSet as the training set and the StudentSet as
the test set.

To plot the curve for the uninformed baseline, we varied the probability at 200 evenly
distributed points between and including 0 and 1. We then took the mean precision and
recall from running the model 100 times per probability value and removed any precision or
recall points on the curve that caused it to backtrack on itself. To plot the curve for the co-
occurrence models, we varied the threshold. To calculate the precision and recall we defined
a positive tagging as the model properly applying a tag to a student in the StudentSet and

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 52

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Modified AUC

7.2

7.1

5.1

3.2

3.1

2.4

2.3

2.2

2.1

Qu
es

tio
n
Se

t

Coherence
Cosine

Kulczynski
Odds Ratio

Baseline

Figure 5.1: Dot plot comparing the modified AUC for each question set across the metrics
and baseline. The decimal number for each question set represents first the lab it was in
(left of the decimal) and its order in the lab (right of the decimal). Note: The x-axis range
is not 0 to 1.

a negative as properly not applying a tag to a student in the StudentSet. Also, we give a
positive and negative assignment only within the context of the tags known to appear in
the question set(s) under consideration. For example, if we were considering two question
sets and 20 unique tags appear in these question sets, each student will have a positive or
negative assignment for all 20 tags. We judged the model on whether it correctly marked
(true/false) each student’s 20 tags as positive or negative. We modified calculating the AUC
because the primary rule and our definition of how a student receives a tag caused high
initial precision and recall values. For example, the Question Set 7.2 had precision and recall
values between [0.64, 1.0] and [0.71, 0.90] respectively. Therefore, we defined our modified
AUC by first anchoring each curve at its extreme points and then scaling the curve such that
it fits inside a 1x1 square.

Figure 5.1 shows a dot plot comparing the modified AUCs for each question set. A
question set’s number represents the week on the left of the decimal and the order on the
right of the decimal. From this figure, we can see all models for all question sets except
Question Set 7.1 outperform the uninformed baseline. This outperformance leads us to
conclude that co-occurrence does yield useful information on what tags to apply to a student.
However, when comparing the ranking of the metrics for each question set, we find there
is no consistent ordering. For example, Kulczynski is usually one of the weaker performing

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 53

metrics, except for Question Sets 7.1 and 7.2, our two Object Oriented Programming (OOP)
question sets. For Question Set 2.3, coherence, cosine, and Kulczynski tie for first place.
In addition, 4 out of the other 6 question sets have cosine outperform all the metrics, but
coherence is better for the other 2. This lack of consistent ordering leads us to conclude the
best metric to use in the model is question set specific.

Therefore, to create a model for a question set we took the following steps:

1. Choose the metric with the best modified AUC,

2. Calculate the f2-score for all threshold values for the chosen metric, and

3. Use the threshold with the best f2-score

We decided to use the f2-score after comparing the resulting model when using the f1-
score and f3-score. Intuitively, the number for an f-score means we value recall that many
times more than precision. When we used the f1-score, our model rarely chose to propagate
because the f1-score equally weighted precision and recall. With this equal weight and
precision is 1.0 without propagation, there was no other combination of recall and precision
with a better f1-score. In comparison, the f3-score usually resulted in a precision lower than
desirable.

5.5 Kinds of Hints

After the model tags a student, we start giving that student hints associated with that tag.
Concretely, we associate hints with tags or (tag, wrong answer) pairs. When a student
provides a wrong answer associated with a particular tag and the model has also tagged that
student, the student receives the hint(s). If the current wrong answer is uninspected, the
student receives the hint(s) the other inspected wrong answer would receive. As for hints,
we decided to compare two different kinds of hints: reteaching and knowledge integration.
We include a full list of the hints in Appendix B for reteaching and Appendix C for KI.

Reteaching hints

The main kind of hint used in CS learning is a reteaching hint, which re-explains a concept
(e.g., short-circuiting) or an idea (e.g. syntax error) to the student because the student
usually has been taught the concept already. To give students reteaching hints, we first
associate a tag with one or more concepts. We then write a reteaching hint for each concept.
We wrote a total of 75 reteaching hints.

For example, we have a tag to indicate that students have “swapped the meaning of
boolean and with or.” We associated three concepts to this tag: boolean and, or, and
short-circuiting. When the model assigns this tag to the student, he would get three hints
at once, as seen below. We placed |’s or bars around text meant to be code because the text
is displayed in a terminal, where we could not make any assumptions about formatting.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 54

Boolean and:

|and| either returns the first false value evaluated

in an expression or the last value of that expression

if all the operands are true.

Boolean or:

|or| either returns the first true value evaluated in

an expression or the last value of that expression if

all the operands are false.

Boolean Short-Circuiting:

In short-circuiting Python only cares about false-y

values while evaluating an |and| expression, and truth-y

values while evaluating an |or| expression. A

|FALSE-Y_VAL and VAL| will always evaluate to |False|,

and a |TRUTH-Y_VAL or VAL| will always evaluate to

|True| so as soon as one of these values is known, the

other subexpressions is superfluous, and therefore

Python does NOT evaluate them.

Knowledge Integration (KI) Hints

We based our Knowledge Integration (KI) hints on Gerard et al.’s work on science learn-
ing [28]. Their hints had four main components: (1) elicit ideas - make an observation
about the response to connect to the student’s initial ideas, (2) add and distinguish ideas -
Ask question about the key missing or non-normative concept in the response, (3) add and
distinguish ideas - Direct student to material about the question asked, and (4) integrate
ideas - Ask student to use the evidence they have gathered to improve their response.

Our KI hints are a variant suited to the task of code-tracing. These hints push the
student to re-evaluate their understanding without relying upon another explanation. We
intend the hints to encourage students to overcome their struggles on their own, rather than
to re-explain the concepts we suspect the student is having difficulty with. This hint design
potentially makes KI hints more robust than reteaching hints because KI hints are less likely
to over-diagnose a student’s difficulty compared to targeting a particular concept. When
writing such hints, we: (1) remind the student of one or more ideas or (2) ask the student to
compare two or more ideas. An idea, in this case, we define as a concept, segment of code,
syntax, and anything else having to do with code-tracing. We wrote and assigned hints to
(tag, wrong answer) pairs. However, most tags have only one hint associated with them
regardless of the wrong answer, and some tags share hints. We wrote 115 KI hints.

For example, for the “swapped the meaning of boolean and and or” tag, the KI hint
would be:

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 55

Remember the difference between |and| and |or|.

5.6 Experimental Setting

We ran our experiment during the 2017 15-week Spring semester in the same CS1 course as
Chapter 4. This course’s weekly schedule included 2 lectures by the teacher, 1 discussion
with the lecture by a teaching assistant (TA) and with exercises, and 1 lab with self-paced
computer exercises and a TA and multiple lab assistants (LAs) present.

We administered hints during lab in the code-tracing question sets delivered by the
automatic system, OK. Labs usually covered material taught in the most recent lectures that
students have not yet used in practice. The teaching staff designed the code-tracing question
sets to be the student’s first interaction with the new material, and they are meant to be
easy. We had 9 question sets spread over 4 labs. Question Sets 2.3 and 2.4 were not required.

Changes to the automatic system

We ran the experiment by making only small modifications to the existing technology in the
class, OK [11]. First, for each lab assignment’s downloadable zip file, we added a data file
with the model and hints. We included this data file with the assignment because students
only downloaded the assignment once and we wanted to ensure they had the necessary in-
formation if they worked offline. Second, we altered OK to read this file whenever a student
opened a question set. Third, we also altered OK to contact a server to retrieve the student’s
treatment group when the student started working on the lab assignment. Finally, as stu-
dents submitted wrong answers, OK updated the model and delivered hints as appropriate.
All alterations were straightforward and required little effort compared to the resources used
to create the technology.

Treatment groups

We had three treatment groups: control with no hints, reteaching, and KI. Students were
randomly assigned a treatment at the beginning of the course and kept the same treatment
throughout the course. Due to a bug in our deployment, about three times as many students
were in our control group than in each hint group. This bug resulted in 630 students in the
control group, while reteaching had 215 students and KI had 212 students. There was 1
student assigned to multiple treatments due to an error in creating student accounts in the
system. We removed this student from the data set.

Question sets and models

To create the model that identifies when to give students hints, the model’s parameters
of co-occurrence metric and threshold were first determined per question set. The chosen

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 56

Question Set Metric Threshold AUC F-score Precision Recall
2.1 Short Circuiting Cosine 0.082 0.523 0.930 0.746 0.990
2.2 Loops Cosine 0.130 0.554 0.879 0.823 0.895
2.3 Booleans Cosine 0.189 0.582 0.938 0.938 0.938
2.4 if...else Coherence 0.020 0.465 0.712 0.582 0.754
3.1 Lambdas Cosine 0.229 0.570 0.862 0.744 0.898
3.2 Higher Order
Functions

Cosine 0.204 0.572 0.815 0.745 0.835

5.1 List
Comprehension

Coherence 0.039 0.580 0.851 0.842 0.853

7.1 OOP Kulczynski 0.504 0.426 0.918 0.871 0.931
7.2 OOP Kulczynski 0.503 0.594 0.835 0.734 0.865

Table 5.1: Each question set’s chosen model parameters and statistics. The decimal number
next to each question set represents first the lab it was in (left of the decimal) and its order
in the lab (right of the decimal). Row lines separate question sets by lab.

parameters and relevant statistics can be found in Table 5.1. These parameters indicated
which wrong answer pairs had a high enough co-occurrence with each other. Then, when
administering hints, the model took into account all wrong answers regardless of their original
question set. This disregard for the origin of the question set means that if a student submits
a wrong answer with a tag during Question Set 7.1 and another wrong answer with the same
tag but in Question Set 7.2, the student will receive a hint immediately after the latter
wrong answer. Since we only considered the co-occurrence within a given question set, the
propagation rule only worked within it.

Question sets had two subsets: intervention and post-test questions. First, in the inter-
vention questions – the original set of questions designed by the teaching staff – students
could receive hints. Second, in the post-test questions, students would not receive hints.
We placed these questions after the intervention questions. Since the question sets are
answer-until-correct, the students only answer them after receiving our hint intervention.
We designed the post-test questions to surface the tags that appeared in the intervention
questions.

The question sets had a total of 114 questions with 77 questions during intervention and
37 questions for the post-test. Question Set 7.1 did not have post-test questions because
it covered the same topic as Question Set 7.2, OOP. In addition, students were highly
encouraged to complete it before Question Set 7.2. All students that did Question Set
7.1 also did 7.2.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 57

Question
Set

In
Treatment

Not in
Treatment

%

2.1 969 86 8.9
2.2 954 84 8.1
2.3 373 35 8.6
2.4 348 34 8.9
3.1 932 49 5.0
3.2 812 48 5.0
5.1 880 25 2.8
7.1 879 12 1.3
7.2 871 11 1.2

Table 5.2: The number of students in treatment per question set and the amount lost due
to missing information or computer error.

5.7 Results

1,057 students attempted at least one question set and 275 students that attempted all the
question sets. 689 students did all seven required question sets. When we split the students
that did all required question sets by treatment group, control had 411 (65.2%), reteach had
145 (67.4%), and KI had 133 (62.7%) students. These numbers seem low because we lost
students per question set due to missing information (where we could not determine if they
correctly received treatment) or computer error (where the treatment server did not respond
to them). Table 5.2 shows the number of students in each question set that did and did not
receive treatment. From this table, we can see the student loss per question set is similar
within a lab and therefore assume this was a uniform problem across the data.

Measuring performance

As far as we can determine, there is no consensus at present as to how to best measure student
performance on answer-until-correct questions [6, 5, 83]. The following is the method we
used.

We use two different values to measure a student’s performance on a set of questions.
First, we take into account the difficulty Di of question i as 1 minus the fraction of students
that correctly answered question i on the first attempt. This definition of difficulty means
that the higher the value, the more difficult the question. Second, for a student, we have the
binary value Ci = {0, 1} of whether the student correctly answered question i on the first
attempt. Then, we define the performance of a specific student for a set of questions Q as:∑

i∈Q Ci ×Di∑
i∈QDi

(5.1)

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 58

In other words, a student’s performance on a set of questions can be defined as the
questions they correctly answer on the first attempt divided by the questions they attempted
with the questions weighted by their difficulty. Our method was designed with several factors
in mind. First, weighting by the question’s difficulty rewards students for answering harder
questions correctly. Second, using whether the student answered correctly only on the first
attempt emphasizes what the student knew initially without any confounds, such as what
the student learned from any submitted wrong answers. Third, we divide by the weighted
sum of all the questions in the set to ensure that we only take into account the questions the
student attempted. By using only these questions, we purposely did not penalize students
for not attempting a question since it is unclear what such an action indicates. The majority
of students finished each question set they attempted since the students received credit based
on whether they completed it. As a result, the data shows reasonable consistency in the sets
of questions done (Q) between students.

No hints versus any hint

Before investigating the difference between reteaching and KI hints, the first question we
considered is whether receiving any hint was better than receiving no hint. To do this, we
combined our reteaching and KI treatment groups into one “any hint” group. Then, we
performed a Welch Two Sample t-test between the control group, which received no hints,
and the any-hint group on each student’s performance on the post-test questions. The test
resulted in p = 0.64, meaning a null result. As a result, we cannot reject the null hypothesis
that there is no difference in performance on post-test questions between getting no hints
and getting any hint. Since there is no statistically significant difference between these two
groups, there was no need to investigate further distinctions between our two hint types.

Considering student prior knowledge

One potential explanation for the null result is that a student’s prior knowledge affects
his performance on the code-tracing questions. We defined prior knowledge as a student’s
performance on the earliest question sets in the course in Week 2’s lab. Week 2’s lab included
the first four question sets, two of which were optional. We were able to calculate a prior for
957 students by using our previous Equation 5.1 on all the questions in these four question
sets. We confirmed that there was no difference between the priors of our no-hint and any-
hint group using another Welch Two Sample t-test, which resulted in p = 0.62. Finally, we
ran an Analysis of Covariance (ANCOVA) with our two groups, the prior as our covariate,
and the dependent variable the performance on all post-test questions not in Week 2. This
resulted in p = 0.47. Once again, we received a null result.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 59

5.8 Exploratory Analysis of Data

To understand why our results are null, we performed an exploratory analysis of our data
using both qualitative and quantitative techniques. We qualitatively analyzed wrong answer
sequences for a question set from students that gave long wrong answer sequences and
received many hints. Our quantitative analysis involved defining metrics for groups of wrong
answers or hints and comparing these metrics between groups.

Preliminary qualitative analysis

To qualitatively assess why our results are null, we inspected a sample of long wrong answer
sequences within a student and question set. We chose our sample by taking the (student,
question set) tuples with the highest count of hints and wrong answers. Through this process,
we made three discoveries.

Human-Computer Interaction (HCI) problems in the hints and automatic system that
cause wrong answers. We knew the system had some HCI problems from our conceptually
correct MMWAs. However, we found more in our case study analysis, and while these
problems likely do not cause a severe misunderstanding in a student, they probably cause
frustration. An HCI problem caused by our hints were wrong answers that were correct
except included | or bars, such as “|False|”. Our hints likely caused this confusion because
we used |’s in our hint text to denote code.

A chief system HCI confusion was that the keywords to indicate if an error occurred or
Python would display nothing or a function pointer. The keywords students used to answer
correctly were “Error,” “Nothing,” and “Function.” Students instead would submit the
name of the error that would occur instead of “Error,” “None” instead of “Nothing,” and
the name of the function instead of “Function.”

Another system HCI problem is a lack of text canonicalization, which is the main reason
we categorize a MMWA as conceptually correct. These kinds of MMWAs potentially slow
student learning because a student may change his conceptual understanding to a non-
normative understanding when told he is wrong. In one instance, a student submitted
a conceptually correct answer “function,” but without proper capitalization, the system
marked it wrong. This student then submitted 19 more wrong answers before answering the
question correctly. In addition, the lack of submission canonicalization caused a problem
with our hints. We found the system counted minor differences in formatting as separate
wrong answers such that the model could deliver hints too early. For example, a student
submitted “1/0” and “1 / 0” separately and received a hint on the second submission.
While it is true that both of those wrong answers were frequent and given the same tag, it
does not necessarily make sense for a student to receive a hint after submitting two wrong
answers that are canonically the same answer.

Brute-force guessing by students can create long wrong answer sequences. A primary
cause of long wrong answer sequences was students systematically guessing the answer. We
found sequences of the numbers 0 to 10, different orderings of the three answer keywords

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 60

(“Error,” “Function,” and “Nothing”), and different variations and combinations of pieces of
problem text. For instance, consider the following sample of a student’s sequence of wrong
answers. The correct answer is “123”:

>>> c = lambda x: lambda: print(’123’)

>>> c(88)()

88

Function

Error

Nothing

0

print

c

()

print 88

lambda: print(’123’)

’123’

The model can propagate too aggressively, such that uninspected wrong answers received
many tags and therefore many hints. For example, a student in the reteaching condition sub-
mitted “0” to the question “True and 1 / 0 and False”. The correct answer is “Error”.
The model propagated so many tags that the student received six hints on the concepts:
erroring when dividing by zero and Boolean and, or, short-circuiting, primitives, and order
of operations. For the KI condition, we had a student receive ten hints after the below
question, answer pair.

>>> b = lambda x, y: print(’summer’)

>>> c = b(4, ’dog’)

b

The number of hints for a single answer in the KI condition especially surprised us because
we never intended more than one KI hint to appear for a wrong answer.

To gain a simplified understanding of the number of hints given to each student for
each treatment, we created Figure 5.2. The most striking feature here is that students in
the reteaching condition (Figure 5.2a) receive fewer total hints compared to KI students
(Figure 5.2b). This difference is also present when counting the number of unique hints per
student. There are two likely reasons this happened. First, we have more unique KI hints
than reteaching hints. Second, we assign reteaching hints per concept and KI hints per (tag,
wrong answer) pairs, even if a KI hint is usually the same for a tag regardless of the wrong
answer. This hint assignment means that for a given set of tags the set of reteaching hints
are the unique concepts among those tags and the set of KI are almost always one hint per
tag. In addition, the model propagates tags within a question set, which covers a small set of
concepts. Therefore, if the model propagates many tags to a wrong answer in the question

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 61

2.1 2.2 2.3 2.4 3.1 3.2 5.1 7.1 7.2
Question Set

0

10

20

30

40

50

60

of
 T

ot
al

 H
in

ts

(a) Boxplot number of total hints received by reteaching group

2.1 2.2 2.3 2.4 3.1 3.2 5.1 7.1 7.2
Question Set

0

10

20

30

40

50

60

of

 T
ot

al
 H

in
ts

(b) Boxplot number of total hints received by KI group

Figure 5.2: Boxplot showing the distribution of the number of hints each student received
per question set. Note: Since the data is integral, outlier points may represent more than
one student.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 62

Count % 0 % 1 % >1
Wrong Answer Set
Frequent Control 32,536 41.7 20.3 38.0
Frequent Reteaching 10,338 43.5 20.3 36.3
Frequent KI 11,324 41.5 20.3 38.1
Infrequent Control 17,651 32.6 19.8 47.6
Infrequent Reteaching 5,791 33.3 20.0 46.8
Infrequent KI 6,758 30.5 18.9 50.6

Hint Set
Reteaching 4,072 49.1 18.1 32.7
KI 4,473 42.6 20.2 37.2
Correct/Typo 64 84.4 9.4 6.3
Reteaching range function 76 64.5 18.4 17.1
KI range function 68 57.4 23.5 19.1
KI short circuiting 44 56.8 27.2 15.9
KI for stacked calls cause errors 52 23.1 15.4 61.5
Reteaching Assignment 188 26.1 17.1 56.9

Table 5.3: Statistics when looking at the number of wrong answers after a (student, question,
event) tuple, where the event is from a set of hint(s) or wrong answers. The table’s lines
separate different types of sets. For example, of the 4,072 times the system delivered a
reteaching message, 49.1% of the time a student answered correctly immediately after, 18.1%
of the time a student submitted a wrong answer and then submitted the correct answer, and
32.7% of the time there was more than one wrong answer until the student was correct for
that question.

set, it is reasonable for the tags’ concepts to overlap. This overlap results in fewer total
reteaching hints compared to one KI hint per tag.

Preliminary quantitative analysis

To start a quantitative understanding of why our results are null, we calculated the number
of wrong answers after a (student, question, event) tuple. The events were the occurrence
of a hint or wrong answer from a set. We then created summary statistics of these counts,
see Table 5.3. The first column describes what makes up the wrong answer or hint set. The
second column is the number of times a (student, question, event) tuple occurred. The last
three columns are the percent of those counts where after the event there were no wrong
answers (i.e., the student’s next answer was correct) “% 0”, one wrong answer “% 1”, or
more than one wrong answer “% >1.” For example, for the first row, there were 32,536
instances of a (student, question, frequent wrong answer) tuple. Of those events 41.7% had
the correct answer after it, 20.3% had one wrong answer after it, and 38.0% had more than

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 63

one wrong answer after it. Note, the way we are counting the tuples means that a frequent
wrong answer (an event) could happen multiple times within a (student, question) pair.
Below are some interesting potential findings for further investigation.

Students submit the correct answer in fewer wrong answers after a frequent wrong answer
compared to infrequent wrong answers. The two groups in the upper part of the table are the
statistics of the wrong answer sets for the frequent and infrequent wrong answers split by
each treatment group. The counts for the control group are three times as high because there
were three times as many students in that group. When comparing the “% 0” column, there
is an average of 10.1% more for a frequent wrong answer than an infrequent one across all
three treatment groups. This increase seems almost entirely taken from the “% >1” column.

One potential explanation for this increase is the brute-force guessing we saw in our case
study. Most of the wrong answers when a student is brute-force guessing are infrequent wrong
answers. These infrequent wrong answers mean that if a student is brute-force guessing they
are submitting many infrequent wrong answers for a single question. Therefore, a given
infrequent wrong answer is likely to have many wrong answers after it.

Reteaching hints may help students submit fewer wrong answers than KI hints. In the
lower table are different hint sets. The first group is the statistics when a student received
a reteaching or KI hint. By comparing these statistics to our frequent wrong answer set’s
statistics, one can see that reteaching hints may help students submit fewer wrong answers,
while KI hints make no change. However, further work is needed to evaluate this possibility.
We need to compare these statistics to the same set of statistics for the control group where
a student would have gotten a hint but did not.

A hint suggesting the student has a typo for conceptually correct wrong answers consid-
erably increased the “% 0” column. For both the reteaching and KI treatment groups, we
delivered the same hint for conceptually correct wrong answers that simply read “Typo?”
Comparing the statistics for this hint to the general reteaching and KI hint groups indicates
that it drastically reduced the number of wrong answers after such wrong answers. Once
again, however, we do not know if this is causal without comparing it to the control group.

In this case, there are several reasons why we believe it would be beneficial to show
this hint for every conceptually correct wrong answer. First, we only delivered this hint 64
times, despite the many conceptually correct wrong answers in the data set. Delivering so
few of these hints most likely happened because a particular student did not submit enough
conceptually correct wrong answers and the model was too strict by requiring two conceptual
correct wrong answers. A second reason to always show the “Typo?” message is evident in
the HCI problem case study we discussed earlier in which a student submitted a conceptually
correct MMWA and then submitted more MMWAs after he was told he was wrong and did
not receive the typo hint.

Some hints decrease and others increase the “% 0” column. The next two groups of hint
sets are the statistics for single hints. The first group is hints that decreased the number of
wrong answers after the hint and the second group increased the number compared to the
general statistics for each hint set. The difference is especially apparent when comparing
the percentages in the “% >1” column to the overall reteaching and KI hint set. Our other

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 64

hints spanned the values between these hints.
It is currently not clear why specific hint types performed better than others. The

performance variance may be because our three exemplar “good” hints are more targeted
than our two exemplar “bad” hints. However, there are other hints that are just as specific
but which did not perform as well. Moreover, when comparing between reteaching and KI
hints for specific tags, sometimes the hints perform similarly and other times not. Further
work is needed to determine the properties of effective hints for both types, especially work
that compares the results with the control group.

5.9 Discussion

Our results further understanding of the complexity of providing hints to students on constructed-
response, code-tracing assessments. While our overall results on improving student perfor-
mance on post-test questions are null, we did find hints that seemed to help students since
when the hints are present there are fewer attempts on the question. Potential reasons why
our overall result is null include:

• We need a different performance metric to best measure changes in student perfor-
mance, such as methods found in related work [6, 5, 83].

• There is a topping out effect because the questions are too easy, which was a design
goal for the teaching staff when they wrote the original questions that we used as
intervention questions.

• We did not have enough post-test questions to measure the effect of the hints. The
teaching staff limited the question sets’ lengths. Therefore, to give students sufficient
questions during the intervention portion, we had few post-test questions and designed
the questions to test for multiple tags at once.

Another potential reason our results are not as successful as related work is due to
differences between our work and related work. One of the most similar related works with KI
guidance is Vitale et al.’s [82] work comparing specific guidance – which is like our reteaching
hints – with KI guidance. They found that specific guidance improves student outcomes on
short-term assessments but not on a transfer task. KI guidance had the reverse effect: it
improved student outcomes on the transfer task but not on the short-term assessments. A
transfer task was out of scope for our experiment. However, a potential and readily available
transfer task is the code-writing assessments immediately after the code-tracing question
sets. If our experiment included an analysis of these assessments, we might have found a
significant difference since a student must be able to trace code after writing it. Moreover,
related work has found that code-tracing is an important skill that supports code-writing [49,
51, 81].

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 65

Besides scope, our KI hints and the learning setting differ from related work that used
KI guidance [28, 77, 82]. As mentioned above, we did not include all four KI hint parts
found in Gerard et al.’s work. Also, some of our hints are vague compared to Vitale et
al.’s [82] work. For example, we have hints that merely suggest rechecking how a keyword
works as opposed to Vitale et al.’s hints that guide a student to attend to a particular detail.
Our learning settings are also different. Most work with KI guidance is in K-12 classes and
has the teacher present and guiding students through the curriculum. Our work is in an
undergraduate class that is much bigger than a single K-12 class and has students with
greater autonomy regarding how and when they receive teacher help and guidance. These
differences combined with Tansomboon et al.’s [77] findings that teachers can influence the
effectiveness of a particular kind of guidance could explain why our KI hints did not improve
student outcomes overall.

Finally, our KI hints may not have worked since learning how a scientific system works
– the common learning domain for KI guidance – is not similar enough to learning a mental
model of how computers work or a notional machine [72]. The two learning domains are
similar in that both are complex systems and, when learning these systems, students bring
their mental models and ideas of how they work. However, the specific details of the two
learning domains differ. The former focuses on how the physical world works and encourages
the use of the scientific method while the latter requires computational thinking. These
differences between the two might cause too large of a divergence to successfully transfer the
success of KI hints to the learning domain of computer science.

Regarding our reteaching hints, there are also experimental setting differences in our
work compared to related work. Kumar [45] tested his tool in a lab setting. Baffes and
Mooney’s [7] experimental design had students use the ASSERT tool voluntarily, and they
incentivized students by giving extra credit and having the tool cover final exam material.
We conducted our experiment in situ on required class material. These differences may be
why our reteaching hints are not as successful as these related works.

5.10 Future Work

There are two main areas for future work: a further investigation to understand our current
results and how to improve the system or experiment.

Understanding our results

As in our exploratory analysis, there are both qualitative and quantitative techniques we
can apply. A qualitative technique to better understand if our hints are understandable is
user studies using the think aloud protocol. With user studies, we will investigate if the
hint wording is confusing or misleading. We would focus on whether the student correctly
understands the hint as they think aloud and whether the hint causes them to correctly

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 66

understand the concept, for reteaching hints, or to re-evaluate their understanding, for KI
hints.

Quantitatively, there are still more metrics we can mine from the existing data to tease
out what happened. For example, if we look at the time between answers, we can gauge if
students actually read the hints. We may find student behavior similar to that in Heckler
and Mikula [36], who observed students initially read their explanations but stopped after
a few questions. In addition, this would lead us to more student response sequences that
we can study qualitatively. Another potential metric is comparing or running regressions
between a student’s performance to her number of hints, tags, question sets, and questions.
Such a regression could help us better understand if there is a dosage effect.

We will also investigate other performance metrics. For example, Ahadi et al. [3] mea-
sured performance by using the log2 of the number of attempts by a student. This metric
could replace whether the student correctly answered a question on the first try, as well as
influence a question’s difficulty metric.

Another area for future work would be to tag the wrong answers in the post-test questions
and then compare the tags that the model assigned to the student during the intervention
questions with the student’s tags in the post-test questions. If the two tag sets are the same,
it could mean the hints did not reduce the difficulties represented by those tags. If the tags
from the post-test questions are strictly a reduced subset of the tags in intervention, it could
mean the hints did help but not enough to improve performance in the post-test questions.

Improving the system or experiment

Improve HCI: From our qualitative case studies, multiple HCI problems need addressing.
With user studies, we can find a better way to mark what is code in our hints. In addition,
we can investigate more intuitive ways for students to submit when they think the answer
will be an error or Python will display nothing or a function pointer.

Disincentivize brute-force guessing: As evident in our case study, at least some long wrong
answer sequences are due to students brute-force guessing. Possible ways to limit guessing
is rate limiting how many answers a student can submit within a minute. Another option
would be that if a student submits over a threshold of wrong answers or the system detects
guessing using what we found in our case studies, the system would prevent the student from
submitting more answers until a TA or LA unlocks his session.

Improve question sets: Now that we have wrong answers from questions specifically
designed to target our tags (the post-test questions), we can begin a cycle of improving
the question sets. In this cycle, we would first remove intervention questions that had few
taggable wrong answers. Then, we would tag the wrong answers from the post-test questions.
We move those post-test questions that proved effective at surfacing tags to the intervention
questions and their tagging data added to the model. Finally, we would design new post-test
questions for tags without questions in the post-test question. In addition, we would discuss
with the teaching staff ways of increasing the number of post-test questions.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 67

Comparing the current model with a stricter model: In this experiment, we used only one
model to deliver hints to students. To better understand if it is the propagation affecting
student performance, we need to compare it to a model that does not propagate. This model
would only use the primary rule to apply tags to students.

Use a student’s entire history of wrong answers: Rather than using only the wrong
answers in the current lab, we can include the student’s whole wrong answer history. Ex-
panding what we consider would require taking into account how long ago each wrong answer
appeared and whether the student had the opportunity to give a wrong answer for that tag.

Modify when hints are delivered: In our exploratory analysis, we found students that
submitted fewer wrong answers after receiving a hint pointing out they may have a typo on
their conceptually correct wrong answer. However, this hint was not delivered often because
the model was too strict. Therefore, for the conceptually correct wrong answers, we should
always give students this hint.

Another finding in our exploratory analysis was the model sometimes propagates too
many hints at once. We can mitigate this by adding another layer to the propagation logic
so that if there are too many propagated tags, we would propagate only the tags with the
highest co-occurrence metric, thus reducing the number of hints delivered.

Measure prior knowledge outside of the question sets: Defining student prior knowledge
with the early question sets is confounded because students also received hints during that
time. Therefore, we should measure prior knowledge either by not delivering hints in the
early question sets or using a validated test in prior work, such as Tew and Guzdial’s [80] or
Park et al.’s [63] work.

Investigate more kinds of formative feedback: Related work has found that giving stu-
dents the correct answer after they attempt a question improves outcomes [25, 24], but what
about answer-until-correct? We could view answer-until-correct as an extension of the an-
swer once and receive the correct answer when wrong because the student does eventually
reach the correct answer, but she is generating it herself. In a future experiment, we could
compare answer-until-correct with hints versus answer once with correct response (knowl-
edge of correct response - KCR) and explanation. Answer-until-correct could have no hints
and the hints from this work. KCR could have only the correct answer, a line-by-line textual
explanation, or a step through code visualization. An additional variation would be to give
the students the option to see the explanation even if they are correct.

5.11 Summary

We set out to investigate ways to deliver hints to students based on information about their
wrong answers, as well as comparing two different kinds of hints. To do this, we altered
existing technology in the course to deliver an in situ experiment with 1,057 students as they
answered 9 question sets during a 15-week course. We also conducted a further analysis of a
corpus of 332,829 responses from a previous offering of the course, originally from Chapter 4.

CHAPTER 5. DELIVERING HINTS ON CONSTRUCTED-RESPONSE,
CODE-TRACING ASSESSMENTS BASED ON WRONG ANSWERS 68

We found that altering existing scaled technology for our experiment was straightforward,
especially when compared to the resource requirements to build the original technology. Our
analysis of the data corpus from Chapter 4 found that co-occurrence yields useful information
about machine-marked-wrong answers without individually inspecting them. We then used
this information to create a student error model to determine when to deliver hints to
students. However, we were not able to find a difference in student performance on post-test
questions between our treatment groups.

Our exploratory analysis to understand our null results led us to find: (1) HCI problems,
(2) that students create long wrong answer sequences due to brute-force guessing, and (3)
our model is sometimes too aggressive in delivering hints to students. In addition, we
found preliminary evidence that: (1) a student is more likely to get a question correct after
submitting a frequent wrong answer than an infrequent one, (2) students correctly answer a
question in fewer wrong answers after a reteaching hint than a KI hint, (3) the simplistic hint
“Typo?” for conceptually correct wrong answers potentially drastically reduces the number
of wrong answers after it for that question, and (4) both reteaching and KI vary in how many
wrong answers the student submits between receiving the hint and submitting the correct
answer.

69

Chapter 6

Future Work

We believe that a scaled class has distinct advantages for student learning. Explicitly, we
define a scaled class as having far more than the typical class of 30 students and technology
embedded in the class to help manage and enhance the class. It is important to study ways to
handle large, technology-filled classes because they are part of our present and will continue
to be part of our future. We need to investigate what can and cannot be scaled.

Rather than seeing scaled classes as a problem that needs management, we believe they
are an opportunity to improve learning. Scaled classes have richer data regarding the data
size, due to the number of students, and data dimensionality, due to the technology as po-
tential data sources. This data can help us better understand learning with fewer confounds,
such as teacher and cohort differences, as well as give us the statistical power to find class
trends that before would look like outliers. In addition, the technology required for scaled
classes provides a ready test site for innovation. Finally, the large class size enables us to
find ways to enhance teaching through techniques like automation.

The objective of our work is not to design technology that can entirely replace the human
teacher. Rather, we believe a scaled class can help student learning by informing and enabling
the building of “intelligently designed systems that leverage human intelligence” [8]. Through
analyzing this rich data, we can enhance the teacher’s understanding of the class. Then we
can enhance teaching by using the insights of the analysis and the embedded technology.

In this work we learned:

• That despite the massiveness of this rich data, teachers want to understand their quali-
tative data, rather than only their more easily accessible quantitative data. (Chapter 3)

• It is possible to analyze this rich data using a mix of qualitative and quantitative
techniques. (Chapter 4)

• It is straightforward to deploy an intervention experiment at scale if we use the already
embedded technology. (Chapter 5)

• Hints to improve learning are complicated. (Chapter 5)

CHAPTER 6. FUTURE WORK 70

With these lessons in mind and the belief that scale can help a class, we believe there are
many possibilities for future work.

6.1 Data Sources to Apply Mixed Methods

Office hours management app data

One way to manage office hours with a large class is with an app [23, 71]. Such apps collect an
assortment of data, from simple queue arrival/removal timestamps to advanced information
like student identity, the TA that helped the student, and the student’s question.

We can enrich our understanding of this data by studying it within the qualitative context
of the course’s material, deadlines, exams, logistics, and mishaps (e.g., a bug in the project),
as well as individual student performance. Questions we could study include: (1) How do
we better utilize TAs in office hours? (2) Are there better ways to organize office hours?
(3) Does office hours usage correlate with improved performance in class? (4) What are the
typical questions in office hours that could become part of non-office hours resources, such
as “Frequently Asked Questions” or class tutorials?

Gradescope

Gradescope [69] is an online assessment grading tool for handwritten assignments and exams.
It is a web-based platform that enables teaching staff to grade assessments using a dynam-
ically evolving rubric per assessment. This data includes an association between a student,
his assessment answer, and the rubric items awarded to that answer. If the teacher creates
rubric items not only with grading in mind but also data analysis, we could measure student
exam performance on specific concepts and link such information to the rest of the class’s
data. This information cohesion could lead to better understanding of the entire class and
each student’s mastery of the material. We could also investigate the correlations between
concept mastery and other course material use and performance.

6.2 Rich, Robust Insights from Large Data

Measuring how long it takes students to complete work

The number of credits for a class often indicates the class’s workload. However, there are
few forcing mechanisms to keep a class’s workload within its number of credits. This lack
could be because it is hard to measure how much students work on a course. We could
use how long a student spends on course material as a rough estimate for course workload.
We could calculate such an estimate if the class has most course assignments administered
through technology with timestamped log data. Then with this information, a teacher could
calibrate his course material to match the expectations of the course’s workload.

CHAPTER 6. FUTURE WORK 71

Use TA staff timings to predict student timings

A heuristic for predicting how much time students need for an exam is that the student
will take at most three times as long as a teacher. We can empirically investigate this by
measuring how long TAs take to complete the exam and recording how much time each
student spends on her exam. Furthermore, we could apply this process to any course ma-
terial, including: question sets, projects, homework, and coding problems. We could collect
student timings actively – by asking students to submit them – or passively – by using the
log data of the technology used to administer the material. Then once we know the empirical
multiplier for the material, we could apply it to new material before exposing the material
to students and, therefore, have a reasonable estimate of how long the new material would
take a student to complete.

6.3 Deployable Scaled Experiment

A data-driven flipped class

Xie and Yang [86] compared providing students with a video of an expert solving a problem
and explaining critical information such as decision-making, reasoning, and common errors
versus providing an overall score and highlighting the student’s errors. They found that the
video improved student performance more than the overall score and student error highlight-
ing. However, such videos may be too time-consuming to create, or there may be too many
potential key pieces of information to explain in a single lecture. Instead, we could use the
insight from this work to create a data-driven flipped class. We would organize the class
by first collecting and automatically grading and assessing student work for the common
principal information students are struggling with. During the lecture, the teacher would
focus on this key information while modeling how to solve both problems from the students’
work and new problems to show ways to transfer understanding. Finally, we could measure
whether this new approach improved student outcomes.

72

Chapter 7

Conclusion

We define scaled classes as having both a large student body and a high usage of technology.
We believe these scaled classes are an opportunity to explore how to effectively teach large
classes without sacrificing quality, as well as learning in general. In this work, we present
an instantiation of a research process in which we: (1) use the existing technology to collect
highly dimensional data, (2) use quantitative and qualitative techniques to analyze the data,
and (3) use the insights from the analysis to improve our understanding of learning and
design pedagogically grounded intervention experiments.

We started this work by surveying MOOC teachers to understand how these teachers
valued information sources similarly and differently than small online class teachers (Chap-
ter 3). We found that MOOC teachers wanted qualitative data, despite the prohibitively
large number of students. Next, we analyzed qualitative data from a scaled, local class and
found that, despite the large data set, inspecting constructed-response wrong answers with
both qualitative and quantitative techniques is not necessarily prohibitively resource inten-
sive (Chapter 4). Moreover, we were able to gain valuable insights from this analysis that
informed our last work. In our final work, we used the insights to deliver hints to students
on constructed-response, code-tracing questions and found that it was straightforward to
run the experiment by taking advantage of the existing scaled technology and that hints are
complicated (Chapter 5).

We believe that teachers and students can greatly benefit if researchers take advantage
of scaled classes. Our proposed research process is one way to do so, and this work presents
one instantiation of this research process. We hope that it inspires others to do the same.

73

Bibliography

[1] 2016 Fall CS61A 001 Lec 001. http://classes.berkeley.edu/content/2016-

fall-compsci-61a-001-lec-001. Accessed: 2017-05-05. 2016.

[2] Diego Alonso Gómez Aguilar, Roberto Therón, and Francisco José Garćıa Peñalvo.
“Semantic Spiral Timelines Used as Support for e-Learning.” In: Journal of Universial
Computer Science 15.7 (2009), pp. 1526–1545.

[3] Alireza Ahadi, Raymond Lister, and Arto Vihavainen. “On the Number of Attempts
Students Made on Some Online Programming Exercises During Semester and Their
Subsequent Performance on Final Exam Questions”. In: Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education. ITiCSE
’16. Arequipa, Peru: ACM, 2016, pp. 218–223.

[4] Assoicated Press. Monstrous class sizes unavoidable at colleges. http://www.nbcnews.
com/id/21951104/ns/us_news-education/t/monstrous-class-sizes-unavoidable-

colleges/. Accessed: 2017-05-05. 2007.

[5] Yigal Attali. “Immediate Feedback and Opportunity to Revise Answers”. In: Applied
Psychological Measurement 35.6 (2011), pp. 472–479.

[6] Yigal Attali and Don Powers. “Immediate Feedback and Opportunity to Revise An-
swers to Open-Ended Questions”. In: Educational and Psychological Measurement 70.1
(2010), pp. 22–35.

[7] Paul Baffes and Raymond Mooney. “Refinement-based student modeling and auto-
mated bug library construction”. In: Journal of Interactive Learning Research 7.1
(1996), p. 75.

[8] Ryan S. Baker. “Stupid Tutoring Systems, Intelligent Humans”. In: International Jour-
nal of Artificial Intelligence in Education 26.2 (2016), pp. 600–614.

[9] Ryan SJD Baker and Kalina Yacef. “The state of educational data mining in 2009: A
review and future visions”. In: JEDM-Journal of Educational Data Mining 1.1 (2009),
pp. 3–17.

[10] Rebecca Barber and Mike Sharkey. “Course Correction: Using Analytics to Predict
Course Success”. In: Proceedings of the 2Nd International Conference on Learning
Analytics and Knowledge. LAK ’12. Vancouver, British Columbia, Canada: ACM, 2012,
pp. 259–262.

BIBLIOGRAPHY 74

[11] Soumya Basu et al. “Problems Before Solutions: Automated Problem Clarification at
Scale”. In: Proceedings of the Second (2015) ACM Conference on Learning @ Scale.
L@S ’15. Vancouver, BC, Canada: ACM, 2015, pp. 205–213.

[12] John D Bransford, Ann L Brown, and Rodney R Cocking. How people learn: Brain,
mind, experience, and school. National Academy Press, 1999.

[13] LB Breslow et al. “Studying learning in the worldwide classroom: Research into edX’s
first MOOC”. In: Research & Practice in Assessment 8 (2013), pp. 13–25.

[14] John Seely Brown and Kurt VanLehn. “Repair theory: A generative theory of bugs in
procedural skills”. In: Cognitive science 4.4 (1980), pp. 379–426.

[15] Neil C.C. Brown and Amjad Altadmri. “Investigating Novice Programming Mistakes:
Educator Beliefs vs. Student Data”. In: Proceedings of the Tenth Annual Conference
on International Computing Education Research. ICER ’14. Glasgow, Scotland, United
Kingdom: ACM, 2014, pp. 43–50.

[16] Peter Brusilovsky and Sergey Sosnovsky. “Individualized Exercises for Self-assessment
of Programming Knowledge: An Evaluation of QuizPACK”. In: Journal on Educational
Resources in Computing 5.3 (Sept. 2005).

[17] Jane E Caldwell. “Clickers in the large classroom: Current research and best-practice
tips”. In: CBE-Life sciences education 6.1 (2007), pp. 9–20.

[18] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. “The Normalized
Programming State Model: Predicting Student Performance in Computing Courses
Based on Programming Behavior”. In: Proceedings of the Eleventh Annual Interna-
tional Conference on International Computing Education Research. ICER ’15. Omaha,
Nebraska, USA: ACM, 2015, pp. 141–150.

[19] Michael Clancy. “Misconceptions and attitudes that interfere with learning to pro-
gram”. In: Computer Science Education Research (2004), pp. 85–100.

[20] Derrick Coetzee et al. “Should your MOOC forum use a reputation system?” In: Pro-
ceedings of the 2014 Conference on Computer-Supported Cooperative Work. 2014.

[21] Stephen Cooper, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introduc-
tory Programming Concepts”. In: Proceedings of the Fifth Annual CCSC Northeastern
Conference on The Journal of Computing in Small Colleges. CCSC ’00. Ramapo Col-
lege of New Jersey in Mahwah, New Jersey, USA: Consortium for Computing Sciences
in Colleges, 2000, pp. 107–116.

[22] Kathleen Cotton. Monitoring student learning in the classroom. Northwest Regional
Educational Laboratory, 1988.

[23] CS 61A Queue. https://oh.cs61a.org/. Accessed: 2017-10-07. 2016.

[24] Roberta E Dihoff, Gary M Brosvic, and Michael L Epstein. “The role of feedback
during academic testing: The delay retention effect revisited”. In: The Psychological
Record 53.4 (2003), p. 533.

BIBLIOGRAPHY 75

[25] Michael L. Epstein, Beth B. Epstein, and Gary M. Brosvic. “Immediate Feedback
during Academic Testing”. In: Psychological Reports 88.3 (2001), pp. 889–894.

[26] Rebecca Ferguson. “Learning analytics: drivers, developments and challenges”. In: In-
ternational Journal of Technology Enhanced Learning 4.5-6 (2012), pp. 304–317.

[27] Elena Gaudioso, Felix Hernandez-del-Olmo, and Miguel Montero. “Enhancing e-learning
through teacher support: two experiences”. In: Education, IEEE Transactions on 52.1
(2009), pp. 109–115.

[28] Libby F Gerard et al. “Automated guidance for student inquiry.” In: Journal of Edu-
cational Psychology 108.1 (2016), p. 60.

[29] William J Gibbs, Vladimir Olexa, and Ronan S Bernas. “A visualization tool for man-
aging and studying online communications”. In: Educational Technology & Society 9.3
(2006), pp. 232–243.

[30] Murray W Goldberg. “Student participation and progress tracking for web-based courses
using WebCT”. In: Proceedings of the Second International NA WEB Conference. 1996,
pp. 5–8.

[31] Murray W Goldberg, Sasan Salari, and Paul Swoboda. “World Wide WebCourse tool:
An environment for building WWW-based courses”. In: Computer Networks and ISDN
Systems 28.7 (1996), pp. 1219–1231.

[32] Shuchi Grover, Roy Pea, and STephen Cooper. “Promoting Active Learning & Lever-
aging Dashboards for Curriculum Assessment in an OpenEdX Introductory CS Course
for Middle School”. In: Learning @ Scale, Work in Progress. ACM. 2014.

[33] Christian Hardless and Urban Nulden. “Visualizing learning activities to support tu-
tors”. In: CHI’99 extended abstracts on Human factors in computing systems. ACM.
1999, pp. 312–313.

[34] Judy Hardy, Mario Antonioletti, and S Bates. “e-learner tracking: Tools for discovering
learner behavior”. In: The IASTED International Conference on Web-base Education.
2004.

[35] John Hattie and Helen Timperley. “The Power of Feedback”. In: Review of Educational
Research 77.1 (2007), pp. 81–112.

[36] Andrew F Heckler and Brendon D Mikula. “Factors affecting learning of vector math
from computer-based practice: Feedback complexity and prior knowledge”. In: Physical
Review Physics Education Research 12.1 (2016), p. 010134.

[37] Neil T. Heffernan and Cristina Lindquist Heffernan. “The ASSISTments Ecosystem:
Building a Platform that Brings Scientists and Teachers Together for Minimally Inva-
sive Research on Human Learning and Teaching”. In: International Journal of Artificial
Intelligence in Education 24.4 (2014), pp. 470–497.

BIBLIOGRAPHY 76

[38] Jonathan Huang et al. “Syntactic and Functional Variability of a Million Code Submis-
sions in a Machine Learning MOOC”. In: AIED 2013 Workshops Proceedings Volume.
2013, p. 25.

[39] Matthew C. Jadud and Brian Dorn. “Aggregate Compilation Behavior: Findings and
Implications from 27,698 Users”. In: Proceedings of the Eleventh Annual International
Conference on International Computing Education Research. ICER ’15. Omaha, Ne-
braska, USA: ACM, 2015, pp. 131–139.

[40] W. L. Johnson and E. Soloway. “PROUST: Knowledge-Based Program Understand-
ing”. In: IEEE Transactions on Software Engineering SE-11.3 (1985), pp. 267–275.

[41] W Lewis Johnson, Stephen Draper, and Elliot Soloway. Classifying Bugs is a Tricky
Business. Tech. rep. DTIC Document, 1983.

[42] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. “Towards a Systematic Review of
Automated Feedback Generation for Programming Exercises”. In: Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education.
ITiCSE ’16. Arequipa, Peru: ACM, 2016, pp. 41–46.

[43] Khan Academy Coach Demo. http://www.khanacademy.org/coach/demo.

[44] René F Kizilcec, Chris Piech, and Emily Schneider. “Deconstructing disengagement:
analyzing learner subpopulations in massive open online courses”. In: Proceedings of
the Third International Conference on Learning Analytics and Knowledge. ACM. 2013,
pp. 170–179.

[45] Amruth N Kumar. “Explanation of step-by-step execution as feedback for problems
on program analysis, and its generation in model-based problem-solving tutors”. In:
Technology, Instruction, Cognition and Learning (TICL) Journal 4.1 (2006).

[46] Antti-Jussi Lakanen, Vesa Lappalainen, and Ville Isomöttönen. “Revisiting Rainfall to
Explore Exam Questions and Performance on CS1”. In: Proceedings of the 15th Koli
Calling Conference on Computing Education Research. Koli Calling ’15. Koli, Finland:
ACM, 2015, pp. 40–49.

[47] Nguyen-Thinh Le et al. “A review of AI-supported tutoring approaches for learn-
ing programming”. In: Advanced Computational Methods for Knowledge Engineering.
Springer, 2013, pp. 267–279.

[48] Marcia C. Linn, Douglas Clark, and James D. Slotta. “WISE design for knowledge
integration”. In: Science Education 87.4 (2003), pp. 517–538.

[49] Raymond Lister, Colin Fidge, and Donna Teague. “Further Evidence of a Relationship
Between Explaining, Tracing and Writing Skills in Introductory Programming”. In:
Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technol-
ogy in Computer Science Education. ITiCSE ’09. Paris, France: ACM, 2009, pp. 161–
165.

BIBLIOGRAPHY 77

[50] Raymond Lister et al. “Not Seeing the Forest for the Trees: Novice Programmers and
the SOLO Taxonomy”. In: SIGCSE Bulletin 38.3 (June 2006), pp. 118–122.

[51] Mike Lopez et al. “Relationships Between Reading, Tracing and Writing Skills in In-
troductory Programming”. In: Proceedings of the Fourth International Workshop on
Computing Education Research. ICER ’08. Sydney, Australia: ACM, 2008, pp. 101–
112.

[52] B Jean Mason and Roger H Bruning. “Providing feedback in computer-based instruc-
tion: What the research tells us”. In: CLASS Research Report. Vol. 9. University of
Nebraska-Lincoln: Center for Instructional Innovation, 2001.

[53] Riccardo Mazza and Vania Dimitrova. “CourseVis: A graphical student monitoring tool
for supporting instructors in web-based distance courses”. In: International Journal of
Human-Computer Studies 65.2 (2007), pp. 125–139.

[54] Riccardo Mazza and Vania Dimitrova. “CourseVis: Externalising student information
to facilitate instructors in distance learning”. In: Proceedings of the International con-
ference in Artificial Intelligence in Education. Sydney, Australia, 2003, pp. 117–129.

[55] Riccardo Mazza and Vania Dimitrova. “Informing the design of a course data visu-
alisator: an empirical study”. In: 5th International Conference on New Educational
Environments (ICNEE 2003). 2003, pp. 215–220.

[56] Riccardo Mazza and Christian Milani. “Exploring usage analysis in learning systems:
Gaining insights from visualisations”. In: AIED05 workshop on Usage analysis in learn-
ing systems. Citeseer. 2005, pp. 65–72.

[57] Matthew B Miles, A Michael Huberman, and Johnny Saldana. Qualitative data anal-
ysis: A methods sourcebook. SAGE Publications, Incorporated, 2013.

[58] Craig S. Miller and Amber Settle. “Some Trouble with Transparency: An Analysis
of Student Errors with Object-oriented Python”. In: Proceedings of the 2016 ACM
Conference on International Computing Education Research. ICER ’16. Melbourne,
VIC, Australia: ACM, 2016, pp. 133–141.

[59] Edna H Mory. “Feedback research revisited”. In: Handbook of research on educational
communications and technology 2 (2004), pp. 745–783.

[60] National Center for Education Statistics. What are the current trends in the teaching
profession? https://nces.ed.gov/fastfacts/display.asp?id=28. Accessed:
2017-05-05. 2017.

[61] National Center for Education Statistics. What are the most popular majors for postsec-
ondary students? https://nces.ed.gov/fastfacts/display.asp?id=37. Accessed:
2017-05-05. 2017.

[62] Abelardo Pardo et al. “Generating Actionable Predictive Models of Academic Perfor-
mance”. In: Proceedings of the Sixth International Conference on Learning Analytics
& Knowledge. LAK ’16. Edinburgh, United Kingdom: ACM, 2016, pp. 474–478.

BIBLIOGRAPHY 78

[63] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. “Replication, Validation,
and Use of a Language Independent CS1 Knowledge Assessment”. In: Proceedings of
the 2016 ACM Conference on International Computing Education Research. ICER ’16.
Melbourne, VIC, Australia: ACM, 2016, pp. 93–101.

[64] Michael C Rodriguez. “Three options are optimal for multiple-choice items: A meta-
analysis of 80 years of research”. In: Educational Measurement: Issues and Practice
24.2 (2005), pp. 3–13.

[65] Cristóbal Romero and Sebastián Ventura. “Educational data mining: a review of the
state of the art”. In: Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on 40.6 (2010), pp. 601–618.

[66] Otto Seppälä et al. “Do We Know How Difficult the Rainfall Problem is?” In: Pro-
ceedings of the 15th Koli Calling Conference on Computing Education Research. Koli
Calling ’15. Koli, Finland: ACM, 2015, pp. 87–96.

[67] Valerie J. Shute. “Focus on Formative Feedback”. In: Review of Educational Research
78.1 (2008), pp. 153–189.

[68] Simon and Susan Snowdon. “Multiple-choice vs Free-text Code-explaining Examina-
tion Questions”. In: Proceedings of the 14th Koli Calling International Conference on
Computing Education Research. Koli Calling ’14. Koli, Finland: ACM, 2014, pp. 91–97.

[69] Arjun Singh et al. “Gradescope: A Fast, Flexible, and Fair System for Scalable Assess-
ment of Handwritten Work”. In: Proceedings of the Fourth (2017) ACM Conference on
Learning @ Scale. L@S ’17. Cambridge, Massachusetts, USA: ACM, 2017, pp. 81–88.

[70] Teemu Sirkiä and Juha Sorva. “Exploring Programming Misconceptions: An Analysis
of Student Mistakes in Visual Program Simulation Exercises”. In: Proceedings of the
12th Koli Calling International Conference on Computing Education Research. Koli
Calling ’12. Koli, Finland: ACM, 2012, pp. 19–28.

[71] Aaron J. Smith et al. “My Digital Hand: A Tool for Scaling Up One-to-One Peer
Teaching in Support of Computer Science Learning”. In: Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’17. Seattle,
Washington, USA: ACM, 2017, pp. 549–554.

[72] Juha Sorva. “Notional Machines and Introductory Programming Education”. In: Trans.
Comput. Educ. 13.2 (July 2013), 8:1–8:31.

[73] Juha Sorva et al. Visual program simulation in introductory programming education.
Aalto University, 2012.

[74] James C. Spohrer and Elliot Soloway. “Simulating Student Programmers”. In: Pro-
ceedings of the 11th International Joint Conference on Artificial Intelligence - Volume
1. IJCAI’89. Detroit, Michigan: Morgan Kaufmann Publishers Inc., 1989, pp. 543–549.

BIBLIOGRAPHY 79

[75] Kristin Stephens-Martinez, Marti A. Hearst, and Armando Fox. “Monitoring MOOCs:
Which Information Sources Do Instructors Value?” In: Proceedings of the First ACM
Conference on Learning @ Scale Conference. L@S ’14. Atlanta, Georgia, USA: ACM,
2014, pp. 79–88.

[76] Kristin Stephens-Martinez et al. “Taking Advantage of Scale by Analyzing Frequent
Constructed-Response, Code Tracing Wrong Answers”. In: Proceedings of the 2017
ACM Conference on International Computing Education Research. ICER ’17. Tacoma,
Washington, USA: ACM, 2017, pp. 56–64.

[77] Charissa Tansomboon et al. “Designing Automated Guidance to Promote Productive
Revision of Science Explanations”. In: International Journal of Artificial Intelligence
in Education 27.4 (2017), pp. 729–757.

[78] Kikumi K Tatsuoka. “A probabilistic model for diagnosing misconceptions by the pat-
tern classification approach”. In: Journal of Educational and Behavioral Statistics 10.1
(1985), pp. 55–73.

[79] Kikumi K Tatsuoka. “Rule space: An approach for dealing with misconceptions based
on item response theory”. In: Journal of educational measurement 20.4 (1983), pp. 345–
354.

[80] Allison Elliott Tew and Mark Guzdial. “The FCS1: A Language Independent Assess-
ment of CS1 Knowledge”. In: Proceedings of the 42Nd ACM Technical Symposium on
Computer Science Education. SIGCSE ’11. Dallas, TX, USA: ACM, 2011, pp. 111–116.

[81] Anne Venables, Grace Tan, and Raymond Lister. “A Closer Look at Tracing, Ex-
plaining and Code Writing Skills in the Novice Programmer”. In: Proceedings of the
Fifth International Workshop on Computing Education Research Workshop. ICER ’09.
Berkeley, CA, USA: ACM, 2009, pp. 117–128.

[82] Jonathan M. Vitale, Elizabeth McBride, and Marcia C. Linn. “Distinguishing complex
ideas about climate change: knowledge integration vs. specific guidance”. In: Interna-
tional Journal of Science Education 38.9 (2016), pp. 1548–1569.

[83] Yutao Wang and Neil Heffernan. “Extending knowledge tracing to allow partial credit:
Using continuous versus binary nodes”. In: International Conference on Artificial In-
telligence in Education. AIED ’13. Springer. 2013, pp. 181–188.

[84] Fionán Peter Williams and Owen Conlan. “Visualizing narrative structures and learn-
ing style information in personalized E-Learning systems”. In: Advanced Learning Tech-
nologies, 2007. ICALT 2007. Seventh IEEE International Conference on. IEEE. 2007,
pp. 872–876.

[85] Tianyi Wu, Yuguo Chen, and Jiawei Han. “Re-examination of interestingness measures
in pattern mining: a unified framework”. In: Data Mining and Knowledge Discovery
21.3 (2010), pp. 371–397.

BIBLIOGRAPHY 80

[86] Ying Xie and Fangyun Yang. “Solving College Calculus Problems: A Study of Two
Types of Instructors Feedback”. In: Proceedings of E-Learn: World Conference on E-
Learning in Corporate, Government, Healthcare, and Higher Education 2010. Ed. by
Jaime Sanchez and Ke Zhang. Orlando, Florida, USA: Association for the Advance-
ment of Computing in Education (AACE), 2010, pp. 1293–1299.

[87] Claus Zinn and Oliver Scheuer. “Getting to know your student in distance learning
contexts”. In: Innovative Approaches for Learning and Knowledge Sharing. Springer,
2006, pp. 437–451.

81

Appendix A

Constructed-Response, Code-Tracing
Wrong Answer Tags

To be concrete, we wrote all descriptions to start with one of two skeleton wordings. Hence,
the descriptions here follow one of two formats.

Topic: Conceptually Correct
Description Code Example (Python)
1 The correct answer with a typo >>> True or False

Treu

Topic: Assignment
Description Code Example (Python)
2 This wrong answer demonstrates the student

assigns the name of function to the variable
instead of the return value of call expression.

>>> f = lambda x: x

>>> a = f(5)

>>> a

f

3 This wrong answer demonstrates the student
confuses assignment = with ==.

>>> a == 3

Nothing

>>> a = 3

True

4 This wrong answer demonstrates the student
believes when assigning a value to a name it
also displays something on the terminal.

>>> a = 1

a

>>> b = 2

2

5 This wrong answer demonstrates the student
believes the variable’s value is the string of
the variable name.

>>> a = 1

>>> a

’a’ # Or a

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 82

Topic: Boolean
Description Code Example (Python)
6 This wrong answer demonstrates the student

evaluates until the end of the boolean expres-
sion without short circuiting.

>>> ’’ and False

False # instead of ’’

7 This wrong answer demonstrates the stu-
dent believes and boolean expressions short-
circuit at the first truth-y value.

>>> True and 13

True

8 This wrong answer demonstrates the student
believes evaluating boolean expressions only
returns True or False, not the evaluated value
itself.

>>> 0 or False or 2 or 1 / 0

True # correct: 2

9 This wrong answer demonstrates the student
believes that the value False is represented
by the integer 0 and the value True is repre-
sented by 1.

>>> 0 or True

1 #instead of True

10 This wrong answer demonstrates the student
believes that a falsy value in Python is actu-
ally truthy.

>>> False or 0

True #instead of 0

student perceived 0 as True

11 This wrong answer demonstrates the student
does not recognize that a boolean expression
is evaluated to a True/False value. Instead
the entire code snippet verbatim is used and
“passed around” as opposed to the value it
evaluates to.

not 0 is passed around as not 0 in-
stead of its evaluation True.

12 This wrong answer demonstrates the student
believes a nonzero integer is a falsey value.

15 is a False value

13 This wrong answer demonstrates the student
believes when using boolean not, it could re-
turn an error.

>>> not 23

Error

14 This wrong answer demonstrates the student
believes not does nothing.

>>> not ’’

’’

15 This wrong answer demonstrates the student
evaluates until the end of the boolean expres-
sion without short circuiting.

>>> True or 1

1 #instead of True

16 This wrong answer demonstrates the student
believes or boolean expressions short circuit
at the first falsey value.

>>> True or False or True

False

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 83

Topic: Boolean (cont.)
Description Code Example (Python)
17 This wrong answer demonstrates the student

believes and is or and or is and.
>>> 0 and 1 and True

1

>>> True or False

False

18 This wrong answer demonstrates the student
believes boolean operators are evaluated left
to right despite boolean operators having
precedence. This is a misunderstanding of
order of operations.

>>> False and True or True

False

Precedence says: (F and T) or T

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 84

Topic: Built-Ins
Description Code Example (Python)
19 This wrong answer demonstrates the student

believes when checking for equality Python
returns something that is not True/False.

>>> def g(x):

... print(’foo’)

... while x > 0:

... print(’bar’)

... yield x

... x -= 1

... print(’baz’)

>>> a = g(3)

>>> a == iter(a)

Generator

20 This wrong answer demonstrates the student
believes the in keyword returns something
that is not boolean. For example: Error or
default value (0 or None) if the item is not
there, value if it is there, or number of times
it appears. If this is using in with a Dictio-
nary, use Tag 26 instead.

>>> 4 in {1,2,3,4}

4

>>> 4 in {1,2,3}

0 # Or Error or None

>>> 4 in [4,4]

2

21 This wrong answer demonstrates the student
believes the Python is keyword returns any-
thing but boolean values. For example: Er-
ror or default value (0, None, ()), or some
answer that makes logical sense within the
context such as if is returns true it is the
value both sides of the is evaluate to.

>>> l = Link(1, Link(2))

>>> l.rest.rest is Link.empty

0 or Error or () or Empty

22 This wrong answer demonstrates the student
believes return does not terminate the func-
tion. Often the wrong answer looks like they
are trying to convey multiple lines in one line.

>>> def f(x):

... return x

... print ’foo’

>>> f(10)

10 \n foo

23 This wrong answer demonstrates the stu-
dent believes the function sorted returns a
boolean of whether the input argument is
sorted or not.

>>> sorted(set([4,2,6,7,7])

False

>>> sorted(set([4,6,7,7])

True

24 This wrong answer demonstrates the student
believes the function sorted returns some-
thing that conveys it is a list with generally
the right answer, however it is not in the for-
mat of a list. Often seen as a set or maybe a
string of strings.

>>> sorted(set([4,2,6,7,7])

{2,4,6,7}

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 85

Topic: Dictionary
Description Code Example (Python)
25 This wrong answer demonstrates the student

believes a dictionary can have duplicate keys.
>>> d = {’b’:5, ’a’:10, ’c’:1}

>>> d[’a’] = 20

>>> sorted(list(d.keys()))

[’a’, ’a’, ’b’, ’c’]

26 This wrong answer demonstrates the student
believes something weird happens when us-
ing in for membership in a dictionary, e.g.
Error is thrown or it is added to the dictio-
nary and a default value is returned (.e.g.
None, 0) if something cannot be found.

>>> d = {’b’:5, ’a’:10, ’c’:1}

>>> ’d’ in d

Error # or 0, None

27 This wrong answer demonstrates the student
believes a dictionary is only the pairs it was
originally initialized as.

>>> d = {’b’:5, ’a’:10}

>>> d[’c’] = 1

>>> sorted(list(d.keys()))

[’a’, ’b’]

28 This wrong answer demonstrates the student
believes when calling d.keys() it returns the
dictionary.

>>> d = {’b’:5, ’a’:10, ’c’:1}

>>> sorted(list(d.keys()))

{’a’:10, ’b’:5, ’c’:1}

29 This wrong answer demonstrates the student
believes when calling d.keys() it returns the
first key alphabetically.

>>> d = {’b’:5, ’a’:10, ’c’:1}

>>> sorted(list(d.keys()))

’a’

30 This wrong answer demonstrates the student
believes when calling d.keys() it returns the
last key alphabetically.

>>> d = {’b’:5, ’a’:10, ’c’:1}

>>> sorted(list(d.keys()))

’c’

31 This wrong answer demonstrates the stu-
dent believes when calling d.keys() it returns
d.values() instead.

>>> d = {’a’:10, ’b’:5, ’c’:1}

>>> sorted(list(d.keys()))

[1, 5, 10]

32 This wrong answer demonstrates the student
believes calling len on a dictionary is not
counting the number of items. Instead it
could: (1) return a random value in the dic-
tionary, (2) be the sum of all the values, (3)
Error.

>>> d = {’a’:10, ’b’:5, ’c’:1}

>>> len(d)

10 # or 5, 1, 10, 16, or Error

33 This wrong answer demonstrates the stu-
dent believes when reassigning a dictionar-
ies’s key’s value to another key’s value, the
key name is set to the other key’s name
rather than that key’s value. This could hap-
pen in either direction of setting the key.

>>> d = {’b’:5, ’a’:10, ’c’:1}

>>> d[’a’] = d[’b’]

>>> sorted(list(d.keys()))

[’a’, ’a’, ’c’]

or [’b’, ’b’, ’c’]

or [’a’, ’c’]

or [’b’, ’c’]

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 86

Topic: Environment
Description Code Example (Python)
34 This wrong answer demonstrates the student

believes the value of a variable is not the
value from the environment at that time, but
the value it is set at initialization or else-
where in the program. This is a subset of
Tag 165 and therefore Tag 165 should not
appear with this tag.

>>> def f(x):

... x += 1

... def g(y):

... return x + y

... return g

>>> f(2)(2)

3

Topic: Error
Description Code Example (Python)
35 This wrong answer demonstrates the student

thinks the error raised is the return value.
>>> [x for x in iter(i)]

[1, 2, ..., StopIteration]

36 This wrong answer demonstrates the student
believes a for loop (or a list comprehension)
does not catch a StopIteration error.

>>> [x for x in iter(i)]

StopIteration

37 This wrong answer demonstrates the student
believes dividing by zero does not cause an
error.

>>> True and 1 / 0 and True

True

Topic: Evaluation
Description Code Example (Python)
38 This wrong answer demonstrates the

student does not recognize that you
evaluate an expression to obtain its
value. Instead the entire code snippet
verbatim is saved and “passed around”
as opposed to the value it evaluates to.

>>> a = 1 + 2

>>> a

1 + 2

39 This wrong answer demonstrates the
student believes when a variable’s value
cannot be found it is the “empty” ver-
sion of that type so as not to error out

>>> a = 2

>>> c = a + b

2 # believe b == 0

40 This wrong answer demonstrates the
student believes function call expres-
sions are called left to right, however
there is precedence by parenthesis or
nested calls. This is a misunderstand-
ing of order of operations.

>>> t = lambda f: lambda x: f(f(f(x)))

>>> s = lambda x: x + 1

>>> t(s)(0)

Function

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 87

Topic: Function
Description Code Example (Python)
41 This wrong answer demonstrates the student

believes a composed function is a single call
of that function.

f(f(f(f(x)))) is just f(x)

42 This wrong answer demonstrates the student
believes a function call cannot have zero ar-
guments and would error.

>>> f = lambda : 3

>>> f()

Error

43 This wrong answer demonstrates the student
believes when displaying a function’s value it
displays nothing at all.

>>> f = lambda x : x

>>> f

Nothing

44 This wrong answer demonstrates the student
believes when the name of a function is in a
line of code (but not being called) the func-
tion is being called.

>>> f = lambda x: 1

>>> f

1

45 This wrong answer demonstrates the student
believes when a function call does not have
the right number of arguments it will still
work, when it is supposed to error out.

>>> f = lambda x: print(x)

>>> f()

#no error, something happens

46 This wrong answer demonstrates the student
believes a series of evaluations for the op-
erator of a function call is not possible and
causes an error.

>>> f=lambda: lambda: 2

>>> f()()

Error

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 88

Topic: Generator
Description Code Example (Python)
47 This wrong answer demonstrates the student

believes when calling the iter function on a
generator it runs the beginning of the func-
tion, most likely to the first yield, without
necessarily yielding it.

>>> def g(x):

... print(’foo’)

... while x > 0:

... print(’bar’)

... yield x

... x -= 1

... print(’baz’)

>>> iter(g(3))

foo

48 This wrong answer demonstrates the student
believes that in a generator rather than going
to the top of the loop after reaching the end,
Python goes to the top of the function.

>>> import g from Tag_47

>>> a = g(3)

>>> next(a)

foo

bar

3

>>> next(a)

baz

foo

49 This wrong answer demonstrates the student
is being sloppy in not incrementing the value
being yielded and therefore subsequent calls
to next yield the first value. This means it
does not get the Tag 164 tag, even if that is
why the student is getting that answer.

>>> import g from Tag_47

>>> a = g(3)

>>> next(a)

foo

bar

3

>>> next(a)

baz

bar

3

50 This wrong answer demonstrates the stu-
dent thinks the subsequent call to the next

method acts like the first call to __next__

and thus starts over.

>>> import g from Tag_47

>>> a = g(3)

>>> next(a)

foo

bar

3

>>> next(a)

foo

51 This wrong answer demonstrates the student
thinks the implicit generator’s __iter__

method does not return self.

>>> import g from Tag_47

>>> a = g(3)

>>> a == iter(a)

False

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 89

Topic: Generator (cont.)
Description Code Example (Python)
52 This wrong answer demonstrates the stu-

dent confused the order of when variables are
changed and when they are yielded.

>>> import g from Tag_47

>>> a = g(3)

>>> next(a)

foo

bar

2

53 This wrong answer demonstrates the student
thinks yield does not return anything and
subsequently halts the execution of the pro-
gram.

>>> import g from Tag_47

>>> a = g(3)

>>> next(a)

foo

bar

baz

54 This wrong answer demonstrates the student
thinks yield acts like continue instead of a
return.

>>> import g from Tag_47

>>> a = g(3)

>>> next(a)

foo

bar

bar

55 This wrong answer demonstrates the student
believes that for a subsequent call to next,
instead of starting where the yield left off,
it starts at the beginning of the loop body.

>>> import g from Tag_47

>>> a = g(3)

>>> next(a)

foo

bar

3

>>> next(a)

bar

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 90

Topic: If
Description Code Example (Python)
56 This wrong answer demonstrates the student

believes if..elif or if..else is actually
two if clauses. Often the wrong answer looks
like they are trying to convey multiple lines
in one line.

>>> def f(x): = 5

... if x <= 5:

... print(’one’)

... elif x > 3:

... print(’two’)

>>> f(5)

one \n two

57 This wrong answer demonstrates the student
believes two if’s next to each other are ac-
tually an if..else clause. When the sys-
tem asks for another line they do not be-
lieve will show, the student usually submits
“Nothing.”

>>> def f(x): = 5

... if x <= 5:

... print(’one’)

... if x > 3:

... print(’two’)

>>> f(5)

one

Nothing

58 This wrong answer demonstrates the student
is being sloppy in checking if conditions, of-
ten missing the true condition.

>>> def func(x):

... if x == ’x’:

... return ’huh’

... if x == x:

... return ’well’

>>> func(’s’)

’huh’

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 91

Topic: Iterator
Description Code Example (Python)
59 This wrong answer demonstrates the student

believes that the iter function must return
a new instance of the iterator.

>>> odds = OddNaturalsIterator()

>>> odd_iter1 = iter(odds)

>>> odd_iter2 = iter(odds)

>>> next(odd_iter1)

1

>>> next(odd_iter1)

3

>>> next(odd_iter1)

5

>>> next(odd_iter2)

1 # Should be 7

60 This wrong answer demonstrates the student
believes that the iter function must return
self.

>>> evens = EvenNaturalsIterator()

>>> even_iter1 = iter(evens)

>>> even_iter2 = iter(evens)

>>> next(even_iter1)

0

>>> next(even_iter1)

2

>>> next(even_iter1)

4

>>> next(even_iter2)

6 # or 4 or 8; should be 0

61 This wrong answer demonstrates the student
believes when calling the next function again
on the same iterator instance, the value re-
turned is the first value of the iterator.

>>> class MyIter:

... def __init__(self, n):

... self.n, self.i = n, 0

... def __next__(self):

... self.i+=1

... return self.i

... def __iter__(self):

... return self

>>> i = MyIter(5)

>>> next(i)

1

>>> next(i)

1 # instead of 2

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 92

Topic: Iterator (cont.)
Description Code Example (Python)
62 This wrong answer demonstrates the student

is confusing the order of when variables are
changed and when it is returned. Often using
the initial value in their answer, when the
initial value is not actually part of it.

>>> class MyIter:

... def __init__(self, n):

... self.n, self.i = n, 0

... def __next__(self):

... if self.i >= self.n:

... raise StopIteration

... self.i+=1

... return self.i

... def __iter__(self):

... return self

>>> i = MyIter(2)

>>> [x for x in i]

[0, 1, 2] # correct: [1, 2]

63 This wrong answer demonstrates the stu-
dent is confusing the order of when variables
are changed and when the StopIteration is
raised. Often missing the last value in their
answer.

>>> class MyIter:

... def __init__(self, n):

... self.n, self.i = n, 0

... def __next__(self):

... if self.i >= self.n:

... raise StopIteration

... self.i+=1

... return self.i

... def __iter__(self):

... return self

>>> i = MyIter(2)

>>> [x for x in i]

[1] # correct: [1, 2]

64 This wrong answer demonstrates the student
thinks once StopIteration is raised once,
when __next__ is called again, the iterator
starts over (for iterators).

>>> class MyIter:

... def __init__(self, n):

... self.n, self.i = n, 0

... def __next__(self):

... if self.i >= self.n:

... raise StopIteration

... self.i+=1

... return self.i

... def __iter__(self):

... return self

>>> i = MyIter(2)

>>> [x for x in i]

[1, 2]

>>> next(i)

1 # correct: Error

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 93

Topic: Iterator (cont.)
Description Code Example (Python)
65 This wrong answer demonstrates the stu-

dent thinks once StopIteration is hit once,
when __next__ is called again, the iter-
ator resumes on the line of code after
StopIteration.

>>> class MyIter:

... def __init__(self, n):

... self.n, self.i = n, 0

... def __next__(self):

... if self.i >= self.n:

... raise StopIteration

... self.i+=1

... return self.i

... def __iter__(self):

... return self

>>> i = MyIter(2)

>>> [x for x in i]

[1, 2]

>>> next(i)

3 # correct: Error

66 This wrong answer demonstrates the student
thinks that the __next__ method needs to
have a StopIteration.

>>> class MyIter:

... def __init__(self, n):

... self.i = n

... def __next__(self):

... self.i+=1

... return self.i

... def __iter__(self):

... return self

>>> i = MyIter(2)

>>> [x for x in i]

Error

67 This wrong answer demonstrates the student
thinks after a StopIteration, the next call
returns the most recent value.

>>> class MyIter:

... def __init__(self, n):

... self.n, self.i = n, 0

... def __next__(self):

... if self.i >= self.n:

... raise StopIteration

... self.i+=1

... return self.i

... def __iter__(self):

... return self

>>> i = MyIter(2)

>>> [x for x in i]

[1, 2]

>>> next(i)

2 # correct: Error

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 94

Topic: Lambda
Description Code Example (Python)
68 This wrong answer demonstrates the

student believes when a lambda is
called it is not actually called/callable.

>>> f = lambda x: x

>>> f(5)

‘Nothing‘ or ‘Function‘

69 This wrong answer demonstrates the
student does not recognize the lambda
function can be self-referring without
errors.

foo = lambda x: foo, foo returns
Function.

70 This wrong answer demonstrates the
student believes that when defining a
lambda, as much of the return value is
evaluated as possible in that moment
of defining it.

>>> x = 1

>>> f = lambda y: x + y

Nothing # correct

>>> x = 2

>>> f(2)

3

71 This wrong answer demonstrates the
student is being sloppy about identify-
ing the portion of the lambda function
that is the return value.

>>> g = lambda x: lambda y: x + 3

>>> g(2)

5 #instead of Function

>>> c = lambda x: lambda: print(’123’)

>>> c(88)

123 #instead of Function

72 This wrong answer demonstrates the
student believes a lambda needs the
keyword return in it for the lambda
to return anything. Therefore they be-
lieve the lambda returns nothing.

>>> f = lambda: 3

>>> f()

Nothing

73 This wrong answer demonstrates the
student believes a lambda needs to have
at least one parameter when defined or
it will error out.

>>> lambda: 5

Error

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 95

Topic: Link
Description Code Example (Python)
74 This wrong answer demonstrates the student

believes when accessing an attribute it re-
turns some kind of Link accessing code

>>> l = Link(1, Link(2, Link(3)))

>>> l.rest.rest.first

l.rest.first

75 This wrong answer demonstrates the student
believes that the .rest of an empty linked
list is also Link.empty.

>>> l = Link(1, Link(2))

>>> l.rest.rest.rest.rest

Link.empty

76 This wrong answer demonstrates the student
believes when returning the value of first

for a link it is returned as a link object even
though it is only a value.

>>> l = Link(1, Link(2))

>>> l.first

Link(1)

77 This wrong answer demonstrates the student
believes a link list is only what it was origi-
nally initialized as.

>>> l = Link(1, Link(2))

>>> l.first = 5

>>> print_link(l)

<1 2>

78 This wrong answer demonstrates the student
believes that linked lists cannot link back to
themselves, so if a line of code does this, it is
as if that line was not executed.

>>> l = Link(1, Link(2, Link(3)))

>>> l.rest = l

>>> l.rest.rest.first

2

79 This wrong answer demonstrates the stu-
dent is being sloppy about evaluating the
first/rest attributes of a link or a sequence
of them.

>>> l = Link(1, Link(2, Link(3)))

>>> l.rest.rest.first

2

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 96

Topic: List
Description Code Example (Python)
80 This wrong answer is wrong because the stu-

dent believes when casting something to a
list it is not a list.

>>> d = {’a’:10, ’b’:5, ’c’:1}

>>> sorted(list(d.keys()))

{1, 5, 10}

81 This wrong answer demonstrates the student
believes a list comprehension does not return
a list, but just a value.

>>> [x for x in range(3)]

0

82 This wrong answer demonstrates the student
believes that in a list comprehension only the
first value is returned.

>>> [x for x in range(3)]

[0]

83 This wrong answer demonstrates the student
believes that in a list comprehension only the
last value is returned.

>>> [x for x in range(3)]

[2]

84 This wrong answer demonstrates the student
believes that when concatenating two lists
together they are zipped and some function
is used to map the pairs into a single value.

>>> [1, 2, 3] + [4, 5, 6]

[14, 25, 36]

85 This wrong answer is wrong because the list
is missing brackets.

>>> [x for x in range(3)]

0, 1, 2

86 This wrong answer demonstrates the student
thinks a list doesn’t need commas.

>>> [x for x in range(3)]

[0 1 2]

87 This wrong answer demonstrates the student
expects that when indexing an element in a
list the value is returned as a list.

>>> lst = [0, 2, 4, 8]

>>> lst[2]

[4]

88 This wrong answer demonstrates the student
believes list indexing starts at 1.

>>> lst = [0, 2, 4, 8]

>>> lst[2]

[2]

89 This wrong answer demonstrates the student
believes that to index into a list commas are
used.

lst[1, 2] instead of lst[1][2]

90 This wrong answer demonstrates the stu-
dent believes that for list indexing instead
of stacking brackets the brackets are nested.

lst[1[2]] instead of lst[1][2]

91 This wrong answer demonstrates the student
believes that nested lists are read as if they
are flat.

>>> l = [1, [2, 3], [4], 5, 6]

>>> l[2]

3

92 This wrong answer demonstrates the student
believes the Python list syntax is the same as
Scheme’s (characteristics such as parentheses
and no spaces).

>>> [x for x in range(3)]

(0 1 2)

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 97

Topic: List (cont.)
Description Code Example (Python)
93 This wrong answer demonstrates the student

believes that the output of range is not 0...n-
1, rather one of the following 0...n, 1...n,
1...n-1.

>>> range(3)

[1, 2, 3]

94 This wrong answer demonstrates the student
is being sloppy about reading the map ex-
pression inside the list comprehension.

>>> [x*x for x in range(5)]

[0, 1, 4, 27, 256]

95 This wrong answer is wrong because the stu-
dent is being sloppy in how they are sorting
the values.

>>> l = [’b’,’a’,’c’]

>>> sorted(l)

[’a’,’c’,’b’]

96 This wrong answer demonstrates the student
thinks a tuple, represented using parenthe-
ses, is the same as a list, represented using
brackets.

>>> (1,1) == [1, 1]

True

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 98

Topic: Math
Description Code Example (Python)
97 This wrong answer demonstrates the student

believes that floor dividing means dividing
twice.

>>> 8//2

2

>>> 2//2

0.5

98 This wrong answer demonstrates the student
believes that negative numbers cannot hap-
pen.

>>> i = 1

>>> while i >= 0:

>>> i -= 1

>>> print(i)

1

0

0

99 This wrong answer demonstrates the student
believes that floor dividing a number with
itself acts differently than normal.

2//2 = 0.5 or 2//2 = 2

100 This wrong answer demonstrates the student
is being sloppy in arithmetic. They are flip-
ping + with - or / with * or any other com-
bination of operators.

>>> 4 * 5 + 2

40 # correct: 22

101 This wrong answer demonstrates the student
is being sloppy about incrementing by the
value intended, often incrementing by 1 in-
stead.

>>> x = 1

>>> x += 2

>>> x

2

102 This wrong answer demonstrates the student
believes that floor div is true div and vice
versa.

>>> 8//3

2.666666666

>>> 8/3

2

103 This wrong answer demonstrates the student
has a different belief about the order of prece-
dence of arithmetic operators.

>>> 1 + 13/2 * 2 * 4/3

13 # correct: 17

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 99

Topic: OOP
Description Code Example (Python)
104 This wrong answer demonstrates the student

believes when accessing an attribute displays
the entire object.

>>> l = Link(1, Link(2))

>>> l.first

Link(1, Link(2))

105 This wrong answer demonstrates the student
believes an attribute must be predefined in
the class definition or __init__ function.

>>> class Foo:

... a = 2

>>> class Bar(Foo):

... b = 3

... def baz(self):

... return self.b

>>> f = Foo()

>>> f.c = 7

>>> f.c

Error # Should be 7

106 This wrong answer demonstrates despite spe-
cific modification to instance attributes, the
student still references the original class in-
stance code and believes the instance has not
been modified.

>>> class Foo:

... a = 2

>>> class Bar(Foo):

... b = 3

... def baz(self):

... return self.b

>>> f = Foo()

>>> f.a = 7

>>> f.a

2 # Should be 7

107 This wrong answer demonstrates the student
is being sloppy about what class the current
object is an instance of and is instead think-
ing it is a related one (base class or subclass).

>>> class Foo:

... a = 2

>>> class Bar(Foo):

... b = 3

... def baz(self):

... return self.b

>>> f = Foo()

>>> Bar.baz(f)

3

108 This wrong answer demonstrates the student
has merged the instance and class attribute
with the same name and just grabs the value
from one randomly.

>>> class Foo:

... a = 2

>>> class Bar(Foo):

... a = 3

... def baz(self):

... return self.b

>>> f = Foo()

>>> f.a

3 # Should be 2

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 100

Topic: OOP (cont.)
Description Code Example (Python)
109 This wrong answer demonstrates the student

believes calls to methods do not require being
bound to a particular instance of the class,
but can instead be invoked with the class it-
self without passing through the instance as
a parameter.

Car.name() instead of
Car.name(johns_car)

110 This wrong answer demonstrates the student
does not recognize that a call to a function
that does not exist in the local class is refer-
enced from a inherited parent class.

>>> class Foo:

... a = 2

... def baz(self):

... return self.b

>>> class Bar(Foo):

... b = 3

>>> br = Bar()

>>> br.baz()

2 # Should be 3

111 This wrong answer demonstrates the student
believes if an attribute cannot be found an er-
ror occurs rather than going to the local class
and then up to the inherited parent class.

>>> class Foo:

... a = 2

>>> class Bar(Foo):

... b = 3

... def baz(self):

... return self.b

>>> br = Bar()

>>> br.a

Error # Should be 2

112 This wrong answer demonstrates the student
is being sloppy by incorrectly evaluating at-
tributes of an object, but NOT the object
(that is Tag 165). Not applicable if answer
is Error, answer has to be reasonable within
current context. Also consider Tag 160.

>>> class Foo:

... def __init__(self, a):

... self.a = a

>>> f = Foo("hello world")

>>> f.a

"hello"

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 101

Topic: Print
Description Code Example (Python)
113 This wrong answer demonstrates the student

believes that printing causes a function to
also stop executing, kind of like a return.

>>> def func():

... print(’hello’)

... print(’123’)

>>> func()

hello

114 This wrong answer demonstrates the stu-
dent believes when printing None something
strange must happen rather than normal
code execution.

>>> c = print("Hello")

>>> print(c)

Nothing # Should be None

115 This wrong answer demonstrates the stu-
dent believes a print returns the value it just
printed.

>>> def func():

... print(’hello’)

>>> x = func()

>>> print(x)

hello

116 This wrong answer demonstrates the student
thinks printing a string keeps the quotes.

>>> print(’hello’)

’hello’

117 This wrong answer demonstrates the student
is being sloppy by skipping one or more print
statements.

>>> n = 3

>>> while n >= 0:

... n -= 1

... print(n)

-1

Topic: PyInterpreter
Description Code Example (Python)
118 This wrong answer demonstrates the student

believes that the return value is not displayed
in the Python interpreter.

>>> def f(x):

... return x

>>> f(x)

Nothing

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 102

Topic: Scheme
Description Code Example (Python)
119 This wrong answer demonstrates the student

believes arguments do not need to be sepa-
rated by a space and are separated in some
other way.

Student believes (cons 1, 2, 3) is
valid

120 This wrong answer demonstrates the student
believes one of multiple options, but it results
in him using the variable’s name as the vari-
able’s value. (1) the value of the variable is
its name (2) when seeing a variable, the stu-
dent doesn’t evaluate it for some reason.

scm> (define a 1)

a

scm> (cons a nil)

(a)

121 This wrong answer demonstrates the student
believes a cdr of a list is a element of the list
it should return.

scm> (cdr ’(2 1))

1

scm> (cdr ’(1 2 3))

2

scm> (cdr ’(1 (2 3)))

(2 3) ; Correct: ((2 3))

122 This wrong answer demonstrates the student
believes when calling cdr on a list it returns
a subset of the cdr of the list, potentially
flattening the list if it is a list of lists.

scm> (cdr ’(1 2 3))

(2)

scm> (cdr ’(1 (2 3))

(2) ; Correct: ((2 3))

123 This wrong answer demonstrates the student
believes a cons that would form a malformed
list returns a list.

scm> (cons 1 2)

(1 2)

124 This wrong answer demonstrates the student
believes cons-ing with a list returns a mal-
formed list.

scm> (cons 2 (1))

(2 . 1)

125 This wrong answer demonstrates the student
believes cons-ing with a list returns a nested
list.

scm> (cons 2 (1))

(2 (1))

126 This wrong answer demonstrates the stu-
dent believes Scheme returns either booleans,
empty strings, or return values for when
something is first defined in scheme.

scm> (define a 4)

4 ; Correct: a

127 This wrong answer demonstrates the student
believes when a variable is defined and val-
ues in it need to be evaluated, the student
thinks the variable’s value is a function not
an evaluated value.

With (define y (- 1 2)) student
thinks y’s value is Function.

Table A.1: The Scheme tags are in one table because this work’s primary focus was Python.

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 103

Topic: Scheme (cont.)
Description Code Example (Python)
128 This wrong answer demonstrates the student

believes the nil value in a Scheme list is writ-
ten out as nil rather than blank.

scm> (cons 1 nil)

(1 nil) or (1 . nil)

; Correct: (1)

129 This wrong answer demonstrates the student
executes the procedure elements from right
to left.

scm> (- 10 4)

-6

130 This wrong answer demonstrates the student
believes nil is the same as #f.

scm> (and #t nil)

false ; should be ()

131 This wrong answer demonstrates the student
believes the list procedure behaves like cons,
where the arguments create a pair.

scm> (list 1 (cons 2 3))

(1 . (2 . 3))

; Correct: (1 (2 . 3))

132 This wrong answer demonstrates the student
is not reducing the displayed output of a list
to its fully reduced version, where for each
’.’ next to a ’(’ the ’.’ and pair of ’()’ are
removed.

scm> ’(1 . ((2 . ()) . (3 . ())))

(1 . ((2) 3))

; Correct: (1 (2) 3)

133 This wrong answer demonstrates the student
believes the outer parentheses for a list are
not needed.

scm> (cons 1 (cons 3 ()))

1 3 ; Correct: (1 3)

134 This wrong answer demonstrates the student
believes list elements do not need to be sep-
arated by a space and are separated in some
other way, such as commas or semicolons.

scm> ’(1 2 3) -> (1,2,3)

135 This wrong answer demonstrates the student
is being sloppy when indexing into a list and
is one element to the left or right.

scm> (car (cdr ’(1 2 3 4))

3 ; OR 1

136 This wrong answer demonstrates the student
believes a list is displayed as a nested list.
This only applies if it is clear the student
knows the data structure (like for the ques-
tion that gives them a picture).

’(1 1) is given as a picture
data structure and student submits
(1 (1))

137 This wrong answer demonstrates the student
believes when seeing a dot with a parenthesis,
they remove one but not the other.

scm> ’(1 . (2))

(1 (2)) OR (1 . 2)

138 This wrong answer demonstrates the student
believes when returning a list it is returned
as code that when evaluated is that list. This
does not mean just the variable, use ScmTag
5 instead.

scm> (cdr ’(1 2 3))

(list 2 3)

Table A.2: The Scheme tags are in one table because this work’s primary focus was Python.

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 104

Topic: Scheme (cont.)
Description Code Example (Python)
139 This wrong answer is wrong because the stu-

dent believes that a malformed list does not
need spaces around the dot ’.’

scm> (cons 1 2)

(1.2)

140 This wrong answer demonstrates the student
believes a malformed list is a normal list, usu-
ally by the evidence of what they think a list
looks like when displaying it.

scm> (cons 1 (cons 2 3))

(1 2 3)

scm> (cdr ’(1 . 3))

(3)

141 This wrong answer demonstrates the student
believes there can only be two arguments in
a prefix notation with + * - /.

scm> (+ 1 2 3)

Error

142 This wrong answer demonstrates the stu-
dent believes when creating a list with a
list(s)/pair(s) in it, the result is a flattened
list with malformed pairs potentially not
having parentheses around them.

scm> (list 1 (cons 2 3))

(1 2 . 3)

scm> ’(1 (2 3) (3 4))

(1 2 3 3 4)

scm> ’(1 (2 . 3) 4)

(1 2 . 3 4)

scm> ’(1 (1 (2 . 3) 3))

(1 1 (2 . 3) 3)

143 This wrong answer demonstrates the student
believes nil is not a list and therefore be-
lieves it is a viable answer by itself.

scm> (list? nil)

False ; Correct: True

scm> (cdr (cons 1 nil))

nil ; Correct: ()

144 This wrong answer demonstrates the student
believes that quoting code evaluates the con-
tent of that quoted list.

scm> (cons 1 ’(list 2 3))

(1 . (2 . 3)) or (1 . ((2 3)))

; Correct: (1 list 2 3)

145 This wrong answer demonstrates the student
believes shorthand quoting for a list results
in a something other than a Scheme list or a
malformed scheme list.

scm> ’(1)

1

146 This wrong answer demonstrates the student
is making a mistake in translating a quoted
list to the underlying data structure. Poten-
tially also they could be making a mistkae in
translating from the structure to the output,
but it is not clear.

scm> ’(2 . 3)

(2 . (3))

147 This wrong answer demonstrates the stu-
dent believes quoting is no different than the
value.

scm> (define a 1)

a

scm> (define b ’a)

1

148 This wrong answer demonstrates the student
believes a nested list with a single item in it
is just the inner list.

((1)) becomes (1)

Table A.3: The Scheme tags are in one table because this work’s primary focus was Python.

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 105

Topic: Scheme (cont.)
Description Code Example (Python)
149 This wrong answer demonstrates the student

is swapping the implementation of car and
cdr.

scm> (car ’(1 2)) -> (2) OR

scm> (cdr ’(1 2)) -> 1

150 This wrong answer is wrong because the stu-
dent is being sloppy in how they display the
scheme list in that they are missing or adding
one to three of the space or paren characters
inappropriately.

scm> (cons 1 (cons 2 3))

(1 (2 . 3))

; Correct with typo ans:

; (1 2. 3) or (1 2 . 3

scm> (cons (cons 1 ()) (cons 2

... (cons 3 ())))

(1 (2 3))

; Correct: ((1) (2 3))

; if answer was ((1 (2 3)) gets

; correct category

scm> (cons 1 (cons 2 (cons 3

... ())))

(1 (2 3))

Table A.4: The Scheme tags are in one table because this work’s primary focus was Python.

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 106

Topic: Set
Description Code Example (Python)
151 This wrong answer demonstrates the student

believes using & on two or more sets raises an
error.

>>> {1,2,3} & {2,3,4}

Error

152 This wrong answer demonstrates the student
believes the | operates like a diff.

>>> {1,2,3} | {2,3,4}

{1}

153 This wrong answer demonstrates the student
believes that | is XOR.

>>> {1,2,3} | {2,3,4}

{1,4}

154 This wrong answer demonstrates the student
believes the intersect function or the & of
two sets is actually unioning them.

>>> {1,2,3}.intersect({2,3,4})

{1,2,3,4}

155 This wrong answer demonstrates the student
believes that duplicate elements are possible
in sets.

>>> s = set([1,1,2])

>>> len(s)

3

>>> s = set([1])

>>> s.add(1)

>>> s.remove(1)

>>> 1 in s

True

156 This wrong answer demonstrates the student
believes a difference - operation between two
or more sets is not itself, such as xor, Error,
union, or intersect.

>>> {1,2,3} - {2,3,4}

{1,4}

or Error or {1,2,3,4} or {2,3}

157 This wrong answer demonstrates the student
is being sloppy in evaluating the outcome of
an intersection operation. In that they have
up to 2 extra elements or are missing no more
than 2 element. If more than that do not
apply this tag.

>>> {1,2,3}.intersect({2,3,4})

{1,2,3}

>>> {1,2,3}.intersect({2,3,4})

{2}

>>> {1,2,3}.intersect({3,4,5,6})

{1,2,3,4} # Do NOT use this tag

158 This wrong answer demonstrates the student
believes a union function call or the | oper-
ator on a set with another set as the input
for the function is an intersection operation
between the two sets.

>>> {1,2,3}.union({2,3,4})

{2,3}

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 107

Topic: Sloppy
Description Code Example (Python)
159 The wrong answer demonstrates the student

is swapping when a variable is incremented
versus checked in a condition.

>>> x = -9

>>> y = -12

>>> while x:

... if y:

... print(y)

... y += 3

... x += 3

-9; Should be -12, -9, -6

160 This wrong answer demonstrates the student
is being sloppy where they are using code
that has not yet been executed to answer the
current prompt.

>>> class Foo:

... def __init__(self):

... self.a = 5

>>> f = Foo()

>>> f.a

10

Sees future code and

uses that value

>>> f.a = 10

161 This wrong answer demonstrates the stu-
dent is being sloppy about taking into ac-
count all of the code lines for the entire case.
Commonly this is because there are multi-
ple prompts/questions in the case and they
forget of prior code that affects current code.

>>> d = {’a’:0}

>>> len(d)

1

>>> d[’b’] = 1

>>> len(d)

1

Ignores the prior prompt’s code

162 This wrong answer demonstrates the student
is being sloppy in checking loop condition,
often off by one.

>>> x = -9

>>> y = -12

>>> while x:

... if y:

... print(y)

... y += 3

... x += 3

Infinite Loop

Should be -12, -9, -6

163 This wrong answer demonstrates the stu-
dent is not reading the instructions prop-
erly. Specifically “Error” when there is an
error, “Nothing” for no output, “Function”
for printing out functions.

>>> f = lambda: "hello"

>>> f

<function <lambda> at 0x000>

correct: Function

APPENDIX A. CONSTRUCTED-RESPONSE, CODE-TRACING WRONG ANSWER
TAGS 108

Topic: Sloppy (cont.)
Description Code Example (Python)
164 This wrong answer demonstrates the student

is being sloppy by skipping a line of code.
>>> n = 3

>>> while n >= 0:

... n -= 1

... print(n)

3

165 This wrong answer demonstrates the student
is being sloppy in evaluating the value for a
variable.

>>> a = 1

>>> b = 2

>>> a

2

Topic: String
Description Code Example (Python)
166 This wrong answer demonstrates the student

believes None in concatenation with another
string results in just the other string (like an
identity property).

>>> None + ’Whoo’

’Whoo’

167 This wrong answer demonstrates the student
does not include quotes for a string object.

>>> f = lambda: "hello"

>>> f()

hello # correct: ’hello’

109

Appendix B

Reteaching Hints

Tag: 1
Concept: Conceptually Correct

Typo?

——
Tags: 2, 3, 4, 5
Concept: Assignment

An assignment statement first evaluates the expression on the right side of the

|=| operator to get a value. This value is then bound to the name on the left

side of the |=| in the first frame in the current environment. For example,

while |a = 0| displays nothing, |a == 0| displays |True|. Notice that Python

distinguishes assignment |=| from equality comparison |==|.

——
Tags: 3, 19
Concept: Equality with ==

In Python, we use |==| to compare the equality of two values. For example if

|foo = 0|, |foo == 0| checks to see if |foo| has the value |0| which would

result in a boolean evaluation.

——
Tags: 5, 39
Concept: Variable evaluation

A variable is evaluated to the value it was assigned. If it was not assigned

prior to being evaluated a NameError is raised.

APPENDIX B. RETEACHING HINTS 110

——
Tags: 6, 7, 8, 17
Concept: Boolean and

|and| either returns the first false value evaluated in an expression or the

last value of that expression if all the operands are true.

——
Tags: 6, 7, 15, 16, 17
Concept: Shortcircuit

In short-circuiting Python only cares about false-y values while evaluating an

|and| expression, and truth-y values while evaluating an |or| expression. A

|FALSE-Y_VAL and VAL| will always evaluate to |False|, and a

|TRUTH-Y_VAL or VAL| will always evaluate to |True| so as soon as one of

these values is known, the other subexpressions is superfluous, and therefore

Python does NOT evaluate them.

——
Tags: 8, 15, 16, 17
Concept: Boolean or

|or| either returns the first true value evaluated in an expression or the last

value of that expression if all the operands are false.

——
Tag: 9
Concept: Boolean representation

In Python there are boolean primitives |True| and |False| as opposed to prior

languages that use |1| and |0|.

——
Tags: 10, 12
Concept: Boolean falsey values

In Python, there are several values that are considered false-y such that in

their interactions with other values in a boolean expression, they functionally

evaluate as False. These values are: |False|, |None|, |0| (all other integers

are True), |\’\’|, |()|, |[]|, and |{}| (or any other empty Data Structure).

APPENDIX B. RETEACHING HINTS 111

——
Tag: 11
Concept: Boolean evaluation

When evaluating a boolean expression, it is completely evaluated such that there

are no boolean operators left. For example, |False and not True or 3| becomes

|False and False or 3| then |False or 3| and finally |3|.

——
Tags: 13, 14
Concept: Boolean not

The boolean |not| operator is used to negate the boolean value of its operand.

It can also be paired with operators that perform comparisons and return boolean

values, such as the keyword |is|. Note that when using |not| in conjunction with

a value, the resulting evaluation will always be |True| or |False|. For example,

|not 0| is |True|, |0 is not 1| is |True|.

——
Tag: 18
Concept: Boolean order of operations

In Python, just like with arithmetic operators, there is a specific order of

operations for boolean operators. Evaluating from left to right, expressions

within parentheses have the highest priority, followed by |not|, then |and|,

and False or finally by |or|. For example, |True and False or not False| is

evaluated as |(True and False) or (not False))| which is |True|.

——
Tag: 20
Concept: in operator

A usage of the |in| keyword in Python is to check for item membership in a

collection. This always returns a boolean value. For example, |4 in {2, 3, 4}|

will return |True| and |’hello’ in [4, ’hi’]| will return |False|.

——
Tag: 21
Concept: is operator

The |is| operator returns a boolean of whether two values are exactly the same

object instance. For example, if |a = [1, 2]|, |b = a|, and |c = [1, 2]|,

|a is c| will return |False|, while |a is b| will return |True|.

APPENDIX B. RETEACHING HINTS 112

——
Tags: 23, 24
Concept: sorted function

The |sorted()| function takes in a collection (e.g. list, set, dictionary) and

returns a list of those items in alphanumeric order. For example,

|sorted({3, 9, 55, 28, -19})| returns the list |[-19, 3, 9, 28, 55]|.

——
Tag: 25
Concept: Dictionary

Dictionaries are unordered sets of key-value pairs that map the key in the pair

to its value. Since the only way to get a value is with its key, if there are

two key-value pairs with the same key, it is not clear which value should be

returned. Therefore dictionary’s keys must be unique.

——
Tags: 25, 27, 33
Concept: Setting a value in a dictionary

A dictionary maps keys to values. So if a key is not in the dictionary, a new

entry is created for that key-value pair. If a key is present, its value is

updated. For example, with |d = {’John’: ’Google’}|, when |d[’foo’] = ’bar’| and

|d[’John’] = ’UCB’| are executed, |d|’s value is |{’foo’: ’bar’, ’John’: UCB’}|.

——
Tag: 26
Concept: in with dictionaries

Python uses |in| to check whether a dictionary has a key and returns a boolean

value. For example, with |d = {’a’: 1, ’b’: 2, ’c’: 3}|, the expression

|’a’ in d| returns |True|, while |’z’ in d| returns |False|.

——
Tags: 28, 29, 30, 31
Concept: Dictionary keys function

The |keys()| function returns a sequence of a dictionary’s keys. The call

|sorted(list(DICTIONARY.keys()))| first creates a list from the sequence of keys

and then sorts it. For example, with |d = {’c’: 1, ’a’: 2, ’b’: 3}|,

|sorted(list(d.keys()))| returns |[’a’,’b’,’c’]|.

APPENDIX B. RETEACHING HINTS 113

——
Tag: 32
Concept: Dictionary with len function

The length of a dictionary is the number of entries in that dictionary. For

example, |{’one’: 1, 2: two, ’three’: ’[1, 2]’}| has a length of 3.

——
Tag: 33
Concept: Getting a value from a dictionary

Python uses a key to get the value from a dictionary. For example, with

|d = {’a’: 1, ’b’: 2, ’c’: 3}|, in the call |d[’b’]|, the key |’b’| gets the

corresponding value |2|.

——
Tag: 34
Concept: Parent frame following for scope

To find the value bound to a variable name |x| Python first looks in the current

local frame environment. If no |x| exists, Python checks next in the parent

frame, the next parent’s frame, so forth until it reaches the Global Frame. If

|x| is not defined in the Global Frame, a NameError is raised.

——
Tag: 36
Concept: StopIteration error handling and use

The |StopIteration| error is raised when the iterator has no more return values.

A Python |for| loop automatically catches this error. However, if a |for| loop

is not used, an explicit |try...except| is needed.

——
Tag: 37
Concept: Divide by zero erroring

When dividing by zero, Python raises an error, displays the error, and stops

running the program. This is because dividing by zero mathematically leads to an

undefined value. So Python cannot compute the value needed to complete its task.

APPENDIX B. RETEACHING HINTS 114

——
Tag: 38
Concept: Expression evaluation

An expression is a combination of values, variables, operators, and functions

that a programming language interprets and evaluates to the simplest value.

Expression are evaluated upon hitting \"Enter\" or \"Return\". Primitive values

(e.g. |1| or |\"hello\"|) evaluate to themselves, while expressions are evaluated

based on the values, variables, operators, and functions it is made up of.

——
Tags: 40, 41, 42, 44, 45
Concept: Function call evaluation

A function is structured as |OPERATOR(OPERANDS)|, where OPERANDS is 0 or more

OPERANDs. To evaluate the function: (1) evaluate the OPERATOR, (2) evaluate each

OPERAND, and (3) apply the OPERATOR to the OPERANDs.

For example, in |pow(a, 2)|, where |a = 3|, (1) |pow| is evaluated to get the

function value, (2) |a| evaluates to |3| and |2| is |2|, (3) apply the value of

|pow| to the two arguments |3| and |2| to get the value |9|.

——
Tag: 41
Concept: Composed function evaluation

A function is structured as |OPERATOR(OPERANDS)|. Each OPERAND in OPERANDS must

be fully evaluated before applying the OPERATOR to them. When the OPERAND is

another function call, this is referred to as function composition. For example,

to evaluate |fizz(foo(bar(1)))| we first evaluate |bar(1)| as an argument for

|foo(...)| which in turn is evaluated to become the argument for |fizz(...)|.

——
Tag: 43
Concept: Displaying a function

A function in Python can be passed around as a value without executing the body.

When the Python interpreter displays a function it uses the format:

|<function FUNCTION_NAME at LOCATION>|. Additionally, Lambda functions use the

format |<function <lambda> at LOCATION>|.

APPENDIX B. RETEACHING HINTS 115

——
Tag: 46
Concept: Stacked function call evaluation

When a function returns another function, a quick way to call the returned

function is to use another set of parentheses. These parentheses have the

returned function’s arguments. For example, |foo(23)(1, 4)| where |(1, 4)| is

passed through as the arguments for the function that |foo()| returns.

——
Tags: 47, 51
Concept: iterfunction for generators

Like all iterators, generator objects have an |__iter__| method. This implicit

method always returns the current generator, a.k.a. |self|.

——
Tags: 48, 52, 53, 54, 55
Concept: yield keyword for generator

A generator is a function that uses |yield|. Upon reaching a |yield| during an

iteration, Python returns the evaluation of the statement and stores the state

of the current frame for when the generator needs to return the next value.

——
Tags: 49, 50
Concept: next function for generators

A generator remembers its environment frame and its previous location. The

initial values are an empty frame and the \"previous location\" is the function

beginning. When |next| is called, it loads the saved frame, starts evaluating

from its previous location, and runs until it hits the next |yield|.

——
Tags: 49, 52, 56, 57, 58, 62, 63, 71, 94, 95, 100, 101, 107, 112, 117, 135, 150, 157, 159, 160,
161, 162, 163, 164, 165
Concept: Sloppy

Try:

1) Reading the code or instructions more carefully,

2) Writing out the variable’s values, or

3) Drawing an environment diagram.

APPENDIX B. RETEACHING HINTS 116

——
Tags: 56, 57
Concept: If condictionals

A conditional statement consists of a series of headers and suites: a required

|if| clause, an optional sequence of |elif| clauses, and finally an optional

|else| clause. To execute a conditional clause, each clause is considered in

order: (1) Evaluate the header’s expression. (2) If it is a true value, execute

the suite. Then, skip over all subsequent clauses in the conditional statement.

(3) If the |else| clause is reached, only its suite is executed.

——
Tags: 59, 60
Concept: Iterator iter function

The Python iterator interface requires an |__iter__| method. This must return an

iterable object, usually the current object |self|. |__iter__| is special and is

called with |iter(ITER)|.

——
Tags: 61, 62, 63, 66, 67
Concept: Iterator next function

The Python iterator interface requires a |__next__| method. It returns the

subsequent element of the sequence by executing the code in the method.

|__next__| is special and is called with |next(ITER)|.

——
Tags: 64, 65
Concept: Calling next after a StopIteration was raised

Once a StopIteration is raised, each subsequent call to the |__next__| method

conventionally raises a StopIteration again (technically it depends on the code

in the |__next__| method).

——
Tags: 68, 69, 71, 72
Concept: Evaluating a lambda call

A lambda is defined as follows: |lambda PARAMETERS: RETURN_VAL|. When a lambda

is called, the arguments are assigned to the PARAMETERS in the lambda’s frame.

Then the RETURN_VAL is evaluated and returned.

APPENDIX B. RETEACHING HINTS 117

——
Tags: 70, 73
Concept: Defining a lambda function

A lambda is defined as follows: |lambda PARAMETERS: RETURN_VAL|. PARAMETERS is 0

or more parameters and RETURN_VAL is the expression that is evaluated and

returned when the lambda is called.

——
Tags: 74, 78
Concept: Retreiving a link’s first and rest attributes

The |first| attribute of a |Link| object has the link’s value, while the |rest|

attribute is a pointer to the next link or |Link.empty|. Keep in mind the value

of any attribute can be anything (even a pointer to itself).

——
Tag: 75
Concept: Link.empty meaning

|Link.empty| represents an empty linked list and is used to mark the end a list.

Thus it does not have any attributes of a link object. For example, if

|l = Link(1, Link(2))| then |l.rest.rest == Link.empty| is true.

——
Tags: 76, 79
Concept: Defining a link

A linked list is made up of Link objects that each have two attributes, |first|

and |rest|. |first| contains the element inside the Link, while |rest| refers to

the next Link object in the list.

——
Tags: 76, 104, 106, 111
Concept: OOP instance attributes

The value of an attribute is based on the current environment, first looking in

the instance, then the instance’s class. To access an attribute, Python uses the

notation |OBJECT.ATTRIBUTE|.

APPENDIX B. RETEACHING HINTS 118

——
Tag: 77
Concept: Setting the values in a link

A Link object is mutable, therefore the instance attributes |first| and |rest|

can be modified. For example, if |l = Link(1)|, with |l.first = 9| and

|l.rest = Link(3)|, |l| becomes |Link(9, Link(3))|.

——
Tags: 81, 82, 83, 94
Concept: List comprehension evaluation

The list comprehension format is |[EXPRESSION for ELEMENT in SEQUENCE if

CONDITIONAL]|, where the |if CONDITIONAL| is optional. For every ELEMENT in

SEQUENCE where CONDITIONAL is true, evaluate EXPRESSION with ELEMENT and append

the result to a list. Return the list when through with SEQUENCE.

——
Tag: 84
Concept: List concatenation

Concatenation is creating a new list from multiple lists, ordering the elements

by the order of the lists that were summed together. For example: |[3, ’two’,

1] + [] + [4, 3]| results in |[3, ’two’, 1, 4, 3]|

——
Tags: 85, 86, 92, 96
Concept: Python list syntax

A list in Python is contained within square brackets and separated by commas.

The elements in the list can be be of any type, including sub-lists. For

example: |[1, 2.0, [3, 4], ’5’, True]|.

——
Tags: 87, 88, 89, 90, 91
Concept: List indexing

When indexing into a list, we start counting at 0. This means to get the first

element we must use the index zero. For example, in this list |x = [1, 2, 3]| to

get |1| use |x[0]|. Notice that the value returned is only the element at that

index.

APPENDIX B. RETEACHING HINTS 119

——
Tag: 93
Concept: Range function

In Python, |range(START, STOP)| is used as a means of creating a sequence of

integers that begins on START and ends right before STOP, incrementing by 1. If

a START value is not given, START is set to 0. For example, |range(-1, 3)|

iterates through -1, 0, 1, and 2, while |range(3)| iterates through 0, 1, and 2.

——
Tags: 97, 99, 102
Concept: Floating vs floor division

Python has two division operators: |/| and |//|. |/| is traditional division, it

results in a decimal value. For example, |8 / 4| evaluates to |2.0|. |//| floors

the result down to an integer. Also, if one of the operands is negative, the

result is rounded *towards* negative infinity. For example, |5 // 4| evaluates

to |1| and |-5 // 4| evaluates to |-2|.

——
Tag: 98
Concept: Negative number representation

In Python negative numbers are represented with a negative sign in front of the

number. Therefore the negative value of |10| is represented as |-10|.

——
Tag: 103
Concept: Arithmetric order of operations

In Mathematics, and thus in Python, arithmetic evaluation follows the order of

operations commonly known as PEMDAS, which stands for "Parentheses, Exponents,

Multiplication/Division, and Addition/Subtraction" and is evaluated from left

to right. For example the expression |4 + 2 - 4 * 3 / 4 + 2**2| will be

evaluated as |((4 + 2) - ((4 * 3) / 4)) + (2**2)| or |7.0|.

——
Tag: 105
Concept: Defining class attributes

A class attribute can be defined either within the |def| of the class or by

assigning a value to a new attribute with dot notation after the creation of

the class, |CLASS.ATTR = VAL|.

APPENDIX B. RETEACHING HINTS 120

——
Tag: 108
Concept: Class versus instance attribute evaluation

When Python is evaluating an attribute it follows this chain (instance -> class

-> base-class -> ...). Attribute evaluation can start at either the instance or

the class, whichever is on the left side of the dot notation. Python returns the

attribute value the first time it finds it in the chain.

——
Tag: 109
Concept: OOP instance methods

When a class instance method is called on an instance, |INST.METHOD(...)|,

Python fills in |self| with a pointer to that instance. When it is called using

the class, |CLASS.METHOD(INST, ...)|, |self| must be provided.

——
Tag: 110
Concept: OOP attribute inheritance

If a subclass does not explicitly have a method or attribute, Python follows the

chain of base classes until it is found or otherwise raises an error.

——
Tag: 113
Concept: Printing versus returning

When a function has a |print()| the arguments are always displayed in the

interpreter, but Python continues executing the rest of the function. This

contrasts with a |return| statement which ends the function and potentially

displays the return value, depending on how the function was called.

——
Tags: 113, 116
Concept: Print function

|print()| takes its arguments’ values and displays them separated by spaces.

Note that a string’s value is the text between the quotes, thus when printing

the quotes are not displayed. For example, printing the string \"Hello World\"

will result in the interpreter displaying Hello World (no quotes).

APPENDIX B. RETEACHING HINTS 121

——
Tag: 114
Concept: Printing None

Python will only display |None| when the |print()| displays it. This is because

the print function converts the value of its argument into a string and displays

the content of that string.

——
Tag: 115
Concept: Print function’s return value

The function |print()| implicitly returns the value of |None|. The Python

interpretor does not display |None| unless it is explicitly forced to do so.

——
Tag: 118
Concept: When the Python interpreter displays nothing

The Python interpreter evaluates an expression and displays its output

immediately. Evaluations that results in |None| and variable assignments do not

have an output, and thus for these statements nothing is displayed in the

interpreter.

——
Tag: 120
Concept: Scheme variable evaluation

In Scheme, a variable is evaluated to the value it was assigned using |define|.

If it was not assigned prior to being evaluated, an error is raised.

——
Tags: 120, 126, 127
Concept: Scheme output when a symbol is defined

|define| has two formats: |define (PROC_NAME PARAMETERS) PROC_BODY| and

|define VAR VAL|. The first creates a procedure called PROC_NAME that runs

PROC_BODY using PARAMETERS. The second assigns VAL to the name VAR. When a

procedure or variable is defined, its name is displayed in the interpreter.

APPENDIX B. RETEACHING HINTS 122

——
Tags: 121, 122, 149
Concept: Scheme cdr

|cdr| returns the second value of a pair. With a linked list, |cdr| returns a

pointer to the next pair but with a malformed list, |cdr| returns a value. For

example, |(cdr ’(1 2 3))| returns |(2 3)| and |(cdr ’(1 . 2))| returns |2|.

——
Tags: 123, 124, 125, 142
Concept: Scheme cons

|cons| takes two arguments to form a pair, like a link in link lists. Also like

link lists, conventionally the second value of the pair is another pair. If the

second value is not a list, a malformed list is created. For example:

scm> (cons 1 (cons 2 ())) +-------+ +-------+ | scm> (cons 1 2) +-------+

(1 2) | 1 | x -->| 2 | \ | | (1 . 2) | 1 | 2 |

+-------+ +-------+ | +-------+

——
Tags: 123, 140
Concept: Scheme malformed lists

A list is malformed if the second value of a pair is not another pair. A |.| is

used to separate the two values of the pair. For example, |(cons 1 (cons 2 3))|

evaluates to the malformed list |(1 (2 . 3))|.

——
Tags: 128, 132, 133, 136, 137, 138, 139, 150
Concept: Scheme list display

To display a list, surround each pair with |()| and separate its values with a

|.| surrounded by spaces. For each |.| immediately followed by a |(|, remove the

|.| and matching |()|. For example, |(cons 1 (cons (cons 2 3) (cons 4 ())))|

becomes |(1 . ((2 . 3) . (4 . ())))| and reduces to |(1 (2 . 3) 4)|.

——
Tags: 128, 143
Concept: How scheme empty lists are displayed

The empty list in Scheme, |()| or |nil|, denotes the end of a list, like Python

link lists. |null?| returns whether a value is the empty list. The empty list is

considered a list, but not a pair so using |car| or |cdr| on it causes an error.

APPENDIX B. RETEACHING HINTS 123

——
Tags: 131, 134, 142, 148
Concept: Scheme list function

|list| takes zero or more arguments and returns a list with each argument as an

element in the list. For example:

scm> (list 1 2 3) +-------+ +-------+ +-------+

(1 2 3) | 1 | x -->| 2 | x -->| 3 | \ |

+-------+ +-------+ +-------+

——
Tags: 142, 144, 145, 146
Concept: Scheme using quote to create lists

|quote| or |’| acts as shorthand to create a list with the list display syntax.

Anything in the list becomes symbolic and is therefore not evaluated. For

example, |(quote (1 2 3))| creates |(1 2 3)| and |’(1 . 2)| creates |(1 . 2)|,

while |’(cons 1 2)| creates |(cons 1 2)| where |cons| here is the symbol |cons|.

——
Tag: 149
Concept: Scheme car

|car| returns the first value of a pair from either a regular or malformed list.

This value can be of any type. For example, |(car ’(1 2 3))| returns |1|,

|(car ’(1 . 2))| returns |1|, and |(car ’((1 2) 3))| returns |(1 2)|.

——
Tags: 151, 152, 153, 154, 157
Concept: Intersect function

The intersection operator (shorthand |&|) is used to determine the common

elements in 2 or more sets. For example, where |s = {1, 3, 5}|, |t = {1, 4, 9}|,

and |u = {1, 2}|, |s.intersection(t, u)| will return |{1}|.

——
Tag: 155
Concept: Sets

A set is a collection of elements that are enclosed by curly braces |{}| and

adhere to certain properties: elements cannot have duplicates and elements are

unordered. For example, |{1, 2, 1, ’hello’, 4}| results in |{4, 1, ’hello’, 2}|.

APPENDIX B. RETEACHING HINTS 124

——
Tag: 156
Concept: Set differencing

The difference operation (shorthand |-|) is used to determine elements that are

in the first set but not in the other set. For example, where |s = {1, 3, 5}|

and |t = {1, 2}|, |s.difference(t)| will return |{3, 5}|.

——
Tag: 158
Concept: Union function

The union operation (shorthand |||) is used to create a set of all the elements

present in 2 or more sets. For example, where |s = {1, 3, 5}|, |t = {1, 4, 9}|,

and |u = {1, 2}|, |s.union(t, u)| will return {1, 2, 3, 4, 5, 9}.

——
Tag: 167
Concept: String syntax

In Python, a string is a series of characters. We declare something as a string

by surrounding it with either single |’’| or double quotes |\"\"|. We can

recognize strings in the Python interpreter by these quotes. For example: ’This

is a string’ and \"This string’s contents has an apostrophe\".

125

Appendix C

Knowledge Integration Hints

Tag: 1

Typo?

——
Tag: 2

Look closely at the assignment statement. What did the function call return?

——
Tag: 4

Should this assignment statement display a value?

——
Tag: 7

When does |and| short circuit?

——
Tag: 8

What are the values a boolean expression can evaluate to?

——
Tag: 9

How are boolean values represented in Python?

——
Tag: 10

What values are false-y in Python?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 126

——
Tags: 11, 38

Can’t the expression be evaluated more?

——
Tag: 12

Is a nonzero value truth-y or false-y?

——
Tag: 14

What about the |not|?

——
Tag: 15

What about short circuiting?

——
Tag: 16

When does |or| short circuit?

——
Tag: 17

Remember the difference between |and| and |or|.

——
Tag: 18

In what order are boolean expressions evaluated?

——
Tag: 19

What type does an |==| return?

——
Tag: 20

What does |in| do? What type would it return?

——
Tag: 21

What does |is| do? What type would it return?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 127

——
Tag: 24

What does |sorted()| return?

——
Tag: 25

Can dictionaries have duplicate keys. If so, how would you access the values?

——
Tag: 26

How does |in| work with dictionaries?

——
Tag: 27

Can dictionaries be updated?

——
Tag: 29

Remember what |keys()| returns?

——
Tag: 32

Remember what |len| does with a dictionary.

——
Tag: 33

Remember the steps to evaluate an assignment. What is the difference between

dictionary lookup and adding/updating a key-value pair?

——
Tag: 34

Double check the variable’s value for each frame?

——
Tag: 36

How do |for| loops handle StopIteration errors?

——
Tag: 37

Can Python divide by |0|?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 128

——
Tag: 39

If the value of a variable cannot be found, what happens?

——
Tag: 41

Be careful about what each function call receives as an argument, what each

function call returns, and in what order this process happens.

——
Tag: 42

Look carefully at the parameters for the function. What kind of arguments does

the function call need?

——
Tag: 42

Look carefully at the parameters for each function. What kind of arguments does

each function call need?

——
Tag: 43

Is the variable really bound to |None|?

——
Tag: 43

What does the interpreter display when a function is created?

——
Tag: 44

If f is a function, what is the difference between |f| and |f()|?

——
Tag: 46

What are the latter parentheses doing? Remember the steps to evaluate a

function call.

——
Tag: 47

What does a generator object’s |__iter__| function do?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 129

——
Tag: 48

Would Python go to the top of the function when it hits the end of a loop?

——
Tag: 49

Double check the generator’s state at this point?

——
Tag: 50

This is a subsequent call to |next|, so where should Python continue from in the

generator?

——
Tag: 52

Look closely at when the code increments versus yields in the generator.

——
Tag: 53

What happened to the |yield|? Remember what Python does with |yield|.

——
Tag: 56

Hmm... Are there more than just |if| clauses there?

——
Tag: 57

Hmm... Are there |elif| or |else| clauses here?

——
Tag: 58

Double check the if condition?

——
Tag: 59

Read |__iter__| carefully. What is it returning?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 130

——
Tag: 62

Look closely at when the code increments versus returns in the |__next__|

function.

——
Tag: 63

Look closely at when the code increments versus raises the StopIteration error.

——
Tags: 64, 61

What is the state of the iterator at this point? Specifically, what are the

values of its attributes when the |__next__| function is called?

——
Tag: 68

Isn’t this calling the returned function?

——
Tag: 68

What does this lambda function return when called?

——
Tag: 68

Isn’t this calling the function?

——
Tag: 68

Make sure to evaluate each function fully.

——
Tag: 70

Does defining a function evaluate it?

——
Tag: 72

Look more closely at the lambda’s return value.

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 131

——
Tag: 74

That output looks like it can be executed to get a value. What about answering

with a value instead?

——
Tag: 75

Double check |Link.empty|’s implementation, especially its attributes. Can it be

used like a |Link| instance?

——
Tag: 77

Double check if the object has changed since it was initialized?

——
Tag: 78

As the code executes, draw the box and pointer diagram and think about what are

valid |rest| values.

——
Tag: 81

Hmm...isn’t this a list comprehension? What is the type of its return value?

——
Tags: 82, 83

Is that the only value the list comprehension returns?

——
Tag: 84

Remember the result when concatenating lists together with |+|.

——
Tags: 85, 86

Is that a list? Python can’t tell that it is.

——
Tag: 88

What index is the first element of a list?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 132

——
Tag: 89

Remember how Python indexes into nested lists.

——
Tag: 90

When indexing into a nested list, where do the brackets go?

——
Tag: 91

How many elements are in that list? What type are they?

——
Tag: 93

Remember what the start and end values are for |range|, given its argument(s).

——
Tag: 95

Hmm... is that completely sorted alphanumerically?

——
Tag: 98

What about negative numbers?

——
Tag: 99

What is the difference between |\| and |\\|?

——
Tag: 100

Hmm... The math doesn’t seem to add up.

——
Tag: 101

Look more closely at the variable’s initial value and how it is being changed.

——
Tags: 106, 165

Double check the variable’s value?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 133

——
Tag: 107

Double check the instance’s class.

——
Tag: 108

Check whether the right attribute/method is being evaluated. Is that from the

instance or the class?

——
Tag: 109

What kind of method is this? How does Python handle calling a method with the

class on the dot’s left versus calling with the instance on the dot’s left?

——
Tag: 110

What happens when Python can’t find an attribute on a class?

——
Tag: 111

What happens when Python can’t find an attribute on an instance?

——
Tags: 112, 76

Double check the attribute’s value?

——
Tag: 113

What effect does |print()| have in a function?

——
Tag: 114

What is the difference between printing and displaying |None|?

——
Tag: 115

What is |print()|’s return value?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 134

——
Tags: 116, 167

Is this printing or returning the string?

——
Tag: 117

Hmm... Missed a |print()|?

——
Tag: 118

What about displaying the return value?

——
Tag: 120

Hmm... When the list was made, what were the variables bound to?

——
Tags: 120, 5

Hmm... What is the variable bound to?

——
Tag: 121

Is that the second value of the pair? Is it a value or a list?

——
Tag: 121

Try drawing out the box and pointer plot. What is the variable pointing to? What

would |cdr| return?

——
Tags: 123, 124

Remember how |cons| works. What does it do with its arguments and how should the

result be displayed?

——
Tag: 126

Remember what |define| returns.

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 135

——
Tag: 128

Recall what |nil| represents. How is it displayed?

——
Tag: 131

Remember how |list| works. What does it do with its arguments?

——
Tag: 131

Remember how |list| works. What does it do with its arguments and how should the

result be displayed?

——
Tags: 132, 150

Is that how Scheme would display the list? Recall the rule for displaying pairs.

——
Tag: 133

Is that a list? Scheme can’t tell that it is.

——
Tag: 135

Follow the |car|’s and |cdr|’s more carefully. Is that the correct element in

the list?

——
Tag: 137

Double check the list structure and if this list is displayed correctly.

——
Tag: 138

Hmm... That looks like code. Would the Scheme interpreter output code here?

——
Tag: 139

Is that a decimal or a malformed list?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 136

——
Tag: 142

Double check how that list was made and if this list is displayed correctly.

——
Tag: 144

Looks like there is a quote in there. What does that do?

——
Tags: 145, 146

Remember what quoting does with lists. Double check the list structure and how

to display it.

——
Tag: 148

Try drawing out the box and pointer plot and double check the exact structure of

the answer.

——
Tag: 149

Remember the difference between |car| and |cdr|.

——
Tag: 151

Double check how |&| works with sets.

——
Tag: 153

Double check how ||| works with sets.

——
Tag: 154

Remember the difference between intersect, union, and difference.

——
Tag: 155

Can a set have duplicates?

APPENDIX C. KNOWLEDGE INTEGRATION HINTS 137

——
Tag: 157

Double check the set intersection?

——
Tag: 160

When was the value set to that? Double check how far into the execution this is.

——
Tag: 161

Remember that prior questions may affect this one.

——
Tag: 162

When does the loop end?

——
Tag: 163

Double check the instructions?

——
Tag: 164

Hmm... Did you miss a line of code?

——
Tag: 167

How does Python know whether a value is an integer, variable, or string?

