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Abstract 

High-Q MEMS Capacitive-Gap Resonators for RF Channel Selection 

by 

Lingqi Wu 

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor Clark T.-C. Nguyen, Chair 

On chip capacitive-gap transduced micromechanical resonators constructed via MEMS 

technology have achieved very high Q’s at both VHF and UHF range, making them very 

attractive as on-chip frequency selecting elements for filters in wireless communication 

applications. Still, there are applications, such as software-defined cognitive radio, that 

demand even higher Q’s at RF to enable low-loss selection of single channels (rather than 

bands of them) to reduce the power consumption of succeeding electronic stages down to 

levels more appropriate for battery-powered handhelds. 

This dissertation focuses on improving the performance of MEMS capacitive-gap 

resonators to the degree which can be used to build the aforementioned RF channel-select 

filters. It first aims to enhance quality factor of MEMS capacitive-gap resonators by 

suppressing vibration energy loss via device substrate, which will lead to low insertion loss 

in RF channel selection. Then, in order to reduce an RF front-end filter’s bandwidth and 

termination resistance, it explores the method of building micromechanical resonator array 

composites that include large number of mechanically coupled resonators. Finally, the 

dissertation presents an experimentally demonstrated RF narrowband filter built upon 

mechanically coupled high-Q resonator array composites. 

Pursuant to further increasing Q at UHF for low insertion loss RF channel select 

application, the thesis develops an equivalent circuit model of a radial contour mode disk 

resonator that can analytically predict anchor loss dominated Q. Indicated by this improved 

equivalent circuit model, this work “hollows” the stems supporting all-polysilicon 

micromechanical disk resonators to effectively squeeze the energy conduit between the 

disk structure and the substrate, thereby suppressing energy loss and maximizing Q. By 

using the same fabrication process flow from the conventional all-polysilicon devices, the 

use of hollow stem support enhances Q with minimal increase in fabrication complexity. 

Measurements confirm Q enhancements of 2.6× for contour modes at 154 MHz and 2.9× 

for wine glass modes around 112 MHz over values previously achieved by full stem all-

polysilicon disk resonators with identical dimensions. Measured Q’s as high as 56,061 at 

329 MHz and 93,231 at 178 MHz for whispering gallery modes further attest to the efficacy 

of this approach. 

This dissertation also employs mechanically coupled disk array composites to increase 

resonator stiffness and lower motional resistance, which are both highly desired for RF 
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front-end channel-select filters. By using half-wavelength coupling beams and proper 

electrode phasing design, measurements confirm that a 215-MHz 50-resonator disk array 

achieves 46.5 ×  Q-normalized Rx reduction, with no observation of other undesired 

vibration modes. Notably, as indicated by the newly developed negative-capacitance 

equivalent circuit model, such array composite also shows enhanced frequency stability 

against dc-bias voltage fluctuations because of its large electrode-to-resonator overlap 

capacitance. 

Finally, the thesis demonstrates a 75MHz 3rd order 210 kHz bandwidth (0.3%) filter 

with a sharp roll-off of 20dB shape factor of 1.46. This filter employs three high-Q disk 

array composites connected by quarter-wavelength rotational coupling beams to achieve a 

weak coupling for narrowband selection. Each array composite itself includes seven 

flexural disk resonators coupled by strong quasi-zero length beams to enforce desired 

response. By using electromechanical analogies, the equivalent electrical circuit model of 

this filter can accurately capture the device’s response and provide insights for filter 

designers. 

Most importantly, the accuracy of the described equivalent circuit model in predicting 

quality factor, frequency stability, and filter response encourages the design of even more 

complex micromechanical circuits to come, for example, as would be needed in an all-

mechanical RF front-end. 
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 Introduction 

1.1. Motivation: RF Channel Select Filters 

Future mobile transceivers will need more flexibility to accommodate the fast evolving 

wireless communication protocols and the increasing need for cell phones that can truly 

operate in any places around the world. The desire for reconfigurable radios that are 

capable of adapting to any communication standards and environments at any location 

across the world has spurred great interest in the concept of a software defined radios (SDR) 

[1] [2], in which the frequencies and modulation schemes of any existing communication 

standard can be produced in real time by calling up a software. The goal of such a radio is 

to realize radio functions digitally much as possible, which requires the analog-to-digital 

converter (ADC) to be placed as close to the antenna as possible so that as much signal 

processing as possible could be done digitally. To achieve this, a RF front-end filter that 

can enable low-loss selection of single channels (rather than bands of them) is needed to 

reduce the power consumption of succeeding electronic stages down to levels more 

appropriate for battery powered handhelds. 

To better understand why SDR needs channel select filters, we need to know how a cell 

phone transceiver works. Figure 1.1 presents the block diagram of a traditional super-

heterodyne receiver with a band select RF front-end filter. There are two band pass filters 

in this block diagram that contribute to picking the low power desired signal out of the 

transmitted signals. As illustrated in Figure 1.2, the first RF pre-select filter at ultra-high 

frequency (UHF) range band selects the transmitted signal, which not only includes desired 

signal, but also very high power blockers with frequencies very close to the desired signal. 

While the second IF filter only selects the wanted signal, which reduces the input power 

 

Figure 1.1. Simplified block diagram of a super-heterodyne receiver 
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level and the dynamic range requirement of the following ADC. To build a SDR receiver, 

the ADC needs to move as close to the antenna as possible, e.g. directly after low noise 

amplifier (LNA). Such reconfiguration to SDR will need to operate ADC at a much higher 

frequency and with a very high dynamic range to handle the power of blockers, both of 

which could lead to high power consumption that is not suitable for portable handsets [3]. 

Here, the pre-select filter in the SDR block diagram plays a very important role in reducing 

power consumptions.  

As the bandwidth of the pre-select filter decreases, more interferers are suppressed, and 

the needed dynamic range of the LNA and ADC relaxes, leading to less power consumption. 

Therefore a RF front-end channel select filter that can take only the desired signal and 

reject all interferers is needed to implement the SDR with a reasonable power consumption. 

For GSM, where emissions are regulated so that each 200 kHz channel is sandwiched by 

empty spectrum in any given cell, a channel select filter with bandwidth of 600 kHz 

(0.067% percent bandwidth) would only select the desired signal and knock down the ADC 

power consumption to a reasonable 80mW.  While a 35 MHz bandwidth of a conventional 

pre-select filter will force an ADC operating at 3 GHz bandwidth to consume a highly 

impractical 45 W [3]. As shown in Figure 1.3, with RF channel select filter selecting only 

 

Figure 1.2: Illustration of: (a) frequency spectrum selected by a traditional RF band select filter. (b) down 

converted frequency spectrum selected by an IF channel select filter. 

 

Figure 1.3: (a) Illustration of frequency spectrum selected by a new RF channel select filter. (b) Simplified 

schematic of a possible software defined radio block diagram. 

 

Ultra High Frequency (UHF)

R
e

c
e

iv
e

d
 P

o
w

e
r

Intermediate Frequency (IF)

R
e

c
e

iv
e

d
 P

o
w

e
r

Present Band 
Select Filter

(a) (b)

Desired 
Signal

IF Filter

Desired 
Signal

ADC
Digital 

Baseband

Ultra High Frequency (UHF) 

R
e
c
e
iv

e
d

 P
o

w
e
r

Desired
Signal

RF Channel 
Select Filter

Antenna

RF Channel 
Select Filter

Relaxed dynamic 

range & reduced 

power consumption

LNA

(a) (b)



3 

 

the desired signal, the power sent to LNA and ADC dramatically reduces, which can 

potentially reduce the power consumption down to a level that can be supported by a 

portable handset battery [3]. 

Ultimately, all functions in a SDR implementation should be programmable, including 

any pre-select filtering functions. In other words, a SDR would require a RF front-end 

channel select filter that can be tuned to pass and reject tiny RF frequency channels at will 

along the entire input frequency span, e.g. 0 to 3GHz frequency range. However, such 

tunability requirement often contradicts with the channel select filter’s high Q requirement, 

as it is often the case that the higher the Q of a resonator, the less tunable it is. In fact, at 

the time of this writing, there are no existing resonator technologies capable of achieving 

Qs > 30,000 while also being continuously tunable over a 3 GHz frequency span. 

An alternative way to achieve the desired programmable frequency selecting is to build 

a bank of filters, with each of them centered at different frequency, which dispenses with 

the need to tune a given resonator’s frequency over a wide range. Figure 1.4 shows the 

ultimate proposed block diagram of an SDR front-end utilizing a RF channel-select filter 

banks to realize the function of real time frequency selecting at will. With each individual 

channel select filter switchable, the filter bank can be reconfigured to be compatible with 

any communication standard by the code controlled multiplexer, which realizes a 

programmable mode-selectable communication front-end. 

1.2. Narrowband Filter Design Challenges 

The need for such a small percent bandwidth filter that can pass and reject tiny RF 

frequency channels at will makes software defined radio very difficult to realize, since the 

smaller the percent bandwidth, the higher the needed Qs of resonators comprising a given 

filter to maintain reasonable insertion loss. In addition, to realize small percent bandwidth 

at high frequency, coupling beams need to have very small cross-sectional area, which 

poses fabrication challenges during lithography and etching when making these beams. 

 

Figure 1.4: System block diagram for a programmable SDR front-end utilizing a RF channel-select filter 

network to realize a frequency selecting function at will for any communication standards. 
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1.2.1. Low Insertion Loss (I.L.) 

To better understand why quality factor of resonators affects a filter’s insertion loss, 

Figure 1.5 presents the schematic of a 3rd order narrow band filter. Here, 3 identical 

resonators with couplers connected in-between them will together create a single 

mechanical vibration system that has three slightly separated resonance peaks, as shown in 

Figure 1.6. Such multi-peak response looks like a filter pass band, but with ripples in 

passband. A pair of termination resistors with values of 𝑅𝑄 is needed at the I/O ports to 

generate an ideal band pass filter response. 

For a filter with topology like Figure 1.5, quality factor of each individual resonators 𝑄𝑟 

and the filter percent bandwidth 𝑃𝐵𝑊 together determine the filter’s insertion loss. Basically, 

higher Qr and lower filter quality factor Qf (Qf  = 1/PBW) will lead to lower insertion loss, 

as indicated by the following expression:  

𝐼𝐿 ∝  𝑞𝑖

𝑄𝑓

𝑄𝑟
      (𝑖𝑓 𝑄𝑓 ≫ 𝑄𝑟) (1.1) 

where 𝑞𝑖  is a normalized parameter obtained from a filter cookbook and is mainly 

dependent on filter type and filter order [4]. 

 

Figure 1.5: Topology of a 3rd order channel select filter with termination resistors at the I/O ports. Here, each 

resonator has identical resonance frequency and the filter’s center frequency would be the same as the 

resonance frequency of resonators. 

 

Figure 1.6: Simulation results of terminated and un-terminated filter response. The termination resistors 𝑅𝑄 

‘flatten’ the 3 slightly separated resonance peaks of the coupled 3-resonator composite. 
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Figure 1.7 compares the dependence of insertion loss on resonator Qr for a 3% 

bandwidth band select filter and a 0.05% bandwidth channel select filter, both at 900 MHz 

center frequency. For the 3% bandwidth filter, resonators with Q of 1,000 is good enough 

to achieve insertion loss (IL) less than 1dB. However, for the 0.05% bandwidth channel 

select filter, resonators with Qr as high as 10,000 would still lead to insertion loss larger 

than 5dB. To achieve less than 3dB insertion loss for a 3rd order channel select filter, Qr 

around 30,000 is needed for individual resonators, which is very challenging and difficult 

to achieve using current technologies such as SAW, FBAR or BAW resonators. 

1.2.2. Narrow Bandwidth 

For a narrowband filter using the topology in Figure 1.5, the equivalent stiffness ratio 

of resonator to mechanical coupler will largely determines the percent bandwidth (PBW), as 

shown in the following expression: 

𝑃𝐵𝑊 =
1

𝑘𝑖𝑗
∙

𝑘𝑠

𝑘𝑟𝑒
 (1.2) 

where kij is the normalized coupling coefficient between resonator tanks for a given filter 

type (i.e., Butterworth, Chebyshev, etc.) [4], ks represents the coupler’s stiffness, and kre is 

the equivalent stiffness of the resonator. Indicated by (1.2), a narrowband filter will need 

high stiffness resonators and low stiffness couplers. 

A coupler’s stiffness is generally determined by its material and geometry. To lower the 

mechanical stiffness of couplers, a narrowband filter desires coupling beams with small 

Young’s modulus, small cross sectional area and length corresponding to quarter-

wavelength (𝜆/4) of the propagating acoustic wave, as will be discussed in Chapter 5. 

However, as the center frequency of a narrowband filter goes up, the resonator’s equivalent 

 

Figure 1.7. Simulated frequency characteristics for 900 MHz filters with varying constituent resonator Q’s, 

illustrating how resonator Q and filter bandwidth together govern the insertion loss of a filter. (a) For a 3% 

bandwidth 3rd order filter, resonators with Q larger than 500 will lead to insertion loss less than 3 dB. (b) For 

a 0.05% bandwidth 3rd order channel select filter, even Qs in the order of 10,000 for individual resonators 

still generate severe insertion loss. 
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stiffness kre may keep constant, e.g. for radial contour mode disk type resonators which 

will be discussed in Chapter 2 and Chapter 3, but the equivalent quarter-wavelength will 

decrease and lead to shorter coupling beams and higher stiffness, causing higher bandwidth. 

This will pose fabrication challenges because designers need to shrink the cross sectional 

area of coupling beams to compensate increased bandwidth, which will increase difficulties 

in lithography and etching when making these beams using microfabrication technology. 

For example, for a 2nd order Chebyshev filter based on polycrystalline silicon type disk 

resonators, a 0.5% bandwidth at 70 MHz will need 0.55 μm wide coupling beams. However, 

if frequency goes up to 700 MHz, the width of the coupling beams will have to shrink down 

to 55 nm in order to keep the same percent bandwidth, which is challenging to fabricate 

with a good control of tolerance. 

To overcome this issue, designers need to boost the resonator stiffness in a narrowband 

filter such that the requirement on the coupler’s stiffness will relax. One good way to do 

this is to make micromechanical disk array composite that will behave similar to a 

resonator, but with N× higher stiffness, in which N is the number of resonators in an array 

composite. Ideally, such array will also have N× smaller motional resistance and N× larger 

linearity, which potentially reduces a filter’s termination resistance and power handling, 

both of which are desired by RF front-end channel select filters. The thesis will discuss in 

details on the coupled resonator array composite method in Chapter 4. 

1.3. High Q Capacitive-Gap MEMS Resonators 

Considering the requirements and challenges discussed above to achieve a software 

defined RF receiver, MEMS capacitive-gap resonators would be a very good candidate 

with high quality factor, on/off switchable capacity, and .wafer level manufacturing 

capability which could enable massive numbers of filters in a single chip. A capacitive-gap 

micromechanical resonator usually consists of a suspended mechanical structure and 

capacitive transducers that convert energy between electrical domain and mechanical 

domain. It offers the best fQ (frequency-quality factor product) among different types of 

micromechanical resonators [5], since they generally are constructed in single high quality 

materials, and thus suffer less from the material interface losses that can encumber other 

transducer types (e.g., piezoelectric). Figure 1.8 compares the quality factor of a capacitive-

gap disk resonator and a piezoelectric ring resonator at similar frequencies around 500 

MHz. the capacitive-gap disk resonator achieved 10× higher Q compared with the 

piezoelectric resonator. Although piezoelectric transducers may be more successful in 

achieving lower impedances between 50 Ω and 377 Ω for matching to off-chip wireless 

components [6], capacitive-gap devices can scale down their impedances by using some of 

the recent developed techniques [7] [8]. In addition to better Q, capacitive-gap resonators 

also offer more flexible geometries with CAD-definable frequencies, as they can take the 

form of many shapes, such as beams, disks, rings, or plates [9] [5] [10] [11], and their 

frequencies usually depend on lateral geometries that can be defined by lithography.  
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Figure 1.9 depicts a capacitive-gap disk type resonator in a typical bias, excitation, and 

detection scheme. This device comprises a polysilicon disk surrounded by two closely 

spaced electrodes and supported by an anchored stem attached at the center of the disk. 

The device is excited into resonance via a combination of a dc-bias voltage VP applied to 

the conductive polysilicon resonant structure and an ac signal 𝑣𝑖  applied to the input 

electrode, which together induce a force at the frequency of 𝑣𝑖 that drives the disk into 

 

Figure 1.8: Q Comparison between a capacitive-gap disk resonator and a piezoelectric ring resonator at 

similar resonance frequencies. 

 

Figure 1.9: (a) Schematic of a capacitive-gap all-polysilicon micromechanical disk resonator in a two-port 

excitation and sensing configuration; (b) Typical output current frequency spectrum of a capacitive-gap disk 

resonator with very high quality factor. 
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resonance when the frequency of 𝑣𝑖  matches the resonance frequency. Once vibrating, the 

VP-biased time varying capacitance between the disk and its output electrode generate an 

output current detectable by measurement instrumentation, as shown in Figure 1.9 (b). The 

resonance frequency of a radial contour mode disk resonator can be expressed by: 

𝑓𝑛𝑜𝑚 =
1

2𝜋
√

𝑘𝑟

𝑚𝑚
∝

1

𝑅
√

𝐸

𝜌
 (1.3) 

where 𝑘𝑟 , 𝑚𝑚 , 𝑅 , 𝐸 , and 𝜌  represent the equivalent dynamic stiffness, equivalent mass, 

radius, material Young’s modulus, and density of disk resonator structure, respectively. 

With resonance frequency determined by the lateral dimensions 𝑅 that are CAD-definable, 

such devices can enable a bank of filters with various center frequencies on a single chip. 

1.4. Existing Techniques to Enhance Quality Factor 

On chip capacitive-gap vibrating polysilicon micro-mechanical resonators have 

achieved Q’s over 160,000 at 61 MHz [12] and larger than 40,000 at ~3 GHz [5], making 

them very attractive as on-chip frequency selecting and set-ting elements for filters and 

oscillators in wireless communication applications. There are many energy loss 

mechanisms that could be responsible for limiting the Q of micromechanical resonators, 

including gas damping, anchor loss via anchors, thermoelastic dissipation (TED), phonon-

phonon interaction and phonon-electron interaction [13]. The aforementioned high Q’s 

were usually achieved by first recognizing that anchor loss dominated among all these loss 

mechnisms.at UHF, then using design strategies to suppress such loss, such as attaching to 

the vibrating structure at nodal locations [9], designing quarter wavelength supports [9] 

[14], using different materials for the support and vibrating structure to effect an energy 

reflecting impedance mismatch [15], and minimizing support dimensions (e.g., reducing 

stem size [11]. 

1.4.1. Nodal Point Anchor 

A very commonly used technique to suppress anchor loss and enhance Q is to place 

support structure at the nodal points of a resonator’s mode shape. Here, the nodal points of 

a vibrating mechanical system refer to areas in a mode shape that have zero-displacement 

at all time. By attaching anchors to the nodal points, resonators will introduce minimum 

displacement into the substrate through anchors, which reduces energy dissipation and 

maximizes the Q. Figure 1.10(a) shows the SEM of a polysilicon flexural mode beam from 

[9] with four supporting beams placed at its 1st order flexural mode nodal points, which are 

0.224𝐿𝑟 (𝐿𝑟 is the total beam length) away from the two ends of the beam, as indicated by 

the cross section schematic in Figure 1.10(b). Compared with the clamped-clamped beam 

counterparts in which the anchors are placed directly at the two ends, the free-free beam 

resonator achieves a very high Q of 8,250, a 27.5× improvement over the clamped-clamped 
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beam’s Q’s of 300, which clearly demonstrates the effectiveness of nodal point attachment 

method for high Q resonator design. In this thesis, the micromechanical disk resonator also 

follows such design guidelines by placing the supporting stem right at the center of the 

disk, which is the nodal point of the mode shape of interest. 

1.4.2. Quarter Wavelength Supporting Beam 

As identified in Figure 1.10 that the free-free beam micromechanical resonator is 

supported by four supporting beams attached at its fundamental-mode nodal points, the 

support springs sustain no translational movement during vibration and, thus, anchor loss 

due to translational movements—such as those sustained by clamped-clamped beam 

resonators—are greatly alleviated. However, Figure 1.10(b) indicates that the nodal points 

still experience rotational movement, even though the translational displacement is zero. 

Therefore the free-free beam resonator will still apply rotational torques onto the anchors 

via supporting beams, which induces substrate displacement and thus impacts Q. 

With the recognition that the supporting beams actually behave like acoustic 

transmission lines at the frequencies of interest, the torsional loss mechanisms can be 

negated by strategically choosing support dimensions so that they present virtually no 

impedance to the free-free beam. In particular, by choosing the dimensions of a torsional 

support beam such that they correspond to an effective quarter-wavelength of the resonator 

operating frequency, the solid anchor condition on one side of the support beam is 

transformed to a free end condition on the other side that connects to the resonator. In terms 

of impedance, the infinite acoustic impedance at the anchors is transformed to zero 

impedance at the resonator attachment points. As a result, the resonator effectively “sees” 

no support at all and operates as if levitated above the substrate, devoid of anchors and 

their associated loss mechanisms. 

The above transformation can be more readily seen using the equivalent acoustic T 

network model for a torsional supporting beam using the analogy where force is the across 

variable and velocity is the through variable [16]. In particular, when the dimensions of a 

given support beam correspond to an effective quarter-wavelength of the resonator 

operation frequency, its equivalent acoustic T-network takes the form shown in Figure 

 

Figure 1.10: (a) SEM of a 71.49-MHz free-free beam micromechanical resonator with supporting beams 

placed at nodal points of the 1st order flexural mode shape. (b) Schematic of a flexural beam mode shape 

showing that the nodal points are located 0.224Lr away from the two ends of the beam structure, where Lr is 

the total length of the beam. 
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1.11(b), where shunt and series arm impedances are modeled by equal and opposite 

stiffness. Given that in this mechanical circuit, anchoring the beam of Figure 1.10(a) at side 

B corresponds to opening the B port of Figure 1.11(b), it is clear that the impedance seen 

at port A will be zero due to cancellation of the remaining impedances in the circuit of 

Figure 1.11(b). Seeing zero impedance from port A represents the situation that the 

supporting points are effectively in free condition, which ideally will have no anchor loss 

and therefore maximize Q. 

The quarter-wavelength support method contributes to Q enhancement for resonators 

with many different type of support couplings, e.g., rotational coupling [9], flexural 

coupling [17], and extensional coupling [5]. For example, the quarter-wavelength 

supporting beams contribute to achieve an extremely high Q of over 40,000 at ~3 GHz for 

a polydiamond ring type micromechanical resonator, which till now sets the highest fQ 

product for acoustic MEMS resonators [5]. 

1.4.3. Material Mismatched Anchor 

Ultimately, the previously discussed strategies to suppress anchor loss all seek to create 

large acoustic impedance mismatches at the resonator-anchor boundaries in an attempt to 

confine the acoustic energy within the resonator structure during resonance vibration, 

thereby preventing energy loss to the surroundings. Knowing this, and further recognizing 

the potential difference in characteristic acoustic impedance between different materials 

lead to another very effective method to boost Q—using material mismatched anchor. The 

work of [18] used HFCVD (hot filament chemical vapor deposition) polydiamond for the 

disk structure, but polysilicon for the stem, to effect a material mismatch between the disk 

and stem that reflects energy back into the disk structure, preventing the energy leakage 

that would otherwise lower the Q. The degree of reflection can be modeled and designed 

analogously to electrical transmission lines to generate a non-zero reflection coefficient for 

acoustic waves at the resonator-anchor boundary, preventing energy from flowing into the 

stem anchor towards the substrate. Figure 1.12 specifically illustrates how a stem made in 

the same material as the disk does little to impede energy flow; whereas a mismatched stem 

made in a material different from that of the disk suppresses energy loss to the substrate. 

 

Figure 1.11: (a) Quarter-wavelength torsional beam with B side connecting to anchor and A side connecting 

to resonator. (b) Equivalent acoustic network showing zero impedance at port A with port B open. 
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By using the material mismatched anchor for contour mode micromechanical disk 

resoantors, the work in [18] exhibits a very high Q of 71,400 at 299.86 MHz, which is the 

highest series resonant Q measured at this frequency for an on-chip micromechanical 

resonator at room temperature at the time of publication, as shown in Figure 1.13(b). The 

polysilicon disk with impedance matched stem, on the other hand, posts a much lower Q 

of only 20,912, which is 0.29× of the acoustic impedance mismatched diamond device. 

The measured results clearly confirm the efficacy of the material-mismatching method to 

suppress energy loss to the substrate and enhance quality factor. 

1.4.4. Anchor Geometry Scaling  

Another obvious way for Q-enhancement is to shrink the size of supporting anchors of 

a micromechanical resonator to reduce its cross-sectional area and thereby reduce the 

conduit through which energy can pass from the vibrating resonator to the substrate. In 

 

Figure 1.12: Schematics comparing energy losses to the substrate for (a) a polysilicon disk with an impedance 

matched polysilicon stem; and (b) a polydiamond disk with a material-mismatched polysilicon stem, where 

(b) loses much less energy. 

 

Figure 1.13: (a) SEM image of a 300-MHz contour mode disk resonator constructed with HFCVD 

polydiamond disk and polysilicon supporting stem. (b) Measured frequency response for a polydiamond 

contour mode disk resonator employing a material-mismatched polysilicon stem [18]. 
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particular, by reducing stem sizes from 2.0 µm to 1.6 µm, Figure 1.14 showed a measured 

Q increase from 5,551 to 14,657 for 405-MHz polysilicon radial-contour mode disk 

resonators. In keeping with several theoretical studies in the literature [19] [20] [21], even 

higher Q’s are expected as anchors dimensions decrease to submicron range. 

Unfortunately, there are of course practical barriers to continued scaling of stem 

diameters for a micromechanical disk resonator. First, as a stem is thinned, its strength 

wanes, so there is a minimum stem diameter and length that can support a disk of a given 

size. Second, even if a stem maintained sufficient strength while scaled to nanometer 

dimensions, the need to not only form it, but also place it exactly at the disk center, poses 

fabrication challenges. To overcome these issues, the hollow stem approach used in this 

thesis employs a hollow cylinder with thin walls, rather than a single thin stem, to support 

the disk structure. Since the walls are thin, the cross-sectional area of the stem is still very 

small. However, as with all hollow cyliners (e.g., pipes, lances, etc.), it still retains much 

of the strength of a full stem with the same diameter, which will be discussed with more 

details in the following sections. 

1.5. Conventional Equivalent Circuit of Capacitive-Gap Resonators 

To conveniently model and simulate the behavior of a micromechanical radial contour 

mode disk resonator in a way that facilitates circuit analysis, Figure 1.15 presents a 

traditional ac small-signal electrical equivalent circuit of a radial contour mode disk 

resonator, which includes a core lcr tank to model the mechanical vibration, a variable 

capacitor to model the dependence of resonance frequency on electrical stiffness 𝑘𝑒, and a 

pair of transformers to represent the electromechanical couplings. 

 

Figure 1.14: Frequency characteristics for 36-µm dismeter disk resonators operating in the 2nd radial-contour 

mode with self-aligned stem diameters varying from 1.6 µm to 2.0 µm [11]. 
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1.5.1. Core lcr Tank 

Despite its mechanical nature, the disk resonator of Figure 1.9(a) still looks like an 

electrical device when looking into its ports, and so can be modeled by the electrical 

inductor-capacitor-resistor (lcr) equivalents shown in Figure 1.15. Expressions for the 

element values in the lcr equivalents take the form: 

𝑙𝑥 = 𝑚𝑚, 𝑐𝑟 =
1

𝑘𝑟
=

1

𝑘𝑚 − 𝑘𝑒
, 𝑟𝑥 = 𝑏𝑚 (1.4) 

where 𝑚𝑚, 𝑘𝑟, 𝑘𝑚, 𝑘𝑒 and 𝑏𝑚 are the actual values of dynamic mass, equivalent stiffness, 

mechanical stiffness, electrical stiffness, and damping constant of the resonator being 

modeled at the core lcr location. For radial contour mode shape with all points on the 

sidewalls of the disk moving the same amount, the perimeter of the disk structure usually 

becomes the core lcr location. The equivalent mass can be obtained by dividing the total 

kinetic energy 𝐾𝐸𝑡𝑜𝑡 by one-half the square of the velocity [11]. Doing so on the perimeter 

of the disk yields: 

𝑚𝑚 =
𝐾𝐸𝑡𝑜𝑡

1
2 𝑣2(𝑅, 𝜃)

=
2𝜋𝜌𝑡 ∫ 𝑟𝐽1

2(ℎ𝑟)𝑑𝑟
𝑅

0

𝐽1
2(ℎ𝑅)

 (1.5) 

where 𝜌,  t, and 𝑅  are the material density, thickness, and radius of the disk structure; 

𝐽𝑛(ℎ𝑟) is the Bessel function of the first kind of order n; and h is a constant defined by 

Young’s Modulus E, density 𝜌, Poisson ratio 𝜈, and radian resonance frequency 𝜔𝑜: 

ℎ = √𝜔𝑜
2𝜌/ (

2𝐸

2 + 2𝜈
+

𝐸𝜈

1 − 𝜈2
) (1.6) 

From (1.4) and (1.5), expressions for 𝑙𝑥, 𝑐𝑟, and 𝑟𝑥 in the lcr tank at a location on the 

disk perimeter can be obtained using the following relations [11]: 

 

Figure 1.15. Classic equivalent electrical circuit for a capacitive gap micromechanical disk resonator with 

electrical stiffness lumped into the variable capacitance cr. 
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𝑙𝑥 = 𝑚𝑚 (1.7) 

𝑐𝑟 =
1

𝜔𝑜
2𝑚𝑚

 (1.8) 

𝑟𝑥 =
𝜔𝑜𝑚𝑚

𝑄
 (1.9) 

1.5.2. Electromechanical Coupling Factor ηei 

As the lcr tank only captures the mechanical behavior of the disk structure, this 

equivalent circuit also needs a transformer to model the transduction from mechanical 

domain to electrical domain or vice versa. A succinct derivation of the transformer turn 

ratio 𝜂𝑒𝑖, which is also called the electromechanical coupling factor, follows directly from 

consideration of the mechanical forces generated by voltages applied to terminals of the 

disk resonator depicted in Figure 1.9(a). A dc-bias voltage 𝑉𝑃 on the resonator body and an 

ac voltage signal 𝑣𝑖 at the input together generate an electrostatic input force 𝐹𝑖 in a radial 

direction that takes the following form: 

𝐹𝑖 =
1

2

𝜕𝐶𝑖

𝜕𝑟
(𝑉𝑃 − 𝑣𝑖)2 (1.10) 

where 𝐶𝑖 represents the electrode-to-resonator overlap capacitance when the disk moves r 

in radial direction, and ∂𝐶𝑖/𝜕𝑟 is the change in electrode-to-resonator overlap capacitance 

per unit radial displacement at each corresponding port. Retaining only the dominant term 

in (1.10) at resonance frequency yields: 

𝐹𝑖 ≈ −𝑉𝑃 (
𝜕𝐶𝑖

𝜕𝑟
) 𝑣𝑖 = −𝜂𝑒𝑖𝑣𝑖 (1.11) 

A first order approximation for ∂𝐶𝑖/𝜕𝑟 can be obtained from the Taylor expansion of the 

𝐶𝑖 expression as follows [11]: 

𝐶𝑖(𝑟) = 𝐶𝑜𝑖 (1 −
𝑟

𝑑𝑜
)

−1

→  
𝜕𝐶𝑖

𝜕𝑟
=

𝐶𝑜𝑖

𝑑𝑜
(1 −

𝑟

𝑑𝑜
)

−2

≈
𝐶𝑜𝑖

𝑑𝑜
 (1.12) 

which leads to the expression of electromechanical coupling factor 𝜂𝑒𝑖 as: 

𝜂𝑒𝑖 ≈
𝑉𝑃𝐶𝑜𝑖

𝑑𝑜
 (1.13) 

where 𝐶𝑜𝑖 is the static electrode-to-resonator overlap capacitance at port i. 
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1.5.3. Frequency Pulling Effect from Electrical Stiffness ke 

Because the electrode-to-resonator capacitance is a nonlinear function of the disk radial 

displacement, as indicated in (1.12), there are actually many more force components 

generated than represented in (1.11). In particular, Taylor expanding (1.10) further to the 

second term yields the electrostatic input force 𝐹𝑖 as: 

𝐹𝑖 =
1

2
∙

𝐶𝑜𝑖

𝑑𝑜
(𝑉𝑃

2 − 2𝑉𝑝𝑣𝑖 + 𝑣𝑖
2 +

2𝑉𝑃
2𝑟

𝑑𝑜
−

4𝑉𝑃𝑣𝑖𝑟

𝑑𝑜
+

2𝑣𝑖
2𝑟

𝑑𝑜
) 

                             =
1

2
∙

𝐶𝑜𝑖

𝑑𝑜
(… − 2𝑉𝑝𝑣𝑖 +

2𝑉𝑃
2𝑟

𝑑𝑜
+

2𝑣𝑖
2𝑟

𝑑𝑜
+ ⋯ ) 

(1.14) 

where the last form includes only terms that can generate components at resonance 

frequency. Inserting 𝑣𝑖 = 𝑉𝑖cos𝜔𝑜𝑡  and 𝑟 = ℜsin𝜔𝑜𝑡  (where the fact that the 

displacement r is 90° phase-shifted from vi has been accounted for) into (1.14) yields: 

𝐹𝑖 = − [
𝑉𝑝𝐶𝑜𝑖

𝑑𝑜
𝑉𝑖cos𝜔𝑜𝑡 − (𝑉𝑝

2 +
𝑉𝑖

2

2
)

𝐶𝑜𝑖

𝑑𝑜
2

 ℜsin𝜔𝑜𝑡] (1.15) 

At resonance, the second force term in (1.15) is in phase with the radial displacement. This, 

together with the fact that it is also proportional to the displacement r, identifies this force 

component as equivalent to a stiffness, but in this case, one generated via electrical means. 

In particular, this force component arises from the increase and decrease in electric field 

strength across the electrode-to-resonator gap as the gap shrinks and grows, respectively, 

during mechanical resonance vibration. When the disk sidewall gets close to the electrode, 

the force pulling it into the electrode grows, and vice versa for the other direction, i.e. it 

decreases as the disk sidewall moves away from the electrode. Thus, rather than acting to 

oppose displacement, as is the case for mechanical stiffness, this force acts to enhance it, 

which effectively makes it a negative stiffness at port i, with spring constant equal to: 

𝑘𝑒𝑖 = (𝑉𝑃
2 +

𝑉𝑖
2

2
)

𝐶𝑜𝑖

𝑑𝑜
2

≈ 𝑉𝑃
2

𝐶𝑜𝑖

𝑑𝑜
2

 (1.16) 

where the last form assumes that 𝑉𝑖 is much smaller than 𝑉𝑃—a condition for which the 

reader is cautioned isn’t always the case, such as in micromechanical mixlers [22]. 

The electrical stiffnesses of all electrodes will subtract from the mechanical spring 

constant of the resonator at the core lcr location, changing the resonance frequency of a 

two port radial contour mode disk resonator to: 

𝑓𝑜 =
1

2𝜋
√

𝑘𝑟

𝑚𝑚
=

1

2𝜋
√

𝑘𝑚 − 𝑘𝑒

𝑚𝑚
 = 𝑓𝑛𝑜𝑚√1 −

𝑘𝑒

𝑘𝑚
≈ 𝑓𝑛𝑜𝑚 (1 −

1

2
∙

𝑘𝑒

𝑘𝑚
) (1.17) 
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Where 𝑘𝑟 is the effective stiffness of the disk at any point on its perimeter, 𝑘𝑒 is the total 

electrical stiffness contributed by all electrodes that surround the disk, 𝑘𝑚 is the purely 

mechanical stiffness, and 𝑓𝑛𝑜𝑚 is the resonance frequency of the disk structure with zero 

dc-bias voltage applied, which can be calculated by the following expression: 

𝑓𝑛𝑜𝑚 =
𝛼𝜅

𝑅𝑑
√

𝐸

𝜌
 (1.18) 

where 𝜅  is a parameter dependent upon Poisson’s ratio ( 𝜅 = 0.342 MHz/μm  for 

polysilion), and 𝛼 is a mode-dependent scaling factor that accounts for higher order modes 

(𝛼 = 1  for the 1st order radial contour mode). The last expression in (1.17) uses the 

binomial expansion to approximate 𝑓𝑜  for the case in which the mechanical stiffness is 

many times larger than any of the electrical stiffness, which is generally true for devices in 

this thesis. Rearrange of (1.17) yields the fractional frequency change due to electrical 

stiffness as: 

Δ𝑓

𝑓𝑛𝑜𝑚
= −

1

2

𝑘𝑒

𝑘𝑚
 (1.19) 

1.5.4. Limitations of Conventional Equivalent Circuit Model 

Indicated by (1.19), the resonance frequency of a radial contour mode disk resonator 

will be slightly lower than the mechanical natural frequency of the disk structure, due to 

frequency pulling effect of the force generated by time-varying changes in electric field 

strength as vibration changes the parallel-plate capacitive electrode-to-resonator gap. The 

ratio of electrical stiffness 𝑘𝑒  to purely mechanical stiffness 𝑘𝑚  actually captures the 

magnitude of such frequency shift. By inserting the expression of parallel-plate electrode-

to-resonator overlap capacitance into (1.16), the total electrical stiffness 𝑘𝑒 for a two-port 

radial contour mode disk resonator can be calculated as: 

𝑘𝑒 =
𝑉𝑃

2(𝐶𝑜1 + 𝐶𝑜2)

𝑑𝑜
2

=
𝑉𝑃

2𝜖𝐴

𝑑𝑜
3  (1.20) 

where 𝜖 is the permittivity of the gap material (i.e., vacuum in this case) and A is the total 

overlap area between the resonator and its electrodes. Changes of any variables in 𝑘𝑒, such 

as dc-bias voltage noise, capacitance variation due to mechanical vibration, or charging 

induced bias voltage drift, can cause frequency stability issues for capacitive-gap MEMS 

resonators [23] [24]. 

The conventional equivalent circuit in Figure 1.15 models the influence of electrical 

stiffness on resonance frequency via the arrow through capacitor 𝑐𝑟  (that indicates this 

capacitor is tunable) and by setting the value of 𝑐𝑟 equal to 1/(𝑘𝑚 − 𝑘𝑒). Although this 

method for capturing electrical stiffness adequately predicts the resonance frequency, it 
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does not convey clearly to a circuit designer the impact of electrical stiffness on the overall 

circuit performance. Modeling the electrical stiffness in this way in fact hides some very 

important capacitive-gap resonator behaviors when emplaced into certain circuits. This 

model also encourages designers to dismiss the impact of electrical stiffness, since many 

designers just neglect the 𝑘𝑒 part in the value of 𝑐𝑟 when drawing up equivalent circuits. 

To remedy the above deficiencies of the conventional equivalent circuit model, the 

thesis will introduce a more circuit design-friendly model presented in Figure 2.2 that 

captures the influence of electrical stiffness on device and circuit behavior using a negative 

capacitance exactly equal in magnitude to the shunt static electrode-to-resonator overlap 

capacitance Coi at each electrode terminal. In addition, Chapter 2 will further improve this 

new negative capacitance equivalent circuit such that it can analytically predict anchor loss 

dominated quality factor for radial contour mode disk resonators. 

1.6. Thesis Outline 

This dissertation will focus upon design of high-Q resonators and mechanically coupled 

resonator array composites for RF channel select filter applications. It begins in Chapter 2 

with development of a new type of ac small signal equivalent circuit model that not only 

clearly shows frequency pulling effect from electrical stiffness, but more importantly can 

analytically predict anchor-loss dominated Q in a circuit-design friendly way. Next, 

Chapter 3 addresses the extremely high Q requirement from channel select filters by using 

hollow stem support to suppress energy loss, and confirms the validity of the newly 

developed equivalent circuit by comparing the measured Q enhancement with what the 

circuit predicts. Chapter 4 focuses on an in depth discussion of mechanically coupled disk 

array composites, from coupling theory, to circuit modeling, to design robustness analysis. 

Compared with a stand-along resonator, a micromechanical disk array composite provides 

low motional impedance, high equivalent stiffness, and high linearity, all of which are 

desired by channel select filters. Finally, Chapter 5 presents the design, fabrication and 

measurement of a 3rd order channel select filter (0.3% bandwidth) based on mechanically 

coupled flexural mode disk array composites. Chapter 6 finishes with conclusions on the 

research above and provides a view on the future research direction. 
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 Anchor Loss Modeling of 

Contour Mode Disk Resonators 

To conveniently model the behavior of a radial contour mode disk resonator in a way 

that facilitates circuit analysis, the traditional small-signal equivalent circuit in [25] used a 

core lcr tank to model the mechanical vibration of the disk, and a pair of transformers and 

capacitors in shunt to represent the electromechanical coupling. Although such equivalent 

circuit adequately predicts the performance of a contour mode disk resonator such as 

resonance frequency and motional resistance, it hides very important insights on how 

anchor geometries affect quality factor and fails to capture the anchor loss limited Q. In 

particular, it models a resonator’s quality factor via a resistor 𝑟𝑥, which represents all energy 

loss mechanisms responsible for limiting the Q of micromechanical resonators, including 

gas damping, anchor loss, thermoelastic dissipation (TED), phonon-phonon interaction, 

and phonon-electron interaction [13]. By lumping energy dissipations from different loss 

mechanisms into one single resistor 𝑟𝑥, such circuit does not convey clearly to a designer 

the impact of anchor loss on the overall device quality factor, which usually dominates 

among all loss mechanisms in our cases [11] [26]. 

To remedy the above deficiencies, this chapter introduces a more insightful equivalent 

circuit model, which can capture the influence of stem geometries on the magnitude of 

anchor loss and predict the anchor loss dominated Q for radial contour mode disk 

resonators. For a center supported disk resonator, motion in the stem causes substrate 

vibration and generates energy dissipation through the substrate. To model such energy 

loss, the new equivalent circuit separates the micromechanical disk, the stem, and the 

substrate, modeling them as an lcr tank, a transmission line T-network, and a resistor, 

respectively. 

2.1. Negative Capacitive Equivalent Circuit 

Figure 2.1(a) depicts a radial contour mode disk resonator in a typical bias, excitation, 

and detection scheme. This device comprises a 2μm-thick disk surrounded by two closely 

spaced (do=80nm) electrodes and supported by an anchored stem attached at the center of 

the disk, where the radial displacement is minimized in each of the mode shapes shown in 

Figure 2.1 (b), (c), (d), making this attachment location a quasi-nodal point (“quasi”, since 

the stem has finite radius). To minimize transducer loss that might otherwise mask the 

influence of anchor loss on Q, this device employs a capacitive transducer. The device is 

excited into resonance via a combination of a dc-bias voltage VP applied to the conductive 
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polysilicon resonant structure and an ac signal vi applied to the input electrode, which 

together induce a force at the frequency of vi that drives the disk into resonance vibration 

when the frequency of vi matches the resonance frequency. Once vibrating, the VP-biased 

time varying capacitance between the disk and its output electrode generate an output 

current detectable by measurement instrumentation [11]. 

To conveniently model and simulate the behavior of micromechanical radial contour 

mode disk resonators in a way that facilitates circuit analysis, Figure 2.2 shows an ac small-

signal electrical equivalent circuit of a capacitive-gap resonator, which includes a core lcr 

tank to model the mechanical vibration, a pair of transformers to represent the 

electromechanical coupling, and negative capacitances to model the dependence of 

 

Figure 2.1: (a) Schematic of an all-polysilicon disk resonator in a two-port excitation and sensing 

configuration. (b) Contour mode shape. (c) Wine glass mode shape. (d) 3rd order whispering gallery mode 

(WGM) shape. (All simulated via FEM). 

 

Figure 2.2: Traditional ac small-signal equivalent circuit of a 2-port radial contour mode disk resonator with 

𝑟𝑥  modeling all energy loss mechanisms, which includes anchor loss, thermal elastic damping (TED), 

phonon-phonon interactions and phonon-electron interactions. 
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resonance frequency on electrical stiffness.  

To capture the influence of electrical stiffness more clearly, this improved equivalent 

circuit models the electrical stiffness and mechanical stiffness separately, instead of 

lumping them all together as shown in Figure 1.15. In general, a spring with stiffness k in 

mechanical domain can be modeled as a capacitor in electrical domain with values of 1/k. 

Parallel combination of stiffness corresponds to series connection of capacitors in an 

equivalent electrical circuit. To attain the circuit of Figure 2.2, we start with the circuit of 

Figure 1.15 and first separate 𝑐𝑟 into three capacitors: 𝑐𝑥 = 1/𝑘𝑚 to model the mechanical 

stiffness of the resonator structure, and two negative capacitors 𝑐𝑒𝑖  to model electrical 

stiffnesses generated at the i port as shown in Figure 2.3(a), which takes the following form: 

𝑐𝑒𝑖 = −
1

𝑘𝑒,𝑖
= −

𝑑𝑜
2

𝑉𝑃
2𝐶𝑜𝑖

 (2.1) 

where i denotes the corresponding port. Plugging the expression of micromechanical 

coupling factor 𝜂𝑒𝑖 from (1.13) into (2.1) further yields the 𝑐𝑒𝑖 expression as: 

𝑐𝑒𝑖 = −
𝑑𝑜

2

𝑉𝑃
2𝐶𝑜𝑖

= −
𝐶𝑜𝑖

𝜂𝑒𝑖
2  (2.2) 

Here, 𝑐𝑒𝑖 entirely captures the electrical stiffness, allowing 𝑐𝑥 in Figure 2.3(a) to represent 

purely mechanical stiffness. Further reflecting the negative capacitors 𝑐𝑒𝑖  through the 

transformers to outside the core lcr loop yields 𝐶𝑒𝑖 in the circuit of Figure 2.3 (b), where 

 

Figure 2.3. Negative capacitance small-signal equivalent circuits for a two-port capacitive-gap 

micromechanical contour mode disk resonator: (a) Negative capacitance equivalent circuit with electrical 

stiffness separated from mechanical stiffness. (b) Negative capacitance equivalent circuit with electrical 

stiffness reflected through transformers to outside the core lcr loop. 
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the physical shunt electrode-to-resonator capacitors 𝐶𝑜𝑖  are now matched by series 

negative capacitors of exactly the same values, as indicated by the following expression: 

𝐶𝑒𝑖 = 𝜂𝑒𝑖
2 𝑐𝑒𝑖 = −𝐶𝑜𝑖 (2.3) 

By replacing 𝜔𝑜 in (1.7), (1.8), and (1.9) with nominal radial resonance frequency 𝜔𝑛𝑜𝑚, 

the lx, cx, and rx in the negative capacitance equivalent circuit can be calculated using the 

following expressions.  

𝑙𝑥 = 𝑚𝑚 (2.4) 

𝑐𝑟 =
1

𝜔𝑛𝑜𝑚
2 𝑚𝑚

 (2.5) 

𝑟𝑥 =
𝜔𝑛𝑜𝑚𝑚𝑚

𝑄
 (2.6) 

Note that the resonance frequency dependency on dc-bias voltage VP of a radial contour 

mode disk resonator is now entirely captured by the electromechanical coupling 

coefficients 𝜂𝑒𝑖. Thus, no arrow is needed through the motional capacitor, as needed in the 

conventional circuit of Figure 1.15. More importantly, the value of the core cx element stays 

constant, as it should. The negative Coi is also a static capacitor, just like the positive Coi of 

the physical shunt electrode-to-resonator capacitance. As shown in the circuit, the physical 

shunt electrode-to-resonator capacitors 𝐶𝑜𝑖 are now matched by series negative capacitors 

of exactly the same values, which will provide very important insights to capture the 

frequency dependence characteristics of micromechanical resonators [27]. With this circuit, 

by mere inspection, a designer can now immediately see that the shunt Coi presents the 

opportunity to effectively negate the electrical stiffness, which will be analyzed in details 

in Chapter 4. 

2.2. Limitations of Traditional Equivalent Circuit 

Although the negative capacitance equivalent circuit in Figure 2.2 has already improved 

from the conventional equivalent circuit and can adequately predict the performance of a 

contour mode disk resonator such as resonance frequency and motional resistance, it still 

hides very important insights on how anchor geometries affect quality factor and cannot 

capture the anchor loss limited Q. In particular, it models the device’s quality factor via a 

resistor 𝑟𝑥, which represents all energy loss mechanisms responsible for limiting the Q of 

micromechanical resonators, including gas damping, anchor loss, thermoelastic dissipation 

(TED), phonon-phonon interaction and phonon-electron interaction [13]. In such 

equivalent circuit, the 𝑟𝑥 value is usually back calculated by first measuring the quality 

factor of the device and then plugging the measured Q’s in the equation below: 
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𝑟𝑥 =
𝜔𝑜𝑙𝑥

𝑄
 (2.7) 

where 𝜔𝑜 is the angular resonance frequency, 𝑙𝑥 represents the dynamic mass and Q is the 

measured quality factor. By lumping all energy dissipation from different loss mechanisms 

into a single resistor 𝑟𝑥, such circuit does not convey clearly to a designer the impact of 

anchor loss on the overall device quality factor, which usually dominates among all loss 

mechanisms in our cases [11] [26].  

2.3. Equivalent Circuit Modeling of Anchor Loss 

To remedy the above deficiencies, this work introduces a more insightful equivalent 

circuit model that can capture the influence of stem geometries on anchor loss and predict 

the anchor loss dominated Q for radial contour mode disk resonators. For a center 

supported micromechanical disk resonator, the motion in stem causes substrate vibration 

and generates dissipation of vibration energy through substrate. As shown in the cross 

section of a radial contour mode disk resonator in Figure 2.4, expansion and contraction of 

the disk in radial direction will generate vertical displacement on the bottom surface due 

to Poisson ratio of the structure material. Such vertical displacement maximizes at the 

center of bottom surface and applies an ac harmonic force on the substrate via the stem, 

causing vibration in the substrate and generating energy dissipation. To model such energy 

loss via the stem to the substrate, the new equivalent circuit shown in Figure 2.5 separates 

the micromechanical disk, the stem, and the substrate, modeling them as a new lcr tank, a 

transmission line T-network, and a resistor, respectively. 

2.3.1. Resistor ro in lcr Tank 

As the new lcr tank in Figure 2.5 exclusively models the disk structure without including 

the stem or substrate, the resistor 𝑟𝑜 only represents non-dominating energy dissipations 

contributed by sources other than anchor loss, while leaving anchor loss modeling to the 

transmission line T-network and substrate resistor. In general, a “parallel” combination of 

𝑄𝑖’s contributed by different loss mechanisms sets the total Q of a given micromechanical 

disk resonator, as shown in the following expression: 

1

𝑄
= ∑

1

𝑄𝑖
=

1

𝑄𝑎𝑛𝑐
+

1

𝑄𝑜
𝑖

 (2.8) 

where 𝑖 indicates the loss mechanism, 𝑄𝑎𝑛𝑐 stands for the anchor loss limited quality factor, 

and 𝑄𝑜 represents the intrinsic quality factor contributed by all other energy dissipations, 

such as thermoelastic damping (TED), phonon-phonon interactions and phonon-electron 

interactions (Here, gas damping is neglected because devices are tested in vacuum). 
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Although TED may set the intrinsic material quality factor for low frequency flexural-

mode beam resonators [28], at higher frequencies for RF applications, phonon-phonon 

interactions replace TED as the dominant intrinsic material loss mechanism. For sub-GHz 

polycrystalline silicon disk resonators in this work, quality factor limited by phonon-

phonon interactions in Akheiser regime (𝑄𝑝ℎ𝑝) primarily determines the intrinsic quality 

factor (𝑄𝑜 ) [13]. The 𝑓 ∙ 𝑄𝑝ℎ𝑝  product for polysilicon disk resonators in the frequency 

range below 1 GHz takes the following expression [29]:  

𝑓 ∙ 𝑄𝑝ℎ𝑝 =
𝜌𝑉𝑎

2(1 + (𝜔𝜏)2)

𝐶𝑣𝑇𝛾2𝜏
  (2.9) 

 

Figure 2.4: Cross sectional view of a micromechanical radial contour mode disk resonator, which illustrates 

vibration energy dissipation from the disk to the substrate via stem due to Poisson effect from the contour 

mode vibration. 

 

Figure 2.5: The new ac small-signal equivalent circuit of a 2-port radial contour mode disk resonator. Here, 

the lcr tank represents the mechanical disk structure, the transmission line T-network models the stem, and 

the substrate resistor 𝑟𝑠𝑢𝑏  represents the energy loss to the substrate. 
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where 𝜌  is the material density, 𝑉𝑎  is the acoustic velocity, 𝐶𝑣  represents the volumetric 

heat capacity, 𝜔  is the radian frequency of interest, 𝑇  is the temperature in Kelvin, 𝜏 

represents the phonon mean free path [29], and 𝛾 is the Gruneisen parameter with value 

around 1 for silicon [30]. For the 155-MHz polysilicon contour mode disk resonator which 

will be discussed later in this section, the intrinsic material quality factor 𝑄𝑜  can be 

obtained by plugging the 𝑓 ∙ 𝑄𝑝ℎ𝑝 product value of 1.72×1013 calculated from (2.9) into 

the following equation: 

𝑄𝑜 =
𝑓 ∙ 𝑄𝑝ℎ𝑝

𝑓𝑜
=

1.72 × 1013

155 × 106Hz
≈ 1.11 × 105  (2.10) 

In the new lcr tank in Figure 2.5, 𝑙𝑥 and 𝑐𝑥 take the same expressions as (2.4) and (2.5), 

while the resistor 𝑟o takes a different form as follows: 

𝑟𝑜 =
𝜔𝑛𝑜𝑚𝑙𝑥

𝑄𝑜
 (2.11) 

where 𝜔𝑛𝑜𝑚 is the angular resonance frequency with zero-dc-bias voltage, 𝑙𝑥 represents 

the dynamic mass for the resonator being modeled at the core lcr location, and 𝑄𝑜 is the 

intrinsic quality factor limited by phonon-phonon interactions that can be calculated from 

(2.10). By using intrinsic Qo to obtain the element value of 𝑟𝑜  in the new lcr tank, the 

equivalent circuit in Figure 2.5 separates the anchor loss from total energy dissipations by 

lumping material intrinsic loss into a single resistor 𝑟𝑜 while employing a transmission T-

network and a substrate resistor to capture the anchor loss magnitude. 

2.3.2. Transmission Line T-Network for Stem 

The new equivalent circuit models the stem of a micromechanical disk resonator as a 

mechanical coupling beam connecting the disk and the substrate. Because an ac harmonic 

force generated by Poisson effect from the disk applies on the stem and excites it into 

vibration in the vertical direction, the stem behaves as a vertical mechanical coupling beam 

vibrating in its extensional direction. In general, a coupling beam can be modeled as an 

acoustic transmission line—the mechanical analog to the familiar electrical transmission 

line that takes the following expression: 

[
𝐹1

𝑋̇1
] = [

𝑐𝑜𝑠(𝛼𝑙) 𝑗𝑍𝑚𝑠𝑖𝑛(𝛼𝑙)

𝑗𝑠𝑖𝑛(𝛼𝑙)

𝑍𝑚
𝑐𝑜𝑠(𝛼𝑙)

] [
𝐹2

𝑋̇2
] (2.12) 

where 𝐹𝑖  and 𝑋̇ i  are the force and velocity at corresponding ports, 𝑙  is the length of the 

coupling beam. 𝑍𝑚  and 𝛼  in (2.12) are acoustic characteristic impedance and acoustic 

wave propagation constant, respectively, which take the form: 
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𝛼 =
𝜔

√𝐸𝑆/𝜌𝑠

, 𝑍𝑚 = 𝐴𝑠√𝐸𝑠𝜌𝑠 (2.13) 

where 𝜔 is the radian frequency of the acoustic wave, 𝜌𝑠 is the stem material density, 𝐸𝑠 is 

the Young’ Modulus of the stem material, and 𝐴𝑠 is stem cross sectional area. 

By matching force (𝐹) and velocity (𝑋̇) in mechanical domain to voltage (𝑣) and current 

(𝑖) in electrical domain, Figure 2.6 presents the duality between an acoustic coupling beam 

and an electrical transmission line. Because the two port modeling of an electrical 

transmission line can be simplified by using an impedance T-network, a similar 

transformation can also apply on the mechanical acoustic transmission line, which 

generates a simplified impedance T-network model as shown in Figure 2.7 [16], with series 

impedance 𝑧𝑎 and shunt impedance 𝑧𝑐 taking the following form: 

𝑧𝑎 = 𝑗𝐴𝑠√𝐸𝑠𝜌𝑠 𝑡𝑎𝑛 (
𝜔

√𝐸𝑠/𝜌𝑠

∙
𝑙

2
) (2.14) 

𝑧𝑐 = 𝐴𝑠√𝐸𝑠𝜌𝑠/𝑗 𝑠𝑖𝑛 (
𝜔

√𝐸𝑠/𝜌𝑠

∙ 𝑙) (2.15) 

 

Figure 2.6: Two-port modeling of a mechanical acoustic coupling beam in analogy to an electrical 

transmission line. 

 

Figure 2.7: T-network modeling of a mechanical acoustic coupling beam with the force (𝐹𝑖) in analogy to a 

voltage in electrical domain and the velocity (𝑋̇i) in analogy to a current in electrical domain. 
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2.3.3. Displacement Transformer ηs 

Because the stem attaches to center of the disk’s bottom surface, which is different from 

the perimeter of the disk where the core lcr tank is derived, a displacement transformer 𝜂𝑠 

shown in Figure 2.5 needs to take account for the difference between vertical displacement 

𝑥𝑧 at the disk’s bottom surface center and radial displacement 𝑥𝑟 at the perimeter of the 

disk. The radial displacement 𝑥𝑟 in a contour mode vibration at the perimeter of a disk 

resonator takes the form [31]: 

𝑥𝑟 = 𝑢𝑟(𝑅𝑑) = 𝐴ℎ𝐽1(ℎ𝑅𝑑)  (2.16) 

where 𝐴 is a driving force dependent coefficient [31], 𝐽𝑛(𝑥) is the Bessel function of the 

first kind of order 𝑛, 𝑅𝑑 is the disk radius, and ℎ is a constant defined by (1.6). 

The integration of vertical strain 𝜖𝑍 over disk thickness will give vertical displacement 

𝑥𝑧 at the disk’s bottom surface. The vertical strain 𝜖𝑍 in a disk resonator takes the following 

expression [32]: 

𝜖𝑧 = −
𝑣𝑑

𝐸𝑑
(𝜎𝑟𝑟 + 𝜎𝜃𝜃) (2.17) 

where 𝜈𝑑 is Poisson ratio of the disk, 𝐸𝑑 is the disk’s Young’s modulus, 𝜎𝑟𝑟 and 𝜎𝜃𝜃 are 

normal stress toward the radial and circumferential directions, respectively, which can be 

expressed as: 

𝜎𝑟𝑟 =
𝐸𝑑

1 − 𝑣𝑑
2 (

𝜕𝑢𝑟

𝜕𝑟
+ 𝑣𝑑

 𝑢𝑟

𝑟
) (2.18) 

𝜎𝜃𝜃 =
𝐸𝑑

1 − 𝑣𝑑
2 (𝑣𝑑

𝜕𝑢𝑟

𝜕𝑟
+

 𝑢𝑟

𝑟
) (2.19) 

where 𝑢𝑟  is the time harmonic radial displacement in radial contour-mode vibration. 

Substituting (2.18), (2.19) into (2.17) yields the vertical strain 𝜖𝑧 at any radial location 𝑟 

as: 

𝜖𝑧(𝑟) = −
𝜈𝑑

1 − 𝜈𝑑
𝐴[ℎ2𝐽𝑜(ℎ𝑟)] (2.20) 

As the stem radius (𝑅𝑠 ≤ 1μ𝑚) is significantly smaller than the disk radius (𝑅𝑑 = 17μm 

for the disk resonators used in this chapter), variations in vertical strain within the stem 

clamp region may be negligible. Figure 2.8 presents the normalized vertical strain 𝜖𝑧(𝑟) 

on the disk’s bottom surface as a function of radial location 𝑟/𝑅𝑑. The vertical strain within 

the stem clamp region (𝑟 ≤ 𝑅𝑠) varies less than 0.3%, which is small enough to assume 

uniform vertical strain distribution in the stem clamp region. Therefore, integrating the 

vertical strain 𝜖𝑍(0) over thickness yields the average vertical displacement 𝑥𝑧 in the stem 

clamp region as: 
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𝑥𝑧(𝑟 ≤ 𝑅𝑠) ≈ ∫ 𝜖𝑧(0)𝑑𝑧
−

𝑡
2

0

=
𝜈𝑑

1 − 𝜈𝑑
𝐴[ℎ2𝐽𝑜(0)] ∙

𝑡

2
 (2.21) 

where t is the thickness of the disk. Combining (2.16) and (2.21), the displacement 

transformer turn ratio 𝜂𝑠 takes the form: 

𝜂𝑠 =
𝑥𝑟

𝑥𝑧
=

𝐽1(ℎ𝑅𝑑)

𝜈𝑑

1 − 𝜈𝑑
∙

𝑡
2

[ℎ𝐽𝑜(0)]
 (2.22) 

2.3.4. Substrate Resistor rsub 

The stem of a radial contour mode disk resonator acts as a longitudinal rod and transfers 

the Poisson effect induced vertical vibration from the disk structure to the substrate surface, 

which excites elastic waves propagating into the substrate and dissipates energy. Indicated 

by the analogy between a mechanical vibration system and an electrical circuit, such energy 

dissipation can be modeled as a resistor 𝑟𝑠𝑢𝑏, which takes the following expression: 

𝑟𝑠𝑢𝑏 =
1

2
∙

𝑉𝑠𝑢𝑏,𝑒
2

𝑃𝑠𝑢𝑏,𝑒
=

1

2
∙

𝐹𝑠𝑢𝑏,𝑚
2

𝐸𝑠𝑢𝑏,𝑚/𝑇𝑚
 (2.23) 

 

Figure 2.8: The vertical strain on the surface of a disk (normalized to the maximum vertical strain at the 

surface center of the disk) as a function of radial location for a 17μm-radius contour mode disk resonator 

with 1μm-radius stem. The zoom-in view indicates very small vertical strain variation in the stem clamp 

region. 
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where 𝑃𝑠𝑢𝑏,𝑒  represents the electrical power consumption of a resistor, 𝑉𝑠𝑢𝑏,𝑒  is the ac 

voltage amplitude, 𝐹𝑠𝑢𝑏,𝑚  is the sinusoidal mechanical force amplitude applied on the 

substrate by the stem, 𝐸𝑠𝑢𝑏,𝑚 stands for the mechanical strain energy dissipated into the 

substrate in one cycle of vibration, and 𝑇𝑚 represents the period of the elastic wave. 

To quantify the magnitude of anchor loss, the substrate is modeled as a semi-infinite 

medium through which elastic waves propagate to infinity and will not reflect back to the 

resonator [32]. As illustrated in Figure 2.9, the longitudinal vibration in the stem will apply 

an evenly distributed time-harmonic stress 𝜎𝑧,𝑠𝑢𝑏  on the substrate surface and generate 

vertical displacement 𝑥𝑧,𝑠𝑢𝑏. The sinusoidal mechanical force 𝐹𝑠𝑢𝑏,𝑚 applied in stem clamp 

region takes the form as follows: 

𝐹𝑠𝑢𝑏,𝑚 = 𝜎𝑧,𝑠𝑢𝑏 ∙ 𝐴𝑠 = 𝜎𝑧,𝑠𝑢𝑏 ∙ 𝜋𝑅𝑠
2 (2.24) 

Integrating the product of stress and its corresponding displacement in the stem clamp 

region gives the mechanical strain energy 𝐸𝑠𝑢𝑏,𝑚 in one cycle of vibration: 

𝐸𝑠𝑢𝑏,𝑚 = 𝜋 ∫ 𝜎𝑧,𝑠𝑢𝑏𝑥𝑧,𝑠𝑢𝑏2𝜋𝑟𝑑𝑟
𝑅𝑠

0

 (2.25) 

By using 3D elastic wave equations and their Hankel transforms, the vibration 

displacement 𝑥𝑧,𝑠𝑢𝑏 can be expressed in terms of 𝜎𝑧,𝑠𝑢𝑏 as [19]: 

𝑥𝑧,𝑠𝑢𝑏 = 𝜎𝑧,𝑠𝑢𝑏𝑅𝑠
2

𝑐𝐿𝜔

2𝜌𝑐𝑇
4 Π(𝛾) (2.26) 

where 𝑐𝐿  and 𝑐𝑇  are the longitudinal and transverse wave propagation velocities in the 

substrate, respectively, and Π(𝛾)  represents the imaginary part of an integral constant 

which mainly depends on 𝑐𝐿/𝑐𝑇 [33]. By combing (2.25) and (2.26), the energy loss caused 

by elastic wave propagation into the substrate take the following form: 

 

Figure 2.9: Illustration of anchor loss mechanism for a center supported contour mode disk resonator. Here, 

the time-harmonic vertical stress in the stem clamp region generates elastic wave propagation and causes 

energy dissipation to the semi-infinite substrate. 
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𝐸𝑠𝑢𝑏,𝑚 = 𝜋2𝜎𝑧,𝑠𝑢𝑏
2 𝑅𝑠

4 ∙
𝑐𝐿𝜔

2𝜌𝑐𝑇
4 Π(𝛾) (2.27) 

Combining Equation (2.23), (2.24), and (2.27) finally yields the expression of the 

substrate resistor for a radial contour mode disk resonator: 

𝑟𝑠𝑢𝑏 =
2𝜋𝜌𝑐𝑇

4

𝑐𝐿𝜔2Π(𝛾)
 (2.28) 



30 

 

 Hollow Stem Disk 

Resonators 

As described in Chapter 2, anchor dissipation via the disk resonator’s stem structure 

dominates the energy loss and therefore limits Q. An obvious way for Q-enhancement is to 

shrink the stem size to reduce its cross-sectional area and thereby reduce the conduit 

through which energy can pass from the vibrating disk structure to the substrate. In 

particular, by reducing stem sizes from 2.0 μm to 1.6 μm, [11] showed a measured Q 

increase from 5,551 to 14,657 for 405-MHz radial-contour mode disk resonators. In 

keeping with several theoretical studies in the literature [20] [21] [34], even higher Q’s are 

expected as stem diameters decrease to submicron dimensions. 

Unfortunately, there are of course practical barriers to continued scaling of stem 

diameters. First, as a stem is thinned, its support strength wanes, so there is a minimum 

stem diameter and length that can support a disk of a given size. Second, even if a stem 

maintains sufficient strength while scaled to nanometer dimensions, the need to not only 

form it, but also place it exactly at the disk center, poses fabrication challenges. 

The novel idea of hollow stem approach as shown in Figure 3.1 circumvents the above 

issues by employing a hollow cylinder with thin walls, rather than a single thin solid stem 

[26]. Since the walls are thin, the cross-sectional area of the stem is still very small. 

However, as with all hollow cylinders (e.g., pipes, lances, etc.), it still retains much of the 

strength of a full stem with the same diameter, as summarized by the comparison analysis 

in Figure 3.1. 

 

Figure 3.1: Comparison of the bending strength (Second Moment of Inertia I) and the cross sectional area 

between a full stem with radius of 1µm and a hollow stem with same outer radius but inner radius of 0.5μm. 
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3.1. Hollow Stem Disk Resonator Equivalent Circuit 

For the range of radii of the disks and stems used in this dissertation, replacing the full 

stem with a hollow stem subtracts very little material such that the change in effective mass 

and stiffness of the first radial contour mode is negligible. It follows that the resonance 

frequency and mode shape of the hollow stem disk would be only slightly different than its 

full stem counterpart. Finite element analysis (FEA) performed on disks with a 17 um 

radius and 2 um thickness in Figure 3.2 verifies this expectation, and shows the first radial 

contour modes at 155.3 MHz and 153.7 MHz for the full stem and hollow stem disks, 

respectively. This difference, caused by the absence of a 1 um radius stem material, is 

smaller than 1%, trivial enough that the same lcr tank model can be shared by both types 

of disks for calculating the resonance frequency. The FEA result also indicates that the 

vertical displacement 𝑥𝑧 in the stem clamp region and the radial displacement 𝑥𝑟 on the 

perimeter are comparable for both disks, as highlighted by Table I, implying that the 

displacement transformer turns ratio 𝜂𝑠 calculated by (2.22) will also be similar for both 

types of disks. All these results point to the fact that a hollow disk can share the same 

equivalent lcr tank model and displacement transformer with a full disk. 

To apply the new equivalent circuit model on a hollow stem disk resonator requires 

modification on the transmission line T-network of a full stem discussed in Chapter 2. The 

 

Figure 3.2: FEA mode shape simulation of a conventional disk and a hollow disk with 1μm radius hole in 

the center. Here, both disks have the same radius of 𝑅𝑑 = 17μm and thickness of 𝑡 = 2μm. 

Table I: Comparison of modal displacement for conventional disk and hollow disk with 1µm radius hole 

in the center 

 
Modal displacement 

𝜂𝑠 
Resonance frequency 

(MHz) 
𝑥𝑧 𝑥𝑟  

Full disk 0.0590 0.990 16.78 155.3 

Hollow disk 0.0593 0.991 16.71 153.7 

 

Full stem disk Hollow stem disk

Modal displacement mag

Max.Min.

Hollow stem inner 
radius 
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hollow stem is generated by partially refilling a stem hole in the disk structure with a very 

thin layer of polysilicon material (which will be discussed in more details in section 5.4). 

As shown in the cross section view of Figure 3.3, a fabricated hollow stem structure will 

actually have two parts: a hollow pipe on the top that is connected to the disk, and a solid 

stem portion at the bottom attached to the substrate. Therefore the equivalent circuit model 

of a fabricated hollow stem should include the transmission line T-network models for both 

portions in series, as shown in Figure 3.4. 

By applying the approximation of a thin shell under axial excitations, the hollow pipe 

transmission line T-network impedances take the following expressions [35]: 

𝑧𝑎,ℎ = 𝑗𝐴ℎ√𝐸𝑠𝜌𝑠 𝑡𝑎𝑛 (
𝜔

√𝐸𝑠/𝜌𝑠

∙
𝐿𝑠𝑡𝑒𝑚 − 𝑡𝑠𝑡𝑒𝑚

2
) (3.1) 

𝑧𝑐,ℎ = 𝐴ℎ√𝐸𝑠𝜌𝑠/𝑗 𝑠𝑖𝑛 (
𝜔

√𝐸𝑠/𝜌𝑠

∙ (𝐿𝑠𝑡𝑒𝑚 − 𝑡𝑠𝑡𝑒𝑚)) (3.2) 

where 𝐿𝑠𝑡𝑒𝑚  is total length of the hollow stem structure, 𝑡𝑠𝑡𝑒𝑚  is the hollow stem wall 

thickness, as indicated in Figure 3.3, and 𝐴ℎ is the cross sectional area of the hollow pipe 

part, which takes the form: 

𝐴ℎ = 2𝜋 (𝑅𝑠,𝑜 −
𝑡𝑠𝑡𝑒𝑚

2
) 𝑡𝑠𝑡𝑒𝑚 (3.3) 

 

Figure 3.3: Schematic cross sectional view of a hollow stem disk resonator fabricated by using self-aligned 

stem fabrication process [11]. 

 

Figure 3.4: Small signal equivalent circuit of a fabricated hollow stem attached to a silicon substrate using 

similar fabrication process in [11]. The two transmission line T-networks in series model the hollow part and 

solid part of a self-aligned hollow stem structure. The resistor 𝑟𝑠𝑢𝑏  represents the silicon substrate. 
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where 𝑅𝑠,𝑜 represents the outer radius of the hollow stem structure. For the bottom solid 

stem part which directly connects to the substrate, the T-network impedances can be 

calculated as: 

𝑧𝑎,𝑓 = 𝑗𝐴𝑓√𝐸𝑠𝜌𝑠 𝑡𝑎𝑛 (
𝜔

√𝐸𝑠/𝜌𝑠

∙
𝑡𝑠𝑡𝑒𝑚

2
) (3.4) 

𝑧𝑐,𝑓 = 𝐴𝑓√𝐸𝑠𝜌𝑠/𝑗 𝑠𝑖𝑛 (
𝜔

√𝐸𝑠/𝜌𝑠

∙ 𝑡𝑠𝑡𝑒𝑚) (3.5) 

where 𝐴𝑓 = 𝜋𝑅𝑠,𝑜
2   is the cross sectional area of the full stem part. Replacing the 

transmission line T-network model of a full stem with that of a hollow stem generates a 

complete equivalent circuit model for a hollow stem contour mode disk resonator, as shown 

in Figure 3.5, which can capture the magnitude of energy dissipation through the disk stem 

and predict anchor loss limited Q. 

The hollow stem resonators are fabricated on a N-type <100> silicon wafer with 

thickness of 625μm, which is much larger than the typical dimensions of a hollow stem 

disk resonator and thereby can be considered as a semi-infinite medium with no acoustic 

waves reflected back. Plugging the material properties of N-type <100> silicon into (2.28) 

will give the numerical value of the substrate resistor 𝑟𝑠𝑢𝑏, which represents the energy loss 

in the silicon substrate. 

 

Figure 3.5: The new ac small-signal electrical equivalent circuit of a hollow stem radial contour mode disk 

resonator. 
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3.2. Design Example 

This dissertation designs several 155-MHz hollow stem contour mode disk resonators 

with different stem wall thicknesses and analyzes Q enhancement effect from hollow stems 

by using the new equivalent circuit model. Table II summarizes the design parameters, the 

equivalent circuit variables, and the predicted quality factors of three different resonator 

designs which have the same disk radius (𝑅𝑑 = 17 μm ) and stem outer radius (𝑅𝑠,𝑜 =
1 μm), but different hollow stem wall thicknesses. The equivalent circuit predicts that the 

155-MHz polysilicon hollow stem disk resonator with 200nm wall thickness will increase 

the contour mode quality factor by 3.6× to 40,751, compared with its full stem counterparts, 

which theoretically verifies the Q-enhancement effect from hollow stems. 

Table II:  Comparison of design variables and equivalent circuit element values for 155-MHz hollow 

stem contour mode disk resonators with different stem wall thickness 

 Parameter Source 
Hollow  

Stem 
Solid Stem Units 

D
es

ig
n

 V
a

ri
a
b

le
s 

Disk Radius, 𝑅𝑑 Layout 17 17 17 μm 

Hollow Stem Outer Radius, 𝑅𝑠,𝑜 Layout 1 1 1 μm 

Stem Inner Radius, 𝑅𝑠,𝑖 Fabrication 0.8 0.5 N/A μm 

Stem Wall Thickness, 𝑡𝑠𝑡𝑒𝑚 Fabrication 0.2 0.5 N/A μm 

Resonance Frequency, 𝑓𝑜 (1.18) 155.4 155.4 155.4 MHz 

Electrode Span Angle, 𝜃 Layout 156 156 156 (°) 

Disk Thickness, 𝑡 Fabrication 2 2 2 μm 

Intrinsic Quality Factor, 𝑄𝑜 (2.10) 111,000 111,000 111,000 N/A 

Electrode-to-Resonator Gap, 𝑑𝑜 Fabrication 80 80 80 nm 

DC Bias Voltage, 𝑉𝑃 N/A 5 5 5 V 

E
q

u
iv

a
le

n
t 

C
ir

cu
it

 E
le

m
en

ts
 

Equivalent Inductance, 𝑙𝑥 (1.5), (1.7)  3.1868×10-12 3.1868×10-12 3.1868×10-12 H 

Equivalent Capacitance, 𝑐𝑥 (2.5) 3.2936×10-7 3.2936×10-7 3.2936×10-7 F 

Equivalent Resistance, 𝑟𝑜 (2.11) 2.8023×10-8 2.8023×10-8 2.8023×10-8 Ω 

Overlap Capacitance, 

 𝐶𝑜1 = 𝐶𝑜2 
[11] 10.245 10.245 10.245 fF 

Electromechanical Coupling, 

𝜂𝑒1 = 𝜂𝑒2 
(1.13) 6.4034×10-7 6.4034×10-7 6.4034×10-7 N/A 

Displacement Ratio, 𝜂𝑠 (2.22) 16.77 16.77 16.77 N/A 

Characteristic Impedance, 𝑍𝑚,ℎ (2.13) 2.1007×10-5 4.3764×10-5 N/A Ω 

Characteristic Impedance, 𝑍𝑚,𝑓 (2.13) 5.8352×10-5 5.8352×10-5 5.8352×10-5 Ω 

Hollow Stem Impedance, 𝑧𝑎,ℎ (3.1) 6.3495×10-7j 5.2899×10-7j -1.058×10-6j Ω 

Hollow Stem Impedance, 𝑧𝑐,ℎ (3.2) -3.4782×10-4j -0.0018j 0.0016j Ω 

Solid Stem Impedance, 𝑧𝑎,𝑓 (3.4) 7.0532×10-7j 1.7637×10-6j 3.5307×10-6j Ω 

Solid Stem Impedance, 𝑧𝑐,𝑓 (3.5) -0.0024j -9.6616×10-4j -4.8396×10-4j Ω 

Equivalent Substrate Resistance, 

𝑟𝑠𝑢𝑏 
(2.28) 0.0068 0.0068 0.0068 Ω 

 Predicted Quality Factor 
Equivalent 

Circuit 
40,751 13,279 11,313 N/A 
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3.3. Fabrication Process 

The fabrication process for the hollow stem devices in this work leverages heavily the 

self-aligned stem process of [11] that not only eliminates disk-to-stem misalignment, but 

also allows for different stem and disk film thickness, thereby greatly facilitating 

manufacture of hollow stems. The process begins with layer depositions and patternings 

(where appropriate) for the substrate ground plane and contacts (not shown), polysilicon 

interconnects, bottom sacrificial layer, and structural polysilicon capped by an oxide etch 

hard mask, all identical to those used in [11]. Like [11], instead of using an anchor mask to 

first define the stem then another mask aligned to the first to define the disk structure, this 

process defines both the stem hole position and the disk edges all in one mask, effectively 

eliminating the possibility of stem misalignment. This maximizes the Q of the ensuing 

device, since it allows centering of the stem precisely at the disk nodal location. After the 

single-mask lithography defining the disk and stem hole, the doped polysilicon structural 

layer is patterned through the oxide hard mask, then a sacrificial sidewall spacer oxide (to 

define the gap)  is deposited via LPCVD to yield the cross-section of Figure 3.6(a). 

 

Figure 3.6: Cross-sections showing the last few steps in the fabrication process for hollow stem, small-lateral-

gap, all-polysilicon disk resonators. 
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At this point, the process flow deviates from that of [11]. In particular, instead of 

depositing a 2μm thick polysilicon to fully refill the 1μm~3μm diameter stem holes, as was 

done previously, a very thin layer (less than 500nm) insufficient to refill the stem holes is 

deposited via LPCVD at 585℃ followed by POCl3 doping. The conformity of LPCVD 

polysilicon allows the film to follow the contours of the stem hole, even at corners. The 

input electrode, output electrode and stem are then patterned by another mask lithography 

followed by polysilicon DRIE etching, as shown in Figure 3.6(b). 

Wafers are then immersed in 49 wt. % hydrofluoric acid for ~30 min. to etch away 

sacrificial oxide and release the structures, leaving the final cross-section of Figure 3.6(c). 

Figure 3.7 presents the SEM of a fabricated device with zoom-in’s on its stem, which 

features 500nm-thick walls in a 1m-outer radius stem hole, resulting in a 500nm-radius 

hollow region. In addition to the thin-walled stem, the SEM of Figure 3.7 also shows 

electrodes with equally thin walls. Like the stems, the electrodes also benefit from the 

increased strength of a curved geometry. 

3.4. Q Enhancement for Radial Contour Mode 

To gauge the Q-enhancement of hollow stems and verify the efficacy of the transmission 

line based hollow stem equivalent electrical circuit for Q prediction, measurements on 

fabricated devices focus on comparison of conventional 1μm-radius full stem disk 

resonators with hollow stem disk resonators employing the same outer stem radius, but 

different stem wall thicknesses of 200nm and 500nm. The devices were tested using the 

mixing measurement method described in [22] (that allows more accurate measurement of 

mechanical Q) under a 2μTorr vacuum environment generated by a Lakeshore FWPX 

cryogenic probe station. Although high frequency micromechanical resonators are less 

susceptible to gas damping, so are able to reach Q’s on the order of 10,000 in air [15], 

vacuum is still needed to measure Q’s above this. 

 

Figure 3.7: SEM’s of a fabricated polysilicon hollow stem disk resonator with zoom-in’s to its hollow stem 

structure. The halo around the hollow stem results from over etch of the oxide hard mask when etching the 

stem via. 
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3.4.1. Q Enhancement of Hollow Stem Support 

Figure 3.8 combines the measured frequency characteristics of a full stem radial-contour 

mode disk resonator together with ones sporting 500nm-wall and 200nm-wall hollow 

stems, all with identical 17-m radii. To facilitate interpretation of the data, Figure 3.8 plots 

measured output power along the y-axis against fractional frequency change relative to the 

resonance frequency of each device along the x-axis. Here, the 200nm-wall hollow stem 

device achieves a Q of 29,313 at 153.9 MHz, which is more than 2.6× higher than its 

identically-dimensioned full stem counterpart. The 500nm-wall hollow stem device also 

provides an improvement, although smaller, at about 1.3× better than the full stem case. 

The smaller the hollow stem wall thickness, the larger the improvement in Q, all confirming 

the discussion of Chapter 3. 

As indicated by the dc-bias voltage values used in mixing measurements for Figure 3.8, 

the 200nm-wall hollow stem device could not accept voltages as large as used for the 

500nm-wall hollow stem and full stem devices, since the former tended to pull into its 

electrodes when voltages exceeded 3V. This explains the lower peak current measured for 

this device despite its much higher Q. It also reveals a limitation of the hollow stem 

approach, where the thinner electrode over-hang shown in Figure 3.7 compromises the 

maximum dc-bias voltage sustainable across the electrode-to-resonator gap before pull-in 

in vertical direction. As mentioned in Section 3.1 and Section 3.3, although the cylindrical 

and curved geometries of the stem and electrodes, respectively, do help to strengthen them 

in the lateral direction, they seem not as strong as full stem or thicker counterparts in the 

vertical direction because of electrode over-hang. In the future, an improved fabrication 

process with CMP (chemical mechanical planarization) process that can eliminate 

 

Figure 3.8: Comparison of frequency characteristics for full stem and hollow stem all-polysilicon disk 

resonators vibrating in the radial-contour mode. 
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electrode over-hangs would improve the vertical direction electrode strength of hollow 

stem devices, which can solve this electrode strength compromise and allow the same pull-

in voltage for hollow stem disk resonators as its full stem counterparts. 

3.4.2. Measurement vs. Theory 

To demonstrate the efficacy of the hollow stem equivalent circuit model for anchor loss 

modeling and Q prediction, Figure 3.9 compares the theoretically predicted Q versus 

measured Q for hollow stem radial contour-mode disk resonators with different hollow 

stem wall thicknesses of 200 nm, 500 nm and 1 um, with 3 sets of measurement data points 

for each particular type of disk resonator. As summarized in Table III, the measured Q’s for 

each type of resonators are very consistent and the measurement data matches quite well 

with theoretical prediction, especially for full stem disk resonators and hollow stem disk 

resonators with 500nm sidewall thickness. This indicates that the transmission line T-

network based hollow stem equivalent circuit correctly captures the magnitude of anchor 

loss for contour-mode disk resonators. 

 

Figure 3.9: Comparison of measured Q’s and predicted Q’s by the new hollow stem equivalent circuit for 

hollow stem disk resonators with same outer stem radius (𝑅𝑠,𝑜 = 1μm) but different stem wall thicknesses. 

Table III: Quality factor values for solid stem disk resonators and hollow stem disk resonators with 

different stem wall thickness. 

 

Hollow Stem (𝑅𝑠,𝑜 = 1 μm) 
Solid Stem 

(𝑅𝑠 = 1 μm) 
Stem Wall Thickness 

(200nm) 

Stem Wall Thickness 

(500nm) 

Theoretically predicted Q 40,751 13,279 11,313 

Measured Q 

26,169 15,834 11,556 

30,291 15,624 11,248 

29,313 14,387 10,583 
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For hollow stem disk resonators with 200 nm wall thickness, relatively large 

discrepancies exist between theoretical prediction and measurement data. This may be 

attributable to the thickness variance from the polysilicon LPCVD deposition step during 

stem hole refilling. As shown in the theoretical Q curve of Figure 3.9, a very small change 

in hollow stem wall thickness would result in dramatic Q variation if the hollow stem 

sidewall is very thin. For example, a 50 nm increase in hollow stem wall thickness from 

200 nm to 250 nm would reduce Q from 40,751 to 30,331, which corresponds to a 26% 

change, while for thicker wall thickness changing from 500 nm to 550 nm, Q would only 

degrade from 13,279 down to 12,424, which is only a 6% difference. By accounting for the 

difference between target thickness and real measured thickness of the LPCVD polysilicon 

deposition, the discrepancies between theoretical prediction and measurement data for the 

200nm wall thickness hollow stem devices may shrink, which could provide more precise 

predictions for hollow stem resonators with different wall thickness. 

3.4.3. Quality Factor vs. Full Stem Size 

The transmission line T-network based equivalent circuit also predicts very accurate Q 

for full stem devices with different stem sizes. The solid line in Figure 3.10 plots the 

predicted Q’s versus stem sizes for the 18µm-radius conventional full stem polysilicon disk 

resonators presented in [11]. The equivalent circuit indicates a Q improvement from 1,100 

to 27,000 when the stem radius reduces from 2 µm to 0.8 µm. The predicted Q enhancement 

trend matches well with the previously measured data points, which further validates the 

use of transmission line T-network based equivalent circuit to model anchor loss limited Q. 

Without the need to perform FEM simulations, such an equivalent circuit greatly eases the 

quality factor prediction for radial contour mode disk resonators. 

 

Figure 3.10: Comparison of previously measured Q’s in [11] and theoretically predicted Q’s by the 

transmission line T-network based equivalent circuit for 18μm-radius polysilicon contour-mode disk 

resonators with different full stem sizes. 
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3.5. Q Enhancement for Other Different Mode Shapes 

To gauge the degree to which hollow stem design really suppresses energy loss to the 

substrate, the measurements also compare their efficacies for disks vibrating in each of the 

mode shapes depicted in Figure 3.11(a)-(c). In particular, the FEM simulations shown 

actually depict displacements, where the darker the blue color, the less the displacement. A 

focus on the anchors reveals that whispering gallery modes, including the wine-glass mode, 

should allow much higher Q’s than radial-contour modes if anchor losses dominate. In 

addition, hollow stem design should be less necessary for higher whispering gallery modes 

if high Q’s are desired. 

3.5.1. Wine Glass Mode 

Although the input and output electrodes of the device under test are designed for radial-

contour mode vibration, they are also able to excite and detect the wine glass mode depicted 

in Figure 3.11(a), since both modes have large vibration amplitudes centered over the 

output electrodes. Figure 3.12 presents a plot similar to that of Figure 3.10, but this time 

comparing wine glass modes for the different devices. The highest Q is now 45,138 at 112 

MHz, again for the 200nm-wall hollow stem disk. As with the radial contour mode, the Q’s 

of the wine-glass mode also improve with decreasing hollow stem thickness, with a 2.9× 

improvement for the 200nm-wall hollow stem versus full stem. 

3.5.2. Whispering Gallery Modes 

The wine-glass mode is actually just one of the many whispering gallery modes [36] of 

the disk structure shown in Figure 3.11(a)-(c). In the wine-glass mode, there are two 

positive vibration amplitude maxima, making it a 2nd order whispering gallery mode 

(WGM). The mode in Figure 3.11(b) is a 3rd order WGM with 3 maxima. Whispering 

gallery modes differ from the radial-contour mode in that their acoustic wave propagates 

 

Figure 3.11: FEA mode shapes of a 17μm-radius polysilicon disk resonator. (a) Wine glass mode shape. (b) 

3rd order whispering gallery mode (WGM) shape. (c) 6th order whispering gallery mode shape. 
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around the disk periphery, rather than the radial direction. Thus, while the radial-contour 

mode undergoes tremendous volume expansion and contraction during vibration, a 

whispering gallery mode conserves its volume, resulting in less displacement near the 

center of the disk, hence less Poisson expansion along the z-axis at the stem location. This 

then leads to smaller energy loss to the substrate and higher Q, which is consistent with the 

measurement results showing that wine glass mode Q for the 200nm-wall hollow stem disk 

in Figure 3.12 is larger than the highest posted by the radial-contour mode devices of Figure 

3.8. 

Higher order WGM’s, such as the 3rd order one of Figure 3.11(b), further exhibit a 

dramatically larger displacement-free area around their stems than lower order ones, as 

shown in the displacement FEM simulations of Figure 3.11(a). This indicates that the 

former should lose less energy through the stem to the substrate no matter the type of stem, 

suggesting that higher order whispering gallery modes should post even higher Q’s that are 

less dependent upon stem design, i.e., the Q should be high whether or not a hollow stem 

is used. 

To confirm the above, Figure 3.13 presents a plot similar to that of Figure 3.12 and 

Figure 3.8, but this time comparing 3rd order WGM’s for the different devices. The highest 

measured Q is now 93,231 at 177.9 MHz, again for the 200nm-wall hollow stem disk. As 

predicted, this is much higher than exhibited by the other modes depicted in Figure 3.12 

and Figure 3.8. Although impressive, the Q of this device is only 1.4× higher than that of 

the same mode of the full stem device, which posts a Q of 65,012 at 176.2 MHz that is still 

quite large. Thus, hollow stem design is still beneficial for whispering gallery modes, but 

its benefits over a full stem diminish as mode order increases. 

 

Figure 3.12: Comparison of frequency characteristics of full stem and hollow stem all-polysilicon disk 

resonators vibrating in the wine glass mode. 
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As a final UHF demonstration, Figure 3.14 plots the frequency characteristics of a 

17μm-radius disk employing a 500nm-thick hollow stem to achieve a Q of 56,061 at 329 

MHz while vibrating in its 6th order whispering gallery mode as shown in Figure 3.11(c). 

 

Figure 3.13: Comparison of frequency characteristics for full stem and hollow stem all-polysilicon disks 

vibrating in the 3rd-order whispering gallery mode. 

 

Figure 3.14: Measured frequency characteristic for a hollow stem polysilicon disk resonator vibrating in its 

6th order whispering gallery mode. 
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   Mechanically Coupled 

Disk Array Composites 

A mechanically coupled disk array composite can lower the motional resistance 𝑅𝑥 by 

summing together the in-phase output current of an array of identical resonators [12], 

which is highly desired for front-end channel-select filters that interface with widely used 

50Ω  RF components. In addition, the coupled micromechanical disk array boosts the 

equivalent stiffness of the device, as discussed in Chapter 1, which is essential to lower the 

coupling beam to resonator stiffness ratio and achieve a narrow bandwidth filter. By using 

proper electrode phasing design and employing high-Q resonators, such array composite 

shows uncompromised performance even with design errors and fabrication process 

variations. As a side benefit, array composites can also enhance frequency stability by 

creating a large electrode-to-resonator capacitance (Co) generated by the parallel 

combination of input/output electrodes overlapping each resonator, which reduces the 

efficacy of the bias voltage-controlled electrical stiffness and in turn negates 𝑘𝑒 induced 

frequency shift. Therefore, an array composite will also have enhanced frequency stability 

against environmental fluctuations that changes 𝑘𝑒 , such as acceleration, power supply 

noise, dielectric charging, etc. 

This chapter first introduces the schematic and equivalent circuit of mechanically 

coupled radial contour mode disk array composites. Then it follows by showing equivalent 

circuit simulation results that indicate such high Q mechanically coupled arrays with proper 

electrode phasing design will work appropriately even with coupling beam length design 

errors and frequency mismatches among constituent resonators. After going through the 

improved fabrication process of capacitive-gap polysilicon disk resonators, it shows 

measurement results that confirm the efficacy of motional resistance improvement, proves 

the robustness of mechanically coupled arraying method, demonstrates the frequency 

stability enhancement effect, and finally verifies the accuracy of the negative capacitance 

equivalent circuit model by comparing with measured data that includes plots of frequency 

versus dc-bias voltages 

4.1. Schematic of Radial Contour Mode Disk Array Composite 

Figure 4.1 presents a one-dimensional (1D) two-port micromechanical disk array-

composite constructed by mechanically linking individual disk resonators via coupling 

beams and electrically combining each input/output electrode to generate I/O ports. Here, 

coupling of resonators yields a multi-mode system that has N vibration modes, where N is 
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the number of coupled resonators. For example, a 4-resonator disk array-composite will 

have four mode shapes with each mode at different frequencies, as shown in the 2D FEM 

simulation results in Figure 4.2. At each mode, all resonators vibrate at precisely the same 

frequency [16], allowing their outputs to be combined to boost input and output currents, 

thereby decreasing the motional resistance and increasing power handling. 

4.1.1. Half-wavelength Couplers 

As described in [8], the mechanical connection of resonators in Figure 4.1 actually 

realizes a multi-pole filter structure that now has several modes of vibration. Each modal 

peak corresponds to a state where all resonators are vibrating at exactly the same frequency. 

The FEA simulated modal response in Figure 4.2 shows the different modes of similar 

structure with 4 constituent resonators, which are distinguishable by the relative phase 

response of each resonator. 

To only select the desired in-phase mode (1st mode) for a micromechanical disk array, 

it is advantageous to first separate other unwanted modes as far apart as possible. Since the 

frequency separation is proportional to the stiffness of mechanical couplers, according to 

Chapter 1, the first step in selecting a single mode, while suppressing others, is to couple 

resonators with very stiff springs. Ideally, coupling beams with lengths corresponding to 

 

Figure 4.1: Schematic of a radial contour mode array composite with disks linked by λ/2 coupling beams to 

enforce in phase vibration of each individual resonator. 

 

Figure 4.2: FEA simulated mode shapes of a mechanically coupled four-resonator radial contour mode disk 

array. 
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half-wavelength of acoustic waves propagating in a resonator will shift the undesired 

resonance modes to infinity. As first demonstrated in [12], the use of half-wavelength 

couplers both insures that all resonators vibrate in phase, as shown in the 1st mode in Figure 

4.2; and spreads the mode frequencies apart, making it easier to select a specific mode 

(when only one is wanted, e.g., in an oscillator application) by proper electrode phasing. 

The beam length of a half-wavelength coupling can be expressed as: 

𝑙𝑠 =
𝜆

2
=

√𝐸/𝜌

2𝑓
= 𝜋

√𝐸/𝜌

𝜔
 (4.1) 

where 𝜔 is the radian frequency of the acoustic wave, 𝜌 is the material density, 𝐸 is the 

Young’ modulus of the beam material, and 𝜆 is the full-wavelength of the acoustic wave 

propagating in coupling beams. 

It should be noted that the use of half wavelength coupling beams serves to spread the 

undesired modal peaks of the array structure in Figure 4.2 to infinity, which facilitates the 

selection of one, and only one, of the modes. Once a single mode is selected, the structure 

practically behaves as a single resonator, but with a current handling ability equal to the 

sum of all constituent resonators. Thus, an N-resonator array can handle N times more 

power and achieve N times smaller motional resistance than a single resonator. 

In general, fabrication variations and design errors exist, which may not be able to 

generate exact half-wavelength coupling beams and thereby can only separate the peaks by 

finite distance in frequency domain. However, because each mode exhibits a unique 

resonator phasing, a single mode can still be selected by choosing the input ac signal and 

output electrode configuration to match the phasing of the desired mode, e.g. directly 

connecting all output electrodes together will effectively cancel the output current from the 

mode shapes in which resonators vibrate out-of-phase, such as the 2nd-4th modes in Figure 

4.2. 

4.1.2. Equivalent Circuit of Mechanically Coupled Array Composites 

As shown in Figure 4.3, a coupling beam can be modeled as an acoustic transmission 

line—the mechanical analog to the familiar electrical transmission line that takes the 

following expression by using an ABCD matrix: 

 

Figure 4.3: Two-port modeling of a mechanical acoustic coupling beam in analogy to an electrical 

transmission line. 
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[
𝐹1

𝑋̇1
] = [

𝐴 𝐵
𝐶 𝐷

] [
𝐹2

𝑋̇2
] = [

𝑐𝑜𝑠(𝛼𝑙) 𝑗𝑍𝑚𝑠𝑖𝑛(𝛼𝑙)

𝑗𝑠𝑖𝑛(𝛼𝑙)

𝑍𝑚
𝑐𝑜𝑠(𝛼𝑙)

] [
𝐹2

𝑋̇2
] (4.2) 

where 𝐹𝑖  and 𝑋̇ i  are the force and velocity at corresponding ports, 𝑙  is the length of the 

coupling beam. 𝑍𝑚 and 𝛼 in (4.2) are acoustic characteristic impedance and acoustic wave 

propagation constant, respectively, which take the forms: 

𝛼 =
𝜔

√𝐸/𝜌
, 𝑍𝑚 = 𝐴𝑐√𝐸𝜌 (4.3) 

where 𝜔 is the radian frequency of the acoustic wave, 𝜌 is the material density, 𝐸 is the 

Young’ modulus of the beam material, and 𝐴𝑐 is the beam cross sectional area. 

Because a 𝜆/2 array coupling is a strong coupling compared with that of a narrowband 

filter in [37], the coupled mechanical system in this work behaves as a wideband system, 

in which the coupling beams cannot be modeled as simple LC T-networks. Therefore a full 

ABCD matrix modeling of coupling beams is necessary for mechanically coupled array 

composites. By using the ABCD matrix model for a mechanical coupler and the traditional 

equivalent circuit of a contour mode disk resonator, Figure 4.4 develops an electrical 

equivalent circuit model of a 4-resonator array composite that can accurately capture its 

resonance frequency and motional resistance. Because an in-phase vibration of two 

adjacent disk resonators will generate forces with opposite directions on the two sides of 

 

Figure 4.4: Small-signal equivalent circuit of a 4-resonator disk array-composite with two-port ABCD matrix 

model to capture the behavior of mechanical couplers. 
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the mechanical coupler, the two-port ABCD matrix model in Figure 4.4 that represents a 

mechanical coupler actually connects adjacent resonators with opposite polarities by using 

crisscrossed pins on one side. 

For a micromechanical disk array with 𝜆/2 couplers, plugging (4.1) and (4.3) into (4.2) 

yields the force and velocity relationships at the two ports of the mechanical coupler as: 

𝐹1 = −𝐹2 , 𝑋̇1 = −𝑋̇2 (4.4) 

which means the force and velocity on the two sides of the mechanical coupler will have 

the same magnitude but opposite directions. Such condition indicates that adjacent disk 

resonators connected by the half-wavelength coupling beam will vibrate in-phase, and 

thereby enforce only the desired 1st mode with all other unwanted modes eliminated, as 

shown in the 4-resonator disk array case in Figure 4.2. For the case of half-wavelength 

coupling, a simple series connection can replace the ABCD matrix model and generate a 

modified 4-resonator disk array equivalent circuit as shown in Figure 4.5. To further 

simplify the equivalent circuit model of 𝜆/2 coupled disk array composite, series or shunt 

combinations of a single disk resonator’s equivalent circuit element values lead to a lumped 

circuit as shown in Figure 4.6. 

Because a micromechanical disk array-composite ideally behaves like a single disk 

resonator when only the in-phase mode is selected, its equivalent circuit will use the same 

schematic and topology as that of a single disk resonator, as shown in Figure 4.6(a). For a 

disk array with N mechanically coupled disk resonators, the stiffness  𝑘𝑚 , mass 𝑚𝑚 , 

damping 𝑏𝑚 , electromechanical coupling factor 𝜂𝑒𝑖 , and electrode-to-resonator overlap 

 

Figure 4.5: Modified equivalent circuit of a 4-resonator disk array-composite with half-wavelength coupling 

beams. 
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capacitance 𝐶𝑜𝑖  are all N times larger than for a single disk resonator. Thus, simple 

multiplication or division by N is all that is needed to derive coupled array equivalent 

circuit element values from those of a single disk resonator, as shown in Figure 4.6(b). 

4.2. Resilience Against Design Errors & Process Variations 

Ideally, a half-wavelength mechanically coupled disk array-composite will perform as 

a single disk resonator but with smaller motional resistance, higher equivalent stiffness, 

and better power handling capability. In reality, it is challenging to achieve an exact half-

wavelength coupling condition because the acoustic impedance presented by a coupling 

beam is discontinuous at 𝜆/2 with infinite value [16], which indicates that the acoustic 

impedance will change dramatically and thereby impact the arrays’ performance if the 

designed beam length slightly mismatches the real half-wavelength due to fabrication 

process variations or design errors. However, the following analysis indicates that a 

mechanically coupled disk array composite can tolerate these errors by using high-Q 

resonators and employing appropriate electrode phasing design. With resilience against 

design errors and process variations, one CAD design can potentially apply on devices with 

different materials, e.g. polysilicon and polycrystalline diamond resonators can share the 

same CAD design. Although the half-wavelength may be slightly off, theory and 

measurements indicate that it will not dramatically impact the in-phase mode selection of 

resonator array composites. 

 

Figure 4.6: (a) Negative capacitance equivalent circuit of a disk array composite. With only the in-phase 

mode selected, the structure practically behaves like a single resonator, making it share the same equivalent 

circuit topology as a single disk resonator. (b) Negative capacitance equivalent circuit of a disk array with N 

resonators based on element values in the single resonator equivalent circuit in Figure 2.2. 
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4.2.1. Fabrication Process Variations 

Fabrication process such as film deposition, lithography, and ion plasma etching will 

generally cause variations in disk resonators’ thickness and radius, leading to frequency 

deviations among individual resonators in an array. As the resonance frequency of a radial 

contour mode disk resonator is independent of thickness in the 1st order, this work assumes 

that the variation in disk radius Δ𝑅 causes frequency variations, as indicated in Figure 4.7. 

To do a simple comparison and save simulation time, Figure 4.7 only assumes that the disk 

radius varies in one direction with even distribution. Readers should be cautious that it only 

represents one case and a more completed study on variations should be based on Monte 

Carlo analysis.  

Although the resonance frequency of each individual coupled resonator varies from 

each other, the multi-mode mechanical system will still vibrate at the desired mode at one 

frequency, but now with phase shifts in between each resonators due to mismatches 

between individual resonators. This will impact the output current combination and thereby 

degrade the motional resistance improvement of an array-composite. However, such phase-

shift can be minimized to an extent that has minimal impact on the array composite’s 

performance by employing very high-Q resonators, e.g., resonators with Q > 10,000. 

From vibration principle point of view, the forced response of a system with multi-

degree of freedom can represent the mechanical behavior of a disk array composite [38]. 

For a multi-degree of freedom system with no damping, the vibration of each element will 

be either in-phase or 180º out-of-phase, regardless of mismatches between each constituent 

spring-mass system. As capacitive-gap transduced micromechanical disk resonators have 

already achieved very high Q’s over 160,000 at 61 MHz [12] and larger than 29,000 at 

~155 MHz [26], the damping factors for these devices are so small that the mechanically 

coupled array composite can be approximated as an undamped system, which enforces 

each individual resonator to vibrate almost in-phase even with mismatches. By assuming a 

316 ppm standard deviation for a 32µm radius polysilicon disk resonator [39], the 

calculated standard deviation of disk radius is ~10.1nm, which corresponds to an 

approximate 800 ppm of resonance frequency standard deviation for a 12.8µm contour 

 

Figure 4.7: Schematic of an N-resonator disk array with design errors and process variations from fabrication 

process. Here, Δ𝐿 represents the coupling beam length design error and Δ𝑅 models the matching tolerance 

from fabrication process. 
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mode disk resonator. With a 99.7% confidence that the analyzed model will have a worse 

matching compared with the real case, the equivalent circuit of array-composites employs 

6𝜎  as the maximum frequency variation between resonators in Figure 4.7, which 

corresponds to a Δ𝑅  of 20.5nm for a 4-disk resonator array and Δ𝑅  of 8.8nm for a 8-

resonator disk array. In addition, the equivalent circuit assumes a 10% design error in 𝜆/2 

coupling beam length as the acoustic velocity of the fabricated material usually deviates 

slightly from what is assumed in analytical calculation. 

Table IV summarizes the phase shift comparison of each individual resonator’s 

displacement versus Q for a 4-resonator disk array and 8-resonator disk array with coupling 

beam design errors and frequency mismatches from fabrication process. The maximum 

phase shift between constituent resonators in an array composite reduces by over 50× when 

Q improves from 100 to 10,000. Both 4-resonator disk array and 8-resonator disk array 

show phase shift no larger than 0.3º with Q > 10,000, which basically has negligible impact 

on output current combination. In addition, Table IV indicates that the more resonators in 

an array composite, the higher Q is needed to enforce in-phase response of each constituent 

resonator when design errors and fabrication mismatch exist. 

4.2.2. Design Errors 

In addition to the phase-shift issue that can be corrected by employing very high Q 

resonators, design errors in the length of coupling beams will lead to finite separation of 

unwanted vibration modes, which may introduce undesired resonance peaks in the 

frequency response spectrum of an array composite. Figure 4.8 presents the mode 

separation effect versus coupling beam length for a 4-resonator mechanically coupled 

multi-degree system. With 𝜆/2 being a sensitive design point, even a 1% design error in 

TABLE IV:  COMPARISON OF PHASE SHIFT VERSUS QUALITY FACTOR FOR A 4-RESONATOR DISK ARRAY AND 8-RESONATOR DISK 

ARRAY WITH DESIGN ERRORS AND MISMATCH FROM FABRICATION PROCESS. 
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1 166.97 
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177.32 

2.95 

179.12 

0.30 

2 168.93 177.70 179.15 

3 172.06 178.28 179.21 

4 175.64 178.89 179.28 

5 179.05 179.43 179.33 

6 181.86 179.85 179.38 

7 183.79 180.13 179.41 

8 184.74 180.27 179.42 
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𝜆/2 coupling beam will cause mode separation to drop from infinite to ~13MHz, according 

to Figure 4.8, which makes devices vulnerable to spurious modes. Appropriate phasing of 

output current from each individual resonators will help to cancel the total output current 

from undesired modes. For a 4-resonator disk array composite as shown in Figure 4.2, a 

direct connection of the I/O electrodes in each constituent resonator will largely cancel the 

output current from other undesired vibration modes because of out-of-phase vibration in 

between resonators, which leaves output current only from the desired in-phase mode.  

As shown in the simulation result in Figure 4.9(a), the frequency response of individual 

resonators in a 4-resonator disk array with half-wavelength design errors and resonance 

frequency mismatch will actually have 4 resonance peaks, with each representing different 

mode shapes in Figure 4.2, respectively. By designing appropriate electrode phasing (e.g. 

direct connection of all input & output electrodes for in-phase mode selection), Figure 4.9(b) 

indicates that a large part of the output current from undesired modes will cancel out, and 

thereby lead to a clean array-composite response which is very similar to a single disk 

resonator. Designers actually have freedom to select any specific modes by choosing 

different electrode phasing topologies, e.g., adding 180º phase shift to the output ports of 

resonator 1&2 will only select the 2nd mode in Figure 4.2 with output current of all other 

modes cancelled out. Therefore an appropriate electrode phasing will to some extent relax 

the 𝜆/2 design accuracy requirement, even though the half-wavelength is a discontinuous 

point as indicated in Figure 4.8. 

 

Figure 4.8: The magnitude of mode separation versus coupling beam length for a 213MHz polysilicon 

mechanically coupled 4-resonator disk array composite with 0.5µm width coupling beam. Here, the 

bandwidth of this multi-degree mechanical system represents the effectiveness of mode-separation by 

mechanical couplers. 
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4.3. Frequency Stability Enhancement of a Disk Array Composite 

Oscillators referenced to very high Q capacitive-gap transduced MEMS resonators have 

already made inroads into the low-end timing market, and research devices have been 

reported to satisfy GSM phase noise requirements [12] [40] [41]. However, like any other 

oscillators, environmental fluctuations such as external vibrations, bias voltage noise, or 

charging, may greatly degrade this performance [23] [24]. A very important factor that 

affects resonance frequency is the electrical stiffness 𝑘𝑒 , which can induce frequency 

instability and potentially set lower limits on not only short-term frequency stability, but 

long-term as well. As the electrical stiffness 𝑘𝑒 of a capacitive-gap MEMS resonator is 

often determined by dc-bias voltage 𝑉𝑃, electrode-to-resonator overlap capacitance 𝐶𝑜, and 

the capacitive gap spacings 𝑑𝑜 , environmental fluctuations that disturb any of these 

parameters will cause instability in electrical stiffness and generate frequency shift, as 

shown in Figure 4.10. For instance, theoretical analysis of micromechanical wine-glass 

 
Figure 4.9: (a) Frequency response of each individual resonator in a 4-resonator disk array with 1600 ppm 

resonance frequency shift in between adjacent resonators and 10% λ/2  design errors. Here, the input 

electrodes of all resonators are tied together with input excitation voltage, with output electrode left 

separately to observe the output current from each vibration mode. (b) Frequency response of a 4-resonator 

disk array with all input electrodes connected to input excitation voltage and output electrodes all tied to the 

same sensing port. 
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disk resonators reveals that acceleration-induced changes in electrode-to-resonator gap 

spacing or overlap area that in turn induce shifts in electrical stiffness dominate among 

sources that shift frequency during accelerations [42]. In addition, noise or drift on the 

power supply manifests as fluctuations on the resonator dc-bias VP that obviously 

destabilize the electrical stiffness, and thereby, resonance frequency [23]. 

Compared with stand-alone single disk resonator, mechanically coupled array 

composite can improve its frequency stability against the above mentioned environmental 

fluctuations. The key to enhanced frequency stability is the electrode-to-resonator 

capacitance (Co) generated by the parallel combination of input/output electrodes 

overlapping each resonator in the array that in turn reduces the efficacy of the bias voltage-

controlled electrical stiffness [27]. Here, an equivalent circuit based on negative 

capacitance provides improved visualization that helps to identify methods to suppress 

electrical stiffness induced frequency variation. The circuit model indicates that the more 

resonators in an array, the smaller the frequency shift imposed by a given bias voltage 

change. Both modeling and measurement suggest that the most stable MEMS-based 

oscillators (e.g., against supply noise and acceleration) are ones that utilize mechanically-

coupled arrays of resonators. 

4.3.1. Electrical Stiffness Induced Frequency Shift 

The electrical stiffness of all electrodes will subtract from the mechanical spring 

constant of the resonator at the core lcr location, changing the resonance frequency of a 

two port radial contour mode disk resonator to: 

 

Figure 4.10: Various factors that can contribute to electrical stiffness induced frequency instability, which 

includes bias voltage noise, environment vibration, dielectric charging, and temperature drift. 
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𝑓𝑜 =
1

2𝜋
√

𝑘𝑟

𝑚𝑚
=

1

2𝜋
√

𝑘𝑚 − 𝑘𝑒

𝑚𝑚
 

                                                     = 𝑓𝑛𝑜𝑚√1 −
𝑘𝑒

𝑘𝑚
 

                                                     ≈ 𝑓𝑛𝑜𝑚 (1 −
1

2
∙

𝑘𝑒

𝑘𝑚
) 

(4.5) 

Where 𝑘𝑟 is the effective stiffness of the disk at any point on its perimeter, 𝑘𝑒 is the total 

electrical stiffness contributed by all electrodes that surround the disk, 𝑘𝑚 is the purely 

mechanical stiffness, and 𝑓𝑛𝑜𝑚 is the resonance frequency of the disk structure with zero 

dc-bias voltage applied. The last expression in (4.5) uses the binomial expansion to 

approximate 𝑓𝑜 for the case in which the mechanical stiffness is many times larger than any 

of the electrical stiffness, which is generally true for devices in this dissertation. Rearrange 

of (4.5) yields the fractional frequency change due to electrical stiffness as: 

Δ𝑓

𝑓𝑛𝑜𝑚
= −

1

2

𝑘𝑒

𝑘𝑚
 (4.6) 

Indicated by (4.6), the resonance frequency of a radial contour mode disk resonator will 

be slightly lower than the mechanical natural frequency of the disk structure, due to 

frequency pulling effect of the force generated by time-varying changes in electric field 

strength as vibration changes the parallel-plate capacitive electrode-to-resonator gap. The 

ratio of electrical stiffness 𝑘𝑒  to purely mechanical stiffness 𝑘𝑚  actually captures the 

magnitude of such frequency shift. By inserting the expression of parallel-plate electrode-

to-resonator overlap capacitance into (1.16), the total electrical stiffness 𝑘𝑒 for a two-port 

radial contour mode disk resonator can be calculated as: 

𝑘𝑒 =
𝑉𝑃

2(𝐶𝑜1 + 𝐶𝑜2)

𝑑𝑜
2

=
𝑉𝑃

2𝜖𝐴

𝑑𝑜
3  (4.7) 

where 𝜖 is the permittivity of the gap material (i.e., vacuum in this case) and A is the total 

overlap area between the resonator and its electrodes. Changes of any variables in 𝑘𝑒, such 

as dc-bias voltage noise, capacitance variation due to mechanical vibration, or charging 

induced bias voltage drift, can cause frequency stability issues for capacitive-gap MEMS 

resonators [23] [24]. 

4.3.2. Mitigation of Electrical Stiffness 

To capture the influence of electrical stiffness more clearly, the negative capacitance 

equivalent circuit shown in Figure 2.2 models the influence of electrical stiffness on device 
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and circuit behavior by using a negative capacitance exactly equal in magnitude to the 

shunt static electrode-to-resonator overlap capacitance Coi at each electrode terminal [25]. 

Note that the negative Coi is also a static capacitor, just like the positive Coi of the physical 

shunt electrode-to-resonator capacitance. With this circuit, by mere inspection, a designer 

can now immediately see that the shunt Coi presents the opportunity to effectively negate 

the electrical stiffness, suppress frequency changes induced by electrical stiffness, and 

thereby stabilize the frequency against all variables in (4.7)—something highly desirable 

in some oscillator applications. 

In order for the static electrode-to-resonator capacitor 𝐶𝑜𝑖  to negate the electrical 

stiffness represented by −𝐶𝑜𝑖, approximately same amount of current should flow through 

𝐶𝑜𝑖 and −𝐶𝑜𝑖, which indicates that 𝐶𝑜𝑖 should pass most of the current flowing into the 

parallel combination of 𝐶𝑜𝑖 and 𝑍𝐿𝑖. In other words, the impedance of 𝑍𝐿𝑖 should be much 

larger than that of 𝐶𝑜𝑖, or: 

|𝑍𝐿𝑖| ≫
1

𝜔𝑜𝐶𝑜𝑖
 (4.8) 

From (4.8), to reduce electrical stiffness, both 𝑍𝐿𝑖 and 𝐶𝑜𝑖 should be large. If 𝑍𝐿𝑖 has no 

reactive component, operation at high frequency will also suppress electrical stiffness. 

However, increasing operating frequency may conflicts application requirement because 

the resonance frequency is usually application oriented, which means a designer may not 

have the freedom to change it. In addition, as a resonator might be used with reconfigurable 

drive and sense circuits that present non-constant loads, it would be also challenging to 

achieve better frequency stability by purely relying on optimizing load impedances. These 

two, together, lead to the only practical choice to enhance frequency stability against 

electrical stiffness, which is to boost a resonator’s electrode-to-resonator’s overlap 

capacitance 𝐶𝑜, e.g., utilizing resonators with solid dielectric gaps [43] [44], or building 

array of resonators. 

The mechanically coupled array composite in this chapter will boost the electrode-to-

resonator overlap capacitance by N times (N is the number of coupled resonators), which 

will obviously contributes to enhance frequency stability according to (4.8). Note that 

although the electrical stiffness goes up by N according to (4.7), so does the mechanical 

stiffness, so their ratio 𝑘𝑒/𝑘𝑚 remains the same and the fundamental efficacy by which ke 

pulls the frequency, as governed by (4.5), does not increase. Instead, with 𝐶𝑜𝑖 presenting a 

much smaller impedance, more current flows through 𝐶𝑜𝑖 than 𝑍𝐿𝑖, allowing it to cancel 

more of 𝐶𝑒𝑖 , thereby negating the electrical stiffness induced frequency instability via 

circuit interaction. 
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4.4. Design Examples: 213-MHz Contour Mode Disk Arrays 

Table V summarizes the needed expressions (reference to Figure 4.6(a) for variables) 

while also succinctly presenting a design flow to achieve a radial-contour mode disk array 

composite with N resonators like that of Figure 4.1 with specific operating frequency and 

motional resistance 𝑅𝑥. This section also designs several 213-MHz (𝑅 = 12.8 μm) radial 

contour mode disk arrays employing various number of mechanically coupled resonators 

(N = 1, 8, 16, and 50). The measurement results of motional resistance improvement, design 

robustness, and frequency stability enhancement on these device will be analyzed in 

Section 4.6. Table VI summarizes the design parameters, equivalent circuit variables, and 

Table V: Radial contour mode disk array design equations and procedure summary 

Objective/Procedure Parameter 
Relevant Design Equations for a Given 

Parameter 
Eq. 

 

Solve For 

𝛿 
𝛿 ×

𝐽0(𝛿)

𝐽1(𝛿)
= 1 − 𝜈 (4.9) 

Angular 

Resonance 

Frequency 

𝜔𝑛𝑜𝑚 

𝜔𝑛𝑜𝑚 =
𝛿

𝑅
√

𝐸

𝜌(1 − 𝑣2)
 (4.10) 

Given: 𝜔𝑛𝑜𝑚, VP, N, 

Rxij (= resistance 

between terminals i and 

j). 

Find: R, do. 

1. Choose E, 𝜌, and 𝜈 

by choice of 

structural material. 

2. Choose thickness t. 

3. Use (4.10) to find 

the R needed to 

achieve ωnom. Use 

(4.9) to get  in the 

process. 

4. Use (4.14) to find 

the do needed to 

achieve Rxij. 

5. (4.11), (4.12) and 

(4.13) yield all 

needed values in 

the ac small signal 

equivalent circuit 

in Figure 4.6(a). 

Core 

Equiv.  

Circuit 

Elements 

𝑙𝑥𝑛 = 𝑁𝑚𝑚 = 𝑁
2𝜋𝜌𝑡 ∫ 𝑟𝐽1

2(ℎ𝑟)
𝑅

0
𝑑𝑟

𝐽1
2(ℎ𝑅)

,  

ℎ = √
𝜔𝑛𝑜𝑚

2 𝜌

(
2𝐸

2 + 2𝜈
+

𝐸𝜈
1 − 𝜈2)

 

𝑐𝑥𝑛 =
1

𝑁𝑘𝑚

=
1

𝜔𝑛𝑜𝑚
2 𝑁𝑚𝑚

,   𝑟𝑥𝑛 =
𝜔𝑛𝑜𝑚𝑁𝑚𝑚

𝑄
 

(4.11) 

Static  

Overlap  

Capacitor 
𝐶𝑜𝑛𝑖 = 𝑁

𝜖𝑜(𝜃𝑖2 − 𝜃𝑖1)𝑅𝑡

𝑑𝑜

 (4.12) 

Electro-

mechanical 

Coupling 

Coefficient 

𝜂𝑒𝑛𝑖 = 𝑉𝑃

𝐶𝑜𝑛𝑖

𝑑𝑜

 (4.13) 

Motional 

Resistance 
𝑅𝑥𝑖𝑗 =

𝑟𝑥𝑛

𝜂𝑒𝑛𝑖𝜂𝑒𝑛𝑗

 (4.14) 
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electrical stiffness induced frequency shift for four different type of disk array designs 

which have the same disk radius (𝑅 = 12.8 μm) and coupling beam length, but different 

number of resonators. The negative capacitance equivalent circuit predicts that the 213-

MHz 50-resonator disk array will reduce the frequency shift caused by 9 V dc-bias voltage 

variation by 3.6× to -19.8 ppm, compared with the -71.3 ppm shift of a stand-alone single 

disk resonator, which theoretically verifies the frequency stability enhancement effect from 

micromechanical coupled disk arrays. 

4.5. Fabrication Process 

The fabrication process for the all-polysilicon contour mode disk resonator arrays of 

this work deviates from previous ones, such as that of [11], in that it does not use self-

aligned peg-stem anchors and it employs chemical mechanical polishing (CMP) to remove 

electrode overhangs. The process begins with film depositions and etches identical to those 

of [11] to achieve the substrate isolation layer, polysilicon interconnects, and the bottom 

sacrificial layer. At this point, unlike previous self-aligned processes, a mask is used to 

define, pattern, and etch stem anchor holes into the bottom sacrificial oxide, followed by a 

Table VI:  Comparison of design variables and equivalent circuit element values for 215-MHz radial 

contour mode disk arrays with different number of mechanically-coupled resonators. 

 Parameter Source Number of Resonators Units 

D
es

ig
n

 V
a

ri
a
b

le
s 

Number of Resonators, N N/A 1 8 16 50 N/A 

Disk Radius, 𝑅 Layout 12.8 12.8 12.8 12.8 μm 

DC Bias Voltage, 𝑉𝑃 N/A 9 9 9 9 V 

Disk Thickness, 𝑡 Fabrication 2 2 2 2 μm 

Electrode-to-Resonator 

Gap, 𝑑𝑜 
Fabrication 50 50 50 50 nm 

Natural Frequency, 𝑓𝑛𝑜𝑚 
Equation 

(4.10) 
215 215 215 215 MHz 

Coupling Beam Length 𝑙 Layout 21.2 21.2 21.2 21.2 μm 

Electrode Span Angle, 𝜃 Layout 133 133 133 133 (°) 

Quality Factor, 𝑄 
Measurement/

Estimate  
10,000 10,000 10,000 10,000 N/A 

E
q

u
iv

a
le

n
t 

C
ir

cu
it

 E
le

m
en

ts
 Equivalent Inductance, 

𝑙𝑥𝑛 

Equation 

(4.11) 
1.81×10-12 1.45×10-11 2.89×10-11 9.03×10-11 H 

Equivalent Capacitance, 

𝑐𝑥𝑛 

Equation 

(4.11) 
3.03×10-7 3.79×10-8 1.89×10-8 6.06×10-9 F 

Equivalent Resistance, 

𝑟𝑥𝑛 

Equation 

(4.11) 
2.44×10-7 1.95×10-6 3.91×10-6 1.22×10-5 Ω 

Overlap Capacitance, 

 𝐶𝑜𝑛1 = 𝐶𝑜𝑛2 

Equation 

(4.12) 
9.2 73.8 148 462 fF 

Electromechanical 

Coupling, 𝜂𝑒𝑛1 = 𝜂𝑒𝑛2 

Equation 

(4.13) 
1.46×10-6 1.17×10-5 2.33×10-5 7.29×10-5 N/A 

 
Electrical Stiffness 

Induced Frequency Shift 

(𝑓𝑜 − 𝑓𝑛𝑜𝑚)/𝑓𝑛𝑜𝑚 

Equivalent 

Circuit of 

Figure 4.6(b) 

-71.3 -56.6 -38.7 -19.8 ppm 
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2-m LPCVD in-situ doped polysilicon film that fills the holes to form the stems and serves 

as the resonator structural material. Here, an AMSL300 DUV Stepper is used to realize 

very precise alignment, with less than 100nm error—good enough to achieve Q’s 

comparable to those of devices with self-aligned stems. 

After depositing an oxide hard mask over the structural polysilicon, disk devices and 

coupling links are patterned and etched as before, the gap-defining sacrificial sidewall 

oxide spacer is deposited, electrode to interconnect contact vias are etched, and the 

polysilicon electrode material LPCVD’ed 3-m thick, all to yield the cross-section of 

Figure 4.11(a). At this point, the process again deviates from that of [11] in that before 

patterning and etching the electrodes, the top polysilicon is first CMP’ed down to the hard 

mask. This step removes the electrode overhangs of Figure 4.11(a), achieving the final 

cross section of Figure 4.11(b). When compared to the previous cross section of [11], cf. 

Figure 4.11(c), this new process greatly increases the pull-in voltage of these devices, 

where contact between the disk and the electrode overhang is often the first to occur when 

dc-bias voltages increase. As before, devices are released in 49 wt. % hydrofluoric acid for 

~40min. 

Figure 4.12 presents the SEM of the fundamental element of micromechanical disk 

arrays — a 213-MHz stand-alone radial contour mode disk resonator fabricated using the 

process flow described above. Clearly indicated by Figure 4.12, there are no electrode 

overhangs above the disk structure, which can potentially increase the maximum dc-bias 

voltage that the device can tolerate. Figure 4.13, Figure 4.14, and Figure 4.15 present SEMs 

of fabricated 213-MHz 50-nm capacitive-gap transduced half-wavelength-coupled disk 

arrays employing 8, 16, and 50 resonators, respectively, in straight line and rectangular 

placement configurations. 

 

Figure 4.11: Cross-sections showing the last few steps in the fabrication process for a 215-MHz all-

polysilicon disk resonators with CMPed electrodes (a. b), and a comparison to previous work’s fabrication 

process, (c). 
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Figure 4.12: SEM of a 213-MHZ stand-alone contour mode disk resonator with 50nm capacitive gap. 

 

Figure 4.13: SEM of a 213-MHZ 50nm capacitive-gap contour mode disk array employing 8 resonators. 

 

Figure 4.14: SEM of a 213-MHZ 50nm capacitive-gap contour mode disk array employing 16 resonators. 

 

Figure 4.15: SEM of a 213-MHZ 50nm capacitive-gap contour mode disk array employing 50 resonators. 
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4.6. Measurement Results 

To demonstrate the efficacy of array design techniques discussed in Section 4.1 and 4.2, 

measured frequency response of S parameters are in order, for both mechanically coupled 

disk array-composite resonators using various numbers of resonators, as well as for a single 

stand-alone disk for comparison. In addition, measured plots of resonance frequency versus 

dc-bias voltage on these devices also gauge the degree to which arraying enhances 

frequency stability against electrical stiffness changes. To this end, measurements were 

made under a 2μtorr vacuum environment in a Lakeshore FWPX vacuum probe station in 

the direct two-port excitation and sensing scheme. Figure 4.16 presents the direct two-port 

measurement setup used in this work for a radial contour mode disk resonator, which 

records the S21 parameter of the devices to observe the resonance frequency by using an 

Agilent E5071C network analyzer. 

4.6.1. Stand-Alone Contour Mode Disk Resonators 

Figure 4.17 presents the frequency spectrum of a stand-alone radial contour mode disk 

resonator with 12.8 µm radius and 50-nm capacitive gap measured under vacuum using the 

two-port setup shown in the figure inset and a dc-bias voltage of 25 V. As shown, this 

device exhibits Q > 14,000 at 213.9 MHz, which is good enough to enforce in-phase 

response for array-composites with design errors and frequency mismatches, as described 

in Section 4.2. The dc-bias voltage goes up to 25 V because of improved fabrication process 

with CMP’ed electrodes, which is about 1.7× higher than the previously reported 15 V by 

similar capacitive-gap devices at the same frequency without CMP process [25]. With dc-

bias voltage of 25 V and Q of 14,260, the motional resistance extracted from the plot 

reaches 12.1 kΩ. 

 

Figure 4.16: S21 direct measurement setup for a polysilicon 213-MHz capacitive-gap radial-contour mode 

disk resonator. 
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4.6.2. Mechanically-Coupled Resonator Arrays 

Figure 4.18 presents frequency characteristics measured using two-port configurations 

under vacuum for a stand-alone radial contour mode disk resonator, and eight-, sixteen-, 

and fifty-resonator coupled disk arrays with resonance peak heights clearly increasing with 

the number of resonators coupled. To allow for direct comparison of motional resistance, 

same dc-bias was applied to each device for measurement, and a low ac drive level (less 

than 100 mV) was used to avoid nonlinearity. Table VII presents a comparison of Rx values 

for each of these devices, clearly showing decrease in Rx with increase in the number of 

resonators. The 50-resonator disk array achieves a motional resistance of 1.9 kΩ, which is 

a 26× improvement over the single disk resonator. Note that the deviations in Q for arrays 

 

Figure 4.17: Frequency spectrum of a 50 nm-gap capacitive-gap single disk (R = 12.8 µm) resonator vibrating 

in radial contour mode shape. 

 

Figure 4.18: Frequency response spectra for a 213-MHz stand-alone disk resonator and mechanically 

coupled disk resonator array-composites with 8, 16, and 50 resonators. 
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versus stand-alone resonator seen in Table VII are partially responsible for non-matching 

Rx reduction factors (which are not exactly equal to the number of resonators). For a fair 

comparison, Table VII also calculates the Rx reduction factors with normalized Q 

(normalized by multiplying Rx of each resonator by its Q). The Q-normalized Rx reduction 

factors of 8.1×, 15.7×, and 46.5×, exhibited by eight-, sixteen-, and fifty-resonator 

mechanically coupled resonator arrays, respectively, show good matching between 

reduction factor and number of resonators. The degradation in Q may be attributable to the 

unbalanced coupled resonators in a mechanically coupled array, e.g., the resonators at the 

two ends only have coupling beams at one side as shown in Figure 4.1, which leads to 

unbalanced forces during vibration, generates more energy loss via stem, and thereby limits 

Q. Although the reported Q’s of arrays in Table VII are slightly lower than the single disk 

resonator, they are still above 10,000, which is good enough to enforce in-phase response 

of each individual resonator, as indicated by Table IV. 

As seen in Figure 4.18, in addition to Rx reduction, mechanical coupling of resonators 

also shifts the center frequency of the peak from that of a stand-alone resonator. For the 

arrays in Figure 4.18, the resonance frequencies shifts from around 213.5 MHz down to 

212.4 MHz. This comes about because the 21.2 µm length coupling beams were originally 

designed for poly-diamond material, which has ~8% design error to the simulated 𝜆/2 of 

19.6 µm for polysilicon material. For coupling beam slightly longer than 𝜆/2 , the 

resonance frequency of an array composite will shift downward compared with single 

resonators because the coupling beams effectively add more mass to the system than 

stiffness, which decreases the effective array stiffness-to-mass ratio and in turn reduces the 

overall resonance frequency. In this case, the frequency shift between single disk resonator 

and disk arrays is only ~0.5%, which is small enough to be fixed by post-fabrication laser 

trimming [45]. 

Figure 4.18 also clearly shows that the off-resonance background level limited by 

electrode-to-resonator overlap capacitance increases as the number of resonators in an 

array increases. As shown in Figure 4.1, a direct electrical feed-through pass exists via the 

electrode-to-resonator overlap capacitance, which could potentially increase the off-

resonance response if the dc-bias voltage line has finite trace resistance (as shown in RL3 

in Figure 4.16) and cannot shield all feed-through current from input. Ideally, the feed-

through current dominated background response will increase the same amount as the 

resonance peak for an array composite. However, as Vp line trace resistance doesn’t scale 

down as electrode-to-resonator overlap capacitance increase, the feedthrough current 

increases more compared with the resonance peak does, making the relative peak height 

smaller compared with a single disk resonator. By applying trace resistance values to the 

TABLE VII:  213-MHZ N-RESONATOR DISK ARRAY PARAMETERS AND MEASURED PERFORMANCE 

N 
Measured 

Rx (kΩ) 

Rx 

Reduction  

Q 

(Mea.) 

Q-Normalized 

Rx Reduction  

Overlap 
Cap. Coi 

[fF] 

RL1 

[kΩ] 

RL2 

[kΩ] 

RL3 

[kΩ] 

Relative 
Peak dB 

(Sim.) 

Relative 
Peak dB 

(Mea.) 

1 49.3 1× 19,520  1× 9.2 0.3 0.3 1.56 16.3 15 

8 10.2 4.8× 11,532 8.1× 73.8 0.3 0.3 4.04 12.9 9.5 

16 5.7 8.7× 10,792 15.7× 148 0.3 0.3 5.24 5.3 8.0 

50 1.9 26.1× 10,965 46.5× 462 0.3 0.3 2.92 2.8 2.6 
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equivalent circuit model, Table VII also shows the simulated relative peak height for array 

composites with different number of resonators, which has the same trend as the measured 

results. Both results indicate that, with finite trace resistance, the relative peak height will 

decrease as the number of resonators in an array composite increases. By employing new 

fabrication process that uses thicker polysilicon interconnect or more conductive material, 

the trace resistance will be negligible compared with the impedance of overlap capacitance 

of an array, leading to same relative peak height for both single resonators and array-

composites [25]. 

4.6.3. Benefits from Electrode Phasing and High-Q System 

To show the impact of 𝜆/2  coupling beam design error on array performance and 

demonstrate the efficacy of electrode phasing design to knock out spurious modes, Figure 

 

Figure 4.19: (a) Measured de-embedded frequency response spectra of each individual resonator in a 

mechanically coupled 4-resonator disk array composite. (b) Measured de-embedded frequency response 

spectrum of a mechanically coupled 4-resonator disk array composite with appropriate electrode phasing 

design. Here, various vibration modes are observed in the individual resonators’ response due to coupling 

beam design errors and resonance frequency mismatches from fabrication process. A direct combination of 

output electrodes cancels out undesired modes (mode 2, 3, and 4 in Figure 4.2) and only select the in-phase 

mode shape. 
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4.19 presents the de-embedded S21 response of a 4-resonator disk array and the response 

of each individual resonators in the same type of array, by using the measurement setup in 

the figure insets. In order to better observe the spurious modes that usually have smaller 

peaks compared with the main response, Figure 4.19 plots the de-embedded S21 responses 

that mathematically take out the feedthrough current from electrode-to-resonator overlap 

capacitance. As the designed coupling beam length of 21.2 μm misses the simulated 19.6 

μm half-wavelength value by 8%, it only separates the unwanted spurious modes by ~1 

MHz from the desired in-phase response, as shown in Figure 4.19 (a), instead of shifting 

all unwanted spurious modes infinite away. However, a mechanically coupled array 

composite can tolerate such coupling beam design error by using appropriate electrode 

phasing topology. As clearly shown in Figure 4.19 (b), a direct connection of all output 

electrodes enforces the in-phase response while cancels out the current from all other 

spurious modes, e.g., out-of-phase vibrations in undesired modes in Figure 4.19(a) will 

generate current in opposite direction and cancels out at the output. As readers may observe, 

there are only 3 modes in Figure 4.19(a), with one mode missing according to Figure 4.2. 

The 4th mode disappears because it has a better matched vibration amplitude from 

individual resonators, which contributes to not only cancel out output current, but also 

negate the effective excitation force generated from the input side, causing very small 

response that will be immersed in noise and cannot be observed. 

Figure 4.20and Figure 4.21 present the measured frequency mismatch due to fabrication 

process in a 4-resonator disk array and the in-phase response enforcement by a high-Q 

system. The maximum frequency variation between resonators in the un-coupled 4-

resonator disk array is around ~4000 ppm, which could be attributable to variation of film 

thickness, etching uniformity, and lithography during fabrication process. As shown in the 

response of each constituent resonators in Figure 4.21, such array can still enforce in-phase 

response of each individual resonators with total phase shift no larger than 0.5º because of 

high Q’s of coupled resonators, which helps to achieve maximum output when combining 

current from each individual resonator. 

 

Figure 4.20: Measured Frequency spectrum of a 4-resonator disk array with no coupling beam connecting 

individual resonator. The resonance frequencies of each constituent resonator varies, which leads to a multi-

peak response due to variations from fabrication process. 

217 217.5 218 218.5 219
-54

-53

-52

-51

-50

-49

 

 

Frequency (MHz)

T
ra

n
s

m
is

s
io

n
 S

2
1

 (
d

B
)

VP = 12 V, do = 50 nm

VP

vi

io



65 

 

4.6.4. Frequency Stability Enhancement 

Figure 4.22 plots the measured S21 parameter of a single radial contour mode disk 

resonator under different dc-bias voltage conditions (VP  = 5 V, 10 V and 15 V). It observes 

a 180 ppm frequency change as VP varies from 15 V down to 5 V, which clearly shows the 

electrical stiffness induced frequency pulling effect. It also indicates that the frequency 

stability of a single disk resonator will be susceptible to all factors that changes electrical 

stiffness, such as environment acceleration or dc-bias voltage noise. 

 

Figure 4.21: Measured de-embedded phase and amplitude response of each resonator in a mechanically 

coupled 4-resonator disk array using the measurement setup in the inset of Figure 4.16. 

 

Figure 4.22: Frequency spectrum of a single radial contour mode disk resonator under different dc-bias 

voltage conditions. (VP = 5 V, 10 V, and 15 V) 

 

-80

-70

-60

-50

-40

-200

-100

0

100

200

213.85 213.9 213.95 214213.85 213.9 213.95 214
-80

-70

-60

-50

-40

-200

-100

0

100

200

213.85 213.9 213.95 214213.85 213.9 213.95 214

-80

-70

-60

-50

-40

-200

-100

0

100

200

213.85 213.9 213.95 214213.85 213.9 213.95 214
-80

-70

-60

-50

-40

-200

-100

0

100

200

213.85 213.9 213.95 214213.85 213.9 213.95 214

Frequency (MHz)

S
2
1
 A

m
p

li
tu

d
e
 (

d
B

)

S
2

1
 P

h
a

s
e
 (

º)

Frequency (MHz)

S
2

1
 A

m
p

li
tu

d
e

 (
d

B
)

S
2
1
 P

h
a
s
e
 (

º)

Frequency (MHz)

S
2
1
 A

m
p

li
tu

d
e
 (

d
B

)

S
2

1
 P

h
a

s
e
 (

º)

Frequency (MHz)
S

2
1
 A

m
p

li
tu

d
e
 (

d
B

)

S
2
1
 P

h
a
s
e
 (

º)

θ = 169.39º θ = 169.71º

θ = 169.40º θ = 169.89º

Simulation Data
Measurement Data

VP = 5 V

VP = 10 V

VP = 15 V

Frequency [MHz]

T
ra

n
s
m

is
s
io

n
 [

d
B

]



66 

 

To demonstrate the frequency stability enhancement against dc-bias voltages from 

micromechanical disk array composite, Figure 4.23 plots the fractional frequency change 

along the y-axis against various dc-bias voltages, for radial contour mode disk arrays with 

various number of resonators, e.g., N = 1, 8, 16, and 50. The measured curves clearly show 

a shrinking frequency dependence on dc-bias voltage as the number of resonators used in 

an array increases. In particular, the 50-resonator 213-MHz disk array experiences a 20 

ppm frequency change when VP varies over a 7 V span, from 2 V to 9 V, 3.5× smaller than 

the 70 ppm of a stand-alone device. 

To confirm the validity of the negative capacitance equivalent circuit of Figure 4.6(b), 

simulated plots using this circuit are also included in Figure 4.23, showing very good 

agreement between theory and measurement. These simulations assume the load 

impedance 𝑍𝐿𝑖  derives from a combination of series trace resistance 𝑅𝐿1  and 𝑅𝐿2  from 

input/output electrode leads, as well as similar lead resistance 𝑅𝐿3  from the 𝑉𝑃  port, all 

shown in Figure 4.16. Since probe coax and bond pad capacitance are nulled by calibration, 

𝑍𝐿𝑖 in these measurements is mainly resistive. It should be noted that the total equivalent 

load resistance 𝑅𝐿𝑖,𝑡𝑜𝑡 of a disk array in this work is generally larger than that of a single 

resonator and actually increases with the number of disks in the array. This comes about 

because, at least in the current layout, the distance between the VP pad and the furthest 

resonator increases as the number of resonators increases, as seen from Figure 4.14, 

resulting in a corresponding increase in series resistance 𝑅𝐿3 . Table VII summarizes 

overlap capacitance and equivalent load resistance values for disk arrays with N=1, 8, 16, 

and 50, clearly showing larger values as the number of resonators increases, at least for 

straight line (1D) arrays with N=8 and N=16 as indicated by the SEM in Figure 4.14. The 

series resistance of the 50-resonator array depicted in Table VII is actually smaller than 

those of the 8- and 16-resonator ones, since its layout uses a rectangular or matrix topology, 

rather than a straight line, so the average distance of its resonators from its VP pad ends up 

being smaller. 

 

Figure 4.23: Measured curves of resonance frequency versus dc-bias voltage VP plotted against simulation 

using negative capacitance equivalent circuit models for disk arrays with N=1, N=8, N=16, and N=50. 
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According to (4.8), increases in load resistance like those in Table VII should also 

contribute to an overall nulling of the electrical stiffness, and thereby enhance frequency 

stability against dc-bias voltage fluctuations. Indeed, as the number of array resonators 

increases, electrical stiffness erodes due to increases in both electrode-to-resonator overlap 

capacitance and load resistance—a double whammy effect perfectly predicted by the 

negative capacitance equivalent circuit. 
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 3rd-order Flexural Mode 

Disk Array Filters 

The rapid growth of micromachining technologies that yield high-Q on-chip mechanical 

resonators [5] now presents an opportunity to miniaturize and integrate highly selective 

filters together with transistor circuits, which may contribute someday towards 

implementation of single-chip super-heterodyne transceivers. With Q’s higher than 10,000 

under vacuum, polycrystalline silicon micromechanical resonators can potentially serve 

well as miniaturized substitutes for crystals or SAWs in narrowband filtering applications 

[26]. To date, coupled two-resonator prototypes of such filters have been demonstrated at 

very high frequency (VHF) (e.g., 223 MHz in [46]). However, applications in 

communication often desires sharper roll off response which requires higher order filters 

[37]. Due to smaller electromechanical transduction strength and increased mechanical 

coupler stiffness at higher frequency, higher-order capacitive-gap micromechanical 

coupled filters utilizing three or more resonators have not yet been achieved at VHF 

frequency range. 

This chapter realizes a 3rd order VHF narrowband 75MHz micromechanical filters by 

employing flexural mode disk array composites as ‘resonator’ element. By using 7-

resonator 50nm capacitive-gap flexural mode disk arrays, the 75MHz 3rd order VHF filter 

achieves a passband of 210 kHz (0.28%) and an improved 20dB shape factor of 1.46 with 

40dB stopband rejection. Similar to the previously used filter coupling technique [47] [48], 

the 3rd order filter in this dissertation utilizes the coupling topology as shown in Figure 5.1, 

with the only difference that each resonator in the figure actually represents an flexural 

mode disk array composite. For the majority of mechanical band pass filter designs, the 

order is synonymous with the number of coupled resonators. As shown in Figure 5.1, a 

coupled 3-resonator system will exhibit three closely spaced resonance modes that all 

together define the filter’s passband. Here, each resonance peak corresponds to a distinct 

physical mode shape. The center frequency of the filter is determined primarily by the 

frequency of the constituent resonators, while the bandwidth is determined largely by the 

stiffness ratio of the couplers to the resonators. Properly chosen termination resistors will 

finally flatten the jagged passband and achieve a filter response.  

This chapter will first discuss the design of a flexural mode disk resonator and its 

equivalent electrical circuit model derivation using electromechanical analogies. Then it 

follows in Section 5.2 by introducing the method of building mechanically coupled 

resonator array composites with quasi-zero length couplers, which not only reduces a 

filter’s termination resistance and bandwidth, but also does this with minimal increase in 

area. The analysis and design in Section 5.3 develop the completed equivalent electrical 

circuit model of a 3rd order coupled array filter and identifies potential paths to optimize 
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filter performance. After going through the fabrication process of capacitive-gap 

polysilicon flexural mode disk resonators in Section 5.4, Section 0 then confirms high-Q 

and low motional resistance of flexural mode disk resonator array composites, 

demonstrates the effectiveness of quasi-zero length coupling technique, and finally verifies 

the filter design method by comparing the measurement results with simulation data. 

5.1. Flexural Mode Disk Resonators 

The mechanically coupled filter in this chapter employs capacitive-gap transduced 

flexural-mode disk resonators, as shown in Figure 5.2(a), which provides better 

electromechanical transduction efficiency at the frequency range of interest and allows for 

flexible phasing design of input and output signals — something very important to reduce 

output feedthrough current and improve filter’s stopband rejection. The flexural-mode disk 

resonator comprises a 2.5 μm-thick (t = 2.5 μm) polysilicon disk suspended 50 nm 

(specified by fabrication process) above its capacitive transducer electrodes. In order to 

minimize anchor induced losses due to misalignments between disk structure and anchor, 

the filter structure in this chapter employs side-supported flexural-mode disk resonators 

rather than the center stem supported ones [8]. 

The flexural-mode disk resonator operates similar to previous capacitive-gap transduced 

micromechanical resonators [8] [11]. The combination of an ac voltage vi applied to the 

input electrodes and a dc-bias voltage VP applied to the conductive polysilicon resonant 

structure together induce an electrostatic actuation force which drives the disk into a 

flexural-mode resonance, when the frequency of vi matches the resonance frequency. Once 

vibrating, the VP-biased time varying capacitance between the disk and its output electrodes 

generates an output current 𝑖𝑜 = 𝑉𝑃(𝜕𝐶/𝜕𝑧)(𝜕𝑧/𝜕𝑡) , where 𝜕𝐶/𝜕𝑧  is the electrode-to-

resonator overlap capacitance difference per z-direction gap spacing change. The 

electrodes in such devices are independently accessible (for phase flexibility) and identical 

in size, which help to generate symmetric electrostatic force distribution and cancell 

 

Figure 5.1: Mode shapes of a three-resonator flexural micromechanical coupled filter and its terminated and 

un-terminated frequency response. 
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feedthrough current. By using side support for the disk structure, dc-bias can access the 

resonator body via side supporting beams, leaving more area for I/O electrodes to enhance 

electromechanical transduction efficiency. 

As shown in the FEM modal response of flexural-mode disk resonators in Figure 5.3(a), 

each supporting beam aligns with one of the nodal diameters, where the vibration is only 

torsional (no vertical motion), making the beam attachment points an effective quasi-nodal 

points. Minimal vibration energy dissipates via supporting beams to the substrate due to 

near-zero displacement, resulting in higher Q for such device, hence, better stand-alone Rx 

than a clamped-clamped beam type of resonator. The number of nodal diameters in a mode 

shape actually indicates the order of the flexural-mode vibration. More nodal diameters 

appear in higher order flexural-mode shape, i.e., Figure 5.3(b) presents an FEM simulated 

3rd order flexural-mode shape with three nodal diameters. 

5.1.1. Mode Shape and Resonance Frequency 

The flexural mode shape of a free-edge disk structure in a polar coordinates (where the 

origin coincide with the center of the disk) takes the following expression [49]: 

 

Figure 5.2: (a) Perspective-view schematic of a side-supported 2nd order flexural-mode disk resonator in a 

classic two-port excitation and sensing configuration. (b) Top-view schematic of the same device. 
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𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃) = (𝐽𝑛 (
𝜆𝑛,𝑠𝑟

𝑅
) +

𝐶𝑛

𝐴𝑛
𝐼𝑛 (

𝜆𝑛,𝑠𝑟

𝑅
)) sin 𝑛𝜃 (5.1) 

where (r, θ) is the polar coordinates of a particular point of interest on the disk, R is the 

radius of the disk, n and s represents the number of nodal diameters and nodal circles, 

respectively, in a mode shape of interest, Jn and In are the nth order Bessel functions of the 

first kinds and modified Bessel functions of the first kinds, respectively. λn,s and Cn/An are 

generally a function of the boundary conditions of the disk (free edge in this case), 

Poisson’s ratio and the order of the mode shape. The mode shape order can be identified 

by the number of nodal diameters n and the number of nodal circles s. For the flexural 

mode shape with zero nodal circles and two nodal diameters (n = 2, s = 0) that will be 

discussed in details in this chapter, the numeric value of λ2,0 and C2/A2 are 2.29 and 0.461, 

respectively, for polysilicon structure material [49] [50]. 

The nominal resonance frequency fnom for a disk vibrating in flexural mode takes the 

form [50]: 

𝑓𝑛𝑜𝑚 =
𝜆𝑛,𝑠

2

2𝜋
√

𝐸

12𝜌(1 − 𝜈2 )

ℎ

𝑅2
 (5.2) 

 

Figure 5.3: (a) FEM simulated 2nd order flexural mode shape of a 20MHz side supported disk resonator with 

16 µm radius and 2.5 µm thickness. (b) FEM simulated 4th order flexural mode shape of the same disk 

resonator at 77MHz. Here, the dashed lines indicate the nodal diameter positions of each corresponding mode 

shape. 
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where h is the structure thickness, E, ρ, and ν are the Young’s modulus, density, and Poisson 

ratio, respectively, of its structural material. Note that (5.2) represents the mechanical 

natural frequency of the disk with zero dc-bias voltage applied (i.e., no electromechanical 

coupling). The actual resonance frequency fo during operation will be slightly different 

from the natural frequency fnom due to the effect of electrical stiffness, which takes the 

following form [51]: 

𝑓𝑜 = 𝑓𝑛𝑜𝑚√1 −
𝑘𝑒

𝑘𝑚
 (5.3) 

where ke/km is a parameter representing the effective electrical-to-mechanical stiffness ratio 

integrated over the area of electrodes, given by 

𝑘𝑒

𝑘𝑚
= 𝑁𝑒 ∬

𝜖𝑉𝑃
2

𝑑(𝑟, 𝜃)3𝑘𝑚(𝑟, 𝜃)
𝑑𝑟𝑑𝜃

𝐴𝑒

 (5.4) 

where 𝜖 is the permittivity in the gap, VP is the dc-bias voltage, Ne is the total number of 

electrodes, Ae is the electrode-to-resonator overlap area for each electrode as shown in 

Figure 5.2(b), and d(r, θ) is the electrode-to-resonator gap spacing which varies as a 

function of location (r, θ) on the disk due to 𝑉𝑃-induced forces that statically deflect the 

disk [52] [53]. 𝑘𝑚(𝑟, 𝜃) in (5.4) represents the mechanical stiffness in the vertical direction 

with zero dc-bias voltage (i.e., 𝑉𝑃 = 0) at location (𝑟, 𝜃) [52]: 

𝑘𝑚(𝑟, 𝜃) = (2𝜋𝑓𝑛𝑜𝑚)2𝑚𝑚(𝑟, 𝜃) (5.5) 

where 𝑚𝑚(𝑟, 𝜃) is the equivalent mass at a given point (𝑟, 𝜃) that can be obtained from 

the total kinetic energy of the disk divided by one-half of the squared velocity at the point 

of interest, as shown below: 

𝑚𝑚(𝑟, 𝜃) =
𝐾𝐸𝑡𝑜𝑡

1
2 𝑣(𝑟, 𝜃)2

=

1
2 ∬ 𝜌ℎ[𝑣(𝑟′, 𝜃′)]2𝑑𝑟′𝑑𝜃′

𝐴𝑟

1
2 𝑣(𝑟, 𝜃)2

 (5.6) 

where 𝐴𝑟  is the disk surface area, 𝑣(𝑟, 𝜃)  is the velocity of the z-direction vibration at 

location (𝑟, 𝜃) given in phasor form by: 

𝑉(𝑟, 𝜃) = 𝑍̇(𝑟, 𝜃) = 𝑗𝜔𝑜Κ 𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃) (5.7) 

where Κ is a scaling constant dependent on electrostatic force applied on the disk. Plugging 

(5.1) and (5.7) into (5.6), the z-direction equivalent mass for a flexural mode disk becomes: 

𝑚𝑚(𝑟, 𝜃) =
𝜌ℎ ∬ [𝑍𝑚𝑜𝑑𝑒(𝑟′, 𝜃′)]2𝑟′𝑑𝑟′𝑑𝜃′

𝐴𝑟

[𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃)]2
 (5.8) 
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5.1.2. Equivalent Circuit 

To conveniently model and simulate the behavior of the flexural-mode disk resonator, 

Figure 5.4(a) provides an improved electrical small signal equivalent circuit which 

employs a negative capacitance to clearly predict the 𝑘𝑒 dependent resonance frequency. 

Expressions of the element values in the electrical equivalent circuit take the following 

form [25]: 

𝐶𝑜𝑖 =
𝜖𝐴𝑒𝑖

𝑑𝑜
, 𝑙𝑥 = 𝑚𝑟𝑒,   𝑟𝑥 = 𝑐𝑟𝑒,   𝑐𝑥 =

1

𝑘𝑟𝑒
 (5.9) 

where Coi is the electrode-to-resonator overlap capacitance, Aei is the electrode-to-resonator 

overlap area, 𝜖 is the dielectric constant of the capacitive gap material (vacuum in this case), 

and 𝑚𝑟𝑒, 𝑘𝑟𝑒, 𝑐𝑟𝑒, are the equivalent mass, mechanical stiffness, damping, respectively, at 

the highest velocity point on the edge of the disk, which can be obtained by: 

 

Figure 5.4: (a) Negative capacitance small-signal equivalent circuit for a four-port capacitive-gap transduced 

flexural-mode disk resonator, such as that of Figure 5.2(a), when operating in the 2nd order flexural mode 

shown in Figure 5.3(a); (b) Modified equivalent circuit for the same flexural-mode disk resonator with 

electrodes of the same phase lumped together. 
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𝑚𝑟𝑒 = 𝑚𝑚(𝑅, 𝜋/4), 𝑘𝑟𝑒 = 𝜔𝑛𝑜𝑚
2 𝑚𝑚(𝑅, 𝜋/4), 𝑐𝑟𝑒 =

𝜔𝑛𝑜𝑚𝑚𝑚(𝑅, 𝜋/4)

𝑄
 (5.10) 

where 𝜔𝑛𝑜𝑚 is the angular natural frequency of the disk structure with no dc-bias voltage 

𝑉𝑃 applied, Q is the quality factor, and 𝑚𝑚(𝑅, 𝜋/4 ) is the equivalent mass of the resonator 

at the highest velocity point as shown in Figure 5.3(a). In addition, when determining the 

dynamic mass mre of a disk operating in its nth order flexural mode, the integral formulation 

of (5.8) will yield the same factor 𝜒 modifying the physical mass of disk for that value of 

n, regardless of disk radius. In other words, for an nth order flexural mode disk of any 

radius, the dynamic mass expression in (5.8) reduces to: 

𝑚𝑟𝑒 = 𝜒𝑀𝑡𝑜𝑡 = 𝜒𝜌𝜋𝑅2ℎ (5.11) 

where 𝜒 = 0.170 for the 2nd order flexural-mode disk that this work focuses on. In the 

physically consistent model of Figure 5.4(a), the transformer turns ratio that represent 

electromechanical coupling take the expression 

𝜂𝑒,𝑖 = 𝑉𝑃

𝜕𝐶𝑜𝑖

𝜕𝑧
= 𝑉𝑃𝜅𝑖

𝐶𝑜𝑖

𝑑𝑜
 (5.12) 

which is identical for all ports because of symmetry. The change in electrode-to-resonator 

overlap capacitance per unit displacement 𝜕𝐶𝑜𝑖/𝜕𝑧 is given by: 

𝜕𝐶𝑜,𝑖

𝜕𝑧
= [∬ ∬

𝑍𝑚𝑜𝑑𝑒(𝑟,𝜃)

𝑍𝑚𝑜𝑑𝑒(𝑟′,𝜃′)

𝜖2𝑘𝑟𝑒𝑟′𝑑𝑟′𝑑𝜃′

[𝑑(𝑟′,𝜃′)𝑑(𝑟,𝜃)]2[𝑘𝑟(𝑟′,𝜃′)]𝐴𝑒,𝑖
′ 𝑟𝑑𝑟𝑑𝜃

𝐴𝑒,𝑖
]

1/2

  (5.13) 

In practice, the complexity of the expression for dc-bias-induced static plate bending of 

the square resonator 𝑑(𝑟, 𝜃)  often precludes convergence of (5.13) when evaluated via 

computer. Fortunately, the use of the complete form of 𝑑(𝑟, 𝜃) is often not necessary, as 

substitution of 𝑑(𝑟, 𝜃) and 𝑑(𝑟′, 𝜃′)with the static 𝑑𝑜 yields sufficiently accurate results, 

yielding the following expression: 

𝜕𝐶𝑜,𝑖

𝜕𝑧
= [∬ ∬

𝑍𝑚𝑜𝑑𝑒(𝑟,𝜃)

𝑍𝑚𝑜𝑑𝑒(𝑟′,𝜃′)

𝜖2𝑘𝑟𝑒𝑟′𝑑𝑟′𝑑𝜃′

𝑑𝑜
4[𝑘𝑟(𝑟′,𝜃′)]𝐴𝑒,𝑖

′ 𝑟𝑑𝑟𝑑𝜃
𝐴𝑒,𝑖

]
1/2

  (5.14) 

Combining (5.12), (5.13), and (5.14) yields the expression of the dimensionless ratio 𝜅𝑖 

— a factor that modifies the (easy to remember) electromechanical coupling of an ideal 

parallel-plate capacitive-gap transducer to account for a non-constant resonance 

displacement (or velocity) profile over the electrode area. 

𝜅𝑖 =
[∬ ∬

𝑍𝑚𝑜𝑑𝑒(𝑟,𝜃)

𝑍𝑚𝑜𝑑𝑒(𝑟′,𝜃′)

𝑘𝑟𝑒𝑟′𝑑𝑟′𝑑𝜃′

[𝑘𝑟(𝑟′,𝜃′)]𝐴𝑒
′ 𝑟𝑑𝑟𝑑𝜃

𝐴𝑒
]

1
2

𝐴𝑒,𝑖
  

(5.15) 

Reflecting the lcr through the transformer at a particular port (with all other ports 

grounded) can generate the effective electrical impedance as the following: 
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𝐿𝑥 =
𝑚𝑟𝑒

𝜂𝑒,𝑖
2 ,    𝐶𝑥 =

𝜂𝑒,𝑖
2

𝑘𝑟𝑒
,     𝑅𝑥 =

𝑐𝑟𝑒

𝜂𝑒,𝑖
2  (5.16) 

Of the elements in (5.16), the series motional resistance 𝑅𝑥 is the most important one in 

reducing a filter’s termination resistance 𝑅𝑄 , which helps to match a filter directly to 

antennas that usually has impedance range between 50 Ω to 377 Ω in wireless 

communication applications. 

5.2. Flexural Mode Disk Array Composites 

As discussed in Chapter 4, a micromechanical disk array composite can lower the 

motional resistance 𝑅𝑥  by summing together the in-phase output current from each 

mechanically coupled resonators [8]. In addition, the coupled micromechanical disk array 

increases the device’s equivalent stiffness, as will be discussed later in this session, which 

is essential to lower the coupling beam to resonator stiffness ratio and achieve a 

narrowband filter. 

5.2.1. Schematic and Equivalent Circuit of Flexural Mode Disk Arrays 

Figure 5.5 presents a one dimensional (1D) two-port micromechanical flexural-mode 

disk array composite constructed by mechanically linking individual disk resonators via 

very short rotational coupling beams and electrically combining resonator’s input/output 

electrodes to generate I/O ports. Here, coupling of resonators yields a multi-mode system, 

where at each mode, all resonators vibrate at the exact same frequency [16], allowing their 

outputs to be combined to boost input and output currents, thereby decreasing the motional 

resistance and increasing power handling. As the beam coupling in an array is generally 

stronger compared with weak coupling in applications such as narrowband filers [37], an 

ABCD matrix model will be necessary to capture an array’s mechanical performance 

accurately, rather than a simplified T-network model [16]. As shown in Figure 5.6, a 

rotational coupler can be modeled as an acoustic transmission line—the mechanical analog 

to the familiar electrical transmission line that takes the following expression by using an 

ABCD matrix: 

[
𝜏1

φ̇1
] = [

𝐴 𝐵
𝐶 𝐷

] [
𝜏2

φ̇2
] = [

𝑐𝑜𝑠(𝛼𝑙𝑐) 𝑗𝑍𝑚𝑠𝑖𝑛(𝛼𝑙𝑐)

𝑗𝑠𝑖𝑛(𝛼𝑙𝑐)

𝑍𝑚
𝑐𝑜𝑠(𝛼𝑙𝑐)

] [
𝜏2

φ̇2
] (5.17) 

where 𝜏𝑖 and 𝜑i̇  are the torque and angular velocity at corresponding ports, 𝑙𝑐 is the length 

of the rotational coupling beam. 𝑍𝑚 and 𝛼 in (5.17) are acoustic characteristic impedance 

and acoustic wave propagation constant, respectively, which take the following forms [8]: 
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𝛼 =
𝜔

𝑣𝑒
=

𝜔

√
𝐺
𝜌 ∙

𝛾
𝐽𝑠

=
2𝜋

𝜆
, 𝑍𝑚 = 𝛾√𝐺𝜌 

(5.18) 

where 𝜔 is the radian frequency of the acoustic wave, 𝑣𝑒 is the acoustic velocity, 𝜆 is the 

wavelength of the acoustic wave propagating in the coupling beam, 𝜌  is the material 

density, 𝐺 is the shear modulus of the beam material, 𝐽𝑠 is the polar area moment of inertia 

of the beam cross-section about its centroid, and 𝛾  is the torsional constant, which is 

slightly different from the polar area moment of inertia due to cross-section warping 

associated with non-circular cross-sections [54]. The rotational acoustic wave velocity in 

the coupling beam is determined by 𝛾 and 𝐽𝑠 together, which are given by: 

𝛾 = 𝛽𝑎𝑏3 = 𝛽𝑊3ℎ 

𝐽𝑠 =
𝑎𝑏(𝑎2 + 𝑏2)

12
=

𝑊ℎ(𝑊2 + ℎ2)

12
 

(5.19) 

where a and b are the long side length and short side length of the rectangle cross-section 

of the coupling beam, respectively, W is the coupling beam width, h is the coupling beam 

thickness, β is a constant related to the long side length to short side length ratio of a 

 

Figure 5.5: Schematic of a one-dimensional flexural-mode disk array composite with disks linked by 

mechanical couplers to enforce same resonance frequency for each individual resonator. 

 

Figure 5.6: Two-port modeling of a mechanical rotational coupling beam in analogy to an electrical 

transmission line. 
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rectangular cross-section, which equals approximately 0.209 for Ws = 1.5 µm, and h = 2.5 

µm in our case [55]. 

As shown in Figure 5.5, the rotational coupling beams connect to the resonators’ edge 

along their nodal diameters where the vibration is purely torsional, instead of connecting 

to the maximum linear displacement point where the equivalent lcr tank is modeled. 

Therefore it is necessary to employ a displacement transformer that converts torsional 

variables to linear displacement variables or vice versa to bridge the resonators’ lcr 

equivalent circuit model and the rotational beams’ ABCD matrix model. As shown in 

Figure 5.7, the ratio of linear velocity at the maximum displacement point (R, 𝜋/2𝑛 ) 

(where the lcr tank is modeled) to angular velocity at the coupling location (R, 0 ) 

determines the displacement transformer turn ratio 𝜂𝑠 , which takes the following 

expression: 

𝜂𝑠 =
𝑋̇

φ̇
=

𝜔𝑍𝑚𝑜𝑑𝑒(𝑅,
𝜋

2𝑛)

𝜔𝜑(𝑅, 0)
=

𝑍𝑚𝑜𝑑𝑒(𝑅,
𝜋

2𝑛)

𝜑(𝑅, 0)
 (5.20) 

where 𝜔  is the angular resonance frequency of the disk, 𝜑  describes the rotation angle 

around the radial direction axis of the disk at its perimeter, which takes the expression as: 

𝜑(𝑅, 0) ≈
1

𝑅

𝑑𝑍𝑚𝑜𝑑𝑒

𝑑𝜃
|

(𝑅,0)
=

𝑛

𝑅
𝑍𝑚𝑜𝑑𝑒 (𝑅,

𝜋

2𝑛
) (5.21) 

Plugging (5.21) into (5.20) yields the displacement transformer turn ratio 𝜂𝑠 as: 

𝜂𝑠 =
𝑅

𝑛
 (5.22) 

By using the ABCD matrix model for a mechanical rotational coupler and the negative 

capacitance equivalent circuit of a flexural-mode disk resonator as described in Section 5.1, 

Figure 5.8 develops an electrical equivalent circuit model of an N-resonator flexural-mode 

array composite that can accurately capture its frequency response. Because an in-phase 

vibration of two adjacent disk resonators will generate torques with opposite directions on 

the two sides of the rotational coupler, the two-port ABCD matrix model in Figure 5.8 

connects adjacent resonators with displacement transformers of opposite polarities. The 

mechanical connection of resonators actually realizes a multi-pole filter structure that has 

N vibration modes, where N is the number of coupled resonators. 

 

Figure 5.7: Schematic of a displacement transformer that converts linear displacement variables (F, 𝑋̇) to 

torsional variables (τ, φ̇), or vice versa. 
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5.2.2. Quasi-Zero Wavelength Rotational Coupling Beams 

As first demonstrated in [12], the use of half-wavelength mechanical couplers ensures 

that all resonators vibrate in phase and ideally spreads undesired modes infinitely away, 

leaving only one in-phase mode selected. For rotational coupling method, half-wavelength 

of the acoustic wave in a coupler takes the following expression 

𝑙𝑐,𝜆/2 =

√
𝐺
𝜌 ∙

𝛾
𝐽𝑠

2𝑓
= 𝜋

√
𝐺
𝜌 ∙

𝛾
𝐽𝑠

𝜔
 

(5.23) 

and gives value of 25 µm for polysilicon material at 75MHz. The length of a 𝜆/2 coupler 

at this frequency range is approximately 3× the radius of the disk (R=8.4 µm for 2nd order 

flexural mode), which means a 𝜆/2 coupled array will occupy much more area compared 

with the total area of only disks. This is a huge drawback on the fabrication cost of such 

devices, especially for an array with a large number of coupled single resonators. In 

addition, a very long suspended coupling beam is also vulnerable to pull-in effect when the 

 

Figure 5.8: Small-signal equivalent circuit of a flexural-mode disk array composite employing two-port 

ABCD matrix model to capture the behavior of mechanical rotational couplers. 
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substrate is biased at a different voltage than the dc-bias 𝑉𝑃 applied on the disk body. To 

overcome these issues and fully utilize the phase flexibility of such flexural mode devices, 

this dissertation employs a quasi-zero wavelength coupling method that directly attaches 

adjacent flexural-mode disk resonators, creating an effective zero-wavelength coupling. 

Plugging 𝑙𝑐 = 0 into (5.17) yields the torque and angular velocity relationships at the two 

ends of the rotational coupler as follows: 

𝜏1 = 𝜏2 , 𝜑̇1 = 𝜑̇2 (5.24) 

which shows the torque and angular velocity on the two sides of a rotational coupler will 

have the same magnitude with the same phase. Such condition indicates that adjacent disk 

resonators connected by the zero-wavelength coupling beam will vibrate out of phase 

because of the crisscrossed pins of the ABCD matrix as shown in Figure 5.8, thereby 

enforcing only the desired out-of-phase mode with all other unwanted modes eliminated. 

For the case of zero-wavelength coupling, a simple series connection can replace the 

ABCD matrix and generate a modified N-resonator disk array equivalent circuit as shown 

in Figure 5.9. To combine the output current, electrodes with opposite signs are connected 

for adjacent disks because of the out-of-phase motion of the vibration mode selected by 

zero-wavelength coupling. 

5.2.3. Simplified Equivalent Circuit of Array Composites 

To further simplify the equivalent circuit model of zero-wavelength coupled disk array 

composite, series or shunt combinations of a single disk resonator’s equivalent circuit 

 

Figure 5.9: Modified equivalent circuit of a flexural mode disk array-composite with zero-wavelength 

coupling beams. 
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element values lead to a lumped equivalent circuit as shown in Figure 5.10. For a disk array 

with N mechanically coupled disk resonators, the stiffness 𝑘𝑚 , mass 𝑚𝑚 , damping 𝑏𝑚 , 

electromechanical coupling factor 𝜂𝑒𝑖, and electrode-to-resonator overlap capacitance 𝐶𝑜𝑖 

are all N times larger than that of a single disk resonator. Thus, simple multiplication or 

division by N is all that is needed to derive zero-wavelength coupled array equivalent 

circuit element values from those of a single disk resonator, as shown in Figure 5.10. 

As will be discussed in next section, readers can see the real designed array composites 

in Table X actually have very short quasi-zero wavelength coupling beams (e.g. 𝑊𝑐 =
1.4 um, 𝑙𝑐 = 1 μm) instead of absolute zero wavelength, due to lithography and etching 

limits. However, as discussed in Chapter 4, such design error will generate negligible 

impact on an array performance if the array employs appropriate electrode phasing designs 

and individual resonators with very high Q. 

5.3. Flexural Mode Disk Array Filter Design 

Figure 5.11 shows the schematic of a 3rd order coupled array filter, comprised of three 

flexural disk array composites connected by torsional coupling beams. The schematic of 

the flexural mode disk filter is much like the filter of Figure 5.1, except that instead of 

single disk resonators, it uses mechanically coupled arrays of vibrating flexural-mode disk 

resonators, which basically behaves similar to a resonator but with lower motional 

resistance and higher stiffness, as discussed in Section 5.2, leading to lower termination 

resistance and smaller bandwidth. Each array composite in Figure 5.11 comprises of N (N 

= 7) flexural-mode disk resonators that are mechanically coupled via very short beams with 

high stiffness to force all resonators to vibrate at the same frequency with the out-of-phase 

mode. The excitation electrodes of the first array (on the left) form the input electrode of 

the filter and the electrodes of the third array form the output electrode, with all other 

electrodes either used as tuning electrodes or negative I/O electrodes if the filter is 

configured for a differential measurement setup. The signal vi applied at the input with 

source resistance RQ serves as one of the termination resistances to flat the filter passband. 

When the frequency of vi falls within the filter passband, the mechanical structure vibrates 

with an overall mode shape that combines those of Figure 5.1, which creates a motional 

output current passed through the output termination resistor and generates the output 

voltage. By employing filter couplers in between array composites with specific lengths 

 

Figure 5.10: Simplified equivalent circuit of a flexural-mode disk array composite with zero-wavelength 

coupling beams based on element values in the single resonator equivalent circuit in Figure 5.4(b). 
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(e.g., odd number times of λ/4), such mechanical coupled filter can achieve narrow 

bandwidth with tolerance on errors from design and fabrication process. 

5.3.1. Cx/Co — Contributor to Filter Passband Distortion 

Any resonator targeting the needs of an RF channel-selecting filter must possess 

sufficient input/output (I/O) electromechanical transduction efficiency to overpower 

feedthrough currents that would otherwise compromise the filter response. Here, the ratio 

of Cx/Co [56] provides a convenient measure of an electromechanical transducer strength, 

where Cx can be obtained from (5.16) and Co represents the total overlap electrode-to-

resonator capacitance for a flexural-mode disk resonator. The value of Cx/Co needs to 

exceed the percent bandwidth of a filter to avoid excessive passband distortion. The degree 

by which it must exceed the percent bandwidth depends upon the filter type and order, i.e., 

the number of resonators used. For example, a rule of thumb to avoid passband distortion 

for a 3rd order Chebyshev filter upon proper termination stipulates that (Cx/Co)’s of the I/O 

resonators should be 2.5× larger than the filter percent bandwidth [57]. 

For capacitive gap resonators, the value of Cx/Co’s is related to the mechanical mode 

shape. The mechanically coupled filter in this dissertation employs flexural-mode disk type 

of resonators which can provide sufficient input/output (I/O) electromechanical coupling 

at the frequency range of interest to realize a filter passband response with little distortion. 

As shown in Figure 5.13, at resonance frequency range below 200 MHz (frequency range 

of interest in this work is around 75 MHz), clamped-clamped beam (CC-beam) and 

flexural-mode disk types of resonators have better coupling coefficient compared with 

contour mode and wine glass mode disk resonators, at the condition of 40 nm gap spacing 

and 15 V dc-bias voltage. The mechanically coupled filter in this dissertation chooses 

flexural mode disk type resonators rather than CC-beam resonators mainly because CC-

beam resonators usually have lower Q (less than 8,000), which leads to more insertion loss. 

 

Figure 5.11: Parallel projection view of a 3rd order coupled array filter utilizing three mechanically coupled 

arrays with 7 resonators in each array composite (i.e., N =7). 
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To clearly identify factors that affect a resonator’s electromechanical transduction 

efficiency, the following expression estimates the electromechanical coupling coefficient 

of a flexural mode disk resonator and shows the available knobs to improve it: 

𝐶𝑥

𝐶𝑜
≈

𝑉𝑃
2

𝑑𝑜
3 

∙
𝜅𝑖

2𝜖

𝜔𝑛𝑜𝑚
2 𝜒𝜌ℎ 

 (5.25) 

where 𝜖  is the permittivity of gap spacer, which is vacuum in this case; 𝜔𝑛𝑜𝑚  is the 

flexural mode natural frequency of the disk; χ relates the ratio of static mass of the disk to 

its dynamic mass [25]; and 𝜅𝑖 is a dimensionless factor that modifies the electromechanical 

transduction strength of an ideal parallel-plate capacitive-gap transducer to account for a 

non-constant resonance displacement profile over the electrode area. Here, with same 

resonance frequency, the dc-bias voltage VP and spacing do across the I/O electrode-to-

resonator gaps are clearly the strongest knobs, with the former having a quadratic effect, 

and the latter a whopping third power influence. Given these dependencies, shrinking the 

gaps from the 90 nm of [47] to the present 50 nm delivers a 5.8× improvement in (Cx/Co). 

Assuming a dc-bias voltage of 15 V, the (Cx/Co) goes from the 0.15% to 0.88% , which is 

sufficient for the designed three-resonator 0.3% bandwidth filter. 

 

Figure 5.12: A general transmission line T-network model for a mechanical coupling beam in rotational 

mode. 

 

Figure 5.13: Electromechanical transduction efficiency (Cx/Co) for different types of capacitive-gap 

resonators at frequency range between 50 MHz and 800 MHz, with conditions of 40nm gap and 15V dc-bias 

voltage. 
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5.3.2. Quarter Wavelength Coupling Beam Design 

To facilitate the design of a mechanically coupled narrowband filter, Figure 5.12 shows 

a general T-network transmission line model of a rotational coupler, corresponding to 

Equation (5.17). The z parameters of the series and shunt arms are a function of the ABCD 

matrix elements in (5.17) and take the following expression: 

𝑧𝑎 =
𝐵

𝐷 + 1
= 𝑗𝑍𝑚 tan (

𝛼𝑙𝑠

2
) 

𝑧𝑐 =
1

𝐶
=

𝑍𝑚

𝑗𝑠𝑖𝑛(𝛼𝑙𝑠)
 

(5.26) 

where lS is the length of the filter coupling beam. Since 𝛼  and 𝑙𝑠  are constant for a 

narrowband system at frequency 𝜔𝑜 , rewriting 𝑧𝑐  in terms of a coupling capacitance 𝑐𝑠 

yields the following expressions: 

𝑧𝑐 =
1

𝑗𝜔𝑜𝑐𝑠
, 𝑐𝑠 =

sin(𝛼𝑙𝑠)

𝜔𝑜𝑍𝑚
, 𝑘𝑠 =

1

𝑐𝑠
=

𝜔𝑜𝑍𝑚

sin(𝛼𝑙𝑠)
 (5.27) 

For a narrowband filter, lS in (5.27) is designed to be an effective quarter wavelength 

(odd number of times of 𝜆/4 ), mainly for the following three reasons: to minimize 

bandwidth, to pose zero mass loading on resonance frequency, and to allow maximum 

tolerance on coupling beam length variations from design and fabrication. As zc will 

connect two adjacent resonators’ equivalent lcr model, its value reveals the strength of the 

mechanical coupling. zc in (5.27) actually represents the impedance of an equivalent 

coupling capacitor cs, which can be further rewritten as ks, the equivalent mechanical 

stiffness of a coupling beam, since capacitance in electrical domain is equivalent to 

stiffness in mechanical domain. The coupling beam to array composite equivalent stiffness 

ratio will determine a coupled filter’s percent bandwidth. To minimize bandwidth, the 

absolute value of sin (𝛼𝑙𝑠)  in (5.27) should reach its maximum value, leads to ls an 

equivalent quarter wavelength, as shown in the following expression: 

𝑙𝑠 =

𝜋
2

(2𝑚 + 1)

𝛼
=

𝜆

4
(2𝑚 + 1), (𝑚 = 0,1,2, … ) (5.28) 

Combining (5.18) and (5.27), the minimum coupling beam stiffness 𝑘𝑠 takes the following 

expression: 

𝑘
𝑠,

𝜆
4

(2𝑚+1)
= 2𝜋 ∙ √

𝛾

𝐽𝑠
∙

𝛾𝐺

𝜆
 (5.29) 

For an equivalent quarter wavelength coupling condition, za and zc will have the same 

absolute value but opposite sign. For example, za and zc in (5.26) will turn into the follow 

expressions for the filter in this chapter that employs 𝜆\4 couplers: 
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𝑧𝑎 = −𝑗𝑍𝑚, 𝑧𝑐 = 𝑗𝑍𝑚 (5.30) 

With same amplitude but negative sign, za and zc will cancel out and generate zero loading 

effect to its adjacent resonators, This will greatly ease the design of a mechanical coupled 

filter, since each constituent resonator doesn’t need to compensate its frequency shift 

caused by loading from couplers, meaning each constituent resonator can be identical and 

designed at the same frequency. In addition, a quarter wavelength design also offers best 

tolerance against coupling beam variations. As shown in Figure 5.14, the slope of 

impedance zc versus coupling beam length approaches zero at quarter wavelength points, 

meaning a slight change in coupling beam length will not significantly change a filter’s 

bandwidth. 

Figure 5.15 shows the equivalent circuit model of a 𝜆/4  rotational coupling beam, 

comprised of two displacement transformers and a T-network model that employs capacitor 

cs to represent za and zc. The two ports of this equivalent circuit will directly connects to 

the core lcr tank model of an array composite, which will be shown in the next session. 

 

Figure 5.14: Mechanical coupling impedance zc versus coupling beam length for a flexural-mode disk filter 

composed of disk resonators vibrating around 70 MHz with radius of 8.4µm. 

 

Figure 5.15: Equivalent circuit of a quarter-wavelength rotational coupler. Here, a capacitor cs can be used 

to represent the coupling impedance zc at resonance frequency fo. The transformer 𝜂𝑠  converts linear 

displacement parameters to torsional parameters, or vice versa. 
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5.3.3. Filter Equivalent Circuit 

Figure 5.16 presents the equivalent circuit of a 3rd order coupled array filter, where the 

lcr tanks model the array composites, the capacitor T-networks represent the 𝜆/4 coupling 

beams, and the transformers 𝜂𝑒  model the electromechanical transduction. Here, the 

capacitor T-network absorbs the displacement transformer into it and leads to a new 

parameter css with the following expression: 

𝑐𝑠𝑠 = 𝜂𝑠
2𝑐𝑠, 𝑘𝑠𝑖𝑗 = 1/𝑐𝑠𝑠 (5.31) 

where 𝜂𝑠  represents the displacement transformer turn ratio and 𝑘𝑠𝑖𝑗  is the equivalent 

linear stiffness of the rotational coupling beam between the ith and jth resonator. 

Being a high quality factor system with Q larger than 10,000, all array composites will 

reach their maximum displacement simultaneously, either in-phase or out-of-phase with 

each other. Figure 5.16 presents a simplified unterminated filter equivalent circuit with 

tuning electrodes neglected (the case when tuning electrodes have the same voltage). The 

current in each individual mesh represents the motion of arrays in each mode. With all 

meshes resonating at the same frequency for each mode, the motional current and 

resonance frequencies for each mode can be determined by using Kirchhoff law. The 

percent bandwidth of the coupled filter is proportional to the ratio of the array’s equivalent 

capacitor to the coupling capacitor, which can be written as the following expression. 

 

Figure 5.16: Equivalent electrical circuits of a 3rd un-terminated coupled array filter (N = 7), which show the 

motion of constituent array composites for each resonance mode. 
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𝐵𝑊

𝑓𝑜
=

1

𝑘𝑖𝑗
∙

𝑐𝑥

𝑁𝑐𝑠𝑠
=

1

𝑘𝑖𝑗
∙

𝑘𝑠𝑖𝑗

𝑁𝑘𝑟𝑒
 (5.32) 

where kij is the normalized coupling coefficient between resonator tanks for a given filter 

type (i.e., Butterworth, Chebyshev, etc.) [4], ksij stands for the coupling beam stiffness 

between the ith and jth arrays, N is the number of resonators in an array, and kre is the 

equivalent stiffness of a single flexural-mode disk resonator. For the same coupling beam, 

Equation (5.32) shows that an N-resonator array will reduce the percentage bandwidth by 

N times than that achieved by a stand-alone resonator. This will ease the fabrication of 

narrowband coupled filters since designers just need to increase the number of resonators 

in an array to achieve a narrow bandwidth, instead of significantly shrinking the beam 

width and challenging the lithography limit. 

With 𝑥̇𝑜  representing the velocity amplitude of an N-resonator array when the same 

input voltage 𝑣𝑖  and dc-bias voltage 𝑉𝑃  as the filter applies, Figure 5.16 shows that the 

output current from the 3rd array for the 2nd mode will be √2 × larger than the other two 

modes. The following equations also show that the equivalent resistance 𝑟𝑒𝑞 for the center 

resonance mode is 2 × smaller than the other two modes. Both of these indicate that the 

central resonance peak in the unterminated filter frequency response (S21) will be 6 dB 

higher than the two side peaks, as will also be shown in Figure 5.25 in Section 0. 

𝑟𝑒𝑞,1 =
𝑃𝑡𝑜𝑡

(
𝑥̇𝑜

4 )
2 =

(
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4 )
2
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√2
4 𝑥̇𝑜)

2

+ (
𝑥̇𝑜

4 )
2

(
𝑥̇𝑜

4 )
2 𝑟𝑥 = 4𝑟𝑥 
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(
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2 𝑟𝑥 = 2𝑟𝑥 
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(
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√2
4 𝑥̇𝑜)
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𝑥̇𝑜
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2

(
𝑥̇𝑜

4 )
2 𝑟𝑥 = 4𝑟𝑥 

(5.33) 

 

Figure 5.17: Simplified equivalent electrical circuit of a terminated 3rd coupled array filter (N = 7). Here, the 

termination resistor 𝑅𝑄,𝑖 at the input and output ports form a low pass filter that could potentially distort 

passband response if the cut-off frequency is very close to the center frequency. 
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In real application, to flatten the filter passband and achieve the designed amount of 

passband ripple, termination resistors at the input and output electrodes will control (i.e., 

load) the Q’s of the end resonators. By reflecting the lcr tank and T-network through the 

outside of the transformer, Figure 5.17 presents a simplified lumped equivalent circuit 

model of a coupled filter terminated with resistance 𝑅𝑄,𝑖 at the two ends. The following 

expression determines the value of the impedance required to terminate a coupled array 

filter when the approximation of 𝑄𝑟 ≫ 𝑞𝑖𝑄𝑓 is valid: 

𝑅𝑄,𝑖 = (
𝑄𝑟

𝑞𝑖𝑄𝑓
− 1)

𝑅𝑥

𝑁
≈

𝑄𝑟

𝑞𝑖𝑄𝑓
∙

𝑅𝑥

𝑁
 (5.34) 

𝑄𝑟 and 𝑄𝑓 in (5.34) are the array and filter quality factors, respectively, 𝑞𝑖 is a normalized 

Q parameter obtained from a filter cookbook [4]. From (5.34), the use of N-resonator array 

instead of a single resonator provides an N times reduction in filter termination impedance, 

as long as 𝑄 ’s of the array composite is sufficiently higher than 𝑞𝑖𝑄𝑓 . As 𝑅𝑄,𝑖  is much 

larger than 𝑅𝑥/𝑁 for a narrow band filter, the peak difference is negligible after termination, 

combining also with the fact that responses from all peaks will couple when effective Q is 

low. The value of 𝑄𝑟  and 𝑄𝑓  also determines the insertion loss of the filter, which is 

governed by the following equation. 

𝐼𝐿 = 20 log (
2𝑅𝑄,𝑖 +

2𝑅𝑥

𝑁
2𝑅𝑄,𝑖

) = 20 log (1 + 𝑞𝑖

𝑄𝑓

𝑄𝑟
) (5.35) 

For a narrowband filter (high𝑄𝑓), higher resonator 𝑄𝑟 will lead to smaller insertion loss, 

as shown in (5.35). For example, for a 200 kHz bandwidth 3rd order Chebyshev filter at 75 

MHz, Q’s of 10,000 for array composite will lead to a 3rd order filter insertion loss of less 

than 0.4 dB. The simplified equivalent circuit in Figure 5.17 also indicates that a low pass 

filter formed by 𝑅𝑄,𝑖 and 𝑁𝐶𝑜𝑝 (or 𝑁𝐶𝑜𝑖) will process the transmitted signal first, before 

the signal goes into the actual filter. In order to avoid distortion on transmitted signals, the 

low pass filter cut off frequency needs to be several times higher than the filter’s center 

frequency, which leads to the following expression: 

1

𝑅𝑄,𝑖𝑁𝐶𝑜𝑝
> 𝐾𝜔𝑜 (5.36) 

Where the ratio K is dependent on the filter type, filter order, and the passband ripple 

allowed by the user. Combining (5.34) with the equation 𝑄𝑟 = 1/(𝜔𝑜𝐶𝑥𝑅𝑥)  leads to 

another form of (5.36) as the following: 

𝐶𝑥/𝐶𝑜𝑝 > 𝐾
𝑃𝐵𝑊

𝑞𝑖
 (5.37) 

which is similar as discussed in Section 5.3.1. 
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5.3.4. Design Example 

This section designs a 75-MHz (𝑅 = 8.4 μm) 3rd order flexural mode disk array filter 

which employs three mechanically coupled array composites, with each array contains 7 

flexural-mode disk resonators. Table VIII and Table IX summarize the equivalent circuit 

variables for the constitute array composites and the filter. Compared with a 3rd order filter 

using coupled single disk resonators, this array filter will have 7×  smaller fractional 

bandwidth, which relaxes the requirement of very thin mechanical couplers and reduces 

the fabrication challenge. In addition, with smaller termination resistance, this work pushes 

one more step toward using such filter in a communication system with much lower 

impedance, e.g., between 50 Ω and 377 Ω. 

5.4. Fabrication Process 

The fabrication process for this all-polysilicon flexural mode disk array filter is similar 

to that of [8], with small deviations mainly in that it uses thinner sacrificial oxide layer (50 

nm) to enhance the devices’ electromechanical transduction efficiency and employs 

BOSCH based etching process to achieve good sidewall profiles for a 2.5 µm thick 

structure layer. The process begins with film depositions, lithographic patterning, and 

TABLE VIII:  EQUIVALENT CIRCUIT ELEMENT VALUES OF A 75MHZ 3RD
 ORDER COUPLED ARRAY FILTER WITH 7 RESONATORS IN 

EACH ARRAY COMPOSITE 

Parameter Value Units 

N 7 N/A 

cx 2.02×10-5 F 

lx 2.23×10-13 H 

rx 1.64×10-8 Ω 

css 1.5×10-3 F 

Con 14.9 fF 

𝜂𝑒𝑝 = 𝜂𝑒𝑛 1.42×10-6 C/m 

cs 8.68×107 F 

𝜂𝑠 4.2×10-6 m 
 

TABLE IX:  IMPEDANCE-EXPLICIT EQUIVALENT CIRCUIT ELEMENT VALUES OF A 3RD
 ORDER COUPLED ARRAY FILTER WITH 7 

RESONATORS IN EACH ARRAY COMPOSITE 

Parameter Value Units 

N 7 N/A 

Cx 4.06×10-17 F 

Lx 0.11 H 

Rx 8.18 kΩ 

Css 1.50×10-13 F 

Cop = Con 14.9 fF 

RQ,1 = RQ,3 10.5 kΩ 

1/(2πRQ,1 Con) 145.4 MHz 
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etching steps identical to those of [8] to achieve the substrate isolation layer, polysilicon 

interconnects, and the oxide sacrificial layer. At this point, patterned phosphorus-doped 

polysilicon electrodes and interconnect are covered by a 50 nm thick sacrificial LPCVD 

silicon dioxide, as shown in Figure 5.18(a), except at portions dry-etched to serve as 

anchors for resonators. A 2.5 µm thick in-situ doped polysilicon film is then deposited via 

LPCVD at 585ºC to serve as the resonators’ structural layer, followed by a BOSCH based 

dry-etch process to define the disks and coupling beams. Since flexural-mode disk 

resonators have electrode-to-resonator gap at the bottom, the scalloped sidewall profile 

generated by BOSCH process will not significant impact the filter’s performance. Instead, 

such process will offer straight sidewalls for flexural mode resonators, which will generate 

less errors in frequency prediction. After the polysilicon structural layer etching, a 30 mins 

950 ºC stress and dopant distribution anneal is needed to ensure good quality factor. In the 

final step of the process, the wafer is dipped into a solution of 49 wt. % hydrofluoric acid 

to etch away the sacrificial oxide layer, reaching a cross-section as shown in Figure 5.18(b). 

Figure 5.19 and Figure 5.20 present a stand-along 20-MHz flexural-mode disk resonator 

and a 16-resonator 70-MHz disk array composite, respectively. Clearly indicated by Figure 

5.20, couplers in between resonators are much shorter compared with the supporting beams, 

which makes them very stiff to enforce out-of-phase motion of adjacent resonators in an 

array. Figure 5.21 presents the SEM of a 70MHz 3rd order array filter which couples three 

array composites with each array contains seven resonators in it. As shown in Figure 5.21, 

the much longer 𝜆/4  coupling beam helps the filter achieve minimum bandwidth and 

highest tolerance against design errors and fabrication process variations. These SEMs also 

show clear topography in the disk, which might slightly impact the resonance frequency 

and quality factor. To solve this, future work will employ CMP process to planarize layers 

after deposition. As shown in the test results in next Section, the quality factor of flexural-

mode disk resonators is higher than 10,000 even with topography existing on the surface 

of the disk. 

 

Figure 5.18: Cross-sections showing the last few steps in the fabrication process for an all-polysilicon 

flexural mode disk resonators with 50nm gap spacing. 
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Figure 5.19: SEM of a 20-MHZ (R=17µm) stand-alone flexural-mode disk resonator with 50 nm capacitive 

gap spacing. 

 

Figure 5.20: SEM of a 70-MHZ 50 nm capacitive-gap flexural-mode disk array composite which employs 

16 mechanically coupled resonators. 

 

Figure 5.21: SEM of a 70-MHZ 3rd order array filter that couples three array composites with each array 

employing 7 resonators. 
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5.5. Measurement Results 

To demonstrate the efficacy of mechanical coupling techniques in building arrays and 

filters, measured frequency response of S parameters are in order, for stand-alone flexural-

mode disk resonators, mechanically coupled array-composites, and a 3rd order coupled 

array filter. Although high frequency micromechanical resonators are less susceptible to 

gas damping, vacuum is still needed to measure Q’s above 10,000. Therefore this work 

measured the fabricated devices under a 2μtorr vacuum environment in a Lakeshore FWPX 

vacuum probe station. The fabricated devices in this chapter was measured via the two-

port measurement mode of an Agilent E5071C network analyzer with measurement plane 

moved to the probe tips using standard SOLT calibration on a CS-5 substrate. 

5.5.1. Stand-Alone Flexural Mode Disk Resonators 

Figure 5.22 presents the frequency spectrum of a stand-alone flexural-mode disk 

resonator with 16 µm radius and 50-nm capacitive gap measured under a 2μtorr vacuum 

environment with a dc-bias voltage of 4 V. This device exhibits a Q > 10,000 at ~20 MHz, 

which is good enough to suppress phase shift in between constituent resonators in an array 

composite according to Section 4.2, when design errors and frequency mismatches exist. 

A flexural-mode disk resonator can also achieve higher resonance frequency by 

employing higher order flexural mode with more nodal diameters. Figure 5.23 presents a 

measured frequency spectrum of a 223-MHz center stem supported flexural-mode disk 

resonating at the 4th order mode. As indicated in the FEM simulated mode shapes in Figure 

5.3, the 4th order mode shape has a larger central area with little displacement, leading to 

less energy loss via anchors. That’s why the 4th order flexural-mode disk can still achieve 

high Q above 10,000 even its intrinsic quality factor predicted to be lower than that of a 

lower frequency one (fQ product constant at these frequency ranges) [29]. 

 

Figure 5.22: Frequency response of a 20MHz 2nd flexural-mode disk resonator (R=16µm). 
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5.5.2. Mechanically-Coupled Flexural Mode Disk Arrays 

Figure 5.24 presents the frequency characteristics of a 68-MHz 16-resonator coupled 

flexural-mode disk array composite measured using two-port configurations under vacuum. 

With only 2V dc-bias voltage, its motional resistance outperforms what had been achieved 

with a much higher 25V by similar type stand-alone disk resonators [8], which is mainly 

enabled by the motional current boost from arraying and the stronger electromechanical 

transduction from a narrower 50-nm gap spacing. With more than 12× reduction in dc-bias 

voltage, such array devices can be integrated with IC more easily without the need to 

generate high dc-bias voltage, e.g. by using MEMS charge pump [58]. Figure 5.24 also 

clearly shows a single resonance peak with no other significant spurious modes, which 

 

Figure 5.23: Frequency response of an 8.8 μm radius disk resonator vibrating at the 4th flexural mode around 

223 MHz. 

 

Figure 5.24: Measured frequency response of a 68 MHz (R = 8.8 μm) radius disk array composites with 16 

resonators coupled by quasi-zero rotational couplers. 

 

fo = 223.37 MHz
VP = 15 V

vi = 63.2 mV
Q = 10,511

Frequency (MHz)

T
ra

n
s

m
is

s
io

n
 (

d
B

)

Frequency (MHz)

T
ra

n
s

m
is

s
io

n
 (

d
B

)

fo = 68.22 MHz
VP = 2 V

vi = 20 mV
Q = 15,055



93 

 

indicates all other 15 spurious modes are successfully suppressed and thereby demonstrates 

the effectiveness of the quasi-zero coupler and electrode phasing design. With a very high 

Q of 15,505, the 16-resonator array composite shows no sign of Q deduction from 

mechanical coupling, which makes the arraying technique with quasi-zero length couplers 

a perfect candidate for low insertion loss narrow band filters. 

5.5.3. Coupled Array Filters 

To verify the design theory and analyze filter performance dependencies, Figure 5.25 

compares the measurement results of a 75MHz un-terminated 3rd order array filter with the 

simulated data using the equivalent circuit in Figure 5.16. In order to match the measured 

and simulated spectra, several adjustments were made to the original design data in the 

“Designed” columns of Table X, e.g. the resonance frequency adjustment, the feedthrough 

capacitance from substrate, and the coupling beam width difference. Since the disk’s 

resonance frequency at flexural modes depends on the polysilicon structure film thickness, 

which is hard to be precisely controlled during fabrication, the actually measured filter’s 

center frequency shifts from 71.2 MHz to 74.9 MHz. In addition, due to under exposed 

lithography in the coupler area and etching profile variation, the fabricated coupler width 

is slightly thinner than the designed value. To match the stopband rejection from the 

measurement results, the equivalent circuit simulation employs a 3fF feedthrough 

capacitance connecting between the input and output port to represent the capacitive 

feedthrough path (electrode-substrate-electrode) for a coupled filter. After these 

appropriate adjustments, the measured and simulated passbands and shape factors are very 

similar as shown in Figure 5.25, with the only discrepancies coming from the unexpected 

spurious resonance peak at the stopband. The spurious mode may be attributable to the 

coupling topology of the array filter in this work. As shown in the filter schematic in Figure 

5.5, the resonators’ vibration excited by the input voltage will go through a long path to 

reach resonators in the output array. As each coupler and resonator may introduce non-

 

Figure 5.25: Comparison of measured response and simulation data spectrum for the frequency response of 

a 3rd order array filter with each array composite employing 7 mechanically coupled flexural mode disk 

resonators. 
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idealities, such topology will have a high chance of introducing spurious modes or mode 

shape distortions. In the future, to suppress such spurious response, filters employing 

different coupling topologies such as rectangular shape or square shape rather than single-

line shape, may help to reduce the length of coupling path [46], thereby potentially leading 

to a cleaner filter response. 

Figure 5.25 also shows that the resonance peaks’ average Q of 6,500 is not as high as 

seen in previously measured disk array composites in Figure 5.24, for which Q’s higher 

than 10,000. The following two reasons mainly cause the Q reduction: First, very closely 

spaced resonance peaks may load the device’s quality factor. Second, the combination of 

simultaneous motion from each coupled resonator affects the overall anchor loss, leading 

to a higher ratio of energy loss via substrate to vibration energy in the resonator. 

Nevertheless, an average Q of 6,500 will still achieve a low insertion loss less than 2dB for 

a 0.3% bandwidth filter at 75MHz. As indicated in Figure 5.25, both simulation and 

measurement show that the central resonance peak is about 6 dB higher than the two side 

peaks, which is consistent with the analysis in Section 5.3. After termination, this peak 

difference will be negligible because of Q loading effect from termination resistances. 

During this filter measurement, the E5071C network analyzer provides the virtual 

termination resistors by using the fixture simulator function. As shown in the terminated 

filter response in Figure 5.26, two 5.2 kΩ resistors at the I/O ports of the filter together 

raise the resonance peak level and flatten the passband. As the device is tested using probe 

station, finite contact resistance and polysilicon trace parasitic resistance may also 

contribute to part of the equivalent termination resistors, which will make the needed 

termination resistance smaller than the simulated 10.53 kΩ. The bandwidth of this filter is 

210 kHz, which is very close to the designed value of 218 kHz. In addition, by using a 

higher 3rd order filter, the response reaches a much better roll-off with 20dB shape factor 

TABLE X:  THE DESIGN PARAMETERS, SIMULATION DATA, AND MEASUREMENT RESULTS OF A 3RD
 ORDER COUPLED ARRAY FILTER 

Parameter 
Designed/ 

Simulated 
Measured Units 

Center Frequency, fo 71.2/74.93 74.9 MHz 

Bandwidth, BW 218/227 210 kHz 

Fractional Bandwidth, (BW/fo) 0.31/0.30 0.28 % 

Insertion Loss, I.L. 0.9/1.6 5.5 dB 

Passband Ripple, P.R. 0.5/1 4.5 dB 

20dB Shape Factor, S.F. 1.59/1.59 1.46 N/A 

Stopband Rejection, S.R. —— 40 dB 

Termination Resistors, RQ 11.2/10.5 5.2 kΩ 

Quality Factor, Q 15,000/6,500 6500 N/A 

DC-Bias Voltage. VP 15/12 12 V 

Filter Coupler Length, Ls 14.9/14.9 14.9 μm 

Filter Coupler Width, Ws 1.7/1.4  1.4 μm 

Array Coupler Length, Lc 1/1 1 μm 

Array Coupler Width, Wc 1.4/1.2 1.2 μm 

Res. Beam Length, La 3.8/3.8 3.8 μm 

Res. Beam Width, Wa 1.4/1.2 1.2 μm 

Number of Res. In Array, N 7/7 7 N/A 
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of 1.46, significantly smaller than the values of 2.31 and 2.69 achieved by the 2nd order 

filter in [52] and [46], respectively, leading to better signal selection for narrowband 

applications. 

Although the frequency spectrum of the 3rd order coupled array filter shows matched 

response with simulation and impressive sharper roll-off, a more pragmatic inspection of 

Table X reveals some remaining practical issues. Perhaps the most offensive of these are 

the large values of termination resistance RQ (>5 kΩ), which may not only amplifies 

problems with parasitic capacitance as dictated by (5.36), but also generates more input 

referred voltage noise. Among the most promising strategies to reduce RQ are: 1) 

decreasing the electrode-to-resonator gaps, which leads to lower Rx, 2) using more 

conductive materials (e.g. metal) for traces and fully integrating the filter with sense 

electronics. 

In addition to the above RQ issue, the 5.5dB insertion loss of the filter is also larger than 

the simulated 1.6 dB, which could be attribute to the finite contact resistance and trace 

resistance that behave as a voltage divider and attenuate the signal. Replacing the trace 

with metal and using wire bonding measurement set up will have a high chance to solve 

this problem in the future. The measured filter response also shows a higher passband ripple 

of 4.5 dB than the designed 1 dB. This can be attributable to the following reasons: 1) the 

12 V maximum dc-bias voltage applicable to the device without pull-in is lower than the 

designed 15 V, which will reduce Cx/Co value down to 0.64× according to (5.25); 2) 

parasitic capacitance in the order of 35 fF (according to layout and fabrication process) 

exists between the electrode and the conductive silicon wafer substrate, which increases 

the effective total Co to 139 fF, based on the equivalent circuit elements value in Table VIII. 

Since this parasitic capacitance will contribute zero electromechanical transduction, it will 

contribute to another 25% reduction in electromechanical transduction strength. 

Considering these two factors, the Cx/Co will reduce to 0.2%, which is smaller than the 

measured 0.28% percent bandwidth and thereby leading to more passband distortion 

according to Section 5.3.1. 

As indicated in the SEM in Figure 5.21, the fabricated filter actually have differential 

 

Figure 5.26: Measured frequency response of a terminated 3rd order coupled array filter with 7 resonators in 

each array composite. 
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input and output ports, which not only improves the electromechanical transduction 

efficiency Cx/Co, but also can reduce the feedthrough current. However, due to the fact that 

the polysilicon bond pads are easily peeled off during wire bonding, this work can only test 

the coupled array filter using a probe station, which limits the ports number to six and 

cannot measure the device in a differential mode.  

In the future, an improved fabrication process that can reduce interconnect trace 

resistivity and area, enhance electrode-to-resonator pull-in strength, and improve 

polysilicon film attachment would render a capacitive-gap MEMS filter with lower 

insertion loss, smaller termination resistance, and more flattened passband, which may be 

potentially used in future RF channel select applications. Improvements to each of the 

above approaches are ongoing and much work still remains in this area. 
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 Conclusions 

RF channel selection enabled by MEMS capacitive-gap resonator array composites with 

extremely high Qs >30,000 and large numbers of coupled resonators can potentially be a 

key enabler for software-defined cognitive radios. More importantly, this technology will 

encourage wireless radio designers to break existing assumptions and open their minds to 

the possibility of having extremely high Q passive components in abundance, allowing 

them to use as many high-Q passives as they can, such as building front-end VLSI 

mechanical circuits. Once this happens, an explosion of new communication architectures 

and even new wireless standards may ensue, which may in turn greatly enhance the 

capability of our wireless networks. 

6.1. Achievements 

This dissertation explored the degree to which MEMS capacitive-gap resonators can be 

applied in the aforementioned RF channel select applications. The thesis focused on three 

distinct methods to achieve high Q, high stiffness, and low motional resistance capacitive-

gap resonators that can be used as elements for RF narrowband filters. Specifically, the 

thesis enhanced the capability of the equivalent circuit model of a radial contour mode disk 

resonator by making two improvements: using transmission line based T-network to predict 

anchor loss dominated Q and using negative capacitance to clearly capture the frequency 

pulling effect from electrical stiffness. Indicated by the improved equivalent circuit, the 

use of hollow stem support in this dissertation successfully suppressed energy loss via 

substrate and has enabled quality factors as high as 56,061 at 329 MHz and 93,231 at 178 

MHz—values now in the same range as previous disk resonators employing multiple 

materials with more complex fabrication processes. To reduce a filter’s bandwidth and 

termination resistance, the thesis also demonstrated a high-stiffness 50-resonator 

mechanically coupled disk array composite, which not only showed 46.5× improvement in 

motional resistance, but also a 3.5× frequency stability enhancement against dc-bias 

voltage fluctuations. Finally, the last chapter demonstrated a 75 MHz 3rd-order channel 

select (210 kHz) filter based on coupled flexural mode disk resonators with Qs >10,000, 

which achieved an improved 20 dB shape factor of 1.46 compared with previous measured 

2nd order capacitive-gap filters in VHF range. 

6.1.1. Implications on High Q Resonator Design 

The measured Q enhancements of 2.6× for hollow stem radial-contour mode disk 

resonators at 154 MHz and 2.9×  for wine glass mode ones at 112 MHz versus identically 

dimensioned full stem counterparts confirms the efficacy of the hollow stem approach for 

maximizing resonator Q. This approach not only circumvents lithography challenges 
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otherwise needed by other stem-size reducing Q-enhancement approaches, but does so with 

zero increase in fabrication complexity over conventional methods for achieving stemmed 

resonators, making it a very simple and effective way to enhance quality factor. By 

introducing a new small-signal equivalent circuit that employs a transmission line T-

network and a substrate resistor to model magnitude of anchor loss, resonator designers 

can now predict anchor loss dominated Q without the need to perform finite element 

simulations. Such new equivalent circuit not only aligns the predicted Q’s accurately with 

measurement data for both hollow stem and full stem disk resonators of different stem radii, 

but also provides important implications and guidelines for high Q micromechanical disk 

resonator design. According to this equivalent circuit model, designers can improve quality 

factor by optimizing vibration structure dimensions, engineering anchor geometries, and 

choosing materials with appropriate properties. The following summarizes some design 

guidelines extracted from this new equivalent circuit model for high-Q micromechanical 

disk resonators. 

A. Disk Thickness 

By increasing the displacement transformer ratio 𝜂𝑠𝑢𝑏  in Figure 2.5, the equivalent 

resistance looking into the displacement transformer from the lcr tank side will decrease, 

leading to a lower energy loss and higher Q. According to (2.22), one way to boost 𝜂𝑠𝑢𝑏 is 

to design a thinner disk structure, which will apply smaller vertical stress through the stem 

onto the substrate and generates less energy dissipation. However, thinning the disk may 

also increase motional resistance, a situation that could cause problems for oscillator or 

filter applications [40] [46]. Therefore potential trade-off may exists between quality factor 

and motional resistance for radial contour mode center supported disk resonators. 

B. Stem Geometries 

As already analyzed in this dissertation, cross sectional area of a disk stem has a huge 

impact on resonators’ quality factor. However, as stem size goes to extremely small, the 

strength of stem will be compromised. To overcome this issue, the hollow-stem idea in the 

thesis actually reduces the stem cross sectional area without jeopardizing the resonator 

strength. 

Another very important geometry that this dissertation doesn’t include is the stem length. 

Similar to an electrical transmission line, what a stem does to substrate resistor 𝑟𝑠𝑢𝑏 is to 

rotate it clockwise on a Smith Chart. A stem will modify 𝑟𝑠𝑢𝑏 to a minimum value if its 

length equals quarter wavelength of the acoustic wave in it, leading to minimum energy 

dissipation via substrate and highest Q. However, in frequency range around 150 MHz, 

quarter wavelength in polysilicon material is in the order of 13 µm. Such stem length will 

largely increase fabrication complexity and reduce resonators’ strength. For higher 

frequency such as 1GHz, quarter wavelength for polysilicon material shrinks to 2μm, a 

much more feasible dimension for center supported disk resonators. Therefore stem length 

optimization will become more necessary for resonators in GHz frequency range. 

C. Material Properties 

For contour-mode disk resonators, material with smaller Poisson’s ratio will generate 

less vertical displacement at the center of the disk, as indicated in (2.21), which leads to 
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smaller forces on the stem and less anchor loss to the substrate. Therefore materials with 

small Poisson’s ratio, such as polydiamond material [18], can be a very good choice for 

center supported contour mode disk resonators. 

6.1.2. Impact on Applications (Negative Capacitance Equivalent Circuit) 

The newly developed equivalent circuit model based on negative capacitance provides 

improved visualization that helps to identify methods to suppress electrical stiffness 

induced frequency variation. 

A. Drive and Sense Type 

From a practical circuit perspective, the use of small source and load resistances equates 

to the use of voltage drive and current sensing. Conversely, the use of large source and load 

resistances equates to the use of current drive and voltage sensing. From the discussion in 

Section 4.3 in Chapter 4, voltage drive makes most sense where frequency tuning is needed, 

such as for a tunable filter passband application, or a voltage-controlled oscillator. On the 

other hand, current drive is most appropriate when frequency stability is paramount. 

One example application where the choice of drive and sense type could make a big 

difference is that of a reference oscillator that must be stable against a variety of 

environmental perturbations. These include acceleration, power supply noise, drift, and 

undue charging (e.g., due to radiation), all of which can induce instability in the oscillator’s 

frequency. The most significant mechanism for frequency instability caused by these 

particular perturbations ends up being instability in the electrical stiffness. As revealed by 

the negative capacitance equivalent circuit in Figure 2.3(b), frequency dependence on 

electrical stiffness can essentially be nulled by using a high impedance input, high 

impedance output sustaining amplifier. Here, high impedance is defined relative to the 

impedance presented by the shunt Coi at the resonator I/O terminals, i.e., the resistance 

presented by the drive/sense circuit loading each I/O port is considered “high” when it is 

at least 5 times larger than 1/(sCoi). This suggests that to maximize frequency stability 

against environmental variations, a Pierce oscillator [59] configuration would be a better 

choice than the commonly used transresistance sustaining amplifier. 

On the other hand, if frequency tuning is important, and slight instabilities due to 

environmental perturbations can be tolerated, a low impedance input, low impedance 

output sustaining amplifier is most suitable, such as a transresistance amplifier [60]. 

B. Device Design Insights 

For the case where frequency stability is of most interest, the negative capacitance 

equivalent circuit offers a very important insight: The highest stability against changes in 

bias voltage or overlap capacitance comes when the positive Coi’s can cancel the negative 

ones. It will ensure maximum stability if Coi can be made much greater so that its 

impedance is smaller than any load resistance on a given terminal. 

This simple fact now reveals several methods by which the frequency stability of a 

capacitive-gap transduced resonator can be maximized: 



100 

 

1) Utilize large arrays of resonators, perhaps mechanically coupled into array 

composites like that of [8] and [27]. The use of many devices increases the total 

input or output Coi so that it swamps any terminal load resistance. 

2) Use solid dielectric gaps, such as demonstrated in [43] and [44]. Here, simply raising 

the gap permittivity again raises Coi so that it dominates over any terminal resistance. 

3) Employ small gap spacings, which not only improves motional resistance, but also 

raises Coi to cancel more of the electrical stiffness that is represented by -Coi. 

Needless to say, design insights like these made possible by the negative capacitance 

equivalent circuit that can greatly improve specific performance over others, are invaluable. 

There are sure to be many other examples, from oscillators, to filters, to mixlers [22], where 

explicit representation of the negative capacitance in a micromechanical resonator’s 

equivalent circuit proves instrumental to maximizing performance. 

6.2. Future Research Directions (Solving the Problems) 

This dissertation focuses on the following three aspects of high Q MEMS capacitive-

gap resonator design for RF channel selection: 

1. Electro-mechanical analogies that predicts anchor loss dominated quality 

factor and captures frequency pulling effect from electrical stiffness. 

2. Hollow stem support for higher micromechanical disk resonator quality factor. 

3. Mechanically coupled disk array composite employing high Q resonators with 

proper electrode phasing design, which increases mechanical stiffness, lowers 

motional resistance, and enhances frequency stability against environmental 

fluctuations. 

The future research can combine all these techniques and even other recent exciting 

techniques, such as ALD gap filings [7] or silicide induced gaps [61], into one single device, 

e.g., a capacitive-gap disk filter based on mechanically coupled hollow stem disk array 

composites with ALD partially filed gaps, operating at 1 GHz and above. 

In the course of investigating high Q micromechanical disk resonators for channel select 

filters, numerous problems have been raised and identified, including strength compromise 

from electrode overhangs of hollow stem disk resonators, Q loading and feedthrough  

current increase of disk array composites from parasitic trace resistance. The following are 

some suggestions to solve the above mentioned problems. 

6.2.1. Electrode Strength 

As indicated by the measurements in Chapter 3, the hollow stem device could not accept 

voltages as large as used for the full stem devices, since the former tended to pull into its 

electrode vertically when dc-bias voltages exceeded 3V. This is attributable to the thinner 

electrode overhangs which reduce the strength of hollow stem devices in the vertical 
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direction. It reveals a limitation of the hollow stem approach, where the much thinner 

electrode overhang compromises the maximum dc-bias voltage sustainable across the 

electrode-to-resonator gap before pull-in, leading to a compromised motional resistance. 

In the future, an improved fabrication process with CMP (chemical mechanical 

planarization) process that can eliminate electrode over-hangs would solve this electrode 

strength compromise and allow the same pull-in voltage for hollow stem disk resonators 

as its full stem counterparts. 

6.2.2. Parasitic Trace Resistance 

As indicated by the ac small signal equivalent circuit, any trace parasitic resistance at 

the I/O ports will be in series with motional resistance Rx, which will lower the effective 

quality factor of a capacitive-gap resonator and impact a filter’s insertion loss, especially 

for a resonator with low motional resistance such that the trace resistance Rp and motional 

resistance Rx are comparable. This is true even for trace resistance at the Vp port when there 

is net current pulled in and out from the resonator body. The relative lower measured Q of 

array composite compared with single stand-alone disk resonator can be attributable to this 

factor since array composites will have much lower motional resistance, which makes it 

more sensitivity to trace resistance Q-loading effect. In addition, trace resistance will also 

increase the feedthrough current of a resonator array composite, as discussed in Chapter 4, 

which will eventually lead to lower stopband rejection of a capacitive-gap 

micromechanical disk filter. 

The measured 3rd order filter in Chapter 5 achieves a stopband rejection of 40 dB, which 

is not good enough for a RF channel select filter that usually requires 60 dB stopband 

rejection. One important factor that limits the stopband rejection is the current feedthrough 

path via the resonator structure. By looking at the schematic of a filter in Figure 5.5, 

designer can see an electrical feedthrough path, which is basically the series combination 

of input & output electrode-to-resonator overlap capacitance. If the dc-bias voltage 

terminal has finite trace resistance and cannot shield all feedthrough current from the input, 

it will reach to the output port and increase the stopband rejection level. 

To solve this, the first step is to lower trace resistance on the dc-bias voltage port so that 

it can ground more feedthrough current. This is especially important when array 

composites are employed in a filter since the Vp line trace resistance doesn’t scale down as 

the impedance of electrode-to-resonator overlap capacitance decreases. On the contrary, 

the trace resistance may even increase because of longer routing in an array composite. 

This will make it more difficult for dc-bias voltage to shunt the feedthrough current to ac 

ground. 

Below are several thoughts that can suppress the above mentioned Q loading and 

stopband rejection compromise caused by parasitic trace resistance: 

1. Increase the thickness of the doped polysilicon trace routing layer. However, 

this may pose fabrication challenges on etching and topography management. 

2. Use metal or silicide material as interconnect. 
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3. Make coupling beam non-conductive, which will cut off the electrical path for 

feedthrough current, e.g. using masked doping to control locations that are 

conductive or not. 

6.2.3. Parasitic Capacitance 

The measured filter response also shows a higher passband ripple of 4.5 dB than the 

designed 1 dB. This is partially attributable to the parasitic capacitance between the I/O 

electrode and the conductive silicon wafer substrate, which increases the effective input 

capacitance and lowers Cx/Co, leading to compromised electromechanical coupling 

strength. Reducing interconnect area, using non-conductive high resistivity wafer, or 

integrating micromechanical filters with on-chip termination resistance would render a 

capacitive-gap MEMS filter with flat passband in the future, which could be potentially 

used in an RF channel select application. 
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