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Abstract 

Monitoring for cancer recurrence after initial therapy is challenging. Current imaging 

technology limits the size at which cancer may be detected; currently, the smallest clinically 

detectable tumor is 1-2 mm in diameter [1,20]. A locally recurrent tumor of this size has a high 

chance for metastatic dissemination, which could render the patient incurable [2].  In 

collaboration with oncologist researchers from Washington State University and UC-San 

Francisco, we propose a modern cancer surveillance technique that utilizes a radiation-detecting 

micro-sensor employed with radiolabeled inhibitor-based anti-body drug conjugates (ADC’s) for 

the localization of prostate cancer. To achieve molecular identification and localization, a 

network of CMOS image sensors will be used to localize tumor growth at early stages. As 

preliminary design steps, this project report identifies and analyzes system constraints to 

establish a theoretical framework for such a design. Based on data presented in this study, 

simulations suggest that two 500 x 500 um2 stacked CMOS Active Pixel Sensors (APS) with a 

500 um separation could be used to localize a tumor with a 300 um radius up to 5mm from the 

sensor interface.  
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Introduction of Variables 
3-T  3-Transistor 

A/D  Analog to Digital Converter 

ADC  Anti-body Drug Conjugate 

APS   Active Pixel Sensor 

CMOS  Complementary Metal-Oxide Semiconductor 

E  Beta Particle Energy 

EHP   Electron Hole Pair 

k  Number of events/radioactive decays 

No  Initial number of 32P Atoms present at the start of decay 

NoB  No for healthy (background) cells 

NoT  No for tumor cells 

PET  Positron Emission Tomography 

PN   Joined P-Type to N-Type Semiconductors 

PSMA   Prostate-Specific Membrane Antigen 

R   Beta particle incidence rate   

RB  Background beta particle incidence rate (β/sec) 

Rs  Tumor signal incidence rate ( β/sec) 

S(E)  Stopping Power (Energy Loss) in a medium with E Initial Energy 

SBR  Tumor Signal to Background Ratio 

SNR  Signal to Noise Ratio (Electronics) 

Ts  Sampling Period 

WblCDF  Weibull Cumulative Density Function  

wdepletion Depletion region width  

x  Distance a beta particle travels before hitting the sensor  

α   Sensor volume detectable angle 

λ   Half life 

μ   Gaussian noise distribution mean 

ρbackground Background binding density  

ρSilicon   Density of Silicon [g/cm3] 

σ2   Gaussian noise variance, with standard deviation σ 

ϕB   Background flux rate 
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1. Introduction 

 Cancer is a disease process that develops as a result of genetic and epigenetic alterations 

within a normal cell. It is known that these malignancies can vary in the rate of growth and 

progression [1]. Modern cancer surveillance techniques suffer from two major obstacles that 

prevent localization of initial cancer growth: (i) there is a resolution limit that constitutes the 

minimum tumor growth required for successful image detection, and (ii) there are no molecular 

markers to differentiate cancerous tissue from healthy tissue [2]. Using contemporary imaging 

technology, a tumor must grow to a diameter of at least 1mm before it may be emitted into an 

image [2,19]. Even if the tumor is large enough for image resolution, the tumor must be 

identified without the aid of any molecular markers [1,20]. Detection of malignancies is vital to 

patient treatment, outcome, and survival; therefore, better detection techniques would enable 

better survival rates [2]. 

 The constraints on current imaging technology prevent doctors from promptly detecting 

and quickly intervening at the early stages of growth, which may subsequently prevent neoplasm 

intervention before dissemination [1]. Once a tumor has metastasized and spread to other regions 

of the body, treatment and detection becomes complicated. Often times, metastatic tumors are 

the cause of death due to the invasion and domination of malignant cells within the body [2]. 

Based on the analysis of several clinical cases of metastases and time of dissemination, research 

studies show that “metastases start to grow years before the … tumor is clinically detectable” [2-

5]. In one particular research study of breast cancer dissemination, Von Fournier et al. concluded 

that tumors as small as 0.6mm in diameter have the potential to seed distant metastasis [4].  

 Current imaging technology is done from outside the body. We hypothesize that imaging 

from within the body would overcome these constraints and would allow for detection of smaller 
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tumors. Thus, this would enable earlier detection, earlier treatment, and better prognosis for 

survival of the patient. This project aim will specifically focus on the detection of prostate cancer 

within the male population. Particular consideration for this tumor was chosen because evidence 

has shown that locally recurrent prostate tumors have a high potential for metastasis [1]. 

1.1 Novel Cancer Surveillance Technique 

We propose a novel cancer surveillance technique that: (i) resolves um-scale tumor 

recurrence in the area of primary growth, and (ii) differentiates tumor cells from healthy cells 

using radiolabeled antibody drug conjugation. Our objective is to detect locally recurrent cancer 

before potential dissemination, at 100,000 cells (tumors with a 300um radius). To achieve this, 

implantable micro-sensors are used in conjunction with antibody molecular markers to assert 

and localize cancer growth. The proposed technique is outlined in Figure 1. 
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Figure 1: Outline of Novel Cancer Surveillance Procedure In Comparison to Current Methods 

(Image courtesy of Stefanie Garcia) 

 

To prove feasibility of our novel cancer surveillance technique, prostate cancer is used as 

a test model (as explained in the introduction) because of the wide availability of clinical data 

and its significant prevalence among the male population [6]. Our technique could also be 

extended to breast cancer surveillance in future trials. As outlined in Figure 1, our surveillance 

method goes as follows: 

1) After removal of the primary tumor, a network of radiation-detecting micro-sensors is 

placed within the region of primary growth.  

2) Every few months, the patient comes to the doctor’s office for a screening. 

Size ≥ 1mm  

Size ≥ 300um  



10 

 

2.1) Radiolabeled anti- body drug conjugates (ADC’s) are intravenously 

administered to the patient. 

2.2) If there is any cancerous growth within the body, the drug conjugates will 

bind to the tumor site within 4 hours, and the rest will be washed out. Though 

most ADC’s will bind at the tumor site, there will be some background binding on 

healthy tissue.  

2.3) ADC’s are constantly emitting radiation as they undergo radioactive decay. 

The localized source of radiation will reveal the relative size and location of the 

tumor.  

2.4) Power and communication with the implanted micro-sensor may be 

accomplished using ultrasonic excitation of piezoelectric transducers, as presented 

in D. Seo’s research publication [5].  Raw sensor readings will be transmitted 

when powered. 

2.5) Sensor data will be externally reconstructed and analyzed. Cancer recurrence, 

at a specified size and location, can then be assessed.   

3) If cancer recurrence is detected, targeted radiation treatment, or other cancer 

therapeutics, could be utilized to remove the tumor and prevent metastases or 

further growth.    

 This project report is arranged as followed. Section 2 outlines the foundational 

constraints on designing a radiation-detecting implantable micro-sensor. Section 3 outlines a 

refined objective and design methodology for achieving an optimal design. Section 4 analyzes 

the maximum noise requirements and specifies probability of error. Section 5 analyzes the circuit 
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architecture and characterizes the pixel sensing circuit. Section 6 summarizes the design results 

and discusses the implications. Section 7 presents plans for future work. 

2. Background 

Implantable radiation micro-sensors have not been pursued in the past due to limitations 

in powering and communicating with such devices, as well as limitations on anti-body drug 

conjugates.  

2.1 Relevant Work  

Recently, radiation and oncologist researchers from Washington State University and 

University of California-San Francisco have developed a “PSMA [Prostate Specific Membrane 

Antigen] targeted inhibitor for PET imaging of prostate cancer” that achieves high binding rates 

and enables molecular labeling of cancerous cells [7]. Using inhibitor-based Anti-body Drug 

Conjugation (ADC), PSMA could be used to identify tumor growth at the cellular level (it is 

current clinical practice to us PSMA as indicators of prostate cancer cells) [7]. To achieve 

cellular identification, PET (positron emission tomography) cannot be used, as this imaging 

technique suffers from the limitations outlined in the introduction. Instead, micro-sensors 

employed with radiolabeled ADC’s could be used to localize um-scale tumor sites within the 

body [8]. Radiolabeled ADC’s, which are ADC’s labeled with radionuclides, would exhibit 

decay as they bind to cancer cells [8]. This radiation could then be detected and localized with 

nearby micro-sensors.    
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Based on preliminary data for PSMA targeted inhibitors, radiolabeled ADC’s bind to 

cancerous cells over healthy cells with a specificity of 30:1 [7]. Furthermore, a conservative 

estimate on the number of bound ADC’s over one cancerous cell is about 5000 [7]. 

In the advancement of micro-sensor wireless power harnessing, implantable neural sensor 

experiments have shown that “low-power CMOS circuitry coupled with ultrasonic power 

delivery and backscatter communication” can harness ~500uW with a 1mm2 sensor [5]. As 

proposed in the findings, this power may be scaled with sensor size. These power estimates 

provide sufficient amounts of energy to excite a low-power CMOS implantable micro-sensor [5]. 

The previously outlined research efforts support the foundational feasibility of our cancer 

surveillance method. In the following section, radiolabeled ADC’s are characterized to identify 

fundamental limits on the sensing mechanism and required sensitivity.   

 

Table 2.1 Summary of Preliminary Data Estimates for Implantable Micro-Sensor Design [7] 

2.2 Radiolabeling Techniques 

Modern cancer therapeutics consist of radiotherapy that uses gamma and alpha radiation 

for treatment. Since cancer patients will likely have been exposed to both of these types of 

radiation, only beta emitting radionuclides are considered for radiolabeling ADC’s to prevent 

residual radioactive remnants from affecting the sensor signal.  

The ideal beta emitter would be reactive with our PSMA targeted inhibitor and would 

also emit energies high enough for relativly long distance radiation detection. Beta emitters 

Cancer to Healthy Cell 

ADC Binding Rate
30:1

Number of Bound ADC's 

Over One Cancer Cell
5000 P-32/cancer cell

Available Power: 500uW/mm2 Sensing Area

Preliminary Data for Implantable Micro-Sensor Design
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compatible with the PSMA targeted inhibitor include 32P, 36Cl, 14C, and 35S. The decay equations 

and resultant emitted energies of these radionuclides are outlined in Figure 2.1. Of the possible 

beta emitters, 32P is analyzed in our cancer surveillance model because of its relativly high 

energy.  

 

Figure 2.1 Possible Beta Emitters for Radiolabeled PSMA Targeted Anti-body Drug 

Conjugates 

2.2.1 Beta Radiation Energy  

 32P decay releases 1.71MeV, of which the antineutrino and beta particle (fast moving 

electron) release as an energy continuum with a distribution shown in Figure 2.2 [9]. The 

average beta particle energy is 0.56 MeV, and the maximum energy is 1.71MeV [9]. The energy 

spectrum is approximated using a Weibull distribution with parameters a = 0.67 and b = 2.00. 

The fitted distribution is derived in Appendix Section 1.  
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Figure 2.2: Figure 1.4: Beta Electron Energy Distribution During 32P Beta Decay [9] 
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Weibull Distribution Approximation expressed as f(x|a,b) 

 

2.2.2. Beta Energy Loss In Tissue 

 To detect a signal from a radiolabeled ADC, a beta particle must deposit some amount of 

energy on the sensor after experiencing energy loss and deflection during its travel through tissue 

[9]. The causes of energy loss and deflection are briefly outlined in Appendix Section 2. The key 

point is that stopping power S(E), given in g/cm2, models energy loss as it travels through a 

medium [18]. The stopping power for beta electrons traveling through tissue is shown in Figure 

2.3a [18]. 

 Using stopping power, energy loss may be determined. Figure 2.3b outlines energy loss 

per unit length traveled (x) in tissue based on initial energy. Figure 2.3d outlines the incident 

energy distribution for beta particles at x = 5mm. A negative energy means that a beta particle at 

5mm with the indicated initial energy will not make it to the sensor. Figure 2.3c outlines the 

percentage of beta particles that travel to a specified distance based on the initial energy 

distribution and respective stopping power. For this figure, the Weibull Cumulative Density 

Function (denoted wblCDF) approximates the energy distribution. As presented in Figure 2.3c, 

approximately 15% of emitted beta particles have the potential to travel to 5mm, 7% have the 

potential to travel 6mm, and 2% have the potential to travel 7mm.  
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Figure 2.3: (a) Beta Electron Stopping Power through tissue [18] (b) Energy Lost Per Unit 

Length Traveled Based on Initial Energy (c) Percentage of Beta Particles that Can travel 

Specified Distance (d) Incident Energy at 5mm Based on Initial Energy [9] 

2.3 Optimal Sensing Technique 

Given the distribution of energy deposited on the sensor, there are several methods to 

measure and isolate the beta particle signal. Potential detection methods are outlined in Table 

1.2. 

The simplest detection method utilizes a PN junction to detect incoming beta particles 

and measures the current across the diode junction. Due to the low decay rate of 32P, this method 

is not feasible since there is not enough charge deposited on the junction to generate detectable 

amounts of current. Other methods could overcome this limitation by integrating charge over 

some amount of time and measuring the resultant voltage differential. To accomplish charge 

01 ( |  )

( )
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incident initial initial tissue
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integration, a floating-gate flash memory design or a passive integration sensor could be used; 

however, the high radiation influx could potentially damage the insulating gate oxide, resulting 

in a high probability of faulty readings [10,11]. Another charge detection architecture that is less 

affected by oxide damage is the Active Pixel Sensor. The CMOS Active Pixel Sensor (APS) 

integrates charge on a small PN junction and induces a voltage on the sensing node [12]. Charge 

integration (signal generation) is accomplished through the junction capacitance in the depletion 

region of the PN junction; thus, radiation defects pose no immediate hazards over the sensing 

area [12].  

 

Measured 

Variable 

Sensing  

Technique 
Description Findings 

Current PN Junction/ Diode 
Current generated from incoming e-; 

measure current across diode 

Doesn't generate enough current.  

Detecting aA of current is not feasible, 

electronic noise would dominate 

Voltage  
Floating Gate Flash 

Memory 

Charge integrated on floating gate; 

measure voltage on floating gate cap 

Too much oxide damage would occur 

during initial intravenous infusion; 

would lead to defective sensor readings 

Voltage  
Passive Integration 

Sensor 

Incoming e- damage HfO2 layer;  

measure resistance from damaged 

Too much HfO2 damage would occur 

during initial intravenous infusion; 

would lead to defective sensor readings 

Voltage  
CMOS Active Pixel 

Sensor 

Charge integrated on diode cap; 

measure voltage over short timeframe 

Feasible to detect spike in charge from a 

single beta particle if integrated over 

short timeframe 

Table 2.2 Radiation Detection Techniques 

 

 Among several studied sensing architectures, the most feasible sensing method, given the 

limitations of the radioactive decay scenario, is the CMOS APS. Using CMOS APS as sensing 

elements provides several advantages: 



17 

 

 Using a small PN-junction, it generates a measurable charge-induced voltage change 

from a single beta particle. 

 The sensing element (PN-junction) does not immediately depend on an insulating gate 

oxide. This design has less gate capacitance area compared to other sensor techniques, 

making it less susceptible to radiation damage. 

 CMOS allows for a mass-producible, cost-effective device fabrication, and also allows a 

means of providing radiation-protection. 

Based on the several limitations posed to the system, CMOS APS is a feasible architecture on 

which to design a beta radiation sensor for cancer localization.   

2.3.1 APS Signal Generation  

A typical 3-T CMOS APS circuit is represented in Figure 2.3. The architecture is explained 

in the figure. Signal is generated and readout in the following manner: 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 3-T CMOS Active Pixel Sensor 
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1. Silicon is Ionized: As beta particles pass through the sensor, they deposit some amount 

of energy within a pixel PN junction. This energy ionizes silicon (primarily in the 

depletion region of the sensing junction) and generates Electron Hole Pairs (EHP) within 

the firing pixel. The firing pixel denotes the individual pixel that experiences an event 

(was hit with the beta particle). 

2. Signal Converted to Instantaneous Voltage Drop: Charge generated from EHP’s is 

integrated within the junction capacitance over a short sampling frequency. The increased 

charge in the junction dQ is reflected through an increased voltage across the junction 

capacitor (dV = C*dQ). When there is no additional charge generation in the sensing 

junction (no event), the sensing node will experience a constant drop in voltage due to 

dark current. When energy is deposited (event occurred at the junction), there is an 

increase in charge in the sensing junction. This charge will induce a larger voltage drop 

on the sensing node in a single sample (compared to a no-event sample). 

3. Array is Sampled: The voltage across each pixel in the array is readout by enabling the 

row and column transistors in a sequential order. 

4. Ultrasonic Backscatter Data Transmission: After amplification and digitization, the 

sampled signal is modulated via the piezoelectric crystal and picked up by the external 

ultrasonic transducer.  

 

 As explained in the signal generation mechanism above, energy deposited within the 

depletion region of the sensing junction generates a measurable charge-induced voltage during 

one sample. The voltage generated over a short sampling period is outlined in the equations 

below. Assuming an approximately constant junction capacitance, the signal is directly 
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proportional to the incident energy. As an example distribution, Figure 2.5 portrays EHP 

generation based on incident energy for a depletion region width of 1um. 

,

,

( )

/

( ) /

deposited incident depletion Si

deposited ionization Si

incident depletion Si ionization Si

E S E w

EHP E E

dQ EHP q

dV QdC CdQ

dV CdQ S E w q E









 
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Figure 2.5: (a) EHP Generation Based on Incident Energy  

2.3.2 Stacked CMOS APS Design  

 As previously described, there is a large amount of background radiation present in over 

our sensor (from ADC bindings to healthy tissue). If a single APS were used, the sensing area 

would be overwhelmed with background radiation, and there would also be no means of 

localization. To overcome this constraint, we propose that placing two Active Pixel Sensors 

back-to-back would allow for tumor signal isolation and localization. A single APS would only 

detect beta particle events and would have no sense of localization, since background radiation 

would overwhelm the sensing area and dominate signal readings. Placing two APS back-to-back 

would allow for localization. Each incoming beta particle would cause a single event on each of 

the two sensors over the same sample (beta particles travel at high speeds) [9]. Drawing a vector 
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from the two firing pixels on the sensors would reveal the relative location in which the beta 

particle originated. Over a large number of samples, a tumor would cause several event vectors 

to intersect over a small area, effectively suppressing uniform background radiation vectors. 

Figure 2.6 illustrates this scenario. Figure 2.6a shows how an event vector would be 

extrapolated. Figure 2.6b shows that an overwhelming number of event vectors originate from 

the background bindings. Over a large number of samples, the background vectors become 

uniform and randomly distributed over the sensor area. Using sophisticated noise suppression 

techniques, the uniform noise could be subtracted to isolate the tumor signal. 2.6c shows event 

vectors that would originate from a tumor without the presence of background. 

 

 

 

 

        (a)                                        (b)                                      (c) 

Figure 2.6: Vectors from (a) Single Event (b) Background Events (c) Tumor Events 
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3. Design Methodology 

 For an optimal sensor design, each design constraint must be carefully weighed to 

maximize tumor signal localization and minimize noise and background radiation.  

 Table 2.1 outlines the foundational design constraints of the entire system. As presented 

in Section 1.1, the primary objective of this project report is to design an implantable CMOS 

Active Pixel Sensor that, in conjunction 32P Radiolabeled Anti-body Drug Conjugates can detect 

locally recurrent tumors with a minimum 300um radius. Based on the background analysis made 

in Section 2, the objective is further refined in the following section.  

3.1 Design Objective 

 As presented in Figure 2.3d, 15% of emitted beta particles have the potential to travel to 

5mm. Since most of the beta particles from 5mm-7mm in front of the sensor will not have 

enough energy to make it to the sensor, only a 5mm detection sphere will be considered in this 

design. Background analysis on relevant work led us to an objective refinement: our objective is 

to design a CMOS APS that can detect tumors with a 300um radius at a maximum of 5mm from 

the sensor with minimum 98% confidence.  

3.2 Design Constraints: Two Main Sources of Error 

There are two inherent sources of error that constrain our design objective: (1) 

background ADCs that bind to healthy tissues and drown the tumor signal, and (2) electrical 

noise that may cause fluctuations in the sensor readings. SNR and SBR are terms are used to 

differentiate the two sources of error: 
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•
    

   
  

Beta Particles From Tumor Signal
SBR Signal to Background Ratio

Beta Particles From Background
   

SBR is the ratio of the tumor signal flux versus background flux, where flux denotes the 

expected number of incident beta particles over the sensor per second. Tumor Signal 

refers to the signal of interest (those beta particles originating from the tumor). 

Background flux refers to those beta particles (ADCs) that bind to healthy tissue. 

 

•
  

   
  

Electrical Signal Energy
SNR Signal to Noise Ratio

Electrical Noise Energy
   

SNR refers to parameters in the electrical domain and represents the ratio of signal 

energy (Es) to noise spectral density (No) for the sensor circuit. For an APS, signal 

energy represents the amount of charge-induced voltage generated in the PN junction 

from an event, and noise spectral density is derived from the equivalent input referred 

electrical noise from the system.   

 

Both SBR and SNR impose significant design constraints that affect different design 

parameters. Our design is based on the careful analysis of both constraints. Figure 3.1 outlines 

the design methodology for achieving the refined objective of Section 3.1. 
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Figure 3.1: CMOS APS Design Methodology 

 

This design methodology is followed in the following two sections. Section 4 analyzes 

the tumor signal to background ratio (SBR) through derivation of the tumor and background beta 

particle flux. Section 5 analyzes the electrical signal to noise ratio (SNR) of the pixel array 

circuit and derives the minimum detectable signal and probability of error. 
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4. Background and Tumor Signal Flux 

 Sources of error arising from background bindings cause the sensor to output false 

positives. This is an inherent limitation of our system dictated by our radiolabeled inhibitor-

based ADC. As explained in Section 2.1, the radiolabeled ADC binds to tumor and healthy cells 

with a specificity estimate of 30:1 [7]. This means, that to successfully detect a tumor at 5mm, 

the sensor would have to isolate the tumor signal from background bindings. The scenario is 

analyzed in the following sections.  

4.1 Theoretical Model of Flux 

The beta particle flux may be estimated from the decay equation. The beta decay 

equation for 32P is given by: 

32 32 1

15 16 1.71eP S e MeV      

0

0

t

t

N e

d
N e

dt

















  

log2 log2

14.3 1.2 6secdays E
    

No is the initial amount of radioactive atoms present at the start of decay, and λ is the half-life of 

32P [9]. With the specified 32P PSMA ADC, the molecular probes would settle within the body 

about 4 hours after initial intravenous injection [7]. The beta decay rate at 4 hours is 

approximately equal to the initial decay rate.   

44
0 0

0 4
0
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d
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d d
N
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 

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
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 As outlined in Table 2.1, there is ~5000 bound ADC’s on a single tumor cell, and due to 

the background binding ratio of 30:1, there are ~5000/30 bound ADC’s on a healthy cell. For a 

tumor with a 300 um radius, assuming a spherical shape, the tumor volume is ~ 110E6 um3 and 

consists of ~110E3 tumor cells (1 cell = 1000 um3) [13,14]. With 5000 β/cell, the initial number 

of radioactive atoms present over the tumorbed is: 

NoT =  5000*110E3 = 550E6 

The tumor flux will radiate spherically from the point source and decreases by 1/x2 as the 

distance from the source increases.  

2

0

2 2

0

2
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1

4 4
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N ed

dt x x
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 











 
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
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The beta particle incident rate R on the sensor is defined as the amount of radiative flux over the 

sensor surface area. The expected beta particle incidence rate for tumors of various radii and 

various distances from the sensor is outlined in Table 4.1.  

 

Table 4.1a: Tumor Incidence Rate (β/sec) over a 500x500um2 sensor 

for various tumor sizes and distances 

 

R=200umR=300umR=400umR=500um

D=1mm 149 504 1196 2337

D=2mm 32 110 261 511

D=3mm 8 28 66 129

D=4mm 3 11 26 51

D=5mm 1 3 8 16

Tumor Incidence Rate (β/sec), 500x500um2 Sensor 
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Table 4.1b: Tumor Incidence Rate (β/sec) over a 1x1mm2 sensor  

for various tumor sizes and distances 

 

 To determine the total contribution of background radiative flux incident on the sensor, 

the background binding density must be integrated over the entire detectable volume (spanning 

some angle and distance). The background binding is 5000/30 β/healthy cell. With an 

approximate cell size of 1000 um3, the background binding density is 

3

5000 1
30 1000

.017[ ]Background um

   

The detectable distance from the sensor is 0 – 7mm, as was presented in Figure 2.3d. The 

detectable azimuthal and polar angle depends on the separation between the two sensors as well 

as the sensor size. For separation S and sensor length L, the azimuthal detectable angle α is given 

by the equation below. If the sensor has the same length along the other edge (it’s a square), the 

polar detectable angle would be the same as the azimuthal detectable angle.  

12 tan ( / )L S   

R=200umR=300umR=400umR=500um

D=1mm 598 2019 4787 9350

D=2mm 130 441 1047 2045

D=3mm 33 112 265 519

D=4mm 13 44 104 204

D=5mm 4 14 33 65

Tumor Incidence Rate (β/sec) over a 1x1mm2 Sensor 
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Figure 4.1: Determining the Azimuthal and Polar Detection Angles 

 

 Using spherical coordinates, the total detectable volume of the sensor may be 

approximated by taking the volume integral from 0 – 7mm (detectable distance) over α (the 

detectable azimuthal and polar angle). To get the total number of background beta particles NoB 

present, the background binding density is multiplied with the total detectable volume. NoB, 

combined with λ, yields the total number of background beta particles emitted in that volume per 

unit time dβ/dt. The background incidence rate is then found by incorporating the 1/x2 flux 

decrease. 
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 This approach slightly underestimates the amount of background radiation present since 

the detectable volume is not entirely spherical. This approach serves as model to yield a rough 

estimate on the expected background incidence rate. Monte Carlo simulations, outlined in the 

following section, validate the relative accuracy of these results.  
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 Correcting for the energies and range (from Figure 2.3d), the mean probability that a beta 

particle from 0 – 7m will hit the sensor based on the energy distribution is ~40%. The estimated 

background flux for various sensor sizes are listed in Table 4.2. Increasing the sensing area 

increases the amount of background radiation detected by the sensor, while decreasing the 

separation increases the detectable volume and also increases the detected background radiation. 

For a 500 x 500um2 sensor with a separation of 500um, RB≅ 600 β/sec. 

 

Table 4.2: Estimated Background Incidence Rates for Various Sensor Sizes and Separations 

4.2 Computational Model of Flux 

 A Monte Carlo approach was taken in order to simulate the behavior of an incoming beta 

particle over the sensor. Figure 4.3 outlines the procedure. 

 To run the simulation, the following variables must be chosen: tumor size, maximum beta 

particle range, sensor size, and sensor separation. From the tumor size and maximum beta 

particle range, the outward flux of tumor and background beta particles (dβ/dt) is identified. With 

a fixed simulation time, the number of beta particles originating from the tumor volume and 

background detectable volume is determined.  

 After identifying the number of beta particles to generate, the simulation proceeds as 

follows. For each beta particle, a random originating location is assigned. The location is taken 

L [um] S [um] α [rad] Rbackground (β/sec)
Incorporating 

Energy Loss

100um 500um 1.4 5 0

500um 500um 0.8 1700 595

1mm 500um 0.5 14000 5600

500um 100um 0.2 4900 1715

500um 500um 0.8 1700 595

500um 1mm 1.1 750 260
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from a uniform distribution over the respective volume. For particles originating from the tumor, 

a random point within the tumor volume is chosen. For particles originating from the 

background, a random point with the detectable volume is chosen. A random direction and 

random energy is then assigned. The direction is taken from a uniform distribution over all 

directions (360 degrees by 180 degrees in spherical coordinates). The energy is taken from the 

fitted Weibull energy distribution of the 32P beta emitters (outlined in section 1 and elaborated in 

Appendix Section 1).  

 The random location, direction, and energy constitute one ray which represents the beta 

particle. For each ray, it is then determined whether or not the beta particle hits the sensor. There 

are two criteria for hitting the sensor: (i) is the ray traveling in the right direction and does it hit 

both sensors, and (ii) does the ray have enough energy to make it to the sensor. If the ray satisfies 

both criteria and makes it to the sensor, the incident energy is used to determine the EHP which 

would be generated.  

 The results from the simulation yield the background signal flux, the tumor signal flux, 

and the amount of charge generated on each sensor from the incident rays. Over a large number 

of simulations, an approximation of the background signal flux and the tumor signal flux is 

determined.  

 Results from the Monte Carlo simulation are succinctly outlined in Table 4.3. As 

expected, the theoretical model in section 4.1 slightly underestimated the background incidence 

rate. The calculated RB from section 4.1 was 600 β/sec, and the simulated RB from the Monte 

Carlo results was approximately 650 β/sec, within 10% of the theoretical result. The model also 

underestimated the tumor signal rate, especially for close distances. This is most probably due to 

discrepancies in the incident energy distribution approximations.  
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Figure 4.3: Monte Carlo Procedure 

Weibull Distribution 



31 

 

 

 

 

Table 4.3: Monte Carlo Simulation Results 

 It is important to note that, although this particular Monte Carlo simulation result for a 

tumor with a 200um radius at 5mm showed an Rsig of 0 β/sec, had I ran more simulations, we 

could expect that, on average, Rsig would be 1 β/sec. This expected result is used in the following 

sections. 

4.3 Limitations on Number of Pixels and Sampling Rate 

 Based on the results from the previous section, the constraints on the minimum number 

of pixels and minimum sampling rate are defined. 

4.3.1 Minimum Number of Pixels  

 The minimum number of pixels is given by: 

Background

Pixel

Desired

R
N SBR

R
  

With the background and tumor signal rates outlines in Table 4.3 (Monte Carlo Results), a target 

design SBR of 10 requires the minimum number of pixels in Table 4.4 to isolate and localize the 

tumor signal. Since the sensor size is fixed, the number of pixels determines the pixel size. For 

4000 pixels, each pixel would be 8 x 8 um2. 

Rsig RB Rsig RB Rsig RB

D=1mm 88 680 272 688 616 620

D=3mm 3 648 26 628 46 654

D=5mm 0 608 2 648 8 666

Avg RB: 649

R=400umR=300umR=200um
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Table 4.4: Minimum Number of Pixels Required for Various Tumor Sizes 

4.3.2 Minimum Sampling Rate 

 Each pixel should be sampled fast enough to only capture a single event during the 

sampling window. The sampling period should be faster than RB so that, on average, there is less 

than one event expected over the sensor over a given sampling period, otherwise successive 

events would be indistinguishable from one another. Based on the simulation results, the 

sampling frequency must be much greater than 650Hz. 

1/

Background

s s

s

f T

f R




 

  

R=200umR=300umR=400um

D=1mm 78 26 10

D=3mm 2160 242 142

D=5mm 6080 3240 833
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5. Electrical Noise Analysis 

 This section focuses on CMOS pixel circuit design. Electrical noise is analyzed, and in 

particle, thresholds are identified for number of pixels and SNR. 

5.1 Sources of Electrical Noise 

 Parasitics, thermal variations, and effects of other random processes must be kept to a 

minimum to reduce noise fluctuations in the signal. CMOS noise is largely random, and over a 

large number of samples, CMOS noise may be characterized using a Gaussian distribution with 

mean μ and variance σ2: 
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f(x=a) is the probability density of CMOS noise at a. Integrating over values of x, the probability 

that the noise will be less than a certain value may be estimated using the cumulative density 

function given by: 
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The cumulative density function of a Gaussian random variable is best evaluated in terms of the 

Q function, which cleanly represents information of interest for Gaussian noise.  
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5.2 Probability of Error 

 The probability of pixel error is composed of the probability of false positives (detection 

of a pixel event through the sensing junction when no event has occurred) and the probability of 

false negatives (failure to detect an event through the sensing junction when an event has 

occurred). False positives arise from electrical noise, and false negatives arise when a beta 

particle does not have enough energy to generate a measureable charge-induced voltage. 

5.2.1 Noise Distribution For No-Event 

 The voltage signal that represents that no event has occurred is assumed to be 0V. As 

outlined in section 5.1, the distribution of noise around the no-event voltage is approximated 

with a Gaussian function with 0 mean and noise variance σ2. Figure 5.1 shows the expected noise 

distribution. Noise variance is calculated in section 5.4 and is approximated to be 200uV in this 

analysis.  

 

Figure 5.1 Gaussian Distribution of Electrical Noise 

Noise Distribution for No-Event 
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5.2.2 Noise Distribution For An Event 

 When an event is detected by the sensor, not all events will generate the same amount of 

charge. Some events will hit the sensor with low amounts of energy, and few events will hit the 

sensor with high amounts of energy. The deposited energy will generate a charge-induced 

voltage on the sensing node, with the expected mean signal voltage for an event approximated as 

2mV (explained in Section 2.3.1). The distribution of expected voltage generation on the sensing 

node is shown in Figure 5.2. 

 

Figure 5.2: Energy Distribution of Incoming Beta Particles. 

5.2.3 Probability of Event/Non-Event 

 The probability of k events occurring (probability of k radioactive decays) is given by a 

Poisson distribution with mean λ. The expected number of events over a sampling period Ts is 

determined by the total β incidence flux, which is approximately equal to the background flux 

rate ϕB.  
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Noise Distribution for Event 
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 Assuming that sampling frequency is at least 10 times faster than the background flux 

rate (as explained in Section 4.3), λ would be 0.1 and the probability of an event and no-event 

could be approximated as:  

0.1

0.1

( 0, 0.1) 0.90

( 1, 0.1) 0.1 0.09

f k e

f k e


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

   
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90% of the time there is no event over the sensor, and 9% of the time these is 1 event. 1% of the 

time there is more than one event over the sensor.  

5.2.4 Optimal Threshold:   

 The optimal threshold would minimize the overall probability of error by minimizing the 

probability of false positives and probability of false negatives.  
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The optimal threshold is presented in Figure 5.3 and is approximately 0.12mV. Since P(non-

event) = 90% and P(event) = 10%, the overall threshold is closer to non-event voltage. Figure 

5.3b zooms in on the area of interest to illustrate the probability of error. The orange shaded 

region represents the probability of a false negative, which integrating over the area was found to 

be 0.3%. The blue region on the right represents the probability of a false positive, which was 

found to be 0.04%. The total probability of error for the considered case is 0.34%, with a higher 

probability of false negatives than false positives. 
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Figure 5.3: Distribution of Noise About Both Signals 

 

 

Figure 5.3b: Zoomed in Area of 5.3 Showing Optimal Threshold and Error 

 

5.3 Limitations on Required SNR 

 The pixel error ratio (PER), which is given by the ratio of pixel errors to total pixels in a 

given sample period, can be approximated with the pixel error probability P(error). 

( )PER P error  

1 ( ) ( )PER F wblCDF    



38 

 

 One of the major system constraints is that only one pixel event may occur over a given 

sample period over the entire array, otherwise events will be indistinguishable from each other 

and directionality may not be determined. On average, the false pixel rate of one pixel over a 

sampling period should be less than 1 in order to minimize this error, thus  

1PixelN PER   

1 ( )(

(0.5 ( )

( )) 1

( )) 1
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Pixel

N

N erfc SN

F wblCDF

wblCDFR
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

  

 
 

This pixel bound is also taken into consideration with the pixel bound of section 4.3.1. As the 

number of pixels increases, noise worsens thus SNR decreases. A balance must be achieved 

between the Npix and SNR to stay within the above constraint. 

5.4 Electrical SNR Analysis 

 In a 3-T CMOS APS, such as the circuit outlined in Figure 2.3, noise in the sensing 

junction, transistors, amplifier, and A/D converter all negatively affect the signal of interest. The 

primary and dominating sources of noise in these components are thermal noise, shot noise, and 

flicker noise [16]. Thermal (Johnson-Nyquist) noise is attributed to random thermal motion of 

charge carriers within a semiconductor [16]. Shot noise arises from the flow of electrons within a 

PN junction [16]. Flicker (1/f) noise is also observed in transistors and is known to fall of 

steadily at higher frequencies [16]. The noise powers (or noise variances) from each of these 

sources is outlined below.  
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The noise power of the pixel circuit is approximated in the following section in order to 

determine the minimum detectable signal, optimal sampling frequency, and power requirements.  

5.4.1 Output Referred Noise  

 The sensing junction experiences different amounts of noise under the 2 different modes 

of operation, during reset (when the reset transistor enabled) and during readout (when the reset 

transistor is disabled and the source follower transistor is enabled). 

 During Reset, thermal noise is experienced in the sensing capacitance as: 

2

,
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B
n reset

pd

k T
v

C
  

Based on theoretical and experimental analysis of APS reset noise in [15], the expected mean 

square noise voltage during reset is about ½ the expected kT/C value due to short reset times 

relative to the thermal time (time to charge the junction capacitance to kT/q) [15].  

 During Readout, thermal, shot, and flicker noise from the junction, transistors, and 

amplifier are all observed. The noise from each of the sources is characterized by the following: 

2 2

, intJunction Noise                     v 2 /n pd Dark pdqI t C f   

2

, m,sf

2

, ker

2 2 2

, , , ker

Source Follower Noise     4 ,   where R=2/3g

/

n thermal B

n flic F ox

n SF n thermal n flic

v k TR f

v k WLC f

v v v

 



 

 

2

, m,amp

2

, ker

2 2 2

, , , ker

Amplifier Noise                4 ,   where R=2/3G

/

n thermal B

n flic F ox A

n amp n thermal n flic

v k TR f

v k WLC f

v v v

 



 

 

2 2 2 2 2 2

, ,System Noise                  ( ( ) )n outputAmp amp SF n pd nSF nampv A A v v v    



40 

 

Δf for the source follower is the sampling frequency of one pixel (fs*π/2), and ΔfA for the 

amplifier is the array sampling frequency (which is Npix times the sampling frequency of one 

pixel). Analyzing the noise during readout, the noise is compared to the signal voltage 

(calculated in Section 2.3.1), and the Signal to Noise Ratio is given by: 

2 2
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2 2
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5.4.2 Device Characterization 

 To analyze the SNR, nominal values for process parameters are used. The assumed 

values for this analysis are outlined in Table 5.1.  

 

T 310 [K] Temperature Inside the Body 

kB 1.38E-23[J/K] Boltzman's Constant 

q 1.6E-19[C] Charge of an electron 

Kf 3E-24 [V2-F] Flicker Noise Process Parameter [16] 

Cpd 0.1 [fF/um2] Photodiode Capacitance 

IDark 50 [aA] PhotoDiode Dark Current 

Cox 5 [fF/um2] Oxide Capacitance 

W 10 [um] CMOS Device Width 

L 1 [um] CMOS Device Length 

chm 0.02 [1/V] Channel Length Modulation 

td 1 [um] Depletion Region Width 

S(Einc) 2E6 [eVcm2/g] Electron Stopping Power in Silicon [18] 

Eion 3.6 [eV] Ionization Energy in Silicon 
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Power 100 [uW] Power Availability 

 

Table 5.1: Estimated CMOS Process Parameters 

 

 Based on these parameters, and a power limit of 100uW, an expected SNR plot of our 

pixel sensor is shown in Figure 5.4. For this particular design, the minimum number of pixels 

necessary to detect a tumor at 5mm was ~3200, thus 4000 pixels were considered based on the 

limits outlined in Section 4.2 and 5.3. Peak SNR is achieved at 300Hz, which based on our 

minimum sampling frequency limitation presented in Section 4.2 is not possible for this system. 

At about 10 times the minimum rate (at 6 kHz), the SNR is 50dB, and continues to decline 

steadily with increasing frequency. In consideration of power limitations and background 

radiation suppression, 6 kHz would be a feasible sampling frequency because it is fast enough to 

suppress background events and slow enough to accommodate a large pixel array. With half the 

amount of power, at 50uW, the SNR at 6kHz is 40dB.  

With these design parameters, the charge-induced signal voltage dVβsig (introduced in Section 4) 

may be calculated as:  

 

 

 

 

 

(a)       (b) 

Figure 5.4: SNR Plots (a) 100uW (b) 10uW 
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The noise variance of our system is modeled by vn,output
2, and the minimum detectable signal is 

the energy  of that noise evaluated with our design parameters. 
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If more time had allowed, we would want to refine several design parameters, such as the 

amplifier design and A/D converter. Optimal designs of these parameters would minimize the 

overall noise and could improve the noise sensitivity. 

6. Discussion of Results  

Based on the theoretical analysis and simulation of background radiation circuit noise, an 

ideal APS design that can successfully detect and localize tumors with a radius of 300 um has 

been realized. Our analytical approach shows that a 500 x 500 um2 sensor with a separation of 

500um will achieve our objective. 

In Section 4, the tumor signal and background radiation flux was modeled theoretically 

and computationally. These simulations showed that a 500 x 500 um2 sensor with a 500 um 

separation could expect a background incidence rate RB of ~650 β/sec. The expected tumor 

signal at 5mm (emitted from a tumor with a 300um radius) that must be isolated would be ~2 

β/sec. These rates set a limit on the minimum number of pixels and the minimum sampling 

frequency, as explored in Section 4.3. For our objective design, greater than 3200 pixels (57 x 57 
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pixel array) must be sampled at a frequency greater than 650Hz to isolate the tumor signal. This 

yields ~9 x 9 um2 pixel size, which is well within modern CMOS process limitations.  

In Section 5, circuit noise was analyzed to determine if, given the ultrasonic power 

harnessing constraints, a beta particle could generate the minimum detectable signal with a low 

enough probability of error. For a standard modern CMOS APS array of 4000 pixels, the 

minimum detectable signal was identified to be approximately 0.2mV. 6kHz was evaluated as an 

optimal sampling frequency, as it was well within the limits. At this frequency, the probability of 

error given the design parameters is ~0.3%.  
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7. Conclusion and Future Work 

This initial sensor design analysis presented in this project report proves the feasibility of 

using a stacked CMOS APS design for cancer surveillance of um-scale tumors.  This project 

report serves as a foundational introduction to the several constraints imposed on implantable 

radiation-detecting micro-sensors, and also serves as a basis on which a cancer surveillance 

CMOS Active Pixel Sensor may be designed. 

Future work for this project includes modeling the active pixel sensor in Cadence and 

expanding on the readout circuit, which was not focused on in this project report. The readout 

circuit would further introduce noise to the system, but a similar analysis could be made to 

balance conflicting system constraints. Once a circuit design has been validated in Cadence, 

testing an actual device would yield the most insight on this novel cancer surveillance technique.  
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Appendix 

1. Comparison of Beta Energy Distribution Curves  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Beta Particle Energy Distribution for (a) all beta particles, measured average, (b) 

simulated with Weibull Distrubution, (c) shows the comparison 

 

The energy distribution shown in (a) was experimentally measured and presented in 

Annunziata’s Radioactivity textbook [9]. As shown in Figure A.1c, the Weibull distribution 

normalizes the probability density function from 0 to the maximum energy (1.7MeV) and 

slightly underestimates the energy distribution for values above the average. For the intentions of 

this project report, the Weibull Distribution with scale parameter 0.67,shape parameter 2.00, and 

mean 0.57 sufficiently represents 32P emitted energy distribution. 
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2. Stopping Power 

 To detect a signal from a radiolabeled ADC, a beta particle must deposit some amount of 

energy on the sensor after experiencing energy loss and deflection after traveling through tissue. 

Energy loss is primarily due to inelastic collisions with electrons in the traveling medium and 

elastic scattering from radiative interaction with nearby nuclei [7]. These radiative and 

collisional losses are expressed through the stopping power, which defines the total energy lost 

per unit path length through a medium [7,21].  

 Radiative losses (bremsstrahlung) account for beta particle deflections and energy loss 

due to atomic interactions with other charged particles [17]. Bremsstrahlung is dominant for high 

energy beta particles, as higher excitation energies lead to stronger interactions with nearby 

atoms [17]. Collisional losses account for ionization that stem from interactions with orbital 

electrons in the medium [7]. During a collision, beta electrons collide with particles of identical 

mass (i.e. other electrons) which result in potentially large scattering angles of the beta particle. 

The total stopping power, described through the Bethe-Bloch formula, is outlined in the equation 

below [7]. It is given in [g/cm2] to express losses through different mediums [22]. The total 

energy lost in tissue is found by multiplying the stopping power with the density of tissue and 

distance traveled.  
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Figure A.2: Beta Electron Stopping Power in (a) Tissue and (b) Silicon [22] 

 

 Stopping power for a beta electron traveling through tissue is graphed in Figure A.2. 

From the equation, it is observed that the stopping power is dependent on the variable initial 

energy (expressed through tau). As seen in Figure 1.5, beta particles with an initial energy of 

~1MeV experience the lowest stopping power, while lower energy beta particles have a higher 

stopping power. Although minimizing the losses through the traveling medium is desirable, once 

the beta particle hits the sensor interface, higher collisional losses, which are reflected through a 

higher stopping power, are desired in order to ionize particles in the sensor and generate a 

measureable signal. For the case of a silicon sensor, the collisional stopping power (shown in 

Figure A.2b) follows a similar trend and is higher for lower energy beta particles [9].  
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