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Abstract

Alternate Representations for Scalable Analysis and Control of Heterogeneous Time Series

by

Francois Belletti

Doctor of Philosophy in Computer Sciences

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

The recent increase in the availability of very large data sets has enabled major breakthroughs in
Artificial Intelligence. Automated devices are now able to achieve a higher level of performance
in computer vision, playing perfect and imperfect information games, and language processing
which now compares to that of humans. Such progress is largely due to improved Single Instruction
Multiple Data computing capabilities and higher bandwidth in distributed computing systems and
innovative methods to leverage them.

A plethora of algorithms and theories developed in the field of Machine Learning enable better
identification of system dynamics and extensive control of the corresponding systems. However,
the vast majority of research focuses on problems dealing with homogenous observation data sets
or control environment. Additionally, a large amount of work has focused on data sets comprising
only of images, videos featuring similar sampling frequencies, and of time series with regular and
identical timestamps of observation. Such a setting is not representative of the actual way data
sets are collected and problems present themselves to practitioners. The present work delves into a
more realistic setting where a unified representation of the data or control problem of interest is
not available. We deal with a collection of heterogeneous sub-parts that relate one to another but
do not naturally present themselves to practitioners in a homogenous fashion. Our main objective
is to design methods that are readily applicable to heterogenous data sets and control problems in
the distributed setting. The development of techniques that can be employed without additional
pre-processing of the data makes them more practical to use by a broader range of individuals,
companies and institutions.

We first focus on large multi-variate time series comprising of observations that are not syn-
chronous in time. We then tackle Partial Differential Equations featuring a spatial continuum of
distinct states. After this initial focus on the identification of dynamics in time series – otherwise
referred to as time series analysis – we delve into the topic of control. Control leverages the
knowledge we gather about a system in order to have it reach a particular desirable state. Part of the
new work presented in the current work therefore focuses on the control of distributed cohorts of
agents subject to individually unique constraints. Finally, we extend the work conducted separately
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to heterogenous time series analysis and control and devise strategies beneficial for neural policies
that identify system dynamics and optimal actions as part of the same module.

As we move from system identification to distributed control our aim is to find representations
of the initial heterogenous problem that are homogenous and enable communication avoidance.
In each of the chapters of the present work, we methodically design an alternate unifying and
summarizing representation of the initial data set or control problem of interest.

Our motivation to find small, concise yet expressive representations is that they enable scalable
computations in the distributed setting. When utilizing cohorts of computers inter-connected by
a medium such as an ethernet or wireless network, communication time presents the main factor
in the overall computing time. Decreasing the size of the messages that need to be transmitted
therefore minimizes the overhead created by the need to communication information from a machine
to another. With less time wasted in communication, we maximize the benefit of having more
computational power and memory in the form of a distributed system.

We find by designing communication avoiding homogenous representations that statistical
efficiency appears as a natural by-product. To that end, we leverage elements of stochastic process
and point process theory, distributed spectral representations of linearized Partial Differential
equations, convex duality and stochastic optimization, and finally specific regularization schemes in
Reinforcement Learning of deep neural policies.

The present work features novel results on the estimation of cross-correlation of irregularly
observed time series with event-driven sampling. A new analysis of the linearized Aw-Rascle-Zhang
system of Partial Differential Equations is developed that unravels conditions for travelling waves to
expand in the system. A comparative study of a dual splitting algorithm we developed for distributed
control reveals new results that highlight how the messages being transmitted are more useful to the
cohort of agents for control than for an adversary to eavesdrop on individuals. The regularization
scheme we developed for neural control policies enabled extensive and robust control ability that
compares with cutting edge parametric control strategies despite that no preliminary calibration is
needed with our method.

The applications entailed in our numerical experiments span the fields of quantitative finance,
macroscopic traffic modeling, Mobility-as-a-Service, electrical load balancing, and optimal ramp
metering for freeways.

The alternate representations we develop are statistically efficient, scale naturally and are readily
usable with collections of data-sets or controllers which may not rely on similar representational
conventions.
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Chapter 1

Introduction

Driving vehicles has become one of the most prominent challenges mentioned in mainstream
media about progress in Artificial Intelligence. It may seem surprising that such a task – which
can be mastered easily by most humans – is still a challenge several decades after a supercomputer
beat the worldwide champion of chess [200] – a game that is generally more difficult to master for
humans. However, a key difference between playing chess and driving is that although the rules of
chess are seemingly complex the perception of the state of the game is transparent and the turn by
turn dynamics are fully known. In other words, the system corresponding to the rules underlying
the game is simple to represent in a computer, determining the current state of the chessboard is
immediate and predicting the next states is straightforward.

Identifying similar rules when it comes to driving vehicles is more complex. In fact, as one
learns to drive, one solves two problems. The driver gets used to the behavior of vehicles and how
actions on the commands – actuations – are translated into modifications of the state of the vehicle.
Furthermore, with experience, the driver learns the variability of such reactions. Along with solving
the problem of identifying how the vehicle reacts to actuation, the driver adapts its behavior in order
to achieve the goal of driving from a point A to a point B as quickly and safely as possible while
respecting traffic rules. In other words, another side of the driving problem consists in learning how
to devise the actuation in order to change the state of the vehicle, use perception accurately to drive
safely and achieve a particular aim such as commuting.

What makes the problem of learning how to drive difficult to automate is that learning how
commands and perception relate to the state of the vehicle is hard. It is also difficult to learn how to
actuate the commands finely to drive smoothly and safely. Finally, to complicate things even further,
those two problems which are difficult to solve individually are tightly interdependent.

Driving is a simple and relatable example which is quite representative of general difficulties
plaguing general purpose automation. As one designs an automaton – term we use to denote an
automated device specifying its actions based on a policy translating perception of the environment
into controlled actuations [200] – similar issues arise. As the automaton is created to actuate a
dynamical system in order to achieve a particular goal two different problems emerge. A first
problem consists in identifying the dynamics of the system to actuate while a second problem
corresponds to devising optimal actuation strategies in order to achieve the goal. The former
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problem is generally referred to as system identification [144] while the latter constitutes control
theory [31].

In order to better understand the dichotomy we expose, consider the example of automated
driving. In this particular instance, the task of system identification corresponds to the evaluation
of the mapping between the combined positions of the steering wheel, gearbox, acceleration and
brake pedals to the state which corresponds to the position, speed, acceleration and orientation of
the vehicle. Deciding how one should progressively accelerate and then perhaps brake in order to
stabilize the speed of the vehicle corresponds to the design of a control policy. Similarly, defining
by how much one should turn the steering wheel in order to change the orientation of the vehicle by
a certain degree corresponds to a control decision specifying the actuation of the car.

In certain simple applications such as controlling an inverted pendulum, some understanding of
Newtonian dynamics is sufficient to create a model of the dynamics determining how the system
will react to inputs [31]. If one considers a car, a physical model could be used that only relies
on the mechanical understanding of the vehicle in order map actuation inputs to state outputs.
Unfortunately, even a single vehicle is already too complex. A physical model can hardly accurately
account for how wear and tear affect dynamics or predict exactly how tires are going to adhere to the
road. In such a case, whenever the dynamics of interest are too complex, data driven identification
is employed [25].

State of the art
In order to introduce the challenges addressed in the present work, we first depict a historical

perspective on the evolution of research concerned with system identification, progress in control
theory and the evolution of the computing devices employed in actual implementations. As we
follow the analytical and practical developments of the last decades along those three axis we are
lead to consider that a paradigm shift could help better adapt the fields of system identification and
control to the distributed heterogenous computing setting which has become the norm today.

Historical perspective on a novel age of pervasive data, large cyber-physical
systems and expressive models

We now present key historical developments that relate the well theoretically understood fields
of system identification and control to the changing computational landscape of the last few decades.

Progress in dynamical system identification

One may consider the first instances of time series analysis [28, 29, 99] – a subfield of system
identification [144, 212, 115] – as the precursors of the field known today as Machine Learning [20,
77, 165] (ML).

The fundamental challenges underlying the estimation of coefficients of a parametrized model
are still, to this day, a major problem in the field of Artificial Intelligence [200]. Indeed, as one
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attempts to build an automaton meant to maximize an expected reward, one needs to be able
to understand which fundamental dynamics characterize the environment, how actions affect an
eventual reward and how to leverage feedback. A major breakthrough in the field of Artificial
Intelligence has been the formulation of optimality in a probabilistic sense and the modeling of
environments in a stochastic setting [200]. In such a setting, ML [76, 165, 20] constitutes a powerful
tool to estimate dynamics and the consequences of actions in the presence of uncertainty.

Machine Learning is a rather vague and un-intuitive term and therefore it sometimes seems
preferable to use the denomination of Statistical Learning instead [77]. Such a name accounts more
precisely for the continuity of research that started in statistics in the form of time series analysis [28,
29, 99, 25] and was later framed into sub-fields relating for instance to function approximation such
as Gaussian Processes [191], Kernel Learning [43] or Neural Networks [20].

A key element in the progression towards modern Statistical Learning methods was a growth
in the size of the data sets, computational power and the dimensionality of the problems under
study [29, 76, 84]. More complicated models have progressively been considered and considerably
extended the family of vanilla data driven approaches from simple linear predictive models [29]
to heavily parametrized function approximators [84]. The idea at the core of data driven system
identification has not changed. We let a statistical model learn a mapping between the inputs and
outputs of the dynamical system under study. The presence of uncertainty is clearly taken into
account in most models today [77]. Hybrid approaches such as state space models [60] help blend
some prior knowledge of the system’s dynamics with data driven parameter estimation in order to
merge physical insights with data driven system identification.

A similar progression towards added statistical and computational complexity has equivalently
been observed in the field of Control Theory.

Advances in control strategies

Linear models have also been the first concerns of Control Theoreticians although the field
quickly shifted from basic linear systems [31] to non-linear dynamics [231, 122]. Non-linear system
analysis presents an added level of complexity but inherently assumes in the first place that perfect
knowledge of the dynamics of the system of interest is available. The state of the system itself
is considered unknown and inferred on-line as feedback gets available [75, 166] but the model
parameters are considered pre-determined.

Approaches that take uncertainty into account for control were developed more recently. Two
families popular of approaches can be distinguished. In the first family, Robust Control Theory [250,
16], one assumes that a region of uncertainty exists around the estimated parameter values which ac-
counts for the uncertainty affecting system identification. The second family, Stochastic Control [9],
explicitly models uncertainty in the form of stochastic perturbations [9] whose impact is taken into
account in the dynamics when it comes to achieving a particular objective.

Although such approaches are vastly successful they are hampered by additional conceptual and
computational complexity which may not be rewarded in practical applications as some level of
pre-existing knowledge of the system’s dynamics is still expected. Non-stationarity of the systems
dynamics may therefore lead both robust and stochastic control to fail. More modern approaches
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merge system identification and control into a single adaptive procedure and optimal behavior is
learned by a trial and error process. Such is the premise of Reinforcement Learning (RL) [217]
where an actuation policy is progressively improved as the controller acquired knowledge by
interacting with the environment.

The absence of the need of prior system identification and the adaptive nature of the RL approach
make it very appealing. Recently, it has lead to breakthrough in control problems concerned with
RC helicopters [2] where random perturbations affecting the rotation of the rotor are extremely
hard to model. Such parametric control policies can be made more complex although they are still
learned by trial and error. Deep Q-learning has enabled [160] automata to play video games optimal
based on images as input. Policy gradient methods have offered comparable results [69] in robotics
although they rely on different adaptation methods. Deep Q-learning and policy gradient methods
constitute a very novel field referred to as Deep Reinforcement Learning.

While modern paradigms involving Deep Reinforcement Learning [84, 217] conduct system
identification and optimization of a control policy as part of the same model, they still implicitly
rely on perception informing actions. Therefore, the same fundamental principle is at work today
that was important five decades ago [87]: we need at some point – explicitly or implicitly – to
characterize the dynamics of a system of interest in order to understand how our actions will affect
it.

Whether such an understanding is granted by statistical methods providing strong guarantees [76]
or black box neural models [84] depends on the solution we choose to address the problems of
identifying a system and controlling it.

Evolution of computational power

One key element affecting the fields of time series analysis and control has changed over the
course of the last five decades however: computational power [161]. Although we can no longer
wait for 18 months and get a 2x increase of CPU computing capability, GPUs have computing
capabilities that grow considerably each year, both in terms of memory and speed [188]. More
importantly, such units of hardware become increasingly better at making data flow rapidly from
its storage to where it can be made useful to improve models [121]. Finally, the rapid growth of
ethernet network bandwidth [65] makes the interconnection between different machines less of a
bottleneck and has enabled researchers to tackle problems such as exploratory data analytics [246]
or neural network design [252, 49] with unprecedented computational capabilities.

Being able to leverage distributed networks of machines and the associated computational power
has two important consequences for the analysis of systems and control.

First, a cohort of machines belonging to the same data center can read vast amounts of data to
train models. As we have more empirical evidence to confront our models to, we can get more robust
and accurate modeling abilities. We can also more confidently train complex models involving
increasing amounts of parameters.

Second, distributed fleets of controllers are able to control vast systems of interconnected agents.
We can now consider problems involving the electric grid in California [129] as a whole and not as
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separate disconnected sub-problems.

Today’s distributed computing setting
Beyond the emergence of faster computational devices residing on a single chip, a major singular

characteristic of today’s system identification and control problems resides in their distributed
heterogenous layout. While great opportunities are associated with the generalized use of distributed
estimation and control systems, the challenges created by this new conceptual and computational
setting are numerous. Namely, we are no longer computing a single core machine with a unified
memory. Entire fleets of computing devices are now used collaboratively as they communicate with
each other through a low bandwidth medium such as ethernet or wireless networks [221].

Choreographies of computations involving numerous different machines are far from easy to
design and manage [221, 40, 124, 179, 137]. An overwhelming amount of different technologies are
available today [209, 48, 223, 246, 74] to obtain the best answer to specific distributed computing
need.

Complex computational patterns

The Paxos algorithm [126] is a well known example of an extremely complex algorithm design
for the elementary task of electing a leader among a cohort of devices. The complexity of Paxos
shows that, in the distributed setting, even a simple problem such as establishing a consensus among
a cohort of machines communicating on an ethernet network leads to quite involved solutions in
order to get eventual guarantees. One can then easily imagine the level of complexity researchers
are exposed to as they design elaborate distributed machine learning pipelines [74] for data-driven
system identification.

The complexity of the distributed computing systems asks for time and attention that make
it harder to focus on the issue of formulating models with statistical guarantees. The Hogwild
algorithm [192] is one famous example of an asynchronous program first discovered empirically as a
good solution to compute Stochastic Gradient Descent in the distributed setting. Only later did [155]
show that some statistical guarantees could be provided about Hogwild with an assumption of
bounded delays in communications. The fact that most statistical guarantees were usually obtained
in a setting involving algorithms operating on small data sets [29, 28, 99] has also made the
reconciliation computing at scale with formulating well understood estimators quite challenging.

Adapting statistical methods designed for small data sets fitting on a unified memory

Indeed, when data sets comprising of 104 observations were the norm [99, 28, 29], the main issue
under consideration was that of statistical efficiency. In other words, for a given small amount of data,
the concern was to find the estimator that would discover a parameter value as close as possible to the
actual one. Also, having been optimized for single core architectures, the corresponding algorithms
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were not designed to be deployed on cohorts of machines with communication bottlenecks such as
an ethernet or wireless network.

Moreover, because memory was limited in size, it was fairly rare to consider jointly data streams
sampled at different instants, the optimization of swarms of controllers obeying to different con-
straints or the collaboration of a cohort of robots. As services such as Amazon EC2 and frameworks
such as Apache Spark [246] can make a cluster with several terabytes of RAM available in a matter
of minutes, there is an opportunity to leverage a collection of heterogenous data sets jointly in
order to make better decisions about the system they all give information about. Another extremely
popular strategy consists in iterating fast on the data set under study and progressively fit a model by
Stochastic Gradient Descent [170]. Using multiple machines to speed up gradient computation on
successive sub-sets of the main data-sets makes such a method practically useful to estimate deep
neural networks [49]. The opportunity of using more data to obtain better models and control strate-
gies comes with a challenge though: that of finding a homogenous representation for heterogenous
collections of data or control problems so that they can mutually learn and yield a better solution
for the whole system.

The hidden assumption of homogeneity is no longer acceptable
The canonical representation of time series employed in classical system identification literature

consists in a table of mono-variate or multi-variate measurements indexed regularly in time [29, 25,
99, 28]. However, as it was quickly pointed out in [177], event-driven sampling yields observations
irregularly. Such irregular datasets that were inherently heterogenous – because they featured
asynchronous measurements – used to be considered an intellectual curiosity. Unfortunately, such
heterogeneity has become common today. It relates to two key heterogeneity factors.

As illustrated in Figure 1.1, system identification may face two major challenges when we
consider the actual dataset it is based on in an asynchronous distributed sensor network. As
larger memories are commonly available on distributed sensors, we can now afford to record
timestamps with a high precision more easily. A direct benefit is that according to the Shannon
sampling theorem [28] a broader range of frequencies can be accounted for in the digital version
of the process of interest. However, a challenge stems from the irregularity and asynchronicity of
timestamps across sensors. Each dataset entailed in an individual sensor is indexed differently in
time from its counterparts located on other sensors. We are therefore facing conceptual heterogeneity
between sub-datasets and therefore sub-problems.

The distribution across a low bandwidth network constituting a communication bottleneck
can be considered as another source of heterogeneity. Each sub-dataset is located on a separate
memory and each device may use different software and hardware. If the data is communicated as a
whole across the network, the corresponding communication overhead will dominate over the time
effectively spent computing [19, 221]. We refer to this issue as physical heterogeneity because it is
related to the physical layout of the data in the distributed computational system we consider.

The main challenge we address in the present thesis is therefore to build methods that can directly
solve heterogenous problems concerned with system identification and control while mitigating the
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Figure 1.1: Example of irregular measurements in time that make system identification difficult.
The asynchronicity of measurements across devices leads to conceptual heterogeneity. The scat-
tering across devices connected by a low-bandwidth communication network leads to physical
heterogeneity.
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conceptual and computational difficulties arising in such a setting.

Alternate homogenous representations for heterogenous
problems

In this thesis, we focus on formulating distributed analysis and control algorithm for settings
in which the large scale of the problem under consideration results from the aggregation of het-
erogenous datasets, dynamics, controllers or systems that can help provide better results if they are
considered jointly. Our aim is to develop representations that unravel the common denominator
between different yet related data streams or controllers while preserving their idiosyncrasies and
avoiding unnecessary communication.

Motivation and approach

While one technically feasible solution to speed up distributed machine learning pipelines
consists in focusing on computational system aspects and organizing the hardware and software in
order to maximize intercommunication bandwidth [187], such a solution is not readily applicable to
a general setting of distributed controllers and sensors that may communicated wirelessly (therefore
with low bandwidth). The cost of the hardware involved is high and intercommunication bandwidth
may sometimes be subject to hard constraints. Wireless communication across networks of sensors
is only one example of a setting where bandwidth is low and few messages should be sent in order
to preserve energy [137].

In the present work, we put the burden of effort on the algorithmic side and want to find
representations that enable solving heterogenous problems in the general setting of commodity
hardware where inter-machine communication presents the main bottleneck.

At the core of our motivation resides the need for end-to-end methods that can directly take as
input heterogenous data sets and solve the corresponding estimation or control problem in a scalable
manner on commodity hardware.

Unified representations of heterogenous problems in the distributed setting
As we mentioned earlier we identify two sources of heterogeneity in the distributed setting as

we consider collections of data sets and controllers as heterogenous problems.

Conceptual and physical aspects of alternate representations

Control problems can be considered as data sets if we reduce them to their objective, constraint
set and entailed parameters. We are therefore dealing with distributed collections of data sets
(Di)i∈I . We are concerned with building a computationally tractable mappingR that is well defined
on each Di and has its outputs in a homogeneous representational setH.
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Figure 1.2: We identify two sources of heterogeneity as we consider system identification and
control in the distributed setting: conceptual and physical heterogeneity. The problem the thesis
poses is that of designing representations that are statistically sound and avoid large communication
overhead. In other words, we want our representations to solve both conceptual and physical
heterogeneity-related issues as part of their design.

Such a mapping, R, will be referred to as a representation. As we will see in the following
developments, naive representational strategies may present statistical issues as well as a large com-
munication overhead. On an earlier example relating to system identification based on asynchronous
distributed time series we already delineated two heterogeneity issues. Let us now generalize
the two problems we identified. The first issue corresponds to what we identify as conceptional
heterogeneity and relates to the diversity of data set domains. The second issue relates on the other
hand to physical heterogeneity and the scatter of data across devices connected by a low bandwidth
communication medium. We represent such issues in the modern setting of distributed problems
in Figure 1.2. Our main challenge consists in designing representations that solve both difficulties
at once. We want the representations we design to solve conceptual heterogeneity issues such as
statistical artifacts. At the same time, we want our representation to create little communication
overhead as it is computed in the distributed setting.

Statistical soundness

Whereas trying to achieve both the objective of scalability and unification of representations in
a sound statistical manner may be challenging, it appears as definitively worthwhile attempting. A
good understanding of the data generation process or the optimization problem being considered are
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the key elements leading to meaningful yet concise homogenous representations for homogenous
problems.

In the present thesis, we leverage theory regarding second-order stationary time series and their
spectral duality, translation invariant operators and their diagonalization in the Laplace domain,
convex problems and their dual split equivalents in order to find the first alternate representations
we plan to use. A large amount of the work is dedicated to reconciling statistical guarantees with
scalable communication avoiding end-to-end data processing involving collections of different
sub-problems.

The final chapter caveats the need for good theoretical understanding as, even in a model-
free setting, complex perception and control policies can be found to have a natural unifying
representation although their individual characteristics differ. No statistical guarantees are given
then. However there is a clear advantage to using controllers that are trained with a realistic
simulator and can adapt to changing conditions.

Communication avoidance

In the distributed setting communications present the main wall-time bottleneck. We are
therefore looking for sets of short, homogenous and parsimonious messages that can uniformly
inform us on a heterogenous collection of data. We will demonstrate in the thesis that for such a
paradigm to be exploited, an alternate representation can be used thanks to a form of duality (e.g.
spectral or convex duality).

The present thesis is in particular focused on the application of such a paradigm to linear
stochastic system identification in the presence of irregular random sampling, the analysis of
complex infinite-dimensional PDEs, the convergence of swarms of controllers to an optimal scheme
and model-free adaptive and collaborative control.

We find that beyond the advantageous scalable properties it enables, communication avoidance
forces us to find a homogenous and parsimonious representation that may provide a level of
statistical efficiency.

It is indeed expected that if we find a KB-size summary in the context of a problem involving a
TB-size data set, the summary we consider entails the very information we need. Noise, redundant
and unnecessary information are not communicated. We therefore find in the alternate representa-
tions we propose a homogenous summary relating the heterogenous components of the problem of
interest together, in a data efficient way.

Design strategies for homogenous communication avoiding representations
As will be shown in each of the following chapters, the applications of the corresponding

contributions are many. We extend communication avoiding parameter estimation to the setting
of irregularly observed distributed and asynchronous time series. Indeed, irregularly sampled
time series are pervasive in stock market [3] and medical data sets [117]. Furthermore, still
related to system identification, we use Laplace domain representations to make key properties
of coupled PDEs obvious. Such infinite-dimensional PDEs are routinely employed to model the
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dynamics of freeways [141]. The role of communication avoidance is also key in our control related
applications. We are first concerned with distributed control problems are of prime importance
Mobility-as-a-Service and load balancing [129] and find that summaries can be designed to mitigate
communication overhead without losing performance. Finally, we apply communication avoiding
strategies to share experience between ramp metering controllers. Improving such collaborative
control schemes is of key importance as they impact the commute of millions [175]. We now
delineate the theories and methods we can build upon to better understand the challenges posed by
heterogenous problems prior to devise strategies to better address them.

Strategy leveraging Fourier domain duality for second order stationary stochastic processes

The re-emergence of time series analytics triggered by the explosion of large data-sets that are
timestamped is currently hindered by the omnipresence of irregularly sampled data in the form
of news feeds [149], GPS measurements [105], random high frequency observations on the stock
market [3]. Classic time series theory as presented in [29, 146, 99, 100, 25] has indeed mostly been
concerned with the analysis of samples located on a regular time grid. Although a body of research
focused on irregularly sampled data [177], and novel exploratory data analytics in the frequency
domain have been developed [28, 145], no asymptotic theory has been formulated under broad
assumptions in the setting of Long Range Dependent time series observed through an event-driven
sampling scheme.

The key insight of the proposed strategy stems from a theoretical analysis in continuous time
under assumptions that are well adapted to event-driven sampling. Considering correlated time
series sampled on asynchronously observed channels leads to challenging problems in modeling,
estimation and computation.

We quickly identify that interpolation methods may lead to bias in the estimation of correlation
across time series. Such bias is an important issue as it will not be mitigated by leveraging more
data in the distributed setting. In order to circumvent interpolation induced bias, we formulate a
study in continuous time, which leads to strong guarantees for the kernel smoothed estimator we
consider.

One challenge with a continuous time study though resides in its practical implementation. We
leverage the duality between time and spectral domain representations for second order stationary
time series [29, 47] in order to effectively compute our estimator in the frequency domain. Random
Fourier projections are employed – after an appropriate probability distribution over frequencies is
devised – in order to compute an estimator with a small vector which should be compared with the
billions of samples we consider in practical datasets.

While each collection of observations corresponding to a univariate component has different
timestamps, the frequency domain representation we compute is defined on a single set of frequen-
cies. Therefore it appears in this work that the spectral representation unifies a distributed collection
of heterogenous time series. The irregular asynchronous sampling appears here as the main source
of heterogeneity across data-sets.
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Strategy leveraging Laplace duality for linearized diagonalized partial differential equations

Considering time series analysis in continuous time is challenging in the second chapter because
we have to deal with infinite-dimensional objects indexed by time. In the third chapter we study
a dynamical system taking the form a system of coupled non-linear partial differential equations
(PDEs) defined in continuous time and space.

Such complexity being difficult to handle, we linearize the system of interest and then employ a
Laplace transform to unveil fundamental properties of the system. Spectral domain representations
make the analysis of the system tractable and we quickly find conditions under which traveling
waves may appear in the system. The spectral domain also makes the computation of numerical
solutions particularly straightforward.

The resulting simplicity contrasts with the initial complexity of the problem. Also, the spectral
representation makes the properties of a continuum of heterogeneous states evident as a distributed
Laplace transform summarizes temporal information. The spectral representation of transition
kernels can furthermore immediately be used for the purpose of controlling the linearized system.

Strategy leveraging Convex duality for distributed control problems

While the first chapters of the thesis deal with collections of heterogenous problems indexed con-
tinuously in time and/or space, the following chapters consider discrete collections of heterogenous
control problems.

As operators of Mobility-as-a-Service fleets (e.g. Uber, Lyft etc.) try to match a demand with the
aggregated presence of multiple drivers or as energy regulators try to balance electric load imbalance
at the scale of California, they deal with control problems involving thousands of controllers [129].

While the controllers are all bound by the objective they are trying to achieve collaboratively,
they are all subject to idiosyncratic constraints representing their individual availability, location,
capacity etc. Such independent constraint sets constitute a heterogenous control problem which
is usually solved by centralizing the data corresponding to all the constraints and solving the
corresponding massive optimization problem. Serious computational issues arise then. Such a large
problem cannot be solved by commodity hardware as it requires very large amounts of memory.

With the modeling assumptions we employ though, convex duality appears directly as an
opportunity to formulate summaries of agents’ individual constraint sets and share them in the form
of small messages thereby enabling a communication-avoiding scheme to find an optimal strategy.
The convex dual of the primal problem is therefore the alternate representation we employ here to
give homogeneity to the many heterogenous sub-problems we consider at the individual controller
level.

Moreover, in order to make the resulting collaborative scheme worthwhile joining for the
participants, we analyze the advantageous properties of the algorithms we design in terms of privacy
preservation. We find in particular that individual constraints do not need to be communicated. Such
a property obtained by enforcing communication avoidance is particularly suitable for participants
who do not want to disclose personal information.
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Therefore, the analysis demonstrates that the alternate representation we employ in the form
of a convex dual enables scalability with communication avoidance which also has important
consequences in terms of the data efficiency of the resulting distributed control program. Convex
duality gives an equivalent result to the primal optimization program we consider here because
Slater’s conditions hold. Unfortunately, in the non-convex setting of the last chapter, such strategy
has no equivalence guarantees.

Strategy using models parameters as summaries

The fifth chapter is concerned with model-free control of freeways. We no longer assume that
system identification has been conducted prior to establishing a control policy. In fact, both system
identification and control optimality will be achieved as part of the same model. Optimal neural
control policies are learned thanks to policy gradient methods. The controllers effectively learn by
trial and error thanks to RL [217].

To be more precise, we consider a group of ramp metering controllers that regulate the flow
entering a contiguous portion of freeway. We employ a state of the art simulator for the dynamics of
the corresponding stretch of freeway in order to train our policies in conditions close to those of
deployment.

Each of the ramp meters serves a particular entrance of the freeway with its particular demand
in terms of incoming flow of vehicles. While such particularities make the control problem
heterogenous, we want to enable some sharing of experience across controllers as they belong to
a common environment and actuate parts of the same system following similar dynamics. We do
not employ any form of explicit duality in this setting as the optimization objective we consider is
non-convex and the dual solution would be sub-optimal.

The parameters used in the top-most layers of the neural control policies are shared across
controllers and we demonstrate that such sharing of experience enables a clear improvement
in control performance. Only a small number of parameters are being communicated between
distributed controllers on the communication medium. This, in comparison to the amount of data
controllers accumulate as they experiment by trial and error, leads to a communication avoiding
scheme.

In the last chapter, model parameters of neural perception and control policies appear effectively
as homogeneous representations of heterogenous problems. Such property can be interpreted as the
consequence of having these small sets of parameters condensate information collected across vast
samples of data about control feedback.

Organization of the thesis:
It is worthwhile mentioning that the complexity of the models and problems we consider grows

increasingly. We start from linear models in continuous time under random sampling, consider
linearized PDEs, study distributed convex programs and finally employ controllers taking the form
of expressive neural policies.
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To a certain extent, such a progression reflects the succession of trends in ML that have appeared
popular in the last few years [76, 21, 165, 84]. A clear paradigm shift has occurred where computing
a logistic regression at scale [246] has been superseded by massive Deep Learning (DL) pipeline [1]
when it comes to showcasing the latest development of scalable methods.

More expressive models make the collection and use of increasingly massive datasets worthwhile
as they enable the training of control policies having to make more and more complex decisions. We
show in the upcoming chapters that as we follow such a progression towards complex models, data
efficiency and communication avoidance still go hand-in-hand. The alternate representations we
formulate enable us to take clear advantage of the resulting computational and statistical advantage
in the analysis of the algorithms we formulate and their practical applications.

• Chapter 2: Fourier domain representations for event-driven irregular sampling. Most
modern large data sets record events with high temporal resolution. As more data is available,
practitioners may enjoy the opportunity to estimate larger and more robust multi-variate
time series models. However, the event-driven nature of the sampling, the presence of Long
Range Dependence and the scale of the datasets present unique challenges which we tackle
in the first chapter. We demonstrate that interpolation is not a reliable solution to provide
a homogeneous representation for the heterogenous collections of irregularly sampled time
series. Interpolation related bias may lead researches to identify significant cross-correlation
where there is none. We provide kernel smoothing based estimators and analyze how they do
not feature such bias related issues.

Statistical guarantees are given for second-order estimators in the very general setting of
event-driven sampling. While the theoretical analysis occurs in continuous time – under
random measures taking the form of Point-Processes – the practical computations occur in the
frequency domain. Random projections are designed so as to enable kernel smoothing which
provides strong statistical guarantees without falling into the pitfalls that hamper interpolation
based methods.

In our numerical experiments, we consider datasets of several GB in size. We are able to
compute accurate cross-correlation estimators while only using KB sized messages. The
resulting communication avoidance directly enables scalability for our estimation algorithms.
Although our analytical study occurred in continuous time, we identify a clear advantage
provided by frequency domain representations for computing.

• Chapter 3: Spectral representations for control of PDEs. In systems of PDEs, we consider
an infinite continuum of states in continuous time. Each spatial location presents a unique
state which leads to a continuity of heterogenous problems that need joint analysis.

A Laplace domain spectral study of the linearized system of Aw-Rascle-Zhang PDEs provides
an efficient and expressive representation of the problem. The resulting analysis of distributed
Laplace transforms leads to a straightforward analysis delineating conditions for stability in
the system we consider.
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We characterize the precise situation under which convective instability pushes the state
system away from its steady state. The corresponding traveling waves are important features
of the system as they explain how crash may appear in the limit congestion regime for
macroscopic freeway dynamics.

Although analysis occurs in the spectral domain, time domain solutions can be computed
numerically which leads to predictions of traffic dynamics. Our numerical experiments
demonstrate that although we study a linearized approximation of the system of interest, we
still obtain an accurate modeling framework.

• Chapter 4: Convex duality for distributed control. We consider a problem setting involv-
ing agents subject to different heterogenous constraints. The agents need to collaborate as
they are bound by a common performance objective at the level of the entire cyber-physical
system they actuate.

Convex duality is employed to formulate a dual split problem which is provably equivalent
to the original primal problem but is parallelizable across controllers. The cornerstone of
such a separation across agents is the formulation of a consensus Lagrangian multiplier. The
multiplier can be interpreted as a price controllers agree on to synchronize their actions.

The use of a parsimonious representer in the form of a small homogenous price vector
presents multiple advantages. Agent-level constraints no longer need to be communicated
which protects the privacy of the corresponding participants in the control scheme.

In the applications we consider, such an desideratum is primordial. We instantiate the control
scheme in the setting of Mobility-as-a-Service (MaaS) and electrical flattening in California.
In the first problem, drivers should be incentivized to join the collective Mobility-as-a-Service
collaborative scheme and protecting privacy is therefore an important aspect. The second
problem considers using schedules for electrical vehicles. It is expected that the owners of
the corresponding vehicles may want to keep information private.

We furthermore prove that our scheme is robust, amenable to stochastic obfuscation to better
protect privacy, and shares. More information is shared that is useful for the cohort of agent
than elements revealing individual level data.

The distributed communication avoiding scheme we obtain is fast enough to enable a receding
horizon control scheme with several thousand vehicles on our Amazon EC2 based simulations.
We prove that we can rely on the computational power of a swarm of smartphones although
we use a fine temporal and spatial discretization scale.

• Chapter 5: Distributed cooperative reinforcement learning to control PDEs. The emer-
gence of complex neural policies in Reinforcement Learning has recently led to great break-
throughs in Artificial Intelligence. The purpose of the last chapter is to leverage such complex
models which constitute all-in-one solutions for both system identification and control. Our
aim is to control complex discretized PDEs.

We show that, in the absence of equivalence guarantees with a dual domain (spectral of con-
vex), we are still able to find a common representer for heterogenous controllers. Distributed
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control of freeways is indeed a heterogenous problem as each controller is located on a ramp
with an unique demand profile. We seek a unifying representation of control sub-problems to
enable the controllers to share their experience as they learn by trial and errors.

In order to share experience across adaptive controllers while allowing for some specialization
we design a regularization scheme leading to model parameter sharing. Model parameter
values constitute the messages that are effectively being shared and thereby formulate a
unifying representation.

We obtain cutting edge control ability while the neural controllers can dynamically adapt to
changing conditions and perturbations such as accidents. Contingencies can be simulated and
therefore incorporated in the learnings to the controllers we consider. We show that sharing
model parameters reduces the gap between our RL neural control scheme and a state-of-the-
art ALINEA model. The ALINEA baseline has perfect knowledge of the parameter values
specifying the dynamics of the simulator we employ to train and test our controllers. On the
other hand, the novel neural controllers learn the corresponding dynamics by trial and error.

Contributions
The work presented in the thesis has been published in the followed peer reviewed venues.

• Random projection design for scalable implicit smoothing of randomly observed stochas-
tic processes, AISTATS 2017 (Francois Belletti, Evan Sparks, Alexandre Bayen, Joseph
E. Gonzalez): Standard methods for multi-variate time series analysis are hampered by
sampling at random timestamps, long range dependencies, and the scale of the data. In
this article we present a novel estimator for cross-covariance of randomly observed time
series which identifies the dynamics of an unobserved stochastic process. We analyze the
statistical properties of our estimator without the assumption that observation timestamps are
independent from the process of interest and show that our solution does not suffer from the
corresponding issues affecting standard estimators for cross-covariance. We implement and
evaluate our statistically sound and scalable approach in the distributed setting using Apache
Spark and demonstrate its ability to identify interactions between processes on simulations
and financial data with tens of millions of samples.

• Prediction of traffic convective instability with spectral analysis of the Aw–Rascle–Zhang
model, Physics Letters A 379 (38), pp 2319-2330 (Francois Belletti, Mandy Huo, Xavier
Litrico, Alexandre M. Bayen): This article starts from the classical Aw–Rascle–Zhang
(ARZ) model for freeway traffic and develops a spectral analysis of its linearized version. A
counterpart to the Froude number in hydrodynamics is defined that enables a classification
of the nature of vehicle traffic flow using the explicit solution resulting from the analysis.
We prove that our linearization about an equilibrium is stable for congested regimes and
unstable otherwise. NGSIM data for congested traffic trajectories is used so as to confront the
linearized model’s predictions to actual macroscopic behavior of traffic. The model is shown
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to achieve good accuracy for speed and flow. In particular, it accounts for the advection of
oscillations on boundaries into the interior domain where the PDE under study is solved.

• Privacy-preserving dual splitting distributed optimization with application to load flat-
tening in california, CDC (Francois Belletti, Caroline Le Floch, Scott Moura, Alexan-
dre M. Bayen): This article presents a dual splitting technique for a class of strongly convex
optimization problems whose constraints are block-wise independent. The average-based
input in the objective is the only binding element. A dual splitting strategy enables the
design of distributed and privacy preserving algorithms. Theoretical convergence bounds and
numerical experiments show that this method successfully applies to the problem of charging
electric devices so as to even out the daily energy demand in California. The solution we
provide is a privacy-enforced algorithm readily implementable in a network of smart electric
vehicle chargers. It can reach any arbitrary precision for the common optimization goal while
relying on randomly perturbed information at the agent level. We show that, provided the
community is large enough, an averaging effect enables the group to learn its global optimum
faster than individual information is leaked. A limited number of messages are sent out in the
distributed implementation which prevents adversary statisticians from having low theoretical
Mean Square Errors for their estimates. 3

• Privacy-preserving MaaS fleet management, ISTTT and Transportation Research Pro-
cedia 23, 1000-1019 (Francois Belletti, Alexandre M. Bayen): On-demand traffic fleet
optimization requires operating Mobility as a Service (MaaS) companies such as Uber, Lyft to
locally match the offer of available vehicles with their expected number of requests referred
to as demand (as well as to take into account other constraints such as driver’s schedules
and preferences). In the present article, we show that this problem can be encoded into a
Constrained Integer Quadratic Program (CIQP) with block independent constraints that can
then be relaxed in the form of a convex optimization program. We leverage this particular
structure to yield a scalable distributed optimization algorithm corresponding to computing
a gradient ascent in a dual space. This new framework does not require the drivers to share
their availabilities with the operating company (as opposed to standard practice in today’s
mobility as a service companies). The resulting parallel algorithm can run on a distributed
smartphone based platform.

• Expert Level control of Ramp Metering based on Multi-task Deep Reinforcement Learn-
ing, IEEE-ITS (Francois Belletti, Daniel Haziza, Gabriel Gomes, Alexandre M. Bayen:
This article shows how the recent breakthroughs in Reinforcement Learning (RL) that have
enabled robots to learn to play arcade video games, walk or assemble colored bricks, can be
used to perform other tasks that are currently at the core of engineering cyberphysical systems.
We present the first use of RL for the control of systems modeled by discretized non-linear
Partial Differential Equations (PDEs) and devise a novel algorithm to use non-parametric con-
trol techniques for large multi-agent systems. We show how neural network based RL enables
the control of discretized PDEs whose parameters are unknown, random, and time-varying.
We introduce an algorithm of Mutual Weight Regularization (MWR) which alleviates the
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curse of dimensionality of multi-agent control schemes by sharing experience between agents
while giving each agent the opportunity to specialize its action policy so as to tailor it to the
local parameters of the part of the system it is located in.
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Chapter 2

Linear models in continuous time

Discrete time representation has been dominant historically [29, 25, 99, 229] in time series
analysis. Unfortunately, it becomes limited as one tries to build reliable estimation procedures able
to deal efficiently with irregular observations recorded on asynchronous sensing channels.

In the absence of a common temporal index available across sensing channels, we therefore
study a heterogenous collection of time series. In such a setting, one standard procedure employed
to give homogeneity to the timestamped collections consists in interpolating observations on a
common time grid. We show in this chapter how such a method leads to concerning statistical
issues and spurious estimators for second order properties of multi-variate time series. Having
identified bias in interpolation, we seek a different homogenous representation of the heterogenous
data streams of interest.

Some literature has been developed in order to provide methods able to estimate models in the
irregularly observed setting [177, 145, 28]. Even recent publications in the field of Recurrent Neural
Networks [169] present their ability to deal with asynchronous multi-channel sampling as a key
advantage of their architecture.

Such studies are primarily concerned with the issue of irregular sampling. Unfortunately, another
issue plagues time series analysis: Long Range Dependencies. Most methods designed to deal with
Long Range Dependent (LRD) stochastic processes are unfortunately only considered in the discrete
time domain [56, 186]. The case of LRD irregularly sampled time series is not clearly considered.
Being able to capture LRD components or erase them by appropriate filtering is of paramount
importance as otherwise the naive estimators we compute loose their convergence properties [87,
186] and may no longer be trusted. A major challenge is therefore to erase LRD components of a
process in the irregularly sampled setting.

Methods focusing on the issue of irregular sampling also do not attempt to produce scalable
algorithm. Computational issues arise quickly in standard methods such as the Lombge-Scargle
periodogram [145]. Lack of scalability hampers the application of the corresponding methods as
modern datasets generally comprise of billions of observations [246].

Finally, we argue that the scope of the theoretical properties revealed in [177] is too limited.
A key limiting assumption is that the generation of observations occurs independently from the
generation of the value of the process being observed. A core motivation of the chapter is to broaden
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the field of application of the elegant and extremely insightful study of second order stationary
marked point processes presented in [177] and no longer require such limiting assumptions. Our
derivations are therefore more general than the proofs in [177] which have been given with the
critical assumption that the random timestamps at which observations are available are generated
independently from the underlying process of interest. In other words, the properties of the analysis
in [177] do not apply to the very general setting of event driven sampling.

Irregularity in many time series datasets available today stems from the fact that sampling is
event driven. Such is the case of stock market data where order book information updates are
made available when the order book is changed [133]. Recent smart cameras only relay informa-
tion when a particular event occurs [241]. Geographic triggers such as entering a certain zone
also make geo-location time series irregular in an event-driven manner [193]. These are only a
few of many settings in which observations are irregular in time and occur in an event-driven manner.

The main objective of the current chapter is therefore to develop a novel and more general
analysis of second order estimation for irregularly sampled time series. We want to be able to
soundly consider cases where observations are triggered by events related to the process of interest.
In order to achieve this goal, we first build a data generation model that leads to the formation of
time series data set taking the form of temporally indexed collections (ti, Xti). We employ Hawkes
processes [47, 101] as a model for the generation of the timestamps (ti). We further consider the
Poisson intensity of the Hawkes process may be correlated with the process of interest (Xt) which
we define in continuous time. The correlation accounts for even-driven sampling.

As observation timestamps become themselves a time series, we employ elements of random
measure theory [47] carefully use filtrations and conditional expectations in order to give guarantees
on the second order estimators we consider. Employing continuous time representations is a crucial
point in the analysis, which contrasts with the spectral theory employed for example in [177]. A
key consequence is the ability to deal with a event-driven observations seamlessly.

While the analysis of the convergence of the estimator for event-driven irregularly observed time
series is conducted in the time domain, computations practically occur in the frequency domain.
The dual representation is key to compute on continuous time processes with a parsimonious
representer in a Fourier basis comprising of a few thousand floats. Employing a frequency domain
representation also makes Long Range Dependence erasure possible with linear time complexity
with respect to the number of observations which clearly improves on the standard time domain
fractional differentiation method [186]. The latter becomes quickly hampered by its quadratic
time complexity with respect to the number of observations available. The standard differentiation
operator is also defined in the regularly sampled setting making its application to irregularly sampled
time series difficult. To relate the properties of the frequency domain computing representation
to the time domain estimator of interest we use random Fourier transforms. The only operation
needed to transform the primal time domain representation into a dual frequency domain Fourier
decomposition is orthonormal in the space of square integrable functions which preserves the
geometric relationships between input signals.

Having highlighted the bias induced by interpolation methods leads, we compare the estimators
we formulate with standard interpolation-free estimators specialized for the setting of irregularly
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sampled Brownian motions [102]. We demonstrate empirically that although our estimator is general
purpose, it still performs as well as a specialized estimator such as Hayashi-Yoshida [102]. Our
estimator can readily deal with other Long Range Dependent processes such as fractional Brownian
motions, which we show is not the case of the Hayashi-Yoshida estimator for cross-correlation.

Organization of the chapter
The present chapter is therefore organized as follows. An introduction to Hawkes Processes is

offered to the reader in order to be introduced to elements of the theory of random measures and the
underlying modeling insights. Such stochastic point processes are a key component that enables the
generality of our analysis.

After this introduction, novel properties of kernel smoothing applied to event-driven irregularly
observed continuous time stochastic processes are derived. The chapter presents an appropriate
data generation model for event-driven sampling. A core theorem then delineates the second order
properties of kernel smoothing applied in the setting of random measures which does not need any
assumption of independence between the observation process and the process of interest.

Once continuous time domain properties have been fully exposed, we show alternate representa-
tions in the frequency domain make the computation of the corresponding estimators tractable. We
also prove that erasing Long Range Dependencies becomes trivial and computationally efficient in
the corresponding dual representation space.

A numerical study on both surrogate and actual data shows that our estimator effectively
converges and that the communication avoiding computations we can leverage in the frequency
domain naturally lead to a scalable algorithm.

2.1 Problem setting and contributions
Cross-covariance estimates are of prime importance in applications ranging from statistical

finance [3, 229] to climate studies [163] as asymmetry in cross-covariance is an indicator of a causal
relationships between time series [29, 110, 86]. A pair of causally related continuous stochastic
processes may be modeled as the solution of a Stochastic Differential Equation (SDE) of the form:

dX(t) = dWX(t) +

ˆ
s>0

φY X(s)dY (t− s) + φXX(s)dX(t− s)

dY (t) = dW Y (t) +

ˆ
s>0

φXY (s)dX(t− s) + φY Y (s)dY (t− s), (2.1)

where W is a Wiener process [55]. The multidimensional causal kernel Φ(·) consisting of

φXY (·), φXX(·), φY X(·), φY Y (·)

defines [29] the dynamics and the solution to the SDE is given by the stable bi-variate stochastic
process, U(·) = (X(·), Y (·)). In practice, we observe stochastic processes U(·) at particular points



CHAPTER 2. LINEAR MODELS IN CONTINUOUS TIME 22

t

X, Y

t

X

t

Y

t

X

Y

t

Underlying 
continuous 

process

Measuring point process

Observed 
process

Fourier 
Transforms

FT(X, f)

FT(Y, f)

Spectrum(X,Y,f)

Inverse 
Fourier 

Transforms

Cross-correlation 
structure

lag

Correlation

Figure 2.1: Underlying, measuring and observed process.

in time that are determined by a separate measurement process. In this work, we will assume
that observations are made on the interval [0, T ] with timestamps generated by a bi-variate regular
second order stationary Point Process

N(·) = (NX(·), NY (·))

as defined in [47, 42] referred to as the measuring process where NX(t) and NY (t) are the number
of observations that have been observed between 0 and time t. We assume that the measuring
process has a stationary cross-covariance structure, that observations are not accumulated at a
singular point in time, and their occurrence may be correlated with the underlying process. For
example, in the medical setting, the underlying process could be the blood pressure of a patient
which is defined at all times but only observed during punctual medical which the measuring process
consists in here. The resulting observed process

(U dN)(·) = ((X dNX)(·), (Y dNY )(·)) (2.2)

conflates the statistical properties of both the underlying process of interest (U) with the measure-
ment process (N). Our aim in this chapter is to infer the statistical properties of the continuous
underlying process (U) through the partial observations (U dN) determined by the discrete mea-
surement process (N). This data generative process is illustrated in Figure 2.1.

We make three contributions in this work. In Section 2.2, we empirically demonstrate standard
cross-covariance estimators designed for regularly observed data almost surely evaluate to 0 resulting
in biased estimates of the true correlation structure. We demonstrate that standard solutions to
mitigate the resulting bias such as ad-hoc interpolation and Hayashi-Yoshida estimation [102] do not
offer unbiased solutions for randomly observed stochastic processes. In Section 2.3 we develop a
statistically sound approach based on the use of kernel smoothing that addresses the bias of classical
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estimators and provide a theoretical analysis demonstrating a bias/variance trade-off depending on
the smoothing kernel bandwidth. We show how to compute these estimators efficiently in a scalable
manner through random Fourier projections drawn from a specific probability distribution. In
Section 2.4 we evaluate the proposed approach on both synthetic and real-world data characterizing
the accuracy of our technique by achieving a relative error of 8% or less in linear model recovery with
90% probability. Moreover, our method enables the estimation of the parameters of the generative
SDE model for the underlying process and using our new method we are able to accurately scale to
large financial time series and estimate causal structure.

2.2 Limitations of Standard Methods
In the following, we identify a series of challenges in estimating the cross-covariance structure

of a continuous bi-variate underlying process observed randomly.

Stochastic Intensity Point Processes
In order to more precisely state the probabilistic properties of the underlying and measuring

process, we introduce useful notation.
The information entailed in the history of the process (X, Y ) in the generative model Eq. (2.1) is

defined as the filtration [55, 47]
(
FXYt

)
t∈[0,T ]

where FXYt is the information available about (X, Y )

up to but not including time t. One can also extend the past information to that jointly produced by
both the underlying process and the measuring process which we denote (F).

A stochastic Point Process (NX , NY ) [47] defines a random measure over the axis of time and
is defined by stochastic local Poisson intensities for NX

µX(t) = limdt→0+

E
[
NX(t+ dt)−NX(t)|Ft

]
dt

and similarly for NY . In other words, µX(t) and µY (t) are the number of observations per unit
of time, expected given the events that occurred until time t. With the second order stationarity
assumption we make, these random measures are characterized by their cross-covariation structure

(γµX ,µY (h) = E [µX(t)µ(t+ h)])h∈R.

The regularity assumption on the other hand guarantees [42] that measurements cannot accumulate
at a single unique timestamp. The following proposition is helpful to understand the role of such a
measure of continuous stochastic processes and will be used in proofs below:

Proposition 2.2.1 With a continuous underlying process (X), almost surely,

E
[
X(t)dNX(t)|Ft

]
= X(t)µX(t)dt. (2.3)

where dt is the Lebesgue measure.
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Proof 2.2.1 This is an immediate consequence of properties conditional expectation and the conti-
nuity of X as, almost surely,

E
[
X(t)dNX(t)|Ft

]
= X(t+)µX(t)dt = X(t)µX(t)dt

where X(t+) is the right limit of X in t.

Statistical Issues
Our aim is to estimate the cross-covariation structure (and the cross-correlation structure, after

normalization) of the underlying process

γXY (h) = E [X(t)Y (t− h)] ,

as it is a sufficient statistic for Granger causality estimation [86], as well as the estimation of Φ
using Yule-Walker equations [29]. A standard estimator in the literature for regularly observed time
series [29, 28, 146] is

γ̂XYregular(h) =
1

T

¨ T

t,s=0

X(t)Y (s)δ0(t− s+ h)dsdt

where δ0(·) is the dirac function centered at 0.

The Epps effect with irregular observation

However, when observations are irregular the naive estimators designed for regular observations
take the form

γ̂XYnaive(h) =
1

T

¨ T

t,s=0

X(t)Y (s)δ0(t− s+ h)dNX
t dN

Y
s .

and in the case of an observation process which is a non-degenerate point process (NX , NY ), this
quantity evaluates to 0 almost surely [47] because X and Y are never observed simultaneously.

Theorem 2.2.1 The estimator γ̂XYnaive(h) evaluates almost surely to 0 for any value of lag h.

Proof 2.2.2 As the bi-variate measuring process (NX , NY ) is a regular [42] Poisson process, using
Landau notation,

P(
(
NY (s+ τ)−NY (s)

) (
NY (s+ hτ)−NY (s+ h)

)
> 0) = o(τ),

therefore

∀t ∈ [0, T ] ,

¨
t,s∈[0,T ]

X(t)Y (s)δ0(t− s+ h)dNY
s dN

X
t = 0

as δ0(t− s+ h) is non-zero only at t− s+ h = 0. �
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The bias of the naive estimator for cross-covariance towards 0 is referred to as Epps effect in the
field of high frequency statistics for finance [3].

To mitigate this issue created by the asynchronous observation process, we develop a novel
approach to the estimation of cross-covariance (and therefore cross-correlation) based on kernel
smoothing implicitly computed by specifically designed random projection in the Fourier space.

In the time domain, we define our kernel smoothing based cross-correlation estimator

γ̂XYsmooth(h) =
1

T

¨ T

t,s=0

X(t)Y (s)κ(t− s+ h)dNX
t dN

Y
s (2.4)

where κ(·) is a continuous function expressing a smoothing kernel. In Section 2.3 we will show
how to efficiently evaluate this expression through the use of specific random frequency domain
projections.

One approach to address the Epps effect is to align observations on a common time grid by
interpolation [110] or using an estimator dedicated to the precise setting of the problem under
study such as Hayashi-Yoshida [102] for correlated Brownian motions. In the following we show
the statistical shortcomings of both pre-existing approaches. The analysis of these shortcomings
presented below motivated our proposed approach whose statistical properties we study both
theoretically and experimentally.

Bias created by interpolation

In this section, we first review existing techniques for time-domain estimation of second-order
statistics for continuous stochastic processes in the context of discrete random sampling in time.
Interpolating data is a usual solution in order to be able to use classic time series analysis techniques
[177, 239, 77]. Unfortunately, interpolation is not always suitable, as it can create biased estimates
which mislead researchers into concluding that there is significant cross-covariance where there is
none [110].

A classical way to study the interactions of two asynchronously observed time series is to
force the synchronicity of the timestamps by aligning them on a common time grid. While there
are many interpolation techniques, a commonly used method is last observation carried forward
(LOCF) which is not as accurate as linear interpolation or approximation by the nearest point but
can efficiently be deployed as it only relies on past data at any point in time. We now consider the
causality inference framework introduced in [110] and show how the LOCF interpolation technique
creates cross-correlation estimates that may lead to false conclusions regarding the way (X) and
(Y ) influence each other.

We demonstrate, through simulation, that the asymmetric cross-correlation bias that plagues
the LOCF interpolation in [110] does not appear in our proposed method. We consider two
synthetic correlated Brownian motions that do not feature any lead-lag (variations in one shortly
following variations in the other) and compare the estimation of cross-correlation provided the
LOCF interpolation methods and our approach. After having sampled these continuous processes at
random timestamps, in Figure 2.2 we compare the cross-correlation estimates obtained by LOCF
interpolation and our proposed frequency domain analysis technique confirming that our method
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Figure 2.2: Cross-correlograms of LOCF interpolated data versus estimation via compression in
frequency domain. The latter estimate does not present any spurious asymmetry due to the uneven
sampling frequencies.

does not introduce estimation bias that is characterized by significantly positive cross-correlation
for small positive lag values. As the two simulated processes are synchronously correlated, the
estimator should find a cross-correlation of 0 except when h = 0.

Interpolation-free Causality Assessment
The Hayashi-Yoshida (HY) estimator was introduced in [102] to address the LOCF estimators

tendency to discover spurious causal structure. The HY estimator of cross-correlation does not
require data interpolation and has been proven to be consistent in the context of High Frequency
statistics in finance [106].

Correlation of Brownian motions: HY is adapted to measuring cross-correlations between
irregularly sampled Brownian motions. Considering the successor operator next for the series of
timestamps of a given process, let [t, next(t)]t∈obs(X) and [t, next(t)]t∈obs(Y ) be the set of intervals



CHAPTER 2. LINEAR MODELS IN CONTINUOUS TIME 27

Figure 2.3: LRD Erasure: Monte Carlo simulation (100 samples) of two fractional Brownian
motions with Hurst exponent 0.8 and simultaneously correlated increments. Spurious slowly
vanishing cross-correlation hinders the HY estimation but does not affect our estimation with LRD
erasure (see Section 3) as evident by nearly zero cross-correlation for non-zero lag. This issue arises
when cross-correlating temperatures or water levels [163].

delimited by consecutive observations of X and Y respectively. The Hayashi-Yoshida cross-
covariance estimator over the covariation of (X) and (Y ) [118] is

HY(h) =
∑

t∈obs(X), s∈obs(Y )
s.t: ov(t,s+h)

(Xnext(t) −Xt)× (Ynext(s) − Ys) (2.5)

where ov(t, s+ h) is true if and only if [t, next(t)] and [s+ h, next(s+ h)] overlap. The estimator
can be normalized by HY(0) to estimate the cross-correlation.

No interpolation is required with HY but unfortunately this estimator is not applicable outside the
context of cross-correlated standard Brownian motions. Figure 2.3 shows how the HY estimator has
much more variance than our proposed estimator when estimating cross-correlation of increments
on a fractional Brownian motion. Fractional Brownian motions belong to the family of Long
Range Dependent (LRD) processes [56] found in general time series in climate sciences [163],
finance [154], economics [220] or genomics [138]. When applied to these processes having a long
memory of previous perturbations, the technique we present provides a convergent estimator with
less variance as opposed to HY. In section 2.3, we show how our frequency domain based analysis
naturally handles irregular observations and is able to fractionally differentiate the underlying
continuous time process. In the interest of concision, we refer the reader to [70] for the definition of
a fractional Brownian motion and fractional differentiation.

2.3 Smoothing kernels in the Fourier domain
In this section, we develop a theoretical analysis of the properties of estimators dedicated to

the estimation of the cross-covariance structure of the underlying process (E[X(t)Y (t+ h)])h∈H
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where H is a discrete grid of lags at which we want to evaluate the cross-correlation function.
Estimating this second order statistics is of paramount importance as it highlights lead-lag [110]
and helps infer linear causation kernels by solving the Yule-Walker equations [29].

Smoothing kernel based estimator
Classically with sparsely observed continuous stochastic processes [177] the measuring process

is independent from the underlying process. We just assume that the compound model of the
measuring point process and underlying process is second order stationary with co-variation
function

γXµX ,Y µY (h) = E [X(t)µX(t)Y (t+ h)µY (t+ h)] .

The absence of independence between the underlying process and the measuring process is a
common feature in medical data [211] or financial data [3]. The following theorem shows how this
interaction affects smoothed cross-covariance estimators.

Theorem 2.3.1 The kernel smoothing estimator does not almost surely evaluate to 0 as

E
[
γ̂XYsmooth(h)

]
= κ ∗

(
γXdN

X ,Y dNY
)

(h) (2.6)

where ∗ denotes the convolution operator and κ is the same as in Eq. (2.4).

Proof 2.3.1 By definition of kernel smoothing estimator

E
[
γ̂XYsmooth(h)

]
=

˜ T

t,s=0
E
[
X(t)Y (s)κ(t− s+ h)dNY

s dN
X
t

]
T

As X(·) and Y (·) are almost surely continuous and κ(·) is also assumed continuous, we can write
the following:

¨ T

t,s=0

E
[
X(t)Y (s)κ(t− s+ h)dNY

s dN
X
t

]
=

¨
t>s∈[0,T ]

E[

E
[
Y (s)E

[
X(t)κ(t− s+ h)dNX

t |Ft
]
dNY

s |Fs
]
]dsdt

+

¨
t<s∈[0,T ]

E[

E
[
X(t)E

[
Y (s)κ(t− s+ h)dNY

s |Fs
]
dNX

t |Ft
]
]dsdt

=

¨ T

t,s=0

E [X(t)µX(t)Y (s)µY (s)κ(t− s+ h)] dsdt
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if we use Proposition 2.2.1 and recombine the two partitions of the double integral. Rewriting the
quantity above:

ˆ T

s=0

E

[ˆ T

t=0

X(t)µX(t)Y (t− s+ h)µY (t− s+ h)dt

]
κ(s)ds

=

ˆ
s∈[0,T ]

TγXdX,Y dY (h− s)κ(s)ds

which concludes the proof. �

Bias analysis for smoothing kernel design

We want to compare the estimators above with of the quantity of interest, γXY (·) = E [X(t)Y (t+ h)].

Corollary 2.3.1 With the smooth kernel estimator we propose, γ̂XYsmooth(h) the bias term is now

γXY (·)− κ ∗
(
γXY × γµ

)
(·)

where
γµ = E [µX(t)µY (t+ h)] .

Let us now analyze this bias term in the simplest setting where the measuring process is a bi-
variate uniform Poisson process with independent components of intensities νX and νY respectively
and is independent from the underlying process.

In such a setting, for any real valued h,

γµ(h) = E [µX(t)µY (t+ h)] = νXνY .

Therefore the expected value of the estimator shrinks by a constant factor in

E
[
γ̂XYsmooth(h)

]
= νXνY (κ ∗ γXY )(h). (2.7)

Here, as the sampling intensity decreases, the bias shrinks the estimator for cross-covariance towards
0 as intuition suggests. Further, we see that the smoothing kernel needs to be concentrated about 0
as expected. We cannot reduce this bias to 0, as κ needs to be continuous with a non-empty interior
support.

Variance analysis for smoothing kernel design

We conduct of variance analysis in the simple case of a Gaussian smoothing kernel which is an
extension of standard results of variance reduction for time series by Gaussian smoothing.

Proposition 2.3.1 Assuming data is generated by the model in Eq. (2.1), if the smoothing kernel is
a Gaussian density centered in 0 with standard deviation σ, the variance of γ̂XYsmooth(h) is O( 1

σ
).
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Proof 2.3.2 Denoting
(
FX,dN

X

t

)
t∈[0,T ]

the history of the compound process (X, dNX), we consider

E
[(
γ̂XYsmooth(h)

)2 |FX,dN
X

T

]
=

ˆ T

t,u=0

X(t)X(u)

ˆ T

s,v=0

κ(t−s+h)κ(u−v+h)A(s, v)dNX
t dN

X
u

Where A(s, v) = E
[
Y (s)Y (v)dNY

s dN
Y
v |F

X,dNX

T

]
= E

[
Y (s)Y (v)µY (s)µY (v)|FX,dN

X

T

]
again by a continuity argument. Conditionally to FX,dN

X

T , the stochastic process Y µY is second-
order stationary. With our assumptions on the generative model Eq. (2.1), the spectral density
(F (f)f∈R) of Y µY with respect to conditional probability to FX,dN

X

T is such that for any frequency
f the derivative of the spectral density

´
R

log(F ′(f))
1+f2

df is bounded. Therefore the Karhunen repre-
sentation theorem [55, 119] guarantees that there exist a second-order stationary process called
(ε) with orthogonal increments under the conditional probability associated with FX,dN

X

T and a
functional ψ such that

Y (t)µY (t) = c(t) +

ˆ t

0

ψ(t− s)dεs

where c(t) is a deterministic process which will be ignored as it is irrelevant when studying the
variance of (Y (·)µY (·)). Then,ˆ

s,v∈[0,T ]

E[κ(t− s+ h)κ(u− v + h)Y (s)Y (v)µY (s)µY (v)|FX,dN
X

T ]dsdv

= E
[
(κ ∗ (Y µY )(t))2

∣∣FX,dNX

T ]

where κ is a Gaussian smoothing kernel with standard deviation σ with the stochastic process
(Y µY ). Convolutions being linear,

κ ∗ (Y µY )(t) =

ˆ t

0

ψ(t− s)(κ ∗ dε)s

and as the increments of ε are de-correlated conditionally to FX,dN
X

T ,

E
[
(κ ∗ (Y µ(Y )))2 (t)|FX,dN

X

T

]
=

ˆ t

0

ψ(t− s)E
[
(κ ∗ dε)2

t |F
X,dNX

T

]
.

The smoothing kernel κ is here a Gaussian density with standard deviation σ, therefore

E
[
(κ ∗ dε)2

t |F
X,dNX

T

]
=
E
[
dε2t |F

X,dNX

T

]
σ2

therefore

E
[
(κ ∗ (Y µ(Y )))2 (t)|FX,dN

X

T

]
=
E
[
(Y µ(Y ))2 (t)|FX,dN

X

T

]
σ

and the theorem follows. �
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Bias variance tradeoff

The remarks above clearly delineate some of the design choices that we will take into account
when designing the smoothing kernel κ. The theorems we proved already required that the kernel
is continuous with a non-empty interior support. To decrease bias we want the kernel to be as
concentrated about 0 as possible. However, at least in the Gaussian kernel family, we want to
have wide enough a support so as to decrease the variance by pooling asynchronous observations
together.

Operating in the frequency domain
A problem we have is that even for standard smoothing kernels the method above is expensive

to compute as it requires smoothing an entire irregularly observed time series by a kernel with a
theoretically infinite resolution. We solve this by employing randomized Fourier transforms.

Fourier random projection basis

First, consider the Fourier transform of an irregularly observed process (Xt)t∈obs(X) is defined
as

FT [X](f) =

ˆ
t∈[0,T ]

e−2πiftX(t)dNX
t . (2.8)

The computation of this quantity can be accelerated using the techniques described in [89].
We assume that we generate frequencies f with a probability distribution F prior to computing

the corresponding set of Fourier transforms. We consider the element-wise product of the Fourier
transform of Y with the complex conjugate of the Fourier transform of X:

SP [Y,X](f) = FT [Y ](f)× FT [X](f). (2.9)

Theorem 2.3.2 Consider the random inverse Fourier transform of this element-wise product.

Ef∼F
(
e2πifhSP [Y,X](f)

)
=¨

t,s∈[0,T ]

X(t)Y (s)FT [F ](t− s+ h)dNX
t dN

Y
s . (2.10)

where FT [F ](·) is the Fourier transform of the distribution of frequencies F .

Proof 2.3.3 By definition of the Fourier transform

Ef∼F
[
e2πifhSP [Y,X](f)

]
=

Ef∼F

[¨
t,s∈[0,T ]

e2πif(t−s+h)X(t)Y (s)dNX
t dN

Y
s .

]
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and therefore, as sampling of frequencies is independent from both the underlying process generation
and the irregular sampling, the expectation of interest equals

¨
t,s∈[0,T ]

Ef∼F
[
e2πif(t−s+h)

]
X(t)Y (s)dNX

t dN
Y
s .

�

Corollary 2.3.2 If F is a Gaussian centered distribution of variance σ, FTf∼F (·) = g 1
σ
(·) where

g 1
σ

is the density of a normal distribution of standard deviation 1
σ

. Therefore:

Ef∼F
(
e2πifhSP [Y,X](f)

)
=¨

t,s[0,T ]

X(t)Y (s)gσ(t− s+ h)dNX
t dN

Y
s . (2.11)

This enables us to retrieve the estimator in Eq. (2.4), implicitly, via the frequency domain. There-
fore we have found a frequency distribution to smoothly combine the observations of irregularly
observed processes.

Erasure of memory in the frequency domain
With our method the application of a linear filter such as differentiation or fractional differentia-

tion can also be calculated implicitly in the frequency domain.

Corollary 2.3.3 Let A(·) a linear filter we aim to apply to the unobserved underlying process X
and B(·) to Y . Filtering can be conducted in the frequency domain as

Ef∼F

[
e−2πifhFT [B]FT [Y ](FT [A]FT [X])(f)

]
=

¨
t,s[0,T ]

A ∗X(t)×B ∗ Y (s)κ(t− s+ h)dNX
t dN

Y
s (2.12)

Pre-processing can therefore be translated in the frequency domain so as to study LRD processes.
For a fractional differentiation of level α dedicated to erasing LRD as in Figure 2.3, we use
A(f) = (2πif)α [56]. This is the pre-processing step we use to study cross-correlation between
Brownian motion increments as in Figure 2.2. It also enables us to show our estimator obtains
results comparable to HY in the case of Brownian motions in Figure 2.5 although it can used much
more generally.
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Choosing the number of basis frequencies

It is practically impossible to project a process on a continuous distribution of elements of the
Fourier basis which is what writing Ef∼F

[
e2πifhSP [Y,X](f)

]
implies, we will sample a finite

number Nf of frequencies from F and then compute the associated predictions before computing

γ̂XYf (h) =
1

Nf

Nf∑
f=1

[
e2πifhSP [Y,X](f)

]
=

¨
t,s[0,T ]

X(t)Y (s)

Nf∑
f=1

e2πif(t−s+h)dNX
t dN

Y
s (2.13)

whose variance will be inversely proportional to M and convergences in probability to γ̂XYsmooth(h) as
M →∞. As the sampling process is independent from the data generation process, with simple
Landau notations, in the case of a Gaussian smoothing kernel of standard deviation σ,

V ar
(
γ̂XYf (h)

)
= O(

1

σM
) (2.14)

where the constant depends on the properties of both the underlying process and the measuring
process which we have no control over. It appears therefore that there is a cost to the compression of
the information entailed in the Fourier transform sets (FT [X] (fi))i=1...M in terms of variance. The
less data we use for this sufficient statistic, the higher the variance of the cross-covariance estimator.

Communication Avoiding Random Projections
In practice, the data can be distributed across multiple computing devices or sensing platforms

linked together by a lower bandwidth communication medium, sorting and collocating data involves
too much communication and sufficient statistics cannot be delivered with a reactivity that enables
interactive exploratory data analysis [246]. Frequency domain estimation does not require observa-
tions to be sorted chronologically and shuffled across multiple nodes of computation. Therefore, the
techniques we offer, based on specific frequency domain random projections, enable substantial
reduction of communication at the cost of more computations. We empirically demonstrate in
Section 2.4 that this enables linear scaling on unsorted data sets scattered across nodes in a data
center as we can summarize data sets of several hundreds of millions of timestamps with a few
thousand Fourier transforms.

2.4 Experiments
In the following, we will use the notation γ̂XYf (·) for our frequency domain kernel smoothing

estimator and demonstrate its properties experimentally.
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Linear model estimation
A Monte Carlo experiment in which we have prescribed a certain impulse function Φ in equation

Eq. (2.1) demonstrates how the cross-correlation estimates that we provide enable us to reliably
retrieve Φ even though the underlying process we simulate is only observed at random times. In
this subsection, and only for the sake of this experiment, we simulate a discrete time auto-regressive
process with a millisecond time resolution. Once the cross-correlation function between (X) and
(Y ) and their auto-correlation functions have been estimated as

(
γ̂XYf (h)

)
h∈H whereH is a set finite

set of millisecond resolution lags, solving the Yule-Walker equations below [29] gives an estimate
of Φ̂f for Φ which we compare to the values we chose for Φ. Solving the Yule-Walker equations is
equivalent to a Least Squares Regression approach [29] as it comes down to estimating the precision
matrix of a group of random variables based on their covariance matrix [76]. We empirically
evaluate our ability to reduce variance by simulating 1000 samples from a single bi-variate linear
auto-regressive process as defined in Eq. (2.1). For each sample, we introduced a homogeneous
independent random observation process with µX = µY = 0.6. In Figure 2.4, we plot the estimated
cross-correlation and estimated model parameters as a function of the lag parameter h along with
a 95% confidence intervals. We observe that the cross-correlation estimates have low variance
relative to the peak cross-correlation magnitude and that the linear model parameters are accurately
recovered with low variance.

Estimating cross-correlations on actual data
In order to highlight significant cross-correlation between pairs of stocks, one needs to consider

high frequency dynamics. As we will show in the following, cross-correlation vanishes after a few
milliseconds on most stocks and futures. In these settings it is then necessary to use full resolution
data which in this instance comes in the form of tables recording record bids, asks and exchanges
on the stock market as they happen. The timestamps are therefore irregular and not common to
different pairs of stocks. Also, stock prices can very simplistically modeled as Brownian motions
and therefore feature long memory. This context is therefore in the very scope of data intensive tasks
we consider. We show our novel Fourier compression based cross-correlation estimator provides
consistent estimates in this setting.

Checking the consistency of the estimator
Consider ask and bid quotes during one month worth of data. We create a surrogate noisy

lagged version of AAPL with a 13ms delay and 91% correlation which is named AAPL-LAG.
We study four pairs of time series: APPL/APPL-LAG, AAPL/IBM, AAPL/MSFT, MSFT/IBM.
We study the changes in quoted prices (more exactly, volume averaged bid and ask prices). The
cross-correlograms obtained below are computed between 10 AM and 2PM for 61 days in January,
February and March 2012. For each process, 3000 frequencies were used in the Fourier basis. This
is several orders-of-magnitude less than the number of observations that we get per day. These
range from 5 × 104 to 1 × 105. We observe an 89% average peak cross-correlation with an 8ms
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Figure 2.4: A Monte-Carlo experiment used to confirm the validity of our method. An auto-
regressive model is generated and then randomly sampled with only 60% of timestamps. The
smoothed cross-correlogram estimator we present enabled us to retrieve the parameters of the
underlying model without bias and with little variance. Without smoothing, the cross-correlation
estimator fails to capture the singularity in 2 and evaluates to 0 everywhere on average. With a
probability of 90% the relative error is 8%.

delay for the surrogate pair of AAPL stocks which confirms our estimator is reliable with empirical
data. In Figure 2.6 we highlight a taxonomy of causal relationships.

Random projections enable scalability
A primary goal of this work is to enable practical scalable causal inference for time series

analysis. The aim of the approach we present here is to enable analytics with large numbers of
records. To evaluate scalability in a real-world setting we assess the relation between AAPL and
MSFT over the course of 3 months. In contrast to our earlier experiments (shown in Figure 2.6),
we no longer average daily cross-correlograms in and therefore only leverage concentration in the
inverse Fourier transform step of the procedure. With only 3000 projections for 5×106 observations
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Figure 2.5: Top: HY estimation on synthetic Brownian motions. Bottom: Estimation with
frequency domain differentiation. Although it has more variance, our estimator has similar bias to
HY without being specifically designed to Brownian motions.
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Peak delay = 0ms

Peak delay = 0ms
Peak delay = -3ms

Figure 2.6: Average of daily cross-correlograms pairs of stock trade and quote data. Compression
ratio is < 5%. We retrieve lag and correlation accurately on surrogate data. The daily averaged
cross-correlogram of AAPL and IBM is strongly asymmetric, therefore AAPL can predict IBM. The
symmetry between AAPL and MSFT shows there is no such relationship between them. Symmetric
and offset in correlation peak show that variations in IBM can be predicted 3ms ahead by observing
MSFT.
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Figure 2.7: Compression ratio is < 1%. On the entire data set we retrieve results similar to 2.6
therefore validating the use of our estimation of cross-correlograms in a scalable manner thanks to
Fourier domain compression. Confidence bounds are computed using the asymptotic independence
of spectral components [28].

per time series, the results we obtain on Figure 2.7 reveals the causal relation between AAPL,
AAPL-LAG, IBM and MSFT consistently with Figure 2.6.

Choosing the number of projections:

We compute an empirical standard deviation of the daily cross-correlogram obtained in January
2012 (19 days) for MSFT (Microsoft) and INTC (Intel) with 10, 100, 1000 and 10000 projections
to confirm our theoretical conclusions. Figure 2.8 shows that, as expected, the variance decreases
linearly with the number of projections and we can obtain reliable estimates with 1000 projections.
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Figure 2.8: On the left we plot the empirical standard deviation of daily cross-correlograms (Figure
2.7) with respect to the number of projections showing that the variability decreases rapidly. On the
right we plot the run time performance of our algorithm versus the number of Apache Spark EC2
cores showing approximately linear speedup. The small number of projections (104) relative to the
size of the data set (107 records) avoids communication.

Scalability:

In order to assess the scalability of the algorithm in a situation where communication is a major
bottleneck, we run the experiment with Apache Spark on Amazon Web Services EC2 machines of
type r3.2xlarge. In Figure 2.8 we show that even with a large number of projections (10000) which
is enough to considerably reduce the variance of the estimator the communication burden is low
enough to achieve nearly linear speedup.

2.5 Conclusions of the chapter
In this chapter, we address the issues hampering cross-covariance estimation for randomly

observed continuous stochastic processes. Pre-existing methods suffer from bias issues that can
mislead researchers into identifying linear causality where there is none, lack strong statistical
guarantees with general assumptions on the process of interest and rely on high communication
requirements to be computed in the distributed setting. After having defined a new estimator for
cross-covariance that does not systematically evaluate to 0, we analyze the bias/variance trade-
off related to the kernel smoothing our method relies on. To enable scalability, we leverage the
careful design of random Fourier transforms to implicitly compute kernel smoothing between
asynchronously observed time series in the frequency domain. We show with simulated data that
the estimator we propose reliably retrieves model parameters. We then demonstrate that it enables
a scalable study of stock market pair cross-correlation with tens of millions of high frequency
recordings.

In the present chapter, frequency domain representations appear as very advantageous when
computing kernel smoothing on irregularly observed time series. The main theoretical contribution
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resides in the proofs we give under general assumptions on the consequence of kernel smoothing
for event-driven irregularly observed time series. Such contribution is made practically usable at
scale by computing effectively in the dual frequency domain which allows linear time complexity
fractional differentiation. The homeomorphic properties of the Fourier transform in the case of
translation invariant operators such as high-pass filters make the corresponding alternate representa-
tion a very appealing candidate to analyze time series in a scalable manner.

The idea of using an alternate basis to effectively compute will remain core to the rest of the
thesis. We seek alternate concise representations to enable scalability while finding similar terms
to express the properties of heterogenous time series. The chapter introduces a key pattern: the
approach leads to data efficient and reliable estimation strategies. Enabling homogenous studies in
a scalable manner thanks to communication avoidance leads us naturally to consider statistically
reliable methods.

The next chapter introduces another duality in the form of Laplace transform whose definition is
causal and better suited for control theory. The study of an infinite dimensional system is rendered
elegant and simple thanks to the alternate representation we leverage. The next chapter will aim at
getting a better theoretical understanding of the system we consider: an infinite dimensional model
for macroscopic traffic on a freeway. Even in a setting where computations are not a key challenge,
we find that employing a dual representation is extremely useful.
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Chapter 3

Dual representations: from analysis to
control

The previous chapter exposed multiple strategies to overcome the issues of scale, irregular
sampling, Long Range Dependence while enabling expressiveness in the analysis of time series.
The core focus of the thesis remains in the present chapter on the estimation of dynamical models
otherwise referred to as system identification [31]. One of the key incentives to identify a system
resides in the ability we get to control the system based on the knowledge of how it will react to
input commands and perturbations.

Before we start delving into discretely separated problems in the following chapters, let us show
alternate representations in the spectral domain help make critical control-related properties of
systems of 2× 2 coupled Partial Differential Equations (PDEs) evident although the system under
study consists of a continuous of spatial elements evolving under different yet related conditions.
The current chapter leverages the elegance of Laplace spectral representations in order to analyze
an infinite dimensional dynamical system: the Aw-Rascle-Zhang system of differential equations.

The motivation to devise such a spectral representation for a PDE is providing a better under-
standing of the traffic dynamics commuters are exposed to and particularly dangerous traveling
waves of braking vehicles. The system of PDEs under study provides cutting edge modeling
ability for macroscopic freeway traffic – in particular the prediction of traveling waves. Our aim is
two-fold. First, we delineate a stable regime in which linearizing the non-linear system of interest
constitutes a reliable approximation. Second, we explore the source of traveling waves which lead
to exponentially growing divergence in the linearized system. We employ the Laplace transform of
the time series of interest because our aim is to gain the ability to control the system by actuation
and therefore we want to use a causal transform that does not depend on infinite past information.
The Laplace transform LP clearly answer this need as it is defined by:

∀f ∈ L2(R), z ∈ C→ LP [f ](z) =

ˆ ∞
t=0

f(t)e−iztdt.

The chapter is organized as follows. We start from the classical Aw-Rascle-Zhang (ARZ) model
for freeway traffic and develop a spectral analysis of its linearized version. We then show how a
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counterpart to the Froude number in hydrodynamics can be defined that enables a classification
of the nature of vehicle traffic flow using the explicit solution resulting from spectral analysis of
the linearized system. We prove that our linearization about an equilibrium is stable for congested
regimes and convective-unstable otherwise. NGSIM data for congested traffic trajectories is used to
compare the linearized model’s predictions with actual macroscopic behavior of traffic. The model
is shown to achieve good accuracy for speed and flow while frequency domain representations
enable fast and elegant calculation of the solution. The predicted patterns replicate the propagation
of boundary conditions’ oscillations into the interior resolution domain of the PDE under study
which simulates numerically how information propagates within the continuous time and space
system.

From a physics standpoint, one goal of this research (on physics of traffic) is to gain a better
understanding of the core dynamics of the system so as to design new coordination strategies for
ramp metering and varying speed limits.

Traffic macroscopic models
First-order traffic macroscopic models such as Lighthill–Whitham–Richards (LWR) model [141,

196] have remained very popular since the 1950’s as they became more accurate thanks to diversified
and more realistic fundamental diagrams [90, 171, 46, 234, 174, 73, 227, 79] and numerical methods
that were simple to implement such as the Godunov scheme ([82, 173, 46, 45]). However, they
have inherent shortcomings most of which are discussed at length in [44] such as failure to capture
accurately shock structure, light traffic dynamics, and stop-and-go behavior, otherwise known as
traffic oscillations. Oscillations have attracted increasing attention in transportation research [104].
For example jamitons, traffic jams that appear without the presence of a bottleneck, have been
reproduced in contained experiments [215, 72] and explained theoretically as the result of both
particular configurations of the traffic system [73] and fuzzy fundamental diagrams [207].

Non-linear second order models such as Payne-Whitham (PW) [178, 238] were first presented
as a compelling alternative to first order models that accounted for many of these empirical
features. As pointed out in [44] the PW approach has issues in both the derivation of its equations,
and its predictions. The model relies on the assumption that spacing and speed vary slowly,
yielding negligible second and third derivatives for these quantities. This is contradictory with
the observations of Newell [172] given that the car-following model predicts sharp changes in
these quantities. Moreover, [247] proved that, with a non-zero viscosity coefficient, the PW model
violates the anisotropy of traffic flow and can predict negative speeds.

Criticism towards that first generation of second order models led to a more realistic second
generation. In [248], Zhang proposed a modification of the momentum equation of the PW model
to handle the issue of backward-propagating traffic. Soon after, Aw and Rascle [10] presented a
model with the following momentum equation:

(v + p(ρ))t + v(v + p(ρ))x =
V (ρ)− v

τ
. (3.1)
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Including the pressure term, p(ρ), in a convective derivative guarantees that no information travels
faster than the speed of the cars. Aw and Rascle demonstrated in [10] that “with a suitable choice
of function p," the above class of models avoids inconsistencies of earlier second-order models.
Zhang proposed in [247] the same model with p(ρ) = −V (ρ). With this choice of p(ρ), the model
is referred to as the Aw–Rascle–Zhang (ARZ) model, which is the model used in the present chapter.

This model has since been thoroughly studied. Rascle later proved in [190] that the relaxed
model converges towards the LWR model as τ → 0. Conditions for solution to the Riemann
problem to exist in all conditions were studied in [131]. The derivations in [162] and [80] showed
how to embed this model in a network of junctions. Godunov discretization scheme and numerical
comparison showed in [153] that ARZ model fits real data better than the LWR model. Relaxed
approximations with constant wave have also been used to provide numerical solutions in [51].

More recent models such as Gupta-Katiyar (GK) (see [95]) have introduced an approximate
expression of headway as a perturbation series in car following models and do not feature the short-
comings of information travelling faster than traffic does or negative speeds. This asymptotically
anisotropic model presents realistic shock wave structures as studied in [92] and allows practitioners
to predict reaction of traffic to varied on-ramp flow structures on freeways [182] or bottlenecks [98].
This new model also interestingly extends to the case of multiple lanes ([93]) and more importantly
to entire traffic network consisting of several sections ([94]).

New models are also developed now as in [113] that take into account reduced reaction times
and radio communication in platoons of computer assisted vehicles and interestingly describe how
smart cars can change traffic behavior. An acceleration term appears here, akin to that added to the
AR model in [50] which gave more realism to the model. The idea of modeling traffic as a set of
agents interacting as a stochastic game and the resulting kinetic theoretic model developed in [14]
contributed to bridging the gap between microscopic and macroscopic models. However, we choose
to study and linearized ARZ model here as it offers a good compromise between simplicity and
realism.

Models appropriate for control
Instead of trying to generate a switching model as in phase transition models [39, 228, 23], our

aim is to design a single representation that paves the way to designing generic control strategies
readily usable in all traffic conditions. Therefore we use the ARZ model linearized around arbitrary
nominal conditions.

Laplace transform and spectral analysis are powerful tools for analyzing linear systems and
take into account oscillations. In that regards, other oscillation generating models could have been
linearized such as [88]. Behavioral models such as in [172, 225], and more recently [35, 81], depict
the effects of car-following and lane-changing on freeway dynamics, effects often cited as the
cause of oscillations [156, 38, 6]. However, second-order macroscopic models are most suited for
our method. Other approaches have used spectral transforms such as wavelets as in [249] or the
Fourier-Galerkin transform as in [222]. Our Laplace transform based study is different in that it is
fundamentally physics driven and does not rely on a finite difference scheme.
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Our analysis of the ARZ equations is strongly inspired by the pioneering analysis of Litrico and
Fromion for the Saint-Venant equations [143]. Linearizing the corresponding two equation PDE
system around an equilibrium point enables the use of spectral methods to design efficient control
strategies for canals [142].

Approach and contributions
The present chapter extends the corresponding spectral framework of [143] to the case of the

ARZ equations so as to achieve a two-fold objective.
We aim to develop strategies that enforce ease of use of the ARZ model for stability analysis and

control. Analytical solutions to these non-linear equations are difficult to derive but linearization
facilitates design of efficient control schemes with multiple inputs and outputs. Such schemes have
for example been set up in this framework in [125] assuming Riemann invariants are proportional on
the left boundary. We do not make such an assumption but pay particular attention to the formulation
of boundary conditions to guarantee the well-posedness of the problem.

We assess the quality of the model by comparing its output with actual data collected in the field
(using the NGSIM dataset).

The contributions of this chapter are as follows.
Modeling: We derive the characteristic form by linearization and diagonalization of the ARZ

model. This lead to the definition of a counterpart to the Froude number in hydrodynamics [143],
which separates free-flow and congested regimes.

Spectral analysis: From the charateristic form we derive the spectral form: a distributed transfer
function [143]. Time domain responses derived from the spectral transfer matrices show that the
linearized system is unstable in the free-flow regime. These waves lead the linearized system away
from its equilibrium point in the free-flow regime. This complements the empirical and theoretical
findings presented in [226, 235] about convective instability propagating upstream in congested
regime as well as theory and numerical experiments conducted in [97, 96] about on the GK model.

Numerical validation: A numerical experiment using NGSIM data is conducted to validate the
overall procedure. Previous studies focused on averaged errors and only displayed predictions at
a couple of points along the freeway [153, 66]. Here, we present an entire map of the states and
conduct model assessment in a holistic manner. This procedure demonstrates that the linearized
model successfully accounts for traffic oscillations and also provides simple and consistent methods
to calibrate the relaxation time, τ .

Organization of the chapter
The rest of this chapter is organized as follows. In Section 3.1 we present the characteristic form

of the ARZ model in several state variables, leading to the derivation of the spectral form of the
flux and velocity system in the following section. We focus on these states in particular as they
are the most easily observed and controlled in traffic. Properties of the spectral form in the two
flow regimes are also analyzed. The last section Section focuses on numerical analysis. We present
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estimation procedures for (v, q, ρ) and the model parameters, comparing empirical estimates with
numerical predictions of the linearized model.

3.1 The ARZ model
We consider the ARZ model with relaxation term. The model is shown here:

ρt + (ρv)x = 0, (3.2)

(v − V (ρ))t + v(v − V (ρ))x =
V (ρ)− v

τ
, (3.3)

where ρ is the density, v is the velocity, τ is the relaxation time, and V (ρ) = Q(ρ)/ρ is the
equilibrium velocity profile, where Q(ρ) is the density-flow relation given by the fundamental
diagram. We assume that V is C1 derivable over its domain. Without the relaxation term cars never
reach the maximum allowable speed [190] and the steady-state relation between density and speed
is broken in the presence of road junctions [114]. Note that at the equilibrium velocity this term is
zero.

In vector form the ARZ model is(
ρ
v

)
t

+

(
v ρ
0 v + ρV ′(ρ)

)(
ρ
v

)
x

=

(
0

V (ρ)− v
τ

)
. (3.4)

With the appropriate variable change, we can rewrite the model in the density-flow and velocity-
flow forms, the latter of which is most useful to us for practical control purposes. Using the flow
relation q = ρv and (3.4), the density-flow form is(

ρ
q

)
t

+

(
0 1

− qρ
(
q
ρ + ρV ′(ρ)

)
2 qρ + ρV ′(ρ)

)(
ρ
q

)
x

=

(
0 0

V (ρ)
τ − 1

τ

)(
ρ
q

)
(3.5)

In the same manner we arrive at the velocity-flow form,(
v
q

)
t

+

(
v + q

vV
′ ( q
v

)
0

q
v

(
v + q

vV
′ ( q
v

))
v

)(
v
q

)
x

=
1

τ

(
V
(
q
v

)
− v

Q
(
q
v

)
− q

)
. (3.6)

Although the (ρ, q) and (v, q) forms are less common in transportation engineering, they bear
interesting similarities to hydrodynamical systems. Moreover, they are promising for sensing
problems as loop detectors typically sense (ρ, q) while GPS measurement generally yield estimates
for v.
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Linearization
We are interested in small deviations, (ρ̃(x, t), ṽ(x, t)), from a given nominal profile. Consider

the nominal solution (ρ∗(x), v∗(x))(V (ρ∗) = v∗) satisfying vt = ρt = 0. Then (3.4) becomes

v∗ρ∗x + v∗xρ
∗ = 0, (3.7)

(v∗ + ρ∗V ′(ρ∗))v∗x =
V (ρ∗)− v∗

τ
= 0. (3.8)

Then we must have v∗x = ρ∗x = 0, so the solution is uniform along the road.
Linearizing the ARZ model (3.4) around the nominal solution described above, we obtain(

ρ̃
ṽ

)
t

+

(
v∗ ρ∗

0 v∗ + ρ∗V ′(ρ∗)

)(
ρ̃
ṽ

)
x

=

(
0 0

V ′(ρ∗)

τ
− 1
τ

)(
ρ̃
ṽ

)
. (3.9)

Similarly for the density-flow system (3.5), we linearize around the equilibrium (ρ∗, q∗)(ρ∗V (ρ∗) =
q∗) with deviations (ρ̃(x, t), q̃(x, t)). The linearized system is as follows:

(
ρ̃
q̃

)
t

+

(
0 1

−
(
q∗

ρ∗

)2

− q∗V ′(ρ∗) 2 q
∗

ρ∗ + ρ∗V ′(ρ∗)

)(
ρ̃
q̃

)
x

= (3.10)

(
0 0

V (ρ∗) + ρ∗V ′(ρ∗)

τ
−1

τ

)(
ρ̃
q̃

)
.

Finally, for the velocity-flow system, we have(
ṽ
q̃

)
t

+A

(
ṽ
q̃

)
x

= B

(
ṽ
q̃

)
. (3.11)

where

A =

 v∗ + q∗

v∗V
′
(
q∗

v∗

)
0

q∗

v∗

(
v∗ + q∗

v∗V
′
(
q∗

v∗

))
v∗

 (3.12)

B =


−

(v∗)2 + q∗V ′
(
q∗

v∗

)
(v∗)2τ

V ′
(
q∗

v∗

)
v∗τ

−
q∗
(

(v∗)2 + q∗V ′
(
q∗

v∗

))
(v∗)3τ

q∗V ′
(
q∗

v∗

)
(v∗)2τ

 (3.13)

Characteristic form
We diagonalize the linearized equations to obtain a more useful form of the model, which will

then be treated in the spectral domain. For all systems of coordinates (density-speed, density-flow
and speed-flow), the eigen values of the linearized PDE are λ1 = v∗ and λ2 = v∗ + ρ∗V ′(ρ∗). Note
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that V ′(ρ∗) ≤ 0 so λ2 ≤ λ1 = v∗. Therefore this is consistent with the physical dynamics of the
system as no waves travel faster than the equilibrium vehicle speed.

We have proceeded with the diagonalization of the three systems of equations. For the sake
of concision we only write below the derivations corresponding to the most interesting system of
coordinates to us: (v, q). Computing the eigenvalues of A and a diagonalization vector basis yields(

ξ1

ξ2

)
t

+

(
λ1 0
0 λ2

)
︸ ︷︷ ︸

Ã

(
ξ1

ξ2

)
x

=

(
− 1
τ

0
− 1
τ

0

)
︸ ︷︷ ︸

B̃

(
ξ1

ξ2

)
, (3.14)

where the characteristic coordinates are

(
ξ1

ξ2

)
=

 ρ∗λ2

λ1 − λ2

ṽ + q̃

q∗

λ1 − λ2

ṽ

 =

 ρ∗λ2

λ1 − λ2

1

ρ∗λ1

λ1 − λ2

0


︸ ︷︷ ︸

R

(
ṽ
q̃

)
(3.15)

The Traffic Froude Number
In fluid mechanics, the Froude number is a dimensionless number which delineates the boundary

between flow regimes [214, 143]. Using the eigenvalues of the system in the characteristic form, we
are able to define a useful counterpart to this number. Since V (ρ) is non-increasing function, we
have V ′(ρ∗) ≤ 0. Assuming V ′(ρ∗) 6= 0 there are two flow regimes: one in which λ1λ2 < 0 and
one characteristic line travels downstream whereas the other characteristic line travels upstream,
and one in which λ1λ2 > 0 and both characteristic lines travel downstream. We define the Traffic
Froude Number (TFN) as

F =

∣∣∣∣ρ∗V ′(ρ∗)v∗

∣∣∣∣ . (3.16)

Then we have {
F > 1 ⇒ |ρ∗V ′(ρ∗)| > v∗ ⇒ λ2 < 0

F < 1 ⇒ |ρ∗V ′(ρ∗)| < v∗ ⇒ λ2 > 0
.

Note also that λ2 = v∗ + ρ∗V ′(ρ∗) =
Q(ρ∗)

ρ∗
+
ρ∗Q′(ρ∗)−Q(ρ∗)

ρ∗
= Q′(ρ∗). Hence the system is

in free-flow when F < 1 and congestion when F > 1. In hydrodynamics these regimes are referred
to as the subcritical and supercritical regimes, respectively [143]. The direction of characteristic
lines is illustrated in Figure 3.1.

For traffic, the interpretation of the different regimes is somewhat different. Free flow regime
corresponds to these situations where drivers are not slowed down by heavy traffic and go as fast as
the desired speed. The congested regime arises when traffic is denser and, because too many cars
are present on the same freeway section, drivers slow down and eventually form traffic jam. This
number is therefore a dimensionless quantity that clearly delineates different physical regime of
vehicular traffic.



CHAPTER 3. DUAL REPRESENTATIONS: FROM ANALYSIS TO CONTROL 48

F > 1, λ2 < 0, λ1 > 0 F < 1, λ1 > λ2 > 0
Inputs ξ1(0, t) and ξ2(L, t) Inputs ξ1(0, t) and ξ2(0, t)

Figure 3.1: Illustration of characteristic lines in congested (supercritical) and free-flow regime
(subcritical) ξ1 and ξ2 propagate along.

3.2 Spectral analysis of the linearized ARZ model
We now consider the (v, q) system for the frequency domain analysis for practical control

purposes.

State-transition matrix
Taking the Laplace transform of the diagonalized form (3.14) we obtain

∂ξ̂(x, s)

∂x
= A (s)ξ̂(x, s) + Bξ(x, t = 0−), (3.17)

where A (s) = Ã−1(B̃ − sI) and B = −Ã−1. The general solution to this ordinary differential
equation is

ξ̂(x, s) = Φ(x, s)ξ̂(0, s) + Φ(x, s)

ˆ x

0

Φ(ν, s)−1Bξ(ν, 0−)dν, (3.18)

where Φ(x, s) = eA (s)x is the state-transition matrix. Assuming zero initial conditions we have

ξ̂(x, s) = Φ(x, s)ξ̂(0, s). (3.19)

To compute the exponential we diagonalize the matrix as

A (s) = X (s)D(s)X −1(s) (3.20)
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where

X (s) =

0
λ2 − (λ1 − λ2)τs

λ1

1 1

 ,D(s) =

(
− s
λ2

0

0 −1+τs
τλ1

)
. (3.21)

Hence

Φ(x, s) = X −1(s)eD(s)xX (s) =

(
φ11(x, s) φ12(x, s)
φ21(x, s) φ22(x, s)

)
, (3.22)

with

φ11(x, s) = e
− x
τλ1 e

− x
λ1
s
, (3.23a)

φ12(x, s) = 0, (3.23b)

φ21(x, s) =
λ1

(
e
− x
τλ1 e

− x
λ1
s − e−

x
λ2
s
)

λ2 − τ(λ1 − λ2)s
, (3.23c)

φ22(x, s) = e
− x
λ2
s
. (3.23d)

Let α = − λ2

τ(λ1 − λ2)
. It is clear that φ11 (x, s) is composed of the product of a distributed delay

corresponding to information propagating at speed λ1 and an exponential attenuation where τλ1

plays the role of a characteristic spatial length. Similarly φ22 is a delay corresponding to information
propagating at speed λ2. The interpretation of φ21 is more difficult. In low frequencies (|s| � |α|),
this transfer function takes a much more transparent form. Indeed, in the expression φ21(x, s) =

−λ1
λ2

α
s+α

e
− x
λ2
s
(

1− e−
x

λ1τα
(s+α)

)
' −λ1

λ2
e
− x
λ2
s
(

1− e−
x
λ1τ

)
the transfer function appears as the

combination of a distributed delay where λ2 is the propagation speed and a distributed gain where
λ1τ is a characteristic distance.

Free-flow case (F < 1)
Consider the system in the free-flow regime. With ξ1(0, t) and ξ2(0, t) as the inputs and ξ1(L, t)

and ξ2(L, t) as the outputs, the distributed transfer matrix is exactly the state-transition matrix
Φ(x, s). Using (3.15), we can write

(
ṽ(x, s)
q̃(x, s)

)
=

 ρ∗λ2

λ1 − λ2
1

ρ∗λ1

λ1 − λ2
0


−1

Φ(x, s)

 ρ∗λ2

λ1 − λ2
1

ρ∗λ1

λ1 − λ2
0


︸ ︷︷ ︸

Ψ(x, s)

(
ṽ(0, s)
q̃(0, s)

)
(3.24)
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with

ψ11(x, s) =
αe
− x
λ1

(s+ 1
τ ) + se

− sx
λ2

s+ α
, (3.25a)

ψ12(x, s) =
1

ρ∗τ

e
− sx
λ2 − e−

x
λ1

(s+ 1
τ )

s+ α
, (3.25b)

ψ21(x, s) = −sρ∗ταe
− sx
λ2 − e−

x
λ1

(s+ 1
τ )

s+ α
, (3.25c)

ψ22(x, s) =
se
− x
λ1

(s+ 1
τ ) + αe

− sx
λ2

s+ α
. (3.25d)

It could appear at first sight that−α (here a positive real) is a singularity of the transfer functions
and the system is not bounded-input/bounded-output stable. However, we have 1

λ1

(
−α + 1

τ

)
=

1
τ(λ1−λ2)

= −α
λ2

, thus a Taylor expansion about −α shows that numerators and denominators cancel
each other out for s→ −α. It follows that −α is not a pole of any transfer function. The spectrum
of Ψ(x, s) is identical to that of Φ(x, s) which is lower triangular and has eigenvalues e−

x
τλ1 e

− x
λ1
s

and e−
x
λ2
s whose module is trivially bounded by 1. This proves the H∞ norm of Ψ is 1 and therefore

the system is Bounded-Input/Bounded-Output (BIBO) stable. This proves that the output remains
bounded for a given value of x.

We will show below that a conic region of the [0, T ]× [0, L] domain features exponential growth
in free-flow regime. This arises when changing t and x simultaneously and complements the
conclusion formulated above (in which t varies and x remains constant).

Low frequency approximation for physical variables in free-flow regime

Analyzing the expressions above becomes easier when approximating them for |s| � |α|.
This corresponds to traffic flow varying slowly and smoothly. We find the following approximate
expressions for the transfer functions:

ψ11(x, s) ' e
− sx
λ2 e
− x
τλ1 , (3.26a)

ψ12(x, s) ' 1

ρ∗τα
e
− sx
λ2

(
1− e−

x
τλ1

)
, (3.26b)

ψ21(x, s) ' −sρ∗τe−
sx
λ2

(
1− e−

x
τλ1

)
, (3.26c)

ψ22(x, s) ' e
− sx
λ2 . (3.26d)

Interpreting the low frequency expressions is fairly straightforward. In ψ11, e−
sx
λ2 is a distributed

delay with propagation speed λ2 and e−
x
τλ1 a distributed gain with characteristic distance τλ1. In

ψ12 and ψ21 we can notice the combination of a distributed delay whose characteristic speed is
λ2 and a distributed gain whose characteristic distance is τλ1. It is also remarkable that q̃(x, s)
appears as the result of a derivator applied to ṽ(0, s). The approximate expression for ψ22 highlights
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the presence of a distributed delay where information propagates at speed λ2. This low frequency
analysis therefore highlights fundamental mechanisms core to the physics of traffic that can be
decomposed as modular elements here.

Bode plots for free-flow regime

We generate Bode plots using the following parameters taken from [107]: qmax = 1300 veh/h, ρmax

= 0.1 veh/m, and L = 100 m. The Greenshields fundamental diagram, where the equilibrium flow is
Q(ρ) = 4 qmax

ρ2max
ρ(ρmax − ρ), is used to approximate the fundamental diagram. For inhomogeneous

second-order models, the relaxation time, τ , falls in the range of about 14-60 seconds [66]. A
relaxation time of τ = 15 s is used for the following simulations. We simulate for ρ∗ = 0.01 veh/m.
Here the characteristic frequency of the system, |α|, equals 0.53 Hz which is indeed sensible for
traffic flow modeling.

The Bode plots for the physical variables are displayed in Figure 3.3. For the Riemann invariants
only φ21(x, s) and φ22(x, s) are represented in Figure 3.2 (φ11(x, s) and φ12(x, s) are only delay
functions).

For transfer functions featuring 1− e−
x

λ1τα
(s+α) as a factor (that is to say φ21, ψ12, and ψ21) one

can observe in the corresponding Bode plots that the value of the log-gain in high frequency tends
to vary very sharply. Indeed, with s = jw,

∣∣∣1− e− x
λ1τα

(s+α)
∣∣∣ = e

− x
λ1τ

√(
e

x
λ1τ − cos

(
w

λ1τα
x

))2

+ sin2

(
w

λ1τα
x

)
.

Therefore, if the spatial pseudo-period L̃ = 2π
w
λ1τ |α| is low enough, near zero values appear when

x is a multiple of L̃. This explains the irregular shape of the distributed Bode plots of φ21, ψ12,
and ψ21 for frequencies w � 2π λ1τ |α|

L
= 6.53 Hz. This does not impact the stability of the system.

Bode plots only look irregular about such points because of the logarithmic scale.

Step responses

We analyze the behavior of the system given step inputs ṽ(0, t) = vstepH(t) and q̃(0, t) =
qstepH(t), where H(·) is the Heaviside function. The step responses can be explicitly computed
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Figure 3.2: Spatial magnitude Bode plots for Riemann invariants in free-flow regime (|α| =0.53Hz)
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Bode plot for ψ11(x, s). Bode plot for ψ12(x, s).

Bode plot for ψ21(x, s). Bode plot for ψ22(x, s).

Figure 3.3: Spatial magnitude Bode plots for physical variables in free-flow regime (|α| = 0.53 Hz)

from the spectral responses. Letting H1(t, x) = H
(
t− x

λ1

)
and H2(t, x) = H

(
t− x

λ2

)
:

ṽ(x, t) = v̄e
− x
λ1τH1(t, x)

+ v̄e
−α
(
t− x

λ2

)
(H2 −H1)(t, x)

− q̄

ρ∗τ

(
e
− x
λ1τH1 (t, x)−H2(t, x)

)
− q̄

ρ∗τ
e
−α
(
t− x

λ2

)
(H2 −H1)(t, x) (3.27)

q̃(x, t) = v̄ρ∗ταe
−α
(
t− x

λ2

)
(H1 −H2)(t, x)

+ q̄H2(t, x)

+ q̄e
−α
(
t− x

λ2

)
(H1 −H2)(t, x) (3.28)
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Figure 3.4: Illustration of the exponential growth cone appearing in the free-flowing regime for the
time domain expressions of v and q.

With this set of time domain expressions, we can see that a cone of exponentially growing speed
and flow linearization errors generally appears between the characteristic lines corresponding to λ1

and λ2. This is caused by α being negative in the free flow regime and means that, in this region of
the domain [0, T ]× [0, L], the (v, q) state of the linearized system can diverge exponentially fast
from the linearization point. This is consistent with the observations in [120] where small local
perturbations occurring in free-flow regime can cause traffic to transition durably to the congested
regime.

Congested regime (F > 1)
We now consider the system in the congested regime.
Using (3.19) we can write(

ξ̂1(x, s)

ξ̂2(x, s)

)
= Φ(x, s)

(
1 0

−φ21(L,s)
φ22(L,s)

1
φ22(L,s)

)
︸ ︷︷ ︸

Γ(x, s)

(
ξ̂1 (0, s)

ξ̂2 (L, s)

)
. (3.29)



CHAPTER 3. DUAL REPRESENTATIONS: FROM ANALYSIS TO CONTROL 55

with

γ11 (x, s) = e
− x
λ1

(s+ 1
τ ), (3.30a)

γ12 (x, s) = 0, (3.30b)

γ21 (x, s) =
λ1

λ2

α

s+ α
e
− x
λ1

(s+ 1
τ )
(

1− e−
(L−x)
λ1τα

(s+α)
)
, (3.30c)

γ22 (x, s) = e
s(L−x)
λ2 . (3.30d)

Note that equation (3.29) corresponds to a closed form solution of our initial system, written in
spectral form.

For low frequencies (|s| � |α|), γ21 (x, s) ' λ1
λ2
e
− x
λ1

(s+ 1
τ )
(

1− e−
L−x
λ1τ

)
is the combination of

a gain, a distributed delay with propagation speed λ1, and two distributed gains with characteristic
distance λ1τ that cancel out for x = L. The resulting bode plot is presented below in Figure 3.5.

Transfer functions for physical variables in congested regime

In congested regime, the boundary conditions used to control the system are ξ̂1 (0, ·) and
ξ̂2 (L, ·). By linearity of the Laplace transform ξ̂1 (0, s) = ρ∗λ2

λ1−λ2 v̂ (0, s) + q̂ (0, s). Therefore,
as ξ̂2 (0, s) = γ21 (0, s) ξ̂1 (0, s) + γ22 (0, s) ξ̂2 (L, s) , we get ξ̂1 (0, s) = 1

d(s)
q̂ (0, s) + n(s)

d(s)
v̂ (L, s)

where d (s) = 1− λ2
λ1
γ21 (0, s) and n (s) = ρ∗λ2

λ1−λ2γ22 (0, s). The (v, q) system has only two degrees
of freedom. Therefore we consider that the only inputs to the system are q (0, ·) and v (L, ·). v (0, ·)
is then completely determined and can be interpreted as an output of the system. The corresponding
transfer equation is (

v̂ (x, s)
q̂ (x, s)

)
= R−1Γ (x, s)

(
n(s)
d(s)

1
d(s)

ρ∗λ1
λ1−λ2 0

)
︸ ︷︷ ︸

Θ(x,s)

(
v̂ (L, s)
q̂ (0, s)

)
(3.31)

where

θ11 (x, s) =
αe
− x
τλ1 e

− s
λ1

(
x−Lλ1

λ2

)
+ se

− s
λ2

(x−L)

s+ αe
− L
τλ1 e

− sL
λ1

(
1−λ1

λ2

) , (3.32a)

θ12 (x, s) =
e
− L
τλ1 e

− s
λ2

(
x−L

(
1−λ2

λ1

))
− e−

x
τλ1 e

− sx
λ1

ρ∗τ

(
s+ αe

− L
τλ1 e

− sL
λ1

(
1−λ1

λ2

)) , (3.32b)

θ21 (x, s) = ρ∗ταs
e
− s(x−L)

λ2 − e−
x
τλ1 e

− s
λ1

(
x−Lλ1

λ2

)

s+ αe
− L
τλ1 e

− sL
λ1

(
1−λ1

λ2

) , (3.32c)

θ22 (x, s) =
αe
− L
τλ1 e

− s
λ2

(
x−L

(
1−λ2

λ1

))
+ se

− x
τλ1 e

− sx
λ1

s+ αe
− L
τλ1 e

− sL
λ1

(
1−λ1

λ2

) . (3.32d)
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Low frequency approximation for physical variables in congested regime

We derive approximate expressions in the frequency domain for the transfer functions above
when |s| � |α|:

θ11 (x, s) ' e
s(L−x)
λ2 e

L−x
τλ1 , (3.33a)

θ12 (x, s) ' 1

ρ∗τα
e
− sx
λ1

(
1− e

L−x
τλ1

)
, (3.33b)

θ21 (x, s) ' sρ∗τe
s(L−x)
λ2 e

L
τλ1

(
1− e−

x
τλ1

)
, (3.33c)

θ22 (x, s) ' e
− sx
λ1 . (3.33d)

With such expressions, interpreting the approximate transfer functions in low frequencies
becomes fairly easy. The transfer function θ11 (resp. θ12) appears as the combination of a distributed
delay with propagation speed −λ2 (resp. λ1) and a distributed gain (resp. attenuation) with
characteristic distance λ1τ . The structure of θ21 is similar to that of θ11 although it features a
derivator component. Once simplified, θ22 corresponds to a distributed delay with propagation
speed λ1. Hypothetical poles are not active in the range of low frequencies that will be considered
in our traffic flow modeling applications. Once more we can appreciate how these approximate
expression help better understand the simple elements that account for the physical dynamics of the
ARZ model.

Bode plots for congested regime

We use the same fundamental diagram as in the free-flow case. However the linearization point,
ρ∗ = 0.08 veh/m, corresponds to the congested region of the Greeshields diagram. We show the
distributed Bode plots for the Riemann invariants in Figure 3.5 and for the physical variables in
Figure . In that case, α = 0.05 Hz, which does correspond to a reasonable characteristic frequency
for traffic modeling applications.

Similarly to the free-flow case, for high frequencies (w � 2π λ1τα
L

= 0.13 Hz) near zero values
appearing with spatial periodicity 2π

w
λ1τα almost cancel out γ21, θ12, and θ21. Such points only

appear as irregularities in the Bode plots because the gain is computed on a logarithmic scale.

Poles and BIBO stability of the system

In order to practically assess the presence of poles, numerical search for roots of the denominator
of the transfer functions has been conducted thanks to standard equation solvers. Once more −α is
a solution and another one was found at s = −0.0018. They are both negative reals and therefore
cannot make the system unstable. Although the solvers could have detected poles with a non zero
imaginary part, none has been found. Holistic search for other poles should be conducted but is out
of the scope of this chapter.
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Figure 3.5: Spatial magnitude Bode plots for Riemann invariants in congested regime (|α| =0.05Hz)
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Bode plot for θ11(x, s). Bode plot for θ12(x, s).

Bode plot for θ21(x, s). Bode plot for θ22(x, s).

Figure 3.6: Spatial magnitude Bode plots for physical variables in congested regime (|α| = 0.05
Hz)
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The eigenvalues of matrix Θ(x, s) are identical to that of Γ(x, s). The latter is lower triangular
and its eigen values also have a module bounded by 1. The congested regime system is therefore
also BIBO stable as the H∞ norm of matrix Θ(x, s) is bounded by 1.

Findings and conclusion from the theoretical study
The numerical experiments above have validated the accuracy of the linearized model and

highlighted several of its core properties.
The TFN delineates two regimes: congested for F > 1 and free-flowing for F < 1. This

classification, and the resulting stability result legitimize the use of linearization about a nominal
point in the stable region.

The assessment of convective instability in the free flow regime is of course applicable to
this specific model (other models such as [207] might lead to other conclusions, and all need to
be checked against experimental data). Here, exponential growth of the linearization error only
occurs in a conic region of the [0, T ]× [0, L] domain where convective instability travels along the
characteristics.

The absolute value of the term α = − λ2

τ(λ1 − λ2)
is a characteristic frequency of the system.

It delineates the low frequency domain in which approximate expressions help decompose the
transfer functions in simple gain and delay components. In the spectral domain, λ1 and λ2 appear as
information propagation speeds in distributed delay elements while τλ1 acts as the characteristic
distance of distributed gain components.

3.3 Numerical validation
In this section we demonstrate the ability of the linearized ARZ equations to model the various

nonlinear dynamics around a nominal operation point and compare the prediction of the model with
actual flow and velocity data gathered from the well-known NGSIM data set.

Data source: NGSIM trajectories
We use the NSGIM trajectory data set for a section of the US-101 highway. The set gathers

trajectories of vehicles sampled with a 10 Hz frequency thanks to high precision cameras. The
data is pre-processed so as to take only cars into account; 45 minutes are recorded on a 650-meter
long section with five lanes. The lanes are taken into account when computing the lineic density of
vehicles ρ. A map of the time evolution of speed along the section is given in Figure 3.7. Only a
subset of the spatial domain is used due to the presence of ramps, which breaks the homogeneity of
the freeway. The viable domain is 200 meters long.
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Figure 3.7: NGSIM trajectories. Color represents the measured speed of each vehicle in m/s.

Reconstructing (v, q) maps from NGSIM trajectories
The NGSIM data set does not directly provide the values v(t, x) and q(t, x) in the reso-

lution domain [0, T ] × [0, L]. To obtain macroscopic quantities out of the microscopic mea-
surements, we follow the approach devised in [64] and divide the space-time grid into cells
([i∆t, (i+ 1) ∆t]× [j∆x, (j + 1)∆x])i∈{1...nt},j∈{1...nx}, where nt and nx are the number of cells
in time and space, respectively. We denote each cell as bini,j . This operation consists of gathering
corresponding data points into cells, then estimating the quantities of interest in each cell, it was for
example used in [183].

Within each cell, a specific number of traces, or footprints of a vehicle along its trajectory, are
available, and ρ, v, and q are assumed to be constant. We present several formulae to map a set of
traces to speed, flow, and density over the space-time grid.

Binning formula for v: Since the speed is assumed to be constant in each cell, a straightforward
estimate for the speed is the empirical average. The estimator for v in bini,j is

v̂i,j = meantr∈bini,j(v(tr)). (3.34)

Binning formula for ρ: By definition, the density of bini,j is

ρi,j =

˜
(t,x)∈[i∆t, (i+1)∆t]×[j∆x, (j+1)∆x]

ρ(x, t)dxdt

nlanes∆x∆t
. (3.35)

The position of each vehicle is recorded every 0.1 second. For each cell we count the number of
traces and normalize it by the sampling rate. The contribution of a given vehicle to the density of
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a cell is proportional to the number of traces it has left in the cell. If the speed is assumed to be
locally constant, this contribution is proportional to the time this vehicle spends in the cell and is
consistent with the conservation of the total number of vehicles across all cells. Then we have the
density estimator

ρ̂i,j =
card({tr | tr ∈ bin})

nlanes∆x∆t sampling rate
, (3.36)

where card(·) gives the number of elements in a set, i.e., its cardinal.
Binning formula for q: By definition, q = ρv, so a logical first estimate for q in bini,j is

q̂i,j = v̂i,j ρ̂i,j. (3.37)

We can also approximate the flux through bini,j with a simple counting method. If a vehicle
crosses spatial coordinate (j + 1) ∆x between times i∆t and (i+ 1) ∆t, then it leaves a trace in
both bini,j and bini,j+1. Counting these vehicles and normalizing by the duration ∆t gives the
estimator

q̂count
i,j =

card ({id (tr) | tr ∈ bini,j} ∩ {id (tr) | tr ∈ bini,j+1})
nlanes∆t

, (3.38)

where id(·) gives the identification number of a vehicle.

Choosing the number of bins

As the estimation formulae above rely on averaging, having a comfortable number of points in
each bin provides more stable estimates. It is worth mentioning that usual central limit theorem
based reasoning for convergence of such estimates is flawed as several samples may correspond
to the same vehicle or interacting vehicles, violating the independence assumption of the theorem.
Proving the convergence of the estimates above lies beyond the scope of this chapter. As a rule
of thumb we choose a discretization that guarantees that most bins will host more than 100 traces.
This is achieved with a 80× 80 grid where the 10th percentile of the number of traces in a given bin
is 170. Such a grid also yields a 10th percentile of 56 distinct vehicles per bin. The histograms of
number of traces and vehicle per cell are given in Figure 3.8.

While our goal here is not to present theoretical proofs of the convergence of the binned
estimators for (v, ρ, q), it is nonetheless possible to check that the procedure is coherent. Two
estimators are provided for q that use radically different techniques: the first relies on the average
measured speed and the number of traces in a bin, while the other relies on counting vehicles
transiting from a cell to another. Figure 3.9 show that the scatter plot of q̂count

i,j plotted against q̂i,j
coincides nicely with the line y = x, validating the overall binning and estimation procedure above.
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Histogram of number of traces per cell.

Histogram of number of distinct vehicles per cell.

Figure 3.8: Experimental justification for a 80× 80 cell discretization grid for NGSIM data.



CHAPTER 3. DUAL REPRESENTATIONS: FROM ANALYSIS TO CONTROL 63

Figure 3.9: Sanity check for the estimation procedure. q̂count
i,j is plotted against q̂i,j across the grid of

bins.

Estimated values for (v, q)

To check how well the linearized ARZ model fits an actual dataset, we chose a bounded domain
and compare the theoretical solution given by the second-order model and the observed data. Again
we focus on the variables v and q. Using the estimation procedure above, we compute fundamental
diagrams from which we estimate the eigenvalues λ1 and λ2. To calibrate the relaxation time τ ,
we analyze the errors of predicted values of v and q for various τ . The resulting maps of both
the predicted and observed values highlight phenomena that the linearized model can and cannot
account for.

Maps. The estimates v̂i,j , ρ̂i,j , q̂i,j , and q̂count
i,j are plotted on the discretized grid in Figure 3.11.

Note that q̂ and q̂count give extremely similar results, so we may use q̂count from this point on. Damped
oscillations and smoothly decaying values along characteristic lines are the main characteristic the
practical implementation of the model should feature.

Fundamental diagrams. From the estimated values we can easily compute the fundamental
diagram. We use the fundamental diagrams to calibrate the model parameters. Though the dataset
used is dense, it covers only a small region of time and space. Thus, its small size is a potential
flaw in our model parameter calibration as it is certain that our measurements are highly correlated.
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This seems to be confirmed by the fact that the fundamental diagrams below correspond only to the
congested regime.

Calibration of λ1 and λ2, linearization point. In Section 3.1, we found that λ1 is exactly v∗

and λ2 is the slope of the fundamental diagram at v∗. Thus to calibrate the eigenvalues we must find
the linearization point. We estimate the linearization point using the Ordinary Least Squares method.
Note the dataset used corresponds only to the congested regime and the fundamental diagram is
almost affine. The estimator, λ̂1 = v̂∗ is chosen as the empirical mean of v̂i,j . To estimate λ2, we fit
a linear model q̂count = b1ρ̂+ b0 + ε, where ε represents the noise in the model that would ideally
be centered, homoschedastic, and uncorrelated but is not practically. Then λ̂2 = b̂1 and we take
q̂∗ as the empirical average of q̂count. The ratio of q̂∗ and v̂∗ gives the estimate ρ̂∗. Provided each
estimator is convergent, the continuity of the functional (x, y)→ x

y
on its domain guarantees the

convergence of ρ̂∗. The empirical results are presented in Figure 3.10. The determination coefficient
is poor but can be improved by filtering out outliers and gathering more data. Future work should
include improving the quality of the estimation. Significance tests for the coefficients of the linear
model are not presented. The assumptions they rely on about the linear dependency between q̂ and
v̂ are clearly not respected here as the noise is auto-correlated. Further work should also turn this
rather heuristic method for estimating parameters into a fully justified statistical procedure. Note
that the goal of the present chapter is to provide a new model and corresponding spectral analysis,
which we want to illustrate with state of the art data. Thus, development of statistical methods to
handle this data is out of the scope of the present investigation.

Verification of the spectral form
In this section we demonstrate the performance of the spectral form as a prediction tool using

the time domain responses derived from the transfer functions and FFT. Since we are working with
a linearized system, we can decompose boundary conditions then add predicted values inside the
domain [0, T ]× [0, L]. Fourier decomposition of boundary conditions is here extremely accurate as
the median relative errors for the interpolation of the values of ξ1 (x = 0, ·) and ξ2 (x = L, ·) are
respectively 2% and 3%.

Simulated maps. Since the spectral form presents information in the diagonalized basis, we
need a conversion before we can compare the simulated results to the values estimated from the
dataset. To make a comparison in the diagonalized basis, we first compute the estimated deviations
from the equilibrium ̂̃vi,j = v̂i,j − v̂∗ and ̂̃qi,j = q̂i,j − q̂∗. Then the estimates for ξ1 and ξ2 are given

by ξ̂1i,j = ρ̂∗λ̂2
λ̂1−λ̂2

̂̃vi,j + ̂̃qi,j and ξ̂2i,j = ρ̂∗λ̂1
λ̂1−λ̂2

̂̃vi,j . To compare the physical variables, we compute the

velocity and flow predictions by inverting (3.15): q̃ = ξ1 − λ1
λ2
ξ2, ṽ = λ1−λ2

ρ∗λ1
ξ2.

Figure 3.11 shows important qualitative properties of the model. As expected, the model
generally predicts with very good accuracy the decay of all quantities along their characteristic
lines, a realistic feature that cannot be paralleled by first-order models. The general quality of the fit
is rather good with most of the error on v and q in a 20% range of the data’s amplitude between
minimum and maximum values. Furthermore the linearized second-order model manages to capture
oscillations observed on the boundary and account for their decay accurately.
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Figure 3.10: Calibration of λ1 and λ2. The circle denotes the linearization point. The affine model
used to estimate λ2 and the linearization point is also plotted. The estimates are: λ̂1 = 8.96
m/s, λ̂2 = −4.37 m/s, ρ̂∗ = 0.049 veh/m, v̂∗ = 8.96 m/s, q̂∗ = 0.44 veh/s, with r2 = 0.48.
The characteristic frequency of the system is α̂ = 8.37 × 10−3 Hz. Its order of magnitude does
correspond to practical traffic flow modeling.

Calibration of τ For each τ we compute the mean absolute error (MAE), or the average
difference in absolute value between simulated and predicted values for each discretization cell.
Since the quantities v and q are not physically homogeneous, it is not sensible to aggregate the
errors over these quantities. However, ξ1 and ξ2 are both expressed in veh/s. Summing their MAE
gives a reliable uni-dimensional index of the quality of the fit with respect to τ . This quantity is
computed for different values of τ ranging from 5 to 80 seconds. The value offering the best fit is
τ ∗ = 39.18 s.

Findings and conclusion from the numerical experiments
The numerical experiments above have validated the accuracy of the linearized model and

highlighted several of its core properties.
The numerical experiments above show that the linearized ARZ model is capable of reproducing
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Figure 3.11: Data versus predicted. Top Figure: (v, q) domain, top row is v, bottom row is q.
Bottom: (ξ1, ξ2) domain, top row is ξ1, bottom row is ξ2. First column: data. Middle column:
predictions. Third column: error (difference between prediction and data).
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MAE over q and v

MAE over ξ1 and ξ2 and sum of MAEs.

Figure 3.12: Calibration of τ , one minimizes the sum of MAE over ξ1 and ξ2.
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NGSIM data accurately for a homogeneous segment of the US-101 freeway. Oscillations are
accounted for as well as their damping delay.

The spectral approach provided here supports a solution to the underlying traffic flow model. In
other words, the contribution of the work is to show that the model can support oscillatory behavior
(through periodic solutions). This is the main difference with purely data driven approaches such as
[249] for example.

3.4 Conclusion of the chapter
As the full nonlinear ARZ equations have no known closed form solutions in the general case,

they are difficult to analyze. The linearized equations enable the use of spectral methods presented
here, allowing for elegantly simple yet powerful analysis tools relying on explicit solutions. These
equations are diagonalized, and solved explicitly using a spectral representation (distributed transfer
function). Using this approximation, we are able to analyze them around a nominal flow and
characterize the oscillatory behavior of the solution. The linearized model is able to capture
important features of the flow which first order models cannot.

With the linearized ARZ model, we were also able to define the Traffic Froude Number F . This
quantity is computed using the eigenvalues of the system and characterizes the flow regime of the
road section under consideration.

We found the eigenvalues of the linearized system to be constant, prompting the definition
of the Traffic Froude Number (TFN) which indicates the flow regime of the road section under
consideration. Note that the Froude number inequalities delineating the supercritical and subcritical
regimes in hydronamics are reversed for our definition of the TFN.

Considering the transfer function of the linearized system of equations delineates the conditions
for stability of the approximation about the equilibrium. The time domain responses we derive
show that the system is unstable when one of the eigenvalues is negative. In the free-flow regime,
F < 1, values of flow and speed increase exponentially in a conic region of space and time and the
system leaves the linear regime, while in the congested regime, F > 1, oscillations decrease. In
the latter case, the system remains in the linear regime and oscillations on boundary conditions are
damped with an exponential rate along the characteristic lines. Thus, the TFN is also an indicator of
convective stability.

The behavior predicted in congested regime for traffic does not present shocks and Fourier
spectral analysis cannot account for more nonlinear and non-smooth behavior as well as wavelet
transforms. However, our spectral domain study paves the way to applying standard linear system
control theory to traffic, with a linearized second model that is empirically reliable in terms of
reproducing actual data. Controller design based on the spectral framework presented here becomes
immediate as shown in [143] for a similar model involved in the control of water flows in canals.

The present analysis also complements the wavelet-based approach used in [249]. Fourier
transform based analysis is a powerful tool in our numerical experiments that does not require any
CFL-like condition for stability. The linearity of the system clearly predicts smoother behavior
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than what is found with wavelet decomposition, and as we have shown, the resulting macroscopic
predictions are fairly accurate.

The Laplace domain spectral representation we present here lends itself naturally to control.
Such a dual representation of the system has also enabled an elegant and simple analysis although the
system of interest was defined in continuous time and had an infinite number of spatial dimensions.

Laplace duality made the properties of interest evident and the analysis of the system simple.
Such elegance contrasts with the actual complexity of the dynamics we study. The ARZ set
of equations constitutes, even in its linearized form, an infinite-dimensional system defined in
continuous time and space.

Along the spatial dimension, we take into account a continuous of interacting elements evolving
with different states. In other words, the problem of interest is concerned with a heterogenous
continuum of related PDEs defined in continuous time.

Determining conditions of stability for such an infinitely complex system has practical repercus-
sions for millions of drivers who commute everyday on freeways as the formation of traveling waves
of braking vehicles can lead to crashes. Such “jamitons” [72] otherwise referred to as convective
instability [226] occur at a critical regime when enough vehicles are present on the road to create
massive crashes and yet speed is still high. The density of vehicles at the critical regime is still not
yet causing an important slow down.

With an insightful choice of representation, the problem was turned into a homogenous set of
equations involving Laplace transforms in the time domain parametrized by their spatial location.
Laplace transforms were a good fit for this control problem because of their ability to account for
causal dynamics and simplify time invariant operators.

As we have seen in the previous chapter, Fourier transforms were well adapted to represent
asynchronously sampled streams of data in a parsimonious and statistically sound manner under an
assumption of second order stationarity.

The next chapter will introduce another duality: convex duality. The corresponding Fenchel-
Legendre transform will help us turn large discrete collections of control problems involving
heterogenous constraints into a unifying and data efficient representation. A major advantage will
stem from the design of a scalable distributed control scheme that can thoroughly be analyzed and
for which strong guarantees can be found.
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Chapter 4

Distributed communication avoiding control
schemes

The previous chapter used the Aw-Rascle-Zhang Partial Differential equation to show how
a change of representation (i.e. using the spectral domain) enables the seamless analysis of an
infinite-dimensional system with potential control applications.

We now focus on creating methods that instantiate distributed unifying representations of
heterogeneous large scale control problems.

This chapter shows how leveraging the convex geometry of a broad class of collaborative
block-constrained control problems yields a scalable solution provided a dual representation is
employed. We first present the general constrained optimization problem we consider. The problem
is then solved in its dual form. We show how deterministic exact gradient calculations converge
to an optimum while only communicating small amounts of data. Furthermore, we prove that
even if the distributed optimization algorithm we formulate is subject to random perturbations the
resulting stochastic gradient descent converges towards an optimal solution. Beyond communication
avoidance, such stochastic perturbations help preserve the privacy of the agents participating in the
control scheme. Using convex duality also yields an interpretable Lagrangian price multiplier as a
byproduct of the optimization procedure which helps interpret tensions between offer and demand
in the systems under study.

For distributed scalable control schemes to be practically usable today, scaling is not the only
requirement. The real-world problems we consider involve a Mobility-as-a-Service (MaaS) driver
management and smart meters operations, helping smooth out electrical consumption imbalance.
Both cases put important information at risk in the form of drivers schedules or household consump-
tion patterns. We prove some privacy preservation properties of the schemes we design in order to
encourage individuals to take part in such large collaborative efforts.

The proofs we give compare the rate at which individual data is leaked into the communication
medium and the rate at which the cohort of controllers converges to an optimal plan. Such a property
shows that the representation we employ as a means to enable scalability is also statistically efficient.
Data efficiency appears here in the absence of the need to communicate individual constraints
explicitly.
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4.1 Challenges with heterogeneous distributed control
problems

After formulating a general control method which we will show is relevant to Mobility-as-a-
Service and electrical load shaping, we develop an approach to solve distributed control problems
subject to heterogenous blockwise-independent constraint sets. The specific aim of this chapter is to
enable scalability by preserving communication avoidance in a distributed heterogenous control
scheme. We show that a direct consequence of the design choice we make is privacy preservation.

General problem setting
We consider a cyber-physical system consisting of a swarm of agents (i.e. controllers) whose

actions are combined to enable collaboration. We assume that the resulting action of the multiple
controllers is the linear combination of their individual actions. The combined efforts of the agents
are translated into a loss function which we assume is strongly convex. We make further assumptions
at the level of the individual agents. We assume that the actions are distributed in a continuous
vector space of finite dimensions. The magnitude of an actuation results into energy consumption
and/or system wear which leads to the inclusion of strongly convex penalties over the actuations.
Finally, the assumption that matters most here lies in the heterogeneity of the system. We assume
that the agents’ constraints are all unique. Each agent is subject to a particular set of constraints.

In spite of the fact that each agent deals with a particular problem setting because of its own
individual constraints, we are looking for a procedure to reformulate the distributed control problem
in terms that are commons across agents. The problem of interest and its general structure are
presented in Figure 4.1.

Communication avoidance by dual splitting
A salient issue with the convex optimization program that needs to be solved in the chapter is

that the number of constraints scales linearly with the number of agents. This aspect makes the
complexity of computations cubic in time and memory with respect to the number of controllers for
standard convex optimization solvers employing interior point methods [26]. Similar issues hamper
any solution based on inverting the matrix of linear constraints that characterizes the problem.

We develop a dual splitting technique which breaks the main control problem into as many
subproblems as there are agents involved. We show how this results in a gradient descent based
convergence method which requires each controller to solve an individual subproblem at each
descent step for the gradient to be collectively computed. We prove that the convergence of the
scheme occurs at a linear rate. We also show that the computational burden for each control device
is only proportional to the cubed number of constraints of the agent it corresponds to as opposed
to that of the whole swarm. A key element is that the only information that needs sharing is
a Lagrangian multiplier which mitigates communication needs and thereby enforces scalability.
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Cyber-physical system
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Constraint set 1
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Linear 
combination 
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Figure 4.1: General structure of distributed control problem of interest. A swarm of controllers
actuates a cyber-physical system. The constraints of each controller are unique and independent.
The combined actions of the controllers result in increasing or decreasing a system-wide loss.

The multiplier serves effectively as a common representation entailing information coming from
different constraint sets.

Privacy preservation is also therefore a valuable by-product of the method. No agent-level
individual constraints need to be shared in our system. We further show how recommended plans of
actions can be obfuscated thereby further protecting privacy. The algorithmic contribution relies
on techniques different from the famous Alternating Direction Method of Multipliers (ADMM) of
[27], distributed primal methods [168, 83] or primal-dual methods [33]. Indeed it is tailored to the
block-wise independent structure of the constraints and the partitioning of the data across agents.

In the current chapter, we introduce a method that is communication avoiding, scalable, privacy
preserving and computationally tractable.

Organization of the chapter
The chapter first delves in the general theory of using convex duality to find a common dis-

tributed representation for the heterogenous constraint sets of the agents involved in the system of
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interest. We design a dual representation that leads naturally to distributed communication avoiding
gradient descent. We highlight the modeling assumptions that yield provable convergence rates for
the distributed communication algorithm we present which operates on the dual problem. After
the first theoretical discussion of the method, we present an application to Mobility-as-a-Service
(MaaS), highlight how a convex relaxation corresponds to a realistic assumption which later on
allows using a dual splitting technique. We also present an application to the problem of electrical
load shaping at the scale of the state of California.

The present chapter is therefore organized as follows. In Section 4.2, a theoretical analysis
of the convergence properties of the distributed algorithm we present shows the robustness of the
algorithm. In Section 4.3, we first briefly describe the method used to characterize the spatial and
temporal structure of demand for mobility as a service rides in New York. While this is not the
core focus of the present chapter, it is briefly presented in Section 4.3 since the rest of the section
leverages this spatio-temporal structure once it has been characterized. We then formulate a convex
optimization problem that matches the probability of presence of drivers with the demand for rides.
Numerical experiments confirming these results are shown as a conclusion to Section 4.3. Finally,
we showcase in Section 4.4 the generality of the approach by showing that it also directly applies to
another high stake distributed control problem: electrical load shaping in California. After having
modeled the objective of interest and the impact of actions of fleets of smart meters storing energy
in batteries available in electric vehicles, we apply the dual splitting technique we presented. We
derive convergence rates in this particular problem setting and confirm the method performs well on
numerical experiments.

4.2 Convex optimization for distributed control
Prior to studying two practical instantiations (MaaS and electrical load flattening) we give a

general formulation of the collaborative control problem we consider and the assumptions we make
about the structure of the heterogeneous constraints controllers are subject to.

The original problem is converted to a homogeneous distributed dual representation which leads
to the formulation of gradient based optimization algorithm.

A thorough analysis of the convergence rates of the algorithm we present to solve the convex
program is conducted. This analysis is general and takes place for a large class of problems thereby
making it useful for practitioners with different objective functions. We show that the scheme is
robust to noise being injected in communications. After delineating two privacy preserving scalable
algorithms, we prove that as the number of controllers increases, privacy can further be improved.
We highlight a crowd obfuscation effect thanks to which an individual attacker cannot learn as fast
as the group. We will later confirm the results obtained in this holistic theoretical analysis of the
properties of the algorithm with numerical experiments conducted with actual openly accessible
data in both the noiseless and noisy settings. Section 4.2 proves that the algorithm we present is
robust enough to allow for the obfuscation of the optimal program it converges to. A theoretical
comparison of the rate at which individual information is revealed with the rate at which the cohort
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of controllers converges to optimality highlights that the representation we employ serves a precise
purpose. The Lagrangian multiplier updates communicated by the agents provide more information
useful to the group than individual information on their constraints. In other words, we show that
the homogenous representation we choose to enable scalability is parsimoniously tailored to the
purpose of solving the problem at hand. We prove the convergence of this algorithm based on the
properties of gradient ascent methods described in [199, 19] which needs no broadcasting of the
constraints of the agents as explained later in Figure 4.3.

Background on distributed optimization techniques for control
The approach developed in this chapter is tailored to strongly convex block constrained opti-

mization problems in which the objective is the sum of two terms. The first one is the compound of
an averaging function and a strongly convex cost. The second one is a fully decoupled regularization
factor. Although constraints are block-wise independent, the averaging term is binding which leads
to the use of a dual splitting method in order to solve the problem on a swarm of distributed comput-
ing devices. Many techniques have been developed to parallelize convex optimization in the case
of separable objectives and binding constraints. The ADMM [26, 83] and graph projection [176]
algorithms are two instances of the Douglas-Rachford algorithm [63] which belongs to the larger
family of proximal point methods [198]. Other approaches have been developed for splitting similar
problems such as Springarn’s partial inverse algorithm [213], distributed subgradient descents [168]
and the proximal center technique [167]. Closer to the setting under consideration here, the primal-
dual approaches developed in [33] and [251] respectively deal with block constrained problems
where the objective is known partially to the computation nodes and with optimization over a
common constraint set that consists of the intersection of local constraint sets. However efficient and
provably fast, these techniques do not leverage the particular structure of the problem under study
here. Therefore, we designed a novel dual splitting strategy tailored to the average-based input in the
objective. Gradient methods are used to find the optimum of the dual problem. We consider agents
should not give out their own information to the rest of the community in order to preserve their
privacy and enable scalability through communication avoidance. Convergence rates are calculated
for stochastic algorithms that enforce privacy by signal obfuscation. In particular, the proofs below
extend previous work on privacy-aware optimization [58, 237, 232]. In this competition to derive
estimates of the optimal programs the agents will undertake, we prove that introducing random
perturbations in the dual gradient method is much more detrimental to an eavesdropping statistician
adversary than it is for the community.

The last observation shows how communication avoidance leads to developing methods featuring
strong statistical guarantees.

Primal formulation of a consensus problem
In the current section, we assume that the spatio-temporal structure of demand within the system

has been identified (which we conduct later thanks to standard time series analysis methods) as a
demand matrix (dt,n)t=1...T,n=1...N . In the demand matrix t is the temporal indexing of the demand
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intensity and n its spatial index. Let us assume that the demand matrix has been estimated. Without
loss of generality, we can flatten the spatio-temporal demand matrix. The demand intensity is from
hereon renumbered as (dk)k=1...T×N .

The primal optimization program obtained after convex relaxation can now be rewritten as
follows:

Generic main primal problem:

min
u

s.t. ∀c∈{1...C}, uc∈Cc

[
T×N∑
k=1

`k

(
dk −

1

C

C∑
c=1

uk,c

)
+

1

C

C∑
c=1

rc (uc)

]
(4.1)

Penalizations corresponding to failing to match the demand are represented by the family of
strongly convex functions (`k(·))k∈{1...T×N} from R onto R.

Penalizing regularization terms appear as we want the agents to take into account the cost
associated to each of their action. Such cost is practically system wear and/or energy consumption.
We assume the associated marginal cost is increasing. Therefore, by design, all the elements of the
family of regularizing functions (rc(·))c∈{1...N} from Rd to R are strongly convex.

Practical computational issues for naive approaches. Such a problem, with strongly convex
objectives and strictly feasible convex constraints can be solved in a generic but non-scalable manner
by standard optimization solvers. A key point in the present chapter is to develop specific algorithms
which efficiently leverage the structure of problem Eq. (4.1). For general `k (·) and rc (·) satisfying
the conditions above, standard solver will require too much memory for a single computer to handle
as soon as C ≥ 103 and T × N ≥ 10. Therefore we want to find a strategy that distributes this
problem across several machines. Such scaling properties are of crucial importance in many large
cyberphysical systems [109]. Note that to coordinate MaaS dispatch, in numerous cities the driver
pool is much larger than 103. Similarly, there are many more smart meters in California that can
contribute to evening out load imbalance.

Privacy related issues. We also consider that the constraints uc ∈ Cc of each agent c should
not be broadcast as would require too much communication. In the distributed setting, such commu-
nication costs dominate when considering execution speed [19]. This does not have implications on
the formulation (4.1) of the problem but will be essential in the algorithms to solve it. Let u∗ be
the solution of the minimization problem (4.1). The optimal program u∗n ∈ Rd of each agent also
contains sensitive information and has to be difficult for an adversary to estimate (the meaning of
this statement will be explicitly defined later in the article). The dual splitting reformulation we
propose has the double advantage of offering a scalable method to solve the problem which as a
byproduct does not requires the sharing over a network of individual agents’ constraints.

Distributed optimization
In this paragraph we introduce additional variables before using a dual reformulation that man-

ages to split the problem with respect to the number of agents. As the number of controllers, C, is
the largest scale factor in the problem, it is the most suitable axis for parallelization. We leverage
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independence between blocks of constraints to render a low-memory, communication avoiding and
privacy preserving algorithm.

Introduction of additional variables

We introduce a set of consensus variables entailing the amount of discrepancy there is between
the demand (dk)k=1...T×N and the aggregated offer ( 1

C

∑C
c=1 uk,c)k=1...T×N

For each k ∈ {1 . . . d}, let zk ∈ Rd. The optimization problem now reads

min
u

T×N∑
k=1

`k (zk) +
1

C

C∑
c=1

rc (uc)

st ∀c ∈ {1 . . . C} , uc ∈ Cc,∀k ∈ {1 . . . T ×N} , zk = dk −
1

C

C∑
c=1

uk,c

We form the Lagrangian with T ×N real dual variables (λk)k∈{1...T×N} corresponding to constraints
∀k ∈ {1 . . . T ×N} , zk = dk − 1

C

∑C
c=1 uk,c. Slater’s conditions hold with the assumptions above

(strong convexity, strictly feasible or affine constraints, see [26] for details). Minimization and
maximization can therefore be swapped in the Lagrangian. the argument proves that problem (4.1)
is equivalent to

max
λ

min
u,z

[
T×N∑
k=1

`k (zk) + λkzk +
T×N∑
k=1

λk

(
−dk +

1

C

C∑
c=1

uk,c

)
+

1

C

C∑
c=1

rc (uc)

]
st λ ∈ RT×N , z ∈ RT×N , ∀c ∈ {1 . . . C} , uc ∈ Cc

Block constraints and distribution of min operators

The formulation above solves our need for parallelization across agents as the operator min
with respect to each zk and each uc. Indeed, z and u are decoupled and the constraints uc ∈ Cc are
independent by assumption. The independence of constraints among the agents is consistent with
the fact that these are considered heterogenous and private. Now, considering the Fenchel-Legendre
transform `∗k (λk) = supzk∈R lk (zk) + λkzk of `k (·), one has

min
z∈Rd

T×N∑
k=1

`k (zk) + λkzk = −
T×N∑
k=1

`∗ (−λk) .

Also, denoting ΠC
c=1Cc the cartesian product of the constraint sets,

min
u∈ΠCc=1Cc

1

C

C∑
c=1

λTuc + rc (uc) =
1

C

C∑
c=1

min
uc∈Cc

λTuc + r (uc) .
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The remark above proves that problem (4.1) is equivalent to

max
λ

[
−

T×N∑
k=1

`∗k (−λk)− λTd+
1

C

C∑
c=1

min
uc∈Cc

λTuc + rc (uc)

]
.

We can now appreciate how the individual constraint sets can be taken into account independently
one from another. In particular, this method will split the memory requirement for a gradient method
based numerical resolution in the algorithm presented below (Algorithm 1).

Extended value regularization functions

For each c ∈ {1 . . . C}, let rc (·) the extended value function that equals rc (uc) whenever
uc ∈ Cc and +∞ otherwise. With the assumptions above, rc(·) is proper, closed and lower semi
continuous. It is not differentiable in general but is strongly convex by assumption. Let σc its
strong convexity constant. Generic convex analysis (see [199] for details) allows us to show that the
Fenchel-Legendre transform of rc(·), denoted rc(·)

∗
, is differentiable and has a Lipschitz gradient

with constant 1
σc

. It is also trivially convex. For any c ∈ {1 . . . C}, the strong convexity assumption
on rc also guarantees uniqueness of u∗c (λ) = argminuc∈Cc (λ∗)T uc + rc (uc) where λ∗ is the unique
solution of problem (4.2) (see [26] for details).

Formulating an optimal price

The problem (4.1) is now equivalent to the unconstrained minimization below.

Dual split reformulation:

min
λ∈RT×N

f (λ) = min
λ∈RT×N

[
T×N∑
k=1

`∗k (−λk) + λTd+
1

C

C∑
c=1

rc∗ (−λ)

]
(4.2)

For each k ∈ {1 . . . T ×N} we denote Lk the Lipschitz constant of the gradient of `k(·) and
mk the strong concavity constant of the function. As in [199], `∗k (·) has a Lipschitz gradient with
constant 1

mk
and is strongly convex with constant 1

Lk
. Therefore, f is strongly convex with constant

m =
∑T×N

k=1
1
Lk

and has a Lipschitz continuous gradient with constant L =
∑T×N

k=1
1
mk

+ 1
C

∑C
c=1

1
σc

.
The strong convexity property shows in particular that there is a unique price vector λ∗ that
synthesizes the information contained in the common objective and the constraints. Indeed, if agent
c is given λ∗ it is sufficient for it to individually solve minuc∈Cc (λ∗)T uc + rc (uc) in order to retrieve
the optimal action u∗c that contributes to the overall objective best. In particular, this shows that
communication bandwidth requirements are lowered as privacy sensitive constraints do not have to
be shared with other participants in the system. Also, this problem is much less memory consuming
to solve as only one constraint set corresponding to a single agent needs to be considered for any
given time. Moreover, for a given value of λ, the sub-problems can be solved independently in
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parallel. This shows that this reformulation is privacy preserving, is computationally tractable and
scales with respect to the number of agents being dispatched thanks to communication avoidance.

Holistic deterministic gradient descent

Gradient descent and momentum methods are both straightforward ways to minimize f in
practice. We have ∇f (λ) = −

∑T×N
k=1 ∇`∗k (−λk) + d− 1

C

∑C
c=1∇rc∗ (−λ).

Usual theorems for differentiating maxima of functions (see [18] for details) give, ∀c ∈
{1 . . . C}, ∇rc∗ (λ) = u∗c (−λ), therefore

∇f (λ) = −
T×N∑
k=1

∇`∗k (−λk) + d− 1

C

C∑
c=1

u∗c (λ) . (4.3)

From [199], we know O
(
log
(
L
m

1
ε

))
iterations are sufficient for the distributed gradient based

algorithm below (Algorithm 1) to achieve an ε precision in the value of the function we are trying
to minimize.

Algorithm 1: Holistic distributed gradient descent
Data: Constraints (Cc)c∈{1...C}, target d ∈ RT×N

Result: Optimal dual price (argminλ∈RT×Nf (λ))
1 decide on initial value λ(0) ∈ RT×N .
2 for i← 1 to maximum number of steps do
3 broadcast λ(i)

4 compute optimal response u∗c
(
λ(i)
)

5 broadcast u∗c
(
λ(i)
)

6 gather and compute concatenated u∗
(
λ(i)
)

7 compute λ(i+1) = λ(i) − s(i)∇f
(
λ(i)
)

8 end

Theorem 4.2.1 Algorithm 1 solves the dual split problem without requiring the controllers to
communicate their constraint sets. At any step i, the only communication needed from agent c is
u∗
(
λ(i)
)
, which does not involve the constraint set Cc. Only the local computation of that optimal

response by the agent required knowledge of the agent’s constraints. It is possible to solve the dual
split problem without requiring the agents to communicate their constraint sets.

Proof 4.2.1 With regularity and strong convexity assumptions above, gradient descent in algo-
rithm 1 converges at an linear rate towards λ∗ and therefore Theorem 4.2 completes the proof.
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Figure 4.2: Architecture for communication avoiding distributed convex optimization algorithm
enforcing privacy for a swarm of controllers. At each step of the dual gradient ascent, a consensus
variable is updated without the need for communicating the constraints of agents on the communi-
cation medium. The individual contribution to the group’s gradient update can also be perturbed
so as to obfuscate them. This privacy-preserving algorithm can be modified and track smooth
changes dynamically as it is intrinsically iteratively converging to the optimum. In this architecture,
each agent locally computes the solution of a small size Linearly Constrained Quadratic Program
which provides each controller with an optimal decision while maintaining his personal availability
constraints and preferences confidential.

Parallelism with respect to the agents

Let us precisely describe here how computation of the gradients are based on independent
calculations by the agents. Indeed, calculating ∇rc∗ (−λ) = u∗c (λ) is the only point where agents’
constraints are to be taken into account and they are completely decoupled here. In particular, if
each agent computes this step locally, it does not have to give any information about its individ-
ual constraints to others. This means that the reformulation above yields an intrinsically privacy
preserving gradient method which does not require individual constraint to be communicated or
centralized at any point. Changing the problem representation is also extremely important for the
algorithm to scale. Communication entails the main compute time costs in the present setting. The
method enables solving the problem of interest in the distributed setting while only communicating
concise summaries of data sufficient to converge to optimality.
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Incremental stochastic gradient method

A standard way of dealing with the optimization of the sum of differentiable functions is the
incremental stochastic gradient method. Each holistic computation of the gradient is replaced
by a small stochastic correction that on average descends towards the optimum. One can write
f (λ) = 1

N

∑N
1 fn (λ) with

fn (λ) =
d∑

k=1

`∗k (−λk) + λTo+ rn∗ (−λ) (4.4)

For any n ∈ {1 . . . N}, let L∗n be the Lipschitz constant of the gradient of fn, L∗n ≤
∑d

k=1
1
mk

+
1
σn

, let λn,∗ the minimum of fn over Rd.
The full gradient update step is replaced by a partial increment that only requires the computation

of

∇un0f (λ) = −
d∑

k=1

∇`∗k (−λk) + o−∇rn0

∗ (−λ) (4.5)

where n0 is chosen uniformly at random in {1 . . . N} . Let us recall that ∇rn0

∗ (−λ) = u∗n0
(−λ)

therefore the constraints of un0 do not need to be broadcast.
One can show, as in [170], that E [‖∇un0f (λ) ‖2

2] ≤ A2
inc‖λ − λ∗‖2

2 + B2
inc where A2

inc =
2
N

∑N
n=1 L

∗
n

2 and B2
inc = max

(
2
N

∑N
n=1 L

∗
n

2‖λn,∗ − λ∗‖2
2,

A2
incD0

2

)
with D0 = E

[
‖λ(0) − λ∗‖2

2

]
From [170], we deduce the lemma below.

Lemma 4.2.1 If one uses decreasing step size s(i) = 2
(
m
(

2
A2

inc
m2 + i

))−1

after i iterations of the
incremental stochastic gradient method

E
[
f(λ(i))− f (λ∗)

]
≤

( ∑N
n=1 L

∗
n∑N

n=1 L
∗
n

2

)(
2 +

i

Tinc

)−1

(4.6)

where Tinc = 2
N

∑N
n=1 L

∗
n
2

m2 .

Here the convergence rate of the algorithm presented below, Algorithm 2, is much slower than
before. However, the computation burden for each step is considerably lower as compared to the
holistic case as only one optimal program needs to be computed and broadcast at each iteration.

Privacy preservation through obfuscation: approach and architecture
In the procedures above, the aim of enforcing the confidentiality of individual’s constraints

has been successfully achieved. This section will focus on obfuscating information that would
help infer those indirectly. It is now a privacy-preserving measure that complements the privacy
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Algorithm 2: Incremental stochastic gradient method
Data: Constraints (Cn)n∈{1...N}, target o ∈ Rd

Result: Optimal dual price (argminλ∈Rdf (λ))
1 decide on initial value λ(0) ∈ Rd.
2 for i← 2 to maximum number of steps do
3 select n0 at random in {1 . . . N}
4 send λ(i) to node n0

5 compute optimal response u∗n0

(
λ(i)
)

6 compute λ(i+1) = λ(i) − s(i)∇un0f
(
λ(i)
)

7 end

preservation of agents’ constraints. Our aim here is to show that the communication avoiding
distributed representation we designed for the heterogenous sub-problems is a robust summary of
their individual constraints.

We show that stochastic gradient ascent can be applied to solve the dual problem which converges
to an optimal Lagrangian multiplier which can be interpreted as a of distribution of incentives that
should be communicated to the agents for them to coordinate their actions in an optimal manner. In
this context, we highlight a force of the crowd that preserves the average-based gradient in spite
of the presence of random obfuscating perturbations. This guarantees we can reach any arbitrary
precision while protecting the controllers with respect to an eavesdropping attacker, provided the
fleet of individual agents is large enough.

Objective for privacy preservation through obfuscation: Obfuscation has to protect each
agent’s optimal program, u∗c(λ

∗), from an opponent that is eavesdropping on the broadcast channel.
A first obvious solution is to de-identify the vectors ůn that are communicated to other agents so as
to compute the new value of λ. Indeed, computation of λ is aggregated with respect to all individuals
so as long as each ůn is included once and only once in the process, the result is not changed. In the
following we will consider a safer procedure that obfuscates the individuals’ programs by adding
white noise to communications.

The collective goal is indeed to collaborate in order to answer the overall demand best with an
organized aggregated offer. While the contribution of each agent needs to respect to corresponding
individual constraint set, the aim is not communicating constraints. Instead, we find here a smaller set
of messages that are sufficient to reach optimal coordination and do not involve direct computation
of the agent-level constraint blocks.

Stochastic privacy model

The specific approach chosen is to protect against a man-in-the-middle attack [22] which occurs
in the system that allows the opponent listens to any broadcast message [5, 218]. We further assume
that this adversary has a perfect ability to re-identify message senders. Algorithm 1 is interpreted
as a survey in which, at each iteration i, all agents are queried for their optimal action u∗c

(
λ(i)
)
.
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Agents do not have to send out their personal sets of constraints, Cc, for the dual optimum λ∗ to be
estimated. However, they send out vectors u∗c (λ) which correspond to the optimal series of actions
to undertake with respect to a given signal vector λ. This information is considered privacy sensitive
as it can help infer the agents’ trajectories. Therefore, one considers a framework close to that of
[236], in which participants in a survey are reluctant to give out personal data. It is possible here to
leverage the averaging behavior of the dual gradient in order to compute the common optimum of
the whole community without jeopardizing individual’s privacy. Consider iteration i of Algorithm
1, the set of optimal programs being broadcast is u∗c

(
λ(i)
)
. The attacker can keep these messages in

memory and then compare them with u∗c
(
λ(i)
)
. Although messages have been de-identified, we

consider the attacker can break that protection. In the example below, smartphones or IoT devices
are the fundamental computational nodes of the procedure. An adversary can target a given device
and listen to its outgoing messages with perfect knowledge of the home address they are being sent
from. We assume that the only ability the attacker does not have is accessing the computations
inside the nodes that enclose individual constraints. This assumption is standard in a man in the
middle attack scheme [22].

We choose a specific attack model that highlights the trade-off solved by the dual representation
we employ. Information useful to the group is unveiled at a faster rate than individual information.
This shows first that homogeneity is indeed reached as individual-level information does not
constitute the data employed by the agents to coordinate their efforts. The individual solutions
to dual subproblem however condensate the information needed in the form of a vector with
as many element as the demand we are trying to meet. Such a property highlights a certain
form of minimalism and data efficiency in the representation design resulting from our search for
communication avoidance.

Noise obfuscation of broadcast

Adding artificial noise to communicated data is a powerful tool used in differential privacy for
databases in [61, 62, 52, 203] and in filtering [130] for example. Inspired by this work, we design
an algorithm where, instead of sending u∗c

(i) = u∗c
(
λ(i)
)
, agent c broadcasts

ũ∗c
(i)

= u∗c
(i) + ν(i)

c (4.7)

in which the d-dimensional white noise sequences (ν
(i)
c )i∈C are all mutually independent and have

variance η2 for each of their d components. This framework where only blurry observations of the
gradient are available has also been studied in [58]. The approach presented here diverges in that it
intrinsically leverages the effect of having distributed processors taking part in the computation of
the gradient. In particular a high value of C is core to obtaining good precision and at the same time
privacy enforcement, as in many stochastic approaches to privacy.
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Figure 4.3: Obfuscated distributed convex optimization algorithm enforcing privacy for a swarm
of smartphones. Noise is added to outbound communication from the smartphones in order to
obfuscate individuals’ information related to the trajectories while enabling an accurate gradient
update as the gradient is computed as an average across agents.

Learning rate on personal information

In this setting, the system itself cannot be trusted and there is competition between the speed at
which the community discovers λ∗ and the rate at which a spying statistician can learn individual in-
formation. This attacker is trying to estimate û∗

(i)

c based on a series of i observations
(
û∗

(j)

c

)
j∈{1...i}

for a given agent c that is targeted as an individual. Classically, when trying to estimate a vector from
a series of linearly perturbed measurements, empirical mean estimators or Kalman filters yield a
Mean Squared Error (MSE) that will scale proportionally to the variance T ×Nη2. Therefore we as-

sume the attacker’s estimator for u∗c
(i) is unbiased and has variance E

[∥∥∥û∗c (i) − u∗c (i)
∥∥∥2

2

]
= T×Nη2κ

iγ

where κ is a constant that depends on the estimation technique adopted by the adversary and γ
it’s learning rate. The most favorable case for the attacker occurs when the sequence

(
u∗c

(j)
)
j=1...i

remains constant. The law of large numbers guarantees a convergence rate γ = 1 for the empirical
mean estimator. Thus, from hereon, we will assume γ ≤ 1. The privacy enforcement criterion here
is that the MSE of the estimator of the attacker remains above a certain lower bound κmin. This
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implies the optimization program has an iteration budget

imax =

(
dκη2

κmin

) 1
γ

. (4.8)

Noisy descent

The privacy enforcing strategies below aim at converging towards an optimal scheduling price
λ∗ faster than the attacker increases its precision in the estimation of u∗c .

A strategy to preserve privacy in the distributed gradient computation is to run the deterministic
holistic descent above with noisy broadcasts from the agents. The update of λ in the descent
becomes λ(i+1) = λ(i) − s(i)∇̃f

(
λ(i)
)

where

∇̃f
(
λ(i)
)

= −
T×N∑
k=1

∇`∗k
(
−λ(i)

k

)
+ d− 1

C

C∑
c=1

ũ∗
(i)

c

(
−λ(i)

)
.

Recalling that ũ∗c
(i)

= u∗c
(i) + ν

(i)
c , as ν(i)

c is a white noise whose variance trace is T × Nη2,
E
[
∇̃f

(
λ(i)
)]

= ∇f
(
λ(i)
)

and

E
[∥∥∥∇̃f (λ(i)

)∥∥∥2

2

]
≤ A2

hol

∥∥λ(i) − λ∗
∥∥2

2
+B2

hol. (4.9)

where Ahol = L =
∑T×N

k=1
1
mk

+ 1
C

∑C
c=1

1
σc

and B2
hol = T×N

C
η2.

These considerations lead to the following "obfuscation by the crowd" theorem.

Theorem 4.2.2 The precision that can be reached in terms of MSE for the numerical Lagrangian
multiplier while obfuscating the agents’ actions is inversely proportional to the size of the fleet.

Proof 4.2.2 Using the notation m =
∑×N

k=1
1
mk

, if one uses step size s(i) =
(
m
(

2
A2

hol
m2 + i

))−1

,
after i iterations of the noisy holistic descent,

E
[
f(λ(i))− f (λ∗)

]
≤ 2B2

hol

L
(

2 + im2

A2
hol

) ≤ 2
T×N
C
η2L

im2
. (4.10)

As we defined L as a function of the average of 1
σc

among the agents c ∈ {1 . . . C}, L is indeed
independent from the size of the fleet we consider.

It is noteworthy that the fact that the constants in this bound are sensitive to T and N does not
change the conclusion regarding the role of the number of agents, C, which, as it increases, offers
better opportunities for privacy enforcement by obfuscation.
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Noisy incremental stochastic descent strategy

In such a case we get a similar bound for the expected value error with constants Ainc noisy = Ainc

and B2
inc noisy = B2

inc + η2.
The convergence rate is unsurprisingly slower. However participating agents send out sensitive

data less often as only one individual selected uniformly at random broadcasts its response vector
u∗n

(i) = u∗n
(
λ(i)
)

at each iteration. Let ξ(i) the number of times the agent selected at the first iteration
has sent out its optimal response (including that of the first step). The random variable ξ(i) − 1 is
the sum of i− 1 Bernoulli trials with parameter 1

N
. Therefore ξ(i) − 1 has a binomial distribution

with parameters 1
N

and i− 1. Jensen inequality yields

E
[∥∥∥û∗(i)n − u∗n(i)

∥∥∥2

2

]
= E

[
dκη2

(ξ(i))
γ

]
≥ dκη2(

1 + i−1
N

)γ .
Proposition 4.2.1 After N

((
dκη2

κmin

) 1
γ − 1

)
iterations of the incremental noisy stochastic descent

method the MSE of the adversary, E
[∥∥∥û∗(i)n − u∗n(i)

∥∥∥2

2

]
, is bounded by below by κmin and the

privacy preservation constraint is respected.

Studying a competition of individual and group level learning rates precisely highlights how
as the crowd of agents gets larger, getting precise information from each individual is no longer
necessary. The dual representation is expressive and robust enough for the controllers to jointly
converge to an optimal plan of action.

4.3 Distributed control of Mobility-as-a-Service (MaaS) fleets
On-demand traffic fleet optimization requires operating Mobility as a Service (MaaS) companies

such as Uber, Lyft to locally match the offer of available vehicles with their expected number of
requests referred to as demand (as well as to take into account other constraints such as driver’s
schedules and preferences). Alongside the demand patterns, it is also preferable to take into
account the constraints of the drivers in terms of service start and stop locations as well as their
availability schedule. In the present section, we show that this problem can be encoded into a
Constrained Integer Quadratic Program (CIQP) with block independent constraints that can then
be relaxed in the form of a convex optimization program [26]. We prove that this program has a
number of heterogenous constraints that scales linearly with the number of vehicles. We leverage
this particular structure to design a scalable distributed optimization algorithm corresponding to
computing a gradient ascent in a dual space [18] we presented. The goal of the approach is to avoid
communication from the drivers, i.e this technique preserves the privacy of the drivers’ schedules
which no longer need to be made public. This new framework does not require the drivers to share
their availabilities with the operating company (as opposed to standard practice in today’s mobility
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as a service companies). The resulting parallel algorithm can run on a distributed smartphone based
platform (i.e. can be implemented directly in today’s leading companies in the field).

Numerical experiments based on actual data collected on Uber rides in New York including
4× 105 samples show the algorithm efficiently synthesizes a spatio-temporal price multiplier that
enables accurate demand tracking by the probability of presence of vehicles. The algorithm is
demonstrated in different settings with up to 104 vehicles involved in the fleet of mobility as a
service. We prove this method achieves three different goals: privacy preservation, tractability
of computations and obfuscation of the optimal solution for the fleet management problem we
consider.

Motivation for application to MaaS
Let us first delineate three reasons why MaaS as been considered as a prime application for

the approach we developed. Designing a solution to the optimal dispatch problem for MaaS is
an opportunity to offer an open-source method to solve a problem of importance for urban areas,
provide an approach different from the non-scalable standards in fleet management and offer a
method tailored to the constraints of scale, communication avoidance, privacy and latency in MaaS.

Open-sourcing Mobility as a Service. A key component in Mobility as a Service (MaaS) com-
panies such as Uber and Lyft is market making and market matching. The famous price multiplier
of the former incentivizes drivers to go to regions where many rides are requested whereas the latter
takes into account the personal schedule of the drivers. To remain competitive, MaaS companies
keep their optimization strategies a secret. In the current section, we present a convex optimization
formulation and provide an open source algorithm that match drivers with demand in an optimal
manner while taking into account the drivers’ availability as a set of constraints. In addition, we
show that using a dual splitting technique, the convex program can be parallelized with respect
to the agents. This has two important consequences. It alleviates the need for a single machine
with a large amount of memory. Indeed we leverage the fact that the schedules of the drivers
can be considered as independent constraint sets. It also does not require drivers to share their
schedules which naturally protects this privacy sensitive piece of information. We focus in the
present section on the fleet management dimension of providing MaaS which complements recent
work on decentralized trust management for ride sharing in [53, 201] and strategic meeting point
choice to mitigate information leakage in [7].

Non scalable methods for fleet management. A sizable body of research focuses on optimiz-
ing fleet management, vehicle dispatching and multimodal transportation optimization. In order
to assess the best optimization policies for taxi fleets, numerous simulators have been developed.
For instance, in [36], an agent-based simulation program was used in conjunction with a large
dataset of GPS trajectories to learn and mimic the behavior of taxi drivers. In [148] researchers have
modified general purpose agent-based traffic simulators such as MATSim [108] and incorporated
taxi ride simulation. Both these approaches aimed at providing taxi companies with tools and
methods dedicated to better informing fleet management decisions with a focus on better answering
demand modeled as queues and minimizing idling driver time. GPS tracking has been instrumental



CHAPTER 4. DISTRIBUTED COMMUNICATION AVOIDING CONTROL SCHEMES 87

in calibrating taxi fleet simulators as well as real-time information services for large taxi fleets [11,
140, 139] which aimed at better informing optimization decisions in real time. More recently, the
advent of massive electric vehicle fleets has given rise to a new class of problems. These analyze
the structure of demand of rides and dispatch vehicles while taking into account the constraints
inherent to the use of electric vehicles whose batteries provide a shorter range [78]. Such problems
have also been considered for the design of optimal charging station networks for such fleets [30].

Integrating operational constraints in privacy preserving environments. The framework
in which we develop the novel approaches presented in this work takes into account constraints
that correspond to each agent in the system such as driving preferences, electromobility-induced
constraints, etc. These constraints can encode a variety of factors, the most interesting one for the
study being driver availability (which we want to protect for privacy reasons). In such a setting,
the demand for rides can be studied in a statistical manner leveraging the important amount of
data being collected by MaaS systems. Note also, as will appear later, that the method does not
require the assumption that the demand for rides is elastic as in [242]. Our focus is that of making
MaaS open; this specifically takes the form of a peer-to-peer distributed algorithm that can run on
smartphones and achieves an aim similar to that of [112]. As in [147], a major concern is that the
algorithm scales which typically becomes problematic when the number of constraints increases
linearly with the number of drivers, a problem that we adress as well. For completeness, a large
number of approaches for ride-sharing optimization can be found in [4].

In the following, we show how to model the problem of matching demand for rides with the
schedule of MaaS drivers and how this can be formulated as an optimization program. We first
focus on the identification of the structure of the demand prior to formulating the resulting matching
problem.

Characterization of demand as a seasonal time series in the MaaS problem
We show how openly accessible data can, using a coarse yet robust statistical estimation, yield

reliable estimates of the locations and times corresponding to demand for mobility. We operate
under the assumption that the only shared location by the rider is that of the departure of the trip.
This corresponds to the reality of popular applications for MaaS today in which the destination of
the rider can be modified until the start of the trip. We show how, once the demand for rides has
been characterized using this method, the availability constraints of the drivers can be matched as a
mobility offer in the form of an integer program.

System identification

Demand for rides can be characterized as a multivariate time series (Dt) ∈ Rd where d is the
number of cells considered in the spatial discretization grid (see Figure 4.4 for the case of NYC).
These are sometimes referred to as "heatmaps" in MaaS companies. For each element of the grid i
and each timestep t (typically 5 minutes), Di

t is the sum of all ride requests for the service that have
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been observed in region i. Let (Ut) ∈ Rd the sum of vehicles available in a grid cell at time t. A
way to encode optimal matching is to penalize the sum of squared distances between the vectors Ut
and Dt at each timestamp to which we add a regularizing function over (Ut). This latter component
of the objective represents the aversion of drivers to long distances and going to highly congested
zones. This will enforce a vehicle allocation schedule matching the spatial density of ride requests
with that of available mobility platforms. At the same time, it will penalize the fleet dispatch plan in
order to discourage traveling long distances or go through regions with a high number of vehicles,
therefore taking into the route preferences of the drivers [24].

Spatio-temporal structure of demand for MaaS

As an instantiation of the method exposed to identify the structure of demand for rides, further
exploring the statistical facts exposed in [189] for on-demand mobility in New York city, we show
that the demand for rides (Dt) has strong spatial and temporal periodicity (which is illustrated
in Figure 4.5 and Figure 4.4). A consequence of this fact is that we can use seasonality analysis
[28, 29] as the basis for an optimization scheme taking into account the drivers’ availability and
schedules. The stochastic input demand profile [8] can of course be updated as new data is collected
with a receding horizon approach [159] and the demand forecast obtained by multivariate time
series analysis [216, 59, 146] changes. Updates for traffic conditions can be taken into account in
real time [15, 157].

Data

Within the data set used consisting of Uber ride requests in 2014, we chose a random day,
April 7th, to illustrate the properties of our algorithm with actual demand measured in Manhattan
for Uber rides extracted by [71]. Drivers constraints where simulated at random with a start time
picked uniformly at random through the day and an end time picked uniformly at random within the
reminder of day after the start time. We divided the day into 24 one hour periods and aggregated the
demand within these time bins. We also discretized the spatial space of the city with a tessellation
grid of size 16× 16.

Control problem
Formulation of demand matching with boolean representation of vehicles

The time series (Ut) ∈ Rd corresponds to the aggregation of drivers’ locations over spatial
regions whereas (Dt) ∈ Rd is a demand time series summing up collocated requests occurring in
the same time interval. The optimization scheme we focus on in this section leverages aggregated
demand profiles and enables the optimization of vehicle dispatch at the driver level, taking personal
constraints and driver utility functions into account. The discretized spatial grid can easily be mod-
eled as a network graph [243] representing the mobility space (see Figure 4.4). Each edge represents
a spatial tesselation region. Neighboring regions are linked one to another by an edge. The position
of driver c at time t is modeled by a integer vector over the vertices of G: (bct) =

(
bct,i
)
i∈{1...d} ∈ Nd
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Time/space profile for Uber Rides in New York

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Spatial cell
Cell #1346

New York

5.23% of demand

0% of demand

Cell #1346

Figure 4.4: Top: Spatial quantization of demand for Uber rides in New York. Each element of
the grid corresponds to aggregate ride requests in a tessellation region during each time interval
(depicted at a given time in this figure). Empty cells correspond to regions with low or zero ride
requests. This data is studied as a multivariate time series and its seasonal component studied. The
mobility on-demand fleet distribution is then optimized based on this data with the novel algorithm
we present. Bottom: Spatio-temporal seasonality in Uber demand profile in NYC for April 2014.
The strong spatio-temporal seasonality paves the way towards accurate predictions and planning
of requests for rides. Forecast can then be dynamically updated by standard linear model iterative
fitting to dynamically adapt to randomness in the demand time series.
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whose value is 1 for vertex n if and only if the driver’s location is vertex n at time t. The value of
the integer bct may also be used to encode the number of seats available.

Formulation of demand matching as a discrete optimization program

Up to a scaling factor for the number of shared vehicles located at a given node, alleviating the
spread between demand and offer of ride requests can be written as the following objective where C
is the total number of drivers taken into account and T the total number of time steps the schedule
is planned for.

Fleet management problem:

min
u∈{0,1}d×C×T :

∑T
t=1

∑d
n=1

(
dt,n −

∑C
c=1 b

c
t,n

)2

+
∑C

c=1

∑T−1
t=1

∑d
n=1 ρ

2
c,t,n

(
bct+1,n − bct,n

)2

+
∑C

c=1

∑T
t=1

∑d
n=1 σ

2
t,n

(
bct,n
)2

∀c ∈ {1 . . . C} , ∀n ∈ {1 . . . D} ,∀t ∈ {1 . . . T} , bct,n ≥ 0 if and only if vehicle c in cell n
∀c ∈ {1 . . . C} , bc ∈ Cc

(4.11)
where ∀c ∈ {1 . . . C} , bc ∈ Cc is equivalent to ∀n ∈ {1 . . . D} ,∀t ∈ {1 . . . T} , bct,n = 0 if

vehicle c is not available at time t; dt,n is the demand in cell n at time t. This constraint set will
be augmented with mobility constraints as we will show later on;

(
ρ2
c,t,n

)
is a set of travel distance

penalization parameters;
(
σ2
t,n

)
is a set of penalization parameters over congested cells. In the

equations above and the following, t will be a temporal index, n a spatial index, and c will identify
vehicles. The specific terms in the program above are explained below:

• Demand matching term:
∑T

t=1

∑d
n=1

(
dt,n −

∑C
c=1 b

c
t,n

)2

is a square loss penalizing the
mismatching between the number of vehicles expected in each cell and the number of rides
requested (demand). Note that last section of this section proves that any strongly convex loss
can be used here instead of this quadratic.

• Travel time and distance penalty:
∑C

c=1

∑T−1
t=1

∑d
n=1 ρ

2
c,t,n

(
bct+1,n − bct,i

)2 is a quadratic
penalty term which accounts for the cost in time and energy for the drivers corresponding to
moving across the discretized tesselation grid. In other words, penalizing fleet re-balancing is
desirable (and encoded in this function). Again, any arbitrary strongly convex loss can be
used here, as proved later in the section. This means in particular that instead of a distance
an expected travel time can be added, for instance, a quadratic loss on the number of traffic
lights present in a cell of the discretized grid.

• Regularization:
∑C

c=1

∑T
t=1

∑d
n=1 σ

2
t,n

(
bct,n
)2 is a quadratic term that discourages drivers

from gathering in large groups in the same cells. Once more, any strongly convex loss can
replace the quadratic term we chose. Strong convexity implies that there is an increasing
marginal cost to concentrating the distribution of a driver and therefore encourages spreading
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vehicles across the discretization grid. This term may also represent the aversion of drivers
to driving in zones that feature problematic driving conditions such as uncertainty about the
level of congestion or the absence of stopping locations.

Constraint sets

In this paragraph, we show how the constraints on the possible movements of the agents can be
extended and be more detailed. Any fleet management algorithm has to take the drivers’ constraints
into account as well as their mobility constraints. Letting avai (c, t) be the Boolean variable that
represents the availability of driver c at time t, we have ∀t ∈ {1 . . . T} , ∀c ∈ {1 . . . C} ,

∑N
n=1 b

c
t,n =

avai (c, t). Let init (c) the entry point of driver c at time tsc (where s stands for “start time”, the entry
point represents the location at which the agent has parked before starting the MaaS part of their
day) when vehicle c start its trip, we add the constraint bct=tsc = init (c), where init (c) is the dirac
vector concentrated on the start position of vehicle c. Let end (c) the exit point of driver c at time tec
when vehicle c ends its trip, bct=tec = end (c) the dirac vector concentrated on the stop position of
vehicle c. If we do not assume that the graph is fully connected for any time stamp t, we can add the
constraints ∀t ∈ {1 . . . T − 1} , bct = Mtb

c
t−1 where Mt is the connectivity matrix of the network.

In particular Mt is filled with 0, Mt,n1,n2 = 1 if anf only if n1 and n2 are connected through the
network at time t. The final constraint set we obtain, once mobility constraints have been taken
into account consists of two elements. Availability of agent for MaaS: ∀c ∈ {1 . . . C} , bc ∈ Cc
is equivalent to ∀n ∈ {1 . . . D} , ∀t ∈ {1 . . . T} , bct,n = 0 if vehicle c is not available at time t.
Mobility constraints: ∀t ∈ {1 . . . T − 1} , bct = Mtb

c
t−1.

We consider a convex relaxation of the Constrained Integer Quadratic Programming (CIQP)
problem which differentiates our approach from [150, 132, 197, 208] for vehicles. Our choice of
an approximate relaxation convex program as in [158] is motivated by the practical fact that we
build a system that encourages drivers to move towards regions with a high number of potential
customers. Drivers are indeed free of their re-routing decisions in on-demand mobility, which
leads to behavioral changes as compared to what has been previously observed for vehicles [244].
As actors on a two sided market, they are also free to refuse to pickup a costumer and therefore
the vehicle occupancy is not taken into account in the optimization objective. We derive a dual
reformulation which yields a distributed gradient ascent algorithm converging to the optimal solution
of a strongly convex problem.

Our method is therefore tailored to shaping incentives drivers to answer demand in an optimal
way while taking their personal constraints into account as they join a massive fleet of vehicles. We
leverage this unique aspect of MaaS in order to design a distributed algorithm which is tailored for
speed of adaptation to changing conditions and privacy preservation rather than precisely controlling
each vehicle individually. Our numerical experiments show indeed that the parallel implementation
of our algorithm can run on the equivalent of a group of two thousand smartphones with a limited
communication bandwidth and yet find an optimal price multiplier for the drivers in a matter
of minutes. These results are moreover rather pessimistic as we did not use a warm-start or a
specialized convex optimizer to speed it up. A limitation however is that our algorithm is not
adapted to the exact and precise control of a fleet of vehicles.
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The computational complexity of the problem prevents efficient solutions to the exact (integer)
problem. In addition, solving the problem exactly is not necessary with fleets of drivers that are not
directly controlled. This enables us to achieve three main goals which will be at the center of the
next two sections.

Hyperparameter tuning

The problem formulation above features several sets of hyperparameters (ρ, σ) which can be
calibrated by a cross-validation procedure in order to produce the best outcome for this optimization
scheme. This can be done by operating an actual fleet or more realistically in practice using a
vehicle fleet simulator such as [36, 148]. In our numerical experiments, we have used nominal
parameters that did not result from the use of such simulators different numerical values do not
affect the performance of our algorithms significantly. However, the results we present show that
the set of hyperparameters we selected successfully enabled the tracking of the demand with the
vehicle probability of presence distribution.

Convex relaxation
Assuming vehicles would directly be controlled by the managing company, this leads to a

Contrained Quadratic Integer Program (CQIP). As the market making solution being offered by
MaaS does not directly control the drivers, we focus on controlling a probability of presence of the
drivers which corresponds to a convex relaxation of the integer program we formulate.

As a starter to address the issue of tractability we employ relaxation. In the previous problem,
∀t ∈ {1 . . . T} , ∀c ∈ {1 . . . C} , bct,n ∈ {0, 1}. We now write a relaxed approximation of the
problem with uct,n ∈ [0, 1]. ∀c ∈ {1 . . . C} let Cc the set of constraints of vehicle c, the constraints
are: ∀t ∈ {1 . . . T} , ∀n ∈ {1 . . . N} , uct,n ≥ 0;∀t ∈ {1 . . . T} , ∀n ∈ {1 . . . N} , uct,n = 0 if
vehicle c is not available at time t; uct=0 = init (c) (initial location of vehicle c, e.g. parking location
at the driver’s home); uct=T = end (c) (final location of vehicle c, e.g. parking location at the driver’s
home), ∀t ∈ {1 . . . T − 1} , uct = Mtu

c
t−1 (movement constraints between traffic regions) if the

traffic network is not fully connected at all times. Otherwise one considers the mass conservation
constraint

∑N
n=1 u

c
t,n = 1. We can see that this problem is equivalent to that of considering the

position of a given vehicle at any time t as a probability distribution over the network. Note also
that the practice of aggregation of supply often used by MaaS companies such as Uber or Lyft is
somewhat aligned with the physical interpretation of relaxation in the present case.

Relaxed problem formulation

The position of driver c at time t is modeled by a presence vector over the vertices of G:
(uct) =

(
uct,n
)
n∈{1...N} ∈ RN whose value is one for node n if and only if the driver’s location is n at

time t.

The relaxed problem we consider is now convex:
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Convex relaxation:

min
u∈Rd×C×T : ∀c∈{1...C}, uc∈Cc

T∑
t=1

N∑
n=1

(
dt,n −

C∑
c=1

uct,n

)2

+
C∑
c=1

T−1∑
t=1

N∑
n=1

ρt,c,n
(
uct+1,n − uct,n

)2
+

C∑
c=1

T∑
t=1

N∑
n=1

σt,n
(
uct,n
)2

(4.12)

The solution to this problem will be denoted u∗ = concat ((u∗c)c=1...C) where u∗c is the optimal
behavior assigned to the agent number c. One major difference appears with the initial boolean
problem. New constraints need to be taken into account, for each vehicle. Namely, uct,n ≥ 0 and∑N

n=1 u
c
t,n = 1. This does not change the separability of constraints among vehicles which is the

key assumption needed to parallelize solving the convex optimization problem we obtain after
relaxation.

Answering demand for rides with a probability distribution of vehicles

We are mainly interested in fleet management for MaaS companies such as Lyft or Uber. In
that particular setting it makes sense to consider a probability distribution of presence for the
driver and guiding this probability distribution. Indeed, these drivers should not be considered as
employees but as contractors and therefore the re-routing scheme is about designing incentives and
not control. Not only is this framework useful for large numbers of drivers as observed in urban
areas, but it also corresponds to a modeling approach desired by MaaS companies. Also, the present
optimization scheme only considers demand is characterized by the location and number of ride
requests. The location of the destinations are not taken into account. This models the fact that
Uber or Lyft drivers only get to know the destination of the costumer after the pick up and the rider
is therefore free to change the destination before pickup time. Considering destination locations
is not problematic. However, the size of the state space would increase quadratically therefore
requesting more computational time and memory. The corresponding increase in computational
complexity can potentially be addressed with the optimization algorithm presented later based on a
dual splitting method is tailored for solving the main problem by distributing it over many machines.
As illustrated in Figure 4.6, considering the convex relaxation of the problem is key to having a
model that although approximate is appropriate for Mobility as Service (MaaS) applications and
can be solved in a scalable manner. A thorough analysis has been conducted in [185] and [184] for
the recovery of sparse probability measures by convex programming. In these articles, bounds have
been proven that could be applied to our setting. We do not need such a thorough analysis in our
study as the convex relaxation over the location of the agent characterizes the flexibility offered to
the driver by MaaS. Uber drivers are free to go where they want and can only receive an incentive
to drive to zones with a higher price multiplier.
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Dual splitting method
This section presents a dual perspective of the problem that explicitly separates the constraint

sets of the drivers. It leads to the formulation of a Lagrangian quantity encoding both the structure
of the demand and the availability constraints of the drivers. The following proposition is a direct
consequence of the preliminary study on dual representations of heterogenous distributed control
problems.

Proposition 4.3.1 The primal problem is equivalent to the Dual problem:

max
λ
−

T∑
t=1

N∑
n=1

(
λt,ndt,n +

λ2
t,n

4

)

+
C∑
c=1

min
uc∈Cc

(
T∑
t=1

N∑
n=1

(
λt,nu

c
t,n + σt,n

(
uct,n
)2
)

+
T−1∑
t=1

N∑
n=1

ρt,c,n
(
uct+1,n − uct,n

)2

)
. (4.13)

Once converged, u∗ is equivalent to the primal solution, the solution λ∗ to (4.13) is an optimal
price multiplier. We will show that at the optimal point (u∗, λ∗) drivers’ constraints are respected
and yet need not be communicated, privacy is preserved. Indeed, the optimal solution u∗ for the
entire fleet is the concatenation of the individual optima (u∗c)c=1...C . The calculation of u∗c for a
particular value of c only depends on messages obtained from the rest of the fleet through λ∗ as it is
the solution to

Proposition 4.3.2 Agent level problem: Once the optimal value of λ in (4.13) has been found
(which will be explained in Algorithm 1), it is sufficient for each agent to solve the sub-problem

min
uc∈Cc

fc (λ∗, uc) =
T∑
t=1

N∑
n=1

[
λ∗t,nu

c
t,n + σt,n

(
uct,n
)2
]

+
T−1∑
t=1

N∑
n=1

ρt,c,n
(
uct+1,n − uct,n

)2 (4.14)

to find its optimal schedule in order to return its additive contribution to the gradient uc∗ (λ) =
argmin
uc∈Cc

fn (λ, uc) .

Dual splitting algorithm The considerations above lead to a straightforward separation of the
problem through the dual. In section 4.2 we introduced a gradient ascent based algorithm that
achieves convergence. This distributed privacy preserving optimization scheme is provably able
to track a demand distribution. In Figures 4.7 and 4.8, we show how the optimal distribution of
vehicles is able to track the distribution of demand as it evolves in time. These plots are generated
with 103 and 104 vehicles whose availabilities are generated at random with a uniform law for the
beginning and the end of the vehicle shift. In order to check how the scheme performs we compare
the demand distribution and the offer distribution with a Sum-Of-Squares metric (Kullback–Leibler
divergence cannot be used here as the supports may be disjoints). This result is expected and
confirms that the privacy-preserving distributed optimization method we presented is efficient to
match demand and offer when constraints on the offer form a cartesian product of independent sets.
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Optimal Lagrangian value as a coordination price enabling privacy
One of the most interesting outputs of the optimization scheme we propose more λ∗ than u∗.

Indeed, while u∗ gives access to the fleet management, λ∗ is a coordination signal in that it is
sufficient to broadcast it to all the vehicles involved in the fleet for them to individually change
their planning and update the next price with respect to which the fleet is going to coordinate. This
result enables two important extensions to the scheme we propose. Splitting by the dual leads to the
formulation of a Lagrangian vector λ∗. For each time step, (λ∗t,n)n=1...N projects a heatmap onto the
discretization cells which optimally synthesizes the value that should be attributed to the different
regions of the map so that drivers are optimally encouraged to meet the demand. This price takes
implicitely into account the availability of the agents through time and the points at which they start
and end their service. The optimal value in the dual λ∗ is an optimal coordination Lagrangian price
that makes taking agents’ constraints implicit therefore eliminating the need for communicating
them and centralizing them in a single agency.

Section 4.2 already proved, using an analysis of the convergence of the algorithm we propose,
that λ∗ can be found without any communication of the agents’ constraints.

Dynamic tracking. First, if the optimal solution changes slightly because of an unexpected
variation of the demand or the addition or deletion of agents from the system, a new optimal price
will be devised once the system has once more converged in the dual space that corresponds to
the optimum in the primal space. Using a dual splitting reformulation of a convex relaxation
approximation enables a re-computation in real time for the swarm of taxis. This allows adaptation
to random variations and changes in vehicle availability.

Electric vehicles. Second, another interesting aspect is that constraints that are independent
across vehicles can arbitrarily be added to the system without a modification of the scheme. The
corresponding individual constraint set Cc is updated if there is a modification of the properties
of the vehicle indexed by c. This naturally enables the optimization program to take into account
constraints that entail the charging of electric vehicle batteries. Electric vehicles having a more
restricted action radius (sometimes referred to as "range of anxiety"), the operators may want to take
the corresponding additional availability constraints into account. These constraints are naturally
decoupled across vehicles as they only relate to periods during which a given vehicle is not available
for mobility as a service because it needs to be charged. Therefore the procedure we present is
naturally able to handle fleets of mobility as a service with electric vehicles.

Enabling coordination while preserving privacy. We therefore showed how separating block
independent constraints coupled in the objective by the dual is a technique that entails a natural
privacy preservation mechanism. The most significant outcome of the dual splitting method is the
formulation of an optimal Lagrangian multiplier λ∗ which enables agents to coordinate their response
to the demand while respecting their own availability constraints. We proved that convergence
towards λ∗ is robust and can occur without the need for the agents to communicate their constraints
at any iteration of the privacy preserving convergence algorithm we devise.

We show in Figures 4.7 and 4.8 that our strategy manages to create a presence likelihood of
vehicles that tracks a given demand. The results below have been computed for 1000 and 10000
vehicles but the algorithm naturally scales [221] on more machine in order to solve the problem
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with more vehicles and finer time slices. The numerical assessment also focuses on the impact of
stochastic obfuscation on the performance of the algorithm. Practically, this corresponds to adding
noise to the responses of the devices participating in the distributed gradient ascent in order further
enforce privacy. We show that, with enough vehicles, one can obtain an accurate solution while
guaranteeing the eavesdropper cannot learn the optimal planned actions drivers will undertake once
the gradient method has converged. The efficiency of these algorithmic and theoretical contributions
to fleet allocation optimization is confirmed by numerical work conducted with on actual data
collected in New York for Uber ride requests. In this section we confirm the theoretical convergence
properties proven above by multiple numerical experiments based on actual demand data extracted
thanks to the Freedom of Information Act in New York.

Convergence towards a distribution of vehicles tracking the demand
We now demonstrate that our approach is effective with field data and is able to match the spatial

and temporal distribution of demand for mobility as a service with the offer. We illustrate this with
two different fleet sizes of 103 and 104 vehicles in Figures 4.7 and 4.8 respectively. The first set
of plots in the former show that the offer tracks the demand in the planning that the algorithm has
converged to. In the later we show how a simple map of λ∗ can be interpreted as a price multiplier
and formulates a coordinating scalar map that protects the privacy of drivers. In the figures below,
we focus on normalized distributions of offer and demand as our algorithm is used with different
fleet sizes which naturally leads to different absolute levels of offer. In particular we check that the
distribution of vehicles the algorithm converges to does match that of the demand for rides. This is
observed in Figure 4.7 which confirms the theoretical guarantees given above.

Influence of noise

This section focuses on showing the robustness of the scheme with respect to noise added in the
broadcasts as in equation (4.7). Adding different Laplace noises in multiple gradient descents as in
Figure 4.9 shows that the scheme we present is robust to perturbations. Indeed, the randomness in
distributions of L2 norm between offer for rides and demand does not explode as the noise becomes
higher in variance.

Increasing the number of vehicles and obfuscation by the crowd

As demonstrated in the theoretical analysis of privacy through obfuscation, the higher the number
of vehicles, the higher the number of iterations the stochastic gradient method can go through without
revealing too much of the actions the vehicles will undertake. We test the implications of the analysis
in a numerical experiment in which we increase the number of iterations linearly with the number
of vehicles in the fleet as prescribed in (4.8) for the worst case scenario of γ = 1. Figure 4.9 shows
how with a higher number of vehicles the supplementary number of iterations does enables quite a
substantial improvement. This improvement is not only due to the higher availability of cars as the
L2 distance between offer and demand steadily decreases until the end of each gradient method we
present.
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Influence of the model parameters

The previous paragraph demonstrated that the method we present is able to reach an optimal
schedule in spite of only being allowed to compute a limited number of gradient method steps to
preserve privacy. It can be observed on Figure 4.7 that if we only use 1000 vehicles the tracking of
the demand by the agent presence probability is only approximate. In this section, Figure 4.10 shows
that this matching of offer with demand can be improved as soon as we consider more vehicles
(2000 in this paragraph). Indeed, as we increase the number of vehicles, more degrees of freedom
are available and demand for rides can better be answered. The remainder of this section therefore
focuses on three questions that still need to be answered. First, we need to characterize the influence
of the number of spatial cells. After that, we will analyze how the number of discretization time
steps influence impacts the convergence towards a solution. A third concern we address is that of
being able to compute a solution at a speed adapted to the time discretization resolution. We show
that coarser models allow for faster computation of a less accurate solution. We also demonstrate
that over-simplification is not necessary as we are able to compute a solution in less seconds than
there is time in a time step with a fined grained model. In this model, spatial cells are only the size
of a few city blocks and time steps only have a duration of 15 minutes.

Influence of the spatial discretization granularity

In Figures 4.8, 4.7, 4.10, a discretization grid with small cells was used. More precisely, each
cell is 0.41 km wide and 0.93 km tall. A finer spatial discretization resolution is problematic in
two aspects. As we target the average predicted demand, if fewer observations are available for
an element of the state-space of the demand, more noise impacts our estimates. Also, the scale
needs to be adapted to the dimensions of the city as we need each discretization cell to feature at
least one street for it to be practically used by the drivers. As in Figure 4.4, some cells in central
park only feature a single street and most cells only comprise of 10 city blocks. Considering a
coarser spatial discretization will have two positive effects on the solution that will be found. The
estimates for demand will be more robust because we will leverage more information for each cell.
The computational burden will also be lighter for each sub-problem that needs to be solved in the
distributed algorithm we design. An obvious negative effect will obviously be the illusion that the
problem is easier to solve when it fact this is only a direct consequence of using a less detailed
model. The convex problem we solve with a coarser spatial grid at the level of each individual agent
is by definition less complex but the schedule we obtain fits the demand profile less accurately. In
Figure 4.11, we indeed show that we converge faster with a discretization grid that is ten times as
coarse than the initial grid we used.

Influence of the temporal resolution

The influence of the temporal resolution is similar, from an accuracy and computational com-
plexity standpoint, to that of the spatial scale. Figure 4.11 clear demonstrates that it is much faster
to converge with a solution with coarser time steps. This solution will only be adapted to a coarser
approximation of the demand unfortunately. Based on the empirical observations presented in [54],
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the mode of the pace in New York is 8 minutes for a single mile. A temporal resolution of 15
minutes is therefore reasonable choice given the characteristic time needed by an agent to traverse a
fine spatial cell blocks in the presence of congestion. A given agent will be unlikely to “jump” over
a spatial cell in less than a time step.

Computing a solution fast enough to be consistent with the temporal resolution of the model

Another critical aspect of the influence of the temporal resolution is related to an implicit
computation speed requirement which is necessary to compute solutions for them to be relevant
to the time steps of the optimization we are attempting to solve. Having chosen a time step of 15
minutes, we need to be able to find a solution to our optimization problem in less than 900 seconds
for it to be even relevant if unexpected perturbations to the demand require a quick re-computation
of the solution. Figure 4.11 shows that the finest model we consider is solved in less than 900
seconds.

This result demonstrates that implementing the scheme on smartphones while providing on-
line adaptation capabilities is feasible. Indeed, as only 400 Amazon EC2 CPUs were used in the
experiment featured on Figure 4.11 and a general purpose convex optimization solver was employed
to solve the agent-level optimization problems in the multiple steps of the algorithms. The large
number agents plays a favorable role here. Our algorithm being scalable with respect to the number
of vehicles, if more agents are present, using more CPU cores (practically the drivers’ smartphones)
will be sufficient. Moreover, more averaging of artificial privacy enforcing noise will occur in the
algorithm and the convergence will be more stable. One EC2 Compute Unit offered for rent by this
service provider runs on commodity hardware and is the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor. Showing that we can allow for each of these to support
5 agents in Figure 4.11 and yet be able to compute a solution in less than 15 minutes therefore
indicates that this scheme can be use to have a reactive distributed control scheme supported by the
smartphones of the drivers.

Therefore, with the method we propose, drivers can use a simple smartphone and do not need
share private information to optimize their actions as a group. The group will however be able to
optimize its actions in less than 15 minutes and react to changing conditions. This advantageous
property is a consequence of the approximate model we use whose assumptions are tailored to the
operational setting of MaaS.

Summary of results on distributed optimization for MaaS
After a statistical characterization of the spatio-temporal structure of demand for MaaS in New

York, we devised a CIQP to optimize the response to that demand while taken drivers’ availability
constraints into account. In order to make solving this problem computationally tractable and more
tailored to the fact that MaaS companies such as Uber or Lyft do not directly control their drivers, a
convex relaxation version of the problem has been used. Using the dual splitting approach paved the
way towards a procedure to optimize the demand response that scales with the number of drivers and
does not require them to communicate their availability constraints at any point, thereby enforcing
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strong privacy standards. The method formulates an optimal price multiplier akin to that of Uber or
Lyft (so called “surge” or “primetime”) that has the distribution of the fleet converge to a global
optimum. A thorough theoretical analysis of the convergence of the dual gradient ascent algorithm
we presented proved that the scheme was reliable, robust to perturbations and thereby enables an
obfuscation of the optimal driving program that becomes more efficient as more drivers join the
fleet. Indeed, the stochastic version of the gradient ascent [170] obfuscates the advised probability
of presence of vehicles in order to protect the privacy of the users of the system in the occurence of
an man-in-the-middle attack. Our theoretical contribution shows that this strategy converges to the
initial optimum with an arbitrary precision provided enough drivers are involved in the optimization.
This analysis of learning rates is different from pre-existing work in [58, 34, 232] and highlights
the power of the crowd as a privacy preserving mechanism thanks to a thorough comparison of the
convergence rates of the crowd and the attacker. Such strong theoretical guarantees are crucial to
provide practitioners with an accurate estimate of their computational time.

4.4 Application to load flattening in California
The convex duality based method also successfully applies to the problem of charging electric

devices so as to even out the daily energy demand in California. The solution we provide is a privacy
preserving communication avoiding algorithm readily implementable in a network of smart electric
vehicle chargers. It can reach any arbitrary precision for the common optimization goal while
relying on randomly perturbed information at the agent level. We leverage the fact that provided the
community is large enough, an averaging effect at the core of gradient method we designed enables
the group to learn its global optimum faster than individual information is leaked. A limited number
of messages are sent out in the distributed implementation which prevents adversary statisticians
from having low theoretical Mean Square Errors for their estimates.

Characterization of load shaping imbalance
The method we develop is generic and we now show how it applies to another heterogenous

large scale control problem: load shaping in California.

Setting
As solar power generation grows in California seasonal patterns will dominate energy generation.

Most of the solar electrical power is generated at the middle of the day. Unfortunately, this does
not correspond to the the evening peak of electrical consumption and creates an imbalance which
is forecast to grow considerably [111]. A key insight to provide a solution to the corresponding
“duckcurve” problem consists in storing energy during the production peak and releasing it during
consumption hours. The algorithm we developed has been successfully applied to solving the load
imbalance problem by using batteries of electric vehicles in order to store energy [128, 129]. The
resulting distributed control problem is illustrated in Figure 4.12.
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System identification
System identification has been conducted in independent work that focused on two aspects. First,

forecasting the electrical imbalance as the penetration of solar power generation increases [111].
Second, while electrical vehicles have high capacity batteries some of the charge needs to be
reserved for the actual needs of the car owner. The corresponding availability constraints need
to be determined. Also, one needs to take into account when the vehicle is parked and can be
charged. Such a study has been conducted in [202]. The schedules of availability of cars prescribe
the constraints smart-meters can operate with in order to flatten the load imbalance curve. Each
constraint set is unique to a car and therefore a source of heterogeneity in the problem. Constraints
in this problem are block-wise independent which prompts the use of the technique we tailored to
such systems where scalability is mandatory and sensitive information is handled.

The system of interest here consists of tens of thousands of electric vehicles. The algorithm of
interest needs to scale with respect to the number of controllers. Instead of enabling scalability with
a general purpose scalable algorithm such as ADMM [27] we rely on a tailored method. While the
general analysis of the convergence of the method still applies to this particular problem, we enjoy
the fact that the dual splitting effectively leverages block-wise independent constraint sets. We can
also appreciate how the formation of a price vector indexed through time which gives interpretability
to the Lagrange multiplier being iteratively computed by the crowd of controllers.

The Lagrange multiplier gives guidelines as to which financial incentives could be used through
the day to even-out electric consumption.

Problem formulation
Let (ok)k=1...T be the normalized hourly excess of electrical production in California (T = 24).

The objective here is to use the electric consumption of N electrical vehicles so as to alleviate
the “valley” effect [12]. For a given device n, the daily utilization vector, un = (uk,n)k=1...T is
constrained and belongs to a convex closed set Cn ⊂ RT representing the periods of the day during
which the owner is driving the car. The convex program that should be solved collaboratively by the
swarm of smart chargers for electric vehicles is

min
c

T∑
k=1

1

2

(
ok −

1

N

N∑
n=1

uk,n

)2

+
1

N

1

2
σ

N∑
n=1

‖un‖2
2

st ∀n ∈ {1 . . . N} , un ∈ Cn

This formulation takes into account both evening out the electrical excess in its primary objective
and regularizing the devices’ utilization vectors so as to preserve their life span [12]. It is similar
to (4.1) with `k (x) = 1

2
x2 for any k ∈ {1 . . . T}, rn (un) = ‖un‖2

2. Therefore, m = 1 is a strong
convexity constant of the dual split objective. Similarly an admissible Lipschitz continuity constant
for its gradient is L = 1 + 1

σ
.
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Distributed control scheme for load shaping

The dual splitting technique we present in this chapter applies directly to the problem of load
shaping. The strong convexity of the additively binding objective and block-wise independence of
the constraints enable the straightforward use of a distributed control scheme. The scheme operates
in dual space and converges to a Lagrange multiplier indexed in the time domain which represents
how during hours of higher consumption the price of electricity could be increased in order to
mitigate load imbalance.

Iteration budget for the noisy holistic descent

From the derivations above, with the assumptions formulated on the attacker’s learning rate,

the iteration budget is imax =
(
Tκη2

κmin

) 1
γ
. In this setting, one has Ahol = L = 1 + 1

σ
and B2

hol = Tη2.
From (4.10), one deduces the following theorem.

Theorem 4.4.1 The privacy safe precision of the noisy holistic descent is bounded by

E
[
f
(
λ(imax)

)
− f (λ∗)

]
≤ 2

(κmin

Tκ

) 1
γ T

N

(
1 +

1

σ

)
η2(1− 1

γ ) (4.15)

If γ < 1, increasing the magnitude of the noise, η, increases the precision that can be attained
with a privacy safe iteration budget. A particular case occurs when the attacker has an optimal
learning rate γ = 1. In such a setting we leverage the fact that the reachable precision is proportional
to 1

N
. An attacker targets individuals whereas the gradient descent computes the average optimal

response at each measurements. Therefore, as more computation nodes are involved in the scheme,
noise is more problematic to the attacker than it is to the collaborating swarm.

Numerical experiments with noisy holistic method

In the following, actual data of utilization pattern of electric vehicles in California gives a set of
3T affine convex constraints for each of the N agents. The prescribed step size is s(i) = 2

2(1+ 1
σ )

2
+i

.

The noise magnitude η is multiplied by the standard deviation of the primal optimum u∗ in order to
be of the same scale as the signal it perturbs. On the figures below, the value of η before scaling
is denominated “normalized η”. We run 100 instances of the gradient descent for different values
of N , with different magnitudes of η for σ = 1. Noise has a Laplace distribution here as in [61].
Only problems with relatively small crowds of agents are considered as the primal solution is also
computed to provide a comparison baseline. Satisfying regularization is a second order problem
here. While respecting the constraints, the effort vector

(
1
N

∑N
n=1 uk,n

)
k∈{1...T}

needs to replicate

(ok)k∈{1...T} which is displayed in Figure 4.14. The effort vector resulting from the dual distributed
algorithm is compared to that of the primal solution (calculated by CVX). Filled areas represent
the bands between percentiles of empirical distributions. Figure 4.15 highlights that, with the same
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iteration budget (20), having more agents involved in the optimization yields a better replication
precision. We show that the effect of averaging has an impact on the gradient based search as well.
Figure 4.16 indicates that the empirical MSE is inversely proportional to N for both the objective
and the normalized distance to the optimum E

[
1
N
‖u− u∗‖2

2

]
(normalizing by N takes into account

that u has N × T elements). Lower value for the latter shows that the averaging gradient helps
reach a better precision in both the objective value and the action vector.

Iteration budget for the noisy incremental descent

The iteration budget here is imax = N

((
Tκη2

κmin

) 1
γ − 1

)
. With the derivations above, A2

inc noisy =

2
(
1 + 1

σ

)2 and B2
inc noisy = 2β2

(
1 + 1

σ

)2
+ Tη2 where β2 = max

(
1
N

∑N
n=1 ‖λn,∗ − λ∗‖

2
2 ,

D0

2

)
.

Theorem 4.4.2 The privacy safe expected precision of the noisy incremental descent is bounded by

E
[
f
(
λ(i)
)
− f (λ∗)

]
≤ 2

(
1 + 1

σ

) (
Tη2 + 2β2

(
1 + 1

σ

)2
)

N

((
Tκη2

κmin

) 1
γ − 1

) (4.16)

If γ < 1, any precision can be reached while guaranteeing secrecy enforcement. If γ = 1 the
average privacy secure precision increases linearly with N . Such an observation confirms the
intuition that, in the incremental descent case, it becomes more unlikely for the attacker to intercept
repeated occurrences of the optimal program of a given agent if N is large.

Numerical experiments with noisy incremental method

The same numerical experiments are conducted as for the holistic method. However, the new
increased iteration budget is taken into account. Figure 4.15 shows how the incremental is slightly
more sensitive to noise than its holistic counterpart. Figure 4.16 shows that, as in the holistic case,
the MSE for the objective value and the agents’ actions is inversely proportional to N . The higher
number of steps in the descent helps reach a value of u closer to the global optimum u∗.

Summary of results on load shaping
For the class of problems considered above, splitting the binding objective thanks to a dual

reformulation enabled the full separation of independent block constraints. This result has strong
implications in terms of enforcing privacy. The individual constraints of the agents remain local
and noise can be added to communications that hinders information leakage. Convergence rates
indicate that this approach becomes more efficient as more agents are involved. Theoretical insight
has been confirmed by numerical experiments conducted with actual data on electricity production
and consumption in California. We do observe, as predicted, that as more agents are involved in the
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load balancing scheme, we converge to a better solution for a given amount of information leakage.
With enough controllers, we can reach an arbitrary level of convergence around the optimum. This
new scheme is readily applicable to smart electric vehicle chargers whose information are highly
privacy sensitive.

4.5 Conclusion of the chapter
This chapter has shown how heterogenous constraint sets can be unified as part of a communica-

tion avoiding scalable distributed control scheme. While each controller had its own unique set of
constraints, we employed convex duality to successfully find a common representation in the form of
Lagrangian multipliers. We showed that finding a concise set of messages to communicate induced
enough robustness in the resulting communications to support noisy broadcast. The procedure
lead in particular to a scalable algorithm able to devise a receding horizon MaaS dispatch control
scheme for a high temporal and spatial resolution model of New York city although more than a
thousand controllers were involved in the distributed control problem. We proved how the system
as a whole can learn faster than an attacker can infer individual constraints which turns the concise
dual representation into a privacy enforcing summary. The representation we formulate uses convex
duality in order to leverage the particular geometry of the control problem of interest in the chapter.
In spite of that particularity, it enables statistical efficiency and scalability through communication
avoidance.

We also conducted a thorough differential analysis of how much individual level data is revealed
in order to make the community converge to optimality. The representation we chose features
the interesting property that as the cohort of controllers gets larger, individual messages can get
noisier and further preserve privacy while we achieve the same level of performance. The study
also shows that the dual representation is tailored to the purpose of collaborative optimization and
uses primarily information directly relevant to this purpose.

Just as spectral duality has been used in previous chapter and led to similar conciseness induced
robustness, the convex duality we consider achieves both scalability and data efficiency. In the field
of distributed control of time series, as with time series analysis, the search for communication
avoidance leads to the discovery of a condensed representation of the data on which we can
compute the steps necessary to achieve our aim. In this chapter, we considered controllers had
separate constraints and additive contributions to the argument of the convex loss characterizing the
cyber-physical system.

The next chapter will focus on methods to deal with non-linear interactions between actuations.
The tool set we will employ to find a common representation enabling efficient communication
between controllers will be radically different. In order to deal with complex non-linear interactions,
we will allow our controllers to formulate complex control policies based on expressive neural
networks. Neural networks optimized thanks to Policy Gradient methods in Reinforcement Learning
lose the convex geometry which enabled the use of the corresponding duality. We will therefore
find another strategy to formulate a common representation to the heterogenous control problem
under consideration.



CHAPTER 4. DISTRIBUTED COMMUNICATION AVOIDING CONTROL SCHEMES 104

00:00:0003:00:0006:00:0009:00:0012:00:0015:00:0018:00:0021:00:00

Time of day

0

2

4

6

8

10

12

14

16
N

u
m

b
e
r 

o
f 

re
q
u
e
st

s
Demand for rides at different locations on 2015-04-07,

(opacity proportional to total number of rides in each location)

0 10 20 30 40 50

Time of day

0.0

0.5

1.0

1.5

2.0

2.5

N
u
m

b
e
r 

o
f 

re
q
u
e
st

s

Distribution of demand for rides
 across different locations on 2015-04-07

75th perc.

60th perc.

Median

40th perc.

25th perc.

Figure 4.5: Top: Demand series for specific locations of NYC on a particular day. Intra-day
seasonality appears as a salient feature of the demand of MaaS. For each element of the discretization
grid, ride requests are aggregated over 5 minute observation windows and represented with lines
whose opacity is proportional to the total number of ride requests observed at the corresponding
element of the grid for the entire day. Bottom: Average and empirical percentiles computed across
all the discretization cells used to represent the state of demand for rides across the city.
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Figure 4.6: Core idea behind the convex relaxation. As there is no direct control of the drivers by
MaaS companies, we consider we control a distribution of probability of presence as is done by
MaaS companies through the internal use of heatmaps. This corresponds to the intuition that the
objective to achieve is finding an optimal incentivization scheme for the drivers. It is key to turn the
exact problem into an approximation that can scale with respect to the number of drivers.
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Figure 4.7: Top: Quantized density Uber ride requests (1 hour intervals). Bottom: Fleet density
optimized under driver availability and network connectivity constraints (1 hour intervals). Best
viewed in color. Numerical results of our privacy preserving demand tracking algorithm for April
7th, 2014, optimizing for 1000 vehicles. The vehicles belonging to the mobility on-demand pool
obey to availability constraints. We also take into account the desire for drivers to minimize the
distance they travel. The resulting optimized distribution of vehicles (number of vehicles per cell
normalized by the total number of vehicles available) accurately tracks the distribution of demand
for ride requests (number of ride requests per cell normalized by the total number of ride requests).
Comparing the left and right columns shows the ability of our solution to track the demand for rides
with the distribution of vehicles despite hard constraints on the offer in terms of available drivers.
The constraints make a perfect match impossible but we find the closest solution given the variable
and limited supply of drivers.
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Figure 4.8: Top: Lagrangian price signals (1 hour intervals). Bottom: Fleet density optimized
under driver availability and network connectivity constraints (1 hour intervals). Best viewed in
color. Numerical results of our privacy preserving demand tracking algorithm for April 7th, 2014,
optimizing for 10000 vehicles. We show here that one of the most compelling outcomes of the
dual-splitting approach is the convergence in the dual space towards a Lagrangian variable that can
be interpreted, after renormalization, as a price multiplier. On these two series of plots one can
appreciate how a single signal broadcast to all the devices leads to a scalable convergence of the
fleet towards a distribution tracking the multiplier. Note that the price multiplier drives the fleet
towards locations where it is higher.
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Figure 4.9: Best viewed in color. First three plots: We show how adding noise to the gradient
descent in the dual, therefore making it stochastic, does not hamper the convergence towards an
optimal Lagrangian price and therefore a optimal matching between offer and demand. These
curves show how, with different Laplace noise magnitudes and different fleet sizes, convergence to
an optimal matching of offer and demand still occurs. Bottom left right: We show the convergence
results on single runs for a variable fleet size. With a larger fleet size, the obfuscation by the crowd
of the information entailed in the messages shared to conduct the stochastic gradient method in the
dual space allows for a better matching between offer for rides and demand.
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Initial matching of offer and demand Matching of offer and demand after 10 iterations

Figure 4.10: Left: comparison of the offer initially computed with the demand for rides. Right:
comparison of the offer obtained after 10 steps of gradient method with the demand for rides. After
10 iterations of the gradient method we introduced, the availability of 2000 vehicles considerably
improves the quality of the solution we find to match the demand for rides. The discretization is
here hourly, and the spatial scale as fine as an area representative of a few streets. The results were
computed for April 9th 2013.
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Figure 4.11: Influence of the discretization resolution, in space and time, on the convergence speed
of the distributed privacy preserving algorithm. In this experiments, 2000 vehicles are considered
and only 400 Amazon EC2 CPUs are used. Here, even with additive noise on communications
(privacy preserving Laplace noise with scale 0.1) the schedule can be optimized with a fine spatial
resolution and temporal resolution of 15 minutes in less than 5 minutes. This implies that, even with
a very detailed model, we can recompute solutions fast enough to adapt to unexpected conditions.
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Californian electric grid
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Figure 4.12: Load shaping constrained optimization problem. The charging and utilization schedules
of each vehicle as well as the storage capacity and speed of the battery constitute an individual
independent constraint set. By choosing to store or release energy the controllers can additively
even-out electric load imbalance at the scale of California.
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Figure 4.13: Distributed algorithm to solve the issue of electric load imbalance in California.

Figure 4.14: Objective to collectively replicate to mitigate electrical power imbalance.
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Figure 4.15: Errors in aggregated load balancing effort.
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Figure 4.16: Errors in response and objective for electrical load balancing.



115

Chapter 5

Sharing knowledge across models and
controllers

The present chapter shows how the recent breakthroughs in Reinforcement Learning (RL)
that have enabled robots to learn to play arcade video games [160], walk or assemble colored
bricks [136], can be used to perform other tasks that are currently at the core of engineering cyber-
physical systems. We present the first use of RL for the control of systems modeled by discretized
non-linear Partial Differential Equations (PDEs) and devise a novel algorithm to use non-parametric
control techniques for large multi-agent systems.

We employ a regularization scheme tailored to the collaborative control setting that formulates a
representation enabling distributed controllers to exchange the experience they get as they learn by
trial and error with RL.

The previous chapters of the thesis all leveraged a specific dual representation to their pri-
mal problem of interest in order to great a homogenous representation for a distributed set of
heterogenous problems.

In the present setting, we consider controllers maximizing the level of service on a system where
congestion occurs. While each controller is dealing with a specific queue that needs to go through a
section of freeway and is located at a specific location with particular dynamics, they all share the
same environment and fundamental physical behavior.

There exists a common denominator to the dynamics of the sub-part of the system each controller
actuates as freeway dynamics follow general patterns that are accurately represented by PDEs such
as the Aw-Rascle-Zhang system of the second chapter. Therefore, an opportunity to better control
the system with RL consists in enabling the learning control agents to share knowledge while at the
same time giving them enough liberty to adapt to the idiosyncrasy related to being spatially present
at a certain location in the system.

We show in the present chapter that the parameters learned by a controlling neural network rep-
resent, as they are being shared across agents, an opportunity to achieve better control performance.
The parameters being shared have a small size that should be compared the amount of experience
accumulated before updating model parameters with a Stochastic Gradient Descent method. Also,
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although controllers may have different inputs, long as they share a layer with common size and
purpose, the sharing can occur.

Based on these elements, we argue that we can use the direct values of a controlling model to
formulate a homogenous representation enabling agents with heterogenous control problems to
share knowledge.

We do not obtain analytical guarantees in the present chapter. However, we demonstrate that our
model-free controllers can compete with state of the art methods calibrated with perfect knowledge
of the system we simulate.

The absence of modeling assumptions makes the use of Fourier, Laplace or convex duality
difficult. However, as we use model parameters to unify and condensate distributed heterogenous
control experiences, we leverage the weights of the neural network we consider as an advantageous
representation. The case for a model-free approach is made clearer in the chapter as we show that
we can learn to identify and control a system at once while keeping the ability to operate on complex
non-linear and changing dynamics.

Our choice of representation leads to a method that is simple to implement, communication
avoiding and universally applicable as no modeling assumptions are made. The main burden is now
on the computational side as we train complex neural policies that need many different trials to
learn. Fortunately, such a computational burden is no longer a challenge thanks to the emergence of
faster hardware.

Cyberphysical systems (e.g., hydraulic channels, transportation systems, the energy grid, elec-
tromagnetic systems) are commonly modeled by PDEs which historically have been a reliable way
to enable engineering applications in these domains. However, it is known that the control of these
PDE models is notoriously difficult. We show how neural network based RL enables the control
of discretized PDEs whose parameters are unknown, random, and time-varying. We introduce an
algorithm of Mutual Weight Regularization (MWR) which alleviates the curse of dimensionality
of multi-agent control schemes by sharing experience between agents while giving each agent the
opportunity to specialize its action policy so as to tailor it to the local parameters of the part of the
system it is located in.

A discretized PDE such as the scalar Lighthill—Whitham-–Richards (LWR) PDE [141] – briefly
mentioned in the second chapter – can indeed be considered as a macroscopic freeway traffic
simulator and which presents the most salient challenges for learning to control large cyberphysical
system with multiple agents. We illustrate the incredible potential of neuromorphic RL in non-
parametric control of cyberphysical system through the specific example of transportation using the
common Lighthill–Whitham–Richards (LWR) [141] scalar hyperbolic PDE. We consider two dif-
ferent discretization procedures and show the opportunities offered by applying deep reinforcement
for continuous control on both. This illustrative example was chosen because it is complex and
expressive enough to be representative of a much broader class of PDEs (Navier-Stokes, Maxwell,
Saint-Venant, etc.).

Using a neural RL PDE controller on a traffic flow simulation based on a Godunov discretiza-
tion [82] of the of the San Francisco Bay Bridge we are able to achieve precise adaptive metering
without model calibration thereby beating the state of the art in traffic metering. Furthermore, with
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the more accurate BeATS [17] simulator we manage to achieve a control performance on par with
ALINEA [175], a state of the art parametric control scheme, and show how using MWR improves
the learning procedure. The method is demonstrated with a traffic flow algorithm implemented
for I80 on the San Francisco Bay Bridge, to achieve adaptive metering without model calibration
(hence beating the state of the art in traffic metering).

Background on the work
In the United States alone, the cost of direct and indirect consequences of traffic congestion

was estimated to 124 billions USD in 2013, this cost taking the form of time spent by commuters
in traffic jam, air pollution, accidents, etc. It represents almost 1% of the country’s GDP, and is
expected to grow by 50% within the next 15 years. Dealing with this issue is becoming a priority of
government agencies, as the U.S. Department of Transportation Budget rose to almost 100 billions
USD in 2016. In this context, any improvement to travel times on highways can lead to tremendous
nationwide and worldwide improvements for the economy and the environment.

Maintaining and building road infrastructure, as well as urban planning are the most obvious
ways to adapt the traffic network to the ever growing demand for mobility. However, changing the
network architecture can only occur seldom and at an expensive cost.

Control of traffic flow is an alternate approach to addressing this issue as it aims at using existing
infrastructure more efficiently and adapt it dynamically to the demand. In this chapter, we introduce
new techniques for traffic control based on advances in Reinforcement Learning (RL) and Neural
Networks. As opposed to most commonly used approaches in traffic control, we want to achieve
control in a model-free fashion, meaning that we do not assume any prior knowledge of a model or
the parameters of its dynamics, and thus do not need to rely on the expensive and time consuming
model calibration procedures.

Recent developments in Reinforcement Learning (RL) have enabled machines to learn how
to play video games with no other information than the screen display [160], remarkably beat
champion human players at Go with the AlphaGo program [210], or complete various tasks
including locomotion and simple problem solving [136, 69, 57]. The advent of policy gradient-
based optimization algorithms enabling RL for highly-dimensional continuous control systems as
can be found in [135, 205], has generalized model-free control to systems that were characteristically
challenging for Q-learning. Q-learning approaches, although successful in [160] suffer from a curse
of dimensionality in continuous control if they rely on discretizing the action space.

In this chapter, RL trains a traffic management policy able to control the metering of highway
on-ramps. The current state of the art Ramp-Metering policy ALINEA [175] controls incoming flow
in order to reach an optimal density locally. This optimal density depends on the model used and
has to be manually specified to have an optimal control. Recently, non-parametric approaches based
on Reinforcement Learning such as [67] or [195] have been proposed to achieve ramp-metering,
but face two main limitations. These methods are not scalable beyond a few on-ramps, and limit
traffic management to on-ramp control.

We introduce a way to learn an optimal control policy with numerous agents, and demonstrate
the flexibility of our approach by applying it to different scenarios. The following contributions of
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our work are presented in this chapter:

• We introduce a framework to use RL as a generic optimization scheme that enables the
control of discretized Partial Differential Equations (PDEs) in a robust and non-parametric
manner. To our knowledge, this is the first use of RL for control of PDEs discretized by
finite differencing. Discretized non-linear PDEs are notoriously difficult to control if the
difference scheme used is non-smooth and non-continuous, which is usually required to
capture nonlinear and non-smooth features of the solution (as is the case here).

• In the case of PDEs used to model traffic, we demonstrate on different examples an extensive
control over boundary conditions as well as inner domain for the first time in a non-parametric
way. We showcase the robustness of the approach and its ability to learn from real-world
examples by assessing its performance after an extremely noisy training phase with stochastic
variations in the underlying PDE parameters of the model used

• We introduce an algorithm to train Neural Networks that we denote Mutual Weights Regular-
ization (MWR) which enables the sharing of experience between agents and specialization of
each agent thanks to Multi Task Learning [32]. MWR is a Neural Network training approach
that allows Reinforcement Learning to train a policy in a multi-agent environment without
being hampered by a curse of dimensionality with respect to the number of agents. Applied
to the actual traffic control problem of “Ramp metering”, our model-free approach achieves
a control of a comparable level to the currently used and model-dependent implementation
of ALINEA which constitutes the state art and was in our case calibrated by an world-wide
renowned traffic engineer.

We first present the PDEs used to simulate traffic and introduce the generic PDE discretization
scheme. A first simulator based on a Godunov scheme [82] is used to demonstrate the efficiency of
our approach on multiples situations. The Berkeley Advanced Transportation Simulator (BeATS),
a state of the art macroscopic simulator implementing a particular instantiation of the Godunov
scheme sometimes referred to as the Cell Transmission Model [164] and used in traffic research
[233] is also introduce, as we use it for our final benchmark. Traffic control is presented in the form
of a Reinforcement Learning problem and we present the MWR algorithm to mitigate the issues
arising from the high dimensionality of the problem. We eventually present the results we achieve,
and compare our algorithm to the pre-existing state of the art techniques. This state of practice
reference, an ALINEA control scheme calibrated by traffic engineers at California PATH can be
considered representative of state of the art expert performance. To the best of our knowledge, we
are the first to present a non-parametric scalable method calibrated with RL that performs as well as
the pre-existing parametric solutions provided by traffic engineering experts.
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Figure 5.1: Example triangle fundamental diagram.

5.1 Models and methodology

Highway traffic PDE
A highway vehicle density may be modeled by a Partial Differential Equation (PDE) of the

following form:
∂tρ+ ∂xF (ρ) = 0. (LWR PDE)

For a given uniform vehicle density ρ, F (ρ) is the flow of the vehicles (in vehicles per time
unit); F is the fundamental diagram, its maximum is called the critical density, and corresponds to
the optimal density to maximize the flow.

F usually has the following typical shape:

• When the density ρ is lower than the critical density ρcrit, the vehicle flow increases with the
density

• When the density exceeds this value, congestion appears, and adding more vehicles actually
reduces the flow

Control of PDEs with reinforcement learning
Non-parametric control of PDEs takes the form in the present chapter of a Markov Decision

Process (MDP) which is formally introduced below in 5.3. The PDE in its discretized form devises
a transition probability P between two different states of the system. Solving a MDP is a known
procedure if the transition probability P is known beforehand, using techniques such as Dynamic
or Linear Programming. If P is unknown, it is more challenging. However, it is more appealing
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a procedure as devising P for discretized PDEs is generally intractable and requires estimates
of the parameters of the system. Also, as we operate in a continuous action space we will not
consider Q-learning based approaches which are typically challenged by high-dimensionality in that
setting. Therefore, policy gradient algorithms present a compelling opportunity as model dynamics
are sampled from the simulation trials in algorithms such as [116, 181, 230, 103] and no prior
knowledge of the model is necessary to train the policy. This creates a model-independent paradigm
which abstracts out the model and makes the approach generic.

Simulation
The experimental method we followed consists of two steps.
A first one uses a coarser less realistic discretization scheme for the LWR PDE named after its

inventor: Godunov [82]. We provide more details about this scheme in Appendix 5.2. This step
serves the purpose of a proof of concept that discretized PDEs can be controlled by a neural net
trained using a RL scheme in completely different situations and with different objectives. Our first
contribution is to show that policy gradient algorithms achieve that aim.

In our second step we use a more accurate cell transition model [164] scheme entailed in the
state of the art BeATs simulator in order to show that the procedure we present is still valid in a more
realistic setting. We also change the tasks we assigned to the control scheme in order to precisely
account for the actual needs of traffic management systems used in production. We show that
training our neural net based policy by policy gradient methods achieves comparable performance
with the state of the art ALINEA control scheme [175] although the former is non-parametric when
the latter requires a calibration of traffic related parameters. In both cases, the neural net manages
to implicitly learn the intrinsic properties of the road segment under consideration and provide a
good control policy.

5.2 Godunov discretization scheme
Because of the presence of discontinuities in their solutions, the benchmark PDE we consider

is formulated in the weak sense. We consider an open set Ω in R, and a measurable function
ρ = ρ(t, x) is a distributional solution to the system of conservation laws

∂tρ+ ∂xF (ρ) = 0. (5.1)

if, for every C1 function φ defined over Ω with compact support, one has
ˆ
t∈R,x∈Ω

[ρ∂tφ+ F (ρ) ∂xφ] dxdt = 0. (5.2)

The operator F in Eq. (5.1) will be referred to as flux function, also called the “Fundamental
diagram” in transportation engineering. The operator F defines entirely the dynamics at stake and
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therefore is often domain specific. Given an initial condition

ρ(0, x) = ρ̄(x) (5.3)

where ρ̄(x) is locally integrable, y : [0, T ] × R → R is a distributional solution to the Cauchy
problem defined by Eq. (5.2) and Eq. (5.3) ifˆ

t∈[0, T ],x∈Ω

[ρ∂tφ+ F (ρ) ∂xφ] dxdt+

ˆ
x∈Ω

[ρ̄(x)φ(0, x)] dx = 0. (5.4)

for every C1 function φ with compact support contained in ]−∞, T ] × R. If y is a continuous
function from [0, T ] into the set of locally integrable on Ω, solves the Cauchy problem above in the
distribution sense, ρ is referred to as a weak solution to the Cauchy problem.

The Dirichlet problem corresponding to a boundary condition (as done later in the chapter) can
be formulated in a similar manner and is left out of the chapter for brevity. Such a definition of
weak solutions is not sufficient to guarantee their being admissible solutions.The entropy condition
guarantees the uniqueness to the problem and continuous dependence with respect to the initial data
(derivation also left out of the chapter for brevity).

The Godunov’s scheme computes an approximate weak solution ρ̃ to the Dirichlet problem
Eq. (5.2), Eq. (5.3) with the following recursive equation and Godunov flux G:

ρ̃(n∆t+ ∆t, i∆x) =

ρ̃(n∆t, i∆x)− ∆t

∆x
G (ρ̃(n∆t, i∆x−∆x), ρ̃(n∆t, i∆x+ ∆x))

G (ρ̃l, ρ̃r) =F (ρ̃l) if ρ̃l > ρ̃r and (F (ρ̃r)− F (ρ̃l))/(ρ̃r − ρ̃l) > 0,

F (ρ̃r) if ρ̃l > ρ̃r and (F (ρ̃r)− F (ρ̃l))/(ρ̃r − ρ̃l) < 0,

F (ρ̃l) if ρ̃l < ρ̃r and DF (ρ̃l) > 0,

F (ρ̃l) if ρ̃l < ρ̃r and DF (ρ̃r) < 0, DF−1(0) otherwise .

The Godunov scheme is second order accurate in space. Unfortunately, like most numerical
schemes, it is non-differentiable because of the presence of the “if-then-else” statements in its
explicit form. Another problematic aspect related with computing numerical weak entropy solutions
with most numerical schemes (incl. Godunov) is their relying on a numerical evaluation of F which
often takes the form of a parametrized function. The estimation of these parameters is often difficult
and it is practically intractable to assess the impact of the parameter uncertainty on the solutions
because of the non-linearity, non-smoothness and non-differentiability of the schemes.

5.3 Controlling cyberphysical systems with Neural Networks
trained by Reinforcement Learning

The control policy presented is a neural network trained through Reinforcement Learning. In
this section, we introduce these notions, precise the implementation, and describe how our approach
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differs from previously existing ones. We eventually benchmark our results by comparing our
non-parametric algorithm to the state of the art parametric equivalent. In order to be able to control
a complex cyberphysical system a non-parametric manner, we adopt a Reinforcement Learning
formulation.

Reinforcement Learning formulation
RL is concerned with solving a finite-horizon discounted Markov Decision Process (MDP). A

MDP is defined by a tuple (S,A, P,R, P0, γ, T ). The set of states is denoted S and will typically be
Rd in our instance where d is the number of finite differences cells as in [82]. The action space A
will correspond to a vector in Rd which represents the vehicular flow that the actuator lets enter the
freeway which corresponds in the present case to the weak boundary condition implemented in the
form of a ghost cell. The transition probability P : S × A× S → R+ is determined by the freeway
traffic simulator we use i.e. the Godunov discretization scheme and the stochastic queue arrival
model devised, discussed below. Random events such as perturbations to the input flow of vehicles
or accidents affect the otherwise deterministic dynamics of the discretized system. The transition
probability P is affected by these events and there likelihood but does not need to be known
analytically for the system to operate nor be estimated. This is one of the key advantages offered
by Reinforcement Learning over other approaches is classically degenerate (dirac function) in the
classical deterministic numerical schemes such as Godunov [13, 194] however this is practically a
very unrealistic assumption as the systems under consideration are very often randomly perturbed.
The real valued reward function R is for the practitioner to define which implies that the same
training algorithm can be used to achieve different objectives. The initial state distribution is denoted
P0, the discount factor γ and the horizon T . If the state is only partially observed, the resulting
Partially Observed Markov Decision Process (POMDP) is defined with two additional components.
We denote the set of observations Ω and the observation posterior probability distribution on the
states O : S × Ω → R+. Generically, RL consists in finding the policy πθ : S × A → R+ that
maximizes the expected discounted reward.

The Reinforcement Learning problem
To train our control policy, we formalize the situation as a Reinforcement Learning problem.

This approach gives a training procedure despite having no optimal control available. It is also
flexible as it can be used in many different situations and with different objectives by changing the
reward function only. Formally, a Reinforcement Learning problem is defined with:

• A set of states S and a set of possible actions A

• A (stochastic) transition rule

(st, at)→ (st+1, rt)

– For any state st ∈ S
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– For any possible action at ∈ A
– Determines a new environment state st+1 ∈ S
– And awards an immediate reward rt ∈ R

• A (stochastic) observation rule describing what the agent observes to take its decision

A policy is a rule to determine which action should be taken for a given observation. A policy
may be stochastic or deterministic. The goal of Reinforcement Learning algorithms is to find
a policy which maximizes a function of the collected reward over time. In practice we want to
maximize the expected discounted reward over time, when following the learned policy π.

E (η(π)) where η(π) :=
Tmax∑
t=0

γtrt

η (πθ) = E
[∑T

t=0 γ
tR(st, at)

]
. We denote τ = (s0, a0, . . .) the representation of a trajectory

defined by the probability distributions s0 ∼ P0, at ∼ π(at|st), the state transition probability
st+1 ∼ P (st+1|st, at) and the reward distribution rt ∼ P (rt|st, at).

We will consider a stochastic policy which defines a probability distribution of at conditional to
st (or the observation of the state at time t) parametrized by θ. This creates a stochastic regulariza-
tion of the objective to maximize and enables to computation of the gradient of a policy with respect
to its parameters in spite of the dynamics of the system under consideration not being differentiable,
continuous, or even known.

Reinforcement Learning based control of discretized PDEs

The recent developments in RL featured in [134, 205, 206] guarantee convergence properties
similar to those of standard control methods and therefore strongly motivates their usage for the
control of PDEs. On the contrary, since they are being model-independent, they are intrinsically
robust to varying parameters and are able to track parameter slippage. This leads us to consider them
as the new generation of generic control schemes. We show how the use of RL on discretized PDEs
enables the extension of schemes to systems featuring random dynamics, unknown parameters and
regime changes, hence surpassing parametric control schemes.

Controlling PDEs as a Reinforcement learning problem
The MPC approach in [13] and the adjoint method based technique of [194] both rely on the

definition of a cost function which needs to be minimized. For PDEs such as the LWR PDE,
one typically maximizes throughput, minimizes delay, or a functional of the state (for example
encompassing energy emissions). A RL approach will therefore focus on maximizing a decreasing
function of that cost which will be our accumulated reward. This is standard practice to encode an



CHAPTER 5. SHARING KNOWLEDGE ACROSS MODELS AND CONTROLLERS 124

operational objective.

Stochastic dynamics and policies. Standard control techniques developed in [13] and [194]
are dedicated to deterministic dynamics. This assumption is somewhat unrealistic as cyberphysical
systems do not feature fully deterministic dynamics. For instance, traffic is naturally subject to
random boundary conditions are the arrival of new vehicles in the region of interest is a random
process. Using stochastic policies for such system seems less intuitive but has strong implications
in terms of enforcing the robustness of the control scheme in the presence of intelligent agents.

State and action space.

Consider a discretized approximation of the solution y to Eq. (5.1) (see appendix) by the Go-
dunov scheme described in appendix. The solution domain is [0, T ] × [0, L], the discretization
resolutions ∆t and ∆x satisfying ∆t ≤ c∆x are chosen to meet well posedness requirements
(Courant-–Friedrichs—Lewy condition where c is the maximum characteristic speed of Eq. (5.1)).
The solution to the equation is approximated by a piecewise constant solution computed at the
discrete time-space points {0,∆t, . . . , T −∆t, T} × {0,∆x, . . . , L−∆x, L}. The action space
for this system consists of incoming flow at the discretized elements {0,∆t, . . . , T −∆t, T}× {0},
and generally belongs to a bounded domain [0 . . . umaxi,j ]. The policy will control this vector of
incoming flows at each time step.

Neural Networks for Parametrized stochastic policies.
In this paragraph we show how to construct an actuator based on a Neural Network.

Parametrized stochastic policies.

A vast family of stochastic policies are available for us to use so as to choose an action con-
ditionally to an observation of the state. A common paradigm is to create a regression operator,
typically a Neural Network, which is going to determine the values of the parameters of a probabil-
ity distribution over the actions based on the space observation. We practically use a Multilayer
Perceptron that determines the mean and covariance of a Gaussian distribution over the action space.
The action the policy undertakes is sampled from this parametrized distribution and will manage to
maximize its expected rewards provided a reliable training algorithm is used.

Neural Networks
The policy we train are implemented as Artificial Neural Networks, containing Artificial Neural

wired together.
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Figure 5.2: Non parametric control learned by experience. A neural network decides the parameter
of probability distributions the actions will be sampled from based on observations of the state.

Artificial Neural Model

For p ∈ N, an Artificial Neural computes an output y ∈ R from an input vector X ∈ Rp with
the following formula:

y = φ(WX + b)

Where φ : R → R is called the activation function which responds to the outcome of an affine
transformation of its input space parametrized by W ∈ Rp and b ∈ R.

Networks

A group of q artificial neurons can be linked to a single input X ∈ Rp to create an output vector
Y ∈ Rq. This forms a neural layer. When several layers are stacked, with the output of one being
the input of the next one, one can speak of an Artificial Neural Network, whose input is the input of
the first layer, and output is the output of the last layer.

The general organization and architecture of such a network may vary depending on usages,
the type of input data to process. In the setting of computer vision, convolutional neural networks
famously achieved human level image classification thanks to the invariance by translation and
rotation of the convolution masks they progressively learnt [123].

Back propagation In order to train Neural Networks back-propagation [127] is a key algorithm
that performs a stochastic gradient descent on a non-convex function [20]. Approaches to train
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such a Neural Network for control in the Q-learning framework has been adopted in [160] and were
successful in a discrete control setting. With continuous control, a different family of methods is
generally used that encourage the policy entailed in the network parameters to take actions that are
on average advantageous and discourage actions that have an expected negative reward.

Training algorithms in a RL context
Modern training algorithms for continuous control stochastic policies can be divided in policy

gradient-based approaches and non-gradient-based approaches. The former family encompasses
first order methods such as REINFORCE [205] which we will denote Vanilla Policy Gradient
(VPG), approximated second order methods based on the use of natural gradient descent [116],
local line search methods such as Trust Region Policy Optimization (TRPO) [206], LBGFs inspired
methods such as Penalized Policy Optimization (PPO) [57] and gradient free approaches such as the
cross-entropy method [219]. The performance of these algorithms have been thoroughly compared
in [57] where the natural gradient based method Truncated Natural Policy Gradient (TNPG) and
TRPO generally outperformed other approaches. In our numerical experiments we find that when
the statistical patterns at the stochastic boundary conditions are stationary enough, all approaches
perform conveniently. However, TNPG and TRPO outperform other methods when regime changes
occur.

REINFORCE

The Reinforce algorithm [205] has been used to train our policy to maximize E (η(π)).
We consider a parametric policy and we denote by θ its parameters. In our case, the policy

is a neural network parametrized by its weights. The input layer is filled with the environment
observation, and the output layer contains the action probability distribution.

For a ∈ A, and s ∈ S, we note πθ(a|s) the probability to take action a while being under state
s, and following the policy parametrized by θ.

In practice, we use the following equality to compute a gradient average across multiple
trajectories:

∂θE (η(πθ)) = E

((
Tmax∑
t=0

∂θ log (πθ (at|st))

)
Tmax∑
t=0

γtrt

)
The right side term can be approximated by simply running enough simulations with the given
policy according to the law of large numbers.

Once we obtain the gradient ∂θE (η(πθ)) we can perform a gradient ascent on the parameters to
incrementally improve our policy.

Architecture and choices

Beside these theoretical considerations and algorithms, the network architecture choice has
a crucial impact on the training of the policy. If the layers are not adapted to the input data, the
training algorithm will converge to a bad local minimum, or may not converge at all.



CHAPTER 5. SHARING KNOWLEDGE ACROSS MODELS AND CONTROLLERS 127

In our settings, the observation consists of a n× 3 array, where n is the number of discretization
cells of the highway in the simulator, and every cell contains 3 information:

• The vehicle density scaled to have a median value of 0, and a standard deviation of 1 in
average

• A Boolean value indicating the presence of an off-ramp

• A logarithmic scaled value indicating the number of vehicle waiting in the on-ramp queue if
there is any, 0 otherwise.

As this data is spatially structured, we chose to process it with convolutionnal neural layers the core
idea being to handle data in a spatially invariant way. Local features are created as a function of
these local values independently of the highway location. A pipeline of 3 convolutionnal neural
network layers are stacked to create local features. A last layer on the top of these convolution
takes the action which consists in deciding how many vehicle can enter at the highway respective
on-ramp. This practically achieve by ramp metering traffic lights. This algorithm is illustrated in
Figure 5.3.

Sharing information while allowing specialization among agents: the Mutual Weight
Regularization algorithm

The features used for decision making on the low level layers of the network are created with a
convolutionnal neural network, which exploits the spatial invariance of the problem.

There are two possible situations for the last layer:

• Parameters sharing for all on-ramp policies. This results into having the exact same policy for
all agents. This should not be the case because of local specificity of the highway, such as a
reduced number of lanes, or a different speed limit for instance.

• Every on-ramp has its dedicated set of parameters. It allows more flexibility and different
control for every on-ramp, but dramatically increases the number of parameters, does not
share learning between agents, and finally does not converge to a good policy

The novel approach we introduce and call Mutual Weight Regularization (MWR) is between
these 2 extremes. It acknowledges the fact that experiences and feedback should be shared between
agents, to mitigate the combinatorial explosion when the number of agents scales, and still allows
some agent specific modifications to adapt to local variations.

Let us consider:

• m ∈ N the number of features computed per cell.

• i ∈ R where R is the set of cells linked to a controllable on-ramp.

• X ∈Mn,m(R) the output of the convolutionnal layers and we note X[i] the features of the
agent i.
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Figure 5.3: Sharing experience across agents while allowing for specialization. The only messages
that are being transferred are parameter values of small size that effectively summarize the learnings
of the controllers down to the very elements they should share to learn collaboratively.

We introduce W0,W1, . . . ,Wn ∈ Rm the distinct parameters of every agent, and define, for
i ∈ R, yi as

yi = 〈Wi , X[i]〉
The decision for the average of the distribution of actions of a given agent will be determined

by a non-linear transforms of yi. Similarly for the variance of this Gaussian stochastic policy
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distribution [240].
The MWR methods consist in adding a regularization term to the global gradient used for the

gradient ascent:

∂θE

(
η(πθ)−

α

2

n∑
j=1

(Wj −W0)2

)
= (5.5)

∂θE (η(πθ))− α
n∑
j=1

(Wj −W0) ∂θE (Wj −W0) (5.6)

Where the hyperparameter α defines the strength of the regularization and therefore how much
mutual information is shared between agents in the gradient descent. Note that:

• α = 0 is equivalent to having independant policies for every on-ramp.

• α =∞ is equivalent to having a shared policy making algorithm for every on-ramp (shares
weights).

• W0 is not actually used for control computation, but is rather a reference weight.

5.4 Experimental results

Proof of concept on different scenario cases
In this first experimentation set, we demonstrate that RL can be used to control PDEs in a

robust and generic way. The same training procedure converges to a successful policy for two very
different tasks. In this section, simulations are run using a simple Godunov discretization scheme
for the LWR PDE (Eq. (5.1)), see appendix.

Highway outflow control

Traffic management scenario. We consider a 5 mile section of I80W starting from the metering
toll plaza and ending within San Francisco (see Figure 5.5. The flow is metered at the toll plaza
at a rate shown in Figure 5.5 (iii) (i.e. a vehicle rate). The Godunov scheme is implemented with
20 cells and simulated over a time span enabling several bridge crossings. The inflow integrates
random arrival rates for inbound traffic, which consists of a sinusoid perturbed by random noise.
The state is vehicular density (i.e. ρ(t, x) as defined by the LWR PDE, vehicles per unit length)
from which flow F (ρ(t, x)) (numbers of vehicles per unit time at x) can be computed.

Action space and environment We consider the following operational scenario. The number
of vehicles upstream from the meter (see Figure 5.5 (iii)) is randomized for each simulation in
order to reproduce the diversity of freeway flow dynamics as they actually occur. At every time step,
the observation forward propagated in the policy Neural Network is the value of current time step in
time unit. An action undertaken is also a positive scalar representing the number of cars permitted
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to enter the highway per time unit. We train the policy to reproduce a pattern z(t) on the outflow
with the following reward

R (st, at) = − (ρ(t, L)− z(t))2 .

The choice of this reward function encodes our intention to replicate the function z(t) on the
downstream boundary condition (located at spatial offset L). In particular, what is remarkable here
is that this is the only way the environment provides information to the policy about the state of the
freeway. Indeed, we only provide the current time step t as state observation to our policy along
with the reward associated with the result obtained after a simulation roll out.

Learning in the presence of disruptive perturbations The discretized model we use is well-
suited for representing traffic accidents. The state update mechanism may be randomly altered by
accidents which drastically change the maximum flow the freeway can carry at local points in space.
Accidents can be simulated by locally decreasing the maximum flow speed in a given discretization
cell for a given time interval. A key goal of our work is alleviating the impact of accidents while
simultaneously tracking operational objectives (e.g. desired outflow of the bridge into the city), and
achieving it with a robust and generic method is a tremendous breakthrough for urban planning.
See the appendix for a presentation of the accident scenario.

Learning algorithms and convergence to an effective policy In Figure 5.5, we analyze the
results of the control scheme learnt by a given policy consisting of two fully connected hidden
layers of size 32. The policy controls the inflow of cars (boundary control). We choose an arrival
rate sufficiently high on average to provide the controller with sufficient numbers of vehicles to
match the prescribed downstream conditions (note obviously in congestion this is always the case).
The results prove that in spite of the problem being non-differentiable, non-smooth, non-linear and
perturbed drastically by unpredictable accidents and random input queues, the policy converges to a
control scheme that manages to replicate the objective density. The learning phase uses different
policy update methods such as [116, 135, 206] and benchmarked in [57]. In this benchmark, among
gradient based methods, TNPG, TRPO and PPO seem to outperform the simpler REINFORCE
method which only leverages first order gradient information. In Figure 5.6 we show how PPO,
TRPO and REINFORCE are all reliable in this instance and converge to more effective policies
than TNPG. It is also noteworthy that PPO converges faster to a plateau of rewards.

Inner domain control

Reward shaping, in the form of assigning a target density and penalizing the L2 distance between
the observed density and the objective enables us to reproduce an arbitrary image with the solution
density in the solution domain only by controlling it on the boundaries. The results in Figure 5.7
demonstrate the ability of the method we present to train a policy to extensively control the values
of a solution to the discretized PDE we study in its solution domain. The action space here is much
higher dimensional as ramps are present all along the freeway that can let cars in at a sequence
spatial offsets each separated by 3 cells. At the same time, in our simulation, half of the flow leaves
the freeway so that the density of vehicles on the road can also decrease. An off ramp split model
handles the vehicle leaving the freeways. In spite of the increased dimensionality, a neural net with
tree fully connected hidden layers of size 64 trained by the TRPO method converges to a policy
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Figure 5.4: I80 Bay Bridge metering control. The control (iii) generated by neural RL leads to a
solution (ii) of the PDE, which achieves an outflow shown in (i), close to the desired profile in (i).
In the process, the queue, shown in (iv) grows as vehicles into the toll plaza continue to arrive at a
higher rate than allowed by the control scheme. The time space diagram i.e. (ii) is a common tool
used in transportation engineering to show the solution of the PDE in space (x) and time (y). The
tracking policy learned through neural RL.

Figure 5.5: During the training period, major variations in the traffic model are generated to illustrate
the robustness of the trained policy. Despite a highly perturbed training phase, the learnt control
policy manages to converge to the prescribed objective of outbound downstream flow.
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Figure 5.6: Comparison of different policy training algorithms for the control of the downstream
boundary condition by the upstream boundary condition in the presence of accidents. We notice
that TNPG performs poorly, VPG and TRPO offer mediocre performance and PPO outperforms all
the methods.

capable of reproducing a target solution in the interior domain as shown in Figure 5.7, whereas
TNPG failed in this instance to converge to an efficient policy. From a practitioner’s perspective,
this example is very powerful, it shows the ability to generate arbitrary congestion patterns based on
metering along the freeway. From a PDE control standpoint, this is even more powerful, as direct
state actuation is a very hard problem in manufacturing and has a lot of applications with PDEs
such as the (nonlinear) heat equation, Hamilton-Jacobi equations, and several others.

Optimal ramp metering control
In order to demonstrate the applicability of this novel method to real world cases, we consider

the Ramp-Metering problem in a 20 miles (33 km) long section of the 210 Eastbound freeway in
southern California as illustrated in Figure 5.8. For this simulation, we use the BeATS simulator
calibrated by traffic experts based on real-world data. Every simulation run lasts for 4 hours, after a
30 minutes warmup period to initialize the freeway. The simulation starts at 12pm and the traffic
peak happens between 3pm and 4pm, as the demand curve reaches a maximum (Fig. 5.14).

Two reinforcement learning algorithms and the ALINEA control scheme are benchmarked
against the baseline scenario in which no control occurs at all:

• NoRM, baseline: The baseline without any ramp metering. Cars instantly enter the freeway
when they reach an onramp, and if the freeway has enough capacity
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• NoMWR, standard deep reinforcement learning: The Reinforcement Learning based
policy we introduce, trained with shared weights for the last layer

• MWR, novel approach to training: The same policy as NoMWR, but trained with MWR.

• ALINEA, parametric control: The state of the art reference algorithm, using with model
and parameters the exact same values used in the simulator it is being benchmarked on.

Reinforcement Learning problem

In this scenario, the agent takes an action every 32 seconds. An action is a R29 vector with the
ramp-metering rates for the 29 on-ramps on the highway section, in vehicle per time unit. The
reward we collect at every time step is the total outflow in the last 32 seconds (in number of vehicle
per time unit).

The highway is discretized in 167 cells of 200 meters each to generate an observation vector in
R167×3. For every cell, the following 3 data values are provided to the network:

• Density in vehicle per space unit, normalized

• A boolean value indicating the presence of an off-ramp on this cell

• The number of cars waiting in this cell’s onramp queue (logarithmically scaled), or 0 if there
is no onramp

It is worth mentioning that the Reinforcement Learning policies are trained in a stochastic way
to ensure that a generic policy is learned. This is done by introducing some noise in the actions
taken by the Neural Network: the ramp metering actually applied is sampled from a Gaussian
distribution centered on the network output. This strategy, along with the use of shared learning
techniques over the 29 onramps, globally prevents overfitting issues.

Numerical results

After the training, we compared the results of our approach to existing algorithm on several
criteria. The average speed is globally increased as expected (Fig. 5.9). We also report the
Total Vehicle Miles in Fig. 5.13, along with the Total Vehicle Hour (Fig. 5.12) that assess the
performance of our approach with a single score. In both cases, the MWR training approach
provides a significative performance increase regular parameters sharing (NoMWR), and almost
reaches the performance of the reference and state of the art parametric method ALINEA.

5.5 Conclusion of the chapter
We have demonstrated how neural RL substantially improves upon the state-of-the-art in the field

of control of discretized PDE. It enables reliable non-parametric control while offering theoretical
guarantees similar to that of classic parametric control techniques. it offers a novel non-parametric
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Approach Score in veh.hr Score in veh.mile
(lower is better) (higher is better)

ALINEA 10514 644522
MWR 10575 644334

NoMWR 10617 643605
NoRM 11085 639709

Table 5.1: Aggregated scores of the different control strategies over the congested period. Rein-
forcement learning enables a non parametric control scheme whose performance is similar to that of
the parametric ALINEA scheme and MWR, the new learning algorithm we introduce, for improves
this performance.

Figure 5.9: ALINEA maintains speed above the optimal level defined during calibration by experts.
Reinforcement Learning methods and the MWR especially, manage to implicitly deduce this optimal
speed during training.
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Figure 5.10: Ramp Metering methods reduce by 20% the number of vehicles in the freeway during
congestion peak times. Our RL learning trained with MWR maintains the number of vehicles in the
simulation to a level similar to what ALINEA performs.

Figure 5.11: Vehicle flux
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Figure 5.12: Total Vehicle Hour during congestion time

Figure 5.13: MWR provides a significant performance improvement and almost reaches ALINEA
performance. Compared to no ramp-metering, MWR reproduces 96% of ALINEA performance
improvement, while the regular RL training only reaches 80% of ALINEA performance.
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Figure 5.14: Total demand curve. Congestion occurs after a few hours of simulation.

method to control these models. In particular, neural RL can be applied without an explicit model of
system dynamics, and instead only requires the ability to simulate the system under consideration.
In addition, neural RL, unlike traditional PDE boundary control techniques, is robust to regime
change and nonlinear dynamics enabling the control of complex and highly variable real-world
systems. Through our experimental evaluation, we demonstrated that neural RL approach can be
used to control discretized macroscopic vehicular traffic equations by their boundary conditions
in spite of accidents drastically perturbing the system. Achieving such robustness is a significant
breakthrough in the field of control of cyberphysical systems. Specific to the practice of transporta-
tion, the results are a major disruption as they enable us to beat current controllers by performing
adaptive control, without the need for model calibration. By eliminating the need for calibration, our
method addresses one of the critical challenges and dominant causes of controller failure making
our approach particularly promising in the field of traffic management. We also introduced a novel
algorithm, MWR, to achieve multi-agent control and leverage trial and error experiences across
different agents while at the same time allowing each agent to learn how to tailor its behavior to its
localization in the large cyberphysical system under study.

This last chapter on model-free free control policies reveals multiple elements of patterns that
unify heterogenous distributed representations for control. First, there is no systematic need for a
preliminary system identification in an analytical form. However, as the learn process takes a lot of
trial, there is need for pre-training on a simulator and therefore a certain degree of understanding
of the dynamics of the system under consideration is required. Second, in the absence of Slater’s
conditions, we know that solving the dual of a non-convex problem is always at most as good as
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solving the primal problem of interest. Such are the theoretical concessions that needed to be made
for instance in [194]. Such are two major advantages of the approach we propose to control a
complex non-linear system in the last chapter.

We have demonstrated that the need to use a dual of the problem is not necessary to create a
meaningful, data efficient and homogenous representation for a heterogeneous distributed control
problem.

While training a model with policy gradient methods, the parameters of the stochastic policy the
model learns to optimize progressively summarize a large amount of experience acquired along
many batches of attempts to control the system. Such are the messages passed from an agent
to another to enable better performance. What we lost in theoretical guarantees we gained in
generality and adaptiveness. Also there is no trade-off in terms of the scalability of the scheme we
designed. The communication avoiding sharing of parameter updates leverages the summaries that
are effectively synthesized in the form of model parameters.
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Conclusion

The alternate representations we presented have provably enabled scalability and statistical
efficiency for time series analysis and control in the four use cases we considered. Our search
for small yet expressive summaries for heterogenous problems – which was partly motivated by
mitigating communications whose cost dominate compute time in the distributed setting – has
successfully led to the design of parsimonious and robust unifying representers of collections of
heterogenous data sets and control problems.

Summary of contributions
The second chapter of the thesis stated key statistical results that give practitioners the confidence

that kernel smoothed estimation of continuous time randomly observed time series is reliable in the
setting of event-driven second-order stationary dynamics. We also showed how a Fourier transform
based representer provides communication avoiding algorithms to compute the kernel smoothed
cross-correlation estimator we proposed. We therefore have designed a communication avoiding
computation pattern in the distributed setting for cross-correlation estimation.

The statistical guarantees we gave leveraged an analysis of Long Range Dependent second-order
estimation with observation timestamps that are not generated independently from the process
of interest. The most important intuition was to move back and forth between time domain and
frequency domain. In the first chapter, it was easier to assess the properties of kernel smoothed
second-order estimators in the continuous time domain while the Fourier domain provided tremen-
dous computational advantages.

The third chapter of the thesis stepped away from computational issues to focus on the analysis
of an infinite dimensional continuous time system corresponding to a system of Partial Differential
Equations: the Aw-Rascle-Zhang model. In such a setting, we employed distributed Laplace
transforms to provide an expressive yet simple representation of the linearized Partial Differential
Equations under study.

The use of Laplace transform was motivated by the design of a study which are a representation
of complex non-linear system such as the Aw-Rascle-Zhang model that can easily enable control. A
byproduct of the approach was the discovery of an equivalent of the Froude number for macroscopic
freeway traffic dynamics that delineates conditions under which fast expanding shockwaves appear
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in the system. Such shocks are concerning as they can lead to brutal decelerations and crashes. Our
numerical study leveraged the spectral decomposition in order to show that in spite of the linear
approximation, the predictions given by the simplified model were still reliable.

The fourth chapter of the thesis focused on a discrete collection of small control problems
subject to different and independent constraint sets. In its most general form, the approach we
developed can be used in any collaborative control scheme where a swarm of controllers with
independent constraints are bound by a common objective. Assumptions of strong convexity led us
to consider a convex dual of the primal problem we considered.

Under such assumptions, Slater’s conditions were met and we could rely on the equivalence
between the primal and dual problems to solve a dual-split representation of the problem of interest.
The dual split approach provided many advantages. We were able to break the binding objective
into smaller sub-problems and therefore distribute computations across controllers. Only small
messages needed to be communicated and constraint sets could remain private. Furthermore, we
proved that the representing messages could be obfuscated by additive noise. A comparative study
of the cohort’s convergence speed and the amount of individual information leakage showed that our
representer is data efficient. The information broadcasted on the communication method enables
convergence to an optimal Lagrangian multiplier faster than it reveals the individual level optimal
control schedules.

The fifth chapter made use of Reinforcement Learning to optimally control discretized systems
of PDEs accounting for traffic dynamics. A Godunov discretization scheme was employed to build
a simulator of the Lighthill-Whitham-Richards model (a simpler model than Aw-Rascle-Zhang
although still realistic) which enabled the training of a control policy to optimize traffic flow.
Learning occurred by trial and error which made the procedure adaptive and it was able to learn
how to deal with perturbations such as crashes.

Such properties clearly differ from pre-existing techniques such as ALINEA or adjoint-based
optimization which make strong assumptions about the dynamics of the stretch of freeway they
control. We showed that the adaptiveness of the method does not hinder any ability to extensively
control a discretized PDE. We managed to write precise symbols with the density of vehicles. We
also optimized throughput with comparable performance to an ALINEA control scheme. A major
difference though was that our method learned the dynamics of the system on the fly whereas
ALINEA knew the very parameters we used for simulation.

As we considered distributed control schemes involving multiple ramp meters affecting neigh-
boring locations on a freeway, we created a method for the controllers to share their learnings while
still being able to adapt to the idiosyncracies of the ramp they are located on. In this model-free
setting, we were not able to leverage Fourier, Laplace or convex duality. However, by using the very
parameters of the policy being learned as a representation of heterogenous problems, we were able
to share common features of the control sub-problems with a unifying parsimonious representation.
The neural network weights being learned were indeed a way of summarizing learnings gathered
along thousands of simulation runs.
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Open problems
For estimation under irregular sampling, a representer consisting of the coordinates of a signal

on a small subset of a Fourier basis is unfortunately poorly adapted to the more general setting of
non-stationary time series. The focus of our current research is to employ Wavelet based represen-
tations [152] in order to more robustly and accurately capture changes of regimes. We find that,
as fast computations of dyadic wavelet decompositions and orthogonal wavelet transforms rely on
cascading convolutions [152, 151, 180], interesting interactions arise with the fast developing field
of Deep Learning [84]. It is noteworthy that the typical access patterns to the data are then very
different as Deep Neural Networks are generally non-convex and therefore training with a method
of the family of Stochastic Gradient Descent [170] is recommended. The noisy stochastic descent
presents the advantage of being able to leave low quality local minima.

Our analysis of the ARZ coupled PDEs has a direct extension to enable control. The distributed
Laplace representation we obtained can be leveraged to control the system. Such is the approach
that was employed in a similar system of PDEs – the Saint Venant Equations – in [143]. The study
led to a ground breaking control scheme for shallow water canals enabling H∞ control among many
developments. Our aim is now to leverage a similar analysis in the setting of macroscopic traffic
dynamics in order to provide H∞ control of infinite dimensional models that accurately account for
the dynamics affecting the commute of millions each day. A clear motivation is indeed to better
control traffic flows in order to mitigate congestion. The ultimate goal is to shorten travel times as
well as decreasing harmful gas emissions. Less congestion on freeways leads to higher economic
productivity and lower environmental impact in the ever growing dense urban areas of the 21th

century [204].

In the fourth chapter of the thesis, we demonstrated that the Lagrangian multiplier we obtain
in the dual formulation of the problem can easily be interpreted as a price multiplier in two key
applications: Mobility-as-a-Service and electric load flattening. Such price can be used as a
differentiator of locations in time and/or space where there is more imbalance between the offer
controllers can achieve and the demand that needs to be matched.

Although the multiplier was obtained as the byproduct of our dual splitting formulation, we
now plan to consider other ways of having a cohort of agents converge to a price: by negotiation.
The distributed computation pattern of the algorithm we developed alternates between distributed
communication of an updated price between agents and individual level adjustment of the control
scheme based on the current price. Such a scheme can be used outside the framework of strong
duality. Deep Reinforcement Learning [135] can indeed be employed to let the cohort of agents
learn how to negotiate a price that leads to optimal collaboration without communicating individual
level constraints.

Such techniques could also be used to extend the findings of the final chapter. The singularity
of the chapter concerned with distributed Deep Reinforcement Learning is that perception and
action are learned as part of the same neural network. In other words, we implicitly use the same
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single model for system identification and control. Using black box adaptive models presents many
advantages such as expressiveness, simplicity of deployment and effective mitigation of model
staleness by online adaptation. However, when such a strategy is applied to a cyber-physical system
whose sensors are easily accessible to all and in particular malicious entities, it is primordial to
assess its level of exposure to adversarial inputs. Using adversarial networks [85] to give more
robustness to the control scheme is the subject of current research. The idea correspond to training
an attacker of the cyber-physical system in order to force the learned control policy to immunize
itself against adversarial inputs [91]. In particular, such techniques would warrant a more confident
use of neural controllers in city centers. Micro-simulators that consider dynamics at the level of
individual vehicles could then be employed at the cost of longer simulations in order to realistically
train controllers of distributed groups of traffic lights in arterial networks.

General directions for further investigations
Stepping back to a higher level of analysis of the present work, it has been proven recently

that forcing fewer parameters to represent large data sets is key enabler of generalization in Deep
Learning [224]. Such an observation corroborates our general finding that seeking a parsimonious
representer for a large heterogeneous collection of data sets or control problems enables data
efficiency as a by-product. One of the aims of future work corresponds to leveraging the information
theoretic considerations developed in [224] in order to better characterize the relationship between
the size of the representer and its statistical efficiency.

The flexibility of information theory [41] where the data processing inequality or the invariance
under homeomorphic re-parametrization are true under very general assumptions is very appealing.
It can help us to rely less on modeling assumption and focus more of the very nature of the
communication pattern occurring in the distributed setting.

We indeed seek theory that works in more general settings as neural networks provide better
modeling and control ability although they generally lead to problems for which general assumptions
are hard to find. Such deep models will play a key role in time series analysis and control thanks to
their ability to dynamically identify temporal scales at which analysis or control should occur.

The thesis focused on heterogenous problems where sensing was asynchronous across sensing
channels, an infinity of different states were considered, a collection of sub-problem were affected
by different constraints and finally a cohort of agents located at unique locations in a cyberphysical
system needed to learn to collaborate.

However, the characteristic time scale under consideration was always homogenous. Such a
feature is rather restrictive and a novel aim consists in being free to detect the best temporal scale at
which the data should be examined. The temporal structure of the control scheme being developed
should also be adaptive in order to better take into account the characteristics of the system being
controlled and the objective of the controller in the long run.

Dilated convolution stacks that were first used to compute fast wavelet transform [152] are now
being employed in computer vision to enable multi-scale scenic parsing [245], leading to ground
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breaking results.
Time series can also be considered as scenes that can be parsed at different characteristic scales.

Such a paradigm provides key statistical advantages [180] and enable the capture of non-stationary
dynamics [151].

The general direction of the following work will therefore point towards black box multi-scale
control policies relying on a multi-scale perception architecture. The interaction between the
ability for wavelet transforms to compress data [151] with novel neural architectures relying on
orthogonal non-redundant representations [37, 68] may lead to expressive architectures relying on
few parameters. Based on the information theoretical analysis of Deep Neural Networks in [224]
we mentioned, such models would enjoy expressiveness and good generalization abilities thanks to
their parsimonious use of free parameters.
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