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Progress in long-read next-generation genome sequencing technology continues to sustain
the trend of decrease in cost while increasing the read length. With a price that is now
only a few thousands of dollars for the human DNA, de novo whole genome assembly is
gaining clinical adoption in diagnosis and prevention of diseases. Meanwhile, the research
community is employing the long-read technology to sequence an ever increasing number
of new species and organisms for which there is no reference genome. Despite of these
developments, a typical assembly pipeline lacks rigorous benchmarks and reproducible
evaluations. Particularly, as the read length increases and a greater number of repetitive
structures can be accurately resolved, the possibility of fully automated assembly becomes
a reality for which there needs to be standardized qualitative and quantitative metrics. In
this paper we purpose a deterministic and declarative framework for assessing long-read
genome assemblers and provide a reference implementation applicable to a wide range of
system infrastructures and operating environments. Moreover, we have constructed a set
of synthesized reads which could be used both by developers to improve their assembly
applications or the end users to identify the most appropriate software for their needs.

Introduction

The two dominant trends of reduction in cost and accretion of read length in next-
generation sequencing (NGS), has made automated whole genome de novo assembly an
attainable prospect with far reaching implications for both clinical and scientific appli-
cations. Table 1 provides a comparative overview and their basic capabilities (Goodwin
et al., 2016). Despite these exciting improvements, assembling raw data to a complete
genome remains a challenging endeavor. In particular, the complexity of genomes
beyond that of simple organisms, such as long repetitive sequence combined with vari-
ations in structural elements and copy number alterations, has greatly limited applica-
bility of short-read platforms, curtailing their extremely high-throughput advantages
(Treangen and Salzberg, 2012). Meanwhile, long-read technology still suffers from a
lower throughput, substantially different error profiles, and a greater cost. From a com-
putational standpoint, assembly is an intensive task with high CPU, memory, and IO
requirements for even moderately sized projects. Algorithmically, there are very few
theoretical and empirical guarantees provided by the mainstream techniques, such as
those based on greedy algorithms (Nagarajan and Pop, 2013). Furthermore, the qual-
ity of the end result and the uncertainty about the constructed genome is still mostly
un-quantified even for widely used reference sequences. This is greatly exacerbated by
opaque software implementations employing numerous heuristics while interfacing a
complicated web of tune-able parameters. Additionally, with an involved pipeline of
data processing routines consisting of disparate software packages, sometimes suffer-
ing from incompatible file formats or inconsistent API specifications, reproducibility
still poses as a major challenge.
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With further advancements in NGS, increase in data production will consequently re-
sult in a greater demand for automating the laborious task of whole genome assembly.
In turn, this will lead to a more pronounced emphasis on computational limitations, re-
producibility considerations, and validation without a reference. In this work, our end
goal is to specify and implement a framework to address each of the aforementioned
three issues.

Technology Average read length Main source of error Throughput per run

Sanger 700-900 b Polymerase slippage 900 b
Short repeats

Illumina 150-250 b Single base substitution 150-300 Gb
1.8 Tb

PacBio 10-15 Kb Indel 0.5-1 Gb
Oxford Nanopore (MinION) 6 Kb Deletion 500 Mb

Table 1: An overview of major sequenc-
ing platforms.

Overview

In order to systematically examine effects of different structural patterns present in
complex genomes in the final assembly, we’ve developed an embedded domain specific
language (EDSL) to declarativly construct reference sequences. With parametrization The EDSL is implemented in Haskell;

therefore, leveraging its type system to
statically verify type level constraints
for specified sequences.

of features such as repeat types, length, and counts the interface facilitates quantifying
the effect of structural variations in the reference versus the assembled sequence. More-
over, we designated a predefined set of sequences containing repeat structures which
causes ambiguities in the final assembly to serve as simple validation benchmarks. A
deterministic, reproducible, and declarative build environment for the assemblers and
associated utility applications is achieved via the nix package manager. Most of the
required software, in fact, was added on top of a preexisting nixpkgs1 repository hosted 1 https://github.com/NixOS

on github, making them available as standalone applications and maintainable by the
open-source community independently. Wrapper utilities implement support of a The nixpkgs contribution guide is avail-

able at https://nixos.org/nixpkgs/
manual/

wide array of runtime environments in a composable fashion. For instance, we evalu-
ated the performance of a few long-read assembler by exporting them as Linux contain-
ers 2 equipped with the real-time monitoring and data collection platform, Netdata3, in 2 Our implementation uses Docker

containers, but the choice of container
engine is immaterial for this functional-
ity.
3 https://my-netdata.io/

order to collect application specific and isolated performance measures in a multi-user
host system; which would otherwise be non-trivial due to a multitude of processes
running simultaneously. Although the system is intended to serve as an end-to-end
benchmarking and validation pipeline, each component is developed separately of the
other so that it could be used in existing workflows without requiring commitment to
the other parts of the system.

Our software architecture and design decisions were heavily influenced by the fol-
lowing themes:

• building upon already available software was prioritized over implementing the de-
sired functionality in house, tolerating trade-offs between adding additional depen-
dencies and maintaining our own code-base in favor of the former.

• intermediate results in a multi-stage workflow were subjected to the same level of

https://github.com/NixOS
https://nixos.org/nixpkgs/manual/
https://nixos.org/nixpkgs/manual/
https://my-netdata.io/
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validation and consistency as the final result of the assembly, despite the additional
overhead.

The goal of our project was to develop a framework to benchmark and assess some
common assemblers, although performing those assessments is beyond the scope of
this report. The framework will reduce the human time involved in such a compar-
ative study, but substantial computational resources would still be needed. Similarly,
Transcriptomic or Metagenomic assembly was not considered or evaluated.

Reference Data

The next frontier, repetitive structures in genome

Organism Count Total bp

Primates 563 664160
Rodents 466 487006
Other mammals 347 243730
Other vertebrates 52 53994
Drosophila 65 167423
Arabidopsis 98 275516
Grasses 27 67789

Table 2: The count of various repetitive
patterns in different species. Data from
RepeatMasker database.

Different qualitative measures and quantitative metrics have been developed over the
years to evaluate the performance of assemblers; however, due to technical challenges
and biological interests repeat resolution has been mostly overlooked. A phenomena
shared across a wide array of species, from bacterial to mammalian cells, repeats in
DNA sequences are a common occurrence in a large part of the genome 2. In fact, in one
form or the other, repeats account for almost half of the human genome 3. Domination
of short-read sequencing technology, despite their high throughput, was insufficient to
faithfully reconstruct these regions. In particular, repeats created ambiguities that could
not be resolved leaving many assemblies at best fragmented and frequently incorrect.
From a computational perspective, these repetitive regions posed a theoretical barrier
to accurately reconstructing the complete genome. Of three major categories of repeats,
Terminal, Tandom, and Interspersed, the later cause the greatest difficulty in assembly
of new genomes due to their size which could not be bridged by typical read lengths.
Although the function of repeated sequences are not clearly understood, resolution of
these repetitive segments is biologically significant. For instance, dispersed repeats have
been recognized as potential source of variation and structural regulation(Treangen and
Salzberg, 2012).

Reference Genome

In order to systematically devise synthetic sequences as well as providing an interface
for declarative specification, we implemented a small EDSL in Haskell. The library
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Repeat class Repeat type Count in hg19 Coverage Length

Mini|Micro satellite Tandem 426,918 3 2 - 100
SINE Interspersed 1,797,575 15 100 - 300
DNA transposon Interspersed 463,776 3 200 - 2,000
LTR retrotransposon Interspersed 718,125 9 200 - 5,000
LINE Interspersed 1,506,845 21 500 - 8,000
rDNA (16S, 18S, 5.8S and 28S) Tandem 698 0.01 2,000 - 43,000
Segmental duplications Tandem or interspersed 2,270 0.20 1,000 - 100,000

Table 3: Repeated sequences in Human
DNA (Treangen and Salzberg, 2012)

consists of sequence generators and associated monadic-combinators for constructing
different repeat structures. The generators, construct sequences of a given length based
a specified dynamic. For instance, debruijn k is a generator for a De-Bruijn sequence
of order k on the four letter nucleotide alphabet A, C, G, T. Since each sub-sequence of
length k appear exactly once, it can be used to construct a genome where each read
of length greater than k can be uniquely aligned. Similarly, there are generators for
a constant, first and second order Markov, as well as models for sampling from an
input FASTA-FASTQ file. The core library provides combinators for basic composition
of sequences in addition to utilities for constructing the three fundamental repeat types
leading to ambiguities in contigs-graph (Kamath et al., 2017).

Reference Reads

Given a reference genome, we need to simulate the chemical and biological mecha-
nism in order to generate synthetic reads used as the input to the assembler. Each
read also needs to include alignment information for downstream quality analysis as
aligning fragments and contigs to the reference genome could be error prone and adds
an additional sources of variability to measuring assembler’s performance. The recent
survey by Escalona et al. (2016) provides an overview of the available techniques and
accompanying software. However, read simulation still seems like a non-trivial task.
For instance, they recommend PBsim for simulating long-reads generated by PacBio
platform when there is a reference genome; regardless, the software has not been main-
tained since 2013 and does not accurately models the newest PacBio chemistry based on
our comparison with actual data from the company 4. There are few newly developed 4 We calculated basic sequence statistics

(e.g. k-mer content, error rate, etc.)
for each synthetic read dataset and
calculated the empirical likelihood
between true and generated data

packages, not examined in the aforementioned review. For the same PacBio platform,
Simlord is a more recent application which uses a different parametric model to sample
reads. However, our benchmarks is still inconclusive about the quality of generated
data and to our knowledge there is no single simulator that accurately models the lat-
est chemistry of PacBio machines. Since read length distribution and error profile for
indels and substitutions are significantly different between different technologies, one
of our goals was to study the effect of variations in read modeling with respect to the
downstream analysis. Additionally, we evaluated the quality of simulated reads by
comparing statistics from FastQC to that of our sampling procedure.
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Benchmarking framework and implementation

Deterministic build systems
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Benchmarking framework and implementation

Deterministic build systems

determinitic build environment { buildEnv }:
$STORE_PATH/xpcr9kkx1dbrbwsmbn0y88r0dzwckl8j-hinge-git.drv  

{ dataEnv }:
$STORE_PATH/asdfjkkwkqw234oieurk2378-data-seqid-199823.drv  

{ dependencies }:
$STORE_PATH/asdfjkkw34qwasd322342abz-gcc-5-8.drv  
$STORE_PATH/ywwdfjk12309kjkljzxcvmdjs-python-3-6.drv  
$STORE_PATH/opwjkkw34eqrwasd322342qqw-dazzler-db.drv  

Figure 1: Each package is built in a
fully deterministic environment. By
computing the cryptographic hash for
each derivation, we can guarantee that
each invocation of the build leads to the
same exact binary.

Since nixpkgs is still heavily under development and lacks widespread adoption and
community support for computational biology and bioinformatics software, the ini-
tial phase of our implementation focused on packaging some commonly used assem-
blers and other related tools. Although other package managers, such as Anaconda by
Continuum and the sister community-maintained repository, Bioconda, enjoy a greater
user-base in data analytics; they don’t provide the granular level of control over the
build environment required for rigorous benchmarking. As an example, our imple-
mentation can accurately test between two different versions of the same assembler
since we can keep all other dependencies exactly identical. In contrast, binaries for
even the same version obtained from different Conda repositories are not guaranteed to
be identical, yet alone their dependencies. The following code snippet shows a sample
nix-derivation for HNGE(Kamath et al., 2017) assembler.

1 # nix expression for building the HINGE assembler

2 {

3 stdenv,

4 gcc,

5 zlib,

6 cmake,

7 boost

8 }:

9

10 stdenv.mkDerivation rec {

11

12 version = "dev";

13 name = "hinge-${version}";

14

15 src = fetchgit ( builtins.fromJSON ’’

16 {

17 "url": "https://github.com/HingeAssembler/HINGE",

18 "rev": "ddcc8e2e34931d1895d15e08664e17c28ad61b22",

19 "sha256": "1hqf5564q5cs9r6i2j9zh0z2v40sr60v9md7icwni6kbw29665z2",

20 "fetchSubmodules": true

Figure 1: Each package is built in a
fully deterministic environment. By
computing the cryptographic hash for
each derivation, we can guarantee that
each invocation of the build leads to the
same exact binary.

Since nixpkgs is still heavily under development and lacks widespread adoption and
community support for computational biology and bioinformatics software, the ini-
tial phase of our implementation focused on packaging some commonly used assem-
blers and other related tools. Although other package managers, such as Anaconda by
Continuum and the sister community-maintained repository, Bioconda, enjoy a greater
user-base in data analytics; they don’t provide the granular level of control over the
build environment required for rigorous benchmarking. As an example, our imple-
mentation can accurately test between two different versions of the same assembler
since we can keep all other dependencies exactly identical. In contrast, binaries for
even the same version obtained from different Conda repositories are not guaranteed to
be identical, yet alone their dependencies. The following code snippet shows a sample
nix-derivation for HNGE(Kamath et al., 2017) assembler.

Figure 1: Each package is built in a
fully deterministic environment. By
computing the cryptographic hash for
each derivation, we can guarantee that
each invocation of the build leads to the
same exact binary.

Since nixpkgs is still heavily under development and lacks widespread adoption and
community support for computational biology and bioinformatics software, the ini-
tial phase of our implementation focused on packaging some commonly used assem-
blers and other related tools. Although other package managers, such as Anaconda by
Continuum and the sister community-maintained repository, Bioconda, enjoy a greater
user-base in data analytics; they don’t provide the granular level of control over the
build environment required for rigorous benchmarking. As an example, our imple-
mentation can accurately test between two different versions of the same assembler
since we can keep all other dependencies exactly identical. In contrast, binaries for
even the same version obtained from different Conda repositories are not guaranteed to
be identical, yet alone their dependencies. The following code snippet shows a sample
nix-derivation for HNGE(Kamath et al., 2017) assembler.
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1 # nix expression for building the HINGE assembler

2 {

3 stdenv,

4 gcc,

5 zlib,

6 cmake,

7 boost

8 }:

9

10 stdenv.mkDerivation rec {

11

12 version = "dev";

13 name = "hinge-${version}";

14

15 src = fetchgit ( builtins.fromJSON ’’

16 {

17 "url": "https://github.com/HingeAssembler/HINGE",

18 "rev": "ddcc8e2e34931d1895d15e08664e17c28ad61b22",

19 "sha256": "1hqf5564q5cs9r6i2j9zh0z2v40sr60v9md7icwni6kbw29665z2",

20 "fetchSubmodules": true

21 }

22 ’’ );

23

24

25 buildInputs = [ gcc zlib cmake boost ];

26

27 patchPhase = ’’

28 substituteInPlace src/layout/CMakeLists.txt \

29 --replace ’set(Boost_USE_STATIC_LIBS ON)’ \

30 ’set(Boost_USE_STATIC_LIBS OFF)’

31 ’’;

32

33 };

User space

Currently, in house HPC clusters constitute the majority of deployment systems used
for computational biology. The assembly pipelines for any realistic genome length
require computational resources not readily available on cloud services or consumer
PCs. One of the major challenges of developing software for multi-user environments
is that it’s rarely the case that user have privileged access (i.e. root) to the system. To
address this issue, our current implementation uses the UNSHARE capability of the
Linux kernel to manage the resources of the child process. In particular, by mounting
the default root store path in the sub-process to a directory in user’s home, we can
initially install the compiler toolchain (e.g. GNU gcc) from a binary release source.
Then, from within the UNSHARE process context, we bootstrap the dependencies with
a $PREFIX path inside the user’s directory.

Some of the major shortcomings we encountered pursuing this approach were
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1. The growth in binary size

2. Computation time and massive rebuilds could also be of concern. When a package
on which a lot of other packages are dependent changes, that triggers a rebuild for
each one of the dependencies downstream.

3. Adding large files to the nix store is a memory intensive task. The current im-
plementation requires loading the file into the memory in order to compute the
cryptographic hash which could be problematic for large genomes.

4. Since outside of the build system, our paths are marked as read-only, access via
multiple machines sharing a single file can be handled effortlessly. However, our
implementation lacks support for concurrent writes.

Runtime isolation and resource sharing

{ buildEnv }:

Userspace

Contaiers

Cloud

Cluster

Figure 2: The supported runtime
environment. The frame work can
generate and deploy native application,
lightweight containers, virtual machine
and cloud services, as well as jobs
for queue managers such as slurp.
However, only docker containers and
native applications have been tested so
far.

The platform currently supports a few execution models with little to no boilerplate,
including managed cloud orchestration via nixops, Linux containers via Docker images,
and lightweight user isolated environments via kernel user namespaces.

Performance monitoring and data collection

Given the rapid development in sequencing technology and unabated data production,
the performance bottleneck would inevitably become one of the major considerations
for developing assembly software. We’ve implemented support for few profiling util-
ities for both real-time monitoring and collecting application traces (e.g netdata and
perftools) as demonstrated in the following figures. Given netdata is intended as a
lightweight real-time monitoring system, by default it only retains 1 hour of events.
However, recording of sampled data could be achieved via support for persistence
database engines through plugins. We envision using a network data-store to collect
usage data from a global community of volunteers.
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In order to demonstrate the utility of performance measurement, we’ve included
snapshots of resource usage for a typical execution as would be seen through the real-
time monitoring dashboard. Combined with ability to implement custom alerts; the
time-series data can greatly facilitate performance engineering and optimization. As
an example, a cursory glance at the disk usage would reveal an abrupt increase in IO
backlog caused by the disk driver. Therefore, it can be conjectured that amortizing IO
operation could lead to a significant speed up; assuming such backlogs are frequent.
Likewise, the graphs reveal heavy under utilization of CPU resources which could
be explained by the aforementioned disk bottleneck. It should be noted; however,
these measurements are done inside the container and the corresponding virtualization
system, so great care must be taken to allocate host resources exclusively in order to
obtain accurate results. This is not a major technical challenge as this functionalities are
already implemented in most major virtualization systems as well as dedicated cloud
based solutions.

Conclusions and Future Directions

The most immediate extension of this work, as touched upon previously, is to bench-
mark existing assemblers to both highlight the deficiencies of our approach and avenues
to improve the existing software. This will also provide the scientific community with
a report card of assemblers, which we think is greatly lacking at the moment.

Over the technical front, our system is capable of identifying duplication in files and
therefore storing only one copy on the disk. Nonetheless, we still record the data as files,
and multiple files with small variations lead to a great storage overhead. Even though,
end to end determinism make intermediate snapshots avoidable, they might still be
retained for downstream exploratory analysis. Therefore, a more database oriented
approach to store the data might prove more economical in the long run.

On the other hand, Nix itself is a rather non-intuitive environment and might require
an upfront learning investment. There are few opensource alternatives, mainly Guix,
but each suffer from very small user-base and not routinely updated package-base.
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Figure 3: The CPU utilization time-
series plot corresponding to an assem-
bly process inside a container context.
Each subplot corresponds to a sin-
gle execution thread on a multi-core
system.
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Figure 4: A view of memory man-
agement during the execution of the
program.

Figure 5: These plots correspond to
the process activity occurring within
a container as part of an assembly
pipeline.
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Figure 6: Disk usage statistics and ac-
tivity monitoring could be of significant
interest to developers as IO constitutes
a major bottleneck in efficiency of as-
semblers implementation. The figure
show a non-uniform heavy disk us-
age in a 5 minutes window of a long
running process. Given heavy disk uti-
lization (subplot 3 and 4) has created a
backlog, a more uniform distribution of
io subroutines could result in a greater
performance.
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