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Abstract

A Generative Model of Urban Activities from Cellular Data

by

Mogeng Yin

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

Activity based travel demand models are becoming essential tools used in transportation
planning and regional development scenario evaluation. They describe travel itineraries of
individual travelers, namely what activities they are participating in, when they perform
these activities, and how they choose to travel to the activity locales. However, data col-
lection for activity based models is performed through travel surveys that are infrequent,
expensive, and reflect the changes in transportation with significant delays. Thanks to the
ubiquitous cell phone data, we see an opportunity to substantially complement these surveys
with data extracted from network carrier mobile phone usage logs, such as call detail records
(CDRs). In this paper, we develop Input-Output Hidden Markov Models (IO-HMMs) to
infer travelers’ activity patterns from CDRs. We apply the model to the data collected by a
major network carrier serving millions of users in the San Francisco Bay Area. Our approach
delivers an end-to-end actionable solution to the practitioners in the form of a modular and
interpretable activity-based travel demand model. It is experimentally validated with three
independent data sources: aggregated statistics from travel surveys, a set of collected ground
truth activities, and the results of a traffic micro-simulation informed with the travel plans
synthesized from the developed generative model.
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Chapter 1

Introduction

Novel mobility paradigms change the transportation landscape quicker than traditional data
sources, such as travel surveys, are able to reflect. A vital example is on-demand trans-
portation enabled by a range of services connecting drivers with potential passengers. This
increased flexibility of travel options manifests itself in the way citizens structure their day,
and causes significant shifts in urban mobility patterns. Public agencies charged with a man-
date to manage critical transportation infrastructures are slow to react to these changes, as
they are reliant on out-dated information, tools, and models. Part of the problem is the
reliance of their methodologies on manually conducted travel surveys.

The National Household Travel Survey (NHTS), the data source that is typically the
crux of travel demand models, is conducted every 5 years, and carries a total cost of millions
of dollars [18]. NHTS is further limiting because a typical survey only covers two percent of
households in a metropolitan area, and typically only records one day of travel per household
[32].

At the same time, people generate data while traveling by carrying and using a mobile
phone. A valuable alternative is to use a non-invasive, automated, continuous data collection
mechanism to complement, supplement, and augment manual surveying. The main advan-
tages are 3-fold: (1) it vastly increases sample size; (2) it eliminates the delays normally
associated with administering and processing travel surveys; and (3) it improves activity-
based travel modeling by taking advantage of spatially and temporally rich cell phone traces,
which capture users activities over months, rather than a single day. While studies of mo-
bility from crowd-sourced locational data are common (these are thoroughly reviewed in
Section 2), no existing work provides models in the form that transportation practitioners
actually require.

Typical activity-based travel models used by practitioners are incredibly rich in describing
the intricacies of human activities and context of decision making in travel-related choices.
For years, discrete choice models of travel included trip purpose as context [4]. It is a signif-
icant factor influencing decisions on mode and other attributes of travel. One key research
challenge therefore lies in detecting trip purposes (“home”, “work”, “dining”, “shopping”,
“recreation”, etc.) from noisy locational data, such as anonymized mobile phone traces regis-
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tered via cellular network, with a level of activity-chain detail that is comparable in richness
to that of a specifically designed travel survey.

In this thesis, we develop an approach to annotate user activities that reveal temporal
activity profiles and the pattern of transitions between activities. To validate the activity
recognition results, we compare the annotated activities with a set of collected ground truth
activities, and with aggregated statistics from a conventional travel survey. To validate the
model and to show its capability of generating realistic activity chains, we use the model to
generate synthetic travel plans of individuals with home and work locations sampled from
census data. We show that the generated activity chains are realistic and are consistent with
the distribution reported in the travel surveys. The synthetic travel plans are used as inputs
to an agent-based microscopic traffic simulator. We validate the resulting traffic volumes
against an independent dataset of traffic counts collected on all the major freeways within
the region of study.

The contributions of this thesis lie in four aspects:

• We implement an end-to-end processing and inference pipeline from the raw cellu-
lar data to the travel demand model and traffic simulation tool that transportation
practitioners require.

• To the best of our knowledge, this is the first work using context dependent non-
homogeneous generative models of the Input-Output Hidden Markov Model (IO-HMM)
architecture to analyze activity patterns from cellular data. We empirically show that
our generative model outperforms baseline approaches which ignore contextual infor-
mation in modeling activity profiles and transitions.

• We test our methodology using a real cellular dataset. We annotate secondary activities
such as “recreation”, “food”, “stop in transit” with strong spatial-temporal evidence.
We also estimate heterogeneous context-dependent transition probabilities. To validate
the model, we compare our annotations to “ground-truth” land-use information of
buildings with short range distributed antenna systems, compare the learned activity
patterns with travel survey results, and finally compare ground truth traffic counts
in the San Francisco Bay Area to a micro-simulation of travel plans derived from the
generative model.

• A distributed implementation of the learning and inference methods in a MapReduce
framework in pySpark is available at https://github.com/Mogeng/IO-HMM. It in-
cludes IO-HMM extended with multiple output models such as multinomial logistic
regression, generalized linear models, and neural networks.
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Chapter 2

Related Work

Urban computing, as an interdisciplinary field, has drawn increasing attention in the recent
decade [38]. Urban activity recognition, as a subject of urban computing, has been explored
extensively by researchers in different areas. A summary of relevant developments in urban
activity modeling is given below with respect to the main data types and the properties of
the explored algorithms.

2.1 Locational Data Sources

GPS

GPS data is granular in both spatial and temporal resolution. GPS records sometimes come
with additional accelerometer data, but are usually available for a very limited sample of
the population. It gave rise to early work in building discriminative state-space models to
extract places and activities. Some successful methods unified the process of map matching,
place detection, and significant activity inference through a hierarchical conditional random
field (CRF) [27].

CDR

The anonymized Call Detail Records (CDRs) from cellular network operators provide a
compromise between spatial-temporal resolution and ubiquity. Due to its relatively poor
resolution in space, CDR data has been mainly used to derive spatially aggregated results
such as mass movements of population [8], aggregated origin-destination (OD) estimation
[34], stylized mobility laws [16, 33], and disaster response [29]. Not much work has been
done in the area of urban activity recognition, especially for secondary activities. Farrahi, et
al., applied Latent Dirichlet Allocation (LDA) and Author Topic Models (ATM) to cluster
daily CDR trajectories [13]. However, their model only considered the temporal aspect of
CDR data and can only discover activities related to home and work. Phithakkitnukoon,
et al., used auxiliary land use data and geographical information database to mine possible
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activities around a certain cell tower [30]. However, their model only considers the spatial
aspect of CDR data and their assignment of activities is deterministic. The study of most
direct relevance to our work is by [35]. It used similar temporal-spatial features to infer
urban activities with an undirected relational Markov network. However, one major draw-
back of their model is the lack of cliques for consecutive activities, i.e., the study did not
model activity transitions. This is unfavorable for activity inference and new sample gener-
ation. Sampling consecutive activities independently without considering the dependencies
of following activities to previous activities is only partly appropriate. To overcome this
drawback, we explicitly model contextual dependent activity transition probabilities to im-
prove the accuracy of activity inference and the reliability of new activity chain generation,
as detailed in Section 4.1. Validations of models using CDR data are usually difficult due
to its low spatial resolution. In addition to the validation through comparing aggregated
statistics with travel survey by [35], we provide a direct validation on activity recognition
using a set of “ground truth” activities based on short range antennas. We also validated our
model with an end-to-end demonstration from raw CDR to the resulting traffic flow volumes
produced by a microscopic traffic simulation.

LBSN

Locational-based social network (LBSN) data is usually exact in locations, and may provide
additional social relation, comments and reviews of the locations. However it is further
limited by the discontinuity between subsequent check-ins. Moreover, users rarely check-in
at home and work, which are crucial locations needed for accurate mobility models. Cho,
et al., developed a period and social mobility model (PSMM) to separate social trips from
commute trips [7]. Ye, et al., created an extended HMM model that incorporated spatial and
temporal covariates to classify activities into one of 9 distinct categories [36]. Kling applied
a probabilistic topic model to obtain a decomposition of the stream of digital traces into a
set of urban topics related to various activities [23].

2.2 Methods and Approaches

Supervised models

Supervised learning methods require data with labeled ground truth. The ground truth is
either manually labeled [10, 15], or collected for a small group of participants from a survey
accompanying GPS data [22]. Liu, et al., classified activities into “home”, “work/school”,
“non-work obligatory”, “social visit” and “leisure” using different supervised learning models
including SVM and decision trees. Their data was collected from natural mobile phone
communication patterns of 80 users over a year with labeled ground truth [28]. Liao, et al.,
manually labeled ground truth to extract places and activities [26, 27]. However, this model
was only applied to 4 people and is not scalable to large populations.
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Unsupervised models

On the other hand, unsupervised models are used to cluster activities with similar temporal
and spatial profiles. “Eigenbehavior” models by Eagle et al. [9] and previously mentioned
LDA and ATM models by [13, 12] all fall into this category.

Discriminative models

Discriminative state-space models such as CRFs [26, 27] are more flexible when modeling
the relationship between input, output and state variables. However, due to their undirected
nature, discriminative state-space models cannot be used for activity generation directly.

Generative models

Hidden (semi-) Markov models are generative models that can not only be used to analyze
activity patterns, but also to generate new sequences [17]. Using GPS data, Baratchi, et al.,
developed a hierarchical hidden semi-Markov-based model that captures both frequent and
rare mobility patterns in the movement of mobile objects [3].
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Chapter 3

Modeling Framework

In this work, not only are we interested in understanding the activity patterns themselves.
We also aim to model these patterns in a generative probabilistic framework suitable for
generating inputs to activity based travel micro-simulations. Thus, we require generative
models. At the same time, privacy considerations and limited availability of ground truth
location data preclude us from using discriminative supervised approaches, suggesting the
choice of unsupervised models. In order to produce activity patterns for large populations of
users, we build models that can leverage distributed implementation and that can share pa-
rameters across multiple user groups. These objectives led us to an IO-HMM approach with
modular heterogeneous transitions/emissions components with interpretable parameters, as
detailed in Section 4.

The developed data processing and modeling pipeline is presented in Fig. 3.1. The left
column shows the primary data sources. This includes the cellular call detail data (CDR), a
comprehensive point of interest (POI) database within the region of interest, and the traffic
data (vehicle counts, volumes) to calibrate and validate the microscopic traffic simulation.
POI databases are usually available from open source maps such as OpenStreetMap, or
comercial APIs such as Google Places API and Factual Places API. These POI databases
provide a list of POIs and their category labels around a location upon query. These POI
information is useful in constructing the labeled activities as “ground truth”. The middle
column contains the key modules to perform inference and the right column shows the
resulting products. Our key contribution is the Activity Recognition and Generation module
outlined with the red dashed rectangle, and in particular the components shown in shaded
yellow.

Raw CDR data contains a timestamped record for each communication of anonymous
user’s devices served by the cellular network. Due to positioning errors and connection os-
cillations, it is not straightforward to extract features to perform activity recognition from
raw CDR sequences. A pre-processing step is first performed to convert the records to a
sequence of stay location clusters that may correspond to distinct yet unlabeled activities,
as shown in Fig. 3.2. The clustering can be seen as a first layer of hashing locations, which
preserves privacy. Attributes of each activity, such as the start time, duration, location fea-
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Figure 3.1: Modeling framework diagram. The left column represents the input to the
research; the middle column represents the key modeling components; and the right column
represents the products of the research. Our key contribution of activity recognition and
generation module are outlined with the red dashed rectangle, and the key components are
shown in shaded yellow.

tures, and the context of the activity (whether this activity happens during a home-based
trip, work-based trip, or a commute trip), is also extracted as a result of this processing.
The details of this step are presented in Appendix A. From the activity sequences, pri-
mary activities such as home and work can be inferred1, as described in more details in
Appendix B. Detecting home and work location features are useful in many respects: first,
this allows us to perform dynamic population estimation, as the first product of the pipeline
in Fig. 3.1. Second, with home and work inferred, we can identify specific groups of users
by a set of predefined decision rules. One of the most simple rules is to group users by
their geographical area. This makes it possible to train separate models for users residing
in a specific neighborhood or a Transportation Analysis Zone (TAZ) since people living in
different geographical zones might show different travel behaviors. Moreover, we can train
separate models for regular commuters/part-time/unemployed groups of residents within
a community. The model structures are expected to be significantly different within each

1Note that once the pre-processing and home/work inference steps are applied, only features associated
with location clusters are used for modeling, such as distances to home and work. This can be seen as a
second layer of anonymization of user’s locations, since no specific location cluster IDs are associated with
any user at any time in the modeling process itself.
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Figure 3.2: Call Detail Records (CDR) data processing. The table at left represents the
raw CDR format, i.e., time stamped record of communications. A stay points detection
algorithm (detailed in Appendix A) is used to convert the raw CDR data to a sequence of
stay locations with start time, duration and location ID, as represented in the table at right.

group. Finally, home and work inference for anonymized cellular users adjusted to the full
population provides daytime/nighttime population density estimates, as shown in Fig. 5.2.

With the activity sequences (including home and work anchor activities) identified, we
can understand the daily activity structure of travelers that are traditionally available solely
via manual surveying. They include: (1) the distribution of number of tours before going to
work, during work and after getting back home; (2) the distribution of number of stops during
each type of tour (home-based, work-based and commute tours); and (3) the interactions in
stop-making across different times of day (e.g. how making an evening commute stop will
affect the decision in making a post-home stop) [6]. This is the second product of this research
as listed in Fig. 3.1. With the processed activity sequences and inferred primary activities, we
can perform the secondary activity recognition and analyze the activity patterns, including
spatial-temporal profiles of activities and activity transition probabilities. The resulting
models and analysis will be the third product of the research. To validate the recognition
results, we collected a small set of ground truth activities based on short range antennas
which have relatively high spatial resolution. Point of interests (POI) data are joined with
these short range antennas to identify the possible activities performed there and a set of
rules are used to help us collect labeled activities, as detailed in Section 4.3. With the model
coefficients and a set of sampled home and work locations of the total population, we can
generate activity sequences and produce synthetic travel plans required by a microscopic
traffic simulator. Ground truth traffic counts data are used to validate the simulation results
and showcase the validity of the presented work for transportation planning and operations
practice. This is the fourth product in Fig. 3.1.
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Chapter 4

Activity Recognition and Generation

This section introduces main modeling components shown within the red dashed box in
Fig. 3.1, including activity pattern recognition with IO-HMM, a method of collecting ground
truth activities from short range distributed antenna systems, and a method of simulating
activity chains from the resulting models.

4.1 IO-HMM for Activity Pattern Recognition

Given the user stay history, that is, a list of stay location features with start times and dura-
tions, we would like to convert it into a sequence of activities enriched with semantic labels
(“shopping”, “leisure”, etc.), and a heterogeneous context-dependent probability model of
transitions between the activities.

IO-HMM Architecture

Hidden Markov Models (HMMs) have been extensively used in the context of action recog-
nition and signal processing. However, standard HMMs assume homogeneous transition and
emission probabilities. This assumption is overly restrictive. For instance, if a user engages
in a home activity on a weekday, and departs for the next activity in the morning, she is
likely going to work. If she departs in the evening, the trip purpose is likely to be recreation
or shopping. Therefore, we propose to use the IO-HMM architecture that incorporates con-
textual information to overcome the drawbacks of the standard HMM. In Fig. 4.1, the solid
(blue) nodes represent observed information, while the transparent (white) nodes represent
latent random variables. The top layer contains the observed contextual variables ut, such
as time of day, day of the week, and information about activities in the past (such as the
number of hours worked on that day). Note that the values of the input variables ut used
to represent the context have to be known prior to a transition. The middle layer contains
latent categorical variables zt corresponding to unobserved activity types. The bottom layer
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Figure 4.1: IO-HMM Architecture. The solid nodes represent observed information, while
the transparent (white) nodes represent latent random variables. The top layer contains the
observed input variables ut; the middle layer contains latent categorical variables zt; and the
bottom layer contains observed output variables xt.

contains observed variables xt that are available during training of the models (but not when
generating activity sequences), such as location features and duration of the stay.

Likelihood of a data sequence under this model is given by:

L (θ,x,u) =
∑
z

(
Pr (z1 | u1;θin) ·

T∏
t=2

Pr (zt | zt−1,ut;θtr) ·

T∏
t=1

Pr (xt | zt,ut;θem)
)
. (4.1)

IO-HMM architecture has been well described in [5]. Variable notation and important
differences between IO-HMM and standard HMM are summarized in Table 4.1.

Parameter Estimation

IO-HMM includes three groups of unknown parameters: initial probability parameters (θin),
transition model parameters (θtr), and emission model parameters (θem). Expectation-
Maximization (EM) is a widely used approach to estimate the parameters of IO-HMM. The
EM algorithm consists of two steps.

E step: Compute the expected value of the complete data-log likelihood, given the
observed data and parameters estimated at the previous step.
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Table 4.1: Highlights of comparison between an HMM versus. IO-HMM (ut, zt, xt denote
input, hidden and output variables respectively, i is an index of a hidden state, t is a sequence
timestamp index).

HMM IO-HMM
initial state probability πi Pr (z1 = i) Pr (z1 = i | u1)
transition probability ϕij,t Pr (zt = j | zt−1 = i) Pr (zt = j | zt−1 = i,ut)
emission probability δi,t Pr (xt | zt = i) Pr (xt | zt = i,ut)
forward variable αi,t δi,t

∑
l ϕli,tαl,t−1, with αi,1 = πiδi,1

backward variable βi,t
∑

l ϕil,tβl,t+1δl,t+1, with βi,T = 1
complete data likelihood Lc

∑
i αi,T

posterior transition probability ξij,t ϕij,tαi,t1βj,tδj,t / Lc

posterior state probability γi,t αi,tβi,t / Lc

M step: Update the parameters to maximize the expected data likelihood given by:

Q
(
θ,θk

)
=
∑
i=1

γi,1 log Pr (z1 = i | u1;θin)

+
T∑
t=2

∑
i

∑
j

ξij,t log Pr (zt = j | zt−1 = i,ut;θtr)

+
T∑
t=1

∑
i

γi,t log Pr (xt | zt = i,ut;θem) . (4.2)

In the above, Q
(
θ,θk

)
is the expected value of the complete data log likelihood; k

represents the EM iteration; T is the total number of timestamps in each sequence; ut,
zt and xt are the inputs, hidden states, and observations at step t; and θ are the model
parameters to be estimated. The meaning of other variables is given in the first column of
Table 4.1.

Transition and Emission models

The parameter estimation procedure of IO-HMM described above implies that any supervised
learning model that supports gradient ascent on the log probability can be integrated into the
IO-HMM. For example, in Equation 4.2, each of the model parameters (θ) can be estimated
with neural networks. A neural network with a softmax layer can be used to learn the
initial probability parameters (θin) through back-propagation, another neural network with
a softmax layer for learning the transition probability parameters (θtr), and a third with
customized layers for estimating emission model parameters (θem).

Note that the EM algorithm can be naturally implemented in a MapReduce framework,
a programming model and an associated implementation for processing large data sets on
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computing clusters. The Expectation step can be fit into the Map step, calculating the
posterior state probability γ and posterior transition probability ξ in parallel for each training
sequence. The estimated posterior probabilities γ and ξ are collected in the Reduce step.
The source code of an implementation developed as a part of this research is available from
https://github.com/Mogeng/IO-HMM.

4.2 Model Specification

Input-Output Variables

In practice, models of simple structure (linear, multinomial logistic, Gaussian) with inter-
pretable variables and parameters are preferred. For example, in an application below, we
include the following input variables ut: (1) a binary variable indicating whether the day
is a weekend; (2) five binary variables indicating the time of day that the activity starts,
morning (5 to 10am), lunch (10am to 2pm), afternoon (12 to 2pm), dinner (4 to 8pm) or
night (5pm to midnight); and (3) for the users with identified work location, the number of
hours the user has spent at work this day. This variable contains accumulated knowledge on
the past activities.

The IO-HMM model also includes the following outputs xt at each timestamp t: (1) x(1),
the distance between the current stay location and the user’s home; (2) x(2), the distance
between the current stay location and the user’s work place; (3) x(3), the duration of the
activity; and (4) x(4), whether the user has visited this stay location cluster previously.

The selection of the inputs and outputs is guided by common knowledge. The activity
start time is relevant for differentiating activity types. The number of hours worked in a day
is a strong indicator of a person’s likelihood to return to work (after a midday activity, for
example). The model inputs contain information that is known at the start of the transition
to a new activity. In contrast, the output features contain information that is not available
at the transition to a new activity. For example the duration and the location or land-use in
the vicinity of a new activity is unknown at the time of the transition. In other words, output
variables can be observed when training the models, but must be inferred when sampling
sequences of activities from the model.

The model outputs have a strong dependence on the activity type. For example, the
distance that a person is willing to travel from home for a leisure trip may be longer than
the distance that a person is willing to travel for a shopping trip. The duration depends
both on the activity type, activity start time, and on the previous activities in the day. e.g.,
the expected duration of a work activity will decrease if a person has already worked in the
day.
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Initial, Transition and Emission Models

Multinomial logistic regression models are used as the initial probability model and transition
probability models. Note that for succinctness, we use θ in each of the following equations
to represent the θin,tr,em in Equation 4.2. The first term of Equation 4.2 can be written as:

Pr (z1 = i | u1;θ) =
eθ
iut∑

k e
θkut

. (4.3)

The θ for initial probability model is a matrix with the ith row (θi) being the coefficients
for the initial state being in state i. The second term of Equation 4.2 can be written as:

Pr (zt = j | zt−1 = i, ;θ) =
eθ
j
iut∑

k e
θki ut

. (4.4)

The θ for transition probability models is a set of matrices with the jth row of the ith

matrix (θji ) being the coefficients for the next state being in state j given the current state
being in state i.

To gain interpretability, we use linear models for the outputs represented as continuous
random variables. We assume a Gaussian distribution for the distance to home and work
variables x(1) and x(2) and the activity duration variable x(3). Where x(1) and x(2) depend
only on the hidden activity type, the duration variable x(3) depends on the hidden activity
and also the contextual input variables. The third term of Equation 4.2 can be written as:

Pr (xt | zt = i,ut;θi) =
1√

2πσi
e
− (xt−θi·ut)

2

2σ2
i , (4.5)

The θ for one such output emission model is a set of arrays where θi and σi denote the
coefficients and the standard deviation of the linear model when the hidden state is i. While
we chose to represent outputs x(1),(2),(3) as Gaussian random variables, Gamma regression
could be applied to duration x(3) to capture the non-negative, continuous, and right-skewed
nature of these response variables. Moreover, response variables x(1) and x(2) could be mod-
eled simultaneously using multivariate linear regression to capture the correlations between
distance to home and distance to work.

Output x(4) is a binary variable, and we used logistic regression model as the output
model. The probability in the third term of Equation 4.2 can be written as:

Pr (xt = 1 | zt = i,ut;θi) =
1

1 + e−θi·ut
. (4.6)

Finally, we emphasize that an activity label is just a latent categorical variable. A seman-
tic label can be associated to it following an in-depth analysis the we present in Section 5.2
below.
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4.3 Model Selection

Model selection for IO-HMM includes the choice of the number of hidden states. One would
like to set a high number that encompasses a wide variety of travel purposes, however, data
quality and availability limits the number of feasibly identifiable activities. Moreover, an
ambiguity in semantic meaning of activity types (consider “leisure” versus “recreation”)
asks for limiting the number of hidden states that show useful in practical applications. We
describe here an empirical procedure for collecting ground truth data on activity types that
provide useful insights on these modeling choices. The number of hidden states of the IO-
HMM model are set according to the labels of these ground truth activities. For CDR, it
is usually hard to collect ground truth activities due to its low spatial resolution. However,
there is a set of short range antennas that serve only a small range of area, which have
relatively high spatial resolution. These short range antennas provide us the opportunity to
collect “ground truth” activities.

Short Range Distributed Antenna Systems (DASs)

A common component of a cellular networks is a set of distributed antenna systems (DASs)
that are short ranged, including Indoor DASs (IDASs) and Outdoor DASs (ODASs). IDASs
are usually installed in large commercial buildings such as shopping malls to ensure better
signal coverage. And ODASs are usually installed at high occupancy outdoor venues such
as stadiums or concert arenas. These antennas are set up to maximize signal strength for
the users located in the building or stadium served by a given DAS, ensuring more precise
localization. Fig. 4.2 illustrates the times and durations of connections established by users
served by three particular DASs. The patterns are structured in time, indicating the activities
performed there are quite regular and their purpose can be inferred from domain knowledge
with high confidence.

Designation of Rules for Ground Truth

IDASs are often installed in large mixed-use commercial buildings. For example, one com-
mercial building with IDAS installed could have bakeries, restaurants, taxi stands, gym and
fitness centers, retail stores, as well as other businesses such as accounting and financial
services. We designed a set of spatial-temporal decision rules to label a set of activities that
can be considered as the ground truth. For instance, if a user is connected to a DAS in
a food court at noon for one hour, this is most likely to be indicative of a lunch activity.
Although we do not have complete certainty that this is indeed the activity type, the event
is indistinguishable from a lunch break in terms of its mobility footprint, and with high
likelihood we interpret this as a food activity.

We first acquired place information from POI databases such as Google places API and
Factual Global Places API. Then, we joined this information with the locations of the DASs
in order to extract activities that could be performed at each DAS. The place information
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(a) DAS in a major train station used by suburban commuters.

(b) DAS in a fitness center with multiple recreational health studios.

(c) DAS in a business district building with a large food court.

Figure 4.2: Structural patterns of empirical data collected at short range DASs well explain
the activity performed around the DASs: the number of activities start times within a course
of a week (left) and an empirical joint distribution plot of the visit duration versus start times
(right).
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Table 4.2: Rules of labeling secondary activities based on activity spatial-temporal features

Activity
Duration
(hours)

Start
hour

Context
Location
category

Lunch 0.25 - 1 11-12 Food
Dinner 0.25 - 2 17-18 Food

Shop 0.25 - 1
7-9
14-15
20-21

Home based or during
evening commute

Shop

Transport < 0.25 Commute Transport

Recreation 1-4 7-21
Home based or during
evening commute

Recreation

Personal any 7-21 Personal
Travel any any Out of the region

provides listings of local business and point of interest (POI) at most given locations. Since
multiple activities can happen at the same location, we need some additional rules based on
the spatial-temporal features of activities, as shown in Table 4.2. The “location category”
column of the table indicates that the category is among the category labels returned from
the APIs.

Note that the rules used to label activities as reported in Table 4.2 are restrictive. Given
that the main purpose of these labels is to validate the proposed models, our goal is to
be very confident in the activities we label. Thus, these rules are designed to pursue high
precision rather than high coverage.

4.4 Activity Chains Generation

One of the strengths of the proposed generative state-space model is that it can generate
sequences of activities based on the parameters θ estimated for each user or shared across
a group of users believed to have similar mobility lifestyle. For example, a working day
scenario can be generated as follows. A synthetic population with a predetermined home
and work locations is created according to the population census. Each user is assumed
to begin her day at home, z1 = 0. Relevant context information ut and learned transition
Pr (zt = j | zt−1 = i,ut) and emission probabilities (4.5)-(4.6) are then used to determine
the next state and sample output variables for the activity duration and location from
the posterior. At the end of this activity the relevant context information ut is updated
and the next activity is selected given the newly obtained transition probabilities. The
process continues until the full daily sequence of activities has been generated. We discuss
the interpretation of the posterior probability distributions and report on an experimental
validation of this approach below.
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Chapter 5

Experimental Results

This section describes a full-scale regional experiment where we train IO-HMM for commuters
from each of the 34 super-districts in the San Francisco Bay Area, in order to develop an
actionable mobility model for a typical weekday. First we show how one can interpret
the model parameters and evaluate activity recognition capability, using the City of San
Francisco (SF) as an example. Next, we use the trained models for all 34 super-districts
to generate sequences of activities for a regional agent-based traffic micro-simulation, and
compare the results with the observed traffic volumes.

The data used in these studies comprise a month of anonymized and aggregated CDR logs
collected in Summer 2015 by a major mobile carrier in the US, serving millions of customers
in the San Francisco Bay Area. No personally identifiable information (PII) was gathered or
used for this study. As described previously, CDR raw locations are converted into highly
aggregated location features before any actual modeling takes places.

5.1 Data Pre-processing

We pre-process the data following the steps in Appendix A. The home and work locations
are identified during the pre-processing step. We take cell phone users that:

• showed up for more than 21 days a month at their identified “home” place;

• showed up for more than 14 days a month at their identified “work” place;

• have home and work not at the same location.

These criteria identify regular working commuters with a day structure containing both
distinct Home and Work. Empirical distributions of the average number of daily activities for
this population is shown in Fig. 5.1. The median number of activities is 4.4 per weekday and
4.0 per weekend. This is consistent with the California Household Travel Survey, reporting
a number of 4 activities per day [1].

Fig. 5.2 shows the density map of inferred home and work locations for San Francisco
residents, aggregated at the census tract level. As shown in the right of Fig. 5.2, the work
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(a) Weekday (b) Weekend

Figure 5.1: Empirical distributions of the average number of daily activities of San Francisco
subscribers on a weekday (left) and on a weekend (right), after pre-processing.

locations are spread in the SF Bay Area. The highest density occurs in San Francisco,
Oakland, and some South Bay cities. Focusing on work locations in San Francisco, many
of the inferred work locations are in Downtown San Francisco, the Financial District, and
SoMA - three San Francisco neighborhoods with high employment density [21]. As expected,
the home locations are more spread out throughout the city.

While individual users with long sequences of observations can be modeled with fully
personalized IO-HMM, such processing violates privacy protection regulations of the carrier.
An application of the IO-HMM presented below is trained with parameters shared across a
group of users with similar geographical and structural properties of the day. It not only pro-
vides computational advantages, but also simplifies scenario evaluation for the practitioners
who operate with socio-demographic groups rather than individuals. In this paper, we sim-
plified the grouping method to be based on geographical boundaries, such as super-districts
defined by the San Francisco Metropolitan Transportation Commission (MTC).

5.2 Activity Recognition Results

In this section we interpret the results of the IO-HMM that has been fit to the four super-
districts that make up the city of San Francisco. The model was trained on a group of
20,000 anonymous San Francisco residents (about 2% of the population). The coefficients
of trained emission models are reported in Table 5.1. Recall that we use linear models as
the output models for x(1), distance to home, x(2), distance to work, and x(3), duration of
the activities. Logistic regression was used as the output model for x(4), cluster has been
visited before. Since x(1) and x(2) depend only on the hidden activity, only the intercepts are
estimated. For x(3), we specify that the duration depends on activity type and also on the
“day of week”, “time of day” and “hours worked” input variables, there are 8 coefficients



CHAPTER 5. EXPERIMENTAL RESULTS 19

Figure 5.2: Density map of inferred home and work locations for San Francisco residents,
aggregated at the census tract level (left), and an overall geographical scope of analysis with
work locations density (right).

Table 5.1: Model coefficients for the output variables per hidden activity (see interpretation
in the text).

State: latent activity Dist to home Dist to work
Duration Visited

constant weekend morning lunch afternoon dinner evening hours worked no yes
0: Home 0.00 7.22 9.45 2.17 -6.29 -2.57 -0.94 0.20 1.29 -0.03 0 2.19
1: Work 7.22 0.00 4.00 -0.02 2.98 0.76 0.19 -0.64 -0.10 -0.26 0 1.76
2: Food/Shop 2.37 1.90 0.84 0.18 0.00 -0.01 -0.04 -0.01 0.25 0.00 0 -0.53
3: Stop in Transit 3.21 3.63 0.16 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0 -0.46
4: Recreation 2.36 15.03 2.76 0.17 -0.42 -0.64 -0.45 -0.68 0.37 0.04 0 -0.44
5: Personal 18.79 16.94 0.93 0.46 0.17 0.12 -0.05 -0.03 -0.05 0.01 0 -1.35
6: Distant Travel 787.94 784.71 4.26 0.78 -0.75 -0.39 -0.76 -1.27 1.11 0.29 0 -1.17

estimated per hidden state for this output. Since x(4) “has visited” is a binary variable, only
one parameter per hidden state is identifiable.

Two temporal representations help identify the latent semantics of the hidden states (i.e.
activities). Fig. 5.3 depicts the distribution of start times of activities. The y-axis gives the
number of activities started at a given hour. By evaluating these weekly activity start-time
patterns in combination with the output coefficients in Table 5.1, and the joint distribution
of start time and duration in Fig. 5.4 we can assign semantic labels for activity type to each
of latent activity states.
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Figure 5.3: Number of activities (labeled per highest posterior probability) by their respective
start time within a course of a week.

Primary Activities: Home and Work

Latent activity state 0, shown in green in Fig. 5.3 is easily identifiable - it is the “home”
activity. The typical start time ranges from 3pm to midnight. The home activity exhibits
greater variation in start time on Friday and weekends than on other weekdays. The positive
“weekend” coefficient on the duration of this activity indicates that people stay at home
longer during weekends.

The temporal profile of home activities in Fig. 5.4a has two major clusters. The upper
cluster indicates regular overnight home activities. This cluster can be further separated into
two clusters. One peaks at 6pm, representing the home activity directly after work. The
other peaks at 9pm, representing the home activity after some secondary activities in the
evening. Since the home activity duration is generally set by the regular work start hour,
the downward slope of the upper cluster signifies that if a user arrives at home later in the
day, they are likely to spend fewer hours at home.

Activity state 1, shown in blue in Fig. 5.3 is the “work” activity. It has highest peaks in
Fig. 5.3, signifying that it is a very regular activity with concentrated start times.

According to Table 5.1, a work activity has a base duration of 4 hours, if it starts in the
morning, the user is likely to stay 2.98 hours longer, that is 6.98 hours in total; if it begins
in the afternoon or evening the average duration is shorter. As a compounding effect of
returning to work in the afternoon or evening, the “hours worked” column indicates that the
expected duration will decrease by 0.26 hours for every hour that the user already spent at
work in the day. The “is weekend” column indicates that if a user chose to work on weekend,
the average work activity duration is not significantly different from that on weekdays; note
that (from Fig. 5.3) the probability of visiting the work activity is much lower on the weekend.
The “visited” column indicates the propensity of the location being frequently revisited. For
the work activity, the coefficient 1.76 indicates a very high likelihood of returning to the
same location to perform the same activity.

From Fig. 5.4b, we can see that the temporal profile of work activities has three clusters.
The upper cluster indicates regular “9 to 5” work activities without a break. The lower
left cluster represents the morning work activities and the lower right cluster represents the
afternoon work activities. All three clusters are tilted at -45 degrees. This is due to the
usually fixed lunch hour at noon and end of work at about 5pm.
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Secondary Activities

The remaining states are secondary activities. Activity 2 peaks in start time around noon
and in the evening. As shown in Table 5.1, activity state 2 has an average duration of about
0.84 hours, and is close to both home and work place. As shown in Fig. 5.4c, the duration of
this activity is slightly longer in the evening. Based on these properties, we assign activity 2
the label “food/shop”. From Fig. 5.3 we see that, on weekends, this activity peaks at noon.
The weekend activity duration, according to Table 5.1, is about 0.2 hours longer than it is
on weekdays.

Activity 3 is located close to home and work, and has an average duration of about 10
minutes, according to Table 5.1. From Fig. 5.4e, we can see that this activity peaks in
the early morning and late afternoon right before home activity. Fig. 5.4d and Table 5.1
also indicate that the duration is not affected by time of day or day type (weekend versus
weekday). From Fig. 5.3, we can see that this activity is visited more frequently on weekdays
than weekends, indicating that the activity could be an in-commute activity such as coffee,
transport, or picking up kids. It is worth noting that although activity 3 is less revisited
than home and work activities, it is more likely to be revisited compared to other activities.
This gives us more confidence in labeling them as regular activities such as “Short Stop in
Transit”.

We have assigned activity state 4 a label of “recreation”. As seen in Table 5.1, the activity
is quite close to home but far from the work place. The state has an average duration of 2.7
hours, much longer than the durations of activity state 2 and 3. This activity last longer
in evening hours or weekends. As shown in Fig. 5.3, this activity often starts in the early
morning or evening hours on weekdays, and tellingly, more users engage in this activity on
Fridays and weekends.

We have assigned activity state 5 a label of “personal”. The distances from home and
work are 19 and 17 miles, respectively, and the average duration of this activity is 0.93 hours.
This state could encompass both off-site work related trips and/or longer-distance dining or
leisure activities. As shown in Fig. 5.3. Due to the distance of this activity, more users
engage in this activity on weekends and this activity is least likely to be revisited.

Activity state 6, labeled “distant travel”, or more accurately activities that occur while
traveling, is the most irregular and infrequent. The average distances from home and work
are quite high (average 800 miles). This activity type seems to occur predominantly on
Fridays and weekends according to Fig. 5.3.

Activity Transitions

We omitted “distant travel” activity from the transition matrix since if a person is traveling
a long distance, the next activity is also most likely to be categorized as “distant travel”;
the distance dominates the state. Fig. 5.5a shows the transition matrix associated with
mornings. The labels on the left indicate the state the user is transitioning from, and
the labels on the top indicate the state the user is transitioning to. The most significant
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(a) 0: Home (b) 1: Work (c) 2: Food/Shop

(d) 3: Stop in Transit (e) 4: Recreation (f) 5: Personal

Figure 5.4: Joint distribution plot of duration and start hour per activity type. The labels
are gained by assigning the activity to the one with the highest posterior probability after
training.

transition is from “home” to “work.” Fig. 5.5b shows the transition matrix associated with
evenings. The transitions from all other states to “home” are significant. However, if the
user’s transition from activity is “home”, then she is more likely to transition to “food” or
“recreation” activities. Fig. 5.5c shows the transition matrix in the afternoon, for users who
have not yet visited the “work” state in the day. For these users, there is a high probability
of going to work. As in Fig. 5.5d, by keeping all the input context information equal as in
the previous case, and only specifying that the simulated user has previously worked for 5
hours on that day, one can see that the probability of going to work is significantly reduced.
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(a) Morning (6-10am) (b) Night (5pm-midnight)

(c) Afternoon (12-2pm), users who have not vis-
ited work

(d) Afternoon (12-2pm), users who have worked
5 hours

Figure 5.5: Heterogeneous activity transition matrices under different contextual variables.

5.3 Evaluation of Activity Recognition

Recognition Accuracy

The distribution of collected ground truth activities are biased and do not correspond to the
true distribution of urban activities. To reasonably evaluate performance of IO-HMM, we
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Table 5.2: Confusion matrix of inferred activities versus “ground truth” activities

Ground Truth
Annotations

Home Work Food/Shop Transit Recreation Personal Travel
Home 9994 0 0 0 1 1 4 0.999

Recall

Work 0 7495 0 0 0 2 3 0.999
Food/Shop 0 0 3013 413 1307 267 0 0.603

Transit 0 0 31 6980 359 130 0 0.931
Recreation 0 0 1519 0 1403 78 0 0.468
Personal 0 0 321 17 84 3426 152 0.857
Travel 0 0 0 0 0 11 989 0.989

1.000 1.000 0.617 0.942 0.445 0.875 0.862
0.876

Precision

Table 5.3: Comparison of model accuracy

Model
All Activities Secondary Activities

Accuracy F1 Accuracy F1
HMM 0.859 0.783 0.739 0.698

Partial IO-HMM 0.866 0.824 0.752 0.754
Full IO-HMM 0.876 0.827 0.771 0.758

need to sample a subset of ground truth activities so that the sample weight is consistent
with the true distribution of urban activities. According to the the distribution given by the
2015 Travel Decisions Surveys (TDS), conducted by San Francisco Municipal Transportation
Agency (SFMTA)[31], we sampled (scaled) 10000 home activities, 7500 work activities, 5000
Food/Shop activities, 7500 Stop in Transit activities, 3000 recreation activities, 4000 personal
activities and 1000 Travel activities.

Overall, we get 87.6% accuracy on all activities, with a macro-precision of 82%, a macro-
recall of 83.5% and a macro-f1 score of 0.827. Here we reiterate that there are no explicit
ground truth labels on traveler’s activities; instead the ground truth labels refer to the
identifiable activities that occur near short-range antennas (labeled according to Table 4.2)
and activities that occur at the inferred home or work location.

From the confusion matrix in Table 5.2, we can see that most confusion happens be-
tween “food/shop” and “recreation” activities. This is natural because “food/shop” and
“recreation” activities are similar in time and space. We also notice that some “food/shop”
activities are mistaken as a “short stop in transit”, this is because some “food/shop” activi-
ties and “stop in transit” are close in space, thus some short “food/shop” activities are taken
as “stop in transit” because of the duration. Since the activities that we labeled as “per-
sonal” are mainly medium distance activities that could encompass longer-distance dining,
some “food/shop” activities could also be confused as “personal”.

To compare the performance of different models, we also report the accuracy of (1)
Hidden Markov Models (HMM) with the same output as IO-HMM but with no inputs; (2)
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Partial IO-HMM with transition probabilities dependent on inputs while all emissions are
only conditioned on hidden states; and (3) Full IO-HMM as described, in Table 5.3.

We report the accuracy and macro-f1 score as metrics of success for our models. F1 score
can be interpreted as a weighted average of the precision and recall. For multi-class tasks,
macro-f1 score calculates the average per-class precision and recall and then perform the f1
score calculation. We can see that the full IO-HMM has the best performance. Since “home”
and “work” are rather easy to infer, we also report the performance for secondary activities
only. For the five class classification task, we get 77.1% accuracy. Another observation
is that the macro-f1 score of the partial and full IO-HMMs do not differ too much, but
all outperform the pure HMM. These results exhibit the benefits of the context-dependent
transition models.

We see that the full IO-HMM outperforms the partial IO-HMM slightly which outper-
forms the pure HMM. Since “home” and “work” have high accuracy, the improved perfor-
mance is mainly in secondary activity recognition. In all cases, f1 score is smaller than the
accuracy. This is because the class that has higher support also has higher accuracy. Since
accuracy score is a weighted average with support while macro-f1 score is an unweighted
average, f1 score is lower than the accuracy.

Survey-derived statistics

Another way to evaluate the method is to compare our model with aggregated statistics
from surveys. We consider the Travel Decisions Survey (TDS), which contains 1000 random
digit dial and cell phone samplings in the area of interest. Overall, the activity proportions
of our model match with TDS. If we split our Food/Shop activities into half food and half
shop, food and recreation is 20% in our model versus 21% in TDS; shopping and errand
(personal) is 21% in our model versus 20% in TDS. Work/school activity is 22.5% in our
model versus 23% in TDS. The main difference is with the “Home” activity, for which TDS
report a proportion of 35%, which is a little higher than the proportion of 30% reported by
our model. This discrepancy is likely due to under-reporting of secondary activities in TDS.

5.4 Activity Generation from an IO-HMM

One of our goals is to enable activity based travel demand models that use cellular data
to create synthetic agent travel patterns without compromising the privacy of cell phone
users. As such, we test our models’ generative power in the Bay Area context — we simulate
463, 000 agents in the Bay Area (15% sample of the commuters) and create a day-long activity
plan for all agents with anticipated start-times, locations, and durations of all activities in
the day.

As travel patterns vary greatly over the region, we trained 34 IO-HMMs, each for a
subset of cell phone users residing within each of the 34 super-districts as defined by the San
Francisco Metropolitan Transportation Commission (MTC). Using the Iterative Proportional
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Fitting [14] procedure to fit the population marginals with the census data, we sample
residents home and work locations to create synthetic driver with a predetermined home
TAZ and work TAZ. The numbers were further adjusted according to occupancy statistics
from CHTS (single driver, two and multi-person carpool). The precise home and work
locations (lat/lon coordinates) are sampled uniformly within the home and work TAZs.

Each simulated user is assumed to start her day at home. The home departure time and
the transition time are drawn from their respective distributions to determine the start time
of the first activity. Home departure times for the first non-home activity of the day are
modeled as Gaussian random variables with super-district dependent mean departure time
and standard deviation calibrated from CDR records. As IO-HMM is trained on the observed
travel sequences with revealed departures times, we assume that it captures the dependencies
of transition times on the origin and destination, travel mode and traffic conditions.

Generation continues until the activity start time reaches midnight. At every step, previ-
ous activity state and context information are used to obtain transition probabilities from the
IO-HMM and sample the next activity state according to the transition probabilities. After
the activity type has been selected, the activity duration is sampled from a truncated normal
distribution with mean and standard deviation coming from output x(3) of the IO-HMM.
Next, the activity location is selected - if the activity is a home-activity or work-activity, the
exercise is trivial. If not, we use IO-HMM outputs x(1) and x(2) - the distance between the
stay location and the user’s home output and distance from the stay location to the user’s
work output from the IO-HMM to generate a new destination TAZ from the choice set of
TAZs within matching distances. The precise location of the activity is sampled uniformly
from the selected TAZ. Note that future research on destination location choice models could
improve the location selection process for secondary activities.

Due to the nature of IO-HMM, we must filter out and discard unrealistic activity chains
generated in this process. We determine unrealistic activity chains to be chains that do
not end the day at home and activity chains where 3 or more of the same activity type
occur in a row. These filters constrain the overall structure of the day to be aligned with
a feasible/conventional day structure. For simulation purposes we also filter activity chains
that include long-distance travel out of the Bay Area. Fig. 5.6 presents 4 common and
interesting (among top 20) activity patterns generated from IO-HMM model.

Overall, the aggregated statistics of activity patterns match with the travel surveys. For
example, the percentage of US employed person who go to work on an average weekday is
82.9% [25], this number is 83.7% for our simulated population. Considering the summary
statistics for people who go to work, we compare the percentage of people who participate
in activities at different times of day. The percentage of people participating in at least one
activity before morning commute, during morning commute and after work is 3.1%, 14.8%
and 46.3% in the Bay Area Travel Survey [6] and these numbers are 2.9%, 15.2% and 43.7%
in our simulated population.
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Figure 5.6: Distribution of activity start times over a course of a day of four example common
activity patterns generated from the Bay Area IO-HMMs. Note that all simulated activitity
patterns start at home, so (a) designates the Home-Work-Home travel pattern. The x-axis
designates the start time of the activity, the y-axis represents the proportion of trips (for
users with this activity pattern) starting at this time.

5.5 Evaluation via Traffic Micro-simulation

Traffic micro-simulation is a conventional approach in studying performance and evaluating
transportation planning and development scenarios. Ground truth observations of the flows
at sections of the road network provide an independent data source that can be used to
evaluate the accuracy of the activity generation model. We present here a summary of the
validation results based on the traffic volume data collected by the California DOT freeway
Performance Management System (PeMS) in the 9 counties of the Bay Area (see Fig. 5.7).
Micro-simulation of a typical weekday traffic is performed using the MATSim platform [2].
MATSim is a state-of-the-art agent based traffic micro-simulation tool that performs traffic
assignment for the set of agents with pre-defined activity plans. It varies departure times
and routing of each agent depending on the congestion generated on the network, in order to
maximize agent’s daily utility score. We have compared the results of the flows produced on
the Bay Area network containing all freeways and primary and secondary roads (a total of
24’654 links) from the generated activity sequences with the observed traffic volumes. As the
model is trained to reproduce average weekday, hourly traffic volumes are taken as averages
over all weekdays (except for Mondays and Fridays) of Summer 2015. The simulation is run
at 15% of the total population, and the road capacities as well as total resulting counts are
scaled accordingly.

Note that observed traffic counts are not used for model calibration. They are used as
independent data to evaluate the validity of the synthetic travel sequences produced with
IO-HMM. The locations of the sensors on the road network are presented in Fig. 5.7. It
also demonstrates examples of the three characteristic hourly volume profiles comparing
the modeled and observed counts. The results for the full set of sensors are presented
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Figure 5.7: A fragment of the SF Bay Area road network with the location of 600 traffic
volume detectors used for validation (shown with small black dots). Inlet graphs illustrate
three sample hourly vehicle volume profiles for observed (orange) and modeled (blue) flows
on a typical weekday in Summer 2015.

in Fig. 5.8. Fig. 5.8a shows a comparison of the volumes for three distinct time periods.
Fig. 5.8b summarizes the validation results over all 600 sensors in terms of the relative error
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(a) Modeled versus observed volumes at 8am
(black),1pm (red) and 6pm (blue) (r2 =
0.81, p < 10−3).

(b) Mean relative error (%) over all 600 sensors of
modeled versus observed traffic volumes during the
day over all 600 sensors.

Figure 5.8: Micro-simulation validation with the observed freeway traffic volumes

(% volume) over-/under-estimated by the model as compared to the ground truth. One
can notice lower accuracy at night and early morning hours explained by the fact that the
model was developed and applied on a subset of daily commuters and did not include a large
portion of trips performed by unemployed population and people working from home, besides
multiple other traffic components (commercial fleets, taxis, visitors) that are out of scope of
the model. Despite it’s relative simplicity, the model has demonstrated a reasonable accuracy
(r2 = 0.81, p < 10−3 in Fig. 5.8a ) as compared to the ground truth data. A thorough
comparison between the activity chains generated from IO-HMM model and baseline models
such as the one developed by regional transportation planning authorities and based on
surveys is ongoing and its preliminary results are available from the author by request.
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Chapter 6

Conclusion and Future Work

In this paper, we developed a scalable and interpretable model for regional mobility analysis
from cellular data. As an illustration, we inferred the activity patterns including primary, sec-
ondary activities and heterogeneous activity transitions of a set of anonymized San Francisco
Bay Area commuters using an unsupervised generative state-space model. We validated this
inference by comparing it with (1) 2015 Travel Decisions Surveys (TDS) on the aggregated
activity statistics; and (2) a set of ground truth activities based on short range distributed
antenna system (DAS); (3) observed volumes of vehicular traffic flow in the regional road
network on an average weekday. To examine the generative power of the model, we synthe-
sized travel plans for each agent with home and work locations sampled from census data.
An agent-based microscopic traffic simulation was conducted to compare the resulting traffic
with real traffic, and a reasonable fit accuracy was observed. An interesting extension to
this work is to compare the activity sequence generation power of different techniques, from
baseline models with only home and work activities to more advanced IO-HMM models and
recurrent neural network such as long short term memory (LSTM) models.

Several improvements can be built upon the presented work. Partitioning a population
into sub-groups (whether socially or spatially) for shared parameter modeling is a partly open
problem. Currently we approached it by defining rules to identify groups of a similar day
structure, and applying geographic constraints. This step will be compared to an alternative
specification that involves a mixture of IO-HMM models.

With privacy concerns and data limitations in mind, the location choice model imple-
mented in this paper is relatively simple. Future work may incorporate a discrete choice
model on a set of TAZs so that locations can be directly sampled when generating activity
sequences.

Activity patterns inferred and analyzed in this paper reveal the spatial and temporal
profile of activities of regular commuters, as well as the heterogeneous transition probabilities
dependent on contextual information. The generative nature of our proposed model allows
to sample accurate travel scenario inputs needed by activity based travel micro-simulation
models. A range of issues remain where the advantages of using cellular data alone are
not straightforward. This includes travel mode detection, identification of the number of
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car-pools, modeling short-range and non-motorized travel to name a few. Nevertheless, such
methods derived from automatically and continuously collected cell phone data are bound to
make a substantial impact on urban and transportation planning, and represent a significant
improvement upon the state-of-the-art.
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Appendix A

Stay points detection in CDR

The goal of stay location recognition is to turn CDR logs into a list of sequential stay location
identifiers with start time and duration for each user, as illustrated in Fig. 3.2. Each record
of raw CDR logs contains the timestamp and the approximated latitude and longitude of
events recorded by the data provider. This is a CDR-specific step that requires fine-tuning
of several threshold parameters. Note that once the pre-processing steps described in this
Appendix and the following are applied, only features associated with clusters locations are
used, such as distances to home and work. This can be seen as a layer of anonymization of
user’s locations, since no specific location cluster IDs are further associated with any user
at any time in the activity modeling process itself. The main steps of the algorithm are as
follows:

(1) Cluster CDR records. The first step in stay location detection is filtering out po-
sitioning errors. This is achieved by spatial clustering. For GPS data, accuracy ranges of
10-100m are used in many studies that use GPS to detect stay locations [11]. The distance
thresholds for GPS stay-location clustering is much smaller than the thresholds for CDR
records. For example, a roaming distance of 300 meters [20] and 1000 meters [35] was used
to cluster points to reflect the spatial measurement accuracy of the CDRs. For our stay-
location detection, we use a density based clustering with similar parameters. At the end
of the clustering step, consecutive data points with the same cluster ID are combined into a
single record with start time equal to the timestamp of the first of the consecutive events at
that cluster, and end time equal to the time stamp of the last of the consecutive events at
that location cluster.

(2) Construct and process an oscillation graph. Consecutive CDR records may have
nearly identical timestamps, but different location IDs. Such oscillations occur because the
cell phone is communicating with multiple cell towers. These instantaneous location jumps
may occur because of traveling users whose cell phone have just come in contact with a new
cell tower along the way, but often such location jumps are observed even though users are
standing still. In the latter case a user’s location appears to oscillate back and forth between
two clusters.

When a user’s location is simultaneously reported in two location clusters, an edge be-
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tween these two clusters is added to the oscillation graph. Edges in the oscillation graph
connect clusters that are suspicious for oscillations.

(3) Filter oscillation points. With cluster-pairs transformed into an oscillation graph,
one can discern oscillations from travel based on the pattern of location cluster sequences.
Suppose the locations of two consecutive records are location cluster A and location cluster
B, respectively. If edge (A, B) exists in the oscillation graph, and if the user visits cluster
A, then B, back and forth, the visit to B is determined to be an oscillation - the points are
combined into a single record with a duration determined by the combined time spent in A
and B. We assign the location of these records to cluster A if the user spends more time in
A than B, else it is assigned to cluster B.

(4) Filter locations with short durations. At this point, positioning noise and oscillation
noise are removed. Now we have a sequential list of location cluster visits, each with a
start and end time. Some of these cluster visits are stay locations, and others are pass-by
points. The accepted threshold for stay locations varies widely. The threshold was set to
20 minutes in [37], 15 minutes in [35] and 10 minutes in [20]. Several GPS applications use
stay durations ranging from 90 seconds to 10 minutes. We chose a threshold of 5 minutes,
because in the activity based modeling context, 5 minutes is an appropriate threshold for an
activity location, as opposed to a way-point.
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Appendix B

Home and Work Inference

We recognize the importance of long-term recurrent stay points such as “home” and “work”
that enforce a structure in the users’ daily mobility. Various strategies have been used for
home and work location detection. A mixture of Gaussians is a popular method to model
locations centered on home and work [7]. Another suggested definition of “home” was the
location where the user spends more than 50% of time during night hours with night hours
defined as 8pm to 8am [24]. Similarly, work hours can be defined as the area where the user
spends more than 50% of time during day hours.

We adopt accepted methods in order to simplify processing and, most importantly, infer
“anchor” points in the daily sequences that provide space-time context that is crucial to
build a generative model of secondary activities. A range of travel choices, such as mode of
transportation and destination choice, depend on the overall structure of the day. Moreover,
early identification of home and work allows pre-clustering users into groups with similar
behaviors by using heuristic decision rules (employed/unemployed/part-time worker, etc).

Our detection of the home and work locations is similar to the method of [24]. We
identify home as the location where the user spends the most stay hours during home hours,
and we identify work as the location where the user spends the most hours during the work
hours. However, we define home and work hours to be much narrower time windows than
the 8am-8pm criteria used in [24]. Borrowing from [20], the hours from midnight to 6am are
defined as home activity hours, and 1pm to 5pm on weekdays are defined as working hours
because they capture the core set of working hours for both early and late workers [19].
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