
TreeRegex: An Extension to Regular Expressions for
Matching and Manipulating Tree-Structured Text (Technical

Report)

Benjamin Mehne

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-202
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-202.html

December 12, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

TreeRegex: An Extension to Regular Expressions for Matching
and Manipulating Tree-Structured Text (Technical Report)

Benjamin Mehne

University of California, Berkeley

bmehne@cs.berkeley.edu

ABSTRACT
Tree-structured text is ubiquitous in software engineering and pro-

gramming tasks. However, despite its prevalence, users frequently

write custom, specialized routines to query and update such text.

For example, a user might wish to rapidly prototype a compiler for

a domain-specific language by issuing successive transformations,

or they might wish to identify all the call sites of a particular func-

tion in a project (e.g. eval in JavaScript). We propose a natural and

intuitive extension to regular expressions, called TreeRegex, which
can specify patterns over tree-structured text. A key insight behind

the design of TreeRegex is that if we annotate a string with special

markers to expose information about the string’s tree structure,

then a simple extension to regular expressions can be used to de-

scribe patterns over the annotated string. We develop an algorithm

for matching TreeRegex expressions against annotated texts and

report on five case studies where we find that using TreeRegex
simplifies various tasks related to searching and modifying tree-

structured texts.

ACM Reference format:
Benjamin Mehne. 2017. TreeRegex: An Extension to Regular Expressions

for Matching and Manipulating Tree-Structured Text (Technical Report). In

Proceedings of , , , 16 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Tree-structured text is widely used in many different software engi-

neering and programming tasks. Examples of tree-structured text in-

clude various programming languages, domain-specific languages,

and data formats such as XML and JSON. Users of tree-structured

text often need to query patterns over such text and modify text.

For example, a user may want to query if the eval function has

been called in the body of any function in a JavaScript program

or rapidly prototype a compiler for a domain-specific language by

modifying the abstract-syntax tree of a program.

There are several languages and associated tools that users often

use to search patterns and to modify tree-structured text. Regular

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

, ,
© 2017 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

expressions [34, 35, 38, 52, 56] are one such special formalism that

is used to describe text patterns. They are widely used by program-

mers and computer scientists [28, 36, 66] to concisely and elegantly

describe search patterns over text. Most popular programming lan-

guages support regular expressions; some popular text-processing

languages, such as awk, sed, and perl, were designed around reg-

ular expressions. A key reason behind the popularity of regular

expressions is that they are compact and concise. Moreover, regular

expressions can extract substrings from texts. This is particularly

useful in extracting information and in modifying texts.

However, formal regular expressions are not expressive enough

to describe patterns over text having a tree-like structure. For ex-

ample, it is impossible to write a regular expression that matches a

block of statements in a C-like language because a statement block

can have nested blocks.

Context-free grammars (CFGs) overcome the limitations of reg-

ular expressions by providing a more expressive formalism for

describing patterns over tree-structured text. Although CFGs are

strictly more powerful than regular expressions, they are not as

compact and concise as regular expressions—pattern matching and

replacing with CFGs, naïvely, requires the user to write an explicit

program.

Term-rewriting systems [15, 18, 20, 22, 24, 51, 58, 61] simplify

the use of CFGs for text search and modification. These systems

allow programmers to describe tree rewriting declaratively as a

set of rules. Though term-rewriting systems have been found to

be more convenient to use compared to traditional parsers and

abstract-syntax tree (AST) visitors, they require a complete porting

of the CFG of the given text to the term-rewriting system, which

could be non-trivial for complex languages.

We propose a natural and intuitive extension to regular ex-

pressions, called TreeRegex, which can specify patterns over tree-

structured text. A key insight behind the design of TreeRegex is
that if we annotate a string with special markers to expose information
about the string’s tree structure, then a simple extension to regular
expressions can be used to describe patterns over the annotated string.
Based on this insight, we propose a two-step process for specify-

ing and matching TreeRegex expressions against a tree-structured

string. In the first step, we annotate the string by inserting paren-

thesis meta-characters (% and %) in the string
1
. This annotated

string, which resembles an S-expression in LISP [53], has balanced
occurrences of (% and %) and is called a serialized tree. For example,

(%2+(%3∗4%)%) is the annotated string for 2+3∗4. The parenthesis

meta-characters make the tree-structure of the string explicit. An

1
In the implementation, the plain ASCII parentheses and percent characters are used.

We use a sub- and super-script here to improve legibility in these and related characters.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, , Benjamin Mehne

existing parser and source-code generator (i.e., a tool that serial-

izes an abstract-syntax tree to the original string) could easily be

modified to generate an annotated string.

In the second step, we write patterns over the serialized tree

as TreeRegex expressions. A TreeRegex expression is a regular

expression extended with balanced (%, %), balanced (
*
,
*
), and the

wildcard meta-character @. The exact motivation and semantics

of these extra meta-characters are described in the following two

sections. After describing a pattern in TreeRegex, we match the

pattern against the serialized tree using an efficient implementation

of our algorithms, called TreeRegexLib.
TreeRegex has several key advantages. 1) It nicely decouples

the CFG and parsing aspect of a string from the pattern expression

and matching aspect. One can easily modify an existing parser in

the first step to create a serialized tree—there is no need to port

the CFG to our system. 2) TreeRegex is a natural extension to

regular expressions, which we believe would be easy to learn if

one is familiar with regular expressions. 3) Since TreeRegex is

independent of the underlying CFG used to generate the serialized

trees, it can be used to replace a sub-tree in a serialized tree with

a sub-tree or string that does not conform to the original CFG.

We take advantage of this flexibility in a case study that generates

MIPS [3] assembly code from a simple language, based on the BC [2]

calculator language. For this compilation, our approach requires

no information about the grammar of MIPS. 4) One can restore the

original string from a serialized tree by dropping the parenthesis

meta-characters (% and %). This becomes useful while debugging

TreeRegex. 5) TreeRegex matching and replacement algorithms

can be implemented easily by using the API of an existing regular

expression library. Thus, TreeRegex can be easily ported to many

languages and this will allow programmers to use TreeRegex with

their favorite languages to deal with tree-structured texts. So far,

we have implemented TreeRegex for C++, Java, and JavaScript

programs as TreeRegexLib, we have released the C++, the most

mature version here: https://treeregexlib.github.io.

We apply TreeRegexLib to five case studies: a tool for instru-

menting JavaScript programs for branch coverage, a tool to prevent

SQL injection vulnerabilities, a linter for JavaScript, a tool for find-

ing errors in C programs, and a compiler from a BC-like [2] language

to MIPS assembly code. In our case studies, we found TreeRegex to
be powerful enough for our tasks. We also found that we wrote sig-

nificantly fewer lines of code while using TreeRegexLib compared

to conventional AST-based techniques. Our experiments on the

compiler for the BC-like language show that our TreeRegexLib im-

plementation runs fast enough for practical usage—we can compile

a 160kB file in less than 1 second.

2 OVERVIEW
We gently introduce TreeRegex through a series of motivating

examples that we often encounter in program analysis and compiler

construction.

Motivating Example. Suppose we want to check if the function

eval has been called inside the body of any function in a JavaScript

program
2
. We may try to find such a usage of eval using a regular

2
We are interested in this particular code pattern because calling the eval function
inside a JavaScript function 1) prevents just-in-time (JIT) compilation of the function,

expression. The following expression comes to mind
3
:

function .*(.*){.*eval(.*).*}

where .matches any character and * is the Kleene star operator (we

do not treat parentheses as a meta-character here). Unfortunately,

this regular expression does not work—it will match the following

code, for instance:

function f1(x){bar()} eval(s); function f2() {}

This is because .*will match too much. Making the following slight

modification to the regular expression prevents this problem:

function .*(.*){[ˆ}]*eval(.*).*}

Here, we use [ˆ}], a character class excluding curly braces, instead

of the .meta-character. Unfortunately, this regular expression does

not match

function f1(v){{bar()} eval(s)}

which should be matched—it has a call to eval in its body, preceded

by a block with a call to bar. Both of these example regular expres-

sions fail because they ignore the structure of the target expressions.

To find the pattern we are looking for, we must specify that eval
can appear either at the top-level block or in some nested block of

a function body.

Patterns over structured text could be expressed using context-

free grammars (CFGs) [29]. A standard technique to search for

such patterns is to write a full-fledged CFG of the JavaScript lan-

guage and then use a parser to convert a JavaScript program into an

abstract-syntax tree (AST). The code pattern can then be searched

by performing a programmatic traversal of the AST. This is the

de-facto technique that various linters use to discover problematic

code snippets. Unfortunately, this technique has a few disadvan-

tages. First, we need to understand the structure of the AST enough

to know where to look for the definition of a function and for the

invocation of the eval function. Second, searching for a particular

code pattern requires us to write a program that visits over the

AST and explicitly looks for the identifier eval in a function defini-

tion sub-AST. Such code will span several lines and will not be as

compact as a simple, single-line regular expression.

2.1 TreeRegex and serialized trees
We propose a two-step technique to represent strings having tree-

like structure and to express search patterns over them. In the first

step, we convert a string into an annotated string which makes the

tree structures of the string explicit. Specifically, we convert a string

into an annotated string, similar to S-expressions in LISP [53], where

the recursive structures are surrounded by the special parenthesis

meta-characters (% and %). For example, we convert the string

“3 ∗ 4+ 5 ∗ 6”, denoting an arithmetic expression, into the annotated

string “(%(%3 ∗ 4%) + (
%
5 ∗ 6%)%)”.

4
Such an annotated string has

two important properties:

and 2) can unexpectedly change the local variables of the enclosing function, which

makes reasoning about the correctness of the function difficult.

3
Whitespace handling is ignored in this section for simplicity of exposition.

4
In this serialization we do not enclose the integer literals in (% and %) to simplify

exposition and to reduce clutter. In our actual implementation, we surround integers

with (% and %).

https://treeregexlib.github.io

TreeRegex: An Extension to Regular Expressions (TR) , ,

• An annotated string has balanced parentheses (% and %). That

is, each opening parenthesis (% has a later corresponding closed

parenthesis %), and the string between the pair of parentheses is

again balanced.

• In an annotated string, if we remove the parenthesis meta-

characters, we get back the original string.

The string between a pair of balanced parentheses denotes a

structure that can have other nested structures. We call such anno-

tated strings serialized trees. To convert a string into a serialized tree,
one can use an existing parser and an AST-to-source code generator.

Programming languages and various structured data formats, such

as XML, usually come with an implementation of a parser and an

AST-to-source code generator, and they could be easily modified to

annotate a string with (% and %). For example, we modified 108 out

of 2298 lines of code in esotope code generator [10] to generate

serialized trees for JavaScript programs. We have also implemented

a generic serialized tree generator for ANTLR [47] grammars using

128 lines of Java code. A key advantage of converting a string into

a serialized tree is that a simple extension to regular expressions

can now be used to describe patterns over serialized trees.

The second step of our technique will be to check whether an

annotated input string matches a desired pattern. To do so, we

propose a simple, yet powerful, extension to regular expressions,

called TreeRegex, to specify patterns over serialized trees. We next

introduce TreeRegex gradually through a series of simple examples

to demonstrate its intuitiveness.

In our examples, we assume that the inputs are strings denot-

ing arithmetic expressions constructed using positive integers and

arithmetic operators +,−, ∗, /, (,). We assume that the strings have

no space or newline characters. We also assume that the strings

have been parsed and converted into serialized trees using a parser

with standard precedence declaration for arithmetic operators. For

simplicity of exposition and to reduce clutter, we assume that in-

teger literals are not enclosed within (% and %). For example, the

arithmetic expression string “3 ∗ 4+ 5 ∗ (6− 2)” has been converted

to the serialized tree “(%(%3 ∗ 4%) + (
%
5 ∗ (%((%6 − 2%))%)%)%)”.

Matching an exact serialized tree. Let us first write a pattern that

checks if an arithmetic expression is the addition of two positive

integers. For example, “2 + 3 + 1” does not match this pattern, but

“2 + 3” matches the pattern. Such a pattern can be easily written

using the regular expression: \d+\+\d+. Here \d denotes the digit

character class and \d+ denotes one or more digits. Since + is a

meta-character in regular expressions, we escape + with \ to de-

note the actual + arithmetic operator. When matching against the

serialized tree corresponding to an arithmetic expression, we need

to use a TreeRegex expression. In TreeRegex, we extend regular

expressions by allowing the usage of parenthesis meta-characters

(% and %) in a balanced fashion. For example,

(%\d+\+\d+%)

is a TreeRegex expression and it matches the serialized tree (e.g.

“(%2 + 3%)”) corresponding to an arithmetic expression where two

positive integers are being added. It is important to note that a

regular expression in a TreeRegex expression cannot match the

meta-characters (% and %). Another example of a TreeRegex ex-

pression that matches an arithmetic expression is one that de-

notes the addition of two expressions, where each expression

is the multiplication of two positive integers. This expression

is: (%(%\d+*\d+%)\+(
%\d+*\d+%)%). This TreeRegex expression

matches the serialized tree “(%(%31∗4%)+(
%
5∗62%)%)” (i.e. serialized

tree for “31 ∗ 4 + 5 ∗ 62”).

Matching an arbitrary serialized tree. So far, we have extended

regular expressions with parenthesis meta-characters (% and %)—a

TreeRegex expression with this extension has the form of a serial-

ized tree. However, this extension is not enough if we want to match

more complex patterns. For example, suppose we want to write a

pattern that matches an arithmetic expression that is the addition

of two arbitrary arithmetic expressions. We need a (sub-)TreeRegex
expression that matches an arbitrary arithmetic expression. In the

general case, we want a pattern that matches an arbitrary serialized

tree beginning and ending with (% and %), respectively. We add the

meta-character@ to TreeRegex to match such arbitrary serialized

trees. A TreeRegex expression that matches the addition of two

arbitrary arithmetic expressions could then be written as

(%@\+@%).

Here@ matches any serialized tree that starts with a (% and ends

with a %). Note that @ cannot match any arbitrary string. This

TreeRegex expression will now match “(%(%31∗ 4%)+ (
%
5∗ 62%)%)”

(i.e. serialized tree for “31∗4+5∗62”), and “(%(%2+3%)+(
%
1∗4%)%)”

(i.e. serialized tree for “2 + 3 + 1 ∗ 4”). It will not match “(%2 + 3%)”,

because “2” and “3” do not start with (% and end with %). Note that

we did not enclose an integer literal in (% and %) to illustrate this

subtlety; our implementation does enclose integers in (% and %).

Matching a serialized tree nested in another serialized tree. Now
suppose wewant tomatch any arithmetic expression that contains a

specific form of nested sub-expression. The form we are looking for

is an addition of two integers, and it can be nested arbitrarily deep

inside the top-level expression. For example, the pattern should

match both “(%(%2∗ (%((%3+11%))%)%) ∗1%)” (i.e. serialized tree for

“2∗(3+11)∗1”) and “(%2+3%) (i.e. serialized tree for “2+3”). We now

need the ability to specify a pattern that matches a serialized tree

that contains a serialized tree at an arbitrary depth. To do so, we add

twomore parenthesesmeta-characters (* and *) (inspired by Kleene

star in regular expressions) to TreeRegex. A TreeRegex expression
can use these meta-characters as long as the expression is balanced

with respect to both (%, %), and (*, *). A pattern (*t*), where t

is some other TreeRegex expression, matches any serialized tree

that contains a nested serialized tree matching t. With this new

extension, the TreeRegex expression

(*\d+\+\d+*)

matches an arithmetic expression that has a nested arithmetic sub-

expression that is the addition of two positive integers.

Revisiting the motivating example. We are now ready to write a

TreeRegex expression that checks if a JavaScript program contains

an eval-calling function body. First note that a function definition

in a JavaScript program can be arbitrarily nested inside the program.

A call to eval can be arbitrarily nested within the body of a function
as well. Therefore, we need two sets of (*, *): one pair to match a

, , Benjamin Mehne

function definition and another pair to match a call to eval. The
TreeRegex expression for the pattern is

(*function .*(@){(*eval(@)*)}*)

This pattern matches the serialized tree of a JavaScript program

if the program has a function whose body calls eval. The first @
matches the serialized tree for the list of parameters, and the second

@ matches the serialized tree for the argument to eval. Note that
while .* matches an arbitrary string, it cannot match a serialized

tree—if the name of function included structured information, like

a template type in C++, a TreeRegex matching a serialized tree

would be required. Similarly,@matches an arbitrary serialized tree,

but it cannot match any string.

2.2 Capture Group and Replacement
Most regular expression libraries provide support for search-and-

replace via replacement strings. We provide support for similar

search-and-replace operations in TreeRegex.
Let us consider the motivating example again. Now we want to

replace the eval call with a safe_eval call. To do this, we make

slight modifications on the TreeRegex expression as follows:

(%function ((.*)) (@){(*eval(@)*)}%)

We simplify the example by replacing the outermost *-parentheses

with %-parentheses, and add ((and)) to capture the name of the

function. We use ((and)) to denote regular expression parenthesis

metacharacters that capture. Now we need to capture four pieces

of information: the name of the function, the formal parameters,

the argument of the eval function call, and the text that surrounds

the eval function call. The function name is matched and captured

by the ((.*)). In TreeRegex, we specify that the wildcard@ captures

the serialized tree it matches. This means the formal parameters

and the argument passed to the eval function are captured. We

can now build our desired replacement string

(%function $1($2){. . . safe_eval($4). . . }%)

where $1 and $2 refers to the first and second captured values, $4

refers to the value captured by @ (which is the argument passed

to the eval function), and . . . are the missing strings that we are

yet to specify.

The strings that surround the eval function call aremore difficult

to manipulate because there is no replacement string syntax in

conventional regular expressions for inserting a string in the middle

of a captured value.

We need to insert our new safe_eval function call between the

strings that are to the left and right of the eval function call. Before

that, though, we need to capture the strings to the left and right of

the eval function call. In TreeRegex, we specify that an expression

of the form (* t *) creates a capture group that captures a string

with a hole. For example, if (*eval(@)*) matches the string bar();

foo(eval(s),2); , then the (*, *) pair will capture the string bar();

foo(•,2); , which has a hole •. This captured string will be referred

by $1 in this case. With this new definition of a capture group, we

can specify our desired replacement string as

(%function $1($2){$3(%safe_eval($4)%)}%)

In this replacement string, $3 represents the strings surrounding

the eval function call. This string has a hole. The question is what

(a) A valid tree. (b) An invalid tree.

Figure 1: Example trees. The first tree is equivalent to serial-
ized tree “(%Hello (%(%I%)am a(%tree%)%).%)”. The second tree
is invalid, and doesn’t have a corresponding serialized tree.

string dowe use to fill the hole. In our approach, we fill the hole with

the serialized tree that follows $3 in the replacement string, which

in our case is the string (%safe_eval($4)%) where $4 is suitably

replaced.

In summary, in TreeRegex a @ captures a serialized tree string,

and (*t*) captures a string with a hole. If in a replacement string, $n

refers to a string with hole, then the hole is filled with the serialized

tree string that follows $n in the replacement string.

3 FORMAL DESCRIPTION
We formalize the behavior of TreeRegex expressions and replace-

ments in this section. We begin with describing serialized trees

and how to construct them from a tree data-structure in 3.1. We

then describe the syntax, semantics, and a matching algorithm for

TreeRegex expressions in 3.2, 3.3, and 3.4, respectively. We describe

the replacement algorithm in 3.5. Finally, the time/space complexity

of the matching algorithm is discussed in 3.6.

3.1 Serialized Tree
A TreeRegex expression is a pattern that matches against a serial-

ized tree. A serialized tree is formed from a tree. A tree is recursively

defined as follows. A tree is a non-empty list each element of which

is either a tree or a non-empty string. Moreover, two strings in a list

cannot be next to each other. Figure 1a shows a valid tree. The tree

in Figure 1b is not a valid tree because there are two consecutive

nodes in the tree that are strings.

For the purpose of TreeRegexmatching, we assume that an input

tree against which we need to match a TreeRegex expression is

given in a serialized form as a string. This serialized tree form, which

resembles S-Expressions in LISP [53], can be constructed recursively

from a tree as follows. The serialized tree of a string is the string

itself. For a list, compute the serialized trees of its elements: the

serialized tree of a tree is computed recursively. Once we have the

serialized trees of the elements of the list, we concatenate them

and surround the resulting string with (% and %). This gives us the

serialized tree of the tree represented by the list.

For example, the serialized tree for the tree in Figure 1a is

“(%Hello (%(%I%)am a(%tree%)%).%)”. Note that a serialized tree re-

tains the structure of the tree by surrounding each sub-tree with

(% and %). If we remove occurrences of (% and %) from a serialized

tree, we get back the original string.

TreeRegex: An Extension to Regular Expressions (TR) , ,

We need a formal grammar for serialized trees in order to de-

scribe the matching and replace algorithms for TreeRegex. We use

the following grammar to describe the set of all serialized trees.

⟨Tree⟩ ::= (% ⟨ListOfTrees⟩ %)

⟨ListOfTrees⟩ ::= (⟨String⟩?⟨Tree⟩)* ⟨String⟩?

⟨String⟩ ::= u ∈ Σ+

In a grammar, we surround non-terminals with ⟨⟩. ⟨Tree⟩ denotes
the root of a tree. This non-terminal has a starting (% to distin-

guish it from a leaf, a list whose each element is either a tree or

a string (denoted by ⟨ListOfTrees⟩), and then a closing %) to end

the list. The production rule for ⟨ListOfTrees⟩ denotes a non-empty

list of alternating strings and sub-trees. For simplicity, we use a

regular expression to describe the production rule as in Extended

Backus-Naur Form [37]. The rule ensures that any two strings are

non-consecutive in the list. This property is important to prevent

ambiguity in transforming an input to the corresponding serialized

tree, as observed in the example of Figure 1b. ⟨String⟩ is the gram-

mar for strings: they are of non-zero length, from the alphabet Σ.
We assume Σ does not contain the metacharacters (%and %), or the
TreeRegex metacharacters@, (*, and *).

5
In the rest of the paper,

we will use the symbols s, s ′, s1, si , sn etc. to denote serialized trees

or strings over Σ. We use Σs to denote the alphabet that contains Σ
plus all the meta-characters and a serialized tree is a string over Σs .

3.2 TreeRegex
TreeRegex is a simple extension to regular expressions. The exten-

sion has been designed keeping in mind that we want to describe

patterns not only over simple linear strings, but also on serialized

trees. The following is the grammar for TreeRegex.

⟨TreeRegex ⟩ ::= (
% ⟨ListOfTreeRegexes⟩ %) | (* ⟨ListOfTreeRegexes⟩ *) |@

⟨ListOfTreeRegexes⟩ ::= (⟨Regex ⟩?⟨TreeRegex ⟩)* ⟨Regex ⟩?

⟨Regex ⟩ ::= a regular expression over Σ

The grammar is similar to that of a serialized tree. A TreeRegex
expression, denoted by ⟨TreeRegex⟩, can be of three types: exact ex-

pressions, context expressions, and wildcard expressions. An exact

expression starts with a (
%
followed by a list whose each element is

either a TreeRegex expression or a regular expression, and finishes

with a %). The list is denoted by ⟨ListOfTreeRegexes⟩ and cannot

have two regular expressions next to each other. This restriction

naturally follows from the similar restriction posed on serialized

tree. A context expression is visually similar to an exact expression,

except that it starts with a (
*
and ends with a

*
), using symbols

inspired by the Kleene star
6
. A wildcard expression is denoted by

the terminal symbol @ (and it contains no ⟨ListOfTreeRegexes⟩
expressions). A regular expression describes a regular language

over the alphabet Σ which does not contain (
%
, %), (

*
,
*
), and @.

Thus a regular expression (including .*) cannot match any of these
meta-characters.Wewill use the symbols t , t ′, t1, ti , tn etc. to denote

TreeRegex expressions.

5
In the actual implementation we escape the meta-characters in a string suitably.

6
It operates like a Kleene star, except instead of matching multiple characters on a

single level of a tree, it matches many levels of a tree.

3.3 Language of TreeRegex
A TreeRegex expression t describes a set of serialized trees, denoted
by L(t). L(t) is defined recursively as follows.

Exact Expressions. If t is a an exact expression of the

form (%t1 . . . tn%), then the language of this expression is:

L((%t1 . . . tn%)) = {(
%s1 . . . sn%) | s1 ∈ L(t1) . . . sn ∈ L(tn)}. For a

string to be in the language of (%t1 . . . tn%), it must be constructed

from an element of the language of each ti and then surrounded

by (% and %). That is, if each si is in L(ti) then (
%s1 . . . sn%) ∈

L((%t1 . . . tn%)).

Context Expressions. If t is a context expression of the form

(*t1 . . . tn *), then it describes the language where each string is

a serialized tree containing a string from L((%t1 . . . tn%)) as some

subtree. In order to define the language of a context expression

formally, we need to define a serialized tree context. A serialized tree
context is a serialized tree where some subtree is replaced by a hole.

The subtree does not need to be immediate—it can be the subtree of

a subtree that is the hole, for instance. The hole is denoted by a •.

Given a serialized tree context c and a serialized tree s , we use c(s)
to denote the serialized tree obtained by replacing the hole in c by s .
Then we can define L((*t1 . . . tn *

)) = {c(s) | s ∈ L((%t1 . . . tn%)) and

c is any serialized tree context}

Wildcard Expressions. If t is a wildcard expression (i.e. if t = @),

then L(t) is the set of all serialized trees.

Regex Expressions. We do not define the language of regular ex-

pressions since it is a well-studied topic and for the purpose of

defining TreeRegex, we do not need a formal definition of reg-

ular expressions. We just assume that the language of a regular

expression is a subset of the strings in Σ∗, where Σ is our string

alphabet.

3.4 TreeRegexMatching Algorithm
Next we describe an algorithm that matches a string against a

TreeRegex expression. We say that a TreeRegex expression t
matches a serialized tree s if s ∈ L(t). Similar to conventional regu-

lar expressions, TreeRegex allows us to not only match against a

string, but also to extract strings, serialized trees, and serialized tree

contexts for further processing. In conventional regular expressions,

this is achieved by defining groups of characters and capturing them

using the parenthesis capture group meta-characters. A string that

matches a nested/sub-regular expression within a pair of parenthe-

ses gets captured as a group. In the case of TreeRegex, a serialized
tree that matches a wildcard expression or a serialized tree con-

text that matches a context expression gets captured as a group.

Note that in case of TreeRegex we do not need to explicitly use

parentheses to define a capture group—any wildcard expression or

context expression implicitly defines a capture group.

We describe a function match which takes a TreeRegex expres-

sion t and a serialized tree s . It returns a list of captures if s matches t
and returns nil, which we distinguish from an empty list, otherwise.

We will denote lists of captures using the symbols K ,K ′,K1,Ki ,Kn
etc. The function match(t , s) is defined recursively as follows:

• Case 1. t is a regular expression and s is a string in Σ+ and

not a serialized tree: If t matches the string s using conventional

, , Benjamin Mehne

regular expression matching algorithm, thenmatch(t , s) returns a
list of captures that one gets from the regular expressionmatching

algorithm.

• Case 2. t is of the form (%t1 . . . tn%) and s is of the form

(%s1 . . . sm%): If n = m and match(t1, s1), . . ., match(tn , sn) re-
turns the lists K1, . . . ,Kn , respectively, then match(t , s) returns
the list K1 · K2 . . .Kn if none of Ki ’s are nil. (We use K1 · K2 to

denote the list obtained by concatenating lists K1 and K2.)

• Case 3. t is @ and s is of the form (%s1 . . . sm%): match(t , s) re-
turns [s]. (We use [s] to denote the list containing a single element

s .)
• Case 4. t is of the form (*t1 . . . tn *) and s is of the form

(%s1 . . . sm%): we consider the following two cases, the second

of which is recursive. Note that in the recursive step, the entire

depth of the tree may be matched against.

– If match((%t1 . . . tn%), s) returns a list, say K , then match(t , s)
returns the list obtained by prepending the serialized tree con-

text • to K , i.e. returns the list [•] · K .
– Otherwise, if there exists a i such that match(t , si) returns
a list of the form [e] · K , then match(t , s) returns the list

[(%s1, . . . , si−1, e, si+1, . . . , sn%)] · K . If multiple such i’s exist,
the first is chosen.

• Default Case. t and s do not match any of the above cases:

match(t , s) returns nil, which we use as a “bottom” value and is

not the same as an empty list.

A formal description of the function match(t , s) can be found in

Appendix B.

3.5 TreeRegex Replacement Algorithm
Most regular expression libraries provide support for search-and-

replace via replacement strings. A replacement string is the string

that a regular expression match is replaced with during a search-

and-replace operation. Replacement strings usually are strings with

special meta-characters of the form $n, where n is a positive integer.

During a replacement action each $n in the string gets replaced

by the nth capture while matching the regular expression against

a string. In TreeRegex, we support similar search-and-replace ca-

pabilities. A replacement string in TreeRegex is a serialized tree

which could contain special meta-characters of the form $n, where
n is a positive integer. These special meta-characters will be re-

placed by strings, serialized trees, or serialized tree contexts. The

replacement algorithmworks in a straight-forward way for captures
in the form of strings and serialized trees: we simply replace a $n

in the replacement string with the nth capture during TreeRegex
matching. However, the algorithm gets slightly complicated when

we have a capture in the form of a serialized tree context.

We now define the function replace(r ,K), which takes a replace-

ment string r and a list K of captures captured during a TreeRegex
matching and returns a new serialized tree. We assume that all

meta-characters $n appearing in the replacement string have a cor-

responding item in the list of captures. We use K(i) to denote the

ith capture in K ,w1 andw2 to denote arbitrary strings over Σs (i.e.
strings containing meta-characters and characters from Σ), s to
denote a serialized tree, c to denote a serialized tree context. In the

replace function, we replace each $n with a string or a serialized

tree as follows.

• Case 1. r is the string w1$nw2 (where w1 and w2 are arbitrary

strings) and K(n) is a string: Function replace replaces w1$nw2

with the string obtained by concatenatingw1, K(n), andw2.

• Case 2. r is the string w1$nw2 and K(n) is a serialized tree: As

before, function replace replacesw1$nw2 with a string obtained

by concatenatingw1, K(n), andw2. Note that K(n) is a serialized
tree, so it is a string in Σs .
• Case 3. r is the stringw1$nsw2 and K(n) is a serialized tree con-

text. If K(n) is a serialized tree context, then we do a replacement

only if a serialized tree, s , follows $n in r ; we use s to fill up the

hole in K(n). Function replace first replaces the hole • in K(n)
with s to get the serialized tree

7 K(n)(s), then replacesw1$nsw2

with a string obtained by concatenatingw1, K(n)(s), andw2.

We apply the above steps repeatedly until nomore replacements can

be performed. Note that in the third case above, ifK(n) is a serialized
tree context and $n is not followed by a serialized tree in r , we skip
the replacement of $n until replace converts r into a r ′ where $n is

followed by a serialized tree. Because of this, after the termination

of the algorithm we may end up in a serialized tree which contains

a meta-character of the form $n. In that case, replacement has failed

and we raise an exception. For example, the replacement string

(%a$1c%)will fail if the listK = [•, (
%b%)]. However, when the same

list is used with the replacement string (%a$1$2c%), the algorithm
first replaces $2 with (%b%) to yield (%a$1(%b%)%) [second case]

and then fills the hole in $1 with (%b%), yielding the final string

(%a(%b%)c%) [third case]. A formal description of the algorithm can

be found in Appendix C.

3.6 Running Time Complexity
The time complexity of the matching algorithm is bounded by

O((mn)k+1), wherem is the size of the TreeRegex expression, n is

the size of the serialized tree, and k is the number of context ex-

pressions in the TreeRegex expression. The algorithm has a space

complexity ofO(k). One can also use memoization during matching

to come up with an algorithm whose time complexity isO(mn) and
space complexity is O(mn). In our implementation we do not use

memoization because k is usually 1 or 2 in our usage. A detailed

complexity analysis of the algorithm can be found in Appendix D.

The replacement algorithm is straight-forward and has a time com-

plexity of O(mn), where where m is the size of the replacement

string and n is the size of the serialized tree.

4 CONSTRUCTING TREEREGEX EXPRESSIONS
To perform matching or replacement in a tree-structured text, we

need to construct suitable TreeRegex expressions. This could be-

come tedious if we need to construct large number of TreeRegex
expressions from scratch. In our case studies, we found that if we

take a look at a couple of source and target serialized trees, we can

easily write our desired TreeRegex expressions and replacement

strings. We next describe a simple process that we used to derive

TreeRegex expressions and replacement strings from examples.

The process significantly helped us through our case studies. The

process has three steps: creating a few examples of serialized trees

7
Note that if c is a serialized tree context and s is a serialized tree, then c(s) is the
serialized tree obtained by replacing the hole in c with s .

TreeRegex: An Extension to Regular Expressions (TR) , ,

before and after the transformation, stripping out irrelevant con-

text and details via “diff”-ing, and identifying replacement indices.

We use a simple example to demonstrate the process: finding and

instrumenting the conditions of if-statements in JavaScript.

Collecting Relevant Serialized Trees. In order to derive a

TreeRegex expression for a particular task, we first create a few

sample programs before and after transformation. To search for

if-statements in JavaScript programs, we use the following example

input programs:

• if(x<0) m--; • function f(){if(k==3){i*4;}}

We specifically varied the condition and the body of the if-

statements so that the only commonality between the samples

is the presence of an if-statement. The desired instrumented forms

are as follows:

• if(Cond(x<0)) m--;

• function f(){if(Cond(k==3)){i*4;}}

Typically only two to three examples are necessary to derive the

correct TreeRegex expression. Examples with comments or un-

usual whitespace are also useful so that the user can determine if

the parser removes them or treats them as separate sub-serialized

trees. For the duration of this section, we will consider a parser that

removes these artifacts.

We next convert these example programs into the following

serialized trees:

• (%if((%(%x%)<(
%0%)%))(

%(%(%m%)--%);%)%)
• (%function f()(% {(%if((%(%k%)==(

%3%)%))(
%

{(%(%(%i%)*(
%4%)%);%)}%)%)}%)%)

We generate similar serialized trees for the instrumented

JavaScript programs.

Stripping Out Irrelevant Context and Details via Diff-ing. Each of

the serialized trees, obtained from the examples, have additional

context and details that are unimportant to the task of instrumen-

tation. For instance, the body of each if-statement does not change

the instrumentation behavior—this is an irrelevant detail. Whether

an if-statement is in a function or in the global scope is equally

unimportant—this is an irrelevant context.
To detect these irrelevant context and details, we perform a “diff”

on each set of serialized trees. The “diff” divides each serialized tree

into those parts that are in common with each other serialized tree

in the set, and those parts which are not in common. Following is

the diff result of the set of serialized trees obtained from the two

example input programs:

• (%if((%(%x%)<(
%0%)%)) (%(%(%m%)--%);%) %)

• (%function f()(% { (%if((%(%k%)==(
%3%)%))

(% {(%(%(%i%)*(
%4%)%);%)}%) %) }%)%)

The highlighted parts represent the differences of two serialized

trees. They are either the irrelevant context or the irrelevant details.

If the highlighted part is outside of the non-highlighted parts, then

it is the irrelevant context and can be removed. If it is inside, then it

is an irrelevant detail. For each irrelevant detail that is a serialized

tree, we replace it with an indexed wildcard TreeRegex expression

(@i). For each irrelevant detail that is a string, we replace it with

an indexed ((.*))i regular expression. This distinction is necessary

because @ expressions do not match non-serialized trees and reg-

ular expressions do not match serialized trees. The following are

the results after this step. The left items are obtained from the ex-

ample input programs, and the right items are from the example

instrumented programs:

• (%if(@1)@2%)
• (%if(@3)@4%)

• (%if((%(%Cond%)(@5)%))@6%)
• (%if((%(%Cond%)(@7)%))@8%)

During the process, we maintain a mapping from the indexed expres-
sions to the concrete serialized trees and strings they have replaced.
For example, @1 and @5 refer to (%(%x%)<(

%0%)%), and @2 and @6

refer to (%(%(%m%)--%)%). This mapping will be used in the next step.

Assigning Replacement Indices. The last step is to construct re-

placement strings for the TreeRegex expressions obtained in the

previous step. To do so, we first match each @i from the pre-

instrumentation TreeRegex expression with @j from the post-

instrumentation TreeRegex expression such that they map to the

same serialized tree (e.g. @1 and @5). Thus to obtain the replace-

ment string corresponding to the post-instrumentation version,

we replace @5 with $1, where 1 is the index of the capture group

corresponding to @1 in the pre-instrumentation version.

We construct the final TreeRegex expressions by dropping the

indices from the@ expressions in the TreeRegex expressions in the
pre-instrumentation set. Additionally, one could further constrain

the ((.*)) regular expressions with more constrained regular expres-

sions, e.g. with ((\d+)). Lastly, we remove any duplicate pattern pairs,

yielding the following TreeRegex expression and replacement ex-

pression:

• (%if(@)(%{@}%)%)
• (%if((%(%Cond%)($1)%))(

%{$2}%)%)

5 TRANSFORMERS AND IMPLEMENTATION
We have implemented TreeRegexLib, a match-and-replace engine

for TreeRegex, in C++ (926 lines), Java (1044 lines), and JavaScript

(746 lines). We use the existing, unmodified regular expression li-

braries of these languages for matching regular expressions. We

believe that if a language has a library for regular expressions, it is

straight-forward to implement TreeRegexLib. In our implementa-

tions, we use a simple tree data-structure to denote a serialized tree.
This helps us to avoid unnecessary serialization and parsing of a

serialized tree while performing multiple TreeRegex matching and

replacements.

Both implementation provide the transformerAPI as a primary

interface to search and manipulate an AST. TreeRegex expressions
and replacement expressions are good at describing a single match-

and-replacement task. However, an AST-manipulating program

often needs more than that. For example, it may need to find all

subtree matching a given pattern, to accumulate information from

each matching subtree, and to perform different actions based on

the collected information rather then just depending on the syn-

tactic pattern. The transformer API is designed to support such

tasks, using TreeRegex expressions and replacement expressions

as components.

With the transformer API, an AST manipulation task can be

described using a collection of transformers. A transformer is
defined as a tuple of the form (type, t ,M, r), where type is either
pre or post, t is a TreeRegex expression,M is the modifier, which

is a function taking a list of captures and a user-defined state, and

, , Benjamin Mehne

returning a possibly modified list of captures, and r is a replacement

string. Each transformer essentially describes a single match-and-

replacement task, with additional components (a pre/post tag and a

modifier). Having a collection of transformers, the transformer
API traverses an input serialized tree in depth-firstmanner, applying

all transformers in the collection to each sub-serialized tree. When

a transformer is applied to a sub-serialized tree, the following

actions take place.

Only transformers of type pre are applied to a sub-serialized

tree before its children have been visited, and only transformers
of type post are applied to a sub-serialized tree after its children

have been visited. While visiting a sub-serialized tree, t is matched

against the sub-serialized tree to obtain a capture list, say K .
Next modifier M of the transformer is applied to the list of

captures K and the user-defined state σ . The modifier could change

the user-defined state σ and return a potentially modified list of

captures. A default implementation of a modifier returns the list of

captures passed as argument. The modifier is also a suitable place

where a warning could be printed or where necessary informa-

tion could be accumulated to the user-defined state. If the modifier

returns a non-nil list of captures, a new serialized tree is created

from the replacement string r using the list of captures. The new
serialized tree replaces the current sub-serialized tree. If a replace-

ment string is not provided, the current sub-serialized tree is kept

unmodified. A formal description of the transformation algorithm

can be found in Appendix E.1 and an example usage can be found

in Appendix E.2.

6 CASE STUDIES
We report on five case studies where we found that TreeRegexLib
significantly simplifies various tasks related to manipulating tree-

structured texts. Note that a TreeRegex expression depends on the

structure of the serialized tree of the target language. One may

think that this could pose a problem if we change our serialization

format frequently.We usually create the most generic serialized tree

for a given AST, where each internal node of the AST is enclosed

with (% and %). Such a format does not change unless we switch

to a different parser and AST. In general, once we fix a parser for

a language, the serialized tree format for the language is fixed as

well. For example, we used the same serialization format for both

of our JavaScript case studies. We did not find any need to change

the serialization format from one application to another.

6.1 Measuring JavaScript Test Coverage
In this case study, we use TreeRegexLib to instrument JavaScript

programs for tracking branch and statement coverage. The instru-

mentor has two parts: a JavaScript program to serialized tree con-
verter, and a list of transformers implementing the instrumen-

tation. We built our converter on top of the acorn parser [6] and
esotope [10] JavaScript code generator by adding 108 lines of mod-

ification.

Our instrumentation program wraps the conditional expressions

in various statements and expressions, such as if-else, for,
while, and switch. For example, the code if (x>0){x = 0;} gets

instrumented into if (Cond(id, x>0)){x = 0;}. A unique static

id is passed as the first argument to Cond and the conditional

expression is passed as the second argument. An implementation

of Cond records the branch being taken and returns the value of

the conditional expression unmodified. Similarly, we add a call to

Stmt before every statement to track statement coverage.

The instrumentation program has 13 transformers imple-

mented in 37 lines of JavaScript code. A simplified version of the

TreeRegex expression and replacement string used to instrument

an if-statement is shown below.

(%if (@) @ %) (%if (Cond($3, $1)) $2%)

Here $3 represents a static id which is generated and appended to

the list of captures in the modifier of the transformer.
The instrumentation program was quite straight-forward to

write. The total lines of code of the instrumentation program, which

is 145 including the serialized tree converter, is significantly fewer

than the 968 lines of code of the instrumentor in istanbul [13], a
popular JavaScript coverage tool. Istanbul uses a similar parser,

called esprima [11], and the esotope code generator. It program-

matically visits the AST of a JavaScript program to perform the

instrumentation. We believe that such traversal code is tedious to

write, debug, and maintain. Another important aspect of our instru-

mentation tool is that we did not use a specialized term-rewriting

tool to perform instrumentation. Such a tool would simplify the

task of writing an instrumentor; however, it would require one

to define a grammar for JavaScript. We simply reused an existing

parser and code generator. The ability to exploit existing tools for

generation of serialized trees makes TreeRegexLib practical for

real-world usage.

6.2 Detecting Injection Attacks
In this case study, we show that TreeRegex can be used to detect in-

jection attacks. Injection is a class of attacks that works by injecting

data into a program template (i.e. a program with missing portions

to be filled with data) in order to facilitate the execution of a ma-

licious program that alters the intended behavior of the original

program. Examples of injection attacks include cross-site scripting

(XSS), SQL injection, injection in strings passed to JavaScript’s eval
function and system C function, shell variable expansions.

We focused on SQL injection attacks in this case study because

they are quite common: in the past 4 years, there are over 700 CVE

reports of distinct SQL injection vulnerabilities [1]. Therefore, a

significant corpus of vulnerabilities is available for evaluation. Since

TreeRegexLib is not specifically designed for SQL, we expect that

our technique is portable to other types of injection attacks.

There is a significant volume of research on detecting injection

attacks in SQL [17, 30, 54, 64, 65]. The most popular techniques to

detect SQL injection attacks ensure that the injected string is not

treated as instructions but as a string value. Instead of checking

if the injected string has a restricted format, we use TreeRegex
expressions to check if, after injection, there is any alteration in

the syntactic structure of the resultant string. We believe that our

approach to check the resultant string instead of checking the

injected string is quite powerful. In most languages, this is sufficient

to determine whether an attack has occurred.

We evaluate our technique on existing SQL injection vulnera-

bilities in Wordpress [5] plugins. Wordpress plugins are ideal for

evaluating injection-detection techniques because (1) Wordpress

TreeRegex: An Extension to Regular Expressions (TR) , ,

does not require plugins to use a safe SQL command API, (2) Word-

press has a large installation base [5], and (3) vulnerable plugins are

easily available. From an exploit database [12] we downloaded the

last 4 years of vulnerableWorldpress plugins with exploit code. This

amounted to 32 plugins, 390k lines of PHP source code, and approx-

imately 2000 SQL commands. For each exploit, we read the exploit

writeup from the database and found the vulnerable SQL command.

We used the technique from Section 4 to construct TreeRegex ex-
pressions that matched non-exploited versions of the commands

8
.

We used the constructed TreeRegex expressions to detect any ex-

ploited vulnerability at runtime by inserting a check before the SQL

command is evaluated.

We constructed 34 TreeRegex expressions, with an average

length of 61 tokens, for the 32 vulnerable plugins. We were able to

detect all exploits, with neither false-positives nor false-negatives.

All of the vulnerable SQL commands could be parsed into serialized

trees. To understand how the expressions were able to detect injec-

tion attacks, consider these two SQL serialized trees from function

calls of the cp-multi-view-calendar plugin, version 1.1.7 [8]:

(%update (%‘wp_dc_mv_events’%) set
(%‘exdate’%)=(

%‘’%) where (%(%‘id’%)=(
%4%)%)%)

(%update (%‘wp_dc_mv_events’%) set (%‘exdate’%)=(
%‘’%)

where (%(%‘id’%)=(
%(%SLEEP%)((

%2%))%)%)%)

In the second serialized tree, the SLEEP SQL function is an injected

behavior change. The intended structure is straightforward: an

update SQL statement sets the variable exdata to be an empty

string where id has a certain value. We can create a TreeRegex
expression specifying the expected structure of the SQL command:

(%update (%.*%) set (%‘exdata’%)=(
%.*%)

where (%(%‘id’%)=(
%.*%)%)%)

Note that we are using the regular expression .* to prevent

serialized trees from appearing in certain positions above. The

regular expression .* only matches strings and not serialized trees—

therefore, any attempt to inject a syntactic structure, which is not

a string, would be blocked. In the example, we are restricting the

right-hand side of the assignments to extdata and id, along with

the table name.

6.3 Linter for JavaScript
In this case study, we re-implemented a subset of the code-checking

rules used in the popular JavaScript linting tool, ESLint [9]. Lint-
ing is a light-weight static analysis that is used to find erroneous

code patterns. ESLint implements a total of 223 checking rules. We

picked the first 10 rules listed on the ESLint website and imple-

mented them with TreeRegexLib. (We skipped two trivial rules in

the list, e.g. no-debugger).
For the implementation of the linter, we re-used the converter

from our branch/statement-coverage case study. For each checking

rule we usually wrote 1-10 transformers. In all transformers, we

had to implement a custom modifier to report warnings and, in

some cases, to perform some extra checks on the list of captures.
Next we describe the implementation of a couple of checking rules.

The no-cond-assign rule checks if there is an assignment in

a conditional expression. We wrote a TreeRegex expression for

8
In order to convert the SQL commands to serialized trees, we used an available SQL

ANTLR grammar [4] and implemented a library that takes the ANTLR parse tree and

produces serialized trees.

each of the syntactic statements and expressions that could have

a conditional expression. One such expression is (%while ((*@
= @*)) @%). This TreeRegex expression matches a while-loop

statement if its condition contains an assignment.

The no-cond-constant rule checks if there is a constant ex-

pression in a condition. For this checker we modify the TreeRegex
expressions from the above rule to extract the conditional expres-

sion from a condition statement. The conditional expression is then

passed through a set of 4 transformers which evaluate an expres-

sion to 1 (to denote that the expression is a constant) if both of

its operands are constant. If the extracted conditional expression

evaluates to a constant, we report a warning.

Overall, we managed to implement all the checkers in signif-

icantly fewer number of lines than that in ESLint. The size of

ESLint checkers ranges from 33 to 133 lines (median 57 lines),

whereas the size of corresponding TreeRegex checkers ranges from
1 to 19 lines (median 8 lines)

9
. We also found that the TreeRegex

expressions used in these checkers are often easy to read and un-

derstand. More data is available in Appendix F.

6.4 Finding Errors in C Programs
In this case study, we re-implemented potential-error checkers for

C programs [21] using TreeRegexLib. The checkers check for the

following patterns:

(1) Repeated if branches: if (x) {y;} else {y;}

(2) Suspicious loop conditions: for (i=0; i>0; i++)

(3) Repeated lines (without side effects): x; x;

The first two analyses—identifying repeated branches and suspi-

cious loop conditions—are re-implementations of previous work,

and were originally written in a framework designed for creating

checkers [21]. This framework also supports five other checkers,

four of which reason about the program’s control flow graph and

are therefore out of scope. The last checker inspects arbitrarily

nested if statements; this requires a more complicated expression

than is ideal for regex-like tools generally. The two checkers that

we do reimplement, however, require fewer total lines of code than

they do in the original system while having the same functionality.

Though the checks in this section seem simple, they detect errors

that may cause serious problems in practice—not crashing bugs,

but bugs that silently compute an incorrect result, which are often

harder to diagnose [16]. We run all three checks on Linux 4.4 driver

code (gpu, net, and staging) and detect 25 bugs and nine false

positives. We now describe the implementation of one of these

checkers. We describe the remaining checkers in Appendix G.

Repeated if branches. This checker extracts both branches of

if-statements and check whether they are syntactically equal. It

detects nineteen bugs, thirteen suspicious statements, and six false

positives in Linux driver code. The following is one such bug:

1 // linux/drivers/net/wireless/realtek/

2 // rtlwifi/btcoexist/halbtcoutsrc.c:224

3 if (priv ->mac80211.link_state >= MAC80211_LINKED)

4 undec_sm_pwdb = priv ->dm.undec_sm_pwdb;

9
Note that ESLint supports a few options per rule, which turns the checking of the

rule on or off. We do not implement such options. If we ignore the lines of code that

check options, the number of lines of code for the ESLint checkers would still be at

least half.

, , Benjamin Mehne

5 else /* associated entry pwdb */

6 undec_sm_pwdb = priv ->dm.undec_sm_pwdb;

The comment above the else branch is a tipoff that this code snip-

pet is a real bug: “associated entry pwdb” describes the false branch

but not the true branch, which suggests that the two branches

should perform different actions.

To implement the checker, we first adapt a parser to output the

serialized tree format from the source code, minus any comments

or formatting that we don’t need. We also write a TreeRegex ex-
pression that captures if statements: (%if (@) @ else @%)

10
.

Then, we write a transformer with a modifier that compares the

matches for the true and false branches of the if statement.

6.5 A Simple Compiler
In this section, we implement a compiler to understand the applica-

bility of TreeRegexLib to implement a DSL compiler. The compiler

takes BC--, a mini-language based on GNU BC [2], and outputs

MIPS assembly code. BC-- supports expressions, functions, loops,
and branch statements like those in C, but restricts all variable to

have the 32-bit integer type. The complete grammar is given in

Appendix H. The front-end (tree-serializer) was implemented on

top of the GNU BC [2] parser by adding 195 lines of modifications.

The compiler is implemented in 142 lines of C++ code, including

39 transformers.
During this case study, we found that TreeRegexLib provides

many advantages. First, TreeRegexLib uses a flexible intermediate

representation: mixing the source and target languages in a single

serialized tree is allowed, as is adding macros to defer compilation

steps. TreeRegexLib also helps with debugging. Because of the uni-
fied intermediate representation, we could print the intermediate

result at any step of compilation without implementing a dedicated

pretty printer. Finally, we found that TreeRegexLib naturally sup-

ports modular development. We can write one transformation step

at a time and selectively enable or disable it.

Example transformers. We now describe two example

transformers to give a sense of how compilers can be imple-

mented with TreeRegexLib. A larger selection of the compilation

transformers are provided in Appendix I.

The example transformers handle assignment statements. As-

signments have two variations in BC--: binary-operation assign-

ments (e.g. a+=3) and simple assignments (e.g. x=5). During com-

pilation, we first de-sugar binary-operator assignments to simple

assignments using using the following TreeRegex expression and

replacement string: (%IR (%IR ((.+))%) ((.+))= @%) and (%IR (%IR

$1%)=(
%IR(%IR load $1 %) $2 $3%)%). We use IR to denote serial-

ized trees that are not MIPS, and MIPS for the remainder. Here $1

is the variable name, $2 is the binary operation and $3 is the right-

hand side of the binary-operation assignment. We use a loadmacro

here to defer the compilation of loading the $1 variable. These

macros are later compiled into the appropriate MIPS assembly by

another transformer. Here we take advantage of the lack of a rigid
grammar to mix BC-- and macros in a single serialized tree.

10
The parser used in this case study removes comments and normalizes white-space.

We additionally have a parser that maintains comments and white-space.

BC-- BC-- Parse Compile MIPS Compile Rate

Size (kB.) Time (sec.) Time (sec.) Size (kB.) (kB./sec.)

1.61 0.001 0.012 14.38 134.17

16.08 0.002 0.082 143.06 196.1

32.16 0.004 0.174 286.62 184.83

64.32 0.008 0.312 573.86 206.15

96.48 0.011 0.467 861.14 206.6

128.64 0.015 0.646 1149.71 199.13

160.8 0.019 0.777 1438.81 206.95

Avg. - - - 190.56

Table 1: BC-like Compiler Performance.

After de-sugaring, assignments are only in one form. We now

rewrite simple assignments to a simpler form using another macro,

save. We use the following TreeRegex expression and replacement

string: (%IR (%IR ((.+))%) = @%) and (%MIPS $2 (%IR save $1%)%).

This replacement string places the expression on the right-hand side

of the assignment first ($2), and then a save macro for the variable

($1). The right-hand side expression will be compiled by another

transformer. The compiled MIPS code maintains the invariant

that, when an expression is evaluated, it stores the result in an

accumulator register. The save macro takes this value and stores it

in the appropriate place in memory, and will be compiled a later

transformer. As demonstrated here, we were able to modularize

the compilation of assignments in separate steps, and each step is

implemented independently.

Performance. To investigate the performance of our

TreeRegexLib implementation, the runtime of the BC-- compiler

was profiled. All measurements were done on a Intel(R) i7-3630QM

CPU with 16GB of RAM and a solid state drive (SSD). We used an

example BC program—extensions.bc—from the X-Bc project [7],

edited to only use the features of BC--. The file is 181 lines of

non-comment source code. To simulate a large, human-written

code, the contents of the file were duplicated. Table 1 summarizes

our results. The first column shows the size of the source file

excluding comments and empty lines. The second column and

the third column show the runtime of the BC-- to serialized tree

converter, and the compiler, respectively. The fourth column shows

the size of the resulting MIPS code. The final column shows the

performance of the compiler by giving the ratio of the first column

to the fourth column.

From this result we make two observations. First, the compiler

runs adequately fast—it handles the largest input (composed of

18k lines) in under a second. This shows that TreeRegexLib could

be practical for sophisticated transformation tasks. Second, the

compilation rate is consistent: approximately 190 kB. per seconds.

This indicates that TreeRegexLib has linear time complexity in

this case-study.

7 RELATEDWORK
Language extensions. Machete [32], PLT-Redex [39], and

XDuce [36] extend programming languages to enable structural

pattern matching. Machete extends Java to support structured term

patterns, XML patterns, and bit-level patterns. PLT-Redex extends

Racket to support structural pattern matching over S-expressions.

XDuce is an extension of ML, which uses regular expressions

to describe patterns over XML documents. The above projects

are bound to a particular problem and a particular programming

TreeRegex: An Extension to Regular Expressions (TR) , ,

language. To the contrary, TreeRegex can be applied to any

problem domain in any language as long as a parser is provided.

Natural Language Tree Processing. The natural language process-
ing community has developed many tools to match and manipulate

natural language parse trees. Tools like Tgrep [49], Tgrep2 [50], and

Tregex [40] are designed to search trees representing the natural-

language parse of a sentence. These tools effectively operate on a

subset of serialized trees by requiring each sub-tree to be labeled

with the expression type—in the trees these tools operate on, each

sub-tree can and must contain exactly one string, which is the first

part of that sub-tree. TreeRegex is thus more general. The tool

Tsurgeon [40] additionally allows for modification of the natural

language parse trees. Tsurgeon is designed around a different para-

digm: TreeRegex replacement operations are performed once and

have a known, bounded running time, but Tsurgeon tree manipula-

tion operations may never complete. This is because a Tsurgeon

tree manipulation operation continues until no tree or sub-tree is

found that matches a the given pattern.

Island Grammars. Island Grammars [26, 42, 59] have been pro-

posed to specify parts of programs satisfying a specific syntax.

They have been used as a light-weight means of implementing

syntactic analysis tools [43, 55]. Island Grammars view programs

as sequences composed of land chunks (parts to find out) and water

chunks (parts to ignore), and uses a SGLR parser to find out as many

land chunks as possible. Unlike TreeRegex, Island Grammars are

not suitable for program transformation because they do not have

a mechanism to capture parts parsed as water chunks. Moreover,

Island Grammars ignore the structure of the ignored parts, so they

usually have false positives.

Perl-style regular expressions. Perl [63] and PCRE [31] allow for

named, mutually-recursive patterns, which are sufficient to imple-

ment CFG parsers. Perl and PCRE, like CFG parsers, are intended to

solve different problems than TreeRegex: TreeRegex attempts to

implement a simple tool for matching tree-structured text. Perl and

PCRE are at least as powerful as CFG parsers and have significantly

more syntactic varieties than TreeRegex. The generality of Perl and
PCRE expressions comes at a high performance cost: these systems

are Turing-complete and use backtracking, which has exponential

runtime for even simple regular expressions. For instance, we at-

tempted to use a Perl/PCRE expression for the motivating example

(detecting calls to eval), but the expression required over 3 hours to
match on a 300k JavaScript file. The TreeRegexLib implementation

finished in 3 seconds.

Rewriting systems. AST-rewriting frameworks [15, 18, 20, 24, 33,
58, 61] synthesize an AST-manipulating program from a high-level

description. They have been successfully applied to a variety of

problem domains, including optimizing compilers [48] and domain-

specific languages [19, 62].We propose TreeRegex as a complement

to AST-rewriting frameworks, and not as a replacement.

The main difference stems from the design principle: our tool

aims to provide a regular expression equivalence of AST manip-

ulation, i.e. a simple library concentrating on matching and re-

placement operations. We believe that TreeRegex is easy to learn

because of the small core. TreeRegexLib retains expressiveness

by delegating tasks other than matching, such as free-form tree

traversal and conditional matching, to host languages without con-

voluting the core concepts. Moreover, it can be easily implemented

for any programming language, as we did this for C++, Java, and

JavaScript. AST-rewriting frameworks, on the other hand, are de-

signed to provide a versatile and powerful standalone solution to

develop AST-manipulation programs. However, being a standalone

solution, inter-operation between an AST-rewriting framework

and another programming language may not be as easy as it is

for TreeRegexLib. For instance, frameworks such as Cobra [33]

design their matching and rewriting syntax to be a super-set of

the language that it manipulates (the C-like languages C, C++ and

Java). Therefore, most of the work has to be done within the AST-

rewriting framework and this can be a burden to newcomers.

In terms of describing patterns to match, AST-rewriting frame-

works and TreeRegex again take different routes. In modern AST-

rewriting frameworks a matching pattern can be in a concrete

syntax form not involving any details of the parser-specific AST

representation [60]. TreeRegex expressions, to the contrary, allow

users to mix regular-expressions with serialized trees. If we want to

find all variable declarations where the variable names begin with

an upper-case letter, for example, concrete syntax is not expressive

enough. TreeRegex can express such patterns easily.

Rewriting logic [22, 39, 41, 51] is a logic framework to describe

and verify semantics and transformation of programs. TreeRegex
focuses more on practical issues, such as compilation and syntactic

checking, and rewriting-logic aims for more formal problems, such

as formal specifications [46].

Tree automata. Tree automata and tree transducers have been

widely studied [14, 23, 27, 45] and used to form the theoretical

basis of many tree manipulating tools [25, 40, 44, 57]. TreeRegex
expressions and transformers can be formalized as a means of

expressing tree automata and tree transducers.

REFERENCES
[1] Common Vulnerabilities and Exposures the standard for information security

vulnerability names. =http://cve.mitre.org/. Accessed:2016-11-14.

[2] Gnu bc. https://www.gnu.org/software/bc/. Accessed:2016-03-22.

[3] Mips32 architecture. https://imgtec.com/mips/architectures/mips32/.

Accessed:2016-03-22.

[4] grammars-v4. https://github.com/antlr/grammars-v4. Accessed:2016-11-14.

[5] WordPress.com. =https://wordpress.com/. Accessed:2016-11-14.

[6] Acorn: A tiny, fast JavaScript parser, written completely in JavaScript. https:

//github.com/ternjs/acorn. Accessed:2016-03-22.

[7] X-bc. http://x-bc.sourceforge.net/index.html. Accessed:2016-07-04.

[8] Calendar Event Multi View. https://wordpress.org/plugins/

cp-multi-view-calendar/. Accessed:2016-11-14.

[9] Eslint: The pluggable linting utility for JavaScript and JSX. http://eslint.org/.

Accessed:2016-03-22.

[10] esotope: ECMAScript code generator steroids. https://github.com/inikulin/

esotope. Accessed:2016-03-22.

[11] Esprima: ECMAScript parsing infrastructure for multipurpose analysis. http:

//esprima.org/. Accessed:2016-03-22.

[12] Exploit Database offensive securityâĂŹs exploit database archive. https://www.

exploit-db.com/. Accessed:2016-11-14.

[13] istanbul: A JavaScript code coverate tool written in js. https://gotwarlost.github.

io/istanbul. Accessed:2016-03-22.

[14] R. Alur and L. D’Antoni. Streaming tree transducers. In Automata, Languages,
and Programming, pages 42–53. Springer, 2012.

[15] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom: Piggybacking

rewriting on Java. In Term Rewriting and Applications, pages 36–47. Springer,
2007.

[16] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,

A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code later: Using static

=
https://www.gnu.org/software/bc/
https://imgtec.com/mips/architectures/mips32/
https://github.com/antlr/grammars-v4
=
https://github.com/ternjs/acorn
https://github.com/ternjs/acorn
http://x-bc.sourceforge.net/index.html
https://wordpress.org/plugins/cp-multi-view-calendar/
https://wordpress.org/plugins/cp-multi-view-calendar/
http://eslint.org/
https://github.com/inikulin/esotope
https://github.com/inikulin/esotope
http://esprima.org/
http://esprima.org/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://gotwarlost.github.io/istanbul
https://gotwarlost.github.io/istanbul

, , Benjamin Mehne

analysis to find bugs in the real world. Commun. ACM, 53(2), 2010. ISSN 0001-0782.

doi: 10.1145/1646353.1646374. URL http://doi.acm.org/10.1145/1646353.1646374.

[17] P. Bisht, P. Madhusudan, and V. Venkatakrishnan. Candid: Dynamic candidate

evaluations for automatic prevention of sql injection attacks. ACM Transactions
on Information and System Security (TISSEC), 13(2):14, 2010.

[18] P. Borovanskỳ, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An

overview of elan. Electronic Notes in Theoretical Computer Science, 15:55–70, 1998.
[19] M. Bravenboer and E. Visser. Concrete syntax for objects: domain-specific

language embedding and assimilation without restrictions. In ACM SIGPLAN
Notices, volume 39, pages 365–383. ACM, 2004.

[20] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/xt 0.17. A lan-

guage and toolset for program transformation. Science of Computer Programming,
72(1):52–70, 2008.

[21] F. Brown, A. Noetzli, and D. Engler. How to build static checking systems using

orders of magnitude less code. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2016.

[22] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, and J. F.

Quesada. Maude: specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243, 2002.

[23] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. 2007.

[24] J. R. Cordy. The txl source transformation language. Science of Computer Pro-
gramming, 61(3):190–210, 2006.

[25] L. D’Antoni, M. Veanes, B. Livshits, and D. Molnar. Fast: A transducer-based

language for tree manipulation. In ACM SIGPLAN Notices, volume 49, pages

384–394. ACM, 2014.

[26] P. T. Devanbu. Genoa — a customizable, front-end-retargetable source code

analysis framework. ACM Transactions on Software Engineering and Methodology
(TOSEM), 8(2):177–212, 1999.

[27] Z. Fülöp and H. Vogler. Syntax-directed semantics: Formal models based on tree
transducers. Springer Science & Business Media, 2012.

[28] N. Fulton, C. Omar, and J. Aldrich. Statically typed string sanitation inside a

Python. In Proceedings of the 2014 International Workshop on Privacy & Security
in Programming, pages 3–10. ACM, 2014.

[29] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill,

Inc., New York, NY, USA, 1966.

[30] W. G. Halfond, J. Viegas, and A. Orso. A classification of sql-injection attacks and

countermeasures. In Proceedings of the IEEE International Symposium on Secure
Software Engineering, volume 1, pages 13–15. IEEE, 2006.

[31] P. Hazel. PCRE: Perl compatible regular expressions. Online http://www.pcre.org,
2005.

[32] M. Hirzel, N. Nystrom, B. Bloom, and J. Vitek. Matchete: Paths through the

pattern matching jungle. In Practical Aspects of Declarative Languages, pages
150–166. Springer, 2008.

[33] G. J. Holzmann. Cobra: A light-weight tool for static and dynamic program

analysis. Innov. Syst. Softw. Eng., 13(1):35–49, Mar. 2017. ISSN 1614-5046. doi:

10.1007/s11334-016-0282-x. URL https://doi.org/10.1007/s11334-016-0282-x.

[34] J. E. Hopcroft and J. D. Ullman. Formal languages and their relation to automata.

1969.

[35] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,

languages, and computation. ACM SIGACT News, 32(1):60–65, 2001.
[36] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.

ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.
[37] ISO. Information technology—Syntactic metalanguage—Extended BNF. ISO

14977:1996, International Organization for Standardization, Geneva, Switzerland,

1996.

[38] S. C. Kleene. Representation of events in nerve nets and finite automata. Technical

report, DTIC Document, 1951.

[39] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A. Mc-

Carthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research: on

the effectiveness of lightweight mechanization. ACM SIGPLAN Notices, 47(1):
285–296, 2012.

[40] R. Levy and G. Andrew. Tregex and tsurgeon: tools for querying andmanipulating

tree data structures. In Proceedings of the fifth international conference on Language
Resources and Evaluation, pages 2231–2234. Citeseer, 2006.

[41] J. Meseguer. Twenty years of rewriting logic. The Journal of Logic and Algebraic
Programming, 81(7):721–781, 2012.

[42] L. Moonen. Generating robust parsers using island grammars. In Reverse En-
gineering, 2001. Proceedings. Eighth Working Conference on, pages 13–22. IEEE,
2001.

[43] L. Moonen. Lightweight impact analysis using island grammars. In Program
Comprehension, 2002. Proceedings. 10th International Workshop on, pages 219–228.
IEEE, 2002.

[44] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema

languages using formal language theory. ACMTransactions on Internet Technology
(TOIT), 5(4):660–704, 2005.

[45] M. Nivat and A. Podelski. Tree automata and languages. Elsevier Science Inc.,
1992.

[46] D. Park, A. Stefănescu, and G. Roşu. Kjs: A complete formal semantics of

JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 346–356. ACM, 2015.

[47] T. Parr and K. Fisher. LL (*): the foundation of the ANTLR parser generator. In

ACM SIGPLAN Notices, volume 46, pages 425–436. ACM, 2011.

[48] M. Pierre-Etienne, C. Ringeissen, and M. Vittek. A pattern matching compiler for

multiple target languages. In Compiler Construction, pages 61–76. Springer, 2003.
[49] R. Pito. Tgrep manual page. Available from Linguistic Data Consortium, 1994.

[50] D. L. Rohde. Tgrep2 user manual, 2004.

[51] G. Roşu and T. F. Şerbănuţă. An overview of the k semantic framework. The
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[52] M. Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.

[53] G. Steele. Common LISP: the language. Elsevier, 1990.
[54] Z. Su and G. Wassermann. The essence of command injection attacks in web

applications. In ACM SIGPLAN Notices, volume 41, pages 372–382. ACM, 2006.

[55] N. Synytskyy, J. R. Cordy, and T. R. Dean. Robust multilingual parsing using

island grammars. In Proceedings of the 2003 conference of the Centre for Advanced
Studies on Collaborative research, pages 266–278. IBM Press, 2003.

[56] K. Thompson. Programming techniques: Regular expression search algorithm.

Communications of the ACM, 11(6):419–422, 1968.

[57] A. Tozawa. XML type checking using high-level tree transducer. In Functional
and Logic Programming, pages 81–96. Springer, 2006.

[58] M. G. J. van den Brand, A. van Deursen, J. Heering, H. de hong, M. de Jonge,

T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,

and J. Visser. The asf+ sdf meta-environment: A component-based language

development environment. In Compiler Construction, pages 365–370. Springer,
2001.

[59] A. van Deursen, T. Kuipers, and L. Moonen. Arrangement and method for a

documentation generation system. US Patent. Applied Aug, 2000.
[60] E. Visser. Meta-programmingwith concrete object syntax. In Proceedings of the 1st

ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component
Engineering, GPCE ’02, pages 299–315, London, UK, UK, 2002. Springer-Verlag.

ISBN 3-540-44284-7. URL http://dl.acm.org/citation.cfm?id=645435.652697.

[61] E. Visser. Program transformation with stratego/xt. In Domain-specific program
generation, pages 216–238. Springer, 2004.

[62] E. Visser. WebDSL: A case study in domain-specific language engineering. Springer,
2008.

[63] L. Wall et al. The Perl programming language, 1994.

[64] G. Wassermann and Z. Su. Sound and precise analysis of web applications for

injection vulnerabilities. In ACM Sigplan Notices, volume 42, pages 32–41. ACM,

2007.

[65] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting

languages. In USENIX Security, volume 6, pages 179–192, 2006.

[66] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz. Fast and memory-efficient

regular expression matching for deep packet inspection. In Proceedings of the
2006 ACM/IEEE symposium on Architecture for networking and communications
systems, pages 93–102. ACM, 2006.

http://doi.acm.org/10.1145/1646353.1646374
https://doi.org/10.1007/s11334-016-0282-x
http://dl.acm.org/citation.cfm?id=645435.652697

TreeRegex: An Extension to Regular Expressions (TR) , ,

(
%@(

*
A
*
)%)

↔

Figure 2: An example TreeRegex expression and its tree rep-
resentation. Direct expressions are denoted with a dot node,
context expressions with a triangle with a smaller triangle
removed, subtree expressions with a triangle, and strings as
nodes with the string inside.

A TREE FORMULATION OF TREEREGEX
EXPRESSION

TreeRegex expressions can also be represented as a tree. Figure 2

shows an example tree for the TreeRegex expression (
% @ (

*
A
*
)

%). We use a triangle to denote a wildcard expression, a notched

triangle to denote a context expression, and a dot to represent an

exact expression.

B FORMAL DESCRIPTION OF THE TREEREGEX
MATCHING ALGORITHM

A formal description of the function match(t , s) can be found in

Figure 3. The figure describes five rules, corresponding to the four

cases from Section 3.4, except that context matches are described in

two rules. The rules should be read as follows. The statements above

the horizontal bar are hypotheses of the rule; if the hypotheses are

satisfied, then the statement below the bar is true. The behavior

of match is described recursively using the rules. A statement of

the form match(t , s) → K states that match(t , s) returns the list K
(which is assumed to be not nil). regexMatch(t ,w) → K means that

regular expression t matches the stringw and generates the list K
of captures. The predicate isRegex(t) is true if t is a pure regular
expression.

C FORMAL DESCRIPTION OF THE TREEREGEX
REPLACEMENT ALGORITHM

Figure 4 summarizes the replacement rules. In these rules,w refers

to a string and s refers to a serialized tree. Any serialized tree is

a string, but not all strings are serialized trees (as serialized trees

follow a grammar). c is a serialized tree context.

D COMPLEXITY ANALYSIS
We describe two different complexities for matching: one that

naïvely uses a significant amount of auxiliary memory and one

that uses O(k) auxiliary memory, which we have implemented.

To understand the complexity with higher auxiliary memory,

consider each subsequent call tomatch from an initial call tomatch.

Exact

match(t1, s1) → K1

.

.

.
match(tn, sn) → Kn

match((%t1 . . . tn%), (
%s1 . . . sn%)) → K1 · . . . · Kn

Wildcard

match(@, (%s1 . . . sn%)) → [(
%s1 . . . sn%)]

ContextCapture

match((%t1 . . . tn%), (
%s1 . . . sm%)) → K

match((*t1 . . . tn *
), (%s1 . . . sm%)) → [•] · K

ContextBuild

∃i∈1. . .mmatch((*t1 . . . tn *
), si) → [e] · K

∄j∈1. . .m j < i ∧match((*t1 . . . tn *
), sj) → [e′] · K ′

c
def
= (%s1 . . . si−1esi+1 . . . sm%)

match((*t1 . . . tn *
), (%s1 . . . sm%)) → [c] · K

StringMatch

isReдex (t)
r eдexMatch(t, u) → K

match(t, u) → K

Figure 3: Algorithm for matching a TreeRegex expression to
a serialized tree. Each ti is a TreeRegex or regular expression.
Each si is a serialized tree and eachw is a string

Context

K (n) = c
c(s) = s′

r eplace(w1$nsw2, K) → w1s′w2

Tree

K (n) = s

replace(w1$nw2, K) → w1sw2

String

K (n) = w ′

r eplace(w1$nw2, K) → w1w ′w2

Figure 4: Algorithm for replacements. Eachw is a string and
each s is a serialized tree. c is a serialized tree context.

Firstly, note each subsequent call to match reduces the input ei-

ther into a sub-TreeRegex expression or sub-serialized tree ex-

pression. Also note that all match calls on a TreeRegex expres-

sion that have no sub-TreeRegex expressions terminate, as do all

the calls on strings (i.e. not serialized trees) in serialized trees.

This makes sense—each call to match makes progress along ei-

ther the TreeRegex expression or the serialized tree. Let us assume

that these cases—matching on a TreeRegex expression with sub-

expressions and matching on a string from a serialized tree—take

constant time. If they take constant time and we do not repeat com-

putation (calling match on the same argument pair twice), then the

runtime is bounded by the number of sub-TreeRegex expression
and sub-serialized trees. Let us use n andm to refer to these two val-

ues; the big-Oh, assuming we do not repeat computation, is O(mn).
This is saying that, at worst, each sub-TreeRegex expression can

be matched against each sub-serialized tree.

To prevent repeated computation, we can naïvely use

memoization—everytime a matching is performed on a sub-

TreeRegex expression and sub-serialized tree pair, we record the

result. This leads to O(mn) auxiliary memory at minimum. We

, , Benjamin Mehne

found that, in practice, a slower algorithm that uses less memory

was sufficient and quite usable. The slower algorithm algorithm

uses O(k) auxiliary memory. We next analyze the complexity of

this slower algorithm.

The algorithm presented in Section 3.4 can repeatedly compute

matches: during the matching on a context expression (
*
(
*t
*
)
*
) and

a serialized tree s , each subtree of s can be matched on t multiple

times in the worst case. The call tomatch with (
*
(
*t
*
)
*
) will result in

subsequent calls to match with (
*t
*
) and calls with t . Both of these

subsequent calls will be done on the input argument s and each of its
subtrees si . Hence,match(t, si) is called at least twice in this example,

because both levels of context expressions backtrack. We bound

the computation caused by k context expressions as traversing

the entire serialized tree and applying each TreeRegex expression

on each element of the serialized tree. Because each TreeRegex
expression may contain a context expression, we may evaluate

all TreeRegex expressions and serialized tree match calls k times.

This leads to a runtime that is bounded byO((mn)k+1), while using
O(k) auxiliary memory. We needO(k)memory to keep track of the

sub-serialized tree index while matching context expressions. This

runtime was practical because the number of context expressions

is typically 1 or 2, at most, in our usage.

E TRANSFORMATION ALGORITHM AND
TRANSFORMERS EXAMPLE

E.1 Pseudocode of the Transformation
Algorithm

Given a list of user-defined transformers, say T , and a serialized

tree, say s , the following pseudocode shows the steps of the algo-
rithm:

function traverse(s)
let σ be a user -defined state

// apply all pre transformers

foreach (type, t, M, r) in T
if type = pre

K ←match(t, s)
K ← M (K, σ)
if K , nil and r is defined

s ←replace(r, K)
// recursively traverse all children

foreach si where s is of the form (%s1 . . . sn %)

if si is a serialized tree

si ← traverse(si)
s ← (%s1 . . . sn %)

// apply all post transformers

foreach (type, t, M, r) in T
if type = post

K ←match(t, s)
K ← M (K, σ)
if K , nil and r is defined

s ←replace(r, K)
return s

E.2 Transformer example
We illustrate the power of transformers by example: we imple-

ment an interpreter for an expression language. Consider the fol-

lowing simple expression language:

⟨expr ⟩ ::= ⟨expr ⟩ + ⟨expr ⟩ | ⟨id ⟩ | ⟨int ⟩ | let ⟨id ⟩ = ⟨int ⟩ in ⟨expr ⟩

⟨id ⟩ ::= a sequence of letters

⟨int ⟩ ::= a sequence of digits

Expressions are the addition of two expressions, identifiers, inte-

gers, or let-in expressions, defining an integer constant. The “let”
ambiguity can be handled in any way for the purposes of this ex-

ample. The following is an example expression in this language:

“let x = 1 in let y = 2 in x + let x = 3 in x + y + 3”.
This expression evaluates to 9, by replacing identifiers with their

aliased integers and performing additions.

In order to implement an interpreter for the language, we use a

list of four transformers. The simplest transformer we need is

the one that handles integer additions. The TreeRegex expression

for addition expressions is (% ((\d+)) \+ ((\d+)) %). We define modi-

fier MAdd to do the addition as follows. (Here we use a JavaScript-

like pseudo language to illustrate the modifiers.)

function MAdd(K, σ)

return [K(1) + K(2)]

The replacement string for this transformer is just the computed

value, so it is $1. If this transformer has the post-order type, then

it will collapse any serialized trees that do not use identifiers into

their values. For example, consider the post-order application of

this transformer to “(
%
(
%
3+4%)+(

%
5+6%)%)”. First, the transformer

will run on the sub-serialized trees “(
%
3+4%)” and “(

%
5+6%)” and

rewrite them into “7” and “11”, respectively. The serialized tree after

this transformation is “(
%
7+11%)”. After another application to the

only serialized tree, the result will be “18”.

Handling identifiers requires two steps; we need to collect

identifier values and we need to replace them. In our serialized

tree representation, we surround identifiers with “(
%
” and “%)”.

To collect the mapping from identifiers to integers, we need

to match on “let” expressions and use the TreeRegex expres-

sion (%let (%((.+))%) = ((\d+)) in @%). We can specify that the state

passed to the modifier function keeps track of the mapping as

follows:

function MLet(K, σ)

pushMapping(σ , K(1) 7→ K(2))

return nil

The modifier uses the state σ to keep track of the mapping of

identifiers to integers, by pushing the identifier mapping for the

“let” expression. This modifier returns nil, so the serialized tree

is never modified by it (so a replacement string is not used). This

transformer provides information for subsequent transformers,
and we assign it a pre-order type so that it is performed before

them.

We use the mapping produced by this modifier in the

transformer for identifiers. We match on (% (([a-z]+)) %), and use

the following modifier:

function MId(K, σ)

return [lookup(σ , K(1))]

This modifier uses a lookup function to find the last pushed integer

mapped to the identifier, and the integer is returned as a captured

value. The replacement string is, as before, just $1. This transformer

does not rely on information from sub-serialized trees, so it can

have any order type.

TreeRegex: An Extension to Regular Expressions (TR) , ,

Checker name TreeRegex LOC ESLint LOC

no-cond-assign 8 133

no-console 1 56

no-constant-cond 19 73

no-control-regex 2 57

no-dupe-args 10 73

no-dupe-keys 15 48

no-duplicate-case 8 33

no-empty 1 46

no-empty-character-class 1 45

no-extra-boolean-cast 13 78

Table 2: JavaScript Linter: TreeRegex vs. ESLint LOC

Now that we have transformers that collect identifier map-

pings and use them, we only need to be concerned with restor-

ing mappings after a “let” expression is finished. To do this

we use a transformer that matches on the “let” expressions

(which we did not modify in the other “let” transformer).
We can use a similar TreeRegex expression to last time:

(%let (%((.+))%) = ((\d+)) in ((\d+)) %). We use the following modi-

fier to remove that identifier mapping:

function MClearLet(K, σ)

popMapping(σ)

return K

Finally, we use the replacement string $3 to rewrite the “let” into
just the integer after the “in”. This transformer must be applied

after the “in” expression has been evaluated (a post-order type).

F JAVASCRIPT LINTER DATA
Table 2 shows, for each rule, the number of lines of JavaScript code

to implement a checker in comparison to the number of lines used

by the corresponding checker in ESLint.
Overall, we managed to implement all the checkers in signif-

icantly fewer number of lines than that in ESLint. The size of

ESLint checkers ranges from 33 lines to 133 lines (median 57 lines),

whereas the size of corresponding TreeRegex checkers ranges

from 1 line to 19 lines (median 8 lines)
11
. We also found that

the TreeRegex expressions used in these checkers are often easy

to read and understand.

G ADDITIONAL C CHECKERS
Suspicious loop conditions. This checker flags instances where a

loop’s condition and increment do not match. We detect four odd

loop increment-bound pairs: (>, ++), (>=, ++), (<, --), (<=, --). These
describe instances where, for example, the loop index is supposed

to be less than a bound but is decremented on each loop iteration.

1 linux/drivers/net/ethernet/qlogic

2 /netxen/netxen_nic_hw.c:2334

3 // int k, u32 read_cnt;

4

5 for (k = 0; k < read_cnt; k−−) {

6 nx_rd_dump_reg(read_addr ,

7 adapter ->ahw.pci_base0 , &read_value);

8 *data_buff ++ = read_value;

9 read_addr += read_stride;

10 }

11
Note that ESLint supports a few options per rule, which turns the checking of the

rule on or off. We do not implement such options. If we ignore the lines of code that

check options, the number of lines of code for the ESLint checkers would still be at

least half of the number of LOC reported in the table.

11

in this case, the loop terminates when k < read_cnt . unfortunately,

int k is initialized to 0 and decremented on each iteration of the loop;

after the first iteration of the loop, k will be negative. read_cnt , on

the other hand, is guaranteed to be positive (since it is unsigned).

as a result, k will never be less than read_cnt . the loop will proceed

until k underflows; since int underflow is undefined behavior, there

are no guarantees about what happens to k or the loop after many

hundreds of iterations.

We implement this checker using different TreeRegex expres-

sions to extract different suspicious loop bound-increment pairs.

The following TreeRegex expression, for example, detects (<, --):(%

for(%(@; (%@ < @%); (% @--%)) @%). We use a transformer
to ensure that the variable on the left-hand side of the bound is

the same variable that is incorrectly incremented or decremented.

This checker detects two true bugs in gpu, one in net, and one in

staging . A similar expression is used to detect the same issue for

pre-decrement in loops. None of its reports are false positives.

Repeated lines. This checker emits a warning when two lines of

code are directly repeated. We filter any lines with calls repeated

separately more than twice (e.g. x; x; y; x; x;), since we want

to identify mis-types and incomplete copy-pastes, not instances

where developers are purposely using the same calls multiple times.

We also filter read, write, in, and out for the same reasons. We

implement this checker with the TreeRegex expression (%(%@;

%)@;%) to capture the consecutive expressions, then we use the

modifier to check both@ matches for equality. It filters out cases

with obvious side effects like x++;. The checker identifies two bugs,

two suspicious statements, and three false positives—two of which

are commented as “workarounds.”

H BC-- LANGUAGE GRAMMAR
Grammar for BC-like language to compiled, shortened for clarity

and exposition, is as follows:

⟨program⟩ ::= ⟨function⟩+

⟨function⟩ ::= ‘define’ ⟨id ⟩ ‘(’ [⟨id ⟩[‘,’ ⟨id ⟩]*]? ‘)’ ⟨block⟩

⟨block⟩ ::= ‘{’ [⟨statement ⟩ ‘;’]+ ‘}’

⟨statement ⟩ ::= ‘break’ | ⟨expr ⟩ |‘if’ ‘(’ ⟨expr ⟩ ‘)’ ⟨block⟩
| ‘while’ ‘(’ ⟨expr ⟩ ‘)’ ⟨block⟩ | ‘return’ ‘(’ ⟨expr ⟩ ‘)’

⟨expr ⟩ ::= ⟨id ⟩ | ⟨int ⟩ | ‘(’ ⟨expr ⟩ ‘)’ | ⟨unary-op⟩ ⟨expr ⟩
| ⟨id ⟩ ⟨assign-op⟩ ⟨expr ⟩ | ⟨expr ⟩ ⟨bin-op⟩ ⟨expr ⟩
| ⟨id ⟩ ‘(’ [⟨expr ⟩ [‘,’ ⟨expr ⟩]*]? ‘)’

⟨assign-op⟩ ::= ⟨bin-op⟩ ‘=’ | ‘=’

⟨bin-op⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’ | ‘==’ | ‘!=’

⟨unary-op⟩ ::= ‘-’ | ‘!’

⟨id ⟩ ::= a non-empty string of alphanumeric characters

⟨int ⟩ ::= a non-empty string of numeric characters

I ADDITIONAL COMPILER TRANSFORMERS
⟨expr⟩ ‘+’ ⟨expr⟩ Expressions. This expression sums the results of two

other expressions. We implement this as a post-order transformer, similar

, , Benjamin Mehne

to the example in Section E.2. The following TreeRegex expression matches

these expressions: (%IR @ \+ @%). This pattern states that we are looking

for an expression of two sub-serialized trees, separated by a non-meta-

character plus. If these two sub-serialized trees contain the code to generate

the value of the left and right expressions, we just need to use these values

in the summation. Unfortunately, the evaluations of both expressions return

their results in the accumulator register, so we need to save the result

after evaluating one operand expression. We can use the push , top, and

pop macros to handle the necessary stack operations. If we use $a0 as the
accumulator register and $t0 as a temporary register to store popped value,

our replacement string is: (%MIPS $1 (%IR push /$a0%) $2 (%IR top
/$t0%) add /$a0 /$t0 /$t0 (%IR pop%)%). We escape $ with forward

slashes to distinguish it from the $ meta-character. In this replacement

string, we place the code to evaluate the left expression first, then we save

the current value of the accumulator register to the stack, followed by

the second expression’s code, we retrieve the value of the first expression,

and, finally, we perform the addition. The last part restores the stack to its

original height by popping off the value we pushed.

Collecting Local Variable Offsets. Local variables can only be introduced

as parameters to a function in this language and they are stored on the

stack. The offsets in the stack can be determined by the location of the

variable in the parameter list: the last parameter is 4 bytes from the frame

pointer, the second-to-last parameter is 8 bytes from the frame pointer

(the size of a 32-bit integer farther than the last parameter), and so on. We

implemented a transformer computing the relative offset of the variable

by visiting parameters in a sequence. This transformer must run before

other transformers on the body of the function. The non-terminal for

parameters uses a Kleene star and we encode this in a binary tree form

in the serialized tree. For instance, if the parameters of a function were

“a,b,c”, the serialized treewould be: (%IR (%IR parameter a%),(
%IR (%IR

parameter b%),(
%IR (%IR parameter c%)%)%)%). Tomatch this and other

parameter serialized trees, we use the following TreeRegex expressions:

(%IR (%IR parameter ((.+)) %),@%) and (%IR (%IR parameter ((.+))

%)%).
The modifier function tracks variable offsets using the state:

function MParam(K, σ)

v ← lastMapping(σ)

pushMapping(σ , K(1) 7→ v+4)

return nil

This modifier function takes the name of the variable and maps it to the last

mapping plus the 4 bytes. If there is no last mapping, then the lastMapping
function returns zero. The modifier function returns nil, so the serialized
tree is unchanged.

Save Macro. The save macro is an example of the modularity of

transformers and their usefulness during development. Before implement-

ing the save macro, we could visually inspect the serialized tree after the

existing transformers had run to see if there were errors. Once we had fin-

ished implementing the save macro logic, we just added the transformer.
The save macro is transformed using the TreeRegex expression (%IR save
((.*)) %). The save transformer uses the following modifier function

to lookup the variable offset for the saved variable and put it as a captured

value:

function MVar(K, σ)

return [lookup(σ , K(1))]

The captured value is evaluated with the following replacement string,

which generates a save from the accumulator to the offset from the frame

pointer register: (%MIPS sw /$a0 $1 (/$fp)%). This transformer is

very simple because it was able to be separated from the handling of the

assignment syntax.

Variable Loading and the Load Macro. The second macro that uses the

variable offsets is the load macro. This macro is generated from vari-

able expressions using another simple order-agnostic transformer. The
TreeRegex expression is (%IR (%IR ((.+)) %)%), which finds variable ex-

pressions and captures the name of the variable. The replacement string

generates a load macro of the captured variable (the modifier function does

no modification of the captured values): (%IR load $1%).
The load macro is handled in a nearly identical order-agnostic

transformer to the save macro. It is made up of the following parts: the

TreeRegex expression (%IR load ((.+)) %), the MVar modifier function

from before, and the replacement string (%MIPS lw /$a0 $1(/$fp)%),
which generates the load from the correct offset from the frame-pointer

register.

Clearing Local Variable Offsets. The last part of handling local variables

is forgetting the offsets when we have finished with the function. To do

this, we write a post-order transformer on functions. We can match with

the following TreeRegex expression: (%IR define .* (@)@%) and use

the following modifier function to forget the mappings:

function MFunction(K, σ)

clearAllMappings(σ)

return nil

Themodifier function returns nil, so there is no need for a replacement string.

We could also erase the function at this point; instead the implementation

erases all non-“MIPS” serialized trees before printing the final MIPS code.

‘if’ Statements. A ‘if’ statement semantically involves the evaluation

of a predicate, a test on that predicate, and possibly the execution of a

body. To generate code for this, we need to use labels after this body: we

need to know where to jump if the predicate evaluates to false. We can

write a transformer that does this; the modifier function can generate the

necessary label. Because MIPS assembly does not allow for duplicate labels,

we must use the state to generate unique labels. The TreeRegex expression

for this transformer matches ‘if’ statements and is: (%IR if(@)@%). In
this TreeRegex expression, the first captured value is the predicate and the

second is the body that may be evaluated if the predicate is true. We use

these captured values in the replacement string, so our modifier function

must leave them intact and just provide a label. We can use the following

modifier function to do that:

function MLabel(K, σ)

v ← nextUniqueLabel(σ)

append(K, v)

return K

Thismodifier function appends the next unique label—the resulting captured

values can be used with the following replacement string to generate the

MIPS code: (%MIPS $1(%MIPS beqz /$a0 $3%) $2 (%MIPS $3:%)%). This
replacement string places the code for the predicate first, followed by a test

on the predicate’s result in the accumulator, and then either branches to

the label, or proceeds to the body’s code. The label is placed after the body,

so that branching to the label will skip over the body. This transformer is

order-agnostic because it does not generate any sub-serialized trees that

are not MIPS code already.

	Abstract
	1 Introduction
	2 Overview
	2.1 TreeRegex and serialized trees
	2.2 Capture Group and Replacement

	3 Formal Description
	3.1 Serialized Tree
	3.2 TreeRegex
	3.3 Language of TreeRegex
	3.4 TreeRegex Matching Algorithm
	3.5 TreeRegex Replacement Algorithm
	3.6 Running Time Complexity

	4 Constructing TreeRegex Expressions
	5 Transformers and Implementation
	6 Case Studies
	6.1 Measuring JavaScript Test Coverage
	6.2 Detecting Injection Attacks
	6.3 Linter for JavaScript
	6.4 Finding Errors in C Programs
	6.5 A Simple Compiler

	7 Related Work
	References
	A Tree Formulation of TreeRegex Expression
	B Formal Description of The TreeRegex Matching Algorithm
	C Formal Description of the TreeRegex Replacement Algorithm
	D Complexity Analysis
	E Transformation Algorithm and Transformers Example
	E.1 Pseudocode of the Transformation Algorithm
	E.2 Transformer example

	F JavaScript Linter Data
	G Additional C Checkers
	H BC– Language Grammar
	I Additional Compiler Transformers

