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Abstract

Skipping-oriented Data Design for Large-Scale Analytics

by

Liwen Sun

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael J. Franklin, Co-chair

Professor Ion Stoica, Co-chair

As data volumes continue to expand, analytics approaches that require exhaustively scanning

data sets become untenable. For this reason, modern analytics systems employ data skipping

techniques to avoid looking at large volumes of irrelevant data. By maintaining some metadata

for each block of data, a query may skip a data block if the metadata indicates that the block

does not contain relevant data. The e�ectiveness of data skipping, however, depends on how the

underlying data are organized into blocks.

In this dissertation, we propose a �ne-grained data layout framework, called “Generalized

Skipping-Oriented Partitioning and Replication” (GSOP-R), which aims to maximize query per-

formance through aggressive data skipping. Based on observations of real-world analytics work-

loads, we �nd that the workload patterns can be summarized as a succinct set of features. The

GSOP-R framework uses these features to transform the incoming data into a small set of fea-

ture vectors, and then performs clustering algorithms using the feature vectors instead of the

actual data. A resulting GSOP-R layout scheme is highly �exible. For instance, it allows di�erent

columns to be horizontally partitioned in di�erent ways and supports replication of only parts of

rows or columns.

We developed several designs for GSOP-R on Apache Spark and Apache Parquet and then

evaluated their performance using two public benchmarks and several real-world workloads.

Our results show that GSOP-R can reduce the amount of data scanned and improve end-to-end

query response times over the state-of-the-art techniques by a factor of 2 to 9.
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Chapter 1

Introduction

Modern applications, ranging from business decision making to scienti�c discovery, are increas-

ingly becoming data-driven. As data volumes for these applications continue to grow, the e�-

ciency of large-scale data processing becomes crucial for unlocking insights from enormous data

in a timely manner. For interactive analysis, data analysts and scientists pose queries over large

datasets and expect to receive responses in near real-time. In the batch analytics scenario, a goal

is to minimize resource consumption, such as CPU and disk I/O, for performing analytics tasks so

that the cost of running the data infrastructure remains manageable. In both cases, the e�ciency

of data processing, in terms of either latency or compute-resource consumption, is of tremendous

value in this data-driven age.

1.1 E�ciency in Data Processing
Designers of modern analytics systems are striving to identify opportunities for improving the

performance of data processing. One dimension of this e�ort focuses on improving the through-
put of data scanning, where the goal is to process a given amount of data more quickly. For exam-

ple, by keeping the data in RAM memory with fault-tolerance mechanisms [44], accessing these

data can be much faster than reading data o� hard-drive disks. Parallelization can also greatly

reduce the latency for many tasks, especially for those that are embarrassingly parallel. In highly

scalable data processing frameworks, such as Hadoop and Spark, the degree of parallelization is

easily con�gurable for particular tasks. Another way to improve the read throughput is through

data compression. As analytics systems often store the data in a column-oriented fashion [43],

where values of the same type are stored contiguously, the data exhibits a high compression po-

tential. Compression saves I/O cost as it reduces the size of raw bytes to be read, but it incurs the

overhead in CPU cost for decompressing the data. This trade-o� has been shown to be worth-

while in most cases [43]. In fact, some modern systems [25, 5] support compression-aware query

execution, i.e., the ability to process some classes of queries without the need of decompressing

data �rst.

Another dimension of improving the e�ciency of data processing is to reduce the need of data
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access. Most analytics tasks do not need to scan the dataset in its entirety. Each individual query

is usually concerned with a certain aspect of the data and thus can be answered by going through

only a subset of rows and columns. Many techniques have been proposed to exploit this nature.

To prevent a query from reading irrelevant columns, columnar-oriented data layouts have been

widely adopted in modern analytics databases, where each column is stored separately. Avoiding

access to unnecessary rows can be much more di�cult than achieving the same for columns, as

the set of columns is mostly �xed in a table while the set of rows is ever growing. For the same

reason, the rows needed by a query cannot be explicitly expressed, which can be only known

based on the predicates of the query. In some scenarios, however, the preciseness of the query

results is not necessary and only an approximation is su�cient. For these scenarios, approximate

query processing techniques (e.g., [57]) can be leveraged. By reading only a sample of the data,

these techniques can obtain an approximate query result much more quickly and thus avoid the

need of scanning every row for a precise answer.

However, in many cases, it is important to reduce the unnecessary access of data for e�ciency

but without sacri�cing the preciseness of the query results. Along this line, data skipping is a

promising technique that has been gradually employed in modern analytics system. Examples of

systems that employ special methods for data skipping include Amazon Redshift [2], IBM DB2

Blu [68], Vertica [5], Google Powerdrill [3], Snow�ake [16], InfoBright [27], and some Hadoop

�le formats [73, 14]. In the next section, we discuss how existing systems use data skipping. We

then discuss how the methods developed in this dissertation can improve the e�ectiveness of data

skipping over the current state-of-the-art.

1.2 What is Data Skipping
Partition pruning is an important data skipping technique in traditional database systems, such

as Oracle, Microsoft SQL server and Postgres. In a data warehouse environment, it is a com-

mon practice to horizontally partition the table into partitions. A major bene�t of doing so is

on the ease of management of tables. The data in a data warehouse typically go through an

Extract-Transform-Load (ETL) process and are inserted to the table in batches. By horizontally

partitioning the table, the new rows can be simply appended to the table as a new horizontal

partition. As queries are concerned with the more recent data, the old partitions can also be

“rolled-out” to save storage space without a�ecting the other partitions.

For query performance the bene�t of horizontal partitioning comes from partition pruning.

Tables are typically partitioned on time-related columns, such as dates. Not surprisingly, most

queries are often interested in the records of a certain (recent) period instead of all the historical

records. Thus, queries commonly use time ranges in their �lter predicates. For such queries,

instead of scanning the entire table, partition pruning allows the query to check the date ranges

of each partition and thus decide which partitions can be pruned before the table scan. Figure 1.1

shows an example of partition pruning. The table Sales contains 4 date partitions. In each par-

tition, all records share the same value on the date column dt, which is marked as metadata for

each partition. When a query arrives, it can �rst check its predicate on dt against these metadata
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dt=‘2013-11-22’

dt=‘2013-11-23’

dt=‘2013-11-24’

dt=‘2013-11-25’

5~50k rows

…

…

…

Table: Sales  (date-partitioned)

Data SkippingPartition Pruning

min = 1 min = A

max = 5 max = C

| revenue | product | | revenue | prouct | 

min = 2 min = B

max = 6 max = E

min = 0 min = F

max = 4 max = G

min = 5 min = H

max = 9 max = K

actual data metadata

SELECT count(*)
FROM Sales
WHERE dt >= ‘2013-11-24’ AND revenue < 2 
GROUP BY …

Figure 1.1: Example of Data Skipping

before actually scanning the table. A simple check would show that the query in Figure 1.1 can

safely prune the �rst two partitions of table Sales and only needs to scan the last two partitions.

While partition pruning provides an e�ective way to prune data, the remaining partitions can

still contain a lot of tuples.

To build upon the idea of partition pruning, data skipping was �rst proposed in [48] and

has been gradually adopted by most analytics systems [34, 27, 5, 3, 70, 68, 2, 16]. The idea of

data skipping is to maintain metadata for all columns, not just the date column, for data blocks,
which are typically maintained at a �ner-granularity than horizontal partitions. A horizontal date

partition can be further divided into a set of fairly small blocks (e.g., 1,000’s or 10,000’s of tuples).

Each block can be associated with some metadata such as min and max values for all columns

in the block. Before scanning a block, data skipping �rst evaluates the query �lter against this

metadata and then decides if the block can be skipped, i.e., the block does not need to be accessed.

Unlike partition pruning, block-based data skipping can skip data even if the �lter predicate is not

on the partitioning column. Figure 1.1 shows data skipping in action inside partition dt=‘2013-11-
24’ of table Sales. This date partition is segmented as four horizontal blocks. For each block, the

table maintains the min and max values for both columns revenue and product. Apart from the

predicate on column dt, the query has another predicate revenue < 2. Thus, before scanning all

4 blocks in this date partition, data skipping allows the query to check this predicate against the

block-level metadata. After the check, the query knows that the �rst block and the third block can
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be safely skipped, as their metadata, speci�cally the min values of the revenue column, indicate

that their records do not satisfy the predicate revenue < 2.

In a sense, data skipping was similar to indexing (e.g., B+-tree) in traditional database systems,

as they both provide a mechanism to navigate large-scale datasets. As compared to indexing,

data skipping has several salient features that make it suitable for modern analytics systems.

First, even if queries can skip blocks, any single block is large enough to enable sequential scans.

Traditional tree-structured indexes incur random disk accesses. In data skipping, a query goes

through every block and always performs sequential scans, where the metadata check incurs

minimal overhead. Second, the blocks in data skipping are large enough to hold a columnar layout

internally, which is preferred for analytics workloads, whereas most traditional tree indexes are

constrained to row-oriented layouts. Third, the storage overhead for data skipping (i.e., block-

level metadata) is much smaller than that of traditional indexes.

Overall, data skipping speeds up table scans by reducing the need for data access, which can

improve the e�ciency of data processing whether the metric is latency or resource consumption.

It not only saves disk I/Os but also reduces the CPU cost involved in processing the data, such

as deserialization, decompression and per-row predicate evaluation. Therefore, data skipping is

bene�cial no matter on what hardware medium (e.g., disk, memory or SSDs) the data resides.

1.3 Physical Layout Design for Data Skipping
The opportunities for data skipping highly depend on how the data are organized into blocks.

Speci�cally, it is desirable that the rows that a query may need to read are clustered in a small

number of blocks so that the irrelevant rows can be skipped altogether. The approaches used to

organize data into blocks can be summarized as follows:

Range partitioning

As described above, range partitioning has been mainly used for partition pruning. A range

partitioning scheme requires the input of one or a few columns that are typically �ltered on

by the queries as well as the hierarchy of partitioning on these columns, i.e., which column is

partitioned �rst and which is the second, and so on. The number of partitions and the partitioning

ranges on each of these columns also have to be speci�ed. Examples of systems that use range

partitioning for data skipping include Amazon Redshift [2], and Google Powerdrill [3]. While

range partitioning has been a useful technique to divide tables into a set of large partitions, such

as date partitions, it may not be ideal for generating blocks for data skipping, as it has to take

into account the data skew, workload skew and inter-column correlations. These issues cannot

be overlooked when the table needs to be partitioned into a large number of �ne-grained blocks.

Sorting

Sorting has been considered as an important mechanism in column-oriented data storage. Sorting

on a column can greatly speed up navigation for queries and also make the data compress better.
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Similar to range partitioning, sorting can be speci�ed on one or more columns, and when multiple

columns are involved, an order has to be enforced on these columns so that a secondary sorting

column can take a�ect only when there is a tie in the primary sorting column. When rows are

sorted, they are simply split into equal-size blocks for data skipping. An example of the systems

that use sorting for data skipping is Vertica [5]. Similar to the problem of range partitioning,

sorting-then-splitting is typically performed at the column level, which is too coarse-grained to

generate blocks for data skipping. For example, this approach cannot express that only some

value range of a column needs to be sorted while the other values do not. It is di�cult for sorting

to capture inter-column correlations as well.

Splitting based on Natural Order

As opposed to the above approaches, some systems do not re-organize the data for data skipping.

They simply split the rows and put them into equal-sized blocks as the rows are appended to the

system. In e�ect, this approach only counts on the natural ordering of the data for skipping blocks.

Examples of these systems include IBM DB2 [68] and Hadoop �le formats such as ORC [73] and

Parquet [14]. The problem with such an approach is that data skipping is limited to the columns

that are correlated with the natural ordering of the data, e.g., time-related columns. The chance

of skipping blocks based on other columns can be very low. The advantage of such an approach,

however, is that it is simple and does not need to re-organize the data at load time, which involves

a faster data loading phase than the other approaches.

While these simple data skipping approaches have served as a main mechanism to navigate

large datasets, the existing systems have not adopted physical layout design techniques that can

realize the full potential of data skipping. They either use the traditional techniques that are de-

veloped for other purposes, such as range partitioning, or choose not to re-organize the data at

all, which gives up the opportunity of trading the o�ine loading cost for online query perfor-

mance. Moreover, these systems are limited to horizontal partitioning of the data, while there are

many layout possibilities that can potentially bene�t data skipping, such as vertical partitioning,

a hybrid of horizontal and vertical partitioning, and replication.

To this end, this dissertation aims to develop innovative physical layout design frameworks

that can realize the full potential of data skipping and thereby improve query e�ciency. In the

next section, we list the main contributions of this thesis in the development of skipping-oriented

layout design frameworks.

1.4 Main Contributions
In this section, we present the main contributions of this dissertation.

1.4.1 Feature-driven Workload Analysis
The goal of physical data layout design is to organize data in a way that can facilitate data access.

The most e�ective way to understand how queries access data is to analyze the workload. A
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key contribution in this dissertation is the development of a workload-driven technique for data

layout design that leverages representative �lter predicates in the query workload. In modern an-

alytics databases, the query workload can be obtained as history query logs or as query templates,

which can be used to generate queries by �lling in the parameter values. While workload-driven

physical design has been extensively studied in the database literature [56, 9, 35], in this disserta-

tion, we focus on analyzing the usage of �lter predicates and how they can be used for facilitating

data skipping.

In the analysis of real-world workloads, we observe two important properties of �lter pred-

icate usage. The �rst property is �lter skewness, which states that a small number of �lter pred-

icates are commonly used by most of the queries. This suggests that if the data layout design is

focused on this small number of frequently used predicates, most queries in the workload will

be able to bene�t. The second property is �lter stability, which states that only a few brand new

predicates are introduced over time and that most of the predicates are recurring. This latter

observation suggests that we can utilize the patterns of a past workload to guide the data layout

design and thus help future queries better skip data.

Motivated by the above properties observed from real-world workloads (See Chapter 3 for

details), we propose to extract features from workloads. A feature is one or a set of �lter predicates

that are frequently used in the workload. Note that a feature captures the complete information

of a �lter predicate, including the columns, operators, and constants. For example, price > 3 is

a feature, which is composed of the column price, the operator >, and the constant 3. We extract

a �lter as a feature if it subsumes a su�cient number of queries in the workload. The notion

of subsumption is important in the context of data skipping. For example, price > 3 subsumes

price > 5, because price > 3 is a more general condition. In this case, the data that can be

skipped by price > 3 can also be skipped by price > 5. The idea of feature-driven workload

analysis is to summarize the workload using a succinct set of features, which can subsume most

of the queries in the workload. The physical layout design can then be centered around the data

skipping for these features.

1.4.2 Fine-grained and Flexible Layouts
Existing systems that use data skipping only consider horizontal partitioning in their layout de-

sign. Even though data skipping was �rst designed to skip blocks of rows, it can also be general-

ized to skip any block of data, i.e., a block composed of any subset of columns and rows. Let us

refer to the intersection of a row and a column as a data cell. A table can be simply viewed as a

set of data cells. Ideally, we should be able to pack the data cells as blocks in �exible ways as long

as the e�ectiveness of data skipping can be maximized. This means that we can break some con-

ventional constraints in designing data layouts. An example of such a constraint is that the data

cells from the same row should be put in the same block. The rationale behind this constraint is

that, if the data cells from the same row reside in di�erent blocks, reconstructing these data cells

back into rows would incur signi�cant overhead. This is a reasonable argument in many cases,

but should be revisited in the context of aggressive data skipping. For example, reading 10% less
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data may not justify the overhead of row-reconstruction, but reading 90% less data is a di�erent

story.

In this dissertation, a key contribution is to consider highly �exible and �ne-grained layout

designs, which incorporate a wide range of layout options for improving data skipping, such as

horizontal partitioning, column grouping, and replication. In these designs, a column or a row is

no longer an atomic unit in the partitioning and replication. A block can contain parts of rows

and parts of columns. Some data cells of a block may be replicated in other blocks and are thus

organized in a di�erent manner. The reason why we allow such �ne-grained and �exible layout

designs is to maximize data skipping opportunities. Depending on the query type, data skipping

can play an important role in the overall query cost. While the layout designs are centered around

data skipping, they also have to factor in other costs in query performance as well as in storage

cost. The main overhead to query performance due to the �exibility in layout designs is in row-

reconstruction. As di�erent columns may have orders and may be replicated in di�erent ways,

queries will incur additional overhead of reconstructing these data cells back into the original

rows before they can be sent to the subsequent stages of the query processing, such as group-

bys. Since the storage cost is not free, the layout designs also has a goal of �nding the most

e�cient way of data replication, which trades space cost for query cost.

1.4.3 Optimization Problem Formulation
A third contribution of this dissertation is that we formulate optimization problems in order to

balance the trade-o�s in �ne-grained and �exible layout designs. For the partitioning scheme, the

objective function of the optimization is to minimize the query cost, which is composed of the

data scan cost and tuple-reconstruction cost. For the replication scheme, the objective function

of optimization is to minimize the query cost for a given storage budget. In constructing these

objective functions, we prioritize simplicity and generality over accuracy in modeling the real-

world costs. For example, we model the scan cost of a query as the number of data cells read. This

is a simple and general model, but may not be accurate in a real-world setting, as the data may be

of di�erent types and stored in di�erent compression schemes. After all, our goal is not to model

the cost as accurately as possible, but to serve as a guide in the search for the best data layout

design. Even for such simple objective functions, however, it turns out to be prohibitively expen-

sive to evaluate them on a given layout design. We develop methods to e�ciently and accurately

estimate these objective functions instead of directly evaluating them. Given the �exibility and

�ne-granularity of the layout designs, there is a huge search space. We develop e�cient search

algorithms to �nd physical layout schemes using the objective functions as a guide.

1.4.4 Predicate-based Metadata and Skipping
The metadata used for data skipping in existing systems are statistics about the underlying data.

The most common statistics used are min and max values. Some systems also support bitmaps,

dictionaries, and bloom �lters. These metadata can only support value-based skipping, i.e., when

the query predicate asks for a certain value or value range. While such predicates are very com-
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monly used, modern analytics workloads involve various kinds of more complex �lter predicates

and user-de�ned functions (UDF). Examples of the predicates that cannot take advantage of these

value-based skipping mechanisms include string matching (e.g., message like ‘%iphone%’), inter-

column comparison (e.g., page_viewer_id <> page_creator_id), or any general user-de�ne func-

tions (UDF) (e.g., get_json_object(jstr, ‘conn_type’) = ‘wi�’).
In this dissertation, we introduce predicate-based metadata and skipping mechanism. First,

we maintain the workload features, or frequent �lter predicates, used in the layout design. Sec-

ond, we keep a bit vector called the block vector, where each bit corresponds to one feature and

indicates whether this block has some data that satisfy this feature. This approach supports data

skipping for any kind of �lter predicates. A query can have a great chance of skipping data as

long as the query predicate is subsumed by one of the features, which means the query predicate

is a more general condition than one of the features. Since these features together can subsume

most of the queries, there is a high chance that a query can take advantage of this predicate-based

skipping mechanism. Note that our predicate-based skipping mechanism is designed to work in

conjunction with value-based skipping.

1.4.5 Three Frameworks for Data Layout Design
The main contribution of this dissertation is the development of the following three frameworks

for data layout design:

The skipping-oriented partitioning (SOP) framework is a workload-driven horizontal parti-

tioning framework with the goal of maximizing data skipping. SOP lays the foundation for the

entire work of this dissertation, as the more advanced frameworks developed in later chapters are

built upon SOP. We �rst analyze a real-world workload and observe two important properties,

which motivate the design of SOP. We then explain the work�ow of SOP and how data can be

queried using SOP.

The generalized skipping-oriented partitioning (GSOP) framework generalizes SOP by allow-

ing di�erent columns to have di�erent partitioning schemes. We �rst identify the notion of “fea-

ture con�ict”, which can be a problem in SOP that severely degrades the skipping e�ectiveness

for some workloads. We then list out a spectrum of partitioning layout schemes. While SOP can

only cover one end of the spectrum, GSOP incorporates the full spectrum. The trade-o� involved

in the design of GSOP layout schemes is data scan savings vs. tuple-reconstruction cost. We

develop an objective function for GSOP that factors in this trade-o�. Built on the SOP work�ow,

GSOP introduces two new components, namely, column grouping and local feature selection.

The generalized skipping-oriented partitioning with replication (GSOP-R) framework further

extends the GSOP framework by exploring how a modest amount of �ne-grained data replication

can be leveraged to improve the e�ectiveness of data skipping and query performance. We �rst

de�ne a GSOP-R scheme, which allows for �ne-grained and �exible replications. We then develop

an objective function to evaluate the goodness of a GSOP-R scheme, which factors in data scan

cost, row-reconstruction cost, and storage cost. As the search space for the GSOP-R scheme is

huge, we propose to search for GSOP-R schemes through scheme transformation. We de�ne and

explain 3 types of allowed scheme transformations, each of which has the potential of improving
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the GSOP-R scheme. We then go through an iterative search process, which greedily picks the

best local transformation and applies it to the current scheme.

1.4.6 System Prototype and Empirical Evaluation
In this dissertation, we describe the system prototype of our proposed techniques built on top

of open source systems, such as Apache Spark [44] and Apache Parquet [14]. The prototype

includes three components: workload analysis, data re-organization, and skipping-aware query

processing. Workload analysis takes as input a query log and generates a set of workload features.

The data re-organization component partitions and replicates data as the data is being loaded

into the database. For the component of skipping-ware query processing, we simply leverage the

built-in data skipping mechanisms that exist in most existing analytics systems. None of these

components is tied to a particular system or requires major changes to the code base of existing

systems.

To evaluate the performance of our proposed techniques, we use two public benchmarks,

namely, TPC-H Benchmark [67] and Big Data Benchmark [18], and two real-world workloads,

namely, Conviva [23] and Sloan Digital Sky Survey [63]. We compare the performance of our

techniques with the state-of-the-art techniques. Our results show that our techniques can im-

prove the query performance by a factor of 2 to 9 over the state-of-the-art.

1.5 Thesis Organization
The remainder of this dissertation is organized as follows. Chapter 2 is a review of the back-

ground for this dissertation. Chapter 3 presents the skipping-oriented partitioning (SOP) frame-

work [65, 64]. Chapter 4 presents the generalized skipping-oriented partitioning (GSOP) frame-

work [66]. Chapter 5 presents the generalized skipping-oriented partitioning with replication

(GSOP-R) framework. Chapter 6 presents the conclusions and outlines the future work.
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Chapter 2

Background

In this chapter, we provide the background necessary for understanding the techniques proposed

in this dissertation. Since our techniques are developed in the context of a relational database

management systems (RDBMS), we �rst give an overview of RDBMS in Section 2.1. We then

discuss several storage architectures of RDBMS’s in Section 2.2. We review physical design tech-

niques in Section 2.3 and data skipping in Section 2.4. We conclude the chapter in Section 2.5.

2.1 Overview of Relational Database Management Systems
A relational database management system (RDBMS) is a system that lets users create, update, and

administer the data based on the relational model invented by Edgar F. Codd [22]. In a relational

DBMS, the data is stored as a collection of tables. Each table consists rows and columns. Each row
corresponds to a record or entity. Each column corresponds to a �eld or attribute for all records

in the table. Thus, we also refer to a row as a tuple, as it is composed of a set of attribute values. In

an RDBMS, we can also specify the relationship between tables. For example, we can de�ne two

tables that share one or more common attributes. Users can interact with an RDBMS through

many kinds of operations, such as de�ning and modifying tables, loading data into tables and

querying tables. These operations are typically expressed using Structured Query Language, or

SQL. We provide an overview of SQL in Section 2.1.2.

Depending on the application scenarios, we classify RDBMS’s into two categories: analytics
databases and operational databases. An analytics database is typically designed for supporting

business intelligence and data analytics applications, while an operational database is often used

for maintaining information regarding day-to-day operations. While both kinds of RDBMS’s are

based on the same data model, they can involve dramatically di�erent implementation techniques

and architectures. In this dissertation, we only focus on analytics databases. In the remainder of

this section, we provide an overview of data loading operations and query processing in analytics

databases, as these topics are closely related to the techniques developed in this dissertation.
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2.1.1 Data Loading
An analytics database typically works in an environment called a data warehouse. A data ware-

house serves as a central repository of data for an organization, where the data can be collected

from various sources. The process of importing data into an analytics database is referred to as

an ETL process, as it typically follows a Extract-Transform-Load (ETL) pipeline. An ETL process

extracts and integrates information from data sources, or the raw data, and then transforms it

into the format as de�ned by the database before loading it into database tables.

We now focus on the data loading process on a single table. In a data warehouse environment,

the rows are often batch-appended to the table. In other words, there is a background process that

accumulates new records and appends them in batches to the table in a pre-de�ned time interval,

e.g., every hour. Once these records are loaded into the table, we can assume that these records

rarely, if ever, change. An analytics database physically places the tables in its storage engine,
which is highly optimized for providing e�cient access to the data. In the storage engine, data

typically resides on secondary storage that can be much slower to access than memory, e.g., hard

disks. Since this dissertation is focused on the physical storage design, we dive into the details of

di�erent storage architectures for analytics databases in Section 2.2. We next discuss how these

data can be queried.

2.1.2 Query Processing
In an RDBMS, users can query the data using SQL

1
. SQL is a declarative language, which de-

scribes the desired result without specifying the procedure of obtaining that result. This not only

simpli�es the user tasks but also separates the logical layer from the physical layer, which makes

databases more extensible and provides tremendous opportunities for under-the-hood optimiza-

tion. We now show a simpli�ed SQL query structure:

SELECT list of column names
FROM list of table names
WHERE �lter predicates
GROUP BY list of column names
ORDER BY list of column names

In a SQL query, the FROM clause �rst speci�es the tables with which the query is concerned.

When there is a single table in the FROM clause, the query result will contain a subset of rows and

columns from this table. When there are multiple tables in the FROM clause, the row set of the

query result will be a subset of the cartesian product of the rows from these tables, and the column

set of the query result will be a subset of the union of columns from these tables. Which subsets

of columns and rows appear in the query results is determined by the SELECT and WHERE

clause, respectively. Speci�cally, the SELECT clause directly lists the subset of columns, while the

WHERE clause uses �lter predicates to qualify a subset of rows for the query result. In practice,

1
For more details on SQL and RDBMS’s, please refer to [53].
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when the query involves multiple tables (in the FROM clause), there are usually predicates in

the WHERE clause that specify how to join these tables together rather than performing a full

cartesian product. After the query result set is determined, the GROUP BY and ORDER BY clauses

describe how the query result should be grouped and ordered, respectively.

This simple example of SQL query structure omits many of the SQL semantics, but is good

enough to help us understand how queries can be processed in an RDBMS. When a user poses

such a SQL query, the query compiler �rst parses the query string and generates a logical repre-

sentation of the query. Then, the query optimizer picks a physical execution plan for the query,

which provides detailed steps on how the query results can be obtained. Since SQL is a declar-

ative language, a query can have multiple physical execution plans. In fact, di�erent physical

execution plans can incur dramatically di�erent costs. We defer the discussion of query costs to

Section 2.1.3. The goal of a query optimizer is to select the best physical execution plan, i.e., the

plan that incurs the smallest cost. An RDBMS can employ either a rule-based or a cost-based query

optimizer. A rule-based query optimizer follows a set of heuristics rules on how to translate a

logical query plan to physical plan, while a cost-based query optimizer relies on data statistics to

estimate the cost of each physical execution plan and then picks one with the smallest estimated

cost. After the optimizer picks the physical execution plan, the query engine simply follows the

steps of the physical plan to execute the query and returns the query result to the user. We now

discuss several important operations involved in the query execution.

• Scan. The scan operation is typically the �rst operation of the query execution pipeline.

It accesses the table either directly or through an index (details in Section 2.3). Since a

query is only concerned with a subset of rows and columns, it is the scan operation’s job to

apply �lters on columns (SELECT clause) as well as on rows (WHERE clause) and eliminate

the parts of the table that are irrelevant to the query. Thus, the scan operation can easily

become the bottleneck of the entire query execution, because the other operations only

consume the data produced by the scan operation, which may be only a small fraction of

the entire table.

• Join. When the query involves multiple tables, the query engine must join these tables

together. A join operation can be performed on the output of the scan operations performed

on every table involved in the join. On the other hand, the join condition can also be

“pushed down” to the scan operation so that the scan and join operations are e�ectively

performed at the same time. While there are multiple ways of performing a join, the query

execution engine simply follows the join method speci�ed by the physical execution plan.

The physical execution plan also describes the orders of joins when there are more than

two tables involved.

• Group. The group operation is frequently used in analytics queries. This operation often

consumes the data produced by scan or join operations and groups these rows based on the

columns speci�ed in the GROUP BY clause.
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• Aggregate. Although not shown in the example SQL structure above, aggregations, such

as sum, min, average, are commonly used in analytics queries. Aggregations are typically

performed as a �nal step of the query processing pipeline. However, they can also be com-

bined with other operations, such as group. Some advanced RDBMS’s can even perform

aggregations early in the plan as part of scan operations.

2.1.3 Performance Metrics
Generally, analytics databases are evaluated using two main performance metrics: query response
time and resource consumption. Query response time measures the time interval from the issuing

time of the query to its completion time. The time of query execution can be spent on CPU

and I/O. Query response time is an important metric for interactive analysis applications, where

database users usually expect to see the query result in near real-time. Resource consumption,

on the other hand, measures how many resources are consumed for evaluating a query. Modern

analytics database are distributed, where many computers can work in parallel for executing a

single query. Thus, we need a measurement on how much cumulative CPU and I/O time is spent

on evaluating a query. As the hardware resources within an organization are limited, reducing the

resource consumption can help the organization keep the cost of running the data infrastructure

under control. As discussed in Chapter 1, the objective of our proposed techniques is to reduce

the amount of data scanned. Thus, our techniques can improve both performance metrics. In the

performance evaluations throughout this dissertation, we focus on query response time, as it is

more commonly used in performance benchmarks.

2.2 Storage Architecture of Analytics Databases
As opposed to the transactional workloads that arise in operational databases, which touch rel-

atively small amounts of data, analytics workloads typically involve accessing a large subset of

the data in order to derive aggregated insights. Thus, the design of analytics databases is focused

on processing large-scale scans and aggregations in an e�cient and scalable manner.

2.2.1 Row Stores
Despite the dramatic di�erence in target workloads and design goals between analytics databases

and operational databases, in the early days, traditional database vendors adopted similar tech-

nology and architectures for both kinds of systems. We categorize such traditional analytics

databases as row stores.
In a row store architecture, the data is physically stored as a set of rows (or records, tuples), and

all �elds of a row are stored contiguously. Figure 2.1(a) shows a table in a row store architecture.

A row store architecture not only aligns with the logical view of a database table, which is a set of

rows, but also supports many database operations naturally. First, a row-store can easily handle

the insertion of new database records, as it can append these incoming records as new rows to
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Figure 2.1: Row Store vs. Column Store

the table without a�ecting existing rows. Second, a typical query execution engine processes a

row at a time, and thus can directly read data from a row store without additional conversion

steps. Third, many update operations are row-based, e.g., updating a particular record or a set

of records that satisfy certain predicates. Such operations can be e�ciently performed in a row

store, since all attributes of a record can be found in the same place.

While a row store is good for many operations mentioned above, it also exhibits drawbacks

for some access patterns that are commonly seen in analytics workloads. One of the most no-

table observations about analytics workloads is that many queries only access a small subset of

attributes. In a row store, however, queries have to read all attributes of the table from secondary

storage because all attributes of a record are stored together and it is di�cult to separately read the

requested attributes without touching the other attributes. This incurs a lot of unnecessary data

scans that do not contribute to the �nal query results, which leads to degraded query e�ciency.

2.2.2 Column Stores
Motivated by the properties of analytics workloads, analytics systems have increasingly adopted

a column-oriented architecture, which stores each column individually. Figure 2.1(b) shows a

table in a column store architecture. Such an architecture may look counter-intuitive at �rst, as

it complicates a lot of database operations that are row-oriented. For example, when inserting

a new record to a table, a column store has to append each attribute value of this new record

to every column individually. Since query execution engines are row-based, column stores have

to reconstruct the data columns read back into rows before the data are fed into the subsequent

stages of query processing.

Despite these apparent overheads, column stores can have tremendous performance bene�ts
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for analytics workloads. First of all, column stores can make queries scan much fewer columns

than row stores. As columns are separately stored, queries can scan just the columns requested

by queries and avoid accessing irrelevant columns. Moreover, the unique properties of column

stores enable many e�ective optimizations on data scans. Leveraging data compression is one

of the most important optimizations to reduce data scans in column stores. Since all values of a

column are of the same type, there are opportunities to adopt column-speci�c compression tech-

niques. For example, null compression is e�ective for sparse columns. Column stores also allow

di�erent columns to be sorted in di�erent orders for applying even more aggressive compression

schemes, such as delta encoding and run-length encoding [25]. When the columns are in di�er-

ent orders, however, column stores need to maintain a set of row ids for each column in order

to reconstruct them back into rows. Due to the greatly reduced size of the compressed data, the

I/O cost of reading such data can be dramatically improved. To process the compressed data, the

query engine usually needs to perform decompression �rst. The CPU overhead of decompression,

however, can be easily justi�ed by the I/O improvement. Advanced column-store query engines

can also support processing the compressed data directly for certain types of queries [25].

As mentioned earlier, the disadvantage of column stores is on writes. For analytics work-

loads, however, this is not a huge problem. In many analytics scenarios, the workload conforms

to a“write-once, read-many” model, where data is batch loaded into the database and does not

change thereafter. For such a model, column stores only have to pay the loading cost of sep-

arating the attribute values of the new records into individual columns and compressing these

columns. Many column-speci�c compression techniques, e.g., run-length encoding, support data

compression on-the-�y, i.e., they allow new values to be added to a column without the need

of decompressing existing values. In general, column stores have been considered suitable for

analytics workloads and many analytics systems have adopted a column store architecture.

2.2.3 Hadoop Storage
In recent years, Hadoop [32] and Spark [44] have gained popularity for large-scale analytics.

Many execution engines and storage systems have been built as part of the Hadoop ecosystem.

The storage layer for the Hadoop ecosystem is centered around the Hadoop File System (HDFS).

On HDFS, analytics �le formats in Hadoop, such as ORC [73] and Parquet [14], have borrowed

ideas from column stores and adopted a column-oriented data layout for e�cient data retrieval.

However, the architecture of these Hadoop �le formats is di�erent from a pure column store.

In HDFS, data are stored as HDFS blocks, each of which is a horizontal partition of a �le. Each

HDFS block is typically replicated 3 ways and can reside in any machine of a HDFS cluster. The

analytics �le formats ORC and Parquet adopt a PAX-style [1] architecture, which takes advantage

of columnar layouts and at the same time conforms to the HDFS block-based architecture. In

these �le formats, the data is �rst horizontally partitioned, so that each horizontal partition �ts

in a HDFS block. Within each HDFS block, the data uses a columnar layout. When a query reads

data from a HDFS block, it enjoys the bene�t of a column store. Another major bene�t of this

architecture is that all attribute values of a row are guaranteed to reside in the same HDFS block

and thereby in the same machine. Thus, row-reconstruction can be done locally without the
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need of assembling columns from multiple machines. In this dissertation, the prototypes of our

proposed techniques are implemented on these Hadoop �le formats.

2.3 Physical Database Design
Physical database design is the process of determining data layouts and auxiliary data structures

for the database. The choice of physical database design has a great impact on the cost of data scan

and thus the overall query performance. In this section, we survey several important physical

database design techniques.

2.3.1 Indexing
Indexing is one of the oldest and most important physical database design techniques. Indexing is

a broad term in the context of databases and can refer to creating and maintaining any auxiliary

data structure that helps queries navigate the data. In this chapter, we focus the discussion on

the traditional indexes such as B+-trees.

With the help of indexes, queries can quickly locate and retrieve certain records without

the need of scanning the entire table. However, indexes are not free. First, an index can incur

signi�cant storage cost. Second, when there is an update to the data, the indexes built on top

of these data also have to be updated accordingly. Thus, the maintenance cost has to be taken

into account when picking indexes. The goal of picking indexes in physical database design is

to pick a set of indexes that minimize the cost of a target workload, including query cost and

maintenance cost, under a storage cost budget.

An index simply provides a way to access the data. Thus, a query can pick an index to access

the requested data in the table, which we refer to as an index scan, or perform a full scan directly on

the data. Note that an index scan is not necessarily cheaper than a full scan, even when the index

scan accesses less data. This is because, when the data resides in hard-drive disks, an index scan

may incur random disk accesses, while a full scan only involves sequential disk accesses. Random

disk access deliver a lower rate of throughput due to the overhead of disk seeks. We categorize

indexes as two types: primary and secondary. A primary index determines the physical order

of the underlying data, while a secondary index can be in a di�erent order from the actual data.

Thus, a table can have only one primary index and multiple secondary indexes. When using

a secondary index, a query may need to go to multiple places to retrieve the requested data,

because the entries of the secondary index are in a di�erent order from the actual data. This

incurs random disk accesses when the data resides in hard disks. In this case, an index scan is

only considered a preferred choice when it accesses much less data than full scan, e.g., less than

5% of the table. Thus, in some cases, a full scan is the best access path even with the presence of

indexes. Given a query, it is the query optimizer’s job to pick the best access path, i.e., the access

path with the smallest estimated cost, which can be an index scan using one index or multiple

indexes combined, or simply a full scan.
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The above discussion is focused on traditional indexes on row-stores, such as B+-trees. These

indexes work best for the workloads that need to access only a few rows, such as transactional

workloads. For analytics systems, however, the use of such indexing techniques has become

rather limited. Modern analytics systems mostly adopt a column-oriented architecture, where

full scans can be fast due to the column-store techniques such as compression. With the help

of techniques like data skipping, the performance of full scans can be even improved due to the

e�ective reduction of unnecessary scans.

2.3.2 Horizontal Partitioning
Horizontal partitioning refers to the process of dividing a table into a set of horizontal partitions.

Each horizontal partition contains a subset of rows of the table and is separately stored as a �le

or a directory.

Horizontal partitioning is useful in facilitating database management operations. In a data

warehouse environment, we need to constantly insert new data to the table and delete old data

from the table. If the table is not partitioned, we need to append the new rows to the table and

explicitly �nd the rows that need to be deleted. If we horizontally partition the table based on

time ranges, e.g., each partition contains a day’s worth of data, we can easily add a new date

partition to the table when the new data comes in. To delete old data, we can simply remove the

oldest date partition from the table. In both cases, other partitions of the table are una�ected and

can remain online to serve queries. These operations are referred to as “roll-in” and “roll-out”

operations, which are commonly seen in data warehouses.

Horizontal partitioning also plays an important role in improving query performance. Given

a large table, we can perform a horizontal partitioning on the values of one or more columns such

that the values of the partitioning column(s) in each partition is bounded by a range. This is a

classic horizontal partitioning technique called range partitioning. When a query comes, it can

use the value ranges attached to each partition as metadata and prune the partitions whose value

ranges fall out of the query predicate range. This way the query can avoid scanning the entire

table.

Traditionally, horizontal partitioning has been applied using relatively coarse granularity.

Each horizontal partition is typically at �le level or directory level. Indexes can be built within

each horizontal partition. In modern analytics systems, however, horizontal partitioning can be

applied on a much �ner granularity for further improvement on query performance. A horizontal

partition can contain as few as 1,000’s of rows. In this dissertation, we refer to such �ne-grained

horizontal partitions as blocks. By storing some metadata on each block, a query can skip blocks

based on these metadata.

2.3.3 Vertical Partitioning
In contrast to horizontal partitioning, vertical partitioning refers to the process of dividing the

table into a set of column groups. Each vertical partition only contains a subset of columns of the

table.
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Vertical partitioning in a row store can reduce the number of columns accessed by a query.

As mentioned in Section 2.2.1, in a row store, a query may need to access all columns of the table

even when it only requests a small subset of them. When the table is vertically partitioned, if all

the columns requested by a query reside in the same vertical partition, then the query only needs

to access this vertical partition and can avoid accessing other columns. On the other hand, when

a query needs to read columns from multiple vertical partitions, it needs to pay the extra cost of

assembling these columns, as di�erent attribute values of a row may not be stored contiguously.

Vertical partitioning in a row store can be viewed as middle point between a column store and

a row store. The more vertical partitions a row store has, the more it looks like a column store.

In the design of a vertical partitioning scheme for a row store, the goal is to balance the trade-

o� between the number of columns accessed and the row-reconstruction overhead for a target

workload.

Vertical partitioning for a column store is usually referred to as column grouping. Since

columns are already separately stored in a column store, vertical partitioning plays a di�erent

role in column store than in a row store. Although each column is stored separately in a column

store, these columns are aligned. Creating vertical partitions, or column groups, in a column store

allows each column group to have its own order. As discussed in Section 2.2.2, data compression

is an essential element of column stores. The e�ectiveness of several compression algorithm

highly depends on the ordering of the values. Column grouping not only makes each column

group compress better, but also leverages group-speci�c ordering to improve data scans. How-

ever, the downside is that, when a query has to retrieve columns from multiple column groups,

it has to sort these columns before they can be assembled as they are not aligned. Given a target

workload, the goal of vertical partitioning in a column store is to �nd a good trade-o� between

the performance of column scan and the row-reconstruction overhead.

2.3.4 Materialized Views
Another important physical database design option is the creation of materialized views. Mate-

rialized views are pre-computed query results. Creating materialized views refers to the process

of pre-evaluating queries o�ine and storing the results separately from the original data. The

use of materialized views trades space and o�ine preparation time for online query processing

time. Choosing what queries to materialize can be determined by analyzing the workloads or

studying the query templates. Given a table and a set of materialized views, an incoming query

can access an applicable materialized view where it can obtain results faster than evaluating it

on the original data from scratch.

Materialized views do not have to be fully evaluated query results. A materialized view can

also be a partially evaluated result generated by any operation of a query execution pipeline. For

example, we can create a materialized view by selecting a set of rows out of the table, applying a

group-by, or joining multiple tables. As di�erent queries may share some intermediate results, we

can choose to materialize intermediate results so that it can bene�t multiple queries. Typically, a

more general materialized view can bene�t more queries, but provides limited improvement on

each individual query it bene�ts. This is because a materialized view that prioritizes generality
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only o�ers partially-evaluated results, and to use such a materialized view, queries have to go

through further computations. On the other hand, a more speci�c materialized view is targeting

a smaller set of queries but can provide signi�cant savings. Materialized views generated by ag-

gregations typically belong to this category. Picking the most cost-e�ective intermediate results

to materialize can be done in a cost-based manner.

Materialize views can be considered as a form of data replication, as they replicate the data

that are part of query results. In the next section, we discuss another form of replication: full-copy

replication.

2.3.5 Full-copy Replication
In full-copy replication schemes, we simply make several copies of the entire data. Full-copy

replication is critical for the purposes of availability, fault-tolerance, and reliability. When a ma-

chine that contains some data crashes, for example, some other copy of the same data from other

machines can take over. Full-copy replications can increase locality. In a distributed setting, if a

data copy happens to reside in the same machine as the processor, the query can read the local

copy instead of accessing the copy remotely, which can save some network transmission delays.

There has been signi�cant research [54, 4] on leveraging the full copy replication for hetero-

geneous physical database design. The central idea is to have a di�erent physical design choice

on a di�erent replica so that each replica is best suited to serve a di�erent class of workload. Sup-

pose a table has two columns A and B. If we are to build a primary index for the table, we can only

build it on either column A or column B. As discussed earlier, a primary index can bring great

performance bene�ts, but each table can only have at most one primary index, as it determines

the order of the underlying table. If the table has a 2-way replication, we can build a primary

index on column A in replica 1 and a primary index on column B in replica 2. This way, the table

can take advantage of both primary indexes for e�cient query processing.

2.4 Data Skipping
As discussed in Chapter 1, while partition pruning has been a classic technique in commercial

systems (e.g., Oracle [49] and Postgres [50]), data skipping was �rst proposed in [48]. Speci�-

cally, they proposed to maintain small materialized aggregates (SMAs) for each range-partitioned

block, such as min, max, count, sum and histograms for each column. Recently, most analytics

systems [34, 27, 5, 3, 70, 68, 2, 16] have adopted this idea. As opposed to partitioning pruning, data

skipping maintains metadata for all columns, not just the date column, for data blocks. Each block

is a small horizontal partition of the table, which typically contains 1,000 to 10,000 rows. Data

skipping associates each block with some metadata such as min and max values for all columns.

Before scanning a block, the query �rst evaluates its �lter against this metadata and then decides

if a block can be skipped, i.e., the block does not need to be accessed.

To partition the data into these �ne-grained blocks, existing systems have used range parti-

tioning (e.g., [2]), simple splitting (e.g., [14]) or sorting-then-splitting (e.g., [5]). We note that these
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simple physical design approaches do not realize the full potential of data skipping. For example,

range partitioning is too coarse-grained to generate these small blocks; simple splitting does not

re-organizes the data at all, which may miss the opportunity of trading the o�ine cost for online

query performance. Moreover, these systems only consider horizontal partitioning techniques

for data skipping and do not incorporate any of the other physical design techniques discussed

in Section 2.3. To this end, the focus of this dissertation is to leverage innovative physical de-

sign techniques that can fully realize the potential of data skipping. We provide more detailed

discussion on speci�c prior work of data skipping in the following chapters.

2.5 Conclusion
In this chapter, we provide an overview of RDBMS. We also discuss physical design techniques in

RDBMS’s. We also discuss the pros and cons of row-oriented and column-oriented data layouts.

In Chapter 3, we propose innovative horizontal partitioning techniques that can work for row-

and column-oriented data layouts. Since analytics systems mostly adopt column-oriented layouts,

our proposed techniques in Chapter 4 and Chapter 5 are speci�cally designed for column-oriented

layouts, which are inspired by vertical partitioning, materialized views and full-copy replication.
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Chapter 3

Skipping-Oriented Partitioning

3.1 Introduction
In this section, we introduce the skipping-oriented partitioning (SOP) framework. We �rst explain

the design goals of the framework, and then illustrate how such a framework works using an

example. Finally, we point out the challenges and our contributions involved in designing the

SOP framework.

3.1.1 Overview
The e�ectiveness of data skipping depends on how the data is partitioned into blocks. Cur-

rent systems adopt small block sizes for data skipping. For example, IBM DB2 BLU [68] uses

1, 000-tuple blocks; Google’s PowerDrill [3] suggests 50, 000 tuples; Shark [70] skips data at the

granularity of HDFS blocks, each of which is 128MB by default. These systems rely on range par-

titioning to generate such blocks. While range partitioning has been useful for many purposes, it

may not be ideal for generating �ne-grained blocks for skipping. Speci�cally, range partitioning

lacks of a principled way of: (1) setting the �ne-grained ranges on each column that matches the

data skew and workload skew, (2) allocating the number of partitions for di�erent columns and

(3) capturing inter-column data correlation and �lter correlation.

In this chapter, we propose a skipping-oriented partitioning (SOP) technique, with a goal of

(horizontally) partitioning the data into �ne-grained, balance-sized blocks in a way that queries

can skip a lot of blocks. SOP is an o�ine process that executes at data loading time. Note that

the SOP technique can co-exist with traditional horizontal partitioning techniques, as these tech-

niques may be used for a di�erent purpose, such as roll-in/roll-out operations. Speci�cally, SOP

can be applied to further segment each individual partition.

In SOP, we �rst extract some �lter predicates as features from a past query log using frequent

itemset mining [8]. We then generate feature vectors by precomputing these �lter predicates

on the data and solve an optimization problem to guide the data partitioning.As we describe in

Section 3.2, in many real-world workloads, especially the reporting and scheduled workloads,

similar queries are repeatedly run when new data comes in. We analyze real-world workloads



CHAPTER 3. SKIPPING-ORIENTED PARTITIONING 22

t6
t5
t4
t3
t2
t1

!me

08:01:01

08:01:01

08:01:01

08:01:02

08:01:03

08:01:04

id

102

103

104

105

106

107

event

click

click

click

buy

click

buy

category

jeans

shirts

shirts

jeans

jeans

shoes

publisher

groupon

google

groupon

google

google

shoedeal

revenue

0.0

?0.5

0.0

12.0

?0.5

30.0

features

event='buy'

product='jeans'

publisher='google'
revenue6<60

F1

F2

F3

weight

50

20

10

vector
(F1,$F2,$F3)

(0,1,0)

(0,0,1)

(0,0,0)

(1,1,0)

(0,1,1)

(1,0,0)t6
t5
t4
t3
t2
t1

blocking

t1"(0,1,0)
t4"(1,1,0)

t2"(0,0,1)
t5"(0,1,1)

t3"(0,0,0)
t6"(1,0,0)

P1"
(1,1,0)

P2"
(0,1,1)

P3"
(1,0,0)

(a) tuples (b) features (c) vectors (d) blocks

Figure 3.1: Example of Skipping-oriented Partitioning

in Section 3.2 and show that (1) a small set of representative �lters are commonly used by many

queries and (2) many queries use recurring �lters. These �ndings suggest that the workload-

driven approach in SOP can be e�ective for real query workloads.

Some earlier approaches also utilize workloads for physical database design, e.g., [24, 35, 11,

56]. Speci�cally, our approach is related to materialized view selection (MVS) [17, 56]. Like MVS,

we exploit precomputation. However, SOP works at a �ner-granularity and is complementary to

materialized views. In fact, SOP can be applied to partition large materialized views, e.g., data

cubes. As we will show shortly, SOP maintains concise feature-based metadata derived from

precomputation. Another proposed data skipping technique involves the use of small materi-

alized aggregates (SMAs) associated with partitions [48, 27]. These SMAs have been shown to

improve query performance in range-partitioned systems. In contrast, this chapter is focused

on constructing �ne-grained partitions that more closely capture the access patterns of complex

analytics workloads. Like materialized views, SMAs are also complementary to this work and

in fact could be implemented on the SOP partitions as well. We defer the detailed discussion of

related work to Section 3.8.

3.1.2 An SOP Example
Suppose we are given a table as shown in Figure 3.1(a), an example log of online events. We

�rst look at the log of queries that were posed on this table and extract a set of features, each

of which is a representative �lter with possibly multiple conjunctive predicates. Suppose the

features extracted are as shown in Figure 3.1(b). Given these features, we then transform the

data tuples into feature vectors. This process can be done by scanning the table once and batch-

evaluating the features on each tuple. As shown in Figure 3.1(c), each feature vector is (in this

case) a 3-dimensional bit vector, whose i-th bit indicates whether this tuple satis�es �lter Fi.

In practice, the number of features can be kept small, e.g., < 50. We then partition the tuples

according to these vectors. Intuitively, tuples that do not satisfy the same features should be

placed in the same block such that, when a query uses one of these features as �lter, this block of

tuples can be skipped altogether. An example of the resulting data blocks is shown in Figure 3.1(d).

For each block, we compute a union vector by taking a bitwise OR of all the feature vectors in it.
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If the i-th bit of the union vector is 0, then we know that no tuple in this block satis�es feature i.
In this case, any query whose �lter is Fi can skip this block. For example, a query on F3 can skip

the blocks P1 and P3. More generally, a query may be able to skip blocks if its �lter is subsumed
by (i.e., is stricter than or equal to) some features. For example, a query with �lter event = ‘buy’
∧ product = ‘jeans’ is subsumed by both features F1 and F2, which lead to the skipping of P2 and

P3 respectively.

3.1.3 Contributions
To realize the design of SOP, we address a few technical challenges as outlined below.

Feature Selection. Indeed, selecting the right features to guide partitioning is critical. We

develop a workload analyzer to identify representative �lters as features from a query log. We

consider a feature representative if it could be used to help many queries. If some �lter predicates

are frequently used together, we should combine these predicates as one feature to skip data more

e�ectively, e.g., feature F3 in Figure 3.1. To capture both frequency and co-occurrence of �lters,

we model the feature selection as a frequent itemset mining problem. Due to their subsumption

relations, some features can be redundant. For example, revenue > 0 could be redundant if there

is already a feature revenue > 100. We develop a principled way to eliminate redundancy.

Optimal Partitioning. Given a set of features, we compute a feature bit-vector for each

tuple. The problem then is to �nd an optimal partitioning over these vectors. This is clearly a

hard problem, as di�erent features may be con�icting, may be correlated, and may have di�erent

selectivities. We formulate the Balanced MaxSkip partitioning problem: given a desired number

of tuples per block, �nd a partitioning over a collection of tuples (represented as bit vectors)

that maximizes the number of tuples that can be skipped. This objective is fundamentally di�er-

ent from other well-known partitioning objectives, such as k-means and distance-based cluster-

ing [52]. We prove that Balanced MaxSkip is NP-hard, by a reduction from the hypergraph bisec-

tion problem [40]. We conjecture that k-MaxSkip, a variant without the balance constraint, is also

NP-hard. To �nd an approximate solution e�ciently, we adopt the classic bottom-up clustering

framework, as it naturally incorporates the objective function of SOP and is a widely-understood

framework with scalable implementations, e.g., [75, 31].

Partitioning Cost. SOP adopts a bottom-up clustering algorithm [52] to generate the parti-

tioning map. It is prohibitively expensive to run this algorithm on large datasets. Fortunately, we

observe that the input size can be reduced from the number of tuples to the number of distinct

feature vectors. The latter mostly depends on the number of features and can be small (e.g., <10k)

in practice. As shown in Section 3.7, although we run a sophisticated clustering algorithm on the

vectors, the actual data movement still takes up most of the time for the entire process of SOP.

We prototype SOP on Shark [70], an open-source data warehouse system. We conduct ex-

periments using TPC-H benchmark and a real-world ad-hoc workload from a video streaming

company. The results show that SOP reduces the data access by a factor of 4-7 over existing

skipping techniques on top of range partitioning. We also demonstrate that this reduction can

directly translate to a reduction in query response time, on both disk and memory resident data.
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Figure 3.2: Filter Analysis on Real Ad-hoc Workloads

Speci�cally, we improve the query response time by 5-14x over full table scans without skipping

and by 2-5x over existing skipping techniques.

The remainder of this chapter is organized as follows. Section 3.2 gives an overview of the

skipping-oriented partitioning framework. Section 3.3 presents the workload analyzer. We dis-

cuss the partitioner in Section 3.4. We show how skipping works during query execution in

Section 3.5. Section 3.6 discusses the practical issues. We report the experimental results in Sec-

tion 3.7. Section 3.8 reviews the related work and Section 3.9 concludes the chapter.

3.2 Framework Overview
In this section, we give an overview of the skipping-oriented parititioning (SOP) framework. We

�rst discuss our workload assumptions and then explain the work�ow of SOP.

3.2.1 Workload Assumptions
As stated in Section 3.1, SOP extracts representative features from the workload to guide the

partitioning. In order for this approach to work well, it requires two properties of the workload:

Filter Commonality. We expect that there is a small set of �lters that are commonly used

by many queries. If, on the other hand, each query uses a distinct �lter, then it would be di�cult

to �nd representative �lters.

Filter Stability. Since SOP base its partitioning decisions on a past workload, it is important

that most of the �lters in future queries have occurred before. In other words, we expect that

most of �lters are recurring and only a small portion are entirely new over time.

The commonality and stability of �lters can be observed in recurring scheduled or reporting

queries, because such queries are usually generated from templates and the same set of �lters
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would be repeatedly used on the data of di�erent time ranges. Also, the e�ectiveness of using

past queries to guide database design was also evidenced in many previous works, e.g., [56, 35,

24, 11].

We conducted empirical analysis on a real-world production SQL workload from a video

streaming company called Conviva. These 8664 ad-hoc queries, spanning the period from 06/2010

to 01/2012, were used for problem diagnosis and data analytics over an access log of video streams.

Note that each query uses possibly multiple �lter predicates. For each predicate, e.g., event =
‘click’, we count its frequency, i.e., how many queries use it. In Figure 3.2(a), we show the �lters

in the descending order of frequency and plot the cumulative percentage of the queries that use

the �lters. A point (x, y) indicates that the most frequent x% �lters are used by y% of queries.

We can see that the �lter usage is highly skewed, e.g., 10% of the unique �lters were used by

90% of the queries. This implies that using only 10% of �lters as features can bene�t 90% of the

queries.

We then examine the queries in the order that they arrive. To prevent our analysis from

being biased towards a particular starting point, we divided the 8664 queries into 5 disjoint time

windows and plotted �ve curves. Figure 3.2(b) shows an average over these �ve curves. A point

(x, y) means that, as we have seen x% of the queries (or x% workload pre�x), the �lters in these

x% are used by y% of all the queries in the workload. If every query used completely new �lters,

i.e., there is no recurring �lter, this curve would be a function of y = x. The plot, however, shows

that many queries use recurring �lters. In particular, 80% of the entire workload uses the �lters

that already occur in the 30% pre�x. Since the �lters are recurring, we can infer that most of the

future �lters are predictable based on a past workload.

3.2.2 The SOP Work�ow
Having described the workload properties on which SOP depends, we now overview the SOP

work�ow, as depicted in Figure 3.3. This work�ow consists of three standard data marshaling

steps (shaded arrows) and two important modules named the workload analyzer and the parti-

tioner.

The input is a table and a workload represented as a collection of queries on this table. The

query workload can be obtained by collecting query logs of the system. We now walk through

the individual steps in the work�ow:

(1) Workload Analyzer. The workload analyzer (Section 3.3) extracts a set of features from

the query workload. A feature is a representative �lter with possibly multiple predicates.

(2) Featurization. Given the features, i.e., �lters, from Step 1, we scan the table once and

batch evaluate these �lters for each tuple. This step transforms each tuple to a (vector, tuple)-

pair.

(3) Reduction. Since the partitioning only depends on the feature vectors, not the actual

tuples, we group the (vector, tuple)-pairs into (vector, count)-pairs. This is an important step to

reduce the input size for the partitioner.

(4) Partitioner. The partitioner (Section 3.4) runs a partitioning algorithm on the (vector,

count)-pairs. This generates a partitioning map (from a feature vector to a block id).
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Figure 3.3: The SOP Work�ow

(5) Shu�le. In this step, each of the augmented tuples (output of Step 3) �nds its destination

block by consulting the partitioning map (output of Step 4).

(6) Catalog Update. We add the features and one union vector (e.g., Figure 3.1(d)) for each

block to the block catalog (Section 3.5). After this step, we can drop the feature vectors, and the

partitioned tuples are ready to serve queries.

The above work�ow can be executed as an o�ine process at data loading time and may be

re-executed later to account for workload changes. In the event that the data arrival rate is high

or that the new data needs to be queried immediately, the partitioning process can be postponed.

As stated in Section 3.1, in many data warehouse applications, tables are partitioned by time

ranges, and new tuples are typically batch-inserted as a new partition. We can consider the SOP

partitioning as a “secondary” partitioning scheme under each such coarse-grained partition. For

example, when a new partition dt=‘1994-11-03’ is added to the table logs:

ALTER TABLE logs ADD PARTITION (dt=‘1994-11-03’) . . .

we can apply SOP on this newly inserted partition without a�ecting existing data.

Having outlined the work�ow, in the following sections, we will discuss the di�erent compo-

nents in detail.
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3.3 Workload Analysis
The goal of workload analysis is to extract features from the query trace. We follow two intu-

itions. First, we should use representative �lters as features to guide the blocking. A feature is

representative if it can potentially help a large number of queries skip data. Second, the �lter

predicates that are frequently used together should be considered as one single feature, e.g., F3

in Figure 3.1, as these predicates will likely be used together in the future queries and combining

them can greatly maximize block skipping. To take into account the counting and co-occurrence

of predicates, we model the workload analysis as a frequent itemset mining problem [37]. In this

section, we �rst formulate the problem and then present a principled approach for feature selec-

tion.

3.3.1 Workload Model
A workload is a collection of queries. Each query is associated with a �lter, which evaluates a

data tuple and returns a boolean value. Without loss of generality, we assume each query uses a

conjunction of predicates, where a predicate is a disjunction of �lter literals. A �lter literal can be

an equality or range condition, a string matching operation, or a boolean user de�ned function.

Since we are only concerned with the �lter part of the queries, we represent the workload by

Q = {Q1, Q2, . . . , Qm}, where eachQi is a set of (conjunctive) predicates. An example workload

is given in Example 1.

Example 1 An example workload, each of which is represented as a set of conjunctive predicates:
Q1: product = ‘shoes’
Q2: product in (‘shoes’, ‘shirts’), revenue > 32
Q3: product = ‘shirts’ ∧ revenue > 21

The workload is thus modeled as a transactional database [8], where a predicate is an item and

a query is a transaction. For example, Q1 can be viewed as a transaction of only one item prod-
uct=‘shoes’. Let F be the set of all predicates that occurred in Q. We call any set of conjunctive

predicates Fi ⊆ F a predicate set (analogous to itemset). By de�nition, each Qi is a predicate set.

Two predicates are equal if all their components are equal, including the columns, the con-

stants and the �ltering condition. Given two predicates fi and fj , we use fi v fj to denote that

fi is subsumed by fj or fj subsumes fi, i.e., fi is equal to or stricter than fj . For example, the

predicate product = ‘shoes’ is subsumed by product in (‘shoes’, ‘shirts’). Given two predicate

sets Fi and Fj , we say Fi is subsumed by Fj , or Fj subsumes Fi, denoted by Fi v Fj , if for any

fu ∈ Fj , there exists fv in Fi such that fv v fu. Clearly, Fi v Fj if Fj ⊆ Fi.

3.3.2 Predicate Augmentation
We want to select representative predicate sets as features. As discussed in Section 3.1 and Sec-

tion 3.5, a feature can be used to skip data blocks, but only for the queries it subsumes. Let us

show this using Example 1. Suppose we use {product in (‘shoes’, ‘shirts’)} as a feature. We can
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see that this feature subsumes both Q1 and Q2. If there is a block that does not contain any tuple

that satis�es {product in (‘shoes’, ‘shirts’)} (indicated by the union vector, as discussed), we can

then infer that no tuple in this block satis�es Q1 or Q2, because these queries are subsumed by

(i.e., even stricter than) this feature. In this case, Q1 and Q2 can safely skip this block.

Since a predicate set, if selected as a feature, is only helpful to the queries it subsumes, we

should select the predicate sets that subsume a lot of queries. This problem can be modeled

as frequent itemset mining. There is a di�erence, however, between the number of queries a

predicate set subsumes and the number of occurrences this predicate set has. Directly applying

a frequent itemset mining algorithm on the queries would miss important features. For example,

{revenue > 21} subsumes both Q2 and Q3, and {product in (‘shoes’,‘shirts’)} subsumes both Q1

and Q2; each of these two predicate sets has only 1 occurrence but subsumes 2 queries. To adjust

this di�erence, we perform a �lter augmentation step as follows. For each query Qi ∈ Q, we

augment Qi with all the predicates in F that subsumes Qi, using the following procedure.

for each Qi ∈ Q:
for each fj ∈ F :

if ∃fk ∈ Qi s.t. fk v fj :
Qi ← Qi ∪ {fj}

After this augmentation step, the number of occurrences of a predicate set equals to the num-

ber of queries it subsumes. For example, the workload in Example 3 becomes:

Q1: prod.=‘shoes’, prod. in (‘shoes’, ‘shirts’)

Q2: prod. in (‘shoes’, ‘shirts’), revenue>32, revenue> 21

Q3: prod.=‘shirts’, revenue>21, prod. in (‘shoes’, ‘shirts’)

By setting a minimum frequency threshold T , we can now use an o�-the-shelf frequent item-

set mining algorithm to compute the predicate sets that subsume at least T queries.

3.3.3 Redundant Predicate Set Elimination
We now have obtained a set of predicate sets that subsume at least T queries. Unfortunately, some

of these predicate sets may be redundant. For example, if there is a predicate set {publisher=‘google’,
revenue<0} in the result, both its subsets {revenue<0} and {publisher= ‘google’} would also be

present, due to the apriori property [8]; but the predicate set {publisher=‘google’, revenue<0}

is only useful for the queries that cannot be subsumed by either of the subsets. In addition, the

�lter augmentation step may also introduce redundant results. For example, if {revenue> 32} is

present, then {revenue>21} is also present due to the augmentation. Again, {revenue>21} is only

helpful for the queries that cannot be subsumed by {revenue>32}. Existing approaches that keep

only maximal or closed frequent itemsets [37] do not capture the subsumption relations in our

speci�c problem.

We develop a principled way to remove redundancy from the frequent predicate sets. Notice

that the frequency threshold T used in Section 3.3.2 indicates that we are only interested in the
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predicate sets that subsume at least T queries. We will use the same principle for redundancy

removal. Speci�cally, letF be the frequent predicate sets, we consider a predicate setFi inF to be

redundant and remove it, if the number of queries Fi additionally subsumes, given the predicate

sets that are already in F , is less than the threshold T . We denote by subsume(Fi,Q) ⊆ Q the

set of queries in Q that are subsumed by Fi. We use the following procedure to eliminate the

redundant predicate sets:

sort F by the (partial) order of v, i.e., Fi v Fj for i < j
Qc ← ∅,R ← ∅
for each Fi in F :

I(Fi)← |subsume(Fi,Q)−Qc|
if I(Fi) < T :

remove Fi

else:
R ← R∪ {(I(Fi), Fi)}
Qc ← subsume(Fi,Q) ∪Qc

We examine the predicate sets in F in the (partial) order of increasing generality, such that

the eliminating decision of the current predicate set does not a�ect that of the previous predicate

sets. For each Fi, we calculate I(Fi), the number of queries that Fi additionally subsumes. If

I(Fi) is smaller than T , Fi is removed; otherwise, we add the pair (I(Fi), Fi) to R and update

Qc, the cumulative set of queries subsumed by all the predicate sets in R. At the end, we sort

R. Given a parameter numFeat, the workload analyzer returns numFeat predicate sets fromR
with the highest I(·) values.

The cost of workload analysis is dominated by the frequent itemset mining phase. In practice,

we expect this process to be very e�cient, since most queries would not have many predicates.

Next, we discuss the partitioner, which incorporates the data-related aspects such as correlation

and selectivity, by solving a optimization problem on the feature vectors.

3.4 The Partitioning Problem
In this section, we �rst formulate the optimization problem and prove its hardness. We then dis-

cuss the reduction step which is critical to scaling. Finally, we present the bottom-up framework.

3.4.1 Problem De�nition
Suppose we have a set of m features obtained from the workload analysis, denoted by F =
{F1, F2, . . . , Fm}. We denote by wj the weight of the features Fj , i.e., the number of queries it

subsumes. Based on these features, the data tuples are augmented with binary vectors (Step (1)

in Figure 3.3). We now formulate the partitioning problem on the m-dimensional bit vectors.

Let V = {v1, v2, . . . , vn} be a collection of m-dimensional bit vectors, where each vector

corresponds to a tuple. We will focus on our discussion on the vectors, �nding as a partitioning
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on the vectors is equivalent to �nding a partitioning on the tuples. The j-th bit of vi, denoted

by vij , indicates whether vi satis�es feature Fj . Let P = {P1, P2, . . . , Pk} be a partitioning over

V , i.e., P is a set of disjoint subsets of V whose union is V . Let v(Pi) be the union vector of all

vectors in Pi, i.e., v(Pi) =
∨

vj∈Pi
vj . We say a feature Fj prunes a partition Pi if none of the

vectors in Pi satis�es Fj , i.e., the j-th bit of v(Pi) is 0, denoted by v(Pi)j = 0. If Fj prunes Pi,

then Fj prunes |Pi| tuples, as each vector corresponds to a tuple. Note that the weight wj of Fj is

the number of queries Fj subsumes in the workload. If Fj prunes Pi, when we run all the queries

in the workload, the sum of tuples that can be skipped would be wj · |Pi|. Given a partition Pi, we

de�ne the cost function C(Pi) as the sum of tuples in Pi that can be skipped when we execute

all the queries in the workload, we have:

C(Pi) = |Pi|
∑

1≤j≤m

wj(1− v(Pi)j) (3.1)

Consider the example partitioning scheme P1 in Figure 3.1(d). The union vector v(P1) is

(1, 1, 0), so only feature F3 prunes P1. We also know that |P1| = 2 and the weight of F3, w3, is 10
as given in Figure 3.1(b). Therefore, we have: C(P1) = 2× 10 = 20 using Equation 3.1. We then

de�ne the cost function C(P) over a partitioning, which is the sum of C(Pi) over all Pi in P :

C(P) =
∑
Pi∈P

C(Pi) (3.2)

Intuitively, the objective function C(P) is the sum of tuples that can be skipped if we run all the

queries in the workload. From the perspective of a real system, we also have to constrain that

the block sizes are almost balanced. If some block is too small, it incurs signi�cant overhead to

process the block and maintain block-level metadata; if some block is much bigger than others, it

may become a straggler in parallel executions. We now de�ne the Balanced MaxSkip partitioning

problem:

Problem 1 (Balanced MaxSkip Partitioning) Given a set V of binary vectors, where |V | is a
multiple of p, �nd a partitioning P over V such that C(P) is maximized, i.e.,

argmaxP C(P)
subject to |Pi| = p ∀Pi ∈ P

The balance constraint is important from the perspective of a large-scale system, such as

parallel processing of data blocks, but not necessary for data skipping purposes. For theoretical

interests, we also formulate a k-MaxSkip partitioning problem without the balance constraint:

Problem 2 (k-MaxSkip Partitioning) Given a set V of binary vectors, �nd a k-partitioning P
over V such that C(P) is maximized.

In the design of SOP, we will focus on Problem 1.
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3.4.2 NP-Hardness
We now prove that Problem 1 is NP-hard even in the special case where p = |V |/2, by reduction

from hypergraph bisection [29]. Given a hypergraph instance H = (V,E), where V is a set of

vectices andE is a set of hyper edges. Since each hyper edge connects a set of vertices, we denote

by vi ∈ Ej if vi is in Ej . The hypergraph bisection problem �nds a balanced 2-partitioning on

the vectices such that the number of hyperedges across the two partitions is minimum.

We construct an input to our problem from this instance as follows. We construct a bit vector

vi for each vertex. Each vector has |E| dimensions, where the j-th dimension corresponds to an

edge ej in E. Speci�cally, the value vij is 1 if vi ∈ ej and 0 otherwise. By setting the partition

size to be |V |/2, a solution P = {P1, P2} to our problem is a balanced partitioning over V . Let n1

and n2 be the number of vectors in P1 and P2, respectively, and letm1, m2 andmc be the number

of hyperedges in P1, in P2 and across both, respectively. The value of our objective function for

this solution is:

C(P) = n1m1 + n2m2 + nmc (3.3)

Now that the partitions are balanced, i.e., n1 = n2, we have:

C(P) = 1

2
nm1 +

1

2
nm2 + nmc = nm+ nmc (3.4)

Since n and m are constant, minimizing Equation 3.4 is equivalent to minimizing mc. Hence, an

optimal solution to our problem solves the hypergraph bisection problem on H .

From Equation 3.3, we can see that our objective function involves the product of number of

vertex and number of edges for each vertex partition. We conjecture that Problem 2, the variant

that does not have the balance constraint, is also NP-hard.

3.4.3 Reduction Step
The partitioning problem de�ned in Section 3.4.1 is solely based on the vectors, not the actual

tuples. As an optimization step, we group the vectors into (vector, count)-pairs. This step does not

a�ect the quality of partitioning, since the same vectors should go to the same partition anyway.

Each vector now is associated with a weight, denoting the number of tuples it represents. To

compute Equation 3.1, we simply replace |Pi| with the weighted sum of all the vectors in Pi.

Note that this step is the key to scale our partitioning techniques to large datasets. Theoreti-

cally, the number of distinct vectors is upper-bounded by min(2m, n). In practice, however, this

number is usually very small, e.g., <10k, as many tuples may have the same feature vectors. We

will empirically examine this number in Section 3.7.

3.4.4 The Bottom Up Framework
Since Problem 1 is NP-hard, we will turn to Ward’s method as a heuristic algorithm to �nd an

approximate solution e�ciently. Ward’s method [69], originally proposed for minimizing the
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error sum of squares, is a general bottom-up clustering framework and has been used for various

objective functions [52].

Base on Ward’s method, every data point is a partition by itself initially. At each iteration, we

select two partitions to merge that maximizes C(P). Recall that C(P) is a sum of C(Pi) for all

Pi ∈ P . We denote by δ(Pi, Pj) the change of C(P) caused by merging partitions Pi and Pj , i.e.,

δ(Pi, Pj) = C(P ∪ {Pi ∪ Pj} − {Pi, Pj})− C(P) (3.5)

When we merge Pi and Pj , their union vectors are ORed, i.e.,

v(Pi ∪ Pj) = v(Pi) ∨ v(Pj) (3.6)

Since the merging of Pi and Pj does not a�ect the costs of other partitions, we have:

δ(Pi, Pj) = C(Pi ∪ Pj)− C(Pi)− C(Pj)

= |Pi|
∑

1≤k≤m

wk(v(Pi)k − v(Pi)k ∨ v(Pj)k)

+|Pj|
∑

1≤k≤m

wk(v(Pj)k − v(Pi)k ∨ v(Pj)k)

In the bottom up algorithm, we represent each partition as Pi as a (v(Pi), |Pi|)-pair. Thus,

δ(Pi, Pj) can be evaluated e�ciently (constant time to the size of partitions). We also have the

following lemma.

Lemma 1 (Monotonicity) The objective functionC(P) is non-increasing through a partitionmerge,
i.e., δ(Pi, Pj) ≤ 0 for any Pi, Pj ∈ P .

Lemma 1 guarantees that our objective function can �t in Ward’s method correctly. The

objective C(P) has the maximal value when every vector is a partition by itself. We iteratively

�nd a pair of points whose merge hurts C(P) the least.

In practice, we set a parameterminSize. A partition is removed from being further merged if

its size reachesminSize. Thus, a merge of two blocks of size less thanminSizewould be smaller

than 2 ·minSize. We simply accept the blocks of size in [minSize, 2 ·minSize). The bottom-up

procedure is shown as follows:

P ← {{v1}, {v2}, . . . , {vn}},R ← ∅
while P is not empty:

· merge the pair Pi, Pj ∈ P with the largest δ(Pi, Pj)
· if |Pi ∪ Pj| > minSize or Pi ∪ Pj is the last one in P :
· remove Pi ∪ Pj from P and add it toR

return R

A straightforward implementation of this algorithm has a complexity of O(n2 log n) [52].

As bottom-up clustering is a classic algorithmic framework, scalable implementations have been
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proposed, e.g., [75, 31]. Due to the reduction step, the input size becomes much smaller than

the number of tuples. The experimental results in Section 3.7 indicate that the partitioning algo-

rithm can run e�ciently even with a naïve implementation, and the cost bottleneck of the entire

partitioning process is still on the actual data movement, not on the partitioning algorithm.

Constructing the partitioning map. The output of the algorithm is a partitioning of the

vectors. We use this output to construct a blocking map which returns a block id for a given

feature vector. A data tuple can be routed to the right block by consulting the partitioning map

with its corresponding feature vector.

3.5 Feature-based Data Skipping
In order to enhance the data skipping, we now introduce the block catalog, which maintains the

metadata for skipping. We also discuss how a query optimizer might use it.

As mentioned earlier, many query engines support data skipping using the value ranges or

bloom �lters. We could import our block data to these systems and rely on the built-in skipping

mechanism. This, however, may miss some data skipping opportunities. For example, the features

we used to guide partitioning can involve multiple columns (e.g.,F3 in Figure 3.1); checking the

aggregates of the two columns individually may not be able to prune the block, while maintaining

multi-dimensional statistics is expensive. In addition, it is unclear how the aggregates can be used

to prune string matching and general user-de�ne functions. To fully exploit our partitioning

scheme for data skipping, we propose a feature-based skipping mechanism, which can be used

in conjunction with existing data skipping mechanisms based on the aggregates.

Block Catalog. After the partitioning, we obtain a union vector for each block. If the i-th
bit of the union vector is 0, then we know that no tuple in this block satis�es feature i. Therefore,

the queries that are subsumed by feature i can safely skip this partition. To realize this, we store

the features used and one union vector for each block in a block catalog, which can be part of

the system catalog in a database system. Figure 3.4 shows the partition catalog for the example

partitioning scheme in Figure 3.1. Note that the block catalog is very compact: we store the

features once and then one bit vector for each block.

Query Execution. Let us see how a query interacts with the block catalog in Figure 3.4.

When a query comes, we �rst extract the �lter operator from the query. We check which features

in the block catalog can subsume this query. The subsumption check can be implemented as hard-

coded rules. We �nd that F1 and F2 can subsume the query. We represent this information by

a query vector (0, 0, 1), the i-th bit of which is 0 if i-th feature subsumes the query. We then

compute, for each block, a bitwise OR between the query vector and the union vector. For any

block, if the resulting vector of the OR operation has at least one 0 bit, then this block can be

skipped. In Figure 3.4, the ORed vectors for P1, P2 and P3 are (1, 1, 1), (0, 1, 1) and (1, 0, 1)
respectively. Thus, we know that we only need to scan P1. This information is then passed to

table scan operator.

The above procedure happens before the table scan operator and is independent of the rest of

query execution. As we can see, we only need to maintain minimal metadata and add an simple
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block catalogSELECT publisher, sum(revenue)
FROM events 
WHERE product = 'jeans' and event = 'buy'
GROUP BY publisher features

f1: event = 'buy'
f2: product = 'jeans'
f3: publisher = 'google', revenue < 0

union vectors
P1: (1,1,0) P2: (0,1,1) P3: (1,0,0)

query vector: (0,0,1)

product = 'jeans' AND event = 'buy'

blocks to scan: P1

Figure 3.4: Data Skipping in Query Execution

module between query compilation and the start of the query execution. We have implemented

this functionality in less than 100 lines of code in Shark [70].

3.6 Discussion
In this section, we discuss the practical issues of using the SOP framework.

Data Update. SOP is designed for a data warehouse setting, where there are infrequent

ad-hoc updates and data are batch-inserted and batch-deleted as partitions. We can apply SOP on

each partition separately. Therefore, the insertion or deletion of partitions will not a�ect other

parts of data. Nevertheless, we now discuss how ad-hoc updates can be handled for our blocked

data.

Since SOP produces small balanced-sized data blocks, ad-hoc insertions should be put into

new blocks instead of modifying existing blocks. These new blocks are ready to serve queries.

Once we have accumulated enough new data, e.g., 50 blocks’ worth of data, we can use SOP to

re-organize these data. An ad-hoc deletion can be handled trivially, as a tuple can be removed

from a block without modifying the block metadata. When there is an ad-hoc update in a block,

we check if we need to update the block metadata, i.e., the union vector. To allow for high-

throughput updates, we can simply invalidate the union vector by setting all of its bits to 1’s

to eliminate the checking overhead. After many updates, the partitioning scheme may become

ine�ective, then we can re-partition the data.

Parameter Selection. Two key parameters were used in the SOP process, namely, numFeat,
the number of features, andminSize, the minimum number of tuples per block. For a real-world

workload, we expect numFeat to be small. We can use cross validations to choose an appropriate

number of features that prevents under- and over-�tting. The choice of minSize can depend on

the underlying system. In the prototype on Shark, we setminSize to be 50, 000, which results in

64-128MB blocks. Each block nicely �ts with a Spark/HDFS block. Intuitively, if a block is bigger
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than 128MB, the system will break it down into many HDFS blocks anyway. If the blocks are too

small, the metadata storage and skip checking overhead may become signi�cant.

Overhead of Skip Checking. In many large-scale query engines, the query optimizer runs

in a single node. We can easily perform the skip checking (Section 3.5) in a single-node optimizer.

This might seem counter-intuitive, as a large table can have many blocks. To see if this makes

sense, we can do some back-of-the-envelope analysis. Assuming an average block size of 128MB,

100TB of data would have less than 1million blocks. It only takes 13MB to store the bit vectors for

all these partitions if each vector is 128-bit, i.e., 128 features used. The block catalog can easily �t

in the memory of a single machine. In a modern CPU, a bitwise operation of two 128-bit vectors

can be computed using only a single instruction. The block checking incurs minimal overhead

even for interactive queries.

Objective Function. The objective function for partitioning (Equation 3.2) is de�ned as

the sum of query costs in the workload, where the cost of a query is quanti�ed as the number

of tuples scanned. We chose the current objective function as it is simple, commonly used in

database designs (e.g., [33]) and works reasonably well in practice. In some applications, we

may want to de�ne the objective di�erently, e.g., we can maximize the number of queries in the

workload that can �nish in 30 seconds. In this case, we may need to estimate the query costs and

weight the queries based on their costs. Incorporating these in the SOP framework would be an

interesting avenue of future work.

3.7 Experimental Evaluation
In this section, we report the experiment results. All experiments were conducted on an Amazon

Spark EC2 cluster of 25 m2.4xlarge instances, each with 8 × 2.66 GHz CPU cores, 64.8 GB of

RAM and 2× 840 GB disk storage. The datasets are stored in HDFS.

3.7.1 System Prototype
We prototype the skipping-oriented partitioning techniques on Shark [70], a fully Apache Hive [6]-

compatible data warehousing system using Apache Spark [44] as runtime. Shark parses and

compiles HiveQL (SQL-like) queries to a query plan, which are then translated to Spark tasks. A

Shark table is stored as a Spark data abstraction called Resilient Distributed Dataset (RDD), which

is physically stored as a list of data blocks, each of which can be either memory- or disk-resident.

Each block in Spark is a data processing unit and has a default size of 128MB. Shark supports data

skipping over such data blocks. At data import time, Shark collects the data statistics for each

block. These statistics are maintained in the system catalog. Before a table scan, the query �lter

is applied on these statistics, and then the block ids to be scanned are passed to the table scan

operator.

We now brie�y discuss how our techniques were implemented on Shark.

Workload Analyzer. We can collect a query trace from the query logging system of Shark

or from an external source. We used Shark’s query parser to convert each query string into a
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set of conjunctive �lter operators. We implemented a isSubsume(f1, f2) function using a set

of rules to check if �lter f1 subsumes �lter f2. A module was added in Shark to implement the

techniques in Section 3.3.

Featurization, Reduce. We wrote a map function for featurization and a reduce function to

group by the vectors.

Partition, Shu�le. We implemented a bottom-up clustering algorithm as a module in Shark.

Note that this module is independent of the other parts of the SOP work�ow, and thus external li-

braries could be used here. We then constructed a Spark Partitioner, which returns the destination

block id for an (vector, tuple) pair. The table (an RDD) are then shu�ed using this Partitioner.

Catalog Update. We added the metadata described in Section 3.5 to the Shark system cata-

log. A table scan now can utilize two tiers of skipping mechanisms: our feature-based skipping

(Section 3.5) and the existing min/max skipping.

3.7.2 Datasets
TPC-H

We use the TPC-H benchmark with a scale factor of 100. To focus on the e�ect of reduced table

scan, we denormalize all the tables against the lineitem table, which results in a single table of

roughly 600 million rows and 700 GB in size. We select eight query templates (q3, q5, q6, q8, q10,

q12, q14, q19) from the TPC-H workload, as these templates involve the lineitem table and have

selective �lters. The FROM clauses in these templates were all changed to be the denormalized

table. In a query template, some �lters are �xed while the others are parametric. For example, the

return item reporting query (q10) has a �xed �lter l_return�ag = ’R’, which will appear in every

query generated from this template, and a parametric �lter o_orderdate >= date ’[DATE]’, where

[DATE] is replaced with a constant at each run. Using the TPC-H query generator, we generate

800 queries as the training workload, 100 from each template. We then independently generate 80
queries for testing, 10 from each template. TPC-H represents a workload of template-generated

queries, which is very common in real-world applications. Note that our approach can greatly

take advantage of the �xed �lters in a template (e.g., l_return�ag = ’R’), as they are perfectly

predictable.

TPC-H Skewed

The TPC-H query generator assumes a uniform distribution for the predicate constants. In many

real-world workloads, the constant distributions are skewed. For example, region=’North Amer-
ica’ may be queried much more often than the other regions for a U.S. company. To test a skewed

distribution, we modi�ed the TPC-H query generator to follow a Zipf distribution. As most pa-

rameters in the query templates have a small number of possible values, we chose a high skew

factor of 3. For example, REGION only has 5 possible values, and by using a skew factor of 3,

the most frequent 20% values occur in 84.3% of the generated queries. Note that we only added
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the skewness to the non-date �lters, while [DATE] is still uniformly distributed. We similarly

generate 800 train queries and 80 test queries under this Zipf distribution.

Conviva

The Conviva data is an anonymized user access log of video streams. The data consists of a

single large fact table with 104 columns, such as customer ID, city, media URL, genre, date, time,

browser type and request response time. We also obtained an in-production SQL query trace

from Conviva, which has 735 queries for problem diagnosis and data analytics issued on the log

data. The queries were between 08/01/2012 and 11/30/2012. We split the query trace at the date

of 11/24/2012, which results in 674 training queries (before 11/24/2012) and 61 testing queries (on

and after 11/24/2012). Based on the training queries, we partition the log data from 11/24/2012

to 11/30/2012. This snapshot of the log has 680 million tuples and is roughly 1 TB in size when

stored as text. We evaluate the performance of running the test queries on the partitioned data.

3.7.3 TPC-H Results
Query Performance

We evaluate the e�ect of our partitioning techniques on query performance. We measure the

number of tuples scanned and end-to-end query response time for di�erent partitioning and skip-

ping schemes in Figure 3.5. Speci�cally, we compare the following alternatives:

fullscan: We disable the data skipping and do a full scan for each query. The partitioning

scheme is immaterial here.

range1: We perform a workload-oblivious partitioning on o_orderdate and each date is a

partition. This leads to roughly 2300 partitions. Shark’s data skipping is used.

range2: We manually devise a composite range partitioning scheme on multiple columns.

By identifying the frequently queried columns from the workload, we perform a range parti-

tioning on {o_orderdate (by month, 78 partitions), r_name (customer region name, 5 partitions),

c_mkt- segment (5 partitions), quantity (5 partitions)}. This results in roughly 9000 partitions.

Shark’s data skipping is used.

fineblock: This is the SOP approach. We �rst partition by month on o_orderdate. We use

the workload analyzer to extract 15 features from the 800 training queries (by setting numFeat=15).

Note that we do not consider any date �lters as features and will rely on the month partitions

to prune data. Using these features, we run a partitioner instance on each month partition in

parallel. An average month partition has 7.7 million tuples. By setting minSize= 50k, a month

partition has around 100 blocks. The total number of blocks is roughly 8000. We used both our

feature-based skipping (Section 3.7) and Shark’s existing min/max skipping.

We evaluate the performance of running 80 test queries (as mentioned in Section 3.7.2) using

the above alternatives. Figure 3.5(a) shows the percentage of tuples scanned for the 80 queries

relative to fullscan. As we can see, the existing data skipping with range1 and range2
only scan 25% and 19% of the tuples scanned by fullscan respectively. The tuples scanned by
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Figure 3.5: Query Performance Results of SOP (TPC-H)

fineblock is only 3.9% offullscan, a 5x improvement over the manual range partitioning

scheme range2. As a reference, the bar actual shows the percentage of tuples that must be

scanned, i.e., the tuples that actually satisfy the �lters, which is 0.7% of fullscan.

To test the end-to-end query response time, we consider two scenarios: when the table is

entirely on disk and when the data is entirely in memory. Figure 3.5(b) shows the query response

times for on-disk data. We run the 80 test queries in a sequence and record the sum of their

response time. We cleared the OS cache before running each query. As shown, the query re-

sponse time for range1 and range2 are 30% and 21% of that for fullscan. fineblock
only took 7% of the time for fullscan, 23% for range1 and 30% for range2. This is an 3-4x

improvement over the range partitioning schemes. Figure 3.5 shows the query response time for

memory-resident data. In Shark, we can simply cache a table in memory by executing:

create table tpch_cached as select * from tpch;
We con�gured our distributed RAM cache to be large enough to hold the entire table. As

we can see, fineblock only took 30% and 32% of the time taken for range1 and range2,

respectively. This is roughly a 3x improvement. It is interesting to note that the end-to-end

improvement for in-memory data is slightly smaller than that for on-disk data. As scanning in-

memory data is much faster, the e�ect of skipping in-memory blocks is less signi�cant.

We also tested the end-to-end performance for TPC-H Skewed. The amount of tuples scanned

by fineblock is only 8% and 10% of that by range1 and range2 respectively. For the on-
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Figure 3.6: E�ect of minSize in SOP (TPC-H)

disk data, fineblock took 20% and 23% of the time for range1 and range2 respectively;

for the in-memory data, fineblock took 22% and 29% of the time for range1 and range2
respectively. Note that our improvement for TPC-H Skewed is better than for TPC-H. The skew-

ness in the �lter distribution allows a small number of features to subsume even more queries,

and thus makes our techniques even more e�ective for TPC-H Skewed.

On both TPC-H and TPC-H Skewed, we observe that our approaches signi�cantly reduce the

data scanned, which e�ectively translate to an improvement in end-to-end query response time

for both disk- and memory-resident data.

E�ect ofminSize

Intuitively, the smaller the block size is, the more chance we can skip data. In Figure 3.6, we plot

the total number of tuples scanned using our approach for answering the 80 test queries in TPC-H

and TPC-H Skewed by varing minSize, with numFeat=15. Since the two curves represent two

di�erent workloads, for fair comparison, we plot the ratio of the number of tuples scanned to the

number of tuples that have to be scanned. Thus, a y-value of 5 in the curve means we scanned 5
times as many tuples as necessary.

We make several observations. First, for both curves, we scan more data as the block size

increases. Second, data skipping is even more e�ective on TPC-H skewed. Recall our workload

assumptions in Section 3.2, many real workloads tend to have skewed predicate distribution. If

the �lter predicates are skewed, a small set of features can cover more queries. Third, the number

of tuples scanned is not sensitive to the block size. In particular, increasing minSize from 5k
to 200k only make the scan twice as much for both workloads. This gives us a wide range of
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Figure 3.7: E�ect of numFeat in SOP (TPC-H)

choosing minSize. For example, in our experiment on Shark, we set minSize=50k, which make

each block nicely �t in a Spark/HDFS block �le (128MB by default).

E�ect of numFeat

Figure 3.7 plots the number of tuples scanned by varying numFeat. The numbers are also nor-

malized as in Figure 3.6. As we can see, when using too few features, e.g., < 5, we have to scan a

lot of more tuples, as these features are not representative enough for the workload. As we add

more features, the e�ectiveness of skipping quickly stabilizes and TPC-H Skewed consistently

bene�ts more from SOP. We can see that, for both TPC-H and TPC-H Skewed, a small set of

features is su�cient. Even though the predicates in TPC-H are uniformly distributed, the �xed

�lters play an important role as features. For example, the feature l_return�ag = ’R’ in template

q10 can subsume 100 out of 800 training queries (and also 10 out of 80 testing queries), since all

the queries generated from template q10 have this �lter. TPC-H Skewed performs even better due

to the skewness in the parametric predicates. This curve also suggests that adding more features

will not signi�cantly hurt the e�ectiveness of skipping, though this may hurt the partitioning

e�ciency. This is because the highly weighted features will dominate and adding more features

with small weights will not dramatically change the partitioning solution.

As discussed, one important e�ect of numFeat is on the number of distinct feature vectors.

We cannot a�ord to run a bottom-up clustering algorithm if the number of distinct vectors is too

large, e.g., close to the number of tuples. Theoretically, withm features and n tuples, the number

of distinct vectors is upper-bounded min(2m, n). In Figure 3.7, we plot the actual number of

distinct vectors by varying numFeat in base-2 log scale. The plot shows that the number of

distinct vectors is much smaller than either 2m or n. This is because these features have low

selectivities and can be correlated.
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Loading Time

Figure 3.8 shows the breakdown cost of applying SOP on a month partition in TPC-H. An average

month partition has 7.7 million tuples and 8G in size and can be divided into roughly 100 blocks.

We set numFeat = 15 and minSize = 50. It took about 1 minute for the entire work�ow.

When loading multiple partitions simultaneously, we can run multiple SOP partitioning processes

in parallel. As we can see, the shu�ing is still the bottleneck, although we run sophisticated

algorithms in the workload analyzer and the partitioner. The workload analyzer runs a frequent

itemset-based algorithm from 800 queries. The partitioner runs a bottom-up clustering algorithm

on 1315 feature vectors. In our experiments, we only used our own vanilla implementations for

these algorithms running on a single thread, which were su�ciently e�cient. Notice that both

components can be further optimized, e.g., using an o�-the-shelf library. We combined the cost

of featurization and reduce, as they were implemented as Spark map and reduce functions which

can pipelined.

3.7.4 Conviva Results
Query Performance

For evaluating the query performance, we compare the following alternatives:

fullscan: We perform a full scan for each query.

range: We perform a range partitioning on date and a frequently queried column. We use

Shark’s data skipping.

fineblock: We �rst partition by date. After extracting 40 features from the training

queries (numFeat=40), we block each date partition with minSize =50k. We use both our feature-

based and Shark’s existing skipping mechanisms.

Figure 3.9(a) shows the percentage of tuples scanned for evaluating the test queries, relative

to fullscan. As we can see, range already reduced the scan to be 1.81% of fullscan,

fineblock only scans 0.23% of the data. The average selectivity of these queries (i.e., actual
is 0.03% of fullscan. Figure 3.9(b) shows the query response times for on-disk data. We can

�nd that range spent 13% the time as fullscan, and fineblock further reduced the time
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Figure 3.9: Query Performance Results of SOP (Conviva)

to be 2.6% of fullscan. This is a 5x improvement over range. Figure 3.9(c) shows the query

time for in memory data. We �nd that range and fineblock used 16% and 8.1% of the time

taken by fullscan. The improvement of fineblock over the range partitioning schemes

is 2x.

As scanning in-memory data is fast, the e�ect of data scan reduction is diminished by the

cost from other parts of the query evaluation such as aggregations. Speci�cally, we observed that

some Conviva queries computed many aggregated values in the SELECT statement, which can

be CPU-intensive after the data scan. Incorporating techniques that speed up these aggregations

(e.g., materializations) may make our end-to-end improvement more signi�cant.

E�ect of numFeat

We now study the e�ect of numFeat on the Conviva workload. Figure 3.10(a) plots the scan

ratio by varying numFeat. The number of tuples scanned is dramatically reduced as numFeat
is increased from 2 to 20. As we continue to add more features, however, the curve is relative

�at. This is inline with the results on TPC-H (Figure 3.7), except that this curves starts to stabilize

at 20 instead of 10. This result con�rms that a small number of features is su�cient for a real

workload. In Figure 3.10(b), we can see that the number of distinct vectors is small.

We can conclude that, in a real-world workload, (1) our blocking can e�ectively help queries

skip data and in turn reduce the query response time signi�cantly for both on-disk and in-memory
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Figure 3.10: E�ect of numFeat in SOP (Conviva)

data, and (2) the blocking can be done e�ectively and e�ciently with a small number of features.

3.8 Related Work
In this section, we review the related work.

Horizontal Partitioning

Range and hash partitioning are the most widely used horizontal partitioning techniques and

serve for many purposes, such as load balancing. Advanced and automated partitioning tech-

niques have also been extensively studied [15, 76, 55, 9], but they were built on top of range or

hash partitioning. Although the partitioning problem we study is a form of horizontal partition-

ing, SOP generates a tuple-level partitioning map by solving an optimization problem instead of

using explicit range constraints. SOP can be used to further segment a date-range partition into

�ner blocks for skipping purposes. While Schism [24] also used �ne-grained tuple-level parti-

tioning, they had a di�erent objective, which is reducing cross-machine transactions for OLTP

workloads.

Materialized Aggregates and Skipping

Many databases utilize range partitions to enhance query performance. Partition pruning (e.g.,

Oracle [49] and Postgres [50]) allows queries to skip partitions based on partition key ranges (e.g.,

date). Extending this idea, other works [48, 27] have proposed maintaining small materialized

aggregates (SMAs) for each range-partitioned block, such as min, max, count, sum and histograms
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for each column. For a given query, these SMAs can be used to classify the data blocks into three

categories: (C1) irrelevant blocks, the ones in which no tuple satis�es the query, (C2) relevant
blocks, the ones in which all the tuples satisfy the query, and (C3) suspect blocks, the ones in

which some tuples may satisfy the query.

Obviously, the blocks in C1 can be safely skipped. The C3 blocks can also be skipped when

the requested aggregates can be answered by SMAs. We note that the opportunity of identifying

and skipping C3 blocks can be rather limited in practice, as it requires that 1) all the (conjunctive)

�lters of the query subsume the block’s min and max ranges and 2) all the requested aggregates

can be answerable by the chosen SMAs and if the query contains a group-by, the SMAs must be

stored for all of the potentially relevant groups. A number of systems, e.g., [5, 70, 3, 68], use a

simpli�ed version of SMAs, which only skip C1 blocks and do not distinguish C2 from C3 blocks.

Similar to these systems, SOP only consider skipping C1 blocks. While these previous approaches

are built on top of range partitioning, our main contribution is to develop a novel �ne-grained

partitioning technique based on workload analysis, which can turn more blocks into C1 blocks

than a range partitioning. Nevertheless, the idea of using SMAs to skip C3 blocks can also be

implemented on top of our partitioning scheme.

Materialized View Selection

This chapter is related to the well studied problem of materialized view selection (MVS), since

both exploit pre-computations for query performance improvement. These two problems, how-

ever, di�er fundamentally in several ways. First, SOP is at the �le-organization level, while MVS

is at the application level; in fact, SOP can be used to partition large materialized views. Second,

we utilize pre-computation to guide the tuple re-arrangement and only need to maintain minimal

metadata (i.e., a bit vector per block), while MVS does not change the original data but store the

precomputed results, which can incur signi�cant space overhead, e.g., data cubes. Third, MVS

is an optimization problem constrained on space [33, 56] or maintenance cost [30], while SOP is

constrained on the number of partitions.

Similar to SOP, some MVS approaches also exploit workload information. Most of these fo-

cus on the group-by columns of the queries (e.g., [17, 13]) for deciding which columns to pre-

aggregate. Others (e.g., [56]) also consider which columns are �ltered on for selecting indexes

and materialized views in an integrated manner. Di�erent from this work, the workload analysis

step in SOP aims to identify representative �lters, including both �lter columns and constants,

and their subsumption relations for skipping purposes. We consider all kinds of �lters, such as

equality/range conditions, string matching and user de�ned functions.

Workload-driven Physical Design

Many research e�orts have been devoted to utilizing workload information for automating database

design. For example, the AutoAdmin project [56, 9] integrates many physical design problems,

such as selecting indexes and materialized views; Database Cracking [35] reorders the data columns
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as a byproduct of query processing to bene�t future queries; ARF [11] tunes a range-based �lter

for skipping cold data; BlinkDB [57] prepares samples o�ine based on the workload.

Optimization Problems for Partitioning

Finding an optimal partitioning over a set of data points is an important problem in many ap-

plications, such as data mining, computer vision [62], gene expression analysis [38] and VLSI

design [40]. The partitioning problem is NP-hard for many objective functions, e.g., [12]. To the

best of our knowledge, no existing work has formulated the k-MaxSkip problem before, although

we found k-MaxSkip and BalancedMaxSkip are closely related to several partitioning prob-

lems, such as hypergraph cut [40], discrete basis partitioning problem [47] and row-exclusive

biclustering [46].

3.9 Conclusion
In this chapter, we presented skipping-oriented partitioning (SOP), a �ne-grained data partition-

ing framework that partitions the data tuples into blocks in order to help queries skip data. The

key components are: (1) a workload analyzer, which generates a set of features from a query log,

(2) a partitioner, which computes a partitioning scheme by solving a optimization problem, (3) a

feature-based block skipping framework used in query execution. We prototyped the SOP tech-

nique on Shark, which showed that SOP can be easily implemented in the context of an existing

query engine and the data �ow can be executed using standard data marshalling steps, such as

map and reduce.

We evaluated the e�ectiveness of SOP using TPC-H workload and a real-world ad-hoc work-

load. Our experimental results showed that SOP enabled the queries to scan 5-7x less data than

traditional range-based partitioning schemes. The results also indicated that the reduction on

data scan can directly translate to a reduction of query response time, for both memory- and

disk-resident data.

While SOP is an e�ective technique, it does have limitations. In particular, SOP only considers

horizontal partitioning schemes. In the next chapter, we explore how vertical partitioning can

be incorporated to further enhance the e�ectiveness of data skipping and propose a generalized

skipping-oriented partitioning framework.
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Chapter 4

Generalizing SOP for Columnar Layouts

It is clear that the opportunity for data skipping highly depends on how the data are organized

into blocks. While SOP can signi�cantly outperform traditional horizontal partitioning tech-

niques, such as range partitioning, its performance can be sensitive to the workload and data

characteristics. One major constraint in the SOP design is that it only considers horizontal parti-

tioning schemes, i.e., each tuple is an atomic unit of the partitioning. This constraint can be easily

eliminated when data is stored in a column-oriented fashion, which, as described in Chapter 2,

can be widely seen in analytics databases. In this chapter, we explore how vertical partitioning, or

column grouping, can be incorporated into the physical layout design in order to further enhance

the e�ectiveness of data skipping.

4.1 Introduction
Modern analytics applications can involve wide tables and complex workloads with diverse �lter

predicates and column-access patterns. For these kinds of workloads, SOP su�ers from a high

degree of feature con�ict, which refers to the phenomenon that the best partitioning schemes

for di�erent features may be highly di�erent. Consider the table in Figure 4.1(a). Suppose SOP

extracts two features from the workload:

F1:grade=‘A’
F2:year>2011∧course=‘DB’.

In this case, the best partitioning scheme for feature F1 is {{t1t2}, {t3t4}}, since t1 and t2
satisfy F1 while t3 and t4 do not. For the same reason, the best partitioning scheme for feature F2

is {{t1t4}, {t2t3}}. Therefore, the con�ict between F1 and F2 lies in that their best partitioning

schemes are di�erent. Since SOP generates a single horizontal partitioning scheme that incorpo-

rates all features (e.g., Figure 4.1(b)), when there are many highly con�icting features, it may be

rendered ine�ective.

The key reason why SOP is sensitive to feature con�ict is that it produces a single horizontal

partitioning scheme for all columns. That is, SOP views every tuple as an atomic unit. While

this perspective is natural for row-major data layouts, it becomes an unnecessary constraint for
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Figure 4.1: GSOP vs. Other Partitioning Schemes.

columnar layouts. Analytics systems have increasingly adopted columnar layouts [26] where

each column can be stored separately. Inspired by recent work in column-oriented physical de-

sign, such as database cracking [35, 61], we propose to remove the “atomic-tuple” constraint and

allow di�erent columns to have di�erent horizontal partitioning schemes. By doing so, we can

mitigate feature con�ict and boost the performance of data skipping. Consider the example in

Figure 4.1(c), where we partition column grade based on F1 and independently partition the

columns year and course based on F2. This hybrid partitioning scheme successfully resolves

the con�ict between F1 and F2, as the relevant columns for each can be partitioned di�erently.

Unfortunately, this columnar approach incurs overhead for tuple-reconstruction [36], i.e., the pro-

cess of assembling column values into tuples during query processing. Since column values are

no longer aligned, to query such data, we may need to maintain tuple ids and join the column val-

ues using these tuple ids. Thus, although combining horizontal and vertical partitioning has large

potential bene�ts, it is unclear how to balance the bene�ts that a particular vertical partitioning

scheme has on skipping against its tuple-reconstruction overheads.

To this end, in this chapter, we propose a Generalized SOP (GSOP) framework, with a goal

of improving the overall query performance by automatically balancing the skipping e�ective-

ness and tuple-reconstruction overhead. GSOP generalizes SOP by removing the atomic-tuple

constraint and allowing both horizontal and vertical partitionings. For a given data and work-

load setting, GSOP aims to pick a hybrid partitioning scheme that maximizes the overall query

performance.

Given the goals of GSOP, we can think of several naïve approaches. The �rst approach is to

apply a state-of-the-art vertical partitioning technique (e.g., [4, 42, 10, 77]) to divide the columns

into groups and to then use SOP to horizontally partition each column group. Such an approach,

however, is oblivious to the potential impact of vertical partitioning on skipping horizontal blocks.

Another naïve approach is to �rst horizontally partition the data into blocks using SOP and then

vertically partition each block using existing techniques. In this approach, although the columns

are divided into groups, they still have the same horizontal partitioning scheme, since this ap-

proach runs SOP (using all features) before applying the vertical partitioning. Thus, this apporach

does not really help mitigate feature con�ict. Both naive approaches fail to incorporate the inter-
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relation between horizontal and vertical partitionings and how they jointly a�ect data skipping.

In the design of GSOP, we propose a skipping-aware column grouping technique. We develop

an objective function to quantify the trade-o� of skipping e�ectiveness vs. tuple-reconstruction

overhead. One major technical challenge involved in using such an objective function is to es-

timate the e�ectiveness of data skipping, i.e., how much data can be skipped by queries. As

described in Section 4.4.3, directly assessing skipping e�ectiveness is prohibitively expensive, so

we propose an e�cient yet accurate estimation approach. Finally, we devise an algorithm to

search for the column grouping scheme that optimizes the objective function.

To mitigate feature con�ict, GSOP separates the set of global features extracted in SOP into sets

of local features, one set for each column group. We refer to this problem as local feature selection.

To solve this problem, we develop principled ways of: (1) identifying which features should be

assigned to each column group, (2) weighting features w.r.t. a column group, as a feature may

have di�erent weights for di�erent column groups, and (3) determining the appropriate number

of features to use for each column group, as the number of features needed for di�erent groups

can vary greatly.

We prototyped GSOP using Apache Spark [44]. Note that GSOP is an o�ine process that is

executed once at data loading time. In a data warehouse environment, for example, when a new

date partition arrives, GSOP reorganizes this raw partition into an optimized layout and appends

it to the table. This process does not a�ect previously existing data. In the prototype, we store

the GSOP-partitioned data using Apache Parquet [14], a columnar storage format for the Hadoop

ecosystem. We then queried the data with Spark SQL and measured the performance. Experi-

ments on two public benchmarks and a real-world workload show that GSOP can signi�cantly

improve the end-to-end query response times over SOP. Speci�cally, in TPC-H, GSOP reduces

the data read by 6.5× and improve the query response time by 3.3× over SOP.

To summarize, in this chapter, we make the following contributions:

• We propose a GSOP framework for columnar layouts, which generalizes SOP by removing

the atomic-tuple constraint.

• We develop an objective function to quantify the skipping vs. reconstruction trade-o� of

GSOP.

• We devise a skipping-aware column grouping algorithm and propose techniques to select

local features.

• We prototype GSOP using Parquet and Spark and perform an experimental evaluation us-

ing two public benchmarks and a real-world workload. Our results show that GSOP can

signi�cantly outperform SOP in the presence of feature con�ict.
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4.2 Review of SOP

4.2.1 SOP vs. Range Partitioning
How data is partitioned into blocks can signi�cantly a�ect the chances of data skipping. A com-

mon approach is to perform a range partitioning on the frequently �ltered columns. As pointed

out in Chapter 3, however, range partitioning is not an ideal solution for generating blocks at a

�ne-granularity. To use range partitioning for data skipping, we need a principled way of select-

ing partitioning columns and capturing inter-column data correlation and �lter correlation. SOP

extracts features (i.e., representative �lters which may span multiple columns) from a query log

and constructs a �ne-grained partitioning map by solving a clustering problem.

SOP techniques can co-exist with traditional partitioning techniques such as range partition-

ing, as they operate at di�erent granularities. In a data warehouse environment, for example,

data are often horizontally partitioned by date ranges. Traditional horizontal partitioning facili-

tates common operations such as batch insertion and deletion and enables partition pruning, but

is relatively coarse-grained. While partition pruning helps queries skip some partitions based

on their date predicates, SOP further segments each horizontal partition (say, of 10 million tu-

ples) into �ne-grained blocks (say, of 10 thousand tuples) and helps queries skip blocks inside

each unpruned partition. Note that SOP only works within each horizontal partition and does

not move data across partition boundaries. Thus, adding a new date partition or changing an

existing partition of the table does not a�ect the SOP schemes of other partitions.

4.2.2 The SOP Framework
Recall that the SOP framework is based on two interesting properties observed from real-world

analytical workloads (Section 3.3):

(1) Filter commonality, which says that a small set of �lters are commonly used by many

queries. In other words, the �lter usage is highly skewed. In a real-world workload analyzed in

Chapter 3,s 10% of the �lters are used by 90% of the queries. This implies that if we design a

layout based on this small number of �lters, we can bene�t most of the queries in the workload.

(2) Filter stability, which says that only a tiny fraction of query �lters are newly introduced

over time, i.e., most of the �lters have occurred in the past. This property implies that designing

a data layout based on past query �lters can also bene�t future queries.

Given these two workload observations, we next go through the steps of SOP using Figure 4.2

as an example.

1). Workload Analysis. This step extracts as features a set of representative �lter predicates

in the workload by using frequent itemset mining [8]. A feature can be a single �lter predicate

or multiple conjunctive predicates, which possibly span multiple columns. A predicate can be

an equality or range condition, a string matching operation or a general boolean user-de�ned

function (UDF). Note that we do not consider as features the �lters on date and time columns,

as their �lter values tend to change over time. In Figure 4.2, we extract three features, each of

which is associated with a weight indicating the importance of the feature. Recall that SOP takes
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ID A B C D
t1 m -1 y 2
t2 f 0 x 6
t3 m 0 y 4
t4 f -1 x 2
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(000, t2)
(101, t3)
(010, t4)

t1 m -1 y 2
t3 m 0 y 4

t2 f 0 x 6
t4 f -1 x 2

features

block 1

(vector, tuple)
pairs

block 2Augmentation

010 (= 000 OR 010)

111 (= 111 OR 101)

A = ‘m’, 2
B < 0, 1
C like ‘y%’, 1

Workload
analysis

Partitioning

Figure 4.2: Using SOP to Partition Data into 2 Blocks.

into account subsumption relations when extracting features. For example, whether a �lter B<0
is chosen as a feature does not depend only on how many times B<0 itself occurs in the workload

but also depends on how many queries it subsumes. A feature subsumes a query when the feature

is a more relaxed condition than the query predicates. Thus, the presence of a �lter like B<-1
in the workload can increase the chance of B<0 being selected, as B<0 subsumes B<-1. As

explained later in this section, we consider subsumption relations for skipping data during query

processing.

2). Augmentation. Given the features, at load time, SOP then scans the data. For each tuple, it

batch-evaluates these features and stores the evaluation results as an augmented feature vector.
Given m features, a feature vector is a m-dimensional bit vector, the i-th bit of which indicates

whether this tuple satis�es the i-th feature or not. For example, in Figure 4.2, t4 is augmented

with a feature vector (010), which indicates that t4 satis�es the second feature B<0 but does not

satisfy the other two.

3). Partitioning. In this step, SOP �rst groups the (vector, tuple)-pairs into (vector, count)-pairs.

This is an important optimization for accelerating the partitioning algorithm. Then, a clustering

algorithm is performed on the (vector, count)-pairs, which generates a partition map. This map

guides individual tuples to their destination blocks. After the tuples are organized into blocks,

SOP annotates each block with a union vector, which is a bitwise OR of all the feature vectors in

the block. In Figure 4.2, the feature vectors of t1 and t3 are 111 and 101, respectively, so the union

vector for their block is 111 = 111 OR 101. As discussed below, union vectors carry important

information for skipping. Once we obtain the union vectors, the individual feature vectors can

be discarded.
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Given data partitioned by SOP, when a query arrives, we �rst check which features subsume

this query. We then decide which blocks can be skipped based on their union vectors. Recall that

a union vector is a bitwise OR of all the feature vectors of this block. Thus, when the i-th bit

of the union vector is 0, we can know that no tuple in this block satis�es the i-th feature. For

example, consider the following query:

SELECT A, D FROM T WHERE A=’m’ and D= 2
In Figure 4.2, only feature A=’m’ subsumes this query, as A=’m’ is a more relaxed condition

than the query predicate A=’m’ and D=2. Since A=’m’ is the �rst feature, we look at the

�rst bit of these two union vectors. As the union vector of block 2 (i.e., 010) has a 0 on the �rst

bit, we can skip the block 2.

Recall that SOP is typically executed once at data loading time. For example, when a new date

partition arrives, SOP reorganizes its layout before it is appended to the table.

4.3 Generalizing SOP
In this section, we discuss how to generalize SOP by exploiting the properties of columnar data

layouts.

4.3.1 A Simple Extension for Columnar Layouts
As described in Chapter 2, modern analytics databases [2, 68, 3] and the Hadoop ecosystem [14,

73] adopt columnar layouts. In a columnar layout, each column can be stored separately. To

process a query, these systems read all the requested columns and assemble them back into tuples

through a process commonly called tuple reconstruction.

A simple extension to SOP for columnar layouts is to partition each column individually. By

allowing each column to have its own partitioning scheme, we can mitigate feature con�ict and

thus enjoy better skipping. While this simple extension reduces the reading cost through better

data skipping, it introduces overhead for tuple reconstruction. Since the columns are in di�erent

orders now, each column value has to be associated with an original tuple-id. A query then needs

to read the tuple ids in addition to the actual data, and join the columns back using these tuple ids,

as opposed to simply stitching them together when they are aligned. For example, one way to join

these columns is to �rst sort them by their tuple ids and then stitch them together. Therefore, for

this extension, it is unclear whether the bene�t of skipping can outweigh the overhead introduced

for tuple reconstruction.

4.3.2 Spectrum of Partitioning Layouts
The existing SOP framework and the simple extension in Section 4.3.1 represent two extremes

of partitioning layouts in a column-oriented storage. Let us now consider the entire spectrum

as depicted in Figure 4.3. The left end of the spectrum represents the data partitioned by the

existing SOP framework. When all columns follow the same partitioning scheme, the skipping
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Figure 4.3: The Spectrum of Partitioning Layouts.

e�ectiveness is limited by feature con�ict, but there is no overhead for tuple reconstruction. The

other end of the spectrum is the data partitioned by the extension discussed in Section 4.3.1. When

each column can have its own partitioning scheme, the skipping e�ectiveness is the best due to the

least feature con�ict, but the overhead for tuple reconstruction is the greatest. Clearly, which one

of these two layouts is better depends on the workload and data characteristics. However, what is

interesting is the middle ground of the spectrum, where columns can form groups. Each column

group can have its own partitioning scheme, which all of its column members must follow. The

potential of such a middle ground is to provide a good balance between skipping e�ectiveness

and tuple reconstruction overhead such that the overall query performance can be optimized. We

illustrate this point using an example.

Example 2 Figure 4.3 shows three di�erent layouts of the table in Figure 4.2. These three layouts
are all columnar but represent di�erent points on the partitioning layout spectrum. Suppose we run
the following SQL query on this table:

SELECT B, D FROM T WHERE B<0 and D=2
Let us do a back-of-the-envelope calculation of the cost of query processing for each of these three

layouts. To simplify Figure 4.3, we omit showing the block metadata, such as union vectors.
Left end. The table is partitioned into two blocks, each of which has all four columns. For this

querywe cannot skip any block because both blocks have some tuple that satis�es the query predicates
(i.e., t1 in block 1 and t4 in block 2). Thus, we have to read column B and D in their entirety, which
are 8 data cells in total.

Right end. Each column is partitioned into two blocks. The query only looks at column B andD.
We can skip block 2 of column B, because no value in it satis�es B < 0. Similarly, for column D,
we can skip its block 1, as none of its values satis�es D = 2. Thus, we need to read 4 data cells in
total. For tuple reconstruction, however, we have to additionally load 1 tuple id for each data value
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read. In total, the cost of this query includes reading 4 data values, reading 4 tuple ids, and joining
column B and D.

Middle ground. The columns are �rst divided into two groups: (A,C) and (B,D). Each column
group is then partitioned into two blocks. The query only needs to look at group (B,D), in which
we can skip block 2 as it has no value that satis�es the query predicates. Thus we only have to read
block 1 of column group (B,D), which has 4 data cells. Since columns B and D are in the same
group and are thus aligned, there is no overhead for tuple reconstruction. Hence, the total cost is to
read only 4 data cells.

This partitioned table divides columns into two groups: (A, C), and (B, D), and partitions each
group independently. For this partitioned table, we can skip the block 2 because neither t2 nor t3 in the
block 2 satis�es the query’s predicate. Furthermore, we do not need to read any tuple ids because the
columns B andD are in the same group that is guaranteed to be partitioned in the same way. Thus,
we only need to process four data cells in total. We summarize these calculations in the following
table:

values read ids read assembly
left 8 0 None
right 4 4 join B&D
middle 4 0 None

The above example shows that, for this particular query, the middle ground is a clear winner,

as it enjoys both the skipping e�ectiveness of the right end and the zero assembly overhead of

the left end. Obviously, for a given workload and data, the optimal layout could be any point on

this spectrum. The SOP framework is limited to the left end. We next present a generalized SOP

(GSOP) framework that incorporates the full spectrum.

4.3.3 The GSOP Framework
GSOP takes a workload and a set of input data and outputs data in an optimized layout. In practice,

when a new date partition is being inserted into the table, we apply GSOP to reorganize its layout

in order to bene�t future queries. Like SOP, GSOP works within each horizontal partition, so

loading a new partition does not a�ect the existing partitions of the table. Thus, GSOP is an

o�ine process at load time and usually does not to be re-run unless the workload patterns change

dramatically. As illustrated in Figure 4.4, GSOP consists of the following steps:

1). Workload Analysis. This is the same as Step 1 in Section 4.2.2. We analyze a given workload

(e.g., a query log) and extract representative �lters as features. Here we call these features global
features. In addition, for each global feature, we maintain a list of queries from the workload that

this feature can subsume.

2). Augmentation. This is the same as Step 2 in Section 4.2.2. We scan the input data once and

batch evaluate the global features on each tuple. Each tuple is augmented with a global feature
vector.
3). Column Grouping. Before horizontally partitioning the data, we �rst divide the columns

into column groups based on an objective function that incorporates the trade-o� between skip-
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Figure 4.4: The GSOP Framework.

ping e�ectiveness and tuple-reconstruction overhead (we discuss the details of de�ning such an

objective function, developing an e�cient way to evaluate it, and devising algorithms to search

for column grouping schemes in Section 4.4). This step outputs a column grouping scheme.

4). Local Feature Selection. For each column group, we select a subset of global features as

local features. These local features will be used to guide the partitioning of each column group.

This is a crucial step for enhancing skipping e�ectiveness. The local features are more speci�c to

each column group and hence may involve much less con�ict than the global features. Note that

the column grouping process (Step 3) needs to call this step as a subroutine repeatedly. Thus, we

need to select local features very e�ciently. We will cover the details of this step in Section 4.5.

5). Partitioning. We next partition each column group individually. To partition each column

group, we need local feature vectors that correspond to the local features. Since a set of local

features is a subset of global features (computed in Step 2), for each column group, we can project
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the global feature vectors to keep only the bits that correspond to the local features. For each

column group, we then invoke Step 3 in Section 4.2.2 to partition the data based on their local

feature vectors.

Comparing with the SOP framework, we can see that GSOP adds little complexity. The main

technical challenges are in the two new steps: column grouping and local feature selection. We

explain how column grouping (Section 4.4) and local feature selection (Section 4.5) work in detail.

Handling Normalized Schemas. The GSOP framework is motivated by modern analytics

scenarios, where data is often stored as single denormalized tables [59, 74]. Some traditional rela-

tional applications, however, manage data in normalized schemas, where queries involve joining

normalized tables. In practice, we can apply GSOP on normalized schemas through a simple par-
titial denormalization step. First, through workload analysis, we identify the columns that have

occurred in a join query in the workload. At data loading time, we pre-join these columns as a

partial denormalization of the tables and leave in the original normalized tables the columns that

never appeared in a join query in the workload. We then apply GSOP on this partially denormal-

ized table. Most of the incoming queries can then be redirected, through proper query rewriting,

to this partially denormalized table and enjoy the skipping bene�ts provided by GSOP. Compared

to a full denormalization, this paritial denormalization based on workload information incurs less

joining cost and leads to smaller resulting data sizes. In Section 4.7, we show that applying GSOP

on normalized TPC-H tables via partitial denormalization can signi�cantly reduce the amount of

data scanned and improve the query response time.

4.4 Column Grouping

4.4.1 Motivation
Column grouping is an important database technique and has been extensively studied (e.g., [60,

58, 39, 10, 77, 45]). While many column grouping approaches exist, the general principle is to put

into the same group the columns that are frequently queried together in the workload [39] and

adopt a row-major layout within each column group. In contrast, GSOP still uses columnar layout

inside column groups, and more importantly, the grouping decision in GSOP needs to incorporate

the opportunities of skipping horizontal blocks within each column group. We illustrate these

considerations using Example 3.

Example 3 Consider the following workload for the table in Figure 4.2:
Q1: SELECT A, C FROM T WHERE A = ’m’
Q2: SELECT B, D FROM T WHERE B < 0
Q3: SELECT B, C FROM T WHERE C like ’y%’

By considering only the column co-access patterns, the column pairs AC , BD and BC would have
equal weights of being grouped together, as each of them occurs once in the workload. In GSOP,
however, we should consider how these groups may potentially a�ect data skipping. After evaluating
these �lters on the data, we can see that �lters A=’m’ and C like ’y%’ are perfectly correlated,
as t1 and t3 satisfy both A=’m’ and C like ’y%’ while t2 and t4 do not satisfy either. Thus,
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GSOP may prefer the column group AC , as this type of �lter correlation plays an important role
in skipping horizontal blocks. Existing column grouping techniques do not take into account such
information.

4.4.2 Objective Function
LetC be the set of columns in the table. We denote by G = {G1, G2, . . . , Gm} a column grouping

scheme of the table. Thus, G is a partitioning over the column set C , i.e.,

⋃
Gi∈GGi = C and

Gi ∩ Gj = ∅ for any i 6= j. Given a query q, let Cq ⊆ C be the set of columns that query q
needs to access. We denote by Gq ⊆ G the column groups that query q needs to access, i.e.,

Gq = {Gi ∈ G | Gi ∩ Cq 6= ∅}.
Skipping E�ectiveness. We call each column value of a tuple a data cell. We quantify the

skipping e�ectiveness of a column grouping scheme as the number of data cells we have to scan,

i.e., cannot be skipped. For ease of presentation, we assume scanning a data cell incurs a uniform

cost 1, but our model can be easily extended to a more general case. For every column group

Gi ∈ Gq
, query q needs to scan |Gi ∩Cq| columns. Let rqi denote the number of rows that query

q needs to scan in group Gi. Thus, the scanning cost that query q spends on Gi is |Gi ∩ Cq| · rqi .

The overall scanning cost for query q is:∑
Gi∈Gq

|Gi ∩ Cq| · rqi . (4.1)

Equation 4.1 computes the skipping e�ectiveness of the column grouping scheme G w.r.t.

query q. Clearly, the value rqi plays an essential role in Equation 4.1. We will discuss how to

obtain the value of rqi in Section 4.4.3.

Tuple Reconstruction Overhead. Since di�erent column groups can be partitioned in di�erent

ways, we need a way to reconstruct the values from multiple column groups back into tuples. In

every column group, we store a tuple-id for each row to indicate which tuple that row originally

belongs to. When a query reads data from multiple column groups, i.e., |Gq| > 1, it also has to

read the tuple-ids from each column group. The query does not have to read the tuple-ids when

it only uses data from a single column group. After reading all the data columns, we need to join

these column values back together as tuples. While there are many ways of implementing the

join, we simply assume a sort-merge join in our cost estimation. The model can be easily modi�ed

for other join implementations. In a sort-merge join, we have to sort each column group by their

tuple ids and then stitch all column groups back together. As we can see, compared with the case

where all columns have a monolithic partitioning scheme, the tuple-reconstruction overhead here

mainly comes from two sources: 1) reading tuple-ids and 2) sorting column values by tuple-ids.

When a query only reads data from a single column group, this overhead is zero. Let us now

consider the case where a query needs to access multiple column groups. Since we do not need

to read the tuple ids for the values that can be skipped, the cost for query q to read tuple ids inGi

is simply rqi , no matter how many columns q reads in Gi. Let sort(x) denote the cost of sorting
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a list of x values. For column group Gi, we need to sort rqi values. Therefore, the overhead to

tuple-reconstruction for query q on column grouping scheme G is:

overhead(q,G) =

{∑
Gi∈Gq(r

q
i + sort(rqi )) if |Gq| > 1

0 otherwise

(4.2)

Objective Function. Based on Equations 4.1 and Equation 4.2, the cost of processing query q
w.r.t a column grouping scheme G is:

COST(q,G) =
∑

Gi∈Gq

|Gi ∩ Cq| · rqi + overhead(q,G) (4.3)

The cost of processing the entire workload W is the sum of all the queries in the workload.

Thus, we have:

COST(W,G) =
∑
q∈W

COST(q,G) (4.4)

We are aware that modern column-store systems employ advanced compression techniques

and compression-aware execution strategies [25]. For simplicity and generality, however, our

cost model does not factor in these advanced techniques. As shown in Section 4.7, our simple

cost model works well when the data is stored in Parquet, which adopts standard compression

techniques such as RLE encoding and Snappy. We consider extending the model to incorporate

data compression and compression-aware execution techniques as interesting future work.

4.4.3 E�cient Cost Estimation
As shown in Equation 4.3, in order to evaluate the objective function, we need to obtain the

values of Gq
, Cq

, and rqi . While Gq
and Cq

can be easily derived without looking at the data, it

is challenging to obtain the value of rqi , i.e., the number of rows that query q needs to scan (after

skipping) in Gi. In the following, we �rst show how to compute the exact value of rqi . Since the

exact-computation approach is prohibitively expensive, we then propose an e�cient estimation

approach. Our experimental results in Section 4.7 show that the estimation approach takes 50×
less time to execute than the computation approach while providing high-quality estimations.

Computation Approach. To compute the exact value of rqi , we can actually perform the

partitioning on column group Gi and see how many tuples query q reads after skipping. As

discussed in Step 5 of the GSOP framework (Section 4.3.3), in order to partition a column group

Gi, we need to perform the following steps: a) extract local features w.r.t. Gi, b) project the

global feature vectors onto local feature vectors, and c) apply partitioning to Gi based on the

local feature vectors. After these steps, column group Gi is horizontally partitioned into blocks,

each of which is associated with union vectors as metadata. We then can obtain rqi by simply

running query q through the metadata of these blocks and see how much data the query needs

to scan. As we can see, this way of computing rqi is time-consuming. The cost bottleneck is step

c), as it involves solving a clustering problem. In the process of searching for a good column-

grouping scheme (details in Section 4.4.4), we need to obtain rqi repeatedly for a large number



CHAPTER 4. GENERALIZING SOP FOR COLUMNAR LAYOUTS 58

of column-group combinations. Therefore, computing the exact value of rqi as a sub-routine for

the column-grouping search is prohibitively expensive. We next discuss how we can e�ciently

estimate rqi .

Estimation Approach. Recall that rqi is the number of rows query q scans in Gi after data

skipping. One simple approach is to use the selectivity of q as an estimation of rqi . This way we

could leverage the existing techniques of selectivity estimation. However, the value of rqi and the

selectivity of q on Gi can di�er dramatically, since data skipping is block-based. For example,

suppose a query has a highly selective predicate, i.e., only a small number of tuples satisfy the

predicate, rqi can still be quite large if this small number of tuples are distributed over many

di�erent blocks. For this reason, we need an estimation approach that takes into account the

block-based skipping mechanism.

As mentioned in Section 4.4.3, partitioning the local feature vectors (step c) is the cost bottle-

neck of the computation approach. Thus, in our estimation approach, we only perform step a)

and step b) of the compuation approach. We illustrate this in Figure 4.5. After step b), each row in

column group Gi has a corresponding local feature vector, which is a boolean vector and stores

the evaluation results of all local features on this row. Instead of actually partitioning the data

as step c) of the computation approach, we exploit a simple property of this partitioning process.

That is, the partitioning process would always prefer to put the rows having the exactly same

local feature vectors into the same block. Therefore, in step c) of our estimation approach, we

simply group the rows that have the same local feature vector. Let V be the set of distinct vectors

after grouping in Gi. For each v ∈ V , we denote by count(v) the number of rows whose local

feature vector is v. Let b be the size of each block. We can calculate that the minimum number

of blocks needed to accommodate the rows whose local feature vector is v is

⌊count(v)
b

⌋
. These

blocks all have v as their union vector. As discussed in Section 4.2.2, we can check whether a

query can skip a block by looking at its union vector. Speci�cally, for an incoming query q, we

�rst check which features can subsume q. Then given a union vector v, we only need to look at

the bits that correspond to thesse subsuming features; if there is a 0 in these bits, we can skip

this block. Using this approach, given query q, we can divide V into two sets: V q
skip and V q

read,

where V q
skip consists of the vectors that q can skip and V q

read consists of the vectors that q cannot

skip. Thus, the minimum number of blocks that q can skip is:

∑
v∈V q

skip

⌊
count(v)

b

⌋
Let n be the

total number of rows. Since each block has b rows, we can deduce that the maximum number

of rows that query q needs to scan is: n − b ·
∑

v∈V q
skip

⌊
count(v)

b

⌋
. We use this formula as the

estimate of rqi . Notice that this formula provides an upper-bound of rqi . Intuitively, since our goal

is to minimize the objective function, using an upper-bound estimation can guide us to a solution

with the least upper-bound of the objective value, which hopefully would not deviate too much

from the solution using the exact objective value. As shown in Section 4.7, using our estimation

approach can signicantly speed up the column grouping process without sacri�cing the quality

of results.
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Figure 4.5: Computation Approach vs. Estimation Approach for GSOP

4.4.4 Search Strategy
For a given table, the number of possible column grouping schemes is exponential in the number

of columns. In practice, we cannot a�ord a brute-force approach that enumerates all the possible

grouping schemes. Therefore, we adopt a bottom-up heuristic search strategy, which has been

shown to be very e�ective in existing column grouping techniques [39]. Initially, each column

itself forms a group. We then iteratively choose two groups to merge until all columns are in one

group. At each iteration, we enumerate all pairs of column groups and evaluate how their merge

would a�ect the objective function. We then pick the merge that leads to the minimum value of

the objective function. Starting from c columns, we need c iterations to merge all columns into

one group. After these c iterations, we pick the iteration where the objective function has the

minimum value and return the grouping scheme from that iteration.

As we can see, the search process frequently invokes the objective function evaluation as a

sub-routine. Speci�cally, since we enumerate all pairs of column groups at each iteration, we

need to evaluate the objective function O(c2) times for a table with c columns. Thus, computing

the exact value of this function every time is prohibitively expensive. When trying to merge every

pair of groups, we use the estimation approach discussed in Section 4.4.3 to obtain an estimate of

the objective function. After enumerating all pairs in a iteration, we select the merge that leads

to the minimum value on the estimated objective function. Before starting the next iteration,

however, we perform the computation approach in Section 4.4.3 to obtain the exact value of the

objective function for this merge. This is to prevent the errors introduced by the estimation

approach from being propogated to future iterations. Thus, for each iteration, we invoke the

estimation approach O(c2) times and the computation approach only once. This is much faster

than performing the computation approach O(c2) times for each iteration. We also observe that

the obtained values of rqi can be reused for later iterations. As an optimization, we cache all the
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estimated and exact values of rqi we have obtained and reuse them when needed.

4.5 Local Feature Selection
Identifying Candidate Local Features. We have obtained a set of global features generated

from workload analysis. Suppose we have three global features as shown in Figure 4.2 and a

column grouping scheme where each column itself forms a group, i.e., G1 = {A}, G2 = {B},
G3 = {C}, G4 = {D}. A simple approach is to choose, for each column group, the features that

involve the columns from this column group. This way, we will choose feature A=’m’ forG1, as

this feature involves columnA. Similarly, we choose B<0 forG2, and C like ’y%’ forG3. We

choose no feature for G4, since no feature involves column D. Although all the features chosen

by this approach are relevant, some important features may be missing. Consider the workload

in Example 3 in Section 4.4.1. When a query like Q3 comes, it can only skip data in column C
from group G3 but has to read the entire column D in G4, as we did not choose feature C like
’y%’ for G4. This example reveals that, for identifying candidate features, we also have to look

at the co-occurrence of columns and features in the queries. For example, if we observe that in

the workload the queries with �lter predicate C like ’y%’ frequently request column D in

their SELECT statement, we may want to include C like ’y%’ as local features for G4.

Based on this idea, we can formally de�ne the candidate local features as follows. Given a

workload W and a column G, let WG ⊆ W be the set of queries that need to access columns in

column group G. Let F be the set of global features generated through workload analysis. Given

a query q ∈ W , we denote by F q
the features that subsume query q. Hence, the candidate set of

local features for a column group G can be de�ned as: CandSet(G) =
⋃

q∈WG F q
.

Feature Weighting and Selection. Given a set of candidate features, in order to choose the

most important features, we �rst need to compute the importance (i.e., weight) of each candidate

feature. In SOP, feature selection was modeled as a frequent-itemset mining problem, where the

weight of a global feature is its occurrence frequency in the workload. For local feature selection,

however, we cannot simply use this weight because the weight of a local feature should indicate its

importance on a column group instead of on all columns. For this reason, we quantify the weight

of a feature f w.r.t a column group G as the number of queries that are not only subsumed by

this feature but also need to access the column group. Hence, we have: weight(G, f) =
∣∣{q | f ∈

F q
and q ∈ WG}

∣∣
. Using this formula, we can create a ranked list of local features for each

column group. Note that only the features in the candidate set are considered.

We now have to determine how many features to use for partitioning each column group.

Using too few features may render the partitioning ine�ective, while using too many features does

not improve skipping but increases the cost for partitioning. One simple way is to set a heuristic

number, say 15, for all column groups. This number, however, may not be suitable for all column

groups, as their ranked lists of features may have di�erent correlation characteristics. Recall that,

after the features are selected, we will evaluate these features against each tuple and generate

a set of feature vectors, which will be input to the partitioning algorithm. We notice that the

number of distinct feature vectors is a good indicator of whether the number of features selected
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Figure 4.6: Query Processing on GSOP

is appropriate. If the number of distinct feature vectors ends up too small, we can include more

features without a�ecting the skipping on existing features; if this number is too large, this means

the existing features are already very con�icting, so adding more features would not improve

skipping much. Another practical constraint is that the e�ciency of the partitioning algorithm

depends on the number of distinct vectors. Based on our tuning, we have found that around

3, 000 distinct vectors provide a good balance between partitioning e�ectiveness and e�ciency

across di�erent datasets.

For a given number k, we need to quickly estimate how many distinct feature vectors will

be generated if we choose the �rst k local features. We estimate this number by sampling the

feature vectors. In the augmentation step, we have evaluated all global features and augmented

each tuple with a feature vector, each bit of which corresponds to a global feature. We now take

a sample of these feature vectors. For a given k, we pick the �rst k local features and project
each vector in this sample on the bits that correspond to these k features. We can then obtain the

number of distinct vectors by merging the vectors which have the same values on these projected

bits. Using this procedure as a sub-routine, we perform a binary search to determine the value of

k that can produce an appropriate number of distinct vectors (e.g., around 3, 000). After obtaining

the value of k, we return the top-k features with the highest weights as selected features.

4.6 Query Processing
In this section, we discuss how we process queries in GSOP.
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4.6.1 Reading Data Blocks
We �rst describe the process of reading data blocks. Figure 4.6 illustrates this process. When a

query arrives, we �rst check this query against the global features and see which global features

subsume this query. This information is represented in a query vector. The query vector (1, 1, 0)
says that features F1 and F2 subsume this query and thus can be used for skipping data. We also

extract the columns that this query needs to read and pass it to the column grouping catalog. The

column grouping catalog stores the column grouping scheme. In the example of Figure 4.6, the

query needs to read column A from group G1 and columns B,D from group G2. The catalog

also maintains a mask vector for each column group. The mask vector of a column group encodes

which local features were used for partitioning this group. For example, the mask vector of G1 is

(1, 0, 1), which tells us that its local features are F1 and F3.

The query then goes through the actual data blocks. In Figure 4.6, each column group is

partitioned into 2 blocks. Each block is annotated with a union vector. As in SOP, we decide

whether to skip a block by looking at its union vector. A value 1 on the i-th bit of a union vector

indicates some data in this block satis�es feature Fi. A value 0 on the i-th bit says that no data in

this block satis�es feature Fi. In this case, any query subsumed by feature Fi can safely skip this

block. Unlike SOP, in our new framework, a bit of union vectors can also be invalid. An invalid

i-th bit tells us that Fi is not a local feature of this column group and thus cannot be used for

skipping. Therefore, all blocks of a column group should have invalid values on the same bits of

their union vectors. In Figure 4.6, both union vectors of G1 have their second bit invalid, which

indicates that F2 is not a local feature of G1. In practice, we do not need a special representation

for the invalid bits. The query can learn which bits of the union vector should be ignored from

the column grouping catalog. To skip a block, we compute a OR between the query vector and its

union vector. If the result has at least one bit as 0, except the invalid bits, we can skip this block.

When we cannot skip a block, we read the columns requested in this block. In Figure 4.6, we end

up reading column A from block 1 of G1 and columns B and D from block 2 of G2.

4.6.2 Tuple Reconstruction
If the requested columns of the query span multiple column groups, as shown in Figure 4.6, we

need to assemble the columns back into tuples using their original tuple ids, as columns across

di�erent groups may not be aligned. When all the requested columns of a query are in one column

group, we do not need to read tuple-ids. Before actually reading any data, the query can learn

whether to read tuple ids based on the column grouping catalog. The tuple ids can be stored as a

column within each block. Note that we only need to read the tuple ids in the blocks that cannot

be skipped.

Once we have read the columns along with their tuple ids, we can reconstruct the tuples.

As mentioned, both SOP and GSOP are applied to to each individual horizontal partition, e.g.,

each date partition. We assume all the tuples of a horizontal partition reside in one machine.

Therefore, even in a distributed architecture, tuple reconstruction does not require shipping data

across machines. We also assume that the columns to be assembled can �t in main memory. Take
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Hadoop Parquet [14] �les as an example. Typically, each Parquet �le is around 1 GB in size and

has fewer than 15 million tuples. Using a Hadoop or Spark-based execution engine, this means

tuple reconstruction can be handled within a single mapper.

Once the columns have been read into memory, we simply sort each of the columns based

on their tuple ids. Columns within a group can be stitched �rst and then sorted together. After

all column groups have been sorted, they can be easily stitched into tuples. Notice that we only

keep the tuples for which all of the requested columns are present. In the example shown in

Figure 4.6, we only return tuple t1 while dropping t3 and t4, even though we have read some of

their columns. This is because if we have not read a column from a tuple, that means this tuple

has been skipped by some local features and thus can be safely ignored.

4.7 Experiments
In this section, we evaluate the performance of GSOP. We �rst explain the prototype of GSOP

in Section 4.7.1. In Section 4.7.2, we discuss the three workloads and datasets used in the ex-

periments. We report the experimental settings in 4.7.3, In the �rst group of experiments (Sec-

tion 4.7.4), we used the dataset and the simulated scan queries in the Big Data Benchmark. The

simulation of queries allows us to understand the performance of our techniques under di�er-

ent characteristics of workloads. In the second group of experiments (Section 4.7.5), we used

the dataset as well as the queries provided by the TPC-H benchmark. The goal of this experi-

ment is to understand the end-to-end performance of GSOP. Finally, we conduct experiments on

a real-world dataset from Sload Digital Sky Survey in Section 4.7.6.

4.7.1 System Prototype
We implemented GSOP using Apache Spark and stored the partitioned data as Apache Parquet

�les. First, given a query log, we extracted global features as in SOP. We then used SparkSQL

to batch evaluate these features on a table and generate a global feature vector for each tuple.

We implemented the column grouping and feature selection techniques in Scala. Finally, we

performed the actual data partitioning using Spark.

Note that we do not apply GSOP on the entire table at once. Instead, we process roughly 10
million rows at a time and partition them using GSOP. The resulting partitioned data can �t in a

Parquet �le of roughly 1GB in size. In e�ect, we store a table as a set of GSOP-enabled Parquet

�les. In a Parquet �le, data are horizontally partitioned as row-groups, and within each row group,

data are organized as a set of column chunks. Each row group corresponds to a block in GSOP.

Parquet �les do not natively support the notion of column groups. We implemented column

groups in Parquet by simply marking certain columns absent in each row group. Suppose a table

has 3 columnsA,B,C . If we markC absent in a Parquet row group, then this row group becomes

a block of column group A,B in GSOP. We also made optimizations so that the absent columns

do not incur overhead. Since Parquet already supports per-row-group metadata, we simply added

the �elds needed in GSOP, such as union vectors. With predicate pushdown, a query can inform
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each Parquet �le what columns it requests and what �lter predicate it has. Then each GSOP-

enabled Parquet �le will use this information to skip row-groups, read the unskipped row-groups,

and �nally return the data as reconstructed tuples. In the prototype, we implemented most of the

query processing component in Parquet internally; only minimal changes were needed in the

upstream query engine, i.e., SparkSQL. We turned on the built-in compression mechanisms in

Parquet, such as RLE and Snappy.

4.7.2 Workloads
Big Data Benchmark. The Big Data Benchmark [18] is a public benchmark for testing modern

analytics systems. Due to its �exibility in query generation, we use this benchmark for sensitivity

analysis by varying query parameters. We populated the data using a scaling factor of 0.1 and

generated a denormalized table with 11 columns and 15 million rows. Note that this table can �t

in a single Parquet �le. As mentioned, even for large-scale datasets, we should apply GSOP within

each individual Parquet �le. Thus, our focus with this dataset is to perform micro-benchmarking

on a single run of GSOP over a single Parquet �le. We will perform large-scale performance tests

in TPC-H and SDSS, as discussed later. This benchmark consists of four classes of queries: scan,

aggregation, join, and UDF. We only used the scan queries as they are simple and thus easy for

us to understand how GSOP performs under di�erent parameter settings. We generated the scan

queries in the form of:

SELECT A1, A2, · · · , Ak FROM T WHERE filter(B,b)
where filter(B,b) can be one of these three cases: B < b, B = b and B > b, and b is a

constant.

First, we use 0 < s < 1 to set the selectivty of �lter predicates. For example, if we set

s = 0.2, we would only use the predicates whose seletivity is 0.2 ± 0.01 for filter(B,b)
in the generated queries. Given selectivity s, we have a pool of �lter predicates which satisfy

this selectivity requirement. In real-world workloads, some predicates are used more often than

others. We thus pick predicates from this pool under a zipf distribution with parameter z. We set

k as the number of columns in the SELECT statement of each query. Real-world queries usually

do not access column randomly. To model the column a�nity in the queries, we restrict that the

columns A1, A2, · · · , Ak can only be generated from column templates. We use parameter t to

control the number of column templates in the workload. For example, when t = 1, all queries

will have exactly the same k columns in their SELECT statement; when t =
(
11
k

)
, we have

a template for each k-column combination, and thus the queries will in e�ect randomly select

A1, A2, · · · , Ak from the 11 columns of the table.

Given a setting of s, z, k and t, we generate 100 queries for training and 100 queries for

testing.

TPC-H.TPC-H [67] is a decision support benchmark consisting of a suite of business-oriented

ad-hoc queries with a high degree of complexity. We choose a scale factor of 100 to generate the

data. We used the TPC-H benchmark for two scenarios. Since GSOP is focused on the layout

design of single tables, in the �rst scenario, we denormalized all TPC-H tables. We considered
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this resulting denormalized table of 70 columns and 600 million rows as the input to GSOP. In

the second scenario, we considered the original TPC-H normalized schema as the input to GSOP

and used the approach discussed in Section 4.3.3.

We selected ten query templates in TPC-H that have relatively selective �lter predicates,

namely, q3, q5, q6, q11, q12, q16, q19, q20, q21 and q22. The number of columns accessed in these

query templates are: 7, 7, 4, 4, 5, 4, 8, 3, 5 and 2, respectively. For each template, we generated

100 queries using the TPC-H query generator. This gave us 1000 queries in total, which we used

as the training workload. We then independently generated 100 queries, 10 from each template,

as test queries. The TPC-H query workload is a good example of a template-generated workload,

which is very common in real-world data warehouse applications. In general, more templates

used in the workload would potentially lead to higher feature con�ict, where the performance

bene�t of GSOP over SOP would be more signi�cant.

SDSS. Sloan Digital Sky Surveys (SDSS) [63] is a public dataset consisting of photometric

observations taken on the sky. SDSS provides a SQL interface and also makes the SQL query logs

publicly available [20]. We focused on a table called Star in the SDSS database server (DR7). The

Star table contains the photometric parameters for all primary point-like objects in the sky. The

table has over 260 million rows and 453 columns. We process 4 milion rows at a time, apply GSOP

to partition these rows, and store the results in a Parquet �le. We collected 2340 real queries issued

on this table from 01/2011 to 06/2011. We sorted these queries by their arriving time. We used

the �rst 3/4 queries as training workload to guide the partitioning of the Star table. We then ran

the rest 1/4 queries on the table to test the e�ectiveness of the partitioning schemes. The mean

and standard deviation of the number of columns in projections are 13.6 and 5.13, respectively.

The maximum and minimum number of columns in projections are 23 and 3, respectively.

4.7.3 Settings
For the Big Data Benchmark, our focus is on micro-benchmarking. The experiments were con-

ducted on an Amazon EC2 m3.2xlarge instance with Intel Ivy Bridge Processors and 80 GB of

RAM, and a 2TB SSD. For the TPC-H and SDSS workloads, our focus is on large-scale query

performance. The experiments were conducted on a Spark cluster of 9 Amazon EC2 i2.2xlarge

instances, with 1 master and 8 slaves. Each i2.2xlarge instance is equipped with Intel Ivy Bridge

Processors, 61GB of RAM, and 2× 800G SSD. Before running each query, we cleared the OS cache

so that the query execution times were measured against SSD-resident data. All the query exe-

cution times were measured on an average of 3 runs.

4.7.4 Big Data Benchmark
Let us now discuss the results from the Big Data Benchmark. Given the workload parameters s,
z, k and t, as described in Section 4.7.2, we vary these parameters and see how GSOP performs

under di�erent workload characteristics. By default, we set s = 0.2, k = 2, z = 1.1, and d = 6.

In this set of experiments, we measure the average query response time of the 100 test queries on

the data partitioned by three approaches: GSOP is the proposed framework, SOP represents the
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Figure 4.7: Query Performance Results of GSOP (Big Data Benchmark).

SOP framework for data skipping, and GSOP-single represents the proposed extension to SOP, as

discussed in Section 4.3.1, which partitions each column individually without column grouping.

Recall that SOP and GSOP-single represent the two ends of the partitioning layout spectrum

considered by GSOP. Thus, GSOP subsumes both SOP and GSOP-single. GSOP may generate the

same partitioning layout as SOP or GSOP-single as appropriate. As we will see, GSOP performs no

worse than either SOP or GSOP-single under all circumstances and can signi�cantly outperform

them in several settings.

In Figure 4.7(a), we vary the parameter k, i.e., the number of columns accessed, while the

other parameters remain constant. We can see that, when the number of columns is small, GSOP-

single is better than SOP. However, the cost of GSOP-single increases dramatically as k increases.

This is because the cost of tuple-reconstruction overhead introduced by GSOP-single becomes

dominant when k is large. When k is small, GSOP is slightly better than GSOP-single due to

column grouping. When k is large, GSOP automatically switches to the same layout as SOP,

which becomes the ideal layout when queries access over 70% of the columns. Note that the query

response time is CPU-bound, where over 95% of the read time was spent on decompression and

object parsing.
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In Figure 4.7(b), we vary t, i.e., the number of column templates. We can see that GSOP can

signi�cantly outperform SOP and GSOP-single when t is small. A small t indicates the strong

column a�nity existed in the workload, which makes the column grouping provided by GSOP

much more e�ective. When t is 45, the queries, in e�ect, access columns purely randomly. In this

case, the bene�t of column grouping in GSOP becomes marginal, but GSOP is still guaranteed to

perform no worse than SOP or GSOP-single. As expected, neither SOP or GSOP-single is sensitive

to t.
In Figure 4.7(c), we vary z, i.e., the skewness of �lter usage. Notice that greater skewness in

the �lter usage results in less feature con�ict. For example, if all the queries are using the exactly

same �lter predicate, then there would be no con�ict at all. As we can see, as we increase z,

SOP clearly becomes better, since the feature con�ict is reduced. On the other hand, the feature

con�ict is already mitigated in GSOP-single and GSOP, and thus further reducing it does not

improve much for GSOP-single or GSOP. GSOP constantly outperforms GSOP-single because

GSOP lessens the tuple-reconstruction overhead through column grouping.

In Figure 4.7(d), we vary s, i.e., the query selectivity. Clearly, as we increase the selectivity,

we see higher query execution costs in all approaches. It is interesting to note that GSOP-single

is the most sensitive to the selectivity change. Recall that the objective function (Section 4.4.2)

indicates that the tuple-reconstruction overhead depends on how much data we need to scan.

While all approaches need to read more data as selectivity is increased, GSOP-single su�ers more

due to its increased tuple-reconstruction overhead.

The above results showed how di�erent workload parameters may a�ect the data layout de-

sign. Clearly, no single static layout is the best across di�erent settings. Thus, we need GSOP to

help us automatically choose an appropriate layout based on workload and data characteristics.

4.7.5 TPC-H Benchmark
Query performance

We compare the performance of test queries on �ve di�erent layouts. PAR-d is a baseline ap-

proach where we store the denormalized TPC-H table in Parquet. PAR-n is a baseline approach

where we store the normalized TPC-H tables in Parquet. SOP, GSOP-single and GSOP represent

three alternatives of the approaches as described in Section 4.7.4. For both normalized and de-

normalized scenarios, we will apply these approaches on the denormalized columns. Thus, the

query performance results of SOP, GSOP-single and GSOP are the same for both normalized and

denormalized scenarios and we only show them once here. Note that we issued the test queries

as join queries on PAR-n and as single-table queries on the other four layouts.

In Figure 4.8(a), we measure the average number of actual data cells and tuple ids read by

a test query. Overall, our proposed approaches can signi�cantly outperform the baseline ap-

proaches which rely on Parquet’s built-in data skipping mechanisms. The best approach, i.e.,

GSOP, can reduce the data read by 20× over PAR-d. Note that normalized tables are good for

dimension-table-only queries. Interestingly, a signi�cant proportion of our test workload are

dimension-table-only queries, i.e., 40 out of 100. Even so, GSOP can reduce the data read by
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Figure 4.8: Query Performance Results of GSOP (TPC-H)

14× over PAR-n. Of the three approaches, as expected, SOP reads the most data cells but does

not need to read any tuple ids. GSOP-single reads much less actual data cells due to mitigated

feature con�ict and improved data skipping, but has to read a lot of tuple-ids. By employing

column grouping, GSOP reads much less tuple ids than GSOP-single while maintaining compa-

rable skipping e�ectiveness. Note that Figure 4.8(a) only focuses on the amount of data read but

does not factor in the CPU cost of joining the columns back into tuples. In Figure 4.8(b), we

show the end-to-end query response time. First, PAR-n outperforms PAR-d. This is because PAR-n
reads much less data, even though PAR-n involves joins in the queries. We can see that GSOP-

single outperforms SOP, as the skipping bene�t outweighs the tuple-reconstruction overhead for

this particular workload. GSOP can signi�cantly outperform GSOP-single due to its comparable

skipping e�ectiveness with GSOP-single and yet much reduced tuple-reconstruction overhead.

Overall, GSOP outperforms the baselines PAR-d and PAR-n by 6.7× and 5.1×, respectively, and

outperforms SOP by 3.3×.

Column grouping

In Section 4.4, we proposed column grouping techniques for GSOP. The GSOP framework, in

general, can invoke any column grouping technique as a sub-routine. We now compare the

proposed column grouping technique with the state-of-the-art. We picked two state-of-the-art

column grouping techniques, namely HillClimb [51] and Hyrise [42], as they showed superior

performance in a recent experimental study [39]. In Figure 4.9, we evaluate the query perfor-

mance on the data prepared by GSOP using three di�erent column grouping sub-routines: GSOP

uses our own grouping algorithm GSOP-hc uses HillClimb and GSOP-hy uses Hyrise. For our

workload, Hyrise and HillClimb generate 18 and 17 column groups, respectively, while GSOP

only generates 8 groups. Let us take a close look at the column grouping results
1
. The columns

l_extendedprice and l_discount always apprear together (in 400 out of the 1000 queries). Thus,

1
Please refer to [67] for the details of the workload.
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Figure 4.9: Column Grouping Performance Results on GSOP (TPC-H).

all three algorithms put these two columns in the same group. However, these algorithms dif-

fer on what other columns should be grouped together with them. For instance, l_extendedprice,

l_discount also co-occur with l_shipdate, l_shippriority, l_orderkey, o_orderdate, c_mktsegment in 100
queries (from template q3) and with p_size, p_container, p_brand in another 100 queries (from tem-

plate q19). Given these co-occurrence patterns, Hyrise and HillClimb both chose to put l_extendedprice

and l_discount alone in a column group, due to their relatively weaker correlations with other

columns, but our algorithm put l_extendedprice, l_discount and l_shipdate, l_shippriority, l_orderkey,

o_orderdate, c_mktsegment in the same group. While Hyrise and HillClimb only look at the col-

umn co-access patterns, our algorithm additionally incorporates feature con�ict and skipping

horizontal blocks.

In Figure 4.9(a), we can see that, by forming a smaller number of column groups, GSOP reads

much less tuple ids while reading slightly more actual data. Note that Figure 4.9(a) does not

factor in the joining cost. If we look at the end-to-end query response time in Figure 4.9(b),

GSOP improves GSOP-hy and GSOP-hc by 35%. This is because our proposed column group-

ing techniques, unlike existing techniques, can e�ectively balance the trade-o� between tuple-

reconstruction overhead and skipping e�ectiveness involved in GSOP.

Memory Consumption

The proposed approaches, i.e., GSOP-single, GSOP, GSOP-hy and GSOP-hc, need to assemble

columns in memory when the query reads data from multiple column groups. Since we only

assemble columns within each Parquet �le, in the worst case, we need to hold all the data from

a single Parquet �le in memory. In our experiments, the data size in each Parquet �le is smaller

than 1G after compression and 3G before compression. In practice, however, the actual data

held in memory is much smaller, as queries usually access a small subset of rows and columns.

For processing our test queries, the average memory footprint for reading a single Parquet �le in

GSOP-single, GSOP, GSOP-hy and GSOP-hc are 1.9G, 0.8G, 1.5G and 1.5G, respectively. GSOP-

single incurs column assembly for every query that accesses more than one column. Since GSOP
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generates a small number of wide column groups, out of 1000 test queries, GSOP only incurs

column assembly for 400 queries, while GSOP-hy and GSOP-hc need to assemble columns for

900 queries. Thus, GSOP uses less memory than GSOP-hy and GSOP-hc.
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Figure 4.10: Objective Function Evaluation in GSOP (TPC-H).

Objective Function Evaluation

To quantify the goodness of a column grouping scheme, we develop an objective function in Sec-

tion 4.4.2. In the search of column grouping schemes, we need to evaluate this objective function

frequently. Since computing the exact value is expensive, we proposed estimation approaches in

Section 4.4.3. We now evaluate the e�ciency and e�ectiveness of these approaches. In this exper-

iment, we compare three alternatives: Full Compt. is the approach that computes the exact value

of the objective function, Sel. Est. is the baseline estimation approach based on traditional selec-

tivity estimation, and Block Est. is our proposed block-based estimation approach. Figure 4.10(a)

shows the running time of a column grouping process with Full Compt., Sel. Est., and Block Est.
as objective-evaluation sub-routines. We can see that Full Compt. takes more than a day, which

is prohibitively expensive. If using the estimation approaches Sel. Est. and Block Est. instead, we

can �nish this process within 44 minutes.

Given that the estimation approaches are much cheaper to run, we now evaluate their quality.

To do this, we simply compute the exact objective value on the column grouping results generated

by Full Compt., Sel. Est. and Block Est.. Recall that our goal of the column grouping is to minimize

the objective function. In Figure 4.10(b), we can see that, using Block Est. we can produce a

column grouping scheme whose objective value is almost as small as Full Compt.. On the other

hand, Sel. Est. generates much worse results. This is because our proposed estimation approach

incorporates the fact that data skipping is block-based, while the traditional selectivity-estimation

approach is not ideal for our estimation here.
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Local Feature Selection

Given a column grouping scheme, we need to select a set of local features for each column group.

We propose techniques to automatically determine the number of local features used for each

column group. For the 8 column groups we have generated in TPC-H, we observe that the number

of local features selected are: 21, 48, 23, 100, 23, 100, 26, 101, 6 and 1. We �nd that this number can

vary greatly for di�erent groups. This result validates our argument in Section 4.5 that di�erent

sets of local features may have di�erent correlation characteristics and we cannot simply set a

�xed number of features for all column groups.

Loading Cost

We now examine the loading costs in two scenarios. In Figure 4.11(a), the input data is a single

denormalized table, and in Figure 4.11(b), the input data is a set of normalized tables. For both

cases, we stored the input data in text. We view our partitioning approaches as two phases.

Phase 1 is the preparation phase, where we perform workload analaysis, column grouping and

local feature selection. In practice, Phase 1 needs to run once upfront and only needs to be

re-run only when there is a dramatic change to the workload or data characteristics. Phase 2

is the loading phase, where we load and reorganize the actual data within individual Parquet

�les. In Figure 4.11(a), we compare �ve alternative approaches and PAR-d, which is a baseline

cost of simply loading text into Parquet. GSOP spends the most time in Phase 1, because GSOP

considers more information in column grouping. The cost of Phase 2 depends on the number

of column groups, as we need to run a partitioning algorithm for each individual column group.

Thus, SOP has the cheapest Phase 2 and GSOP-single has the most expensive Phase 2. Phase 2 of

GSOP is cheaper than GSOP-hy and GSOP-hc, as GSOP generates a smaller number of columns

groups. In Figure 4.11(b), we consider the case when the input is a set of normalized tables.

To apply our approaches, we have to perform an extra step of partial denormalization (as part

of Phase 1).Overall, for the denormalized scenario, GSOP takes 2.6× the time as the baseline.

Since data loading is an o�ine and one-time process, we believe that there are many applications

for which this overhead is worth improving the query performance by 6.7×. When the input

data is normalized, GSOP takes 7.6× as much time as simply loading the normalized data, while

providing a 5.1× query performance improvement. We leave as future work the layout design

techniques that support normalized tables without partial denormalization.

4.7.6 SDSS
We now examine the performance of GSOP on a real-world workload. In Figure 4.12, we plot the

average query response times of 600 test queries against a baseline approach of using Parquet

built-in data skipping mechanisms and �ve partitioning approaches. For this workload, GSOP-

single performs better than SOP. Also, it is interesting to see that GSOP-hy and GSOP-hc exhibit

quite di�erent performance, and GSOP-hy is even worse than SOP. Since these techniques do not

take into account feature con�ict or horizontal skipping, their performance is highly unreliable.
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Figure 4.11: Loading Cost of GSOP (TPC-H).

Note that GSOP-hy and GSOP-hc generate 8 and 20 column groups, respectively, while GSOP

generates only 2 column groups. We also see that GSOP improves GSOP-single by only 30%.

The reason why GSOP-single performs well for this workload is that most of the queries were

concentrated on a very small set of columns and the tuple-reconstruction overhead is small. After

all, GSOP outperforms the baseline by 4.7× and SOP by 2.7×.
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Figure 4.12: Query Performance Results of GSOP (SDSS).

4.8 Related Work
In this section, we review the related work for GSOP.
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Horizontal Partitioning

Many research e�orts have been devoted to workload-driven physical design (e.g., [56, 58, 60]).

Such work aims for automatic physical design, such as indexes and materialized views [56], based

on workload information. While workload-driven horizontal partitioning techniques have been

studied [58, 15, 76, 55], they were built on top of range partitioning or hash partitioning. In-

stead of specifying which columns to range- or hash-partition on, GSOP is based on features, or

representative �lters, extracted from the workload. GSOP seeks to operate at a �ner granularity

than these traditional horizontal partitioning techniques. In fact, it is a good practice to apply

GSOP on each individual range partition as a secondary partitioning scheme. Also, GSOP does

not move tuples across machines. Schism [24] is also a workload-driven �ne-grained partitioning

technique, but it is designed for reducing cross-machine transactions for transactional workloads.

Vertical Partitioning

Vertical partitioning divides the columns of a table into groups. As an important database tech-

nique, vertical partitioning has been studied extensively [60, 4, 58, 42, 39, 10, 77, 45, 51]. Most

of the existing vertical partitioning techniques focus on the trade-o� between a row store and a

column store: when the table has many narrow vertical partitions, it resembles a column store,

in which case the queries that access multiple partitions su�er from the cost of tuple reconstruc-

tion. When the table has a few wide vertical partitions, it resembles a row store, in which case the

queries that assess a small number of columns su�er from the cost of reading unwanted columns.

Thus, existing techniques base the partitioning decision on column co-access patterns in a work-

load. In contrast, our column grouping technique takes into account the opportunities of skip-

ping horizontal blocks and balances the trade-o� of skipping e�ectiveness vs tuple-reconstruction

overhead.

Physical Design in Column Stores

Column store has become the mainstream architecture for analytics systems (e.g., [68, 2, 41,

19, 14, 73]). In a column store, columns can form column groups [43, 5, 7]. Di�erent from the

vertical partitioning problem mentioned above, where a vertical partition is a row store, each

column group here is still a column store. In GSOP, we adopt a PAX-style layout [1] within a

column group: we horizontally partition each column group into blocks (e.g., of 10k rows) and use

columnar layout within each block. Existing approaches [43, 5] allow di�erent column groups to

choose di�erent orders for e�cient read or compression purposes. The main di�erence between

GSOP and these approaches is that GSOP focuses on �ne-grained skipping-oriented partitioning

instead of simply choosing column-level sort orders.

Database cracking [35, 61, 36] studies the problem of automatically and adaptively creat-

ing indexes on a column store during query processing. While it is similar to our problem in

several aspects, such as involving re-ordering of columns and balancing reading cost and tuple-

reconstruction overhead, the problem GSOP targets is fundamentally di�erent from cracking.

The application scenario for database cracking is when we have no access to past workloads or
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the luxury of paying an upfront cost of organizing data. GSOP, to the contrary, is designed for

the data warehouse scenarios where we can perform a statistical analysis on workloads and use

this information to organize the data at data loading time.

Columnar Storage in Hadoop

Columnar layouts have been widely adopted in Hadoop. RC Files[71] is a PAX-style layout [1]

for HDFS, where data is horizontally partitioned into HDFS blocks and each block uses colum-

nar layouts internally. ORC Files [73] and Parquet [14] also adopted the PAX-style layout with

performance optimizations over RC Files. Floratou et al. [28] proposed a pure columnar format

for HDFS. Unlike a PAX-style layout, their solution allows di�erent parts of a row to span di�er-

ent HDFS blocks, but makes sure these blocks reside in the same machine by modifying HDFS

block placement policy. See [72] for a performance study on these HDFS formats. These formats

commonly have built-in skipping mechanisms, sometimes known as predicate pushdown. We can

apply our techniques to organize data stored in these formats and leverage their built-in skipping

mechanisms.

4.9 Conclusion
The design of GSOP is motivated by the observation that SOP is sensitive to feature con�ict. GSOP

can e�ectively mitigate feature con�ict by allowing di�erent columns to have di�erent partition-

ing schemes. As compared to SOP, GSOP employs two new components: column grouping and

local feature selection. We evaluated the e�ectiveness of GSOP using two public benchmarks

and a real-world workload. The results show that GSOP can always �nd a partitioning layout

no worse than SOP and can dramatically outperform SOP in many settings. In particular, in the

TPC-H benchmark, GSOP improves the query response time by 3.3× over SOP.

GSOP is a good example of boosting query performance by considering �exible data layouts.

In the next chapter, we explore how replication can be introduced in the physical layout design

in order to even further enhance data skipping.
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Chapter 5

Extending GSOP with Replication

In this chapter, we explore how data replication can be leveraged to further reduce feature con�ict

and improve data skipping. The idea of using data replication to improve query performance is

not new. The use of materialized views [56, 17] is a well-known example of this category. By

storing the precomputed query results separately, queries can directly access the replicated query

results instead of having to navigate the original data. Another line of research in this area is to

make full copies of data and design the physical layout di�erently for each copy so that each copy

is best at handling a di�erent subset of workload [54, 4]. A major bene�t of such approaches is that

they can leverage the data copies that already exist for reliablity and availability purposes, e.g.,

Trojan [4] exploits the default 3-way replication scheme of HDFS blocks and devises a di�erent

column grouping scheme on each of the three replicas. Inspired by these ideas, we propose a

framework called generalized skipping-oriented partitioning with replication (GSOP-R), which

designs partitioning and replication schemes in an integrated manner.

5.1 Introduction
As described in Chapter 4, GSOP mitigates feature con�ict by separating columns into groups.

Such an approach works best when the features are evenly distributed across columns. In real-

world analytics workloads, however, it is not uncommon that column access is highly skewed,

i.e., a small number of columns are accessed by a lot of queries. In such scenarios, its likely that a

few columns are involved in many features and thus su�er from a high degree of feature con�ict.

The vertical partitioning process in GSOP simply cannot a�ect the feature con�ict coming from

a single column. Suppose we extract another feature f3: c2>1 from the workload. In this case,

column c2 is involved in two features, namely f2 and f3, which happen to be con�icting. No

partitioning scheme of c2 can work for both features, and vertical partitoning will not help. Note

that a column does not have to be in the �lter predicate to be considered involved in a feature.

For example, we can say that column c4 is involved in feature c2>1 if c4 appears in a query

whose predicate is c2>1 in the workload. Thus, the frequently-accessed columns can easily be

involved in a large number of features. As no good horizontal partitioning scheme can be found
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Figure 5.1: GSOP-R vs. Other Layout Schemes.

on such columns, scanning these columns will become the query cost bottleneck due to ine�ective

data skipping. Even worse, as these columns are frequently accessed, their scanning cost is a

considerable part of the overall performance of the workload.

In this chapter, we explore how data replication can be leveraged to reduce feature con�ict

and improve data skipping. To improve query performance, existing techniques have considered

the replication of either columns (e.g., C-Store [43] and database cracking [35]) or rows (e.g., ma-

terialized views [56]). Some work also leveraged the full data copies that exist for fault-tolerance

and availiability purposes by designing a di�erent physical layout on each data copy (e.g., frac-

tured mirrior [54] and Trojan [4]). To directly extend GSOP with replication, we develop two

basic approaches. The �rst approach is a selective replication approach, which �rst designs a

GSOP layout scheme for the data and then picks out a set of features in order to replicate the data

that satisfy these features. This approach is similar to the use of materialized views. The second

approach is a full-copy replication approach, which makes multiple copies of the data and designs

a di�erent GSOP scheme on each copy. To do this, we �rst run a clustering algorithm on features

with an objective of minimizing intra-cluster feature con�ict. We then assign a cluster of features

to each data copy and use GSOP to design the layout of each copy based on its assigned cluster

of features. Both approaches, however, treat GSOP as a black box and separate replication from

partitioning, which may lead to possible ine�ciencies. Also, they are only limited to one form of

replication, i.e., either replicating query results or making full copies, which may not make the

most e�cient use of space budget for the given workload and data characteristics.

To this end, we develop a new framework, termed Generalized Skipping-Oriented Partitioning

and Replication (GSOP-R). In contrast to the existing techniques that replicate either rows or

columns, GSOP-R supports the replication of subsets of rows and columns, i.e., neither a row nor

a column is an atomic unit of replication. The goal of GSOP-R is to organize data into small blocks

through replication and partitioning so that the data skipping opportunities can be increased. We

de�ne a GSOP-R scheme as a set of layouts, each of which contains a piece of data. A layout in

GSOP-R is similar to a column group in GSOP but much more �exible. What data goes in a

layout is determined by a triplet: columns, local features and master columns. Figure 5.1(d) shows
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a GSOP-R scheme of two layouts. In general, a layout is composed of a subset of rows and a

subset of columns; columns in a layout may not be of the same cardinality; some subsets of rows

and columns can be found in multiple layouts; and columns within a given layout share the same

horizontal partitioning scheme. GSOP-R not only generalizes SOP and GSOP, but it also subsumes

existing forms of replication based exclusively on either rows or columns.

The �exibility in GSOP-R scheme design enables e�cient use of space budget for boosting

query performance through e�ective data skipping. On the other hand, it also poses great chal-

lenges in �nding a good GSOP-R scheme given the huge search space. To address this challenge,

we develop a search framework based on scheme transformations. We �rst construct an initial

GSOP-R scheme, where each layout contains a single column and no data is replicated. We de-

�ne three types of allowed transformation operations on GSOP-R schemes: replicate, merge,

and merge-replicate. Each of these operations makes a trade-o� between three costs: data

scan, row reconstruction, and storage. We then go through an iterative process, where we greed-

ily �nd the best transformation operation to apply on the current scheme at each iteration. The

objective is to minimize the query cost, which (as in Chapter 4) incorporates the data scan cost

and row-reconstruction cost, given a storage constraint. The goal is to reach a good GSOP-R

scheme through successive locally-optimal scheme transformations.

Clearly, it is critical to consider how queries can e�ectively leverage GSOP-R schemes. Since

some data are replicated across multiple layouts, a query can have di�erent ways of retrieving the

requested data. We de�ne retrieval paths, which specify how a given query can correctly retrieve

data in a GSOP-R scheme. We formulate the problem of �nding the optimal retrieval path, i.e.,

the eligible path that incurs the smallest estimated query cost. We show that this problem is NP-

hard by a reduction from the classic set cover problem. Since �nding the optimal retrieval path

is a online process as part of query optimization, it has to be executed e�ciently. We adopt a

2-approximiation greedy algorithm, i.e., the path found incurs a cost at most twice the optimal.

In our experiments, however, the greedy algorithm almost always �nds the optimal path.

We prototyped the GSOP-R framework using Apache Spark [44] and Apache Parquet [14].

Note that, as with SOP and GSOP, the process of designing GSOP-R layout schemes is o�ine

and happens at data load time. When a new set of records (e.g., a date partition) is being loaded,

GSOP-R reorganizes its internal layout and then appends it to the table. This process does not

change the layout of previously stored data. When the data is stored using Parquet, for example,

GSOP-R works on each Parquet �le individually. We conduct experiments on TPC-H and a real-

world workload. Our results show that GSOP-R can reduce the query response time by 2x over

GSOP with only 20% storage overhead.

5.2 Review of GSOP
Since GSOP-R is based on GSOP, we �rst review the steps of the GSOP framework proposed in

Chapter 4 using Figure 5.2 as an example.
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1) Workload Analysis

Given a workload, such as a log of queries or query templates, GSOP extracts as features a set of

frequently-occurred �lter predicates. Each feature is a �lter predicate associated with a weight

indicating how many queries it subsumes in the workload. The notion of subsumption is impor-

tant, as a feature can help a query skip data as long as the feature subsumes, or is more general

than, the query predicate, even though they are not an exact match. For example, f2 : c2 > 1
in Figure 5.2 can be used to skip data for queries with predicate c2 > 2. These features provide

a succinct summary of the workload and will be used to guide the data partitioning. For each

feature, GSOP goes back to the query log, identi�es all the queries subsumed by this feature,

and collects all the columns that appear in these queries as relevant columns for this feature. In

Figure 5.2, the feature information is summarized in a table in the upper-left corner.

2) Augmentation

As data is being loaded, we batch evaluate the feature predicates on-the-�y and augment each row

with a bit vector. Givenm features, each vector hasm bits, the i-th bit of which indicates whether

this row satis�es the i-th feature. In Figure 5.2, the bit vector for r2 is 001, which tells us that r2
only satis�es feature f3 but not f1 or f2. Since the partitioning algorithm later is only concerned

with the bit vectors, not the actual data, GSOP then groups the (vector, row-id)-pairs by the

vectors and generates a set of (vector, count)-pairs, where count is the number of rows augmented

with this vector. This group-by step is an important optimization, as it signi�cantly reduces the

input size of the partitioning algorithm. We omit the illustration of this step in Figure 5.2 for

simplicity.

3) Column Grouping

Recall that this step is the main distinction between GSOP and SOP. In SOP, all columns are hor-

izontally partitioned together. GSOP, on the other hand, �rst vertically partitions the columns

into groups, and then allows each column group to have its own horizontal partitioning scheme.

This �exibility enables better data skipping, but also introduces overhead for row reconstruc-

tion. GSOP searches a column grouping scheme based on an objective function that balances the

skipping e�ectiveness and row-reconstruction overhead. After the column groups are generated,

GSOP identi�es a set of local features for each column group, which is a subset of the global

features extracted from Step 1. A feature can be selected as a local feature for a column group if

the column group contains at least one of its relevant columns. For example, the local features of

column group G1 : {c1, c3} are f1 and f2, but not f3, because G1 does not contain any relevant

column of f3, namely c2 or c4.

4) Partitioning

In this step, GSOP horizontally partitions each column group individually. Based on the local

features of a column group, GSOP projects the global vectors from Step 2 onto local vectors by
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Figure 5.2: A GSOP Example.

keeping only the bits corresponding to the local features, and then performs a clustering algo-

rithm to generate a horizontal partitioning scheme based on these local vectors. For example,

since the local features of column group G1 are f1 and f2, GSOP only looks at the �rst 2 bits

of the vectors while running the clustering algorithm; similarly, it ignores the �rst bit while

running the algorithm for G2. Thus, the two column groups can have di�erent horizontal parti-

tioning schemes. At the end, the data are loaded into the GSOP layout scheme as guided by both

the column grouping scheme and the horizontal partitioning scheme of each column group. In

Figure 5.2, each column group is horizontally partitioned into two blocks. We store a union vector
as metadata for each block. The union vector of a block is simply a union of the local vectors of

all rows in this block. For example, the union vector of the lower block inG1 is (−, 1, 0). The �rst

bit is an invalid bit, which indicates that f1 is not a local feature and thus should not be used for

skipping. The second bit 1 says that the block may contain rows that satisfy feature f2.The third

bit 0 informs us that no row in this block satis�es f3, and thus any query subsumed by f3 can

safely skip this block. The union vectors will be used by future queries as metadata to skip data

blocks. Note that we only need to keep the union vectors and can drop the vectors augmented

with individual rows after data is loaded.
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Query Processing

Suppose the following query is issued on the data in the GSOP scheme in Figure 5.2:

SELECT c1, c2 FROM T WHERE c2%2 = 0

We �rst check if any feature subsumes this query and �nd that f3 does. Given the column group-

ing scheme, the query needs to read to column c1 fromG1 and column c2 fromG2. Since f3 is not

a local feature of G1, the query cannot skip data based on f3 in G1. Note that each block adopts

a columnar layout internally. Thus, the query only reads column c1, not c3, from both blocks of

G1, 4 values in total. In order to reconstruct the values from column c1 with that from c2 later,

the query also has to retrieve a row id for each value read, 4 row ids in total. In group G2, f3
is a local feature. The query checks the union vectors of both blocks and decides that the lower

block can be skipped, as the third bit of its union vector is 0. Then the query reads column c2
from the upper block, namely, 2 and 0, and their corresponding row ids, i.e., r1 and r2. Finally,

the query assembles the two columns together based on row ids and only keeps the rows where

both column values are present, i.e., rows r1 : (p, 2) and r2 : (p, 0).
Having reviewed the steps of GSOP, we next discuss how to incorporate replication into the

GSOP framework.

5.3 Basic Replication Approaches
We explore two basic approaches that extend GSOP with data replication.

5.3.1 Selective Replication
The idea of selective replication is inspired by the classic database technique of materialized

views, where we can pre-evaluate frequently-issued queries o�ine and store the results. In the

future, queries can directly go to the materialized views instead of having to access the original

data.

In selective replication, we �rst use GSOP to partition the data and see which features can

bene�t from replication the most. As mentioned in Section 5.2, a feature can represent a set of

frequently-occurring queries. Each feature has a predicate, which quali�es a set of rows, and is

associated with a set of relevant columns. We can replicate these rows and columns, so that all

queries subsumed by this feature can directly scan the (smaller) replicated data instead of the

original data. Consider the GSOP scheme in Figure 5.2. The horizontal partitioning scheme of

column group G2 is based on two local features f2 and f3, which works out well for f3 but not

f2. As we can see, the union vectors of the two blocks in G2 both have a 1 on their second

bit, which indicates that queries subsumed by f2 cannot skip any block. Clearly, feature f2 can

bene�t from replication. In Figure 5.3(a), we replicate the data requested by feature f2 and store

them separately as Repl(f2). The replication Repl(f2) contains all the rows that satisfy the f2
predicate c2 > 1, namely, r1 and r3, and all its requested columns, namely, c2 and c3. This way

any query subsumed by f2 only needs to scan the one block in Repl(f2) but not G1 or G2.
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Figure 5.3: Example of Basic Replication Approaches.

Note that the creation ofRepl(f2) can bene�t not just f2 but also the other features. Since the

data that satisfy f2 can be found inRepl(f2), we no longer need to keep f2 as a local feature inG1

or G2 (as in Figure 5.2). Removing f2 reduces the feature con�ict in G1 and G2, because each of

them is now concerned with one less feature. After creating Repl(f2), as shown in Figure 5.3(a),

the second bits of the union vectors in G1 and G2 are now marked as invalid. Thus, we should

re-partition G1 and G2 so that their new partitioning schemes are tailored for the remaining

features.

Given a space budget, we need to choose a set of features like f2 for replication that can o�er

the best query performance boost. We adopt a greedy approach to pick one feature at a time. At

each iteration, we pick the best feature for replication and then update the horizontal partitioning

schemes of the column groups that had this feature as a local feature. We keep doing this until the

space budget runs out. The cost models for query performance and space overhead are de�ned

in Section 5.4.

5.3.2 Full-Copy Replication
Replicating full copies of data has been an important mechanism to improve fault-tolerance, avail-

ability and locality in analytics systems. For example, Hadoop �le system (HDFS) stores 3 copies

of each HDFS block by default. Existing work [54, 4] proposed to leverage these full-copy repli-

cations for improving query performance. By designing a di�erent physical layout for di�erent

data copies, each copy is best suited to answer a di�erent class of queries. This can easily outper-

form a monolithic physical layout designed to bene�t all types of queries. Such an idea can be

borrowed to improve the performance of GSOP. Given m full copies of data, we �rst cluster the

features into m groups and design a GSOP scheme for the i-th copy based on the i-th cluster of
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features. As shown in Figure 5.3(b), we assign features f1, f2 to the �rst copy and f3 to the second

copy. Each copy ends up having a di�erent column grouping and horizontal partitioning scheme.

Since the GSOP scheme for each copy is based on a cluster of features instead of all features, it

can be more e�ective for data skipping due to reduced feature con�ict. To cluster the features,

we can simply adopt a bottom-up clustering approach. Each feature starts as a cluster by itself.

Iteratively, we �nd the best pair of clusters to merge based on the query cost model developed

in Section 5.4. Each merge reduces the number of clusters by 1 and the iteration stops when we

have m clusters.

5.4 GSOP-R Layout Schemes
In this section, we introduce the de�nition of GSOP-R schemes and explain how they can be

applied on data as it is loaded into the database. We also discuss how to evaluate the goodness of

a GSOP-R scheme.

5.4.1 De�ning a GSOP-R Scheme
A GSOP-R layout scheme L consists of a set of layouts, i.e., L = {L1, L2, . . . , Lk}. Let C be the

set of columns in the table and let F be the set of features extracted from the workload as in GSOP

(Section 5.2). We de�ne each layout Li ∈ L by a triplet (Ci, Fi,Mi), where Ci ⊆ C is the set of

columns in Li, Fi ⊆ F is the set of local features in Li, and Mi ⊆ Ci is a set of master columns.
In a layout Li, only the master columns in Mi are guaranteed to be full columns, which contain

all the rows. What rows the non-master columns (i.e., Ci − Mi) have are determined by the

local features Fi, which also governs the horizontal partitioning scheme of Li. We will elaborate

on this distinction in Section 5.4.2. Since data replication is allowed in GSOP-R, a column may

appear in multiple layouts, i.e., there can be overlaps between Ci and Cj for i 6= j. To ensure that

a GSOP-R scheme is complete, i.e., there is no data loss when GSOP-R is applied, we require that

every column in C must be a master column in at least one layout in L. Figure 5.4(a) shows an

example GSOP-R layout scheme with two layouts. for the example table shown in Figure 5.1(a).

5.4.2 Applying a GSOP-R scheme
When a new set of rows, e.g., a date partition, is submitted to the system, we apply a GSOP-R

scheme to reorganize its layout and append it to the table. We now show how to apply a GSOP-R

scheme on the incoming data.

Let R be the set of rows in the incoming partition. As before, we refer to the intersection

of a row and a column as a data cell. Given a GSOP-R scheme and the incoming data, we �rst

need to determine what data cells each layout contains. While the column set in a layout Li is

explicitly speci�ed by Ci, the row set in Li, denoted by Ri, needs to be inferred from the local

features Fi. Since each feature fj ∈ F has a �lter-predicate, it quali�es a subset of rows from

R. We let Ri be set of rows that satisfy at least one feature in Fi. Suppose we are now applying
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Figure 5.4: Example of a GSOP-R Layout Scheme.

the GSOP-R scheme in Figure 5.4(a) on the data in Figure 5.1(a) with the features f1, f2 and f3
in Figure 5.2. The result is shown is in Figure 5.4(b). Given the local features F1 : {f1, f2} in

layout L1, we can infer thatR1 = {r1, r2, r3, r4}, as rows r1, r3 satisfy f1: c1=‘x’ and r2, r4 satisfy

f2 : c2>1. Similarly, R2 = {r1, r2}, as f3 : c%2=0 quali�es r1, r2 but not r3, r4. By de�nition, the

master columns in each Mi are required to have all the rows from R. Thus, apart from the rows

in Ri, each master column in a layout Li also needs to include the data cells from the remaining

rows, denoted by Ri = R − Ri. In Figure 5.4(b), R1 = ∅ since R1 already contains all 4 rows; in

contrast, R2 = {r3, r4}, and thus we need to add these rows to the only master column in M2,

namely c4. This way the data in Figure 5.4(b) is guaranteed to have every cell of the original data

in Figure 5.1(a).

A GSOP-R layout scheme not only describes what data cells each layout contains, but also

governs how the data cells in each layout are physically stored. The data cells in each layout Li

are logically stored as two separate parts. The �rst part contains the data cells from the rows Ri

and the columns in Ci. This part is treated in the same way as a column group in GSOP, which

adopts a column-oriented storage scheme and is horizontally partitioned using the clustering

algorithm in GSOP based on the features in Fi. The second part contains only the cells from the

master columns Mi and the remaining rows Ri. This part also adopts a column-oriented scheme

but is not horizontally partitioned based on the features, as the rowsRi do not satisfy any feature

in Fi. For example, in Figure 5.4(b), the �rst part of L1, composed of rows R1 and columns C1, is

horizontally partitioned into two blocks. Each block is annotated with a union vector, as described

in Section 5.2. The second part of L1 is empty, and thus is not shown. There is no distinction
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in the physical storage of these two parts; both parts are physically stored as a set of blocks. In

layout L2, the �rst part, composed of rows R2 = {r1, r2} and columns C2 = {c2, c4}, is stored as

a single block, and the second part is a single block of two rows in R2 = {r3, r4} and a master

column c4. A query does not need to treat the blocks in Ri di�erently from those in Ri, as it only

needs to read the union vector and decide whether a block is to be scanned or skipped. We will

discuss how queries are processed on the data stored in a GSOP-R scheme in Section 5.6.

We summarize our notation in Table 5.1.

Table 5.1: Summary of Notation

Notation Meaning
C set of columns in the table

R set of rows to apply GSOP-R on, e.g., a date partition

F set of all features extracted from the workload

L a GSOP-R layout scheme, L = {L1, L2, . . . , Lk}
Li a layout in a GSOP-R scheme L, de�ned as (Ci, Fi,Mi)
Ci set of columns in layout Li, Ci ⊆ C
Fi set of features in layout Li, Fi ⊆ F
Mi set of master columns in layout Li (Mi ⊆ Ci)

Ri set of rows in layout Li (inferred from Fi), Ri ⊆ R

Ri R - Ri

Cq
set of columns requested by query q, Cq ⊆ C

5.4.3 Evaluating a GSOP-R Scheme
We evaluate the goodness of a GSOP-R layout scheme based on both query performance and

storage overhead.

Given a query q issued on the data stored in a GSOP-R layout scheme L, as in SOP and

GSOP, we de�ne the cost of query q as the number of data cells it scans. We now discuss how

to estimate the number of data cells a query q needs to scan from the data stored in L. Since

GSOP-R schemes allow data replication, a query can go to multiple places to retrieve the data

it needs. Thus, a query can have multiple retrieval paths, each of which speci�es what columns

the query reads from each layout. Suppose the set of columns query q needs to read is Cq ⊆ C .

We represent the retrival path using a binary function p(ci, Lj), where p(ci, Lj) evaluates to 1 if

the query will read column ci from layout Lj and 0 otherwise. For each column ci in Cq
, there

is one and only one layout Lj in L such that p(ci, Lj) = 1. We defer the discussion of �nding

the optimal retrieval path to Section 5.6. For now, we assume that a retrieval path p is given. For

each layout Lj in L, we denote by rr(q, Lj) the number of rows to be read by query q in Lj .

The value of rr(q, Lj) is determined by how many blocks can be skipped based on the horizontal

partitioning scheme of Lj and the query predicate. Thus, rr(q, Lj) is the same for all columns

read from Lj . We describe how to derive rr(q, Lj) using metadata in Section 5.6. When query q
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reads at least one column from a layout, it also needs to read row ids so that the columns from this

layout can be reconstructed with those from other layouts. The number of row ids that needs to

be read from Lj equals the number of rows read from it, i.e., rr(q, Lj). To sum up, given a query

q, a layout scheme L and a retrieval path p, the total number of data cells and row ids scanned

can be calculated as:

q-cost(q, L,R, p) =
∑
Lj∈L

rr(q, Lj)(
∨

ci∈Cq

p(ci, Lj) +
∑
ci∈Cq

p(ci, Lj)) (5.1)

To evaluate the query performance of a GSOP-R schemeLwith respect to the entire workload,

we simply take the sum of the cost (Equation 5.1) for all queries in the workload .

We quantify the storage cost of a GSOP-R layout scheme L as the ratio of the number of data

cells stored in L to the number of data cells in the original data. For each layout Li ∈ L, the

number of data cells Li contains is |Ri| × |Ci| + |Ri| × |Mi|. The number of data cells in the

original data is |R| × |C|. Thus, we have:

s-cost(L,R) =
∑
Li∈L

(|Ri| × |Ci|+ |Ri| × |Mi|)/(|R| × |C|) (5.2)

For example, the GSOP-R scheme in Figure 5.4(b) contains 18 data cells, i.e., 12 from L1 and 6
from L2, while the original data in Figure 5.1(a) has 16 data cells. Hence the storage cost for this

layout scheme is 18/16 = 1.125.

We realize that our cost model mainly uses the number of data cells as an estimation of the

query cost and storage cost, which omits many of the implementation details involved in a real-

world setting. For example, the data cells can be in di�erent types and also can be compressed in

di�erent ways, which a�ects the actual scanning and storage costs. The goal of our cost model,

however, is not to model these costs as accurately as possible, but rather to serve as a guideline

to search for GSOP-R layout schemes for a given dataset and workload. Our experimental results

(Section 5.7) show that this cost model works well in terms of guiding the search for GSOP-R

layout schemes.

Given the models for query and storage cost, we set our goal as �nding a GSOP-R scheme

whose query cost is the smallest w.r.t. the entire workload given a storage cost budget.

5.5 Searching GSOP-R Schemes
In the search of GSOP-R schemes, we �rst construct an initial layout scheme and then go through

an iterative process to transform the layout scheme using our de�ned transformation operations.

At each iteration, we examine all allowed transformation operations on the current scheme and

greedily pick the best operation, i.e., the one that can result in a GSOP-R scheme with the best

query performance under the space budget. The goal is to reach a good GSOP-R scheme through

successive locally-optimal transformations.

During the search process, we evaluate a GSOP-R scheme using the cost models discussed

in Section 5.4.3 based on a sample of data. Once a GSOP-R scheme is chosen, it can be used
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repeatedly for the incoming data partitions and only needs to be refreshed periodically or when

there is a dramatic change to data characteristics or workload patterns.

5.5.1 Scheme Transformation Operations
Initial GSOP-R Scheme. In the initial layout scheme L, we create a layout for each column

in the table. Every column is a master column in its own layout. Thus, no data is replicated in

the initial scheme. To determine the local features Fi of each layout Li, we refer to the feature

information, e.g., the upper left table in Figure 5.2, and obtain the set of relevant columns for

each feature fi in F , denoted by rel-cols(fi). We consider feature fi as a local feature of Lj

if and only if at least one column in Lj is a relevant column of fi, i.e., fi ∈ Fj if and only if

Cj ∩ rel-cols(fi) 6= ∅. In Figure 5.5(a), we illustrate the initial layout scheme L for the data in

Figure 5.1(a), where the local features of each layout are listed at the bottom. For instance, the

local features of L2 are f2, f3, as column c2 is a relevant column of both f2 and f3.
We de�ne three types of transformation operations on a GSOP-R scheme, each of which makes

a trade-o� between three costs: data scan, row-reconstruction, and storage. An operation is con-

sidered the best for the current GSOP-R scheme if it can result in a scheme with the lowest query

cost (using Equation 5.1 in Section 5.4.3), which factors in both data scan and row-reconstruction

costs, under a given storage cost budget (using Equation 5.2 in Section 5.4.3). Note that these

operations are only focused on the columns and local features of the layouts. Given the columns

Ci and local features Fi of each layout Li, we discuss an approach to specify the master columns

Mi automatically in Section 5.5.3.

1) repl(L, Li, fj): This replicate operation creats a new layout by replicating the data cells

requested by feature fj from layoutLi. It creates a new layoutLk+1, whereCk+1 = rel-cols(fj)∩
Ci and Fk+1 = {fj}. This operation also removes feature fj from the local feature set of Li, and

thus updates Li to L′i, where F ′i = Fi − {fj} and C ′i = Ci. To summarize, we have:

repl(L,Li, fj) = L− Li + L′i + Lk+1

Figure 5.5(b) shows the resulting scheme after applying repl(L, L2, f3) to the initial scheme L in

Figure 5.5(a), where the unchanged layouts are shadowed. This operation adds a new layout L5,

where C5 = {c2} and F5 = {f3}. In the updated layout L′2, f3 is no longer a local feature and

F ′2 = {f2}. Note that this also causes L′2 to have a di�erent horizontal partitioning scheme from

L2.

The goal of this operation is to mitigate feature con�ict by replicating the data cells requested

by a feature. In the initial layout L in Figure 5.5(a), the local features of L2, i.e., f2 and f3, are

con�icting. No horizontal partitoning scheme of L2 can work for both features. Layout L2 ends

up with a partitioning scheme {{r1, r2}, {r3, r4}} that only bene�ts f3 but not f2. The operation

repl(L, L2, f3) e�ectively eliminates such a con�ict. The queries subsumed by f3 can now re-

trieve column c2 from the new layout L5. In the updated layout L′2, f3 is not a local feature, and

thus the horizontal partitioning scheme of L′2 is centered around the only local feature, namely,

f2. In summary, the replicate operation can reduce the scan cost because of more e�ective data

skipping while increasing storage cost due to replication.
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2) merge(L, Li, Lj): This merge operation merges two layouts Li and Lj by taking the union
of their column sets and feature sets. It creates a new layout Lk+1, where Ck+1 = Ci ∪ Cj and

Fk+1 = Fi ∪ Fj . Thus, we have:

merge(L,Li, Lj) = L− Li − Lj + Lk+1

As shown in Figure 5.5(c), applying merge(L, L2, L3) on the initial layout L creates a new layout

L5, where C5 = {c2, c3} and F5 = {f1, f2, f3}.
The operation has the same e�ect as a column grouping operation in GSOP. Merging two

layouts will align the columns from both layouts. For example, column c2 and c3 become aligned

in L5 and we only need to store one set of row ids for both columns. Queries also can read fewer

row ids and avoid joins when reconstructing rows from these two columns. On the other hand,

this operation may hurt the e�ectiveness of data skipping due to increased feature con�ict. This

is because the two columns in the newly merged layoutL5 now have to be partitioned in the same

way, i.e., based on the union of two feature sets. In this case, columns c2 and c3 are horizontally

partitioned based on three features f1, f2, f3, which may result in less e�ective data skipping than

partitioning the two columns separately.

3) merge-repl(L, Li, Lj): This merge-replicate operation merges two layouts Li and Lj by

taking the union of their column sets and taking the intersection of their feature sets. It creates

a new layout Lk+1, where Ck+1 = Ci ∪ Cj and Fk+1 = Fi ∩ Fj . To retain the features that do

not fall in the intersection Fk+1, this operation additionally creates two new layouts Lk+2 and

Lk+3. In layout Lk+2, we replicate the data cells requested by Fi − Fj , i.e., Fk+2 = Fi − Fj

and Ck+2 = Ci ∩
⋃

fk∈Fk+2
rel-cols(fk). Similarly, for Lk+3, we have Fk+3 = Fj − Fi and

Ck+3 = Cj ∩
⋃

fp∈Fk+3
rel-cols(fp). Putting it together, we have:

merge-repl(L,Li, Lj) = L− Li − Lj + Lk+1 + Lk+2 + Lk+3

Figure 5.5(d) illustrates the result of applying merge(L, L2, L3) on the initial layout L in Fig-

ure 5.5(a). This creates a new layout L5, where C5 = {c2, c3} and F5 = f1, and two new layouts

L6 and L7 by replicating data cells from column c2 in L2 and column c3 in L3, respectively, whose

local features are the features that do not fall in F5, i.e., F6 = {f3} and F7 = {f2}. As compared

to a merge operation, a merge-replicate operation keeps the bene�t of merging columns from

two layouts, i..e., reduced cost of row-reconstruction, but avoids its downside, i.e., increased fea-

ture con�ict, by taking the intersection of the two feature sets, instead of their union. This way

both the scan cost and row-reconstruction cost can be reduced, at the expense of the increased

storage cost.

As we can see, no single type of operation is expected to outperform the other types at all

times. Our goal is to always select the operation for the current scheme that minimizes the query

cost while not exceeding the storage budget. We summarize the characteristics of three types of

operations in the following table.
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operations data scan reconstruction storage

repl ↘ − ↗
merge ↗ ↘ −

merge-repl ↘ ↘ ↗

5.5.2 Automatic Layout Merge
When the local features of two layouts Li and Lj are identical, merge-replicate(L, Li, Lj) and

merge(L, Li, Lj) lead to the same result. More importantly, since their local features are identical,

merging these two layouts does not cause increased feature con�ict or replication, and we can

enjoy the upside of the merge, i.e., reduced reconstruction cost, for free. Therefore, we always

merge the layouts with the same local features for the initial scheme and for newly transformated

schemes. For example, after applying the repl(L,L2, f3) operation in Figure 5.5(b), the new

layoutL5 has the same local features asL4, so we merge them, which results in the scheme shown

in Figure 5.4(b). When choosing the best transformation operation for the current scheme, we

will evaluate the resulting scheme after these automatic merges take place.

To e�ciently merge the layouts that share the same local features, we maintain the layouts

in L using a (feature-set, layout) map structure during the search of GSOP-R schemes. For each

layout Li in L, we insert an entry (Fi → Li) to the map. Upon insertion, if a feature set that is

identical to Fi already exists as a key in the map, we mergeLi with that existing layout in the map

by taking a union of their column sets. For example, after applying repl(L,L2, f3) operation in

Figure 5.5(b), we insert the new layout L5 to the map, which automatically merges it with L4.

5.5.3 Specifying Master Columns
The above transformation operations are only focused on the columns and local features. As

mentioned in Section 5.4, we also need to specify master columns in a GSOP-R scheme in order

to to make sure there is no data loss after the GSOP-R scheme is applied. We now discuss a

uniform way of specifying master columns on every newly transformed scheme.

Since each layout does not necessarily contain all the rows, we need the notion of master

columns to ensure the completeness of the scheme, i.e., every data cell of the original data can

be found in at least one layout. Specifying a master column in a layout enforces this layout to

have all the data cells from that column. As de�ned in Section 5.4, the row set of layout Li is

Ri, i.e., the rows that satisfy at least one feature in Fi. When a column is speci�ed as a master

colum, Li has to include the additional data cells from Ri for this column. It is important to note

that the speci�cation of master columns does not a�ect the query cost of a GSOP-R scheme. This

is because the rows in Ri do not satisfy any feature and their presence in Li does not a�ect the

partitioning schemes of the rows in Ri. Thus, our goal is to specify the master columns in a way

that minimizes the storage cost. This can be achieved by following two simple rules. First, a

column does not need to be a master column in more than one layout. Second, for every column

ci in C , we set ci as a master column in layout Lj if Lj has the largest row set, i.e., |Rj| is the
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largest, of all the layouts that contain ci; this way the extra storage cost of turning ci into a master

column, i.e., |Rj|, is the smallest.

Algorithm 1: find-GSOPR-scheme
Input: data sample S(R,C); workload W ; storage budget b
Output: a GSOP-R scheme bestScheme

1 F ← workload-analysis(W )
2 V ← featurize(S, F )
3 L← construct-initial-scheme(C,F )
4 op← Null
5 qCost← Null
6 bestQCost←MaxV alue
7 bestScheme← L
8 do
9 (op, qCost)← pick-next-operation(L,W, V, b)

10 if nextOp 6= Null then
11 L← apply(op, L)
12 if qCost < bestQCost then
13 bestQCost← qCost
14 bestScheme← L

15 while op 6= Null
16 return bestScheme

5.5.4 The Search Framework
Given a data sample S(R,C), a workloadW , and a storage budget b, the framework of searching

a GSOP-R layout scheme is presented in Algorithm 1. We �rst perform a workload analysis step

to extract features F from the workloadW (line 1). This step is the same as in GSOP, as reviewed

in Section 5.2. We then apply a featurization step in line 2 to batch evaluate the features on

the data sample, which turns each row into a feature vector (line 2). This step is also the same

as in GSOP. The subsequent search of layout schemes will be solely based on the vectors V ,

instead of the actual rows R. We then construct an initial layout scheme L based on the column

set C and the feature set F (line 3), as described in Section 5.5.1. We go through an iterative

process (line 8-15). At each iteration, we greedily �nd the best transformation operation using the

pick-next-operation subroutine and apply it on the current scheme. As discussed in the next

paragraph, scheme transformation using the three types of operations de�ned in Section 5.5.1

does not generate cycles. The iteration will stop when no transformation is possible. Finally, we

return the best scheme we have seen during the process.

The procedure of pick-next-operation is presented in Algorithm 2. For each layout that

has more than one local feature, we try a replicate operation on every local feature (line 3-10).

For each resulting scheme, we estimate the query cost and storage cost. We exclude an operation
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Algorithm 2: pick-next-operation

Input: layout scheme L; workload W ; vectors V ; storage budget b
Output: best operation bestOp; best query cost bestQCost

1 bestQCost←MaxV alue
2 bestOp← Null
3 for each Li: (Ci, Fi,Mi) ∈ L do
4 if |Fi| > 1 then
5 for each fj ∈ Fi do
6 L′ ← repl(L,Li, fj)
7 qCost← q-cost(W,L′, V )
8 sCost← s-cost(L′, V )
9 if sCost ≤ b ∧ qCost < bestQCost then

10 bestOp← (repl, Li, fj)
11 bestQCost← qCost

12 for each Li: (Ci, Fi,Mi) ∈ L do
13 for each Lj : (Cj , Fj ,Mj) ∈ L do
14 if i 6= j ∧ Fi ∩ Fj 6= ∅ then
15 L′ ← merge(L,Li, Lj)
16 qCost = q-cost(W,L′, V )
17 if qCost < bestQCost then
18 bestOp← (merge, Li, Lj)
19 bestQCost← qCost

20 L′ ← merge-repl(L,Li, Lj)
21 qcost← q-cost(W,L′, V )
22 sCost← s-cost(L′, V )
23 if sCost ≤ b ∧ qCost < bestQCost then
24 bestOp← (merge-repl, Li, Lj)
25 bestQCost← qCost

26 return (bestOp, bestQCost)

from consideration if the resulting storage cost exceeds the budget b. The query cost (line 7) and

the storage cost (line 8) can be estimated using Equation 5.1 and Equation 5.2 in Section 5.4.3,

respectively. Similarly, we examine all possible merge and merge-replicate operations (line

11-24). One important restriction here is that we only try to merge the layouts that have at

least one local feature in common. When two layouts do not share any feature, then we know

that there is no query in the workload that requests columns from both layouts simultaneously.

Thus, merging the two layouts would not improve the query cost based on our model. Also,

this restriction makes sure the newly replicated layouts (resulting from replicate and merge-

replicate) will never be merged back to their originating layouts and no cycles will be generated

through successive scheme transformations.

As we can see, the transformations will end on a scheme where each layout only has one

local feature and no pair of layouts shares a local feature. In practice, the space budget is usually
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small, e.g., twice the data size, so the process can stop in just a few iterations. The bottleneck in

this process is the estimation of query cost and storage cost. In particular, estimating the query

cost needs the information of the union vectors, as discussed in Section 5.6.2, and thus involves

the horizontal partitioning of the vectors V . Since each transformation operation only makes

changes to a few layouts in a scheme, in our implementation, we reuse the cost estimations as

much as possible. For example, we cache union vectors of di�erent partitioning schemes so we

do not have to actually perform the partitioning every time. Cost estimation reuse of this kind

can greatly speed up the search process.

5.6 Query Processing
In this section, we discuss how a query retrieves data from the data stored in a GSOP-R scheme.

5.6.1 Eligible Layouts for Columns
Since a column can have multiple replications, which reside in di�erent layouts, a query has

multiple options for where to retrieve a certain column. However, not all of these column replicas

can be used to answer the query, as a column replica might not contain all the values unless it is

a master column. To query the data stored in a GSOP-R scheme, the �rst step is to identify which

layouts are eligible to serve a certain column to the query.

Metadata. We maintain three catalog tables, as shown in Figure 5.6: a feature catalog, a

layout catalog and a block catalog. The feature catalog lists the features used in the design of the

GSOP-R scheme. The layout catalog maintains the information of layouts, where each layout is

described by three �elds: columns, local features, and master columns. The local feature �eld is

represented as a mask vector, where the i-th bit indicates whether feature i is a local feature of

the layout. In Figure 5.6, the mask vector (1, 1, 0) of layout L1 means that L1 has features f1 and

f2 but not f3. We defer the discussion of the block catalog to Section 5.6.2.

Given a query, we �rst check the feature catalog and see which features subsume this query.

The result is encoded in a query vector. Since the query in Figure 5.6 is subsumed by feature f3,
but not f1 or f2, the query vector is (0, 0, 1). We also extract the columns requested by the query,

i.e., c2, c3 and c4. Although both layouts have column c2, they may not both be eligible to provide

column c2 to the query, as they may not have all the rows that the query needs. As de�ned in

Section 5.4, a layout contains all the rows that satisfy at least one feature of the layout. Thus,

to see if a layout contains all the rows requested by the query, we can check if any of its local

features subsumes (or is more general than) the query predicate. If so, we are guaranteed that

the row set of this layout is a superset of the rows needed by the query. To perform this check,

we take the intersection of the query vector and a mask vector in the layout catalog and see if

the resulting vector is empty. In Figure 5.6, by taking the intersection of the query vector (0, 0, 1)
and the mask vector of L2 (0, 1, 1), we obtain the result (0, 0, 1), which is not empty. This tells

us that L2 contains all the rows that the query needs and thus is an eligible layout for column c2.
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Figure 5.6: Example of Query Processing in GSOP-R.

To summarize, for a given column ci requested by a query, a layout Lj is eligible if 1) ci is a

master column in Lj or 2) ci is a column in Lj and at least one feature in Lj subsumes the query

predicate. In Figure 5.6, the set of eligible layouts of c2 is {L1, L2} and that for c3 and c4 are both

{L1}.

5.6.2 Evaluating Retrieval Paths
Given the eligible layouts for each column requested by the query, we need to �nd a combination

of eligible layouts that speci�es how the query will retrieve all the columns. As mentioned in

Section 5.4.3, a retrieval path p of a query is an assignment from each requested column to one of

its eligible layouts. The query in Figure 5.6 has two retrieval paths: 1) {c2 → L1, c3 → L1, c4 →
L2} and 2) {c2 → L2, c3 → L1, c4 → L2}.

Di�erent eligible retrieval paths for a query can incur dramatically di�erent costs for both

data scan and row reconstruction. To evaluate the cost of a retrieval path using Equation 5.1 in

Section 5.4.3, we need to estimate the value of rr(q, Lj), the number of rows query q needs to
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read in layout Lj . We can consult the block catalog to estimate the value of rr(q, Lj). The block

catalog table consists of the information for the blocks from all layouts in a GSOP-R scheme, as

shown in Figure 5.6. For each block, a layout �eld says which layout this block belongs to; a

columns �eld indicates which columns are present in this block; a union vector �eld stores the

union vector (Section 5.2); and a row count �eld states the number of rows in this block. Suppose

we need to evaluate the retrieval path p: {c2 → L2, c3 → L1, c4 → L2}. Let us start with L2,

where we need to read column c2 and c4. According to the block catalog, two blocks B3 and B4

are from layout L2. We then use the union vector �eld (Section 5.2) to determine if any of the two

blocks can be skipped. We compare the query vector with the union vectors and �nd that block

B4 can be safely skipped, as the third bit 0 of its union vector indicates that this block does not

contain any row that satis�es feature f3, which subsumes the query predicate. Thus, the query

only needs to read block B3 from L2, which has 2 rows according to the row count �eld. This

way we have estimated that the query needs to read 2 rows from L2, i.e., rr(q, L2) = 2. The total

number of data cells read from L2 is 4. For layout L1, the query reads one column, i.e., c3. Since

f3 is not a local feature, the query cannot skip any block and has to read c3 from both blocks

B1 and B2, which have 4 rows total, i.e., rr(q, L1) = 4. The number of row ids read in a layout

equals to the number of rows read from that layout. Thus, 4 row ids from L1 and 2 row ids from

L2. Using Equation 5.1, q-cost(q, L, p) is 14.

5.6.3 Finding Optimal Retrieval Paths
We now consider the problem of �nding the optimal retrieval path, i.e., the one with the small-

est cost. We denote by eligibleL(ci, q, L) ⊆ L the set of eligible layouts for column ci, i.e.,

eligibleL(ci, q, L) ⊆ L. An eligible path p is an assignment from every column ci in Cq
to a

layout in eligibleL(ci, q, L), where p(ci, Lj) evaluates 1 if ci is assigned to Lj and 0 otherwise.

We can also estimate the number of rows read from each layout, i.e., rr(q, Lj), using the block

catalog as described in Section 5.6.2. We formulate the problem of �nding the optimal retrieval

path as follows:

Problem 3 Given a set of columns requested by the query Cq, a set of layouts L, a cost value
rr(q, Lj) for every Lj in L, and a set of eligible layouts eligibleL(ci, q, L) for every column ci in
Cq, �nd an eligible retrieval path p, i.e., an assignment from every column ci in Cq to a layout in
eligibleL(ci, q, L), such that q-cost(q, L, p) (Equation 5.1) is the smallest.

We can prove that Problem 3 is NP-hard by reduction from the set cover problem. From an

input of set cover, we can construct an input to a special case of our problem, where the value of

rr(q, Lj) is 1 for every Lj in L. Thus, if we could solve Problem 1 in polynomial time, we could

also solve set cover in polynomial time. We next discuss two approaches for solving this problem.

Brute-force. A brute-force approach is to materialize all eligible retrieval paths and pick

the one with the smallest cost. This approach can �nd the optimal path but can be prohibitively

expensive, as the total number of eligible retrieval paths can be combinatorially large. In the

worst case, where every layout in L is eligible for every column in Cq
, the number of eligible
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retrieval paths is |L||Cq |
. In practice, both |L| and Cq

can be in the order of tens. The process of

�nding a retrieval path is executed online as part of query optimization. Thus, its e�ciency is

critical.

Greedy. Instead of materializing all eligible retrieval paths, we can pick an eligible layout for

each column in a greedy manner. Since we can estimate the number of rows query q needs to read

from each layout Lj in L, i.e., rr(q, Lj), we simply pick, for each column inCq
, the eligible layout

Lj with the smallest value of rr(q, Lj). This way, we can guarantee that the path generated using

this approach reads the smallest number of data cells. It may, however, read more row ids than

the optimal path, as it does not consider which columns are from the same layout. Note that

the number of row ids scanned by a query can never be larger than the number of data cells it

scans. Since the greedy algorithm makes sure that the query reads the optimal number of data

cells, we can infer that the total number of data cells and row ids read (Equation 5.1) by using the

greedy algorithm is at most twice the optimal. Thus, this greedy approach is a 2-approximation

solution of Problem 3, i.e., the cost of the path found is at most twice the optimal. Even so, our

experiments in Section 5.7 show that the greedy approach almost always �nds the optimal path.

After choosing the retrieval path, the query can read the columns as speci�ed by the path,

assemble the columns into rows [66], and pass the assembled rows to the subsequent stages of

query processing.

5.7 Experiments
We implemented the GSOP-R framework using Apache Spark [44]. Given a GSOP-R scheme,

we loaded the data into a GSOP-R-aware Parquet [14] �les. Each Parquet �le contains several

millions of rows stored in a GSOP-R scheme and maintains the layout catalog and the block

catalog (Figure 5.6) as �le metadata.

All the expeirments were conducted on a Spark cluster of 9 Amazon Ec2 i3.2xlarge instances,

with 1 master node and 8 slave nodes.

5.7.1 Workloads
TPC-H (Denormalized). TPC-H [67] is a well-known benchmark for ad-hoc analytics work-

loads, which provides data and query generators. We use the TPC-H benchmark in the same

way as in Chapter 3, except that we use a di�erent set of query templates, as described below.

We generate the data using a scale factor of 100. The schema of the TPC-H data is normalized.

Since we focus on using GSOP-R to design the layout scheme of a single table, by following the

evaluation approach in Chapter 4, we denormalize all the TPC-H tables, which results in a single

table with 600 million rows and 70 columns. The results from the GSOP work [66] suggested

that e�ective data skipping can lead to signi�cant improvement of query performance for both

normalized and denormalized schemes. In this chapter, we only focus on the denormalized case,

as the performance gains of GSOP-R over GSOP can be directly translated to the normalized case

as well.
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We �rst horizontally partition the data based on the month of the l_orderdate column.

Each month partition consists of roughly 8millions rows and is stored in a standalone Parquet �le.

We then apply GSOP-R on each Parquet �le individually. TPC-H also provides query templates.

We construct the TPC-H workload using 14 query templates with selective �lters, namely, q2,
q3, q5, q6, q7, q8, q11, q12, q16, q17, q19, q20, q21 and q22. The number of columns accessed by these

queries are: 11, 7,7,4, 5, 6, 4, 5, 4, 3, 8, 3, 5 and 2, respectively. We generate a training workload

of 1, 400 queries, 100 queries from each template. We then independently generate 140 queries

as the test workload, 10 queries from each template.

SDSS. Sloan Digital Sky Survey (SDSS) [63] provides public datasets on the photometric ob-

servations from the sky. These data can be accessed via a SQL interface. The access logs is also

publicly available at [20]. In our experiment, we use the same dataset and workload as in Chapter

4. Speci�cally, we consider the Star table, which records the photometric parameters of all pri-

mary point-like objects in the sky. This table consists of over 260 millions rows and 453 columns.

We use GSOP-R to design the layout of 4 millions rows at a time. We collect 2340 queries from the

SQL access log between 01/2011 and 06/2011. After sorting these queries based on their arrival

time, we use the �rst 3/4 as the training workload and the rest 1/4 as the testing workload. The

numbers of columns accessed by the queries have a mean of 13.6 and a standard deviation of 5.13.

5.7.2 TPC-H Results
Query Performance

In Figure 5.7, we compare the query performance on the data stored in 4 alternative layout

schemes. GSOP is the state-of-the-art layout design framework from [66], where no replication

is used. GSOPR1.1, GSOPR1.2 and GSOPR1.5 are based on our proposed GSOP-R framework

with a storage cost 1.1, 1.2, and 1.5, respectively. The storage cost is as de�ned in Section 5.4.3,

i.e., a storage cost 1.1 means using 10% extra storage. Figure 5.7(a) shows the number of data

cells and row ids an average test query scanned for the data stored in di�erent schemes. On av-

erage, a query scanned 32 × 108 data cells on the original data without any layout design. As

TPC-H is a complex worload with diverse �lter predicates and skewed column access patterns,

there is a high degree of con�ict in the features extracted from this workload. To mitigate the

feature con�ict, GSOP generates as many as 17 column groups. However, vertically partitioning

the columns into a lot of groups still cannot eliminate the feature con�ict coming from individual

columns. On the other hand, with only 20% extra storage, GSOPR1.2 can �nd a layout scheme

that e�ectively mitigate the feature con�ict and thereby reduce the number of data cells and row

ids by a factor of 2 as compared to GSOP; with 50% extra storage, GSOPR1.5 can improve gsop
by a factor of 3.

Figure 5.7(b) shows the end-to-end query response time for these approaches. We can see that

the reduction in data scan can directly translate to the improvement in end-to-end query response

time. In fact, as less data is scanned, the CPU cost of row reconstruction is signi�cantly improved,

which is not re�ected in 5.7(a). Although GSOP-R allows for much more �exible schemes than

GSOP, querying the data stored in a GSOP-R scheme, as discussed in Section 5.6, involves little
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Figure 5.7: Query Performance Results of GSOP-R (TPC-H)

overhead. Speci�cally, GSOPR1.1 GSOPR1.2 and GSOPR1.5 can improve the query response

time over gsop by a factor of 1.6, 2, and 3 respectively. For reference, the average query response

time on the original data in Parquet without any layout design is 161 seconds.

Basic Replication Approaches

In Figure 5.8, we compare the e�ectiveness of GSOP-R against the basic approaches proposed in

Section 5.3. GSOP-FC is the full-copy approach, which makes full copies of data and applies

GSOP on each copy based on a di�erent set of features. GSOP-SE is the selective approach,

which �rst applies GSOP on the data and then greedily picks the most cost-e�ective features and

replicates the data they request. Both approaches borrow ideas from classic database techniques

that trade space for query performance and use these ideas to extend GSOP with replication.

Clearly, for all these approaches, the more extra storage they use, the better the queries will

perform. In this experiment, we focus on the e�ciency of storage use. In Figure 5.8, we plot the

number of data cells plus row ids scanned by an average query vs. the storage cost, where 2
means 100% overhead. As we can see, what GSOP-R can achieve with less than 50% overhead

takes GSOP-SE a storage cost of 5, i.e., a 400%, storage overhead. The drawback of GSOP-SE
is that it replicates the data for each feature separately and does not consider the correlation

between features. For example, when two features request similar sets of data cells, they can be

grouped together for replication in order to save the cost of storing these data cells twice. Such

kind of correlations are naturally incorporated in the design of GSOP-R schemes. GSOP-FC has

the least e�cient use of storage, as it only supports full-copy replication. The promise of GSOP-
FC, however, is that it can leverage the existing full copies for reliability or availability purposes.

For example, when the data is stored in a 3-way replication, we can use GSOP-FC to design a

GSOP layout for each replica, which improves GSOP by almost 2x with zero storage overhead.
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Figure 5.8: Query Performance Results of GSOP-R vs Basic Replication Approaches (TPC-H)

Loading Cost

The data loading costs are shown in Figure 5.9. PAR represents the cost of directly loading data

into Parquet. The cost of GSOP and GSOP-R can be broken down into 2 phases. Phase 1 is the

layout scheme design. In Phase 1, GSOP �nds a column grouping scheme, and GSOP-R performs

the layout scheme search based on scheme transformations as described in Section 5.5. As we can

see, GSOP-R needs more time to �nd the layout scheme when there is a larger storage budget.

This is because the search space of GSOP-R schemes is proportional to the storage budget. Recall

that the search of GSOP-R schemes is an iterative process. If the storage budget runs out at a

certain iteration, we only need to consider merge transformations in the subsequent iterations

and rule out the replicate and merge-replicate as they incur storage overhead. Thus, with a

small storage budget, GSOP-R does not take much longer in Phase 1 than GSOP. The Phase 2 is

a data loading phase, where GSOP-R does not di�er much from GSOP. First, as the data is being

scanned, GSOP-R batch-evaluates the features on each row. Then, each layout will be horizon-

tally partitioned based on the feature vectors. Then, the data cells will go to their destination

blocks based on both the GSOP-R layout scheme and horizontal partitioning scheme. As we can

see in Figure 5.9, the cost of Phase 2 is similar for di�erent alternatives. In summary, GSOP-R

does not take much more time than GSOP for data loading, but can greatly improve the query

performance, as shown previously. In particular, GSOPR1.5 can improve GSOP by 3x with less

than 20% overhead in data loading cost.

Retrieval Path Search

As GSOP-R schemes allow data replication, queries can �nd the requested data via di�erent re-

trieval paths. In Section 5.6.3, we propose two approaches to �nd retrieval paths, namely, brute-

force and greedy. The brute-force approach can always �nd the optimal retrieval path, but may

take a long time to run when there are a lot of column replications. The greedy approach can
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Figure 5.9: Loading Cost of GSOP-R (TPC-H)

quickly �nd a path that has the smallest data scan cost but may need to read more row ids than the

optimal path. In our experiments with di�erent GSOP-R schemes on TPC-H, namely, GSOPR1.1,

GSOPR1.2, GSOPR1.5, and GSOPR2, we found that the greedy approach almost always returned

the same path as the brute-force approach. We observed the cost of scanning a column from dif-

ferent eligible layouts in these schemes can vary dramatically. This is a favorable situation for the

greedy approach. Since the number of row ids read cannot be larger than the number of data cells

read, by focusing on picking a path that scans far fewer data cells than other paths, the greedy

approach can almost always �nd the optimal path.

5.7.3 SDSS Results
Figure 5.10 shows the query performance of the SDSS workload. We compare three alternantives:

the GSOP scheme, GSOPR1.5 and GSOPR2. As we can see, GSOP-R can improve GSOP by

1.4x and 1.8x with 50% and 100% storage overhead, respectively. Note that SDSS is a scienti�c

workload, whose queries tend to read many more columns than in TPC-H. The average number

of columns accessed by a query in SDSS and in TPC-H are 13.1 and 5.3, respectively. Thus, the

columns in SDSS tend to be involved in more features than in TPC-H and su�er more from feature

con�ict. To achieve the similar improvement of query performance, GSOP-R needs to replicate

more columns in SDSS than in TPC-H.

5.8 Related Work
Existing techniques have used many forms of replication for improving query performance. Tra-

ditional indexes such as B+-trees are a form of data replication. Although a table can only have

one primary index, we can create many secondary indexes, each of which replicates one or more

columns of the table and sorts them in a di�erent way from the original table [21] to facilitate a
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Figure 5.10: Query Performance Results of GSOP-R (SDSS)

di�erent set of queries. Similarly, in column stores, columns can be replicated, and these column

replications reside in di�erent column groups, each of which can have a di�erent sort orders [43,

5]. Database cracking [35, 61, 36] creates a replication for a column upon being accessed and

adaptively changes its layout based on the workload. These forms of replications are column-
oriented. In contrast, materialized views [56, 17] can be considered as a form of row-oriented
replication. In a materialized view, the rows that satisfy the query are replicated and clustered

together instead of being scattered throughout the original table. Schism [24] also replicates rows

to minimize the number of distributed transactions.

Di�erent from these existing forms of replication, the design of GSOP-R schemes is driven

by workload features and can express both row-oriented and column-oriented replications. In a

GSOP-R scheme, both rows and columns can be replicated in mulitple layouts. Each column repli-

cation can have a di�erent horizontal partitioning scheme. Each row replication is surrounded

by di�erent sets of rows and will be used to answer a di�erent set of queries. Neither a row or a

column is atomic unit of replication in a GSOP-R scheme. GSOP-R also has a di�erent goal from

the existing techniques, which is to pack data cells into �ne-grained blocks so that the queries

can skip as many blocks as possible.

There is also research that exploits the full-copy replication schemes for fault-tolerance and

availability purposes. Fractured mirrors [54] leverages a mirroring scheme (RAID 1), and stores

one data copy in a row-major layout and the other in a column-major layout. The Trojan layout

approach [4] proposed to devise a di�erent column grouping scheme for each of the 3 replicas

of a HDFS block so that each replica is best at handling a di�erent subset of queries. GSOP-

R is designed for making the most e�cient use of extra storage rather than utilizing full-copy

replications. Nevertheless, in this chapter, we also develop an approach that enables GSOP to

take advantage of full-copy replications. If some extra storage is allowed for each full copy, we

can apply GSOP-R to design the layout of each copy.
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5.9 Conclusion
We developed GSOP-R, a layout design framework for data skipping. GSOP-R extends GSOP

by considering �ne-grained partitioning and replication schemes in an integrated manner. We

evaluated GSOP-R using TPC-H and a real-world workload. The results show that, by paying a

little extra storage, GSOP-R can signi�cantly improve query performance over the state-of-the-art

GSOP framework. In our experiments, GSOP-R improved the query performance over GSOP by

2x and 3x with only 20% and 50% storage overhead, respectively. In practice, we recommend using

a moderate amount of extra storage and leveraging GSOP-R for the signi�cant query performance

improvement.
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Chapter 6

Conclusions

In this chapter, we conclude the dissertation. We �rst summarize the physical design frameworks

proposed in the dissertation. We then highlight the innovations in designing these frameworks.

Finally, we discuss future work.

6.1 Summary of Proposed Frameworks
In this dissertation, we develop the following three frameworks for skipping-oriented physical

database design:

SOP: Skipping-oriented Partitioning

We describe the Skipping-oriented Partitioning Framework (SOP) in Chapter 3. The SOP frame-

work is focused on �nding �ne-grained horizontal partitioning schemes that can maximally help

queries skip data. In this chapter, we analyze real-world analytics workloads and make two im-

portant observations that motivate the design of the workload analysis techniques. The �rst

observation is that the �lter usage is highly skewed, which suggests that we can represent most

queries in the workload with a small number of workload features. The second observation is

that �lter usage remains stable over time, which assures us that we can utilize a past workload

to guide the physical design in order to help future queries.

Given the workload features, we show how to use them for data partitioning. This step in-

volves �rst generating a feature vector for each row of the table and then running a clustering

algorithm on the feature vectors to generate a partitioning map. The partitioning map eventu-

ally guides the rows to their destination blocks. We further explain that the union of feature

vectors, or union vectors, can be stored as block-level metadata, which can work in conjunction

with traditional metadata such as min/max values. We discuss how queries can make use of such

metadata for data skipping. At the end of this chapter, our experimental results show that SOP

can signi�cantly outperform existing techniques, such as range partitioning. Speci�cally, SOP

scans 5-7x less data, which directly translates to the reduction on query response times for both

memory- and disk-resident data.
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GSOP: Generalized Skipping-oriented Partitioning for Columnar Layouts

We present the Generalized Skipping-oriented Partitioning Framework (GSOP) in Chapter 4. The

GSOP framework generalizes the SOP framework by allowing di�erent columns to have di�er-

ent partitioning schemes. Thus, the GSOP framework incorporates horizontal partitioning and

vertical partitioning schemes in an integrated manner. In Chapter 4, we �rst bring up the notion

of feature con�ict, which expresses that the best partitioning schemes for di�erent features can

be dramatically di�erent. We then point out that the e�ectiveness of SOP is highly sensitive to

feature con�ict, because SOP forces all columns to be partitioned in the same way. This constraint

can be easily removed in a columnar layout. We de�ne the spectrum of partitioning layouts for

columnar layouts. While SOP is only focused on one end of the spectrum, we propose GSOP

in order to cover the entire spectrum. To realize this, we introduce two new components in the

GSOP framework as compared to SOP.

The �rst new component in GSOP is column grouping. In contrast to the existing work on

column grouping, we develop a cost model that aims to balance the trade-o� between the e�ec-

tiveness of skipping horizontal blocks and the overhead of row-reconstruction. Based on this cost

model, we propose e�cient algorithms to search for column grouping schemes. The second new

component is local feature selection. For each column group, the goal of local feature selection

is to �nd a subset of features that are speci�c to this column group. These local features will

be then used to guide the horizontal partitioning of each column group. Finally, we illustrate

how a query can be processed on the data partitioned by GSOP, which involves e�ciently recon-

structing rows using the data read from multiple column groups. At the end of this chapter, we

conduct experiments using two public benchmarks and a real-world dataset from Sloan Digital

Sky Survey. Our experiments that compare GSOP with SOP and other baseline approaches show

that GSOP signi�cantly outperforms the competitors due to the balance between skipping e�ec-

tiveness and row-reconstruction overhead. In particular, in TPC-H, GSOP improves SOP by 3.3x

in terms of query response time.

GSOP-R: Generalized Skipping-oriented Partitioning with Replication

We propose the Generalized Skipping-oriented Partitioning with Replication Framework (GSOP-

R) in Chapter 5. The GSOP-R framework complements the GSOP framework with data replica-

tion. In Chapter 5, we �rst discuss why GSOP cannot fully eliminate feature con�ict and illustrate

the scenarios where the e�ectiveness of GSOP is limited. We then explore how the classic ideas

of replications can be borrowed in GSOP in order to reduce feature con�ict. These approaches,

however, treat GSOP as a black box and may not make the most e�cient use of storage. This

motivates us to design the GSOP-R framework, which natively supports �ne-grained replication

with partitioning.

We �rst formally de�ne GSOP-R schemes and show the �exibility and �ne-granularity of

GSOP-R replication. A GSOP-R scheme is composed of a set of layouts. Each layout is speci�ed by

a triplet, namely, columns, local features, and master columns. We propose objective functions to

evaluate the goodness of a GSOP-R scheme through three aspects: scan cost, row-reconstruction
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cost and storage cost. Given the �exibility in the de�nition of GSOP-R schemes, �nding a good

GSOP-R scheme involves a huge search space. We propose to search for GSOP-R schemes through

scheme transformations.

We de�ne three types of transformation operations on GSOP-R schemes, namely, replicate,

merge and merge-replicate. Each of the three transformations makes a di�erent trade-o� be-

tween scan cost, row-reconstruction cost and storage cost. Given an initial GSOP-R scheme, we

search for GSOP-R schemes by successively applying locally-optimal transformation operations.

At the end, we return the best GSOP-R scheme we have seen during the search. Finally, we dis-

cuss how to query the data stored in a GSOP-R scheme. Since some data is replicated in a GSOP-R

scheme, a query could have di�erent ways of retrieving the requested data. We de�ne retrieval

paths to specify how a query can correctly retrieve the data in a GSOP-R scheme. We also for-

mulate the problem of �nding optimal retrieval path. At the end of the chapter, Our experiments

using TPC-H and Sloan Digitial Sky Survey show that GSOP-R improves the query response time

by 2x over GSOP with only 20% storage overhead.

6.2 Innovation Highlights
In the design of the skipping-oriented physical design frameworks, we make several key inno-

vations. These innovations are not tied to any particular framework that we developed. In this

chapter, we highlight the innovations we make and hope that these high-level ideas can be helpful

for designing physical design frameworks in the future.

Feature-driven Workload Analysis

The query workload provides invaluable information of database access patterns. Existing work

has exploited workload information to guide the physical database design. In this dissertation,

we propose to extract features from workload. Simply put, features are representative �lter pred-

icates. While most existing techniques have only looked at the column names involved in �lter

predicates, a feature can capture �lter predicates in their entirety, including column names, op-

eration types and constants. We simply view a feature as a boolean function that evaluates a

row to be either 1 or 0. This abstraction allows us to incorporate as features any kind of �ltering

predicates occurred in the workload, including user-de�ned functions (UDF’s).

The task of feature-driven workload analysis is to identify a set of features that can subsume

the most queries. The notion of subsumption is essential in the context of data skipping. The

subsumption relation guarantees us that if we can �nd a physical database design that helps

these features skip data e�ectively, then this design will also bene�t all the queries subsumed by

these features. To extract features, we perform frequent pattern analysis on the query log. The

counting mechanism has been changed so that the frequency of a feature is the number of queries

it subsumes instead of the number of queries it occurs in. We also develop principled ways of

eliminating redundancies in the resulting patterns and selecting a set of frequent patterns as �nal

features.
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The idea of feature-driven workload analysis is inspired by several observations we make in

real-world analytics workloads. We �nd that the use of �lter predicates in the real-world work-

loads is highly skewed and stable. The skewness suggests that the workload can be succinctly

summarized by only a small number of features. The stability ensures that the features generated

from a past workload are relevant for future workloads. These properties are essential for the

e�ectiveness of feature-driven workload analysis.

Fine-grained and Flexible Layouts

The layout schemes generated by our proposed frameworks organize data into �ne-grained blocks.

Typically, each block only contains 1,000’s to 100,000’s of data cells, where each data cell is an

intersection of a row and a column. Existing physical design frameworks are not suitable to gen-

erate layout schemes at this granularity. When the data is organized as blocks, a query can check

the block-level metadata and decide if it needs to look into the block or simply skips it. Thus, the

size of a block only needs to be large enough to make this metadata check negligible. Consider

the extreme case, where each block contains one data cell, then skipping a block does not bring

in any performance bene�t because the query in e�ect has to go through every data cell anyway.

For skipping purposes, a small number like a 1’000 data cells per block can usually makes block

skipping worthwhile. In practice, however, the block size is usually lower-bounded by the archi-

tecture of the system. For example, for disk resident data, it is desirable to let each block to be

large enough to avoid random disk access; for column stores, each block should be large enough

to hold enough values for compression purposes. Our proposed techniques are designed to scale

well with the block granularity of layout schemes.

To strive for the best chances of skipping blocks, we realize that the layout schemes have to be

highly �exible. This means we should break the boundaries of rows and columns when packing

data cells into blocks. Di�erent parts of a row or a column can reside in di�erent blocks. Some

parts of a row or a column can be replicated while the other parts are not. We explain why such

�exibility can e�ectively boost the skipping e�ectiveness. However, the skipping e�ectiveness

is not everything. Such �exibility can introduce signi�cant overhead to query processing and

hurt the overall query performance. When the data is organized as a set of rows or columns, a

query can easily �nd the data it needs. When the data cells are scattered in di�erent blocks, it is a

challenge to make sure the query can correctly �nd all the data it needs and e�ciently assembled

them back into rows for further processing. We address this challenge by clearly de�ning what

data each block has and describing how the data in such �exible layouts can be queried.

Optimization Problem Formulation and Heuristic Solutions

Given the �ne-granularity and �exibility in the layout design, it would be daunting to manu-

ally specify and search for the layout schemes. To automate the search of layout schemes, the

challenges include 1) how to evaluate the goodness of a layout scheme and 2) how to e�ciently

search for them. In our proposed frameworks, we adopt a simple and generic approach to de�ne

the objective functions. Speci�cally, the objective functions are centered around the number of
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cells. The data scan cost is de�ned as the number of data cells read; the row-reconstruction cost

is de�ned as the number of row ids read; and the storage cost for replication is de�ned as the

number of replicated data cells created. These cost models omit many of the implementation

details, but serve as an good approximation for evaluating the goodness of layout schemes. Even

with such simple cost models, directly evaluating them turned out to be prohibitively expensive.

We propose approaches to e�ciently and accurately estimate them. Based on these cost models,

we adopt greedy algorithms to explore the search space by taking local-optimal steps iteratively.

At the end of the iterations, the search algorithm recommends the best layout scheme seen, i.e.,

the one with the smallest cost according to the objective function.

Predicate-based Metadata and Skipping

Existing systems use data statistics as metadata for data skipping. Most commonly used are the

min and max values for each column. Such value-based statistics can skip data blocks for queries

with simple range predicates, such as price > 3. However, modern analytics workloads involve

complex types of �lter predicates, such as approximate string matching operations and general

user de�ned functions (UDF’s). These �lter predicates cannot make use of the statistics-based

metadata for data skipping. In our proposed frameworks, each data block in the resulting layout

scheme is augmented with a union vector, which encodes the evaluation results of the features,

or representative predicates. An incoming query can �rst check whether a feature can subsume

this query’s predicate. If there is a such feature, the query can look up the corresponding bit of

the union vector on each block and decide whether this block can be skipped. Such a predicate-

based skipping mechanism can complement the value-based mechanism by allowing any kind of

predicates, including UDF’s, to skip data blocks. In our proposed frameworks, this mechanism

works in synergy with the feature-based workload analysis and layout scheme design, as the

features can collectively subsume most of the queries. Outside of these frameworks, predicate-

based metadata in general can also be considered as an approach to complement value-based

metadata for data skipping.

6.3 Future Work
While our proposed frameworks are built on several key innovations and can signi�cantly out-

perform the state-of-the-art techniques, we outline several directions where our work can be

further extended.

The �rst line of future work is on how to incrementally update the layout schemes in the face

of changes in both workloads and data. Our proposed frameworks are based on the assumptions

that the data are batch loaded and not updated frequently thereafter. When there is a update to the

data, we can accordingly update the block-level metadata (i.e., union vectors as well as statistics)

to ensure the correctness of skipping. When there is a change in the workload, we can choose

not to update the layout schemes without a�ecting the correctness. However, in both cases, the

e�ectiveness of the layout schemes may be compromised. In the proposed frameworks, the only
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way to embrace the changes in the data and/or workloads is to rebuild the layout schemes from

scratch. It would be useful to have the ability to incrementally update the layout schemes.

A second line of future work is to extend the proposed frameworks beyond a single table.

To use the proposed frameworks on normalized tables, our approach was to denormalize them

into a single table �rst. While the great bene�t of using our proposed frameworks can justify

the additional denormalization step, we expect that the ability of working with normalized tables

natively can make the proposed frameworks even more attractive. This would require funda-

mental redesign of key aspects of these frameworks, including workload analysis and objective

function. For normalized tables, joins can easily become cost bottleneck. It would be interesting

and challenging to consider data skipping and joins in the same context.

6.4 Conclusion
As data volumes continue to grow, the e�ciency of large-scale query processing is crucial for

unlocking insights from enormous data in a timely manner. However, with the advent of Big

Data systems in the recent years, many of the traditional techniques in data management may

no longer be suitable for these modern architectures. In this dissertation, we propose innovative

data layout design frameworks for modern analytics systems with a goal of improving the e�-

ciency of large-scale query processing. Our focus is on data skipping, i.e., reducing the amount

of unnecessary data access. As modern analytics systems have increasingly considered data skip-

ping as an important mechanism, our techniques can have a broad impact for improving query

e�ciency in current and future analytics systems.
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