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Abstract

On learning Game-Theoretical models with Application to Urban Mobility

by

Jérôme Thai

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alexandre Bayen, Chair

Modeling real-world processes as convex optimization or variational inequality problems
is a common practice as it enables to leverage powerful mathematical tools for the study of
such processes. For example, in economics, knowing the consumer utility function enables to
adjust prices to achieve some demand level. In control, a low complexity controller requires
less computation for little performance loss. In transportation science, the selfish behavior
of agents (from shorted path routing) leads to an aggregate cost in the network worse than
the system’s optimum, and which can be analytically quantified. Taxation schemes can be
designed to incentivize system optimal drivers’ decisions.

In the first part of our work, we briefly review fundamental results in convex optimization,
variational inequality theory, and game theory. We also focus on the selfish routing game,
which is a popular game-theoretical framework to model the urban transportation network.
In particular, we study the impact of the increasing penetration of routing apps on road usage.
Its conclusions apply both to manned vehicles in which human drivers follow app directions,
and unmanned vehicles following shortest path algorithms. To address the problem caused
by the increased usage of routing apps, we model two distinct classes of users, one having
limited knowledge of low-capacity road links. This approach is in sharp contrast with some
previous studies assuming that each user has full knowledge of the network and optimizes
his/her own travel time. We show that the increased usage of GPS routing provides a lot of
benefits on the road network of Los Angeles, such as decrease in average travel times and
total vehicle miles traveled. However, this global increased efficiency in urban mobility has
negative impacts as well, which are not addressed by the scientific community: increase in
traffic in cities bordering highway from users taking local routes to avoid congestion.

In the second part, we explore the ability of low complexity game-theoretical models to
accurately approximate real transportation systems. For example, system mischaracterizations
in selfish routing can cause taxes designed for one problem instance to incentivize inefficient
behavior on different, yet closely-related instances. Hence, we want to be able to measure
the quality of the learned model. In the present work, we present a statistical framework for
the fitting of equilibrium models based on measurements of edge flows using the (standard)
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empirical risk minimization principle, by choosing the fit giving the lowest expected loss (the
distance between the observed and predicted outputs) under the empirical measure. Hence,
for the class of models of interest, it is critical to be able to have theoretical guarantees on
the quality of the fit. We then present a computational methodology for imputing the map
of an equilibrium model, and propose a statistical hypothesis test for validating the trained
model against the true one.

In the third part, we explore existing work for estimating link and route flows, and we
propose two novel frameworks for traffic estimation. In the first framework, we focus on
estimating the highway traffic, which is modeled as a discretized hyperbolic scalar partial
differential equations. The system is written as a switching dynamical system, with a state
space partitioned into an exponential number of polyhedra in which one mode is active. We
propose a feasible approach based on the interactive multiple model (IMM), and apply the
k-means algorithm on historical data to partition modes into clusters, thus reducing the
number of modes. In the second framework, we develop a convex optimization methodology
for the route flow estimation problem from the fusion of vehicle count and cellular network
data. The proposed approach is versatile: it is compatible with other data sources, and it
is model agnostic and thus compatible with user equilibrium, system-optimum, Stackelberg
concepts, and other models. The framework is validated on the I-210 corridor near Los
Angeles, where we achieve 90% route flow accuracy with 1033 traffic sensors and 1000 cellular
towers covering a large network of highways and arterials with more than 20,000 links.
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Chapter 1

Introduction

The topic of this work is the study of the selfish routing game seen as a regression model
encoding the relationship between the traffic demand (the explanatory variables or inputs)
and the resulting equilibrium flow (the dependent variables or outputs).

The selfish routing game follows the well-known Wardrop equilibrium conditions [166].
It models agents selecting the shortest route (in terms of time or cost) on a transportation
or communication network with congestion. This framework enables me to leverage convex
optimization and variational inequality theory in order to derive convenient analytical results,
and design efficient algorithms for computing the equilibria. Hence, selfish routing games
have been studied extensively in the literature. For instance, it is known as the Wardrop
equilibrium in the operations research literature and in economics [47], the traffic assignment
in transportation science [131]. The routing game has been used by urban planners for many
applications including estimating travel demand and designing toll strategies. In the work
presented in this thesis, I tackle a topical issue, which is the impact of the use of GPS apps
on traffic patterns.

Since the selfish routing game is commonly used for evaluating urban projects, it is
natural to assess the viability of such a model at predicting traffic patterns. I assume that
the edge cost functions are learned from N observations of traffic flows using the empirical
risk minimization principle. This consists in choosing the edge cost functions from a family of
candidate functions that gives the lowest expected loss under the empirical measure defined by
N observations. In this work, the loss is the distance between the observation and the output
predicted by the learned model. It is then useful to study the behavior of the out-of-sample
loss, which is a measure of the prediction accuracy of the model. In fact, the estimation of
the prediction capability lies at the heart of techniques concerned with model selection, see,
e.g., Chap. 7 in [78].

I also present computational techniques for estimating the edge cost functions from
observations of traffic patterns. Since the equilibrium flow described by the selfish routing
game can be interpreted as the solution of a convex optimization problem, these techniques
belong to a more general framework of learning problems known as inverse optimization [85],
[93], [19], [150].
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The last topic of our work is the problem of estimating the traffic flow on the urban
network, which I rely on to fit our trained model. While there is an abundance of literature in
transportation science aiming at estimating the movement of traffic, I focus on two approaches:
1) the estimation of traffic flows on highways using a hybrid systems framework, and 2) the
estimation of traffic flows on an urban network using the fusion of loop detector and cellular
data.

1.1 The selfish routing game
In 1952, Wardrop stated the user equilibrium condition, also known as the Wardrop equi-
librium. It states that the travel times in all paths that are used (with positive flow on
it) are equal, and they are less or equal than those that would be experienced by a single
vehicle on any unused route. A traffic flow satisfying the Wardrop principle is referred to as
“user equilibrium” (UE) flow, since each user cannot improve its travel time by unilaterally
changing its route.

Formally, the urban network is modeled as a directed graph in which edges represent
road segments, and vertices represent intersections or nodes between two consecutive road
segments. For each edge e, there is a cost function ce : R+ → R+ that models the relationship
between the travel cost ce(xe) and the volume of traffic xe on thed edge e. Encoding the link
flows into a vector x = (xe)e∈E ∈ RE+, the user equilibrium can be computed by solving the
following optimization program [14]:

min
x

∑
e

∫ xe

0

ce(u) du s.t. x ∈ D (1.1)

where D is the domain of feasible link flows. The above formulation is also known as a
potential game [140]. When the cost functions ce(·) are continuous and non-decreasing, the
above optimization program is convex. Section 2.5 in Chapter 2 explores in more details the
representation of the routing game as an optimization program.

The Frank-Wolfe algorithm (a.k.a. the conditional gradient algorithm) is commonly used
to solve the traffic assignment problem (1.1). With additional assumptions, the optimal
solution x? ∈ D to (1.1) is unique, and it can be shown that the iterates xk of the Frank-Wolfe
algorithm converges to x? in ‖x? − xk‖2

2 = O
(
1/k
)
, where k is the number of iterations. I

refer the reader to Section 3.2 in Chapter 2 for more details on the convergence rate.
There is a heterogeneous extension of the selfish routing game which models drivers

experiencing different travel costs because they may have, e.g., different routing preferences.
However, there is, in general, no potential formulation similar to (1.1) for the heterogeneous
game. I encode the link flows into a vector x = (xe,t) ∈ RE×|T |+ , where t encodes the type
of the driver and |T | is the number of types of drivers. I also define the vector of edge
costs F : R+ → R+, where F (x) = (ce,t(

∑
t′∈[T ] xe,t′))e,t, i.e. the cost of traveling edge e is a

function of the total flow
∑

t′∈[T ] xe,t′ on edge e. The user equilibrium in the heterogeneous
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case can be computed by finding x? ∈ D̃ such that

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ D̃ (1.2)

where D̃ is the domain of feasible edge flows. The above problem is known as a variational
inequality problem. I refer the reader to the work of [60], [142] for more details on the
variational inequality problem. I briefly present the heterogenous game in Section 2.6 in
Chapter 2. In her work [76], Hammond also suggests a variant of the Frank-Wolfe algorithm
for solving (1.2), and conjectures that the proposed algorithm solves the variational inequality
problem. I refer to Section 3.4 in Chapter 3 for more details on the variant of the Frank-Wolfe
algorithm proposed by Hammong to solve the variation

1.2 Impact of GPS-enabled routing apps on mobility
Routing games have been extensively studied in transportation settings, see [131] and the
references therein. Applications include the design of strategies, such as taxation schemes
[65], [91].

In this work, I apply the discussed game-theoretical framework to study the impact of app
use on traffic patterns. With the widespread access to traffic information via use of routing
apps, urban and suburban areas in the US have seen a recent rise in “cut-through” traffic and
related congestion patterns. This phenomenon can be spontaneous when they are caused
by a natural response of routing apps to special events such as big events (concerts, games
etc.) or accidents. This phenomenon can also be a trend caused by the progressive increase
in traffic demand, accompanied by a shift of traffic from highways to cities bordering them.
To capture this phenomenon, I take into account motorists’ different access to information
(full access to traffic conditions via routing apps as opposed to incomplete information in the
absence of app routing). For this purpose, I use the heterogeneous routing game framework.
I differentiate routed users, who follow the shortest routes (in terms of travel time) using
GPS devices from non-routed users, who have limited knowledge of the road network and of
current travel times, hence favor high-capacity roads for ‘perceived’ benefits such as safety
and low travel times.

I illustrate the potential effect of navigation apps rerouting traffic to urban areas on a
benchmark network in Los Angeles. It is shown in the left panel of Figure 1.1, where I
consider I-210 (illustrated in red) and a couple of arterial roads along it (illustrated in yellow).
Formally, I define E lo the set of low-capacity edges (the arterial roads), and Ehi the set of
high-capacity edges (the I-210 corridor). I encode the travel time on edge e with a function
te(xe) ∈ R+, where xe ∈ R+ is the total flow on edge e (sum of the flows of routed users and
non-routed users). The cost for non-routed users are modeled with the following cognitive
cost model

cnr
e (xe) =

{
C te(xe) if e ∈ E lo

te(xe) if e ∈ Ehi (1.3)
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where non-app users are made to pay a multiplicative “cognitive cost” C for accessing arterial
roads. On the other hand, the cost for routed users is cre(xe) = te(xe) for all e ∈ E , where
E := E lo t Ehi is the disjoint union of low and high-capacity edges.

I apply the heterogeneous game framework to illustrate the impact of the number of app
users on traffic patterns. The highway capacity is 6000 veh./hr, the OD demand is set to
20,000 veh./h., and the cognitive cost C is set to 3,000 on the arterial (or low-capacity) roads.
When all users are non-routed, only the I-210 is used because there is a high cognitive cost
of travelling residential roads bordering the highways. As the percentage of app users is
progressively increased from 0% to 5%, travel time on the I-210 decreases rapidly, while the
travel time on arterial roads remains close to the free-flow travel time because only a few app
users are rerouted. Then, the travel time along path 2 and path 1 increase quickly due to the
congestion effect. In Chapter 4, I study the impact of routing apps on a larger network in
Los Angeles, composed of 28,376 arcs and 14,617 nodes extracted from OpenStreetMap.

Figure 1.1: Left panel: Benchmark network along the I-210 corridor. Right panel: travel
time along the I-210 in red, and travel time along the shortest path going through arterial
roads in blue. Best viewed in color.

1.3 Statistics of learning the edge cost functions in
selfish routing games

The selfish routing game has been commonly used for the evaluation of urban projects.
However, the analysis of such models heavily relies upon having acccess to edge cost functions
that yield equilibrium flows with good predictive accuracy. Estimating the edge cost functions
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is difficult since they may represent some combination of the actual travel time, the tolls,
and disutility from environmental factors, which are not directly observable. However, the
equilibrium flows induced by the selfish routing of agents is in practice easily observable
through the sensing infrastructure. This setting spurred the recent study of a class of learning
problems based on estimating the edge cost functions that generate the observed equilibrium
flows [85, 94, 19, 150].

Empirical risk minimization is a standard decision-theoretic framework for learning the
edge cost functions. It consists in choosing the ones giving the lowest expected loss, where the
loss is a measure of how much the model deviates from empirical data. Formally, I assume
the vector of congestion functions F = (ce(·))e∈E belongs to a family {Fθ}θ∈Θ of strongly
monotone maps from RE+ to itself, where K is the number of populations in the selfish routing
game. I also suppose that the domain of feasible flows D(d) depends on the random demand
vector d ∈ RK

+ . Then, the user equilibrium x?(d) is a function of the demand d such that,
for each d, it is the solution of the convex program

min
x

∑
e

∫ xe

0

ce(u) du s.t. x ∈ D(d)

Empirical risk minimization then consists in finding the parameters θ ∈ Θ that minimize the
empirical risk

RN(θ) :=
1

N

N∑
i=1

‖x?(di)− x?θ(di)‖

where {d1, · · · ,dN} is a family of N samples of the demand vector d, and {x?(di)}i∈[N ] are
the N observations of equilibrium flows to which I want to fit my model. An important
question is whether or not, and at which rate, the empirical risk RN(θ) approaches the
population risk, defined by

R(θ) := Ed[‖x?(d)− x?θ(d)‖]
The population risk gives a measure of the prediction capability of the trained model, which is
a better measure of the quality of the model. Let me define the loss function `θ : RK

+ → R+:

`θ(d) := ‖x?(d)− x?θ(d)‖
The parametric loss function belongs to the following function class, called the loss class :

L := {d ∈ D 7→ `θ(d) |θ ∈ Θ}

Then, the empirical risk and the population risk are given by RN(θ) = 1
N

∑N
i=1 `θ(di) and

R(θ) = Ed[`θ(d)] respectively, and I am interested in studying the behavior of the following
quantity

‖PN − P‖L := sup
θ∈Θ
|R(θ)−RN(θ)|
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where PN is the empirical distribution assigning mass 1/N to each of the samples d1, · · · ,dN ,
and P is the distribution of the random demand vector d. The above quantity measures the
absolute deviation between the sample average and the population average. I also note that
‖PN −P‖L is a random variable since it is a function of the N random samples {d1, · · · ,dN}.

In Chapter 5, I combine sensitivity results in optimization theory [48], [174] and results
in approximation theory [54], [132], [37] in order to obtain a tail bound on the distribution of
‖PN − P‖L. With the additional assumption that the edge cost functions I want to estimate
belong to a family of L-Lipschitz and c-strong-monotone, this enables me to get the number
N of data samples needed so that the probability of having ‖PN − P‖L ≤ ε is at least 1− δ

√
N ≥

√
|E|
(

60 + (L− c)
√

2 log(1
δ
)
)

ε
J (c, L)

where J (c, L) is a function that depends on the Lipschitz constant L and strong monotonicity
constant c of my restricted family of candidate edge cost functions:

J (c, L) :=
c (L− c)

L2
(
1−

√
1− c2

L2

)
Doing an asymptotic analysis on J (c, L) enables me to show, independently of the sample
distribution, that the sample size required to have a small uniform deviation ‖PN − P‖L with
high probability, grows linearly in L/c when L/c goes to infinity, and linearly in 1 − c/L
when c/L approaches 1.

1.4 Two frameworks for estimating traffic flow on the
highway and arterial networks

The framework of fitting a selfish routing model to the traffic flows x = (xe)e∈E , where E
is the set of edges representing the road segments in the network, assumes that I have the
sensing infrastructure that enables me to measure the traffic flows. Among the types of data
that are the most commonly used by the transportation community are data obtained from
loop detectors, which are induction loops placed beneath the road. Vehicles induce currents
into the loop which are counted by an electric meter. Video cameras coupled with a video
processor are also used to count vehicles passing a specific location. However, the cost of
deploying and maintaining the sensing infrastructure is expensive, hence traffic sensors are
sparse.

In Chapter 9, I model the state of the traffic flow on highways using discretized hyperbolic
scalar partial differential equations. Specifically, I discretize the so-called Lighthill-Whitham-
Richards (LWR) equation [109, 136] with a triangular flux function using a Godunov scheme
[100, 106, 146]. The resulting partial differential equations have been widely used in the in the
scientific community for modelling traffic, they also known as the Cell Transmission Model
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Figure 1.2: Induction-loop traffic sensors and video cameras in order to measure traffic flow
on highways. In the background, the network of Los Angeles obtained from OpenStreetMap
is presented.

(CTM) [50, 51] in the transportation literature. Formally, I assume the stretch of highway is
discretized into n cells, and its state at time step t is represented by a vector xt ∈ [0, xmax]n,
where xmax ∈ R>0 is the maximum accepted flow at any cell. Then, I show that there exists
a partition of the hypercube [0, xmax]n into a family of polyhedra F := {P1, · · · ,PK} such
that if the state xt belongs to a specific polyhedron P ∈ F , then the transition equation for
the discretized LWR partial differential equations is fully specified by this polyhedron

xt+1 = APxt + bP if xt ∈ P

Hence, I have a hybrid system switching between K linear modes. However, K being
exponential in the number n of cells in the discretization of the LWR partial differential
equation, I reduce the number of modes by clustering them with the k-means algorithm.
Then, I propose a feasible estimation approach based on the interactive multiple model (IMM)
[9].

My proposed method is applied to measurements from 29 PeMS stations along an 18-mile
long stretch of I-880 and is compared to the Ensemble Kalman filter (EnKF), which is an
algorithm commonly used in the traffic monitoring community [170]. The results are shown



CHAPTER 1. INTRODUCTION 8

in Figure 1.3. The recovered state from both the EnKF and my proposed algorithm are very
similar, while there is a significant performance gain, as described in Chapter 9.

Figure 1.3: Based on measurements from 29 PeMS stations along an 18-mile long stretch of
I-880 in the Bay Area, see the contour plot in b), I recover the traffic flow at a resolution of
198m using my hybrid Kalman filter algorithm, see plot in d). My results are comparable
to the contour plot yielded by the Ensemble Kalman filter, considered a state-of-the-art
algorithm for the estimation of non-linear multi-dimensional systems.

In Chapter 10, I partially address the shortage of traditional traffic monitoring sensors,
such as loop detectors and video cameras, by leveragin the large penetration of mobile
phones among the driving population and the ubiquitous coverage of service providers in
urban areas. In the recent years, mobile phones have become an increasingly popular source
of location data for the transportation community. In addition to dynamic probing by
means of in-car GPS traces, location data are available directly from cellular communication
network operators. A variety of phone to cell communication events such as handovers (HO),
location updates (LU) and call data records (CDR) [160, 161] are being recorded by cellular
network infrastructures, and this data has already been shown to be effective in studying
urban environments [36, 90]. Since typical cellular networks in urban agglomerations include
thousands of cells, HO/LU/CDR events can be used effectively to estimate traffic flow without
requiring any additional infrastructure. Hence, I propose in Chapter 10 a framework for the
fusion of cellular and loop data, which is illustrated in Figure 1.4.
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Figure 1.4: In this illustration of the cellular and loop data fusion, I have two origins A and C
(the blue traffic regions and their centroid as blue dots) and one destination B (the red traffic
region). I have routes going from A to B and routes going from C to B. The Voronoi partition
of the cellular network based on the cell tower locations is depicted in purple dashed regions.
I also measure the vehicle count on the green link from loop detectors. In Chapter 10, I
propose a tractable framework merging these different sources of data in order to estimate
the traffic flow in the urban network.
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Part I

The impact of GPS-enabled shortest
path routing on mobility: a game

theoretic approach
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Chapter 2

Convex optimization, variational
inequality, and the selfish routing game

In the present chapter, I provide in a unified fashion the theoretical foundations and main
techniques in game theory, convex optimization, and variational inequality theory, with
an emphasis on the selfish routing game, and its extension to the heterogeneous setting.
Specifically, I first characterize convex optimization programs and first-order optimality
conditions for solutions to this class of mathematical programs. For further details, I refer
the reader to, e.g., [26]. Then, I present fundamental definitions in variational inequality
theory, which are extensively covered in [61]. Lastly, I define the selfish routing game and its
heterogeneous extension, in which drivers are assumed to experience different travel costs.
The selfish routing game, also known as the traffic assignment problem, is studied in details
in, e.g., [131]. Heterogeneous games have been studied previously in, e.g., [59, 91, 65, 114].
While the definitions and results presented in the present chapter are not novel, they are of
didactic importance since they will be used throughout this work.

2.1 Convex optimization
We define central objects in convex optimization. We refer the reader to, e.g. [26], for a more
complete treatment of the subject.

Convex sets

A set X in a Hilbert space H is convex if

αx + (1− α)y ∈ X , ∀x, y ∈ X , ∀α ∈ [0, 1]
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Convex functions

Let X be a convex set in a Hilbert space H, and let f : X → R be a mapping. We now give
definitions of convexity properties: f is convex on X if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ X , ∀α ∈ [0, 1]

f is strictly convex on X if

f(αx + (1− α)y) < αf(x) + (1− α)f(y), ∀x 6= y ∈ X , ∀α ∈ [0, 1]

f is strongly convex on X , if there exists a constant c > 0 such that

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)− c

2
α(1− α)‖x− y‖2

We note that strong convexity of f on X implies strict convexity of f on X , which in turn
implies convexity of f on X , but both of these implications cannot be reversed in general. In
addition, strong convexity of f is also equivalent to convexity of f(x)− c

2
‖x‖2

2, and implies
that, see Section 9.1.2. in [26]

f(y) ≥ f(x) +∇f(x)T (y− x) +
c

2
‖y− x‖2

2, ∀x, y ∈ X (2.1)

Convex optimization programs

Given a convex set X in a Hilbert space H and a convex function f : X → R, a convex
optimization problem consists in finding x? ∈ X that solves

min f(x) s.t. x ∈ X (2.2)

i.e. f(x?) ≤ f(x) for all x ∈ X . Convex optimization problems are an important subclass
of optimization problems that can be solved very efficiently using well-studied first-order
optimization algorithms such as the gradient descent and conditional gradient algorithms .

Thus, modeling real-world processes as variational inequality problems or convex opti-
mization problems is a common practice as it enables to leverage powerful mathematical
tools for the study of such processes. For example, in economics, knowing the consumer
utility function enables to adjust prices to achieve some demand level [94]. In many cases
in control, a low complexity controller requires less computation for little performance loss
[94, 163]. In transportation science, the selfish behavior of agents (from shorted path routing)
leads to an aggregate cost in the network worse than the system’s optimum, and which can
be analytically quantified [137, 46]. Taxation schemes can be designed to incentivize system
optimal drivers’ decisions [65, 91].
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Figure 2.1: Geometrical interpretation of the first-order optimality condition. In the left
figure, x? ∈ X satifies the minimum principle (2.3) because ∇f(x?) forms an acute angle
with all the feasible directions x′−x?. The point x? is thus an optimal solution to the convex
program (2.2). In the right figure, the feasible point x is not a solution to the convex program
(2.2).

First-order optimality condition

Given a convex set X in a Hilbert space H, if the function f : X → R is continuously
differentiable on X , then the first optimality condition for the convex program (2.2) is

〈∇f(x?), x− x?〉 ≥ 0, ∀x ∈ X (2.3)

We refer to §4.2.3. in [27] for a proof. The condition means that the feasible region only
lies in the half-space where the potential increases. Otherwise, we would have found a lower
potential value by using the first-order Taylor expansion of t ∈ [0, 1] 7→ f(x? + t(x− x?)).

Proposition 2.1. Let D be a compact convex subset of Rn, let f be strongly convex with
parameter c, and let x? be the unique solution to the VIP (2.9). Then, for every x ∈ D,

‖x− x?‖2
2 ≤ 2(f(x)− f(x?))/c

Proof. By definition of strong convexity (2.1),

f(x) ≥ f(x?) + 〈∇f(x?), x− x?〉+
c

2
‖x− x?‖2

2

≥ f(x?) +
c

2
‖x− x?‖2

2

where the second inequality is given by the fact that 〈∇f(x?), x − x?〉 ≥ 0, from the
first-order optimality condition (2.3).
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2.2 Variational inequality
Variational inequality problems constitute a broad class of problems that encompasses convex
optimization problems, and is used in game theory. We refer the reader to, e.g., [61], [142]
for additional references on the variational inequality problem.

Monotonicity

Let X be a convex set in a Hilbert space H, and let F : X → H be a mapping. We now give
definitions of monotone properties in order of increasing strength: F is monotone if

∀x, x′ ∈ X 〈F (x)− F (x′), x− x′〉 ≥ 0 (2.4)

F is strictly monotone if

∀x 6= x′ ∈ X 〈F (x)− F (x′), x− x′〉 > 0

F is strongly monotone if, for some parameter c ∈ R>0,

∀x, x′ ∈ X 〈F (x)− F (x′), x− x′〉 ≥ c‖x− x′‖2

Equivalence to convexity

Let f : X → R be a continuously differentiable potential. Then f is convex if and only if
its gradient ∇f is monotone. To prove this, we observe that convexity of f is equivalent to
convexity of its restriction to every line segment in X , i.e. for all x, x′ ∈ X , the function
fx,x′ : t 7→ f ((1− t)x + tx′) defined on [0, 1], is convex. Since fx,x′ is differentiable, this is
equivalent to having a non-decreasing derivative f ′x,x′(t) = 〈∇f (x + t(x′ − x)) , x′ − x〉, for
all x, x′ ∈ X , which is finally equivalent to condition (2.4) of monotonicity. By extension,
we can obtain equivalence between strict convexity of f and strict monotonicity of ∇f with
similar arguments taken in the strict sense. Finally, the potential f is said to be strongly
convex if its gradient is strongly monotone, hence the equivalence follows from definition of
strong convexity. Note that, by Lemma 1.2.3 in [122], strong convexity of f is equivalent to,
for all x, x′ ∈ X

f(x′) ≥ f(x) + 〈x′ − x, ∇f(x)〉+
c

2
‖x′ − x‖2

Variational inequality problem

Given a closed and convex set X in a Hilbert space H, the variational inequality problem is:

find x ∈ X such that 〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X (2.5)

The variational inequality problem can be seen as a generalization of the first-order optimality
condition for convex programs (2.3)
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2.3 Uniqueness results

Uniqueness result for the variational inequality problem

Let X be a convex set in a Hilbert space H, and let F : X → H be a mapping. If F is
involved in a variational inequality problem

find x? ∈ X s.t. 〈F (x?), x− x?〉 ≥ 0 ∀x ∈ X (2.6)

then strict monotonicity of F implies that there exists at most one solution to the variational
inequality problem. To see this, assume that x̃ is another solution, then 〈F (x?), x̃− x?〉 ≥ 0
and 〈F (x̃), x?− x̃〉 ≥ 0. Adding the two inequalities together, we obtain 〈F (x?)−F (x̃), x?−
x̃〉 ≤ 0. By strict monotonicity, this is only possible if x? = x̃.

Uniqueness result for the convex optimization problem

If F is replaced by the gradient ∇f of a continuously differentiable potential f : X → R,
then (2.6) is a necessary condition for optimality for the optimization program

min f(x) s.t. x ∈ X (2.7)

To see this, we instantiate condition (2.6) to

〈∇f(x?), x− x?〉 ≥ 0, ∀x ∈ X (2.8)

and note that this implies that the feasible region only lies in the half-space where the
potential f increases. Otherwise, we would have found a lower potential value by using the
first-order Taylor expansion of t ∈ [0, 1] 7→ f(x? + t(x − x?)). It turns out that when f is
convex, condition (2.8) is also sufficient for optimality in (2.7), see e.g. §4.2.3. in [27]. In
addition, if f is strictly convex, then ∇f is strictly monotone from the analysis in Section 2.2,
and the uniqueness of a solution to the variational inequality problem implies uniqueness of a
solution to the convex constrained optimization program.

2.4 Existence results
The following analysis is adapted from Chapter 1 of [95]. Let D be a compact convex subset
of Rn, and let F : D → Rn be a continuous mapping. The existence of a solution to the
variational inequality problem

find x? ∈ D s.t. 〈F (x?), x− x?〉 ≥ 0 ∀x ∈ D (2.9)

can be proven using Brouwer’s fixed-point theorem.
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Projection operators

First, the projection PD(x) = arg minz∈D ‖x− z‖2 is well defined for all x ∈ Rn. Indeed, the
program minz∈D ‖x− z‖2 admits a solution from continuity of the Euclidean norm ‖ · ‖2 on
the compact set D, and a unique one from the strict convexity of ‖ · ‖2, see Appendix 2.3.
In addition, from differentiability and convexity of z 7→ ‖x− z‖2

2, a vector y is optimal for
minz∈D ‖x− z‖2

2. i.e. y = PD(x) if and only if it satisfies the first-order optimality condition
(2.8). Instantiating (2.8) to the present case, we obtain

〈y− x, z− y〉 ≥ 0 ∀ z ∈ D (2.10)

Rewriting condition (2.10) as 〈x− y, z− y〉 ≤ 0 for every z ∈ D, it means that the convex
domain D lies in the half-space that is away from the direction x− y = x− PD(x).

Contraction property of projection operators

The characterization (2.10) of y = PD(x) implies that the projection operator PD(·) is
1-Lipschitz, thus continuous. To prove this, let x,x′ ∈ Rn, and denote their projection by
y = PD(x) and y′ = PD(x′). Applying (2.10) to y and y′ with z = y′ and z = y respectively,
we obtain

〈y− x, y′ − y〉 ≥ 0 ⇒ 〈y, y− y′〉 ≤ 〈x, y− y′〉
〈y′ − x′, y− y′〉 ≥ 0 ⇒ 〈y′, y′ − y〉 ≤ 〈x′, y′ − y〉

Adding the two inequalities, we obtain

‖y− y′‖2
2 ≤ 〈x− x′, y− y′〉 ≤ ‖x− x′‖ ‖y− y′‖

Hence ‖PD(x)− PD(x′)‖ = ‖y− y′‖ ≤ ‖x− x′‖

Equivalence of the VIP to a fixed point problem

By rewriting the equilibrium condition in (2.9)

〈x? − (x? − F (x?)), x− x?〉 ≥ 0 ∀x ∈ D
we use characterization (2.10) to obtain that x? ∈ D is a solution to the VIP if and only
x? = PD(x? − F (x?)). Finally, we note that the mapping x 7→ PD(x− F (x)) is continuous
from the convex compact subset D to itself because it is the composition of two continuous
functions. By Brouwer’s fixed-point theorem, it admits a fixed point. This implies that the
VIP (2.9) admits at least one solution.

2.5 The selfish routing game
Routing games were formulated by [166], and are extensively studied in transportation science,
see e.g. [131].
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Setting

We consider a non-cooperative game on a network represented by a directed graph G = (V , E)
equipped with continuous, non-decreasing congestion functions ce(·) : R+ → R>0 for each
e ∈ E . The set of players is partitioned in populations {Xk}k∈[K]. For each k ∈ [K], players in
Xk have available a set of simple paths Pk from a common source sk ∈ V to a common sink
tk ∈ V. For each population Xk, we define dk ∈ R+ its total flow, and µk = (µkp)p∈Pk ∈ RPk+

its path assignment, which satisfies, for all k ∈ [K]

µk ∈ ∆k :=
{
u ∈ RPk+ :

∑
p∈Pk u

k
p = dk

}
(2.11)

We denote P the disjoint union P = tKk=1Pk, thus RP+ = ΠK
k=1R

Pk
+ . Under population demand

d = (dk)k∈[K], the path assignment can be summarized by µ = (µ1, · · · ,µK) ∈ RP+ in the
feasible set ∆ defined as the product space of feasible population paths ∆ := ∆1 × · · · ×∆K .
In other words,

∆ :=
{
µ ∈ RP+ :

∑
p∈Pk µ

k
p = dk, ∀ k ∈ [K]

}
(2.12)

The path assignment determines the vector of edge flows x = (xe)e∈E ∈ RE+ such that each
entry xe is defined as xe =

∑K
k=1

∑
p∈Pk:e∈p µ

k
p, i.e. it is the sum of the flows of all paths

going through edge e. In matrix form, it can be written compactly as xe = (Mµ)e, where
M ∈ RE×P is an incidence matrix with entries defined as Me,p = 1e∈p.

For each edge e, we suppose that the edge flow incurs a cost ce(xe) which only depends on
the flow xe on edge e. This assumption is common in transportation science and is sometimes
referred as the the separability assumption, see [13] and [46]. We define the associated mapping

F : x ∈ RE+ 7→ F (x) = (ce(xe))e∈E (2.13)

The cost of choosing a path p is the sum of edge costs along the path, i.e.
∑

e∈p ce(xe). This
can be written in matrix form as:∑

e∈p ce(xe) =
∑

e∈p ce((Mµ)e) =
∑

e∈p(F (Mµ))e = CT
p F (Mµ) (2.14)

where Cp ∈ RE , p ∈ P are the columns of the incidence matrix M. Since
∑

e∈p ce(xe) =

CT
p F (Mµ) is fully determined by µ, we define `p(µ) :=

∑
e∈p ce(xe) and we write `(µ) to

denote the vector of path cost functions (`p(µ))p∈P . Hence, the path costs can be written
compactly as the vector of functions

` : µ ∈ ∆ 7→MTF (Mµ) (2.15)

Equilibrium in routing games

We say that µ? ∈ ∆(d) is a Nash equilibrium for the routing game, or satisfies the Wardrop
conditions, if, for all k ∈ [K] and p ∈ Pk

µkp > 0 =⇒ `kp(µ
?) = min

q∈Pk
`kq(µ

?) (2.16)
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In other words, for every population k, some path p ∈ Pk is only used if it is of least cost in
Pk. This is equivalent to (5.3) below, see §3.2 in [131]

〈`(µ?), µ− µ?〉 ≥ 0, ∀µ ∈ ∆ (2.17)

Since `(µ) = MTF (Mµ), substituting in (5.3) gives the condition 〈F (Mµ?), M(µ−µ?)〉 ≥ 0,
re-written as

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ D (2.18)

where x? = Mµ? is the Nash equilibrium for the edge flows, and D = M∆ = {Mµ : µ ∈
∆} ⊂ RE+ is the set of feasible edge flows, see e.g. §3.2.1. [131]. Note that D is compact convex
since it is the image of M restricted to the compact convex set ∆. However, constructing the
feasible set ∆ requires enumerating all (potentially used) simple paths, the set Pk, for each
population k ∈ [K], which may be intractable on large graphs. An alternative is to use a
vertex-representation of the flow constraints, see e.g. §2.2.2 in [131].

Formulation as a potential game

If the congestion function ce(·) : R+ → R>0 is non-decreasing and continuous for each e ∈ E ,
then Beckmann et al. proved in [13] that the equilibrium edge flow always exists as a solution
of the following convex program:

min
x

∑
e∈E

∫ xe

0

ce(u) du s.t. x ∈ D (2.19)

Since the domain D is a closed and convex subset of RE+, and the potential function x ∈
RE+ 7→

∑
e∈E
∫ xe

0
ce(u) du is convex from our assumption that the congestion functions ce(·)

are non-decreasing and continuous for each e ∈ E , the above problem is convex. As the
domain D is a compact set, the objective function in the above program attains its optimum
on D. This proves the existence of an optimal solution to the above program.

To prove that an optimal solution of the program (2.19) is an equilibrium, we first
formulate the (2.19) in terms of path flow vector µ ∈ RP+

min
µ

∑
e∈E

∫ (Mµ)e

0

ce(u) du s.t. Aµ = d, µ ≥ 0 (2.20)

where A ∈ RK×P is an incidence matrix with entries defined as Ak,p = 1p∈Pk . We note that
we have just rewritten in matrix form the domain of feasible path flows ∆ defined in (2.12).
The Karush–Kuhn–Tucker (KKT) conditions associated to the program (2.20) are

`(µ)−ATλ = π (2.21)
Aµ = d, µ ≥ 0 (2.22)

π ≥ 0 (2.23)
πTµ = 0 (2.24)
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A vector of path flows µ? optimal for the program (2.20) must satisfy the above KKT
conditions, which can be shown to be equivalent to the Wardrop conditions (2.16). The
associated vector of edge flows x? = Mµ?.

Formulation (2.19) of the routing game is a particular case of a potential game with
contimuous player sets, because it admits a real-valued potential function encoding players’
strategies, and local minimizers of the potential are Nash equilibria. For more details on
potential games, we refer to [140] and [121]. More generally, if we denote by F : RE+ → RE+ the
operator encoding the congestion F (x) = (ce(x))e∈E on each edge e, then the game defined in
(2.18) is potential if and only if it satisfies the following symmetry condition

∂ce(x)

∂xe′
=
∂ce′(x)

∂xe
∀ e, e′ ∈ E , ∀x ∈ RE+ (2.25)

We refer to [46] for more details. The separability assumption (2.13) implies that

∂ce(x)

∂xe′
=
∂ce(xe)

∂xe′
=

{
c′e(xe) if e = e′

0 otherwise
(2.26)

Hence, the symmetry condition (2.25) is satisfied, giving rise to the potential formulation
(2.19).

Gradient of the potential

Let us define the potential function φ : RE+ → R such that, for all x ∈ RE+,

φ(x) :=
∑
e∈E

∫ xe

0

ce(u)du (2.27)

By definition, it is differentiable, with gradient given by

∇φ(x) = (ce(xe))e∈E

Let us define the potential function f : RP+ → R such that, for all µ ∈ RP+,

f(µ) :=
∑
e∈E

∫ (Mµ)e

0

ce(u)du (2.28)

We note that f(µ) = φ(Mµ), where we recall that M = (1e∈p)e,p is the edge to path incidence
matrix, and thus the gradient is

∇µf(µ) = ∇µ(φ(Mµ)) = MT∇xφ(Mµ) = (
∑

e∈p ce((Mµ)e))p∈P = (`p(µ))p∈P (2.29)

Hence, the gradient of the potential with respect to the path flows is the vector of path costs.
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2.6 The heterogeneous routing game
We have assumed in the previous sections that drivers experience the same cost when travelling
along the edges of the network. However, drivers usually experience different travel costs
because, e.g., they operate different types of vehicles (in [62], the authors consider heavy-duty
vehicles from cars), or have different routing preferences (in [149], the authors consider drivers
who take shortcuts by travelling residential roads). Heterogeneous games have been studied
previously [59, 91, 65, 114].

One possible formulation consists in indexing the different types of users with t ∈ [T ].
Each population k ∈ [K] is thus partitioned into types t, and population k of type t has a
mass dt,k ∈ R+ which is divided among paths p ∈ Pk. The flow allocation is encoded by the
vector µkt ∈ RPk+ which belongs to the feasible set ∆k

t := {u ∈ RPk+ :
∑

p∈Pk u
k
p = dt,k}. We

can aggregate these quantities per type and define µt = (µkt )k∈[K] ∈ RP which belongs to the
feasible set ∆t defined as:

∆t := ∆1
t × · · · ×∆K

t = {µt ∈ RP+ :
∑

p∈Pk µ
k
t,p = dt,k, ∀ k ∈ [K]} (2.30)

The edge flow for type t is xt = Mµt ∈ RE+, where M ∈ RE×P is the edge-path incidence
matrix defined above. For each type t ∈ [T ], we assume that the cost of travelling edge e is a
function ct,e(

∑
t′∈[T ] xt′,e) of the sum of the flows on edge e incurred by each type of agent. Note

that the cost of travelling e is specific to the type t, and only depends on the flow on edge e
(which is an extension of the separability assumption to the heterogeneous case). We define the
operator Ft : RE+ → RE+ such that Ft(x) = (ct,e(xe))e∈E , hence the edge costs for a driver of type
t are encoded by Ft(

∑
t′∈[T ] xt′). The cost of travelling path p is thus

∑
e∈p ct,e(

∑
t′∈[T ] xt′,e).

We can define the vector of path costs `t((µt′)t′∈[T ]) := (`t,p((µt′)t′∈[T ]))p∈P associated to a
specific type of vehicles t in terms of path flows with the following operator, for all t ∈ [T ]

`t : Πt′∈[T ]∆t′ → RP+
(µt′)t′∈[T ] 7→ MTFt(M

∑
t′∈[T ]µt′)

(2.31)

The Wardrop conditions (2.16) can be extended to the heterogeneous case. We say that
(µ?t )t∈[T ] ∈ Πt∈[T ]∆t is a Nash equilibrium if

µ?,kt,p > 0 =⇒ `kt,p((µ
?
t′)t′∈[T ]) = min

q∈Pk
`kt,q((µ

?
t′)t′∈[T ]), ∀ k ∈ [K], ∀ p ∈ Pk, ∀ t ∈ [T ]

This is equivalent to finding (µ?t )t∈[T ] ∈ Πt′∈[T ]∆t′ such that∑
t∈[T ]

〈`t(
∑

t′∈[T ]µ
?
t′), µt − µ?t 〉 ≥ 0, ∀ (µt′)t′∈[T ] ∈ Πt′∈[T ]∆t′ (2.32)

We can write the above problem in terms of edge flows, which consists in finding (x?t′)t′∈[T ] ∈
Πt′∈[T ]M∆t′ such that∑

t∈[T ]

〈Ft(
∑

t′∈[T ]x
?
t′), xt − x?t 〉 ≥ 0, ∀ (xt′)t′∈[T ] ∈ Πt′∈[T ]M∆t′ (2.33)
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If we concatenate along the different types of drivers to form a general path flow vector
µ̃ = (µt)t∈[T ], and define the general path cost function ˜̀(µ̃) = (`t(

∑
t′∈[T ]µt′))t∈[T ], then

(2.32) can be written in the form of a variational inequality problem, which consists in finding
µ̃? ∈ Πt′∈[T ]∆t′ such that

〈˜̀(µ̃?), µ̃− µ̃?〉 ≥ 0, ∀ µ̃ ∈ Πt′∈[T ]∆t′ (2.34)

If we define the general edge flow vector x̃ = (xt)t∈[T ] and the general edge cost function
F (x̃) = (Ft(

∑
t′∈[T ] xt′))t∈[T ], the problem (2.33) can be formulated as a variational inequality

problem, which consists in finding x̃? ∈ Πt′∈[T ]M∆t′

〈F (x̃?), x̃− x̃?〉 ≥ 0, ∀ x̃ ∈ Πt′∈[T ]M∆t′ (2.35)

However, the heterogeneous routing game is in general not a potential game since the
symmetry condition (2.25) in the heterogeneous case is not satisfied. We have, for all
e ∈ E , ∀ t, t′ ∈ [T ]

∂ct,e(
∑

u∈[T ] xu,e)

∂xt′,e
= c′t,e(

∑
u∈[T ] xu,e)

Hence the symmetry condition is not satisfied in general unless the travel costs for each type
of driver are the same modulo a constant term.
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Chapter 3

Computational aspects

In general, the optimal solution of a convex optimization program (2.2) or a variational
inequality problem (2.5) is unknown. Fortunately, with additional smooth assumptions on
the convex potential f or on the operator F , it is possible to use gap functions to obtain
certificate of how well x ∈ Rn approximates an optimal solution x?. These gap certificates
are used as stopping criteria for iterative algorithms.

This chapter focuses on the Frank-Wolfe algorithm (a.k.a. the conditional gradient
algorithm), which is a popular iterative descent algorithm for solving the traffic assignment
problem (2.19). Specifically, exploiting the sparsity structure of the traffic assignment problem
enables to reduce the problem of computing the search direction of the Frank-Wolfe algorithm
to deriving shortest paths with weights equal to the travel costs at the current iteration. We
also provide convergence rates on the Frank-Wolfe algorithm that extend the proof of Jaggi
in [87].

3.1 Gap functions
Let D be a compact convex subset of Rn, and let F : D → Rn be a continuous mapping. We
present gap functions in the context of the variational inequality problem given in (2.9)

find x? ∈ D s.t. 〈F (x?), x− x?〉 ≥ 0 ∀x ∈ D

A gap function must satisfy a sub-optimality certificate property for the variational inequality
problem, namely, for every x ∈ D

g(x) ≥ 0 and g(x) = 0 ⇔ x solves the variational inequality problem (3.1)
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We present properties on the gap functions introduced in [94, 19, 150], which are defined by,
for each x ∈ D,

g
′
(x) = max

z∈D
〈x− z, F (x)〉 (3.2)

g
′′
(x) = min

ν∈Rp : AT ν≤F (x)
F (x)Tx− bTν (3.3)

g
′′′

(x) = min
ν∈Rp,π,s∈Rn+:

s=F (x)−AT ν

‖(α(s− π), x ◦ π)‖1 (3.4)

where the vector x ◦ π ∈ Rn is the element-wise product between x and π (Hadamard
product), and α ∈ R>0 in (3.4) controls the weight of s−π in the 2n-vector (α(s−π), x◦π).
In (3.3) and (3.4), we have assumed that D is polyhedral of the form D = {x ∈ Rn

+ : Ax = b},
where A ∈ Rp×n and b ∈ Rp. Note that (3.4) is the sum of the absolute value of the residuals
of the Kharush-Kuhn-Tucker (KKT) conditions, see [94]

g
′′′

(x) = min
ν∈Rp,π,s∈Rn+:

s=F (x)−AT ν

∑n
i=1{α |si − πi|+ |xiπi|}

We note that g′ satisfies the certificate property (3.1) directly from its definition. Adapting
the proofs in [19, 150], we can show that g′′ and g′′′ are ’equivalent’ to g′ (similar to norm
equivalence), and thus conclude that they also satisfy property (3.1).

Proposition 3.1. Let D be compact and polyhedral of the form D = {x ∈ Rn
+ : Ax = b},

and denote its diameter by λ = diam‖·‖∞(D). Then, for every x ∈ D,

g
′′′

(x) ≤ g
′
(x) = g

′′
(x) ≤ g

′′′
(x) max (1, λ/α)

Proof. To prove that g′ = g
′′ , we observe that g′ can be rewritten as g′(x) = xTF (x) −

minz∈D zTF (x). Since the minimization program involved in g
′ is linear and admits an

optimal solution from compactness of D, the strong duality theorem for linear program gives,
for every x ∈ D

min
z∈Rn+ : Az=b

zTF (x) = max
ν∈Rp : AT ν≤F (x)

bTν

from which we obtain g
′

= g
′′ . To prove g′′′ ≤ g

′′ ≤ g
′′′

max(1, λ/α), we observe that
F (x)Tx− bTν = (F (x)−ATν)Tx, for every x ∈ D. So we can rewrite,

g
′′
(x) = min

ν∈Rp, s∈Rn+:

s=F (x)−AT ν

sTx
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To compare against g′′′ , we re-write the latter as,

g
′′′

(x) = min
ν∈Rp, s∈Rn+:

s=F (x)−AT ν

min
π∈Rn+

‖(α(s− π), x ◦ π)‖1

We are left with comparing min
π∈Rn+

‖(α(s− π), x ◦ π)‖1 and sTx for every x,π, s ∈ Rn
+, and

α ∈ R>0, since taking the infimum preserves the sense of an inequality. If we denote the
vector (min(xi, α))i∈[n] by x̄, it can be proven that min

π∈Rn+
‖(α(s− π), x ◦ π)‖1 = sT x̄, which

is less than sTx, hence g′′′ ≤ g
′′ . Finally, proving g′′ ≤ g

′′′
max(1, λ) reduces to showing

that sTx ≤ sT (max(1, λ/α) x̄). If λ = diam‖·‖∞(D) ≤ α, the inequality is an equality
because max(1, λ/α) = 1 and x̄ = x. In the case when λ = diam‖·‖∞(D) > α, then
max(1, λ/α) = λ/α > 1, and we prove that x ≤ (λ/α) x̄ by observing that,

xi ≤ min
(
λ
α
xi, λ

)
= λ

α
min(xi, α) = λ

α
x̄i ∀ i ∈ [n]

This completes our proof.

In addition, when F is strongly monotone, the gap functions control the distance to the
unique solution of the variational inequality problem.

Proposition 3.2. Let D be a compact convex subset of Rn, let F be strongly monotone with
parameter c, and let x? be the unique solution to the variational inequality problem (2.9).
Then, for every x ∈ D,

‖x− x?‖2
2 ≤ g

′
(x)/c

Proof. By definition of g′(·), we have for every x ∈ D, 〈x − x?, F (x)〉 ≤ g
′
(x) and 〈x? −

x, F (x?)〉 ≤ g
′
(x?). Adding the two, 〈x?−x, F (x?)−F (x)〉 ≤ g

′
(x)+g

′
(x?). Observing that

g
′
(x?) = 0 by optimality of x?, and 〈x? − x, F (x?)− F (x)〉 is lower bounded by c‖x? − x‖

by strong monotonicity of F , we obtain the claimed bound.

Combining Proposition 3.2 and Proposition 3.1, we obtain the following corollary:

Corollary 3.1. Let D be compact and polyhedral of the form D = {x ∈ Rn
+ : Ax = b}, and

denote its diameter by λ = diam‖·‖∞(D). Let F be strongly monotone with parameter c, and
let x? be the unique solution to the variational inequality problem (2.9). Then, for every
x ∈ D,

‖x− x?‖2
2 ≤ g

′′
(x)/c

‖x− x?‖2
2 ≤ g

′′′
(x) max(1, λ/α)/c
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We note that the results of Proposition 3.1, Proposition 3.2, and Corollary 3.1 are
applicable to the convex optimization program given in (2.7)

min f(x) s.t. x ∈ X

where strong monotonicity of F is replaced with strong convexity of the potential function
f : X → R, and in the definition of the gap functions g′ , g′′ , g′′′ in (3.2), (3.3), and (3.4),
the mapping F is replaced with the gradient of the potential ∇f . In addition, we have the
following result:

Proposition 3.3. Let X be a compact convex subset of Rn, let f be a convex function, and
let x? be any optimal solution to the convex optimization program (2.7). The gap function
g̃(x) := max

z∈X
〈x− z, ∇f(x)〉 then satisfies, for all x ∈ X

g̃(x) ≥ f(x)− f(x?) (3.5)

Proof. By convexity of f , we have

f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉, ∀x, x′ ∈ D

In particular, f(x?) ≥ f(x) + 〈∇f(x), x? − x〉, where x? is a solution to the convex program

min f(x) s.t. x ∈ D

Since x? is also solution to the variational inequality problem (2.9) with F = ∇f , from the
first-order optimality condition, we have

g̃(x) ≥ 〈∇f(x), x− x?〉 ≥ f(x)− f(x?) (3.6)

where the first inequality is from the definition of the duality gap g̃, and the second inequality
is from the convexity of f . Hence g̃ is also a sub-optimality certificate for the convex
program.

3.2 Frank-Wolfe algorithm applied to the routing game
The homogeneous selfish routing game has the general potential form

min f(x) s.t. x ∈ D (3.7)

where f is convex and continuously differentiable potential, and the domain D is a compact
convex subset of a Hilbert space X . We note that in the context of the routing game, the
convexity and differentiability assumptions of the potential function hold when the edge cost
functions are increasing and continuous, see Section 6.2 for more details.
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Algorithm 3.1 Frank-Wolfe algorithm
1. Initialize with x0 ∈ D and let k := 0
2. Get a search direction dk = yk − xk by solving the LP yk ∈ argminy∈D{∇f(xk)Ty}
3. Choose step length αk ∈ [0, 1] such that f(xk + αkdk) = f((1− α)xk + αyk) < f(xk)
4. Update xk+1 = (1− αk)xk + αkyk
5. Let k := k + 1 and go to step 2.

The Frank-Wolfe algorithm is among the earliest documented iterative optimization
algorithms for solving constrained convex programs. It has been proposed in 1956 by Frank
and Wolfe [68]. The algorithm is described in Algorithm 3.2. It marks a historical departure
from linear programming, going to quadratic programming and convex optimization.

We note that at every iteration of the Frank-Wolfe algorithm, the duality gap (3.1) is
computed automatically at the iterate xk since

g′(xk) = max
y∈D
∇f(xk)T (xk − y) = ∇f(xk)Txk −min

y∈D
∇f(xk)Ty

A common stopping criterion is, for a fixed ε > 0,

g′(xk) = ∇f(xk)T (xk − yk) ≤ ε (3.8)

With the additional assumption that f is continuously differentiable and strongly convex
with parameter c, (3.8) implies that ‖xk − x?‖2

2 ≤ ε/c from Proposition 3.2, where x? is an
optimal solution to the optimization program (3.7).

The Frank-Wolfe algorithm is directly suitable for solving “sparse” convex problems,
where the optimal solution is a linear combination of a few vertices of the feasible domain,
since each iteration adds one new vertex. In the case of the traffic assignment problem,
each vertex of the feasible domain ∆ defined in (2.12) consists in assigning the mass dk
of a population k to a simple path p ∈ Pk from an origin sk ∈ V to a destination tk ∈ V.
Since the gradient of the potential function (2.28) with respect to path flows is given by
∇µf(µ) = (`p(µ))p∈P , then νT∇µf(µ) =

∑
k∈[K]

∑
p∈Pk `p(µ) νp, and the quantity yk in the

descent direction dk = yk − xk in step 2 of the Frank-Wolfe algorithm is solution to:

min
ν

∑
k∈[K]

∑
p∈Pk

`p(µ) νp s.t.
∑
p∈Pk

νp = dk, ∀ k ∈ [K], ν � 0

where µ is the current iterate. The above problem is separable by population k ∈ [K]

min
νk

∑
p∈Pk

`p(µ) νp s.t.
∑
p∈Pk

νp = dk, ν
k � 0

The above problem consists in assigning the population mass dk to a shortest path between sk
and tk. Hence, computing the search direction reduces to finding the shortest path between
each pair of origin and destination, which can be obtained with Dijkstra’s algorithm.
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We have implemented a solver for the homogeneous routing game available in github.com/
megacell/python-traffic-assignment/blob/master/frank_wolfe_2.py. The method
solver implements the Frank-Wolfe algorithm where the step size αk is set to αk := 2

k+2

at the k-th iteration. We show in the next Section that, under some additional smoothness
assumptions, the Frank-Wolfe algorithm converges in O(1/k) where k

The search direction (step 2 in the Frank-Wolfe algorithm above) is computed us-
ing the get_shortest_paths method from the python-igraph package, which implemen-
tation is available in github.com/megacell/python-traffic-assignment/blob/master/
AoN_igraph.py.

3.3 Convergence analysis of the Frank-Wolfe algorithm
Following the approach in [87], we define a measure of “non-linearity” of our objective function
f over the domain D. The curvature constant C of a convex and differentiable function
f : Rn → R with respect to a compact domain D is defined as

C := sup
x,s∈D,γ∈[0,1]

2

γ2
(f(y)− f(x)− 〈y− x,∇f(x)〉) (3.9)

The definition of C implies that, for all x, s ∈ D, and for all γ ∈ [0, 1]

f(x + γ(s− x)) ≤ f(x) + γ〈s− x,∇f(x)〉+
γ2

2
C

Hence, the curvature C bounds by how much the function f at the next iterate x + γ(s− x)
deviates from the linearization of f given by ∇f(x) at x, where the bound is given by a
quadratic function γ 7→ γ2

2
C. We also note that for linear functions, the curvature constant

C is zero.

Algorithm 3.2 Frank-Wolfe algorithm with approximate linear subproblems [87]
1. Initialize with x0 ∈ D, let α > 1, and let k := 0
2. Let γ := α

k+α

3. Get a search direction dk = yk − xk such that yTk∇f(xk) ≤ min
y∈D

yT∇f(xk) + 1
2
δγC

4. Update xk+1 = (1− γ)xk + γ yk
5. Let k := k + 1 and go to step 2.

Lemma 3.1. Let α > 1. Assume ak+1 ≤ (1 − γk) ak + γ2
k δ for δ > 0. If γk = α

k+α
then

ak ≤ γk
δ α
α−1

.

Proof. We first look for a constant C > 0 such that

ak ≤ γk C (3.10)

github.com/megacell/python-traffic-assignment/blob/master/frank_wolfe_2.py
github.com/megacell/python-traffic-assignment/blob/master/frank_wolfe_2.py
github.com/megacell/python-traffic-assignment/blob/master/AoN_igraph.py
github.com/megacell/python-traffic-assignment/blob/master/AoN_igraph.py
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where we assume that γk = α
k+α

, for k ≥ 1. We then show that it is sufficient to have
C ≤ δ α

α−1
.

For the base case k = 0, we have a1 ≤ (1− γ0) a0 + γ2
0 δ = δ. Hence, a sufficient condition

to have (3.10) satisfied for k = 1, i.e. a1 ≤ Cγ1 = αC
1+α

, is δ ≤ αC
1+α

, or equivalently

C ≥ (1 + α) δ

α
(3.11)

We now assume that ak ≤ γk C = αC
k+α

for k ≥ 1, and derive a sufficient condition on C so
that ak+1 ≤ αC

k+1+α
. We have

ak+1 ≤ (1− γk) ak + γ2
k δ

≤
(

1− α

k + α

)
αC

k + α
+

(
α

k + α

)2

δ

=

(
1− α

k + α
+

δ α

C(k + α)

)
αC

k + α

=
αC

k + α

k + (δ/C)α

k + α

A sufficient condition for (3.10) to be satisfied for the step k + 1 is

αC

k + α

k + (δ/C)α

k + α
≤ αC

k + 1 + α

or equivalently

δ α

C
≤ (k + α)2

k + 1 + α
− k (3.12)

Hence we would like the above inequality to be satisfied for every k ≥ 1. We define the
function f(x) = (x+α)2

x+1+α
− x for x ≥ 1. Its derivative is

f ′(x) =
(x+ α)(x+ α + 2)

(x+ 1 + α)2
− 1

From the inequality between geometric and arithmetic means, we have
√

(x+ α)(x+ α + 2) <
(x+α)+(x+α+2)

2
= x+ 1 + α for all x ≥ 1, hence (x+α)(x+α+2)

(x+1+α)2 ≤ 1 for x ≥ 1, and f is decreasing
on [1,+∞). In addition, f(x) can be re-written as

f(x) =
(α− 1)x+ α2

x+ 1 + α
−→
x→+∞

α− 1

thus f(x) ≥ α − 1 for all x ≥ 1. Hence, a sufficient condition for having ak+1 ≤ αC
k+1+α

for
k ≥ 1 is δ α

C
≤ α− 1, or equivalently

C ≥ δ α

α− 1

Noting that the above sufficient condition also implies (3.11) completes the proof.
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Theorem 3.1. For each k ≥ 1, the iterates xk of Algorithm 3.2 satisfy, for α > 1

f(xk)− f(x?) ≤ αC

k + α
(3.13)

where x? ∈ D is an optimal solution to problem (3.7).

Proof. We have

f(xk+1) = f((1− γ)xk + γyk)

≤ f(xk) + γ〈yk − xk,∇f(xk)〉+
γ2

2
C

≤ f(xk)− γg̃(xk) +
γ2

2
C

≤ f(xk)− γ(f(xk)− f(x?)) +
γ2

2
C

where the first inequality is from the definition of the curvature constant C of our convex
function f , the second inequality is from the definition (3.2) of the duality gap g̃(x) =
max
z∈D
〈x − z,∇f(x)〉 (where the map F is subtituted with ∇f), and the third inequality is

from g̃(x) ≥ f(x)− f(x?) in Proposition 3.3. This leads to the following inequality:

f(xk+1)− f(x?) ≤ (1− γ)(f(xk)− f(x?)) +
γ2

2
C

Using Lemma 3.1 and the fact that γ is set to α
k+α

in the k-th iteration of Algorithm 3.2, we
get the bound (3.13).

Combining the above results with Proposition 2.1, we can derive a bound on the iterates xk:

Lemma 3.2. If f is strongly monotone with parameter c, then for each k ≥ 1, the iterations
xk of Algorithm 3.2 satisfy, for α > 1

‖xk − x?‖2
2 ≤

2

c

αC

k + α
(3.14)

3.4 Frank-Wolfe algorithm applied to the heterogeneous
game

In general, the heterogeneous selfish routing game cannot be written in potential form, see
Section 2.6 for more details. It can be written as a variational inequality problem (2.34). We
recall the general formulation of a variational inequality problem. Given D a compact convex
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subset of Rn, and F : D → Rn a continuous mapping, the problem consists in finding x? ∈ D
such that

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ D (3.15)

In Section 4.3.1. of her work [76], Hammond proposes the “generalized fictitious play
algorithm”:

Algorithm 3.3 Generalized fictitious play algorithm
1. Initialize with x0 ∈ D and let k := 0
2. Get a search direction dk = yk − xk by solving the LP yk ∈ argminy∈D{F (xk)Ty}
3. Set xk+1 := 1

k+1

∑k
i=0 yi

4. Let k := k + 1 and go to step 2.

The fictitious play algorithm can be seen as the Frank-Wolfe algorithm where the line
search is replaced by the averaging over the previous iterates. Hammond shows that when
the mapping F is continuously differentiable and monotone, the domain D is compact and
strongly convex, and there is no point x ∈ D such that f(x) = 0, then the iterates converge
to the solution of the variational inequality problem, see Theorem 4.6 in [76].

However, to our knowledge, there is no convergence results in the case of the heterogeneous
routing game expressed as a variational inequality problem (2.34), since the domain D is a
bounded polyhedron (and not strongly convex), where each vertex is a path between the source
and the destination of some population. Hammond still conjectured that for a variational
inequality problem where F is uniformly monotone and D is a bounded polyhedron, the
fictitious play algorithm will solve the variational inequality problem.

Even though there is no convergence guarantee, we have implemented a solver for the het-
erogeneous routing game available in github.com/megacell/python-traffic-assignment/
blob/master/frank_wolfe_heterogeneous.py. In the case of the heterogeneous traffic as-
signment problem, each vertex of the feasible domain ∆̃ := Πt∈[T ]∆t, where ∆t is defined in
(2.30) consists in assigning the mass dt,k of a population k of type t to a simple path p ∈ Pk
from an origin sk ∈ V to a destination tk ∈ V .

Given the general path flow vector µ̃ = (µt)t∈[T ] ∈ Πt∈[T ]∆t, the mapping in the heteroge-
nous routing game is given by

˜̀(µ̃) = (`t(µ̃))t∈[T ] = (`t,p(µ̃))p∈P, t∈[T ] = (`t,p(
∑

t′∈[T ]µt′))p∈P, t∈[T ]

getting the search direction in the generalized fictitious play algorithm consists in solving

min
ν

∑
t∈[T ]

∑
k∈[K]

∑
p∈Pk `t,p(µ̃)Tνt,p s.t.

∑
p∈Pk νt,p = dt,k, ∀ k ∈ [K], ∀ t ∈ [T ], ν � 0

where ν is the current iterate. The above problem is separable by population k ∈ [K] and
type t ∈ [T ]

min
ν

∑
p∈Pk `t,p(µ)Tνt,p s.t.

∑
p∈Pk νt,p = dt,k, νt,p ≥ 0, ∀ p ∈ Pk

github.com/megacell/python-traffic-assignment/blob/master/frank_wolfe_heterogeneous.py
github.com/megacell/python-traffic-assignment/blob/master/frank_wolfe_heterogeneous.py
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The above problem consists in assigning the population mass dt,k to a shortest path between
sk and tk. Hence, computing the search direction reduces to finding the shortest path between
each pair of origin and destination, which can be obtained with Dijkstra’s algorithm.
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Chapter 4

Application: evaluating the impact of
GPS-enabled shortest path routing on
mobility

In this chapter, we use the selfish routing game framework to study the impact of the increasing
penetration of routing apps on road usage. Our conclusions apply both to manned vehicles
in which human drivers follow app directions, and unmanned vehicles following shortest path
algorithms. To address the problem caused by the increased usage of routing apps, we model
two distinct classes of users, one having limited knowledge of low-capacity road links. This
approach is in sharp contrast with some previous studies assuming that each user has full
knowledge of the network and optimizes his/her own travel time. We show that the increased
usage of GPS routing provides a lot of benefits on the road network of Los Angeles, such
as decrease in average travel times and total vehicle miles traveled. However, this global
increased efficiency in urban mobility has negative impacts as well, which are not addressed
by the scientific community: increase in traffic in cities bordering highway from users taking
local routes to avoid congestion.

The organization of the present chapter is as follows: we introduce the concept of
multiplicative cognitive cost to model non-routed users’ preference for high-capacity roads
and show that this choice is in general rational under low traffic demand; we expand on
the established heterogeneous traffic assignment problem to quantify the road usage when
there is a ratio α of routed users and 1 − α of non-routed users in the urban network; we
finally show that the low-capacity network sees a significant increase in traffic pressuring
local governments to build additional infrastructure to reduce the nuisance related to it.

4.1 Motivation
Navigation applications such as Google Maps, Waze, INRIX, or Apple Maps, have deeply
modified our approach of driving in the past. Pushed by the increasing penetration of smart
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phones and the rapid expansion of Mobility-as-a-Service systems such as Uber and Lyft, a
significant percentage of drivers now use these tools daily, as they provide an easy way to
optimize one’s route choices and decrease one’s travel time, specifically during peak hours.
Since public agencies cannot indefinitely extend the capacity of urban road networks, these
tools represent an opportunity to reallocate traffic in a way that might be more efficient (or
not). Nonetheless, the impact of these applications on road traffic and urban congestion are
not well-studied and understood. Cities bordering major highways in the United States have
noticed an increase of traffic demand on their networks, presumably due to application users
leaving highways to avoid congestion [66]. This alleged flow transfer is a challenge for public
policy, as cities infrastructure, mostly financed by and for local taxpayers, receive a higher
traffic demand.

The aim of the present chapter is to propose and develop a framework to describe
heterogeneous traffic in which a percentage of drivers use these applications. The main
research question is the following: “how does the percentage of application users impact traffic
redistribution and corresponding optimality of flows assignment?"

Historically, high-capacity roads, e.g. expressways and highways, have been developed to
improve safety, comfort, and traveling speed. Today, a vast majority of drivers will consciously
choose an expressway over a smaller road, because of all the previous benefits. We thus
assume that drivers, when traveling from an origin to a destination, will aim at minimizing
the time spent on low-capacity (or low-speed) roads.

While we investigate the question of the impact of navigation applications on traffic,
our framework encompasses heterogeneous traffic containing both classical manned vehicles
and autonomous vehicles. Specifically, an autonomous vehicle can be modeled as a vehicle
following real-time routing information, the same way a user follows instructions from routing
services.

4.2 Approach and terminology
In order to address the research questions summarized above, we model the behavior of
users on the road network with the established traffic assignment framework [130], in which
each user traveling from their origin (e.g. their home) to their destination (e.g. their office)
selfishly minimizes their own cost function. However, the transportation literature generally
assumes that, for each user, the cost of traveling on a given route is the travel time of this
route, see, e.g. [44]. Hence, state of the art work implicitly assumes that each user has access
to the travel time of each link in the network and rationally chooses the shortest route to its
destination. Contrasting from previous approaches, we model two types of users:

Routed users: they have access to navigation information and thus follow the shortest
route from their origin to their destination based on the network’s current travel times. These
vehicles can be drivers equipped with a GPS device (e.g. Garmin, TomTom, embedded
navigation system), or a GPS-enabled mobile phone with a navigation app (e.g. Google
maps, Waze, Apple maps), or they can be connected autonomous vehicle following routing
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directions from navigation services. Hence, for routed users, the cost of using a route is its
travel time. In addition, users with expert knowledge of the network are also considered as
routed users since they are able to find shortest routes without the use of navigation apps.

Non-routed users: They do not have access to updated traffic information and thus
have a limited knowledge of the travel times in the network. Since highways traditionally
enable to travel with limited information and provide perceived benefits such as safety and
higher travel speeds, non-routed users are assumed to choose high-capacity roads over low-
capacity ones. The precise mathematical model of the behavior of these non-routed users will
be introduced below.

The lack of information of users has been addressed previously in the field of transportation
[112], [69], and in economics [45]. They collectively describe bounded rational users who
make suboptimal choices due to the lack and/or price of information. Since local roads are
arguably less known while major highways are in the information set of most of users, we
choose an approach similar to studies modeling users with different objective functions than
just minimizing travel times, e.g. seeking out less congested or scenic routes [16]. However,
instead of using the nested logit model [17], we model the preference of non-routed users for
larger roads segments and their limited knowledge of small streets. Hence, we define two
types of road segments:

High-capacity road segments: highways and major arterial roads and avenues. High-
capacity roads mainly serve users just passing through or nearby the city to go to their
destination, hence they are maintained at a county or state level. We also assume that
non-routed users favor this type of roads since, with limited knowledge on the local network,
they represent a convenient way to move towards the destination by following signs.

Low-capacity road segments: They include small residential streets and small arterial
streets. The low-capacity network is maintained by local taxpayers and is designed to provide
mobility to local users, who either live or work in the area. It was originally not meant by
planners to be used by through traffic, which should be confined to the high-capacity network.

Multiplicative cognitive cost to encode user choice: We add a multiplicative factor
C > 1 to low-capacity links’ cost functions to model the preference of non-routed users for
high-capacity links. The multiplicative cognitive cost conserves the proportions between
low-capacity links’ travel times and models users that want to reduce the time spent on
low-capacity links in favor to high-capacity ones. We also show that, in the Los Angeles
network, in free flow, preference for highways is rational since it enables the users to choose
routes that are close to being optimal without the use of GPS routing.

Heterogeneous game: To study the increasing penetration of GPS routing, we consider
a heterogeneous routing game with two types of users: routed users for which the cost of using
an edge is the travel time, and non-routed users for which the cost of using an edge is the
travel time if it is high-capacity, or C times the travel time if it is low-capacity. Heterogeneous
games have been studied before for the purpose of designing toll strategies [91], [114], and in
a more general setting in [63]. To our knowledge, this is the first use of heterogeneous games
to model the impact of routing via navigation apps, on flow allocation.



CHAPTER 4. APPLICATION: EVALUATING THE IMPACT OF GPS-ENABLED
SHORTEST PATH ROUTING ON MOBILITY 35

Outline and contributions

The main contribution of this chapter is twofold. In Section II, we introduce the concept of
multiplicative cognitive cost to model non-routed users’ preference for high-capacity roads
and show that this choice is in general rational under low traffic demand. However, during
peak hours, we show that this preference results in a poor allocation of the traffic with
higher travel times, thus encouraging app based routing. In Section III, we expand on the
established heterogeneous traffic assignment problem to quantify the road usage when there
is a ratio α of routed users and 1− α of non-routed users in the urban network. We show
that the use of app-based routing is rational since it decreases each user’s travel time and
allocates the flow efficiently throughout the network. However, this hidden cost is high as
the low-capacity network sees a significant increase in traffic pressuring local governments to
build additional infrastructure to reduce the nuisance related to it.

4.3 A Multiplicative Cognitive cost model
In this section, we present and motivate the multiplicative cognitive cost model using the
traffic assignment framework.

Mathematical formulation and notations

We recall the selfish routing game framework. We consider a given road network modeled as a
directed graph G = (V , E) with vertex set V and directed arc set E . We have K populations
indexed by k ∈ [K], modeling a mass dk ∈ R+ of drivers traveling from a common source
sk ∈ V to a common sink tk ∈ V . They choose between routes p ∈ Pk such that their travel
cost is minimized, where Pk is the set of all paths from sk to tk. Hence, the state of the
network is described by the vector of route flows µ = (µp)p∈P ∈ RP where P = tk∈[K]Pk is
the set of all paths in the network. A flow vector µ ∈ RP is then feasible if for all k ∈ [K],∑

p∈Pk µp = dk and µp ≥ 0, ∀ p ∈ Pk. In matrix form, µ said to be feasible if it belongs to
the following set

∆ := {µ ∈ RP : µ ≥ 0, Aµ = d} (4.1)

where A is the population to path incidence matrix. Non-routed users have travel costs `nr
p (·)

along each path p ∈ P given by `nr
p (µ) =

∑
e∈p c

nr
e (xe) where cnr

e (xe) is the non-routed users ’
cost of edge e. We assume that the cost of a road segment e only depends on the flow xe of
vehicles on this segment, where xe is expressed as

xe =
∑

p∈P:e∈p µp (4.2)

the sum of the flows of every route passing through edge e. In matrix form, x = Mµ where
the edge-path incidence matrix is given by M = [1e∈p]e∈E, p∈P . Hence, we write that an edge
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Figure 4.1: The map of Los Angeles, CA used for the present study composed of 28,376
arcs and 14,617 nodes extracted from OpenStreetMap. Information for each edge includes
the free-flow travel time, length, capacity, and speed limit. Links with capacity less than
1000 vehicles per hour are considered low-capacity (in yellow) while links with 1000 vehicles
per hour or more are considered high-capacity (red). The histogram of the different road
capacities are shown in the bottom figure, with more than 40% of low-capacity links.

flow vector x = (xe)e∈E is feasible if it is in the following set

D := M∆ = {x ∈ RE+ : ∃µ ∈ ∆, x = Mµ} (4.3)

We formalize the behavior of non-routed users by partitioning the edge set E into a set of
low-capacity edges E lo = {e ∈ E : me < mlo} and a set of high-capacity edges Ehi := {e ∈ E :
me ≥ mlo} where each edge has a capacity me and mlo is an arbitrary threshold. Throughout
our study, we consider road segments with capacities less than 1000 vehicles per hour as
low-capacity, which amount for 40% of the road segments in the Los Angeles network, see
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Figure 4.1. The non-routed users ’ costs are then

cnr
e (xe) =

{
C · te(xe) if e ∈ E lo

te(xe) if e ∈ Ehi (4.4)

This results in the following non-routed path costs

`nr
p (µ) =

∑
e∈phi

te(xe) + C
∑
e∈plo

te(xe) (4.5)

where te(xe) is the travel time of road segment e under flow xe, C > 1 is a constant that
models how strongly non-routed users favor high-capacity roads over low-capacity roads, and
phi (resp. plo) are the segments of roads in path p that are high (resp. low) capacity. Note
that the multiplicative cognitive cost conserves the proportions between low-capacity links’
travel times while increasing their costs.

Rationale behind preference for high-capacity links

Under low traffic demand, high-capacity roads generally enable to travel quickly between
origins and destinations far apart. To validate this on the Los Angeles network, we collected
the OD trip data from the American Community Survey (ACS), composed of K = 96, 077
OD pairs and a demand vector d ∈ RK . In the Los Angeles network in free flow, for each
population k ∈ [K], we extracted a path pnr

k with lowest non-routed cost minp∈Pk `
nr
p (0) for

each OD pair k ∈ [K] using python-igraph package, and found that that associated free-flow
travel time

∑
e∈pnr

k
te(0) is on average only 10% longer than the shortest route, as illustrated

by Figure 4.2.a). In addition, travel times of non-routed users in the free-flow regime are
not sensitive to the cognitive cost when it is above 1000. Hence, for the remainder of this
work, we fix the non-routed costs cnr

e with a cognitive cost C = 3000 and focus on the
sensitivity of road usage to variations in the traffic demand and in the percentage of routed
users. Moreover, Figure 4.2.b) shows a small shift of the travel time distribution in positive
direction as the cognitive cost increases from 1 to 1000. Hence, without traffic, the Los
Angeles high-capacity network provides a reliable and nearly optimal route for traversing
cities with no information on local roads, thus justifying the rationale behind non-routed
users ’ preference.

Rationale behind routing on low-capacity links

With increasing demand, high-capacity roads such as highways become congested since
non-routed users choose them over low-capacity routes. We model flow of vehicles on roads
using the traffic assignment framework [130] in which each non-routed user, represented
as an infinitesimal amount of flow, selfishly chooses the path with the lowest cost `nr

p (µ).
This concept is known in the transportation literature as Wardrop’s first principle [165].
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Figure 4.2: Travel times in Los Angeles when all edges are in free flow for non-routed
users with perceived costs given by (4.4), as a function of the cognitive cost C. Figure a)
shows the average travel time, Figure b) shows the distribution of travel times.

The resulting flow is an equilibrium flow µ ∈ RP for which the associated equilibrium
edge flow x = (xe)e∈E ∈ RE is unique when the travel time functions te are continuously
differentiable, positive and strictly increasing [13]. Under these assumptions on the travel
functions, Beckmann et al. [13] show that the equilibrium edge flow of the routing game can
be expressed as the optimal solution of the following convex program

min
x

φ(x) =
∑
e∈E

∫ xe

0

cnr
e (u)du s.t. x ∈ D (4.6)

where φ is a potential function, cnr
e is given by (4.4), and D is given by (4.3). We obtain

different traffic demands by multiplying the demand vector d ∈ RK obtained from the ACS
data by a scalar α ∈ [0.1, 1]. We then solve (4.6) with a cognitive cost C = 3000 and different
traffic demands to obtain various non-routed equilibrium flows xnr. The network with 100%
of non-routed users settles in a suboptimal state with imbalances in the flow allocation where
high-capacity links are over-utilized and low-capacity links are under-utilized. We compare it
to the routed equilibrium arc flow xr, where every user follows the shortest path, with costs
given by

`rp(µ) =
∑
e∈p

te(xe), ∀ p ∈ P (4.7)
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The equilibrium is obtained by solving (4.6) with arc costs cnr
e (·) equal to the travel time func-

tions te(·). The ratio of the respective total travel times
∑

e∈E x
nr
e c

nr
e (xnr

e ) and
∑

e∈E x
r
ete(x

r
e)

are shown in turquoise in Figure 4.3. Figure 4.4.b) also shows that 20% of the users experience
a 10-20% delay and 12% experience a 20-30% delay compared to the routed equilibrium.

Figure 4.3: Ratio of the average travel time when the perceived non-routed costs are given
by (4.4) with C = 3000 over the user equilibrium (blue) and the social optimum (red), as a
function of the demand in the network.

We also compare the non-routed equilibrium to the social optimum where the total cost
incurred by all users in the network is minimized

min
∑
e∈E

xe te(xe) s.t. x ∈ D (4.8)

Figures 4.3 and 4.4 show that the preference for high-capacity links steers the equilibrium
state further from the social optimum where 25% of users experience 10-20% delay and
18% of users experience a 20-30% delay. Hence, rational users are pushed to choose low-
capacity roads to avoid segments of high-capacity roads that are not along the shortest route
due to congestion under heavy traffic demand.

4.4 Multiclass traffic assignment problem
The sharp increase of app-based routing spurred by the increasing penetration of navigation
devices progressively increases the number of routed users on the road. It is likely that
with the full advent of automated driving, this trend will accelerate in the future. This
emerging behavior is in sharp contrast with non-routed users who favor high-capacity roads
regardless to the level of congestion. To quantify the impact of routed users on traffic
conditions, we introduce our heterogeneous traffic assignment problem with both routed
users and non-routed users.
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Figure 4.4: The distribution of the ratio of the travel times over the social optimum per OD
pair (a), and the user equilibrium (b), when all users are non-routed, when the perceived
costs are given by (4.4) with C = 3000.

Multiclass traffic assignment problem

We consider a demand vector dr
k ∈ RK

+ of routed users and a demand vector dnr
k ∈ RK

+ of
non-routed users between each OD pair (or population) k ∈ [K]. The state of the network is
described by the routed users’ path flow vector µr = (µr

p)p∈P and the non-routed users’ path
flow vector µnr = (µnr

p )p∈P . They are feasible if they are in ∆r, ∆nr given by

∆r := {µr ∈ RP : µr � 0, Aµr = dr} (4.9)
∆nr := {µnr ∈ RP : µnr � 0, Aµnr = dnr} (4.10)

where A is the OD-path incidence matrix. With M the arc-path incidence matrix, we denote
xr = (xr

e)e∈E = ∆µr and xnr = (xnr
e )e∈E = ∆µnr the routed and non-routed arc flow vectors

respectively. Hence xr, xnr are feasible if they belong to the following sets respectively

Dr := {xr ∈ RE : ∃µr ∈ ∆r, xr = Mµr} (4.11)
Dnr := {xnr ∈ RE : ∃µnr ∈ ∆nr, xnr = Mµnr} (4.12)

The total path flow is µ = µr + µnr = (µr
p + µnr

p )p∈P and the total arc flow is x = xr + xnr =
(xr

e + xnr
e )e∈E . As both routed and non-routed users make selfish choices by minimizing

their associated costs, the resulting flow essentially describes the Nash equilibrium on road
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networks. Mathematically, the equilibrium flow are feasible flows µr ∈ ∆r, µnr ∈ ∆nr such
that ∀ k ∈ [K]

∀ p ∈ Pw, µr
p > 0 =⇒ `rp(µ) = min

q∈Pw
`rq(µ) (4.13)

∀ p ∈ Pw, µnr
p > 0 =⇒ `nr

p (µ) = min
q∈Pw

`nr
q (µ) (4.14)

where the routed and non-routed path costs `rp and `nr
p are given by (4.7) and (4.5) respectively.

Hence, only the least-cost paths are used between each origin and destination with respect
to the associated type of users. The equilibrium µ described in (4.13) and (4.14) can be
expressed as a feasible solution (µr,µnr) ∈ ∆r ×∆nr of the following variational inequality
problem

`r(µ)Tνr + `nr(µ)Tνnr ≥ `r(µ)Tµr + `nr(µ)Tµnr, ∀ (νr,νnr) ∈ ∆r ×∆nr (4.15)

Contrary to the homogeneous routing game, the general heterogeneous game cannot be
formulated as a potential game of the form (4.6), see [140], [63]. However, by using the theory
of variational inequality [61], it is possible to solve for the equilibrium described in (4.15)
with the Frank-Wolfe algorithm [175].

Positive impact

We apply the multi-class traffic assignment framework to the network of Los Angeles with a
variable percentage α of routed users, and a cognitive cost C = 3000 for non-routed users,
which means that their perceived cost on low-capacity links is 3000 times the real travel-time.
We assume a uniform ratio of routed users for each OD pair k ∈ [K], hence dr

k = α dk and
dnr
k = (1−α) dk, where α ∈ [0, 1] and the total traffic demand d is given by the ACS data. As

the fraction α of routed users increases, Figure 4.5 shows a shift of the travel time distribution
to the left as a result of users allocating themselves optimally (but selfishly) between the
low-capacity and high-capacity networks. At an aggregate level, GPS routing can alleviate
the road network with a possible decrease in Vehicle-miles Traveled (VMT) from 7.94 million
miles per hour to 7.15 million, hence a potential decrease of .79 million miles per hour, see
Figure 4.6.b), thus corroborating the belief that GPS routing is able to alleviate gridlock in
congested areas.

Negative externalities

Even though the increase in usage of app-based routing enables better navigation and time
savings, they allegedly transfer large amounts of traffic in cities bordering highways, since
navigation apps users have been reported to leave highways to avoid congestion [66]. For
instance, in the Los Angeles network used for the present study and shown in Figure 4.1, we
find that app-based routing can potentially increase the VMT on local roads by .34 million
miles per hour, which represents a threefold increase in traffic on low-capacity links, while



CHAPTER 4. APPLICATION: EVALUATING THE IMPACT OF GPS-ENABLED
SHORTEST PATH ROUTING ON MOBILITY 42

Figure 4.5: Distribution of travel times as a function of the percentage of routed users, with
cognitive cost C = 3000 for non-routed users.

there is only a 10% decrease in VMT on high-capacity roads, see Figure 4.6. Moreover,
Figure 4.7 shows that an increase in routed users ’ ratio α is accompanied with a sharp increase
in the percentage of users spending between 10 and 20 min on low-capacity links (we reiterate
that we apply the framework to the Los Angeles network presented in Figure 4.1). Figure 4.8
shows that, despite a general decrease in VMT due to more efficient routing, the relative
increase on low-capacity roads is very important for each 10% increase in routed users, due
to the small traffic flow on the low-capacity network. This causes residential streets to be
congested, encouraging cities to spend millions in infrastructure to steer the traffic away.
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Figure 4.6: General VMT versus VMT on local roads as a function of the percentage of
routed users.

Figure 4.7: Distribution of travel times on local roads as a function of the percentage of
routed users.
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Figure 4.8: a) Variation in VMT for 1% increase in routed users. b) Relative variation in
VMT for 10% increase in routed users.
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Part II

Statistics of learning the edge cost
functions in selfish routing games
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In this part, we study the learnability of the edge cost functions in routing games from
observations of the equilibrium flows, where the learnability is measured as the minimum
number of samples needed to maintain a high consistency of the empirical risk, which is a
statistical estimator for the quality of the learned model. To provide an upper bound on
the minimum sample size, we motivate the analysis of the uniform laws of large numbers
on a class of loss functions indexed over the space of parameters we want to estimate. On
one hand, leveraging results on the complexity of function classes and in approximation
theory, we investigate how the behavior of the empirical risk relates to a notion of complexity
of the parameter space. On the other hand, using sensitivity analysis in optimization, we
study how variations in the parameter space translate into variations in the class of loss
functions. This allows us to show, independently of the sample distribution and of the
edge costs parametrization, that the sample size required to maintain a high consistency
grows quadratically with the number of edges in the network (or linearly if all the edge cost
functions have the same shape), and grows linearly with the Lipschitz constant of the edge
cost functions, and quadratically with the inverse of the strong monotonicity constant of the
edge cost functions.
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Chapter 5

Learnability of edge cost functions

We study the learnability of the edge cost functions in routing games from observations of
the equilibrium flows, where the learnability is measured as the minimum number of samples
needed to maintain a high consistency of the empirical risk, which is a statistical estimator
for the quality of the learned model. To provide an upper bound on the minimum sample
size, we motivate the analysis of the uniform laws of large numbers on a class of loss functions
indexed over the space of parameters we want to estimate. On one hand, leveraging results
on the complexity of function classes and in approximation theory, we investigate how the
behavior of the empirical risk relates to a notion of complexity of the parameter space. On
the other hand, using sensitivity analysis in optimization, we study how variations in the
parameter space translate into variations in the class of loss functions. This allows us to
show, independently of the sample distribution and of the edge costs parametrization, that
the sample size required to maintain a high consistency grows quadratically with the number
of edges in the network (or linearly if all the edge cost functions have the same shape), and
grows linearly with the Lipschitz constant of the edge cost functions, and quadratically with
the inverse of the strong monotonicity constant of the edge cost functions.

5.1 Introduction
Routing games have been extensively studied in transportation settings, see [131] and the
references therein. Such models enable to study drivers’ routing decisions in a network
modeled as a directed graph, in which traveling each edge incurs a cost. It is well-known
that if agents selfishly route themselves, the aggregate cost in the network is worse than
the system’s optimum [137]. In many instances however, the design of strategies, such as
taxation schemes [65], [91], to incentivize drivers’ decisions that are system optimal, relies
upon knowing the shape of the edge cost functions that are being modified [30]. Estimating
the edge cost functions is a challenging task since they may represent some combination of the
actual travel time, the tolls, and disutility from environmental factors, which are not directly
observable. In practice, it is often possible to observe, through the sensing infrastructure,
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the equilibrium flows induced by the selfish routing of agents, and learn the underlying cost
functions. This spurs the recent study of a class of learning problems known as inverse
optimization [85, 94, 19, 150].

Seeking to learn the edge cost functions, empirical risk minimization is a standard decision-
theoretic approach of estimating them by choosing the ones giving the lowest expected loss
under the empirical measure. Thus, a critical question on the learning process is whether
or not, and at which rate, the empirical risk approaches the population risk, which is the
expected value of the out-of-sample loss. The population risk gives us a ultimate measure
of the prediction capability of a trained model, and its estimation thus lies at the heart
of techniques concerned with model selection, see e.g. [78, Chap. 7]. Thus, analyzing the
consistency of the empirical risk is extremely important in practice since it assesses the
viability of the empirical risk minimization method applied to our instance.

Outline. Section 5.2 describes the routing game in detail, and Section 5.3 sets up the
framework for learning the edge cost functions. In Section 5.4, we construct a class of loss
functions which will be the focus of our analysis, and show in Section 5.5 that studying
whether or not the uniform law of large numbers holds for this class, and related convergence
rates, helps us to assess the performance of our learning process. In Sections 6.4 and 6.5, we
relate the consistency properties of the empirical risk to the complexity of the space over
which we fit our parameters, and show in Section 6.3 how this can be applied to our inverse
optimization problem using results on the sensitivity of optimization programs. Section 5.9
applies our general results to the routing game.

Notations. In our paper, we consider continuous mappings F : X → Y over a compact
domain X , and a norm over them defined by |||F ||| := supx∈X ‖F (x)‖Y , where ‖ · ‖Y is a norm
on Y . Since the domain X is compact, |||·||| always exists. And we will say that a function class
F = {Fθ |θ ∈ Θ} is L-smoothly parametrized if |||Fθ − Fθ′ ||| ≤ L‖θ − θ′‖Θ for all θ,θ′ ∈ Θ,
where ‖ · ‖Θ is a norm on Θ. Hence, for all x ∈ X , ‖Fθ(x)− Fθ′(x)‖Y ≤ ‖θ − θ′‖Θ.

5.2 Selfish routing
Setting. We consider the routing game based on Wardrop’s principles [166]. It is a non-
cooperative game on a directed graph G = (V , E) in which the set of players is partitioned in
populations {Xk}k∈[K], where [K] denotes the set {1, · · · , K}. For each k ∈ [K], players in Xk
have available a set of simple paths Pk from a common source sk ∈ V to a common sink tk ∈ V .
For each population Xk, we define dk ∈ R+ its total flow, and µk := (µkp)p∈Pk ∈ RPk+ its path
assignment, which satisfies

∑
p∈Pk µ

k
p = dk. We denote P the disjoint union P = tKk=1Pk, thus

RP+ = ΠK
k=1R

Pk
+ . Under demand d = (dk)k∈[K] ∈ RK

+ , the path assignment can be summarized
by µ := (µ1, · · · ,µK) lying within the feasible set

∆(d) :=
{
µ ∈ RP+ :

∑
p∈Pk µ

k
p = dk, ∀ k ∈ [K]

}
(5.1)
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The path assignment determines the edge flow defined as xe =
∑K

k=1

∑
p∈Pk:e∈p µ

k
p, which

can be written compactly as xe = (Mµ)e where M ∈ RE×P is an incidence matrix with
entries defined as Me,p = 1e∈p. For each edge e ∈ E , the edge flow incurs a cost ce(xe)
where ce(·) : R+ → R>0 is positive, continuous, strictly increasing cost function. The cost
of choosing a path p is the sum of edge costs along the path

∑
e∈p ce(xe). Since the path

cost is entirely defined by µ, we can express the cost of path p ∈ Pk as the mapping
`kp : µ ∈ ∆(d) 7→∑

e∈p ce((Mµ)e). We write `(µ) to denote the vector of path cost functions
(`p(µ))p∈P . If we define the mapping F as the vector of congestion functions

F : x ∈ RE+ 7→ F (x) = (ce(xe))e∈E (5.2)

the path costs can be written compactly as the vector of functions ` : µ ∈ ∆(d) 7→ `(µ) =
MTF (Mµ).

Nash equilibrium: We say that µ? ∈ ∆(d) is a Nash equilibrium if for every population
k, µkp > 0 for some path p ∈ Pk implies that `kp(µ?) = min

q∈Pk
`kq(µ

?), i.e. a path is only used if

it is of least cost in Pk. This is equivalent to the condition, see e.g. §3.2.1. in [131]

〈`(µ?), µ− µ?〉 ≥ 0, ∀µ ∈ ∆(d) (5.3)

Since `(µ) = MTF (Mµ), substituting in (5.3) gives the condition 〈F (Mµ?), M(µ−µ?)〉 ≥ 0,
re-written as

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ K(d) (5.4)

where x? = Mµ? is the Nash equilibrium for the edge flows, and the set of feasible edge flows
K(d) is given by

K(d) = M∆(d) = {Mµ : µ ∈ ∆(d)} ⊂ RE+ (5.5)

For more details on the reformulation, we refer to e.g. §3.2.1. [131]. Note that the equilibrium
flow x? in (5.4) is a solution to a parametric variational inequality problem (VIP), denoted
VI(K(d), F ), with mapping F and parametric polyhedral domain K(d), with parameter the
population demand d ∈ RK

+ , see e.g. [49], [61]. To avoid path enumeration, note that we can
equivalently use a vertex-representation equivalent to (5.4) since the cost functions (ce(·))e∈E
are positive by assumption, see e.g. [131, §2.2.2].

Existence and uniqueness. For every d ∈ RK
+ , the parametric feasible set K(d) is

non-empty and it is compact convex since it is the image of M restricted to the compact
convex set ∆(d). This gives us the existence of a solution to (5.4), see e.g. [95, Chap. 1].
Uniqueness of the solution is given by strict monotonicity of the mapping F since the cost
functions (ce(·))e∈E are strictly increasing by assumption. Hence, for every d ∈ RK

+ , the
parametric VI(K(d), F ) admits a unique solution x?(d) ∈ K(d). The equilibrium flow thus
defines an implicit function d 7→ x?(d).
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5.3 Statistical learning framework
Training data. We now formalize the supervised learning problem. Suppose we are given the
parametric domain K(d) along with a collection dN1 := {d1,d2, · · · ,dN} of N i.i.d. samples
of the demand vector d drawn from a set D ⊂ RK

+ according to a probability distribution P.
The samples dN1 are the predictors (or inputs) of our learning problem, and they lie within
the measure space (D,Σ,P), where Σ is a σ-algebra of measurable sets. We suppose the
responses (or outputs) are given by the implicit function d 7→ x?(d) solution to VI(K(d), F )
given in (5.4)

yi = h(x?(di)) i ∈ {1, · · · , N} (5.6)

where h(·) is a Lh-Lipschitz observation mapping from the state space RE+ to the observed
space Rm. The mapping h models the sensing infrastructure. For example, m can index the
subset of edges from E on which flows are measured, then h(·) is a projection operator onto
the subspace Rm of RE . The collection of predictor-response pairs {(d1,y1), · · · , (dN ,yN)}
is our training data, from which our aim is to learn F in the parametric VI(K(d), F ).

Maximum demand. We suppose that the random demand vector d has total mass
‖d‖1 less than d̄ almost surely (it lies within a simplex of mass d̄), the random polyhedron
K(d) is thus contained in the hypercube [0, d̄]E . Concretely, this means that the total flow on
each edge e ∈ E is less than the maximum total demand d̄ almost surely.

Implicit function class. We want to find an estimate F̂ of F , where F̂ is chosen over a
function class. Concretely, we first define a base class of univariate functions:

M =
{
f : [0, 1]→ R+, L-Lipschitz, (5.7)
c-strong-monotone, f(0) = 0

}
(5.8)

where L, c ∈ R>0. We are also given a positive zero-flow cost c0
e and an positive edge capacity

me for each e ∈ E . Without loss of generality, we suppose that {me}e∈E were uniformly re-
scaled such that d̄ = mine∈E me. Hence, the normalized edge flows satisfy xe/me ≤ d̄/me ≤ 1
almost surely. We now choose F̂ within one of these cost classes

F1 = {x ∈ [0, d̄]E 7→ (c0
e + fe(

xe
me

))e | {fe}e ∈ME} (5.9)

F2 = {x ∈ [0, d̄]E 7→ (c0
e + f( xe

me
))e | f ∈M} (5.10)

The class F2 considers candidate cost functions {ce(·)}e∈E which are uniformly equal to a
single function f of the normalized flows

(
xe
me

)
e∈E (modulo an additive term). This is a

standard assumption in traffic modeling, see e.g. [31], [29], and in inverse modeling [19], [150].
Since every function inM is L-Lipschitz and c-strong-monotone, then every mapping in F1

or F2 is
(

L
mine∈E me

)
-Lipschitz and

(
c

maxe∈E me

)
-strong-monotone with respect to the Euclidean

norm ‖ · ‖2 and the Euclidean inner product 〈·, ·〉.



CHAPTER 5. LEARNABILITY OF EDGE COST FUNCTIONS 51

5.4 Problem statement
We are interested in learning methods based on empirical risk minimization. To formalize this
approach, we consider an indexed-family F := {Fθ |θ ∈ Θ} of strictly monotone mappings,
and suppose that there exists some fixed but unknown θ? ∈ Θ such that F = Fθ? , i.e.
VI(K(d), F ) is the same as VI(K(d), Fθ?). For example, F can be either F1 and F2 in (5.9)
and (5.10), which are indexed over the base classesME andM respectively. With this setting,
we now want to fit Fθ to Fθ? , where Fθ is chosen within F := {Fθ |θ ∈ Θ}, i.e. we fit the
parameter θ ∈ Θ to θ?. This gives us an indexed-family {x?θ(·) |θ ∈ Θ} of implicit functions
such that for each (d,θ) ∈ D ×Θ, the vector x?θ(d) is the unique solution to VI(K(d), Fθ).
The response is then given by

yi = h(x?θ?(di)) i ∈ {1, · · · , N} (5.11)

Empirical risk minimization. Given some norm on the observed space Rm, we pose
the loss function as

`θ(d) := ‖h(x?θ?(d))− h(x?θ(d))‖ (5.12)

Since the response is y = h(x?θ?(d)) by assumption (5.11), the loss function is the distance
‖y − h(x?θ(d))‖ between the real and predicted responses. Given samples (dN1 ,yN1 ) =
{(d1,y1), · · · , (dN ,yN)} of predictor-response pairs with relationship given in (5.11), a
standard decision-theoretic approach of estimating the parameter θ? is to minimize the
expected loss under the empirical measure

RN(θ) := 1
N

∑N
i=1 `θ(di) (5.13)

This quantity is known as the empirical risk and can be re-written in terms of (dN1 ,yN1 )
as 1

N

∑N
i=1 ‖yi − h(x?θ(di))‖. Empirical risk minimization methods thus seek to compute

an element in arg minθ∈Θ RN(θ), see [158]. Note that RN(θ) should be contrasted with the
population risk

R(θ) := Ed [`θ(d)] (5.14)

Goal. Let θ̂ be an estimate of θ? computed from samples (dN1 ,yN1 ). We do not assume
that θ̂ is a minimizer of the empirical risk (5.13), and we refer to, e.g., [94], [19], [150] for
practical methods for minimizing (5.13). Instead, the main focus of the present chapter is
to control the quantity |RN(θ̂)− R(θ̂)|. In general, θ̂ depends on the samples, hence it is
random, and controlling |RN(θ̂)−R(θ̂)| requires a strong result, such as a uniform bound
over Θ, namely supθ∈Θ |RN (θ)−R(θ)|. To achieve this, we turn to the uniform laws of large
numbers. In its general form, this class of results considers a collection XN

1 := {X1, · · · , XN}
of i.i.d. samples from some distribution P over X and a class F of real-valued integrable
functions with domain X , and studies the convergence properties of the random variable
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‖PN − P‖F := sup
f∈F

∣∣∣ 1
N

∑N
i=1 f(Xi)− E[f(X)]

∣∣∣ (5.15)

where PN is the empirical distribution, assigning mass 1/N to each of X1, · · · , XN . The
quantity ‖PN − P‖F measures the absolute deviation between the sample average and the
population average. Let us define the loss class

L := {d ∈ D 7→ `θ(d) |θ ∈ Θ} (5.16)

Hence, our aim is now to find whether or not the random variable ‖PN−P‖L = supθ∈Θ |RN (θ)−
R(θ)| converges to 0 as N →∞, where P is the distribution of d. More precisely, we would
like to know if there is almost sure convergence (in the uniform norm), and derive rates of
convergence. These rates will allow us to find a sufficient condition on the number N of
samples to have ‖PN − P‖L ≤ ε, thus giving us a measure of the learnability of the loss class
L, and by extension a measure of the learnability of the implicit class {x?θ(·) |θ ∈ Θ} and of
the cost class {Fθ(·) |θ ∈ Θ}. We will also seek to understand how this sufficient condition
depends on the characteristics of the network G of the routing game, and on the strong
monotonicity and Lipschitz constants c and L in the base classM of edge cost functions
(5.7)-(5.8).

Related work. Such convergence properties in the uniform norm is known as Glivenko-
Cantelli properties [156], [157]. We will leverage a classic result relating the convergence
properties of ‖PN − P‖L with a notion of complexity of the loss class L, its Rademacher
complexity. We note that, the Rademacher complexity has been studied extensively in the
specific context of uniform laws of large numbers and empirical risk minimization, see e.g.
[12], [11], [99]. However, in contrast to the literature, d 7→ x?θ(d) is from an implicit class
since it is defined as solutions to the family of problems {VI(K(d), Fθ) |d ∈ D}. Relating to
the problem of learning the edge cost functions, x?θ(d) is implicitly indexed by the mapping
Fθ over the cost classes F1 or F2 defined in (5.9) and (5.10), where Fθ is itself indexed by
θ in the base classM in (5.7)-(5.8). Translating variations in the parameter space Θ into
variations in the loss class L thus requires sensitivity results in optimization theory such
as in [48], [174]. This will allow us to extend notions of learnability to classes of implicit
functions defined as Nash equilibria in routing games, and more generally as solutions to
convex programs or variational inequality problems. These types of learning problems were
adressed in e.g. [85], [94], [19], [150], but with little to no analysis on their learnability.

5.5 Motivation
Generalization performance. In practice, having good generalization guarantees for a
trained model is extremely important because it gives us a ultimate measure of the quality of
the model [78, Chap. 7]. If we draw a new sample (dN+1,yN+1) from P, and independently
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from the training data (dN1 ,yN1 ) (on which we trained our model), the expected prediction
error is E[‖yN+1 − h(x?

θ̂
(dN+1))‖] = R(θ̂). Hence the population risk R(θ̂) is a measure

of the prediction capability of x?
θ̂
(·) on independent test data. We can relate R(θ̂) to the

quantity ‖PN − P‖L via the bound

R(θ̂) ≤ RN(θ̂) + ‖PN − P‖L

which follows by definition of ‖PN − P‖L. Hence a small value of the empirical risk RN(θ̂),
which is available as the objective in empirical risk minimization methods, does not allow us
to assess the prediction capability of the trained model. If ‖PN − P‖L is large, R(θ̂) can take
large values despite a small RN(θ̂), and we may be overfitting our training data (dN1 ,d

N
1 )

due to, e.g., a function class {x?θ |θ ∈ Θ} that is too ‘rich’ or complex. In fact, connections
between the complexity of a function class and the Glivenko-Cantelli property are well-known
[12], [11], [99] and will be at the heart of our analysis in the remaining Sections.

Excess risk. Our model for the cost functions may not capture the real model since it is
a simplified version of it. In other words, θ? may not lie within the index set Θ. Assume
that θ̂ ∈ arg minθ∈Θ RN(θ) and θ0 ∈ arg minθ∈ΘR(θ). We are thus interested in controlling
the excess risk R(θ̂)−R(θ0), which gives us a measure the prediction quality of the model
trained on (dN1 ,yN1 ) against the best one we can hope to fit, given the chosen parametrization.
We can write

R(θ̂)−R(θ0) = [R(θ̂)−RN(θ̂)] + [RN(θ̂)−RN(θ0)]

+ [RN(θ0)−R(θ0)]

The second quantity in the sum is non-positive by definition of θ̂, the third term converges
to zero by the (pointwise) law of large numbers as N → ∞ since θ0 is fixed, and the
first term requires a uniform bound since θ̂ is random, motivating again the study of
‖PN − P‖L = supθ∈Θ |RN(θ)−R(θ)|.

5.6 Rademacher complexity and learnability
Given some function class F , a classic approach in the study of uniform laws consists in
relating the quantity ‖PN − P‖F defined in (5.15) to the Rademacher complexity of F . We
first denote (σ1, · · · , σN) the collection of Rademacher random variables, i.i.d. uniform in
{±1}.

Definition 5.1. (Rademacher complexity) Given a class F of real-valued functions with
domain X and a collection XN

1 := (X1, · · · , XN ) of random samples within X , the Rademacher
complexity of F is given by

RN(F) := EX,σ
[

sup
f∈F

∣∣∣ 1
N

∑N
i=1 σif(Xi)

∣∣∣] (5.17)
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The Rademacher complexity is the average of the maximum correlation between the
vector (f(X1), · · · , f(XN)) and the “noise vector" (σ1, · · · , σN). Intuitively, as a function
class grows, it is easier to find a function that correlates well with a randomly drawn noise
vector, making the Rademacher complexity grow. In particular, §3.4 of [5] gives an important
result bounding the tail of the probability distribution of the random variable ‖PN − P‖F
with the Rademacher complexity.

Theorem 5.1. For any b-uniformly bounded function class F , any positive integer N and
any δ ∈ R>0, we have

P
[
‖PN − P‖F ≤ 2RN(F) +

√
2 b2

N
ln(1

δ
)
]
≥ 1− δ

Hence, ‖PN − P‖F = 2RN(F) + O( 1√
N

) with “high probability". We now seek to find
an upper bound on RN(F), which will inform us if RN(F) → 0. In addition, if we can
derive a rate of convergence for RN(F), we can find a lower bound on N guaranteeing that
‖PN − P‖F ≤ ε with probability at least 1− δ. It also follows from Theorem 5.1

Corollary 5.1. For any uniformly bounded function class F , if RN(F) → 0, then ‖PN −
P‖F a.s.→ 0.

Proof. For all δ ∈ R>0, it follows from Theorem 5.1 that
P
[
‖PN−P‖F ≥ 2RN (F)+δ

]
≤ exp

(
− N δ2

2 b2

)
, thus

∑∞
N=1 P

[
‖PN−P‖F ≥ 2RN (F)+δ

]
<∞.

From Borel-Cantelli lemma, there exists, for each δ > 0, a positive integer Nδ such that for
all N ≥ Nδ, ‖PN − P‖F ≤ 2RN (F) + δ almost surely. In particular, since RN (F)→ 0, then
we have ‖PN − P‖ a.s.→ 0.

5.7 Tail bound with the metric entropy
We now turn to the field of approximation theory, which combines the notion of metric entropy,
which was first introduced by Kolmogorov [96], and related notions of the “sizes" of various
function classes, see [54], [132], [37]. This will be instrumental to bound the Rademacher
complexity of a function class by a function of the metric entropy.

Definition 5.2. (Covering number) A δ-cover of a set T with respect to a metric ρ is a
set {θ1, · · · , θN} ⊂ T such that for each θ ∈ T, there exists some i ∈ {1, · · · , N} such that
ρ(θ, θi) ≤ δ. The δ-covering number N(δ,T, ρ) is defined as:

N(δ,T, ρ) := min{N | {θ1, · · · , θN} is a δ-cover of T}

Definition 5.3. (Metric entropy) Under the assumptions of Definition 5.2, the metric entropy
of T is defined as the function δ 7→ logN(δ,T, ρ).
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Covering of hypercubes. As an illustration, consider the interval [0, a] in R, equipped
with the metric |x − x′|. If δ ≥ a

2
then a

2
is a δ-cover of [0, a] and the covering number is

N(δ, [0, a], | · |) = 1. Now suppose δ < a
2
. We divide the interval [0, a] into K := b a

2δ
c + 1

sub-intervals1 of the form [2δ(i − 1), 2δi] for i = 1, · · · , b a
2δ
c, the last sub-interval being

[2δb a
2δ
c, a]. By construction, each sub-interval is of length at most 2δ, and denote x1, · · · , xK

the centers of each one of them. For any point x ∈ [0, a], there is some j ∈ {1, · · · , K} such
that |x − xj| ≤ δ, which shows that N(δ, [0, a], | · |) ≤ a

2δ
+ 1. This also implies that the

hypercube has covering number N(δ, [0, a]d, ‖ · ‖∞) ≤
(
a
2δ

+ 1
)d with respect to the infinite

norm.
Bounding the Rademacher complexity. We now make precise the connection between

the Rademacher complexity (5.17) and the metric entropy. Let us fix a class F of real-valued
functions with domain X , and a collection xN1 := {x1, · · · , xN} of elements of X . We recall
that (σ1, · · · , σN) is the collection of Rademacher random variables (i.i.d. uniform in {±1}).
The quantity

∑N
i=1 σif(xi) that appears in the Rademacher complexity is a sub-Gaussian

process2 with respect to the Euclidean norm on the set F(xN1 ):

F(xN1 ) :=
{

(f(x1), · · · , f(xN)) | f ∈ F
}

Indeed, if we denote by f(xN1 ) := (f(x1), · · · , f(xN)) each element of F(xN1 ), we have for
every, f, f ′ ∈ F , and λ ∈ R,

E[eλ
∑
i σi(f(xi)−f ′(xi))] = ΠiE[eλσi(f(xi)−f ′(xi))]

≤ Πie
λ2(f(xi)−f

′(xi))
2

2

= exp
(λ2‖f(xN1 )−f ′(xN1 )‖22

2

)
where in the inequality we applied Hoeffding’s lemma on each random variable σi(f(xi)−
f ′(xi)). Noting that the expected absolute supremum Eσ

[
supf∈F |

∑N
i=1 σif(xi)|

]
of the

sub-Gaussian process
∑N

i=1 σif(Xi) appears in the Rademacher complexity (5.17), leads us
to apply Dudley’s theorem, see [57] and Chapter 11 of [102].

Theorem 5.2. (Dudley’s theorem) Let {Xθ, θ ∈ T} be a zero-mean sub-Gaussian process

with respect to the metric ρ. Then E
[

supθ∈T Xθ

]
≤ 8
√

2

∫ ∞
0

√
logN(u,T, ρ)du.

This gives us a bound on the expected suprema of sub-Gaussian processes with the entropy
integral.

Proposition 5.1. For any function class F such that 0 ∈ F ,

RN(F) ≤ 16
√

2
N

EX
[ ∫ ∞

0

√
logN(u,F(XN

1 ), ‖ · ‖2) du
]

1For a scalar a ∈ R, the notation bac denotes the greatest integer less than or equal to a.
2 A collection of zero-mean random variables {Xθ, θ ∈ T} is a sub-Gaussian process with respect to a

metric ρ on T if, for all θ, θ′ ∈ T, and λ ∈ R, we have E[eλ(Xθ−Xθ′ )] ≤ exp
(λ2ρ2(θ,θ′)

2

)
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Proof. Denoting −F := {−f | f ∈ F} and the Rademacher process rN (f(xN1 )) :=
∑

i σif(xi),
we have for any collection xN1 = {x1, · · · , xN} of points

sup
f∈F
|∑i σif(xi)| = sup

f∈F∪−F

∑
i σif(xi)

≤ sup
f∈F

∑
iσif(xi) + sup

f∈−F

∑
iσif(xi)

where we used that fact that supf∈F
∑

i σif(xi) and supf∈−F
∑

i σif(xi) are non-negative since
0 ∈ F by assumption. Since the Rademacher random variables are i.i.d. uniform in {±1},
σi and −σi have same distribution, and Eσ

[
supf∈F

∑
i σif(xi)

]
= Eσ

[
supf∈−F

∑
i σif(xi)

]
.

And by Dudley’s theorem, this last quantity is less than 8
√

2
N

∫ ∞
0

√
logN(u,F(xN1 ), ‖ · ‖2) du

since we know that the process {∑N
i=1 σif(xi) | f ∈ F} is sub-Gaussian with respect to ‖ · ‖2

on the set F(xN1 ). Finally,

RN(F) = 1
N
EX,σ

[
supf∈F

∣∣∑N
i=1 σif(Xi)

∣∣]
≤ 2

N
EX,σ

[
supf∈F

∑N
i=1 σif(Xi)

]
≤ 16

√
2

N
EX
[ ∫ ∞

0

√
logN(u,F(XN

1 ), ‖ · ‖2) du
]

Theorem 5.3. For any indexed class F = {fθ |θ ∈ Θ} of real-valued functions which is
b-uniformly bounded and L-smoothly parametrized with respect to a norm ‖ · ‖Θ on Θ, and
such that 0 ∈ F ,

RN(F) ≤ 16
√

2L√
N

∫ ∞
0

√
logN(v,Θ, ‖ · ‖Θ) dv

Proof. For any fθ, fθ′ ∈ F , and collection xN1

‖fθ(xN1 )− fθ′(xN1 )‖2
2 =

∑N
i=1(fθ(xi)− fθ′(xi))2

≤∑N
i=1 |||fθ − fθ′|||

2

≤ NL2‖θ − θ′‖2
Θ

Thus N(δ,F(xN1 ), ‖ · ‖2) ≤ N
(

δ
L
√
N
,Θ, ‖ · ‖Θ

)
by definition of the covering number. Hence, a

Lipschitz parameterization allows us to translate a cover of the parameter space Θ into a
cover of the data-dependent function space F(xN1 ). Applying Proposition 5.1 with the change
of variable v := u

L
√
N

in the entropy integral gives the claimed result.

Hence, a Lipschitz parametrization allows us to bound the Rademacher complexity of F
by the entropy integral of its parameter space Θ
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Smooth parametrization on hypercubes. As an illustration, assume F := {fθ |θ ∈
[0, a]d} is L-smoothly parametrized with respect to the infinite norm ‖ · ‖∞ on the hypercube
[0, a]d. Using our earlier result on the covering of hypercubes, the entropy integral of [0, a]d is∫ ∞

0

√
logN(δ, [0, a]d, ‖ · ‖∞) dδ ≤

∫ a
2

0

√
d log

(
a
2δ

+ 1
)
dδ

= a
√
d

2

∫ 1

0

√
log( 1

u
+ 1) du

Theorem 5.3 gives RN(F) ≤ 8 aL
√

2d√
N

∫ 1

0

√
log( 1

u
+ 1) du.

5.8 Smooth parametrization of VIP’s
The implicit function p 7→ x?θ(p), mapping from the predictor space D to the state space
Rn is defined as the solution of the variational inequality problem VI(K(d), Fθ), where Fθ is
chosen within a function class {Fθ |θ ∈ Θ}. Hence, requiring {Fθ |θ ∈ Θ} to be smoothly
parametrized does not allow us to directly apply Theorem 5.3 to bound the Rademacher
complexity by the entropy integral of Θ. To resolve this difficulty, we use a modified version
of the results in [174] on the Lipschitz continuity of solutions to variational inequalities. Let
us define PX the Euclidean projection onto a subset X of Rn.

Lemma 5.1. For any compact convex subset K of Rn, for any c-strong-monotone, L-Lipschitz
mapping F , and for any x, x′ ∈ Rn, and denoting k :=

√
1− c2/L2, we have

‖PK(x− c
L2F (x))− PK(x′ − c

L2F (x′))‖2 ≤ k‖x− x′‖2

Proof. Let us denote α := c
L2 . Since K is convex, PK is 1-Lipschitz and the left-hand side

of the inequality is less than ‖(x − x′) − α(F (x) − F (x′))‖2. The square of this quantity
is ‖x − x′‖2

2 + α2‖F (x) − F (x′)‖2
2 − 2α〈x − x′, F (x) − F (x′)〉. By Lipschitz continuity,

‖F (x) − F (x′)‖2
2 ≤ L2‖x − x′‖2

2, and by strong monotonicity, −〈x − x′, F (x) − F (x′)〉 ≤
−c‖x−x′‖2

2. Hence the left-hand side of the inequality is less than (1 +α2L2−2α c)‖x−x′‖2
2.

Noting that 1 +α2L2− 2α c = 1− c2/L2 ∈ [0, 1) since we have necessarily L ≥ c, we take the
square root and obtain our claim.

Proposition 5.2. (Smoothly parametrized VIP) For any parametric variational inequality
problem, {VI(K(d), Fθ) | (θ,d) ∈ Θ×D}, such that

(a) K(d) is compact convex subset of Rn for all d ∈ D
(b) Fθ is c-strong-monotone and L-Lipschitz for all θ ∈ Θ
(c) |||Fθ − Fθ′ ||| ≤ LΘ‖θ − θ′‖Θ for all θ,θ′ ∈ Θ

the unique solution x?θ(d) to VI(K(d), Fθ) satisfies, for all θ,θ′ ∈ Θ and for all d,d′ ∈ D

‖x?θ′(d)− x?θ(d)‖2 ≤ cLΘ

L2
(

1−
√

1− c2

L2

)‖θ − θ′‖Θ
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Proof. Since the unique solution x?θ(d) of VI(K(d), Fθ) can be equivalently characterized as
the unique solution of the fixed point problem x = PK(d)(x− c

L2Fθ(x)) , see [61, §1.5.8.], we
define, for all (θ,d,x) ∈ Θ×D × Rn

Qθ,d(x) := PK(d)(x− c
L2Fθ(x))

We have for all θ,θ′ ∈ Θ, and for all d ∈ D

‖x?θ′(d)− x?θ(d)‖2 = ‖Qθ′,d(x?θ′(d))−Qθ,d(x?θ(d))‖2

≤ ‖Qθ′,d(x?θ′(d))−Qθ′,d(x?θ(d))‖2

+ ‖Qθ′,d(x?θ(d))−Qθ,d(x?θ(d))‖2

From Lemma 5.1, the first term in the sum is less than
√

1− c2

L2 ‖x?θ′(d) − x?θ(d)‖2. Note

that 1− c2

L2 ∈ [0, 1). And PK(d) being 1-Lipschitz, the second term in the sum, denoted by T ,
is upper bounded by

T ≤ ‖x?θ(d)− c
L2Fθ(x?θ(d))− (x?θ(d)− c

L2Fθ′(x?θ(d)))‖2

= c
L2‖Fθ(x?θ(d))− Fθ′(x?θ(d))‖2

≤ cLΘ

L2 ‖θ − θ′‖Θ

Putting together both bounds and re-arranging the terms proves our claim.

Combining Theorem 5.3 and Proposition 5.2, we obtain a tail bound on the distribution
of the random variable supθ∈Θ |RN (θ)−R(θ)| = ‖PN − P‖L, which we recall is a function of
the collection dN1 of i.i.d. samples drawn from a distribution P over the predictor space D.

Theorem 5.4. For any parametric variational inequality problem {VI(K(d), Fθ) | (θ,d) ∈
Θ×D} satisfying assumptions

(a) K(d) is compact convex subset of Rn for all d ∈ D
(b) Fθ is c-strong-monotone and L-Lipschitz for all θ ∈ Θ
(c) |||Fθ − Fθ′ ||| ≤ LΘ‖θ − θ′‖Θ for all θ,θ′ ∈ Θ
(d) diam‖·‖Θ(Θ) <∞

and for any Lh-Lipschitz function h : Rn → Rm, the loss class L in (5.16) is L̃-smoothly
parametrized and b-uniformly bounded with constants

L̃ := cLhLΘ

L2
(

1−
√

1− c2

L2

) (5.18)

b := L̃ diam‖·‖Θ(Θ) (5.19)

and we have RN(L) ≤ 16
√

2L̃√
N

∫ ∞
0

√
logN(v,Θ, ‖ · ‖Θ) dv.
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Proof. Since `θ? = 0 ∈ L, we only need to show that the loss class L is smoothly parametrized
and uniformly bounded with given in (5.18) and (5.19), since the tail bound then follows
immediately from Theorem 5.3. In order to simplify notation, we pose h?θ(d) = h(x?θ(d)),
then the loss is `θ(d) = ‖h(x?θ?(d))− h(x?θ(d))‖ = ‖h?θ?(d)− h?θ(d)‖. We have, for all d and
for all θ,θ′ ∈ Θ

|`θ(d)− `θ′(d)| ≤ ‖(h?θ?(d)− h?θ(d))− (h?θ?(d)− h?θ′(d))‖
= ‖h?θ(d)− h?θ′(d)‖
≤ Lh‖x?θ(d)− x?θ′(d)‖2

≤ cLhLΘ

L2(1−
√

1−c2/L2)
‖θ − θ′‖Θ

where the first inequality is obtained from the 1-Lipschitz continuity of any norm (from the
triangle inequality), and the third inequality from Proposition 5.2. This gives us the Lipschitz
constant L̃. And for all (θ,d) ∈ Θ×D, we have `θ(d) = ‖h?θ?(d)− h?θ(d)‖ ≤ L̃‖θ − θ?‖Θ ≤
L̃ diam‖·‖Θ(Θ). Hence L is (L̃ diam‖·‖Θ(Θ))-uniformly bounded.

In the setting of Theorem 5.4, assume the entropy integral
∫ ∞

0

√
logN(v,Θ, ‖ · ‖Θ) dv

of the index set Θ finite. Then RN(L)→ 0, and Corollary 5.1 states that ‖PN − P‖L a.s.→ 0.
Using the fact that RN(L) = O( 1√

N
) strengthens the result

Corollary 5.2. Consider the setting of Theorem 5.4. If the entropy integral defined by∫ ∞
0

√
logN(v,Θ, ‖ · ‖Θ) dv is finite, then, for all α ∈ (0, 1

2
), the loss class L defined in (5.16)

is such that ‖PN − P‖L = O( 1
Nα ) almost surely.

Proof. It follows from Theorem 5.4 that there exists a positive scalar κ such thatRN (L) ≤ κ√
N
.

From Theorem 5.1, P
[
‖PN − P‖L ≥ 2κ√

N
+ δ
]
≤ exp

(
− N δ2

2 b2

)
for all δ ∈ R>0. Let α be a

scalar in (0, 1
2
). Substituting δ := 1

Nα , we have P
[
‖PN − P‖L ≥ 2κ√

N
+ 1

Nα

]
≤ exp

(
− N1−2α

2 b2

)
.

Hence,
∑∞

N=1 P
[
‖PN − P‖L ≥ 2κ√

N
+ 1

Nα

]
≤ ∑∞N=1 e

−N
1−2α

2 b2 < ∞ since 1 − 2α > 0. From
Borel-Cantelli lemma, there exists a positive integer N0 such that for all N ≥ N0, we have
‖PN − P‖L ≤ 2κ√

N
+ 1

Nα almost surely. We conclude our proof by noting that 2κ√
N

= O( 1
Nα )

since α ∈ (0, 1
2
).

The results derived up to now, specifically Theorem 5.4 and Corollary 5.2, apply to any
parametric variational inequality problem and any parametric convex optimization problem
{min fθ(x) s.t. x ∈ K(d) | (d,θ) ∈ D×Θ} with fθ belonging to an indexed-family of convex
differentiable potentials. Indeed, the variational inequality VI(K(d),∇fθ), with mapping
substituted with the gradient ∇fθ of the potential fθ, is known as the first-order optimality
condition for convex programs, see e.g. [27, §4.2.3.], where c-strong-monotonicity and L-
Lipschitz continuity of ∇fθ are respectively equivalent to c-strong-convexity and L-Lipschitz
gradient of fθ.
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5.9 Application to selfish routing
In the remainder of the chapter, we seek to understand how the learnability of the edge
cost functions depends on the characteristics of the network G of the routing game, and on
the strong monotonicity and Lipschitz constants of the functions within the base classM.
With this objective in mind, let |||F |||F = supx∈[0,d̄]E ‖F (x)‖2 be a metric on F1,F2 defined
in (5.9) and (5.10), ‖f‖∞ = supx∈[0,1] |f(x)| be a metric onM (the index set of F2), and let
|||{fe(·)}e|||ME = maxe∈E ‖fe‖∞ be a metric onME (the index set of F1).

Lemma 5.2. The function classes F1 and F2 defined in (5.9) and (5.10) are both
√
|E|-

smoothly parametrized over respective base classesME andM, whereM is given in (5.7)-
(5.8).

Proof. We prove our claim for F1, the proof for F2 being similar. For all Ff, Fg ∈ F1, we
have

|||Ff − Fg|||2F = supx∈[0,d̄]E
∑

e(fe(xe/me)− ge(xe/me))
2

≤∑e( supxe∈[0,d̄] |fe(xe/me)− ge(xe/me)| )2

≤∑e( supx∈[0,1] |fe(x)− ge(x)| )2

=
∑

e ‖fe − ge‖2
∞

≤ |E| |||f− g|||2ME �

Hence the cost classes F1 and F2 satisfy assumption (c) in Theorem 5.4 with LΘ :=
√
|E|.

Assumption (b) is satisfied by design since F1 and F2 only contain
(

L
mine∈E me

)
-Lipschitz and(

c
maxe∈E me

)
-strong-monotone mappings. Assumption (a) follows from the definition of the

routing game, and Assumption (d) is satisfied since diam‖·‖∞(M) = diam|||·|||(ME) = L− c.
Theorem 5.4 then gives us a bound on the complexity of the loss class RN(L) in terms of
the entropy integral of the base classME if the cost class is F1, or in terms of the entropy
integral of the base classM if the cost class is F2.

Lemma 5.3. The base classM defined in (5.7)-(5.8) has metric entropy logN(δ,M, ‖·‖∞) ≤(
L−c
δ

+ 1
)

log 2 for δ ∈ (0, L−c
2

) and metric entropy zero for δ ≥ L−c
2
.

Corollary 5.3. The base class M defined in (5.7)-(5.8) has entropy integral defined by∫ ∞
0

√
logN(δ,M, ‖ · ‖∞) dδ that is less than (L− c)√log 2

∫ 1
2

0

√
1
u

+ 1 du.

The proofs of Lemma 5.3 and Corollary 5.3 appear in the Appendix. Corollary 5.3 gives
us a concrete upper bound on on the class complexity RN(L) if the cost class is F2. Let us
define the constant κ and the ratio r of the minimum edge capacity over the maximum edge
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capacity

κ := 16
√

2 log 2

∫ 1
2

0

√
1
u

+ 1 du ≈ 29 (5.20)

r :=
mine∈E me

maxe∈E me

(5.21)

Theorem 5.5. For the routing game with edge cost functions parametrized by the cost class
F2 in (5.10) with base class M in (5.7)-(5.8), given the predictor-response relationship in
(5.11) with a Lh-Lipschitz observation mapping h, and given constants κ and r in (5.20) and
(5.21), the Rademacher complexity RN(L) of the loss class L in (5.16) is bounded by

RN(L) ≤ κLh
√
|E|mine∈E me√

N
J (c, L, r) (5.22)

J (c, L, r) := r c (L−c)

L2
(

1−
√

1− c2

L2 r
2
) (5.23)

If we allow for different shapes of the cost functions between edges, i.e. the cost class is F1,
we note that its index setME has metric entropy logN(δ,ME , |||·|||ME ) = |E| logN(δ,M, ‖ ·
‖∞), hence an additional factor

√
|E| appears in the right-hand side of (5.22). We recall that

‖PN −P‖L is equal to supθ∈Θ |RN (θ)−R(θ)|, the absolute deviation between the population
and empirical risks. Combining with Theorem 5.1 and noting that L is uniformly bounded
by Lh mine∈E me(L− c)

√
|E|J (c, L, r), we obtain

Theorem 5.6. Given the setting of Theorem 5.5 and ε, δ ∈ R>0, a sufficient condition for
having ‖PN − P‖L ≤ ε with probability at least 1− δ is for the sample size N to be

√
N ≥

Lh
√
|E|mine∈E me J (c,L,r)

(
2κ+(L−c)

√
2 log(1

δ
)
)

ε

Asymptotic analysis. We now seek to understand how the above lower bound, which is
a measure of the learnability of the edge cost functions, is affected by the ratio r := mine∈E me

maxe∈E me
,

along with the Lipschitz constant L and the strong monotonicity constant c of the functions
in the base classM. We note that the ratio c

L
, which is always in (0, 1], measures by how

much the elements ofM deviates from an affine function. In particular, if c = L, the base
classM is reduced to the singleton {x ∈ [0, 1] 7→ c x}.

Proposition 5.3. Denoting f(s) ∼ g(s) if f(s)
g(s)
→
s→s0

1 (asymptotic equivalence), J (c, L, r) in

(5.23) is such that

c
L
→ 0 =⇒ J (c, L, r) ∼ 2L

c r
(5.24)

r → 0 =⇒ J (c, L, r) ∼ 2(L−c)
c r

(5.25)
c
L
→ 1 =⇒ J (c, L, r) ∼ r(1− c

L
)

1−
√

1−r2 → 0 (5.26)
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Proof. Denoting α := c
L
, we can re-write J (c, L, r) as

J (c, L, r) = L(1−α)

c r
(α r)2

(
1−
√

1−(α r)2
) (5.27)

since 1
x

(
1−
√

1− x
)

= 1
x

(
1
2
x + o(x)

)
→ 1

2
, whenever α r = o(1), the denominator in (5.27)

is asymptotically equivalent to c r
2
, which proves (5.25). In addition, if α = o(1), the

numerator in (5.27) converges to
√
L, which proves (5.24). To prove (5.26), we re-write

J (c, L, r) = r α(1−α)

1−
√

1−α2r2 �

Theorem 5.6 and Proposition 5.3 have the following interpretations: to maintain a high
consistency of the empirical risk, the sample size N needs to grow proportionally to (a) L
when L grows; (b) 1

c2
when c vanishes; (c) 1

r2 when r vanishes; (d) |E|2 when |E| grows and
the edges costs are allowed to be different functions of the normalized flows { xe

me
}e∈E ; (e) |E|

when |E| grows and the edges costs are the same function of the normalized flows { xe
me
}e∈E .

5.10 Conclusion
We studied the learnability of the edge cost functions in the routing game from observations
of the population demand and the equilibrium flow that it induces. We motivated the
analysis of the uniform laws for the loss class since it plays a key role in understanding
the consistency of the empirical risk as a statistical estimator for the quality of the learned
model. We gave precise results on the tail bound of the uniform deviation between the
population risk and empirical risk in terms of the entropy integral of their index set. Using
sensitivity analysis in optimization theory, we then argued that variations in the index set
can be smoothly translated into variations in the loss class, which allows us to derive lower
bounds on the sample size required to have constant prediction capabilities, as a function
of the characteristics of the routing game. Our results are very general since they hold
independently of the sample distribution and of the edge costs parametrization. And while
deriving them in the context of the routing game, we provided results that hold for general
convex optimization and variational inequality problems with monotone operators.
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Chapter 6

Upper bounds on the prediction error

We consider a class of supervised learning problems in which the response is implicitly defined
as a solution of a convex program depending on the predictors, and for which the goal is
to estimate the convex objective. Specifically, we focus on the learnability of this class of
learning problems, where the learnability is measured as the number of samples needed to
have a small prediction error. Bounds on the sample size depend on the complexity of a class
of implicit functions mapping the predictor to the solution of the convex program. Using
sensitivity analysis in optimization, we characterize the complexity of the implicit class, and
then we leverage results on the complexity of function classes and in approximation theory to
obtain tail bounds on the prediction error as a function of the characteristics of the convex
program to be estimated. This gives sufficient conditions on the size of the training data
needed to have good generalization properties, as a function of the complexity of the class of
objective functions to be learned.

6.1 Introduction
In supervised learning, the goal is to predict a response variable y ∈ Y from observations of
the random predictor p ∈ P , by estimating a function from P to Y that is generally explicit
in p. Examples include linear and logit functions, random forests, neural networks, see e.g.
[78] for an overview. In this chapter, for each predictor p ∈ P, we consider the problem of
learning a parametric convex objective f(·,p) : Rn → R associated to a convex optimization
program (COP) of the form

min f(x,p) s.t. x ∈ D(p) (6.1)

where {D(p)}p∈P is a family of convex compact domains within Rn. We suppose that the
true objective fθ? belongs to an indexed family {fθ(·,p) : Rn → R | (θ,p) ∈ Θ × P} of
objectives fθ that are differentiable, strongly convex with parameter c, and Lipschitz gradient
with constant L for each (θ,p) ∈ Θ × P. Hence, for each (θ,p), the COP defined by
(fθ(·,p),D(p)), i.e. the program minx∈D(p) fθ(x,p), has a unique solution x?θ(p), see [27].
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The well-defined map x?θ(·) : P → Rn is thus an implicit function of the predictor p ∈ P,
since evaluating it at each point requires to solve a COP. We note that Θ is the set of allowable
parameters. It can be finite-dimensional, the learning problem is then parametric, or it can
be a function class, in which case the problem is non-parametric. Formally, we endow the
predictor space P with a structure of measure space (P ,Σ,P) where Σ is a σ-algebra of
measurable sets, and P is a probability measure. The learning problem consists in estimating
θ ∈ Θ from a collection of i.i.d. samples {(pi,yi)}Ni=1, with the pi’s drawn from P, and with
relationship given by

yi = h(x?θ?(pi)) + εi, i ∈ [N ] (6.2)

where [N ] denotes {1, · · · , N}, εi ∈ Rm is a random variable representing the noise in the ith
response variable yi, and h(·) is an Lh-Lipschitz observation model continuously mapping
from the state space Rn to an observed space in Rm. A classic decision-theoretic approach is
to choose θ giving rise to the lowest mean-squared error (MSE) under the empirical measure

RN(θ) := 1
N

∑N
i=1 ‖yi − h(x?θ(pi))‖2

2 (6.3)

where ‖ · ‖2 is the Euclidean norm on Rm. The expression (6.3) is known as the empirical
risk. Its minimization lies at the heart of the empirical risk minimization principle. A closely
related measure of the fit quality is the population risk

R(θ) := Ep,y
[
‖y− h(x?θ(p))‖2

2

]
(6.4)

Lemma 6.1. Let H be a Hilbert space with inner product 〈·, ·〉, norm ‖ · ‖2, and P the
distribution over the predictor X. For any random variables Y ∈ H and f(X) ∈ H that is
L2(P) and P-measurable, the MSE is E

[
‖Y − f(X)‖2

2

]
= E

[
‖Y − E[Y |X]‖2

2

]
+ E

[
‖E[Y |X]−

f(X)‖2
2

]
.

Proof. Let g(X) be a P-measurable random variable. Hence,

E[〈E[Y |X], g(X)〉] = E[E[〈Y, g(X)〉|X]] = E[〈Y, g(X)〉]

The random variable Y − E[Y |X] is orthogonal to the space of L2 and P-measurable random
variables, which includes E[Y |X] − f(X). Then, from the Pythagorean theorem, ‖Y −
f(X)‖2

2 = ‖Y − E[Y |X] + E[Y |X]− f(X)‖2
2 = ‖Y − E[Y |X]‖2

2 + ‖E[Y |X]− f(X)‖2
2.

We note that the conditional expectation of y given p is E[y|p] = h(x?θ?(p)) from
assumption (6.2). If we define the following quantity

ρ(θ,θ?) := Ep
[
‖h(x?θ(p))− h(x?θ?(p))‖2

2

] 1
2 (6.5)

then the identity in Lemma 6.1 becomes

R(θ) = R(θ?) + ρ2(θ,θ?) (6.6)
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Hence, the parameter θ minimizing criterion (6.4) is θ?, setting ρ(θ,θ?) to zero, and setting
the implicit function to h(x?θ?(·)), i.e. it is the Bayes’ least-squares, or the conditional
expectation of y given p. Since R(θ?) is fixed, it is thus natural to measure the quality
of an estimate θ in terms of ρ(θ,θ?) defined in (6.5). The quantity ρ(θ,θ?) is also called
the expected prediction error. Having good generalization guarantees for a trained model is
extremely important in practice because it gives us a measure of the quality of the ultimately
chosen model, see [78, Chap. 7]. From Lemma 6.1, the square of the prediction error ρ(θ,θ?)
is also equal to the excess risk R(θ)−R(θ?).

Problem statement

Given a fixed collection of N samples {(p1,y1), (p2,y2), · · · , (pN ,yN)}, and a least-squares
estimate θ̂ ∈ arg minθ∈ΘRN (θ), we first study tail bounds on the empirical analogue of (6.5)

ρN(θ̂,θ?) :=
[

1
N

∑N
i=1 ‖h(x?

θ̂
(pi))− h(x?θ?(pi))‖2

2

] 1
2 (6.7)

We derive tail bounds on ρN(θ̂,θ?) which intuitively depends on a notion of the complexity
of the implicit function class

H := {p ∈ P 7→ h(x?θ(p)) |θ ∈ Θ} (6.8)

Studying the behavior of ρN (θ̂,θ?) gives information on the expected prediction error ρ(θ̂,θ?).
Specifically, we want to know if ρN (θ̂,θ?)2 approaches ρ(θ̂,θ?)2 as the number N of observa-
tions increases. In other words, we want to know if the prediction error under the empirical
measure agrees with its population average. In general, θ̂ depends on the samples, hence it
is random, and controlling the deviation |ρN(θ̂,θ?)2 − ρ(θ̂,θ?)2| requires strong result, such
as the uniform bound supθ∈Θ |ρN(θ,θ?)2 − ρ(θ,θ?)2|. We derive tail bounds on the uniform
deviation, which depends on the complexity of the loss class

L := {p ∈ P 7→ ‖h(x?θ(p))− h(x?θ?(p))‖2
2} (6.9)

Denoting PN the empirical distribution assigning mass 1
N

to each of {pi}i∈[N ], and the uniform
bound

‖P− PN‖L := sup
θ∈Θ
|ρ(θ,θ?)2 − ρN(θ,θ?)2| (6.10)

we can combine tail bounds on ρN(θ̂,θ?) and ‖P− PN‖L to control the distribution of the
prediction error ρ(θ̂,θ?) since we have the upper bound

ρ(θ̂,θ?) ≤ ‖P− PN‖L + ρN(θ̂,θ?) (6.11)
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Motivation

The problem of estimating the convex objective f in the COP (6.1) is a very practical problem
which emerges in many fields. For example, in control theory, we may seek to fit a lower
complexity controller (thus easier to automate) from observing outputs of a sophisticated one
available through, e.g. a human expert or model predictive control [164, 94]. In economics,
consumer’s purchases are modeled in order to maximize a utility function representing the
satisfaction from one’s purchases. This function is in general unknown to both the economist
and the consumer, but can be learned by observing consumer purchases in response to price
changes [94]. In transportation [131], routing games study drivers’ routing decisions in a
network in which traveling each edge incurs a cost. Estimating the edge cost functions is
challenging since they may represent some combination of the travel time, the tolls, and
other factors, which are not directly observable. In practice, it is often possible to observe the
equilibrium flows induced by the selfish routing of agents through the sensing infrastructure,
and to learn the underlying cost functions [19, 150]. In general, numerous processes involve
agents that behave optimally with respect to utility functions, and [85], [19] use the COP
framework to learn the utility functions in Nash equilibrium problems.

Modeling real-world processes as lower complexity COPs is common, as it enables to
leverage powerful mathematical tools for the study of such processes. In economics, knowing
the consumer utility function enables one to adjust prices to achieve some demand level [94].
In numerous cases in control, a low complexity controller requires less computation for little
performance loss [94, 163]. In transportation, the selfish behavior of agents (from shorted
path routing) leads to an aggregate cost in the network worse than the system’s optimum,
and which can be analytically quantified [137, 46]. Taxation schemes can be designed to
incentivize system optimal drivers’ decisions [65, 91].

However, low complexity models rely upon having an accurate approximation of the real
ones. For example, system mischaracterizations in selfish routing can cause taxes designed
for one problem instance to incentivize inefficient behavior on different, yet closely-related
instances [30]. Hence, we want to be able to measure the quality of the learned model. In the
present chapter, we present a statistical framework for the fitting of equilibrium models using
the standard empirical risk minimization principle. For the class of implicit models (6.2),
it is then critical to be able to have theoretical guarantees on the quality of the fit, as the
number N of observations grows.

Related work

In order to obtain tail bounds on the empirical prediction error ρN (θ̂,θ?), we follow the work
of [70, 98, 97, 11], and use characterization of the implicit class H given in (6.8) in terms of its
Gaussian complexity, and its localized variants. We also extend the theory from real-valued
functions to functions taking values in Rm, by adapting results on additive regression models
[145, 77, 119].
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To obtain tail bounds on ‖P − PN‖L, we study convergence properties in the uniform
norm, known as Glivenko-Cantelli properties [156], [157]. We leverage results relating the
convergence properties of ‖P − PN‖L with the Rademacher complexity of the loss class L
given in (6.9), by following the approach of [12], [11], [99]. Then we use approximation theory
[54, 132, 37] to bound the Rademacher complexity of L by a function of its metric entropy
[96].

In contrast to classic prediction models, x?θ(·) is from an implicit class since it is defined
as solutions to COPs. To characterize the complexity of the classes H and L given in (6.8)
and (6.9), we translate variations in the parameter space Θ into variations in the classes H
and L. This requires sensitivity results in optimization theory [48], [174]. These types of
learning problems, known as inverse optimization, were addressed in [85], [94], [19], [150], but
with little to no analysis on their learnability.

Contributions and outline

In Section 6.2, we provide three fully-developed applications to the problem of learning a
convex objective to motivate our study. We then present results on the Lipschitz properties
of solutions to convex programs in Section 6.3. In Section 6.4, we provide tail bounds on
the prediction error ρN(θ̂,θ?) and on the uniform deviation ‖P − PN‖L in terms of the
Gaussian and Rademacher complexities. In Section 6.5, we bound the Rademacher and
Gaussian complexities by the metric entropy, which enables us to derive our final tail bounds
in Section 6.6.

6.2 Applications

Routing games

Setting. Routing games go back to the 1950s [166], and are extensively studied in transporta-
tion [131]. We consider a non-cooperative game on a network represented by a directed graph
G = (V , E) equipped with continuous, non-decreasing congestion functions ce(·) : R+ → R>0

for each e ∈ E . The set of players is partitioned in populations {Xk}k∈[K]. For each
k ∈ [K], players in Xk have available a set of simple paths Pk from a common source
sk ∈ V to a common sink tk ∈ V. For each population Xk, we define dk ∈ R+ its total
flow, and µk = (µkp)p∈Pk ∈ RPk+ its path assignment, which satisfies

∑
p∈Pk µ

k
p = dk. We

denote P the disjoint union P = tKk=1Pk, thus RP+ = ΠK
k=1R

Pk
+ . Under population demand

d = (dk)k∈[K], the path assignment can be summarized by µ = (µ1, · · · ,µK) in the feasible
set: ∆(d) :=

{
µ ∈ RP+ :

∑
p∈Pk µ

k
p = dk, ∀ k ∈ [K]

}
. The path assignment determines the

edge flow defined as xe =
∑K

k=1

∑
p∈Pk:e∈p µ

k
p, which can be written compactly as xe = (Mµ)e

where M ∈ RE×P is an incidence matrix with entries defined as Me,p = 1e∈p. For each edge e,
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the edge flow incurs a cost ce(xe), and the cost of choosing a path p is the sum of edge costs
along the path, i.e.

∑
e∈p ce(xe).

Equilibrium in routing games: Let us define the function f : RE+ → R such that
f(x) =

∑
e∈E
∫ xe

0
ce(u)du with x = (xe)e∈E ∈ R|E|, and the set D(d) = M∆(d) = {Mµ :

µ ∈ ∆(d)} ⊂ RE+ of feasible edge flows. We say that x? ∈ D(d) is a Nash equilibrium if it is
an optimal solution of the COP minx∈D(d) f(x), see [131]. Note that f is convex since each ce
is non-decreasing by assumption, and D(d) is also compact convex since it is the image of M
restricted to the compact convex set ∆(d). In this application, the demand vector d is the
predictor, which we assume lies within a compact P .

Learning the congestion functions: We measure the edge flows on a subset A ⊆ E
of the edges, i.e. the observation mapping is the projection of RE+ into RA+ defined by
h : x 7→ (xe)e∈A. It remains to define the indexed family {fθ |θ ∈ Θ} of objectives to be
estimated. Following standard approach in traffic modeling [31], [29], and in inverse modeling
[19], [150], we assume available the capacity me and the base cost c0

e of each edge e ∈ E , and
define the class of univariate functions Θ := {θ : [0, 1]→ R+, L-Lipschitz, c-strong-monotone}.
Then for each θ ∈ Θ and e ∈ E , the cost functions are given by cθ,e(xe) = c0

e + θ( xe
me

), i.e.
the functions are invariant with respect to the normalized edge flows xe/me on each edge e.
Then fθ(x) =

∑
e∈E
∫ xe

0
cθ,e(u)du.

Usage. Learning the edge cost functions cθ,e is used to quantify the inefficiency of
equilibria in routing games [137, 46], and to design taxation schemes to incentivize system
optimal decisions [65, 91], hence having an accurate estimate θ is critical.

Consumer utility

Setting. We consider n products indexed by i ∈ [n], with prices p = (pi)i∈[n] ∈ [0, pmax]n

(where pmax ∈ R>0 is the maximum price) and demand x = (xi)i∈[n]. Consumer purchases
are assumed to solve the COP: minx∈Rn+ p

Tx − u(x), where u : Rn
+ → R is a concave and

non-decreasing utility function modeling the consumer’s satisfaction from its purchases. With
Sn− the set of negative semi-definite matrices of Rn×n, we learn u in the class F := {x ∈ Rn

+ 7→
1
2
xTQx+rTx | (Q, r) ∈ Θ} parametrized over Θ := {(Q, r) ∈ Sn−×Rn

+ |Qxmax +r ≥ 0, cI �
−Q � LI, ‖r‖2 ≤ rmax}, where xmax ∈ Rn

+ is the maximum demand vector. Hence, by
construction of Θ, we assume that the utility function is concave quadratic and is increasing,
i.e. ∇u(x) = Qx + r ≥ 0, for all x ∈ Rn

+ such that x ≤ xmax. Note that in this application,
the objective function depends on the random predictors p (the prices), while the domain
Rn

+ is independent from p. For each estimate (Q̂, r̂) ∈ Θ, or corresponding û ∈ F , we want
to say something about the quality of the fit.

Usage. The estimate û can be used to set prices p to achieve a target demand level x,
see [94]. Hence, having theoretical guarantees on the quality of the learned model is of great
importance.
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Controller fitting

Setting. We consider a dynamical system with state xt ∈ Rn, input ut ∈ Rm, and i.i.d.
noise wt ∈ Rn at time t. The linear dynamics are xt+1 = Axt + But + wt, t ≥ 0. Given
a convex stage cost function ` : Rn × Rm → R, the stochastic control problem consists in
finding a control policy {ut}t≥0 that minimizes lim sup

T→∞

1
T
E
∑T−1

t=1 `(xt,ut) with the constraint

Fut ≤ h, t ≥ 0, where F ∈ Rp×m and h ∈ Rp. We refer to [18, 94] for a full technical
discussion on stochastic control.

Learning an approximate control. We are given samples of state-control (or input-
output) pairs {(xi,ui)}i∈[N ] from a suboptimal (but complex) control policy run by a human
expert or a computationally expensive controller such as model predictive control [18, 164],
and we want to learn a global approximate value function v : Rn → R that gives us a lower
complexity controller via the optimization program: minu : Fu≤h `(x,u) + v(Ax + Bu). This
control policy is known as the approximate dynamic programming policy [18] and a standard
approach [94] is to learn v in the class F := {z 7→ zTPz |P ∈ Θ}, where the index set Θ is
Θ := {P ∈ Sn+ : cI � P � LI}.

Usage. We can use the program minu : Fu≤h `(x,u) + v(Ax+Bu) with a value function
estimate v̂ to approximate a policy with a computationally efficient controller, see [94].

6.3 Lipschitz properties of convex optimization
programs

The distribution of ρN (θ̂,θ?) given in (6.7), where θ̂ is the least-squares estimator minimizing
RN (θ) given in (6.3), should intuitively depend on the complexity of the implicit class H given
in (6.8). Similarly, the distribution of the uniform deviation ‖P−PN‖L = supθ∈Θ |ρ(θ,θ?)2−
ρN (θ,θ?)2|, which is random because it is a function of the collection {pi}i∈[N ] of i.i.d. random
variables sampled from P, should depend on the complexity of the loss class L given in (6.9).
At the heart of H and L, lies the implicit function p 7→ x?θ(p), mapping from the predictor
space P to the state space Rn, and defined as the solution to the COP(fθ(·,p),D(p)). Since
adding a constant to fθ will not affect the optimal solution, we study how the smoothness
properties of x?θ(·) with respect to θ and p result from the smoothness properties of the
objective gradient ∇xfθ. This allows us to characterize the complexity of H and L.

From convexity of fθ (by assumption), the first-order optimality condition for the COP
(fθ(·,p),D(p)) states that x?θ(p) is equivalently the solution to the following Variational
Inequality Problem VIP(∇xfθ(·,p),D(p)), (θ,p) ∈ Θ× P (see [27, §4.2.3])

find x ∈ D(p) s.t. 〈∇xfθ(x,p), x′ − x〉 ≥ 0, ∀x′ ∈ D(p) (6.12)

Since the objectives in {fθ(·,p) | (θ,p) ∈ Θ × P} are c-strongly convex and L-Lipschitz
gradient, which is equivalent to ∇xfθ(·,p) being L-Lipschitz and c-strongly monotone,1

1F : Rn → Rn is c-strongly monotone if for each x,x′ ∈ Rn, 〈∇fθ(x)−∇fθ(x′),x− x′〉 ≥ c ‖x− x′‖22
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see [61]. In addition, we suppose there exists a convex compact subset D of Rn such that
D(p) ⊂ D for all p ∈ P (such is the case in the applications presented in Section 6.2). Let
|||F ||| = supx∈D(p) ‖F (x)‖2 be a norm over the set of maps F : D → Rn, ‖ · ‖Θ a norm over
the index set Θ, and ‖ · ‖P a norm over the predictor space P .
Definition 6.1. Given a convex compact subset D of Rn, we say that a map F (·,θ,p) : D →
Rn is smoothly parametrized with respect to θ ∈ Θ and p ∈ P if there exist constants LΘ and
LP such that for each θ,θ′ ∈ Θ and for each p,p′ ∈ P, we have |||F (·,θ,p)− F (·,θ′,p′)||| ≤
LΘ‖θ − θ′‖Θ + LP‖p− p′‖P .

For instance, the objective function in the routing games framework presented in Section 6.2
has gradient ∇xfθ(x) = (cθ,e(xe))e∈E and is smoothly parametrized with constants LΘ =

√
|E|

and LP = 0, where Θ is the function class Θ = {θ : [0, 1]→ R+, L-Lipschitz, c-strong-monotone}
equipped with infinity norm ‖θ‖∞ = supt∈[0,1] |θ(t)|. For the application to consumer utility
(see Section 6.2), the index is θ = (Q, r), the index set is Θ = Sn− × Rn

+, the predictor space
is the hypercube [0, pmax]n, and the objective gradient is ∇xfθ(x,p) = p − r −Qx. With
‖ · ‖P = ‖ · ‖2, ‖Q‖op = sup

x∈Rn
‖Qx‖2, and ‖(Q, r)‖Θ = ‖Q‖op + ‖r‖2, the Lipschitz constants

are LP = 1 and LΘ = max(1, ‖xmax‖2).
We now provide the main result of the Section. We show that, for a “smoothly parametrized”

VIP, the solution to it is also smoothly parametrized.

Theorem 6.1. (Smooth VIP) For any parametric VIP(Fθ(·,p),D(p)), (θ,p) ∈ Θ×P, such
that

(a) D(p) is a compact convex subset of Rn for all p ∈ P
(b) ‖PD(p)(x)− PD(p′)(x)‖ ≤ L̃P‖p− p′‖P for all p,p′ ∈ P, x ∈ Rn

(c) Fθ is c-strong-monotone and L-Lipschitz for all θ ∈ Θ

(d) |||Fθ(·,p)− Fθ′(·,p′)||| ≤ LΘ‖θ − θ′‖Θ + LP‖p− p′‖P for all θ,θ′ ∈ Θ and p,p′ ∈ P
the unique solution x?θ(p) to VIP(Fθ(·,p),D(p)) satisfies, for all θ,θ′ ∈ Θ and for all
p,p′ ∈ P

‖x?θ′(p′)− x?θ(p)‖ ≤ (cLP/L
2+L̃P )‖p−p′‖P+(cLΘ/L

2) ‖θ−θ′‖Θ
1−
√

1−c2/L2

Proof. Since the unique solution x?θ(p) of VIP(Fθ,D(p)) can be equivalently characterized
as the unique solution of the fixed point problem x = PD(p)(x− c

L2Fθ(x,p)), we define, for
all (θ,p,q,x) ∈ Θ×P ×P ×Rn, the function Qθ,p,q(x) := PD(q)(x− c

L2Fθ(x,p)). Then for
all θ,θ′ ∈ Θ, and p ∈ P

‖x?θ′(p′)− x?θ(p)‖ = ‖Qθ′,p′(x?θ′(p′))−Qθ,p(x?θ(p))‖ ≤ T1 + T2 + T3

where T1 :=‖Qθ′,p′,p′(x?θ′(p′))−Qθ′,p′,p′(x?θ(p))‖
T2 :=‖Qθ′,p′,p′(x?θ(p))−Qθ,p,p′(x?θ(p))‖
T3 :=‖Qθ,p,p′(x?θ(p))−Qθ,p,p(x?θ(p))‖
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From Lemma 1, T1 is less than
√

1− c2

L2 ‖x?θ′(p′)− x?θ(p)‖2. Note that 1− c2

L2 ∈ [0, 1). And
PD(p′) being 1-Lipschitz, T2 is upper bounded by

T2 ≤ ‖x?θ(p)− c
L2Fθ(x?θ(p),p)− (x?θ(p)− c

L2Fθ′(x?θ(p),p′))‖2

= c
L2‖Fθ(x?θ(p),p)− Fθ′(x?θ(p),p′)‖2

≤ cLΘ

L2 ‖θ − θ′‖Θ + cLP
L2 ‖p− p′‖P

By assumption (b) we have that T3 ≤ L̃P‖p− p′‖D. Putting together the three bounds and
re-arranging the terms proves our claim.

We note that assumption (b) in Theorem 6.1 arises naturally in many applications. For
example, the routing games framework presented in Section 6.2 has a parametric feasible
set D(p) = M∆(p), see [174]. In general, any polyhedral feasible set with a parametric
right-hand side, i.e. of the form D(p) = {x ∈ Rn |Ax = p} has a smoothly parametrized
Euclidean projection, see [174].

6.4 Tail bounds using Rademacher and Gaussian
complexities

In this section, we first present general results which are instrumental in obtaining tail bounds
on the prediction error ρN(θ̂,θ?) defined in (6.7), which we recall is

ρN(θ̂,θ?) :=
[

1
N

∑N
i=1 ‖h(x?

θ̂
(pi))− h(x?θ?(pi))‖2

2

] 1
2

where θ̂ is a least-squares estimator with respect to the empirical MSE RN(θ) defined in
(6.3)

RN(θ) := 1
N

∑N
i=1 ‖yi − h(x?θ(pi))‖2

2

The general learning problem consists in estimating a function f : X → Rm from N predictors
{xi}Ni=1 from X and N responses {yi}Ni=1 from Rm with relationship

yi = f ?(xi) + εi, i ∈ [N ] (6.13)

where εi ∈ Rm are i.i.d. noise vectors of independent Gaussian random variables sampled from
N (0, diag(σ2)), with σ2 := (σ2

1, · · · , σ2
m) the vector of variances. With F a suitably chosen

subset of Rm-valued functions, we bound the prediction error ‖f̂ − f ?‖N :=
[

1
N

∑N
i=1 ‖f̂(xi)−

f ?(xi)‖2
2

] 1
2 , where f̂ is the least-squares estimator f̂ ∈ arg minf∈F

1
N

∑N
i=1 ‖yi − f(xi)‖2

2. We
have the following

Lemma 6.2. With {wij}i∈[N ],j∈[m] a collection of Nm i.i.d. samples drawn from N (0, 1), the
least-squares and Bayes’ estimates f̂ and f ? satisfy 1

2
‖f̂ − f ?‖2

N ≤
∑m

j=1
σj
N

∑N
i=1(f̂j(xi) −

f ?j (xi))wij.
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Proof. By definition of the least squares

1
N

∑N
i=1 ‖yi − f̂(xi))‖2

2 ≤ 1
N

∑N
i=1 ‖(yi − f ?(xi))‖2

2

Plugging yi = f ?(xi) + εi, we get

1
2N

∑N
i=1

∑m
j=1(f ?j (xi)) + σjwij − f̂j(xi))2 ≤ 1

2N

∑N
i=1

∑m
j=1(σjwij)

2

Developing the squares,

1
2N

∑N
i=1

∑m
j=1(f̂j(xi)− f ?j (xi))2 +

∑m
j=1

σj
N

∑N
i=1wij(f

?
j (xi)− f̂j(xi) ≤ 0

which proves the inequality.

The above inequality is known as the basic inequality for least squares, which we extend
to Rm-valued functions. Focusing on the 1-dimensional case (m = 1), the basic inequality
leads us to study local Gaussian complexities, which measures the complexity of a class F of
real-valued functions in a neighborhood of the a regression function f ? ∈ F . Denoting the
set F? := {f − f ?, f ∈ F},

Definition 6.2. We call local Gaussian complexity of a real-valued function class F around
f ? ∈ F at scale δ the quantity GN(δ,F?) := Ew[ sup

f∈F?, ‖f‖N≤δ
| 1
N

∑N
i=1 wif(xi)|] with wi ∼

N (0, 1) i.i.d.

The Gaussian complexity is the average of the maximum correlation between the vector
(f(x1), · · · , f(xN)) and the noise vector (w1, · · · , wN). Intuitively, as a function class grows,
it is easier to find a function that correlates well with a randomly drawn noise vector, making
the complexity grow. From the basic inequality in Lemma 6.2 applied to the case m = 1, the
error δ := E[‖f̂ − f ?‖2

N ]
1
2 should intuitively satisfy an inequality of the form δ2

2
≤ σ GN (δ,F?).

If we can identify a minimal radius δ? such that δ2

2
≥ σ GN (δ,F?) for all δ > δ?, then we must

have E[‖f̂ − f ?‖2
N ]

1
2 ≤ δ?. Existence of δ? is guaranteed if F is star-shaped2

Lemma 6.3. Let σ ∈ R>0. For a star-shaped class of real-valued functions F , the function
δ 7→ GN (δ,F)

δ
is non increasing on R>0. Thus σ GN(δ,F) ≤ δ2

2
admits a minimal solution on

R>0.

Proof. Let t ≥ δ fixed. From the star shaped condition, if g ∈ F then δ
t
g ∈ F . Hence,

δ
t
GN (t,F) = Ew[ sup

‖g‖N≤t
|∑N

i=1wi
δ
t
g(xi)|] ≤ Ew[ sup

‖g‖N≤δ
|∑N

i=1wig(xi)|] = GN (δ,F), i.e Gn(t,F?)
t
≤

Gn(δ,F?)
δ

. Hence δ 7→ GN (δ,F)
δ

is non increasing and δ 7→ GN (δ,F)
δ
− δ

2σ
is decreasing, concluding

our proof.
2A function class F is star-shaped if for all (h, α) ∈ F × [0, 1], αh ∈ F
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Using the star-shaped property for classes of real-valued functions enables us to obtain
a tail bound on the prediction error. In order to prove Theorem 6.2, we first derive a tail
bound on the local Gaussian complexity. Let us assume that the noise in (2) are Gaussian
vectors (εi = (σjwij)j=1,··· ,d)i=1,··· ,N .

Lemma 6.4. Let F be a star-shaped class of real-valued functions, let δ̃ ∈ R>0 be a positive
solution to the inequality σ GN(δ,F) ≤ δ2

2
, and wi ∼ N (0, 1) i.i.d. Then, for each t ≥

max(δ̃, ‖f‖N), with probability at least 1 − exp
(
− 2Nδ̃t

σ2

)
, we have σ

N
|∑N

i=1wif(xi)| ≤ δ̃t
2

+

2
√
δ̃t‖f‖N .

Proof. Since the function w 7→ σ
N
|∑N

i=1wif(xi)| is σ‖f‖N√
N

-Lipschitz, we have from the con-
centration property of Lipschitz functions of i.i.d. Gaussian variables, for each u ∈ R>0:
P
[
σ
N
|∑N

i=1wif(xi)| ≥ σ
N
E|∑N

i=1 f(xi)wi|+ 2u‖f‖N
]
≤ exp

(−4Nu2‖f‖2N
2σ2‖f‖2N

)
= exp(−2Nu2

σ2 ).

In addition, we have σ
N
E|∑N

i=1 f(xi)wi| ≤ σGN(t,F) = σtGN (t,F)
t

≤ σtGN (δ̃,F)

δ̃
≤ tδ̃

2
, where the

first inequality is from ‖f‖N ≤ t and by definition of GN(t,F), the second inequality is from
Lemma 3 since F is star-shaped, and the third inequality stems from σ GN (δ̃,F) ≤ δ̃2

2
. Thus,

we have P
[
σ
N
|∑N

i=1wif(xi)| ≥ tδ̃
2

+ 2u‖f‖N
]
≤ P

[
σ
N
|∑N

i=1wif(xi)| ≥ σ
N
E|∑N

i=1 f(xi)wi| +
2u‖f‖N

]
, and taking u =

√
tδ̃ finishes the proof.

Theorem 6.2. Let F? be a f ?-shifted function class of Rm-valued functions. Assume that
for each ∆ := f − f ? ∈ F?, each one of its components ∆j := fj − f ?j , j ∈ [m], belongs
to a f ?j -shifted class of real-valued functions F?j that is star-shaped. Let f̂ be the least-
squares estimate f̂ ∈ arg minf∈F

1
N

∑N
i=1 ‖yi − f(xi)‖2

2, where yi is given by (6.13). For each
j ∈ [m], let δj be the smallest positive solution to the inequality σj GN(δ,F?j ) ≤ δ2

2
. Let

us define δmax := maxj∈[m]δj, and ‖∆̂‖max := maxj∈[m]‖∆̂j‖N , where ∆̂ = f̂ − f ?. Then,
for each t ≥ max(δmax, ‖∆̂‖max), with probability at least 1 −∑m

j=1 exp
(
− 2Nδjt

σ2
j

)
, we have

‖f̂ − f ?‖2
N ≤ mt δmax(2 +

√
5)2.

Proof. The probability P
[∑m

j=1
σj
N
|∑N

i=1 ∆̂j(xi)wij| ≥ mδmax t
2

+ 2
√
δmax t

∑m
j=1 ‖∆̂j‖N

]
is

upped bounded by P
[∑m

j=1
σj
N
|∑N

i=1 ∆̂j(xi)wij| ≥
∑m

j=1{
δj t

2
+2
√
δj t‖∆̂j‖N}

]
. Applying the

union bound, this is less than
∑m

j=1 P
[σj
N
|∑N

i=1 ∆̂j(xi)wij| ≥ δj t

2
+ 2
√
δj t‖∆̂j‖N

]
. Applying

Lemma 6.4, this is less than
∑m

j=1 exp
(
− 2Nδjt

σ2
j

)
. Combining with Lemma 6.2, we have with

probability at least 1−∑m
j=1 exp

(
− 2Nδjt

σ2
j

)
1
2
‖∆̂‖2

N ≤
∑m

j=1
σj
N
|∑N

i=1 ∆̂j(xi)wij| ≤ mδmax t
2

+ 2
√
δmax t

∑m
j=1 ‖∆̂j‖N

Using Cauchy-Schwarz’s inequality we obtain,
∑m

j=1 ‖∆̂j‖N ≤
√
m
√∑m

j=1 ‖∆̂j‖2
N =

√
m‖∆̂‖N . With high probability, ‖∆̂‖N is thus between the two roots of the quadratic
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function g defined by g : x 7→ 1
2
x2 − 2

√
αx− α

2
, where α := δmax tm > 0. By simple algebra,

we get that ‖∆̂‖N ≤ (2 +
√

5)
√
α with high probability.

We also want to control the uniform deviation ‖P−PN‖L = supθ∈Θ |ρ(θ,θ?)2−ρN (θ,θ?)2|
by applying results on the uniform laws of large numbers on the loss class given in (6.9).
In more generality, we consider a collection XN

1 := {X1, · · · , XN} of i.i.d. samples from
some distribution P over X and a class F of real-valued integrable functions with do-
main X , and studies the convergence properties of the random variable ‖PN − P‖F :=

supf∈F

∣∣∣ 1
N

∑N
i=1 f(Xi)− E[f(X)]

∣∣∣, where PN is the empirical distribution, assigning mass
1/N to each of X1, · · · , XN . The quantity ‖PN − P‖F measures the absolute deviation
between the sample average and the population average. A classic approach consists in
relating ‖PN − P‖F to the Rademacher complexity of F . We first denote (σ1, · · · , σN) the
collection of Rademacher random variables, i.i.d. uniform in {±1}.

Definition 6.3. Given a class F of real-valued functions with domain X and a collection XN
1

of samples in X , the Rademacher complexity of F isRN (F) := EX,σ
[

supf∈F

∣∣∣ 1
N

∑N
i=1 σif(Xi)

∣∣∣].
In particular, §3.4 of [5] gives an important result bounding the tail of the probability

distribution of the random variable ‖PN − P‖F with the Rademacher complexity.

Theorem 6.3. For any b-uniformly bounded function class F , any positive integer N and
any δ ∈ R>0, P

[
‖PN − P‖F ≤ 2RN(F) +

√
2 b2

N
ln(1

δ
)
]
≥ 1− δ

We now seek to find an upper bound on RN(F), which will inform us if RN(F)→ 0. In
addition, if we can derive a rate of convergence for RN(F), we can find a lower bound on
N guaranteeing that ‖PN − P‖F ≤ ε with probability at least 1 − δ. It also follows from
Theorem 6.3.

Corollary 6.1. For any uniformly bounded function class F , if RN(F) → 0, then ‖PN −
P‖F a.s.→ 0.

Proof. For all δ ∈ R>0, Theorem 3 implies P
[
‖PN − P‖F ≥ 2RN(F) + δ

]
≤ exp

(
− N δ2

2 b2

)
,

thus
∑∞

N=1 P
[
‖PN − P‖F ≥ 2RN (F) + δ

]
<∞. From Borel-Cantelli lemma, there exists, for

each δ > 0, a positive integer Nδ such that for all N ≥ Nδ, ‖PN −P‖F ≤ 2RN (F) + δ almost
surely. In particular, since RN(F)→ 0, then we have ‖PN − P‖ a.s.→ 0.

6.5 Upper bounds with the entropy integral
To derive explicit bounds from the results of Theorems 6.2 and 6.3, it remains to upper bound
the Gaussian and Rademacher complexities . Hence we turn to the field of approximation
theory [54], [132], [37] to bound complexities of a function class by a function of the integral
of the metric entropy.
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Definition 6.4. (Covering number) A δ-cover of a set T with respect to a metric ρ is a
set {θ1, · · · , θN} ⊂ T such that for each θ ∈ T, there exists some i ∈ {1, · · · , N} such that
ρ(θ, θi) ≤ δ. The δ-covering number N(δ,T, ρ) is defined as N(δ,T, ρ) := min{N | {θ1, · · · , θN}
is a δ-cover of T}.

Definition 6.5. (Metric entropy) Under the assumptions of Definition 6.4, the metric entropy
of T is defined as the function δ 7→ logN(δ,T, ρ).

We illustrate the notion of metric entropy on a class of strongly monotone and Lipschitz
functions.

Lemma 6.5. Let M = {f : [0, 1] → R+, L-Lipschitz, c-strongly monotone, f(0) = 0}.
Then the metric entropy logN(δ,M, ‖ · ‖∞) is upper bounded by

(
L−c
δ

+ 1
)

log 2 for δ ∈
(0, L−c

2
), and is equal to zero for δ ≥ L−c

2
. This implies

∫∞
0

√
logN(δ,M, ‖ · ‖∞) dδ ≤

(L− c)√log 2
∫ 1

2

0

√
1
u

+ 1 du.

Proof. Let ε ∈ R>0 and assume L > c. We define M := b1/εc and a partition of [0, 1] into
intervals [(i−1)ε, iε) for i = 1, · · · ,M , the last interval being [Mε, 1]. We claim the collection
M̂ of continuous functions such that f(0) = 0 and which have a constant slope c or L on
each interval of the partition forms a ((L− c) ε)-cover ofM.

Let f ∈M. We prove by induction over i that we can construct a function g ∈ M̂ such
that |f(t) − g(t)| ≤ (L − c) ε for all t ∈ [(i − 1)ε, iε), which will allow us to conclude that
‖f − g‖∞ ≤ (L− c) ε. The base case i = 0 follows from f(0) = g(0). Now let i ∈ {1, · · · ,M}.
We have by induction hypothesis |f(iε)− g(iε)| ≤ (L− c) ε. If 0 ≤ g(iε)− f(iε) ≤ (L− c) ε,
we choose g(t) = g(iε) + c(t− iε) over [i ε, (i+ 1) ε). Then, for all t ∈ [i ε, (i+ 1) ε),

f(t)− g(t) ≤ f(iε)− g(iε) + (L− c) (t− iε) ≤ (L− c) (t− iε) ≤ (L− c) ε
g(t)− f(t) ≤ g(iε)− f(iε) + (c− c) (t− iε) ≤ (L− c) ε

where we used the fact that f is L-Lipschitz in the first inequality, and f(iε)−g(iε) ≤ 0 in the
second one. Otherwise, 0 ≤ f(iε)− g(iε) ≤ (L− c) ε, and we choose g(t) = g(iε) + L(t− iε)
for which a similar analysis enables us to finally conclude that ‖f − g‖∞ ≤ (L− c) ε.

Note that the cover M̂ has cardinality 2b1/εc+1 = 2d1/εe. Substituting ε = δ/(L− c), the
metric entropy logN(δ,M, ‖ · ‖∞) ofM is bounded by dL−c

δ
e log 2. Note that the expression

holds for L = c. Indeed,M then has only one function x 7→ c x and the metric entropy is zero.
And noting that diam‖·‖∞(M) = L− c, the mapping x 7→ L+c

2
x is a δ-cover ofM for δ > L−c

2

and thus logN(δ,M, ‖ · ‖∞) = log 1 = 0 if δ > L−c
2
. Finally, noting that dL−c

δ
e ≤ L−c

δ
+ 1

completes our proof.

We now present the connection between the Rademacher and Gaussian complexities and
the metric entropy. Let us fix a collection xN1 of elements of X . We recall that (σ1, · · · , σN)
is the collection of Rademacher random variables (i.i.d. uniform in {±1}). The quantity



CHAPTER 6. UPPER BOUNDS ON THE PREDICTION ERROR 76

∑N
i=1 σif(xi) that appears in the Rademacher complexity is a sub-Gaussian process3 with

respect to the Euclidean norm on the set F(xN1 ) :=
{

(f(x1), · · · , f(xN )) | f ∈ F
}
. Noting that

the expected supremum Eσ
[

supf∈F |
∑N

i=1 σif(xi)|
]
of the sub-Gaussian process

∑N
i=1 σif(Xi)

appears in the Rademacher complexity leads us to apply Dudley’s theorem [57], [102, Chap.
11].

Theorem 6.4. (Dudley’s theorem) Let {Xθ, θ ∈ T} be a zero-mean sub-Gaussian process
with respect to the metric ρ. Then E

[
supθ∈T Xθ

]
≤ 8
√

2
∫∞

0

√
logN(u,T, ρ)du.

This gives us a bound on the expected suprema of sub-Gaussian processes with the entropy
integral.

Proposition 6.1. For any class F of real-valued functions such that 0 ∈ F , we have
RN(F) ≤ 16

√
2

N
EX
[ ∫∞

0

√
logN(u,F(XN

1 ), ‖ · ‖2) du
]
.

Proof. Denoting −F := {−f | f ∈ F} and the Rademacher process rN (f(xN1 )) :=
∑

i σif(xi),
we have for any collection xN1 = {x1, · · · , xN} of points

sup
f∈F
|∑i σif(xi)| = supf∈F∪−F

∑
i σif(xi) ≤ supf∈F

∑
iσif(xi) + supf∈−F

∑
iσif(xi)

where we used that fact that supf∈F
∑

i σif(xi) and supf∈−F
∑

i σif(xi) are non-negative
since 0 ∈ F by assumption. Since the σi’s are i.i.d. uniform in {±1}, σi and −σi have
same distribution, and Eσ

[
supf∈F

∑
i σif(xi)

]
= Eσ

[
supf∈−F

∑
i σif(xi)

]
. And by Dudley’s

theorem, this last quantity is less than 8
√

2
N

∫ ∞
0

√
logN(u,F(xN1 ), ‖ · ‖2) du since the process

{∑N
i=1 σif(xi) | f ∈ F} is sub-Gaussian with respect to ‖ · ‖2 on the set F(xN1 ). Indeed, if we

denote by f(xN1 ) := (f(x1), · · · , f(xN)) each element of F(xN1 ), we have for every, f, f ′ ∈ F ,
and λ ∈ R,

E[eλ
∑
i σi(f(xi)−f ′(xi))] = ΠiE[eλσi(f(xi)−f ′(xi))] ≤ Πie

λ2(f(xi)−f
′(xi))

2

2 = e
λ2‖f(xN1 )−f ′(xN1 )‖22

2

where we applied Hoeffding’s lemma on each random variable σi(f(xi)− f ′(xi)). We conclude
with RN(F) = 1

N
EX,σ

[
supf∈F

∣∣∑N
i=1 σif(Xi)

∣∣] ≤ 2
N
EX,σ

[
supf∈F

∑N
i=1 σif(Xi)

]
which is

bounded by 16
√

2
N

EX
[ ∫∞

0

√
logN(u,F(XN

1 ), ‖ · ‖2) du
]
.

Theorem 6.5. For any indexed class F = {fθ |θ ∈ Θ} of real-valued functions which
is L̃-smoothly parametrized with respect to a norm ‖ · ‖Θ on Θ, and such that 0 ∈ F ,
RN(F) ≤ 16

√
2L̃√
N

∫∞
0

√
logN(v,Θ, ‖ · ‖Θ) dv

3 A collection of zero-mean random variables {Xθ, θ ∈ T} is a sub-Gaussian process with respect to a
metric ρ on T if, for all θ, θ′ ∈ T, and λ ∈ R, we have E[eλ(Xθ−Xθ′ )] ≤ exp

(λ2ρ2(θ,θ′)
2

)
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Proof. For any fθ, fθ′ ∈ F , and collection xN1

‖fθ(xN1 )− fθ′(xN1 )‖2
2 =

∑N
i=1(fθ(xi)− fθ′(xi))2 ≤∑N

i=1 |||fθ − fθ′ |||
2 ≤ NL2‖θ − θ′‖2

Θ

Thus N(δ,F(xN1 ), ‖ · ‖2) ≤ N
(

δ
L
√
N
,Θ, ‖ · ‖Θ

)
by definition of the covering number. Hence, a

Lipschitz parameterization allows us to translate a cover of the parameter space Θ into a
cover of the data-dependent function space F(xN1 ). Applying Proposition 1 with the change
of variable v := u

L
√
N

in the entropy integral gives the claimed result.

Hence, a Lipschitz parametrization allows us to bound the Rademacher complexity of F
by the entropy integral of its parameter space Θ. When the metric entropy of the parameter
space Θ can be derived explicitly, and its entropy integral is finite, such as when Θ is a class
of strong monotone and real-valued functions on a compact domain (see Lemma 6.5), we
can combine Theorem 6.3 and Theorem 6.5 to obtain explicit tail bounds on the uniform
deviation ‖P− PN‖F .

Given a fixed collection of covariates (x1, · · · ,xN), Dudley’s theorem can also be used in
conjunction with Theorem 6.2 to bound the prediction error ‖f̂ − f ?‖2

N = 1
N

∑N
i=1 ‖f̂(xi)−

f ?(xi)‖2
2. For a class F of real-valued functions, the norm ‖ · ‖N becoming ‖f‖2

N =
1
N

∑N
i=1 f(xi)2, we define BN(δ,F) := {f ∈ star(F) | ‖f‖N ≤ δ}. We have the following

corollary, which enables us to upper bound the minimal δ? such that σGN (δ,F?) ≤ δ2

2
for all

δ ≥ δ?, and thus can be used for Theorem 6.2.

Corollary 6.2. Suppose that the f ?-shifted class F? of real-valued functions is star-shaped.
For any σ ∈ R>0 and δ ∈ (0, σ] such that 16√

N

∫ δ
δ2

4σ

√
logN(u,BN(δ,F?), ‖ · ‖N)du ≤ δ2

4σ
satisfies

the critical inequality σGN(δ,F?) ≤ δ2

2
.

Proof. Note that for any δ ∈ (0, δ], we have δ2

4σ
< δ. It is possible to consider a δ2

4σ
-covering

(f 1, · · · , fM) of BN(δ,F?) in the norm ‖ · ‖N . By definition of the covering set, for all
f ∈ BN(δ,F?), there exists j ∈ [M ] such that ‖f − f j‖N ≤ δ2

4σ
. Hence

1
N
|∑N

i=1wif(xi)| ≤ 1
N
|∑N

i=1wif
j(xi)|+ 1

N
|∑N

i=1 wi(f(xi)− f j(xi))|

≤ max
j=1,..,M

1
N
|∑N

i=1 wif
j(xi)|+

√∑N
i=1 w

2
i

N

√∑N
i=1(f(xi)−fj(xi))2

N

≤ max
j=1,..,M

1
N
|∑N

i=1 wif
j(xi)|+

√∑N
i=1 w

2
i

N
δ2

4σ

By taking the mean of the supremum over F?, and using Ew

√∑N
i=1 w

2
i

N
≤ 1, we have that:

GN(δ) ≤ Ew[ max
j=1,..,M

1
N
|∑N

i=1wif
j(xi)|] + δ2

4σ

We will now upper bound the first term of the right hand of the inequality. Let us fix
(x1, · · · ,xN). The random variables 1√

N

∑N
i=1 wif

j(xi) are zero-mean Gaussian processes
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and are associated to ‖ · ‖N as a metric. Since g ∈ BN(δ,F?) we can set the coarsest
resolution of the chaining to δ and the tightest to δ2

4σ
as we can reconstruct the finite set

with the minimal δ2

4σ
-cover considered above. We can then bound the first term in the sum

by: Ew[ max
j=1,..,M

1
N
|∑N

i=1wif
j(xi)|] ≤ 16√

N

∫ δ
δ2

4σ

√
logN(u,BN(δ,F?), ‖ · ‖N)du. Thus using the

assumption on the integral’s upper bound, we obtain the desired result.

Corollary 6.3. Let F be the set of L-Lipschitz functions from [0, 1] to R. Then the metric

entropy satisfies 16√
N

∫ δ
δ2

4σ

√
logN(u,BN(δ,F?), ‖ · ‖N)du -

√
Lδ
N
, and the critical inequality

σGN(δ,F?) ≤ δ2

2
is satisfied for δ ' (σ2 L

N
)

1
3 .

Proof. Let us denote FLip(L) := {f : [0, 1]→ R| f is L-Lipschitz}. And given f ? ∈ FLip(L)
we have the inclusions

F? = F?Lip(L) = FLip(L)− f ? ⊆ FLip(L)−FLip(L) ⊆ FLip(2L)

And for any f, f ′ ∈ FLip(L), we observe that

‖f − f ′‖2
N = 1

N

∑N
i=1(f(xi)− f ′(xi))2 ≤ 1

N

∑N
i=1 ‖f − f ′‖2

∞ = ‖f − f ′‖2
∞

Combining the above arguments, we obtain

N(u,BN(δ,F?), ‖ · ‖N) ≤ N(u,BN(δ,FLip(2L)), ‖ · ‖∞)

Using arguments similar to Lemma 4, we have logN(δ,FLip(2L), ‖ · ‖∞) - L
δ
, thus

16√
N

∫ δ
δ2

4σ

√
logN(u,BN(δ,F?), ‖ · ‖N)du -

√
Lδ
N
. To satisfy the assumptions of Corollary 2,

we have to choose δ such that
√

Lδ
N
- δ2

σ
which means δ ' (Lσ

2

N
)

1
3 .

6.6 Final results
Proposition 6.2. Under the conditions of Theorem 6.1 with a Gaussian noise in (6.2) and ε ∈
(0, 1] a sufficient number of samples to realize P

[
ρN (θ̂,θ?)2 ≤ (2+

√
5)2m

(
σ2 cLP/L

2+L̃P

N(1−
√

1−c2/L2)

) 2
3
]
≥

1− ε is in O(
σ(1−
√

1−c2/L2)

LhLP
)2(

log(m
ε

)

2
)3.

Proof. Using the looser expression of the minimum probability of Theorem 2 given in the
proof of Proposition 6.1, we can use Corollary 3 and replace δ by the expression of δmax given
by Proposition 6.1 in m exp

(
− 2nδ2

max

σ2

)
= ε. That gives us:

−2δ2
max

σ2 = log(
ε

m
)

n =
σ2

2δ2
max

log(
m

ε
)
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We can then replace δmax by its expression:

n = log
(m
ε

)σ2

2

(n(1−
√

1− c2/L2)

LhLPσ2

) 2
3

n
1
3 = log

(m
ε

)σ2

2
(
(1−

√
1− c2/L2)

LhLPσ2
)

2
3

n =
(σ(1−

√
1− c2/L2)

LhLP

)2( log
(
m
ε

)
2

)3

Combining Theorem 6.1, Theorem 6.3, and Theorem 6.5, we derive smooth proper-
ties of the loss class (6.9) and convergence rates for the uniform deviation ‖P − PN‖L =
supθ∈Θ |ρN(θ,θ?)2 − ρ(θ,θ?)2|.
Corollary 6.4. Under the conditions of Theorem 6.1, we suppose diam‖·‖Θ(Θ) <∞. Then,
for any Lh-Lipschitz function h : Rn → Rm, the loss class L in (6.9) is L̃-smoothly
parametrized and b-uniformly bounded with constants L̃ := 2

(
cLhLΘ

L2(1−
√

1−c2/L2)

)2diam‖·‖Θ(Θ)

and b := L̃
2
diam‖·‖Θ(Θ).

Proof. In order to simplify notation, we pose h?θ(p) = h(x?θ(p)), and we define the loss
function `θ(p) := ‖h?θ?(p)− h?θ(p)‖2. We have, for all p ∈ P and for all θ,θ′ ∈ Θ

|`θ(p)− `θ′(p)| ≤ ‖(h?θ?(p)− h?θ(p))− (h?θ?(p)− h?θ′(p))‖2

= ‖h?θ(p)− h?θ′(p)‖2

≤ Lh‖x?θ(p)− x?θ′(p)‖2

≤ cLhLΘ

L2(1−
√

1−c2/L2)
‖θ − θ′‖Θ

where the first inequality is obtained from the triangle inequality, and the third inequality
from Theorem 1. Let us denote K := cLhLΘ

L2(1−
√

1−c2/L2)
. For all (θ,p) ∈ Θ× P , we have

`θ(p) = ‖h?θ?(p)− h?θ(p)‖2 ≤ K‖θ − θ?‖Θ ≤ K diam‖·‖Θ(Θ)

Hence the loss functions `θ(·) are K-Lipschitz in θ in the infinite norm, and (K diam‖·‖Θ(Θ))-
uniformly bounded. Hence `2

θ is (K diam‖·‖Θ(Θ))2-uniformly bounded and smoothly parametrized
with constant 2K2 diam‖·‖Θ(Θ).

Proposition 6.3. Consider the setting of Corollary 6.4. If the entropy integral defined
by
∫∞

0

√
logN(v,Θ, ‖ · ‖Θ) dv is finite, then RN (L) ≤ 16

√
2L̃√
N

∫∞
0

√
logN(v,Θ, ‖ · ‖Θ) dv, and

for all α ∈ (0, 1
2
), the loss class L defined in (6.9) is such that ‖PN − P‖L = O( 1

Nα )
almost surely. In addition, for any ε, δ ∈ (0, 1), a sufficient condition for having ‖P −
PN‖L ≤ ε with probability at least 1− δ is having a number of samples N such that

√
N ≥

1
ε

(
32
√

2L̃
∫∞

0

√
logN(v,Θ, ‖ · ‖Θ) dv +

√
2b2 log(1/δ)

)
.
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Proof. The inequality on RN(L) follows directly from Corollary 3 and Theorem 5, since L
contains the zero function. Denoting κ := 16

√
2L̃
∫∞

0

√
logN(v,Θ, ‖ · ‖Θ)dv, we get from

Theorem 3, P
[
‖PN − P‖L ≥ 2κ√

N
+ δ
]
≤ exp

(
− N δ2

2 b2

)
for all δ ∈ R>0. Let α be a scalar

in (0, 1
2
). Substituting δ := 1

Nα , we have P
[
‖PN − P‖L ≥ 2κ√

N
+ 1

Nα

]
≤ exp

(
− N1−2α

2 b2

)
.

Hence,
∑∞

N=1 P
[
‖PN − P‖L ≥ 2κ√

N
+ 1

Nα

]
≤ ∑∞N=1 e

−N
1−2α

2 b2 < ∞ since 1 − 2α > 0. From
Borel-Cantelli lemma, there exists a positive integer N0 such that for all N ≥ N0, we have
‖PN − P‖L ≤ 2κ√

N
+ 1

Nα almost surely. We conclude our proof by noting that 2κ√
N

= O( 1
Nα )

since α ∈ (0, 1
2
).

Finally, from Theorem 3, we also have P
[
‖PN − P‖F ≤ 2κ√

N
+
√

2 b2

N
ln(1

δ
)
]
≥ 1− δ. Hence

a sufficient condition for having ‖P− PN‖L ≤ ε with probability at least 1− δ is for N to be

such that 2κ√
N

+
√

2 b2

N
ln(1

δ
) ≤ ε, which proves our claim.

The results of Propositions 6.2 and 6.3 can be applied to the examples presented in
Section 6.2. Illustrating Proposition 6.3 with the routing game, parametrized by edge
cost functions ce(·) that are c-strong-monotone and L-Lipschitz in the normalized flow xe

me
,

and denoting r := mine∈E me
maxe∈E me

the ratio of the smallest over the largest capacity, we have

L̃ = 2
(
cLhr
√
|E|mine∈Eme

L2(1−
√

1− c2r2
L2 )

)2

(L− c) and b = L̃
2
(L− c). For the consumer utility application, see

Section 6.2, L̃ = 2
( cLh max(1,‖xmax‖2)

L2(1−
√

1−c2/L2)

)2
(L− c+ 2rmax).

6.7 Conclusion
We have studied a class of supervised learning problems in which the objective function fθ is
learned such that it gives solutions x?θ that agree with our observations. We studied smooth
properties of the solutions to convex programs, thus showing that the implicit functions x?θ
belong to a larger class of Lipschitz functions. This observation enables us to derive bounds
on the empirical prediction error ρN(θ̂,θ?) defined in (6.7) and on the uniform deviation
supθ∈Θ |ρ(θ̂,θ?)− ρN(θ̂,θ?)|, giving insights on the training data needed to maintain small
empirical prediction errors and high consistency of the empirical risk as a function of the
complexity of the learned objective function.
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Chapter 7

Imputing a Variational Inequality
Function or a Convex Objective
Function: a Robust Approach

7.1 Introduction

Motivation

Many decision processes are modeled as a Variational Inequality (VI) or Convex Optimization
(CO) problem [61, 26]. However, the function that describes these processes are often difficult
to estimate while their outputs (the decisions they describe) are often directly observable.
For example, the traffic assignment problem considers a road network in which each road
segment is associated to a delay that is a function of the volume of traffic on the arc [130].
The Wardrop’s equilibrium principles [165] describe an equilibrium flow that is easily locally
measurable by induction loop detectors or video cameras. While the delay functions are
in general not observable, having accurate estimates of these functions is still crucial for
urban planning. However, due to their cost of maintenance, traffic sensors are sparse, we thus
present an approach robust to missing values and measurement errors. In consumer utility
estimation, for example, the consumer is assumed to purchase various products from different
companies in order to maximize a utility function minus the price paid, where the utility
function measures the satisfaction the consumer receives from his purchases. In practice, the
consumer’s utility function is difficult to estimate but the consumer purchases, which is a
function of the products’ prices, are easily observable. We refer to [93, 20] for more examples,
e.g., value function estimation control.

Contributions and outline

Estimating the parameters of a process based on observations is related to various lines
of work, e.g., inverse reinforcement learning in robotics [123, 1], the inverse shortest path
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problem [32], recovering the parameters of the Lyapunov function given a linear control
policy [28, §10.6]. The field of structural estimation in economics estimates the parameters
of observed equilibrium models, e.g. imputing production and demand functions [139, 3, 7].
In general, inverse problems have been studied quite extensively and we refer to [93, 20] for
more references on the subject. In [93] (resp. [20]), a program is proposed to impute a convex
objective (resp. a VI function) based on complete observations of nearly optimal decisions.
The program is solved via CO.

After reviewing preliminary results in VI and CO in Section 7.2 and formally stating the
problem in Section 7.3, our contributions in the remainder of the present chapter is as follows.
In Section 7.4, we demonstrate that the methods presented in [93, 20] are in general not
robust to noise and outliers in the data. In Section 7.5, we formulate our inverse problem as
a weighted sum of a distance robs from the observations and residual functions req in the form
of duality gaps or Karush-Kuhn-Tucker (KKT) residuals, and show that our method is robust
to noise and outliers while it avoids the disjunctive nature of the complementary condition.
In Section 7.6, we show that the proposed weighted sum defines a set of Pareto efficient
points whose closure contains a solution to the programs proposed in [93, 20]. Our method
thus encompasses previous ones but performs better against noise and missing data. It also
provides a conceptual way to recognize the implicit assumption of full noiseless observations
made by previous inverse programming approaches. In Section 7.7, we compare the KKT
residual and the duality gap and derive new sub-optimality results defined by the KKT
residuals. In Section 9.4, an implementation framework is proposed. Finally, we apply our
method to delay inference in the road network of Los Angeles, and consumer utility estimation
and pricing in oligopolies in Sections 7.9 and 7.10.

7.2 Preliminaries

Variational Inequality (VI) and Convex Optimization (CO)

VI is used to model a broad class of problems from economics, convex optimization, and
game theory, see, e.g. [61], for a comprehensive treatment of the subject. Mathematically, a
VI problem is defined as follows:

Definition 7.1. Given a closed, convex set K ⊆ Rn and a map F : K → Rn, the VI problem,
denoted VI(K, F ), consists in finding a vector x ∈ K such that

F (x)T (u− x) ≥ 0, ∀u ∈ K (7.1)

For the remainder of the chapter, we suppose that K is a polyhedron, written in standard
form:

K = {x ∈ Rn |Ax = b, x ≥ 0} (7.2)

This allows different characterizations of solutions to VI(K, F ). We define the primal-dual
system associated to the Linear Program (LP) minu∈K F (x)Tu:
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Definition 7.2. (See [4, Th. 1].) Given VI(K, F ), and (x, by ) ∈ Rn × Rn, we define the
associated primal-dual system as follows:

F (x)Tx = bT by
AT by ≤ F (x)
Ax = b, x ≥ 0

(7.3)

In the above system, we say that x is primal feasible if Ax = b, x ≥ 0, and (x, by ) is
dual feasible if AT by ≤ F (x). From LP strong duality, we have:

Theorem 7.1. (See [4, Th. 1].) Let K be a polyhedron given by (7.2). Then x ∈ Rn

solves VI(K, F ) if and only if there exists by ∈ Rn such that the pair (x, by ) satisfies the
primal-dual system (7.3).

We also define the Karush-Kuhn-Tucker (KKT) system of the VI(K, F ):

Definition 7.3. Let K be a polyhedron given by (7.2). Given a map F and (x, by ,π) ∈
Rn × Rn × Rn, we define the associated KKT system as follows:

F (x) = AT by + π
Ax = b
x ≥ 0, π ≥ 0, xTπ = 0

(7.4)

Theorem 7.2. (See [26, §5.5.3].) Let K be a polyhedron given by (7.2). Then a vector
x ∈ Rn solves VI(K, F ) if and only if there exists by ,π ∈ Rn such that the tuple (x, by ,π)
satisfies the KKT system (7.4).

Convex Optimization (CO) is closely related to VI, see [26] for a comprehensive treatment
on the subject. A CO problem is defined as follows:

Definition 7.4. Given a closed, convex set K ∈ Rn and a convex potential f : K → R, the
CO problem, denoted CO(K, f), is a program of the form:

min f(x) s.t. x ∈ K (7.5)

We have the following optimality condition to the CO(K, f):

Theorem 7.3. (See [26, §4.2.3].) Given CO(K, f), suppose f differentiable. Then a vector
x ∈ K is an optimal solution to CO(K, f) if and only if:

∇f(x)T (u− x) ≥ 0, ∀u ∈ K (7.6)

Hence VI(K, F ) can be seen as a generalization of CO(K, f) where the gradient ∇f is
substituted by a general map F . Hence, when f is differentiable, the primal-dual and KKT
systems are both optimality conditions for the CO(K, f).
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Approximate solutions

We now focus on the VI(K, F ) since it encompasses CO(F , f). The residual functions
associated to the primal-dual and KKT systems are defined as

Definition 7.5. (See [20].) Given VI(K, F ), a residual function rPD of the primal-dual
system (7.3) is a non-negative function which satisfies for all (x, by ) ∈ Rn × Rn such that
Ax = b, x ≥ 0, AT by ≤ F (x):

rPD(x, by ) = 0 ⇐⇒ (7.3) holds at (x, by ) (7.7)

Definition 7.6. (See [93].) Given VI(K, F ), a residual function rKKT of the primal-dual
system (7.4) is a non-negative function which satisfies for all (x, by ,π) ∈ Rn × Rn × Rn

such that Ax = b, x ≥ 0, π ≥ 0, AT by ≤ F (x)

rKKT(x, by ,π) = 0 ⇐⇒ (7.4) holds at (x, by ,π) (7.8)

Residual functions are used as sub-optimality certificates in iterative methods for solving
VI(K, F ) and CO(K, f). As in [20] and [93], we specify rPD and rKKT as follows:

rPD(x) = F (x)Tx− bT by (7.9)

rKKT(x, by ,π) =

∥∥∥∥[α(F (x)−AT by − π)
x ◦ π

]∥∥∥∥
1

(7.10)

where x ◦π = [xiπi]
n
i=1, ‖x‖1 =

∑n
i=1 |xi|, and α > 0 a weighting factor. The choice of rPD in

(7.9) is natural since primal feasibility (Ax = b, x ≥ 0) and dual feasibility (AT by ≤ F (x))
imply that rPD is non-negative from weak LP duality [4, Cor. 1], and it is tied to the
following optimality gaps for VI(K, F ) and CO(K, f), taken from [61, §3.1.5] and [26, §9.3.1]
respectively, for all x ∈ K:

rVI(x) = max
u∈K

F (x)T (x− u) (7.11)

rCO(x) = f(x)−min
u∈K

f(u) (7.12)

Theorem 7.4. (See [20, Th. 2].) Let K be a polyhedron given by (7.2). Then the following
holds for any ε ≥ 0 and x ∈ K:

rVI(x) ≤ ε ⇐⇒ ∃ by ∈ Rn : AT by ≤ F (x), rPD(x, by ) ≤ ε (7.13)

In addition, if F is the gradient of a convex potential f , then, for all x ∈ K:

rVI(x) ≤ ε =⇒ rCO(x) ≤ ε (7.14)
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When primal and dual feasibilities hold, rPD ≤ ε is equivalent to ε-suboptimality for
VI(K, F ) with respect to rVI. When f = ∇F , rPD ≤ ε is sufficient for ε-suboptimality for
CO(K, f) with respect to rCO, but not necessary. To see this, consider a quadratic function
f : R→ R with minimum attained at a > 0:

K = R+, f(x) = (x− a)2, F (x) = ∇f(x) = 2(x− a) (7.15)

so rCO(a+ ε) = f(a+ ε) = ε2 while rVI(a+ ε) = rPD(a+ ε) = (a+ ε)F (a+ ε) = 2(a+ ε)ε is
arbitrarily large as a goes to +∞.

Distance from solutions

Assume VI(K, F ) (resp. CO(K, f)) has a unique solution x?. An alternative sub-optimality
condition is that ‖x−x?‖ < ε for x ∈ K. Main results rely on of strict and strong monotonicity
of F (resp. convexity of f):

Definition 7.7. Given a convex set K ⊆ Rn and a function f : K → R, f is said to be
strictly convex on K if; ∀ x, x′ ∈ K and α ∈ (0, 1) such that x 6= x′

f(αx + (1− α)x′) < αf(x) + (1− α)f(x′) (7.16)

is said to be strongly convex on K if; ∃ c > 0 such that ∀α ∈ (0, 1), ∀ x, x′ ∈ K:

f(αx + (1− α)x′) ≤ αf(x) + (1− α)f(x′)− c

2
α(1− α)‖x− x′‖2 (7.17)

Definition 7.8. Given a convex set K ⊆ Rn and a map F : K → Rn, F is said to be strictly
monotone on K if

(F (x)− F (x′))T (x− x′) ≥ 0, ∀ x, x′ ∈ K (7.18)

strongly monotone on K if ∃ c > 0 such that

(F (x)− F (x′))T (x− x′) ≥ c‖x− x′‖2, ∀ x, x′ ∈ K (7.19)

When f is differentiable, f is strictly (resp. strongly) convex is equivalent to ∇f is strictly
(resp. strongly) monotone. Strong monotonicity allows us to bound ‖x− x?‖ by the residual
rVI(x) in (7.11):

Theorem 7.5. (See [126, Th. 4.1].) If VI(K, F ) is such that K ⊆ Rn is closed convex and
F strongly monotone, VI(K, F ) admits a unique solution x? and:

‖x− x?‖2 ≤
√
rVI(x)/c, ∀ x ∈ K (7.20)

in addition, if ∃ f : F = ∇f , then x? is the unique solution to CO(K, f) and:

‖x− x?‖2 ≤
√

2 rCO(x)/c, ∀ x ∈ K (7.21)

If F is only strictly monotone, then VI(K, F ) admits at most one solution [142]. If the
solution x? exists, then strict monotonicity is not strong enough for a bound similar to (7.20).
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7.3 Problem statement
We present our problem statement in the most general case. We refer to Sections 7.9 and
7.10 for illustration of the problem in traffic assignment and consumer utility respectively.
Let us consider a process in which decisions x are made by solving a parametric variational
inequality VI(K(p), F (·,p)), for a set of parameter values p ∈ P :

F (x,p)T (u− x) ≥ 0, ∀u ∈ K(p) (7.22)
K(p) := {x ∈ Rn : A(p)x = b(p), x ≥ 0} (7.23)

where both the map F (·,p) and polyhedron K(p) depend on p. The definitions and theorems
in Section 7.2 apply for each p ∈ P, and the dependence of the residuals on p are made
explicit with rPD(x, by ,p), rKKT(x, by ,π,p), etc.

Inputs: We are given A(p), b(p) for all p, along with a parametric observation process
g(·,p) : Rn → Rq and N noisy observations

z(j) := g(x(j),p(j)) + w(j), j = 1, · · · , N (7.24)

of (approximate) solutions x(j) to VI(K(p(j)), F (·,p(j))) with random noise w(j) ∈ Rq and
associated parameters p(j). Unless g(·,p) is an injection from K(p) to Rq for all p, the
observation z(j) contains in general less information than x(j), thus (7.24) is our missing data
model.

Objective: We want to impute the parametric map F (·,p) and the decision vectors x(j)

such that, for all j:
(a) x(j) is an approximate solution to VI(K(p(j)), F (p(j))).
(b) x(j) agrees with the observations z(j).
Formalization: Using Theorem 2.4, objective (a) consists in imputing a parametric map

F (·,p) and a collection of decision vectors x(j) ∈ K(p(j)), along with dual variables by (j)

with A(p(j))T by (j) ≤ F (x(j),p(j)), such that the following sum of residuals is minimized:

req :=
N∑
j=1

rPD(x(j), by (j),p(j)) (7.25)

Objective (b) consists in minimizing, with φ a non-negative convex function in (x, by ) such
that φ(x, by ) = 0 ⇔ x = by :

robs :=
N∑
j=1

φ
(
g(x(j),p(j)), z(j)

)
(7.26)

As discussed in [93, 20], the parametric map F (·,p) must be searched in a restricted space F .
Since the construction of F is not the focus of the present chapter, further details will be
presented in Section 7.8.
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7.4 Previous methods

Inverse Variational Inequality

Formulation: Bertsimas et al. [20] impute F (·,p) given (perfect) observations z(j) = x(j)

(i.e. g(·,p) =Id) of approximate solution to VI(K(p(j)), F (·,p(j))) by setting objective robs in
(7.26) to zero and solving:

min
F, by

req =
∑N

j=1 rPD(z(j), by (j),p(j))

s.t. A(p(j))T by (j) ≤ F (z(j),p(j)), ∀ j
(7.27)

If rPD(x, by ,p) = F (x,p)Tx − b(p)T by and F (·,p) is restricted to a finite dimensional
affine parametrization

∑K
i=1 aiFi(·,p) with parameters a ∈ RK restricted to a convex set,

then (7.27) is a convex program.
Limitations: The above formulation, which we will refer to as Inverse VI, assumes that

we have complete observations, which is not possible in many applications, such as in traffic
assignment, see Section 7.9. In addition, (7.27) overlooks the measurement errors by tightly
fitting an equilibrium model to the (complete) observations, thus attempting to explain
random (irreducible) errors by a deterministic process. For example, consider the following
process:

min
x≥0

(x− a)2 (7.28)

where a > 0 needs to be imputed. The associated primal-dual system is:

x(x− a) = 0, x ≥ a, x ≥ 0 (7.29)

Given N observations z(j) ≥ 0, solving (7.27) applied to our particular case:

min
â≥0

N∑
j=1

z(j)(z(j) − â) s.t. â ≤ min
j
z(j) (7.30)

gives an imputed parameter â = minj z
(j). Independently of the data size, a single measure-

ment error of δ in a set of perfect observations can induce a large mean residual error. In
the above example, if z(1) = a− δ and z(j) = a for j = 2, · · · , N , then the imputed value is
â = a− δ, with mean residual error:

1

N

N∑
j=1

z(j)(z(j) − â) =
(N − 1) a δ

N
−→ aδ as N −→ +∞ (7.31)
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Inverse programming as a bilevel program

Formulation: An intuitive approach is via bilevel optimization in which the metric robs =∑
j φ(x(j), z(j)) in (7.26) is minimized with x(j) the decision vector predicted by the imputed

process. We refer to, e.g., [41] for the problem of OD matrix estimation given link cost
functions and observed flows. Applying bilevel optimization to our function estimation
problem:

min
F,x, by

robs =
∑N

j=1 φ
(
g(x(j), p(j)), z(j)

)
x(j) is solution to VI(K(p(j)), F (p(j))), ∀ j

(7.32)

With a good choice of φ, (7.32) can be robust to noise. For example, consider N observations
z(j) of the minimization process (7.28). Then, (7.32) becomes:

min
â≥0, x

N∑
j=1

φ(x(j), z(j)) s.t. x(j) ∈ argmin
u≥0

(u− â)2, ∀ j (7.33)

We note that â is the sample mean when φ(x) = x2, while â is the sample median when
φ(x) = |x|. Hence, formulation (7.32) allows different choices of penalty functions φ on the
observation residuals, thus a fitting more robust to noise. We will refer to (7.32) as the Bilevel
Program (BP) in the context of inverse programming.

Limitations: In general, the solution set of VI(K(p(j)), F (p(j))) does not have a closed-
form expression, thus one approach replaces the constraint in (7.32) by the primal-dual
system (7.3) or KKT system (7.4) to reduce (7.32) to a single-level program. However, the
complementary condition rPD(z(j), by (j),p(j)) = 0 in the constraints causes the standard
Mangasarian-Fromovitz Constraint Qualification (MFCQ) to be violated at any feasible point
[172], hence generating severe numerical difficulties, see [89, 110].

7.5 Our method

A Weighted Sum Program

Weminimize simultaneously objectives (7.25) and (7.26) subject to primal and dual feasibilities
by considering the linear combination weqreq + wobsrobs:

min
F,x, by

weq ΣN
j=1rPD(x(j), by (j),p(j)) + wobs ΣN

j=1φ
(
g(x(j), p(j)), z(j)

)
s.t. x(j) ∈ K(p(j)), ∀ j

A(p(j))T by (j) ≤ F (x(j),p(j)), ∀ j
(7.34)

where weq and wobs are positive scalars that articulate the preferences between the two
objectives. This approach is known as the Weighted Sum method in Pareto Optimization
(PO) theory, and is sufficient for Pareto optimality, i.e., it is not possible to strictly decrease
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one objective among req and robs without strictly increasing the other one, see, e.g., [116, 58]
for further details on PO.

One approach to explore the Pareto curve is shown in Algorithm 7.1. In step 1, we note
that it is often desirable to scale the objective functions to have a consistent comparison
between them. Varying the weights provides information about available trade-offs between
the objectives. Specifically, for each of the different weights in step 2, if the solution is such
that req and robs are large, it means that either our model is not a good model to explain the
observations, or that our observations are very noisy.

Algorithm 7.1 Weighted-sum(·) Weighted sum method
1: Normalize objectives (7.25) and (7.26) for consistent comparisons.
2: Solve (7.34) with wobs + weq = 1 and wobs ∈ {0.001, 0.01, 0.1, 0.9, 0.99, 0.999}
3: Check the values of (7.25) and (7.26).

The proposed weighted Sum Program (WSP) is robust since it accommodates different
penalty functions φ depending on the type of measurement errors, e.g. φ(x, z) = ‖x− z‖1 for
robustness to outliers, and φ(x, z) = ‖x− z‖2 for robustness to Gaussian noise; see, e.g., [26,
§6.1]. In addition, our WSP can be seen as a penalty method for constrained optimization that
mitigates numerical difficulties by minimizing rPD(z, by ,p) instead of setting rPD(z, by ,p)
to 0.

Example

Given N observations z(j) of min
x≥0

(x− a)2, the WSP (7.34) is:

min
â, x

weq
∑N

j=1 x
(j)(x(j) − â) + wobs

∑N
j=1 φ(x(j), z(j))

s.t. x(j) ≥ 0, ∀ j
0 ≤ â ≤ min

j
x(j)

(7.35)

We now set wobs = α, weq = 1 − α for α ∈ (0, 1) and φ(x, y) = |x − y|. Following the case
study in Section 7.4, assume the observations are z(1) = a− δ and z(j) = a for j = 2, · · · , N ,
then the set of Pareto optimal points are

â = x(1) ∈ [a− δ, a], x(j) = a, for j = 2, · · · , N (7.36)

Then, given estimate â ∈ [a− δ, a], objectives req in (7.25) and robs in (7.26) are:

req = (N − 1) a (a− â) (7.37)
robs = |a− δ − â| = â+ δ − a (7.38)



CHAPTER 7. IMPUTING A VARIATIONAL INEQUALITY FUNCTION OR A
CONVEX OBJECTIVE FUNCTION: A ROBUST APPROACH 90

Solving min
â∈[a−δ, a]

weqreq + wobsrobs = (1− α)(N − 1)a(a− â) + α(â+ δ − a):

wobs = α < a(N−1)
1+a(N−1)

=⇒ â = a, req = 0, robs = δ

wobs = α > a(N−1)
1+a(N−1)

=⇒ â = a− δ, req = (N − 1)aδ, robs = 0
(7.39)

In this case, if wobs is close enough to 1, req is large and equal to the one in the Inverse VI
(see (7.31)), while with wobs smaller, we have a small observation residual robs and req = 0.
Thus, the estimation is good for wobs close enough to 0 despite a fit to the data that is not
perfect due to measurement errors.

Figure 7.1: Imputation of the parametric program from N = 20 noisy observations with mean
10 shown in Figure a). The estimates are shown by horizontal lines labelled by the value of .

In a second example, we randomly generateN = 20 independent and identically distributed
(i.i.d.) samples z(j) from a Gaussian distribution with mean a = 10 and variance σ = 5. We
apply our WSP (7.35) with φ(x, y) = (x− y)2. The estimates â are shown in Figure 7.1.a),
and the values of the residuals robs =

∑N
j=1 x

(j)(x(j) − â) and req =
∑N

j=1(x
(j) − z(j))2 in

Figure 7.1.b), for wobs ∈ {0.001, 0.01, 0.1, 0.9, 0.99, 0.999} and weq = 1 − wobs. In addition,
we compare our method to the Inverse VI (7.30), which is tagged with label wobs = 1 in
Figure 7.1. For wobs < 0.1, req = 0, â = 9.2 is close to 10, and robs is small, while for
wobs > 0.99 and for the Inverse VI, req is large and â is largely under-estimating a = 10. In
the presence of Gaussian noise, our WSP also performs well. Finally, we note that for large
values of wobs, our method behaves similarly to the Inverse VI method.

7.6 Relation to previous methods

Preliminary results

Intuitively, as (weq, wobs) approaches (0, 1), the WSP (7.34) mimics the Inverse VI (7.27),
and as (weq, wobs) approaches (1, 0), it mimics the BP (7.32). Formally, given f1, f2 two
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non-negative continuous functions, a compact set C ⊆ Rn, and w1, w2 > 0, consider the
general weighted sum program along with its solution set S(w1, w2) and the set S of all
Pareto efficient points associated to it:

min w1f1(u) + w2f2(u) s.t. u ∈ C (7.40)
S(w1, w2) := arg min

u∈C
w1f1(u) + w2f2(u) (7.41)

S :=
{

(w1, w2,u?) : w1 ∈ (0, 1), w2 = 1− w1, u? ∈ S(w1, w2)
}

(7.42)

Since C is compact, S(w1, w2) 6= ∅ for any w1, w2, hence S is well-defined. We also assume
there exists u ∈ C such that f1(u) = 0, and define the following constrained program and its
approximate objective value f ?2 (ε):

min f2(u) s.t. f1(u) = 0, u ∈ C (7.43)
f ?2 (ε) := min

u∈C : f1(u)≤ε
f2(u), ∀ ε ≥ 0 (7.44)

Lemma 7.1. Let S be a set described by (7.42). Then for any (w1, w2,u?) ∈ S:

f1(u?) ≤ (w−1
1 − 1)f ?2 (0) (7.45)

f2(u?) ≤ f ?2 (0) (7.46)

Proof. Let u ∈ C such that f1(u) = 0. For any (w1, w2,u?) ∈ S, we have w1f1(u?) +
w2f2(u?) ≤ w2 f2(u), hence, from non-negativity of f1, f2 and positivity of w1, w2:

f2(u?) ≤ f2(u) (7.47)
f1(u?) ≤ (w2/w1)f2(u) = ((1− w1)/w1)f2(u) = (w−1

1 − 1)f2(u) (7.48)

Since this is true for all u ∈ C such that f1(u) = 0, minimizing f2 for such u completes the
proof.

Lemma 7.2. Let S be a set described by (7.42). Then {f2(u?)}u?∈S(w1,w2) converges uni-
formly to f ?2 (0) as w1 −→ 1. There also exists a solution ū to (7.43) and a sequence
(w

(n)
1 , w

(n)
2 ,un)n∈N ∈ SN such that:

(w
(n)
1 , w

(n)
2 ,un) −→ (1, 0, ū) as n −→ +∞ (7.49)

In addition, if (7.43) admits a unique solution ū, any sequence (w
(n)
1 , w

(n)
2 ,un)n∈N ∈ SN such

that w(n)
1 −→ 1 satisfies u(n) −→ ū.

Proof. First, we want to prove that f ?2 (·) is continuous at 0. We note that f ?2 (·) is non-
increasing on R+, hence it has a limit from the right at 0, which we denote f ?2 (0+). Given
any sequence (εn)n∈N ∈ RN

+ such that εn → 0, there exists a sequence (un)n∈N such that
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un ∈ arg min
u∈C:f1(u)≤εn

f2(u) for all n ∈ N, since C is compact. Hence, f ?2 (εn) = f2(un) for all n ∈ N.

From compactness, there exists a convergent subsequence (ε̃n, ũn)n∈N of (εn,un)n∈N, and its
limit (0, ū) is such that u ∈ C, f1(ū) = 0 and f ?2 (0+) = f2(ū) ≤ f ?2 (0) from continuity of f1

and f2. By definition of f ?2 (0), we must have f ?2 (0+) = f ?2 (0). Hence f ?2 (·) is continuous at 0.
To prove the first part of the lemma, we denote g(w1) := (w−1

1 − 1)f ?2 (0). For any
(w1, w2,u?) ∈ S, we have f1(u?) ≤ g(w1) from lemma 6.1, hence f ?2 (g(w1)) ≤ f2(u?) ≤ f ?2 (0)
by definition of f ?2 (ε). Thus, by continuity of f ?2 (·) at 0: ∀u? ∈ S(w1, w2), |f2(u?)−f ?2 (0)| ≤
|f ?2 (g(w1))− f ?2 (0)| −→

w1→1
0.

We prove the second part of the lemma. Given a sequence (w
(n)
1 , w

(n)
2 ,un) ∈ SN such that

w
(n)
1 −→ 1, consider a convergent subsequence of it from compactness of C. Its limit (1, 0, ū)

is such that ū ∈ C, f1(ū) = 0, and f2(ū) = f ?2 (0) from continuity of f1 and f2. Hence ū is a
solution to (7.43), which gives the second result of the lemma.

For the third part of the lemma, we start from the proof of the second part and note
that any convergent subsequence (w̃

(n)
1 , w̃

(n)
2 , ũn) of (w

(n)
1 , w

(n)
2 ,un) is such that ũn converges

to the unique solution ū to (7.43). Hence any convergent subsequence has the same limit
(1, 0, ū), and (w

(n)
1 , w

(n)
2 ,un) thus converges to (1, 0, ū). Since this is true for any sequence

(w
(n)
1 , w

(n)
2 ,un) ∈ SN such that w(n)

1 −→ 1, we have the third result of the lemma.

Main results

To apply the results in Section 7.6 to our WSP, we substitute u with the tuple (F (·,p),
{x(j)}j, { by (j)}j) and the objectives (f1, f2) with (robs, req). Since the feasible set in (7.34)
is closed, compactness is guaranteed with this assumption:

Assumption 6.1. The variables (F (·,p), {x(j)}j, { by (j)}j) of the WSP (7.34) are in a
finite-dimensional bounded set.

The finite dimension assumption is reasonable since restricting the map F (·,p) to a finite
dimensional affine parametrization

∑K
i=1 aiFi(·,p) is intuitive (as in [93, 20]). The boundedness

is essential since the primal variables x(j), dual variables by (j), and the parameters a have
physical interpretations in terms of resource allocation, resource valuation, and variations of
the map F (·,p) respectively, and thus are restricted to physically (or economically) reasonable
ranges. Hence Assumption 6.1 is reasonable and guarantees compactness of the set of feasible
variables of the WSP, and enables to apply the results in Section 7.6. From compactness, the
minimal objective value r?eq of the Inverse VI (7.27), and the minimal objective value r?obs of
the BP (7.32) are also attained.

Theorem 7.6. Under Assumption 6.1, given N approximate solutions z(j) ∈ K(p(j)) to the
problems VI(K(p(j)), F (·,p(j))) for j = 1, · · · , N , any optimal solution to the WSP (7.34) is
such that robs ≤ r?eq(w

−1
obs − 1) and req ≤ r?eq. In addition, req converges uniformly to r?eq as

wobs −→ 1 and there exists a sequence of solutions to the WSP converging to a solution to
the inverse VI (7.27).



CHAPTER 7. IMPUTING A VARIATIONAL INEQUALITY FUNCTION OR A
CONVEX OBJECTIVE FUNCTION: A ROBUST APPROACH 93

Theorem 7.7. Under Assumption 6.1, given N observations z(j) in (7.24), any optimal
solution to the WSP (7.34) is such that req ≤ r?obs(w

−1
eq − 1), robs ≤ r?obs, and In addition, robs

converges uniformly to r?obs as weq −→ 1 and there exsits a sequence of solutions to the WSP
converging to a solution to the BP (7.32).

Finally, the objective robs in our WSP (7.34) can be generalized, thus our WSP can be
seen as a smoothing method for general bilevel programs where the complementary condition
rPD = 0 is included in the objective in the form of a penalty function. Previous works have
proposed smoothing methods via, e.g., the perturbed Fischer-Burmeister function [53, §6.5]
or a similar one [60], but our smoothing via residuals has a sub-optimality interpretation.

7.7 Comparison of the duality gap and the KKT
residual

Given N observations z(j), for j = 1, · · · , N , let (F (·,p), {x(j)}j, { by (j)}j) be an optimal
solution to the WSP (7.34). Then robs in (7.26) measures how well x(j) agree with the
observations z(j), while req in (7.25) measures how well the imputed process VI(K(p), F (·,p))
explains the imputed decision vectors x(j). If the imputed map F (·,p) admits a unique
solution x̂(p) for all p (e.g., from strict monotonicity), then an alternative metric to req is∑N

j=1 ‖x(j) − x̂(p(j))‖. If F (·,p) is strongly monotone with parameter c for all p, from (7.13)
and (7.20):

‖x(j) − x̂(p(j))‖2 ≤
√
rPD(x(j), by (j),p(j))/c ∀ j (7.50)

where rPD(x(j), by (j),p(j)), j = 1, · · · , N are directly available from the WSP. Note that with

only strict convexity of F (·,p), we can have ‖x(j)−x̂(p(j))‖2 = δ while
√
rPD(x(j), by (j),p(j))

is infinitely small, as shown at the end of Section 7.2.
However, there is no result of the form ‖x− x?‖ = O(

√
rKKT(x, by ,π)) to the best of

our knowledge. We define the slack variables associated to the dual feasibility condition
AT by ≤ F (x):

ν := F (x)−AT by (7.51)

which implies that dual feasibility is equivalent to ν ≥ 0. We now derive a bound for the
following generalized residuals:

r
`p
PD(x) = ‖ν ◦ x‖p =

(
n∑
i=1

|νixi|p
)1/p

(7.52)

r
`p
KKT(x, by ,π) =

∥∥∥∥[α(ν − π)
x ◦ π

]∥∥∥∥
p

=

(
n∑
i=1

αp|νi − πi|p + |xiπi|p
)1/p

(7.53)
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where ‖x‖p is the p-norm for p ≥ 1, and u ◦ v = [uivi]
n
i=1 for all u, v ∈ Rn. Since

‖x‖p ≤ ‖x‖1 ≤ n1−1/p‖x‖p for all x ∈ Rn, we have

r
`p
PD(x, by ) ≤ r`1PD(x, by ) ≤ n1−1/p · r`pPD(x, by ) (7.54)

r
`p
KKT(x, by ,π) ≤ r`1KKT(x, by ,π) ≤ n1−1/p · r`pKKT(x, by ,π) (7.55)

When primal and dual feasibilities hold, i.e. ν ≥ 0, Ax = b, x ≥ 0, we note that r`1PD, r
`1
KKT

defined above correspond to rPD, rKKT in (7.9), (7.8) since, for r`1PD:

r`1PD(x, by ) =
n∑
i=1

νixi = νTx = (F (x)−AT by )Tx = F (x)Tx− bT by (7.56)

The results in Section 7.2 thus hold for r`pPD and r
`p
KKT with an additional n1−1/p factor,

validating them as residuals for the primal-dual and KKT systems respectively. Before stating
our main result of the section, we present a lemma:

Lemma 7.3. Let K be a polyhedron given by (7.2). Then the following holds for any α > 0,
p > 1, x ∈ K, by ∈ Rn such that AT by ≤ F (x):

min
π≥0

r
`p
KKT(x, by ,π) =

 n∑
i=1

(νixi)
p(

1 + (xi/α)
p
p−1

)p−1


1/p

(7.57)

If p = 1, then for any α > 0, x ∈ K, by ∈ Rn such that AT by ≤ F (x), we have:

min
π≥0

r`1KKT(x, by ,π) =
∑
i :xi<α

xiνi +
∑
i :xi>α

ανi (7.58)

Proof. For any p ≥ 1, x ∈ Rn, and by ∈ Rn:

min
π≥0

(
r
`p
KKT(x, by ,π)

)p
= min

π≥0

n∑
i=1

αp|νi − πi|p + |xiπi|p (7.59)

=
n∑
i=1

min
πi≥0
{αp|νi − πi|p + |xiπi|p} (7.60)

When primal and dual feasibilities hold, x ≥ 0, ν ≥ 0, which causes the map πi ≥ 0 7→
αp|νi − πi|p + |xiπi|p to increase on [νi,+∞) and thus to attain its minimum on [0, νi], on
which it is also differentiable, for all p ≥ 1, with gradient:

πi 7→ −pαp(νi − πi)p−1 + pxpiπ
p−1
i , i = 1, · · · , n (7.61)
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When p > 1, the gradient vanishes at a unique point π?i in [0, νi]:

π?i =
νi

1 + (xi/α)p/(p−1)
, i = 1, · · · , n (7.62)

Substituting in (7.60):

min
πi≥0
{αp|νi − πi|p + |xiπi|p} =

(νixi)
p

(1 + (xi/α)p/(p−1))p−1
(7.63)

which gives the desired result for p > 1.
When p = 1, the map πi ≥ 0 7→ α|νi − πi| + |xiπi| is just affine on [0, νi], in which the

minimum is, and thus attains it minimum at 0 if xi − α ≥ 0, and νi if xi − α < 0. Hence:∑
i

min
πi≥0
{α|νi − πi|+ |xiπi|} =

∑
i :xi<α

xiνi +
∑
i :xi>α

ανi (7.64)

which completes the proof.

We are now present the main result of the section, where ‖x‖∞ = max
i
|xi|:

Theorem 7.8. Let K be a polyhedron given by (7.2). Then the following holds for any α > 0,
p ≥ 1, ε > 0, x ∈ K, by ∈ Rn such that AT by ≤ F (x):

r
`p
PD(x, by ) ≤ ε =⇒ ∃π ∈ Rn : r

`p
KKT(x, by ,π) ≤ ε (7.65)

Reciprocally, for p > 1, we have; for all ε > 0, x ∈ K, by ∈ Rn : AT by ≤ F (x):

∃π ∈ Rn
+, r

`p
KKT(x, by ,π) ≤ ε =⇒ r

`p
PD(x, by ) ≤ ε

(
1 + (‖x‖∞/α)

p
p−1

) p−1
p (7.66)

When p = 1, we have; for all ε > 0, x ∈ K, by ∈ Rn, and AT by ≤ F (x):

∃π ∈ Rn
+, r

`1
KKT(x, by ,π) ≤ ε =⇒ r`1PD(x) ≤ εmax (‖x‖∞/α, 1) (7.67)

Proof. To prove (7.65) for p > 1, note that for all x ∈ K, by ∈ Rn such that AT by ≤ F (x),

each term (νixi)
p/
(

1 + (xi/α)
p
p−1

)p−1

in min
π≥0

r
`p
KKT(x, by ,π) given by (7.57) is less or equal

than |νixi|p. Hence:

min
π≥0

r
`p
KKT(x, by ,π) ≤ r

`p
PD(x, by ) (7.68)

which proves (7.65) for p > 1. For p = 1, (7.65) is true since, from x ≥ 0 and ν ≥ 0:

min
π≥0

r`1KKT(x, by ,π) =
∑
i :xi<α

xiνi +
∑
i :xi>α

ανi ≤
∑
i

xiνi = r`1PD(x, by ) (7.69)
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To prove (7.66), we note that for all x ∈ K, by ∈ Rn such that AT by ≤ F (x), each term

(νixi)
p/
(

1 + (xi/α)
p
p−1

)p−1

in min
π≥0

r
`p
KKT(x, by ,π) is greater or equal than νixi)

p(
1+(‖x‖∞/α)

p
p−1

)p−1 ,

hence, for all π ∈ Rn such that π ≥ 0:

r
`p
KKT(x, by ,π) ≥ min

π≥0
r
`p
KKT(x, by ,π) (7.70)

≥
(∑

i

(νixi)
p/
(

1 + (‖x‖∞/α)
p
p−1

)p−1
)1/p

(7.71)

which proves (7.66) for p > 1. For p = 1, we have, with (x)+ = max(x, 0):

r`1PD(x, by )−min
π≥0

r`1KKT(x, by ,π) =
∑
i :xi>α

(xi − α)νi (7.72)

≤ (‖x‖∞ − α)+

∑
i :xi>α

νi (7.73)

≤ (‖x‖∞ − α)+

α
min
π≥0

r`1KKT(x, by ,π) (7.74)

hence r`1PD(x, by ) ≤ (1 + (‖x‖∞/α− 1)+) min
π≥0

r`1KKT(x, by ,π). Finally, noting that 1 +

(‖x‖∞/α− 1)+ = max(‖x‖∞/α, 1) completes the proof.

The first bound (7.65) in Theorem 5.1. is tight since, using Lemma 5.1, we have
min
π≥0

r
`p
KKT(x, by ,π) −→ rPD(x, by ) as α −→ +∞, for any p ≥ 1. The bounds (7.66)

and (7.67) are tight since we have equality in one dimension, i.e. n = 1. Combining (7.66),
(7.54), (7.13) and (7.20) we have:

Theorem 7.9. Let K be a polyhedron given by (7.2), and F be a strongly monotone function
with parameter c > 0. Then VI(K, F ) admits a unique solution x? and; for any α > 0, p >
1, ε > 0, x ∈ K:

∃ by , π ∈ Rn : AT by ≤ F (x), π ≥ 0, r
`p
KKT(x, by ,π) ≤ ε

=⇒ ‖x− x?‖2 ≤
√
n1−1/p · ε

(
1 + (‖x‖∞/α)

p
p−1

) p−1
p
/ c

(7.75)

For p = 1, the bound is ‖x− x?‖2 ≤
√
εmax (‖x‖∞/α, 1) /c.



CHAPTER 7. IMPUTING A VARIATIONAL INEQUALITY FUNCTION OR A
CONVEX OBJECTIVE FUNCTION: A ROBUST APPROACH 97

7.8 Implementation

Affine parametrization

For tractability reasons, a classic approach consists in restricting the parametric map F (·,p)
to be imputed to a finite dimensional affine parametric model

F (·,p) = F0(·,p) +
K∑
i=1

aiFi(·,p), a ∈ A ⊆ RK (7.76)

where Fi(·,p), i = 0, · · · , K are pre-selected basis functions that typically contain prior
knowledge on the candidate functions, and a is imputed in the set of allowable parameter
vectors A. For instance, if the true map F true(·,p) is known to be increasing for all p,
then having a parameter space A ⊆ RK

+ and increasing basis maps Fi(·,p) given any (i,p)
guarantees an increasing parametric map F (·,p) for all a ∈ A. In addition, the constant
shift F0(·,p) imposes a normalization on F (·,p) such that trivial solutions are excluded, e.g.,
null maps where all of K is solution to the VI problem, and for which both non-negative
objectives req (7.25) and robs (7.26) can be minimized to zero.

A nonparametric estimation has also been considered in [20] using kernel methods and
regularization methods from statistical learning. The methodology presented in the present
chapter can also be extended to this approach.

Block-coordinate descent

Plugging in the affine parametrization (7.76) above, we solve the following WSP:

min
a,x, by

weq ΣN
j=1rPD(x(j), by (j),p(j) | a) + wobs ΣN

j=1φ(g(x(j),p(j))− z(j))

s.t. x(j) ∈ K(p(j)), ∀ j
A(p(j))T by (j) ≤ F (x(j),p(j) | a), ∀ j
a ∈ A

where the dependencies in a are made explicit. Since the size of the inverse problem increases
linearly with the number of observations N , but is separable into N sub-problems with respect
to the variables {x(j), by (j)}j=1,··· ,N , we suggest to apply a Block-Coordinate Descent (BCD)
algorithm to solve the WSP while avoiding the curse of dimensionality, see Algorithm 7.2. For
the BCD, we cyclically update the N vectors {x(j)}j=1,··· ,N , the N vectors { by (j)}j=1,··· ,N ,
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and the parameter vector a. The sub-problems are:

min
x(j)

weq F (x(j),p(j) | a)Tx(j) + wobs φ(g(x(j),p(j))− z(j))

s.t. x(j) ∈ K(p(j))

A(p(j))T by (j) ≤ F (x(j),p(j) | a)

(7.77)

min
by (j)

− bT by (j) s.t. A(p(j))T by (j) ≤ F (x(j),p(j) | a) (7.78)

min
a∈A

∑N
i=1 F (x(j),p(j) | a)Tx(j)

s.t. A(p(j))T by (j) ≤ F (x(j),p(j) | a), ∀ j
(7.79)

We note that steps 3 and 4 in Algorithm 7.2 can be done in parallel.

Algorithm 7.2 BCD(·) Block descent algorithm for the inverse problem
1: while stopping criteria not met do
2: t := t+ 1
3: x(j,t+1) := solution to (7.77) at ( by (j), a) = ( by (j,t), a(t)) for j = 1, · · · , N .
4: by (j,t+1) := solution to (7.78) at (x(j), a) = (x(j,t+1), a(t)) for j = 1, · · · , N .
5: a(t+1) := solution to (7.79) at (x(j), by (j)) = (x(j,t+1), by (j,t+1)) for all j.

7.9 Application to Traffic Assignment

Model

A classic application of VI and CO is the traffic assignment problem, see, e.g. [130] for
more details. Given road network modeled as a directed graph (V , E), with vertex set V and
directed edge set E , and a set of commodities W ⊆ V × V, a flow rate dk of a commodity
k must be routed from sk to tk for each k = (sk, tk) ∈ C. The k-th commodity flow vector
x(k) = [x

(k)
e ]e∈E ∈ RE+ is feasible if it satisfies the flow equation at every vertex i ∈ V :

∑
j : (j,i)∈E

x
(k)
(j,i) −

∑
j : (i,j)∈E

x
(k)
(i,j) =


−dk if i = sk

dk if i = tk

0 otherwise
(7.80)

In matrix form, x(k) is feasible if Nx(k) = b(k), x(k) ≥ 0, where N is the node-arc incidence
matrix and b(k) ∈ RV the demand vector associated to commodity k with entries such that
b

(k)
sk = −dk, b(k)

tk
= dk, and b

(k)
i = 0, ∀ i 6= sk, tk. Stacking everything together, we can simply

rewrite the flow equations as Ax = b, x ≥ 0, where x = [x
(k)
e ]e∈E,k∈C is the overall flow vector.

Following [13], the cost ce(xe) of a road segment e only depends on the flow xe of vehicles
on this segment, where xe is expressed as xe =

∑
k∈C x

(k)
e , the sum of all the commodity
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flows. The cost functions ce(·) are assumed to be continuous, positive, non-decreasing, and
Beckmann et al. [13] proved that the User Equilibrium (UE), defined by [165], exists and is
solution to the CO(K, f) with potential:

f(x) =
∑
e∈E

∫ ∑
k∈C x

(k)
e

0

ce(u)du (7.81)

However, cost functions ce are in general unknown, other as through empirical modeling
such as the BPR function, while total flows xe =

∑
k∈C x

(k)
e are measurable, but only on a

small subset of arcs in the network, due to the cost of deploying and maintaining a sensing
infrastructure in a large urban area. With g(·) our fixed observation function (due to a
fixed sensing infrastructure), we want to estimate delay functions from partial and noisy
observations z(j) = g(x(j)) + w(j) of flows x(j) associated to different traffic demands b(p(j))
and with noise w(j), where each superscript j refers to different demand levels, e.g., morning
or evening commutes. The imputed delay functions can be used to control or re-design the
road network. See Figure 7.2 for an example.

Figure 7.2: Example of a morning commute on a simple road network with arcs {a, b, c, d, e},
and two commodities 1 and 2 with commodity flows x(k)

a , x
(k)
b , x

(k)
c , x

(k)
d , x

(k)
e , k ∈ {1, 2}. A

flow of 1000 veh/hour in c1 is known to be routed along the shortest paths from nodes 1 to 4
and a flow of 2000 veh/hour in commodity c2 is routed from 2 to 4, resulting in a UE flow on
the network. Given only measurement of z1 = (x

(1)
c + x

(2)
c ) + w1 and z2 = (x

(1)
d + x

(2)
d ) + w2

with noise w1, w2, how can we impute the delay functions on each arc?
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Parametrization

We want to fit polynomial edge cost functions that are positive and non-decreasing. Hence
we use the following parametrization, for all e ∈ E :

ce(xe | a) = de + de

K∑
i=1

ai(xe/me)
i, a = [ai]

K
i=1 ∈ RK

+ (7.82)

where me is the capacity of road segment e (typically proportional to the numer of lanes), and
de is the known free-flow travel time. Here, de is the shift discussed in Section 7.8 to restrict
the parameters ai. The potential function f (which does not depend on the parameter p) is
then, using the expression in (7.81):

f(x | a) = f0(x) +
K∑
i=1

aifi(x)

fi(x) =
∑
e∈E

de
mi
e

∫ ∑
k∈C x

(k)
e

0

uidu =
∑
e∈E

de
mi
e

(∑
k∈C x

(k)
e

)i+1

i+ 1
i = 0, 1, · · · , K

We are now in position to use our method with the basis map functions:

Fi(x) = ∇fi(x) = [∂fi(x)/∂x(k)
e ]e∈E,k∈C =

de
(∑

k∈C x
(k)
e

)i
mi
e


e∈E,k∈C

(7.83)

Numerical experiments

We consider the highway network near Los Angeles with 44 nodes and 122 arcs; see Fig-
ure 7.3. The roads characteristics (geometry, capacity, free flow delay) are obtained from
OpenStreetMaps. The OD demands b are based on data from the Census Bureau and
calibrated to represent a static morning rush hour model. We consider N = 4 equilibria
x(1),x(2),x(3),x(4) associated to four demand vectors b(p(j)) ∈ R|C||V|, j ∈ {1, 2, 3, 4} obtained
by scaling b with respective factors .5, 0.8, 1, 1.2. The measurements are obtained by solving
the traffic assignment problem:

min
x
f(x) s.t. Ax = b(p), x ≥ 0 (7.84)

with potential function f given by (7.81), constraints A given by (7.80), demand vectors
b(p(j)), j ∈ {1, 2, 3, 4}, and for two types of delay functions:

cpoly(xe) = de(1 + 0.15(xe/me)
4) (7.85)

chyper(xe) = 1− 3.5/3 + 3.5/(3− xe/me) (7.86)
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Figure 7.3: Left: Highway network of L.A. in morning rush hour on 2014-06-12 at 9:14 AM
from Google Maps; right: The network in UE with the resulting delays under demand 1.2*b.
The congested area is near central L.A.

where (7.85) is estimated by the Bureau of Public Roads (BPR), and (7.86) is hyper-
bolic delay similar to the BPR one. These two functions are considered the ground truth
delay functions and we want to recover them from the observations z(j) = g(x(j)) =

[
∑

k∈C x
(k)
e ]e∈Eobs , where Eobs ⊆ E is the set of observed edge flows. We normalize req

and robs and solve the WSP (7.34) using the BCD algorithm discussed in Section 7.8. For
wobs = 0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999 and weq = 1−wobs, Figure 7.9 provides the error∑N

j=1 ‖x(j) − x̂(p(j))‖, where x(j) are the ground-truth equilibrium flows and x̂(p(j)) the
estimated ones.

In a second experiment, we study the sensitivity of our estimation algorithm to four
sets of observed links, see Figure 7.5. The parameters a imputed by our latency inference
methodology give a delay function 1 +

∑6
i=1 aix

i for each of the four sensor configurations.
In case 1, we have a very good match between the estimated delay function and the true one
because we observe the entire network, while in case 4, the measurements do not provide
additional information because they are already contained in the given OD demands, see
Figure 7.5.

7.10 Application to Consumer Utility

Model

We also consider an oligopoly in which n firms produce each one a product indexed by
i = 1, · · · , n with prices p = [pi]

n
i=1. We suppose that the consumer purchases a quantity xi

of product i in order to maximize a non-decreasing and concave utility function U(x) minus
the price paid pTx, where x = [xi]

n
i=1 is the overall demand, hence the optimization problem
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Figure 7.4: Imputation of the delay maps cpoly, chyper with parametric map given by (7.82).
The relative error on the flow predicted by the imputed map is small for wobs large enough as
shown in (b). With accurate measurements, we suggest to solve the WSP with wobs = 0.9,
which gives the estimated cost function for the BPR cost function in (c) and hyperbolic cost
function in (d).

Figure 7.5: Left: the 4 sensor configurations: (1) all arcs are observed; (2) 10 arcs are observed
in the congested area; (3) 4 arcs are observed in the congested area; (4) 4 arcs are observed
at the boundaries of the region, where the inflows are already known from the OD demands.

and parametric map:

min
x≥0

f(x) = pTx− U(x) =⇒ F (x,p) = p−∇U(x) (7.87)

However, the utility U : Rn → R is not known in practice, and the inverse problem consists
in imputing U based on N observations of pairs (p(j),x(j)), j = 1, · · · , N of prices and
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associated demands. The imputed utility U is then used by company producing i to set a
price pi in order to achieve a target consumer demand xdes

i in its product. In oligopolies, the
price of each product is publicly available and each firm in general knows its own demand xi,
however it may only have partial information on other demands. For example, if there are
n = 5 firms and consumer demand in product 1 produced by firm 1 is not known, then we
only observe the vector z = g(x) = [x2, x3, x4, x5]T .

Parametrization

Similarly to [93], we consider a quadratic parametrization for the utility U , i.e. U(x |Q, r) =
xTQx + 2rTx, hence the parametric potential is

f(x,p |Q, r) = pTx−
(
xTQx + 2rTx

)
, (Q, r) ∈ A (7.88)

A = {(Q, r) : Qxmax + r ≥ 0, r ≥ 0, Q � 0} (7.89)

where A is chosen such that U(· |Q, r) is concave and non-decreasing on the demand range
[0,xmax]. The parametric map F (·,p |Q, r) is then:

F (x,p |Q, r) = p− 2Qx− 2r (7.90)

Numerical experiments

We consider the case of n = 5 firms competing for the same market. At the time period
j, let x(j) ∈ R5

+ be the consumer demand in response to the prices p(j) ∈ R5
+ set by each

firm, sampled uniformly as i.i.d. random vectors in [8, 12]5. We assume that the third
firm only observes the demand z(j) = [x

(j)
2 , · · · , x(j)

5 ]T in products from firms 2, 3, 4, 5 over
N = 200 time periods along with the prices p(j). The demand x(j) incurred by prices p(j) are
assumed to be solution of the convex optimization model (7.87) with underlying consumer
utility function U real(x) = 1T

√
Ax + b. Firm 3 wants to impute U real using the parametric

utility given by (7.88). The numerical results are shown in Figure 7.6 with two models for
A = 50(I + B) in U real: model 1 where Bij is sampled uniformly in [0, 0.3] for i 6= j, and
model 2 where Bij is sampled from 0.5·Bernoulli(0.3).
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Figure 7.6: Use of the imputed utility to price product 3 for different target demands xdes
3 .

In (b), the prices are scattered due to correlations with other prices in model 1, while in (d),
the prices vary linearly with xdes

3 since the prices in model 2 are more uncorrelated. In (a),
(c) the blue line is the x = y line. For both models, the imputed utility performs well with
relative errors of 26% and 10% on the training data and target demands xdes

3 close to realized
demands xreal

3 .
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Chapter 8

Statistical learning of an equilibrium:
approximation and concentration bounds

8.1 Introduction
In supervised learning, a random response vector y ∈ Rm is generally modeled as an explicit
function of the random predictor vector p in P (the predictor space). This includes linear
and logit models, random forests, neural networks, see e.g. [78] for an overview of classic
methods. In the present work, we are interested in training and validating a model such that
the conditional expectation of y is an implicit function of p. We focus here on the case when
the implicit function is defined as an observation of a solution to a variational inequality
problem VIP(p), parametrized by the random predictor vector p. Namely, VIP(p) consists
in finding x? ∈ D(p) such that

〈F (x?,p), x− x?〉 ≥ 0, ∀x ∈ D(p) (8.1)

where, for each p ∈ P , the parametric domain D(p) is a compact convex subset of Rn, and
F (·,p) is a continuous mapping from Rn to itself that is strongly monotone with parameter c.
Compactness is sufficient for existence, and strong monotonicity is sufficient for uniqueness,
of a solution to VIP(p). See Appendix B and Appendix C for details. Denoting the solution
x?(p), which describes the equilibrium state, the model has thus the form

y = h(x?(p)) + ε (8.2)

where h is an observation model continuously mapping from the state space Rn to an observed
space in Rm, and the noise ε ∈ Rm is a vector of independent Gaussian random variables
with zero mean and variance at most σ2.

Assuming we know h and D(p), i.e. the structure of the model, and we have available
a set of measurements (pi,yi), i ∈ [N ], i.e. the training data, where [N ] denotes the set
{1, · · · , N}, we want to train a parametric map F (·,p) such that each h(x?(pi)) predicts
yi, and we want to estimate the accuracy of the trained model. The main difficulty stems
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from the bilevel structure of the resulting empirical risk minimization problem: the optimal
solutions x?(pi) are unknown in most problems of interest. However, the approximation error
of any feasible candidate x̂i ∈ D(pi) can be bounded using gap functions g(x̂i,pi) which are
related to the VIP(pi) (8.1), and which are often easy to compute [87, §2].

Motivation. The problem of estimating the map F in the VIP(p) (8.1) is a very practical
one since it emerges in many fields. In control, we may desire to fit a lower complexity
controller (one that is easier to automate) from observing outputs of a sophisticated one
available through, e.g. a human expert or model predictive control [164, 94]. In economics,
consumer’s purchases are modeled such that they maximize a utility function representing the
satisfaction from one’s purchases. This function is in general unknown to both the economist
and the consumer, but can be learned by observing consumer purchases in response to price
changes [94]. In transportation science, selfish routing games have been extensively studied,
see [131]. Such models enable to study drivers’ routing decisions in a network modeled as a
directed graph, in which traveling each edge incurs a cost. Estimating the edge cost functions
is a challenging task since they may represent some combination of the actual travel time,
the tolls, and disutility from environmental factors, which are not directly observable. In
practice, it is often possible to observe, through the sensing infrastructure, the equilibrium
flows induced by the selfish routing of agents, and learn the underlying cost functions, see
[19, 150]. More generally, many processes involve agents that behave optimally with respect
to utility functions, and thus can be modeled as a VIP [61] or a convex optimization problem
(COP), which is a well-known specialization of the VIP [27, §4.2.3.]. [85] and [19] use the
VIP or COP framework to learn the utility functions in Nash equilibrium problems.

Modeling real-world processes as lower complexity VIPs or COPs is a common practice
as it enables to leverage powerful mathematical tools for the study of such processes. For
example, in economics, knowing the consumer utility function enables to adjust prices to
achieve some demand level [94]. In many cases in control, a low complexity controller requires
less computation for little performance loss [94, 163]. In transportation science, the selfish
behavior of agents (from shorted path routing) leads to an aggregate cost in the network
worse than the system’s optimum, and which can be analytically quantified [137, 46]. Taxation
schemes can be designed to incentivize system optimal drivers’ decisions [65, 91].

However, low complexity models rely upon having an accurate approximation of the real
ones. For example, system mischaracterizations in selfish routing can cause taxes designed
for one problem instance to incentivize inefficient behavior on different, yet closely-related
instances [30]. Hence, we want to be able to measure the quality of the learned model. In
the present paper, we present a statistical framework for the fitting of equilibrium models
using the (standard) empirical risk minimization principle, by choosing the fit giving the
lowest expected loss (the distance between the observed and predicted outputs) under the
empirical measure. Hence, for the class of implicit models (8.2), it is critical to be able to
have theoretical guarantees on the quality of the fit. While we discuss the optimization
problem for the learning process in Section 8.5, which is adressed in more detail in [94, 19,
150], our main focus is a discussion on the proposed statistical learning framework for the
important class of implicit models (8.2), and a consistency analysis of the learning problem.
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Related work. [19] assume that direct measurements x̂i of the states x?(pi) are available,
i.e. the observation mapping h in (8.2) is the identity function, and propose to learn F (·,p)
from (pi, x̂i), i ∈ [N ] such that each x̂i is suboptimal for VIP(pi). Good approximation
quality is obtained by minimizing gap certificates from optimization. [150] consider the same
model as in (8.2) and use some feasible state x̂i ∈ D(pi) as an approximation for x?(pi).
They propose to train the model such that they have simultaneously small gap certificates,
x̂i is a good proxy for x?(pi), and small residuals h(x̂i)− yi. The resulting trade-off between
approximation quality and small observation residuals leads them to use Pareto optimization.

In the particular case when, for each p ∈ P, the mapping F (·,p) is the gradient ∇xf
of a continuously differentiable potential f(·,p), then the parametric variational inequality
problem VIP(p) reduces to finding x? ∈ D(p) such that

〈∇xf(x?,p), x− x?〉 ≥ 0, ∀x ∈ D(p) (8.3)

which means that the feasible region only lies in the half-space where the potential f(·,p)
increases. It turns out that monotonicity of ∇xf(·,p) is equivalent to convexity of f(·,p) (see
Appendix A), and condition (8.3) is the first-order optimality condition for the parametric
constrained convex optimization program

min
x
f(x,p) s.t. x ∈ D(p) (8.4)

see [27, §4.2.3.] and Appendix B. Thus, learning F = ∇xf allows one to learn the potential
f by integrating F . The problem of imputing a convex objective is investigated by [94].
They also assume that direct measurements x̂i of the states x?(pi) are available and learn
f(·,p) from (pi, x̂i), i ∈ [N ] such that each x̂i is suboptimal for the convex problem (8.4) at
pi. They measure the approximation quality by using certificates defined as residuals of the
Kharush-Kuhn-Tucker (KKT) conditions. To avoid the curse of dimensionality, they search f
in an available set of candidates of the form {fθ(x,p) : θ ∈ Θ}, where the parameter vector
θ, which controls how f depends on the state x and predictor p, needs to be estimated. [85]
use similar ideas but from only one sample (p1, x̂1). If there exists several θ’s such that
x̂1 satisfies the KKT conditions associated to (8.4) at p1, then θ is chosen to be close to a
nominal one.

The problem of learning value functions from observations of predictors and responses are
also considered in other disciplines. For example, [123, 1, 135] study the inverse reinforcement
learning problem where the goal is to learn the reward function from observing the optimal
policy, made available though an expert’s behavior. Related to this, [167] present a method
to learn the Q-values, which are expected discounted rewards for executing actions in a
controlled Markov process, from observing the state and action over time.

Contributions. To the best of our knowledge, when addressing the problem of learning
the function involved in a variational inequality or convex problem, none of the existing work
has considered it in a statistical framework. Thus, our contributions are two-fold: First, the
complex bilevel form of the empirical risk minimization problem requires to approximate each
equilibrium point x?(pi) by a feasible state x̂i, where sub-optimality certificates are obtained



CHAPTER 8. STATISTICAL LEARNING OF AN EQUILIBRIUM: APPROXIMATION
AND CONCENTRATION BOUNDS 108

from optimization theory. By bounding the difference between the approximate empirical
risk (AER) and the empirical risk, we show that small gap certificates guarantee that the
AER is a good proxy for the empirical risk. When there is noise or just one outlier, we show
that the method of [94, 19], focusing on a zero AER to the detriment of large gap certificates,
can lead to high empirical risks, or poor predictions.

Second, we leverage the proposed statistical framework to derive powerful results on the
properties for this class of supervised learning problems. We use results on Lipschitz functions
of Gaussian variables to show that small noise variance and good approximation accuracy
are sufficient for the AER to concentrate close to the error-of-fit, defined as the mean error
between the trained model and the true unknown one. The AER is thus a good t statistic for
testing the quality of the trained model. Most importantly, we derive a sufficient condition
on the approximation error and the noise variance for the power of the proposed test to be
arbitrarily high if enough samples are available. Hence, our work provides powerful tools for
the modeling and validation of complex real-world processes as equilibria.

8.2 Problem statement
Setting. We assume available a set of i.i.d. samples {pi}i∈[N ] from a random predictor vector
p in P (the predictor space), along with samples {yi}i∈[N ] of the response y ∈ Rm. We are
also given prior information on the structure of the model: a compact convex parametric
domain D(p) in the state space Rn for each p ∈ P , and a continuous observation mapping h
from Rn to the observed space Rm. With x?(p) the solution to the parametric VIP(p) in
(8.1), we assume the relationship between pi and yi to be

yi = h(x?(pi)) + εi, i ∈ [N ] (8.5)

where the εi are i.i.d. samples from a random error vector ε ∈ Rm. We denote the set of
mappings from Rn×P to Rn byM(Rn×P , Rn). To describe the supervised learning problem
more concretely, we assume that the mapping F in (8.1) belongs to an indexed-family

{Fθ(·, ·) : θ ∈ Θ} ⊂ M(Rn × P , Rn) (8.6)

where Fθ(·,p) is strongly monotone with parameter c for each (p,θ) ∈ P ×Θ, and Θ is the
set of allowable parameters. The parameters θ control the shape of Fθ(·, ·) with respect to the
state x and predictor p.1 Hence, the function x?(·) belongs to an indexed-family of implicit
functions {x?θ(·) : θ ∈ Θ} such that for each (p,θ) ∈ P × Θ, x?θ(p) is the unique optimal
solution to the VIP(p) (8.1) with parametric map Fθ(·,p), which we denote VIPθ(p).

1The parameter θ can lie within a finite-dimensional space, e.g. Θ ⊂ Rr, or could lie within some function
class, in which case the learning problem is non-parametric.
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Goal. We pose the loss function as ‖y − h(x?θ(p))‖, where ‖ · ‖ is any norm2 in the
observed space Rm. Hence, the empirical risk is defined by

LN(θ) :=
1

N

∑N
i=1 ‖yi − h(x?θ(pi))‖ (8.7)

We want to compute and validate θ̂ ∈ arg minθ∈Θ LN (θ). Section 5.2 presents an instantiation
of the learning problem defined in (8.1), (8.5), (8.6), (8.7) in the case of selfish routing.

8.3 Applications

Routing games

∆(d) :=
{
µ ∈ RP+ :

∑
p∈Pk µ

k
p = dk, ∀ k ∈ [K]

}
(8.8)

The path assignment determines the edge flow defined as xe =
∑K

k=1

∑
p∈Pk:e∈p µ

k
p, which can

be written compactly as xe = (Mµ)e where M ∈ RE×P is an incidence matrix with entries
defined as Me,p = 1e∈p. For each edge e, the edge flow incurs a cost ce(xe), and the cost of
choosing a path p is the sum of edge costs along the path, i.e.

∑
e∈p ce(xe). We define the

mapping F as the vector of congestion functions

F : x ∈ RE+ 7→ F (x) = (ce(xe))e∈E (8.9)

Equilibrium in routing games: Let us define the set D(d) = M∆(d) = {Mµ : µ ∈
∆(d)} ⊂ RE+ of feasible edge flows. We say that x? ∈ D(d) is a Nash equilibrium if it satisfies
the VIP

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ D(d) (8.10)

We refer to e.g. [131, §3.2] for a full technical discussion on Nash equilibria in routing games.
Note that D(d) is compact convex since it is the image of M restricted to the compact convex
set ∆(d). In this application, the demand vector d is the predictor and F is independent from
it. Our parametric VIP thus consists in finding x?(d) ∈ D(d) such that (8.10) is satisfied,
for a random population demand d.

Learning the congestion functions: We assume available the capacity me and the
base cost c0

e of each edge e ∈ E and we measure the edge flows on a subset A ⊆ E of the edges,
i.e. the observation mapping is the projection of RE+ into RA+ defined by h : x 7→ (xe)e∈A.
This allows us to fully specify model (8.2) instantiated to the routing game.

2If the error ε ∈ Rm is, e.g., Gaussian with covariance Σ � 0, then minLN (θ) with the quadratic norm
‖z‖Σ = ‖Σ−1/2z‖2 can be seen as a maximum likelihood problem, or weighted least squares that fixes
heteroscedasticity.
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Let us define the class of univariate functions

Θ := {f : R+ → R+, L-Lipschitz, c-strong-monotone, f(0) = 0}

We assume that F (x) = (ce(xe))e∈E belongs to the class

F =
{
x ∈ RE+ 7→ (c0

e + f( xe
me

))e | f ∈ Θ
}

(8.11)

We suppose that the cost functions are invariant with respect to the normalized edge flows
xe/me on each edge e, which is a standard assumption in traffic modeling. The function class
(8.11) gives us the indexed family (8.6). For each estimate F̂ ∈ F learned from samples of
population demand and edge flows {(di,yi)}i∈[N ], we want to derive theoretical guarantees
on the quality of the fit.

Usage. The learned edge costs F̂ is used to quantify the inefficiency of equilibria in
routing games [137, 46], and to design taxation schemes to incentivize system optimal decisions
[65, 91], hence having an accurate estimate F̂ is critical.

Consumer utility

Setting. We consider n products indexed by i ∈ [n], with prices p = (pi)i∈[n] and demand
x = (xi)i∈[n]. Consumer purchases are assumed to solve the COP

min pTx− u(x) s.t. x ∈ Rn
+

where u : Rn
+ → R is a concave and non-decreasing utility function that represents the

consumer’s satisfaction from its purchases. With Sn− the set of negative semi-definite matrices
of Rn×n, we learn u within the function class

F := {x ∈ Rn
+ 7→ 1

2
xTQx + rTx | (Q, r) ∈ Θ}

Θ := {(Q, r) ∈ Sn− × Rn
+ |Qxmax + r ≥ 0}

where xmax ∈ Rn
+ is the maximum demand vector. Hence we assume that the utility function

is concave quadratic and is increasing, i.e. ∇u(x) ≥ 0, for all x ∈ Rn
+ such that x ≤ xmax. In

this application, the objective function depends the random predictors p (the prices), while
the domain Rn

+ is independent from p. For each estimate û ∈ F , we want to say something
about the quality of the fit.

Usage. The estimate û can be used to set prices p to achieve a target demand level x,
see [94]. Hence, having theoretical guarantees on the quality of the learned model is of great
importance.

Controller fitting

Setting. We consider a dynamical system with state xt ∈ Rn, input ut ∈ Rm, and i.i.d.
noise wt ∈ Rn at time t. The linear dynamics are xt+1 = Axt + But + wt, t ≥ 0. Given
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a convex stage cost function ` : Rn × Rm → R, the stochastic control problem consists in
finding a control policy {ut}t≥0 that minimizes lim sup

T→∞

1
T
E
∑T−1

t=1 `(xt,ut) with the constraint

Fut ≤ h, t ≥ 0, where F ∈ Rp×m and h ∈ Rp. We refer to [18, 94] for a full technical
discussion on stochastic control.

Learning an approximate control. We are given samples of state-control (or input-
output) pairs {(xi,ui)}i∈[N ] from a suboptimal (but complex) control policy run by a human
expert or a computationally expensive controller such as model predictive control [18, 164],
and we want to learn a global approximate value function v : Rn → R that gives us a lower
complexity controller via the optimization program

min
u

`(x,u) + v(Ax + Bu) s.t. Fu ≤ h (8.12)

The above control policy is known as the approximate dynamic programming policy [18] and
a standard approach [94] is to learn v in the class F := {z 7→ zTPz |P ∈ Θ}, where the index
set Θ is the set Sn+ of positive semi-definite matrices of Rn×n.

Usage. We can use the program (8.12) with a value function estimate v̂ to approximate
a policy with a computationally efficient controller, see [94].

8.4 Approximation and risk bounds
Given samples {(p1,y1), · · · , (pN ,yN)}, the main difficulty stems from the implicit nature
of x?θ(pi) in the expression of LN(θ), because this quantity is not known in practice, since it
is the solution of a variational inequality (or optimization) problem. Fortunately, x?θ(pi) can
be approximated by any feasible vector xi ∈ D(pi), and certificates on the approximation
quality can be obtained from gap functions commonly used in the convex optimization and
variational inequality literature [61, 87]. Examples of gap functions associated to the VIPθ(p)
include

g
′

θ(x,p) = max
z∈D(p)

〈x− z, Fθ(x,p)〉 (8.13)

g
′′

θ(x,p) = min
ν∈Rp+:

A(p)T ν≤Fθ(x,p)

Fθ(x,p)Tx− b(p)Tν (8.14)

where x ◦ π ∈ Rn is the element-wise product of x and π (Hadamard product). For (8.14),
we assume D(p) polyhedral D(p) = {x ∈ Rn

+ : A(p)x = b(p)}, where A(p) ∈ Rp×n and
b(p) ∈ Rp for every predictor p ∈ P. Note that the above gap functions are often easy to
compute. For example, the computation of (8.13) is a by-product of every iteration of the
Frank-Wolfe Algorithm [68, 87] for solving the VIPθ(p). Moreover, in most problems of
interest, including all the applications presented in [85, 94, 19], the parametric domain D(p)
is polyhedral, and so (8.13) and (8.14) are optimal values of a linear program.
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Recall that Fθ(·,p) is strongly convex with parameter c. For each x ∈ D(p), we have the
approximation bounds

‖x?θ(p)− x‖2
2 ≤ g

′

θ(x,p)/c = g
′′

θ(x,p)/c (8.15)

‖x?θ(p)− x‖2
2 ≤ g

′′′

θ (x,p) max(1, λ(p))/c (8.16)

where λ(p) := diam‖·‖∞(D(p)). For completeness, we provide proofs of the above bounds
in Appendix D. Thus, the gap functions measure the approximation quality of x. For
some increasing function φ : R+ → R+, we define a generic gap function gθ(x,p) that is
φ composed with any of the three gaps defined above. To bound ‖x?θ(p) − x‖, we choose
gθ(x,p) :=

√
g
′
θ(x,p) =

√
g
′′
θ(x,p) so that, for every (p,θ) ∈ P ×Θ,

‖x?θ(p)− x‖2 ≤ gθ(x,p)/
√
c, ∀x ∈ D(p) (8.17)

Given training data {(p1,y1), · · · , (pN ,yN)}, for every set of feasible vectors {xi}i∈[N ] ∈
D(p1)× · · · × D(pN), we define the approximate empirical risk (AER) as

ΦN

(
{xi}i∈[N ]

)
:=

1

N

∑N
i=1 ‖yi − h(xi)‖ (8.18)

Using property (8.17) of gθ, we can measure if the AER is good proxy for LN(θ) =
1
N

∑N
i=1 ‖yi − h(x?θ(pi))‖

Theorem 8.1. If the observation map h is L-Lipschitz from the normed vector space (Rn, ‖·‖2)
to (Rm, ‖ · ‖), then

∣∣LN(θ)− ΦN

(
{xi}i∈[N ]

)∣∣ ≤ L
N
√
c

∑N
i=1 gθ(xi,pi) for every {xi}i∈[N ] ∈

D(p1)× · · · × D(pN).

Proof. Since any vectors a,b in a Hilbert space H satisfy | ‖a + b‖ − ‖a‖ | ≤ ‖b‖, applying
the inequality with a = yi−h(xi) and b = h(xi)−h(x?θ(pi)) gives | ‖yi−h(x?θ(pi))‖−‖yi−
h(xi)‖ | ≤ ‖h(xi)− h(x?θ(pi))‖ where the right-hand side is bounded by L‖xi − x?θ(pi)‖2 ≤
L√
c
gθ(xi,pi). Summing over i, and applying the triangle inequality on the left-hand side gives

the claimed bound.

Hence, the AER is good proxy for LN(θ) if we have good certificate accuracy. For larger
strong monotonicity parameters c, Fθ(·,p) is less flat thus easier to work with, so we get
better bounds. For larger Lipschitz constants L, h has wider variations in the state space
D(p), so we get larger bounds. Theorem 8.1 also gives an upper bound on LN(θ):

LN(θ) ≤ ΦN ({xi}i) +
L

N
√
c

∑N
i=1 gθ(xi,pi) (8.19)

Theorem 8.1 can be extended to the case when h is just continuous but the parametric
domain D(p) is a subset of a compact set D for each p ∈ P , then h is uniformly continuous
in D. For any ε ∈ R>0, we can bound each term ‖h(x̂i)−h(x?θ(pi))‖ by ε if each gap function
gθ(xi,pi) is less than

√
c δ(ε), where ε 7→ δ(ε) ∈ R>0 depends on h.
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We can use the AER to approximate the population risk L(θ̂) = E[y − h(x?
θ̂
(p))],

where θ̂ is estimated from the samples {(p1,y1), · · · , (pN ,yN)}. A useful bound is then
|L(θ̂)− ΦN ({xi}i) | ≤ |L(θ̂)− LN(θ̂)|+ |LN(θ̂)− ΦN ({xi}i) |. However, θ̂ is random since
it depends on the samples. To control both terms in the bound, we need results uniform
in θ̂. By requiring a uniform accuracy of ḡ, i.e. gθ(xi,pi) for every (i,θ) ∈ [N ] × Θ, the
quantity |LN (θ̂)−ΦN ({xi}i) | is controlled by Theorem 8.1. The term |L(θ̂)−LN (θ̂)| can be
controlled by the uniform law of large numbers if the implicit function class {h(x?θ(·)) : θ ∈ Θ}
is Glivenko-Cantelli [156], or has a small Rademacher or Gaussian complexity [12].

8.5 Empirical risk minimization
The problem of minimizing LN(θ) can be viewed as bilevel because a convex optimization
problem (or VIP) is embedded within the quantities x?θ(p1), · · · ,x?θ(pN). Using the gap
function gθ (8.17), the problem becomes explicit

min
θ∈Θ,{xi}i

ΦN

(
{xi}i∈[N ]

)
(8.20)

s.t. gθ(xi,pi) = 0, xi ∈ D(pi), ∀ i ∈ [N ] (8.21)

Smoothing. Problem (8.20)-(8.21) is an instance of an mathematical program with equi-
librium constraints (MPEC), see e.g. [110]. It is well known that an MPEC is nonsmooth
since standard constraint qualifications, such as LICQ or MFCQ, are not satisfied at any
feasible point [42]. Hence, minimizing the bound (8.19) on the empirical risk can be seen
as solving a penalized (or smooth) form min

θ∈Θ, {xi}i∈ΠiD(pi)
ΦN

(
{xi}i∈[N ]

)
+ α

N

∑N
i=1 gθ(xi,pi)

of the MPEC (8.20)-(8.21), where α ∈ R>0 is the penalty coefficient. Concretely, with
gθ(x,p) = φ(g

′′

θ(x,p)), see (8.14), and denoting Ai := A(pi) and bi := b(pi), minimizing
the bound in (8.19) is equivalent to solving the program, proposed in [150]

min
θ,{xi},{νi}

ΦN({xi}) +
α

N

∑N
i=1 φ(Fθ(xi,pi)Txi − bTi νi)

s.t. xi ∈ D(pi), A
T
i νi ≤ Fθ(xi,pi), ∀ i ∈ [N ]

Pareto efficiency. The bound (8.19) on the empirical risk LN(θ) is minimal at a
Pareto optimal point for the pair of objectives ΦN

(
{xi}i∈[N ]

)
and 1

N

∑N
i=1 gθ(xi,pi). Without

information on the strongly monotone parameter c and the Lipschitz constant L, we may
minimize the bound in (8.19) with different values of the ratio L/

√
c, thus exploring a Pareto

curve, see Algorithm 8.1, and e.g. [116]. This approach was proposed by [150], but without
the statistical interpretation of (8.19).

Inverse problems: [94, 19] investigate the case when the observation mapping h is
the identity function, and learn Fθ from predictor samples pi and direct observations
yi = x?θ(pi) + εi. Correcting the yi’s so that yi ∈ D(pi), for every i ∈ [N ], they
solve the inverse problem min

θ∈Θ

∑N
i=1 gθ(yi,pi). Relating to (8.19), they implicitly solve
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Algorithm 8.1 weighted sum method for Pareto optimization
Choose set of weights W in (0, 1)
Normalize ΦN

(
{xi}i∈[N ]

)
and 1

N

∑N
i=1 gi(x̂i,θ)

for w ∈ W :
Minimize wΦN ({xi}i) + (1− w) 1

N

∑N
i=1 gθ(xi,pi)

Check values of ΦN ({xi}i) and 1
N

∑N
i=1 gθ(xi,pi)

min
θ∈Θ,{xi}i

∑N
i=1 gθ(xi,pi) s.t.

∑N
i=1 ‖yi − xi‖ = 0, i.e. the gap functions are minimized with

the constraint that the AER is zero. This approach is motivated by tractability since the
inverse problem can be made convex, see [19, 94]. Concretely, with Fθ(·,pi) =

∑r
j=1 θjFj(·,pi)

given basis mappings Fj : Rn ×P → Rn, and objective
∑N

i=1 φ(g
′′

θ(xi,pi)) with φ convex, the
inverse problem is convex,

min
θ∈Θ,{νi}i

∑N
i=1 φ(Fθ(yi,pi)Tyi − bTi νi) (8.22)

s.t. AT
i νi ≤ Fθ(yi,pi), ∀ i ∈ [N ] (8.23)

Noise sensitivity. However, random errors may yield a large objective value in the program
(8.22)-(8.23) at an optimum θ̂, hence large gap functions g′′

θ̂
(yi,pi), i.e. the observations yi

do not approximate x?
θ̂
(pi) well. This causes the learned model, or the learned θ̂, to have

low prediction accuracy, i.e. the predicted outcomes ŷi ≈ x?
θ̂
(pi) are far from the observed

ones yi = x̂i. From the risk minimization perspective, a zero AER reduces the bound in
Theorem 8.1 to LN(θ̂) ≤ L

N
√
c

∑N
i=1 gθ̂(yi,pi), hence large gap functions despite a zero AER

do not guarantee a small risk.
To illustrate the sensitivity of the inverse problems (8.22)-(8.23) to noise, consider the

problem of learning θ̂ ∈ R in the univariate program minx∈R+(x− θ?)2, with θ? ∈ R+, from
observations yi = x?(θ?) + εi = θ? + εi, i ∈ [N ]. Assume there is one measurement error
ε1 = −α for α ∈ [0, θ?], and εi = 0 for i = 2, · · · , N . Solving (8.22)-(8.23) instantiated to the
present problem gives θ̂ = θ? − α and large risk and gap LN(θ̂) = N−1

N
α, with the norm in

the AER and LN(θ) instantiated to the absolute value and φ = Id. Hence, having a better
trade-off between the AER and the approximation accuracy may give better results. If we
use the weighted sum method described in Algorithm 1 on the present example, we get (see
Appendix E for more details),

w ≤ (θ?−α) (N−1)
1+(θ?−α) (N−1)

=⇒ LN(θ̂) = α
N

w > θ? (N−1)
1+θ? (N−1)

=⇒ LN(θ̂) = N−1
N
α
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8.6 Concentration bounds
A central problem in supervised learning involves validating the learned model. Let us define
the true model as

y = h(z(p)) + ε (8.24)

for a random error ε ∈ Rm with variance at most σ2, and an unknown mapping z : P → Rn

such that z(p) ∈ D(p) for each p ∈ P. Note that z(·) is different from x?(·) in (8.1) and
(8.2) because it may not be solution to a VIP. We recall the learning problem of the present
paper. We observe N i.i.d. samples pi, i ∈ [N ] of the random predictor vector p ∈ P and
the resulting response vectors yi ∈ Rm, i ∈ [N ]. From (8.24), the relationship between pi
and yi is given by

yi = h(z(pi)) + εi, ∀ i ∈ [N ] (8.25)

where εi are i.i.d. samples from the noise vector ε. We have available the parametric convex
compact domain D(p) ⊂ Rn, the L-Lipschitz observation mapping h : Rn → Rm, and an
indexed-family F = {(x,p) 7→ Fθ(x,p) : θ ∈ Θ} such that the mapping Fθ(·,p) is strongly
monotone with parameter c for each (p,θ) ∈ P ×Θ. We apply one of the methods presented
in Section 8.5 to learn the parameter vector θ. Let {x̂i}i∈[N ] be the estimated state vectors
and θ̂ the estimated parameters, from which we define the maximal approximation error
ḡ = maxi∈[N ] gθ(x̂i,pi), where gθ satisfies (8.17) from the analysis in Section 8.4. We can also
interpret ḡ as a desired level of accuracy.

We now equip the predictor space P with a structure of measure space (P ,Σ, µ) where Σ
is a σ-algebra of measurable sets, and µ is a probability measure. Under µ, we assume the
essential supremum s(θ̂) and the expected value d(θ̂) of p 7→ ‖h(x?

θ̂
(p))− h(z(p))‖ over P

finite,3

s(θ̂) = ess sup ‖h(x?
θ̂
(p))− h(z(p))‖ (8.26)

d(θ̂) = E
[
‖h(x?

θ̂
(p))− h(z(p))‖

]
(8.27)

This allows us to define the error-of-fit (EOF), d(θ̂), as the expected distance between the
responses of the true and learned models. Note that we do not make any assumptions on
the observation mapping h other than Lipschitz continuity, and can only hope to match the
responses of both models, with disregard for the underlying equilibrium states they describe.
We have the following sub-Gaussian concentration property of the AER, ΦN

(
{xi}i∈[N ]

)
, in

an interval [d(θ̂) − δ, d(θ̂) + δ], where the associated sub-Gaussian parameter Ω and the
3Showing continuity of p 7→ ‖h(x?θ(p))− h(z(p))‖ requires sensitivity analysis [133]. In a more general

setting, we do not assume continuity, and essential bound implies that the function values are less than s(θ̂)
almost surely.
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model error δ are given by

Ω = σ + s(θ̂)
2

(8.28)
δ = σ

√
m+ L√

c
ḡ (8.29)

Theorem 8.2. Assume {εi}i∈[N ] are i.i.d. samples from a vector ε ∈ Rm of independent
Gaussian random variables with zero mean and variance at most σ2, and the norm in the
observed space Rm, used in the definitions of LN (θ) and the AER, is Euclidean. If d(θ̂) > 0,
for every t ≥ 0

P
[∣∣∣ΦN

(
{xi}i∈[N ]

)
− d(θ̂)

∣∣∣ ≥ t+ δ
]
≤ 3 exp

{
−Nt2

2Ω2

}
Remarkably, Ω does not depend on the dimension of the observed space Rm, hence the

contribution of the noise vector ε ∈ Rm in the concentration inequality is that of a scalar
Gaussian with variance σ2. The results in Theorem 8.2 also imply: smaller noise variance σ or
smaller error s(θ̂) guarantee a smaller Ω, hence stronger concentration in t and N ; and smaller
variance σ or smaller approximation error ḡ guarantee a smaller δ, hence a concentration in a
smaller neighborhood of d(θ̂). Theorem 2 enables to approximate the empirical distribution
of the AER. We also derive tail bounds on the distribution of the AER if the fit is perfect.

Theorem 8.3. Under the assumptions of Theorem 8.2, if d(θ̂) = 0, then for every t ≥ 0

P
[
ΦN

(
{xi}i∈[N ]

)
≥ t+ δ

]
≤ exp

{
−Nt2

2σ2

}
Note that Theorem 8.3 is not a direct consequence of Theorem 8.2 with d(θ̂) = 0, since

the concentration parameter is smaller. We defer the proofs of both theorems to Appendix F.
They use results on the concentration of Lipschitz functions of standard Gaussian variables, see
e.g. [25, Theorem 5.6]. We extend the results to the case when the observed space is equipped
with the p-norm for some p ∈ [1,∞). This is of interest since it gives concentration results
for the `1-norm, used for robust learning, see e.g. [27, §6.1.2.]. In particular, Proposition 8.1
claims that Theorem 8.2 holds with Ω = σ

√
m+ s(θ̂)

2
and δ = σm+ L√

c
ḡ with the `1-norm.

Proposition 8.1. Suppose the assumptions of Theorem 8.2 hold, with the difference that the
observed space Rm is equipped with the p-norm. If p ≥ 2, the result of Theorem 8.2 holds. If
p ∈ [1, 2), the result of Theorem 8.2 holds with Ω = σm1/p−1/2 + s(θ̂)

2
and δ = σm1/p + L√

c
ḡ.

8.7 Hypothesis testing and statistical power
The concentration inequalities derived in Section 8.6 are useful approximations of the dis-
tribution of the AER, ΦN

(
{xi}i∈[N ]

)
= 1

N

∑N
i=1 ‖yi − h(x̂i)‖. This allows us to measure the

quality of the learned model θ̂.
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Test definition. Theorem 8.2 states that the AER concentrates in a neighborhood of
the EOF, d(θ̂) = E

[
‖h(x?

θ̂
(p))− h(z(p))‖

]
. Hence large values of the EOF are likely to

cause large values of the AER, and this leads us to pose the AER as a t-statistic for testing
the hypothesis that the learned model is accurate. To formalize, We pose the null hypothesis
that the true model and the learned model coincide exactly

H0 : d(θ̂) = 0

Under H0, Theorem 8.3 states the following, for every t ≥ 0,
P [ΦN({x̂i}i) ≥ t+ δ] ≤ exp

{
−Nt2

2σ2

}
, where we recall δ = σ

√
m + L√

c
ḡ. Hence we can

approximate the empirical distribution of the observed p-value, defined as

p-value = P
[
ΦN

(
{xi}i∈[N ]

)
− δ ≥ t

]
(8.30)

Define a significance level α ∈ (0, 1). From (8.30), the following condition is sufficient for the
p-value to be less than α. We reject H0 if it is satisfied:

ΦN

(
{xi}i∈[N ]

)
− δ ≥ tα, tα = σ

√
2 ln(1/α)

N
(8.31)

Note that (8.31) gets more sensitive to large values of the AER when the sample size N
increases. The significance criterion (8.31) guarantees that the probability of a type I error,
rejecting H0 while it is true, is at most α. If the test rejects H0, we can expect to either
have a poor estimate θ̂, or a parametric class of implicit functions {x?θ(·) : θ ∈ Θ} that is too
restrictive or that is not a good model for z(·).

Statistical power. The alternative hypothesis is defined as

H1 : d(θ̂) > 0

and we want to estimate the power of the test, defined as the probability of accepting the
alternative hypothesis when it is true, formally P[reject H0 |H1]. It is also the probability of
not making a type II error. Using Theorem 8.2, Lemma 8.1 gives a lower bound on it, where
the positive part of x ∈ R is denoted by x+. Combining with a second lemma, we derive the
result in Theorem 8.4.

Lemma 8.1. Let τα = [d(θ̂) − 2 δ − tα]+ and α ∈ (0, 1). The test defined in (8.31) with
significance level α, has power

P[reject H0 |H1] ≥ 1− 3 exp
{
−Nτ2

α

2 Ω2

}
(8.32)

Proof. Under the alternative hypothesis H1, d(θ̂) > 0, Theorem 8.2 states that ΦN

(
{xi}i∈[N ]

)
concentrates in a neighborhood [d(θ̂)− δ, d(θ̂) + δ] of the EOF. In view of (8.31), we expect
the power of the test to rise with the sample size N if d(θ̂)− δ > tα + δ. This leads us to



CHAPTER 8. STATISTICAL LEARNING OF AN EQUILIBRIUM: APPROXIMATION
AND CONCENTRATION BOUNDS 118

pose the positive part of the difference τα = [d(θ̂)− 2δ − tα]+. If τα = 0, the right-hand side
of (8.32) is negative and the inequality is true. If τα > 0, tα + δ = d(θ̂)− δ − τα, then, using
Theorem 8.2

P[reject H0 |H1] = P
[
ΦN

(
{xi}i∈[N ]

)
≥ tα + δ

]
= P

[
ΦN

(
{xi}i∈[N ]

)
≥ d(θ̂)− δ − τα

]
≥ P

[
|ΦN

(
{xi}i∈[N ]

)
− d(θ̂)| ≤ δ + τα

]
≥ 1− 3 exp

{
−Nτ2

α

2Ω2

}

Lemma 8.2. Assume d(θ̂) > 2 δ and let β ∈ (0, 1). Then the inequality 1− 3 exp
{
−Nτ2

α

2Ω2

}
≥

1− β is equivalent to
√
N ≥ Ω

√
2 ln(3/β)+σ

√
2 ln(1/α)

d(θ̂)−2δ

Proof. We start with the following equivalence
1 − 3 exp

{
−Nτ2

α

2 Ω2

}
≥ 1 − β ⇐⇒ τ

√
N ≥ Ω

√
2 ln(3/β). Since the term in the right-hand

side is positive because β ∈ (0, 1), we can substitute τα with d(θ̂) − 2 δ − σ
√

2 ln(1/α)
N

. By

re-arranging the terms such that
√
N(d(θ̂)− 2 δ) is on the left-hand side of the inequality,

and dividing by d(θ̂)− 2 δ without changing the sense of the inequality because it is positive,
we obtain the equivalence.

Theorem 8.4. Let α, β ∈ (0, 1). Given the test defined in (8.30) and (8.31) with significance
level α, its power is at least 1− β if we have the following sufficient conditions

d(θ̂) > 2 δ (8.33)
√
N ≥ Ω

√
2 ln(3/β)+σ

√
2 ln(1/α)

d(θ̂)−2δ
(8.34)

Theorem 8.4 is a direct implication from Lemma 8.2 and Lemma 8.1. Under the null
hypothesis, the AER concentrates inside [0, δ] from Theorem 8.3, and under the alternate
hypothesis the AER concentrates inside [d(θ̂)−δ, d(θ̂)+δ] from Theorem 8.2. We then expect
to have a high statistical power when both of these intervals are disjoint, which is equivalent
to having d(θ̂) > 2 δ. Theorem 8.4 formalizes this intuition by stating a sufficient condition
on the sample size, on the significance α, and on the power 1− β. If higher significance or
power is desired, i.e. smaller α or β, (8.34) states that a larger sample size may be required.
We have the same implication if δ is larger, due to e.g. larger noise variance σ or larger
approximation error ḡ. If δ is large enough so that d(θ̂) < 2 δ, we may loose the ability to
reject the learned model if H1 is true. A more optimistic view is that having d(θ̂) < 2 δ
means that the EOF is small, and we may not want to reject the learned model anymore,
independently from whether H1 is true or false. Finally, Theorem 8.4 can be interpreted
as: for the test defined in (8.30) and (8.31), the condition d(θ) > 2δ is sufficient to get an
arbitrary high statistical power provided that we have enough samples.
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8.8 Concluding remarks
The proposed statistical framework, and the resulting analysis and t-statistic have far-reaching
potential on the modeling and validation of complex real-world processes as equilibria, since
variational inequality and convex optimization problems have a wide variety of applications.

To obtain a concentration of measure for the AER that is the one of a scalar variable,
we assumed Gaussian errors and used results on the concentration of Lipschitz functions
of Gaussian variables. However, it remains an open question whether or not a similar
property holds for sub-Gaussian variables. In the case of distribution-free bounded random
errors, dimensionless concentration results can still be obtained by using bounded differences
inequalities, see e.g. [25, Theorem 6.10].
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Part III

Estimating traffic flow on the highway
and arterial networks
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Chapter 9

State Estimation for Polyhedral Hybrid
Systems

This chapter investigates the problem of estimating the state of discretized hyperbolic scalar
partial differential equations. It uses a Godunov scheme to discretize the so-called Lighthill-
Whitham-Richards equation with a triangular flux function, and proves that the resulting
nonlinear dynamical system can be decomposed in a piecewise affine manner. Using this
explicit representation, the system is written as a switching dynamical system, with a state
space partitioned into an exponential number of polyhedra in which one mode is active.
We propose a feasible approach based on the interactive multiple model (IMM) which is a
widely used algorithm for estimation of hybrid systems in the scientific community. The
number of modes is reduced based on the geometric properties of the polyhedral partition.
The k-means algorithm is also applied on historical data to partition modes into clusters.
The performance of these algorithms are compared to the extended Kalman filter and the
ensemble Kalman filter in the context of Highway Traffic State Estimation. In particular, we
use sparse measurements from loop detectors along a section of the I-880 to estimate the
state density for our numerical experiments.

9.1 Introduction
Partial Differential Equations (PDEs) are often used in traffic as density based traffic models
because they provide a concise mathematical model to capture essential properties of a wide
variety of phenomena such as fluid flow, heat, and electrodynamics. Based on the conservation
of flow, the Lighthill-Whitham-Richards (LWR) PDE [109, 136] and its discretization using
the Godunov scheme [100, 106, 146] have been widely used in the scientific community for
modelling traffic, they also known as the Cell Transmission Model (CTM) [50, 51] in the
transportation literature. State of the art traffic estimation techniques for this model include
the application of the extended Kalman filter (EKF) to the LWR PDE by Schreiter et al.
[141], and to non-scalar traffic model by Papageorgiou [128]. The application of the EKF to
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the LWR PDE model is problematic due to the non-differentiability of its discretization, a
problem which has been partially addressed in [23] and [151]. The ensemble Kalman filter
(EnKF) has also been applied to a velocity-based model in [170], in order to circumvent
the difficulties of non-differentiability of numerical solutions to these PDEs such as the one
presented in this chapter.

The Godunov scheme applied to the LWR model for a triangular flux function can be
proven to lead to a piecewise affine (PWA) hybrid system, which is one of the contributions
of this chapter. Each cell of the discretized system switches between several linear models.
We define this new class of systems as multicellular hybrid systems. The resulting switching-
mode dynamical system combines discrete dynamics modeled by a finite automaton for the
transitions between the modes and continuous dynamics in the form of linear discretized
dynamical systems. Estimation of hybrid systems has been widely studied in past work [104,
105]. In particular, such techniques have been successfully used for aircraft tracking in [83] in
which Bar-Shalom’s interacting multiple model (IMM) algorithm was used [9]. Similar hybrid
estimation algorithms and their applications are described in [118, 147, 80]. While the IMM
algorithm seems a natural approach for the estimation of hybrid systems, it is intractable
when applied to the discretized LWR PDE (thus highway models) because the combination
of the modes of each cell induce an exponential number of modes. A priori, each cell of
the discretized model can be in seven different modes, which leads to 7n modes, where n is
the dimension of the state thus creating serious computational challenges in the estimation
problem. One possible way to address this is with the mixture Kalman filter algorithm [40]
which handles this complexity by randomly sampling in the space of modes.

Our work contains four contributions. To the best of our knowledge, this is the first time
that an explicit piecewise affine decomposition of the Godunov is formulated. 1) For a fixed
mode vector m, the Godunov scheme is locally affine, and we have an explicit formulation of
the linear dynamics. 2) The domains of the mode vectors Dom(m) are also expressed with
explicit linear constraints, and they form a polyhedral partition of the state space. Even
though the IMM is a natural algorithm for hybrid estimation, it is not tractable because of
the exponential number of modes. Hence the second contribution consists in proposing two
methods: 3) The first one takes advantage of the geometric properties of the space of modes
to reduce the set of modes to the mode of the current estimate and its adjacent modes. 4)
The second one uses a clustering algorithm on historical data to reduce the set of modes to a
representative sets: then the reduced model only switches between these modes.

The rest of the chapter is organized as follow: Section 9.2 presents the mathematical
model used and unravels the PWA expression of the Godunov scheme. Section 9.3 presents
the polyhedral properties of the space of modes. Section 9.4 shows that the IMM applied to
the discretized system is not tractable. Section 9.5 presents feasible algorithms inspired from
IMM using the PWA character of the Godunov scheme and k-means.1

1Code available here: https://github.com/jeromethai/hybrid-LWR-estimation
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9.2 A Hybrid Automaton

The LWR Model

Lighthill, Whitham in 1955 [109], and Richards in 1956 [136] introduced a macroscopic
dynamic model of traffic based on conservation of vehicles, using Greenshields’ hypothesis [73]
of a static flow/density relationship (9.1), known as the flux function:

q(x, t) = Q(ρ(x, t)) (9.1)

where ρ(x, t) and q(x, t) denote the density and the flow of vehicles at location x and time
t respectively. The flux function Q is assumed to be a function of the density only. The
conservation of mass can be rewritten as follows:

∂ρ(x,t)
∂t

+ ∂Q(ρ(x,t))
∂x

= 0, ∀ (x, t) ∈ [0, L]× R+

ρ(0, t) = u(t), ρ(L, t) = d(t) ∀ t ∈ R+

ρ(x, 0) = ρ0(x), ∀x ∈ [0, L]

(9.2)

where u(t), d(t) are the upstream and downstream densities respectively, and ρ0(x) is the
initial state [109, 136]. This equation is commonly known as the Lighthill-Whitham-Richards,
or LWR, model. Different flux functions have been suggested.

ρc density

flow

capacity qc

Q(ρ)

congestionfree flow

ρjam

Figure 9.1: Speed and flow relationships for triangular flux function.

At each boundary, the ability to prescribe the value of the solution depends on the sign
of the characteristic curve (if it is entering the domain, it can be done in the strong sense,
otherwise it cannot be done). Thus, in order for the problem to be well posed, one needs to
prescribe the boundary conditions in the weak sense, and they can either apply at the two
boundaries, at one boundary or at none of the boundaries, depending on the value of the
function in the interior of the domain. This result is described in detail in [10] for a compact
domain. It was later instantiated for specific PDEs, in particular in the work of [103], and in
the specific case of traffic (concave flux function) in [146].
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Assumptions and notations

In the rest of the chapter, we will focus on the analysis of the Godunov scheme, which is a
conservative numerical scheme for solving PDE. We assume that traffic densities are between
0 and ρjam, i.e. the density ρ(x, t) is in [0, ρjam] for all x, t.

The widely-used triangular flux function described in [50] is also chosen for our dynamic
model and results are derived from it. It is a function of the density ρ. It assumes a constant
velocity in free-flow and a hyperbolic velocity in congestion as shown in Figure 9.1.

Q(ρ) =

{
vfρ if ρ ≤ ρc

−ωf (ρ− ρjam) if ρ > ρc
(9.3)

where ωf = vfρc/(ρjam − ρc) is the backward propagation wave speed.
We also assume for simplicity and clarity that the segment of road we are modeling is

homogeneous, i.e. the parameters of the flux function ωf , vf , ρjam, ρc, qc are uniform along
the cells of the discretized road. All the results derived in the rest of the chapter still remain
valid for an heterogeneous road.

The Godunov scheme

A seminal numerical method to solve the above equations is given by the Godunov scheme,
which is based on exact solutions to Riemann problems [71, 72]. This leads to the construction
of a nonlinear discrete time dynamical system. The Godunov discretization scheme is applied
on the LWR PDE, where the discrete time step ∆t is indexed by t, and the discrete space
step ∆x is indexed by i:

ρt+1
i = ρti −

∆t

∆x

(
G(ρti, ρ

t
i+1)−G(ρti−1, ρ

t
i)
)
, i = 1, · · · , n (9.4)

In order to ensure numerical stability, the time and space steps are coupled by the CFL
condition [106]: cmax

∆t
∆x
≤ 1 where cmax denotes the maximal characteristic speed.

The Godunov flux can be expressed as the minimum of the sending flow S(ρ) from the
upstream cell and the receiving flow R(ρ) from the downstream cell through a boundary
connecting two cells of a homogeneous road (i.e. the upstream and downstream cells have
the same characteristics). For the triangular flux function:

G(ρ1, ρ2) = min(S(ρ1), R(ρ2))

S(ρ) =

{
Q(ρ) = vfρ if ρ ≤ ρc

qc if ρ > ρc

R(ρ) =

{
qc if ρ ≤ ρc

Q(ρ) = −ωf (ρ− ρjam) if ρ > ρc

(9.5)

where ρ1 is the density of the cell upstream and ρ2 is the density of the cell downstream.
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Figure 9.2: a) Sending and receiving flows for triangular flux function. b) Values of G(ρ1, ρ2)
in the space [0, ρjam]2.

As shown in Figure 9.2.a), the application of the Godunov scheme to the flux functions
introduces intuitive concepts of supply and demand at the boundary connecting two cells.

Given the partition of the space [0, ρjam]2 in different regions W, L, and D as shown in
Figure 9.2.b), the function G(ρ1, ρ2) takes different values.

Lemma 9.1. With a triangular flux function, the Godunov flux (ρ1, ρ2) ∈ [0, ρjam]2 7→
G(ρ1, ρ2) is piecewise affine:

G(ρ1, ρ2) =


−ωf (ρ2 − ρjam) if (ρ1, ρ2) ∈W
qc if (ρ1, ρ2) ∈ L
vfρ1 if (ρ1, ρ2) ∈ D

W := {(ρ1, ρ2) | ρ2 +
vf
wf
ρ1 > ρjam , ρ2 > ρc}

L := {(ρ1, ρ2) | ρ1 > ρc , ρ2 ≤ ρc}
D := {(ρ1, ρ2) | ρ2 +

vf
wf
ρ1 ≤ ρjam , ρ1 ≤ ρc}

(9.6)

Proof. We recall that (ρ1, ρ2) ∈ [0, ρjam]2. Equations (9.5) imply:

ρ1, ρ2 ≤ ρc =⇒ G(ρ1, ρ2) = min(vfρ1, qc) = vfρ1

ρ1, ρ2 ≥ ρc =⇒ G(ρ1, ρ2) = min(qc, −wf (ρ2 − ρjam))
= −wf (ρ2 − ρjam)

ρ1 ≥ ρc, ρ2 ≤ ρc =⇒ G(ρ1, ρ2) = min(qc, qc) = qc
ρ1 ≤ ρc, ρ2 ≥ ρc =⇒ G(ρ1, ρ2) = min(vfρ1, −wf (ρ2 − ρjam))

The third implication proves our result for the region L. Then, given ρ1 ≤ ρc, ρ2 ≥ ρc,
G(ρ1, ρ2) = vfρ1 ⇐⇒ vfρ1 ≤ −wf(ρ2 − ρjam) ⇐⇒ ρ2 +

vf
wf
ρ1 ≤ ρjam. Finally, we note that

{ρ1 ≤ ρc, ρ2 ≤ ρc} ∪ {ρ2 +
vf
wf
ρ1 ≤ ρjam} = {ρ2 +

vf
wf
ρ1 ≤ ρjam , ρ1 ≤ ρc} hence the definition

of D in (9.6). The result for W follows similarly.

Godunov scheme as a Hybrid Automaton

We now consider an entire link divided into n cells and we add two ghost cells on the left and
right sides of the domain. Hence, the discrete state space is indexed by i = 0, 1, · · · , n+ 1,
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the state of the system is ρ = [ρ0, · · · , ρn+1]T ∈ [0, ρjam]n+2, and the dimension is n+ 2. The
density at cell i and time t is then ρti, the i-th entry of vector ρ, and the values of ρt0 and
ρtn+1 are given by the prescribed boundary conditions to be imposed on the left and right
side of the domain respectively, i.e. ρt0 = u(t) and ρtn+1 = d(t) for all t where u(t) and d(t)
are the upstream and downstream densities respectively.

In the rest of the section we present a simple analysis for the formulation of the discretized
system as a piecewise affine Autonomous Hybrid Automaton. We will sometimes use the
lighter notation ρ+

i = ρi − α (G(ρi, ρi+1)−G(ρi−1, ρi)) for the Godunov scheme (9.4) with
α = ∆t/∆x. We rewrite equations (9.6) in the state space [0, ρjam]n+2.

G(ρi, ρi+1) =


−ωf (ρi+1 − ρjam) if ρ ∈Wi+1/2

qc if ρ ∈ Li+1/2

vfρi if ρ ∈ Di+1/2

for i = 0, · · ·n (9.7)

where Wi+1/2, Li+1/2, Di+1/2, i = 0, · · · , n, are 3(n+ 1) polyhedra in [0, ρjam]n+2:

Wi+1/2 = {ρ ∈ [0, ρjam]n+2 | ρi+1 +
vf
wf
ρi > ρjam , ρi+1 > ρc}

Li+1/2 = {ρ ∈ [0, ρjam]n+2 | ρi > ρc , ρi+1 ≤ ρc}
Di+1/2 = {ρ ∈ [0, ρjam]n+2 | ρi+1 +

vf
wf
ρi ≤ ρjam , ρi ≤ ρc}

(9.8)

We note that we can express the polyhedra Wi+1/2, Li+1/2, Di+1/2 in vector form:

Wi+1/2 = {ρ | d(1) · [ρi, ρi+1, 1]T > 0 , d(3) · [ρi, ρi+1, 1]T > 0}
Li+1/2 = {ρ | d(2) · [ρi, ρi+1, 1]T > 0 , d(3) · [ρi, ρi+1, 1]T ≤ 0}
Di+1/2 = {ρ | d(1) · [ρi, ρi+1, 1]T ≤ 0 , d(2) · [ρi, ρi+1, 1]T ≤ 0}

(9.9)

with coefficients
d(1) = [(ρjam − ρc)/ρc, 1, −ρjam]
d(2) = [1, 0, −ρc]
d(3) = [0, 1, −ρc]

(9.10)

Combining the Godunov scheme (9.4) and the Godunov flux in PWA form (9.7):

Lemma 9.2. With a triangular flux function, the Godunov scheme at cell i ∈ {1, · · · , n} can
be formulated as a Hybrid Automaton with linear components:

• mode mi ∈ Q with Q := {1, · · · , 9}2

• state ρi ∈ [0, ρjam]

• inputs (ρti−1, ρ
t
i+1) ∈ [0, ρjam]2, t ≥ 0

• discrete dynamics ρt+1
i = L(mi)·[ρti−1, ρ

t
i, ρ

t
i+1]T+w(mi) if (ρti−1, ρ

t
i, ρ

t
i+1) ∈ P (Dom(mi))

where L(·) : Q 7→ R3 and w(·) : Q 7→ R are defined in Table 9.1, and P (·) is the projec-
tion operator onto V ect(ei−1, ei, ei+1).
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mi Dom(mi) L(mi) w(mi) ρt+1
i = L(mi) · [ρti−1, ρ

t
i, ρ

t
i+1]T + w(mi)

1 Wi−1/2 ∩Wi+1/2 L(1) = [0, 1− αwf , αwf ] w(1) = 0 ρt+1
i = (1− αωf )ρti + αωfρ

t
i+1

2 Wi−1/2 ∩ Li+1/2 L(2) = [0, 1− αwf , 0] w(2) = αwfρc ρt+1
i = (1− αωf )ρti + αωfρc

3 Li−1/2 ∩Wi+1/2 L(3) = [0, 1, αwf ] w(3) = −αwfρc ρt+1
i = ρti + αωfρ

t
i+1 − αωfρc

4 Li−1/2 ∩Di+1/2 L(4) = [0, 1− αvf , 0] w(4) = αvfρc ρt+1
i = (1− αvf )ρti + αvfρc

5 Di−1/2 ∩Wi+1/2 L(5) = [αvf , 1, αwf ] w(5) = −αwfρjam ρt+1
i = αvfρ

t
i−1 + ρti + αωfρ

t
i+1 − αωfρjam

6 Di−1/2 ∩ Li+1/2 L(6) = [vf , 1, 0] w(6) = −αvfρc ρt+1
i = αvfρ

t
i−1 + ρti − αvfρc

7 Di−1/2 ∩Di+1/2 L(7) = [vf , 1− αvf , 0] w(7) = 0 ρt+1
i = αvfρ

t
i−1 + (1− αvf )ρti

8 Wi−1/2 ∩Di+1/2 L(8) = [0, 1− αvf − αwf , 0] w(8) = αwfρjam ρt+1
i = (1− αvf − αwf )ρti + αwfρjam

9 Li−1/2 ∩ Li+1/2 L(9) = [0, 0, 0] w(9) = 0 ρt+1
i = ρti

Table 9.1: Godunov scheme w.r.t. discrete states mi at cell i, e.g., if ρ ∈ Dom({mi =
4}) = Li−1/2 ∩ Di+1/2 = {ρ | ρi−1 > ρc, ρi ≤ ρc, ρi+1 +

vf
wf
ρi ≤ ρjam}, then ρt+1

i = L4 ·
[ρti−1, ρ

t
i, ρ

t
i+1]T + w4 = (1− αvf )ρti + αvfρc.

• domain of the modes Dom(mi) defined in the Table 9.1 and (9.8).

We note that Dom(mi) refers to the subset of Rn+2 in which the mode of cell i is mi. Since the
linear constraints that define Dom(mi) (see Table 9.1) only concern variables ρi−1, ρi, ρi+1,
the projection onto V ect(ei−1, ei, ei+1) contains all the information on the shape of Dom(mi).

Proof. We prove the result formi = 4, the other cases follow similarly. When ρ ∈ Dom({mi =
4}) = Li−1/2∩Di+1/2 following the definition of Dom(mi) in Table 9.1, we have G(ρi−1, ρi) = qc
and G(ρi, ρi+1) = vfρi from (9.7) then

ρ+
i = ρi − α (G(ρi, ρi+1)−G(ρi−1, ρi))

= ρi − α(vfρi − qc) = (1− αvf )ρi + αqc

hence ρ+
i = L(4) · [ρi−1, ρi, ρi+1]

T + w(4) with L(4) := [0, 1 − αvf , 0] and w(4) := αvfρc
following the definitions of L(mi) and w(mi) in Table 9.1.

We note that the condition (ρti−1, ρ
t
i, ρ

t
i+1) ∈ P (Dom(mi)) in the discrete dynamics is a

reset relation at each time step: the mode at time t is directly given by state ρt.

Discretized system as a Hybrid system

The mode of each cell can be listed in a vector m ∈ {1, · · · , 9}n in which the i-th entry is
the discrete state at cell i. We call it the mode vector. As a result, the domain of the mode
vector m ∈ {1, · · · , 9}n is:

Dom(m) =
n⋂
i=1

Dom(mi) (9.11)

2In this description, the mode mi takes on values in a finite set Q = {1, · · · , 9} for completeness. We will
see in Section 9.3 that the modes mi = 8 and mi = 9 are not accepted.
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For example, if n = 2, then the state ρ = [ρ0, ρ1, ρ2, ρ3] is in [0, ρjam]4 with boundary cells ρ0

and ρ3 and the mode vector m is in {1, · · · , 9}4. More specifically:

Dom({m = (2, 3)})
= Dom({m1 = 2}) ∩Dom({m2 = 3})
= (W1/2 ∩ L1+1/2) ∩ (L1+1/2 ∩W2+1/2)
= W1/2 ∩ L1+1/2 ∩W2+1/2

= {ρ ∈ [0, ρjam]4 | ρ1 +
vf
wf
ρ0 > ρjam, ρ1 > ρc, ρ2 ≤ ρc,

ρ3 +
vf
wf
ρ2 > ρjam}

(9.12)

We will show later that the subsets Dom(m)’s form a partition of [0, ρjam]n+2.
For each mode vectorm, we construct the matrix Am ∈ R(n+2)×(n+2), and the row vectors

bm, c
t ∈ Rn+2 in the form:

Am =


0 · · · 0

L(m1)
. . .

L(mn)
0 · · · 0

 , bm =


0

w(m1)
...

w(mn)
0

 , ct =


u(t)

0
...
0
d(t)

 (9.13)

where L(mi), w(mi) are defined in Table 9.1, and u(t), d(t) are the upstream and downstream
densities respectively. This leads to one of the main results of the chapter:

Proposition 9.1. The discretized LWR equation using the Godunov scheme and with a
triangular flux function is an Autonomous Hybrid Automaton with affine components:

• discrete state m ∈ {1, · · · , 9}n

• state ρt ∈ [0, ρjam]n+2 at time t

• inputs (u(t), d(t)) ∈ [0, ρjam]2

• discrete dynamics ρt+1 = Amρ
t + bm + ct if ρt ∈ Dom(m)

• domain of the discrete states Dom(m) defined in (9.11).

Proof. The formulation as a Hybrid Automaton is obtained by stacking the states and modes
in the Hybrid Automaton formulation of the Godunov scheme into a vector, and the linear
transformations into a matrix.

Finally, we note that the condition ρt ∈ Dom(m) in the discrete dynamics is a reset
relation at each time step: the mode at time t is directly given by state ρt.
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Algorithm 9.1 Find the mode vector: rho2m(ρ). The parameters d(1), d(2), d(3) ∈ R3

in equation (9.10) describe the domain of each mode vector (see Table 9.1 and (9.9), (9.10),
(9.11))
Require: current state ρ = [ρ0, · · · , ρn+1] ∈ [0, ρjam]n+2

1. for i ∈ {0, · · · , n}:
2. x = [ρi, ρi+1, 1]T

3. I = [d(1)x > 0, d(2)x > 0, d(3)x > 0] ∈ {0, 1}3

4. if I(1) ∧ I(3) then s(i) = W \\ρ ∈Wi+1/2

5. if I(2) ∧ ¬I(3) then s(i) = L \\ρ ∈ Li+1/2

6. if ¬I(1) ∧ ¬I(2) then s(i) = D \\ρ ∈ Di+1/2

7. for i ∈ {0, · · · , n}:
8. if {s(i) = W} ∧ {s(i+ 1) = W} then mi = 1
9. if {s(i) = W} ∧ {s(i+ 1) = L} then mi = 2
10. if {s(i) = L} ∧ {s(i+ 1) = W} then mi = 3
11. if {s(i) = L} ∧ {s(i+ 1) = D} then mi = 4
12. if {s(i) = D} ∧ {s(i+ 1) = W} then mi = 5
13. if {s(i) = D} ∧ {s(i+ 1) = L} then mi = 6
14. if {s(i) = D} ∧ {s(i+ 1) = D} then mi = 7
15. return m = [m1, · · · ,mn] ∈ {1, · · · , 7}n

9.3 Description of the mode vectors

Accepted mode vectors

The following analysis is motivated by the fact that Dom(m) = ∅ for some values of m,
which means that some of the mode vectors m’s are not accepted by the system.

Definition 9.1. We say that a mode vector m is accepted by the system if and only if its
domain Dom(m) is not empty.

Proposition 9.2. The mode vector m ∈ {1, · · · , 9}n is accepted by the system if and only if
we have the following two conditions

mi ∈ {1, · · · , 7}, ∀ i ∈ {1, · · · , n} (9.14)

∀ i ∈ {1, · · · , n− 1}, mi+1 ∈


{1, 2} if mi ∈ {1, 3, 5}
{3, 4} if mi ∈ {2, 6}
{5, 6, 7} if mi ∈ {4, 7}

(9.15)

Proof. From (9.8), it can be seen thatWi−1/2∩Di+1/2 = Li−1/2∩Li+1/2 = ∅ for all i = 1, · · · , n.
Hence Dom({mi = 8}) = Dom({mi = 9}) = ∅ (see Table 9.1). In other words, m is not
accepted if it has an entry in {8, 9} which gives the first condition.
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We note that for a fixed i, the polyhedra Wi+1/2, Li+1/2, Di+1/2 partition [0, ρjam]n+2.
Since Dom(mi) ∩Dom(mi+1) is of the form:

Dom(mi) ∩Dom(mi+1)
= (Pi−1/2 ∩Pi+1/2) ∩ (P′i+1/2 ∩Pi+1+1/2) ⊂ Pi+1/2 ∩P′i+1/2

with Pi+1/2, P′i+1/2 ∈ {Wi+1/2, Li+1/2, Di+1/2}, then m is accepted if Pi+1/2 = P′i+1/2. In
other words, Dom(mi) = Pi−1/2 ∩Pi+1/2 and Dom(mi+1) = P′i+1/2 ∩Pi+1+1/2 must overlap.
This gives condition (9.15).

Reciprocally, if m satisfies conditions (9.14) and (9.15), then we have overlaps between
Dom(mi) and Dom(mi+1). Hence Dom(m) is of the form

Dom(m) =
⋂n
i=0 Pi+1/2

Pi+1/2 ∈ {Wi+1/2, Li+1/2, Di+1/2}, i = 0, · · · , n (9.16)

The intersection of any pair of two consecutive polyhedra in (9.16) has to be among the
first seven subsets in Table 9.1. Hence for all i = 1, · · · , n, the projection of Dom(m) onto
V ect(ei−1, ei, ei+1) is one of the 7 subsets of R3 shown in Figure 9.3, which are all non empty.
Hence Dom(m) is the product of nonempty spaces, hence it is nonempty.

Figure 9.3: Projection of Dom(mi) onto V ect(ei−1, ei, ei+1) for i ∈ {1, · · · , 7}. For example, in
the top left figure, if (ρi−1, ρi, ρi+1) is in the orange polyhedron, then ρ ∈Wi−1/2∩Wi+1/2 =
Dom({mi = 1}), the mode mi is 1 (see Table 9.1).

From the analysis above, we also conclude that under conditions (9.14) and (9.15), the
domain of an accepted mode vector can be decomposed in the form (9.16). This is illustrated
in the derivation of Dom({m = (2, 3)}) in example (9.12) above.
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From (9.14), the space of discrete states of the Godunov scheme at each cell is reduced to
{1, · · · , 7} and the space in which the mode vector m lies is reduced to {1, · · · , 7}n.

Definition 9.2. For an accepted mode vector m and the associated Dom(m) =
⋂n
i=0 Pi+1/2,

a mode string s = s(0)s(1)s(2) · · · s(n) is associated with m if s(i) = W (resp. L,D) if
Pi+1/2 = Wi+1/2 (resp. Li+1/2, Di+1/2) and a mode string is accepted if and only if s(i)s(i+
1) ∈ {WW, WL, LW, LD, DW, DL, DD} for all i, from the analysis done in Proposition
9.2.

Proposition 9.3. The number of accepted mode vectors is asymptotically 3.1778 · (2.2470)n.

Proof. We count the number of accepted mode strings recursively on the length k of the
string. Let Nk be the number of accepted strings, Figure 9.4 shows the 16 accepted strings
of length 3. Let us denote by wk (resp. lk, dk) the number of accepted strings which last
element is W (resp. L,D). Then for all k ≥ 0

w0 = l0 = d0 = 1
wk+1 = wk + lk + dk
lk+1 = wk + dk
dk+1 = lk + dk

=⇒

 wk
lk
dk

 = Ak ×

 w0

l0
d0

 , A =

 1 1 1
1 0 1
0 1 1

 (9.17)

hence, Nk = wk + lk + dk = eTAke with eT = [1 1 1]. Diagonalizing the matrix A gives
A = V DV −1 withD := diag(λ1, λ2, λ3) where λ1, λ2, λ3 are the eigenvalues of A in increasing
order. Since λ3 is the only eigenvalue above 1 in absolute value, we have:

Dk = diag(λk1, λ
k
2, λ

k
3) ∼ diag(0, 0, λk3) when k −→ +∞

hence eTAke ≈ eTV diag(0, 0, λk3)V −1e = λk3(V T e)3(V −1e)3

≈ 3.1778 · (2.2470)k

Proposition 9.4. The polyhedra Dom(m) associated with accepted mode vectors m form a
partition of [0, ρjam]n+2.

Proof. Let m and m′ be two distinct accepted mode vectors and s, s′ the associated
strings. We pick i ∈ {0, · · · , n} such that s(i) 6= s′(i). Then Dom(m) ⊂ Pi+1/2 and
Dom(m′) ⊂ P′i+1/2, where Pi+1/2 and P′i+1/2 are two distinct polyhedra among Wi+1/2,
Li+1/2, Di+1/2. Hence Dom(m) and Dom(m′) are disjoint. And for any ρ ∈ [0, ρjam]n+2, we
can find its associated accepted mode vector m such that ρ ∈ Dom(m), hence the different
Dom(m) span the whole state space.
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Algorithm 9.2 mode vector m to mode string: m2s(m)
Require: accepted mode vector m
1. if m1 ∈ {1, 2} then s(0) = W \\P1/2 = W1/2 in (9.16)
2. if m1 ∈ {3, 4} then s(0) = L \\P1/2 = L1/2 in (9.16)
3. if m1 ∈ {5, 6, 7} then s(0) = D \\P1/2 = D1/2 in (9.16)
4. for i ∈ {1, · · · , n}:
5. mi ∈ {1, 3, 5} then s(i) = W \\Pi+1/2 = Wi+1/2 in (9.16)
6. mi ∈ {2, 6} then s(i) = L \\Pi+1/2 = Li+1/2 in (9.16)
7. mi ∈ {4, 7} then s(i) = D \\Pi+1/2 = Di+1/2 in (9.16)
8. return the mode string s(0)s(1) · · · s(n)

Algorithm 9.3 mode string to mode vector: s2m(s(0) · · · s(n))
Require: accepted mode string s(0) · · · s(n)
1. apply lines 8 to 16 of Algorithm 9.2
2. return the mode vector m

WW L W D W L W L D L W D W L D

W L W D W L D

W L D(ρ0, ρ1)

(ρ1, ρ2)

(ρ2, ρ3)

Figure 9.4: The sixteen accepted mode strings for the first three pairs (ρ0, ρ1), (ρ1, ρ2), and
(ρ2, ρ3). For more details, see Propositions 9.2 and 9.3.

Minimal representation

We now introduce the concepts of minimal representation and adjacent polyhedra.

Definition 9.3 (Faces of a polyhedron). A supportive hyperplane of a closed convex set C
is a hyperplane ∂H such that C ∩ ∂H 6= ∅ and C ⊆ H, where H is one of the two closed
half-spaces (associated with the hyperplane). Given a (closed) polyhedron P, the intersection
with any supportive hyperplane is a face of P. Moreover, a vertex is a zero-dimension face,
an edge a one-dimension face, and a facet is a face of dimension d− 1 if P is of dimension
d. For a full-dimensional polyhedron, a facet is of dimension n + 1 (recall that the space
[0, ρjam]n+2 is of dimension n+ 2).

Definition 9.4 (Minimal H-representation). There exist infinitely many H-descriptions of a
(closed) convex polytope. For a full-dimensional convex polytope, the minimal H-description
is unique and is given by the set of the facet-defining half-spaces [75].

We now want to find the minimal representation of Dom(m) =
⋂n
i=0 Pi+1/2 for all accepted

modes m. Each one of the 3(n+ 1) polyhedra Wi+1/2, Li+1/2, Di+1/2, i = 0, · · · , n defined
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in (9.8) is intersection of two half-spaces:

Wi+1/2 = Hi+1/2 ∩Hi+1

Li+1/2 = Hi ∩Hc
i+1

Di+1/2 = Hc
i ∩Hc

i+1/2

(9.18)

where
Hi = {ρ ∈ [0, ρjam]n+2 | ρi > ρc}, i = 0, · · · , n+ 1
Hi+1/2 = {ρ ∈ [0, ρjam]n+2 | ρi+1 +

vf
wf
ρi > ρjam}, i = 0, · · · , n (9.19)

and Hc
i , H

c
i+1/2 are the complementary of Hi and Hi+1/2 respectively. The projections of

these half-spaces on V ect(ei, ei+1) are illustrated in Figure 9.5.

Figure 9.5: Projection of the half-spaces Hi, Hi+1/2, Hi+1 on the plane V ect(ei, ei+1).

In example (9.12), we have:

Dom({m = {2, 3}})
= W1/2 ∩ L1+1/2 ∩W2+1/2

= (H1/2 ∩H1) ∩ (H1 ∩Hc
2) ∩ (H2+1/2 ∩H3)

= H1/2 ∩H1 ∩Hc
2 ∩H2+1/2 ∩H3

= H1/2 ∩H1 ∩Hc
2 ∩H2+1/2

Since Hc
2 ∩ H2+1/2 ⊂ H3, we can remove H3 from the intersection. After removing this

redundant constraint, the last equality gives the minimal representation of Dom({m =
{2, 3}}).

While finding the minimal representation of a nonempty polyhedron can be difficult in
general, it is easy for the polyhedra Dom(m) associated with accepted mode vectors m.
In the form Dom(m) =

⋂n
i=0 Pi+1/2, we sequentially derive the minimal representation of

each polyhedron of the decreasing sequence {⋂k
i=0 Pi+1/2}k≥0 by successively adding the non-

redundant constraints in Pk+1/2 ∈ {Wk+1/2, Lk+1/2, Dk+1/2} to the minimal representation
of
⋂k−1
i=0 Pi+1/2. The minimal representation is given by Algorithm 9.4.
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Algorithm 9.4 Minimum representation of Dom(m): minRep(m)
Require: accepted mode vector m
1. H = {}
2. if m1 ∈ {1, 2} then H = H ∪ {H1/2, H1}
3. if m1 ∈ {3, 4} then H = H ∪ {H0, Hc

1}
4. if m1 ∈ {5, 6, 7} then H = H ∪ {Hc

0, H
c
1/2}

5. for k ∈ {1, · · · , n}:
6. if mk = 1 then H = H ∪ {Hk+1}
7. if mk = 2 then H = H ∪ {Hc

k+1}
8. if mk = 3 then H = H ∪ {Hk+1/2}
9. if mk = 4 then H = H ∪ {Hc

k+1/2}
10. if mk = 5 then H = H ∪ {Hk+1/2, Hk+1}
11. if mk = 6 then H = H\{Hc

k−1} ∪ {Hk, Hc
k+1}

12. if mk = 7 then H = H\{Hc
k−1/2} ∪ {Hc

k+1/2, H
c
k}

13. return the minimal representation H

Lemma 9.3. The following inclusions for the half-spaces Hk, Hk+1/2, Hk+1 for k ∈ {0, · · · , n}
hold:

Hk ∩Hk+1 ⊂ Hk+1/2

Hc
k ∩Hk+1/2 ⊂ Hk+1

Hc
k+1/2 ∩Hk+1 ⊂ Hc

k

Hc
k ∩Hc

k+1 ⊂ Hc
k+1/2

(9.20)

Proof. The proof is left to the reader. See Figure 9.5 for an illustration of these inclusions.

Proposition 9.5. For every accepted mode vector m, Algorithm 9.4 returns the minimal
representation of the closure of Dom(m).

Proof. We fix an accepted mode vector m and we fix the associated decomposition (9.16),
which gives the sequence Pk+1/2, k ∈ {0, · · · , n}. Let H be the set of half-spaces (or linear
inequalities) in [0, ρjam]n+2 defined in algorithm 9.4. First, we express Dom(m) in the form
Dom(m) =

⋂n
i=0 Pi+1/2, then we prove by induction that at the k-th iteration of the for

loop in algorithm 9.4, the intersection of all the half-spaces in the current H is the minimal
representation of

⋂k
i=0 Pi+1/2.

Initialization k = 1: if m1 ∈ {1, 2}, then we have H = {H1/2,H1} from the algorithm
and P1/2 = W1/2 from Table 9.1. The expression ∩H∈HH = H1/2 ∩H1 is clearly the minimal
representation of W1/2 from (9.18). The cases m1 ∈ {3, 4} and m1 ∈ {5, 6, 7} follow similarly.

Step k: The algorithm provides H− and H which are the minimal representations of⋂k−2
i=0 Pi+1/2 and

⋂k−1
i=0 Pi+1/2 respectively. We want to show that the algorithm updates H

to H+, such that H+ is the minimal representation of
⋂k
i=0 Pi+1/2. We have 7 cases:
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a) If mk = 1, then from Table 9.1 and (9.18),

Pk−1/2 = Wk−1/2 = Hk−1/2 ∩Hk

Pk+1/2 = Wk+1/2 = Hk+1/2 ∩Hk+1

in the expression (9.16), hence H ⊂ H− ∪ {Hk−1/2,Hk}. In this case, algorithm 9.4 adds
constraint Hk+1 to H, so H+ ⊂ H− ∪ {Hk−1/2,Hk,Hk+1}. Then

Hk−1/2 ∩Hk ∩Hk+1 = (Hk−1/2 ∩Hk) ∩ (Hk+1 ∩Hk+1/2)
= Wk−1/2 ∩Wk+1/2

where the third equality is from Hk ∩Hk+1 ⊂ Hk+1/2 in (9.20). Hence H+ is a representation
of ∩ki=0Pi+1/2. Finally, H+ is minimal because the added constraintHk+1 is the only constraint
on ρk+1, so it is not redundant with the constraints in H.

b) If mk = 2, then Pk−1/2 and Pk+1/2 in the expression (9.16) are:

Pk−1/2 = Wk−1/2 = Hk−1/2 ∩Hk

Pk+1/2 = Lk+1/2 = Hk ∩Hc
k+1

and constraint Hc
k+1 is added to H in algorithm 9.4, so H+ ⊂ H− ∪ {Hk−1/2,Hk,Hc

k+1}, and

Hk−1/2 ∩Hk ∩Hc
k+1 = (Hk−1/2 ∩Hk) ∩ (Hk ∩Hc

k+1)
= Pk−1/2 ∩Pk+1/2

so ∩H∈H+H = ∩ki=0Pi+1/2, i.e. H+ is a representation of ∩ki=0Pi+1/2. This is the minimal
representation because the added constraint Hc

k+1 is the only constraint on ρk+1.
c) If mk = 3, the analysis is similar to case mk = 1.
d) If mk = 4, the analysis is similar to case mk = 2.
e) If mk = 5, then Pk−1/2 = Dk−1/2 = Hc

k−1 ∩Hc
k−1/2 and Pk+1/2 = Wk+1/2 = Hk+1/2 ∩

Hk+1 in expression (9.16). Algorithm 9.4 adds constraints Hk+1/2, Hk+1 to H, hence H+ is
a representation of ∩ki=0Pi+1/2. It is easy to see that the constraints Hk+1/2 ∩Hk+1 are not
redundant, hence H+ is the minimal representation of ∩ki=0Pi+1/2.

f) If mk = 6, then Pk−1/2 = Dk−1/2 = Hc
k−1 ∩ Hc

k−1/2 and Pk+1/2 = Lk+1/2 = Hk ∩
Hc
k+1 in expression (9.16). We have H ⊂ H− ∪ {Hc

k−1,H
c
k−1/2}. Algorithm 9.4 removes

constraint Hc
k−1 from H (if H contains it) and adds constraints Hk, Hc

k+1, hence H+ ⊂
H− ∪ {Hc

k−1/2,Hk,Hc
k+1}. The only potential redundancies in H+ would be between Hc

k−1/2

and the newly added constraints Hk,Hc
k+1. It is easy to verify that there is no redundant

constraint in H+. Finally, since we have the inclusion Hc
k−1/2 ∩Hk ⊂ Hc

k−1 from (9.20)

Hc
k−1/2 ∩Hk ∩Hc

k+1 = (Hc
k−1 ∩Hc

k−1/2) ∩ (Hk ∩Hc
k+1)

= Dk−1/2 ∩ Lk+1/2

hence H+ is the minimal representation of ∩ki=0Pi+1/2.
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If mk = 7, the analysis is similar to case mk = 6.

Hc
k−1 ∩Hc

k ∩Hc
k+1/2 = (Hc

k−1 ∩Hc
k−1/2) ∩ (Hc

k ∩Hc
k+1/2)

= Dk−1/2 ∩Dk+1/2

hence H+ is the minimal representation of ∩ki=0Pi+1/2. This finishes the proof.

Adjacent polyhedra

Definition 9.5 (Adjacent polyhedra). Two polyhedra P and P′ in a polyhedral partition of
the space are said to be k-adjacent if they have a face of dimension k in common, i.e. there
exists a supportive hyperplane ∂H for both P and P′ and the intersection P ∩P′ ∩ ∂H is of
dimension k. Then P and P′ are said to be ∂H-adjacent.

For an accepted mode vector m and its associated polyhedron Dom(m), it is of interest
to find the polyhedra of the partition adjacent to it. Algorithm 9.5 returns all the polyhedra
of the partition (n+1)-adjacent to Dom(m). First, the mode string s(0) · · · s(n) and the
minimal representation of Dom(m) are computed with Algorithms 9.2 and 9.4. Then for
all H ∈ H, the algorithm computes the mode string of the polyhedron of the partition
∂H-adjacent to Dom(m), and finds the associated mode vector mH with Algorithm 9.3 (see
Figure 9.6 for an illustration of the algorithm).

Algorithm 9.5 Find all the polyhedra adjacent to Dom(m): adj(m)
Require: accepted mode vector m
1. s(0) · · · s(n) = m2s(m)
2. H = minRep(m)
3. for H ∈ H:
4. s′(0) · · · s′(n) = s(0) · · · s(n)
5. for i ∈ {0, · · · , n}:
6. if H = Hi then s′(i) = D
7. if H = Hc

i then s′(i) = W
8. if H = Hi+1 then s′(i) = L
9. if H = Hc

i+1 then s′(i) = W
10. if H = Hi+1/2 then s′(i) = D
11. if H = Hc

i+1/2 then s′(i) = L
12. mH = s2m(s′(0) · · · s′(n))
13. return adjacent polyhedra {mH}H∈H

Definition 9.6. Two accepted mode vectors m and m′ are adjacent if the closures of their
respective domain Dom(m) and Dom(m′) are (n+1)-adjacent.

Proposition 9.6. For every accepted mode vector m, Algorithm 9.5 returns all the accepted
mode vectors adjacent to m. (Formal proof given in the appendix.)
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Figure 9.6: We want all the polyhedra of the partition adjacent to a fixed polyhedron. First,
we find all the K facet-defining hyperplanes of purple, i.e. minimal representation. Then for
each facet, we find the only polyhedron that shares this facet with purple. Hence K is also
the number of polyhedra of the partition adjacent to purple.

Since Algorithm 9.4 adds at most 2 constraints per iteration, minRep(m) has at most
2(n+ 1) constraints, hence at most 2(n+ 1) accepted mode vectors are adjacent to m.

9.4 Hybrid estimation algorithms

Kalman filtering algorithm for each mode vector

In discrete time and space, the dynamics of the traffic flow along a homogeneous section
of highway is well described by the Godunov scheme applied to the LWR equation with
triangular flux function (see Prop. 9.1). The small uncertainties on the parameters of the
model Am and bm can be reasonably covered by a zero-mean Gaussian noise ηt ∼ N (0, Qt)
with covariance Qt. The discrete dynamics in mode vector m become:

ρt+1 = Amρ
t + bm + ct + ηt (9.21)

The mode vector m is no longer fixed by ρt, but a probability distribution over all accepted
mode vectors is maintained to take into account the uncertainty in mode estimation; that is,
at each time step t, the model is in several different mode vectors with positive probabilities.
We add an observation model :

zt = H tρt + χt (9.22)
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where χt ∼ N (0, Rt) is the zero-mean observation noise with covariance matrix Rt, and H t

is the dt × (n+ 2)-dimensional linear observation matrix which encodes the dt observations
(each one of them being at a discrete cell on the discretization domain) for which the density
is observed during discrete time step t, and n is the dimensionality of the system. In the
traffic case, sensing devices (such as loop detectors) are placed at several locations along a
section of highway, and their positions are encoded in the matrix H t. For example, in the
discrete case for n = 3, if one sensor is in cell 1 and another in cell 3, then both sensors
provide observations zt1 = ρt1 + χt1 and zt2 = ρt3 + χt2, which is in matrix form:(

zt1
zt2

)
=

(
0 1 0 0 0
0 0 0 1 0

)
ρt +

(
χt1
χt2

)
(9.23)

where the state is ρt = (ρt0, ρ
t
1, · · · , ρt5)T . In this small example, the observation matrix is

H t =

(
0 1 0 0 0
0 0 0 1 0

)
and the number of observations is dt = 2.

In the rest of the section, we use the standard notationsmj for the different mode vectors,
and subscript j denotes quantities that are pertaining to mode mj. Note that mj refers to
the whole mode vector m and not the entries of m.

Let ρ̂t:t and P t:t be the a posteriori state estimate and error covariance matrix at time t.
The predicted state estimate ρ̂t+1:t

j and covariance estimate P t+1:t
j of the prediction step in

mode mj are:
Prediction: ρ̂t:t+1

j = Ajρ̂
t:t + bj + ct

P t:t+1
j = AjP

t:t(Aj)
T +Qt (9.24)

The measurement residual rt+1
j , residual covariance St+1

j , Kalman gain Kt+1
j , updated state

estimate ρ̂t+1:t+1
j , and updated estimate covariance P t+1:t+1

j of the update step in mode j are:

Residuals: rt+1
j = zt+1 −H t+1ρ̂t:t+1

j

St+1
j = H t+1P t:t+1

j (H t+1)T +Rt+1

Kalman gain: Kt+1
j = P t:t+1

j (H t+1)T (St+1
j )−1

Updates: ρ̂t+1:t+1
j = ρ̂t:t+1

j +Kt+1
j rt+1

j

P t+1:t+1
j = (I −Kt+1

j H t+1)P t+1:t
j

(9.25)

In [107], a measure of the likelihood of the Kalman filter in mode j is given by the mode
likelihood function Λt+1

j , where N (x; a, b) is the probability density function of the normal
distribution with mean a and variance b:

Λt+1
j = N (rt+1

j ; 0, St+1
j ) (9.26)

The noise might result in densities outside bounds. We project onto [0, ρjam]n+2, i.e. the
equation is implicitly ρ̂t+1:t+1

j = Π(ρ̂t:t+1
j +Kt+1

j rt+1
j ) where Π(·) is the projection operator.

This is a legitimate because densities cannot be negative nor exceed a maximum value ρjam.
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Interactive multiple model KF

Let us denote by {m(t) = mj} the event that the system is in the mode mj at time t. We
then assume that the model is a discrete-time stochastic linear hybrid system in which the
mode evolution is governed by the finite state Markov chain

µt+1 = Πµt (9.27)

where πij = P (m(t + 1) = mj |m(t) = mi) for all mi, mj ∈ M is the mode transition
matrix, µtj = P (m(t) = mj) for all mj ∈M is the mode probability at time t; and the set of
accepted modes isM.

mixing/interacting

ρ̂t:t1 , P
t:t
1 ρ̂t:t2 , P

t:t
2

ρ̂t:t01, P
t:t
01 ρ̂t:t02, P

t:t
02

KF1 KF2

ρ̂t+1:t+1
1 , P t+1:t+1

1 ρ̂t+1:t+1
2 , P t+1:t+1

2

mode
probability
update

combination

Λt+1
1

Λt+1
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1 , P t+1:t+1

1

ρ̂t+1:t+1
2 , P t+1:t+1

2

Λt+1
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µ
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2
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µ
t|t+1
1

µ
t|t+1
2

Figure 9.7: Illustration of the structure of IMM algorithm for a two-mode system from [107].

Effective estimation techniques for stochastic hybrid systems are based in multiple models
since it is natural to apply a statistical filter for each of the modes. The Interactive Multiple
Model (IMM) algorithm [9, 24, 108] is a cost-effective (in terms of performance versus
complexity) estimation scheme in which there is a mixing/interacting step at the beginning of
the estimation process, which computes new initial conditions for the Kalman filters matched
to the individual modes at each time step as illustrated in Figure 9.7.
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We consider the IMM algorithm in whichMt is the set of modes for which the Kalman
filter is applied at time step t. The set Mt is the set of modes mj with positive mode
probabilitiesMt = {mj |µtj > 0}. In the standard IMM, a filter is applied to every mode.
The components of the mixing step are the mixing probability µ

t|t+1
ij of being in mode i

at time t given that the mode at time t + 1 is j, the mixed condition ρ̂t:t0j and P t:t
0j for the

state estimate and covariance of mode j at time t, and the “spread-of-the-means” Xj in the
expression of P t:t

0j . They are computed for j ∈Mt+1 w.r.t. ρ̂t:ti and P t:t
i , the state estimate

and its covariance of Kalman filter i at time t:

µ
t|t+1
ij = 1

Zj
πijµ

t
i for i ∈Mt with Zj =

∑
i∈Mt πijµ

t
i

ρ̂t:t0j =
∑

i∈Mt ρ̂
t:t
i µ

t|t+1
ij

P t:t
0j =

∑
i∈Mt P t:t

i µ
t|t+1
ij +Xj

Xj :=
∑

i∈Mt (ρ̂t:ti − ρ̂t:t0j)(ρ̂
t:t
i − ρ̂t:t0j)

Tµ
t|t+1
ij

(9.28)

We apply the Kalman filter in each mode j ∈ Mt+1 (KFj) as described with equations
(9.24,9.25) and the resulting mode likelihood functions Λt+1

j are obtained from ρ̂t+1:t+1
j and

P t+1:t+1
j with equation (9.26). The mode probability µt = {µtj} is then updated through:

µt+1
j =

1

Z
Λt+1
j

∑
i∈Mt

πijµ
t
i for j ∈Mt+1 (9.29)

where Z is a normalization constant and Λt+1
j is the mode likelihood function defined in

(9.26). The output of the IMM algorithm are the state estimate ρ̂t+1:t+1 which is a weighted
sum of the estimates from the Kalman filters in each mode and its covariance P t+1:t+1, and
the mode estimate m̂t+1 is the mode which has the highest mode probability. They are given
by the combination step:

ρ̂t+1:t+1 =
∑

j∈Mt+1 ρ̂
t+1:t+1
j µt+1

j

P t+1:t+1 =
∑

j∈Mt+1 P
t+1:t+1
j µt+1

j +X

X :=
∑

j∈Mt+1 (ρ̂t+1:t+1
j − ρ̂t+1:t+1)(ρ̂t+1:t+1

j − ρ̂t+1:t+1)Tµt+1
j

m̂t+1 := argmaxj∈Mt+1 µt+1
j

(9.30)

In [107, 83], the IMM algorithm is used as a hybrid estimator for Air Traffic Control (ATC)
tracking. The models used include one for the uniform motion and one (or more) for the
maneuver. However, the discretized PDE model described in Section 9.2 has an exponential
number of modes, which induces an exponential time complexity of the IMM.

Extended Kalman filter

In the simplest case, we assume that the only possible mode at the next time is the mode
mj of the estimate, i.e. Mt+1 = {mj} and µt+1

j = 1 with ρ̂t:t ∈ Dom(mj). We apply the
Kalman filter only to this mode. WithMt = {mi}, equations (9.28) become:

ρ̂t:t0j = ρ̂t:ti , P t:t
0j = Pi (9.31)
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We apply the Kalman filter only to mode mj to obtain ρ̂t+1:t+1
j and P t+1:t+1

j . Finally, the
outputs of the combination step given by equations (9.30) are simply ρ̂t+1:t+1 = ρ̂t+1:t+1

j ,
P t+1:t+1 = P t+1:t+1

j , and m̂t+1 = mj.
In this model, the IMM algorithm is exactly an Extended Kalman filter (EKF) applied to

our discretized system presented in Proposition 9.1. The linear model in mode m such that
ρ̂t:t ∈ Dom(m) coincides exactly with the linearization of the discrete dynamics around ρ̂t:t.

Despite the exponential number of modes, we can compute the predicted state estimate
ρ̂t+1:t
j and the predicted covariance estimate P t+1:t

j in modemj (see (9.24)) in linear time and
quadratic time respectively, without generating any dense matrix because Aj is completely
defined by mode vector mj and Aj is tridiagonal (see Algorithm 9.4). Hence the time
complexity of the prediction step is O(n2), with constant space complexity. With d the
number of observations (or number of sensors), the time complexity of the update step of the
Kalman filter given by (9.25) is O(dn2 + d3 + nd2), and so as the two steps combined of the
KF.

In comparison, the Ensemble Kalman Filter (EnKF) is a popular estimation algorithm
for non-linear dynamical systems. It is commonly used in the traffic monitoring community
[170]. The EnKF is based on a Monte Carlo approximation of the Kalman filter which
approximates the covariance matrix of the state vector with the sample covariance of the
ensemble. The prediction step consists in applying the system’s dynamics to each sample,
which has complexity O(Nn2), where N is the number of samples (ensemble members).
Mandel’s report [113] shows that the computational complexity of the update step of the
EnKF algorithm is O(d3 + d2N + dN2 + nN2). So the total complexity of the EnKF is
O(d3 + d2N + dN2 + nN2 +Nn2).

Algorithm 9.4 describes the EKF. The parameters L(1), · · · , L(7) ∈ R3, w(1), · · · , w(7) ∈
R, given in Table 9.1 describe the linear modes of our hybrid system.

Algorithm 9.6 (Explicit) Extended Kalman filter
Require: initial state ρ0 ∈ [0, ρjam]n+2, boundary conditions (u(t), d(t))t≥0, state covariance
{Qt}t≥0, observations {zt}t≥0, observation matrix {H t}t≥0, observation covariance {Rt}t≥0

1. for t ∈ {0, 1, 2, · · · }:
2. m = rho2m(ρ̂t) \\ mode estimate, see algorithm 9.1
3. (ρ̂t+1, P t+1) = KF(m, ρ̂t, P t, · · · ) \\KF, see algorithm 9.8
4. return (ρ̂t, P t)t≥0

Extended Kalman filter: numerical results

In traffic estimation, the density measurements along the highway are usually sparse. For
example, in the 18-mile stretch of I-880 Northbound in the Bay Area, CA (see Figure 9.9.a),
the Mobile Millennium traffic monitoring system receives measurements from 29 loop detectors
(PeMS) every 30s on March 5th, 2012 between 7am and 8am. This section of highway is
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Algorithm 9.7 Prediction step of Kalman filter in mode m: predict(m,ρ, P, u+, d+, Q)
Require: mode vector m = [m1, · · · ,mn] ∈ {1, · · · , 7}n, current state ρ = [ρ0, · · · , ρn+1] ∈
[0, ρjam]n+2, current state estimate covariance P , next boundary conditions u+, d+ ∈ R,
current state noise covariance Q.
1. ρ+

0 = u+

2. ρ+
n+1 = d+

3. for i ∈ {1, · · · , n}:
4. ρ+

i = L(mi)× [ρi−1, ρi, ρi+1]T + w(mi)
5. M := zeros(n+ 2, n+ 2) \\ create temporary matrix M
6. for (i, j) ∈ {1, · · · , n}2:
7. Mij = L(mi)× [Pi−1,j, Pi,j, Pi+1,j]

T \\ do A× P
8. for (i, j) ∈ {1, · · · , n}2:
9. P+

ij = [Mi,j−1, Mi,j, Mi,j+1]× L(mj)
T \\do (AP )AT

10. P+ = P+ +Q \\predict state covariance
11. return ρ+, P+

Algorithm 9.8 Kalman filter in mode m:KF(m, ρ̂t, P t, u(t + 1), d(t +
1), Qt, zt+1, H t+1, Rt+1)
Require: mode vector m, current state ρ̂t, current state estimate covariance P t, next
boundary conditions u(t+ 1), d(t+ 1), current state noise covariance Qt, next measurement
zt+1, next observation matrix H t+1, next observation covariance Rt+1.
1. (ρ̂t:t+1, P t:t+1) = predict(ρ̂t, P t, {· · · }) \\see algorithm 9.4
2. (ρ̂t+1, P t+1,Λt+1) = update(ρ̂t:t+1, {· · · }) \\see (9.25)
3. return ρ̂t+1, P t+1, Λt+1

discretized into cells of length 198m, hence n = 148 and m = 29, and the EnKF with 100
ensembles is currently used for traffic estimation, so N = 100 and m ≤ min(n,N). Hence the
time complexities of the KF (or EKF) and EnKF are O(mn2) and O(n2N +nN2) respectively.
With N large (>50), the complexity analysis predicts that the EKF should be faster than
the EnKF.

The running times of the implementation of both the EKF and the EnKF estimators on an
Intel R© CoreTM i5 480M 2.67GHz are shown in Figure 9.8.a), for increasing portions of the I-880
starting from East Industrial in Fremont, CA. For example, 60 cells (∼7.5miles) span from
East Industrial to Dumbarton Bridge, and 113 cells (∼14miles) reaches San Mateo Bridge.
The EKF is significantly faster than the EnKF with 100 samples, which is implemented in
the Mobile Millennium. This confirms our complexity analysis of both algorithms.

Figure 9.9.c,d) shows the contour plots of the output of the EnKF and the EKF estimators,
which consists in the density in the time-space domain. The regions with high densities
are represented in red and the regions with low densities in blue. Both estimators give
very similar higher resolution scalar fields of the density (1440 time steps by 141 cells) by
assimilating sparse density measurements (240 time steps by 29 PeMS stations, see Figure
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Figure 9.8: a) Computational time for an increasing section of the I-880 (measured in the
number of cells) for the EKF (dashed line), the EnKF with 50 ensembles (continuous line), the
EnKF with 100 ensembles (dashed-dotted line), and the EnKF with 150 ensembles (dotted
line). b) Comparison between the density measurements (dashed line) and estimates (bold
line) at cell 87 and cell 104.

9.9.b). Moreover, by removing measurements at an arbitrary cell, Figure 9.8.b) shows that
the estimation algorithm performs well since the density estimate is close to the actual
measurement.

Figure 9.9: a) Experimental data location: 18-mile long stretch of I-880 in the Bay Area on
the Mobile Century site. b) Contour plot of the density from the 29 PeMS stations every 30s
on March 5th, 7-8am. Each vertical line in the contour plot reports the measurements from
the 29 sensors along the highway at a specific time. c) Output of the EnKF d) Output of the
EKF. The time step is on the X-axis and the number of cells is on the Y-axis. Each vertical
line of the diagram is a snapshot of the state estimate of the highway at a specific time.

In summary, the explicit representation as a switched hybrid system gives a powerful
framework for tracking the mode evolution and preforming hybrid estimation. For instance,
the EKF can be implemented easily by applying the KF in the mode vector of the state
estimate. However, straight application of the IMM algorithm [107] is not tractable because
the complexity is O(τn(2.247)n) where τn is the complexity of the KF and (2.247)n is the
asymptotic number of modes.
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9.5 Reduced IMM

Reduction to adjacent modes

We presented an algorithm to construct the minimal representation of Dom(m), which enables
to find the adjacent modes. Moreover, two adjacent modes only differ by at most two entries.
Hence, when the discretized model is in quasi-steady state, and n is relatively small, only one
cell switches mode at the next time step, so the state is most likely to jump to an adjacent
mode vector. This suggests to consider only the mode of the state estimate and its adjacent
modes. Hence, the number of modes considered is less than 2(n+ 1).

We can further reduce the number of modes by taking into account the state covariance
P and the distance between the state estimate and the facets of the polyhedron. Let H be
the minimal representation of the mode vector m̂ of the state estimate (i.e. ρ̂ ∈ Dom(m̂)),
and let H ∈ H with equation H = {ρ | a · ρ− b ≤ 0} and ‖a‖2 = 1. Then the distance from
the supportive hyperplane ∂H is: d(ρ̂, ∂H) = min ‖ρ̂− ∂H‖2 = |b− a · ρ̂|.

The probability distribution of the state along the normal a to ∂H is Ke−
(a·(ρ−ρ̂))2

2aT Pa , so the
probability that the state is inside of half-space H along the normal a is

K

∫ |b−a·ρ̂|

−∞
e−

t2

2aT Padt =
1

2

(
1 + erf

( |b− a · ρ̂|√
2aTPa

))
where erf is the error function. Since erf is an increasing function, we keep only the ∂H-
adjacent modes for which the following quantity is small (see Algorithm 9.9)

r(ρ̂,H) = |b− a · ρ̂|/
√

2aTPa, H ∈ H (9.32)

Algorithm 9.9 Find all adjacent polyhedra close to ρ̂: adj2(m, ρ̂, P, β)
Require: mode estimate m̂, state estimate ρ̂, state estimate covariance P , tolerance β
1. s(0) · · · s(n) = m2s(m̂)
2. H = minRep(m̂)
3. for H ∈ H:
4. if H = Hi then r = |ρi − ρc|/

√
2Pii

5. if H = Hi+1/2 then r = |ρi+1 +
vf
wf
ρi − ρjam|/

√
2(

vf
wf

)2Pii + 4
vf
wf
Pi,i+1 + 2Pi+1,i+1

6. if r > β then remove H from H
7. execute lines 3 to 14 of Algorithm 9.5
8. return adjacent polyhedra close to state estimate {mH}H∈H

This is a refinement of the EKF. Instead of relying on one possible mode, we consider a
set of possible adjacent modes at time t and apply the KF to each one of them. However,
the adjacent modes differ by only one or two entries, so they only represent a restricted set
of close possibilities centered around the mode estimate. Hence, the reduced IMM based on
adjacent modes is still very similar to the EKF.
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Representative mode vectors with clustering algorithm

Figure 9.10: i) Traffic density estimate on March 1st, 2012 from 7am to 7pm. ii) Traffic
density estimate on March 5th, 2012 from 7am to 7pm. a,b,c) 20 clusters of the density space
using k-means on March 1st, 2012 from 7 to 8am, the corresponding modes, and the log
likelihood. d,e,f) 20 clusters of the density space using k-means on March 1st, 2012 from
7am to 7pm.

An intuitive method consists in using a clustering algorithm to reduce the space of modes
to a representative setMK . Historical data of traffic density estimate on March 1st, 2012
(see Figure 9.10.i)) provides T = 9355 observations or samples of the state vector, where
T is the number of time steps in the observed data. We partition these T samples into K
clusters using the popular k-means algorithm. The centroid of each cluster, which may not
necessarily be a member of the data set, are density vectors that represent particular states
of the highway which are representative of its evolution. They are shown in Figures 9.10.a,d).
We have the index of the cluster on the X-axis and the position along the highway on the
Y-axis. For instance, the first cluster represents a density vector of the highway mostly in
free flow whereas the last cluster represents the density vector of the highway mostly in
congestion in the top part.

Then, we derive the modes of these K centroids, and we assume that our system can only
be in these K modes. They are illustrated in Figure 9.10.e). We have the index of the modes
on the X-axis, and the position on the highway along the Y-axis. Each column represents a
modal regime of the highway. For example, in the first mode vector (in the first column),
the cells are in mode 7 in the upstream part, and the cells in the downstream are in mode
1. When ρi−1, ρi, ρi+1 > ρc for a particular cell i, the Godunov flux (9.7) is in congestion
regime at both interfaces i− 1|i and i|i+ 1 and cell i is in mode 1 (see Table 9.1). Conversely,
mi = 7 when the Godunov flux is in free flow regime at both interfaces: ρi−1, ρi, ρi+1 < ρc.
Hence the regions in which mi = 1 (resp. mi = 7), colored in red (resp. blue), represent cells
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that are in congestion (resp. free flow) regime. The cells are in the other modes {2, 3, · · · , 6}
correspond to a transition regime between free flow and congestion. We apply the IMM with
this reduced set of modes to estimate the traffic on March 5th. This is a valid approach since
the traffic conditions are similar during weekdays (see Figure 9.10.i,ii)).

Algorithm 9.10 Clustering historical data: cluster({ρt}t∈{1,··· ,T})
Require observed data set {ρt}t∈{1,··· ,T}
1. partition {ρt}t∈{1,··· ,T} into K clusters and get centroids {ρ̄k}k∈{1,··· ,K}
2. for k ∈ {1, · · · , K} do m̄k = rho2m(ρ̄k); end for
3. return set of K representative modesMK = {m̄k}k∈{1,··· ,K}

To determine the optimal number of clusters, we have applied the above procedure to
one hour of observed data, on March 1st from 7am to 8am. The density centroids and
their mode are shown in Figure 9.10.a,b). Then we applied the IMM algorithm on March
5th from 7am to 8am and compared it against the state estimate given by the EnKF for
different numbers of clusters. We have calculated the log-likelihood which is a measure of
the performance of the estimation scheme. We see that the optimal number of clusters is 3,
because adding more clusters won’t increase the performance of the estimation algorithm
(see Figure 9.10.c)). We have also applied the procedure to 12 hours of observed data. In
this case, the optimal number of clusters increases to 5. This is expected because we have
a greater variety of regimes in 12 hours. This proves the efficiency of the IMM algorithm
applied with this representative modes, because the complexity is a small factor of the EKF.

Implementation and numerical results

Algorithm 9.11 presents the four variants of the IMM algorithm discussed above. With only
the mode of the state estimate (variant=‘EKF’), the IMM is reduced to the EKF algorithm.
If we add the adjacent modes (RIMM1), we obtain an improvement on the EKF with at
most 2(n+ 1) modes. When we only consider the adjacent modes close to the state estimate
(RIMM2), then the number of modes depends on the tolerance β in Algorithm 9.9. In the
last variant (RIMM3), discussed in 9.5, we suppose that the system can only switch between
K representative mode vectors.

We implement our algorithms on the same experimental data location as in 9.4. As men-
tioned in [107], the choice of the transition probabilities only affects slightly the performance
of the IMM algorithm. The guideline for a proper choice is to match roughly the transition
probabilities with the actual mean sojourn time of each mode. In RIMM1 and RIMM2, it is
difficult to estimate the transition probabilities because of the exponential number of modes,
so we suppose that the system is equally likely to transition to all the modes. In RIMM3, we
take sample transition probabilities from the observed data:

π̃ij =
γ +

∑T
t=1 I(ρt ∈ Ci, ρt+1 ∈ Cj)

γK +
∑T−1

t=1 I(ρt ∈ Ci)
(9.33)
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Figure 9.11: Contour plot of the density given by (a) the EnKF with 100 ensembles on May
5th, 10am-7pm, (b) the RIMM3 with 5 clusters on May 5th, at 10am-1pm, 1-4pm, 4-7pm,
(c) the RIMM2 with β = 1 on May 5th, 7-8am, (d) the RIMM3 with 20 clusters using the
k-means algorithm on May 5th, 7-8am. Analysis of each time step of the RIMM2 with β = 1:
(e) plot of the mode estimate, (f) number of modes selected by RIMM2, (g) computational
time, (h) number of cells with density close to ρc.

where the sets {Ck}k are the Voronoi cells centered on centroids {ρ̃k} computed in Algorithm
9.10, I is the indicator function, and γ controls the smoothing from the uniform transitions.

The EnKF is a popular estimation algorithm based on Monte-Carlo approximation of the
Kalman filter. The results are compared with the EnKF estimate presented in 9.4. Figures
9.9.c,d) 9.11.c,d) present the four estimates which consist in the density in the time-space
domain. The regions with high (resp. low) density are represented in red (resp. blue). The
estimators give similar higher resolution scalar fields of the density (1440 time steps by 141
cells) by assimilating sparse density measurements (240 time steps by 29 PeMS stations.
The shock wave propagation is more noticeable in the output of RIMM estimators in the
congested regions.

The density centroids have also been computed to get a set of 5 representative mode
vectors for each of the 10am-1pm, 1-4pm, 4-7pm time periods on March 1st, and we applied
RIMM3 to estimate the density on March 5th at the same time periods. The estimates are
very similar (see Fig 9.11.a,b)).

Figure 9.11.e) shows the mode estimate computed in the combination step of the IMM.
Each column represents a modal regime of the highway at a specific time. Finally, Figures
9.11.f,g,h) show that the number of modes selected, the computational times, and the number
of cells with density close to ρc at each time step are proportional.
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Algorithm 9.11 IMM with reduced number of modes: IMM(algorithm)
Require: initial state ρ0, boundary conditions {u(t), d(t)}t≥0, state covariance {Qt}t≥0,
observations {zt}t≥0, observation matrix {H t}t≥0, observation covariance {Rt}t≥0.
1. M0 = {rho2m(ρ0)} \\initial set of modes is the mode of ρ0

2. for t ∈ {0, 1, 2, · · · }:
3. m = rho2m(ρ̂t) \\Algo 9.2
4. if ‘EKF’ thenMt+1 = {m}
5. if ‘RIMM1’ thenMt+1 = {m} ∪ adj(m) \\Algorithm 9.5
6. if ‘RIMM2’ thenMt+1 = {m} ∪ adj2(m, ρ̂t, P t, β) \\Algorithm 9.9
7. if ‘RIMM3’ thenMt+1 =MK \\Algorithm 9.10
8. for mj ∈Mt+1

9. (ρ̂t0j, P
t
0j) = mixing((ρ̂ti, P t

i , µ
t
i)i∈Mt) \\see (9.28)

10. (ρ̂t+1
j , P t+1

j , Λt+1
j ) = KF(mj, ρ̂

t
0j, P

t
0j, · · · ) \\Algorithm 9.8

11. µt+1
j = modeProbUpdate(Λt+1

j ) \\see (9.29)
12. (ρ̂t+1, P t+1, m̂t+1) =
combination((ρ̂t+1

j , P t+1
j , µt+1

j )j∈Mt+1) \\see (9.30)
13. return (ρ̂t, P t)t≥0
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Chapter 10

Fusion of cellular and traffic sensor data
for route flow estimation via convex
optimization

10.1 Introduction
A new convex optimization framework is developed for the route flow estimation problem from
the fusion of vehicle count and cellular network data. The issue of high underdetermined-ness
of link flow based methods in transportation networks is investigated, then solved using
the proposed concept of cellpaths for cellular traces. With this data-driven approach, our
proposed approach is versatile: it is model agnostic and thus compatible with user equilibrium,
system-optimum, Stackelberg concepts, and other models. Using a dimensionality reduction
scheme relying on a particular choice of the nullspace, we design a projected gradient algorithm
suitable for the proposed route flow estimation problem for traffic assignment. The algorithm
solves a block isotonic regression problem in the projection step in linear time. This chapter
has been written following to the best of our abilities practices of reproducible research, and
we have accordingly posted our code online. The accuracy, computational efficiency, and
versatility of the proposed approach are validated on the I-210 corridor near Los Angeles,
where we achieve 92% route flow accuracy with 1033 traffic sensors and 950 cellular towers
covering a large network of highways and arterials with more than 20,000 links.

While there is a wealth of literature in transportation science aiming at modeling, com-
puting, and estimating the movement of traffic in terms of link flows, there is less work
focused on route flow estimation. The route flow estimation problem is particularly important
because route flows estimates can capture phenomena in traffic behavior that link flows
cannot. For example, route flows would enable analysis of which commuters a link closure
would affect most. Accurate route flow estimates are increasingly critical for a more effective
use of existent traffic infrastructure as population density and the need for enhancing mobility
in cities grow.
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Simultaneously accurate and efficient methods for estimating route flows are crucial to
modern traffic engineering, as large scale urban network analysis and planning demands
scalable solutions for these problems that can be implemented on sizeable road networks.
However, the first step for many approaches to estimating route flow requires enumerating
all feasible routes, which is an unreasonable task for many urban road networks because it
may require exponential time to compute [67, §1.2].

At the cost of restrictive assumptions, such as deterministic user equilibrium (UE) in which
each driver is assumed to be rational and have perfect knowledge of the traffic conditions
[165], a route (or path) flow can be estimated without requiring route enumeration. Under
UE, all routes used to connect an origin-destination (OD) pair have the same cost, hence the
distribution of flows across theses routes may not be determined [143, §3.3], [15, §5.2]). The
stochastic user equilibrium (SUE) (probit-based [52, 111] and logit-based [64, 15]) addresses
some of the shortcomings of the UE by modeling imperfect knowledge of the network and
variation in drivers’ preferences, which makes the estimation of route flows possible. Since
there is little evidence of the validity of such models in practice, and real-life transportation
networks may not be in equilibrium (or only approximately so) [79], we develop a data-driven
framework that focuses on the large amount of traffic data available.

Traffic data sources

Traditional traffic sensing systems such as loop detectors embedded in the pavement and
cameras provide accurate volume and speed estimates, but their placements are typically
sparse and their information content is too coarse. Most importantly, they measure total
counts of vehicles passing through a road segment without distinguishing between vehicles
following different routes. In order to partially address the shortage of information on the
routes followed by vehicles, other types of static sensors have been deployed on the road
network: cameras that measure split ratios at different intersections [159] and plate scanning
systems [38, 39]. However these systems require costly infrastructure and only provide highly
localized traffic information. Meanwhile, given the large penetration of mobile phones among
the driving population and the ubiquitous coverage of service providers in urban areas, mobile
phones have become an increasingly popular source of location data for the transportation
community. For example, dynamic probing by means of in-car GPS traces [169, 81, 82] is
a promising technology for trajectory recovery and travel time estimation. However, the
penetration of GPS-enabled devices running a dedicated sensing application currently limits
the ability to accurately estimate traffic volumes and it is unlikely that such data would
become available to public agencies [129].

In addition to GPS traces, location data are available directly from cellular communication
network operators. A variety of phone to cell communication events such as handovers (HO),
location updates (LU) and call detail records (CDR) [160, 161] are being recorded by cellular
network infrastructures, and this data has already been shown to be effective in studying
urban environments [36, 90, 154]. Since typical cellular networks in urban agglomerations
include thousands of cells, HO/LU/CDR events can be used effectively to estimate the route
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choice and route flow of vehicles without requiring any additional infrastructure. When the
user is moving, an HO transfers an ongoing call or data session from one cell to another
without disconnecting the session, and an LU allows a mobile device to inform the cellular
network when it moves from one location area (or cell) to the next. CDR (mainly used by
service providers for billing purposes) contain a timestamped summary of which cell each data
transmission came through and therefore contain abundant mobility traces for a majority
of the population. Due to the granularity of sensing, these records alone are not sufficient
for recovering user routes directly, thereby motivating an inference procedure. The spatial
resolution of CDR, HO, and LU data varies with the density of antennas and is roughly
proportional to the daytime population density. A standard localization approach when
dealing with cellular data is based on Voronoi tessellation, a simple model solely based on
the locations of the cell towers [6, 35].

Related work

Several problems within traffic estimation have already benefited from incorporating data
from cellular networks: OD matrix computation using cell phone location data [33, 34] such
as CDRs [168], link flows estimation [171], and travel time and type of road congestion [88].
These studies vary in scale and assumptions, but they indicate the promise of non-pervasive
sensing. In particular, mobile phone data has been used for OD matrix computation. The
problem of OD estimation is one of the most well-studied problems in the transportation
literature. It historically originates from the first two stages of the four-stage model in traffic
planning [130, 127]. For practical purposes, like in the work presented later in the chapter
studying the I-210 corridor near Los Angeles, we will use an OD model available from local
transportation agencies (in the present case, the SCAG model). There are many surveys on
the subject in the past decades [15, 2, 125], and the accuracy of OD estimates will continue
to improve.

Extracting the set of potential route choices between all OD pairs is also a well-studied
problem. Traditionally, the set of potential routes can be extracted from the induced
equilibrium flows in equilibrium-based models. In recent years, the growing number of mobile
sensors in urban areas enables the use of probe vehicles for route inference from GPS traces
[82, 134]. There are also early studies on the use of cellular network data for traffic assignment:
[148] estimates the route choice for each user in the cellular network using a distance measure
to determine the best matching route and also incorporate additional constraints from travel
time and user equilibrium. Their small experiment (2-4 routes) performed via a macro-
simulator indicates the potential for cellular network data to add valuable information for
solving this problem. However, a recent survey on the use of wireless signals for road traffic
detection [117] concluded that there is thus far no existing system that can estimate traffic
densities in a practical sense, that is, in terms of scalability, coverage, cost, and reliability,
thus motivating our work on estimating route flows.
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Contributions of this chapter

One of the key innovations of the present work is generalizing the common notion of an OD
matrix to a general form of coarse route flow measurements (here collected from cellular
network data). As mentioned above, the problem of traffic assignment is historically highly
underdetermined because the OD matrix and link flows (even when all the links are observed)
contains relatively little information as compared to the number of routes people can take. To
address this fundamental problem, we introduce the framework of cellpaths, which generalizes
2-point network flow, which we call OD flow, to n-point network flow, which we call cellpath
flow. OD flow, which is the number of vehicles that originates at some origin and terminates
at some destination, can be characterized by 2 region centroids (illustrated in Figure 10.3).
Similarly, cellpath flow can be characterized by n region centroids. In this chapter, the
centroids for cellpath flow correspond to cellular base stations, and the centroids for OD
flows correspond to centroids of Traffic Analysis Zones (TAZ). Since our approach includes a
“strict" generalization of ODs to cellpaths, the methodology presented in this chapter can be
applied to a variety of traffic assignment problems.

Now, we define our problem as follows: given a large-scale road network in the quasi-static
regime, a set of OD demands, a set of admissible routes between each OD pairs, cellpath
flow estimates along the network, and link flow measurements on a subset of links in the
network, our goal is to develop a method to estimate the distribution of flow over the set of
routes. We pose this problem as a convex optimization program in which the cellular network
traces are assigned to the constraints, and the objective encodes link sensor data and the OD
matrix. Convex optimization techniques have been used quite frequently by the transportation
community for diverse purposes. For example, the classical Wardrop equilibrium approach to
the traffic assignment problem can be formulated as a convex optimization program given
some typical assumptions on the link performance (or delay) functions [143]. Recent works
often combine convex optimization with machine learning techniques [22, 144, 115].

Another key component of our approach is the analysis of the constraints of our convex
optimization program. We reformulate them as block-simplex constraints and we apply a
standard equality constraint elimination technique [26, §4.2.4] with a particular change of
variable which converts the non-negativity constraints on the variables to ordering constraints.
In the new space induced by the change of variables, we show that the projection on the
feasible set (characterized by the ordering constraints) can be performed in linear time via
bounded isotonic regression (see [153] for a short survey on isotonic regression). Then we solve
our convex optimization program with an accelerated first order or second order projected
descent algorithm. The change of variables presents two main advantages: the dimensionality
is reduced (sometimes by a factor 2) which is critical for large-scale problems, and we can
perform the projection in O

(
n
)
, an improvement over O

(
n log n

)
required by the projection

onto the simplex [86, 162], where n is the number of routes per OD pair. In addition, it
is worth noting that a wide variety of problems can benefit from this methodology. First,
the use of algorithms that feature a projection step, e.g. projected descent methods and
alternating direction methods, is very popular since they often provide a simple and efficient
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Figure 10.1: Future route flow estimation pipeline, from raw data to route flows, including: 1)
aggregation of the link flow obtained from traffic sensors will be over a sizable duration (e.g.
1 hour) suitable to address the static estimation problem; 2) a state-of-the-art OD matrix
estimation method; 3) a trip analysis step to filter driver cellular traces from other traces,
group them by their cellpaths, and map them to cellpath flow values; 4) a route inference
method using cellular/GPS traces; 5) data fusion from census, link sensors, GPS/cellular
traces, travel surveys etc. 6) an improved solver that benefits from the multi-sensor data.

way to solve constrained convex optimization problem as opposed to more specialized active
set methods. There is also a great deal of applications that feature simplex constraints, such
as the aforementioned traffic assignment problem and games in general for the computation
of strategy distributions, and `1-based approach in machine learning [86].

Throughout our analysis, a particular emphasis is placed on a data-driven approach that
benefits from the sheer amount of cell data without relying on equilibrium-based models, since
in practice traffic flow in large urban areas may not be (or just approximately) in equilibrium
and there is no sufficient data to access one way or another. Aiming at a real-world production
system pipeline summarized in Figure 10.1, we prove the versatility and data-driven nature of
the proposed approach via validation on three datasets produced by two simulators of vehicle
traffic link flows, route flows, and cellpaths based on the positions of cell towers in the region
of interest. The positions of the cell towers are sampled randomly on the urban network to
have full flexibility on the parameters of the simulators. We develop an equilibrium-based
model1 that generates user equilibrium (UE) and system-optimal (SO) flows on the I-210
corridor near Los Angeles, CA (containing 44 nodes, 122 links). The first simulator serves
two purposes: it highlights the accurate recovery of route flows, even for quite sparse cellular
networks and it provides empirical explanations for the efficiency of our method. We also
use MATSim agent-based transport simulator2 on a large-scale urban road network near Los
Angeles, CA (with more than 20K links and 290K routes) to showcase the performance of our
methodology on large datasets. We demonstrate that our full pipeline, from the simulators
to the procedures to estimate static route flows on small and large-scale urban network, can
be extended easily to incorporate other types of data such as link capacities, split ratios etc.
Hence we hope that our framework will be a benchmark for many future studies in estimation

1The code is available on Github: https://github.com/jeromethai/traffic-estimation-wardrop.
2MATSim is an open source project (http://www.matsim.org), and related publications are available

here: http://www.matsim.org/publications.

https://github.com/jeromethai/traffic-estimation-wardrop
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problems in transportation science.

We summarize the contributions of the presented work:

• We propose a convex optimization formulation for the route flow estimation problem
which uses a new data fusion approach for loop detectors counts and cellular signal
traces (ubiquitous among the driving population).

• We demonstrate that our formulation is also compatible with several other approaches
to this problem, including equilibrium concepts, which may be used in conjunction for
improved estimation.

• We introduce the concept of cellpaths and demonstrate its application to traffic estima-
tion problems. We address the issue of highly underdetermined-ness of link flow based
methods (which was already raised in the traffic assignment literature) by formalizing
cellular data as cellpaths and incorporating them as constraints. Though we focus on
the route flow estimation problem, many traffic problems may benefit from such an
approach.

• Using a reduction scheme, we design an algorithm to solve the route flow estimation
problem and large-scale traffic assignment problems in general. In the resulting for-
mulation, the projection step can be performed in O

(
n
)
via isotonic regression, an

improvement over O
(
n log n

)
, where n is the number of routes per OD pair.

• We present a full system pipeline from cellular network and link flow data to estimate
the static route flow (and as a by-product, link flow) on a large-scale urban network.
We demonstrate the first system to our knowledge that can produce route-level flow
estimates suitable for short time horizon prediction and control applications in traffic
management from the fusion of cellular network data and data from static sensors along
roads.

• We present numerical results from different sets of small and large-scale datasets for
Los Angeles. In particular, the emphasis is placed on a data-driven approach: it is
versatile to different types of vehicular behavior.

The remainder of the chapter is organized as follows: In Section 10.2, we present the
setup and assumptions of our work, then formulate our route estimation problem as a
convex optimization program. We also provide a re-formulation necessary for the algorithmic
approach described in Section 10.3. Further in Section 10.3, we develop a specialized projected
gradient method to solve convex optimization programs with simplex constraints. Section
10.4 is dedicated to the setting of our experiments. Section 10.5 presents our numerical
results. Section 6 concludes the paper by placing the presented method within a general
data-driven traffic estimation framework and identifying directions for future work.
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Figure 10.2: I-210 corridor in Los Angeles county used for the numerical work presented in
§10.5. Left subfigure: The 700 regions are origin/destinations areas called Traffic Analysis
Zones (TAZ) used for the numerical experiments. Right subfigure: Corresponding Voronoi
partition of the cellular network based on the cell tower locations. [Note: figure best viewed
in color.]

10.2 Problem formulation

Problem setup and assumptions

We define the terminology used in the chapter, and the notations are presented in Table 10.1.
It is important to distinguish between four types of flows: cellpath flow, link flow, route flow,
and OD flow.

• Origins: traffic regions with its associated centroid, defined by a partitioning of the
road network. Each region is both an origin (its centroid is a source from which trips
emanate) and a destination (its centroid is a sink at which trips terminate). A possible
implementation of the method proposed can be done by taking the origins/destinations
to be the Traffic Analysis Zones (TAZ) (see Figure 10.2) as done in the numerical work
late in the chapter. We define OD flow to be the flow (vehicle count) that originates
and terminates with an OD pair.

• Cells: regions defined by the Voronoi partition of the cellular network, they are generally
different from ODs.

• Cellpath: a sequence of cells, and we define cellpath flow to be the flow (vehicle count)
along a cellpath.

• Link: a segment of road in the network, and the link flow is the flow (vehicle count)
through a link.

• Route: a sequence of links from an origin to a destination. Each route also has an
associated unique cellpath. The route flow is the flow (vehicle count) on the route.
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Figure 10.3: In this illustration of the cellular and loop data fusion, we have two origins
A and C (the blue traffic regions and their centroid as blue dots) and one destination B
(the red traffic region). We have routes r1, r2, r3, r4 with flows x = (x1, x2, x3, x4) such
that r1, r2 go from A to B and r3, r4 go from C to B. Cells c1, · · · , c7 are shown in purple
dashed regions. Since route r1 goes through cells c1, c2, c3, c4, its associated cellpath is p1234.
Similarly, routes r2, r3, r4 have cellpaths p1654, p654, p654 respectively. Let fp1234, fp1654, fp654

be the cellpath flows (obtained from cellular network data), i.e. there are fp1234=1000 veh/h
going through c1, c2, c3, c4. Let dAB and dCB be the OD demands. Cellpaths p1234 and
p1654 disambiguate routes between AB: fp1234 = x1, fp1654 = x2, contrary to the ODs:
dAB = x1 + x2. However, cell towers are not dense along r3, r4, hence dCB = fp654 = x3 + x4.
The cellpath-route incidence matrix generalizes OD matrices since we consider the sequence
of intermediate regions (cells here) that intersect with trips. We also have x2 + x3 = b, with b
the flow on the green link (from loop detectors). There is a unique route flow inducing flows
b, fp1234, fp1654, fp654 that is x? = [1 4 5 5], while there are infinitely many flows inducing
b, dAB, dCB: x = x? + [1−1 1−1]T t, ∀ t ∈ [−1, 4], so the problem has one degree of freedom
and is underdetermined with only the OD demands as data.

The link-route incidence matrix A encodes the network topology (which routes r ∈ R
contains which links l ∈ L); the cellpath-route incidence matrix U encodes the collection of
routes with the same cellpaths (which routes r is associated to which cellpath p); and the
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Notation Description

O, D Set of origins/destinations D = O
L cardL = m, links with observed flow
P cardP = q, observed cellpaths
R cardR = n, set of routes
E Set of all links in the network

A ∈ {0, 1}|L|×|R| Link-route incidence matrix
Afull ∈ {0, 1}|E|×|R| Full link-route incidence matrix
U ∈ {0, 1}|P|×|R| cellpath-route incidence matrix
T ∈ {0, 1}|O|2×|R| OD-route incidence matrix

d ∈ R|O|2 Vector of OD flows, d = (dk)k∈O2

b ∈ R|L| Observed link flow vector, b = (bl)l∈L
f ∈ R|P| Cellpath flows vector, f = (fp)p∈P
x ∈ R|R| Vector of route flows x = (xr)r∈R
v ∈ R|E|+ Full link flow vector, v = (ve)e∈E

Subset Rp Subset of np := cardRp routes with cellpath p
x̃p ∈ [0, 1]|R

p| Ratios of flows across routes r ∈ Rp

xp ∈ Rnp
+ xpr is the flow of route r ∈ Rp

Rk ⊂ R Subset of nk routes between OD pair k

Table 10.1: Notation for route estimation problem. We have m observed links, q cellpaths, n
routes.

OD-route incidence matrix T encodes which route r is between OD pair k.3

link-route:Alr =

{
1 if l ∈ r
0 else

; cellpath-route:Upr =

{
1 if r ∈ Rp

0 else
;

OD-route:Tkr =

{
1 if r ∈ Rk

0 else

The model assumptions are as follows:

• We consider a quasi-static setting, where traffic demands (flows) remain constant over
time, and we focus on the noiseless case, with a short commentary on the noisy case in
Section 10.5.

3The lowercase letters l, r, p, k written as subscripts refer to the indices associated to links, routes, cellpaths,
and ODs respectively.
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• Since enumerating all routes is not tractable, we consider the top routes between each
OD pair following different criteria depending on the setting of the numerical experiment
(see Section 10.4).

• We know the cellpath flow µp (vehicle count) from the cellular traces (phone count)
along each cellpath p.

• All cellpaths p ∈ P are contiguous : each pair of consecutive cells in p shares a boundary.

• The set of cellpaths P is well-posed : there exists a unique cellpath p ∈ P for each route
r ∈ R, and we have a cellpath flow measurement µp for each w ∈ P .

Formulation and analysis of the model

The fusion of cellular and loop data for route flow estimation is one of the key contributions
of this chapter. We wish to find an assignment of route flow x that agrees with the cellpath
flow f distributed across the routes R such that the measurement residual with the link flow
b is minimized. We formulate the problem in the framework of convex optimization as a
minimization of a quadratic program:

min 1
2
‖Ax− b‖2

2

s.t. Ux = f, x � 0
(10.1)

The problem is a constrained linear inverse problem in which we want to estimate a signal of
length n (the route flows) given that we have m measurements (the observable link flows).
We additionally have q cellpath flow constraints: for each cellpath p ∈ P , there are np routes
corresponding to p, such that their flow must sum up to the cellpath flow fp:

Ux = f :
∑
r∈Rp

xpr = fp ∀ p ∈ P (10.2)

In general, m� n and q ≤ n, thus typically the Hessian ATA of our convex quadratic
objective is singular (ATA ∈ Rn but rank (ATA) ≤ m� n). Thus the problem might have
multiple optimal solutions (underdetermined) or might have more observations than unknowns
(overdetermined), depending on the number of cellpath flow constraints. In contrast with
methods that consider less detailed flow measurements (e.g. OD flow) instead of cellpath flow,
however, our formulation encodes more constraints than past methods, thereby constraining
the solution space. Moreover, when there are uncorrelated measurement errors on the vector
flow b (absence of interactions between the detection process of static sensors), the ordinary
least squares is the best unbiased estimator of the route flows x.4

Our model is related to the so-called route assignment problem used to solve traffic
equilibrium problems [165], [143, §3], [15, §5], where E is the set of all links (edges) in the

4The errors must also have zero-mean and constant variance, then the result holds as link flows linearly
depend on route flows: b̂ = Ax + ε, from the Gauss-Markov theorem.
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network, Afull ∈ [0, 1]|E|×|R| is the full link-route incidence matrix, and φ is the Beckmann
objective function [13]:

min φ(Afullx) s.t. Tx = d, x � 0 (10.3)

This is a standard formulation in traffic assignment in which a local minimum of (10.3) is a
Wardrop equilibrium of a congestion game [120]. If the cellpath-route incidence matrix U is
reduced to an OD-route incidence matrix (see Fig. 10.3), both (10.1) and (10.3) share the
same constraints. Reversely, the constraints Ux = f can be added to (10.3) to restrict its
solution space. The main difference lies in the objective being minimized: in (10.1) it is the
link flows measurement residual while in (10.3) the potential φ expresses the incentives of all
vehicles (or players) to take the shortest route.

Proposition 10.1. Problem (10.1) can be reduced to a least-squares problem with (separable)
simplex constraints:

min
1

2
‖Ãx̃− b‖2

2 s.t. 1T x̃p = 1, x̃p � 0, ∀ p ∈ P (10.4)

where Ã ∈ R|L|×|R|+ : Ãlr =

{
fp if l ∈ r ∈ Rp

0 else
(10.5)

where 1 = [1, · · · , 1]T ∈ Rnp and Ã is a modified link-route incidence matrix containing the
cellpath flows fp.

Proof. The constraints Ux = f in (10.1) can be written explicitly:
∑

r∈Rp x
p
r = fp, ∀ p ∈ P.

With the change of variables x̃p := xp/fp for all p, the constraints become
∑

r∈Rp x̃
p
r = 1, ∀ p ∈

P , or in matrix form: 1T x̃p = 1, ∀ p ∈ P . Since fp > 0 for all p, then the inequalities xp � 0
are equivalent to x̃p = xp/fp � 0. Finally, the vector Ax has entries vl =

∑
r : l∈r xr for l ∈ L,

where vl is the flow on link l. The sum can be decomposed between the different cellpaths

p: vl =
∑

r : l∈ r
xr =

∑
p

{ ∑
r : l∈ r∈Rp

xpr

}
=
∑
p

{ ∑
r : l∈ r∈Rp

fpx̃
p
r

}
= (Ãx̃)l, hence the objectives are

the same.

In the context of game theory, each cellpath can be seen as a player who choses a strategy
or a probability distribution with weights (x̃pr)r∈Rp over the np routes, and a set defined by
Sp := {x̃p ∈ [0, 1]n

p | ∑r∈Rp x̃
p
r = 1} is a strategy set or a probability simplex over the routes

r ∈ Rp. We note that the sets Sp are disjoint (each route has at most one cellpath associated
to it), hence (10.4) is a least-squares problem with (separable) simplex constraints. In the
presence of noisy cellpath flow data, (10.4) is more adequate than (10.1) since we do not
restrict the sum of route flows to be equal to the cellpath flows (10.2). Intead, matrix Ã is
noisy in (10.4). Note that the traffic assignment problem (10.3) can also be reduced in a
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similar fashion, where O2 is the set of all OD pairs, which results in the approach proportions
of Bar-Gera [8]:

min φ(Ã
full
x̃)

s.t. 1T x̃ = 1, x̃k � 0, ∀ k ∈ O2
where Ã

full
=

{
dk if l ∈ r ∈ Rk

0 else
(10.6)

Before we conclude the section, we note that our model (10.1) is also compatible with
several other types of data, e.g. turning ratios and links’ capacities. If, at some intersection
j ∈ V, we know the flow of vehicles coming from link e = (i, j) ∈ E and turning into link
e′ = (j, k), and we denote the pair of successive links by t = (e, e′), then letting T be the set
of monitored traffic turns (intersections) t, G ∈ {0, 1}|T |×|R| the turn-route incidence matrix,
and h the vector of flow that passes through each monitored intersection the objective of
(10.1) can be generalized to include split ratios:

min
1

2
‖A′x− b′‖2

2 s.t. Ux = f, x � 0 (10.7)

where A′ =
[
A
G

]
, b′ =

[
b
h

]
and Gtr =

{
1 if t = (a, a′) : a, a′ ∈ r
0 otherwise

(10.8)

Suppose we know the link capacities m̃e, then the constraints Afullx � m̃, where m̃ :=
(m̃e)e∈E is the link capacities vector, can be added to program (10.1). To approximate the
new problem as a program with simplex constraints, we can make the added constraints
implicit in the objective:

min
1

2
‖Ax− b‖2

2 +
∑
e∈E

φ(LTe x− m̃e) s.t. Ux = f, x � 0 (10.9)

where the barrier φ is an approximation of the indicator function I− : R → R for the
nonpositive reals, and the vectors LTe , e ∈ E are the rows of Afull. A common choice for φ is
the logarithm barrier φ(u) = −α log(−u) where α is a parameter that sets the accuracy of
the approximation [26, §11.2.1].

To summarize, we choose with model (10.1) a data-driven approach in which we want
to find the best statistical estimator of the linear route-link flow model given the observed
cellpath flows, which contrasts from equilibrium-based route flow assignment models. Both
models are still very similar since they have the same simplex constraints. Our formulation
can also include other types of data.

10.3 Dimensionality reduction and projection via
isotonic regression

In this section, we present an efficient constraint elimination technique relying on the choice of
a particular nullspace, which is suitable for both the proposed route flow estimation problem



CHAPTER 10. FUSION OF CELLULAR AND TRAFFIC SENSOR DATA FOR ROUTE
FLOW ESTIMATION VIA CONVEX OPTIMIZATION 161

(10.1) and the traffic assignment problem (10.3). The projection on the inequality constraints
is performed in linear time via isotonic regression.

Exploiting the structure of the equality constraints

We consider the reduced route flow estimation problem (10.4) and the reduced traffic
assignment problem (10.3):

route flow estimation problem: min
x

1
2
‖Ãx̃− b‖2

2 s.t. 1T x̃p = 1, x̃p � 0, ∀ p ∈ P
traffic assignment problem: min

x
φ(Ã

full
x̃) s.t. 1T x̃k = 1, x̃k � 0, ∀ k ∈ O2

(10.10)
We consider a general objective function f and the simplexes Sp = {x̃p ∈ [0, 1]n

p | ∑r∈Rp x̃
p
r =

1} as constraints, but the following analysis applies for both problems. We use standard linear
algebra operations to eliminate the equality constraints [26, §4.2.4]. Since the constraints
have disjoint support, we treat each one of them separately. For all p ∈ P, we find a
direction ep which is a particular solution of 1T x̃p = 1, and a matrix Np whose range is
the orthogonal complement of the vector 1 ∈ Rnp , denoted {t1 | t ∈ R}⊥. With the vectors
{ep}p∈P stacked into an overall vector x̃0 := (ep)p∈P , and the matrices {Np}p∈P encoded in
an overall block-diagonal matrix N := diag((Np)p∈P), the resulting problem is:

min
z

1

2
f(x̃0 + Nz) s.t. x̃0 + Nz � 0 (10.11)

or with the blocks made explicit:
min

z
f((ep + Npzp)p∈P)

s.t. ep + Npzp � 0, ∀ p ∈ P (10.12)

Vectors of the form [· · · , 1,−1, · · · ]T are orthogonal to 1 ∈ Rnp . We also choose a simple ep
solution of 1Txp = 1:

ep := [0, · · · , 0, 1]T ∈ Rnp ; Np
=


1
−1 1

−1
. . .
. . .

 ∈ Rnp×(np−1) ∀ p ∈ P (10.13)

where the columns of Np form a basis of {t1 | t ∈ R}⊥. These choices result in a simplification
of the constraints in (10.12), and we can interchangeably operate on variables xp in (10.1)
and variables zp in (10.4) since they are simply related:

x̃p = ep + Npzp = [zp1, z
p
2 − zp1, · · · , zpn − zpn−1, 1− zpnp ]

T , ∀ p ∈ P
zp = [x̃p1, x̃

p
1 + x̃p2, · · · ,

∑n−2
i=1 x̃

p
i ,
∑n−1

i=1 x̃
p
i , ]

T , ∀ p ∈ P (10.14)

The constraint ep +Npzp � 0 becomes an ordering constraint 0 ≤ zp1 ≤ · · · ≤ zpnp−1 ≤ 1. The
program (10.12) is now:

min
z

f((ep +Npzp)p∈P) s.t. 0 ≤ zp1 ≤ · · · ≤ zpnp−1 ≤ 1, ∀ p ∈ P (10.15)
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The main advantage of this constraint elimination is the reduction of the dimension from
n to n− q, where n is the number of routes and q the number of cellpaths (see Table 10.1).
If each cellpath has maximum k routes, then we have n ≤ kq, hence n− q ≤ n(1− 1/k). For
our target problem, we generally have k = 3 hence the dimension is reduced by at least a
factor 1/3.

The problem (10.15) can be solved quite efficiently with a simple (accelerated) first order
or second order projection algorithm, or an Augmented Lagrangian method. In particular,
the basic descent projection algorithm (see Algorithm 7.2) iteratively takes a step in a descent
direction ∆z (line 2) from the current point z, projects the new point z + ∆z onto the
constraint set z+ := Π(z + ∆z) (line 3), and performs a line search (line 4). The projection
step is performed with q Euclidean projections of zp + ∆zp onto ordering constraints:

Πp(yp) : min
up
‖up − yp‖2

2 s.t. 0 ≤ up1 ≤ up2 ≤ · · · ≤ upnp−1 ≤ 1 ∀ p ∈ P (10.16)

Algorithm 10.1 Proj-descent(·) General projected descent method
Require: initial point z = (zp)p∈P in the feasible set X .
1. while stopping criteria not met do
2. Determine a descent direction ∆z = (∆zp)p∈P
3. Projection: (zp)+ := argmin

up
{‖zp + ∆zp − up‖2 : 0 ≤ up1 ≤, · · · ≤ upnp−1 ≤ 1}, ∀ p ∈ P

4. Line search on the projected arc: γ :≈ argmin {f(z + t(z+ − z)) : t ∈ [0, 1]}
5. z := z + γ(z+ − z)
6. return z

In line 4 of Algorithm 7.2, we perform a backtracking line search [26, §9.2]. This is
an Armijo-rule based step size selection that ensures sufficient descent, it approximately
minimizes the objective along the projected arc {z + t(z+ − z) | t ∈ [0, 1]}. Since the feasible
set is convex, the projected arc is feasible, hence the method also ensures feasibility of the
next iterate. We apply backtracking with objective f(z) = ‖A(x̃0 + Nz)‖2

2 and descent
direction d = z+ − z.

A simple projection using isotonic regression

The projections (10.16) have general form (10.17), given data points y := [y1, · · · , yn] ∈ Rn,
weights w := [w1, · · · , wn] � 0, and bounds L < U .5 Without bounds, we have an isotonic
regression problem (10.18) (see [153] and references therein).

ISO[L,U ]
1→n (y,w) : min

u

∑n
i=1 wi(yi − ui)2 s.t. L ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ U(10.17)

ISOR
1→n(y,w) : min

u

∑n
i=1 wi(yi − ui)2 s.t. u1 ≤ u2 ≤ · · · ≤ un (10.18)

5For subsection 10.3 only, U ∈ R is the upper bound in problem (10.17). In the rest of the chapter, U is
the cellpath-route incidence matrix.
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where we use the notation ISOI
s→t(y,w) such that subscript s→ t means we only consider

data points with indices from s to t, and superscript I is the interval in which the variables
us, us+1, · · · , ut lie. Since both problems are strongly convex, they both have a unique solution.
The solution to (10.18), denoted uiso, can be computed in linear time using the Pool Adjacent
Violators (PAV) algorithm [21, §3], so one hopes that the solution to (10.17), denoted u?,
derives easily from uiso. We first give the following lemma:

Lemma 10.1. Given uiso the solution to (10.18), if there exists k such that uiso
k < uiso

k+1 then
(10.18) reduces to two subproblems:

ISOR
1→k(y,w) : min

u

∑k
i=1 wi(yi − ui)2 s.t. u1 ≤ · · · ≤ uk

ISOR
k+1→n(y,w) : min

u

∑n
i=k+1wi(yi − ui)2 s.t. uk+1 ≤ · · · ≤ un

(10.19)

such that [uiso
1 , · · · , uiso

k ] is the solution to the first one and [uiso
k+1, · · · , uiso

n ] is the solution
to the second one. The same result holds for (10.17) and u?, with resulting subproblems
ISO[L,+∞)

1→k (y,w) and ISO(−∞, U ]
k+1→n (y,w).

Proof. Since the constraint uk ≤ uk+1 is not active at uiso, it may be removed from (10.18)
without altering the solution. Then the resulting program can be separated into the two
programs in (10.19) with respective solutions [uiso

1 , · · · , uiso
k ] and [uiso

k+1, · · · , uiso
n ].

We now prove the following result:

Proposition 10.2. The solution u? to (10.17) is the Euclidean projection of the solution
uiso to (10.18) onto [L,U ]n.

Proof. We start with two simple cases.

Case 1 : [uiso
i ≤ L, ∀ i]. Suppose ∃ k, u?k > L. We choose k the smallest of such indices,

then either k = 1 or L = uk−1 < uk. In both cases, [u?k, · · · , u?n] is the unique solution to
ISO(−∞, U ]

k→n (y,w) from Lemma 1. Since [uiso
k , · · · , uiso

n ] is also feasible for ISO(−∞, U ]
k→n (y,w), we

have
∑n

i=k wi(yi − uiso
i )2 >

∑n
i=k wi(yi − u?i )2, and adding

∑k−1
i=1 wi(yi − uiso

i )2 on both sides
yields

∑n
i=1wi(yi−uiso

i )2 >
∑k−1

i=1 wi(yi−uiso
i )2+

∑n
i=k wi(yi−u?i )2. Since [uiso

1 , · · · , uiso
k−1, u

?
k, · · · ,

u?n] is also feasible for (10.18) (uiso
k−1 ≤ l < u?k), this contradicts the optimality of uiso. Hence

u?k = L, ∀ k, i.e. u? = Π[L,U ]n(uiso).

Case 2 : [uiso
i ≥ U, ∀ i]. The analysis is similar to case 2. We have: u?k = U, ∀ k, i.e.

x? = Π[L,U ]n(uiso).

General case: Without loss of generality, we suppose there exist two indices s, t such that:
uiso

1 ≤ · · · ≤ uiso
s ≤ L < uiso

s+1 ≤ · · · ≤ uiso
t−1 < U ≤ xiso

t ≤ · · · ≤ xiso
n . From Lemma

1, [uiso
1 , · · · , uiso

s ], [uiso
s+1, · · · , uiso

t−1], and [uiso
t , · · · , uiso

n ] are then solutions to ISOR
1→s(y,w),

ISOR
s+1→t−1(y, w), and ISOR

t→n(y,w) respectively. From case 1, the vector [L, · · · , L] ∈ Rs
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is solution to ISO[L,+∞)
1→s (y,w) and from case 2, the vector [U, · · · , U ] ∈ Rn−t+1 is solution

to ISO(−∞, U ]
t→n (y,w). Then the global vector x∗ := [L, · · · , L, uiso

s+1, · · · , uiso
t−1, U, · · · , U ] is the

solution to the global program:

min
u

∑n
i=1wi(yi − ui)2

s.t. L ≤ u1 ≤ · · · ≤ us, us+1 ≤ · · · ≤ ut−1, ut ≤ · · · ≤ un ≤ U
(10.20)

Adding the constraints us ≤ us+1 and ut−1 ≤ ut to (10.20) does not alter the solution since
they are inactive. Hence [L, · · · , L, uiso

s+1, · · · , uiso
t−1, U, · · · , U ] is the solution to (10.17), i.e.

u? = Π[L,U ]n(uiso).

Although isotonic regression is generally studied in the form (10.18), the bounded version
(10.17) has appeared in [74]. The simple connection presented in Proposition 10.2 is new to
the best of our knowledge. This result can be written u? = Π[L,U ]n(uiso) where ΠK is the
Euclidean projector onto space K. When K = [L,U ]n, the projected vector p := Π[L,U ]n(u)
is obtained from u ∈ Rn by simply projecting each entry ui onto [L,U ], i.e. pi = ui if
ui ∈ [L,U ], pi = L if xi < L, and pi = U if xi > U . We first give a lemma.

We now give an efficient algorithm to perform the projections (10.16) in line 3 of Algorithm 7.2:

Algorithm 10.2 PAV-proj(yp) Projection onto ordering constraints in line 2 of Algorithm
7.2
Require: vector yp ∈ Rnp−1

1. compute yp,iso := argmin
up

{‖up − yp‖2
2 : up1 ≤ up2 ≤ · · · ≤ upnp−1} with the PAV algorithm

[21]
2. project yp,iso onto [0, 1]np−1: ỹpk = yp,isok if yp,isok ∈ [0, 1]; ỹpk = 0 if yp,isok ≤ 0; ỹpk = 1 if
yp,isok ≥ 1.
3. return ỹp

We note that without the constraint elimination described earlier, a projected descent
method applied to (10.4) would require q projections onto the probability simplices {x̃p ∈
Rnp |1T x̃p = 1, x̃p � 1} at each iteration. The complexity of these projections is O

(
np log np

)
[56, 162], which is less attractive than the O

(
np
)
complexity of Algorithm 10.3.

Problems (10.4) and (10.6) are both convex, and can be solved efficiently with including
interior point methods, augmented Lagrangian, gradient projection, and conjugate gradient.
In particular, we choose the Barzilai and Borwein (BB) method for the accelerated gradient
method, where z is the current iterate and z− and previous iterate:

∆z = −((yT s)/(yTy)).∆f(z) where y = ∇f(z)−∇f(z−), s = z− z− (10.21)

The change of variable reduces the dimensionality, at the cost of loosing some of the
structure of the traffic assignment problem. While long-standing algorithms such as the
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Model Solver

Error(x̂, xtrue)

UE

SO
agent-based

data route flow estimate

A, b, U, f x̂

true route flow xtrue

Figure 10.4: Our experiment flow block diagram, where the model is comprised of a network,
traffic assignment model, and sensor configuration. The solver is presented in §10.3. The
error metric represented here is a function of the estimated and actual route flow. We may
compute the percent flow error or, using additional information (e.g. network topology), we
may also compute the link flow GEH error.

Frank-Wolfe assignment [101] and the Origin-based assignment [8] and their modifications
may have diminished efficiency since the all-or-nothing assignment step is no longer available,
their slow convergence is known [125, §11.2.3.1]. We suggest that the estimation problem
(10.4) and the traffic assignment problem (10.6) can be reduced to the form (10.12), and
then be solved efficiently with quasi-Newton methods (e.g. L-BFGS [124]), accelerated
gradient methods, or alternating direction methods. These algorithms are proven to have
fast convergence, and the proposed projection step is efficient as discussed above. Due to
space limitations, early numerical results on the speed up of the algorithms are not shown in
the present chapter.

10.4 Experimental setting and validation process
We demonstrate our approach by providing numerical results on experimental networks of
varying sizes, using different traffic assignment models and sensor configurations, on the
I-210 highway corridor in Los Angeles. To demonstrate the versatility to the underlying
experimental model, we investigate the following three scenarios (see Figure 10.4):

1. Highway network in user equilibrium (UE), with varying cellpath densities and static
sensor coverage.

2. Highway network in system optimum (SO), with varying cellpath densities and varying
static sensor coverage.

3. Activity-based agent model on full network, with varying cellpath densities, 5% static
sensor coverage.
Note that we have chosen on purpose three different models (UE, SO, agent-based) to
demonstrate the versatility of the method, which is model agnostic and is a major advantage
of the approach. Thus, we study networks of different sizes and complexities, different driver
behavior models, and trade-offs for different sensor placements. We additionally present
preliminary investigation on the effect of measurement and model error on the accuracy of
the approach.
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Sensor configurations

We have two main types of data: static link sensors data (loop based) and cellpath sensors
(cell based). We consider static link sensors on a subset of the links in the network (ranging
from 5% to 100% coverage). For the Highway network with UE/SO flow, the subsets of links
are chosen such that the most congested links are observed, i.e. links with highest traffic
volumes or flows, whereas in the full large-scale network, we use locations of real highway
(PeMS [43]) and arterial loop sensors where the coverage is 5%. For greater coverage on the
full network, we randomly sample static sensors along roads in the network.

Although the use of real cellular network data from a service provider would demonstrate
even greater applicability of our framework, its availability is restricted for privacy issues,
and designing simulators would still be necessary for the flexibility and availability of ground
truth data. Our team at the present time is not able to share findings based on collaborations
with companies such as AT&T. Our model for cell placement is based on employee population
density and locations of major roads. Most notably, many ordinances prohibit towers in
residential areas but promote towers in industrial and commercial centers. For both networks,
the locations (Xi, Yi) ∈ R2 of the cell towers are randomly sampled on the plane such that the
distribution models realistically represent the cellular network.The overall sensor configuration
(10.22,10.23,10.24) consists of N = NB +NS +NL total cell towers, where NB, NS, NL are
specified by the user and the weights of the multinomial distributions are determined by
demographics and geometry. Our sensor configurations are drawn from three distribution
models:6

1. Within the whole region delimited by a Bounding box, NB cell tower locations (XB
1 , Y

B
1 ),

(XB
2 , Y

B
2 ), · · · , (XB

NB , Y
B
NB) are sampled uniformly (10.22).

2. The whole region is comprised of sub-regions S. Within each sub-region s, delimited by
a rectangle (Xs

min, Y
s
min), (Xs

max, Y
s
max), N s more cell tower locations {(Xs

i , Y
s
i )}i=1,··· ,Ns

are sampled (10.23). The number of base stations N s within each sub-region s ∈ S is
sampled from a multinomial distribution with NS trials, where NS is the total number
of cell towers among all the sub-regions (excluding those sampled in the previous step
from the whole region) and weights proportional to demographic information for each
region (e.g. employee population).

3. The network within the region contains E major edges (that is, those likely to have
cell towers nearby, e.g. highways). Along each edge e (also called arcs), N e cell tower
locations are sampled uniformly along the link with a Gaussian noise (10.24) where
(Xe

s , Y
e
s ) is the location of the start of link e, and (Xe

t , Y
e
t ) is the location of the end

of link e. The numbers of base stations N e along links e ∈ E are sampled from a
multinomial distribution with NL trials, where NL is the total number of cells along
edges (specified by the user) and weights proportional to the length of e.

6Implementation is open source and available at https://github.com/cathywu/synthetic-traffic.

https://github.com/cathywu/synthetic-traffic
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Bounding box : XB
i ∼ U([XB

min, X
B
max]), Y B

i ∼ U([Y B
min, Y

B
max]), for i = 1, · · · , NB

(10.22)
Sub-region S : Xs

i ∼ U([Xs
min, X

s
max]), Y s

i ∼ U([Y s
min, Y

s
max]), for i = 1, · · · , N s

(10.23)

Link a :

{
Xa
i ∼ Xa

s + ti(X
a
t −Xa

s ) +N(0, σ)

Y a
i ∼ Y a

s + ti(Y
a
t − Y a

s ) +N(0, σ)
such that ti ∼ U([0, 1]),

(10.24)
for i = 1, · · · , Na (10.25)

Scenarios 1 and 2: UE and SO on the highway network

We consider first the highway network of the region.7 The roads are extracted from Open-
StreetMaps (OSM) and we only keep the ones with five lanes or more and up to 11 lanes.
This results in a directed graph G = (V , E) with |V| = 44 nodes and |E| = 122 directed links.
We obtain the free flow delay de on each link e ∈ E as the link’s length divided by the link’s
free speed, as defined by OSM, and cross-check the values with the delays given by Google
Maps. An illustration of the network is provided in Fig. 10.5.

The OD demands are based on census data and employment concentration in L.A. county,
which are extracted from the Census Bureau. The OD demands model is simplified to a
static morning rush hour model8 of the region such that: i) only 21 origins have positive
flows emanating from them; ii) all the trips terminate at three destinations: near Burbank at
node 5, towards Santa Monica at node 20, and in Downtown L.A. at node 22; iii) we only
have 42 OD pairs with positive flows ranging from 1200 veh/hour to 12,000 veh/hour.9

For our equilibrium-based approach, we consider the traffic assignment model presented
in [143, §3.1] to generate route flows and cellpath flows. Specifically, the travel time on a
given edge e is a strictly increasing function ce(·) of the traffic volume (flow) ve on that link
only. We choose the congestion performance estimated by the Bureau of Public Roads, where
de is the free flow delay and me the number of lanes on edge e, and provide the Beckmann
objective function φUE associated to the overall model [13]):

link delay: ce(xe) = de(1 + 0.15(xe/me)
4), ∀ e ∈ E (10.26)

UE potential: φUE(x) =
∑
e∈E

∫ xe

0

ce(u)du (10.27)

7The region has bounding box [-118.328299, 33.984601, -117.68132, 34.255881] in latitude longitude.
8Based on observed flows on 2014-06-12 at 9:14 AM from Google Maps.
9The script and the Python’s class to construct the Highway network are online: https://github.com/

jeromethai/traffic-estimation-wardrop.

https://github.com/jeromethai/traffic-estimation-wardrop
https://github.com/jeromethai/traffic-estimation-wardrop
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Figure 10.5: Benchmark (small-scale) example used for the first numerical run: The four
subfigures present the Highway network of the I-210 highway corridor in L.A. county. Starting
from the top left and in clockwise order: 1) the state of traffic on 2014-06-12 at 9:14 AM
from Google Maps; 2) the nodes in blue and red are nodes from which positive flows emanate,
nodes in red are nodes from which positive flows terminate; 3) network with 80 sampled cells,
with a higher concentration of cells near downtown. A random path from 25 to 22 is shown
in red with the closest cell towers. 4) The highway network in User Equilibrium with the
resulting delays.

In our equilibrium model, the vertices are indexed by v ∈ V , the 42 OD pairs are indexed
by k ∈ {1, · · · , Q}, Afull ∈ R|E|×|R| is the link-route incidence matrix, N ∈ {−1, 0, 1}|V|×|E|
is the node-link incidence matrix, and let dk ∈ R|V| be the vector associated to OD pair
k = (ks, kt) such that dki = −dk at node i = ks (the origin), dki = dk at node i = kt (the
destination), and dki = 0 otherwise. Under the assumptions of our experiment, the path-flow
traffic assignment (PTA) is equivalent to the link-flow traffic assignment (LTA), i.e. they
give the same unique link flow solution [67]:

PTA : min φUE(Afullx) s.t. Tx = d, x � 0 (10.28)
LTA : min φUE(v) s.t. v ∈ K (10.29)



CHAPTER 10. FUSION OF CELLULAR AND TRAFFIC SENSOR DATA FOR ROUTE
FLOW ESTIMATION VIA CONVEX OPTIMIZATION 169

where the feasible set for the (LTA) is:

K :=

{
v ∈ R|E|+ | ∃vk ∈ R|E|+ , v =

Q∑
k=1

vk, Nvk = dk, ∀ k ∈ {1, · · · , Q}
}

(10.30)

Since PTA is not tractable due to the computational cost of enumerating all the possible
routes, we solve LTA in the first step, then perform the following steps to generate a set of
routes R with an associated UE route flow vector xUE ∈ R|R|+ , and a set P of cellpaths with
an associated UE cellpath flow vector fUE ∈ R|P|+ :

1. We solve LTA and obtain the UE link flow vUE ∈ R|E|+ and resulting link delays.

2. We find the K-shortest paths under the UE delays for each of the 42 OD pairs, using
Yen’s algorithm [173]. Note that K is chosen large enough such that at least all used
routes are extracted, i.e. all the routes with the same shortest delays as characterized
by Wardrop equilibrium. We choose K = 5 and extract 275 candidate routes.

3. We solve PTA with the 275 candidate routes starting from a random initial point. Let
xUE be a route flow solution (the resulting link flow AfullxUE should be equal to vUE

since the UE link flow is unique).

4. We sample cellpaths on the highway network following the model presented in §10.4
(see Fig. 10.5).

5. For each of the 275 routes with a positive flow on it – we found card {r |xUE
r > 0} = 91

used routes – we compute the sequence of cells that intersect with it. The cellpath
flows are given by: fUE

p =
∑

r∈Rp x
p
r.

On a network with SO flow, the average delay is minimized [165, 92], hence the potential
function of be minimized is φSO in (10.31) subject to the constraints in (10.28) for the
path-flow formulation, and (10.29) for the link-flow formulation. In fact, the SO link flow
corresponds to the UE link flow with the modified delay function c̃e(·) in (10.31), called the
marginal delay function [138] (where the prime indicates the derivative function):

link marginal delay : c̃e = ce(xe) + xec
′
e(xe) ; SO potential: φSO(v) =

∑
e∈E

vece(ve)

(10.31)
Steps 1 to 5 are performed with the SO potential φSO to generate a SO route flow µSO and a
SO cellpath flow fSO on the Highway network described above, with a few minor differences:

• In step 2, we find the K-shortest paths under the marginal delays induced by the SO
link flow. We choose K = 7 and we extract 300 candidate routes.

• In step 5, we found 153 routes with positive flow on it.
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Figure 10.6: Full-scale network including highway and arterial networks of the I-210 corridor
used for MATSim data generation, and for the estimation problem. See Figure 10.2 for the
Voronoi tessellation model of the cellular network and the 700 origins given by the TAZ.

Scenario 3: activity-based agent model on the large-scale full
network

We additionally consider a large full network, comprising of both the highway network and
the arterial networks in the region. We use the OpenStreetMaps network of the greater Los
Angeles area, excluding residential links. Our network comprises of 20,513 edges (links) and
10,538 nodes (intersections). We take the origins to be the Traffic Analysis Zones (TAZ)
given by the US census, of which there are 700 in the region (see Fig. 10.6).

On this large-scale network, we consider an activity-based agent model. MATSim is a well-
known open-source traffic simulation framework [84], which searches for a user equilibrium
in terms of utility functions defined for the agents using a co-evolutionary optimization
algorithm. In our setting, we consider agent utility as a function of travel time. MATSim
differs from the user equilibrium model above in that it is only quasi-static, by varying slightly
the departure times for every agent. MATSim is suitable for performing large-scale agent
simulations. We simulate the morning and evening rush-hours using 500,000 agents, as those
are the most vital times to understand the state of traffic. The home and work locations
for each agent are distributed randomly via census demographics. Since MATSim randomly
selects starting and ending points (within origins and destination) as opposed to using the
region centroids, typically all of the trajectories it generates are unique. Selecting all of the
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trajectories to be our possible routes lends itself to be a trivial problem in our formulation.
Instead, we examine trajectories between each OD pair and group them by similarity as
follows: 1) Find the trajectory which matches with the most other trajectories (≥80% match
in length). Add this trajectory to the list of routes for the OD pair; 2) Remove all trajectories
that match with this route and repeat. Stop when 50 routes are selected or when there are
no more trajectories. 50 routes empirically accounts for 99.4% of the 500K trajectories. In
this scenario, we consider coupled OD and cellpath flow information as provided by MATSim,
which we denote as OD + cellpath flow, for estimating route flow. In a real setting, this
information may be inferred by a trip analysis method applied to cellular network data.

Implementation

The software to run the experiments was developed mostly in python 2.7, using the GEOS
(v.3.4.2) library for geometric computations. All data is managed and stored in a PostGIS
2.1.3 database. The geometries and other data about routes, cell tower Voronoi tesselations,
and the links of the road network are all stored in the database with spatial indices on all
geometry columns, allowing PostGIS spatial queries to be performed efficiently for extracting
cell path information associated with each route. The data for the I-210 corridor contains
280,691 routes, 700 origins, 1033 sensors, and was tested with numerous different numbers of
cells, ranging from 200 to 4000.

The incidence matrices A and U (roughly 250K-by-300K matrices) are generated by
finding the cellpath and OD pair for each route from the database by ordering the set of
Voronoi cells that intersected with the respective route. The link-route incidence matrix is
formed by finding all routes whose distance from the sensor locations was less than some
threshold empirically selected such that the maps matched well (≈ 10 meters tolerance for
the PeMS geometries). All incidence matrices are saved in the scipy.sparse format. The
convex optimization program10 was developed in Python, using scipy.sparse and numpy
for matrix computation. The PAV projection algorithm was written in C, and bindings were
written so that it could be called from the Python optimization algorithm.

10.5 Numerical results
We validate our approach by measuring our accuracy in route flow estimates x̂, where x̂ is
a solution of our model (10.1) for different scenarios. Note that the problem being solved
is (10.4) following our algorithmic approach, and the solution in z is converted to x̃ then x̂
following the simple relation in (10.12) and (10.14). We additionally present our accuracy
in terms of link flow estimates, to serve as a comparison to classical approaches to link flow
estimation:

10Implementation is open source and available at https://github.com/cathywu/traffic-estimation.

https://github.com/cathywu/traffic-estimation
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• Route flow error: εr = ‖xtrue − x̂‖1 / ‖xtrue‖1, with xtrue the true route flow and x̂ the
estimated route flow. This is the percent error of flow allocation among all routes.

• Link flow error:
1) For observed links: εobsl = |GEHobs

i < 5,∀i ∈ b̂|/|btrue|, with btrue = Axtrue true

observed link flows, b̂ = Ax̂ estimated observed link flows, and GEHobs
i =

√
(btruei −b̂i)2

0.5(btruei +b̂i)

associated GEH measure for each link.
2) For all links: εfulll = |GEHfull

i < 5,∀i ∈ v̂|/|vtrue|, with vtrue = Afullxtrue true full

link flows, v̂ = Afullx̂ estimated full link flows, and GEHfull
i =

√
(vtruei −v̂i)2

0.5(vtruei +v̂i)
associated

GEH measure for each link.
This is called the GEH statistic, a heuristic formula commonly used to compare two
sets of traffic volumes, e.g. for calibration of microsimulation models [55, §5.6] and for
validating hourly traffic flows [155, §11-13]. For an individual link, a GEH value of less
than 5.0 is considered to be a good match. For a vector of links, a fraction εl ≤ 0.85
of good matches is considered a good match overall between modeled and observed
volumes.

Highway network

Using the highway network settings in §10.4, we start with 100% of link coverage and 80 cells
such that NB = 20, NL = 40, and NS = 20, where S contains only 1 region and is roughly
downtown Los Angeles (see 10.4). The link coverage is then decreased from 90% to 10%
such that we always observe the most congested links, and the number of cells is successively
scaled down by a factor 2 such that the proportions between NB, NL, NS are conserved.
We analyze how the errors εr in route flows, vary when sensors are more sparse. Since we
choose random initial points in PTA (10.28) and in the solver (10.1) to generate synthetic
route flows and compute the estimate respectively, and since the cellular network is sampled
randomly, all the results presented in this section have been averaged over 10 trials.11

Figure 10.7 presents the numerical results when link flows and OD demands are known,
and cellular network data are assimilated into the model. The problem being solved has in
fact a different objective from (10.1):12

min
1

2
‖A′x− b′‖2

2 s.t. Ux = f, x � 0 where A′ =
[
A
T

]
and b′ =

[
b
d

]
(10.32)

In UE, the presence of cell phone data in addition to OD demands reduces εr by at least
a factor 10 when there are 5 to 40 cells and less than 60% of links observed (Fig. 10.7, top

11The code was fully implemented in Python and is available on github: https://github.com/
jeromethai/traffic-estimation-wardrop.

12Since the inequalities Ux = f, Tx = d, x � 0 might not define simplexes, we chose formulation (10.32)
over: min 1

2‖Ax−b‖22 s.t. Ux = f, Tx = d, x � 0 to have the same constraints as in (10.1) for our algorithmic
approach. Besides, with dense cellular networks, satisfying Tx = d is redundant with the constraints Ux = f
because OD demands are included in cellular network data, hence both formulations reduce to (10.1).

https://github.com/jeromethai/traffic-estimation-wardrop
https://github.com/jeromethai/traffic-estimation-wardrop
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Figure 10.7: The nine subfigures present the numerical results for the highway network. From
the left to right: 1) the route flow error εr from OD demands (red curve) and OD demands
& cellpath flows (other curves) with different link coverage values and different numbers of
cells for the network in UE; 2) εr from OD demands (red curve) and OD demands & cellpath
flows (other curves) for different configurations of the network in SO; 3) ratio of the number
of observed cellpaths to the number of used paths; 4) lower bound on the degree of freedom
for the program with OD demands (red curve) and OD demands & cellpath flows (other
curves) for the network in UE; 5) lower bound on the degree of freedom for the program with
OD demands (red curve) and OD demands & cellpath flows (other curves) for the network in
SO; 6) the route flow error εr from OD demands (red curve) and cellpath flows only (other
curves) with different link coverage values and different numbers of cells for the network in
UE; 7) εr from OD demands (red curve) and cellpath flows only (other curves) for different
configurations of the network in SO; 8) lower bound on the degree of freedom for the program
with OD demands (red curve) and cellpath flows only (other curves) for the network in UE;
9) lower bound on the degree of freedom for the program with OD demands (red curve) and
cellpath flows only (other curves) for the network in SO. Best viewed in color.
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left subfigure). In SO, the gain in accuracy becomes significant (by a factor 10) with 5 to 20
cells from 20 to 50% of link coverage (Fig. 10.7, top middle subfigure). Hence, data from
relatively sparse networks compensates well for the lack of information from sparse static
sensors. With 80 cells in the UE setting and at least 40 cells in the SO setting, εr from OD
flows and cell data is lower than in any other cases. Hence, data from dense cellular networks
provides information that even 100% of link coverage would not be able to provide: the flows
on routes. This is also illustrated in the top right subfigure of Fig. 10.7: with 40 cells, the
ratio of the number of cellpaths observed to the number of routes used is 80% and 90% in
SO and UE respectively. This means that we observe the exact flow on at least 60% and 80%
of the routes respectively. Among the remaining percentage, only the sum of flows on routes
sharing the same cellpath is observed.

The accuracy in the estimates is closely related to the degree of freedom in problem (10.1).
When we consider problem (10.32) without inequality constraints, the degree of freedom is
given by the dimension n− rank[AT ,TT ,UT ] where n is the dimension of the problem. With
x � 0, the support of the estimated distribution of flows is generally restricted to be on the
used routes instead of the candidate routes (see §10.4), because observing positive flows along
used routes from different sensors forces the program to allocate positive fractions of flows
along these routes, with no quantities left for the other routes. Hence a lower bound and a
good estimate of the degree of freedom is given by |r |xr > 0| − rank[AT , T T , UT ]. When this
quantity is negative, we have an overdetermined problem. In the middle left and middle center
subfigures of Figure 10.7, we observe that problem (10.32) is underdetermined without the
use of cellular network data in UE/SO, and with 10 cells or less in SO. Including cell phone
data has also a greater effect on the lower bound on the degree of freedom than increasing the
link coverage, which confirms the need of cell phone data to solve the underdetermined-ness
in route flow problems.

The last four subfigures of Figure 10.7 present results when link flows are known, the
route flow estimation error from cellular network data (without OD demands) is compared to
the estimation error from OD demands. We observe that using cellular network data instead
of OD demands is beneficial when there is 60% of link coverage or less on the network in
UE, and 40% of link coverage or less in SO. For greater percentages of link coverage, cellular
network data provides more information on the route flows than 100% of link coverage when
there are at least 40 cells in UE, and 20 cells in SO (see Figure 10.7 middle right and bottom
left subfigures). When OD demands and cellpath flows are not combined, the problem is
underdetermined for 20 cells or less.

Full network, activity-based model

Using the full network setting in §10.4, we perform experiments using the actual locations of
PeMS static highway count sensors on 1033 links (about 5% coverage). We use the following
baseline sensor configuration model for base stations13: NB = 100, NS = 800, NL = 50, where

13The I-210 region is 688mi2 and, with cell towers spaced 1
4 to 2 miles apart for suburban and urban areas,

a reasonable range of cell towers for modern urban areas is 180 to 5500. We select 950 for our baseline model,
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the sub-regions S is given by the bounding boxes for the TAZ within the whole region.We
analyze how the errors in route flows and link flows vary when the number of base stations
vary from 0.25 times to 4 times, with each of the model parameters scaled proportionally.

Figure 10.8 presents the numerical results when select link flows and all OD + cellpath
flows are known. To select a particular estimate from the solution space, we add an `2

regularization term to the objective. In our dataset, selecting the top 50 routes per OD pair
was sufficient to account for 99.4% of trajectories; however, in general, the corresponding
number of routes needed will vary based on the network, time of day, underlying driver
behavior, etc. Thus, we present trade-off curves for varying the number of routes from 3
up to 50. As expected, as more routes are considered, the route flow accuracy εr declines,
since the solution space (and its corresponding nullspace) grows. Fortunately, the accuracy
increases with the number of cells. Thus, Figure 10.8 (top left subfigure) shows that the
same level of accuracy may be attained when considering different numbers of routes (per
OD pair), by varying also the number of cells. Our method performs comparably for the
morning (shown in Figure 10.8) and evening (not shown) rush hours, achieving 92.0% and
91.9% route flow accuracy respectively and well exceeding the GEH test (with 950 cells and
50 routes per OD), indicating the versatility of our method for diverse traffic settings. As a
short note on link flow, our method achieves link flow εobsl = 1, εfulll = 1 for all link volume
classes, sensor configurations, and route choices, which is reasonable in the noiseless setting
and explained by our objective minimizing the error to the observed link flows.

Similarly to the highway network experiment, the accuracy in the estimates is closely
related to the degree of freedom in problem (10.1). For computational reasons, we compute
an approximate measure of the degrees of freedom by nullity(AN) ≥ |z| − rank(A), using
notation from (10.12). Although the problem remains underdetermined (based on equality
constraints in the noiseless setting), the accuracy increases substantially as the degrees of
freedom decreases (Figure 10.8, top right). In all scenarios, we note that adding the cellpath
flow information (compared to using OD information only) greatly improves the estimates of
route and link flows.

However, selecting the top routes between each OD pair relies on sophisticated models and
techniques. Though this chapter focuses on the noiseless setting, here we present preliminary
results for a noisy setting, motivated by situations where not all top routes may be curated.
We call modeling error the flow that is not modeled by the curated routes. Figure 10.8
(bottom subfigures) shows an experiment where we consider the performance of our method
where we curate the top 3-50 routes (per OD) and evaluate our method in the presence of
modeling error. We see that curating 20-50 routes (per OD) is sufficient for achieving a low
(< 10%) route flow error. We see also that 20-50 routes is sufficient for performing well on the
GEH metric on all links (including those not observed) for various link volume classes. Our
results show that using too few routes is unsuitable for route flow estimation (but may still
be suitable for link flow estimation) in scenarios where the driving population takes many
varied routes, as in our MATSim dataset.

as a reasonable estimate of cell towers in the region, and experiment from 200 to 4000.
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Figure 10.8: Full (highway and arterial) network experiment results, corresponding to the
regularized solution for the morning commute (rush hour). The top row corresponds to the
noiseless setting; the bottom row corresponds to experiments including modeling error (noise).
Top left: Route flow εr from OD demands (dotted) and OD + cellpath flows (solid) for
varying cell counts. The different curves indicate the number of routes (per OD) considered;
Top right: Approximate degrees of freedom for the program with OD demands (dotted)
and OD + cellpath flows (solid) for varying cell counts. Bottom left: Including modeling
error, the route flow εr from OD demands (dotted line) and OD + cellpath flows (curves)
for varying numbers of cells. Bottom right: Link flow error εl evaluated on observed links b
(dotted) and all links v (solid), shown for different link flow volume classes for 950 cells.

10.6 Conclusion
Our work demonstrates a data-driven method that is capable of estimating route-level flow
accurately, on a large scale, and is versatile to different vehicle behaviors. We address
the traditionally highly underdetermined problem by proposing the concept of cellpaths
for cellular traces. We design a projected gradient algorithm suitable for the route flow
estimation problem, as well as the traffic assignment problem. We validate our approach on
several networks of varying sizes and underlying models. Finally, our methodology is shown
to be compatible with several other approaches and types of data, which may be used in
conjunction for improved estimation.

As route flows contain strictly more information than link flows, which underlie many
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transportation methods, the potential for accurate route flow estimates in transportation
applications is vast. Additionally, whereas traffic assignment, which models rather than esti-
mates route flows, is critical for long-term land-use planning, their strong model assumptions
limit their application in short time-horizon applications. Being a data-driven approach,
our method enables new short time-horizon applications for the prediction and control of
transportation such as route guidance, re-routing (e.g. minimizing effects of road closures,
disasters, large events, etc.), demand prediction, and anomaly detection and analysis. Our
framework aims to be widely deployable (wherever there is wide-spread cellular network
coverage) and extendable, thereby providing a baseline estimator of the state of our current
traffic networks, against which new controls and designs for intelligent transportation systems
can compare.

The directions for future work concern with the implementation of the production system
for the I-210 corridor in California, US. We plan to analyze and improve the robustness of
our model in the presence of measurement error. Real loop sensors are notoriously noisy and
a fraction of them are offline at any given point. Since cellpath flow is not measured directly,
but rather is inferred from cellular network traces, and so is prone to error from any inference
procedure used. Given the achieved computational performance, we plan to extend our work
to the dynamic case, where we explore time-varying traffic demands in near real-time. The
full pipeline (summarized in Figure 10.1) will be implemented to perform large-scale route
flow estimation using cellular network traces from AT&T and actual cell tower locations for
the I-210 corridor in California, US.
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Chapter 11

Conclusion

In Chapter 2 of our dissertation, we have presented the theoretical foundations of the selfish
routing game, and we have shown that the equilibrium flow can be computed as a solution of
a convex optimization problem, or a variational inequality problem. In contrast to the selfish
routing game with homogeneous players, its heterogeneous extension, in which the cost of
traveling is perceived differently among the driving population, described an equilibrium flow
that cannot be formulated as a solution of a convex optimization problem. Fortunately, the
equilibrium flow in the heterogeneous setting can still be computed by solving a variational
inequlity problem. In particular, from classic results in variational inequality theory, see e.g.,
[142], [61], existence and uniqueness of the equilibrium flow on the network is guaranteed if
the cost functions are continuous and sctrictly increasing.

In Chapter 3, we describe the Frank-Wolfe algorithm (a.k.a. the conditional gradient algo-
rithm), which is a popular algorithm for solving the traffic assignment problem. Specifically,
the Frank-Wolfe algorithm is an iterative descent method in which each iteration finds a
search direction going toward a smaller objective function value at a best step length. On the
theoretical side, we provide convergence rates on the Frank-Wolfe algorithm that generalize
the result of Jaggi in [87]. On the computational side, we show that the Frank-Wolfe algorithm
enables to leverage the sparsity structure of the traffic assignment problem by reducing the
problem of computing the search direction to determining shortest-paths between all Origin-
Destiation pairs based on travel costs at the current iteration. Even though this enables
to compute the search direction very efficiently using, e.g., Dijkstra’s algorithm, we have
observed that this computation still accounts for more than 95% of the overall execution time.
of the overall execution time. As an extension of our work on the Frank-Wolfe algorithm,
which is available on GitHub (github.com/megacell/python-traffic-assignment0, we
have collaborated with Juliette Ugirumurera,1 on a High Performance Computing (HPC) that
is not covered in the present dissertation. Specifically, we incorporated a parallel shortest-path
algorithm into the Frank-Wolfe algorithm applied to the Traffic Assignment problem. We
implemented the parallel Frank-Wolfe algorithm on the Edison supercomputer at NERSC

1Juliette Ugirumurera is a postdoctoral research fellow in the Scalable Solvers Group of the Computational
Research Division at the Lawrence Berkeley National Lab

github.com/megacell/python-traffic-assignment
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(nersc.gov). Our initial parallelization duplicated the network on 5 compute nodes, and
equally divided the O-D pairs among 120 cores (24 cores per node). The 120 cores computed
the shortest-paths for their assigned O-D pairs simultaneously. We tested this algorithm
using the Los Angeles network, which had 12,982 nodes 39,018 links and 1,360,427 O-D pairs.
The computation time is reduced by a factor of 25 compared to the sequential Frank-Wolfe
algorithm.

In Chapter 4, we showed how the selfish routing model provides a game-theoretical
framework that can be used to study the impact of the increasing penetration of routing
apps on road usage. Our numerical simulations show that app-based routing can potentially
increase the vehicle miles traveled (VMT) on local roads by .34 million miles per hour, which
represents a three-fold increase in traffic on low-capacity links, while there is only a 10%
decrease in VMT on high-capacity roads. Despite a general decrease in VMT due to more
efficient routing, the relative increase on low-capacity roads is very important for each 10%
increase in routed users, due to the small traffic flow on the low-capacity network. This causes
residential streets to be congested, encouraging cities to spend millions in infrastructure to
steer the traffic away. As an extension of this preliminary work, Théophile Cabannes led a
team of researchers that seeked to empirically validate the recent rise in "cut-through" traffic
due to the use of GPS-enabled routing. Specifically, they use INRIX speed data on a specific
day in LA to show that travel times on arterial roads and the I-210 are equalized during peak
hours between Pasadena and Azusa. They also show that arterial road detours can be as
much as 20% faster than the corresponding I-210 route. In addition, they use PeMS data
(2013 to 2017) and INRIX data (2014 to 2015), to show that an increasing number of drivers
might be using shortcuts, leading to a three-fold flow increase on some off ramps over four
years and a 14% decrease in speed on some arterial roads over one year.

In Chapters 5 and 6, we noted that the use of the selfish routing game by urban planners
to evaluate projects heavily relies upon the assumption that the edge cost functions yield
equilibrium flows that are representative of the actual flows on the urban network. Hence, we
presented a framework that enables to study the prediction accuracy of the selfish routing
model, when it is chosen to fit the empirical data. Specifically, we study the selfish routing
game seen as a regression model encoding the relationship between the traffic demand (inputs
of our model) and the resulting equilibrium flow (outputs). We assume that the vector of edge
cost functions F = (ce(·))e∈E belongs to an indexed-family {Fθ}θ∈Θ, and the empirical risk
minimization principle consists in choosing the parameter that gives the lowest empirical risk
RN (θ), which is defined as the loss under the empirical measure defined by N samples of inputs
and outputs. It is then critical to know if the empirical risk, which is obtained for free from the
empirical risk minimization principle, is a good estimate of the population risk R(θ), where
the population risk is the expected loss if we were to sample a new predictor. The population
risk is thus a measure of how good, on average, our model is at predicting the output given a
new input. This is in fact the ultimate measure of the quality of the model. To understand if
the empirical risk is a good estimation of the population risk, we studied the behavior of the
uniform deviation ‖P− PN‖L := sup

θ∈Θ
‖R(θ)−RN(θ)‖ between the empirical and population
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risks. If we assume that the candidate cost functions are continuous, c-strongly-monotonic,
and L-Lipschitz, then we can use results in sensitivity analysis and approximation theory
to derive upper bounds on ‖P− PN‖L of the form P[‖PN − P‖L ≤ f(N, δ, c, L)] ≥ 1− δ. In
practice, this result enables to derive a sufficient condition on the number N of observations
such that P[‖P− PN‖L ≤ ε] ≥ 1− δ:

√
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√
|E|
(

60 + (L− c)
√
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By doing some asymptotic analysis, we have
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The number of samples that is needed to maintain a low uniform deviation grows with the
ratio L/c raised to the fourth power. If the ratio c/L goes to 1, the number of samples
needed decreases quadratically with 1− c/L. An extension of our work consists in deriving
optimal rates on the number N of samples, i.e. to ensure that the above bounds are tight.
A possible approach aims at deriving lower bounds on the uniform deviation of the form
P[‖PN − P‖L ≥ g(N, δ, c, L)] ≥ 1 − δ. Such bounds enable to derive upper bounds on the
number N of samples so that P[‖PN − P‖L ≥ ε] with high probability.

In Chapter 7 we proposed a framework for imputing the function that describes an
optimization or equilibrium process from observations of traffic flows that are approximately
in equilibrium. We formulate the resulting inverse optimization and variational inequality
problems as a multi-objective optimization problem in which we want to simultaneously
minimize the gap function, which guarantees that the equilibrium condition is approximately
satisfied, and the deviation from the model prediction and the flow measurements. We then
applied a block coordinate descent algorithm to infer the edge cost functions and price tolls
on the road network of Los Angeles.

In Chapter 8, we explored the statistical implications of the optimization framework
proposed in Chapter 7. In particular, we used results in concentration inequalities to show how
the value of the objective function concentrates in a neighborhood of the distance between the
learned and the true models. To obtain such results, we assumed that the measurement noise
is distributed according to a Gaussian distribution, results on the concentration of Lipschitz
functions of Gaussian variables. In general, it still remains an open question whether or not
a similar property holds for sub-Gaussian variables. In the case of distribution-free bounded
random errors, dimensionless concentration results can still be obtained by using bounded
differences inequalities.

In Chapter 9, we considered a stretch of highway, that is discretized into n cells. And we
modeled the flow dynamics on the highway with a discretized hyperbolic partial differential
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equation. We showed that the discretized system is a hybrid system that switches between
K linear system dynamics. However, the number K of modes grows exponentially with the
number n of cells. We proposed to reduce the number of modes to a tractable one by applying
a clustering algorithm. Combined with an algorithm for the estimation of hybrid systems
such as the interactive multiple model (IMM), we got performance improvements compared
to the state-of-the-art Ensemble Kalman filter.

In Chapter 10, we partially addressed the shortage of traditional traffic monitoring sensors,
such as loop detectors and video cameras, by leveraging the large penetration of mobile
phones among the driving population. We proposed a framework for the fusion of cellular
and loop data.
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Part IV

Appendices
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Appendix A

Miscellaneous

A.1 Resiliency of Mobility-as-a-Service Systems to
Denial-of-Service Attacks

An additional work that is loosely related to the rest of our dissertation is the study of
the resiliency of Mobility-as-a-Service (MaaS) systems such as ride sharing services (e.g.,
Uber, Lyft) to Denial-of-Service (DOS) attacks. In our paper [152], we note that MaaS
systems have expanded very quickly over the past years. However, the popularity of MaaS
systems make them increasingly vulnerable to DOS attacks, in which attackers attempt to
disrupt the system to make it unavailable to the customers. Expanding on an established
queuing-theoretical model for MaaS systems, attacks are modeled as a malicious control
of a fraction of vehicles in the network. We then formulate a stochastic control problem
that maximizes the passenger loss in the network, and solve it as a sequence of linear and
quadratic programs. Combined with an economic model of supply and demand for attacks,
we quantify how raising the cost of attacks (via cancellation fees and higher level of security)
removes economical incentives for DoS attacks. Calibrating the model on 1B taxi rides, we
dynamically simulate a system under attack and estimate the passenger loss under different
scenarios, such as arbitrarily depleting taxis or maximizing the passenger loss. Cost of attacks
of $15 protects the MaaS system against DoS attacks. The contributions are thus a theoretical
framework for the analysis of the network, and practical conclusions in terms of financial
countermeasures to the attacks.

A.2 Graphic design
Beyond my scientific contributions, I also had a lot of fun designing posters and logos for the
EECS department at UC Berkeley.
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Figure A.1: Best DOS attack strategy to achieve the target following a pixelated version of
the "Cal" logo.
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Figure A.2: Poster for Alex’s 40th birthday inspired from the poster of the movie "The
Italian Job".
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Figure A.3: My logo design (with elements and suggestions from Grace, Ken, Betsy, Elizabeth,
Joël, and others) got selected to represent our program: http://bair.berkeley.edu/ go
BAIRs!

Figure A.4: My logo design was printed on t-shirts and bags for the visit days of the EECS
depatment.

http://bair.berkeley.edu/
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