
Design and Implementation of an Optionally-Typed
Functional Programming Language

Shaobai Li

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-215
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-215.html

December 14, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Design and Implementation of an Optionally-Typed Functional Programming
Language

by

Patrick S. Li

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Koushik Sen, Chair
Adjunct Professor Jonathan Bachrach

Professor George Necula
Professor Sara McMains

Fall 2017

Design and Implementation of an Optionally-Typed Functional Programming
Language

Copyright 2017
by

Patrick S. Li

1

Abstract

Design and Implementation of an Optionally-Typed Functional Programming Language

by

Patrick S. Li

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Koushik Sen, Chair

This thesis describes the motivation, design, and implementation of L.B. Stanza, an optionally-
typed functional programming language aimed at helping programmers tackle the complexity
of architecting large programs and increasing their productivity across the entire software
development life cycle. Its design objectives arose out of our own frustrations with writing
software, and we built Stanza to be a practical general-purpose language that resolves the
problems we encounter in our daily work.

Stanza was designed to write programs of appreciable complexity; where development
time is spent primarily on managing this complexity; and where better tools for managing
complexity can significantly improve programmer productivity. In our experience with writ-
ing software, there are five primary activities that occupied the majority of our time: finding
and fixing errors, coordinating multiple algorithms, architecting and maintaining a clean
software infrastructure, minimizing and maintaining redundancies in code, and optimizing
for performance.

Stanza consists of five orthogonal subsystems to address each of the previous issues: the
optional type system, the targetable coroutine system, the multimethod object system, the
programmatic macro system, and the LoStanza sublanguage. Each subsystem is responsible
for a separate facet of software development – error detection, control flow and concurrency,
architecture, syntactic abstraction, and low-level control – and work in concert to form a
small but expressive language.

The optional type system allows programmers to transition freely between the dynamically-
typed and statically-typed paradigms, and thus offers both productivity and flexibility in
addition to early error detection capabilities. The targetable coroutine system allows for pro-
grammers to easily coordinate multiple algorithms, and also acts as a foundational control-
flow operator. The multimethod object system is a novel class-less object system that unifies
the functional programming with the object-oriented programming styles. The program-
matic macro system allows for arbitrary syntactic abstractions in the style of Lisp while
still retaining a natural and familiar syntax. Finally, the LoStanza sublanguage provides

2

programmers both direct access to low-level hardware details as well as the ability to easily
communicate and interoperate with high-level code.

Stanza has been successfully applied to the development of a number of significant
projects at U.C. Berkeley, including the development of a digital hardware design language,
a just-in-time-compiled teaching language, as well as a full native-code optimizing compiler.
By the later stages of the Stanza project, Stanza’s productivity allowed for the optimizing
compiler to be developed by a single student over the course of four months.

This thesis describes the language design goals we have identified as being important for
the class of programs we write, and how these goals are realized in the design of Stanza and
its subsystems. Stanza’s design is compared against that of other languages, and we point
out the advantages and disadvantages of each. We then explain the overall implementation
of the Stanza compiler and runtime system; share our personal experiences with teaching
and programming in Stanza; and end with a summary of future work.

i

To Mama and Baba,

for their simple unwavering belief in me.

ii

Contents

Contents ii

List of Figures v

1 Introduction 1

2 High-Level Design 3
2.1 High-Level Objectives . 4
2.2 A Minimal Lisp . 8
2.3 Supporting Natural Syntax . 12
2.4 Supporting First-Class Functions . 20
2.5 Supporting Basic Objects . 26
2.6 Supporting Static Typing . 30
2.7 Supporting Packages . 38
2.8 Supporting Multimethods . 40
2.9 The Multimethod Object System . 45
2.10 Supporting Non-Local Control Flow . 50
2.11 Supporting Low-Level Hardware Operations 52
2.12 Interactions Between Subsystems . 55

3 The Stanza Macro System 57
3.1 Decorated S-Expressions . 57
3.2 Core Forms . 59
3.3 Syntax Packages . 60
3.4 Pattern Syntax . 60
3.5 Stanza’s Core Macros . 62
3.6 Example . 63
3.7 Staged Compilation . 64
3.8 Relationship to Other Syntax Frameworks 64

4 The Stanza Type System 67
4.1 The Promises of Optional Typing . 67

iii

4.2 Desired Characteristics . 68
4.3 Example Interaction . 69
4.4 Overview of the Type System . 74
4.5 The Nominal Subtyping Framework . 75
4.6 Polymorphic Functions and Captured Type Parameters 80
4.7 Type Inference . 87

5 The Stanza Multimethod Object System 91
5.1 Object Oriented Programming . 91
5.2 Functional Programming . 96
5.3 The Multimethod Object System . 99
5.4 Relation to OOP and FP . 104
5.5 Relation to Class-Based OOP Systems . 107

6 The Stanza Targetable Coroutine System 110
6.1 Shortcomings of Standard Control Flow Operators 111
6.2 Core Functions . 112
6.3 Semantics . 113
6.4 Applications of Coroutines . 116
6.5 The Label Construct . 118
6.6 Nested Coroutines . 119
6.7 Implementation . 120
6.8 Other Functions . 124
6.9 Design Benefits of a General-Purpose Control Flow Operator 124
6.10 Comparison to Continuations . 125

7 The LoStanza Sublanguage 129
7.1 LoStanza . 129
7.2 LoStanza Core Forms . 131
7.3 Low-Level Types . 132
7.4 LoStanza Objects and Arrays . 132
7.5 Interaction between HiStanza and LoStanza 134
7.6 LoStanza and HiStanza Primitives . 135
7.7 Interacting with the Software Ecosystem . 136
7.8 Comparisons to Other Solutions . 139
7.9 Summary . 144

8 The Stanza System 146
8.1 Organization of the Compiler . 147
8.2 Automatic Garbage Collection . 155
8.3 Domain Specific Languages for Compilers . 156

iv

9 Experience 159
9.1 Our Experiences Using Stanza . 159
9.2 Our Experiences Teaching Stanza . 162

10 Experiments 165
10.1 Experimental Setup . 165
10.2 Experimental Data . 167
10.3 Discussion . 170

11 The Core Type System 171
11.1 Syntax of Types and Expressions . 171
11.2 Subtyping Relation . 172
11.3 Example . 174
11.4 Typing Judgement . 175
11.5 Operational Semantics . 177

12 Properties of the Core Type System 181
12.1 Equivalence Modulo Types . 181
12.2 Safety . 182
12.3 Incrementality . 182
12.4 Required Lemmas and Definitions . 183
12.5 Proof of Preservation . 187
12.6 Proof of Progress . 189
12.7 Proof of Typing Incrementality . 193
12.8 Proof of Evaluation Incrementality . 196

13 Related Work 200
13.1 The Stanza Language . 200
13.2 The Optional Type System . 202

14 Conclusion and Future Research 205

Bibliography 208

v

List of Figures

2.1 Simple Compilation Flow . 13
2.2 Macro Compilation Flow . 13

4.1 Stanza Subtyping Relation . 79
4.2 Stanza Flow Relation . 84

6.1 Semantics of Nested Coroutines . 122

10.1 Effect of Annotations for Calculus . 168
10.2 Effect of Annotations for Lexer . 168
10.3 Effect of Annotations for Feeny . 169
10.4 Effect of Annotations for FIRRTL . 169
10.5 Effect of Annotations for Stanza Compiler . 170

11.1 Syntax of Types and Expressions . 171
11.2 Subtyping Relationship . 172
11.3 Subtyping Examples . 173
11.4 Well-Formed Types . 175
11.5 Typing Judgements . 176
11.6 Syntax of Values . 177
11.7 Top-Level Consistency . 177
11.8 New Expressions . 178
11.9 Syntax for Contexts and Reducible Expressions 178
11.10Small-Step Semantics . 180

12.1 Equivalence Modulo Types . 181
12.2 Subinfo Relation . 182
12.3 Equivalence Modulo Types of Type Environments 183
12.4 Equivalence Modulo Types of Evaluation Contexts 183

vi

Acknowledgments

Stanza was a deeply personal work of love for me, and I am profoundly grateful to all
the following people that have supported me on this long journey.

My advisors Jonathan Bachrach, and George Necula allowed my imagination free-reign
and provided me a blissful six years at Berkeley as a graduate student. George, my co-advisor,
with his uncompromising taste in clarity and precision helped me develop the theoretical
foundations of Stanza’s type system, and passed onto me the appreciation of using clear
notation to hone my own thinking. My relationship with Jonathan, my main advisor, was
quite unlike all other advisor-advisee relationships. Instead of picking on minute details,
Jonathan would ask me to reconsider wholesale the design of an entire subsystem; instead of
design or code reviews he would immediately put the latest Stanza feature to use and send
me the screenshots of his latest creation; and instead of asking me to focus and narrow my
grand ambitions, he would dare me to dream about possibilities that I was too modest to
consider. Instead of a teacher and student, we were two fanatic admirers of programming
languages, and we built our working relationship and our friendship upon our mutual passion
for this field. Thank you Jonathan for sharing with me your energy, enthusiasm, imagination,
and boldness.

The early beginnings of Stanza were the most nerve-wracking. I spent many long hours
sitting at my desk, with random scribbles on a page, lost in thought over seemingly non-
sensical questions such as: “What exactly is an object?” and “What does it mean to call
a function?”. Kurt Keutzer, my entering advisor at Berkeley, was understanding and pa-
tient with me during this phase – a phase I retroactively termed “fundamentals hell” – and
provided me one and a half years of complete and utter freedom to design the core of Stanza.

Adam Izraelevitz and I worked together on the implementation and specification of FIR-
RTL. Adam was a joy to work with and patiently and methodically learned to code in a
brand new language – which at the time, didn’t even have any documentation – and bravely
championed its use in the rest of our laboratory.

James Martin, one of my closest friends, spent an enormous and equal amount of time
both discussing Stanza with me and helping me put Stanza out of my mind. For the innu-
merable hours we spent wandering around Berkeley and San Francisco discussing Stanza’s
constructs, Haskell’s type system, the merits of subtyping versus type classes, constructive
logic, category theory, the latest movie and cartoon, and Joe Hisaishi’s latest albums, among
too many other topics to remember, thank you James.

After the public release of Stanza, Duncan Haldane, Austin Buchan, and Jonathan
Bachrach were bold enough to co-found a company with me and adopt Stanza as our primary
implementation language. For a young startup to be built around a brand new programming
language is nearly unheard of. Thank you Duncan, Austin, and Jonathan, for your faith in
Stanza, and in me.

Duncan Haldane, Jenny Huang, Johann Schleier-Smith, Marten Lohstroh, Austin Buchan,
Danny Tang, Sumukh Sridhara, Ryan Orendorff, Howard Mao, Michael Driscoll, Cindy Ru-
bio Gonzalez, David Biancolin, Colin Schmidt, Donggyu Kim, Richard Lin, Martin Maas,

vii

Chick Markley, Jim Lawson, Jack Koenig, Albert Magyar, and Palmer Dabbelt were atten-
dees of the Stanza bootcamps and provided me with lots of useful early feedback on how
to teach Stanza. Wontae Choi was very helpful during early discussions about Stanza’s
type system. Emina Torlak shared her expertise on constraint solvers as applied to solving
subtyping and unification equations. Andy Keep offered very useful optimization advice
for Stanza’s compiler. Oleg Kiselyov, Koushik Sen, and Ras Bodik gave feedback and ad-
vice on Stanza’s coroutine system. Michael Driscoll gave me solid advice on marketing and
promoting Stanza.

Throughout the whole process, I was fortunate and grateful to be surrounded by the
encouragement and love of my family. Three times every year, I fly back home to Calgary
after four months of wrestling with type systems and compilers, and Luca and Emmy, my
brother and sister, remind me about all the small things in life that I’ve put aside – like
playing video games underneath the blanket on weekend mornings, and watching old movies
(that we’ve already watched before) at night after supper, and reading and working beside
each other by the dining room table. Thank you Luca and Emmy for keeping me a kid.

Lastly and most importantly, I want to thank my parents. Quite honestly, completing
Stanza to my liking was a challenge for me. It wasn’t clear that I would. There is this
maxim that says that a Ph.D. is more similar to a marathon than to a sprint, that it is a
better measure of endurance than it is of brilliance. And if that is true, then completing
this dissertation is as much my parents’ accomplishment as it is mine. Thank you Mama
and Baba and for all the many nights you’ve picked me up and encouraged me to try again
when my latest idea failed; for cheering me up each time I felt myself fade; and, throughout
my whole life, for your simple unwavering belief in me.

1

Chapter 1

Introduction

L.B. Stanza (or Stanza for short) is an optionally-typed functional programming language
designed to help programmers tackle the complexity of architecting large programs and
significantly increase the productivity of application programmers across the entire software
development life cycle. Towards this purpose, it features:

1. a flexible multimethod-based object system that unifies functional with object-oriented
programming,

2. an optional type system that unifies dynamic- and static-typing,

3. a powerful coroutine system that acts as both a concurrency and foundational control
flow operator,

4. a programmatic macro system that allows for natural syntax, and

5. a systems sublanguage for low-level hardware control.

These five orthogonal subsystems work in concert to form an expressive language that re-
mains small and easy-to-learn.

From the onset, Stanza was designed to be a practical general-purpose programming
language, suitable for writing any application that runs above the operating system layer.
Only applications that have hard real-time constraints or that must run on severely resource-
constrained platforms lie beyond the scope of the language. We have successfully used the
language at our own lab to write a suite of substantial software, and it has also been used
by others for a small number of projects beyond our university. To our knowledge, Stanza
has so far been used to write compilers, debugging tools, computer games, virtual machines,
image processing software, constraint solvers, hardware synthesis tools, 3D geometric design
software, and web applications.

Stanza’s overarching design objectives arose out of our own frustrations with writing soft-
ware, and the decision to design our own programming language was made after attempting
to adopt an existing language and finding none suitable for our purposes. For the class

CHAPTER 1. INTRODUCTION 2

of programs we develop, the majority of time is spent on effectively managing complexity.
Our programming challenges are rarely due to intricate algorithm design – most algorithms
and datastructures in our programs are conceptually straightforward – but rather the sheer
amount of detail in a large program. We have gradually learned, over time, that the most
important factor affecting our success at managing these details is our choice of software
architecture. In our experience, there are orders-of-magnitude productivity differences be-
tween working on a well-architected project versus a poorly-architected one – but no language
provided us the required guidance or flexibility for designing a good architecture.

For our purposes, existing languages provide either next to no support for software archi-
tecture; or they impose an overly rigid structure that freezes the architecture too early into
development – forcing upon programmers the near-impossible task of getting it right the
first time. We wanted a simple language with constructs that inherently keeps the structure
fluid and helps us incrementally arrive at a good software architecture.

This thesis describes the language design goals we have identified as being important for
the class of programs we write, and how these goals are realized in the design of Stanza and
its subsystems. Stanza’s design is compared against that of other languages, and we point
out the advantages and disadvantages of each. We then explain the overall implementation
of the Stanza compiler and runtime system; share our personal experiences with teaching
and programming in Stanza; and end with a summary of ongoing work.

3

Chapter 2

High-Level Design

Before discussing Stanza’s design goals, it is first necessary to identify the class of programs
we intend to write. The programs we are interested in share the following characteristics:

1. They run above an existing operating system. Simple interfaces are assumed to be
provided for accessing the file and memory systems, and interacting with peripherals.
Although Stanza can be used to write kernel-level software, such as device drivers,
it is not intended to offer significant benefits over existing systems languages for this
purpose.

2. The applications do not need to run on a resource-constrained platform. We require
that the platform have at least 128 MB of memory, and either a 32-bit or 64-bit
processor. We do not intend to program embedded systems using Stanza.

3. The application does not have any hard real-time constraints. Stanza’s design presumes
the existence of a garbage collector and consequently does not provide any firm guar-
antees on execution time. However, by incorporating an incremental garbage collector,
Stanza can be suitable for applications with soft timing constraints, where specified
execution times are strongly preferred but not required for correctness.

4. The program is non-trivial. We expect project timelines to be measured in weeks
instead of hours. It is not our intention to use Stanza for writing short one-off scripts.

5. A substantial portion of development time is spent on ensuring correctness of the
implementation, instead of on activities such as algorithm design, conducting user
studies, or fine-tuning to achieve peak machine performance.

In short, we are interested in programs of appreciable complexity; where development
time is spent primarily on managing this complexity; and where better tools for managing
complexity can significantly improve programmer productivity. Programs that fall outside
this domain are already adequately served by existing languages, or better served by other
directions of language research.

CHAPTER 2. HIGH-LEVEL DESIGN 4

Item 1 restricts Stanza’s focus to application instead of infrastructure development.
Kernel-level software is best served by languages such as C [33], that emphasize a trans-
parent mapping to machine instructions and offers fine control over hardware resources – for
example, the ability to reserve specific registers for holding a certain value.

Item 2 restricts Stanza to smartphone, desktop, and server application development.
Development for resource-constrained platforms is best served by languages such as C [33]
or assembly, that allow programmers to optimize for code size and memory footprints.

Item 3 is a consequence of garbage collection. Automatic garbage collection significantly
improves productivity and reduces opportunity for error but it does make Stanza inappro-
priate for applications that have strict upper-bounds on execution time. Programs that
communicate with external devices with strict timing requirements are better written in
languages such as C [33] or assembly that have a straightforward performance model.

Item 4 reflects our lack of interest in using Stanza for writing simple scripts. At this scale,
the optimal choice of programming language is dependent mostly upon on the ecosystem
and available tools than upon any features of the language itself. This domain is already
adequately served by existing scripting languages.

Item 5 reflects the primary difficulty we face during development. We are interested in
complex programs for which achieving correctness is the primary obstacle. In fact, the typical
program of our interest is of sufficient complexity that full correctness is not practically
achievable and is merely an ideal to strive towards. There may be language-centric solutions
for other aspects of software development, such as languages to aid algorithm design, or
languages to aid in performance tuning, but it is not our focus.

Examples of programs that satisfy the above criteria include:

• the majority of user-facing desktop and smartphone applications, such as document,
video, sound, and graphics editing applications,

• business management software,

• computer games and 3D modeling software, save perhaps for the core of their rendering
engines,

• programming tools such as compilers, interpreters, and debuggers,

• database management software,

• and server-side web-applications,

among many others. Though not all-encompassing, substantial classes of programs still
remain in our domain of interest.

2.1 High-Level Objectives

We summarize the high-level objectives of the language as follows. Stanza should:

CHAPTER 2. HIGH-LEVEL DESIGN 5

1. help programmers organize their code,

2. help programmers detect and fix errors,

3. automatically manage tedious details,

4. allow for complex tasks to be effectively subdivided into simpler ones,

5. allow for common tasks to be implemented in a reusable fashion,

6. allow for sophisticated operations to be expressed concisely,

7. allow programmers to work at the level of abstraction most suited for their problem,

8. encourage the writing of maintainable and extensible software,

9. execute efficiently on current hardware,

10. interoperate with the surrounding software ecosystem, and

11. be easy to learn.

Item 1: Code Organization

Programmers rarely view a code base as a single monolithic block of text. Instead, it is split
into divisions, where each division is responsible for a different logical task. These divisions
are, in turn, split into further subdivisions, each responsible for handling some narrower
subset of the task – and so on and so forth. The language should provide the tools necessary
to subdivide the overall program to address the following concerns:

1. File Organization: Stanza, like the vast majority of programming languages, requires
code to be stored as a set of plain text files. It is highly beneficial for all the code
comprising a single logical task to be concentrated in one location in the file structure
– ideally in a single section within a source file. Multiple programmers working on a
project can be assigned separate logical tasks by assigning each programmer a different
file.

2. Separation of Concerns: Divisions should be kept, as much as possible, independent
from each other. The interface between each division should be simple, well-specified,
and presume as few implementation details as possible. This allows separate divisions
to be developed in-parallel by different programmers, and minimizes the change in
other divisions necessary to accommodate changes in one division.

CHAPTER 2. HIGH-LEVEL DESIGN 6

Item 2: Error Detection

As mentioned, full correctness for the typical program of our interest is not practically
achievable. The language should provide as much assistance as possible for finding and
fixing errors, which accounts for a large portion of development time. This feature is made
up of two parts: dynamic error detection – which detects errors during the execution of the
program – and static error detection – which detects errors before executing the program.

When a program attempts to execute an invalid operation – such as a write past the end
of an array – the language should halt immediately, give a detailed report on what operation
was attempted, why it is invalid, and which line of code caused it. This information gives
the programmer an accurate starting point for identifying the source of the problem. We
call this feature dynamic error detection.

In certain cases, we can determine that a program is likely incorrect even before executing
it. For example, attempting to call a function with three arguments when it requires only
two is almost assuredly a mistake. The language should do its best to analyze the program
and report these highly suspicious lines of code. We call this feature static error detection.

Item 3: Automatic Management of Tedious Details

Much of the tedium of programming arises from having to cope with the physical limits
of the machine – like the limited amount of memory, the clock frequency of the processor,
the number of machine registers, and the division of memory into stack and heap memory,
to name a few. If the performance cost is reasonable, programmers would prefer for the
language to automatically manage as many of these details as possible. This increases both
the productivity of the programmer by reducing work, and the reliability of the software by
eliminating potential sources of error.

Item 4: Subdivision of Complex Tasks

In order to carry out a complex task, a programmer subdivides the task into smaller subprob-
lems, solves each in isolation, and then combines their solutions. An intelligent subdivision
of a problem can greatly improve productivity and reliability, and indeed one of the mea-
sures of a programmer’s skill is in his or her ability to find such a subdivision. To aid the
programmer, the language should provide constructs that allow tasks to be viewed from
different perspectives and divided along a multitude of axes.

Item 5: Reusable Implementations of Common Tasks

To reduce work, a language should allow a programmer to reuse the implementations of
common tasks – which requires for these tasks to be implemented in sufficient generality to
be widely applicable. For example, a function for computing the sum of all integers in an
array is not as widely useful as a function able to compute the sum of all numbers, whether

CHAPTER 2. HIGH-LEVEL DESIGN 7

integers or real numbers, in an array. Even more useful would be a function able to compute
the sum of all numbers in any datastructure with a sequential ordering.

Item 6: Concise Expression of Sophisticated Operations

As a driving design principle, we hold the philosophy that the ease-of-use of a programming
language is directly dependent upon how closely it can mirror the structure of natural lan-
guage. The ultimate purpose of a programming language is to direct a machine to complete
computational tasks. And since every computational task of interest to human beings is
first conceived and communicated in natural language, programming difficulty is determined
by how straightforward it is to translate a task from natural language to the programming
language.

In practice, we adhere to this design principle by continuously conceiving reasonable tasks
that can be described clearly and unambiguously in natural language, and asking whether
they can be translated straightforwardly to Stanza. Computational tasks with concise and
unambiguous descriptions in natural language should translate to equally concise descriptions
in Stanza.

Item 7: Appropriate Level of Abstraction

Level of abstraction is an important axis along which programmers subdivide problems.
Just as instructions on how to host a birthday party rely upon but are kept separate from
the instructions on how to bake a cake, how to drive to the toy store, and how to write
an invitation card; the code for accomplishing the high-level objectives of a task rely upon
but are kept separate from the code spelling out the low-level details of accomplishing each
objective.

The language should allow for a problem to be divided along different levels of abstraction.
If the standard libraries that accompany the language are too rudimentary, the language
should allow programmers to easily build their own abstractions to suit their problem.

Item 8: Maintainability and Extensibility

For a typical program of our interest, neither full correctness nor completion is achieved
in practice. An application is continuously undergoing modifications and additions as it
matures.

Design for maintainability is fundamentally linked to design for extensibility. An ideal
software architecture should allow for new extensions to be implemented separately, without
disturbing the existing code base. In contrast, poorly architected software requires extensions
to be implemented as disorganized modifications that are scattered amongst the existing
code. Core algorithms and datastructures steadily balloon in size to accommodate new
concerns until the essence of the algorithms become obscured and unintelligible.

CHAPTER 2. HIGH-LEVEL DESIGN 8

The language should allow for programmers to build software that can be extended
according to deliberately designed interfaces. If the software must be extended in a way that
is unsupported, then the language should allow for easy restructuring of the code base to
support the extension.

Item 9: Efficiency

For developing a given application, whether or not a programming language is suitable is
often determined by its execution efficiency. It is common for applications to impose hard
requirements on performance – the program must serve a specific number of customers, or
display sixty frames per second, or smoothly manage gigabyte-sized files, etc. Increasing the
performance of the language implementation widens the applications for which it is suitable.
We are targeting applications for which the speed of untuned C [33] is sufficient.

Item 10: Interoperation with Software Ecosystem

A practical programming language must be able to interoperate with the rest of the soft-
ware ecosystem: the operating system, and existing code and applications written in other
programming languages. This requires the ability to execute code not originally written in
Stanza and manipulate datastructures not originally created within Stanza.

Item 11: Ease of Learning

One of the most practical concerns of language design is in whether it can be easily learned by
potential users. A number of practical factors affect ease-of-learning such as the availability
of learning material, or whether the language is taught in educational institutions; but the
degree to which the learning curve is affected by the fundamental design of the language
cannot be underestimated. C++ [55] is notorious, for instance, for being a difficult language
to learn, while Python [47], in contrast, is often taught in introductory programming courses.

We do not want programmers to require formal training in computer science, mathemat-
ics, or engineering to use Stanza effectively. Completing the tutorials that accompany the
language documentation should be sufficient for developing the working understanding of
type theory and semantics necessary to be a productive programmer.

2.2 A Minimal Lisp

We start the design by beginning with a minimal Lisp-like [32] language that allows users to
declare and call functions, create primitive values, declare and reference values and variables,
and includes a set of built-in functions for constructing common datastructures. Here is an
example of a small function:

CHAPTER 2. HIGH-LEVEL DESIGN 9

(defn f (x, y)

;Performing arithmetic

(defval z (plus 20 (plus x y)))

(println z)

;A variable for storing a string

(defvar greeting "hello ")

(set greeting (string -join greeting " world "))

;Creating and initializing an array

(defval a (make -array 10))

(defn loop (i)

(if (less? i 10)

(begin

(array -set a i "Hi")

(loop (plus i 1)))

false))

(loop 0)

;Returned value

z)

The syntax (defn f (x, y) body ...) declares a new function f that takes two argu-
ments, x and y, and executes the forms comprising body. The syntax (defval z value)

declares a new value, z, initialized to the result of evaluating value. The syntax (plus a

b) calls the plus function with the arguments a and b. We assume that plus, println,
string-join, make-array, less?, and array-set, are included as built-in functions for
respectively adding two integers, printing to the screen, concatenating two strings, creating
a new array, determining whether one integer is strictly less than another, and storing into
an array. Semicolons denote that the rest of the line is a comment, and commas are treated
equivalently to white space and are used solely for readability.

After printing z, we use the syntax (defvar greeting "hello") to declare the variable
greeting and initialize it to the string "hello". The next line then computes the concate-
nation of greeting and " world" and assigns the result back to greeting. The syntax
(set x value) assigns the result of evaluating value to the variable named x.

Next we create an array, a, of length 10 and begin a loop to initialize each slot in the array
to the value "Hi". As in the Scheme language [56], we assume that tail-calls are optimized
and perform looping through tail recursion. Within the loop function, we use the if form
to choose whether to perform another iteration. The syntax (if pred conseq alt) first
evaluates pred and then, depending on whether it evaluates to true or false, returns the
result of either evaluating conseq or alt. The syntax (begin forms ...) evaluates the
given forms sequentially and returns the result of evaluating the last one.

Functions are assumed to automatically return the result of the last form in its body.
Thus z is returned as the result of evaluating the above function.

CHAPTER 2. HIGH-LEVEL DESIGN 10

Properties of the Minimal Lisp

Though not shown above, we can assume that our minimal Lisp supports the following
types of values: integers, floating-point numbers, strings, characters, arrays, lists, true, and
false. There is literal syntax for creating some of these values, such as integers and strings
as shown above. Other values, such as arrays, are constructed and manipulated using the
built-in functions.

Though the language is minimal it has the following properties:

1. It is automatically garbage collected. The string-join and make-array functions re-
turn values of varying size, depending on the inputs they are given, and hence must
allocate these values in heap memory. There are two design choices we could have
made for handling deallocation of these values: either require the programmer to ex-
plicitly deallocate these values using built-in free-string and free-array functions,
or automatically deallocate these values when they can no longer be referenced. We
chose the latter solution.

Manually managing memory deallocation is exceptionally tedious and error-prone for
programmers; and automatic garbage collection is a well-researched and performant
solution. However, it does prevent us from using the language for strict real-time ap-
plications without considerable further research into garbage collector implementation.
Since that is not our target domain, we feel it is an acceptable tradeoff. This property
partially accomplishes items 3 and 11 of our high-level objectives.

2. It is high-level. The language does not expose any details of the machine architecture.
Details such as the number of machine registers, the amount of memory, how memory
is divided into stack and heap memory, how to address a location in memory, and how
strings and arrays are represented in memory, are all concealed from the programmer.
This partially accomplishes items 3 and 11 of our high-level objectives.

3. It is safe. During execution, the language checks all operations to ensure they are
valid before executing them. For instance, the string-join function checks that its
two arguments are indeed strings; the make-array function checks that its argument
is an integer and non-negative; and the array-set function checks that the index
argument is within the bounds of the array. If a check fails, then the program aborts
immediately with a detailed report on the cause and source of the error. All programs
are guaranteed to either execute until completion or fail with an error report. This
accomplishes item 2 of our high-level objectives.

A safe language also greatly increases ease-of-learning. Finding and fixing errors oc-
curring in an unsafe language is somewhat of a black art. Errors do not immediately
halt the program and instead corrupt vital areas of memory that are later read from.
A large part of learning how to debug programs written in unsafe languages is on how
to accurately postulate the original cause of errors. Thus dynamic error detection also
accomplishes item 11 of our high-level objectives.

CHAPTER 2. HIGH-LEVEL DESIGN 11

4. There is minimal static error detection. The language, as presented, has little support
for detecting errors before execution. There is only a simple syntax checking phase for
ensuring that the program is syntactically well-formed and that variables are declared
before they are referenced. The checker would detect, for instance, that (defval x) is
missing an initializing value, but it would not detect the obvious error in the following
code:

(defval a 0)

(array -set a 1 "Hi")

It is clear that the call to array-set will fail as a does not refer to an array.

5. It has a minimal syntax. Following Lisp [32] tradition, the language is represented
using s-expressions. The frontend of an s-expression-based language starts with an
extremely simple lexer for converting the program text into a tree datastructure called
an s-expression. The rules are simple: a sequence of characters (e.g. abc) represents a
symbol; integers are sequences of digits (e.g. 256); strings are surrounded by double-
quotes (e.g. "hello world"); and lists are surrounded by parentheses (e.g. (a b c)).

Because the lexer is so transparent, programmers typically understand the syntax of
the language in terms of s-expressions instead of in terms of characters. For instance,
the proper syntax for defining a value is a three-element list starting with the defval

symbol, followed by the name as a symbol, followed by another s-expression represent-
ing the initializing value.

The minimalism of the s-expression syntax contributes to ease-of-learning, item 11 of
our objectives, but it is somewhat counteracted by its unfamiliarity. Programmers
typically do not have experience with s-expression syntax; the syntax for arithmetic
expressions is plainly different than standard mathematical notation; and the cluttering
of parentheses is aesthetically off-putting.

The s-expression syntax is commonly described as homoiconic which means informally
that the program structure is similar to its surface syntax. This property will be
discussed in more detail later after we introduce macros.

6. It supports nested functions. In the example above, the function loop is declared
within the body of f. Additionally, the body of loop references the value a which is
not declared directly in loop but in the enclosing function f.

From a design perspective, support for nested functions is essentially necessitated by
our decision to model loops using tail recursion – which would otherwise be unmanage-
ably cumbersome. The elimination of separate looping constructs keeps the language
small and contributes to item 11 of our objectives.

Nested functions are also convenient for finely subdividing a large function into a set of
small orthogonal tasks, which contributes to items 4 and 7 of our objectives. Consider
the following implementation of selection sort for an array of integers:

CHAPTER 2. HIGH-LEVEL DESIGN 12

;Sort an array of integers

(defn sort (xs)

;Swap element i with element j

(defn swap (i j)

(if (not (equal? i j))

(begin

(defval xi (array -get xs i))

(defval xj (array -get xs j))

(array -set xs i xj)

(array -set xs j xi))

false))

;Find the index of the minimum element

;between index b (inclusive) and e (exclusive)

(defn minimum (b e)

(defn loop (min -i, min , i)

(if (less? i e)

(if (less? (array -get xs i) min)

(loop i (array -get xs i) (plus i 1))

(loop min -i min (plus i 1)))

min -i))

(loop b (array -get xs b) (plus b 1)))

;Loop

(defn loop (i)

(if (less? i (minus (array -length xs) 1))

(begin

(swap i (minimum i (array -length xs)))

(loop (plus i 1)))

false))

(loop 0))

swap and minimum are factored out as two independent tasks. swap takes two indices
and swaps the value at the first index with the value at the second index. minimum

takes a starting and ending index and returns the index of the smallest value between
them. With these two tasks factored out, the main sorting algorithm can then be
described concisely at a high-level of abstraction.

2.3 Supporting Natural Syntax

The syntax for the Lisp-like [32] language is simple but has two major flaws:

1. it is unfamiliar and is aesthetically unappealing to many programmers, and

2. some common idioms (such as if expressions with no alternate clauses, and loops) are
awkward.

We will resolve both issues by introducing a macro system.

CHAPTER 2. HIGH-LEVEL DESIGN 13

Figure 2.1: Simple Compilation Flow

Figure 2.2: Macro Compilation Flow

As mentioned, an s-expression language starts with a simple lexer for converting the
program text into a tree datastructure. Figure 2.1 shows a simplified flow of the language
system. The program text is converted by the lexer into an s-expression, which the compiler
then converts into a binary executable.

A macroexpander is an intermediate stage inserted between the lexer and the compiler
that transforms the output of the lexer into a form that is acceptable to the compiler. Figure
2.2 shows the updated flow of the language system.

Let us suppose that we insert a macroexpander that performs the following transforma-
tions:

1. It provides a when shorthand for the if form such that:

(when pred

form1

form2

...)

is a shorthand for:

(if pred

(begin

form1

form2

...)

false)

This gives us a more concise syntax for if expressions without alternate clauses.

2. It provides a for shorthand for defining simple tail recursive functions such that:

(for x in start to end do

form1

CHAPTER 2. HIGH-LEVEL DESIGN 14

form2

...)

is a shorthand for:

(define loop (x end -index)

(when (less? x end -index)

form1

form2

...

(loop (plus x 1) end -index)))

(loop start end)

This gives us a more concise syntax for expressing a simple loop that iterates from
some starting value to some ending value.

With these two transformations, our selection sort example can be expressed more nat-
urally as:

;Sort an array of integers

(defn sort (xs)

;Swap element i with element j

(defn swap (i j)

(when (not (equal? i j))

(defval xi (array -get xs i))

(defval xj (array -get xs j))

(array -set xs i xj)

(array -set xs j xi)))

;Find the index of the minimum element

;between index b (inclusive) and e (exclusive)

(defn minimum (b e)

(defvar min -i b)

(defvar min (array -get xs b))

(for i in (plus b 1) to e do

(when (less? (array -get xs i) min)

(set min -i i)

(set min (array -get xs i)))))

;Loop

(for i in 0 to (minus (array -length xs) 1) do

(swap i (minimum i (array -length xs)))))

Programmatic Macro Systems

The question now is how to specify the when and for transformations. Conceptually, a macro
transformer is just a function that takes as input an s-expression and computes an output
s-expression. Thus why not specify this function using our language itself? The following
shows a possible implementation of the when macro transformer:

CHAPTER 2. HIGH-LEVEL DESIGN 15

(defmacro (when forms)

(defval pred (head forms))

(defval body (tail forms))

(defval conseq (cons ‘begin body))

(cons ‘if (cons pred (cons conseq ‘(false)))))

The syntax (defmacro (macro-name forms) body ...) declares a new macro trans-
former that is evaluated during the macro expansion phase. Whenever the macroexpander
encounters an s-expression of the form (macro-name form1 form2 ...), it evaluates the
transformer with forms bound to the list (form1 form2 ...) and substitutes the result in-
place. The syntax ‘exp denotes the literal s-expression exp. Thus ‘if denotes the symbol
if, and ‘(false) denotes the single-element list containing false. The head, tail, and
cons functions computes respectively the first element of a list, all elements after the first
element of a list, and the result of attaching a new element to an existing list.

The next example shows the step-by-step behaviour of the macroexpander upon encoun-
tering the following form:

(when (less? (array -get xs i) min)

(set min -i i)

(set min (array -get xs i)))

Because the s-expression begins with when, the macroexpander will evaluate the when

transformer in the following steps:

1. forms is bound to the list:

((less? (array -get xs i) min)

(set min -i i)

(set min (array -get xs i)))

2. pred is initialized to:

(less? (array -get xs i) min)

3. body is initialized to:

((set min -i i)

(set min (array -get xs i)))

4. conseq is computed to be:

(begin

(set min -i i)

(set min (array -get xs i)))

5. Finally, the transformer returns:

(if (less? (array -get xs i) min)

(begin

(set min -i i)

(set min (array -get xs i)))

false)

CHAPTER 2. HIGH-LEVEL DESIGN 16

The value of having a homoiconic syntax is now clear. Since the macro writer is ma-
nipulating a datastructure that represents the syntax tree of the program, the program text
must have a straightforward mapping to this datastructure.

A programmatic macro system accomplishes many of our high-level objectives:

1. It increases ease-of-learning (item 11) in two different ways. The first is that the lan-
guage is made more similar to other popular languages and hence more familiar to
programmers. The second is that it provides the language designer a method of in-
cluding convenient constructs without introducing new semantics to the language. For
example, the programmer can understand the for macro as just a syntactic shorthand
for manually defining a tail-recursive function.

2. It allows common tasks to be implemented in a reusable way (item 5). As seen with
the for and the when macro, not all tasks can be implemented as functions. Macros
provides programmers with another tool for abstracting over common code patterns.

3. It allows users to define their own syntactic abstractions (item 7) to suit their applica-
tion. In our example we recognized looping from some starting value to some ending
value as a worthwhile abstraction to define a macro for. The for macro is suited for
a broad range of applications but we can imagine macros that are more specialized in
their purpose – for instance, a macro like the following for sending emails:

(send -email

(to "jonathan@berkeley.edu")

(cc "patrick@berkeley.edu" "george@berkeley.edu")

"Here is the revised draft of my thesis .")

In the limit, a macro system can be used to define entire purpose-built languages
designed to serve a niche domain – sometimes called domain specific languages (DSLs).

Decorated S-Expressions

With the addition of the when and for macro, the selection sort example is approaching how
they would look in Python [47] or Ruby [22], but it is not quite there. Some aspects that
stick out include:

1. the unfamiliar syntax for function calls,

2. the unfamiliar syntax for defining values and variables,

3. the cumbersome syntax for assigning to and retrieving from arrays,

4. and, notoriously, the abundance of parentheses.

To resolve these issues, we will slightly extend the lexer with some additional syntax.
However, to keep the syntax homoiconic, it is important that these extensions do not obscure
the mapping from the program text to the s-expression datastructure.

CHAPTER 2. HIGH-LEVEL DESIGN 17

We will use the following strategy:

1. We will add a small number of shorthands that implicitly map to an equivalent s-
expression.

2. We will add a structured-indentation feature to the lexer that will implicitly add paren-
theses around indented groups.

3. We will then convert these implicit s-expressions to core forms using macro transform-
ers.

Here is a partial list of the shorthands that we add to the lexer:

{a b c} is a shorthand for: (@afn a b c)

[a b c] is a shorthand for: (@tuple a b c)

a(b c) is a shorthand for: a (@do b c)

a<b c> is a shorthand for: a (@of b c)

a[b c] is a shorthand for: a (@get b c)

The curly braces ({}) and square braces ([]) are shorthands for lists that begin with the
symbols @afn and @tuple respectively. Parentheses (()), angle brackets (<>), and square
braces ([]) that immediately follow (i.e. without intervening spaces) an s-expression are
shorthands for lists that begin with the symbols @do, @of, and @get respectively.

For instance, the following decorated s-expression:

(begin

val xi = xs[i]

val xj = xs[j]

xs[i] = xj

xs[j] = xi)

is a shorthand for and completely equivalent to the following:

(begin

val xi = xs (@get i)

val xj = xs (@get j)

xs (@get i) = xj

xs (@get j) = xi)

Next we extend the lexer with the following rule to handle structured indentation: any
line-ending colon automatically surrounds the next indented block with parentheses.

Thus the following decorated s-expressions:

defn f (x y) :

if x == y :

x + y

x - y

are shorthands for and completely equivalent to the following:

CHAPTER 2. HIGH-LEVEL DESIGN 18

defn f (x y) : (

if x == y : (

x + y

x - y

)

)

With these added shorthands, we can define the following macro transformers to arrive
at a familiar natural syntax:

1. Macro for defining functions.

defn f (x y z) : (form1 form2 ...)

is a shorthand for:

(defn f (x y z) form1 form2 ...)

2. Macros for defining values and variables, and assigning to variables.

val x = v

var x = v

x = v

are respectively shorthands for:

(defval x v)

(defvar x v)

(set x v)

3. Macro for calling functions.

f (@do x y z)

is a shorthand for:

(f x y z)

4. Macros for retrieving from and storing to arrays.

x (@get i) = v

x (@get i)

are respectively shorthands for:

(array -set x i v)

(array -get x i)

5. Macros for binary operators.

a + b

a - b

a < b

a != b

CHAPTER 2. HIGH-LEVEL DESIGN 19

are respectively shorthands for:

(plus a b)

(minus a b)

(less? a b)

(not (equal? a b))

6. Macro for if expressions.

if pred : (form1 form2 ...) else : (form3 form4 ...)

if pred : (form1 form2 ...)

are respectively shorthands for:

(if pred

(begin form1 form2 ...)

(begin form3 form4 ...))

(if pred

(begin form1 form2 ...)

false)

7. Macro for loops.

for i in start to end do : (form1 form2 ...)

is a shorthand for:

(define loop (x end -index)

(when (less? x end -index)

form1

form2

...

(loop (plus x 1) end -index)))

(loop start end)

With the added lexer shorthands, the structured-indentation feature, and the macro
transformers described above, we can now rewrite the selection sort algorithm as:

;Sort an array of integers

defn sort (xs) :

;Swap element i with element j

defn swap (i, j) :

if i != j :

val xi = xs[i]

val xj = xs[j]

xs[i] = xj

xs[j] = xi

;Find the index of the minimum element

;between index b (inclusive) and e (exclusive)

defn minimum (b, e) :

CHAPTER 2. HIGH-LEVEL DESIGN 20

var min -i = b

var min = xs[b]

for i in (b + 1) to e do :

if xs[i] < min :

min -i = i

min = xs[i]

;Loop

for i in 0 to array -length(xs) - 1 do :

swap(i, minimum(i, array -length(xs)))

At this point, the language looks quite similar to the Python [47] programming language,
a language well-known for its readability. Despite the pleasant syntax, there still exists a
simple mapping from the program text to s-expressions, and programmatically manipulating
code remains intuitive.

2.4 Supporting First-Class Functions

In our examples thus far, every time we have referenced a declared function by name it has
been in the function position of a function call expression. For example, the following code
references the two functions array-length and minimum:

val n = array -length(xs)

minimum(i, n)

array-length is called with xs, and minimum is called with i and n.
Language support for first-class functions makes it valid to reference functions in all

other contexts – essentially allowing functions to be treated identically to how we treat
other values. Functions will be able to be assigned to values, stored in arrays, and passed as
arguments. The following example stores array-length and minimum into an array, and is
functionally equivalent to the code above:

val funcs = make -array (2)

funcs [0] = array -length

funcs [1] = minimum

val n = funcs [0](xs)

funcs [1](i, n)

We first store array-length and minimum into the first and second slot of the funcs array.
Then they are retrieved from the array to be called with their original arguments.

Higher-Order Functions

First-class functions are a staple feature of functional programming languages and a suite
of programming techniques have been developed around them – the most important of
which is the use of higher-order functions. Consider the following functions, array-sum and
array-product, for computing the sum and product of all numbers in an array:

CHAPTER 2. HIGH-LEVEL DESIGN 21

defn array -sum (xs) :

var accum = 0

for i in 0 to array -length(xs) do :

accum = plus(accum , xs[i])

accum

defn array -product (xs) :

var accum = 1

for i in 0 to array -length(xs) do :

accum = times(accum , xs[i])

accum

The structure of the two algorithms are nearly identical – the only two differences being:

1. the initial value of accum (0 for array-sum and 1 for array-product), and

2. the two-argument function used to update the value of accum on each iteration (plus
for array-sum and times for array-product).

By using a higher-order functions, we can abstract over the common pattern by accepting
these differences as arguments. Here is a generalized implementation of a reduction over an
array:

defn array -reduce (f, x0 , xs) :

var accum = x0

for i in 0 to array -length(xs) do :

accum = f(accum , xs[i])

accum

where the initial value, x0, and reduction function, f, are passed in as arguments.
We can now use the generalized array-reduce function to compute either the sum or

product of all numbers in an array by passing it different reduction functions and initial
values:

val sum = array -reduce(plus , 0, xs)

val product = array -reduce(times , 1, xs)

Here’s another example of using array-reduce to compute the result of concatenating
all the lists contained within an array, lists:

val biglist = array -reduce(append , ‘(), lists)

where append is assumed to be a function for concatenating two lists.

Anonymous Functions

In functional programming style, many of the functions defined by a programmer are simply
used as arguments to higher-order functions, and are never called directly. Consider the
following example where we assume that arrays is an array of arrays, and we wish to
compute the total number of elements in all the arrays:

CHAPTER 2. HIGH-LEVEL DESIGN 22

defn add -length (len , xs) :

len + length(xs)

val num -elements = array -reduce(add -length , 0, arrays)

The add-length function is used only as an argument to array-reduce, and never again
referenced. Anonymous functions are provided specifically for these cases where a function is
referenced only once. The following shows the above example rewritten using an anonymous
function:

val num -elements = array -reduce(

fn (len , xs) : len + length(xs),

0,

arrays)

The syntax fn (x, y) : body denotes a function that takes two arguments, x and y,
and returns the result of evaluating body.

We provide the following macro to make it even more convenient to define short anony-
mous functions. The syntax:

{_ + 3 * _}

which is a lexer shorthand for:

(@afn _ + 3 * _)

expands into the following during macro expansion:

(fn (x, y) : x + 3 * y)

An expression in curly braces ({}) denotes an anonymous function where underscores (_)
become arguments to the function.

Using this shorthand, num-elements can be computed using a single concise line:

val num -elements = array -reduce ({_ + length(_)}, 0, arrays)

Useful Higher-Order Functions

Here are some commonly-used higher-order functions:

• The all? function takes a single-argument predicate function and an array, and checks
whether the predicate function returns true for all the items in the array:

defn all? (pred , xs) :

defn loop (i) :

if i < array -length(xs) :

if pred(xs[i]) : loop(i + 1)

else : false

else : true

loop (0)

CHAPTER 2. HIGH-LEVEL DESIGN 23

• The functions any? and none? are implemented similarly to all? and checks whether
the predicate returns true for any of the items in the array, or for none of the items
in the array.

• The find function takes a single-argument predicate function and an array, and returns
the first element in the array for which the predicate function returns true:

defn find (pred , xs) :

defn loop (i) :

if i < array -length(xs) :

if pred(xs[i]) : xs[i]

else : loop(i + 1)

else : false

loop (0)

• The array-map function takes a single-argument function and an array, and returns
a new array initialized with the results of calling the function on the elements in the
original array:

defn array -map (f, xs) :

val ys = make -array(array -length(xs))

for i in 0 to array -length(xs) do :

ys[i] = f(xs[i])

ys

Higher-order functions are enormously powerful and can be used to very concisely express
sophisticated concepts (item 6 of our objectives). Here are some example tasks expressed
first in natural language, followed by their translation to our programming language:

1. Find the first negative number in the array xs.

find({_ < 0}, xs)

2. Determine whether the array xs contains the value x – i.e. determine if any value in
xs is equal to x.

any ?({_ == x}, xs)

3. Determine whether the arrays xs and ys have any values in common – i.e. determine
whether any value in xs is contained in ys.

defn contains? (xs , x) : any ?({_ == x}, xs)

any ?({ contains ?(ys , _)}, xs)

4. Find the spread of values in the array xs – i.e. determine the difference between the
maximum and the minimum element in xs. Assume that all numbers are between 0
and 10.

CHAPTER 2. HIGH-LEVEL DESIGN 24

defn max (x, y) : if x < y : y else : x

defn min (x, y) : if x < y : x else : y

array -reduce(max , 0, xs) - array -reduce(min , 10, xs)

5. Assume that the array xs represents an n-dimensional vector and find the square of
its length.

defn square (x) : x * x

array -reduce(plus , 0, array -map(square , xs))

In addition to their conciseness, these examples also demonstrate how higher-order func-
tions help us break down complex tasks into small reusable components (items 4 and 5 of our
objectives). For example, the find function separates the task of looking for an element in
an array from the task of specifying what to look for; and the array-map function separates
the task of applying some operation to every element in an array from the task of specifying
the operation.

Iteration and the Generalized For Macro

With the introduction of higher-order functions, we can now show the generalized imple-
mentation of the for macro.

First we define the do higher-order function as the following:

defn do (f, xs) :

defn loop (i) :

if i < array -length(xs) :

f(xs[i])

loop(i + 1)

loop (0)

which abstracts over iterating through an array. It takes a single-argument function, f, and
an array, and calls f on every element in the array. For example, we can use do to print the
square of every number in xs like so:

do(fn (x) :

println(x * x)

xs)

We then define the generalized for macro as a shorthand for the above. The syntax:

for x in xs f :

body

expands into the following:

f(fn (x) : body , xs)

which allows us to rewrite the above code as:

for x in xs do :

println(x * x)

CHAPTER 2. HIGH-LEVEL DESIGN 25

The for macro also generalizes over multiple collections. The syntax:

for (x in xs , y in ys , z in zs , ...) f :

body

expands into the following:

f(fn (x, y, z, ...) : body , xs, ys, zs, ...)

This multiple collection form is used in conjunction with a corresponding do function for
concurrently iterating through two arrays:

defn do (f, xs , ys) :

defn loop (i) :

if i < array -length(xs) and i < array -length(ys) :

f(xs[i], ys[i])

loop(i + 1)

loop (0)

As an example, here’s a function that computes the dot product of two vectors, each
represented as an array of numbers:

defn dot -product (xs , ys) :

var accum = 0

for (x in xs , y in ys) do :

accum = accum + x * y

accum

To regain our original start to end syntax, we just need to introduce a macro to expand
the to operator into a function call to make-range. The syntax:

i to j

expands into the following:

make -range(i, j)

where make-range is assumed to return an array containing all the integers between i

(inclusive) and j (exclusive).
The generalized for macro can be similarly used with the find, all?, any?, none?, and

array-map functions shown earlier. Here is an example showing how to search an array for
the first number between some specified range:

defn find -in -range (start , end , xs) :

for x in xs find :

x >= start and x <= end

The for macro illustrates one of the core philosophies behind the design of Stanza. The
number of concepts in the language is kept small by minimizing the number of kinds of core
forms, i.e. the s-expressions remaining after macro expansion. Convenience constructs are
then introduced as macro transformers, and can be understood purely as syntactic short-
hands whose use is entirely optional. If macros are sufficiently general, then even just a
few macros can significantly increase convenience. As shown, the for macro is not simply a

CHAPTER 2. HIGH-LEVEL DESIGN 26

looping construct. It can be used with many higher-order functions besides do, and nothing
prevents the programmer from defining his or her own higher-order functions to be used with
for.

2.5 Supporting Basic Objects

Many of the quantities that we manage in our daily lives occur together in groups. A
person’s name, age, height, and weight, for instance, are four separate quantities that often
occur together. To help us manage these quantities jointly, we will extend our programming
language with constructs for creating and manipulating objects.

A struct definition declares the structure of a class of objects: the names of all the fields
that describe an object of that class. The following code defines a struct named Person,
which declares that every Person object has a name, an age, a height, and a weight field.

defstruct Person: (name , age , height , weight)

The new-struct operator is used to create a Person object given the initial values for
its four fields:

val p = new -struct Person {" Patrick", 29, 178, 162}

The dot (.) operator is used to retrieve the value of an object’s field:

val name = p.name

val age = p.age

And we put the dot (.) on the left-hand side of the (=) operator to store a value into an
object’s field:

p.name = "Patrick Li"

p.age = 30

The following shows how these simple object constructs allow us to define a stack datas-
tructure by using an integer for representing the length of the stack, and an array for holding
its contents:

defstruct Stack: (length , array)

;Create a stack that can hold some maximum number of objects

defn make -stack (capacity) :

new -struct Stack{capacity , make -array(capacity)}

;Push a new item to the end of the stack

defn stack -push (s, value) :

val l = s.length

s.array[l] = value

s.length = l + 1

;Pop the last item pushed to the stack

defn stack -pop (s) :

CHAPTER 2. HIGH-LEVEL DESIGN 27

val l = s.length

s.length = l - 1

s.array[l - 1]

Given these functions, the programmer can use stacks in the same way they use the
built-in array and list datastructures. The following shows the implementation of a reverse-
polish-notation [10] (RPN) calculator that evaluates the operands and operators stored in
the array xs:

defn rpn -calculator (xs) :

val stack = make -stack (10)

for x in xs do :

if x == "+" :

val a = stack -pop(stack)

val b = stack -pop(stack)

stack -push(a + b)

else if x == "-" :

val a = stack -pop(stack)

val b = stack -pop(stack)

stack -push(a - b)

else :

stack -push(x)

stack -pop(stack)

The calculator keeps track of its state with a stack object and iterates through xs,
evaluating each operator or operand it encounters. A "+" string indicates to replace the top
two values from the stack with their sum; a "-" string indicates to replace the top two values
from the stack with their difference; otherwise we assume it is an integer operand and push
it onto the stack.

Adding support for objects accomplishes many of our high-level objectives:

1. It provides another means to subdivide complex tasks (item 4). The task of imple-
menting an RPN calculator is split into two separate tasks: how to track a dynamically
growing and shrinking list of values, and how to implement the behaviour of the oper-
ators and operands of an RPN calculator.

2. It provides another means to separate concerns (item 1). The details of how to represent
the stack are isolated from the details of the RPN calculator. We can easily change the
implementation of the stack to store its state as a list instead of in an array without
affecting the implementation of rpn-calculator:

defstruct Stack: (list)

;Create a stack that can hold an infinite number of objects

defn make -stack (capacity) :

new -struct Stack {‘()}

;Push a new item to the end of the stack

defn stack -push (s, value) :

CHAPTER 2. HIGH-LEVEL DESIGN 28

s.list = cons(value , s.list)

;Pop the last item pushed to the stack

defn stack -pop (s) :

val x = head(s.list)

s.list = tail(s.list)

x

3. It allows common components to be reused (item 5). Our stack functions are not tied
specifically to the implementation of rpn-calculator. They are general and can be
reused for any application requiring a stack datastructure.

4. It allows programmers to express algorithms at a higher level of abstraction (item 7).
Even in natural language, the behaviour of an RPN calculator is almost always de-
scribed in terms of operations performed on a stack. Thus the code in rpn-calculator

is a direct translation of its natural language description.

Dynamic Dispatch

At this point, we will give a name to the property we have been using informally to categorize
values: every value created in the language has a type. All integer values (e.g. 0, 42, 256)
are of type Int. All strings (e.g. "hello", "Patrick") are of type String. The values true
and false are of type True and False. Arrays created with make-array have type Array,
and lists created with cons have type List. All objects created with the syntax:

new -struct Person{a, b, c, d}

have type Person.
In this section, we will add a construct for dynamically testing the type of a value: the

match expression. The syntax:

match(f(42)) :

(x:Int) : body1

(y:String) : body2

(z:Person) : body3

(w) : body4

first computes the result of evaluating f(42). Then it tests whether this result has type Int,
and if so, it binds the result to x and evaluates body1. If not, it proceeds to the next clause,
where it tests whether the result has type String. If so, the result is bound to y and it
evaluates body2. Similarly, the next clause binds the result to z and evaluates body3 if the
result is a Person. Finally, if the result is none of the above, the match expression evaluates
body4.

The match expression can also accept and match upon multiple arguments. The syntax:

match(f(42), g(43)) :

(x:Int , y:String) : body1

(x, y:Person) : body2

CHAPTER 2. HIGH-LEVEL DESIGN 29

(x, y) : body3

first computes the results of evaluating f(42) and g(43). The first clause tests whether the
results have type Int and String respectively and, if they do, binds the results to x and y

and evaluates body1. The second clause tests whether the second result has type Person,
and evaluates body2 if it does. Finally, if neither the first nor second clause matches, then
it evaluates body3.

As an example of using the match expression, consider the following struct definitions for
representing geometric shapes:

defstruct Rectangle: (x, y, width , height)

defstruct Square: (x, y, length)

defstruct Circle: (x, y, radius)

A Rectangle object is described by the x and y coordinates of its bottom-left corner and its
width and height. A Square object is described by the x and y coordinates of its bottom-left
corner and the length of its sides. A Circle object is described by the x and y coordinates
of its center, and its radius.

Now consider the following function, area, which is able to compute the area of any
geometric shape:

defn area (shape) :

match(shape) :

(r:Rectangle) : r.width * r.height

(s:Square) : s.length * s.length

(c:Circle) : 3.14f * c.radius * c.radius

Because different shapes have different formulas for computing their area, area begins by
dynamically testing the type of its argument to branch to the appropriate code for each
shape. If we mistakenly pass the value 42 to area, then the match expression will fail and
halt the program, reporting that there is no clause that matches against the value 42.

For the purpose of minimizing the number of core concepts in the language, note that
the match expression subsumes the if expression. The following:

if x < 2 :

f(42)

else :

g(43)

is completely equivalent to:

match(x < 2) :

(result:True) : f(42)

(result:False) : g(43)

Thus we will now no longer consider the if expression a core form that is understood
by the compiler. Instead we use a macro transformer to implement the if construct as a
syntactic shorthand for the match expression.

CHAPTER 2. HIGH-LEVEL DESIGN 30

2.6 Supporting Static Typing

Our language, thus far, offers very good dynamic error detection – invalid operations im-
mediately halt the program and provide detailed error reports – but minimal static error
detection. A human being can identify many programs as looking “wrong” even without
executing the program. Consider the following program:

;Push a new item to the end of the stack s

defn stack -push (s, value) :

s.list = cons(value , s.list)

defn main () :

stack -push(42, "Hello")

The call to stack-push seems obviously “wrong” as stack-push is documented to require
a Stack object for its first argument and the number 42 is not a Stack object.

Before we can extend our language with the ability to statically detect errors, we must
first define what it means for a program to be “wrong”. Unfortunately, the most straight-
forward definition – a program is wrong if it will halt with an error when executed – is overly
conservative. According to that definition it is not clear that the above example is wrong:
after all, the main function may never be executed.

For our language, we will define “wrong” to mean that there is an inconsistency at the
level of types. For instance, stack-push requires its first argument to be of type Stack, and
therefore it is inconsistent to call it with a value of type Int.

Type Annotations

In order to detect type inconsistencies, we then have to consider how the compiler would
know about the required argument types for stack-push. We make the design choice to
require programmers to provide this information explicitly. We don’t consider this to be
overly burdensome, as programmers already have a notion of what types the arguments
should be – as evidenced by the comment above stack-push. We are simply asking them
to write it down.

We extend the defn syntax to allow programmers to annotate the required types of the
arguments:

defn stack -push (s:Stack , value :?) :

s.list = cons(value , s.list)

where the syntax s:Stack indicates that the argument s must have type Stack.
Some examples of types include:

• The names of primitive types: e.g. Int, String, True

• The names of struct types: e.g. Person, Stack

• The unknown type: ?

CHAPTER 2. HIGH-LEVEL DESIGN 31

• A tuple type: e.g. [Int,String], which denotes a two-arity tuple containing an Int

followed by a String.

• A function type: e.g. (Int, String) -> Int, which denotes a two-argument function
that takes an Int and a String and returns an Int.

• The union of a number of types: e.g. Int|String, which denotes either an Int or a
String.

The unknown type, ?, is special in that it denotes that we don’t know or don’t care
about this argument’s type. The language compiler will allow any value to be passed to an
argument of type ?, and also allow a value of type ? to be used anywhere.

We will similarly extend the defstruct construct to accept type annotations for its fields:

defstruct Person:

name: String

age: Int

height: Int

weight: Int

Thus a person’s name is represented using a String, but the person’s age, height, and weight
are represented using Int values.

These type annotations allow the language to statically detect many errors before exe-
cuting the program (item 2 of our objectives) – a process called typechecking. Here are some
examples of erroneous programs and the resulting errors reported by the compiler:

• Calling a function with arguments of the wrong type:

stack -push(42, 42)

Error: Cannot call stack-push which requires arguments of type (Stack, ?) with
values of type (Int, Int).

• Initializing an object with values of the wrong type:

val p = new -struct Person {29, "Patrick", 178, 162}

Error: Cannot initialize Person struct which requires fields of type (String, Int,

Int, Int) with values of type (Int, String, Int, Int).

• Assigning a value of the wrong type to a field:

p.name = 40

Error: Cannot assign a value of type Int to the name field of Person which requires
type String.

CHAPTER 2. HIGH-LEVEL DESIGN 32

Static error detection greatly increases programmer productivity. Each reported error
typically requires only a few minutes at most to locate and fix, which is greatly reduced from
the time required to manually write and maintain the tests for locating the same errors. It is
considered uncommon for a programmer to write more than a page of code without making
a mistake that is statically detected by the compiler.

Dynamic Error Detection

Because of the presence of the unknown type, ?, an absence of statically detected errors in
our language does not guarantee that the program will execute without errors. However, the
type annotations do allow the system to dynamically detect more errors and earlier than
without annotations.

Consider the following code, which assumes xs is an array containing a Person in its first
slot and a String in its second slot:

val person = xs[0]

val name = xs[1]

person.name = name

Now examine what happens if the assumption is incorrect and that xs[1] contains an Int,
42, instead of a String.

Prior to introducing type annotations, the name field of Person was unrestricted and
could contain any value – so the system would have allowed 42 to be freely stored into the
name field. This would have hopefully caused the program to crash at some later time, and
the programmer would have had to track down exactly when the person object was first
corrupted.

In contrast, the type annotations explicitly require for the name field of Person to be of
type String. Thus immediately upon detecting the attempt to store 42 into a String field,
the program will halt and give a detailed error report.

Function Overloading and Automatic Function Mixing

Beyond improving error detection, the extra information contained in the type annotations
also allow us to introduce two new features – function overloading and automatic function
mixing – for increasing the expressivity and ease-of-use of the language.

Consider, in addition to stack-push and stack-pop, defining the function stack-get

for accessing an indexed slot within a stack datastructure.

defstruct Stack: (length:Int , array:Array)

defn stack -get (s:Stack , i:Int) :

s.array[i]

stack-get has a similar purpose to array-get: it retrieves the value at some indexed
slot within a datastructure. In fact, there are many datastructures that structurally consists

CHAPTER 2. HIGH-LEVEL DESIGN 33

of a series of slots – such as lists, vectors (a dynamically growing array), queues, etc. – and
we can imagine an analogous -get function for each of them. Here’s a listing of some of
these functions along with their types:

array -get: (Array , Int) -> ?

stack -get: (Stack , Int) -> ?

list -get: (List , Int) -> ?

vector -get: (Vector , Int) -> ?

queue -get: (Queue , Int) -> ?

Function overloading allows for multiple functions to have identical names, as long as they
require different argument types. Given a reference to a overloaded function, the system will
deduce which function is meant based on the context in which it is used.

With support for function overloading, we can rename all of the above functions to
get and rely upon the compiler to deduce which one we mean to call. The following code
demonstrates three different calls to get, each to a different version:

defn main (xs:Vector) :

val s = make -stack (10)

val l = ‘(a b c)

val a = get(s, 0) ;Calls the Stack version of get

val b = get(l, 0) ;Calls the List version of get

val c = get(xs , 0) ;Calls the Vector version of get

false

We can now also reimplement our macro transformer to expand xs[0] to get(xs,0)

instead of specifically to array-get(xs,0) – which will allow the use of the [] syntax for
datastructures other than arrays. The above code can then be rewritten as follows:

defn main (xs:Vector) :

val s = make -stack (10)

val l = ‘(a b c)

val a = s[0] ;Calls the Stack version of get

val b = l[0] ;Calls the List version of get

val c = xs[0] ;Calls the Vector version of get

false

In some situations, the compiler cannot uniquely determine which overloaded version of a
function is meant to be called. In the following example, xs is annotated with the unknown
type ?, and therefore any of the above get functions are applicable:

defn add -first -and -second (xs:?) :

val a = xs[0]

val b = xs[1]

a + b

In such cases, the compiler will automatically insert a match expression to dispatch to the
appropriate version at execution. The above example behaves equivalently to the following:

defn add -first -and -second (xs:?) :

val a = match(xs) :

(xs:Array) : get(xs, 0) ;Dispatch to Array version

CHAPTER 2. HIGH-LEVEL DESIGN 34

(xs:Stack) : get(xs, 0) ;Dispatch to Stack version

(xs:List) : get(xs, 0) ;Dispatch to List version

(xs:Vector) : get(xs, 0) ;Dispatch to Vector version

(xs:Queue) : get(xs, 0) ;Dispatch to Queue version

val b = match(xs) :

(xs:Array) : get(xs, 1) ;Dispatch to Array version

(xs:Stack) : get(xs, 1) ;Dispatch to Stack version

(xs:List) : get(xs, 1) ;Dispatch to List version

(xs:Vector) : get(xs, 1) ;Dispatch to Vector version

(xs:Queue) : get(xs, 1) ;Dispatch to Queue version

a + b

This feature is called automatic function mixing, and is important for allowing binders
with unknown (?) types to be used conveniently. It is so-named because it is as if the
compiler implicitly created a mixed version of get that accepts a union of all the relevant
types and dispatches to the appropriate implementation.

As a matter of style, we now no longer preface function names with the type of the
argument that they operate on. For instance, array-length will be renamed to simply
length, and array-map will be renamed to simply map.

Nominal Subtyping and Type Hierarchies

Just as support for objects allows us to manage related quantities together as a group,
different types also often occur in groups. For instance, the types introduced earlier –
Rectangle, Square, and Circle – are all types for representing shapes and often occur
together.

To help programmers manage related types, we introduce the deftype construct for
specifying a type hierarchy. The following example uses the deftype construct to specify
the relationships between the shape types:

deftype Shape

deftype BoxyShape <: Shape

deftype RoundShape <: Shape

defstruct Rectangle <: BoxyShape :

x:Float ,

y:Float ,

width:Float ,

height:Float

defstruct Square <: BoxyShape :

x:Float

y:Float

length:Float

defstruct Circle <: RoundShape :

x:Float

y:Float

CHAPTER 2. HIGH-LEVEL DESIGN 35

radius:Float

The Shape type represents all shape objects and is defined using the syntax:

deftype Shape

It is subdivided into two subtypes: the BoxyShape type, which represents shapes with straight
lines and sharp corners; and the RoundShape type, which represents shapes with curved lines.
The syntax:

deftype BoxyShape <: Shape

defines the type BoxyShape as a subtype of Shape.
We now update the Rectangle and Square types to be subtypes of BoxyShape, and

Circle to be a subtype of RoundShape. The syntax:

defstruct Rectangle <: BoxyShape :

...

specifies the Rectangle struct to be a subtype of BoxyShape. Types specified using the
deftype construct can be used within type annotations and match expressions.

The semantics of the language depends upon the type hierarchy in two situations:

1. It affects what constitutes a valid expression during typechecking. The area function
we defined previously for computing the area of different shapes can be annotated as
follows:

defn area (shape:Shape) :

match(shape) :

(r:Rectangle) : r.width * r.height

(s:Square) : s.length * s.length

(c:Circle) : 3.14f * c.radius * c.radius

which specifies that the argument shape must be some type of Shape. The compiler
will now statically detect and flag a call to area with the value 42 as an error.

2. It affects the behaviour of the match expression. The following match clause:

match(exp) :

...

(s:BoxyShape) : body

...

will test whether the match value is of type BoxyShape or any subtype of BoxyShape
when determining whether to evaluate body.

As an example, the following pointy? function returns true if its argument is some
sort of BoxyShape, and false if it is some sort of RoundShape.

defn pointy? (s:Shape) :

match(s) :

(s:BoxyShape) : true

(s:RoundShape) : false

CHAPTER 2. HIGH-LEVEL DESIGN 36

It will return true if called with Rectangle or Square objects, and false for Circle
objects.

Parametric Types and Polymorphic Functions

While our type system can now statically detect many errors, it does have a remaining
critical limitation with significant practical impact. Although the type annotations allow
us to specify that an argument must be an array, they are not expressive enough for us to
specify that it must be an array of integers. Thus the following incorrect code:

defn sum (xs:Array) :

var accum = 0

for x in xs do :

accum = accum + x

accum

defn main () :

val str = make -array (3)

str[0] = "Hello"

str[1] = "Patrick"

str[2] = "!!"

sum(str)

which calls sum with an array of strings, will not be caught by the typechecker.
In this section, we improve the typechecker by extending it to support parametric types

and polymorphic functions. To start, we will require the Array type to now always be
accompanied with the type of its contents. An array containing values of type T is specified
as Array<T>. So an Array<Int> is an array of integers; an Array<String> is an array of
strings; and an Array<Array<Int>> is an array of array of integers.

The make-array function is also changed to require a type argument for specifying the
type of the contents of the array. A call to make-array<T>(n) creates an array of T values
of length n.

With these changes, the above code would be rewritten as follows:

defn sum (xs:Array <Int >) :

var accum = 0

for x in xs do :

accum = accum + x

accum

defn main () :

val str = make -array <String >(3)

str[0] = "Hello"

str[1] = "Patrick"

str[2] = "!!"

sum(str) ;ERROR

The typechecker, with the additional information, would now be able to detect the incorrect
call to sum:

CHAPTER 2. HIGH-LEVEL DESIGN 37

ERROR: Cannot call function sum which requires an argument of type Array<Int> with
a value of type Array<String>.

The parametric type annotations also allow the typechecker to detect when the program-
mer attempts to put a value of the wrong type into an array, or incorrectly use a value from
an array.

defn main () :

val str = make -array <String >(3)

str[0] = 42 ;ERROR

val x = str[1] + 1 ;ERROR

false

The code above contains two statically-detectable errors:

1. it is invalid to store the value 42 into an Array<String>, and

2. it is invalid to add 1 to the value str[1] which can be deduced to be of type String.

To declare a parametric type, the deftype and defstruct constructs now allows the
type name to be optionally followed with the names of its type parameters. The following
example parameterizes our Stack struct with the type of its contents:

defstruct Stack <T> :

length:Int

array:Array <T>

The above says that Stack is a parametric type where T is the type of its contents. Its
length field, used for storing the length of the stack, is of type Int; and its array field, used
for storing its contents, is of type Array<T>.

To create stacks, we will change make-stack into an polymorphic function, like make-array,
and require an explicit type argument for specifying the stack content type.

defn make -stack <T> (capacity:Int) :

new -struct Stack <T>{capacity , make -array <T>(capacity)}

The push and pop functions will also now be polymorphic functions:

defn push <?T> (s:Stack <?T>, value:T) :

val l = s.length

s.array[l] = value

s.length = l + 1

defn pop <?T> (s:Stack <?T>) :

val l = s.length

s.length = l - 1

s.array[l - 1]

The question mark prefacing the ?T parameters in push and pop indicates that T are
captured type parameters instead of explicit type parameters. Captured type parameters are
implicitly provided by the compiler instead of explicitly given by the programmer, and will
be discussed in further depth later.

The following example shows the deduction process of the typechecker:

CHAPTER 2. HIGH-LEVEL DESIGN 38

val stack = make -stack <String >(10)

push(stack , x)

val y = pop(stack)

The call to make-stack<String> returns a Stack<String> value which is then bound to
stack. In the call to push, the typechecker implicitly provides String for the T type param-
eter by inspecting the type of stack, and then verifies that x is indeed a String. Similarly,
in the call to pop, String is implicitly provided for the T type parameter, and a value of
type String is returned and bound to y.

Summary of Static Typing Extension

The static type system is the basis of how our language statically detects errors. Additional
information about the types of arguments and fields – when they are known – are provided
explicitly by the programmer through type annotations. Binders or fields with unknown
types can be annotated with the special type ?, in which case they will behave identically to
before we added static typing. Based on the additional information, the typechecker detects
and reports type inconsistencies in the program.

Related types can be managed through type hierarchies. Parametric types and poly-
morphic functions handle types that are parameterized by other types – such as arrays of
integers, and stacks of strings.

In addition to improving error detection, the added information from the type annotations
also allow for function overloading and automatic function mixing, two features that increase
language expressivity and decrease verbosity. This section presents these two features as
pleasant conveniences, but later we will show how they form an integral part of the object
system.

2.7 Supporting Packages

Up to now, our examples have assumed that all code pertaining to a program is contained
within a single file, which is far from true for a large program. In this section, we add support
for packages, a simple feature for breaking up a code base into smaller isolated units.

One uncomplicated but tedious problem that arises often in day-to-day programming
is the need to carefully manage the proliferation of names in a program. If a programmer
chooses to use the Bark type to represent the sound made by dogs, then the name Bark

can no longer be used for representing the outer sheath of a tree. Choosing simultaneously
unique but succinct names is a conceptually uninteresting but essential skill for a working
programmer. Packages provide programmers a tool for managing the namespace by keeping
sets of names isolated from each other.

A package begins with the following declaration:

defpackage mypackage :

import mydependency

CHAPTER 2. HIGH-LEVEL DESIGN 39

which indicates that all following functions, variables, values, types, and structs belong to
the mypackage package. A single file may contain multiple packages but a package may
never span more than one file. The import mydependency clause will be explained later.

By default, all definitions have private visibility, which means that they can only be
referenced from code within the current package. The programmer must explicitly preface a
definition with the public keyword to indicate otherwise. Suppose that our code for creating
and manipulating Stack objects is contained within the stacks package:

defpackage stacks :

import core

public defstruct Stack <T> :

length:Int

array:Array <T>

public defn make -stack <T> (capacity:Int) :

new -struct Stack <T>{capacity , make -array <T>(capacity)}

public defn push <?T> (s:Stack <?T>, value:T) :

s.array[s.length] = value

add -to-length(s, 1)

public defn pop <?T> (s:Stack <?T>) :

add -to-length(s, -1)

s.array[s.length]

defn add -to -length (s:Stack , delta:Int) :

s.length = s.length + delta

The Stack struct, make-stack, push, and pop functions are declared public and can
thus be referenced from outside the stacks package. The add-to-length function is private
to the stacks package, and is for internal use only.

The code for the RPN calculator will be kept in a separate rpn-calculator package.
Since the RPN calculator implementation requires the use of the stack functions, we must
first import the stacks package into the rpn-calculator package.

defpackage rpn -calculator :

import core

import stacks

public defn rpn -calculator (xs:Array <Int|String >) :

val stack = make -stack (10)

for i in 0 to length(xs) do :

if xs[i] == "+" :

val a = pop(stack)

val b = pop(stack)

push(a + b)

else if xs[i] == "-" :

val a = pop(stack)

CHAPTER 2. HIGH-LEVEL DESIGN 40

val b = pop(stack)

push(a - b)

else :

push(xs[i])

pop(stack)

The import stacks clause makes the public functions in the stacks package available
to be referenced from the rpn-calculator package.

Note that both the stacks and rpn-calculator packages import the core package,
which is where commonly-used functions such as make-array, get, length, plus, and minus

are defined.
The package system is simple but acts as the fundamental mechanism by which large pro-

grams are split into divisions (item 1 of our objectives). To minimize accidental dependencies
between packages, programmers can use the visibility modifiers to conceal implementation
details.

2.8 Supporting Multimethods

At this point, we will turn our focus towards the issues of maintenance and software exten-
sibility. The introduction of the match expression allowed us to dynamically test the type of
a value and evaluate different code depending on its type. One particularly effective use of
this was in the implementation of the area function for computing the area of a shape:

defn area (shape:Shape) :

match(shape) :

(r:Rectangle) : r.width * r.height

(s:Square) : s.length * s.length

(c:Circle) : 3.14f * c.radius * c.radius

We can write a similar function for computing the perimeter of a shape:

defn perimeter (shape:Shape) :

match(shape) :

(r:Rectangle) : 2.0f * (r.width + r.height)

(s:Square) : 4.0f * s.length

(c:Circle) : 2.0f * 3.14f * c.radius

The powerful idea demonstrated by these implementations is that the programmer can
regard area and perimeter as functions that can compute the area and perimeter of any
shape. No matter what it is called with, area and perimeter will automatically determine,
by inspecting the type of its argument, the correct algorithm for computing the shape’s area
or perimeter.

That idea allows us to write the following functions, total-area and total-perimeter,
which computes the total area and perimeter of an array containing an assortment of different
shapes:

defn total -area (shapes:Array <Shape >) :

CHAPTER 2. HIGH-LEVEL DESIGN 41

var total = 0

for s in shapes do :

total = total + area(s)

total

defn total -perimeter (shapes:Array <Shape >) :

var total = 0

for s in shapes do :

total = total + perimeter(s)

total

Consider what we must change to extend the program to support another type of shape:
triangles. The first step is to declare the struct for representing triangles, which we will
represent using the x and y coordinates of its three vertices:

defstruct Triangle <: Shape :

x1: Float

y1: Float

x2: Float

y2: Float

x3: Float

y3: Float

The second step is to write extra match clauses for area and perimeter to handle the
case of Triangle values:

defn area (shape:Shape) :

match(shape) :

...

(t:Triangle) :

val d = t.x1 * (t.y2 - t.y3) +

t.x2 * (t.y3 - t.y1) +

t.x3 * (t.y1 - t.y2)

abs(d / 2.0f)

defn perimeter (shape:Shape) :

match(shape) :

...

(t:Triangle) :

defn dist (x1:Float , y1:Float , x2:Float , y2:Float) :

sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))

dist(t.x1, t.y1, t.x2, t.y2) +

dist(t.x1, t.y1, t.x3, t.y3) +

dist(t.x2, t.y2, t.x3, t.y3)

The limitations of the above approach start to now come to light. The code for sup-
porting triangles is written as a bunch of small changes made to existing functions that are
scattered throughout the code base. Support for triangles required changes to only area and
perimeter, but adding a new datatype to a larger program may require changes to tens or
hundreds of functions, which will quickly become unmanageable. Ideally, we would like to

CHAPTER 2. HIGH-LEVEL DESIGN 42

keep all of the code for supporting triangles together in one location, and not have to edit
existing code at all.

The other fundamental limitation is that, since supporting new shapes requires editing
the existing functions, it is impossible for users of the shapes library to define their own
shapes. Only the library writers can extend the library.

Multis and Methods

To overcome the previous limitations, we will introduce two constructs, defmulti and
defmethod, that conceptually allow us to separate the declaration of the function from
the implementation of each match clause.

We begin by declaring area as a multi with the following syntax:

defmulti area (shape:Shape) -> Float

which declares area to be a function that accepts a Shape and returns a Float.
Next, we use the following syntax to implement each of the match clauses as a method

for area:

defmethod area (r:Rectangle) :

r.width * r.height

defmethod area (s:Square) :

s.length * s.length

defmethod area (c:Circle) :

3.14f * c.radius * c.radius

defmethod area (t:Triangle) :

val d = t.x1 * (t.y2 - t.y3) +

t.x2 * (t.y3 - t.y1) +

t.x3 * (t.y1 - t.y2)

abs(d / 2.0f)

These methods provide the implementations for the area function for the cases where the
argument is a Rectangle, a Square, a Circle, and a Triangle respectively. The area

multi will automatically dispatch to the appropriate implementation based on the types of
its arguments, and will behave identically to the previous version.

The multimethod system allows us now to keep all of the code for supporting triangles
in one location. Support for any shape can be added by first defining its struct, and then
providing methods for the area and perimeter multis. It is no longer necessary to edit an
existing function.

defstruct Triangle <: Shape :

x1: Float

y1: Float

x2: Float

y2: Float

CHAPTER 2. HIGH-LEVEL DESIGN 43

x3: Float

y3: Float

defmethod area (t:Triangle) :

val d = t.x1 * (t.y2 - t.y3) +

t.x2 * (t.y3 - t.y1) +

t.x3 * (t.y1 - t.y2)

abs(d / 2.0f)

defmethod perimeter (t:Triangle) :

defn dist (x1:Float , y1:Float , x2:Float , y2:Float) :

sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))

dist(t.x1, t.y1 , t.x2 , t.y2) +

dist(t.x1, t.y1 , t.x3 , t.y3) +

dist(t.x2, t.y2 , t.x3 , t.y3)

The code for supporting triangles is not required to be in the same package as the rest
of the shapes library – it can be in its own package, e.g. triangles. Additionally, in the
same way as with triangles, the user can freely extend the shapes library to support custom
shapes, as long as the algorithms for computing their areas and perimeters are provided. The
rest of the shapes library, total-area and total-perimeter, will automatically be able to
handle the new shapes.

The multimethod system is the basic tool in the language for architecting extensible and
maintainable programs (item 8 of our objectives). The set of multis that operate on a type
defines the interface by which the program interacts with values of that type. A program
is extended in a systematic way by defining new types and implementing new methods for
them.

Symmetric Multiple Dispatch

The area and perimeter multis only accept a single argument, but the multimethod system
does generalize in a straightforward way to multiple arguments. In this case, the types of
all the arguments are checked to dispatch to the appropriate method, a feature known as
multiple dispatch.

A good application of this feature for the shapes library would be an intersects? func-
tion that checks whether two shapes are intersecting. Here is the declaration of the multi:

defmulti intersects? (a:Shape , b:Shape) -> True|False

It accepts two shapes as arguments and returns true if they are intersecting, or false

otherwise.
Here is the method specifically for checking whether two circles intersect:

defmethod intersects? (a:Circle , b:Circle) :

val x = a.x - b.x

val y = a.y - b.y

val r = a.radius + b.radius

x * x + y * y <= r * r

CHAPTER 2. HIGH-LEVEL DESIGN 44

Here is the method for checking whether two rectangles intersect:

defmethod intersects? (a:Rectangle , b:Rectangle) :

defn overlap? (a1:Float , a2:Float , b1:Float , b2:Float) :

a1 <= b2 and b1 <= a2

overlap ?(a.x, a.x + a.width , b.x, b.x + b.width) and

overlap ?(a.y, a.y + a.height , b.y, b.y + b.height)

Here is the method for checking whether a rectangle intersects with a square, where we
take advantage of the fact that a square is just a rectangle with equal width and height:

defmethod intersects? (a:Rectangle , b:Square) :

intersects ?(a, new -struct Rectangle{b.x, b.y, b.length , b.length })

And continuing in this fashion, we can define a separate method to test for the inter-
section between every possible pair of types. The multi will automatically dispatch to the
appropriate method based on the types of both of its arguments.

Instance Methods

The defmulti and defmethod constructs, as shown thus far, are restricted to only be valid
as top-level expressions. It is not valid to nest these constructs within a function. In this
section, we will lift this restriction by adding the new construct which allows us to create an
object accompanied by a set of instance methods.

Suppose we have a shape with a known area and perimeter: 10.0 and 30.0 respectively.
We can use the new syntax to directly create an object representing such a shape like so:

defn make -my -shape () :

val s = new Shape :

defmethod area (this) :

10.0f

defmethod perimeter (this) :

30.0f

s

The make-my-shape function creates a new Shape object, binds it to s, and then returns
s. The defmethod constructs following the new construct specify the instance methods for
the object that is created. The syntax for instance methods is nearly identical to top-level
methods save for one aspect: there must be exactly one argument that is named this.

The this argument is special and refers to the object that is created by new. Thus the
area method should be interpreted to mean: when the area multi is called specifically with
the s shape, then area should return 10.0f. Similarly, when the perimeter multi is called
with the s shape, then perimeter should return 30.0f.

Here is an example of computing the total area of three shapes: one square, and two
shapes created using make-my-shape:

defn main () :

val shapes = make -array <Shape >(3)

shapes [0] = new -struct Square {0.0f, 0.0f, 1.0f}

CHAPTER 2. HIGH-LEVEL DESIGN 45

shapes [1] = make -my-shape()

shapes [2] = make -my-shape()

total -area(shapes)

total-area iterates through the array and calls area on each shape within it. The first
shape is a square of length 1.0, and so area returns 1.0 × 1.0 = 1.0. The second and third
shapes are the shapes created by make-my-shape and so area returns 10.0 for each of them.
Hence the total area returned is 21.0.

Instance methods are allowed to refer to any values or variables defined in its surrounding
scope. Let us revise make-my-shape to accept an argument for specifying the area of the
shape to create:

defn make -my -shape (a:Float) :

new Shape :

defmethod area (this) :

a

defmethod perimeter (this) :

30.0f

Now when area is called on the shape, it will return a, the argument passed to make-my-shape.
We also no longer bother assigning the shape to the value s, and just return the created
shape directly.

Here’s the previous example revised such that 10.0f and 20.0f are passed as arguments
in the calls to make-my-shape:

defn main () :

val shapes = make -array <Shape >(3)

shapes [0] = new -struct Square {0.0f, 0.0f, 1.0f}

shapes [1] = make -my-shape (20.0f)

shapes [2] = make -my-shape (30.0f)

total -area(shapes)

Again, total-area calls area on each shape within the array. The first call returns
1.0 for the square as before. The second call now returns 20.0 for the shape created us-
ing make-my-shape(20.0f), and the third call returns 30.0 for the shape created using
make-my-shape(30.0f). As can be seen, the values of the relevant binders referred to by
the instance methods are stored with the object in order to be retrieved later. This is
a conceptually simple but important feature that forms the basic mechanism of Stanza’s
multimethod object system.

2.9 The Multimethod Object System

Our basic object system so far consists of four constructs:

1. The defstruct construct for specifying the structure of objects as a collection of named
fields. For example:

CHAPTER 2. HIGH-LEVEL DESIGN 46

defstruct Circle <: Shape :

x:Float

y:Float

radius:Float

2. The new-struct construct for creating an object given the initial values of its fields.
For example:

new -struct Circle {1.0f, 2.0f, 3.0f}

3. The dot operator (.) for retrieving a field from an object. For example:

val r = c.radius

4. The dot operator (.) for assigning to a field in an object. For example:

c.radius = r

While simple, the object system does have a number of deficiencies:

1. All fields are always visible. The object system allows any code to retrieve from and
store into any field in any object. But many fields are meant for internal use only
– such as a flag to track some status, or a cache of some result. Programmers need
these fields to stay concealed in order to be able to change their implementation freely
without affecting the rest of the program.

This is a widely-recognized issue and is solved by many languages, such as Java [2] and
C++ [55], by accompanying fields with a visibility annotation.

2. All fields are mutable. When using the objects defined by a library, it is unclear whether
the library allows for a field to be assigned to, and under what conditions it is allowed
to be assigned to. The inability to declare immutable fields also makes it impossible to
define pure immutable datastructures, a functional programming technique that can
greatly reduce defects.

3. The dot operator leads to multiple syntaxes for retrieving data from an object. For
instance, we can write a function for retrieving the diameter of a circle, which is simply
twice its radius:

defn diameter (c:Circle) :

2.0f * c.radius

But to the user of the library, there is a seemingly arbitrary difference between retriev-
ing a circle’s radius (c.radius) versus retrieving its diameter (diameter(c)).

4. The new-struct construct leads to multiple syntaxes for creating objects. For instance,
we can write the following convenience functions for creating a unit circle – a circle
with radius 1.0 – and for creating a unit circle centered at the origin:

CHAPTER 2. HIGH-LEVEL DESIGN 47

defn make -Circle (x:Float , y:Float) :

new -struct Circle{x, y, 1.0f}

defn make -Circle () :

new -struct Circle {0.0f, 0.0f, 1.0f}

But to the user of the library, there is again seemingly arbitrary differences between
the different ways of creating a circle. A unit circle at the origin is created with
make-Circle(); a unit circle at some point is created with make-Circle(1.0f, 3.0f);
but a circle at some point with radius 2.0 is created with:

new -struct Circle {1.0f, 3.0f, 2.0f}

5. The objects are not abstract. Suppose we wish to create a circle whose radius is
expensive to compute, in which case we would like to avoid computing it all-together if
it is never used. This can be accomplished by delaying the computation until the first
time the circle’s radius is requested. This is not achievable currently as the defstruct

construct specifies concretely that the radius must be stored as a Float.

The solution for eliminating these deficiencies happens to be quite simple and follows
from recognizing that the multimethod system, by itself, is already sufficient for defining
the object system. The defstruct, new-struct, and dot operator (.), are redundant and
unnecessary.

Defining a Circle Datastructure

To demonstrate the multimethod object system, we will define the circle datastructure with-
out the use of the basic object constructs. The first step is to define the type for representing
circles:

deftype Circle <: Shape

which indicates that a circle is a type of shape.
The second step is to declare the multis that constitute the interface of a circle:

defmulti x (c:Circle) -> Float

defmulti y (c:Circle) -> Float

defmulti radius (c:Circle) -> Float

These multis declare that a circle is fundamentally defined by three operations: an operation
each for retrieving the x and y coordinates of the circle, and an operation for retrieving the
radius of the circle.

The last step is to define a function for creating circles:

defn make -Circle (x-pos:Float , y-pos:Float , r:Float) :

new Circle :

defmethod x (this) : x-pos

defmethod y (this) : y-pos

defmethod radius (this) : r

CHAPTER 2. HIGH-LEVEL DESIGN 48

This function creates a circle from three floating point values. The object is created using
the new construct, and instance methods are used to retrieve the appropriate values. For
the purposes of clarity, we named the argument values x-pos and y-pos, but we could have
also named them x and y with no issues.

Note that make-Circle is just a simple function. There is no distinguished concept of a
constructor in our language, and we are free to define additional functions for creating circles.
As an answer to limitation 5, the following example creates a circle that delays computing
its radius:

defn make -Circle (x:Float , y:Float , compute -r: () -> Float) :

var r-cache = false

new Circle :

defmethod x (this) : x

defmethod y (this) : y

defmethod radius (this) :

match(r-cache) :

(r-cache:Float) :

r-cache

(r-cache:False) :

val r = compute -r()

r-cache = r

r

The radius of the circle is provided via a function – which is evaluated once when the radius
of the circle is first requested.

To complete the definition of the circle datastructure, we have to rewrite our previous
area and perimeter methods without the use of the dot operator:

defmethod area (c:Circle) :

3.14f * radius(c) * radius(c)

defmethod perimeter (c:Circle) :

2.0f * 3.14f * radius(c)

Note that because we no longer require the use of the new-struct or dot operator con-
structs, there is now one and only one way to create objects and retrieve their fields: through
function calls. This removes limitations 4 and 3 of our basic object system.

Additionally, because all object operations are now done through function calls, the
object system combines elegantly with other functional programming techniques – such as
higher-order functions. For instance, if cs is a list of circles, List<Circle>, we can retrieve
the list of all of their x coordinates using map(x,cs).

Mutable “Fields”

The circle datastructure we defined is immutable by virtue of not supporting any functions
for mutating it, but we can easily define a mutable circle datastructure by providing mutation
functions. Suppose that a circle has a fixed location that cannot be changed, but that its

CHAPTER 2. HIGH-LEVEL DESIGN 49

radius can be changed. This can be accomplished by adding the following setter function to
its interface:

defmulti set -radius (c:Circle , r:Float) -> False

We then change make-Circle to use a variable, r, to keep track of its current radius:

defn make -Circle (x-pos:Float , y-pos:Float , initial -r:Float) :

var r = initial -r

new Circle :

defmethod x (this) : x-pos

defmethod y (this) : y-pos

defmethod radius (this) : r

defmethod set -radius (this , radius:Float) : r = radius

The variable is initialized to the argument, initial-r, passed to make-Circle but it can
be changed through calls to set-radius. The radius method simply returns the current
value of this variable.

Thus we have the ability to control the mutability of individual fields without having to
introduce any additional mechanisms to the language. This removes limitation 2 from our
basic object system.

“Field” Visibility

Since “fields” are no longer a distinct concept and are instead modeled using multis, we can
use the package visibility modifiers to control their visibility – thus removing limitation 1
from our basic object system.

Currently, the Circle type, the four interface functions x, y, radius, set-radius, and
the make-Circle function, are all private to the package. As an example, we can declare
the type, getter, and constructor functions as public, but leave set-radius as it is:

public deftype Circle <: Shape

public defmulti x (c:Circle) -> Float

public defmulti y (c:Circle) -> Float

public defmulti radius (c:Circle) -> Float

defmulti set -radius (c:Circle , r:Float) -> False

public defn make -Circle (x-pos:Float , y-pos:Float , initial -r:Float) :

...

With these changes, code from other packages will be able to create circles and retrieve
their properties. As the library writer, we are allowed to mutate the radius of a circle, but
this ability is not exposed to users.

The Defstruct Macro

Now that we’ve shown that the defstruct, new-struct, and dot operator (.) are unneces-
sary, we can remove them from our language. However, since defstruct provides a concise

CHAPTER 2. HIGH-LEVEL DESIGN 50

way of expressing such a commonly used pattern, we will reimplement it as the following
macro transformer:

defstruct Circle <: Shape :

x: Float

y: Float

radius: Float

expands to and is equivalent to:

deftype Circle <: Shape

defmulti x (c:Circle) -> Float

defmulti y (c:Circle) -> Float

defmulti radius (c:Circle) -> Float

defn Circle (x:Float , y:Float , radius:Float) :

new Circle :

defmethod x (this) : x

defmethod y (this) : y

defmethod radius (this) : radius

Hence the defstruct construct is now just a syntactic shorthand for declaring a new
type, a set of multis, and a basic constructor function.

2.10 Supporting Non-Local Control Flow

Philosophically, we have purposefully kept the number of core concepts in the language to a
minimum. There is one construct, in particular, that is commonly found in other languages
and noticeably missing from ours: there is no construct for returning early from a function.
A function currently returns and can only return the result of evaluating its last form.

The Label Construct

To address this deficiency, we will introduce a general non-local control flow operator: the
label construct. As an example of its use, the following searches through an array and
returns the first negative number it encounters:

defn first -negative (xs:Array <Int >) :

label <False|Int > return :

for x in xs do :

if x < 0 :

return(x)

The label construct above is specified to return a value of type False|Int, and to use
return as the name of its exit function. The block passed to it executes to completion and
returns false if return is never called. If return is called, however, then execution of the
block immediately halts, and the argument passed to return becomes the result of the label
construct.

CHAPTER 2. HIGH-LEVEL DESIGN 51

Because Stanza uses higher-order functions to abstract over iteration constructs, it is
important that the concept of exiting a block of code be kept orthogonal from the concept
of functions – as is accomplished by the label construct. This is more clearly seen if we
express first-negative without the use of the for macro:

defn first -negative (xs:Array <Int >) :

label <False|Int > return :

defn loop -body (x:Int) :

if x < 0 :

return(x)

do(loop -body , xs)

The loop is expressed as calling the do higher-order function with the loop-body nested
function. The design of the label construct allows us to specify clearly that return causes
execution to exit from the entire loop rather than from just the loop-body function. From
a design perspective, the label construct is key to making it practical to express iteration
through higher-order functions.

The Generate Construct

The next control flow operator we will introduce is the generate construct, which is used
to generate a sequence of items by concurrently executing a block of code. As an example
of its use, the following demonstrates generating an infinite sequence containing all points
in the first quadrant of the 2D cartesian plane:

defn all -2d-points () :

generate <[Int ,Int]> :

for y in 0 to false do :

for x in 0 through y do :

yield ([x, y - x])

The generate construct above is specified to return a sequence containing [Int,Int] tuples.
The block passed to it is executed concurrently to generate tuples as needed. Each time the
next tuple in the sequence is requested, the block executes until the next call to yield which
returns the next tuple and also saves the state of the computation so that it may be resumed
later.

The following requests and prints out the first three tuples in the sequence:

val points = all -2d-points ()

println ("The first point is: %_" % [next(points)])

println ("The second point is: %_" % [next(points)])

println ("The third point is: %_" % [next(points)])

where the next function is used to request the next tuple. When executed, the above prints
out:

The first point is: [0, 0]

The second point is: [0, 1]

The third point is: [1, 0]

CHAPTER 2. HIGH-LEVEL DESIGN 52

Targetable Coroutines

Both the label construct and the generate construct are just different usage patterns of the
same control flow mechanism: Stanza’s targetable coroutine system. Other usage patterns of
the coroutine system include consumers – the dual of the generate construct – and throwing
and catching exceptions.

The language is kept easy-to-learn (item 11 of our objectives) by the isolation of control
flow handling to one orthogonal mechanism, and coroutines provide yet another tool for
subdividing a complex task (item 4 of our objectives). As demonstrated, the generate

construct allows us to separate the algorithm for generating a sequence of items from the
code that operates on the items.

The general targetable coroutine system will be discussed in greater detail in a later
chapter.

2.11 Supporting Low-Level Hardware Operations

Our language as described is a high-level language, and its semantics are independent of
the underlying hardware. Details such as managing memory, representing values, and inter-
acting with the operating system have been either completely automated (as in the case of
memory-management) or concealed behind the implementation of library functions (such as
make-array and println).

If the language were to be used only for a specific narrow domain, then this strategy
would be sufficient. It would require some effort to ensure that all operations relevant to
the domain are provided in the standard library, but it is not an impossible task. For a
general-purpose language, however, it is impractical to foresee and include every operation
that a user may require.

We will take the approach of providing a sublanguage that provides the low-level con-
structs necessary for the user to interact directly with the underlying hardware and operating
system. LoStanza has the benefit that it allows for low-level control while also being designed
to easily interoperate with code written using the high-level constructs. For purposes of clar-
ity, we will call our current language HiStanza, and call the low-level language LoStanza.

Low-Level Functions

LoStanza constructs are kept isolated from HiStanza code, and can only be used from within
a LoStanza function. The following shows an example of a LoStanza function taken from
the implementation of Stanza’s garbage collector:

lostanza defn scan -map -word (map:long , n:long , refs:ptr <long >) -> int :

var ref -ptr:ptr <long > = refs

for (var i:long = 0, i < n, i = i + 1) :

val b = (map >> i) & 1

if b : [ref -ptr] = post -gc -object ([ref -ptr])

CHAPTER 2. HIGH-LEVEL DESIGN 53

ref -ptr = ref -ptr + sizeof(long)

return 0

The lostanza prefix denotes that scan-map-word is a LoStanza function. The function
demonstrates the use of a number of low-level constructs that are not available in HiStanza,
such as:

• LoStanza types: e.g. int, long, and ptr<long>.

• Pointers: The refs argument is a pointer to 64-bit integers.

• Memory Loads/Stores: The [ref-ptr] expressions denote raw load and store opera-
tions to memory.

LoStanza code is able to freely call functions defined in HiStanza, and HiStanza code can
call a subset of LoStanza functions.

Low-Level Objects

Unlike HiStanza, LoStanza allows objects to be defined with an explicitly specified memory
layout. As an example, the following LoStanza type, TimePoint, represents a coordinate in
four-dimensional space-time, where the three space axes are stored as 32-bit floating-point
numbers, and the time axis is stored as a 64-bit integer.

lostanza deftype TimePoint :

x: float

y: float

z: float

t: long

Within a LoStanza function, the LoStanza type TimePoint can now be used to refer
to a 192-bit bit pattern, where bits 0-31, 32-63, and 64-95 represent the x, y, and z space
coordinates, and bits 128-191 represents the time coordinate. Bits 96-127 are skipped in
order to keep the t field 64-bit aligned.

The following LoStanza code demonstrates creating a struct, retrieving a field, and storing
a field:

val p = TimePoint {1.0f, 2.0f, 3.0f, 1987L}

val x = p.x

p.z = 4.0f

Managing Memory

The pointer type explicitly exposes low-level control of memory to the programmer. Assum-
ing that p is a pointer to a 32-bit integer, ptr<int>, then we can load an integer from the
address specified by p using the following syntax:

val i = [p]

CHAPTER 2. HIGH-LEVEL DESIGN 54

and an integer can be stored into the address specified by p using the following syntax:

[p] = 32

Pointers can also be manipulated through arithmetic operations. As an example, the
following loop clears a block of memory by assigning 0 to the 80 bytes of memory following
p:

val end = p + 80

while p < end :

[p] = 0

p = p + 4

To allocate an object in heap memory, we can use the LoStanza new operator. The
following code allocates a TimePoint value in the heap:

val p = new TimePoint {1.0f, 2.0f, 3.0f, 1987L}

Foreign Code

To interoperate with the surrounding software ecosystem, LoStanza can call functions written
in other languages, and other languages can also call functions written in LoStanza.

Suppose we wanted to call a C [33] function with the following declaration:

float my_c_function (int a, float b);

From LoStanza, we use the extern keyword to declare the existence of my_c_function
with the appropriate type signature:

extern my_c_function: (int , float) -> float

Then, within a LoStanza function, we call my_c_function with the following syntax:

lostanza defn f () -> float :

val x = call -c my_c_function (42, 32.0f)

return x

where the call-c operator is used to indicate that the C calling convention should be used
for the call.

To define a LoStanza function, my_stanza_function, to be called from C, we use the
following syntax:

extern defn my_stanza_function (a:int , b:float) -> float :

val r = (a as float) + b

return r

which will correspond to the following C declaration:

float my_stanza_function (int a, float b);

CHAPTER 2. HIGH-LEVEL DESIGN 55

Summary of LoStanza

LoStanza provides the low-level constructs necessary to interact directly with the hardware
and operating system, thereby allowing us to easily interoperate with foreign code (item
10 of our objectives). The sublanguage has a simple mapping to hardware instructions, so
programmers that require fine control for performance-tuning can choose to implement their
compute-heavy kernels in LoStanza (item 9). The sublanguage is also kept separate from the
main language, and thus keeps the language easy-to-learn for the majority of programmers
who do not require such control (item 11).

With the introduction of LoStanza, it is no longer necessary for the language to include
built-in functions. Functions such as make-array and println, which previously could not
be expressed in Stanza, can now be implemented using LoStanza constructs.

2.12 Interactions Between Subsystems

This chapter attempted to provide a rational motivation for the design of each of Stanza’s
key language features. Starting with a minimal Lisp [32] language, we incrementally added
features to eliminate language deficiencies, until we arrived at the final language design,
a union of the five following subsystems: the macro system, the optional type system, the
multimethod object system, the targetable coroutine system, and the LoStanza sublanguage.

In reality however, our actual design process was less structured than presented, and the
five subsystems were not designed independently. The interactions between the subsystems
are nuanced and contribute to the operation of the language as a cohesive whole. None of
the above subsystems can be removed from the language without significantly lowering the
overall expressivity of the language.

The design of Stanza starts with Lisp [32] as a base, which offers an executable top-level,
an s-expression-based programmatic macro system, and support for functional programming.
From the Scheme [56] dialect, Stanza inherits its minimalism philosophy: the language is
defined by a small number of core forms, a single namespace is used for both functions
and variables, and loops are expressed using tail-recursion. Similar to Smalltalk [24] and
Ruby [22], iteration constructs are abstracted as calls to higher-order functions, which is
made practical through the use of coroutines as a general control-flow operator. Stanza
deviates from Scheme’s reliance upon built-in functions for interfacing with the software
ecosystem and creating core datastructures, and instead provides the LoStanza sublanguage
to enable users to execute foreign code and manipulate memory themselves.

The programmatic macro system makes three primary contributions to the language: it
enables Stanza to have a natural syntax; it allows programmers to define their own syntactic
abstractions and domain specific languages; and it allows the majority of Stanza’s constructs
to be implemented as syntactic shorthands. This last contribution makes it possible for
Stanza to both be easy-to-learn – because of its small number of core forms – yet still be

CHAPTER 2. HIGH-LEVEL DESIGN 56

convenient for daily programming. The for macro, in particular, is necessary in order for
iteration to be sensibly expressed as calls to higher-order functions.

A simple package system allows users to manage the namespaces of a large project. The
package visibility modifiers allows definitions to be concealed within a package, or to be
available for use by external code. In a later chapter, we will show that packages also double
as the unit of compilation for Stanza’s separate compiler, which outputs one .pkg file per
package.

The type system and type annotations allows Stanza to statically detect errors before
execution, but also plays an integral role in Stanza’s match expression, multimethod dis-
patch, function overloading, and automatic function mixing features. The match expression
dynamically dispatches to different code based on the runtime types of its arguments, and
serves as Stanza’s only branching construct. Multimethod dispatch relies upon the method
argument type annotations for determining the target method, and is an important part
of the object system. Type annotations are used to disambiguate references to overloaded
functions – both statically, in the case of function overloading, and dynamically, in the case
of automatic function mixing.

The multimethod system serves dual purpose as both a software architecting mechanism
and as part of the object system. Object creation is handled through extending the multi-
method system with the new construct, and object state is handled through instance methods
that close over the lexical environment. The same mechanism is used for implementing both
objects and closures. The package visibility modifiers used for controlling visibility of pack-
age definitions also serves to conceal the details of an object’s concrete implementation. The
emulation of object “fields” using getter and setter functions is made convenient enough for
practical use through the function overloading and automatic function mixing mechanisms.

Stanza’s targetable coroutine system doubles as both a concurrency operator and general
control-flow operator. Constructs for returning early from functions, breaking from loops,
generating sequences, and handling exceptions are all implemented as syntactic shorthands
using the programmatic macro system.

57

Chapter 3

The Stanza Macro System

Stanza supports a programmatic macro system that operates on a homoiconic s-expression-
based syntax. Macros are expressed as a set of transformations organized within a parsing
expression grammar [23] (PEG) framework. After macro expansion, a program consists of
only core forms, and the final executable results from compiling these core forms.

3.1 Decorated S-Expressions

The surface syntax of Stanza programs are expressed in terms of simple recursive tree dat-
structures known as s-expressions. An s-expression is either an atom – which can be a
character, a string, a symbol, a number, the boolean values true or false – or a list of nested
s-expressions. Stanza allows five different types of numbers: bytes, ints, longs, floats, and
doubles.

sexp = byte

| int

| long

| float

| double

| char

| string

| symbol

| true

| false

| list of sexp

The mapping from characters to the s-expression datastructure is straightforward. The
following listing shows some examples of the syntax:

bytes: 10Y, 24Y, 1Y

ints: 42, 128, -3

longs: 42L, 128L, -3L

floats: 1.0f, 128.3f, 12.0f

doubles: 1.0, 128.3, 12.0

CHAPTER 3. THE STANZA MACRO SYSTEM 58

characters: ’a’, ’b’, ’A’

strings: "hello world", "patrick"

symbols: hello , world , >=

true: true

false: false

lists of s-expressions: (a 53L "c"), (), (1 (2))

In addition to the above, the lexer also supports a small number of shorthands to permit
a more natural syntax:

{x} is a shorthand for: (@afn x)

[x] is a shorthand for: (@tuple x)

f(x) is a shorthand for: f (@do x)

f{x} is a shorthand for: f (@do -afn x)

f[x] is a shorthand for: f (@get x)

f<x> is a shorthand for: f (@of x)

?x is a shorthand for: (@cap x)

‘sexp is a shorthand for: (@quote sexp)

a b c : is a shorthand for: a b c : (d e f)

d e f

Curly brackets ({}) expand to a list with the @afn symbol as its first item. Square
braces ([]) expand to a list with the @tuple symbol as its first item. An s-expression
followed immediately by an opening parenthesis (() inserts the @do symbol as the first item
in the following list. An s-expression followed immediately by an opening curly bracket ({)
inserts the @do-afn symbol as the first item in the following list. An s-expression followed
immediately by a square brace ([) inserts the @get symbol as the first item in the following
list. An s-expression followed immediately by an opening angle bracket (<) inserts the @of

symbol as the first item in the following list. A question mark followed immediately by a
symbol expands to a list with the @cap symbol as its first item. A backquote followed by an
s-expression expands to a list with the @quote symbol as its first item. A line ending colon
automatically wraps the next indented block in a list.

The following example shows the surface syntax and the underlying s-expression after all
lexer shorthands have been expanded.

defn map <?T,?R> (f: T -> ?R, xs:List <?T>) -> List <R> :

if empty ?(xs) : List()

else : cons(f(head(xs)), map(f, tail(xs)))

expands to:

defn map (@of (@cap T) (@cap R)) (f : T -> (@cap R)

xs : List (@of (@cap T))) ->

List (@of R) : (

if empty? (@do xs) : List (@do)

else : cons (@do f (@do head (@do xs)) map (@do f tail (@do xs))))

CHAPTER 3. THE STANZA MACRO SYSTEM 59

3.2 Core Forms

As is typical for Lisp-inspired [32] languages, Stanza programs are expressed primarily in
terms of macros that expand the surface s-expressions to s-expressions that are understood
by the compiler – also known as core forms. After macro expansion, a program is expressed
entirely in terms of core forms. Here is a complete listing of the Stanza core forms:

Top Level Forms:
($package name imports ...) (Package Definition)
($import name prefixes ...) (Import Package)
($prefix -of (names ...) p) (Assign Prefix to Names)
($prefix p) (Assign Prefix to All)
($public es ...) (Public Visibility)
($protected es ...) (Protected Visibility)
($deftype name parent children ...) (Type Definition)
($defchild name parent) (Child Definition)
($defmulti name (a1 ...) a2) (Define Multi)

Expression Forms:
($def name type value) (Define Value)
($defvar name type value) (Define Variable)
($defn name (args ...) (a1 ...) a2 body ...) (Define Function)
($defmethod name (args ...) (a1 ...) a2 body ...) (Define Method)
($fn (args ...) (a1 ...) a2 body ...) (Anonymous Function)
($multi fs ...) (Multi-arity Function)
($begin es ...) (Grouped Expression)
($let e) (New Scope)
($match (es ...) branches ...) (Match Expression)
($branch (args ...) (ts ...) body ...) (Match Branch)
($new type methods ...) (New Object)
($as exp type) (Downcast)
($as? exp type) (Upcast)
($set name exp) (Assignment)
($do f args ...) (Function Call)
($prim f args ...) (Primitive Call)
($tuple es ...) (Tuple Expression)
($quote v) (Literal S-Expression)

Type Forms:
($of name args ...) (Parametric Type)
($and a b) (Intersection Type)
($or a b) (Union Type)
($-> (a1 ...) a2) (Function Type)
($cap x) (Capture Variable)
($void) (Void Type)
($?) (Unknown Type)

Miscellaneous Forms:
($none) (Unspecified)

CHAPTER 3. THE STANZA MACRO SYSTEM 60

3.3 Syntax Packages

Macros are expressed as a set of transformations organized within a parsing expression gram-
mar [23] (PEG) framework. A syntax package is defined using the defsyntax construct. The
following example defines a syntax package with the name my-syntax-package.

defsyntax my-syntax -package :

body ...

All of the macros that implement the standard constructs of the Stanza language are in the
core syntax package.

Every syntax package defines a set of productions, each consisting of a number of trans-
formation rules. The following syntax:

defproduction my-production: ProductionType

defines a production named my-production that returns a value of type ProductionType

when matched.
To define a transformation rule for a production, we use the defrule construct:

defrule my -production = (pattern ...) :

body

The above code defines a transformation rule for the my-production production indicating
to return the result of evaluating body if the input matches the pattern given by pattern.
Note that the value returned by body must agree with the type specified by the production
definition – which, in this case, is ProductionType.

A failure rule is a special transformation rule, and is defined using the fail-if construct:

fail -if my -production = (pattern ...) :

body

The above specifies that the my-production production should never match the given pat-
tern. If it does, then the input is badly formed, and body is evaluated to obtain an Exception

value that describes the error. Failure rules are used to produce descriptive error messages
for badly formed input.

To refer to productions defined in other syntax packages, we use the import construct.

import (type , exp) from core

The above code imports the type and exp productions from the core syntax package.

3.4 Pattern Syntax

Patterns are expressed in a variant of Backus-Naur form [5] (BNF) extended to describe
s-expressions instead of just flat sequences of tokens. Here we will show some examples of
the syntax used for defining patterns.

A symbol pattern matches against a symbol if they are the same symbol.

CHAPTER 3. THE STANZA MACRO SYSTEM 61

hello world matches against:
hello world

An underscore pattern matches against any s-expression.

hello _ world matches against:
hello x world

hello 42 world

hello (a b c) world

A list pattern matches against a list if the patterns within the list pattern match the
contents of the list.

a (hello _ world) b matches against:
a (hello x world) b

a (hello (a b c) world) b

An ellipsis pattern matches against zero or more repeated occurrences of the pattern.

a (x ...) b matches against:
a () b

a (x) b

a (x x x x) b

a ((x _) ...) b matches against:
a () b

a ((x 2)) b

a ((x 2) (x hello) (x (y z))) b

A splice-ellipsis pattern matches against zero or more repeated occurrences of the contents
of a list pattern.

a ((x _) @...) b matches against:
a () b

a (x 2) b

a (x 2 x hello x (y z)) b

Ellipsis patterns can be nested.

a ((x (y z) @...) ...) b matches against:
a () b

a ((x) (x y z)) b

a ((x) () (x y z y z y z)) b

A binder pattern matches against the given pattern, and then binds the result of matching
against that pattern to the given binder. This binding can then be referred to in the rule
body.

a ?xs:((x (y z) @...) ...) b matches against:
a () b

with xs bound to: ()

a ((x) (x y z)) b

with xs bound to: ((x) (x y z))

a ((x) () (x y z y z y z)) b

CHAPTER 3. THE STANZA MACRO SYSTEM 62

with xs bound to: ((x) () (x y z y z y z))

(do ?x:_ ?y:_) ... matches against:
(do a b) (do c d)

with x bound to: (a c)

and y bound to: (b d)

(do a b) (do (1 2 3) z) (do x y)

with x bound to: (a (1 2 3) x)

and y bound to: (b z y)

A production pattern matches if any of its transformation rules match. The result of the
match is the result of evaluating the matched transformation rule.

a (#exp) b matches against:
a (d x) b

if the exp production matches against: d x

3.5 Stanza’s Core Macros

Stanza’s standard library comes included with a large collection of macros defined in the
core syntax package for implementing the standard constructs. The important productions
defined in core are type and exp:

1. The type production matches against s-expressions for expressing Stanza types. The
following lists some examples:

Int

Int|String

Int -> String

(Int , Array <Int >) -> String|False

2. The exp production matches against s-expressions for expressing Stanza expressions.
The following lists some examples:

x + y

f(x, y)

match(x, y) :

(x:Int , y:String) : body1

(x:String , y:Int) : body2

defn f (x, y) :

body

For handling operator precedence, the exp production internally relies upon the exp0,
exp1, exp2, exp3, and exp4 productions that match against expressions at the 0th
through 4th precedence levels.

CHAPTER 3. THE STANZA MACRO SYSTEM 63

3.6 Example

The while construct allows programmers to repeatedly execute some body as long as a given
predicate evaluates to true.

while not empty ?(xs) :

val x = next(xs)

println(x)

The above code repeatedly checks whether empty?(xs) returns true. If it does not, then it
prints the result of next(xs).

The following example shows the implementation of the while macro:

defrule exp4 = (while ?pred:#exp : ?body:#exp) :

val template = ‘(

let :

defn* loop () :

if (pred upcast -as core/True|core/False) :

body

loop()

loop ())

parse -syntax[core / #exp](

fill -template(template , [

‘loop => gensym(‘loop)

‘pred => pred

‘body => body]))

The transformation rule is defined for the exp4 production, indicating that it is a Stanza
expression at the 4th precedence level. In order to match, the pattern requires a while

symbol, followed by an exp production representing the predicate, followed by the : symbol,
followed by another exp production representing the body.

The template value shows the transformed code that the macro should expand into. The
loop is implemented by defining and then calling a tail-recursive function. The fill-template
utility function is used to substitute pred with the predicate expression, and body with the
body expression. The loop symbol is substituted with a unique symbol in order to avoid
accidental capture or shadowing.

Note that the transformed code is, itself, expressed in terms of more macros – such as
let and if. The parse-syntax[core / #exp](...) syntax indicates that the resulting
substituted s-expression should continue to be expanded using the exp production in the
core package.

Note that the body of the macro is written using arbitrary Stanza code. The while macro
is a straightforward syntactic shorthand and the implementation is simple, but macros can
be much more involved. The implementation of some macros resemble miniature compilers
for a small language. The defsyntax, defproduction, and defrule constructs are macros
themselves, for instance, and take nearly two thousand lines to implement.

CHAPTER 3. THE STANZA MACRO SYSTEM 64

3.7 Staged Compilation

One fundamental design problem that arises in languages that support programmatic macros
is the order and time at which macros execute. This is especially complicated for languages
with interpreter semantics that execute a program line-by-line. The following lists just a few
of the issues that need to be carefully considered:

• If the evaluation of a macro contains side-effects (such as printing a message to the
screen), when should these side-effects take place?

• If interpreting a program line-by-line, it seems natural to first expand all the macros in
the line, and then execute the resulting core forms. But then how would the program
behave when compiled? If we expanded all macros in the program before compila-
tion, then the same program would behave differently when compiled versus when
interpreted.

• Suppose we choose to expand all macros before compilation. Assume that x is a global
value:

val x = f(42)

and that x is referenced from within the body of our macro transformer. When should
x be computed? The value of x is needed for proper functioning of the macro. But
f(42) may be an operation that should not execute until runtime!

Common Lisp [32] works around the above issues by pushing the responsibility to the
programmer. The eval-when form provides the programmers fine control over when forms
are evaluated, but it is a notoriously hard-to-use construct.

Stanza follows a different philosophy for its macro system. Stanza is, at its heart, a
compiled language, and adopts a staged compilation approach for handling macro expansion.
Macro definitions can never be declared and used immediately in the same compilation step.
Instead, the standard Stanza compiler can be extended with additional syntax packages to
conceptually produce a new compiler that is then able to understand the new constructs.
Hence, code that requires new syntactic constructs are explicitly separated into two phases:
a set of syntax packages that extend the standard compiler, and the code that then relies
upon the new syntax provided by the extended compiler.

Any side-effects that occur due to expansion of a macro happens during the compilation
phase, and the resulting compiled program executes only the core forms that remain after
macro expansion.

3.8 Relationship to Other Syntax Frameworks

The goal of Stanza’s macro system is to provide programmers a natural readable syntax
along with the tools to easily implement their own syntactic abstractions.

CHAPTER 3. THE STANZA MACRO SYSTEM 65

The first property to note is that our system is intentionally limited in its flexibility for
supporting different syntaxes. For example, no amount of macros will allow users to program
Stanza using Java’s [2] syntax. The lexer rules – which controls the syntax for comments,
for literals, for indentation, etc. – are fixed and cannot be changed through macros. Our
objective is to give the minimum amount of flexibility to programmers such that they can
design a reasonable syntax for a useful construct. Towards this goal, Stanza differs greatly
from parser generator frameworks such as ANTLR [44] and Bison [15] that provide maximal
flexibility in order to parse a wide variety of existing syntaxes. We make the deliberate
decision to trade flexibility for better composability and ease-of-use.

The engine that drives macro expansion is heavily inspired by parser generators based
upon parsing expression grammars [23] (PEGs). The macro engine is differentiated from
PEGs by one critical aspect: the patterns and inputs are in terms of s-expressions instead
of in terms of a flat sequence of lexed tokens or sequence of characters. This imposes an
additional structure to the design of syntaxes. Macros naturally respect the scoping rules
that fall out of the hierarchical s-expression datastructure. Consider the following example
in which the while construct appears within the consequent clause of the if construct:

if x < 3 :

while x < 10 :

println(x)

x = f(x)

else :

println(x)

The while construct exists within its own list. Unlike a general parsing system, Stanza
guarantees that the while macro is localized to within the if construct. The parsing of
the if macro is completely shielded from the contents of the consequent and the alternate
clauses.

One other major advantage of operating on s-expressions instead of on flat sequences of
tokens is the resulting ease of implementing accurate error detection and recovery algorithms.
In order to detect more than a single error at a time, a parser must be able to skip badly
formed input and resume parsing at a “safe” position – a challenging practical problem. By
operating on s-expressions, the parser can simply give up parsing within the current list, and
resume from another.

Compared to traditional Lisp [32] macros, Stanza’s macro system has the advantage that
multiple s-expressions can map to a single core form, whereas Lisp makes the assumption
that there is a one-to-one mapping between input s-expressions and core forms. This is the
key distinguishing feature that allows Stanza to easily implement infix operators. Consider
the following list of s-expressions:

3 expands to: 3

3 + 4 expands to: ($do plus 3 4)

3 + 4 - 5 expands to: ($do minus ($do plus 3 4) 5)

Although each line contains a different number of s-expressions – the first contains one,
the second contains three, and the third contains five – they all expand into a single core

CHAPTER 3. THE STANZA MACRO SYSTEM 66

form. The combination of this feature and the small set of lexer shorthands allows Stanza
to provide a natural and familiar syntax to programmers, whereas Lisp has always been
criticised for its unappealing syntax.

67

Chapter 4

The Stanza Type System

Stanza supports an optional type system that offers the advantages of both dynamically-
typed and statically-typed languages. During the prototyping stage of development, optionally-
typed languages provide flexibility and productivity on par with dynamically-typed lan-
guages; and also offer the early error detection capabilities of statically-typed languages.
Programmers incrementally add type annotations to their untyped code in order to gradu-
ally increase the number of errors that can be statically caught by the compiler.

4.1 The Promises of Optional Typing

The intuition behind our optional type system is straightforward, and begins with the obser-
vation that the semantics of static and dynamic typing do not actually logically contradict
each other. It is possible to design a single semantics that can exhibit both sets of behaviours.

In an optionally-typed language, a user would begin a new project by programming
without providing any type annotations. In this usage mode, the language would both look
and behave like a dynamically-typed language. The language is at its least restrictive, but
errors are not detected until execution.

As the design stabilizes, the user is free to incrementally add type annotations to mature
interfaces. This mixed-typed mode is the most common usage mode of an optionally-typed
language. Some, but not all, of the binders have explicit type annotations that indicate their
intended usage. For the annotated binders, the compiler ensures that they are used in a
way that is consistent with their annotation and issues a typechecking error if not. For the
unannotated binders, errors are left to be detected during execution as before.

Finally, as the project nears completion, the user can provide type annotations for all
binders in the program, in which case the language behaves identically to a fully statically-
typed language.

When working in an optionally-typed language, the transition from a dynamically-typed
to a statically-typed paradigm is a smooth and continuous one, and, most importantly, is
not monotonic. Users are able to freely add and remove as many or as few type annotations

CHAPTER 4. THE STANZA TYPE SYSTEM 68

as is appropriate for the project. Even on top of a fully statically-typed code base, users are
free to develop new functionality using a completely dynamically-typed coding style. It is
all governed by the same semantics underneath.

4.2 Desired Characteristics

There has been many attempts at hybrid dynamic-static type systems in the past, though
sometimes with different goals. For enabling the specific development style outlined above,
where programmers freely and fluidly move between paradigms to suit their needs, there are
three important characteristics that we consider desirable from an optional type system:

1. The type system must allow typed and untyped (a.k.a. dynamically-typed) code to
be mixed freely and with fine granularity. We want users to be able to freely choose
in which paradigm to write different functions in the same package, write different
sections in the same function, and even annotate different binders in the same section.

2. Both paradigms must be equally regarded, and no paradigm should dominate over
the other. One problem that plagued earlier attempts at hybrid systems, such as
that by Abadi et al. [1], was that either the static or dynamic paradigm would be
invasive and gradually take over the code base. For example, users would prototype
the program in the dynamic paradigm, but then immediately after adding the first
static type annotation, the system would issue an error indicating that it is illegal to
pass an untrusted value from the dynamic paradigm into the trusted context of the
static paradigm.

The user would then have to insert additional type annotations to prove that the
value can safely be passed into the trusted context, but this would simply lead to more
errors indicating that untrusted values are now being passed into these newly annotated
static contexts. Eventually, the user is forced to annotate significant portions of their
program before it passes the typechecker. To avoid this phenomenon, it is important
that both the dynamic and the static paradigms be non-invasive.

3. Users should be able to migrate code from an untyped to typed paradigm simply by
adding type annotations, with no structural changes required. As an example, consider
porting a program from Python [47] to Java [2]. Such a port cannot typically be done
by merely adding type annotations and changing the syntax. Often the code must be
rewritten to conform to a different logical structure. This is because many Python
idioms cannot be expressed under the restrictions of Java’s static type system.

For example, Python allows variables to take on values of two different types, and Java
does not. In Python, to call a function that requires an array of integers, it is sufficient
to ensure that the given array contains only integers at the time of the call. In Java,
the same function must be called with an array that was originally created to store
only integers.

CHAPTER 4. THE STANZA TYPE SYSTEM 69

We must minimize the need for structural changes if users are to be able to seamlessly
transition between paradigms as envisioned. To achieve this, the type system must
be carefully designed to be expressive enough to type the idioms that are prevalent in
dynamically-typed programming languages.

4.3 Example Interaction

Before diving into the technical details of the type system, we first demonstrate here an
example interaction that shows the development style made possible by Stanza.

Untyped Code

The following shows an example of untyped Stanza code:

defstruct Clothes : (sort , clean ?)

defstruct Yarn : (length)

defstruct Person : (name , clothes)

defn wash (c) :

println (" Washing clothes ")

println ("It ’s %_" % [sort(c)])

println ("Br ...")

Clothes(sort(c), true)

defn knit (y) :

for i in 0 to 10 do :

if i < length(y) :

println (" Knitting (%_ cm used up so far)" % [i])

else :

println ("Out of yarn !")

Clothes ("a tshirt", true)

defn wear (p, c) :

println ("I am %_" % [name(p)])

println ("I am wearing %_" % [sort(clothes(p))])

println ("Now I’m wearing %_" % [sort(c)])

Person(name(p), c)

val tshirt = knit(Yarn (100))

val patrick = Person (" Patrick", Clothes (" nothing", false))

wash(tshirt)

wear(patrick , tshirt)

A Clothes object contains two fields, sort, and clean?; a Yarn object contains a single
length field; and a Person object contains a name and a clothes field. The wash function
takes a single argument, c, which is assumed to be a Clothes object, and prints out some
messages along with the sort of clothing it is. wash returns a new Clothes object of the same

CHAPTER 4. THE STANZA TYPE SYSTEM 70

sort but with clean? set to true. The knit function takes a single argument, y, assumed
to be a Yarn object, prints out a message in a loop, and finally returns a Clothes object
representing a clean t-shirt. The wear function takes two arguments, p and c, assumed
to be a Person and a Clothes object, and prints out the name of the person, the sort of
clothing he is currently wearing, and the sort of clothing represented by c. It returns a
new Person object with the same name but now wearing c. At the top-level, the tshirt

value is initialized to the result of calling knit with 100 units of Yarn. The patrick value
is initialized to a Person named "Patrick" that is currently wearing "nothing". We then
call wash on tshirt, and later, wear, on patrick and tshirt.

Note that there is not a single type declaration in the code. In this usage mode, Stanza
looks and behaves like a dynamically-typed language. The following shows the output of
running the code:

Knitting (0 cm used up so far)

Knitting (1 cm used up so far)

Knitting (2 cm used up so far)

Knitting (3 cm used up so far)

Knitting (4 cm used up so far)

Knitting (5 cm used up so far)

Knitting (6 cm used up so far)

Knitting (7 cm used up so far)

Knitting (8 cm used up so far)

Knitting (9 cm used up so far)

Washing clothes

It’s a tshirt

Br...

I am Patrick

I am wearing nothing

Now I’m wearing a tshirt

Runtime Errors

When being used as a dynamically-typed language, Stanza does not detect errors until
execution. Suppose that the programmer makes the following mistake: instead of calling
wash on tshirt, the programmer calls wash on the integer 42:

val tshirt = knit(Yarn (100))

val patrick = Person (" Patrick", Clothes (" nothing", false))

wash (42)

wear(patrick , tshirt)

The following shows the output of executing the incorrect code:

Knitting (0 cm used up so far)

Knitting (1 cm used up so far)

Knitting (2 cm used up so far)

Knitting (3 cm used up so far)

Knitting (4 cm used up so far)

CHAPTER 4. THE STANZA TYPE SYSTEM 71

Knitting (5 cm used up so far)

Knitting (6 cm used up so far)

Knitting (7 cm used up so far)

Knitting (8 cm used up so far)

Knitting (9 cm used up so far)

Washing clothes

FATAL ERROR: Expected argument of type Clothes but got Int.

at trycode.stanza :1.21

at trycode.stanza :7.23

at trycode.stanza :27.0

By inspecting the stack trace, we can determine that the error occured at the call to
sort(c) in the wash function. The error message indicates that the function sort is expect-
ing a Clothes object, but it was incorrectly called with an Int object (namely the value
42).

Mixed-Typed Code

Upon seeing the error message, the programmer may have the following thought: “c should
be a Clothes object, because wash is expected to be called with a Clothes object. So let
us make this expectation explicit with a type annotation.” Here is the wash function with
the additional annotation:

defn wash (c:Clothes) :

println (" Washing clothes ")

println ("It ’s %_" % [sort(c)])

println ("Br ...")

Clothes(sort(c), true)

With this type annotation, the program now becomes an example of using Stanza as a
mixed-typed language. Attempting to compile the code now results in the following error:

trycode.stanza :27.0: Cannot call function

wash

of type

Clothes -> Clothes

with arguments of type

(Int).

The error indicates that the call to wash(42) is incorrect. The wash function expects an
argument of type Clothes, but it was called with an argument of type Int. Based on this
error message, the programmer can then quickly locate and fix the source of the mistake.

Typed Core Libraries

It is worth pointing out mixed-typed code is the most common sort of Stanza code. There
are extremely few Stanza programs that are completely untyped. Even though the type
annotation on wash is the sole user type annotation in our previous example, note that
Stanza’s core libraries are mature and fully statically-typed.

CHAPTER 4. THE STANZA TYPE SYSTEM 72

Suppose that the programmer made a mistake in the implementation of knit and called
length on y instead of on i:

defn knit (y) :

for i in 0 to 10 do :

if length(i) < y :

println (" Knitting (%_ cm used up so far)" % [i])

else :

println ("Out of yarn !")

Clothes ("a tshirt", true)

Despite the lack of type annotations in the knit function, Stanza is still able to detect
the mistake using the type annotations in its core library. Here is the resulting compilation
error:

trycode.stanza :13.7: No appropriate function

length

for arguments of type

(Int).

Possibilities are:

length: Lengthable -> Int

at core/core.stanza :1467.16

length: RandomAccessFile -> Long

at core/core.stanza :2037.21

length: Yarn -> ?

at trycode.stanza :2.18

The error says that there are three overloaded definitions of the length function. The
first two are defined in the core library and accept arguments of types Lengthable and
RandomAccessFile respectively. The last one is the length getter function for the Yarn

object. None of those definitions can be appropriately called with an argument of type Int,
which is the type that Stanza inferred for i.

This example demonstrates a particularly exciting characteristic of optionally-typed lan-
guages which hints that optional typing may be more productive than both fully dynamically-
typed and fully statically-typed languages. During the prototyping stage, Stanza offers flex-
ibility on par with dynamically-typed languages for the user’s code. However, incorrect
usages of trusted code are still detected automatically.

Typed Code

Finally, as the program matures and stabilizes, the programmer may choose to insert ex-
plicit type annotations for all binders. In this mode, Stanza acts as a fully statically-typed
language.

defstruct Clothes : (sort:String , clean ?:True|False)

defstruct Yarn : (length:Int)

defstruct Person : (name:String , clothes:Clothes)

CHAPTER 4. THE STANZA TYPE SYSTEM 73

defn wash (c:Clothes) :

println (" Washing clothes ")

println ("It ’s %_" % [sort(c)])

println ("Br ...")

Clothes(sort(c), true)

defn knit (y:Yarn) :

for i in 0 to 10 do :

if i < length(y) :

println (" Knitting (%_ cm used up so far)" % [i])

else :

println ("Out of yarn !")

Clothes ("a tshirt", true)

defn wear (p:Person , c:Clothes) :

println ("I am %_" % [name(p)])

println ("I am wearing %_" % [sort(clothes(p))])

println ("Now I’m wearing %_" % [sort(c)])

Person(name(p), c)

val tshirt = knit(Yarn (100))

val patrick = Person (" Patrick", Clothes (" nothing", false))

wash(tshirt)

wear(patrick , tshirt)

The above code is fully statically-typed, where explicit type annotations have been in-
serted for all field declarations and all function arguments. (The tshirt and patrick values
have their types inferred automatically and do not need annotations.)

Prototyping Additional Features

The next interaction demonstrates the fluidity with which users can move between paradigms
in Stanza. The program is mature and fully statically-typed, and we now consider prototyp-
ing new features on top of a typed code base.

The following example adds the additional function patch to the existing program. patch
is coded in a dynamically-typed style without any explicit type annotations.

defstruct Clothes : (sort:String , clean ?:True|False)

defstruct Yarn : (length:Int)

defstruct Person : (name:String , clothes:Clothes)

defn wash (c:Clothes) :

...

defn knit (y:Yarn) :

...

defn wear (p:Person , c:Clothes) :

...

CHAPTER 4. THE STANZA TYPE SYSTEM 74

defn patch (c, y) :

println (" Patching %_ with %_ cm of yarn." % [

sort(c), length(y)])

val tshirt = knit(Yarn (100))

val patrick = Person (" Patrick", Clothes (" nothing", false))

wash(tshirt)

patch(tshirt , Yarn (10))

wear(patrick , tshirt)

Notice that no effort is required to enable the new function to interact with the rest of the
typed code base.

When the patch function stabilizes, the programmer may then insert type annotations
to bring it to the same level of reliability as the rest of the code base. Stanza allows users to
freely move from the untyped to typed paradigm and vice versa to suit the project needs.

4.4 Overview of the Type System

There are four key components to the design of our type system:

1. the nominal subtyping framework,

2. the ? type,

3. support for parametric types, and

4. type inference.

We chose the nominal subtyping framework as the foundation upon which to build our
type system. In this framework, the programmer specifies the set of types in the program
and the set of subtyping relations between the types. As an example the following table
shows a partial categorization of the animal kingdom and their subtyping relations.

Types Subtyping Relations
Animal Mammal <: Animal

Mammal Fish <: Animal

Fish Salmon <: Fish

Salmon Tuna <: Fish

Tuna Dog <: Mammal

Dog Cat <: Mammal

Cat Tabby <: Cat

Tabby

CHAPTER 4. THE STANZA TYPE SYSTEM 75

The subtype operator (<:) can be informally read as “is a type of.” So the statement
Salmon <: Fish can be read as “a Salmon is a type of Fish”. The most important use
for the subtype relation is in checking the legality of function calls. Given a function that
is annotated to require an argument of type Fish, a subtyping framework would allow the
function to be called with any value of type Fish or subtype of Fish.

We chose to build our type system on top of the nominal subtyping framework for two
major reasons. The first is that it is the framework that is used by the type systems of
C++ [55], C# [27], and Java [2], three of the most popular statically-typed languages used
in industry. Thus a programmer experienced with any of the three languages should feel at
ease with our system.

The second reason concerns the coding style prevalent in untyped languages. Python [47],
Ruby [22], and Javascript [18] are three of the most popular dynamically-typed languages
used in industry. Despite having no static type systems, we found that programmers code
and architect their programs as if they were in a nominal subtyping framework. For instance,
Python code tends to resemble Java code more than it resembles OCaml [35] or Haskell [31]
code. This second reason is important because it means that typical untyped code can be
more easily migrated to a nominal subtyping framework than to, for example, a Hindley-
Milner [29] style type system.

The ? type is the key mechanism underlying our optional type system, and is what allows
us to model the semantics of dynamically-typed languages. It is governed by two rules:

1. An expression of type ? is allowed to be passed to any context.

2. An expression of any type is allowed to be passed to a context expecting a ? type.

Python can be thought of as having our optional type system but where every binder has
been annotated with the ? type.

Parametric types allow us to express types that are parameterized by other types – like
an array of integers, or a list of strings. To support this, we allow for types to optionally
accept type parameters, and for functions to optionally accept type arguments.

Parametric types are crucial for increasing the range of errors that can be statically caught
by the typechecker. Generic collections, such as arrays, lists, and tables, are prevalently used
in daily programming. Parametric types allow the type checker to check whether values to be
stored into a collection are of the correct type, and whether values retrieved from a collection
are used appropriately.

Finally, to make the system convenient to use, Stanza’s inference algorithm allows the
programmer to elide type annotations for a number of constructs.

4.5 The Nominal Subtyping Framework

The following lists every type that is supported by Stanza:

CHAPTER 4. THE STANZA TYPE SYSTEM 76

Named Types: A<T1 , ..., Tn >

Tuple Types: [T1, ..., Tn]

Union Type: T1|T2

Intersection Type: T1&T2

Arrow Type: (T1 , ..., Tn) -> Tr

Bottom Type: Void

Unknown Type: ?

Type Variable: T

Named types refer to a type that has been declared using the deftype construct. It
is the most frequent type seen in daily programming. Some common examples are Int,
String, True, False, and Array<Int>. Note that if the type parameters for a named type
are not given, then they are assumed to be ? by default. Thus the List type is equivalent
to List<?>.

A tuple type denotes tuple values where the arity and type of each component is statically
known. For instance, the type [Int, String] denotes all 2-arity tuples containing an Int

followed by a String. Tuple types are often used to denote the return types for functions
that return multiple values. The following is an example of a function, quad-root, that
returns a tuple containing the two solutions to a quadratic equation:

defn quad -root (a:Float , b:Float , c:Float) -> [Float , Float] :

val determinant = b * b - 4 * a * c

[((- b) + sqrt(determinant)) / (2 * a),

((- b) - sqrt(determinant)) / (2 * a)]

Stanza provides special support for destructuring a tuple to make it convenient to call the
above function:

val [r1 r2] = quad -root (2.0f, 10.0f, 1.0f)

Union types arise naturally as the resulting type of a match expression. Consider the
following code:

val x = match(y) :

(y:Int) : 42

(y:String) : "Hello"

(y:Char) : ’z’

where the value x is initialized to either the integer 42, the string "Hello", or the character
’z’, depending on whether the type of y is an Int, String, or Char. The inferred type of
x will be Int|String|Char to indicate that it may take on values of any of those types.

The intersection type indicates that a value must be simultaneously of two types. For
example, a Collection<Int> represents an abstract collection containing Int values; and a
Lengthable represents a value with a length property. The intersection type Collection<Int>
& Lengthable represents a value that is both a collection of Int values and also has a length
property. The following definition of an integer array type:

deftype IntArray <: Collection <Int > & Lengthable

states that IntArray can be such a value.

CHAPTER 4. THE STANZA TYPE SYSTEM 77

The arrow type indicates that a value must be a function. The type (Int, String) ->

Int represents a two-arity function that accepts an Int and a String and returns an Int.
One other common situation where the intersection type arises are functions that take a

variable number of arguments. The following function takes either one or three arguments:

multifn :

(x:Int) : x

(x:Int , y:String , z:Int) : append(to-string(x + z), y)

The inferred type for the above would be:

(Int -> Int) & ((Int String Int) -> String)

to reflect that it can either be called with an Int, in which case it will return an Int; or it
can be called with an Int, a String, and an Int, in which case it will return a String.

The Void type is special in that there are no values of this type. Consider the following
function, which sets a flag and then throws an exception:

defn flag -error () :

ERROR -OCCURRED = true

throw(Exception (" Flagged Error "))

What is the type of the values returned by flag-error? Well, from inspecting the function
body, we see that flag-error? doesn’t return any values. Thus flag-error is declared to
have a return type of Void.

The unknown type, ?, is the basic mechanism used by Stanza to model untyped code. A
binder annotated with the ? type indicates to the compiler that there is no static information
about the type of that binder, and to allow it to be used freely.

Type variables occur in the definition of parametric polymorphic functions, and will be
discussed in greater depth later.

Defining the Type Hierarchy

Named types are defined using the deftype construct. The general syntax is as follows:

deftype MyType <T1 , ..., Tn > <: Parent1 & Parent2 & ... & Parentm

The name of the type is given as MyType, and is parameterized by n type parameters: T1

through Tn. The angle brackets (<>) can be omitted for types without any type parameters.
MyType is explicitly stated to be a subtype of m parent types: Parent1 through Parentm.
The type parameters can be referenced by the parent types. The <: is omitted for types
that are not subtypes of any other type.

The following shows an example of the deftype expressions necessary to represent the
type hierarchy representing our animal kingdom:

deftype Animal

deftype Mammal <: Animal

deftype Dog <: Mammal

deftype Cat <: Mammal

CHAPTER 4. THE STANZA TYPE SYSTEM 78

deftype Tabby <: Cat

deftype Fish <: Animal

deftype Salmon <: Fish

deftype Tuna <: Fish

All animals fall under the Animal type, which has two direct subtypes: Mammal and Fish.
Mammal can be further classified as Dog or Cat, and Cat has one direct subtype: Tabby. Fish
can be further classified as Salmon or Tuna. None of the animal types are parameterized.

The following shows an example of a parametric type:

deftype Array <T> <: Collection <T> & Lengthable

An array has one type parameter, T, for indicating the type of its contents. It is explicitly
stated to be a subtype of Collection<T> and Lengthable, indicating that an array is an
abstract collection and has a length.

Subtyping Relation

Figure 4.1 shows the inference rules defining Stanza’s subtyping relation. The relation:

X <: Y

means that the type X is a subtype of the type Y. The subtype relation is the most important
relation underlying Stanza’s typechecker. A value of type X is allowed to be passed to a
location expecting a value of type Y if and only if X <: Y.

Named1 and Named2 define the subtyping rules for named types. Named1 defines a
named type to be a subtype of another named type if they refer to the same type, and if the
type parameters of the first are respectively subtypes of the type parameters of the second.
Note that this means that all parametric types in Stanza are covariant. This is an instance
of where we deliberately chose to sacrifice some static type safety for ease-of-use.

Named2 specifies how the subtyping relation is defined relative to the type hierarchy. A
named type is a subtype of another type, X, if its parent is a subtype of X. To compute its
parent we assume that there is an entry in the type hierarchy of the form:

deftype A<T1 , ..., Tn > <: P

The parent is computed by replacing the type variables T1, ..., Tn with the respective
type parameters S1, ..., Sn.

Tuple1 and Tuple2 define the subtyping rules for tuple types. Tuple1 specifies that a
tuple type is a subtype of another tuple if they have the same arity, and if the elements of
the first are respectively subtypes of the elements of the second.

Tuple2 allows a tuple of known arity to be interpreted as a tuple of unknown arity. The
core Stanza library defines the Tuple type to be a subtype of, among others, Collection
and Lengthable. Tuple2 allows Stanza to derive, for example, that [Int, String] is a
subtype of Collection<Int|String>.

Union1, Union2, and Union3 define the subtyping rules for the union type. Union1

specifies that in order for a union type T1|T2 to be a subtype of another type, X, both T1

CHAPTER 4. THE STANZA TYPE SYSTEM 79

Figure 4.1: Stanza Subtyping Relation

and T2 need to be a subtype of X. Union2 and Union3 together say that in order for a type
X to be a subtype of a union type T1|T2, it is sufficient for X to be a subtype of either T1 or
T2.

Intersection1, Intersection2, and Intersection3 define the subtyping rules for
the intersection type. Intersection1 and Intersection2 together say that an intersec-
tion type, T1&T2, is a subtype of another type, X, if either T1 or T2 is a subtype of X.
Intersection3 says that in order for a type X to be a subtype of an intersection type
T1&T2, X needs to be a subtype of both T1 and T2.

The Union and Intersection rules are taken directly from the textbook Types and
Programming Languages [45].

The Arrow rule defines the subtyping relation between two arrow types and is standard.
An arrow type is a subtype of another if they have the same arity, the argument types of
the second are subtypes of the argument types of the first, and if the return type of the first
is a subtype of the return type of the second.

The Void rule says that the bottom type, Void, is a subtype of all other types.
The TypeVar rule says that the subtyping relation for type variables is reflexive, and a

type variable is a subtype of itself.

CHAPTER 4. THE STANZA TYPE SYSTEM 80

The Unknown1 and Unknown2 rules define the subtyping relation for the unknown
type. The ? type is a subtype of all types, and all types are a subtype of the ? type.

4.6 Polymorphic Functions and Captured Type

Parameters

Stanza supports second-class polymorphic parametric functions by allowing named func-
tions to accept type parameters. The following example shows the declaration of a general
reduction function, myreduce, that is able to accept lists of any type:

defn myreduce <T> (f: (T, T) -> T, xs: List <T>) -> T :

if empty?(tail(xs)) : head(xs)

else : f(head(xs), myreduce(f, tail(xs)))

The myreduce function takes one type parameter, T, and two normal arguments, f and xs.
f is a function that computes a new T given two T values, and xs is a list of T values. The
function merges all the values in xs into one by calling f repeatedly on each element in xs.

By parameterizing myreduce over the type T, users can call myreduce to reduce lists of
any type. The following examples shows using myreduce to implement a sum and append-all
function:

defn my -sum (xs: List <Int >) -> Int :

myreduce <Int >(plus , xs)

defn my -append -all (xs: List <List <Int >>) -> List <Int > :

myreduce <List <Int >>(append , xs)

my-sum computes the sum of a list of integers by calling myreduce with the type argument
Int and the merging function plus. my-append-all computes the concatenation of a list
containing lists of integers by calling myreduce with the type argument List<Int> and the
merging function append.

Type Parameter Inference and the Array Store Problem

Note that the previous example explicitly provided the type arguments Int and List<Int>

in the calls to myreduce. It is an error to call a polymorphic function without the exact
number of required type arguments.

From looking at the definition of my-sum and my-append-all, however, it is easy to
deduce that xs in my-sum has type List<Int>, and that xs in my-append-all has type
List<List<Int>>. Why is it that the compiler cannot automatically infer the type argu-
ments in the call to myreduce by inspecting the types of the arguments it is called with? It
seems straightforward to infer the necessary type argument to make the program typecheck
successfully.

The reason is due to Stanza’s subtyping relation, which states that all parametric types
are covariant in their type parameters. Due to this rule, Stanza cannot make use of existing

CHAPTER 4. THE STANZA TYPE SYSTEM 81

type argument inference algorithms. To illustrate the critical problem, let us assume that
the type Dog is a subtype of Animal, and consider the following function for storing a value
to the fifth slot in an array:

defn store -5th <T> (xs:Array <T>, v:T) :

xs[4] = v

What type argument should be inferred in a call to store-5th with arguments of type
Array<Animal> and Dog?

val animals : Array <Animal > = ...

val dog : Dog = ...

store -5th <??? >(animals , dog)

The answer seems trivially to be T = Animal. The first argument, Array<Animal>, can
trivially be passed to a location expecting an Array<Animal>, and due to subtyping, the
second argument, Dog, can be passed to a location expecting an Animal. This behaviour is
consistent with our expectations and the program typechecks successfully. A dog should be
able to be stored to the fifth slot of an array of animals.

The problem arises when store-5th is called with arguments of type Array<Dog> and
Animal:

val dogs : Array <Dog > = ...

val animal : Animal = ...

store -5th <??? >(dogs , animal)

What type should be inferred for T to make the program typecheck successfully? The answer
remains T = Animal. The first argument, Array<Dog>, can be passed to a location expecting
an Array<Animal> because Stanza’s parametric types are covariant. The second argument,
Animal, can trivially be passed to a location expecting an Animal. The program continues
to typecheck successfully, which is inconsistent with our expectations. An arbitrary animal
should not be able to be stored to the fifth slot of an array of dogs. We will refer to this as
the array store problem.

Existing Solutions to the Array Store Problem

The array store problem described previously extends beyond just type parameter inference
and is a general problem that arises from allowing mutable types (such as arrays) to be
covariant. Stanza, along with Eiffel [39], Java [2], C# [27], and Dart [6], among others,
deliberately chose for arrays to be covariant for a simple reason: it is intuitive and the
behaviour that is expected by users.

Nonetheless, the array store problem needs to be addressed somehow. A type system
that allows an animal to be stored in an array of dogs is not a useful one. There have been
three different solutions employed by existing languages:

1. Provide the user a syntax for explicitly annotating the variance of parametric types.
This approach, employed by Scala [42], Kotlin [9], and partially by Java [2] and C#

CHAPTER 4. THE STANZA TYPE SYSTEM 82

[27], provides the most flexibility to the user while also providing the strictest safety
guarantees. The disadvantage is that such a system adds significant complexity to
the language and greatly steepens the learning curve. Since Stanza is targeted towards
users without extensive type system experience, we felt this solution to be inappropriate
for our audience.

2. Avoid introducing the concept of subtyping altogether from the language. OCaml’s [35]
module system and Haskell [31] and Rust’s [17] typeclass systems are examples of how
a language can be designed to sidestep the concept of subtyping while still remaining
useful. This is easier for users to learn than a variance annotation system, but is also
significantly less flexible. For example, creating a heterogenous collection in Haskell,
which is a trivial operation in Java [2], requires the use of existential types, a non-
standard extension to the base language.

3. Limit covariance to special system-provided types, such as arrays, and provide a special-
cased typing rule for handing stores to arrays. This is the approach employed by
Eiffel [39], Java [2], and C# [27] for its arrays.

We like the third approach and feel that it provides the most intuitive behaviour for our
target users, but do not like how arrays behave differently from user-defined types. Stanza
generalizes this solution in the form of its captured type parameters and allows arrays and
user-defined parametric types to be handled uniformly.

Captured Type Parameters

Stanza offers two categories of type parameters: explicit and captured. Explicit type param-
eters are the ones that have already been discussed. When calling a function with explicit
type parameters, the type arguments must be provided by the user. In contrast, when calling
a function with captured type parameters, the type arguments are provided automatically
by Stanza’s capturing system based upon the annotated capturing locations in the function
definition. Here is how myreduce can be declared using captured instead of explicit type
parameters:

defn myreduce <?T> (f: (T, T) -> T, xs: List <?T>) -> T :

if empty?(tail(xs)) : head(xs)

else : f(head(xs), myreduce(f, tail(xs)))

The ? prefix in front of the ?T type parameter indicates to Stanza that T is a captured
type parameter. The List<?T> annotation for xs denotes the capturing location for T.
Roughly, it says that xs must be a list and T should be captured from the element type of
the list. The following code demonstrates calling this second definition of myreduce:

defn my -sum (xs: List <Int >) -> Int :

myreduce(plus , xs)

defn my -append -all (xs: List <List <Int >>) -> List <Int > :

CHAPTER 4. THE STANZA TYPE SYSTEM 83

myreduce(append , xs)

Note that the type arguments are now captured from the argument types instead of
explicitly given by the user. In the call to myreduce(plus, xs), the captured type for T is
Int as xs has type List<Int>. In the call to myreduce(append, xs), the captured type for
T is List<Int> as xs has type List<List<Int>>.

The Flow Relation

The key relation that governs Stanza’s capturing mechanism is the flow relation, whose
inference rules are shown in Figure 4.2.

The flow relation:
Z ∈ X⇒

?T
Y

is read “the type Z exists in the set of types that flow into type parameter T when type X

is passed to type Y”. It closely mirrors the structure of the subtype relation, and in fact, is
related by the following theorem:

∃Z. Z ∈ X⇒
?T

Y if and only if X <: Y

which says that the set of types that flow to T exists if and only if X is a subtype of Y.
CapVar1 and CapVar2 defines the behaviour of captured type parameters. CapVar1

is the critical rule and says that if a type, X, is passed to captured type parameter T, then
X flows into T. If X is passed to some other captured type parameter S, then CapVar2 says
that Void flows into T.

TypeVar specifies that Void flows into T if a type variable is passed to itself.
Named1, Named2, and Named3 define the flow behaviour of named types. Named1

says that a named type can be passed to another named type if the names match and all
the type arguments of the left-hand type can be respectively passed to the type arguments
of the right-hand type. Any type that flows to T due to passing the type arguments also
flow to T when passing the named types. If the named types have no type arguments, then
Named2 says that Void flows to T. Named3 says that any type that flows to T when the
parent of the named type is passed also flows to T when the named type is passed. The
parent is computed in the same fashion as for the subtype relation.

Tuple1, Tuple2, and Tuple3 define the flow behaviour of tuple types. Tuple1 says
that a tuple type can be passed to another tuple type if they have the same arity and all
the element types of the left-hand tuple can be respectively passed to the element types of
the right-hand tuple. Any type that flows to T when passing the element types also flows
to T when passing the tuple type. If the tuples are zero-arity, then Tuple2 says that Void

flows to T. Tuple3 says that any type that flows to T when the collapsed form of the tuple
is passed also flows to T when the tuple type is passed. The collapsed form is computed in
the same fashion as for the subtype relation.

CHAPTER 4. THE STANZA TYPE SYSTEM 84

Figure 4.2: Stanza Flow Relation

CHAPTER 4. THE STANZA TYPE SYSTEM 85

Union1, Union2, and Union3 define the flow behaviour of union types. Union1 says
that if a type, Y, can be passed to a type, X1, then Y can also be passed to the union type
X1|X2. Any type that flows to T when Y is passed to X1 also flows to T when Y is passed
to X1|X2. Union2 says the same about passing Y to X2. Union3 says that both X1 and X2

must be passable to Y for X1|X2 to be passable to Y. Any type that flows to T due to passing
X1 or X2 also flows to T when passing X1|X2.

Intersection1, Intersection2, and Intersection3 define the flow behaviour of in-
tersection types. Intersection1 says that Y must be passable to both X1 and X2 for Y to
be passable to X1&X2. Any type that flows to T when Y is passed to X1 or X2 also flows to T

when Y is passed to X1&X2. Intersection2 says that any type that flows to T when X1 is
passed to Y also flows to T when X1&X2 is passed to Y. However, this rule applies only if Y is
not the captured type parameter ?T. Intersection3 says the same about passing X2 to Y.

Arrow defines the flow behaviour of the arrow type. If the two arrows have the same
arity, if all the argument types of the right-hand arrow can be passed to the argument types
of the left-hand arrow, and if the return type of the left-hand arrow can be passed to the
return type of the right-hand arrow, then the left-hand arrow can be passed to the right-hand
arrow. Any type that flows to T when passing the argument or return types also flow to T

when passing the arrow.
Unknown1, Unknown2, and Unknown3 define the flow behaviour of the unknown

type, and rely upon the unknown expansion relation (∼). Unknown1 says that a type,
X, can be passed to the unknown type if X can be passed to some expanded type Y. Any
type that flows to T when passing to the expanded type also flows to T when passing to the
unknown type. Unknown2 says that the unknown type can be passed to some type, X,
if some expanded type, Y, can be passed to X. Any type that flows to T when passing the
expanded type also flows to T when passing the unknown type. Finally Unknown3 says
that Void flows to T when the unknown type is passed to the unknown type.

Capturing a Single Type Variable

Consider the case of calling a polymorphic function with a value of type X. The function has
a single captured type parameter, T, and expects a single argument of type Y. Then the type
that is captured by T, θT, is defined as the solution to the following equation:

θT =
⋃
{Z|Z ∈ X⇒

?T
Y[T := θT]}

where we use
⋃
S to denote the union of all types in the set S. For example:⋃

{X1, X2, X3} = X1|X2|X3

The equation says that θT, the type captured by T, is defined to be the union of all types
that flow to T when X is passed to the result of substituting all occurrences of T in Y with θT.

As an example, consider calling the following function:

CHAPTER 4. THE STANZA TYPE SYSTEM 86

defn set -element <?T> (x:[Array <?T>, Int , T]) -> False :

body ...

with a value of type [Array<Animal>, Int, Dog]. Then θT, the type captured by T, must
satisfy the equation:

θT =
⋃
{Z|Z ∈ [Array<Animal>, Int, Dog]⇒

?T
[Array<?T>, Int, θT]}

which can be verified to have solution θT = Animal – assuming that Dog is a subtype of
Animal. Note that Void|T, the union of the Void type with any type T, is equivalent to just
T.

For the purposes of the capture mechanism, calling functions with more than a single
argument is equivalent to calling a function with arguments wrapped in a tuple – as was
done in the previous example.

Capturing Multiple Type Variables

In the case of calling a polymorphic function with multiple captured type parameters, the
types that are captured are defined as the solution to a system of equations. Suppose the
function has two captured type parameters, T and S, expects an argument of type Y, and is
called with a value of type X. Then the types that are captured by T and S, θT and θS, are
defined as follows:

θT =
⋃
{Z|Z ∈ X⇒

?T
Y[T := θT, S := θS]}

θS =
⋃
{Z|Z ∈ X⇒

?S
Y[T := θT, S := θS]}

θT is defined to be the union of all types that flow to T when X is passed to the result of
substituting all occurrences of T in Y with θT and all occurrences of S with θS. Similarly, θS
is defined as the union of all types that flow to S.

As an example, consider calling the following function, mymap:

defn mymap <?T,?S> (f:T -> ?S, xs:List <?T>) -> List <S> :

body ...

with arguments of type Int -> String and List<Int>. Then θT and θS, the types captured
by T and S, must satisfy the system of equations:

θT =
⋃
{Z|Z ∈ [Int -> String, List<Int>]⇒

?T
[θT -> ?S, List<?T>]

θS =
⋃
{Z|Z ∈ [Int -> String, List<Int>]⇒

?S
[θT -> ?S, List<?T>]

The equations can be verified to have solutions θT = Int, and θS = String.

CHAPTER 4. THE STANZA TYPE SYSTEM 87

4.7 Type Inference

Type inference for Stanza is complicated by the operational semantics of its optional type
system. In purely statically-typed languages, type annotations do not affect the runtime
behaviour of a program – they affect only whether a program is accepted or rejected by the
typechecker. In the case of Stanza, a type annotation introduces a consistency check that is
enforced at runtime.

The following shows an example of declaring a function annotated to expect an Int

argument, and calling this function with a value of type ?:

defn myfunction (x:Int) :

...

val x:? = ...

myfunction(x)

Stanza will enforce, at runtime, that the passed argument to myfunction is an Int or
otherwise abort the program. If myfunction were annotated to require a String instead,
then Stanza will enforce that the passed argument to myfunction is a String. This is an
example where both programs typecheck successfully, but where a different type annotation
leads to a different runtime behaviour.

Because type annotations can affect runtime behaviour, predictability is of paramount
importance for Stanza’s type inference system. In the event that a program fails a runtime
consistency check, the user should be able to easily understand which type annotation was
violated and also agree that it has been violated. This is especially important if the type
annotation was inferred and not given explicitly by the user.

Stanza’s inference algorithm infers type annotations for the following four cases:

1. return types of functions,

2. argument types of anonymous functions,

3. types of value declarations, and

4. types of local variable definitions.

Return Type Inference

Stanza uses a conservative algorithm for inferring the return type of functions. If the function
contains no (direct or indirect) recursive calls then the return type can always be inferred
by inspecting the type of the last expression. For recursive functions, Stanza uses a simple
simplification procedure to solve type equations involving union types. The following shows
an example of a recursive function, loop, that requires union type simplification in order to
infer its return type:

CHAPTER 4. THE STANZA TYPE SYSTEM 88

defn loop (i:Int) :

if i == 0 : 0

else : loop(i - 1)

If we let X denote the return type of loop, then, by analyzing the body of loop, we find
that X must satisfy the following equation:

X = X|Int

The most precise solution is X = Int.
If the return type of a function cannot be inferred, then Stanza issues an error requesting

for the user to explicitly provide it.

Argument Type Inference

Stanza infers the argument types of anonymous functions from the context in which they
are used. The reason this is done only for anonymous functions, and not named functions,
is because anonymous functions are guaranteed to be used only in a single context. The
following shows an example of calling a higher-order function with an anonymous function:

defn do -to -n (f:Int -> ?, n:Int) :

for i in 0 to n do :

f(i)

do-to-n(

fn (x) :

println(x),

10)

The function do-to-n expects two arguments: a function that can be called with Int

and returns ?, and an integer n. We then call do-to-n with an anonymous function and the
literal 10. The type of the argument x is left unspecified. Because the anonymous function is
passed to a location that is expecting the type Int -> ?, Stanza can infer that the argument
type of x is Int.

The design of Stanza’s core library relies extensively upon argument type inference. As
an example, recall that the syntax:

for i in 0 to 10 do :

println(i)

is a shorthand for the following call to the do function:

do(

fn (i) :

println(i),

0 to 10)

The type of the loop variable i is inferred from the type expected by the do function.
Similar to return type inference, if the argument type of an anonymous function cannot

be inferred, then Stanza issues an error requesting the user to explicitly provide it.

CHAPTER 4. THE STANZA TYPE SYSTEM 89

Note that argument types for named functions are not inferred. If the type of an argument
to a named function is left unspecified, then it is assumed to be ? by default.

Value Type Inference

If left unspecified, Stanza will automatically infer the types of value declarations based on
their initializing value. The following shows the declaration for a value, x, that is initialized
to the result of 10 + 32:

val x = 10 + 32

x is inferred to have type Int.
The types of local values can always be inferred, and the Stanza convention is to leave

the types of values left unspecified. Because top-level definitions may reference each other,
it may be impossible on rare occasions to infer the type of a global value. The following
shows an example of this:

val X = Y

val Y = X

In this case, Stanza will issue an error requesting explicit type annotations. Note that
Stanza’s top-level expressions execute sequentially, so the above code will halt with an error
when Y is read before it is initialized.

Variable Type Inference

If left unspecified, Stanza will automatically infer the types of local variable declarations
based upon the expressions assigned to the variable. Similar to return type inference, Stanza
uses a simplification procedure to solve type equations involving union types. The following
shows an example of a variable declaration where inference requires union type simplification:

var y = "Hello"

y = if pred() : y

else : 42

If we let X denote the type of y, then, by analyzing the expression assigned to y, we find
that X must satisfy the following equation:

X = String|X|Int

The most precise solution is X = String|Int.
There is one complication that is unique to the inference of variable types. When a

variable is assigned an expression with a type containing a type variable that is not in scope
at the variable declaration site, then the variable type cannot be inferred. The following
shows an example of this complication:

var y = 42

defn f<T> (x:T) :

y = x

CHAPTER 4. THE STANZA TYPE SYSTEM 90

If we let X denote the type of y, then from the assignments to y we find that X must
satisfy the following equation:

X = Int|T

However, T is not in scope where y is defined, and thus Stanza cannot infer the type of y. If
the variable type cannot be inferred, then Stanza issues an error requesting for the user to
explicitly provide it.

Note that global variables are required to have explicit type annotations. This is because
Stanza allows packages to be compiled separately from each other, and we do not want the
inferred type of a variable to be affected by assignments to it from other packages.

91

Chapter 5

The Stanza Multimethod Object
System

Similar to how Stanza’s type system was designed to bridge the dynamically-typed and
statically-typed paradigms, Stanza’s object system was designed to bridge the object-oriented
programming (OOP) and functional programming (FP) paradigms. We feel that OOP offers
an intuitive and convenient paradigm that is well-suited for day-to-day programming tasks,
while FP leads ultimately to better software architecture and shorter code. Stanza’s object
system is built from a small number of constructs that combine to offer the advantages of
both paradigms.

5.1 Object Oriented Programming

Object Oriented Programming (OOP) is a programming paradigm based on the concept of
“objects” – encapsulated bundles of state that interact with each other through well-defined
interfaces. It was first introduced in Simula [16], a language for discrete event simulation,
where objects often mirrored structures in the physical world – such as animals, creatures,
cars, etc.

This programming practice of having software objects parallel physical objects is a key
aspect of OOP, and is reflected in the common convention of using nouns as names for
objects. Niklaus Wirth had this to say about OOP:

“This paradigm closely reflects the structure of systems ‘in the real world’, and
it is therefore well suited to model complex systems with complex behaviours.”
[64]

The close relationship between OOP and real-world objects makes it an intuitive and
friendly paradigm for beginner programmers. Out of the top ten most popular languages
on the Tiobe index [54], eight of them are OOP languages: Java [2], C++ [55], C# [27],
Python [47], PHP [34], Visual Basic .NET [40], JavaScript [18], and Delphi [7].

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 92

Desirable Aspects of OOP

The following shows an example function written in the OOP language Java [2]:

void animalCare(Animal [] animals) {

Shower s = new Shower (" Floofer 2000");

for(int i=0; i<animals.length; i++){

Animal a = animals[i];

a.walk ();

a.wash(s);

a.dry();

a.bedTime ();

}

}

It accepts an array of Animal objects, creates a shower, and then for each animal, walks,
washes, dries, and tucks it into bed. It demonstrates four critical aspects of object-oriented
programming that we desire from Stanza:

1. Encapsulation and Protection: The implementation details of an Animal are hidden
from the implementation of the animalCare function. The function depends only
upon the set of defined methods, walk, wash, dry, and bedTime. The implementation
of these methods can be changed at will, and – as long as they satisfy the method
contract – animalCare is guaranteed to continue working as before.

The representation of an Animal is concealed and can be changed without affecting
the correctness of animalCare. For instance, additional fields can be added to keep
track of an animal’s name, and floating-point numbers can be used instead of integers
to keep track of an animal’s weight, both without affecting animalCare.

2. Type-Specific Namespaces: In daily programming, a great deal of effort is spent simply
on naming things appropriately. The names should be both clear and succinct, so as to
make code easier to read, but also avoid clashes according to the language’s namespace
rules.

In the example above, dry is chosen for the name of the method that dries an animal.
If the program were to contain a Humor class, Java would conveniently permit it to also
contain a method named dry. These two different dry methods do not clash according
to Java’s namespace rules, as each class can be thought of as having its own namespace
for method names. This allows for short method names and natural-reading code.

In contrast, the equivalent program in C [33] would likely use the names animal_dry

and humor_dry for the analogous functions. Some libraries, such as OpenGL [51], even
go so far as to add a prefix to every function in the library to avoid clashes.

3. Dynamic Dispatch: There are many different kinds of animals – such as cats, dogs,
horses, and humans to name just a few – and each of these animals walk in their own
particular way. Java allows the Cat, Dog, Horse, and Human classes to each provide

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 93

their own implementation of walk. In the call to a.walk(), Java will automatically
call the appropriate version depending the type of animal a is referring to. This is a
convenient aspect of object-oriented programming that corresponds to how algorithms
are often described in natural language.

4. Extensibility: Suppose that the programmer responsible for writing animalCare is
separate from the programmers implementing the behaviours of each different kind
of animal. Java allows new types of animals to be implemented separately from the
implementation of animalCare. If we were to later implement, say, a Goat class,
animalCare would automatically support the new Goat objects.

Weaknesses of OOP

By this point in time, OOP has been proven to be an effective organizational philosophy for
architecting large software and many large successful programs have been written in object-
oriented languages. But over time, we have noticed that adherence to the OOP paradigm
has led to the following deficiences that we wish to avoid in Stanza:

1. Awkward Division of Behaviours into Classes: It is strongly encouraged, in many
object-oriented languages, to keep behaviour contained in classes. This can be enforced
either by mandating behaviour to be implemented as methods, as is done in Java, or
through a set of guidelines for establishing best practices. However, it is often awkward
to force a certain behaviour into being contained by one specific class. The call to
a.wash(s), for example, presumes that the wash method is best contained within the
Animal class, and the shower object, s, is passed as an argument. An alternative
design would be to put the wash method in the Shower class instead, and pass in the
Animal object as an argument. Yet another design could be to define a new class,
FarmEmployee, for containing the wash method and pass in both the Shower and the
Animal object as arguments. Forcing the eager division of behaviour into classes leads
to suboptimal program architectures that is cumbersome to change later.

2. Vertical Separation of Concerns: Over time, software architected according to object-
oriented principles becomes hard to maintain. Classes become larger, contain an in-
creasing number of fields, and are more tightly coupled. We believe this is due to
OOP’s over-emphasis on a vertical separation of concerns.

A prominent example of this is in the typical design of graphical user interface (GUI)
libraries. Consider a class, Window, for representing a window interface element that
supports the following methods: close, open, resize, draw-border, draw-bevel,
repaint-component, and get-component-texture. The close, open, and resize

methods manage the state of the window, and are the only methods that should be
called by users of the GUI library. draw-border and draw-bevel are high-level drawing
methods for controlling the look of the window borders and are meant to be called only

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 94

by the GUI framework. repaint-component and get-component-texture are critical
low-level drawing methods used by the GUI painting subsystem, and will typically crash
the entire GUI framework if they are implemented incorrectly.

The Window class is a prime example of vertically separating concerns: software mod-
ules are divided not by their level of abstraction but by which application feature they
implement. The same class is responsible for every aspect of a window element, from
the high-level user-facing functions to the low-level drawing primitives.

3. Fragile Base Classes: Inheritance is an occasionally useful feature for enabling code
reuse that is supported by the majority of object-oriented languages. A class, B, can
inherit all the behaviour and state of another class, A, by declaring B to be a subclass
of A. For example, a Dog and a Cat class, due to both representing animals, will likely
contain a lot of code in common. To reduce the redundancy, the common code can be
factored out into a base class called Animal, and Dog and Cat can be subclassed from
Animal to inherit the common functionality. Later on, new subclasses of Dog can also
be declared, such as Retriever or Collie, and these subclasses will inherit all the
functionality common to dogs.

Gradually, however, the depth of the class hierarchy grows deeper as more specialized
classes are introduced. At the same time, the base class also starts to accrue more
fields and methods to satisfy the needs of its increasing number of subclasses. With-
out extreme discipline, it is easy for the base class to grow to an unmaintainable size,
become unfocused in its purpose, and become too entrenched to change. As an ex-
ample, the MetalScrollButton class in the Java Swing library is subclassed from six
parent classes. Its immediate parent is BasicArrowButton, which is itself a subclass
of JButton, which in turn is subclassed from AbstractButton, and so on through
JComponent, Container, and Component.

4. Scattered Algorithms: Due to an over-emphasis on inheritance and dynamic dispatch,
otherwise simple algorithms often end up spread across multiple classes and source files
when written in an object-oriented language. Consider the following procedure, which
is employed by an animal center for bathing all the cats in its care:

a) Separate the cats from the rest of the animals.

b) Gather enough materials for the number of cats to be washed.

c) For each cat, restrain the cat, and then wash it.

d) Turkish Van cats do not need restraining as they enjoy baths naturally.

The following shows an implementation of part of the above algorithm in Java:

class AnimalCare {

...

void washCats (Animal [] animals) {

ArrayList cats = new ArrayList ();

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 95

for(int i=0; i<animals.length; i++)

animals[i]. addIfCat(cats);

Materials m = washingMaterials(cats.size ());

for(int i=0; i<cats.length; i++){

Cat c = (Cat)cats[i];

c.restrain ();

c.wash(m);

}

}

}

The washCats method takes a collection of animals, creates a list for storing cats, and
then asks each of the animals to add themselves to the list if they are a cat. Materials
are collected to wash the cats, and each cat is then restrained and washed.

Notice that washCats shows an incomplete representation of the procedure. Nowhere
is it shown how we decide whether an animal is a cat, or how to exclude Turkish Van
cats from being restrained. That information is contained in the other classes shown
below:

class Animal {

...

void addIfCat (ArrayList xs){}

}

class Cat extends Animal {

...

void addIfCat (ArrayList xs){

xs.add(this);

}

void restrain (){

can_move = false;

}

}

class TurkishVan extends Cat {

...

void restrain (){}

}

The default method for addIfCat in the Animal class is empty. This method is over-
ridden in the Cat class, which adds itself to the array. The restrain method in the
Cat class sets a flag that forbids the cat from moving. The TurkishVan subclass of Cat
then overrides the restrain method to do nothing as they do not require restraining
before bath time.

Our simple algorithm for washing cats is spread across four different classes. In order
to fully grasp the procedure, readers must be familiar with the default and overridden
implementations of addIfCat and restrain.

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 96

Our example may seem contrived but such code is often found in practice. The follow-
ing shows the implementation of a method from the Java Swing library with a similar
flavor:

class AbstractButton extends JComponent {

...

public void setLayout (LayoutManager mgr){

setLayout = true;

super.setLayout(mgr);

}

}

The following quote, sometimes attributed to Adele Goldberg, an early proponent of
object-oriented programming, eloquently characterizes the above phenomenon:

“In Smalltalk, everything happens somewhere else.”

5.2 Functional Programming

Functional Programming (FP) is built upon the lambda calculus [13] developed by Alonzo
Church, a theoretical framework for modeling computation based on function abstraction and
application. One of the earliest functional languages was the programming language Lisp [32]
by John McCarthy, which included support for first-class functions and list datastructures –
features that singularly distinguished it from other languages of the period.

Since its early beginnings in Lisp, many functional languages have been designed and
become successful in their niches, such as Scheme [56], ML [41], Miranda [59], and later,
Haskell [31]. Moreover, features that previously were supported only by functional languages,
such as first-class and higher-order functions, have gradually crept into the design of modern
object-oriented languages.

While functional programming has traditionally been regarded as being academic and
impractical, its productivity advantages have come to be recognized and it is seeing more use
throughout industry. Java [2], Python [47], Javascript [18], and Ruby [22], four of the most
widespread languages currently in use, all have introduced features for supporting functional
programming to some extent.

Desirable Aspects of FP

We find the following aspects of functional programming desirable and wish to include it in
the design of Stanza:

1. First-class Functions: Functional programming languages encourage the pervasive use
of first-class functions, a powerful technique that allows for considerable code reuse.
The following example shows a succinct and clear Scheme [56] implementation of com-
puting the total length of a list of strings:

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 97

(define (total -length strings)

(reduce + 0 (map string -length strings)))

While many object-oriented languages do support first-class functions, FP languages
are set apart by their ease-of-use, and by the extent of their use in the design of the
language and core libraries. For instance, unlike Scheme, the OOP Ruby [22] language
opted to provide map as a method in their collections classes instead of as a function.
This choice fits better within Ruby’s overall philosophy but does limit the language’s
power. Unlike functions, methods in Ruby cannot be treated as values.

2. Horizontal Separation of Concerns: In contrast to how programs are typically ar-
chitected in object-oriented languages, functional programming languages encourage
organizing code according to a horizontal, rather than vertical, separation of concerns.
Instead of compartmentalizing code into modules that each implement a different ap-
plication feature, code is grouped by their abstraction level. A large program is divided
into a series of layers in which the bottom-most layer directly deals with the abstrac-
tions provided by the machine or operating system. Each successive layer then makes
use of the underlying layer to introduce its own set of simplifying abstractions to be
used by the layers above. The top-most layer interfaces directly with the end user and
is coded against abstractions perfectly tuned for the application domain.

Consider again the example of the Window class for representing a window interface
element. Instead of holding a single class responsible for every aspect of managing a
window element, a functional language would encourage division along the following
abstraction boundaries:

a) The lowest layer would handle memory and resource management.

b) The next layer, the low-level drawing layer, would provide abstractions for drawing
simple shapes and managing colors.

c) The high-level drawing layer would then make use of the low-level drawing layer
to provide abstractions such as drawing borders and beveling.

d) Finally the top-most layer, the user interface layer, would provide the API for
creating and closing windows, creating buttons and scrollbars, and so on.

We believe that the horizontal separation of concerns ultimately leads to more main-
tainable and stable software architecture. This is reflected in the design of our general
compute infrastructure. The operating system drivers provides the abstractions nec-
essary for controlling the machine hardware; the operating system then makes use of
these abstractions to provide abstractions for handling files and allocating memory;
interface libraries then allow for the creation of windows, buttons, and scrollbars; and
finally the application developer writes programs for some specific domain which the
user interacts with directly.

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 98

Weaknesses of FP

Despite its power, the following are areas of weakness in existing functional languages that
we wish to avoid in Stanza:

1. Extensibility: Unlike object-oriented languages, which include systematic mechanisms
to help architect extensible software – such as subclassing and inheritance – functional
languages place less emphasis on extensibility. Programmers are expected to build
in hooks for future extensibility out of first-class functions. Neither OCaml [35] nor
Haskell’s [31] tagged union types, for example, can be extended with additional con-
structors. Scheme [56] has a multitude of libraries that allow for programming in an
object-oriented style, but they are non-standard and generally at odds with the design
of the base language.

2. Namespace Conflicts: Object-oriented languages allow for a straightforward method
to reduce namespace conflicts. Since classes are guaranteed to contain no duplicate
methods, no call to a method will ever conflict. The method is resolved, either statically
or dynamically, in the method namespace of the class of the receiver object.

Functional languages have no such namespace mechanism and consequently suffer more
from name conflicts. Conventionally, methods in object-oriented languages are repre-
sented in FP languages as functions that take the receiver object as the first argument.
However, under this convention, there is a high likelihood of there being multiple func-
tions with the same name.

OCaml [35] and Haskell [31] programs work around this problem by relying heavily on
its destructuring and pattern-matching mechanisms, at the expense of breaking encap-
sulation. Scheme [56] has taken the approach of prefixing its functions with the type
of the receiver object – leading to a plethora of functions with names like array-get,
array-set!, vector-get, and vector-set!. While workable, these solutions lack the
elegance of the object-oriented languages.

3. Steep Learning Curve: A subset of functional languages have a reputation for having
a steep learning curve. OCaml [35] and Haskell [31], for instance, for known for being
difficult to learn, but Scheme [56] is seen as beginner friendly in contrast. We believe
the difference arises primarily due to OCaml and Haskell’s emphasis on immutability,
and the rigidity of their type systems.

To address immutability, we do not hold any strong beliefs against mutation. Stanza
is meant to be a pragmatic programming language, and mutation is a natural concept
for expressing many algorithms. We believe in neither eliminating mutation from the
language nor in designing the language to discourage its use.

To address the rigidity of type systems, our experience leads us to believe that the major
learning barrier is due to the need to work around OCaml and Haskell’s lack of support
for subtyping and heterogeneity. Programmers are comfortable with the concepts of

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 99

hierarchy and heterogeneity, and these concepts are reflected in the structure of their
code.

For instance, dogs and cats are different types of animals; retrievers and collies are
different types of dogs; and golden retrievers and black retrievers are different types of
retrievers. An animal care shelter will, at a given time, be taking care of an assorted
collection of animals. The programmer may define a set of functions that are applicable
to all animals, such as feed and sleep, and a set of functions that are application only
to dogs, such as fetch and roll-over. They may use a list to keep track of all
the animals in the shelter, and expect this list to be able to hold an assorted set of
animals, not simply one particular type of animal. Because of OCaml’s and Haskell’s
poor support for modeling hierarchy and heterogeneity, programmers must find an
alternate and less natural encoding for these concepts.

5.3 The Multimethod Object System

Stanza’s multimethod object system is built upon only three constructs: defmulti, defmethod,
and new.

Multis and Methods

The defmulti construct declares the existence of a multi with the specified name and type
signature. The following declares a multi called feed that accepts an Animal and returns
False:

defmulti feed (a:Animal) -> False

The defmethod construct provides an implementation for an existing multi. The following
declares a method for feed that prints a message to the screen:

defmethod feed (a:Animal) :

println ("Feed an animal: Generic grain")

From the perspective of callers, the above definitions of the feed multi and its method
is indistinguishable from the following function:

defn feed (a:Animal) -> False :

println ("Feed an animal: Generic grain")

Multis exist in the same namespace as functions, have the same visibility rules, and can be
treated as values, just like functions.

There are two important architectural benefits of declaring feed as a multimethod versus
as a function:

1. The implementation can now be provided separately from the declaration. The feed

method can even be declared in a different package residing in a different source.

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 100

2. Multiple implementations can be provided for a single multi declaration.

The following illustrates the second point by providing two additional methods for the
feed multi – one for when feed is called with a Dog and another for when it is called with
a Cat:

defmethod feed (a:Dog) :

println ("Feed a dog: Kibble ")

defmethod feed (a:Cat) :

println ("Feed a cat: Tuna")

With these methods, the feed multi now has a total of three different implementations:
one for dogs, one for cats, and a generic one for animals. When a programmer calls the feed

multi, Stanza will dynamically dispatch the call to the most specific method. Calling feed

on a dog will print:

Feed a dog: Kibble

Calling feed on a cat will print:

Feed a cat: Tuna

And calling feed on some other animal, say a bird, will print:

Feed an animal: Generic grain

Instances and Instance Methods

The new construct creates a new instance of a given type with a set of instance methods –
methods that are specific to the created instance. Instance methods must be declared within
the body of a new construct, and must have exactly one argument with the name this,
which refers to the instance being created. The following demonstrates creating an instance
of a dog, d, with one instance method:

val d = new Dog :

defmethod feed (this) :

println ("Feed me something yummy")

Whenever feed is called specifically on d, it prints out the message:

Feed me something yummy

The real expressiveness of instance methods come from their ability to reference binders
defined in their lexical scope. The following demonstrates an instance method that refers to
two binders declared in its lexical scope:

defn Dog (name:String , taste:String) :

new Dog :

defmethod feed (this) :

println ("%_ wants something %_." % [name , taste])

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 101

The feed method refers to the binders name and taste which are defined outside the new

construct.
Dog is just a simple function, and the following demonstrates calling it twice to create

two dog instances, d1 and d2:

val d1 = Dog(" Whiskey", "yummy")

val d2 = Dog(" Rummy", "tasty")

When feed is called on d1, the program prints:

Whiskey wants something yummy.

And when feed is called on d2, the program prints:

Rummy wants something tasty.

Notice that the instance methods remember the values of the lexical binders of the context
in which the instance was created. In this regard, the new construct behaves similarly to a
function closure.

Specificity Relation

The specificity relation governs which method is executed when a multi is called. A method,
m1, is considered more specific than another method, m2, if the arguments of m1 are all
subtypes of the arguments of m2 respectively. When a multi is called with a list of values, a
method is considered a candidate method if the values are instances of the method argument
types, and there is no other applicable method that is more specific than it.

If there is a unique candidate method, then that method is executed. If there is no
candidate method, then Stanza issues an error indicating that the multi cannot be called
with values of those types. If there are multiple candidate methods, then Stanza issues an
error indicating that the choice of method to be executed is ambiguous.

As an example, the following defines a two-argument feed multi that takes an Animal

and a Food value, and returns False, along with three methods:

defmulti feed (a:Animal , f:Food) -> False

defmethod feed (a:Animal , f:Food) :

println ("Feed an animal some generic food .")

defmethod feed (a:Animal , f:Tuna) :

println (" Feeding an animal tuna .")

defmethod feed (c:Cat , f:Food) :

println ("Cat ’s won ’t eat generic food .")

Given a Dog and a Tuna, there are two methods that are applicable: the one defined for
(Animal, Food) and the one defined for (Animal, Tuna). Out of the two, the (Animal,

Tuna) method is more specific and is the one that is executed.

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 102

Given a Cat and a Tuna, there are three methods that are applicable: the (Animal,

Food), the (Animal, Tuna), and the (Cat, Food) methods. Neither is the (Animal, Tuna)

method more specific than the (Cat, Food) method nor vice versa, and thus Stanza issues
an ambiguity error.

Function Overloading and Automatic Function Mixing

Stanza provides two features, function overloading and automatic function mixing, for relax-
ing the namespace rules and decreasing the chance of name conflicts.

Consider the following Stanza code:

defpackage dogs

defn Dog () -> Dog : ...

defmulti bark (d:Dog) -> False

defpackage trees

defn Tree () -> Tree : ...

defmulti bark (t:Tree) -> String

defpackage user :

import dogs

import trees

val d = Dog()

val t = Tree()

bark(d)

bark(t)

There are two independent packages, dogs and trees, both of which define a multi called
bark. The bark in the dogs package accepts a Dog value and plays the dog’s bark through
the speaker. The bark in the trees package accepts a Tree value and returns a string
representing the type of bark it has.

The user package imports both the dogs and trees package, creates a Dog and a Tree

instance and calls bark on both of them. The language design question is: how do we solve
the name conflict that arises from there being two bark multis visible from the user package?

To start, one important observation is that the dogs and trees package are completely
independent of each other. They each were written without any knowledge of the other, and
must be able to be written without knowledge of the other. This eliminates the possibility
of subsuming both multis in a single declaration:

defmulti bark (d:Dog|Tree) -> False|String

Beyond this multi making no semantic sense, this would also require coordination between
the author of the dogs package and the author of the trees package.

Let us study the analogous code in an OOP language, and reflect on how it avoids the
namespace problem:

class Dog {

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 103

method bark () { ... }

}

class Tree {

method bark () { ... }

}

function main (x) {

val d = new Dog()

val t = new Tree()

d.bark()

t.bark()

x.bark()

}

The two classes, Dog and Tree, both define a method called bark. The main function creates
Dog and Tree objects and calls .bark on each of them, and also calls .bark on the passed-in
argument x.

Let us first consider the calls to .bark on d and t. It is clear from inspection that d and
t have types Dog and Tree respectively. Therefore the call to d.bark() must refer to the
bark method in the Dog class, and the call to t.bark() must refer to the bark in the Tree

class. Thus the name conflict can be disambiguated in these cases by statically inferring the
type of the receiver object.

Now let us consider the call to .bark on x. Since x is an arbitrary object that is passed
into main, we cannot statically determine anything about its type. However, if classes are
not allowed to contain methods with duplicate names, then we can delay the dispatch until
runtime – when the type of x will be known – and jump to the single .bark method in
whatever class x turns out to be from.

Thus in both cases, the name conflict can be disambiguated by inspecting the type of
the receiver object – either statically or at runtime. We can use an analogous strategy in
Stanza to disambiguate calls to multis and functions. To disambiguate a call to an overloaded
function:

1. We first statically infer the types of all the arguments, and remove from consideration
all the functions that cannot be validly called with arguments of those types. If there
is only one applicable function remaining, then that function is called. This feature is
called function overloading.

2. If there is more than one applicable function remaining, then we check whether there
is any overlap in their domains, i.e. if there exists a set of argument types for which
multiple functions are applicable. If there is overlap, then the typechecker issues a
function ambiguity error. If not, then the function call is converted to a match expres-
sion that dynamically dispatches to the appropriate overloaded function. This feature
is called automatic function mixing.

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 104

5.4 Relation to OOP and FP

The combination of the three object constructs provide us the advantages we sought from
the OOP and FP paradigms while also avoiding their disadvantages:

1. Encapsulation and Protection: Notice that the representation of an object is never
directly specified by the programmer. Instead, the programmer only specifies how an
object implements the multis defining its interface. Additionally, multis respect the
same visibility rules as other declarations, and can simply be declared as private to
conceal it from code outside the package.

The result is that the set of possible interactions with an object is defined solely by
its interface, and programmers have fine control over how this interface is exposed to
users.

2. Type-Specific Namespaces: Function overloading and automatic function mixing allows
for multiple functions to have the same name so long as they accept arguments of
different types. This allows for short intuitive names in the vast majority of cases.

In fact, together the two mechanisms offer exactly the same disambiguation power
as the class-specific method namespaces of OOP languages. Consider systematically
mapping the following OOP method definitions:

class A {

mymethod (x, y) { ... }

}

class B {

mymethod (x, y) { ... }

}

to multi definitions by representing the receiver object with the first argument:

defmulti mymethod (receiver:A, x, y) -> ?

defmulti mymethod (receiver:B, x, y) -> ?

Then function overloading and automatic function mixing disambiguates a call to
mymethod(obj, x, y) in exactly the same way as OOP disambiguates a call to
obj.mymethod(x, y): based upon the type of the receiver object.

3. Dynamic Dispatch: The multimethod system dynamically dispatches to the appropri-
ate method based on the types of the arguments that the multi is called with. As
an additional advantage over the class-based OOP languages, the multimethod system
dispatches based upon the types of all the arguments instead of solely on the type of
the receiver object. Algorithms that depend upon the type of more than one argument
– such as a function to test whether two shapes intersect – are much more naturally
expressed.

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 105

4. Extensibility: The multimethod system allows for users to easily design an extensible
software architecture. A multi declaration creates an extension point with a clear
interface that must be satisfied by future types. If a program cannot be extended in a
desirable way, then it can re-architected by replacing functions with multi definitions.

5. Division of Behaviours into Classes: Stanza has no concept of classes, and consequently
also no requirements to keep behaviour contained within classes. In fact, there are no
constraints at all upon which package and which source files the defmulti, defmethod,
and new constructs appear in. Programmers can and do organize these constructs freely
in order to best suit the architecture of their program.

Here are some examples of constraints that do not exist in Stanza:

• The methods that operate on values of one type are not required to be declared
in the same file.

• The multis that operate on values of one type do not need to be defined together
with the type. Users are free to later define additional multis on existing types in
different source files.

• The creation of objects of one type are not required to be in the same source file
as the type definition. Users are free to create additional objects of an existing
type in another source file.

6. Horizontal Separation of Concerns: Stanza’s multimethod system removes the extrane-
ous pressure to keep code grouped into classes. Without this pressure, it is both easy
and natural to architect programs according to a horizontal separation of concerns.
Stanza programs are similar in architecture to programs written in other functional
programming languages.

7. Scattered Algorithms: In comparison to OOP languages, algorithms are less scattered
in Stanza for two reasons:

a) The primary purpose of the multimethod system is for extensibility and archi-
tecture. Contrary to OOP philosophy, it is not encouraged to use multimethods
for the purpose of performing dynamic dispatch, for which the match expression
should be used instead. Here is the washCats example written in Stanza using
match expressions:

defn wash -cats (animals:Array <Animal >) :

val cats = Vector <Cat >()

for a in animals do :

match(a) :

(a:Cat) : add(cats , a)

(a) : false

val m = washing -materials(length(cats))

for cat in cats do :

match(cat) :

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 106

(cat:TurkishVan) : false

(cat) : restrain(cat)

wash(cat , m)

In contrast to the OOP version, the Stanza version is self-contained within one
function.

b) Because multis and methods are not constrained to any specific source file, we
can keep the relevant multis and methods grouped with the algorithm instead
of distributed across many classes. Here is the washCats example written using
multimethods:

defn wash -cats (animals:Array <Animal >) :

val cats = Vector <Cat >()

for a in animals do :

add -if-cat(cats , a)

val m = washing -materials(length(cats))

for cat in cats do :

restrain(cat)

wash(cat , m)

defmulti add -if-cat (cs:Vector <Cat >, a:Animal) -> False

defmethod add -if -cat (cs:Vector <Cat >, a:Animal) : false

defmethod add -if -cat (cs:Vector <Cat >, c:Cat) : add(cs, c)

defmulti restrain (c:Cat) -> False

defmethod restrain (c:Cat) : set -can -move(c, false)

defmethod restrain (c:TurkishVan) : false

Though the program structure is identical to the OOP version, the mere placement
of the code within one section of one source file significantly improves clarity.

8. Base “Classes”: In our experience, Stanza programs do not suffer from the uncontrolled
growth of base classes. There are two reasons for this:

a) Inheritance of state is not supported in Stanza. Stanza’s multimethod system
allows for inheritance of behaviour but not inheritance of state. This removes the
possibility – and thus temptation – of reusing code through inheriting the state
of the parent class and then overriding some definitions. Stanza provides many
other tools for enabling code reuse and inheritance is not necessary.

b) It is not necessary to perform dynamic dispatch by abusing the object system.
An algorithm requiring dynamic dispatch can be expressed directly using the
match expression. This has the advantages of keeping algorithms clear, and also
preventing objects from amassing state that is specific to one algorithm.

9. First-class Functions: From the perspective of the caller, multis are indistinguishable
from functions. They can be stored in datastructures and passed as arguments, just as

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 107

functions can. The multimethod object system suits the functional programming style
seamlessly.

10. Learning Curve: Unlike OCaml [35] and Haskell [31], the Stanza object and type
system is designed to embrace both mutation and heterogeneity. These are natural and
intuitive concepts and supported by all of the popular OOP languages, so programmers
familiar with Python [47], Ruby [22], or Java [2], feel at ease with this aspect of Stanza.

5.5 Relation to Class-Based OOP Systems

The minimalism of the object system also has the following useful properties:

1. No Concept of Constructor: Due to the design of the new construct and disallowing
inheritance of state, it is not necessary to introduce the concept of a constructor in
Stanza. This has a number of positive consequences.

Syntactically, the object being created by new cannot be referenced until after the
object is created and fully initialized. This prevents the possibility of referencing a
partially initialized object as arises in Java [2].

Simple helper functions are used for creating objects, and thus there is no distinguished
syntax necessary for creating a new object. This eliminates much of the need for
complicated dependency injection frameworks to facilitate testing and debugging.

Because there is no separate concept of constructors, there is also no need for the
Factory design pattern [61], nor are there esoteric restrictions on when a constructor
can call another constructor.

2. Less Name Conflicts for Multiple Parent Types: Due to the method namespace in
class-based object-oriented languages, there can only be one method of a given name
(and type signature) in a class. This can lead to problems if a class needs to implement
multiple interfaces in Java [2], as demonstrated in the following example:

package officers;

public interface Officer {

Order bark ();

}

package dogs;

public interface Dog {

void bark ();

}

package mainprogram;

import officers .*;

import dogs .*;

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 108

public class PuppyOfficer implements Officer , Dog {

void bark (){

// Implementation of barking for a puppy.

}

Order bark (){

// Implementation of barking an order.

}

}

The interfaces Officer and Dog both have a method called bark – one is for retrieving
the officer’s Order, and the other is for making a loud sound. However, Java (and other
class-based OOP languages) disallows declaring multiple methods with the same name
and type signature in a single class. This unfortunate naming conflict makes it impos-
sible for a single class to implement both interfaces, as in the case for PuppyOfficer.

In contrast, the following translation to Stanza has no such problem:

defpackage officers

public deftype Officer

public defmulti bark (o:Officer) -> Order

defpackage dogs

public deftype Dog

public defmulti bark (d:Dog) -> False

defpackage main -program :

import officers

import dogs

public deftype PuppyOfficer <: Officer & Dog

public defn PuppyOfficer () :

new PuppyOfficer :

defmethod officers/bark (this) :

;Implementation of barking an order.

defmethod dogs/bark (this) :

;Implementation of barking for a puppy.

The type PuppyOfficer is a subtype of both Officer and Dog, and provides instance
methods for both the bark multi in the officers package, and the bark multi in the
dogs package. The caller has the option to import either the dogs or the officers

package depending upon the multi to call. This allows a PuppyOfficer to be treated
equally as a Dog when appropriate, or as an Officer.

3. No Concept of Fields: The multimethod system does not need a distinguished concept
of “fields” nor the standard suite of mechanisms for declaring and manipulating them.
Fields are modeled by declaring multis for retrieving a value from the object; fields can
be made mutable by declaring multis for setting their value; and field visibility can be
controlled by using the package visibility modifiers on the multi declarations.

CHAPTER 5. THE STANZA MULTIMETHOD OBJECT SYSTEM 109

4. No Identity-Comparison Operator: Stanza provides no identity-comparison operator
for comparing whether two objects are represented by the same pointer. Comparisons
of values must be done by comparing their contents. This subtle property means that
two objects with the same underlying content are indistinguishable. An important
optimization made possible by this property is the ability to inline objects. Consider
the following example:

defn f (p:Point2D) :

...

f(Point2D (1.0, 3.0))

The function f requires a Point2D object, and it is called with a point freshly created
from the values 1.0 and 3.0. With object inlining, the Stanza compiler is free to pass
the numbers 1.0 and 3.0 individually to f instead of first wrapping them up in a
Point2D object.

110

Chapter 6

The Stanza Targetable Coroutine
System

The targetable coroutine system plays an integral role in the overall design of the Stanza
language by simultaneously serving two separate but related purposes:

1. It serves as a powerful construct for expressing cooperative multitasking.

2. It serves as Stanza’s only non-local control flow operator.

In regards to purpose 1, Stanza’s targetable coroutine system plays a similar role as
Lua’s [30] and Python’s [47] coroutine constructs, and Ruby’s [22] and CLU’s [37] generator
constructs. Cooperative multitasking is a powerful concept and can be applied towards a
variety of applications, including:

• On-Demand Computation: Coroutines can be used to compute successive items in a
sequence on-demand. A common example is to use coroutines to compute the breadth-
first or depth-first traversal of a tree datastructure. If an algorithm does not require
the entire sequence then time is saved by not computing the rest of the traversal.

• Representing Infinite Sequences: Coroutines naturally represent sequences of infinite
length. This is often useful from a software engineering perspective as it obviates the
need to compute the required length ahead of time.

• Modeling Concurrency: Many applications contain conceptually concurrent compo-
nents. Video games, for instance, often create the illusion of multiple animated char-
acters acting independently and concurrently. A separate coroutine can be used to
drive each character’s behaviour.

• Distributing a Computation Across Time: For interactive applications, it is important
that there aren’t long periods of inactivity where the program is unresponsive to user
input. Long computations should be broken up into shorter segments and the program

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 111

should poll for user input in-between executing each segment. Coroutines automat-
ically save the state of a computation and can be used to trivially break up a long
computation.

In regards to purpose 2, Stanza’s targetable coroutine system plays a similar role as
Scheme’s continuation construct. The Stanza language and its core libraries is designed
around the use of coroutines as a general-purpose control flow operator, and relies upon it
for:

1. returning early from functions,

2. breaking out of loops,

3. skipping to the next iteration of a loop, and

4. handling error conditions and exceptional circumstances.

From a language design perspective, the decision to have coroutines serve as a control flow
operator is an unconventional one. We will explain the motivation underlying this decision
by first examining the shortcomings of the standard suite of control flow operators – return,
break, continue, etc. – in the context of Stanza’s design.

6.1 Shortcomings of Standard Control Flow

Operators

Recall that Stanza’s for construct, despite looking like a looping construct, is syntactic sugar
for calling a higher-order function. Thus the following loop in the main function:

defn main () :

for x in xs do :

println(x)

can be re-expressed equivalently as the following:

defn main () :

defn loop -body (x) :

println(x)

do(loop -body , xs)

This example is archetypal of Stanza’s philosophy of maximizing expressiveness through the
design of a minimal set of orthogonal constructs: iteration is expressed through tail-recursion,
and looping constructs are abstracted as higher-order functions.

Now consider changing Stanza by adding support for the standard return construct,
which immediately returns a value from a function. We will use this construct to have main

return false if it encounters a negative number in xs:

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 112

defn main () :

for x in xs do :

if x < 0 : return false

println(x)

While seemingly innocuous, this use of return exposes an ambiguity in our design. The
following re-expresses the above code without the for macro to emphasize the ambiguity:

defn main () :

defn loop -body (x) :

if x < 0 : return false

println(x)

do(loop -body , xs)

It is easy to see in this form that it is unclear what return false should do.

1. Should it return from the loop-body function immediately, in which case it prevents
negative numbers in xs from being printed?

2. Or should it return from the main function immediately, in which case printing stops
as soon as the loop reaches the first negative number in xs?

Depending on the circumstance, it is reasonable that a programmer might want to do either.
The root cause of the ambiguity is the return construct’s lack of an explicit target, and

is one of the key problems we were required to solve in the design of Stanza’s targetable
coroutine system. The other standard operators, such as break and continue, suffer from
similar ambiguities.

6.2 Core Functions

The core of the targetable coroutine mechanism is defined by three functions:

1. the Coroutine function, for creating a new coroutine,

2. the resume function, for resuming an existing coroutine, and

3. the suspend function, for suspending an existing coroutine.

Creating a Coroutine

The coroutine creation function has the following type signature:

defn Coroutine <I,O> (body: (Coroutine <I,O>, I) -> O) -> Coroutine <I,O>

It requires two type arguments and a two-arity function, and returns a new coroutine. A
coroutine of type Coroutine<I,O> allows values of type I to enter, and values of type O to
exit.

Here is an example of creating a coroutine that allows Int values to enter, and String

values to exit:

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 113

defn body (co:Coroutine <Int ,String >, x0:Int) -> String :

...

val co = Coroutine <Int ,String >(body)

The first argument of the body function represents the coroutine to be created; the second
argument represents the first value to enter the coroutine; and the return value of the function
is implicitly the last value to exit the coroutine.

Note that the body function is not executed until the coroutine is first resumed. The
creation of a coroutine does not have any side-effects.

Resuming a Coroutine

The coroutine resume function has the following type signature:

defn resume <?I,?O> (co:Coroutine <?I,?O>, v-in:I) -> O

It requires two arguments – the coroutine to resume, and the value to send into the coroutine
– and returns the next value to exit the coroutine. The type arguments for resume are
captured from the coroutine input/output types.

Here is an example of resuming our previously created coroutine of type
Coroutine<Int,String>:

val v-out:String = resume(co , 42)

The coroutine requires entering values to be of type Int – we send in 42 – and promises that
exiting values are of type String – the next one of which we bind to v-out.

Suspending a Coroutine

The coroutine suspend function has the following type signature:

defn suspend <?I,?O> (co:Coroutine <?I,?O>, v-out:O) -> I

It requires two arguments – the coroutine to suspend, and the value to send out of the corou-
tine – and returns the next value to enter the coroutine. Like resume, the type arguments
for suspend are captured from the coroutine input/output types.

Here is an example of suspending our previously created coroutine of type
Coroutine<Int,String>:

val v-in:Int = suspend(co , "Hello World")

The coroutine requires exiting values to be of type String – we send out "Hello World" –
and promises that entering values are of type Int – the next one of which we bind to v-in.

6.3 Semantics

The semantics of the core coroutine functions will be demonstrated through the following
series of progressively more complex examples:

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 114

1. The creation of a coroutine.

2. The first call to resume on a coroutine with no calls to suspend.

3. The first call to resume on a coroutine with calls to suspend.

4. Subsequent calls to resume on a coroutine with calls to suspend.

Creation of a Coroutine

The following creates a coroutine of type Coroutine<Int,String>, in which integers enter
the coroutine, and strings exit the coroutine:

defn body (co:Coroutine <Int ,String >, x0:Int) -> String :

println (" Started coroutine (x0 = %_)" % [x0])

println (" Leaving coroutine ")

"Hello world"

val co = Coroutine <Int ,String >(body)

A coroutine, co, is created from a function that prints out x0, the first value to enter it, and
then prints a message to indicate it is finished before returning "Hello World". Note that
body does not contain any calls to suspend.

As previously mentioned, creating a coroutine does not cause its body function to be
executed, thus nothing is printed to the screen when the above code is evaluated.

First Call to Resume with No Calls to Suspend

We now call resume on the co coroutine created previously, with 42 as the initial value to
be sent into the coroutine:

val result = resume(co , 42)

This begins the execution of the coroutine body function with the entering value x0 bound
to 42. Because there are no calls to suspend, the body function executes to completion and
prints the following to the screen:

Started coroutine (x0 = 42)

Leaving coroutine

When the body function finishes executing, the control flow returns to just after where
resume is called. The resume function returns the result of evaluating the body function,
which is "Hello world" in this case.

Thus, in the absence of suspend, calling resume is identical to calling the coroutine body
function with some initial entering value.

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 115

First Call to Resume with Calls to Suspend

We now revise the body function of the co coroutine and insert a call to suspend with the
exiting value "Live":

defn body (co:Coroutine <Int ,String >, x0:Int) -> String :

println (" Started coroutine (x0 = %_)" % [x0])

val x1 = suspend(co , "Live")

println (" Resumed coroutine (x1 = %_)" % [x1])

println (" Leaving coroutine ")

"Hello world"

val co = Coroutine <Int ,String >(body)

We call resume on the co coroutine as we did previously, with 42 as the initial value to
be sent in:

val result = resume(co , 42)

which again begins the execution of the coroutine body function with the entering value x0

bound to 42. The following is printed to the screen:

Started coroutine (x0 = 42)

At this point however, instead of executing to completion, the call to suspend causes the
control flow to immediately return to just after where resume is called. The resume function
now returns the argument that was passed to suspend, which is "Live" in this case.

Thus, the suspend function acts as a way to immediately leave a coroutine with some
exiting value.

Subsequent Calls to Resume

Now we consider the case of calling resume repeatedly on the same coroutine. As demon-
strated previously, the first call to resume:

val result = resume(co , 42)

results in the following being printed to the screen:

Started coroutine (x0 = 42)

with result being bound to "Live".
The next call to resume:

val result2 = resume(co , 13)

resumes execution of the body function starting from the previous call to suspend. The
argument passed to resume is returned as the result of calling suspend, thus x1 is bound to
13. From there, the body function executes until completion, printing out:

Resumed coroutine (x1 = 13)

Leaving coroutine

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 116

before returning "Hello World". Upon completion, the control flow returns to just after
where resume is called for the second time, and result2 is bound to "Hello World".

Thus, the suspend function automatically saves the state of executing the body function
before leaving the coroutine. Subsequent calls to resume resume the body function from its
saved state.

6.4 Applications of Coroutines

We now show three example applications of Stanza’s coroutine system:

1. Using a coroutine to compute, on-demand, the breadth-first traversal of a binary tree.

2. Using a coroutine as a control flow operator for returning early from a function.

3. Using a coroutine as a control flow operator for skipping to the next iteration of a loop.

On-Demand Computation

In this example, we will write a utility function, traverse, that computes the breadth-first
traversal of a binary tree, and use it to find the first negative integer in a tree. To avoid
unnecessarily continuing to traverse the tree once the integer has been found, we will use a
coroutine to compute the traversal on-demand.

Here is the definition of a node in the binary tree:

defstruct Node :

value: Int

left: Node|False

right: Node|False

Every node contains an integer value, and may recursively contain a left and right node.
Here is the definition of the traverse function:

defn traverse (root:Node) -> Coroutine <False ,Int|False > :

Coroutine <False ,Int|False > $ fn (co , x0) :

let loop (node:Node|False = root) :

match(node) :

(node:Node) :

suspend(co , value(node))

loop(left(node))

loop(right(node))

(node:False) :

false

It accepts a root node to traverse, and returns a coroutine of type Coroutine<False,Int|False>.
The coroutine accepts false as entering values, and sends out all the integers in the tree in
depth-first order, followed by false at the end. The syntax f $ x is a shorthand for f(x).

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 117

To find the first negative integer in a tree, we then call traverse on its root to obtain
the traversal coroutine, and resume it repeatedly to retrieve each subsequent integer in the
traversal:

defn first -negative (root:Node) -> Int :

val co = traverse(root)

let loop () :

match(resume(co , false)) :

(x:Int) : x when x < 0 else loop()

(x:False) : fatal ("No negative number in tree .")

We halt the program with an error message if we reach the end of the traversal without
encountering a negative number.

Returning Early from a Function

In this example, we will use a coroutine to emulate the common return construct that is
found in other programming languages for immediately returning from a function.

To demonstrate, we will translate the earlier example in this chapter:

defn main () :

for x in xs do :

if x < 0 : return false

println(x)

to proper Stanza code.
Our strategy stems from the observation that the coroutine suspend function behaves

very similarly to the common return construct. In addition to immediately exiting a block
of code, it also saves the state of the computation so that the block of code may be later
resumed. Thus, all that is needed to emulate the return construct is to refrain from resuming
the coroutine after the first call to suspend:

defn main () :

defn body (co:Coroutine <False ,False >, x0:False) :

for x in xs do :

if x < 0 : suspend(co , false)

println(x)

resume(Coroutine <False ,False >(body), false)

The main function wraps up its entire previous body in a new coroutine, and then resumes
the coroutine a single time. Within the coroutine body, suspend is used to emulate return.

For the sake of clarity, the above pattern can be abstracted into a convenient higher-order
function:

defn with -exit <T> (block: (T -> Void) -> T) :

defn body (co:Coroutine <False ,T>, x0:False) :

defn exit (x:T) :

suspend(co , x)

fatal (" Unreachable ")

block(exit)

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 118

resume(Coroutine <False ,T>(body), false)

The with-exit function accepts as input a function representing a block of code, and passes
it an exit function that can be used for immediately exiting the block.

Using with-exit, we can re-express the main function as the following:

defn main () :

with -exit <False > $ fn (return) :

for x in xs do :

if x < 0 : return(false)

println(x)

Skipping to the Next Loop Iteration

In this example, we will use a coroutine to emulate the common continue construct that is
found in other programming languages for skipping to the next iteration of a loop.

To demonstrate, we will translate the following:

defn main () :

for x in xs do :

if x < 0 : continue

println(x)

to proper Stanza code. Instead of returning from main upon encountering a negative number,
we wish now to skip to the next iteration of the loop.

Our strategy for this example stems from noticing the similaries between the return

construct and the continue construct. The former immediately exits a function, while the
latter can be thought of as a construct for immediately exiting a loop body. We can therefore
reuse the with-exit function to execute the for body, and use the provided exit function
to emulate continue:

defn main () :

for x in xs do :

with -exit <False > $ fn (continue) :

if x < 0 : continue(false)

println(x)

6.5 The Label Construct

The with-exit function defined previously is satisfactory for the purposes of emulating the
return and continue constructs, but its usage is syntactically unpleasant. Because it is used
so commonly, the Stanza core library provides the label macro as a syntactic shorthand for
calling the with-exit function.

The expression:

label <T> exit :

body

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 119

is equivalent to the following explicit call to with-exit:

with -exit <T> $ fn (exit) :

body

There is also a version of the label construct that does not require an explicit return type
– in which case we assume it returns false, and the exit function correspondingly requires
no arguments.

Using the label construct, the example emulating the return construct can be re-
expressed as:

defn main () :

label return :

for x in xs do :

if x < 0 : return ()

println(x)

And the example emulating the continue construct can be re-expressed as:

defn main () :

for x in xs do :

label continue :

if x < 0 : continue ()

println(x)

6.6 Nested Coroutines

One key aspect of Stanza’s coroutine mechanism is the requirement for programmers to
explicitly specify which coroutine to suspend. This is unlike the coroutine mechanisms of
other languages – such as Lua [30], Python [47], or Ruby [22] – which allows suspension only
from the currently-running coroutine. Stanza’s coroutines are called targetable coroutines
for this reason: the target coroutine must be specified explicitly. This difference allows for
coroutines – and constructs built upon coroutines – to be well-behaved when nested within
each other, and is key to enabling the use of Stanza’s coroutines as a general-purpose control
flow operator.

As an example, the following function, product-of-non-negative, computes the prod-
uct of all the non-negative integers in an array:

defn product -of -non -negative (xs:Array <Int >) :

label <Int > return :

var product = 1

for x in xs do :

label continue :

if x < 0 : continue ()

if x == 0 : return (0)

product = product * x

product

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 120

It is implemented with two label constructs, one nested within the other. When iterating
through the array, the outer label allows the function to return 0 immediately if any of the
numbers is 0. Within the for loop, the inner label allows us to skip to the next iteration
if the number is negative.

Because the respective scopes corresponding to the two exit functions (return and
continue) is made explicit, there is no ambiguity in the above code.

6.7 Implementation

Stanza uses an implementation technique known as segmented stacks for both its coroutine
system and its automatic stack extension system. A common language implementation
strategy – such as for C [33] and C++ [55] – is to separate the machine memory into two
sections: stack memory and heap memory. The stack memory holds the activation records
containing the local variables and return addresses for each function call, while the heap
memory holds all dynamically-allocated structures. In this scheme, the recursion depth is
limited by the amount of stack memory, as each recursive call requires the allocation of an
activation record.

Stanza does not distinguish between stack memory and heap memory, and instead uses
all available memory as heap memory. The stack for holding the function activation records
are allocated as small 4KB datastructures from the heap memory, and the machine stack
register holds a pointer to the currently active stack. Function calls allocate their activation
records from the top of the currently active stack, and when the current stack is full, Stanza’s
automatic stack extension mechanism allocates another 4KB stack from the heap. In this
scheme, the recursion depth is limited only by the total available memory.

Each coroutine saves the state of its computation in its own dedicated stack. Resuming
and suspending a coroutine involves simply assigning its stack to the machine stack register.
To optimize coroutine creation and stack extension, we use a free-list to maintain a set of
pre-allocated stack datastructures. Coroutine creation, resumption, and suspension, can all
be done in a handful of machine instructions.

Coroutine States

To implement the targetable coroutine system, where the user explicitly requests for the
resumption or suspension of a specific coroutine, every coroutine holds:

1. a pointer to the coroutine that resumed it, and

2. a flag for indicating the state of the coroutine.

Here is the terminology we will use. If coroutine A resumed coroutine B, then we define
A as the direct parent of B, and B as the direct child of A. A coroutine can only have a
single direct parent and a single direct child. The parent of A (and its parent and so forth)

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 121

is defined as an indirect parent of B. Vice versa, the child of B (and its child and so forth)
is defined as an indirect child of A. The coroutine that is currently executing is defined as
the current coroutine. The initial coroutine in which a Stanza program starts is defined as
the main coroutine.

At any given time, a coroutine can be in one of four states:

1. Active: The coroutine is currently running and is free to be suspended.

2. Open: The coroutine is not running and is waiting to be resumed.

3. Suspended: The coroutine is not running but cannot be resumed.

4. Closed: The coroutine has finished running and can no longer be resumed.

A Stanza program starts in the main coroutine which is always active.
When a coroutine is first created, it is open to indicate that it is free to be resumed.
The resume function can only be called on an open coroutine. When a coroutine A

resumes another coroutine B, the parent coroutine A stays active, B changes from open to
active, and all of the children of B change from suspended to active. If B has no children,
then B is set as the current coroutine. Otherwise, the most distant child of B – the one with
no child of its own – is set as the current coroutine.

The suspend function can only be called on an active coroutine – which necessarily implies
that it is either the current coroutine or a parent of the current coroutine. The coroutine
upon which suspend is called changes from active to open, all of its children changes from
active to suspended, and its direct parent will be set as the current coroutine.

A coroutine is closed once its body function has finished evaluating, and can no longer
be resumed.

Figure 6.1 illustrates the effect of the core functions on the coroutine states:

1. In the initial configuration, we assume that suspend has been called twice already,
resulting in two suspended chains of coroutines: the cde chain and the fg chain.
Coroutines c and f are open and free to be resumed, and the current coroutine is
b.

2. We then decide to call resume on c, which sets b as the parent of c. Coroutines c, d,
and e become active, and the current coroutine is now set to e.

3. We then call suspend on b, which sets the current coroutine to a. As in the initial
configuration, we are back to two suspended chains of coroutines, but now b is open
and c is suspended.

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 122

Figure 6.1: Semantics of Nested Coroutines

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 123

Optimization Opportunities

The requirement to explicitly specify which coroutine to suspend provides the compiler more
information for optimizing the code. Consider the following example implementation of sum:

defn sum (f: () -> Int|False) -> Int :

label <Int > return :

var accum = 0

while true :

match(f()) :

(x:Int) : accum = accum + x

(x:False) : return(accum)

fatal(" Unreachable ")

sum accepts a function f that returns either an integer or false, and calls it repeatedly until
false is returned. The result of calling sum is the sum of all the integers returned by f.

The design of Stanza’s targetable coroutine system provides two key pieces of information
to the compiler:

1. The return(accum) call is the only invocation of the return exit function, which is
the only way of suspending the coroutine.

2. The return exit function does not escape outside of sum. It is not possible for return
to be called from any other location. In particular, f is guaranteed not to call return.

From that information, the compiler can deduce all points at which the coroutine can be
suspended, and implement the function using simple goto instructions:

defn sum (f: () -> Int|False) -> Int :

var accum = 0

LOOP_START:

match(f()) :

(x:Int) : accum = accum + x

(x:False) : goto END_OF_BLOCK

goto LOOP_START

LOOP_END:

fatal(" Unreachable ")

END_OF_BLOCK:

accum

Hence, the overhead of allocating a new coroutine, resuming, and suspending it, is completely
eliminated.

Languages like Lua [30], Python [47], or Ruby [22], which allow users to implicitly suspend
the current coroutine, prohibit the above optimization. The compiler is forced to allocate
and launch a new coroutine because f may choose to suspend it.

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 124

6.8 Other Functions

Here are the rest of the functions available for operating on coroutines:

1. The open? function has the following type signature:

defn open? (c:Coroutine) -> True|False

and returns true if the coroutine is open and returns false otherwise. A coroutine
can only be resumed if open? returns true.

2. The active? function has the following type signature:

defn active? (c:Coroutine) -> True|False

and returns true if the coroutine is active and returns false otherwise. A coroutine
can only be suspended if active? returns true.

3. The close function has the following type signature:

defn close (c:Coroutine) -> False

and is used to close an open coroutine. It indicates that the program will not resume
the coroutine again, and frees its associated resources.

4. The break function has the following type signature:

defn break <?O> (c:Coroutine <?,?O>, v-out:O) -> Void

and is used to suspend and close an active coroutine. It behaves identically to calling
suspend followed by close on a coroutine.

6.9 Design Benefits of a General-Purpose Control

Flow Operator

Stanza’s philosophy of using higher-order functions for representing common iteration con-
structs was heavily inspired by the Smalltalk [24] and Ruby [22] programming languages.
It is an elegant philosophy that simultaneously decreases the language complexity while in-
creasing its expressiveness. But, though we agree with this philosophy, we feel that its full
benefits can only be realized when combined with a general-purpose control flow operator,
which is lacking in both Smalltalk and Ruby.

As an example, the following is a snippet of Ruby code for iterating through each element
of a collection:

def main ()

xs.each do |x|

puts(x)

end

end

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 125

The .each method plays a very similar role as Stanza’s do function in the overall design of
Ruby. It accepts a block – a form of Ruby closure – and calls the block once for each element
in the collection. The block in the above example accepts an argument, x, and prints it to
the screen.

Now we use Ruby’s return construct to immediately exit the function upon encountering
a negative number:

def main ()

xs.each do |x|

return nil if x < 0

puts(x)

end

At this time, the suspicious reader should wonder how Ruby avoids the ambiguity discussed
in Section 6.1. Why does return nil return from the main function instead of returning
from the block passed to the .each method? And furthermore, what control flow operator
would return from the block instead of from main?

Because of its lack of a general-purpose control flow operator, Ruby instead introduces
a variety of function constructs that differ in their behaviour with respect to control flow
operators. In the example above, return nil returns from main instead of from the block
because the return construct is defined to return from the lexically-enclosing method and
ignore blocks.

Ruby provides five different ways of wrapping up code – blocks, procs, lambdas, methods,
and Method objects – along with a suite of control flow operators – return, break, and
next, among others. Blocks and methods are not first-class values, while procs, lambdas,
and Method objects are. The return construct is used to return from a lambda, method, or
Method object. The next construct is used to return from a lambda, block, or proc. Calling
return within a block or proc returns from its lexically-enclosing method or lambda. Calling
break within a block or proc returns from the method that called the block or proc.

In contrast, Stanza provides one way of wrapping up code – functions – and one control
flow operator – targetable coroutines (with label as a convenient shorthand).

Though we used Ruby to illustrate the issue, the interaction between control flow opera-
tors and function constructs is a fundamental design challenge. The Smalltalk language also
provides two ways to wrap up code – methods and blocks. The return operator returns from
the lexically-enclosing method, but there is no operator for returning early from a block.

6.10 Comparison to Continuations

The decision to use coroutines as the sole non-local control flow operator in Stanza was
inspired by Scheme’s [56] call/cc function for reifying the current continuation. Like Stanza,
the call/cc function is Scheme’s only non-local control flow operator, and other common
constructs – such as throwing exceptions and exception handlers – are built upon call/cc

as a set of macros.

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 126

The semantics of Stanza’s targetable coroutines can be perfectly emulated using call/cc,
which makes the call/cc function strictly more expressive than coroutines. However, this
expressivity comes at the cost of being notoriously difficult to learn, being inefficient to
execute, and interacting poorly with mutation.

Learning Difficulty

Coroutines can be intuitively understood as representing a separate computation that is in-
terleaved with the main program. The programmer’s intuitive notion of time is undisturbed:
time flows forward. Each coroutine takes turns to advance for some number of time steps.

In contrast, call/cc reifies a continuation that represents a single snapshot in time
to which the program can jump arbitrarily. Thus, time is no longer restricted to only
flow forward, and programmers can no longer rely upon their intuitive notion of time to
understand code that makes heavy use of continuations.

The following shows a notoriously perplexing usage of continuations known as the Yin-
Yang puzzle by David Madore [38]:

(let* ((yin

((lambda (cc) (newline) cc)

(call/cc (lambda (cc) cc))))

(yang

((lambda (cc) (display #*) cc)

(call/cc (lambda (cc) cc)))))

(yin yang))

Though only seven lines long, predicting the printed output of the Yin-Yang puzzle has
proven to be far from trivial.

For the curious reader, it turns out that it prints out an increasing number of asterisks
on each line:

*

**

...

There are many explanations for how the code works, none of them simple.

Execution Efficiency

As described in Section 6.7, the state of a computation is fully described by the stack of
activation records corresponding to each function call. Thus, reifying the current continua-
tion can be done by creating a copy of the current stack of activation records. To invoke a
continuation, a copy of this saved stack is set as the active stack.

Because the same continuation can be invoked repeatedly, the saved stack must be copied
before being set as the active stack. If the stack was quite deep at the time that the

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 127

continuation was reified, then copying it is an expensive procedure. This is substantially less
efficient than Stanza’s coroutine implementation, which requires only a few instructions for
creation, resumption, and suspension.

One-shot continuations – continuations which can only be invoked once – do not suffer
from the same copying overhead as full continuations. They have the same efficiency as
Stanza’s coroutines, but consequently are also less expressive than full continuations.

Interactions with Mutation

Both Stanza and Scheme are impure languages that support an assignment construct for
mutating local variables. In the presence of mutation, the intuitive understanding of con-
tinuations as a snapshot in time is now incomplete, as state that has been mutated is not
reverted when a continuation is invoked.

Consider the following Scheme function, do-n-times, which calls the argument function,
f, repeatedly for n times:

(define (do-n-times n f)

(let ((i 0))

(while (< i n)

(f)

(set! i (+ i 1)))))

Internally, it defines a loop variable, i, and loops while i is less than n. On each iteration
we call f and increment i.

The following uses do-n-times to print ten asterisks on a line:

(do-n-times 10 (lambda (i) (display #*)))

Though the function works, the implementation of do-n-times is not idiomatic of Scheme
code, which prefers expressing loops through tail-recursion instead of mutating a loop vari-
able. Here is a version of do-n-times implemented in terms of tail-recursion:

(define (do-n-times n f)

(when (> n 0)

(f)

(do -n-times (- n 1) f)))

Ideally, the choice of how to implement do-n-times should be an internal implementation
detail. That is, from the perspective of the caller, no code should be able to discern whether
do-n-times is implemented using tail-recursion or using a mutable loop variable. However,
the following example demonstrates that this is not true in the presence of call/cc:

(let ((saved -cc #f)

(resumed #f))

(do -n-times 10

(lambda ()

(set! resumed

(call/cc (lambda (cc)

(when (not saved -cc) (set! saved -cc cc))

CHAPTER 6. THE STANZA TARGETABLE COROUTINE SYSTEM 128

(or resumed #f))))

(display #*)))

(newline)

(when (not resumed)

(saved -cc #t)))

A variable saved-cc is used to save the continuation of the first iteration, and then this
continuation is invoked once. The resumed variable prevents the infinite loop resulting from
invoking the continuation repeatedly.

When do-n-times is implemented using tail-recursion, the following is printed:

However, when do-n-times is implemented through mutating a loop variable, the fol-
lowing is printed:

*

The consequence of this demonstration is that it is extraordinarily difficult to know
whether two implementations of a function are actually equivalent in the presence of full
continuations. Simply refactoring a loop to use tail-recursion instead of mutation may result
in unpredictable changes in program behaviour.

129

Chapter 7

The LoStanza Sublanguage

In the design of any programming language there is a fundamental tension between the desire
for a well-defined high-level machine-independent semantics and the desire for fine-grained
transparent control over the underlying hardware. Stanza has been presented so far as a
high-level language, and the details of how programs are actually mapped onto the primitive
operations of the machine have been intentionally concealed. How objects are represented,
how memory is addressed, how memory is allocated and deallocated, how to track the state
of coroutines, and how to track whether an object can be safely deallocated, are just a few
examples of details that are automatically managed by the Stanza system.

Ultimately, however, a practical programming language must be able to interface with
the rest of the software ecosystem: the operating system and existing code written in other
programming languages. This requires the ability to execute code not originally written
in Stanza and manipulate datastructures not originally created within Stanza. Since their
low-level details are not managed by Stanza, programmers require fine-grained control to
manipulate memory and execute code according to the conventions set by the other systems.
The task of the language designer is to provide an interface to the software ecosystem without
sacrificing the benefits of having a high-level machine-independent semantics.

7.1 LoStanza

There are three broad methods for providing an interface between a high-level programming
language and the surrounding ecosystem:

1. Provide the necessary low-level constructs for controlling the hardware.

2. Control the hardware through primitive operations written in a different programming
language.

3. Separate the language into a high-level and a low-level sublanguage. This is the method
adopted by Stanza.

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 130

Stanza is divided into two sublanguages: a high-level and low-level language respectively
called HiStanza and LoStanza. HiStanza has a well-defined machine-independent semantics,
and is what the majority of Stanza code is written in – including all the examples presented
thus far. HiStanza is strongly-typed and guarantees that all programs either execute to
completion or fail gracefully with an error message.

LoStanza is a low-level language that provides constructs for direct control over memory
and for executing code written in other languages. Unlike HiStanza, details of the machine
architecture - such as word width - are exposed to programmers. LoStanza also offers no
protection against inadvertently writing to an inappropriate memory location nor provides
any guarantees about the system behaviour if it occurs.

LoStanza provides constructs for control over the following details:

1. Memory Addresses: Machine addresses are directly exposed to programmers as point-
ers. Pointers can be created by requesting the address of an in-memory object or
directly by casting from an integer, and can be manipulated using arithmetic instruc-
tions.

2. Memory Load/Store: Values may be loaded from and stored to arbitrary memory
locations through pointers.

3. Object Layout: Objects can be defined with an explicit layout in memory.

4. Calls to Foreign Code: Functions written in other languages can be called from Stanza.

5. Calls from Foreign Code: Stanza functions can be declared such that they can be called
from other languages.

Example

The following shows the declaration of a LoStanza function:

lostanza defn sum -to (n:int) -> int :

var accum:int = 0

for (var i:int = 0, i < n, i = i + 1) :

accum = accum + i

return accum

The sum-to function accepts a single primitive integer argument, and returns a primi-
tive integer. All LoStanza functions are preceded by the lostanza keyword, and must have
explicit argument and return types. Unlike HiStanza, which is an expression-oriented lan-
guage, LoStanza separates the concept of statements from expressions. Thus the function
ends with the return statement to return the final value of accum, which, unlike in HiStanza,
is a built-in construct.

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 131

7.2 LoStanza Core Forms

The following lists the complete set of LoStanza core forms:

Top Level Forms:
($ls -def name type value) (Define Value)
($ls -defvar name type value) (Define Variable)
($ls -extern name type) (External Variable)
($ls -deftype name parent (fields ...) rfield (Define Type)

(types ...) rtype)

($ls -defn name (args ...) (a1 ...) a2 body ...) (Define Function)
($ls -extern -fn name (args ...) (a1 ...) a2 body ...) (External Function)
($ls -defmethod name (args ...) (a1 ...) a2 body ...) (Define Method)

Statement Forms:
($ls -set name exp) (Assignment)
($ls -labels blocks ...) (Labeled Blocks)
($ls -block name (args ...) (ts ...) body ...) (Block)
($ls -goto name args ...) (Goto Block)
($ls -return exp) (Return)
($ls -let stmts ...) (New Scope)
($ls -if pred conseq alt) (If Statement)
($ls -match (args ...) branches ...) (Match Statement)
($ls -branch (args ...) (ts ...) body ...) (Match Branch)
($ls -func f) (Closure Reference)

Expression Forms:
($ls -new type args ...) (New Object)
($ls -struct type args ...) (Struct)
($ls -addr exp) (Address-of)
($ls -addr! exp) (Forced Address-of)
($ls -deref exp) (Dereference)
($ls -slot exp index) (Indexed Slot)
($ls -field exp name) (Named Field)
($ls -do f args ...) (Function Call)
($ls -call -c f args ...) (C Function Call)
($ls -prim f args ...) (Primitive Call)
($ls -sizeof type) (Size of Type)
($ls -tagof name) (Tag of Type)
($ls -as exp type) (Cast)
($ls -and a b) (Short-circuiting And)
($ls -or a b) (Short-circuiting Or)

Type Forms:
($ls -byte) (Byte)
($ls -int) (Int)
($ls -long) (Long)
($ls -float) (Float)
($ls -double) (Double)
($ls -?) (Unknown Type)
($ls -of name args ...) (Struct)

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 132

($ls -ptr t) (Pointer)
($ls -ref t) (Reference)
($ls -fn (a1 ...) ar a2) (Function)

7.3 Low-Level Types

LoStanza defines its own notions of types separately from HiStanza. Unlike HiStanza types
– which are names given to categories of values with common interfaces, and are independent
from the machine – LoStanza types denote specific bit patterns as stored in machine memory.

The following primitive types denote numbers:

• byte denotes an 8-bit unsigned integer.

• int denotes a 32-bit signed integer in two’s complement format.

• long denotes a 64-bit signed integer in two’s complement format.

• float denotes a 32-bit real number in IEEE-754 single precision floating-point format.

• double denotes a 64-bit real number in IEEE-754 double precision floating-point for-
mat.

The pointer type, ptr<t>, denotes the address of some location in memory where a bit
pattern of type t is stored. The memory address can be either 32 or 64 bits depending on
the machine architecture. The special type ptr<?> denotes a generic memory address and
does not specify the type of the bit pattern stored at the address.

The function type, (t1, t2, ..., tn) -> tr, denotes a sequence of machine instruc-
tions that implements a function taking n arguments of type t1, t2, ..., tn respectively, and
returns a value of type tr. The list of argument types may optionally end with an ellipsis
to denote that the function takes a variable number of arguments. For example, the type
(int, float ...) -> float denotes a function that takes a single int argument followed
by a variable number of float arguments. While variable-arity functions cannot be defined
in LoStanza, the ellipsis is useful for modeling the types of foreign functions such as printf
from C.

The reference type, ref<T>, denotes the address of some location in the automatically-
managed heap memory, where a HiStanza value of type T is stored. The reference type allows
LoStanza code to easily interact with values created within HiStanza.

7.4 LoStanza Objects and Arrays

LoStanza allows programmers to declare and manipulate objects with an explicit memory
layout. The following declares a struct called Coord that contains two 32-bit floating point
numbers for representing its x and y coordinates:

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 133

lostanza deftype Coord :

x: float

y: float

Within a LoStanza function, the type Coord will then refer to the struct comprised of
two 32-bit floating point numbers. In total, the struct is then 64 bits. Within a LoStanza
function, a Coord struct can be created using the following syntax:

var c:Coord = Coord {1.0f, 3.0f}

The dot (.) operator can be used to retrieve from and store to a field:

var x:float = c.x ;Retrieve the x field in c

c.y = 4.0f ;Store 4.0f into the y field in c

The code above allocates the object locally – either in registers, or on the stack if neces-
sary. To create a heap-allocated reference to a struct we can use the new operator:

var c:ref <Coord > = new Coord {1.0f, 3.0f}

Array types are specified in LoStanza by following the last field declaration in a struct
with an ellipsis. This specifies that the struct ends with a variable number of fields of that
type. The following example declares a Company type that holds some number of employees:

lostanza deftype Company :

num -employees: long

tax -id: long

annual -revenue: long

employees: ref <String > ...

The Company type has a num-employees field for specifying the number of employees, a
tax-id field for specifying the tax identification number of the company, an annual-revenue

field for specifying the annual revenue of the company, and an employees field that holds
num-employees number of employees. The number of values held by the last field in an
array type is always dictated by the first field in the struct which must have type long.

The new operator is also used to instantiate an array object. All fields except the last
one must be provided during instantiation:

var c:ref <Company > = new Company {3L, 401431282L, 2000000L}

The index operator ([]) is used to store to and load from a specific location in the variable
field of an array type:

c.employees [0] = String (" Patrick ") ;Store into 1st c.employees slot.

c.employees [1] = String ("Luca") ;Store into 2nd c.employees slot.

c.employees [2] = String ("Emmy") ;Store into 3rd c.employees slot.

var luca:ref <String > = c.employees [1] ;Load from 2nd c.employees slot.

Note that in the examples above we explicitly provide the types of all LoStanza variable
(var) declarations. For purposes of clarity, LoStanza offers extremely limited type inference.
The types of all arguments and variables must be explicitly provided. Type annotations are
inferred only for value (val) declarations.

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 134

7.5 Interaction between HiStanza and LoStanza

LoStanza is designed to be a simple language and does not offer any novel constructs that
cannot be found in other low-level languages such as C [33]. What sets LoStanza apart is
the ease with which it can interact with code written in HiStanza. This is accomplished by
two attributes of LoStanza:

1. HiStanza and LoStanza definitions share the same namespaces. LoStanza can directly
refer to types, values, variables, functions, and multis declared in HiStanza and vice
versa.

2. LoStanza can create and interact with objects in the garbage-collected heap memory.

Shared Namespaces

To demonstrate the shared HiStanza/LoStanza namespaces, consider again our example of
the LoStanza type Coord:

lostanza deftype Coord :

x: float

y: float

We now write a constructor function, and two getter functions, to allow the Coord type
to be freely used from HiStanza:

lostanza defn Coord (x:ref <Float >, y:ref <Float >) -> ref <Coord > :

return new Coord{x.value , y.value}

lostanza defn x (c:ref <Coord >) -> ref <Float > :

return new Float{c.x}

lostanza defn y (c:ref <Coord >) -> ref <Float > :

return new Float{c.y}

From the perspective of HiStanza, the Coord type represents an immutable object with two
Float fields that can be retrieved using the x and y functions.

As an example, the following parabola function takes a starting and ending x coordinate,
and a step size, and returns a Vector of Coord values representing the function y = x2:

defn parabola (x0:Float , x1:Float , inc:Float) :

val coords = Vector <Coord >()

let loop (x:Float = x0) :

if x <= x1 :

add(coords , Coord(x, x * x))

loop(x + inc)

coords

Note that the Coord type can be transparently referred to from HiStanza. The constructor
function Coord is used to create Coord values which are stored in a Vector created from
within HiStanza.

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 135

From the caller’s perspective, whether a function is implemented in HiStanza or LoStanza
is indistinguishable. LoStanza functions can be called, passed as arguments, or stored in
datastructures, identically to HiStanza functions. The following example tests whether a
Vector of Coord values contains a point lying below the x-axis:

defn below -x-axis? (ps:Vector <Coord >) :

any?({_ < 0}, seq(y, ps))

There is only one restriction that applies to interactions between HiStanza and LoStanza
functions: only LoStanza functions that accept and return ref<T> types can be refer-
enced from HiStanza. This is why the Coord constructor function accepts its arguments
as ref<Float> values, and why the x and y getter functions return ref<Float> values.

Automatic Garbage Collection

In general, two key pieces of information must be provided by the user for a language to
support automatic garbage collection:

1. The user must explicitly request the allocation of a block of automatically-managed
memory.

2. The user must state when a block of memory is still in use, so that the system knows
when it can be safely deallocated.

These two details are provided by the LoStanza ref type.
First, a user explicitly requests the allocation of a block of automatically-managed mem-

ory through the new construct, which returns a value of type ref<T>. The new construct is
also the only construct that can create a ref<T> value.

Second, Stanza uses the ref<T> type to track whether a block of memory is still in use.
Starting from the global variables, Stanza assumes that any memory reachable through a
ref<T> reference is under use, and that any memory that is not reachable is safe to deallocate.

Alternatively, programming languages such as Python and Ruby, that require the use of
a separate low-level language (such as C) to interface with the software ecosystem, provide
hooks to register and unregister pointers with the garbage collector. These hooks, typically
named register-gc-root and unregister-gc-root, are used to explicitly tell the system
whether a piece of memory is still under use, and their misuse is the source of many errors.

When the heap is full and no more objects can be allocated, the system will automatically
call the LoStanza function core/extend-heap to run the garbage collector and free any
memory that is no longer being used.

7.6 LoStanza and HiStanza Primitives

Because HiStanza code cannot operate directly on LoStanza primitive types, there is an
associated HiStanza type that wraps up each primitive type. Each of these HiStanza types

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 136

contains a single value field of the requisite LoStanza type.
For instance, the Float HiStanza type is defined as follows:

lostanza deftype Float :

value: float

which wraps up a primitive floating point number in a struct called Float. The primitive
types byte, int, long, and double have the corresponding HiStanza types Byte, Int, Long,
and Double defined similarly. The Char HiStanza type contains a byte value.

The LoStanza constructs new and dot (.) operator can be used to convert between the
LoStanza and HiStanza representations of primitives. For instance, a HiStanza ref<Float>

value can be constructed from a LoStanza float value, x, using the new operator:

new Float{x}

and the LoStanza float value wrapped within a HiStanza ref<Float> value, y, can be
retrieved by accessing its value field:

y.value

7.7 Interacting with the Software Ecosystem

Interactions between Stanza and the surrounding software ecosystem is also handled through
LoStanza, which supports the constructs necessary to both:

1. execute foreign code from within Stanza, and

2. call Stanza functions from foreign code.

Executing Foreign Code from Stanza

LoStanza currently supports declaring and calling foreign code using the C calling convention
through the special extern and call-c constructs. Suppose we wish to call the following C
function for computing the sum up to n:

int c_sum (int n) {

int accum = 0;

for(int i=0; i<n; i++)

accum += i;

return accum;

}

First, the extern construct is used to declare the existence and type of a foreign function.
The following definition declares the existence of a function called c_sum that accepts a
primitive int value and returns a primitive int value:

extern c_sum: int -> int

Second, the call-c operator is used to call a function using the C calling convention:

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 137

lostanza defn sum (x:ref <Int >) -> ref <Int > :

val result = call -c c_sum(x.value)

return new Int{result}

The LoStanza sum function takes a ref<Int> argument, retrieves the wrapped primitive int,
and then calls c_sum. A ref<Int> value is then constructed from the result and returned.

Here is another example of the call-c operator, in which we call the C printf function
to display the message “There are 3 ducks sitting in a row.”:

extern printf: (ptr <byte >, ? ...) -> int

lostanza defn print -ducks (n:ref <Int >) -> ref <False > :

call -c printf (" There are %d ducks sitting in a row.", n.value)

return false

print -ducks (3)

The extern declaration declares printf to accept the format string as a byte pointer,
followed by a list of values of unspecified types. The print-ducks function retrieves the int

value within its ref<Int> argument and calls printf using the C calling convention.

Calling Stanza Functions from Foreign Code

It is often desirable to have Stanza functions be callable from foreign code. This need
arises often when using libraries whose design relies heavily upon callbacks, such as those for
constructing graphical user interfaces. LoStanza supports this feature by allowing LoStanza
functions to be annotated with an extern declaration that tells the compiler that the function
will be called with the C calling convention.

As an example, consider the following C function for computing fibonacci numbers:

void report_number (int);

void c_fibonacci (int n) {

int a = 1;

int b = 1;

for(int i=0; i<n; i++){

report_number(a);

int a2 = b;

int b2 = a+b;

a = a2;

b = b2;

}

}

The c_fibonacci function accepts an integer, n, that specifies how many numbers in the
fibonacci sequence to compute. We assume the existence of a callback function named
report_number, and have c_fibonacci call it once for each computed fibonacci number.

Here is the report_number callback function written in Stanza:

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 138

val NUMBERS = Vector <Int >()

extern defn report_number (n:int) -> int :

add(NUMBERS , new Int{n})

return 0

The extern keyword preceding defn declares that the function will be called using the
C calling convention, and that the name report_number should be made visible to foreign
code. The callback simply constructs a ref<Int> value from its argument and adds it to
the global NUMBERS vector.

We declare and call c_fibonacci using the call-c operator as described before:

extern c_fibonacci: int -> int

lostanza defn fibonacci (n:ref <Int >) -> ref <False > :

clear(NUMBERS)

call -c c_fibonacci(n.value)

return false

The LoStanza fibonacci function first clears the contents of NUMBERS, and then calls
c_fibonacci using the C calling convention.

Executing the following code:

fibonacci (20)

println(NUMBERS)

prints out the twenty numbers stored in the NUMBERS vector:

[1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765]

Note that LoStanza does not have a type analogous to the C void type. The void type
in C indicates that the function does return, but that it has no meaningful result. We simply
use int in place of void and ignore the returned value.

Function Pointers

The previous example was unrealistic in the sense that the name of the callback function,
report_number, was hard coded. This is rarely done by C libraries – instead, the callback
function is typically passed in as a function pointer.

Here is the definition of c_fibonacci changed to accept report_number as a function
pointer argument:

void c_fibonacci (void (*report_number)(int), int n) {

int a = 1;

int b = 1;

for(int i=0; i<n; i++){

report_number(a);

int a2 = b;

int b2 = a+b;

a = a2;

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 139

b = b2;

}

}

In order to call the new definition of c_fibonacci we have to change its extern decla-
ration to reflect its new type signature:

extern c_fibonacci: (ptr <(int -> int)>, int) -> int

c_fibonacci now requires two arguments. The first argument is a pointer to a callback
function that takes an int and returns an int. The second argument is an int.

To call c_fibonacci, we now retrieve a pointer to the report_number function using the
addr operator, and pass that in as the first argument. The implementation of report_number
is left unchanged:

lostanza defn fibonacci (n:ref <Int >) -> ref <False > :

clear(NUMBERS)

call -c c_fibonacci(addr(report_number), n.value)

return false

7.8 Comparisons to Other Solutions

We made the choice to separate Stanza into high-level and low-level sublanguages to interface
with the surrounding software ecosystem. There are broadly two other solutions we could
adopted:

1. Directly provide the necessary low-level constructs for controlling the hardware.

2. Control the hardware with primitive operations written in a different programming
language.

Directly Provide Low-Level Constructs

The most direct solution is to have the language support the low-level constructs necessary
for controlling hardware. This is the solution taken by C [33], C++ [55], Go [25], and
Rust [17] for example – which we recognize as “systems programming languages” to reflect
the amount of control they offer. The goal of a systems programming language is to expose
as much of the raw abilities of the machine as possible to the programmer – and less or no
emphasis is placed on maintaining a high-level machine-independent semantics.

All else being equal, control over the machine is always a desirable aspect. The tension
between a systems programming language and a high-level language arises from the fact that
many of the features offered by a high-level language results from limiting the ways in which
a programmer can interact with the machine. As a trivial example, a language that provides
no construct for observing the word-width of the machine guarantees that programs written
in it are portable between machines of different word-widths.

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 140

The HiStanza/LoStanza sublanguage solution has the following advantages over a systems
programming language:

1. Portability: HiStanza’s semantics are machine-independent. The vast majority of
Stanza programs do not require the use of LoStanza and can execute as-is on dif-
ferent machines. For the small subset of programs that do require LoStanza, only a
small portion of the complete program needs to be written in LoStanza. Programmers
can thus port a program by focusing their efforts upon these isolated LoStanza sections.

2. Easy-of-Use: Language features that offer significant control over the machine also
come with the added burden of controlling the machine correctly. Systems program-
ming languages are known for being difficult to learn because of the abundance of
details that must be managed explicitly by the programmer. In contrast, high-level
languages such as Python can be used effectively without understanding machine ar-
chitecture, and is often taught in introductory programming courses.

While Stanza does offer low-level constructs that require a competent understanding
of machine architecture, these constructs are cleanly isolated to the LoStanza sublan-
guage. HiStanza has a learning curve comparable to Python.

3. Abstraction: Low-level constructs over-constrain a program by specifying details that
are unnecessary for describing its operation. Consider the following C function that
computes the total sum of an array:

float arraysum (float* xs, int n) {

float sum = 0.0f;

for(int i=0; i<n; i++)

sum += xs[i]

return sum;

}

with the equivalent Stanza code:

defn arraysum (xs:Array <Float >) -> Float :

var sum = 0.0f

for i in 0 to length(xs) do :

sum = sum + xs[i]

sum

Compared to the Stanza code, the C code has more constraints upon its operation: the
xs array must be passed in as a pointer to a sequence of float values laid out contigu-
ously in memory. The Stanza code assumes only that xs supports two operations: one
for retrieving its length, and another for retrieving the number at a specified index.

The following shows the Stanza definition of an implicitly defined interval array –
which contains the number 1.0f between the specified start and end index, and is
0.0f everywhere else:

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 141

defn IntervalArray (start:Int , end:Int , length:Int) :

new Array <Float > :

defmethod length (this) :

length

defmethod get (this , i:Int) :

if i >= start and i <= end : 1.0f

else : 0.0f

The Stanza implementation of arraysum can be directly called with the array created
by IntervalArray. The C version of arraysum would require an explicitly allocated
block of contiguous memory, populated with 0.0f and 1.0f.

4. Opportunities for Optimization: Because a high-level language imposes less constraints
upon the implementation of an algorithm, the compiler has greater flexibility when
mapping the algorithm to the machine.

Consider the following code, which defines a Pair type containing an x and a y coor-
dinate:

deftype Pair

defmulti x (p:Pair) -> Float

defmulti y (p:Pair) -> Float

defn Pair (x:Float , y:Float) :

new Pair :

defmethod x (this) : x

defmethod y (this) : y

defn main () :

val p = Pair (1.0f, 2.0f)

println(x(p))

println(y(p))

main()

The main function creates a Pair object and prints out its coordinates.

The details of how and where the p value is stored is not constrained by the code. The
compiler is free to store p in any of the following locations:

a) It can be stored on the heap and be represented as a pointer to heap memory.

b) It can be stored on the activation frame of the main function, which would relieve
the garbage collector of managing its allocation.

c) Since it’s a small object – comprised of only two floating point numbers – it can
be stored directly in two machine registers. This would be an extremely efficient
mapping: the garbage collector does not have to manage its allocation, and no
memory operations are required to access the pair’s coordinates.

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 142

A trivial analysis would also reveal that Pair objects are immutable: a pair’s coor-
dinates cannot change once the pair is created. Thus the calls to x(p) and y(p) are
guaranteed to return 1.0f and 2.0f as those are the coordinates used to create the
pair. Consequently, the main function can be equivalently mapped to the following:

deftype Pair

defmulti x (p:Pair) -> Float

defmulti y (p:Pair) -> Float

defn Pair (x:Float , y:Float) :

new Pair :

defmethod x (this) : x

defmethod y (this) : y

defn main () :

val p = Pair (1.0f, 2.0f)

println (1.0f)

println (2.0f)

main()

Finally, since p is no longer used in the main function, and that the Pair constructor
function contains no side-effects, the call to Pair can be removed entirely. The defini-
tion of the Pair type can be removed as it is no longer referenced by any executable
code. And the main function can be inlined, as it is called only once. The final program
can be thus mapped to the following:

println (1.0f)

println (2.0f)

As a more extreme optimization example, consider the following, which computes the
sum of the first hundred even numbers:

defn sum -of -even -numbers () :

defn even? (x:Int) : x % 2 == 0

reduce(plus , 0, take -n(100, filter(even?, 0 to false)))

The expression 0 to false creates an infinite sequence containing the natural num-
bers. We then use filter to keep only the even numbers, take-n to take the first
hundred remaining, and reduce with the plus function to compute the result.

After a suite of aggressive inlining and partial evaluation optimizations, the
sum-of-even-numbers function can be transformed by the compiler into the following
simple loop:

defn sum -of -even -numbers () :

let loop (accum:Int = 0, x:Int = 0, n:Int = 0) :

if x % 2 == 0 :

if n < 100 : loop(accum + x, x + 1, n + 1)

else : accum

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 143

else :

loop(accum , x + 1, n)

Write Primitive Operations Using a Different Language

The other method for interfacing with the software ecosystem is to implement a set of
primitive operations in a separate programming language that will then be called from the
high-level language. The separate programming language should have the low-level con-
structs necessary for interfacing with the hardware, and is typically a systems programming
language such as C [33] or C++ [55]. This is the most common solution and is used by
Scheme [56], Python [47], Ruby [22], Java [2], C# [27], Perl [63], and PHP [34], among many
other languages.

In the simplest case, the set of primitive operations is fixed and implemented only by the
language designer. The specific programming language chosen to implement these primitive
operations are then an implementation detail and does not concern the language user. This
design decision is acceptable for languages targeted at a niche domain for which the required
set of primitive operations is well-defined and stable.

General-purpose languages, on the other hand, must allow users to extend the set of
primitive operations themselves. This is done by directly writing code in the systems lan-
guage. In this case, the choice of systems language is no longer an implementation detail,
and detailed instructions must be provided for correctly manipulating the datastructures
created within the high-level language, and for satisfying any required invariants.

Compared to this method, the HiStanza/LoStanza sublanguage solution is significantly
easier to use. Because the systems language was designed independently from the high-
level language, it provides no facilities for easily working with constructs from the high-level
language. Communication between the high-level language and the systems language is often
complicated and a frequent source of errors.

To illustrate the issues, consider the following LoStanza function, store-x-coordinates,
which, given a vector of pairs, stores their x coordinates contiguously to a special memory
location called GRAPHICS-X-COORDS:

lostanza var GRAPHICS -X-COORDS: ptr <float >

lostanza defn store -x-coordinates (ps:ref <Vector <Pair >>) -> ref <False > :

val n = length(ps). value

var mem:ptr <float > = GRAPHICS -X-COORDS

for (var i:int = 0, i < n, i = i + 1) :

val p = get(ps , new Int{i})

[mem] = x(p).value

mem = mem + sizeof(float)

return false

Here is a listing of all the details that are automatically handled by LoStanza that would
otherwise need to be explicitly managed by the user.

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 144

1. We retrieve the length of the ps vector by calling the length function. LoStanza can
transparently call functions defined in HiStanza as the two sublanguages share the
same namespace. To accomplish the same task in a separate systems language, the
user must somehow retrieve the address of the high-level function, and then call it with
the appropriate calling convention.

2. The length(ps) call returns a value of type ref<Int> which represents a HiStanza
integer. To convert that to a primitive machine integer, we retrieve its .value field.
To accomplish the same task in a separate systems language, the user must understand
the mapping between the high-level primitives and their equivalent primitive values.
This conversion is sometimes referred to as tagging and untagging.

3. To retrieve the x coordinate from a pair, we call the x function. To accomplish the
same task in a separate systems language, the user must understand the details of how
fields of the Pair type are laid out in memory. Note also that the Stanza compiler is
able to inline calls to x to avoid any function call overhead.

4. The Vector and Pair implementations are abstract and the length, get, and x func-
tions can execute arbitrary Stanza code – including code that may trigger a garbage
collection cycle. Because Stanza employs a relocating garbage collector, the address of
the ps array before the call to get may be different from its address after the call. In
the event of a garbage collection cycle, LoStanza automatically updates ps to the new
address. In a separate systems language, the user would have to explicitly request the
potentially changed address. This burden is so high and so error-prone that many lan-
guages, such as Python [47] and Ruby [22], implement less efficient but non-relocating
garbage collectors.

5. The length, get, and x functions are free to throw an exception or yield to a different
coroutine. LoStanza will automatically handle jumping out of the store-x-coordinates
function (in the case of a thrown exception) or saving and reloading its state (in the
case of yielding a coroutine). In a separate systems language, the user would have
to explicitly check whether an exception is thrown and appropriately jump out of the
store-x-coordinates function. To our knowledge, no existing language allows for a
function call from the systems language to yield to a different coroutine.

7.9 Summary

LoStanza is a simple low-level language where the details of memory-management, interact-
ing with foreign code, and controlling hardware can be kept isolated away from the high-level
logic of the program. It is designed to offer all the low-level constructs of C, while also being
able to interoperate easily with HiStanza code.

Stanza, comprised of the HiStanza and LoStanza sublanguages, forms a complete lan-
guage system that is expressive enough to implement itself. The compiler is written in

CHAPTER 7. THE LOSTANZA SUBLANGUAGE 145

HiStanza, the library routines for interoperation with the operating system are written in
LoStanza, and the garbage collector is written in LoStanza.

146

Chapter 8

The Stanza System

The Stanza system consists of the Stanza compiler, and the Stanza core libraries. The com-
piler accepts as input a combination of .stanza source files and precompiled .pkg package
files, and produces a single text file containing x86-64 assembly instructions. The GNU
Compiler Collection (GCC) [46] is used to link the resulting assembly text file against the
standard C libraries to create the final program executable.

The latest version of the compiler is implemented in the Stanza language itself, and we
take full advantage of Stanza’s power and expressivity to keep the code short and manageable.
We make prevalent use of higher-order functions, macros, coroutines, and custom domain
specific languages to ensure that code is well-factored and redundancy is minimized. As a
result, the entire implementation fits in 28782 lines of code.

The compiler is divided into the following components:

1. Reader: Reads the input source files into memory and converts their characters to
s-expressions.

2. Macroexpander: Expands all macros in the input s-expressions into their resulting core
forms.

3. Syntax Checker: Verifies the core forms to be syntactically well-formed.

4. Symbol Resolver: Assigns all binders a unique identifier, and resolves all references to
binders. Shadowed binders are handled during this pass.

5. Type Inferencer and Typechecker: Infers the unspecified types for all binders, and checks
the program for ill-typed expressions. This is the last pass in the compiler frontend.
Once a program passes this stage with no reported errors, the compiler guarantees that
the resulting program will execute to completion or fail with a precise error message.

6. Midend Optimizer: Optimizes the program by re-expressing slow expressions as more
efficient but equivalent forms.

CHAPTER 8. THE STANZA SYSTEM 147

7. Abstract Machine Compiler: Implements the program as instructions for an abstract
machine. The abstract machine has an infinite number of registers and abstract instruc-
tions for simplifying code generation – such as calling functions, performing dispatch
based on type, allocating memory from the garbage collector, and extending the stack.

8. Register Allocator: Converts the abstract machine instructions into instructions for a
machine with a finite number of registers and simple instructions.

9. x86-64 Emitter: Emits the final instructions using AT&T syntax to be linked using
GCC.

10. Separate Compilation and the Pkg System: For increasing the compilation speed of
large programs, the compiler allows packages to be compiled separately into .pkg files.
When working on a large project, only the modified source files need to be recompiled.
The separate compilation system ensures, by inspecting the function type signatures,
that .pkg files can be linked to form a correct program and issues an error otherwise.

The core library consists of 11037 lines of code, and includes:

1. the garbage collector,

2. file input and output routines,

3. standard datastructures,

4. commonly used operations on sequences,

5. commonly used numerical types,

6. useful utilities for writing macros,

7. support for converting strings to s-expressions, and

8. support for parsing s-expression datastructures.

8.1 Organization of the Compiler

The Stanza compiler is organized as a series of passes that transform the program from
one representation to another. Each subsequent representation contains less information
than the previous one, and accumulates more concrete details about how the program is
mapped onto the physical machine. From a high-level perspective, the compiler adopts a
pure functional architecture, where each pass is implemented as a pure function that takes an
immutable datastructure as input and outputs another immutable datastructure. Mutation
is used internally within a pass when convenient.

CHAPTER 8. THE STANZA SYSTEM 148

The Reader

The reader is the first pass of the compiler and is responsible for outputting the s-expression
that is represented by the input character sequence. A minimal amount of syntax checking
ensures that the characters represent a valid s-expression. The following lists some properties
that are checked:

• Parentheses, braces, and brackets, must be balanced.

• Strings must have a starting and ending double-quote character.

• Characters must have a starting and ending single-quote character.

• Numbers must be formatted properly and be within the proper bounds.

The indentation structuring mechanism and reader shorthands are also handled during
this stage, such that the output datastructure is a simple s-expression.

The Macroexpander

The macroexpander accepts as input an s-expression and outputs the s-expression resulting
from expanding all macros in the input s-expression. During macroexpansion, each macro
is responsible for checking whether its syntax is well-formed, and issues an error otherwise.
For instance, the for macro, upon encountering the following code:

for i in xs :

println(i)

will issue the error:

Missing operating function in for expression.

Did you forget to put a do after the bindings?

The macroexpander pass succeeds if all macros expand without errors.

Syntax Checker

The syntax checker accepts as input an s-expression, and verifies that it is comprised solely of
syntactically correct Stanza core forms. The following lists some properties that are verified:

• All core forms must begin with the appropriate tag, e.g. $defn, and have the proper
arity.

• Some core forms should only appear at the top-level.

• LoStanza core forms should not appear in the bodies of HiStanza functions, and vice
versa.

• Instance methods should have a single argument named this.

CHAPTER 8. THE STANZA SYSTEM 149

• The last expression in a function body should not be a declaration.

• LoStanza functions should contain a return statement.

• The number of arguments in a match branch should equal the number of values that
were matched against.

Once the syntax checker has verified that the core forms are syntactically correct, it
outputs an intermediate datastructure called Input IR – short for Input Intermediate Rep-
resentation – that represents the program. The Input IR uses a separate type to represent
each core form, as is typical of datastructures for representing abstract syntax trees (ASTs).

Symbol Resolver

The symbol resolver accepts as input a program represented in Input IR, and outputs the
same program in Input IR but with binder definitions and binder references replaced with
unique numeric identifiers.

The resolver ensures the program contains no binders with duplicate names when inap-
propriate. Function overloading allows functions to share the same name, but no other kind
of binder can share the same name within the same scope. A feature called shadowing allows
a binder defined within an inner scope to have the same name as a binder defined in an outer
scope, as shown in the following example:

val x = 3

let :

val x = 4

println(x)

The resolver will assign unique identifiers to all binders and resolve references to these shad-
owed binders appropriately. So the above code, after symbol resolution, will be treated
equivalently to the following:

val x0 = 3

let :

val x1 = 4

println(x1)

The resolver will issue an error for any referenced binders that have not been declared.
By the end of this pass, the program is guaranteed to be syntactically correct (though not
yet well-typed).

Type Inferencer and Checker

The type inferencer and checker accepts a program represented in Input IR; converts the
program to Typed IR – short for Typed Intermediate Representation; infers the types of all
binders; and outputs the program in Typed IR if all expressions are well-typed.

CHAPTER 8. THE STANZA SYSTEM 150

The Typed IR is similar to Input IR except all expressions now have an extra type

field for storing their inferred type. The inference algorithm scans through the program and
builds a set of type constraints that are solved using a custom dataflow solver. The solver
infers function return types, value types, variable types, captured type arguments, and the
argument types of anonymous functions. Errors are issued for any unspecified type that
cannot be inferred by the solver.

After the types of all expressions have been inferred, references to overloaded functions
can be resolved based upon either the types of the arguments that they are called with, or
upon the type expected by the context in which they are used.

After inference, the typechecker then sweeps through the program and ensures that all
expressions are well-typed. For example:

• A function must be called with arguments of the appropriate types and the appropriate
number of type arguments.

• A variable must be initialized with a value of the appropriate type.

• A variable must be assigned a value of the appropriate type.

• The arguments of a match expression must be able to match against all the types in a
match branch.

Once all expressions are ensured to be well-typed, the program is guaranteed to run until
completion or fail with a precise error message.

Midend Optimizer

The midend optimizer accepts a program represented in Typed IR; converts the program
to K IR – short for K-Form Intermediate Representation; performs a number of optimizing
transformations; and outputs the optimized program in K IR.

K IR is an intermediate transformation with a convenient normalized form that sim-
plifies the implementation of many optimizing transformations. In K-normalized form, all
compound expressions are simplified by binding nested expressions to temporary values. For
example, the following code:

val x = f(1, g(0))

val y = let :

val z = h(1, g(1))

z + 3

w(y)

is K-normalized to:

val t0 = g(0)

val x = f(1, t0)

val t1 = g(1)

val z = h(1, t1)

CHAPTER 8. THE STANZA SYSTEM 151

val y = z + 3

w(y)

Some examples of optimizing transformations done in the midend include:

• Tail-Recursion Elimination: Self tail-recursive functions are transformed into explicit
loops.

• Inlining: When it is profitable to do so, calls to functions are inlined to eliminate the
function call overhead.

• Coroutine Elimination: Some specific but common uses of coroutines can be trans-
formed to simple jumps.

• Check Elimination: A runtime typecheck for ensuring that a value is of a specific type
can be eliminated if it can be proven that the check will never fail.

• Lambda Lifting: Nested functions can be lifted to the top-level by passing in any closed
over binders as arguments.

• Method Resolving: Calls to a multi can be replaced by a direct call to the method if it
can be proven that the call will always dispatch to that method.

• Loop Hoisting: Some operations that are recomputed repeatedly inside a loop can
instead be computed once outside of the loop if it does not depend on any loop binders.

• Constant Folding: Some expressions – such as 1 + 1 – can be replaced by their stati-
cally computed results.

Abstract Machine Compiler

The abstract machine compiler accepts a program in K IR and outputs the program’s im-
plementation in TG IR – short for Target Intermediate Representation.

The TG IR is comprised of a set of simple instructions for an abstract machine. The
abstract machine has an infinite number of registers, is provided the type of data stored in
each of its registers, and also supports abstract instructions such as for performing function
calls, dispatching based on type, switching the active coroutine stack, and creating a new
coroutine stack.

The following example shows the printed representation of the TG IR:

goto 1043125 when arity -ne(2)

def 1043126 : Ref

def 1043127 : Ref

def 1043129 : Long

new -stack

(V1043126 , V1043127) = args

V1043129 = [M1000049 + 0]

CHAPTER 8. THE STANZA SYSTEM 152

goto 1043128 when ge(V1043129 , 3)

() = call/0 M1000001 ()

label 1043128

match(V1043127): (($of 1000015)) => 1043130 ($top) => 1043131

label 1043131

return (0)

label 1043130

return (1)

label 1043125

def 1043132 : Ref

def 1043134 : Long

new -stack

(V1043132) = args

V1043134 = [M1000049 + 0]

goto 1043133 when ge(V1043134 , 3)

() = call/0 M1000001 ()

label 1043133

defdata 1043135 : Int

def 1043136 : Ref

(V1043136) = call/1 M1000012(M1043135)

def 1043137 : Ref

def 1043139 : Long

def 1043140 : Long

def 1043141 : Long

V1043139 = [M1000044 + 0]

V1043141 = [M1000045 + 0]

V1043140 = add(V1043139 , 24)

goto 1043138 when ule(V1043140 , V1043141)

() = call/1 M1000000 (24)

V1043139 = [M1000044 + 0]

V1043140 = add(V1043139 , 24)

label 1043138

[M1000044 + 0] = V1043140

V1043137 = add(V1043139 , 1)

[V1043137 + -1] = T1000026

[V1043137 + 7] = 1

[V1043137 + 15] = V1043136

return (V1043137)

Notice that registers are declared before they are used. The following declares the regis-
ters 1043127 and 1043129 with types Ref and Long respectively:

def 1043127 : Ref

def 1043129 : Long

The Ref type is of particular importance and indicates that register 1043127 holds a pointer
to the automatically-managed heap memory. The compiler will track when this register is
no longer used to determine when to deallocate the memory.

The new-stack abstract instruction:

new -stack

CHAPTER 8. THE STANZA SYSTEM 153

indicates to create and switch to a new active stack.
The call abstract instruction:

(V1043136) = call/1 M1000012(M1043135)

indicates to call the function at memory location M1000012 with memory address M1043135
and store the result in register 1043136.

The match abstract instruction tests the type of its given arguments and jumps to dif-
ferent labels depending on the result:

match(V1043127): (($of 1000015)) => 1043130 ($top) => 1043131

The above code says to jump to label 1043130 if the value in register 1043127 is of type
1000015, and jump to label 1043131 otherwise.

Register Allocator

The register allocator accepts as input instructions in TG IR; and outputs concrete instruc-
tions in ASM IR – short for Assembly Intermediate Representation.

Instructions in ASM IR are expressed in terms of a finite number of registers, and map
directly to instructions on the underlying hardware. All abstract instructions are expressed
now as concrete instructions. For instance:

• Abstract instructions for creating a new coroutine stack are replaced by concrete in-
structions for allocating a new coroutine and assigning to the stack register.

• Abstract instructions for calling a function are replaced by instructions for storing
arguments to the locations dictated by the Stanza calling convention.

• Abstract instructions for performing dynamic dispatch are replaced by instructions for
loading the type tag of a value from its header word and testing it against the tags of
each type.

The allocator also computes the stack map that indicates which stack locations contain a
heap reference and need to be scanned by the garbage collector.

To perform the register allocation, we use a variant of the linear scan algorithm that
performs allocation on the basic blocks individually and then stitches the results together.
Our algorithm performs automatic live range splitting, which, in addition to improving the
quality of the allocation, also obviates the need to reserve scratch registers for spilling.

x86-64 Emitter

The emitter is a simple pass that takes as input the concrete instructions in ASM IR and
outputs them to a text file using AT&T syntax.

Specific to the x86 architecture, there are two details that need to be handled carefully:

CHAPTER 8. THE STANZA SYSTEM 154

1. ASM IR is a representation of 3-address instructions whereas x86 uses 2-address in-
structions. Thus some ASM IR instructions expand into multiple x86 instructions. For
instance, the ASM IR instruction:

R0 = R1 + R2

is expanded into the following x86 instructions:

movq $rbx , $rax

addq $rcx , $rax

2. x86 imposes certain restrictions upon some instructions that must be worked around
when converting from ASM IR. For instance, a literal cannot be the first operand in
a comparison operation. Thus the following sequence of instructions, which jumps to
the label L0 if 42 is less than the register $rax, is not valid:

cmp $rax , $42

jl L0

To work around the restriction, the instruction can be re-expressed as:

cmp $42 , $rax

jg L0

which jumps to the label L0 if the register $rax is greater than 42.

Note that the ordering of the operands in the above examples are not a mistake. AT&T
syntax requires the operands in swapped order.

Separate Compilation and the Pkg System

The separate compiler allows packages to be compiled separately and output as .pkg files.
Now when working on a large program, only the modified source files need to be recompiled,
thus greatly reducing the compilation time. The Stanza distribution includes the standard
library as pre-compiled .pkg files to remove the cost of compiling them for every project.

The compiler passes are extended to support .pkg files through the following modifica-
tions:

1. Symbol Resolver: Every .pkg file contains a listing of all externally visible bindings
declared within the package. When resolving a reference to a binder, the resolver
must search within all imported packages – in .stanza files and in .pkg files – for the
binder’s declaration.

2. Typechecker: Every .pkg file also contains the type signatures of all externally visible
bindings declared within the package. The typechecker uses these type signatures when
checking whether imported bindings are used in a type consistent manner.

Additionally, a package can be recompiled without recompiling its dependent packages
if the type signatures of its externally visible bindings are unchanged.

CHAPTER 8. THE STANZA SYSTEM 155

3. Register Allocator: The result of register allocation is saved within the .pkg file with
one caveat. All objects stored on the Stanza heap begin with eight bytes for indicating
the type of the object. This header is called the type tag and the compiler issues a tag
for each type once all types in the program are known. Thus the type tags are not yet
known when compiling a single package.

The allocator supports separate compilation by keeping abstract all the instructions
that depend upon type tags. Once all the packages comprising a program are known,
and tags have been issued for all types, these abstract instructions are then expanded
into concrete instructions.

8.2 Automatic Garbage Collection

One of the most difficult aspects in the implementation of a managed programming language
is the coordination between the code generator and the garbage collector.

From the perspective of Stanza’s code generator, automatic management of memory
consists of the following:

1. Keeping track of the size of the heap. Whenever a new object is allocated, Stanza
assigns it the pointer to the current top of the heap, and then increments the size of
the heap by the size of the object.

2. Signaling for the garbage collector to run. If allocating a new object will increase the
size of the heap to beyond its capacity, then the code generator inserts a call for running
the garbage collector. The garbage collector will either return, indicating that enough
space has been freed to allocate the object, or it will halt the program, indicating that
there is no more memory available.

The Stanza garbage collector is implemented as a LoStanza function which vastly sim-
plifies a few details:

1. Running the garbage collector becomes a simple function call. There is no need to
save and restore special-purpose registers for switching from “executing normal code”
to “executing the garbage collector”.

2. Because LoStanza is able to easily refer to HiStanza datastructures, object layouts
are easily accessible to the garbage collector, and do not need to be hard coded. For
instance, the following LoStanza type defines the layout for a coroutine stack:

lostanza deftype Stack :

position: int

mark: int

parent: ref <False|Stack >

sp: ptr <?>

frames: StackFrame ...

CHAPTER 8. THE STANZA SYSTEM 156

The sp, parent, mark, and position fields can be rearranged at will without affecting
the implementation of the garbage collector or the code generator.

3. Some special operations need to occur after running the garbage collector, such as
running the finalizers for objects that are no longer live. And these operations can,
themselves, allocate objects and again trigger the garbage collector. In LoStanza, these
operations can be performed directly. If instead the garbage collector executes in a
special enviroment, then we need to first transition back to “executing normal code”
with a hook for performing the special operations before resuming the program.

The garbage collector requires the following information from the compiler:

1. It needs the list of binders, called the roots, that are always live in the program. For
Stanza, the roots consist of the global variables and the current coroutine stack.

2. For each object in the heap, it needs to know the locations of any internal heap refer-
ences so that it may scan those references.

3. For each stack, it needs to know the locations of the heap references in each stack
frame so that it may scan those references.

This information is computed by the compiler and stored in three tables that are accessible
from LoStanza: the global map, the object map, and the stack map.

Currently Stanza uses a simple single-threaded non-generational stop-and-copy garbage
collector.

8.3 Domain Specific Languages for Compilers

To minimize redundancy and keep code short, the Stanza compiler makes extensive use of
custom domain specific languages (DSLs) in its implementation. The DSLs are for inter-
nal use only, and are implemented using Stanza’s macro facilities. As an example of the
philosophy, the following describes one of the DSLs in the compiler: the renamer language.

The renamer language is used to write the implementation of Stanza’s renaming algo-
rithm, which scans through the program to assign unique identifiers to all binders, and also
detects binders with duplicate names. The following shows part of the algorithm implemen-
tation:

defrenamer rename -exp (e:IExp , eng:Engine) :

e :

;Stanza

IDefType: (class:c+, {args:t+}, children:e)

IDefChild: ({args:t+})

IDef: (name:v+, value:e)

IDefVar: (name:mv+, value:e)

IDefn: (name:f+, {targs:t+, args:v+, body:e})

CHAPTER 8. THE STANZA SYSTEM 157

IDefmulti: (name:m+, {targs:t+})

IDefmethod: ({targs:t+, args:v+, body:e})

IFn: ({args:v+, body:e})

IBranch: ({args:v+, body:e})

IDo: (func:f, args:e)

INew: (methods:e)

ISet: (value:e)

ILet: ({exp:e})

LetRec: (group{defns:e}, body:e)

IPublic: (public{exp:e})

;Fallthrough

IExp: (_:e)

f :

IOf: (class:e)

IExp: e

v+ :

IVar: register var

ITuple: (_:v+)

mv+ :

IVar: register mutable -var

t+ :

IVar: register tvar

ICap: (name:cv+)

cv+ :

IVar: register capvar

c+ :

IVar: register class

m+ :

IVar: register multi

f+ :

IVar: register fn

Focusing in on the IDefn node:

IDefn: (name:f+, {targs:t+, args:v+, body:e})

The name:f+ indicates to register the function in the function (fn) namespace, as can be
seen in the definition of the f+ rule:

f+ :

IVar: register fn

Similarly, the targs:t+ and args:v+ indicates to register the function type arguments and
standard arguments in the type variable (tvar and capvar) and variable (var) namespaces.

t+ :

IVar: register tvar

ICap: (name:cv+)

cv+ :

IVar: register capvar

v+ :

CHAPTER 8. THE STANZA SYSTEM 158

IVar: register var

ITuple: (_:v+)

The body:e indicates to recursively rename the nodes in the function body using the e rule.
The curly brackets ({}) surrounding the fields indicate the beginning of a new scope.

Binders within the same scope are not allowed to share the same name (except for func-
tions). The curly bracket notation is also used in the IPublic, LetRec, ILet, IBranch, IFn,
IDefmethod, IDefmulti, IDefChild, and IDefType nodes.

The renamer language allows us to condense the entire renaming algorithm to one page,
which serves as both a specification and implementation. And though the implementation
of the macro itself is sophisticated, it is unlikely to be subtlely wrong. If it is wrong, it is
catastrophically wrong, which is a counter-intuitive but useful technique for avoiding bugs.

159

Chapter 9

Experience

Stanza’s implementation is now mature and stable enough for developing sizable applications.
This chapter will report on our own experiences with using Stanza to develop our lab software,
and with teaching Stanza to students.

9.1 Our Experiences Using Stanza

The thesis author and members of our laboratory have used Stanza to develop four major
projects thus far – the Stanza compiler, the FIRRTL hardware design language, the Feeny
teaching language, and a printed circuit board (PCB) design system – along with a handful
of smaller ones.

The Stanza Compiler

The largest project is the Stanza compiler itself, which consists of nearly 30KLoc, and was
written entirely by a single graduate student, the author of this thesis. It has been rewritten
many times now as the language design evolved, with the last full rewrite taking about four
months. The early Stanza compilers were originally written in Gambit Scheme, and then
ported to Stanza once the language reached reasonable maturity.

Our experience with developing in Scheme was mixed: on the one hand, Scheme was
flexible and expressive, but on the other hand, it lacked a static typechecker. Scheme’s
flexibility enabled us to experiment quickly with Stanza’s design, and we made pervasive use
of Scheme’s support for higher-order functions and macros to keep productivity high. But
we did waste a lot of time on finding and fixing bugs that would have been trivially caught
by a typechecker.

To compensate for the lack of a typechecker, we adopted a disciplined and incremental
development methodology. The compiler was broken into subcomponents, and each com-
ponent was tested extensively before we started developing and attaching the subsequent
component. By being reasonably disciplined, we could ensure that the code base was always

CHAPTER 9. EXPERIENCE 160

at an acceptable level of correctness. If the system failed after attaching a new component,
then the error was likely in the implementation of the new component, and not in the existing
code base.

But adjustments in the design required us to make changes deep in some component in the
middle of the compiler pass chain. A change to an interface would require us to consistently
update all the passes downstream. Now the cause of an error could lie anywhere. It could be
that the new algorithm itself was wrong, or it could be that one of the later passes was not
properly updated. A persistent fear of change loomed over us during development in Scheme.
Even a change as simple as reordering the arguments to a function could not be made with
full confidence in its correctness. These fears went away entirely after we bootstrapped the
compiler in Stanza.

The process of porting the compiler from Scheme to Stanza greatly benefitted from the
optional type system. Because Stanza supports all of Scheme’s core datastructures and
language constructs, the code base could be translated line-by-line. No additional type
annotations were added during the initial porting.

Once ported to Stanza, type annotations and typed datastructures were gradually added
to transition the code base to the statically-typed paradigm. Type annotations were added to
all top-level functions, and new types were introduced for representing AST nodes that were
previously stored as Scheme s-expressions. The code base for the most recent implementation
of the compiler is almost entirely typed.

A major advantage gained from the port to Stanza was significantly reduced time for de-
veloping new intermediate passes. In Scheme, a large portion of development time was spent
finding and fixing errors resulting from mismatched interfaces between passes. Stanza’s type-
checker automatically detects errors resulting from ill-typed interfaces and has completely
eliminated the burden of this stage.

The introduction of typed datastructures has also significantly improved the architecture
of the compiler. In Scheme, many core datastructures were encoded as simple s-expressions
and were re-used often by different passes in the compiler out of convenience. The sharing
of datastructures led to a proliferation of false dependencies between passes that made it
difficult to update any isolated pass. When we moved to a typed paradigm, these poor
architectural decisions came to the surface and were easily fixed.

The FIRRTL Hardware Design Language

The second major project developed in Stanza was the FIRRTL – short for Flexible Interme-
diate Representation for Register Transfer Level – hardware design language. FIRRTL serves
as a target language for representing RTL circuitry that is output by Chisel, a frontend hard-
ware construction language also developed in our laboratory. The idea was to keep frontend
conveniences isolated to Chisel, and perform all optimization and lowering transformations
as passes in FIRRTL.

The project was co-developed by the thesis author and Adam Izraelevitz, whom we
trained in Stanza to work on this project. Adam had an electrical engineering background

CHAPTER 9. EXPERIENCE 161

and minor programming experience, but within three weeks was fluent in Stanza. In fact,
he was comfortable with the language mechanics after only a week and a half, and spent
the remaining time familiarizing himself with the core library. Stanza, at the time, was
mature but documentation was still lacking, and the student’s main complaint was having
to read through the source code to learn the core library. Nonetheless, within three months,
we had completed the datastructures for the intermediate representation, the lowering and
verification passes, and the bitwidth constraint solver.

The Feeny Teaching Language

Feeny was a minimal programming system consisting of an interpreter, bytecode compiler,
virtual machine, and just-in-time compiler, written in about 7KLoc. It was co-developed
by the thesis author and Mario Wolczko at OracleLabs, and was used to teach a graduate
course at U.C. Berkeley on virtual machines and managed runtimes.

The frontend for Feeny was written using Stanza’s decorated s-expression reader, and
the Stanza parsing system. Students were provided the frontend and were responsible for
developing, from scratch, a complete just-in-time compiler and virtual machine for executing
Feeny.

The course was organized as a series of assignments that each required students to im-
plement some subcomponent of the final system, and that incrementally built up to the full
implementation. A final end-of-class competition ranked the performance of each student’s
system on a Feeny solver for the Sudoku puzzle.

The PCB Design System

The PCB design system [4], by Jonathan Bachrach, David Biancolin, Austin Buchan, Duncan
Haldane, and Richard Lin, automatically generates manufacturable designs from declarative
specifications of circuit boards. As input, it is given a listing of desired peripherals, and it
computes and generates the circuit board layout, the wire routing, and any required startup
and networking code. It is written in about 10KLoc of Stanza.

The PCB design system was the first project to make extensive use of the LoStanza
sublanguage. For performance reasons, some of the routing algorithms were written in C
and then called from LoStanza; and to display the resulting circuits, LoStanza was used to
call into an OpenGL-based [51] graphics library.

Summary

The following summarizes our impressions of day-to-day programming with Stanza.
The types are intuitive and expressive enough to easily type the typical coding styles of

programmers with Java [2], C++ [55], Scheme [56], or Python [47] experience. For the rare
instances where it is not obvious how to type a segment of code, it is trivial to leave it untyped.
Type errors are well-localized, easily understood, and fixed. In our experience writing the

CHAPTER 9. EXPERIENCE 162

Stanza compiler, FIRRTL, Feeny, and the PCB design system, we have consistently felt
that Stanza’s type system guided us towards writing well-documented and well-architected
software, and we have never gone out of our way to satisfy the type system.

Using the standard library macros in Stanza feels natural. The fact that common lan-
guage constructs are implemented as macros instead of as compiler-recognized constructs is
indiscernible to users. The macro system is powerful enough to express sophisticated DSLs
that are useful both internally (as demonstrated by defrenamer) and for user-facing libraries
(as demonstrated by defsyntax).

Stanza’s basic language constructs feel equivalent in expressivity to Scheme, as evidenced
by our ability to do a line-by-line port of the compiler. The multimethod object system works
seamlessly together with the functional programming style, and feels like a natural extension
to the base language. Stanza code that operates on objects is comparable to Scheme code
that operates on list and array datastructures.

On the rare occasion that it is necessary, LoStanza allows programmers to conveniently
work with external datastructures and foreign code – either by directly manipulating them
through LoStanza constructs, or by writing a HiStanza interface for them.

9.2 Our Experiences Teaching Stanza

Together with Jonathan Bachrach, the thesis author has held two bootcamps at U.C. Berke-
ley specifically dedicated to teaching Stanza, each lasting for six sessions of one and a half
hours. Each bootcamp consisted of a series of presentations intermixed with hands-on exer-
cises, which students were expected to do on their own laptops. We had two main goals in
mind when organizing the teaching material:

1. Quickly teach the students enough of the core language and libraries for them to be as
productive with Stanza as they are with existing languages.

2. Introduce them to features that are not common to mainstream languages such that
students understand their purpose and can read up on their usage as necessary.

Our experiences showed that students can comfortably learn the core language and li-
braries after roughly ten hours of instruction. We credit this to the design of Stanza’s
concrete syntax – which largely resembles Python [47] – and to the expressivity of the type
system – which can type typical Java [2] and Python idioms. After ten hours, students
were able to code easily in Stanza, but still in the same style as the language they are most
familiar with. The majority of students were most fluent in an imperative programming
language – such as Java or Python – and this was reflected in their coding style. Students
with experience using Scheme [56], OCaml [35], or Haskell [31] naturally adopted a more
functional programming style. Though we ourselves prefer a more functional style, Stanza
supports both equally, and students did not find it awkward to code in an imperative style.

CHAPTER 9. EXPERIENCE 163

We were quite happy that we had no difficulty teaching the type system, even to students
who have never before programmed in a statically-typed language. This includes the con-
cepts of parametric types, and both calling and defining their own parametric polymorphic
functions using the captured type system. Students with extensive Java [2] or C++ [55]
experience reported a vague sense of there being less busy-work required to satisfy Stanza’s
typechecker. We believe this is because, for the few places that are legitimately difficult to
type, it is trivial to simply leave them untyped.

We encouraged students without any static-typing experience to take an exploratory
approach towards learning the type system. By adding a few type annotations and study-
ing the resulting error messages, these students gradually learned the relation between the
static and dynamic semantics of Stanza. They have commented that the type system feels
straightforward and have reported few to no “false positives”.

One interesting observation is that once students have reasonable experience with the
type system, they began to add type annotations even during the initial nprototyping stage.
When asked about this change in their workflow, they commented that the types were helpful
for documentation purposes and that the time spent adding type annotations was negligible
compared to the time later spent debugging.

For students without experience in functional programming, three concepts were harder
to grasp: first-class functions, higher-order functions, and immutable datastructures. In
exercises, students were able to understand, call, and define first-class and higher-order
functions but had trouble recognizing when to use them in practice. Even after having
written their own versions of the common map function, students still preferred to write
explicit loops. Similarly, Stanza’s List type is immutable and students easily understood
its basic operations but still preferred the mutable Vector type in their own programming.
Note that students familiar with at least one functional programming language did not have
difficulty with these concepts. We have also observed that, over time, the students’ coding
styles gradually became more functional as they discovered common idioms for shortening
their code.

The remaining concept that proved to take some time to learn for students with both
imperative and functional programming experience was Stanza’s multimethod object sys-
tem. Students have no difficulty understanding the basic mechanism and usage of Stanza’s
defmulti and defmethod constructs, but when writing their own code, they continue abid-
ing by the restrictions and structure imposed by a traditional class-based object system –
restrictions that do not exist in Stanza. In its worst manifestation, students would create a
single file to hold all the definitions relating to one type, then write a single constructor func-
tion that holds all of the “instance variables” and “class methods” for that type – essentially
mimicking a Java or Python class definition.

We have noticed that there is a learning “hump” that occurs after roughly one month of
Stanza programming, when students are able to set aside what they’ve learned about software
architecture from Java, and take full advantage of the flexibility of the multimethod object
system. Past this hump, students have consistently reported that the object system is one
of Stanza’s greatest strengths, and that they are significantly more productive programming

CHAPTER 9. EXPERIENCE 164

in Stanza than they were in existing languages.
In addition to the Stanza bootcamps, Jonathan Bachrach has also used Stanza to teach

a computational design course. In this case, the focus was not on Stanza specifically, and
students were expected to pick up the language on their own time. The Stanza website
comes with extensive reference documentation on the core library functions and constructs,
as well as an introductory textbook called Stanza By Example [36] that gradually teaches
readers about each of the Stanza subsystems. No student reported any trouble with learn-
ing Stanza, and the majority of students commented that they simply regarded Stanza as
Python with some minor syntactic differences. They programmed predominantly without
type annotations but were appreciative of the errors given by the compiler.

165

Chapter 10

Experiments

One of our goals in the design of the type system was to enable users to gradually add type
annotations to an untyped code base in order to have the typechecker catch more errors. The
expectation is that the probability of statically catching an error would gradually increase
with the number of type annotations added. This chapter describes an experiment for
quantifying the effectiveness of the typechecker as a function of the number of annotations
in a program.

10.1 Experimental Setup

If we do not consider the effects of function overloading or multimethod dispatch, then any
binder in Stanza can have its type annotation replaced with the ? type without affecting the
semantics of the program or its ability to typecheck. The experiment will take advantage of
this property to artificially obtain a set of programs with a smoothly increasing number of
annotations.

We start with an existing program, e, that is correct and typechecks, and randomly
remove a fraction, p, of its type annotations to obtain the program, e′. Our type system
guarantees that e′ will also typecheck. We then make a number of small random perturba-
tions to e′ to obtain an “incorrect” program e′′, and test whether our typechecker is capable
of detecting the errors in e′′. We would expect a low probability of the typechecker catching
errors in an completely unannotated program, and a higher probability of catching errors in
a completely annotated program.

We selected the potential perturbations to be representative of common coding errors.
They include:

1. reordering the arguments in a call to a function,

2. removing an argument in a call to a function,

3. inserting an extra argument in a call to a function,

CHAPTER 10. EXPERIMENTS 166

4. reordering a sequence of expressions,

5. and swapping a reference to a binder with a reference to a different (in-scope) binder.

Our dataset contains five different programs to use as e: Calculus, Lexer, Feeny, FIRRTL,
and the Stanza compiler. Calculus is a small example that implements a basic symbolic
differentiator and algebraic simplifier. Lexer is a small program for parsing a given file into
an s-expression. Feeny, FIRRTL, and the Stanza compiler are the code bases for the projects
described in chapter 9. The following table lists the program sizes. Note that the Stanza
core libraries are included in the listed sizes.

Program Name Lines of Code
Calculus 7856

Lexer 8444
F 13071

RTL 19606
X Compiler 40698

A single trial consists of removing a fraction of the type annotations in e to obtain e′,
perturbing e′ to obtain e′′ (the “fuzzed” program), and testing whether the errors in e′′

are caught by the typechecker. We use a perturbation rate of 0.0002 – meaning that an
expression has a 0.02% chance of being perturbed in one of the listed ways, and results
in roughly 2-6 perturbations per program. We sweep the annotation percentage from 0%
annotated to 100% annotated in 5% increments and perform 300 trials at each percentage.

CHAPTER 10. EXPERIMENTS 167

10.2 Experimental Data

The experimental results for each of the five datasets are shown in the following table:

% Fuzzed Programs Caught for
Annotation (%) Calculus Lexer Feeny FIRRTL Stanza Compiler

0 50% 38% 52% 37% 65%
5 49% 41% 58% 33% 64%
10 53% 38% 60% 41% 72%
15 57% 40% 69% 40% 71%
20 54% 46% 66% 47% 76%
25 59% 47% 73% 45% 74%
30 64% 54% 72% 47% 84%
35 60% 50% 80% 46% 82%
40 62% 59% 81% 47% 88%
45 68% 65% 85% 50% 87%
50 67% 59% 86% 58% 87%
55 70% 59% 90% 58% 90%
60 78% 63% 91% 58% 89%
65 74% 67% 92% 63% 94%
70 77% 69% 94% 64% 94%
75 77% 71% 95% 65% 93%
80 79% 79% 96% 70% 92%
85 81% 79% 96% 72% 94%
90 85% 73% 99% 75% 92%
95 87% 80% 98% 79% 91%
100 88% 79% 100% 75% 90%

Each row denotes, for each dataset, the percentage of fuzzed programs that were able to
be caught by the typechecker given a specific annotation percentage.

To highlight the trends, Figure 10.1, 10.2, 10.3, 10.4, and 10.5 shows the same data as a
scatter plot.

CHAPTER 10. EXPERIMENTS 168

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70 80 90 100

Nu
m
be
r	
of
	F
uz
ze
d	
Pr
og
ra
m
s	
Ca
ug
ht

Percent	 Annotated	(%)

Calculus:	Fuzzed	Programs	Caught	versus	Percent	 Annotated

Figure 10.1: Effect of Annotations for Calculus

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70 80 90 100

Nu
m
be
r	
of
	F
uz
ze
d	
Pr
og
ra
m
s	
Ca
ug
ht

Percent	 Annotated	(%)

Lexer:	Fuzzed	Programs	Caught	versus	Percent	 Annotated

Figure 10.2: Effect of Annotations for Lexer

CHAPTER 10. EXPERIMENTS 169

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70 80 90 100

Nu
m
be
r	
of
	F
uz
ze
d	
Pr
og
ra
m
s	
Ca
ug
ht

Percent	 Annotated	(%)

Feeny:	Fuzzed	Programs	Caught	versus	Percent	 Annotated

Figure 10.3: Effect of Annotations for Feeny

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70 80 90 100

Nu
m
be
r	
of
	F
uz
ze
d	
Pr
og
ra
m
s	
Ca
ug
ht

Percent	 Annotated	(%)

FIRRTL:	Fuzzed	Programs	Caught	versus	Percent	Annotated

Figure 10.4: Effect of Annotations for FIRRTL

CHAPTER 10. EXPERIMENTS 170

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70 80 90 100

Nu
m
be
r	
of
	F
uz
ze
d	
Pr
og
ra
m
s	
Ca
ug
ht

Percent	 Annotated	(%)

Stanza	Compiler:	 Fuzzed	Programs	Caught	versus	Percent	 Annotated

Figure 10.5: Effect of Annotations for Stanza Compiler

10.3 Discussion

As can be seen, there is a clear and smooth relationship between the number of fuzzed
programs caught by the typechecker and the degree to which the program is typed. Two
extremes are worth pointing out. Even with 0% of annotations, the typechecker manages to
catch a substantial number of incorrect programs. This behaviour results from types being
inferred from subexpressions. For example, it is invalid to add an anonymous expression
to an integer, because an anonymous function is inferred to have an arrow type. This is
an exciting property, as it means that before adding any annotations, programmers already
reap some of the benefits of the typechecker.

At the other extreme, even with 100% of annotations, not all perturbations are caught
by the typechecker. This is to be expected as not all perturbations manifest as a type
inconsistency. We do, however, see that there is variation in the percent of programs caught
depending on the choice of program e. The programs are written in different styles, some by
different people, and have different characteristics. Beyond the number of annotations, the
table also shows that programming style has an effect on the effectiveness of the typechecker.

Due to the randomized selection of type annotations, the number of programs caught
does not increase monotically with the annotation percentage. If we were to ensure that a
variable remains annotated once it is first annotated, the number of programs caught would
increase monotically with the annotation percentage.

171

Chapter 11

The Core Type System

This chapter presents a formal definition of the core of our optional type system. It supports
first-class functions, parametric polymorphic functions, two example ground types, integers
and strings, and builds optional typing upon the subtyping relation. The Stanza type system
features that are left out of the formal calculus include: union and intersection types, multi-
arity functions, function overloading, and multimethods.

11.1 Syntax of Types and Expressions

Figure 11.1 presents the syntax of types and expressions in the core language. The system
supports arrow types, tuple types, two example ground types – int and str – and type
variables α. Optional typing is supported through the addition of the ? type, similar in
fashion to [53].

Figure 11.1: Syntax of Types and Expressions

CHAPTER 11. THE CORE TYPE SYSTEM 172

Figure 11.2: Subtyping Relationship

As is standard, language expressions are provided for function application and creation,
tuple construction and projection, operations on ground types, and literal integers and
strings. For the purposes of formalization, all function arguments are explicitly typed, and
the ? type is used to model unannotated binders. As examples of operations on ground
types, we include the addition operation on integers and the length operation on strings.
Parametric polymorphism is supported through the polymorphic function expression, a spe-
cial polymorphic call expression, and an explicit let expression.

Note that our type system is first-order and does not support universally quantified types.
A well-typed program requires that polymorphic functions appear only in the let expression.

11.2 Subtyping Relation

We choose to model optional typing by introducing the ? type on top of a subtyping frame-
work. The inference rules are listed in Figure 11.2. Informally, our system issues an error
whenever the programmer attempts to use a value of type τ1 in a location expecting type τ2
and τ1 is not a subtype of τ2.

The inference rules are mostly standard. Arrows are contravariant in their argument types
and covariant in their return types. Both tuple element types are covariant. Subtyping for
ground types and type variables are reflexive.

The special type ? is governed by two rules:

1. Every type is a subtype of the ? type. This rule allows any value to be passed to a
location expecting a ? type.

2. The ? type is itself a subtype of any type. This allows an expression of type ? to be
passed to any location.

These two rules allow us to model the semantics of a fully dynamically-typed programming
language by treating every binder as if annotated with the ? type. Figure 11.3 shows some
examples of subtyping relationships. Notice that ? acts somewhat like a wildcard.

The decision to model optional typing directly within a subtyping framework comes with
two key advantages:

CHAPTER 11. THE CORE TYPE SYSTEM 173

Figure 11.3: Subtyping Examples

1. Subtyping is a mature theoretical framework, and is also a familiar paradigm for pro-
grammers accustomed to Java and C++, two of the most widely used statically-typed
languages.

2. The core system can be easily extended with other features also originally developed
in the subtyping framework – such as nominal subtyping and union types. The full
Stanza type system builds extensively upon the subtyping framework.

A Note on Transitivity

As warned about in [53], modeling optional typing within a subtyping framework can be
potentially problematic. Trouble arises if we include transitivity explicitly using the following
inference rule:

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

If such an inference rule were included, then we can derive the following nonsensical
theorem:

τ1 <: ? ? <: τ2

τ1 <: τ2

which says that every type is a subtype of every other type, and thus the type lattice collapses
to a single point.

We carefully avoid this degeneracy by simply not including transitivity as an explicit
inference rule. In our system, in the absence of the ? type, transitivity can be derived as a
property from the given inference rules. However, as desired, transitivity does not hold in
the presence of the ? type. As an example, int <: ?, and ? <: str, but int <: str does not
hold.

CHAPTER 11. THE CORE TYPE SYSTEM 174

11.3 Example

The following is a small example demonstrating how a hypothetical user might interact with
our type system. The following code defines a function inc-fst that increments the first
element of a tuple, and calls it with three different arguments. The initial version of inc-fst
is left untyped, which is represented in our framework with the ? annotation.

let inc-fst = λx : ?.(x.fst + 1, x.snd) in

(inc-fst 0,

(inc-fst (“hi, “world”),

inc-fst (0, “world”)),

The above code contains no static type errors according to our subtyping relation, but will
fail at runtime at the first call to x.fst. The value 0 does not support the .fst operation.
From the failure, the user can deduce that inc-fst must have been called with a non-tuple
value, and then insert an annotation to make explicit the requirement that x be a tuple.

let inc-fst = λx : ?× ?.(x.fst + 1, x.snd) in

(inc-fst 0, [TypeError]

(inc-fst (“hi, “world”),

inc-fst (0, “world”)),

With the added annotation, our type system will flag the first call to inc-fst as an error.
The value 0, with type int, cannot be passed to a function that expects an argument of type
?×?. The user can then inspect the erroneous call and conclude that, indeed, it shouldn’t be
there. After deleting this erroneous line, the next failure will occur at the call to x.fst + 1, as
the value “hi” cannot be an operand to the plus operation. Similarly, from this failure, the
user can deduce that inc-fst was called with a tuple whose first element was not an integer,
and can further refine the annotation to make this requirement explicit.

let inc-fst = λx : int× ?.(x.fst + 1, x.snd) in

(inc-fst 0, [TypeError]

(inc-fst (“hi, “world”), [TypeError]

inc-fst (0, “world”)),

With the added annotation, the system will flag the second call to inc-fst as an error. The
value (“hi”, “world”), with type str × str, cannot be passed to a function that expects an
argument of type int× ?. Finally, after deleting all the erroneous lines, the program will run
correctly without failures.

The example shows the incremental workflow that we envision will be adopted by users.
The untyped version of inc-fst is akin to what may be written in, for example, Python. As
programs mature, users can incrementally add and refine type annotations to help locate the
source of runtime failures.

CHAPTER 11. THE CORE TYPE SYSTEM 175

Figure 11.4: Well-Formed Types

11.4 Typing Judgement

The typing judgements and syntax of the type environment for our system is given in Figure
11.5. The type well-formedness relation, which is needed by the type judgements, is defined
in Figure 11.4.

The type environment is defined as a list of environment entries. The entry x : τ indicates
that the binder x is in scope and has type τ . The entry α indicates that the type variable
α is in scope. The special entry x : ∀α.τ1 → τ2 indicates that the polymorphic function x
is in scope, and has type τ1 → τ2 quantified over α. ε is used to represent the empty type
environment.

A type is well-formed if it does not refer to any type variables that are out of scope.
The Int and Str rules are standard and type literal expressions. The Add and Len

rules type the addition and length operations on integers and strings. Note the use of the
subtype constraint on these two rules. This allows expressions of type ? to be valid operands.

The Tuple, Fst1, and Snd1 rules are standard, typing tuple construction and projection
expressions. The Fst2 and Snd2 rules specifically type tuple projections for expressions of
type ?. In these cases, the results of the projections have type ?.

The Call1 and Call2 rules type function application expressions. The Call1 rule is
standard. Similar to the Fst2 and Snd2 rules, the Call2 rule specifically types function
application expressions where the function has type ?. The result of such a call has type ?.

The Let and Ref rules are standard and type the let expression and references to
binders. Note that the Ref rule requires specifically an entry for x : τ in the environment.
This means that polymorphic functions cannot be directly referred to by name.

Function expressions are typed using the Fn rule. We require that the argument type be
explicitly given, and we automatically infer the return type.

The PolyLet rule types a polymorphic let expression, and is the only expression in
which a polymorphic function expression can appear. We ensure that the argument type is
well-formed assuming that α is in scope, and infer the return type τ2. The body e is then
typed in an environment with a polymorphic function entry for f .

The PolyCall rule types a polymorphic call expression, and is the only expression that
may refer to a bound polymorphic function. The type argument τ must be well-formed and

CHAPTER 11. THE CORE TYPE SYSTEM 176

Figure 11.5: Typing Judgements

CHAPTER 11. THE CORE TYPE SYSTEM 177

Figure 11.6: Syntax of Values

Figure 11.7: Top-Level Consistency

the function expression must refer to a polymorphic function. The restrictions upon the
argument e and the resulting type mirror the Call1 rule after substituting the type variable
α for τ .

11.5 Operational Semantics

Before introducing the operational semantics, we first introduce the concept of values and
top-level consistency.

The syntax for values is shown in Figure 11.6. In our operational semantics, all reducible
expressions reduce to either a value or an error. Values are irreducible and are differentiated
from expressions by being surrounded in angle brackets. Supported values are integers,
strings, tuples, and functions. Additionally, the function value is well-formed if and only if
x : τ ` e : τ ′.

Top-level consistency is the concept that a given value matches a given type up to its “top-
most” level. Top-level consistency can be cheaply checked at runtime in constant time [14].
The relation is defined formally in Figure 11.7. Note that a tuple value is consistent with any
tuple type, and a function value is consistent with any arrow type. All values are consistent
with the ? type.

To simplify the presentation of the operational semantics, we introduce two new expres-
sions: the check and annotated value expressions, whose syntax is shown in Figure 11.8. The
Chk and AVal inference rules are added for typing the new expressions. The PolyCall2
rule is a combination of the previous PolyLet and PolyCall rules and is introduced to
handle polymorphic functions after let substitution.

The operational semantics will be expressed using small-step semantics with expressions
factored into evaluation contexts substituted with reducible expressions. The syntax for
contexts and reducible expressions is shown in Figure 11.9.

CHAPTER 11. THE CORE TYPE SYSTEM 178

Figure 11.8: New Expressions

Figure 11.9: Syntax for Contexts and Reducible Expressions

Every context has one and only one occurrence of the hole •. We use the notation H[e]
to mean the expression resulting from substituting the hole in H with the expression e.
Reducible expressions, r, are a subset of expressions that can be reduced in a single step,
either to an annotated value or to an error.

The inference rules defining the small-step semantics are listed in Figure 11.10. The
E.Ctxt and E.CtxtErr rules are standard and handle evaluations within a context. The
E.Fn and E.Tuple rules are standard and handle creation of functions and tuples.

The E.Call1 rule handles the case of calling a value known to have an arrow type. Note
that the argument value v must be consistent with both the statically-inferred argument type
τ1 and the actual argument type τx, otherwise the call fails as specified in E.CallErr1. The
argument value is annotated with the actual argument type τx before being substituted into

CHAPTER 11. THE CORE TYPE SYSTEM 179

the function body e. Additionally, a check expression enforces that the result is consistent
with the statically-inferred return type τ2.

The E.Call2 rule handles the case of calling a value with type ?. It mirrors the E.Call1
rule except the argument value is only checked against the actual argument type, and the
return type is ?. The call fails if the argument check fails, as in E.CallErr2, or if the called
value is not a function, as in E.CallErr3.

The polymorphic E.PolyCall and E.PolyCallErr rules mirror the regular calling
rules E.Call1 and E.CallErr1, except with occurrences of the type variable α substituted
for the type argument τ .

The tuple projection rules E.Fst1 and E.Snd1 are standard and extract the appropriate
elements from the tuple value. The result is enforced to be consistent with the expected
statically-inferred type, or else the projection fails, as shown in E.FstErr1 and E.SndErr1.
Rules E.Fst2 and E.Snd2 handle the case when the value to project has type ?. In this
case, the result is annotated with type ?. E.FstErr2 and E.SndErr2 handle the cases
when the value to project is not a tuple.

Literal integer and string expressions reduce to annotated integer and string values,
E.Int and E.Str. The add expression requires two integer values, E.Add, or else fails,
E.AddErr. Similarly, the length expression requires a string value, E.Len, or else fails,
E.LenErr.

The E.Let rule substitutes every occurrence of the binder x in the body e with the
annotated value v : τ . The polymorphic E.PolyLet rule substitutes every occurrence of
the binder f with the polymorphic function.

The E.Chk rule performs a dynamic check to enforce that the value is consistent with
the check type. If not, then the operation fails, as shown in E.ChkErr.

CHAPTER 11. THE CORE TYPE SYSTEM 180

Figure 11.10: Small-Step Semantics

181

Chapter 12

Properties of the Core Type System

Our system is type-safe, satisfies the standard progress and preservation theorems, and also
satisfies two incrementality theorems. We formally state and prove the theorems in this
chapter.

12.1 Equivalence Modulo Types

The incrementality theorems require the concept of equivalence modulo types. Informally,
an expression e1 is equivalent to another expression e2 if e2 is syntactically equivalent to e1
except with some subset of type annotations replaced with the ? type. Figures 12.1 and 12.2

shows the formal definitions of the
?
≈ and <? relations.

Figure 12.1: Equivalence Modulo Types

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 182

Figure 12.2: Subinfo Relation

12.2 Safety

Our type system is safe by satisfying the standard progress and preservation theorems.

Theorem 1 (Preservation). The inferred type of an expression is preserved across the small
step operational semantics. If ε ` e : τ and e⇒ e′, then ε ` e′ : τ .

Theorem 2 (Progress). A well-typed expression never gets “stuck”. It always evaluates to
an annotated value expression or else an error is detected during execution. If ε ` e : τ then
either:

1. e⇒ e′ for some e′,

2. e⇒ error,

3. or e = v : τ .

12.3 Incrementality

Our type system satisfies two incrementality theorems, one stating that programs remain
well-typed, and the other stating that semantics are preserved.

Theorem 3 (Typing Incrementality). A well-typed program can have any arbitrary subset
of its type annotations replaced with the ? type, and remain well-typed. If ε ` e1 : τ1 and

e1
?
≈ e2, then ε ` e2 : τ2.

Theorem 4 (Evaluation Incrementality). A well-typed program can have any arbitrary subset
of its type annotations replaced with the ? type and still evaluate to the same value (modulo
types). That is, assume that e2 is equivalent to e1 but with some type annotations replaced
with the ? type, and that e1 is well-typed and reduces to e′1. Then e2 will reduce to e′2 and

e′2 is guaranteed to be equivalent to e′1 modulo types. If e1
?
≈ e2 and ε ` e1 : τ1 and e1 ⇒ e′1,

then e2 ⇒ e′2 and e′1
?
≈ e′2.

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 183

Figure 12.3: Equivalence Modulo Types of Type Environments

Figure 12.4: Equivalence Modulo Types of Evaluation Contexts

12.4 Required Lemmas and Definitions

The proofs of safety and incrementality require the additional definitions of the equivalence
modulo types relation for type environments and evaluation contexts. These are shown in
Figures 12.3 and 12.4.

Additionally, we state and prove the following lemmas which will be referred to later.

Lemma 1. All well-typed expressions are either annotated value expressions, or contexts
substituted with a reducible expression.

If ε ` e : τ then either:

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 184

1. e = H[r]

2. e = v : τ

Proof. By induction on derivation of ε ` e : τ .

Lemma 2. If a context, H, substituted with a reducible expression, r, is well-typed, then the
reducible expression r is also well-typed.

If ε ` H[r] : τ then ε ` r : τ ′.

Proof. By induction on the syntax of H.

Lemma 3. If e has type τ in a type environment containing entry x : τ ′, and expression
e′ has type τ ′, then the expression {e′/x}e will have type τ in the same type environment
without the entry x : τ ′.

If ∆1, x : τ ′,∆2 ` e : τ and ε ` e′ : τ ′, then ∆1,∆2 ` {e′/x}e : τ

Proof. By induction on the derivation of ∆1, x : τ ′,∆2 ` e : τ .

Lemma 4. If the polymorphic function f = ∀α.λx : τ1.ef is well-typed (τ1 is well-formed
and ef is well-typed), and e has type τ in an environment containing an entry for f , then
substituting ∀α.λx : τ1.ef for f in e will still have type τ .

If α ` τ1 and α, x : τ1 ` ef : τ2 and f : ∀α.τ1 → τ2 ` e : τ , then ε ` {∀α.λx : τ1.ef/f}e : τ .

Proof. By induction on the derivation of f : ∀α.τ1 → τ2 ` e : τ .

Lemma 5. If expression e has type τ in a type environment containing type variable α, then
the expression resulting from substituting α for τ ′ in e will have type {τ ′/α}τ .

If ∆1, α,∆2 ` e : τ , then ∆1,∆2 ` {τ ′/α}e : {τ ′/α}τ .

Proof. By induction on derivation of ∆1, α,∆2 ` e : τ .

Lemma 6. If the expression H[e1] has type τ , and the expressions e1 and e2 have the same
type, then the expression H[e2] will also have type τ .

If ∆ ` e1 : τ ′, and ∆ ` e2 : τ ′, and ∆ ` H[e1] : τ , then ∆ ` H[e2] : τ .

Proof. By induction on the syntax of H.

Lemma 7. If value v is top-level consistent with type int, then v is an integer.
If v ∼ int then v = 〈n〉 for some integer n.

Proof. By induction on syntax of v, and then applying inversion on the typing judgement.

Lemma 8. If value v is top-level consistent with type str, then v is a string.
If v ∼ str then v = 〈s〉 for some string s.

Proof. By induction on syntax of v, and then applying inversion on the typing judgement.

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 185

Lemma 9. If value v is top-level consistent with a tuple type, then v is a tuple.
If v ∼ τ1 × τ2 then v = 〈(v1, v2)〉 for some value v1 and v2.

Proof. By induction on syntax of v, and then applying inversion on the typing judgement.

Lemma 10. If value v is top-level consistent with an arrow type, then v is a function.
If v ∼ τ1 → τ2 then v = 〈λx : τx.e〉 for some binder x, type τx, and expression e.

Proof. By induction on syntax of v, and then applying inversion on the typing judgement.

Lemma 11. If τ1 <: τ2, and τ1, τ2 contain less information than τ ′1, τ
′
2 respectively, then

τ ′1 <: τ ′2.
If τ1 <: τ2 and τ1 <? τ

′
1 and τ2 <? τ

′
2, then τ ′1 <: τ ′2.

Proof. By induction on derivation of τ1 <: τ2.

Lemma 12. If the ? type has less information than type τ , then τ must be the ? type itself.
If ? <? τ , then τ = ?.

Proof. By induction on the derivation of ? <? τ .

Lemma 13. If an arrow type, τ1 → τ2 <? τ , has less information than type τ , then τ must
be either the ? type or an arrow type.

If τ1 → τ2 <? τ , then either τ = ?, or τ = τ ′1 → τ ′2 where τ1 <? τ
′
1 and τ2 <? τ

′
2.

Proof. By induction on the derivation of τ1 → τ2 <? τ .

Lemma 14. If a tuple type, τ1 × τ2 <? τ , has less information than type τ , then τ must be
either the ? type or a tuple type.

If τ1 × τ2 <? τ , then either τ = ?, or τ = τ ′1 × τ ′2 and τ1 <? τ
′
1 and τ2 <? τ

′
2.

Proof. By induction on the derivation of τ1 × τ2 <? τ .

Lemma 15. If the polymorphic entry f : ∀α.τ1 → τ2 exists in type environment ∆1, and ∆1

is equivalent to ∆2 modulo types, then a polymorphic entry for f will also exist in ∆2.

If f : ∀α.τ1 → τ2 ∈ ∆1 and ∆1
?
≈ ∆2, then f : ∀α.τ ′1 → τ ′2 ∈ ∆2 where τ1 <? τ

′
1 and

τ2 <? τ
′
2.

Proof. By induction on the derivation of ∆1
?
≈ ∆2.

Lemma 16. If the binder entry x : τ exists in type environment ∆1, and ∆1 is equivalent
to ∆2 modulo types, then a binder entry will also exist for x in ∆2.

If x : τ ∈ ∆1 and ∆1 <? ∆2, then x : τ ′ ∈ ∆2 where τ <? τ
′.

Proof. By induction on the derivation of ∆1
?
≈ ∆2.

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 186

Lemma 17. If type τ is well-formed under ∆1, and ∆1 is equivalent to ∆2 modulo types,
then τ is also well-formed under ∆2.

If ∆1 ` τ and ∆1 <? ∆2, then ∆2 ` τ .

Proof. By induction on the derivation of ∆1 ` τ .

Lemma 18. If τ1 <: {τ/α}τ2, and types τ1 and τ2 have less information respectively than
τ ′1 and τ ′2, then τ ′1 <: {τ/α}τ ′2.

If τ1 <: {τ/α}τ2 and τ1 <? τ
′
1 and τ2 <? τ

′
2, then τ ′1 <: {τ/α}τ ′2.

Proof. By induction on derivation of τ1 <: {τ/α}τ2.

Lemma 19. Substituting a type variable for a given type does not affect the <? relation.
If τ1 <? τ2, then {τ/α}τ1 <? {τ/α}τ2.

Proof. By induction on the derivation of τ1 <? τ2.

Lemma 20. If expressions e1 and e2 are respectively equivalent to e′1 and e′2 modulo types,
then the expressions {e2/x}e1 and {e′2/x}e′1 are also equivalent modulo types.

If e1
?
≈ e′1 and e2

?
≈ e′2, then {e2/x}e1

?
≈ {e′2/x}e′1.

Proof. By induction on derivation of e1
?
≈ e′1.

Lemma 21. If value v1 is consistent with type τ1, v1 is equivalent to v2 modulo types, and
τ1 has less information than τ2, then value v2 is also consistent with type τ2.

If v1 ∼ τ1 and v1
?
≈ v2 and τ1 <? τ2, then v2 ∼ τ2.

Proof. By induction on derivation of v1 ∼ τ1.

Lemma 22. If expression e1 can be expressed as H1[r1], and e1 is equivalent to e2 modulo
types, then e2 can also be expressed as H2[r2].

If e1 = H1[r1] and e1
?
≈ e2, then e2 = H2[r2] where H1

?
≈ H2 and r1

?
≈ r2.

Proof. By induction on syntax of H.

Lemma 23. If contexts H1 and H2 are equivalent modulo types, and expressions e1 and e2
are equivalent modulo types, then H1[e1] and H2[e2] are also equivalent modulo types.

If H1
?
≈ H2 and e1

?
≈ e2, then H1[e1]

?
≈ H2[e2].

Proof. By induction on derivation of H1
?
≈ H2.

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 187

12.5 Proof of Preservation

If ε ` e : τ and e⇒ e′, then ε ` e′ : τ .

Proof. By induction on the derivation of e⇒ e′.

Case:

r ⇒ v : τ ′

H[r]⇒ H[v : τ ′]

By Lemma 2, we know that ε ` r : τ1 given that H[r] is well-typed. From the typing
judgement, we know that ε ` (v : τ ′) : τ ′. From the induction hypothesis, then τ1 = τ ′.
Finally from Lemma 6, we therefore know that ε ` H[v : τ ′] : τ .

Case:

v ∼ τ1 v ∼ τx

(〈λx : τx.e〉 : τ1 → τ2) (v : τv)⇒ ({v : τx/x}e) as τ2

By inversion of the typing judgement, we know that ε ` (〈λx : τx.e〉 : τ1 → τ2) : τ1 → τ2
and that τ = τ2. Well-formedness of the function value requires that x : τx ` e : τ ′, which
leads to ε ` {v : τx/x}e : τ ′ from Lemma 3. Finally, we can derive ε ` ({v : τx/x}e) as τ2 : τ2
from the typing judgement.

Case:

v ∼ τx

(〈λx : τx.e〉 : ?) (v : τv)⇒ ({v : τx/x}e) as ?

By inversion of the typing judgement, we know that τ = ?. Well-formedness of the
function value requires that x : τx ` e : τ ′, which leads to ε ` {v : τx/x}e : τ ′ by Lemma 3.
Finally, we can derive ε ` ({v : τx/x}e) as ? : ? from the typing judgement.

Case:

(v1 : τ1, v2 : τ2)⇒ 〈(v1, v2)〉 : τ1 × τ2

By inversion of the typing judgement, we know that τ = τ1 × τ2. Then ε ` (〈(v1, v2)〉 :
τ1 × τ2) : τ1 × τ2 follows trivially from the typing judgement.

Case:

v1 ∼ τ1

(〈(v1, v2)〉 : τ1 × τ2).fst⇒ v1 : τ1

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 188

By inversion of the typing judgement, ε ` (〈(v1, v2)〉 : τ1 × τ2) : τ1 × τ2, and therefore
τ = τ1. Then ε ` (v1 : τ1) : τ1 follows trivially from the typing judgement.

Case:

(〈(v1, v2)〉 : ?).fst⇒ v1 : ?

By inversion of the typing judgement, ε ` (〈(v1, v2)〉 : ?) : ?, and therefore τ = ?. Then
ε ` (v1 : ?) : ? follows trivially from the typing judgement.

Case:

v1 ∼ τ1

(〈(v1, v2)〉 : τ1 × τ2).snd⇒ v2 : τ2

Symmetric to case for e.fst.

Case:

(〈(v1, v2)〉 : ?).snd⇒ v2 : ?

Symmetric to case for e.fst.

Case:

n⇒ 〈n〉 : int

Follows trivially from the typing judgement.

Case:

s⇒ 〈s〉 : str

Follows trivially from the typing judgement.

Case:

〈n1〉 : τ1 + 〈n2〉 : τ2 ⇒ 〈n1 + n2〉 : int

Follows trivially from the typing judgement.

Case:

(〈s〉 : τ).length⇒ 〈s.length〉 : int

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 189

Follows trivially from the typing judgement.

Case:

let x = v : τv in e⇒ {v : τv/x}e

By inversion of the typing judgement we know that ε ` (v : τv) : τv and that x : τv ` e : τ .
From this we can derive ε ` {v : τv/x}e : τ from Lemma 3.

Case:

let f = ∀α.λx : τ1.ef in e⇒ {(∀α.λx : τ1.ef)/f}e

By inversion of the typing judgement we know that f : ∀α.τ1 → τ2 ` e : τ and α ` τ1
and α, x : τ1 ` ef : τ2. From Lemma 4, we can derive ε ` {(∀α.λx : τ1.ef)/f}e : τ .

Case:

x : τ1 ` e : τ2

λx : τ1.e⇒ 〈λx : τ1.e〉 : τ1 → τ2

By inversion of the typing judgement, we can deduce that x : τ1 ` e : τ2 and τ = τ1 → τ2.
ε ` (〈λx : τ1.e〉 : τ1 → τ2) : τ1 → τ2 follow trivially from the typing judgement.

Case:

v ∼ {τ1/α}τx
(∀α.λx : τx.ef)[τ1] (v : τv)⇒ {τ1/α}{v : τx/x}ef

By inversion of the typing judgement we can deduce that α, x : τx ` ef : τ2 and that
τ = {τ1/α}τ2. Lemma 3 allows us to derive α ` {v : τx/x}ef : τ2. Lemma 5 allows us to
derive ε ` {τ1/α}{v : τx/x}ef : {τ1/α}τ2.

12.6 Proof of Progress

Proof of Progress of Reducible Expressions

Lemma 24. If ε ` r : τ then either:

1. r ⇒ v : τ

2. r ⇒ error

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 190

Proof. By induction on derivation of ε ` r : τ .

Case:

ε ` (v1 : τv1) : τ1 → τ2 ε ` (v2 : τv2) : τ ′1 τ ′1 <: τ1

ε ` (v1 : τv1) (v2 : τv2) : τ2

By inversion of the typing judgement we know that τv1 = τ1 → τ2 and τv2 = τ ′1. By
Lemma 10, we can thus deduce v1 = 〈λx : τx.e〉. Now we consider whether v2 ∼ τ1 and
v2 ∼ τx. If it holds, then (〈λx : τx.e〉 : τ1 → τ2) (v2 : τ ′1) ⇒ ({v2 : τx/x}e) as τ2. Otherwise
the expression reduces to an error.

Case:

ε ` (v1 : τv1) : ? ε ` (v2 : τv2) : τ ′

ε ` (v1 : τv1) (v2 : τv2) : ?

By inversion of the typing judgement we can deduce τv1 = ? and τv2 = τ ′. We now
assume that v1 = 〈λx : τx.e〉. If this is not true, then the expression reduces to an error.
Following the assumption, we can consider whether v2 ∼ τx. If it holds then (〈λx : τx.e〉 :
?) (v2 : τ ′)⇒ ({v2 : τx/x}e) as ?. Otherwise, the expression reduces to an error.

Case:

ε ` (v1 : τv1) : τ1 ε ` (v2 : τv2) : τ2

ε ` (v1 : τv1, v2 : τv2) : τ1 × τ2

Follows trivially from the ⇒ relation.

Case:

ε ` (v : τv) : τ1 × τ2
ε ` (v : τv).fst : τ1

By inversion of the typing judgement, τv = τ1 × τ2. From Lemma 9, we can deduce
v = 〈(v1, v2)〉. We can now consider whether v1 ∼ τ1. If it holds then (〈(v1, v2)〉 : τ1×τ2).fst⇒
v1 : τ1. Otherwise, the expression reduces to an error.

Case:

ε ` (v : τv) : ?

ε ` (v : τv).fst : ?

By inversion of the typing judgement τv = ?. We then assume that v = 〈(v1, v2)〉. If
this assumption is not true, then the expression reduces to an error. If it is true, then
(〈(v1, v2)〉 : ?).fst⇒ v1 : ?.

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 191

Case:

ε ` (v : τv) : τ1 × τ2
ε ` (v : τv).snd : τ2

Symmetric to case for (v : τv).fst.

Case:

ε ` (v : τv) : ?

ε ` (v : τv).snd : ?

Symmetric to case for (v : τv).fst.

Case:

ε ` n : int

Follows trivially from ⇒ relation.

Case:

ε ` s : str

Follows trivially from ⇒ relation.

Case:

ε ` (v1 : τv1) : τ1 ε ` (v2 : τv2) : τ2 τ1 <: int τ2 <: int

ε ` (v1 : τv1) + (v2 : τv2) : int

We assume that v1 = 〈n1〉 and v2 = 〈n2〉. If this is not true, then the expression reduces
to an error. If true, then 〈n1〉 : τv1 + 〈n2〉 : τv2 ⇒ 〈n1 + n2〉 : int.

Case:

ε ` (v : τv) : τ ′ τ ′ <: str

ε ` (v : τv).length : int

We assume that v = 〈s〉. If this is not true, then the expression reduces to an error. If
true, then (〈s〉 : τv).length⇒ 〈s.length〉 : int.

Case:

ε ` {v : τx/x}e : τ

ε ` let x = v : τx in e : τ

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 192

Follows trivially from ⇒ relation.

Case:

α,∆ ` τ1 x : τ1, α,∆ ` ef : τ2 f : ∀α.τ1 → τ2,∆ ` e2 : τ

∆ ` let f = ∀α.λx : τ1.ef in e2 : τ

Follows trivially from ⇒ relation.

Case:

ε ` τ1 x : τ1 ` e : τ2

ε ` λx : τ1.e : τ1 → τ2

Follows trivially from ⇒ relation.

Case:

α ` τx x : τx, α ` ef : τ2 ε ` τa ε ` (v : τv) : τ1 τ1 <: {τa/α}τx
ε ` (∀α.λx : τx.ef)[τa] (v : τv) : {τa/α}τ2

We consider whether v ∼ {τa/α}τx. If it is not true then the expression reduces to an
error. If it is true, then (∀α.λx : τx.ef)[τa] (v : τv)⇒ {τa/α}{v : τx/x}ef .

Case:

ε ` (v : τv) : τ ′

ε ` (v : τv) as τ : τ

We consider whether v ∼ τ . If it is not true then the expression reduces to an error. If
it is true then (v : τv) as τ ⇒ v : τ .

Proof of Progress of Expressions

If ε ` e : τ then either:

1. e⇒ e′ for some e′

2. e⇒ error

3. e = v : τ

Proof. According to Lemma 1, either e = v : τ or e = H[r]. The first case satisfies the
theorem trivially. In the second case, Lemma 2 implies that r is well-typed, ε ` r : τ ′.
Therefore from Lemma 24, either r ⇒ v′ : τ ′ or r ⇒ error. Then from the⇒ relation, either
H[r]⇒ H[v′ : τ ′] or H[r]⇒ error respectively.

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 193

12.7 Proof of Typing Incrementality

Lemma 25. If ∆1 ` e1 : τ1 and e1
?
≈ e2 and ∆1 <? ∆2, then ∆2 ` e2 : τ2 and τ1 <? τ2.

Proof. By induction on derivation of e1
?
≈ e2.

Case:

ea
?
≈ e′b ea

?
≈ e′b

ea eb
?
≈ e′a e′b

By inversion of the typing judgement, either ∆1 ` ea : ? or ∆1 ` ea : τa → τ1. In the first
case, ∆2 ` e′a : ? from the induction hypothesis and Lemma 12. e′b is well-typed from the
induction hypothesis, and thus τ2 = ?.

In the second case, we know additionally ∆1 ` eb : τb and τb <: τa. From the induction
hypothesis and Lemma 13, we know that either ∆2 ` e′a : ? or ∆2 ` e′a : τ ′a → τ2 where
τa <? τ

′
a and τ1 <? τ2. If the former, then τ2 = ?. If the latter, then from the induction

hypothesis, ∆2 ` e′b : τ ′b and τb <? τ
′
b. From Lemma 11, we know τ ′b <: τ ′a.

Case:

ea
?
≈ e′a eb

?
≈ e′b

ea[τ] eb
?
≈ e′a[τ] e′b

By inversion of the typing judgement, ea : ∀α.τa1 → τa2 ∈ ∆1, ∆1 ` τ , ∆1 ` eb : τb, and
τb <: {τ/α}τa1. We need to show that:

1. e′a : ∀α.τ ′a1 → τ ′a2 ∈ ∆2,

2. ∆2 ` τ ,

3. ∆2 ` e′b : τ ′b,

4. τ ′b <: {τ/α}τ ′a1, and

5. {τ/α}τa2 <? {τ/α}τ ′a2.

(1) follows from Lemma 15. (2) follows from Lemma 17. (3) follows from the induction
hypothesis. (4) follows from the induction hypothesis and Lemma 18. (5) follows from the
induction hypothesis, Lemma 11, and Lemma 19.

Case:

e
?
≈ e′ τ ′ = τ or τ ′ = ?

λx : τ.e
?
≈ λx : τ ′.e′

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 194

By inversion of the typing judgement, ∆1 ` τ and x : τ,∆1 ` e : τ2. Consider the cases
of τ ′ = τ and τ ′ = ? separately. In the first case, we need to show that:

1. ∆2 ` τ ,

2. x : τ,∆2 ` e′ : τ ′2, and

3. τ → τ2 <? τ → τ ′2.

(1) follows from Lemma 17. (2) follows from the induction hypothesis. (3) follows from the
<? relation.

In the second case, we need to show that:

1. ∆2 ` ?,

2. x : ?,∆2 ` e′ : τ ′2, and

3. τ → τ2 <? ?→ τ ′2.

(1) is trivial. (2) follows from induction hypothesis. (3) follows from the <? relation.

Case:

ea
?
≈ e′a eb

?
≈ e′b

let x = ea in eb
?
≈ let x = e′a in e′b

We consider separately the case when ea is a typable expression and when it is a poly-
morphic function. In the first case, by inversion of the typing judgement, ∆1 ` ea : τa and
x : τa,∆1 ` eb : τ1. We need to show that:

1. ∆2 ` e′a : τ ′a,

2. x : τ ′a,∆2 ` e′b : τ2, and

3. τ1 <? τ2,

which all follow from the induction hypothesis.
The second case is similar, and the proof is a combination of the first case and the proof

for function creation.

Case:

e
?
≈ e′ τ ′ = τ or τ ′ = ?

∀α.λx : τ.e
?
≈ ∀α.λx : τ ′.e′

Polymorphic functions cannot be typed in isolation, and thus we do not have to consider
this case.

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 195

Case:

e1
?
≈ e′1 e2

?
≈ e′2

(e1, e2)
?
≈ (e′1, e

′
2)

Follows trivially from typing judgement and induction hypothesis.

Case:

e
?
≈ e′

e.fst
?
≈ e′.fst

By inversion of the typing judgement, either ∆1 ` e : ? or ∆1 ` e : τ1 × τ . In the first
case, ∆2 ` e′ : ? from the induction hypothesis and Lemma 12. And hence, ∆2 ` e′.fst : ?.

In the second case, by Lemma 14, either ∆2 ` e′ : ? or ∆2 ` e′ : τ2 × τ ′ and τ1 <? τ2. If
the former, then τ2 = ?. If the latter, then ∆2 ` e′.fst : τ2.

Case:

e
?
≈ e′

e.snd
?
≈ e′.snd

Symmetrical to the case for e.fst.

Case:

e1
?
≈ e′1 e2

?
≈ e′2

e1 + e2
?
≈ e′1 + e′2

Follows trivially from inversion of typing judgement, induction hypothesis, and Lemma
11.

Case:

e
?
≈ e′

e.length
?
≈ e′.length

Follows trivially from inversion of typing judgement, induction hypothesis, and Lemma
11.

Case:

x
?
≈ x

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 196

Follows trivially from inversion of typing judgement, and Lemma 16.

Case:

n
?
≈ n

Follows trivially from typing judgement.

Case:

s
?
≈ s

Follows trivially from typing judgement.

Case:

e
?
≈ e′ τ <? τ

′

e as τ
?
≈ e′ as τ ′

Follows trivially from inversion of typing judgement and induction hypothesis.

Case:

v
?
≈ v′ τ1 <? τ

′
1

v : τ
?
≈ v′ : τ ′

Follows trivially from inversion of typing judgement and Lemma 21.

12.8 Proof of Evaluation Incrementality

Evaluation Incrementality of Reducible Expressions

Lemma 26. If r1
?
≈ r2 and ε ` r1 : τ1 and r1 ⇒ r′1, then r2 ⇒ r′2 and r′1

?
≈ r′2.

Proof. By induction on derivation of r1 ⇒ r′1.

Case:

v1 ∼ τ ′1 v1 ∼ τx1

(〈λx : τx1.e1〉 : τ ′1 → τ1) (v1 : τv1)⇒ ({v1 : τx1/x}e1) as τ1
E.Call1

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 197

From inversion of
?
≈ relation, we can deduce r2 = (〈λx : τx2.e2〉 : τ ′2) (v2 : τv2), τx1 <? τx2,

e1
?
≈ e2, τ

′
1 → τ1 <? τ ′2, v1

?
≈ v2, and τv1 <? τv2. From Lemma 13, we know either

τ ′2 = τ ′′2 → τ ′′′2 or τ2 = ?. If τ2 = ?, then r′2 = ({v2 : τx2/x}e2) as ? and r′1 = r′2 from Lemma
20.

If τ ′2 = τ ′′2 → τ ′′′2 , then we know additionally τ ′′2 <? τ ′1 and τ ′′′2 <? τ1. r′2 = ({v2 :
τx2/x}e2) as τ ′′′2 , and r′1 = r′2 from Lemma 20.

Case:

v1 ∼ τx1

(〈λx : τx1.e1〉 : ?) (v1 : τv1)⇒ ({v1 : τx1/x}e1) as ?
E.Call2

From inversion of
?
≈ relation, and Lemma 12, we can deduce r2 = (〈λx : τx2.e2〉 : ?) (v2 :

τv2), τx1 <? τx2, e1
?
≈ e2, v1

?
≈ v2, and τv1 <? τv2. Then r′2 = ({v2 : τx2/x}e2) as ? and r′1 = r′2

from Lemma 20.

Case:

(v1 : τ1, v2 : τ2)⇒ 〈(v1, v2)〉 : τ1 × τ2
E.Tuple

Follows trivially from inversion of
?
≈ relation.

Case:

v1 ∼ τ1

(〈(v1, v2)〉 : τ1 × τ2).fst⇒ v1 : τ1
E.Fst1

From inversion of
?
≈ relation, r2 = (〈(v′1, v′2)〉 : τ3).fst. From Lemma 14, either τ3 = ? or

τ3 = τ ′1 × τ ′2. If τ3 = ?, then r′2 = v′1 : ?.
Otherwise, if τ3 = τ ′1 × τ ′2, then we additionally know τ1 <? τ

′
1 and τ2 <? τ

′
2. In this case,

r′2 = v′1 : τ ′1.

Case:

(〈(v1, v2)〉 : ?).fst⇒ v1 : ?
E.Fst2

From inversion of
?
≈ relation and Lemma 12, we can deduce that r2 = (〈(v′1, v′2)〉 : ?).fst.

Then r′2 = v′1 : ? from ⇒ relation.

Case:

v2 ∼ τ2

(〈(v1, v2)〉 : τ1 × τ2).snd⇒ v2 : τ2
E.Snd1

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 198

Symmetrical to case for e.fst.

Case:

(〈(v1, v2)〉 : ?).snd⇒ v2 : ?
E.Snd2

Symmetrical to case for e.fst.

Case:

n⇒ 〈n〉 : int
E.Int

Follows trivially from inversion of
?
≈ relation.

Case:

s⇒ 〈s〉 : str
E.Str

Follows trivially from inversion of
?
≈ relation.

Case:

〈n1〉 : τ1 + 〈n2〉 : τ2 ⇒ 〈n1 + n2〉 : int
E.Add

Follows trivially from inversion of
?
≈ relation.

Case:

(〈s〉 : τ).length⇒ 〈s.length〉 : int
E.Len

Follows trivially from inversion of
?
≈ relation.

Case:

let x = v : τ in e⇒ {v : τ/x}e
E.Let

From inversion of
?
≈ relation, r2 = let x = v′ : τ ′ in e′, v

?
≈ v′, τ <? τ

′, and e
?
≈ e′. Thus

r′2 = {v′ : τ ′/x}e′ and r′1
?
≈ r′2 from Lemma 20.

Case:

x : τ1 ` e : τ2

λx : τ1.e⇒ 〈λx : τ1.e〉 : τ1 → τ2
E.Fn

CHAPTER 12. PROPERTIES OF THE CORE TYPE SYSTEM 199

From inversion of
?
≈ relation, r2 = λx : τ ′1.e

′ where τ1 <? τ
′
1 and e

?
≈ e′. From Typing

Incrementality, we know that x : τ ′1 ` e′ : τ ′2 and τ2 <? τ
′
2. Therefore r′2 = 〈λx : τ ′1.e

′〉 : τ ′1 →
τ ′2, and r′1

?
≈ r′2.

Case:

v ∼ {τ/α}τx
(∀α.λx : τx.ef)[τ] (v : τv)⇒ {τ/α}{v : τx/x}ef

E.PolyCall

Mirrors the case for rule E.Call1.

Case:

let f = ∀α.λx : τ.ef in e⇒ {(∀α.λx : τ.ef)/f}e
E.PolyLet

Mirrors the case for rule E.Let.

Case:

v ∼ τ

(v : τv) as τ ⇒ v : τ
E.Chk

By inversion of
?
≈ relation, we can deduce r2 = (v′ : τ ′v) as τ ′ where v

?
≈ v′, τv <? τ

′
v, and

τ <? τ
′. By Lemma 21 we know that v′ ∼ τ ′. Therefore r′2 = v′ : τ ′ and r′1

?
≈ r′2.

Evaluation Incrementality of Expressions

If e1
?
≈ e2 and ε ` e1 : τ1 and e1 ⇒ e′1, then e2 ⇒ e′2 and e′1

?
≈ e′2.

Proof. Either e1 = r1 or e1 = H1[r1] from Lemma 1. If the former, then theorem follows
from Lemma 26. Otherwise, e2 = H2[r2] from Lemma 22, and r2 ⇒ v2 : τ2 from Lemma 26.

From ⇒ relation, therefore H2[r2] ⇒ H2[v2 : τ2], and H1[v1 : τ1]
?
≈ H2[v2 : τ2] from Lemma

23.

200

Chapter 13

Related Work

The design of the Stanza language and its underlying theory draws its inspiration from the
numerous influential programming languages that have come before it as well as the vast
existing literature in the field.

13.1 The Stanza Language

The surface syntax of Stanza was inspired heavily by Python [47], a language that emphasized
readability and familiarity over conciseness. The most visibly-obvious trait in common is the
use of indentation to denote code structure, and the use of a colon (:) to denote the start
of a block. Despite being a controversial feature, we greatly appreciate the clean aesthetics
that it lends to our code, and it is one of our cherished features of Stanza.

Just underneath the surface syntax, Stanza uses s-expressions to represent code, an essen-
tial trait that we adopted from the Lisp [32] family of languages. We have always considered
Stanza to be a modern dialect of Lisp, even though the surface syntax of Stanza is distinctly
unlike Lisp. The choice of using s-expressions has sweeping consequences and directly affect
the design of Stanza’s macro system, the core language constructs, and even the design phi-
losophy. The decision to conceal the s-expressions beneath an appealing surface syntax was
inspired by the Dylan [19,50] programming language.

The programmatic s-expression-based macro system was almost entirely taken from Lisp
[32] and Scheme [56]. Macros are expressed using arbitrary Stanza code to transform one
s-expression into another. To help write the macros, Stanza provides a Lisp-like quasiquote
operator, and an s-expression template engine inspired by Scheme’s syntax-rules construct.
For the issues of macro hygiene, we take the Common Lisp approach and provide gensym and
package-qualified identifiers. The design philosophy of using macros to implement common
language constructs so as to minimize the number of core forms is also borrowed from
Lisp. Some syntax is borrowed from the Clojure [28] language, such as treating commas
as whitespace, and using the ~ and ~@ symbols to represent unquote and unquote-splice.
We were inspired by the emphasis that the REBOL [48] language placed on domain specific

CHAPTER 13. RELATED WORK 201

languages, but pursued it within the context of s-expression macros and intentionally did
not allow any flexibility in the lexical structure of programs.

One important difference between Stanza’s and Lisp’s macro systems is the property
that multiple Stanza s-expressions may map to a single core form, whereas Lisp macros
transform only a single s-expression to a single core form. This key difference enables Stanza’s
support for natural syntax, but is also why Stanza requires an additional parsing stage during
macroexpansion. The parser system is built upon Parsing Expression Grammars [23] (PEGs),
and the syntax of macros are expressed in a variant of Backus-Naur Form [5] (BNF). The
binding behaviour of nested ellipsis patterns (...) are inspired by Scheme’s syntax-rules

construct.
The overall organization of a Stanza project is influenced heavily by both Java [2] and

Lisp. A project is divided into packages, as they are in Java, and packages are allowed
to be cyclically dependent. The visibility modifiers that control whether declarations can
be referenced by code outside of their package are inspired by the class member visibility
modifiers of Java. Unlike Java [2], C [33], or C++ [55], Stanza top-level expressions are
executable as they are in Lisp, and there is no distinguished main function.

Stanza’s object system was inspired heavily by Common Lisp [32], Dylan [19,50], Smalltalk
[24], Java [2], and C++ [55]. Both Common Lisp and Dylan championed building an ob-
ject system on top of multimethods because of their flexibility and compatibility with a
functional programming style. We chose multimethods for similar reasons, though Stanza’s
design differs in that its object system is built solely upon multimethods. The emphasis on
encapsulation and interfaces is inherited from Smalltalk. Stanza’s “everything is a function
call” philosophy is analogous to Smalltalk’s “all you can do is send a message” philosophy.
In Stanza, all values have a type that is fixed upon construction and that can be tested
dynamically. For example, the user can write code to test whether or not a value is of type
Duck and respond appropriately. Languages have differing philosophies on whether this is a
desirable feature. Java shares this property, but Ruby and Javascript, in contrast, strongly
discourages this practice. Additionally, though Stanza’s multimethod object system is most
heavily inspired by the Common Lisp Object System (CLOS), it is the function overloading
feature borrowed from Java and C++ that makes it a convenient system to use in practice.

Though Stanza’s type system is fairly dissimilar to the Hindley-Milner [29] style type
systems of OCaml [35] and Haskell [31], those languages had great influence on our design.
During the design of our type system, we constantly compared Stanza code against OCaml
and Haskell to evaluate the design tradeoffs – such as whether a feature was sufficiently
expressive, or overly complex, or whether it can be generalized, etc. In the end, the type
system is most similar to Java’s [2] nominal subtyping system. The decision to treat para-
metric types as covariant was inspired by Java’s treatment of arrays, which, contrary to
popular opinion, we do not feel was a bad design choice. The captured type system was
motivated by our negative experiences with Scala’s [42] and Java’s variance annotations. We
decided that, for our target audience, the extra expressivity and safety afforded by variance
annotations did not justify their added complexity, which led to our design of the simpler
captured type system. The idea of capturing locations was inspired by the unification anno-

CHAPTER 13. RELATED WORK 202

tation in the StrongTalk [8] language. The key equations for Stanza’s union and intersection
types are taken directly from the textbook Types and Programming Languages [45].

Stanza’s optional typing feature was inspired by Dylan [19, 50], which showed that a
programming language can gain the productivity advantages of a static typechecker with-
out losing the flexibility of dynamic-typing. The distinct feeling of starting from a flexible
dynamically-typed code base and incrementally adding types to solidify the structure makes
it another one of our cherished features. A number of recent languages – such as Type-
script [26], Dart [6], and Typed Racquet [58], among others – also incorporate optional
typing.

Stanza’s targetable coroutines are inspired by Lua’s [30] coroutines, Ruby’s [22] and
CLU’s [37] generators, and Scheme’s [56] continuations. We were inspired particularly by the
elegance of Ruby’s incorporation of generators into the overall language design. However,
the decision to use Stanza’s coroutines as a general-purpose control flow construct are a
response to Ruby’s overly-complex closure constructs and control flow operators. Scheme’s
continuations assured us that a general-purpose control flow construct exists, and we settled
on Stanza’s coroutine design as a balanced tradeoff between generality and simplicity.

For code local to a function, Stanza borrows language constructs from a variety of sources.
The $ operator is borrowed from Haskell [31]. Tuple destructuring was inspired by Clojure
[28], OCaml [35], and Haskell [31]. From Scheme [56], we borrow the use of tail-recursion
as the fundamental looping construct, the named let construct, and the emphasis on lists as
a foundational datastructure. From Java [2], we borrow the exception handling construct,
and we generalize the labeled loops construct to arbitrary code blocks. The philosophy of
representing common control structures as higher-order functions was inspired by Ruby [22]
and Smalltalk [24].

The design of LoStanza closely mirrors the design of the C [33] programming language.
Beyond syntactic differences, the two languages are largely identical except for the ability
to reference types and functions defined in HiStanza, the addition of the ref type, and the
ability to provide arguments to the goto operator.

13.2 The Optional Type System

Our ? type was directly inspired by the type of the same name first introduced in [53].
Unlike that work, we chose to build our semantics on top of the subtyping relation, which
offers us two advantages. First, the system automatically supports subtyping, which is a
useful and familiar paradigm. And second, our system can be easily extended to incorporate
other typing features that were also originally developed in a subtyping framework, including
nominal subtyping and union types. [52] extends the base gradual typing system with support
for subtyping by adding the subsumption rule, but it is unclear how to support union types.
We also state and prove incrementality, and the operational semantics of our system is
presented without a separate cast-insertion pass.

CHAPTER 13. RELATED WORK 203

Thatte’s Quasi-Static typing [57] was also developed upon a subtyping framework like
ours, but does include a subsumption and implicit downcast rule, which together raises
similar difficulties as the transitivity rule discussed in section 11.2. Our system avoids these
difficulties, and hence does not require a separate plausibility checking phase, and is simpler
to implement. In addition, unlike our system, Quasi-Static typing does not guarantee that
a completely annotated program catches all type errors.

The early work on the Dynamic type by Abadi et al. [1] is related to this work but was
developed with different goals. The main purpose of the Dynamic type was to model dynamic
data within a statically-typed context, whereas our goal was to facilitate the transition from
an untyped codebase to a typed codebase. Thus the Dynamic type and associated typecase
construct does not have and was never intended to have any incrementality properties.

Our top-level consistency relation was inspired by Findler and Felleisen’s work on Higher
Order Contracts [20] which also checks values only up to the top-level. Findler precisely
defines the semantics of calling functions with specified contracts from untrusted contexts. In
these cases, the arguments are wrapped in a proxy object that dynamically checks contracts
and fails if the contracts are violated. Wadler’s Blame calculus [62] uses a similar strategy
for enforcing type contracts. When a value of type Dynamic is interpreted as a statically-
typed function, it is wrapped in a proxy object that dynamically checks the argument and
return types up to the top-level. Wadler’s Blame calculus has the additional advantage that
when a contract has been violated, a precise location and blame is given to help identify
the root cause of the error. However, the need for the creation of proxy objects results in
difficult implementation and performance issues as discussed in [3]. Our semantics instead
treats contracts as having lexical instead of dynamic extent, and consequentially, can be
implemented without wrapper objects. It is true that we cannot assign a precise blame in
the event that a contract is violated, but this limitation has not been an issue for us in
practice. Instead the user receives an accurate line indicator indicating the first time when a
value is not top-level consistent with its statically-inferred type. A recent paper by Vitousek
et al. [60] shows that blame can be tracked to a limited extent even without wrapper objects,
and their algorithm can potentially be adopted by Stanza to improve the quality of error
messages.

The work on Typed Racket by Tobin-Hochstadt et al. [58] is similar and differs chiefly in
the granularity to which typed and untyped code can be mixed. Typed Racket allows users
to choose between dynamic or static-typing on a per-module basis, whereas our system is on
a per-binder basis.

The optimization potential offered by our system is also offered by the Soft Typing system
introduced in [11]. Static analysis is used to infer the most precise types possible, and the
inferred types are then given as input to an optimizer. However, they do not allow for
optional type annotations, and the analysis must necessarily be conservative. In contrast,
the goal of our system is, first-and-foremost, to improve productivity through notifying the
user of static type errors.

Flanagan’s Hybrid Type Checking [21] can be used for similar purposes as our system. In
that system, static types are combined with refinements expressed using arbitrary predicates.

CHAPTER 13. RELATED WORK 204

These predicates are attempted to be satisfied using automated theorem proving, but runtime
checks are inserted for when no definitive solution can be found. Our system, in contrast,
provides a predictable static semantics that users can rely upon for their annotated binders.

There have been several dynamically-typed programming languages that allow for explicit
type annotations. These include Dylan [19, 50], Common LISP [32], Cecil [12], Boo [43],
BigLoo [49], Dart [6], and Strongtalk [8]. Many of the above systems use the type annotations
as performance hints for the compiler and do not offer additional static-checking. Among the
systems that provide additional static-checking, there are no guarantees of incrementality
or safety of a fully-annotated program. Our framework is fully formalized and we prove
incrementality and safety.

To our knowledge, we are the first to quantify the effect of type annotations on the
effectiveness of the typechecker for a dataset comprised of reasonably-sized programs.

205

Chapter 14

Conclusion and Future Research

This dissertation presents the design and implementation of L.B. Stanza, a full-featured
general-purpose programming language, and our experiences with developing in and teaching
Stanza.

The language has five orthogonal subsystems that are each responsible for a separate facet
of software development, but that together form a cohesive design: an optional type system,
a targetable coroutine system, a multimethod object system, a programmatic macro system,
and a systems sublanguage. This dissertation describes the core mechanisms underneath
each subsystem, and most importantly, the interactions between each subsystem and the
role they play within the overall philosophy of the language.

The optional type system bridges the divide between the dynamically-typed and statically-
typed paradigms. By leaving out all type annotations, Stanza behaves as a dynamically-
typed language where type errors are not caught during execution. But by incrementally
adding additional type annotations, more and more type errors can be statically detected
by the typechecker. Once fully annotated, Stanza behaves as a statically-typed language.

We formalized a subset of the type system and proved that it satisfies incrementality,
which allows programmers to gradually add type annotations to increase the number of errors
detected statically by the typechecker. The relationship between the number of type anno-
tations and the probability of detecting an incorrect program is quantified experimentally
on a dataset containing non-trivial programs.

The targetable coroutine system serves both as a powerful construct for expressing co-
operative multitasking, and also as a foundational control flow operator. The semantics of
the coroutines are well-behaved when coroutines are nested within each other, and thus al-
lows them to be used as primitives in the creation of sophisticated frameworks that require
custom control flow, such as animation, data-flow, and exception-handling frameworks.

The multimethod object system is a class-less object system that bridges the object-
oriented programming (OOP) and functional programming (FP) paradigms. The system’s
flexibility comes from removing the restriction of having to contain behaviours within classes,
which makes it possible to fluidly change the architecture of the program throughout devel-
opment. By combining the multimethod system with function overloading, the flexibility of

CHAPTER 14. CONCLUSION AND FUTURE RESEARCH 206

the system comes without having to sacrifice the convenience of a class-based object system.
Multimethods are both more expressive and simpler than classes: constructors and fields are
no longer necessary; method dispatch depends on the type of all arguments instead of only
the receiver object, and there is no longer any distinction between function calls and method
calls.

The programmatic macro system allows for programmers to write arbitrary code trans-
formers using Stanza to extend the syntax of the base language. Similar to the Lisp macro
system, the code transformers operate on and return s-expressions. We use a lightly deco-
rated s-expression syntax as the surface syntax for Stanza and combine this with a parsing
expression grammar (PEG) framework to allow for parsing of infix expressions, and expres-
sions spanning more than a single s-expression. These extensions provide Stanza the full
expressivity of a Lisp-like programmatic macro system but with a familiar syntax that is
natural to C and Python programmers.

For typical users, Stanza is a high-level memory-safe language that prohibits low-level
operations with the ability to crash the system. The LoStanza sublanguage is a small
language within Stanza that exposes many unsafe operations that can crash the system if
used incorrectly, but that allows programmers to directly manipulate memory, access raw
hardware resources, interface with other language runtimes, and tune performance-sensitive
code. Semantically, it is similar to the C language, but allows for easy communication and
interoperation with high-level code.

At the University of California, Berkeley, Stanza has been used to write a number of
successful practical projects, including:

1. FIRRTL: A digital hardware design language and compiler that lowers a high-level
representation of register-transfer-level (RTL) circuitry to low-level Verilog.

2. Feeny: A minimal teaching language with just-in-time compiler.

3. A printed-circuit-board (PCB) design system that automatically generates manufac-
turable designs from declarative specifications of circuit boards.

4. The optimizing compiler for Stanza, which compiles Stanza source code to x86-64
assembly.

Stanza has been used to teach two graduate courses at U.C. Berkeley: a course on virtual
machines and dynamic language runtimes, and a course on computational design.

From here, there are several research directions that may be investigated:

1. Type-Based Optimizations: The additional static information available in Stanza in the
form of type annotations makes it possible to perform many type-based optimizations.
However, these optimizations cannot be borrowed as is from existing literature as only a
subset of binders may be annotated, and research remains on how to adapt the existing
optimization literature on statically-typed languages to optionally-typed languages.

CHAPTER 14. CONCLUSION AND FUTURE RESEARCH 207

2. Coroutine Optimizations: Stanza’s requirement for the target coroutine to be explicitly
provided in the call to suspend makes it possible to analyze and inline many common
usages of coroutines. As examples, iteration through generators can be re-expressed as
simple loops, and calls to break on non-escaping coroutines can be re-expressed as a
single jump instruction. Research remains on the analysis necessary for enabling these
coroutine transformations.

3. Optimized Separate Compilation: Stanza’s multimethod mechanism enables program-
mers to develop easily extensible software architectures, which comes at the price of
complicating the implementation of a separate compiler. Stanza’s current implemen-
tation is conservative and performs optimization transforms on a whole-program basis,
after all packages in the program have been collected. Research remains on how to
perform as much optimization as possible on a per-package basis. We expect that
many possible optimizations can be speculated upon and eagerly performed and later
invalidated if assumptions are broken.

Stanza is a young, but, we believe, a promising language for general software develop-
ment. There is ongoing and active work on continuing to improve the language towards this
purpose, such as on code quality optimizations, garbage collector optimizations, compiler op-
timizations, support for multithreading, additional language and type system features, and
bindings to existing libraries. Ultimately, in the area of application programming, in the ab-
sence of hard real-time constraints, we don’t foresee any fundamental technical limitations
that would prevent Stanza from becoming the dominant language in this space.

208

Bibliography

[1] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing
in a statically typed language. ACM Transactions on Programming Languages and
Systems (TOPLAS), 1991.

[2] Ken Arnold, James Gosling, and David Holmes. The Java programming language.
Addison Wesley Professional, 2005.

[3] Asumu, Daniel, Ben, Max S. New, Jan Vitek, and Matthias Felleisen. Is sound grad-
ual typing dead? In 43rd ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL). ACM, 2016.

[4] Jonathan Bachrach, David Biancolin, Austin Buchan, Duncan Haldane, and Richard
Lin. Jitpcb. In Proceedings of the Intelligent Robots and Systems (IROS). IEEE, 2016.

[5] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger.
Revised report on the algorithm language algol 60. Commun. ACM, 1963.

[6] Lars Bak and Kasper Lund. The Dart programming language. http://www.dartlang.org,
2011.

[7] Borland. The Delphi programming language. https://www.embarcadero.com/products/delphi,
1995.

[8] Gilad Bracha and David Griswold. Strongtalk: Typechecking smalltalk in a produc-
tion environment. In Proceedings of the Eighth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA). ACM Press, 1993.

[9] Andrey Breslav. The Kotlin programming language. http://kotlinlang.org, 2011.

[10] Arthur W Burks, Don W Warren, and Jesse B Wright. An analysis of a logical machine
using parenthesis-free notation. Mathematical tables and other aids to computation,
1954.

[11] Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM, 1991.

BIBLIOGRAPHY 209

[12] Craig Chambers and the Cecil Group. The Cecil language: Specification and rationale.
Technical report, University of Washington, Seattle, Department of Computer Science
and Engineering, 2004.

[13] Alonzo Church. A set of postulates for the foundation of logic. Annals of mathematics,
1932.

[14] Cliff Click and John Rose. Fast subtype checking in the hotspot jvm. In Proceedings of
the Joint ACM-ISCOPE Conference on Java Grande (JGI). ACM, 2002.

[15] Robert Corbett. Gnu Bison. http://www.gnu.org/software/bison, 1988.

[16] Ole-Johan Dahl and Kristen Nygaard. Simula: An algol-based simulation language.
Commun. ACM, 1966.

[17] The Rust Project Developers. The Rust programming language. http://www.rust-
lang.org, 2010.

[18] Brendan Eich. The JavaScript programming language.
https://developer.mozilla.org/bm/docs/Web/JavaScript, 1995.

[19] Neal Feinberg, Sonya E. Keene, Robert O. Matthews, and P. Tucker Withinton. Dylan
Programming: An Object-Oriented and Dynamic Language. Addison Wesley Longman
Publishing Co., 1997.

[20] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
ACM SIGPLAN Notices. ACM, 2002.

[21] Cormac Flanagan. Hybrid type checking. In 33rd ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL). ACM, 2006.

[22] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language. O’Reilly
Media, 2008.

[23] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation.
In ACM SIGPLAN Notices. ACM, 2004.

[24] Adele Goldberg and Alan Kay. Smalltalk-72: Instruction Manual. 1976.

[25] Robert Griesemer, Rob Pike, and Ken Thompson. The Go programming language.
http://golang.org, 2009.

[26] Anders Hejlsberg. Introducing TypeScript. Microsoft Channel, 2012.

[27] Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde. C# Program-
ming Language. Addison-Wesley Professional, 2010.

BIBLIOGRAPHY 210

[28] Rich Hickey. The Clojure programming language. http://clojure.org, 2007.

[29] Roger Hindley. The principal type-scheme of an object in combinatory logic. Transac-
tions of the american mathematical society, 1969.

[30] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho.
Lua—an extensible extension language. Softw. Pract. Exper., 1996.

[31] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

[32] Guy L. Steele Jr. An overview of COMMON LISP. In Proceedings of the 1982 ACM
Symposium on LISP and Functional Programming. ACM, 1982.

[33] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall Professional Technical Reference, 1988.

[34] Rasmus Lerdorf. The PHP programming language. http://php.net, 1995.

[35] X. Leroy and P. Weis. Manuel de référence du langage Caml. InterEditions, 1994.

[36] Patrick S. Li. The L.B. Stanza programming language. http://lbstanza.org, 2014.

[37] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In Proceed-
ings of the ACM SIGPLAN Symposium on Very High Level Languages. ACM, 1974.

[38] David Madore. The Yin-Yang puzzle. http://www.madore.org/ david/, 1999.

[39] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, Inc., 1992.

[40] Microsoft. The Visual Basic programming language. https://docs.microsoft.com/en-
us/dotnet/visual-basic/, 1991.

[41] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML. MIT
Press, 1997.

[42] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive
Step-by-step Guide. Artima Incorporation, 2008.

[43] Rodrigo B. De Oliveira. The Boo programming language. http://boo.codehaus.org,
2005.

[44] Terence J. Parr and Russell W. Quong. Antlr: A predicated-ll (k) parser generator.
Software: Practice and Experience, 1995.

[45] Benjamin C Pierce. Types and Programming Languages. MIT Press, 2002.

[46] GNU Project. The GNU compiler collection. http://gcc.gnu.org, 1987.

BIBLIOGRAPHY 211

[47] Guido Rossum. Python reference manual. Technical report, 1995.

[48] Carl Sassenrath. REBOL/Core Users Guide. REBOL Technologies, 2005.

[49] Manuel Serrano. Bigloo: a Practical Scheme Compiler. Inria-Rocquencourt, 2002.

[50] Andrew Shalit. The Dylan Reference Manual: The Definitive Guide to the New Object-
Oriented Dynamic Language. Addison Wesley Longman Publishing Co., 1996.

[51] Dave Shreiner, Graham Sellers, John M. Kessenich, and Bill M. Licea-Kane. OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Version 4.3. Addison-
Wesley Professional, 2013.

[52] Jeremy Siek and Walid Taha. Gradual typing for objects. In Proceedings of the 21st Eu-
ropean conference on Object-Oriented Programming (ECOOP). Springer-Verlag, 2007.

[53] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop, 2006.

[54] TIOBE Software. The tiobe index. https://www.tiobe.com/tiobe-index/, 2017.

[55] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman Pub-
lishing Co., Inc., 2000.

[56] Gerald Jay Sussman and Guy L. Steele, Jr. Scheme: A interpreter for extended lambda
calculus. Higher Order Symbol. Comput., 1998.

[57] Satish Thatte. Quasi-static typing. In 17th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL). ACM, 1989.

[58] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. Languages as libraries. In ACM SIGPLAN Notices. ACM, 2011.

[59] D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In
Proc. Of a Conference on Functional Programming Languages and Computer Architec-
ture. Springer-Verlag New York, Inc., 1985.

[60] Michael M Vitousek, Cameron Swords, and Jeremy G Siek. Big types in little runtime:
open-world soundness and collaborative blame for gradual type systems. In Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages.
ACM, 2017.

[61] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design patterns:
Elements of reusable object-oriented software. Reading: Addison-Wesley, 1995.

[62] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In
European Symposium on Programming. Springer, 2009.

BIBLIOGRAPHY 212

[63] Larry Wall. The Perl programming language. http://www.perl.org, 1987.

[64] Niklaus Wirth. Good ideas, through the looking glass [computing history]. Computer,
2006.

