
Autoregressive Linear Thermal Model of a Residential
Forced-Air Heating System with Backpropagation

Parameter Estimation Algorithm

Eric Burger
Scott Moura
David E. Culler

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-28
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-28.html

May 5, 2017



Copyright © 2017, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.





Autoregressive Linear Thermal Model
of a Residential Forced-Air Heating System

with Backpropagation Parameter Estimation Algorithm

Eric M. Burger, Scott J. Moura, David E. Culler

Abstract

Model predictive control (MPC) strategies show great potential for improving the performance and energy
efficiency of building heating, ventilation, and air-conditioning (HVAC) systems. A challenge in the deploy-
ment of such predictive thermostatic control systems is the need to learn accurate models for the thermal
characteristics of individual buildings. This necessitates the development of online and data-driven methods
for system identification. In this paper, we propose an autoregressive with exogenous terms (ARX) model
of a building. To learn the model, we present a backpropagation approach for recursively estimating the
parameters. Finally, we fit the linear model to data collected from a residential building with a forced-air
heating and ventilation system and validate the accuracy of the trained model.

Keywords: Thermal modeling, Control-oriented model, Autoregressive with exogenous terms (ARX)
model, Backpropagation, Demand response, Heating, ventilation, and air-conditioning (HVAC)

1. Introduction

Heating, ventilation, and air-conditioning
(HVAC) account for 43% of commercial and 54%
of residential energy consumption [1]. Space
heating alone accounts for 45% of all residential
energy use. HVAC systems are an integral part of
buildings responsible for regulating temperature,
humidity, carbon dioxide, and airflow, conditions
which directly impact occupant health and com-
fort. Estimates suggest that component upgrades
and advanced HVAC control systems could reduce
building energy usage by up to 30% [2]. Such
intelligent systems can improve the efficiency
of building operations, better regulate indoor
conditions to improve air quality and occupant
comfort, and enable buildings to participate
in demand response services to improve power
grid stability and reduce energy related carbon
emissions [3, 4, 5, 6, 7, 8].

To effectively control the operation of an HVAC
system, it is essential that a model predictive con-
troller incorporate an accurate mathematical rep-
resentation of a building’s thermal dynamics. The
processes that determine the evolution of temper-
atures within a building are complex and uncer-

tain. A reliable model improves the ability of a
controller to forecast conditions and meet cost, ef-
ficiency, and/or comfort objectives [9, 10]. Simula-
tion software, such as EnergyPlus and TRNSYS, is
capable of high fidelity modeling of building HVAC
systems. These mathematical models play a crucial
role in the architectural and mechanical design of
new buildings, however, due to high dimensionality
and computational complexity, are not suitable for
incorporation into HVAC control systems [9, 11].

The American Society of Heating, Refrigeration,
and Air-Conditioning Engineers (ASHRAE) hand-
book [12] describes how to determine the thermal
resistance values of a building surface given it ma-
terials and construction type. However, for existing
buildings, details about the materials in and con-
struction of walls and windows may be difficult to
obtain or non-existent [13]. Additionally, modifi-
cations to the building or changes brought about
by time and use (e.g. cracks in windows or walls)
further diminish the potential for characterizing a
building based on design or construction informa-
tion.

Therefore, an ideal control-oriented model would
capture the predominant dynamics and disturbance
patterns within a building, enable accurate fore-



casting, adapt to future changes in building use,
provide a model structure suitable for optimization,
and be amenable to real-time data-driven model
identification methods. For these reasons, low or-
der linear models are widely employed for control-
oriented thermal building models [13, 14, 15]. Such
models trade complexity and accuracy for simplic-
ity and efficiency.

In this paper, we present an autoregressive with
exogenous terms (ARX) model for the thermostatic
control of buildings and a recursive backpropaga-
tion method for parameter estimation. The struc-
ture of the linear model enables the approximate
identification of unmodeled dynamics, in particular
higher-order dynamics and time delays related to
changes in the mechanical state of the system. By
employing a recursive parameter estimation tech-
nique, we are able to perform online data-driven
learning of the model.

We do not model heating from solar gain, build-
ing occupants, or equipment. This does not restrict
the applicability of this work because the model
structure can be extended for such cases. By esti-
mating these effects with a single time-varying gain,
we produce a simpler model better suited for pre-
dictive control.

This paper is organized as follows. Section
2 presents our autoregressive exogenous thermal
model and Section 3 overviews the parameter es-
timation problem. Section 4 formulates our re-
cursive parameter estimation approach employing
backpropagation and stochastic gradient descent.
Section 5 provides numerical examples of our pro-
posed model and algorithm for the parameter esti-
mation of an apartment with a forced-air heating
and ventilation system. Finally, Section 6 summa-
rizes key results.

2. Building Thermal Model

2.1. Linear Thermal Model

In this paper, we focus on the modeling of an
apartment with a forced-air heating system. To be-
gin, we consider a simple linear discrete time model
[16, 17, 5, 4]

T k+1 = θaT
k + θbT

k
∞ + θcm

k + θd (1)

where T k ∈ R, T k∞ ∈ R, and mk ∈ {0, 1} are the
indoor air temperature (state, ◦C), outdoor air tem-
perature (disturbance input, ◦C), and heater state

(control input, On/Off), respectively, at time step
k.

The parameters θa and θb correspond to the
thermal characteristics of the conditioned space as
defined by θa = exp(−∆t/RC) and θb = 1 −
exp(−∆t/RC), θc to the energy transfer due to
the system’s mechanical state as defined by θb =
(1− exp(−∆t/RC))RP , and θd to an additive pro-
cess accounting for energy gain or loss not directly
modeled.

The linear discrete time model (1) is a discretiza-
tion of a RC-equivalent continuous time model and
thus derived from (very basic) concepts of heat
transfer. As noted in [17, 5], the discrete time
model implicitly assumes that all changes in me-
chanical state occur on the time steps of the sim-
ulation. In this paper, we assume that this behav-
ior reflects the programming of the systems being
modeled. In other words, we assume that the ther-
mostat has a sampling frequency of 1/(3600∆t) Hz
or once per minute.

2.2. Autoregressive Exogenous Thermal Model

The linear discrete time model (1) is capable
of representing the predominant thermal dynamics
within a conditioned space. Unfortunately, because
it does not capture any higher-order dynamics or
time delays related to changes in the mechanical
state of the system, the model is fairly inaccurate
in practice. Research into higher-order RC mod-
els, in particular multi-zone network models and
the modeling of walls as 2R-1C or 3R-2C elements,
have shown potential for producing higher fidelity
building models [13, 14, 15]. However, this comes at
the cost of increasing the model complexity and the
need for temperature sensing (in particular, within
interior and exterior walls).

In this paper, we present an autoregressive exoge-
nous (ARX) model capable of approximating dy-
namics related to trends in the ambient tempera-
ture and to changes in the mechanical state of the
system. We note that the linear discrete time model
(1) is, by definition, a first-order ARX model. The
distinguishing characteristic of the ARX model pre-
sented below is that the model is higher-order with
respect to the exogenous input terms. By increasing
the number of exogenous input terms, we can bet-
ter approximate observed dynamics in the systems.
However, we will not pursue a physics-based justifi-
cation for the number of exogenous terms and thus
the ARX model represents a slight departure from

2



the practice of increasing the model order through
RC-equivalent circuit modeling.

Our autoregressive exogenous (ARX) thermal
model is given by

T k+1 = θaT
k +

s−1∑
i=0

(θb,iT
k−i
∞ + θc,im

k−i) + θd (2)

where T k ∈ R, T k∞ ∈ R, and mk ∈ {0, 1} are the
indoor air temperature (state, ◦C), outdoor air tem-
perature (disturbance input, ◦C), and heater state
(control input, On/Off), respectively, at time step
k. The order of the exogenous terms (and thus the
number of θb and θc parameters) is given by s.

The ARX model can be expressed more com-
pactly as

T k+1 = θaT
k + θTb T

k
∞ + θTc m

k + θd (3)

where T k ∈ R, Tk
∞ ∈ Rs, and mk ∈ {0, 1}s are the

indoor air temperature (state, ◦C), previous out-
door air temperatures (disturbance input, ◦C), and
previous heater states (control input, On/Off), re-
spectively, at time step k. Lastly, θb ∈ Rs and
θc ∈ Rs are the parameters of the exogenous terms.

3. Parameter Estimation Background

A fundamental machine learning problem in-
volves the identification of a linear mapping

yk = θTxk (4)

where variable xk ∈ RX is the input, yk ∈ RY is
the output, and the linear map is parameterized by
θ ∈ RX×Y . Additionally, X and Y are the number
of inputs and outputs, respectively.

3.1. Batch Parameter Estimation

Learning can be performed in a batch manner by
producing θ̂, an estimate of the model parameters,
given a training set of observed inputs and desired
outputs, {x, y}. The goal of a parameter estimation
algorithm is to minimize some function of the error
between the desired and estimated outputs as given
by ek = yk − θ̂Txk.

The least squares problem is given by

minimize
θ̂

1

2

N∑
i=1

(θ̂Txi − yi)2 (5)

with variables xi ∈ Rn, the model input for the i-th
data point, yi ∈ R, the i-th observed response, θ̂ ∈

Rn, the weighting coefficients, and i = 1, . . . , N ,
where N is the number of data samples and n is
the number of features in xi.

3.2. Recursive Parameter Estimation

The least squares problem can be solved recur-
sively with stochastic gradient descent as given by

θ̂ := θ̂ − η(θ̂Txk − yk) (6)

with variables xk ∈ Rn, the model input for at time
step k, yk ∈ R, the observed response at time step
k, θ̂ ∈ Rn, the weighting coefficients, and η, the
learning rate.

4. Backward Propagation of Errors

A fundamental limitation of least squares regres-
sion when applied to autoregressive models of dy-
namical systems is that the optimization only min-
imizes the error of the output at one time step into
the future. Thus, the model may produce a small
error when employed to predict the state in the next
time step but perform poorly when used to recur-
sively produce a multiple time step forecast. To
address this issue, we can represent the system as a
multilayer neural network where each layer shares
the same set of weights. By training the neural net-
work with backpropagation and stochastic gradient
descent, we can produce an estimate of the system’s
parameters that minimizes the output error multi-
ple time steps into the future.

Backward propagation of errors, or backpropaga-
tion, is a technique commonly used for training mul-
tilayer artificial neural networks. The method con-
sists of propagating an input forward through the
layers of the neural network until the output layer
is reached. The estimated output is then compared
to the desired output to calculate an error value
according to a loss function. Next, the error value
is propagated backwards in order to calculate the
relative contribution of each neuron in each layer
to the network’s estimated output. These relative
contributions are used to calculate the gradient of
the loss function with respect to the weights in the
network. Finally, the weights of the network are
updated according to a gradient-based optimization
method, such as stochastic gradient descent, so as
to minimize the loss function.

In this paper, we employ backpropagation to
train the ARX thermal model (3) according to the
optimization problems presented below. In each

3



case, we represent the system as a multilayer neu-
ral network where each layer shares the same set of
weights. Thus, for a network with ` layers,

T̂ k+1 = θaT
k + θTb T

k
∞ + θTc m

k + θd

ek1 = T k+1 − T̂ k+1

T̂ k+2 = θaT̂
k+1 + θTb T

k+1
∞ + θTc m

k+1 + θd

ek2 = T k+2 − T̂ k+2

T̂ k+3 = θaT̂
k+2 + θTb T

k+2
∞ + θTc m

k+2 + θd

ek3 = T k+3 − T̂ k+3

...

T̂ k+` = θaT̂
k+`−1+

θTb T
k+`−1
∞ + θTc m

k+`−1 + θd

ek` = T k+` − T̂ k+`

(7)

where T̂ k+i is the output of layer i (i.e. the esti-
mated temperature i time steps from k) and eki is
the error of the layer i output (i.e. the error of the
estimated temperature i time steps from k). Note
that the output of the first layer, T̂ k+1, is a func-
tion of the measured temperature, T k, whereas the
output of each subsequent layer, T̂ k+i+1, takes the
output of the previous layer, T̂ k+i, as an input.

Unlike a typical neural network, the activation
function of each layer in our model is linear and
we can express the output, T̂ k+`, in terms of the
measured temperature, T k, as

T̂ k+` = (θa)`T k

+
∑̀
i=1

(θa)i−`(θTb T
k+i−1
∞ + θTc m

k+i−1)

+ θd
∑̀
i=1

(θa)i−`

ek` = T k+` − T̂ k+`

(8)

Therefore, the neural network model is linear
with respect to the inputs but nonlinear with re-
spect to the parameters. This nonlinearity, as well
as the forward propagation of noise, is a central
challenge with respect to training the network. Fur-
thermore, each of the training approaches presented
in this paper are essentially nonlinear least square
problems. However, for convenience, we employ the
terminology used for multilayer neural networks to
describe each parameter estimation approach.

Next, we present 3 approaches for training the
multilayer neural network so as to produce esti-

mates of the ARX model (3) that perform well when
used to product multiple time step forecasts.

4.1. Final Error Backpropagation

In our first training approach, we define our ob-
jective function so as to minimize the error of the
final output layer of the neural network as given by

minimize
θ̂

1

2

N∑
k=1

(ek` )2 (9)

with variables ek` ∈ R, the output error of the
final output layer (as defined in (7)) given the
input and output data samples at time step k,
θ̂ ∈ R2s+2, the model parameter estimates (i.e.

θ̂ = [θ̂a, θ̂
T
b , θ̂

T
c , θ̂d]

T ), and k = 1, . . . , N , where N is
the number of data samples.

We solve the optimization program (9) recur-
sively using backpropagation and stochastic gradi-
ent descent. Therefore, at each time step k, the
stochastic gradient descent update equation is

θ̂ := θ̂ − η δ(e
k
` )2

δθ̂
(10)

and the gradient of the loss function with respect
to the parameters is

δ(ek` )2

δθ̂
=

∑̀
i=1

δ(ek` )2

δT̂ k+`
δT̂ k+`

δT̂ k+i
δT̂ k+i

δθ̂

=
∑̀
i=1

(ek` )(θ̂a)`−i
δT̂ k+i

δθ̂

=
∑̀
i=1

ek` (θ̂a)`−i ◦ xki−1

(11)

where

xk0 = [T k, (Tk
∞)T , (mk)T , 1]T

xki−1 = [T̂ k+i, (Tk+i
∞ )T , (mk+i)T , 1]T

∀i = 2, . . . , `

(12)

Note that with this training approach, we only
backpropagate the error of the final output layer.
The assumption is that by minimizing the final
output error, we will minimize the error of every
layer in the network. In the following training ap-
proaches, we incorporate the output errors of mul-
tiple layers into the loss function in an effort to
improve the robustness of the model training.

4



4.2. All Error Backpropagation

In our second training approach, we define our
objective function so as to minimize the error of
each layer in the neural network as given by

minimize
θ̂

1

2

N∑
k=1

∑̀
i=1

(eki )2 (13)

with variables eki ∈ R, the output error of each layer
i (as defined in (7)) given the input and output data

samples at k, θ̂ ∈ R2s+2, the model parameter esti-
mates (i.e. θ̂ = [θ̂a, θ̂

T
b , θ̂

T
c , θ̂d]

T ), and k = 1, . . . , N ,
where N is the number of data samples.

We solve the optimization program (13) recur-
sively using backpropagation and stochastic gradi-
ent descent. Therefore, at each time step k, the
stochastic gradient descent update equation is

θ̂ := θ̂ − η
δ
∑`
i=1(eki )2

δθ̂
(14)

and the gradient of the loss function with respect
to the parameters is

δ
∑`
i=1(eki )2

δθ̂
=

∑̀
i=1

i∑
j=1

eki (θ̂a)i−j ◦ xkj−1 (15)

where xki−1 is defined in (12).

4.3. Partial Error Backpropagation

An issue with the Final Error Backpropagation
and All Error Backpropagation methods presented
above is that, for large values of `, we are propa-
gating the errors backwards over many time steps.
However, given that we are using the neural net-
work model to represent a dynamical system, there
may be very little signal between the input at time
step k and the output at time step k+`. This poten-
tial lack of signal between the input and output is a
well known issue with training deep artificial neu-
ral networks using backpropagation and gradient-
based optimization methods and can result in what
is often described as the vanishing (or exploding)
gradient problem.

In our case, the issue stems from the exponential
terms in (11) and (15). Specifically, small values of

θ̂a may cause the gradient to “vanish” while large
values may cause the gradient to “explode”. To
address this, our third training approach will back-
propagate the errors of each layer a maximum of β

time steps. As with the All Error Backpropagation
method, the objective function is defined so as to
minimize the error of each layer in the neural net-
work as given by (13) and the stochastic gradient
descent update equation is (14).

However, for the Partial Error Backpropagation
approach, we approximate the gradient of the loss
function with respect to the parameters as

δ
∑`
i=1(eki )2

δθ̂
≈

∑̀
i=1

i∑
j=f(i,β)

eki (θ̂a)i−j ◦ xkj−1 (16)

where xki−1 is defined in (12) and f(i, β) is given
by

f(i, β) = max(1, i− β + 1) (17)

Note that with the Partial Error Backpropaga-
tion method, the output error eki of each layer i is
backpropagated a maximum of β layers (i.e. back-
wards β time steps).

4.4. Growing the Neural Network

When training the neural network using the 3
methods described above, poor initial estimates of
the parameter values will cause the algorithm to di-
verge. Therefore, it is necessary to start with a shal-
low network and gradually increase the depth as the
parameter estimates improve. In other words, when
training the model, we start with a small value of
`. Once the algorithm has converged, we increase
the value of ` and continue to recursively update
the parameters. We repeat this procedure until the
neural network has reached the desired depth (i.e.
desired value of `).

5. Residential Heating System
Parameter Estimation Experiments

In this section, we present parameter estimation
results for an 850 sq ft apartment with a forced-air
heating and ventilation system. The apartment is
located in Berkeley, California and equipped with
a custom thermostat designed and built for this re-
search. Therefore, we are able to control the op-
eration of the heating system and to measure the
indoor air temperature. Local weather data, specif-
ically ambient air temperature, is retrieved from the
Internet service, Weather Underground [18].

5



Figure 1: Examples of 2 hour temperature forecasts over 8 hours of test data generated by ARX models with varying numbers
of exogenous input terms

Data was collect at a time-scale of one minute
for 6 weeks during December and January of 2015-
2016. With this data, we are able to perform re-
cursive parameter estimation of the ARX thermal
model (2). The results presented in this section fo-
cus of quantifying and qualifying the advantages of
the ARX model and the backpropagation parame-
ter estimation methods presented above.

5.1. Increasing Model Order

With the ARX model, we are able to adjust the
number of exogenous terms, s, based on the dynam-
ics of a particular conditioned space. Increasing the
number of exogenous terms increases the compu-
tational cost of training and employing the ARX
model. Therefore, we want to find the minimum
value of s such that the model performs well for a
specific system.

To evaluate the sensitivity of the ARX model to
the number of exogenous terms, we have trained the
model using different values of s. In each case, the
model is trained using batch least squares on 80% of

the sensor data (i.e. training data) and the model
performance is evaluated by producing multi-hour
forecasts with the remaining 20% of the data (i.e.
test data).

Figures 1 and 2 present examples of 2 hour tem-
perature forecasts produced by ARX models with
varying numbers of exogenous input terms. The top
subplots show forecasts from an ARX model with
s = 1, which is equivalent to the linear thermal
model in (1). As shown, the model is simply inca-
pable of representing the evolution of the indoor air
temperature. Most notably, the forecasts poorly ac-
count for the thermal dynamics immediately after
the heating system turns off. These dynamics are
related to the interaction between the air and the
other thermal masses (walls, furniture, etc.) within
the conditioned space.

By increasing s to 10, the ARX model is able
to better represent the dynamics immediately af-
ter the heating system turns off. However, we ob-
serve an elbow in the temperature forecasts at 10
time steps after the heating system turns off, as

6



Figure 2: Examples of 2 hour temperature forecasts over 24 hours of test data generated by ARX models with varying numbers
of exogenous input terms

shown in the second subplot. This suggests that the
conditioned space is still responding to the change
in state of the heating system, but that the ARX
model no longer has any knowledge of the state
change and thus cannot estimate its impact on the
indoor air temperature.

By increasing s to 30, the model is able to bet-
ter represent the dynamics of the conditioned space
from the time the heating system turns off until it
turns on again. This is an intuitive result and indi-
cates that s must be sufficiently large so as to cap-
ture a full cycle of the heating system. Increasing
s to 60 and 100, as shown in the bottom 2 sub-
plots, does not significantly improve the accuracy
of the 2 hour forecasts. In other words, each addi-
tional exogenous input increases the complexity of
the ARX model but provides less information than
the previous input.

Figure 3 shows the performance of ARX mod-
els with varying numbers of exogenous terms, s,
when used to generate forecasts of 1, 5, 10, 30, 60,
120, 240, and 480 time steps. Each ARX model

was trained using batch least squares on 80% of the
sensor data (i.e. training data) and the model per-
formance was evaluated by producing forecasts with
the remaining 20% of the data (i.e. test data). The
performance of each model is measured as the root
mean squared error (RMSE) of all multiple time
step forecasts of a certain length. In other words,
the RMSE60 is the RMSE of all 60 time step fore-
casts over a given data set. For comparison, Figure
3 includes the performances of each ARX model
when used to produce forecasts on both the train-
ing data and test data.

As shown in Figure 3, the RMSEs of the ARX
models over horizons of 1, 5, 10, and 30 time steps
decrease as s increases from 1 to 30 and level off at
around 40. The RMSEs of the 240 and 480 time
step forecasts also decrease at first, but begin to
increase as s increases from 40 to 80, particularly
for the test data. A simple (though imprecise) ex-
planation of this behavior is that we are underfit-
ting the model when s is less than 30 and overfit-
ting when s is greater than 40. The lowest RMSE1

7



(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 3: Performance (RMSE) of ARX models with varying numbers of exogenous input terms on training and test data when
used to generate forecasts of 1, 5, 10, 30, 60, 120, 240, and 480 time steps

(i.e. the RMSE of all 1-minute forecasts) on the
training data is 0.0343◦C when s = 120 and on the
test data is 0.0384◦C when s = 48. Since the least
squares optimization problem minimizes the 1 time
step ahead error, it is no surprise that each addi-
tional exogenous terms reduces the RMSE1 of the
training data. By contrast, the lowest RMSE480
(i.e. the RMSE of all 8-hour forecasts) on the train-
ing data is 0.431◦C when s = 40 and on the test
data is 0.523◦C when s = 32. With the longer fore-
cast horizon, we see more agreement between the
training and test performances with respect to the
optimal number of exogenous terms.

5.2. Backpropagation Methods and
Increasing Neural Network Depth

In this section, we present results from train-
ing the ARX model using the 3 backpropagation
methods: Final Error Backpropagation, All Error
Backpropagation, and Partial Error Backpropaga-
tion. Once again, we use 80% of the sensor data
collected from the apartment as training data and
the remaining 20% of the data as test data. For
each backpropagation method, we train ARX mod-
els with 30, 60, and 100 exogenous terms. Addition-
ally, each model is trained with different numbers
of neural network layers, `. Increasing the number
of layers increases the computational cost of train-
ing the model and therefore, we want to find the
minimum value of ` such that the model performs
well for a specific system.

As previously noted, poor initial parameter esti-
mates will cause the training algorithm to diverge.
Therefore, when training a network with depth `,

we initialize the parameters with estimates from a
network of depth ` − 1. For a network of depth
` = 1, we train the model using least squares rather
than backpropagation and stochastic gradient de-
scent. Lastly, to reduce the likelihood that the
stochastic gradient descent algorithm diverges for
large values of `, we set a small learning rate, η,
of 3 ∗ 10−9 and limit the number of iterations (i.e.
number of stochastic gradient descent updates) to
200,000.

Results from training the ARX models using the
Final Error Backpropagation method are presented
in Figures 4, 5, and 6. For the ARX model with
s = 30 exogenous terms, we observe little to no im-
provement in the forecast error as a result of the
backpropagation training method. In fact, the low-
est RMSE480 on the training data is 0.468◦C when
` = 3 and on the test data is 0.525◦C when ` = 7.
As the depth of the neural network increases, the
accuracy of the forecasts remain relatively stable
until ` reaches about 40. With an ` of 70, we start
to experience exploding gradients resulting in poor
parameter estimates and a sharp increase in the
RMSEs of the forecasts.

Figures 5 and 6 present results from ARX mod-
els with s = 60 and s = 100 exogenous terms. As
discussed in the previous section, training models
with such large numbers of exogenous terms using
least squares caused overfitting and an increase in
the RMSE240 and RMSE480. Using the Final Er-
ror Backpropagation method, we are able to im-
prove the performance of both models on the train-
ing and test data. In fact, we are able to produce
8-hour forecasts that are, on average, more accu-

8



(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 4: Performance (RMSE) of ARX model with s = 30 exogenous input terms when trained using Final Error Backprop-
agation with varying neural network depth, `

(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 5: Performance (RMSE) of ARX model with s = 60 exogenous input terms when trained using Final Error Backprop-
agation with varying neural network depth, `

(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 6: Performance (RMSE) of ARX model with s = 100 exogenous input terms when trained using Final Error Backprop-
agation with varying neural network depth, `

9



(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 7: Performance (RMSE) of ARX model with s = 30 exogenous input terms when trained using All Error Backpropagation
with varying neural network depth, `

(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 8: Performance (RMSE) of ARX model with s = 60 exogenous input terms when trained using All Error Backpropagation
with varying neural network depth, `

(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 9: Performance (RMSE) of ARX model with s = 100 exogenous input terms when trained using All Error Backpropa-
gation with varying neural network depth, `

10



(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 10: Performance (RMSE) of ARX model with s = 30 exogenous input terms when trained using Partial Error Back-
propagation with a backpropagation limit of β = 5 and varying neural network depth, `

(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 11: Performance (RMSE) of ARX model with s = 60 exogenous input terms when trained using Partial Error Back-
propagation with a backpropagation limit of β = 5 and varying neural network depth, `

(a) RMSE of 1, 5, 10, and 30 time step forecasts (b) RMSE of 60, 120, 240, and 480 time step forecasts

Figure 12: Performance (RMSE) of ARX model with s = 100 exogenous input terms when trained using Partial Error
Backpropagation with a backpropagation limit of β = 5 and varying neural network depth, `

11



(a) RMSE of 60, 120, 240, and 480 time step forecasts
with a backpropagation limit of β = 10

(b) RMSE of 60, 120, 240, and 480 time step forecasts
with a backpropagation limit of β = 20

Figure 13: Performance (RMSE) of ARX model with s = 100 exogenous input terms when trained using Partial Error
Backpropagation with a backpropagation limit of β = 10 and β = 20 and varying neural network depth, `

rate than with the s = 30 model. For the s = 60
ARX model, the lowest RMSE480 on the training
data is 0.413◦C when ` = 30 and on the test data
is 0.475◦C when ` = 60. For the s = 100 ARX
model, the lowest RMSE480 on the training data
is 0.394◦C when ` = 53 and on the test data is
0.463◦C when ` = 65. Once again, with an ` of
70, we start to experience exploding gradients and
a sharp increase in forecast error.

Results from training the ARX models using the
All Error Backpropagation method are presented
in Figures 7, 8, and 9. For the ARX model with
s = 30 exogenous terms, we observe an overall in-
crease in forecast error as a result of the backprop-
agation training method. The lowest RMSE480 on
the training data is 0.468◦C when ` = 3 and on the
test data is 0.527◦C when ` = 12. By contrast, for
the s = 60 and s = 100 ARX models, we again see
an improvement in the model performance as a re-
sult of the backpropagation training method. For
the s = 60 ARX model, the lowest RMSE480 on the
training data is 0.419◦C when ` = 25 and on the
test data is 0.485◦C when ` = 55. For the s = 100
ARX model, the lowest RMSE480 on the train-
ing data is 0.398◦C when ` = 53 and on the test
data is 0.461◦C when ` = 47. The performances
of the ARX models exhibit greater variability when
trained with the All Error Backpropagation method
than compared with the Final Error Backpropaga-
tion approach and we observe a sharp increase in
forecast error at an ` of about 60 due to exploding
gradients.

Results from training the ARX models using

the Partial Error Backpropagation method are pre-
sented in Figures 10, 11, 12, and 13. Figures 10, 11,
and 12 present results from training ARX models
using a maximum of β = 5 layers for backpropa-
gation and Figure 13 presents results using β = 10
and β = 20. Unlike with Final Error Backpropa-
gation and All Error Backpropagation, we only ob-
serve divergence in the gradient descent algorithm
for the β = 20 case when using Partial Error Back-
propagation. For the other cases, the algorithm re-
mains stable (or as stable as can be expected of
stochastic gradient descent) even at large values of
`. This suggests that by limiting the number of
neural network layers through which the errors are
backpropagated, we can approximate the gradient
of the objective function and reduce the risk of ex-
ploding gradients.

For the ARX model with s = 30 exogenous
terms, the lowest RMSE480 on the training data
is 0.468◦C when ` = 2 and on the test data is
0.526◦C when ` = 12. These results are very close
to those when trained with Final Error Backprop-
agation and All Error Backpropagation. For the
s = 60 ARX model, the lowest RMSE480 on the
training data is 0.417◦C when ` = 22 and on the
test data is 0.501◦C when ` = 93. For the s = 100
ARX model, the lowest RMSE480 on the training
data is 0.398◦C when ` = 26 and on the test data
is 0.470◦C when ` = 100. Note that with Partial
Error Backpropagation for the s = 60 and s = 100
cases, the test error is minimized with an ` greater
than 90. With the previous training approaches,
the gradient descent algorithm began to diverge

12



with an ` of around 60. If we increase β to 10,
the lowest RMSE480 of the s = 100 ARX model on
the training data is 0.401◦C when ` = 22 and on
the test data is 0.465◦C when ` = 96. By increasing
β again to 20, the lowest RMSE480 on the training
data becomes 0.400◦C when ` = 26 and on the test
data becomes 0.470◦C when ` = 38. As previously
noted, with s = 100 and β = 20, the algorithm
diverges at around ` = 60.

Using the Final Error Backpropagation, All Er-
ror Backpropagation, and Partial Error Backprop-
agation approaches, the lowest RMSE480 values on
the test data were 0.463◦C, 0.461◦C, and 0.465◦C,
respectively. Each of these was achieved by an
ARX model with s = 100 exogenous terms. Given
the clear potential for instability in the Final Er-
ror Backpropagation and All Error Backpropaga-
tion methods, these parameter estimation methods
are poorly suited for control applications. However,
given the greater stability and comparable model
performances (as measured by the RMSE480 val-
ues), the Partial Error Backpropagation method
presented in this paper has the greatest poten-
tial for improving the accuracy of the ARX model
by minimizing the output error over multiple time
steps rather than one time step into the future.

5.3. Control Simulations

In the previous sections, the performance of each
ARX model is quantified using the root mean
squared error (RMSE) of all multiple time step fore-
casts of a certain length for a given data set. These
RMSE values are useful for understanding the ac-
curacy of the model (in a statistical sense) and mea-
suring the capability of the model to estimate the
air temperature of the conditioned space given the
mechanical state (On/Off) of the system. For appli-
cations like temperature estimation (e.g. Kalman
filtering of temperature measurements) and fault
detection (e.g. detecting if the system has failed
to deliver heat to the conditioned space), we would
like a model with a low RMSE value. However, the
RMSE of the temperature forecasts is not sufficient
for quantifying the fidelity of the ARX model or its
suitability for model predictive control applications.

In this section, we present results from control
simulations in which various ARX models are used
to estimate both the indoor air temperature, T k,
and mechanical state, mk, given the outdoor air
temperature, T k∞, and upper and lower temperature
bounds at each time step k. Each ARX model has
30, 60, or 100 exogenous input terms (s=30, 60, or

100) and is fit to the training data using batch least
squares (` = 1) or Partial Error Backpropagation
with β = 5 and a network depth of 20, 30, 40, or 50
layers (`=20, 30, 40, or 50). We simulate the control
of the system using the outdoor air temperature,
T k∞, and temperature setpoints, T kset, of the test
data set. The indoor temperature and mechanical
state estimates are initialized with measured data
(i.e. T̂ 0 = T 0 and m̂0 = m0) and the evolution of
the states are given by the update equations

T k+1 = θaT
k + θTb T

k
∞ + θTc m

k + θd

mk+1 =


1 if T k+1 < T kset − δ

2

0 if T k+1 > T kset + δ
2

mk otherwise

(18)

where T k ∈ R and mk ∈ {0, 1} are the indoor
air temperature (◦C) and heater state (On/Off),
respectively, at time step k. As in (3), Tk

∞ ∈
Rs denotes the previous outdoor air temperatures
(◦C), mk ∈ {0, 1}s, the previous heater states
(mk = [mk,mk−1, . . . ,mk−s+1]T ), and θb ∈ Rs and
θc ∈ Rs, the parameters of the exogenous terms.
Lastly, T kset ∈ R denotes the temperature setpoint
(◦C) at time step k and δ ∈ R, the temperature
deadband width (◦C). Therefore, at each time step
k, the upper temperature bound is T kset + δ/2 and
the lower temperature bound is T kset − δ/2.

Examples of temperature estimates, T̂ k, and me-
chanical state estimates, m̂k, produced by ARX
models trained with batch least squares and simu-
lated with (18) are presented in Figure 14. The top
subplot shows the measured temperature, T k, and
mechanical state, mk, and the remaining four sub-
plots show estimates from ARX models with s=10,
30, 60, and 100 exogenous terms.

Figure 15 summarizes results from the control
simulation tests. As shown in the subfigures, we
employ four metrics to quantify the fidelity of the
ARX models with respect to observations of the
forced-air heating system. In Figure 15(a), we com-
pare the number of time steps that the temper-
ature estimates are within the upper and lower
bounds and the number of time steps that the
mechanical system is on according to the control
simulation of each ARX model. The results are
presented as errors relative to the observed num-
ber of time steps within the deadband and time
steps that the system in on, respectively. In Fig-
ure 15(b), we show the root mean squared error

13



Figure 14: Examples of temperature and mechanical state estimates over test data generated by ARX models with varying
numbers of exogenous input terms and trained with batch least squares

(RMSE) of temperature deviations above the up-
per bound (T k+1 > T kset+δ/2) and below the lower
bound (T k+1 < T kset − δ/2). The errors are cal-
culated relative to the upper or lower bounds and
temperatures within the bounds have an error of 0.

As shown in Figure 15(a), and to a lesser degree,
Figure 14, the ARX models trained with batch least
squares (` = 1) tend to overestimate the number of
time steps that the indoor temperature is within
the upper and lower bounds. Similarly, these mod-
els underestimate the number of time steps that the
system is on and therefore underestimate the energy
required to maintain the temperature within the
conditioned space. Using Partial Error Backpropa-
gation with ` = 20, the ARX models underestimate
the time steps within the deadband and overesti-
mate the energy demand. When we increase ` to
30 and 40, the relative errors of the ARX models
move closer to 0, suggesting that the temperature
and mechanical state estimates better reflect ob-
served dynamics of the system. However, increas-
ing ` to 50 causes the ARX models to once again

overestimate the time steps within the deadband
and underestimate the number of time steps that
the system is on.

Figure 15(b) shows the RMSE values of temper-
ature deviations above the upper bound and below
the lower bound for the temperature measurements,
T k, and temperature estimates, T̂ k, produced by
the control simulations. Given the formulation of
the update equations in (18), some deviation out-
side the bounds is necessary to change the mechan-
ical state. Accordingly, for the various models, we
would like to observe RMSE values that are close
to those of the temperature measurements, indicat-
ing that the ARX model accurately represents the
dynamics of the system just after it turns on or off.

As shown in the subfigure, the models trained
with ` = 1 underestimate deviations below the
lower bound but do a relatively good job of estimat-
ing deviations above the upper bound. For ` = 20,
the models overestimate the deviations above the
upper bound. In other words, these models over-
shoot the upper bound, which may help to explain

14



(a) Percent error of estimated number of time steps that
the temperature is within the upper and lower bounds
(y-axis) and the heating system is on (x-axis)

(b) RMSE of temperature deviations above the upper
bound (y-axis) and below the lower bound (x-axis)

Figure 15: Fidelity of ARX model with s = 100 exogenous input terms when trained using Partial Error Backpropagation with
a backpropagation limit of β = 5 and varying neural network depth, `

why these models also overestimate the number of
time steps that the system is on. While the models
trained with an ` of 30 and 40 produced good esti-
mates of the number of time steps within the dead-
band and the number of time steps that the system
is on, they overestimate the deviations above and
below the temperature bounds. Lastly, with ` = 50,
we achieve RMSE values that are relatively close to
those of the measured data.

Based on the results presented in Figure 15, we
conclude that the Partial Error Backpropagation
training method does have potential to improve the
fidelity of the ARX models relative to batch least
squares. This improvement in model fidelity is par-
ticularly important for model predictive control ap-
plications which estimate and optimize the energy
demand of residential heating systems. However,
further research is necessary to optimize for model
fidelity during the training of the ARX models. Po-
tential research directions include stopping criteria
which include a control simulation, the training of
an ensemble of ARX models with model selection
based on a control simulation, and the development
of a non-linear training technique (e.g. genetic al-
gorithm, particle swarm optimization) which opti-
mizes both the accuracy (RMSE of multi time step
forecasts) and fidelity (error of control simulations)
of an ARX model.

6. Conclusions

This paper addresses the need for control-
oriented thermal models of buildings. We present
an autoregressive with exogenous terms (ARX)
model of a building that is suitable for model
predictive control applications. To estimate the
model parameters, we present 3 backpropagation
and stochastic gradient descent methods for recur-
sive parameter estimation: Final Error Backprop-
agation, All Error Backpropagation, and Partial
Error Backpropagation. Finally, we present ex-
perimental results using real temperature data col-
lected from an apartment with a forced-air heating
and ventilation system. These results demonstrate
the potential of the ARX model and Partial Error
Backpropagation parameter estimation method to
produce accurate forecasts of the air temperature
within the apartment.

7. References

[1] U.S. Department of Energy, 2010 Buildings Energy
Data Book, accessed May. 2, 2014.
URL http://buildingsdatabook.eren.doe.gov

[2] R. Brown, Us building-sector energy efficiency poten-
tial, Lawrence Berkeley National Laboratory.

[3] T. X. Nghiem, G. J. Pappas, Receding-horizon super-
visory control of green buildings, in: American Control
Conference (ACC), IEEE, 2011, pp. 4416–4421.

[4] E. M. Burger, S. J. Moura, Generation following
with thermostatically controlled loads via alternat-
ing direction method of multipliers sharing algorithm,

15



Electric Power Systems Research 146 (2017) 141–160.
doi:10.1016/j.epsr.2016.12.001.
URL http://escholarship.org/uc/item/2m5333xx

[5] D. S. Callaway, Tapping the energy storage potential in
electric loads to deliver load following and regulation,
with application to wind energy, Energy Conversion and
Management 50 (5) (2009) 1389–1400.

[6] M. Maasoumy, C. Rosenberg, A. Sangiovanni-
Vincentelli, D. S. Callaway, Model predictive control
approach to online computation of demand-side flexi-
bility of commercial buildings HVAC systems for sup-
ply following, in: American Control Conference (ACC),
Portland, Oregon, 2014, pp. 1082–1089.

[7] J. L. Mathieu, S. Koch, D. S. Callaway, State estima-
tion and control of electric loads to manage real-time
energy imbalance, Power Systems, IEEE Transactions
on 28 (1) (2013) 430–440.

[8] A. Kelman, F. Borrelli, Bilinear model predictive con-
trol of a HVAC system using sequential quadratic pro-
gramming, IFAC Proceedings Volumes 44 (1) (2011)
9869–9874.

[9] A. Aswani, N. Master, J. Taneja, A. Krioukov,
D. Culler, C. Tomlin, Energy-efficient building HVAC
control using hybrid system LBMPC, arXiv preprint
arXiv:1204.4717.

[10] E. M. Burger, S. J. Moura, Recursive parameter estima-
tion of thermostatically controlled loads via unscented
Kalman filter, Sustainable Energy, Grids and Networks
8 (2016) 12–25. doi:10.1016/j.segan.2016.09.001.
URL http://escholarship.org/uc/item/7t453713

[11] A. Aswani, N. Master, J. Taneja, V. Smith, A. Kri-
oukov, D. Culler, C. Tomlin, Identifying models of
HVAC systems using semiparametric regression, in:
American Control Conference (ACC), IEEE, 2012, pp.
3675–3680.

[12] A. Handbook-Fundamentals, American society of heat-
ing, refrigerating and air-conditioning engineers, Inc.,
NE Atlanta, GA 30329.

[13] Y. Lin, T. Middelkoop, P. Barooah, Issues in identifi-
cation of control-oriented thermal models of zones in
multi-zone buildings, in: Decision and Control (CDC),
51st Annual Conference on, IEEE, 2012, pp. 6932–6937.

[14] C. Agbi, Z. Song, B. Krogh, Parameter identifiability
for multi-zone building models, in: Decision and Con-
trol (CDC), 51st Annual Conference on, IEEE, 2012,
pp. 6951–6956.

[15] P. Radecki, B. Hencey, Online building thermal pa-
rameter estimation via unscented Kalman filtering, in:
American Control Conference (ACC), IEEE, 2012, pp.
3056–3062.

[16] S. Ihara, F. C. Schweppe, Physically based modeling of
cold load pickup, Power Apparatus and Systems, IEEE
Transactions on 100 (9) (1981) 4142–4250.

[17] R. E. Mortensen, K. P. Haggerty, A stochastic computer
model for heating and cooling loads., Power Systems,
IEEE Transactions on 3 (3) (1998) 1213–1219.

[18] Weather Underground Web Service and API.
URL wunderground.com/weather/api/

16


