
Implementing Efficient, Portable Computations for Machine
Learning

Matthew Walter Moskewicz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-37
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-37.html

May 9, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

Research partially funded by DARPA Award Number HR0011-12-2-0016,
plus ASPIRE and BAIR industrial sponsors and affiliates Intel, Google,
Huawei, Nokia, NVIDIA, Oracle, and Samsung.

Implementing E�cient, Portable Computations for Machine Learning

by

Matthew W. Moskewicz

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering–Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kurt Keutzer, Chair

Professor Sanjit Seshia

Professor Alper Atamturk

Professor Jonathan Ragan-Kelley

Spring 2017

Implementing E�cient, Portable Computations for Machine Learning

Copyright 2017

by

Matthew W. Moskewicz

1

Abstract

Implementing E�cient, Portable Computations for Machine Learning

by

Matthew W. Moskewicz

Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kurt Keutzer, Chair

Computers are powerful tools which perform fast, accurate calculations over huge sets of data.

However, many layers of abstraction are required to use computers for any given task. Recent

advances in machine learning employ compute-intensive operations embedded in complex over-

all �ows. Further, deployment of these systems must balance many concerns: accuracy, speed,

energy, portability, and cost. Currently, for each target, a good implementation of the needed

software layers requires many programmer-years of e�ort.

To address this, we explore new tools and methods to amplify programmer e�ort for machine

learning applications. In particular, we focus on portability and speed for machine learning oper-

ations, algorithms, and �ows. Additionally, we wish to maintain accuracy and carefully control

the complexity of the overall software system.

First, we motivate our approach with a case study in developing libHOG, which provides high-

speed primitives for calculating image gradient histograms, where we achieve a 3.6X speedup

over the state of the art. Next, in DenseNet, we enable previously prohibitively slow multiscale

sliding window object detection using dense convolutional neural network features. Finally, we

propose our Boda framework for implementing arti�cial neural network computations, based on

metaprogramming, specialization, and autotuning. In Boda, we explore in depth the development

of e�cient convolution operations across various types of hardware. With only a few months of

e�ort, we achieve speed within 2X of the highly-tuned vendor library on NVIDIA Graphics Pro-

cessing Units (GPUs). Further, in only a few weeks, we achieve up to 30% e�ciency on Qualcomm

mobile GPUs, where no vendor library exists.

i

To my wife:

I don’t know how I could have ever accomplished this without your helpful advice and constant

berating me for lack of willpower.

PS: Kids, you own me big time.

ii

Contents

Contents ii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem: Computation for Machine Learning . 2

1.1.1 Example Task; Introduction to Concerns and Problems 3

1.1.2 Accuracy . 4

1.1.3 Speed . 5

1.1.4 Energy . 6

1.1.5 Portability . 7

1.1.6 Cost . 9

1.1.7 Key Research Questions . 9

1.2 We Focus on GPUs for NN Computation . 11

1.2.1 Details of Current Approaches to NN Computation and Their De�ciencies 12

1.2.2 GPU Programming for Numerical Applications 12

1.2.3 Why not just use NVIDIA/cuDNN? . 13

1.2.4 What would be the ideal situation for NN Computation? 13

1.3 Speci�c Motivating Problems and Trajectory of Research 14

1.3.1 Speed and Energy E�cient Histogram-of-Oriented-Gradients Calculations:

libHOG . 14

1.3.2 Speed and Energy E�cient Dense, Multiscale Convolutional Neural Net

Features: DenseNet . 15

1.3.3 The E�ect of the Rise of Neural Networks on Research Implementations . 17

1.4 Solution for implementing NN Computations: The Boda Framework 17

1.5 Thesis Contributions . 18

1.6 Thesis Outline . 19

2 Motivating Early Work : libHOG 20
2.1 Introduction . 20

iii

2.2 HOG Features and Detailed Motivation . 21

2.3 libHOG Related Work . 22

2.4 Background on HOG Features . 23

2.4.1 Single Image HOG . 23

2.4.2 Existing Implementation Details . 24

2.4.3 Multiple Image HOG and Image Resizing 25

2.5 Our Approach to HOG . 25

2.5.1 Gradient Computation . 26

2.5.2 Histogram Accumulation . 28

2.5.3 Neighborhood Normalization . 30

2.5.4 Attempts at Fusion of Kernels . 30

2.6 Evaluation of libHOG . 31

2.6.1 Speed and Energy . 31

2.6.2 Accuracy . 31

2.7 libHOG Conclusions and Lessons Learned . 32

2.7.1 Key Research Contributions of libHOG . 32

2.7.2 Conclusions on the Speci�c Contributions of libHOG 33

2.7.3 Contributions of this Work to De�ning our Research Trajectory 33

2.7.3.1 Issues with Core Implementation E�orts 33

2.7.3.2 Issues with Packaging libHOG for Reuse in Research and Practice 34

2.7.4 Conclusions from libHOG that De�ned our Research Trajectory 35

3 Bridge to Our Boda Framework: DenseNet 37
3.1 Introduction to DenseNet: Speeding up Neural-Network-based Object Detection . 37

3.2 DenseNet Related Work . 40

3.3 DenseNet CNN Feature Pyramids . 42

3.3.1 Multiscale Image Pyramids for CNNs . 43

3.3.2 Data Centering / Simpli�ed RGB mean subtraction 44

3.3.3 Aspect Ratios . 44

3.3.4 Measured Speedup . 44

3.3.5 Straightforward Programming Interface 44

3.4 Qualitative Evaluation of DenseNet . 45

3.5 DenseNet Conclusions and Lessons Learned . 45

3.5.1 DenseNet Summary of Contributions . 47

3.5.2 Conclusions on Contributions of DenseNet 47

3.5.3 Issues with DenseNet that Informed our Research Trajectory 48

3.5.3.1 Feature Space Mapping and DenseNet-v2 48

3.5.3.2 Often Cited, Sometimes Re-implemented, Never Directly Used . 50

3.5.4 Conclusions From DenseNet that Shaped our Research Trajectory 51

4 Background 53
4.1 What are Neural Networks? . 53

iv

4.1.1 Deep and/or Convolutional NNs . 53

4.1.2 Depth and NN Function Structure . 54

4.1.3 Branching NNs and Compute Graphs . 55

4.1.4 Introduction to Layer Functions . 56

4.2 Groups of Numbers: ND-Arrays; relationship to Tensors, Images, and Matrices . . 57

4.2.1 Applying Functions to ND-Arrays . 59

4.2.2 ND-Arrays and Layer Functions . 60

4.2.3 Discussion of Common Dimensions of ND-Arrays in NNs 61

4.2.4 Spatial vs. Channel Dimensions in NNs . 62

4.2.5 Aside on the Batch Dimension and Computation 63

4.3 Details of Neural Network Layer Functions . 63

4.3.1 Activation Functions . 64

4.3.2 Pooling Functions . 65

4.3.3 Convolution Functions . 67

4.4 Machine Learning Terminology . 69

4.4.1 Accuracy vs. Precision/Recall . 69

4.4.2 Precision/Recall tradeo�s, PR curves, and Fidelity 70

4.4.3 Over�tting and Computation . 71

4.5 Training vs. Deployment . 71

4.5.1 Computation for Training . 72

4.5.2 Batch Sizes in Training and Deployment 73

4.5.3 Scale of Computation: One GPU or Many? 74

5 Boda Related Work 75
5.1 General Approaches to Implementing Computation 76

5.1.1 Compilers (and their Languages) . 77

5.1.2 Libraries . 78

5.1.3 Templates/Skeletons . 79

5.1.4 Frameworks . 80

5.1.5 Note on Autotuners . 80

5.2 Existing Flows for NN Computations . 81

5.3 Frameworks for Machine Learning . 82

5.3.1 TensorFlow . 82

5.3.1.1 Google Tensor Processing Unit (TPU) 82

5.3.1.2 Google Accelerated Linear Algebra (XLA) 83

5.3.2 Ca�e . 84

5.3.3 Nervana Neon . 84

5.3.4 Theano . 85

5.3.5 Other Frameworks . 85

5.4 Libraries . 86

5.4.1 BLAS Libraries . 86

5.4.2 cuDNN . 86

v

5.4.3 Neon/NervanaGPU . 87

5.4.4 Greentea LibDNN and cltorch . 87

5.5 Compiler-like Approaches . 88

5.5.1 Halide . 88

5.5.2 Latte . 89

6 Implementing E�cient NN Computations : The Boda Framework 90
6.1 Introduction to Boda . 90

6.2 Boda Background and Motivation . 92

6.2.1 Problem Statement and Motivation . 94

6.2.2 Key Problems of E�cient GPU Convolutions 95

6.2.3 NVIDIA and GPU Computation . 96

6.2.4 Why Not Rely on Hardware Vendors for Software? 97

6.3 Boda Approach . 98

6.3.1 Justi�cation for Metaprogramming . 98

6.3.1.1 Intuition for Metaprogramming from Matrix-Matrix Multiply

Example . 99

6.3.1.2 Bene�ts of Metaprogramming for NN Convolutions 100

6.3.2 Comparison with Libraries . 101

6.3.3 Specialization and Comparison with General-Purpose Compilation 102

6.3.4 Framework Structure . 103

6.3.4.1 Programming Model Portability with CUCL 104

6.3.4.2 ND-Arrays . 106

6.3.5 General Metaprogramming in Boda . 106

6.3.6 Boda Metaprogramming vs. C++ Templates 107

6.3.7 Details of Boda Metaprogramming for NN Convolutions 108

6.3.7.1 Detailed Technical Example . 110

6.3.7.2 Summary of Boda Metaprogramming 112

6.3.8 Variant Selection and Autotuning . 112

6.3.9 Graph-level Optimizations . 114

6.3.10 Code Generation, Scheduling, and Execution 114

6.4 Boda Results . 115

6.4.1 Programming model portability – OpenCL vs. CUDA 116

6.4.2 Tuning for Qualcomm Mobile GPUs . 117

6.4.3 Easily Improving E�ciency with Autotuning on New Platforms 118

6.4.4 Performance Portability on Di�erent Targets 119

6.5 Key Features of Boda’s Support for Regression Testing 120

6.5.1 Approximate Numerical Agreement for NN Calculations 121

6.5.2 Using ND-Array Digests to Compactly Store Known-Good Test Results . . 121

6.6 Boda Enables Productive Development of NN Operations 122

6.7 Summary of Boda’s Contributions . 124

vi

7 Summary, Conclusions, and Future Work 127
7.1 Contributions . 127

7.2 Conclusions: Answering Key Research Questions 129

7.3 Future Work . 130

7.3.1 Boda for Other Operations . 130

7.3.2 Boda on Other Hardware . 130

7.3.3 Broader Scope of NN Computations . 131

7.4 Final Thoughts . 131

Bibliography 132

vii

List of Figures

1.1 Two example input/output pairs for the person-in-image example task. 3

1.2 NN as a stateless, deterministic function. 3

1.3 NN function for Person-In-Image example task. 4

1.4 Object detection example, using bounding boxes for localization. 15

1.5 Boda Framework Overview: Portable Deployment of NNs 18

2.1 Our fast, energy-e�cient HOG pipeline. This produces Felzenszwalb [38] HOG

feature maps. We only show 3 HOG pyramid resolutions here, but a typical HOG

pyramid in [38] has 40 or more resolutions. 21

2.2 Per-image HOG feature computation high-level pseudo code 23

2.3 Scatter histogram code (baseline). This scatters data from the magnitude array to the

histogram. 29

2.4 Gather histogram code (our approach, which maintains a smaller working set). . . . 29

3.1 DenseNet multiscale feature pyramid calculation . 38

3.2 Sliding-window object recognition. A number of detection methods including De-

formable Parts Models (DPMs) and Poselets are built on pipelines like this. 39

3.3 Object Detection with R-CNN [37]: region proposals and CNN features. 41

3.4 Features independently computed on image regions. Here, we �rst crop object pro-

posal regions from images, then compute features. This is the type of approach used

in R-CNN [37]. The regions were chosen arbitrarily, not taken from [80]. Also notice

that the regions used in this example are square, so no pixel warping is needed. . . . 46

3.5 Features computed on a full image. These features can be cropped to approximate

features for each object proposal region (rightmost panel). DenseNet is optimized for

this type of feature calculation. 46

4.1 Neural Network as Linear Composition of Layers. 54

4.2 Neural network with branching. 56

4.3 Normal application of a function to an ND-Array with type matching the function’s

domain. 59

4.4 Automatic extension of per-slice function to an ND-Array with compatible higher-

dimensionality type. 59

viii

4.5 Plots of the common tanh() and ReLU() activation functions. 64

4.6 10x10 pixel 3-channel (RGB) image split into 3 10x10 pixel 1-channel images. 65

4.7 3x3 max-pooling and average-pooling applied to 10x10 pixel 1-channel (Red) image. . 66

4.8 Three examples of 3x3 convolutions applied to a 10x10 pixel 1-channel (Red) image. . 68

4.9 A typical NN convolution layer with stride 4, as might be found at the start of an

image-processing NN. 69

6.1 Position of Boda in productivity/e�ciency space. 91

6.2 An illustration of a typical NN convolution (left) and the corresponding compute

graph fragment (right). 93

6.3 Overall structure of Boda. 103

6.4 Boda �ow: from compute graph to code. 106

6.5 Storage layout and execution �ow of one work block of an example NN convolution. 111

6.6 Autotuning in Boda. 113

6.7 OpenCL vs CUDA. Runtime on NVIDIA Titan-X (Maxwell) 116

6.8 Comparison of Boda with cuDNNv5 on NVIDIA Titan-X 117

6.9 Initial vs. optimized results on Qualcomm Snapdragon 820 118

6.10 Manually-tuned and autotuned runtime on AMD R9-Nano (Fiji) 119

6.11 Autotuned runtime on NVIDIA Titan-X, AMD R9-Nano, and Qualcomm Snapdragon

820 . 120

ix

List of Tables

2.1 Image Resizing with bi-linear interpolation. Comparison with related work.

This is simply “making 40 copies of a 640x480 input image at various resolutions."

Each experiment is the average of at least 100 runs. 26

2.2 Gradient Computation. Comparison with related work. In the related work, only

FFLD uses multithreading. Where relevant, we report results with and without

OpenMP multithreading. (640x480 images, 10+30 pyramid resolutions.) 26

2.3 Histogram Accumulation, 640x480 images, 40 pyramid resolutions. 29

2.4 Neighborhood Normalization, 640x480 images, 40 pyramid resolutions. 30

2.5 End-to-end HOG E�ciency, 640x480 images, 40 pyramid resolutions. cuHOG re-

sults are claimed in [63]. All other results were produced by the authors of this

work. libHOG-L2-OpenMP-pipelined produces numerically identical re-

sults to voc-release5. 31

2.6 Accuracy for PASCAL 2007 object detection using HOG implementations with De-

formable Parts Models [38]. 32

6.1 List of benchmark convolution operations. KSZ: kernel X/Y window size; S: X/Y

stride; OC: # of output channels; B: # input images per batch 126

x

Acknowledgments

Firstly, I must thank my wife, SungSim Park, for her ongoing support (see also: dedication).

Then, in roughly authorship order, I would like to thank my co-authors: Great thanks go to my

MVP co-author for much of the work presented here: Forrest Iandola. Additionally, I would like to

thank Sergey Karayev, Ross Girshick, and Trevor Darrell, my co-authors on the DenseNet work,

and great sources of information on machine learning and computer vision. Any errors in those

departments are of course my own. Next, I would like to thank Ali Jannesari for his co-authorship

and support during the later part of our work on Boda. And, last-but-certainly-not-least, I thank

my stalwart research advisor, Kurt Keutzer, for his support over an undisclosed (but high) number

of years.

Additional thanks go to Piotr Dollár and Dennis Park for helpful discussions on HOG neigh-

borhood normalization and David She�eld for his advice on HOG gradient computation.

Research partially funded by DARPA Award Number HR0011-12-2-0016, plus ASPIRE and

BAIR industrial sponsors and a�liates Intel, Google, Huawei, Nokia, NVIDIA, Oracle, and Sam-

sung.

1

Chapter 1

Introduction

The popularity of neural networks (NNs) spans academia [1], industry [2], and popular cul-

ture [3]. Deep convolutional NNs have been applied to many image based machine learning

tasks and have yielded strong results [4]. Speci�c computer vision applications include object

detection [5], video classi�cation [6], and human action recognition [7]. Both the sizes of the

data sets and amount of computing used by these approaches would have been impractical in the

not too distant past. Thus, it is often noted that these advances in machine learning were enabled

by various Big things: Big Data, Big Compute, Big Labeling (crowd-sourcing), and so on. In this

work, we focus on enabling the use of Big Compute for the practical application of NN-based

methods.

When we examine the notion of Big Compute more deeply and concretely, we �nd that it is

embodied in complex, layered software systems. These systems bridge the gap between complex

compute hardware and the desired research or practical applications. Ideally, we could quickly

create software systems that adequately addressed all the needs of research and practice. How-

ever, this is not currently possible. Instead, such systems require substantial e�ort for initial

design and development. Further, the required e�ort is compounded by maintenance costs as-

sociated with continually shifting requirements. One area of particular interest and concern is

the e�cient implementation of the computational primitives needed for neural network based

algorithms. Typically, for e�ciency, each hardware target requires a specialized implementa-

tion of certain computational primitives. In practice, it is often the lack of complete, e�cient

software systems, not underlying hardware capability, that limits the viable combinations of use-

cases and platforms. Yet, it seems clear that the availability of hardware/software systems for

NN-based methods is critical for the continued success of the �eld [8] [1]. Thus, there is both

a great challenge and great opportunity in the timely creation of the complex layered software

systems needed for the future success of machine learning.

The problems that this dissertation addresses are at the intersection of several domains. In

particular, approaching these issues requires at least some knowledge of machine learning, pro-

cessor design, software engineering, and algorithms. Further, almost all levels of the software

stack are relevant, from the hardware, though compilers and runtimes, and up to the user code

level. However, as a balance to this, not much depth of understanding is required in many of

CHAPTER 1. INTRODUCTION 2

these areas. As a general theme, this work is about cutting across many layers, and necessarily

such a tall approach will tend to be skinny. Otherwise, even with good layers of abstraction, the

scope of the work would be untenably broad. This is certainly a tradeo�, as it is all to easy to

miss some important detail from one area or another as we hurry though them. However, it is the

claim of this work that some interesting results can only be discovered using such an approach.

Of course, we admit that, for all of the areas in which we tread, it is also important that others

research them in more detail. That is, we make no claim that our tall-skinny approach is exhaus-

tive, only that it is valuable. Later in this introduction, in Section 1.1.7, we detail the speci�c

key research questions we seek to answer. But, �rst, we will de�ne the scope of problems and

concerns that we consider.

1.1 Problem: Computation for Machine Learning
The overall problem of creating software systems for machine learning is a very broad topic.

While our work will focus on a few speci�c concrete problems, the key guiding concerns we

address are fundamental: accuracy, speed, energy, portability, and cost. Depending on the use-

case, these concerns will have di�erent constraints, priorities, and di�culties. There will often be

hard constraints for one or more of these concerns. For example, on a mobile phone or wearable

device, energy-e�cient computer vision is necessary to put research into production and enable

novel functionality. Next, consider the use of machine learning to enable autonomous vehicles. In

this case, human safety hinges on the ability to understand the environment in real-time under

tight energy, power, and price constraints. Once hard constraints are satis�ed, any additional

gains in each area of concern yield additional value according to some application-speci�c utility

function. This function is often qualitative and only partially speci�ed, re�ecting the real-world

risks and uncertainties of deploying technology. To better illustrate this, for each concern, we

will give a hypothetical scenario related to some current popular applications of neural networks.

In each example, we ask what utility improvement might result from a gain in one of our areas

of concern. These examples make it clear that gains related to each concern are important, but

that it is often hard to quantify their impact:

• Accuracy: What is aggregate value of avoided unnecessary biopsies if the area-under-curve

of a skin cancer classi�cation system [9] increases from 0.92 to 0.94?

• Speed: How many new drugs can be discovered by reducing the time needed for compound

activity prediction [10] by 20%?

• Energy: If the energy required for machine translation [11] is reduced by 50%, what is the

overall e�ect on data center economics?

• Portability: What would be the market impact of enabling an algorithm to render video

in the style of famous painters [12] to run on processors deployed in more than 1 billion

mobile devices?

CHAPTER 1. INTRODUCTION 3

• Cost: How does one quantify the value (to both the manufacturer and society as a whole)

of reducing the price of a autonomous-driving system [13] by 10% below the maximum

pro�table production price?

Later in this section, we will pose our key research questions. But �rst, we will broadly discuss

the scope of concerns and related problems that we consider.

1.1.1 Example Task; Introduction to Concerns and Problems
For discussion and illustration, we introduce a machine learning task to use as a running example.

The task we choose is, given an input image, answer the question: “Is there a person in this

image?”

person-in-image? 0 person-in-image? 1

Figure 1.1: Two example input/output pairs for the person-in-image example task.

This speci�c example task, show in Figure 1.1, is a particular case of what is termed the image
classi�cation problem. In order to use a computer to perform this task, we require a computable

function that maps from images to a single Boolean value (i.e. person-in-image) that answers the

desired question. For simplicity, we will restrict our discussion here to stateless, deterministic

functions, as this is the common case in practice. In particular, we are interested in such functions

that arise in the context of using neural networks for machine learning problems such as our

example task.

Neural Network FunctionInput Output

Figure 1.2: NN as a stateless, deterministic function.

CHAPTER 1. INTRODUCTION 4

In Figure 1.2, we illustrate this simple view of NNs, graphically showing the statementoutput =
NNFunc (input). The blue-rounded-rectangles denote values (each some �xed, but unspeci�ed

number of bits), and the yellow-squared-rectangle represents a function.

Neural Network Function
For person-in-image Task:

{0,1}1236696 → {0,1}

Input:
227 x 227 pixel
color image, 24
bits-per-pixel:
227*227*24 =
1236696 bits

Output:
1 bit:

person-in-image

Figure 1.3: NN function for Person-In-Image example task.

Although we will discuss details later in Section 4.3, in short, both the domain and range of

such functions can be expressed as some �xed number of bits of data. In Figure 1.3, we elaborate

the prior illustration to show a reasonable concrete range and domain for our example function.

Even using a relatively low resolution 227×227 image as input, it can be seen than the domain of

the NN function has very high dimensionality. This hints at the fact that such functions may be

complex and require signi�cant computation to evaluate. For now, however, we defer additional

discussion of the representation of the domain, range, and structure of such functions. Here,

what is important is that computation of the NN function (regardless of form or representation)

must satisfy any task-speci�ed constraints on accuracy, speed, energy, portability, and cost. In

turn, meeting this set of interrelated constraints presents various problems. We now discuss each

concern, their associated problems, and their relation to this work.

1.1.2 Accuracy
Informally, the accuracy of a machine learning system is the fraction of inputs on which it pro-

duces correct results. In our example, accuracy answers the question: “How well or how often

does the function correctly indicate if there is a person in an image?” To judge the accuracy of

some machine learning system on some set of examples, the correct results, or ground truth, must

somehow be determined by other means. When the ground truth is not known, the true accuracy

of a system can not be determined; in such cases, the best available results (i.e. those produced

human experts) are used as a proxy for the ground truth.

Often accuracy is a paramount concern for machine learning systems. In general, for a given

application, a system must achieve a minimum level of accuracy to be useful at all, and typi-

cally increased accuracy yields increased functionality. For example, for a particular skin cancer

detection task [9], a system must achieve an accuracy equal-or-better to the 66% achieved by a

human expert before it would be considered acceptable for deployment. Broadly speaking, more

CHAPTER 1. INTRODUCTION 5

accuracy is always better, and each task will have some particular minimum-useful-accuracy and

accuracy-to-utility curve. See Chapter 12 of Deep Learning [14] for an overview of modern ma-

chine learning applications.

We will later provide minimal and su�cient additional background details to concretely un-

derstand the concept of accuracy in machine learning as it applies to this work in Section 4.4. For

this work, we are mainly concerned with the more limited notion of maintaining accuracy. To

achieve this, it would be su�cient to exactly compute whatever function we are given, in any way

we please. But, in practice, that condition is generally too constraining and impractical to strictly

satisfy. In particular, �oating point arithmetic is approximate and does not yield equivalent re-

sults for di�erent (but mathematically equivalent) orderings of operations. For more details on

�oating point numbers and their issues, the reader is referred to Goldberg [15]. In part due to the

above issues with �oating point, and more generally due to the di�culty of program-equivalence-

checking [16] for numerical GPU programs, it does not seem practical to apply formal or other

methods to ensure general-case equivalence between algorithms. Thus, current practice is to

perform empirical accuracy evaluations on validation sets of inputs. Naturally, maintaining ac-

curacy on these sets is a necessary condition for doing so on all inputs. However, meeting only

this condition can lead to approximate or buggy algorithms with many types of intermediate

errors that do not happen to a�ect accuracy for the validation sets. As we will discuss in more

detail in Section 4.4.3, to use machine learning terminology, such results can be considered a type

of over�tting. Since such problems are often due to real, signi�cant coding errors, it is clear that

it is undesirable for them to remain undetected. Such errors can cause rare random behavior,

crashes, or simply degrade the �nal accuracy of any deployed system. Certainly, any methods

to help address this issue would improve development speed and overall software quality. Thus,

to the degree possible and practical, it is important to go beyond the necessary condition, and

attempt to at least approximately satisfy the su�cient one. The key challenges are to:

• determine a good, suitable de�nition of approximate equivalence for NN functions, and

• develop methods to, with as much con�dence as is practical, verify such equivalence.

As a �nal important note, any allowable compromises in accuracy often allow for signi�cant

improvements in all other concerns. However, in this work, we do not address the higher level

issues related to the design space of NN functions themselves. Other recent work gives these

issues a more comprehensive treatment [17].

1.1.3 Speed
The time taken to process an image, or the speed of computation, is clearly an important prac-

tical consideration in all cases. In particular, in deployment use cases such as autonomous driv-

ing [13], systems such as pedestrian detection must run at real-time rates of at least 25 frames-per-

second [18]. However, exactly what level of speed is acceptable can vary considerably between

use cases. Of particular note is the di�erence between training (creating new per-task functions)

CHAPTER 1. INTRODUCTION 6

and testing or deployment (using an already-created function for its intended task) use-cases,

which we explain in detail in Section 4.5.

A core freedom of algorithmic optimization is that, as long as the desired function is computed

correctly-enough, one is free to use any algorithm to do so. And, some algorithms can compute a

given function faster than others, yielding di�erent levels of speed. In short, this is due either to

doing less work, or being able to do the same work more e�ciently on a given hardware target.

In this work, we mostly focus on the computational e�ciency aspect: doing the same set of work

faster. In this case, we treat the work to do, or set of computations, as relatively �xed. The goal is

to organize the computation so it is well suited for a given device. So, for a given hardware target,

limited to the scope we consider, speed and computational e�ciency are mostly equivalent. For

a �xed level of accuracy and �xed general family of hardware targets, speed is typically tightly

coupled via tradeo�s to cost and energy. In particular, higher speed can often be traded o� for:

• lower cost: by using a smaller/less-capable device of a similar type.

• lower energy: by running a device in a slower, but more energy e�cient mode.

Due to these interrelations, we defer detailed discussion of the current problems with achieving

reasonable e�ciency until we have �nished introducing all the remaining concerns. But in sum-

mary, getting reasonable speed/e�ciency for any given hardware target is a di�cult, core problem

we address in this work. Currently, vendors appear to struggle greatly to achieve reasonable ef-

�ciency for NN computations. They incur delays of many real-time years, and costs of dozens

of sta�-years, to deliver inconsistent levels of support for NN computations. Thus, any methods

that reduce the latency and e�ort required to create complete, reasonably e�cient systems to

support NN computations have immediate, clear value.

1.1.4 Energy
First, for completeness, we note that energy (e.g. Watt-hours or Joules) is power (e.g. Watts) inte-

grated over time. At a high level, energy is a simple concern: energy usage is always constrained,

and any computation must meet these constraints. In particular, as forecast over a decade ago,

power usage currently limits performance at all levels of computing [19]. From individual pack-

aged integrated circuits, to mobile devices, and up to entire datacenters, power usage bounds the

amount of parallel computation that is possible. For example, a typical smartphone has a bat-

tery that can hold 5 Watt-hours of energy, and can comfortably dissipate 1W on average [20].

This �nite battery capacity places hard limits on the aggregate energy budget available for ma-

chine learning tasks between battery charges. For the Qualcomm Snapdragon 820, we bench-

marked that the GPU can achieve around 80 GFLOPS for single-precision matrix-matrix multiply

(SGEMM), using about 3W [21]. Given that such devices are generally hand-held, this repre-

sents close to the maximum reasonable sustained power dissipation achievable without burning

users. But, compared to the 3000 GFLOPS of SGEMM performance from a 235W NVIDIA K40m

GPU, this is clearly signi�cantly less available computing capacity [22]. And, even for the K40m,

CHAPTER 1. INTRODUCTION 7

performance is limited by power; these cards are designed to dissipate the maximum allowable

power for the servers in which they are typically installed.

Also, for datacenters, energy cost is a signi�cant component of total operating costs [23]. In

general, any methods that directly or indirectly yield lower energy usage for NN computations

will provide real and immediate bene�ts on both mobile and server platforms. While we do not

attempt to comprehensively address the concern of energy in this work, there are several key

points to mention here. In particular, we �nd a key empirical observation: for a given target,

more computationally e�cient algorithms seem to always also be more energy e�cient as well

(see Section 2.6). There are several intuitive reasons why this is sensible:

• Compute hardware has idle power : power usage that is weakly or not dependant how much

work is being done at any moment. Reducing runtime directly reduces energy used due to

this idle power.

• Often, given that the work to do is �xed, the key reason one algorithm is faster than another

is that it performs less (or more e�cient) communication. Since communication costs both

time and energy, avoiding it via better data reuse (or better data transfer) saves both.

So, in this work, our focus on good computational e�ciency conveniently also tends to yield

good energy e�ciency. However, note that tradeo�s between energy and speed might be quite

di�erent on hardware outside the scope we consider here.

1.1.5 Portability
For software to be portable, it must run on multiple targets. Of course, if one could simply pick any

hardware device to use for each application, portability might be unnecessary. However, in gen-

eral, one does not have free choice of hardware platform. As discussed in detail in Section 1.2.3,

business needs, relationships, and strife (litigation) can limit choice of hardware platform and

thus provide critical motivation for having portable software. Speci�cally, on each target, the

software must meet any constraints on accuracy, speed, energy, and other concerns. If only some

constraints are met, then we say the software is partially portable to that target. In particular:

• If constraints on accuracy are met, we term this functional portability. Strictly, functional

portability implies that a function should yield exactly the same result across targets. How-

ever, as discussed earlier, issues related to �oating point arithmetic mean this is often not

strictly true, and we must settle for approximate agreement of results and intermediates.

• If constraints on speed are met, we term this performance portability. Often, in this case,

we are more concerned with compute and/or energy e�ciency, rather than absolute speed,

in order to normalize across absolute di�erences in the computational capability of various

devices.

Currently, for NN computations on GPUs, portability is di�cult to achieve. Firstly, even func-

tional portability can be di�cult to achieve. Di�erences in programming models, languages, and

CHAPTER 1. INTRODUCTION 8

use of target-speci�c features often preclude running code for one target on another. For exam-

ple, code written using NVIDIA’s proprietary programming model (CUDA) can only be run on

NVIDIA devices. Similarly, code written using recent versions of the competing industry stan-

dard programming model (OpenCL 2.0) can only be run on the hardware of the few vendors that

support it. This includes AMD and Qualcomm, but notably does not include NVIDIA. Then, even

when code is functionally portable, performance portability, for the types of NN computation al-

gorithms we consider, is simply absent. That is, e�cient algorithms for one target are much less

e�cient on others, as shown for example in our own results for NN computations in Section 6.4.

Typically, this is due to the fact that, for current GPU targets, computation and data movement

must be explicitly and carefully orchestrated in target-speci�c ways to achieve e�ciency [24].

In summary, it appears that the current set of layered abstractions employed on modern GPUs,

from hardware to compiler, simply do not enable performance portability for NN computations.

One might ask, why not simply deal with each hardware target separately to avoid portabil-

ity issues? In short, there are many downsides to reimplementing NN computations for every

target. At a high level, the notion of portability is only a means to an end: lowering development

costs. Development costs have various components; for example: initial development, testing,

and maintenance. Portability aims to reduce the aggregate time and e�ort spent on each of these

components across multiple targets compared with per-target development. Both initial devel-

opment and maintenance may require very skilled, scarce programming sta� resources. Thus, if

portable approaches are feasible, supporting many targets via redundant e�ort is at best wasteful

of scarce resources and at worst impossible. Further, separate per-target implementations com-

plicate testing. If a high degree of con�dence of consistency and/or correctness across targets is

required, testing may become extremely time consuming.

Beyond simply increasing the development costs of implementing NN computations across

many targets, a lack of portable NN-computations impedes development at the application level

as well. In practice, the bulk of high-performance, high-e�ciency NN computation code cur-

rently resides inside highly tuned libraries. Such libraries are generally tuned for only a small

subset of targets – typically only those from a single vendor. As these libraries are developed

independently, they are often incompatible and support di�erent sets of operations. Some plat-

forms might not even have NN computation libraries at all. And, even when a particular set of

operations is supported across some set of targets, per-operation relative speed can vary consid-

erably across platforms, making it di�cult to portably meet application-level speed constraints.

These libraries are also generally di�cult or impossible to extend, especially if it is desired to

support multiple targets at the application level.

In summary, an open, portable approach to implementing NN computations would help en-

sure compatibility and functional correctness across all platforms, both existing and new. Fur-

ther, such approaches encourage collaboration, which in turn helps ease both extensibility and

the ability to e�ciently target new hardware platforms. Finally, at the application level, having

a uniform interface and set of NN operations across targets would o�er considerable portability

advantages.

CHAPTER 1. INTRODUCTION 9

1.1.6 Cost
The cost of deploying an application on a given target has various components. Firstly, there is

the monetary price per unit for the needed hardware. In general, more capable hardware is more

expensive, because it requires:

• utilization of more silicon area (i.e. larger integrated circuits, which cost more to produce),

and/or

• fabrication in later, more expensive semiconductor process generations.

The more memory and processing power that is needed, the bigger and more costly the needed

computing hardware will be. In turn, this directly a�ects the �nal physical size and cost of the

overall deployed system. To illustrate this, consider two similar NVIDIA GPUs, the GTX 1080

Ti and GTX 1060. They are both quite suitable for machine learning computations, and retail

for ∼$700 and ∼$250 respectively [25]. The GTX 1080 Ti o�ers a peak of 11.3 TFLOPS of single-

precision performance using 250W, whereas the GTX 1060 o�ers 5.1 TFLOPS using 120W [26].

Thus, at 45.2 and 42.5 GFLOPS/Watt respectively, and these products o�er similar capabilities

per unit power. However, at 16.1 and 20.4 GFLOPS/$, the GTX 1060 has a signi�cant relative

advantage in terms of computation rate per dollar, and of course a much lower absolute cost.

So, the less e�cient the software implementation of a given task is, the more that will have

spent on computing hardware to achieve a given level of speed. Conversely, increased speed

can also enable cost reduction by the same reasoning. So, enabling higher speed on one target,

or in particular higher energy or computational e�ciency, may enable choosing a lower-cost,

less-capable computing platform.

Also, there may be direct or indirect costs and risks associated with using a particular tar-

get. For example, there may be long-term legal or supply uncertainties associated with a given

vendor. Thus, portability is a key enabling force to reduce cost in the long term, via choice and

competition. Overall, our focuses on speed and portability in this work are natural enablers for

lower cost deployments.

1.1.7 Key Research Questions
In general, for all the concerns we have listed, it is easy to do well in one area of concern at

the expense of all others. Complementarily, experience has shown that it is simply not feasible

to achieve the state-of-art with respect to each concern simultaneously. So, naturally, the key

research questions we ask involve combinations of all our concerns. However, attempting to

consider all feasible design points with respect to our concerns would be an overwhelmingly

broad task. So, based on our above analysis, we choose to reduce the dimensionality of the design

space that we will consider:

• Accuracy: As mentioned in Section 1.1.2, we will focus on maintaining accuracy. Hence,

all scenarios we consider treat accuracy as �xed, and we seek neither to improve accuracy

nor to make gains in other concerns by compromising it.

CHAPTER 1. INTRODUCTION 10

• Speed/Energy: As mentioned above in Sections 1.1.3 and 1.1.4, we simplify the space by

using computational e�ciency as a proxy for speed and energy.

• Portability: As will be discussed in Section 1.2, we constrain the scope of our e�orts by

focusing on a speci�c type of computation hardware: GPUs.

• Cost: As discussed in 1.1.6, improvements in both portability and e�ciency can be realized

as improvements in cost, or at least as insurance to reduce the risk of incurring various

possible costs. We decompose cost into development costs (addressed by portability) and

deployment costs (addressed by e�ciency).

So, with this sharper focus, the main axis of our work becomes the tradeo� between e�ciency
and portability for (correctly) implementing computations on GPUs. Then we ask, along this axis,

how much improvement over the state of the art is possible? As will be discussed in Section 1.2,

current practice heavily favors high e�ciency at the expense of portability. Speci�cally, in Sec-

tion 1.2.2 we discuss how high e�ciency GPU implementations of NN computations require real-

time years of e�ort by teams including key, rare individuals. At the other end of the axis, there are

techniques that are somewhat portable, but commonly yield ∼25% or lower e�ciency [27]. Fur-

ther, even these portable approaches depend on the existence of optimized numerical libraries

for each platform. For NN computations, as we will discuss in Section 5.1, serial computation is

impractical, and e�cient automated parallel compilation is absent. Hence, if a target lacks such

libraries, there is no practical fallback method for NN computations. Considering this state of

a�airs, what is missing is an exploration of the middle region of the e�ciency/portability axis for

NN computations on GPUs.

But, in the end, what are reasonable e�ciency goals for code running on GPUs? Consider the

NVIDIA K40m (from the Kepler generation of NVIDIA hardware architectures), which has a peak

compute rate of 4.29 TFLOPS. In a detailed experiment, Nugteren [28] implements many itera-

tions of matrix-matrix multiplication (SGEMM) on this hardware, using both OpenCL and CUDA,

incrementally adding known optimizations. Their naive, initial version of SGEMM achieves only

∼3% e�ciency. Eventually, they achieve 36% e�ciency with their best version, using CUDA C. For

comparison, NVIDIA’s own cuBLAS library can do signi�cantly better, achieving ∼70% e�ciency

for matrix-matrix multiply (SGEMM) on this hardware, but still cannot reach 100% e�ciency, per-

haps due to fundamental limitations of the Kepler GPU architecture. Although it is application

dependant, our general engineering judgment based on our experience with GPU programming,

reinforced by vendor documentation on best practices [29], yields the following rules of thumb

for computational e�ciency on GPUs:

• Naive code is expected to yield <5% e�ciency.

• Achieving ∼30%-60% e�ciency is generally considered quite reasonable or good.

• Achieving more than 60% e�ciency often requires extreme measures, such as using assem-

bly language.

CHAPTER 1. INTRODUCTION 11

Note that the optimizations used in the above experiment (which targeted only a single input size

for SGEMM, N=2048) were developed over many years, and require continual adjustment for new

GPU architectures. Clearly, achieving even reasonable performance requires signi�cant manual

e�ort.

So, this suggests the following key research questions:

• Is possible to reduce the time taken to implement e�cient neural net computations on new

GPU platforms from years to months?

• If so, for platforms where they apply, can we improve on the e�ciency of existing portable

(numerical library-based) approaches by at least 2X? That is, can we achieve ∼50% e�-

ciency, which is generally about the best that can be expected for GPU code, short of using

assembly language?

• Then, for platforms with no libraries to build upon or compare with, can we achieve at least

25% e�ciency? This represents the low end of the expected e�ciency of optimized GPU

code, but is at least 5X better than what would be expected from naive code.

• In order to maintain accuracy during implementation and optimization, can we fully auto-

mate continuous numerical regression testing of NN computations for full �ows with full

inputs?

In the immediately following section (Section 1.2), we raise further considerations with regard

to the use of GPUs for NN computation. Those wishing to immediately review our research

trajectory can skip ahead to Section 1.3.

1.2 We Focus on GPUs for NN Computation
Modern Graphics Processing Units (GPUs) o�er a tantalizing combination of general programma-

bility, high peak operation throughput, and high energy e�ciency. Due to this, GPUs are cur-

rently the dominant style of hardware used for NN computations. However, despite increasing

hardware �exibility and software programming toolchain maturity, high e�ciency GPU pro-

gramming remains di�cult. GPU vendors such as NVIDIA have spent enormous e�ort to write

special-purpose NN compute libraries. However, on other hardware targets, especially mobile

GPUs, such vendor libraries are not generally available. But, for the broad deployment of NN-

based applications, it is necessary to support many operations across many hardware targets.

Thus, the development of portable, open, high-performance, energy-e�cient GPU code for NN

operations would enable broader deployment of NN-based algorithms.

CHAPTER 1. INTRODUCTION 12

1.2.1 Details of Current Approaches to NN Computation and Their
De�ciencies

Considering all the interrelated concerns we will balance in this work, we now focus in more

detail on the problems associated with implementing computation for neural networks. Later, in

Section 4.3 we will provide more details on the exact details of NN computation we consider. Here,

we provide a general overview of the scope of the problem, current approaches to it, and their de-

�ciencies with respect to the above concerns. As mentioned, GPUs are well suited to, or perhaps

have enabled, modern NN-based applications [30],[31]. Further, neural networks are emerging

as the primary approach for challenging applications in computer vision, natural language pro-

cessing, and human action recognition [7]. Originally, NN researchers leveraged existing dense

linear algebra (BLAS) libraries [22],[32] for NVIDIA GPUs to perform the bulk of computation.

The landmark BLAS-based NN implementation from Krizhevsky, cuda-convnet, was released in

2012-12 [30]. At the time, this approach o�ered a level of NN compute performance that far out-

paced any other commonly available CPU or GPU computing platform. In Section 6.2.3, we will

discuss in more detail the history that lead to NVIDIA’s dominant position in this area. But, look-

ing toward the future from that time, increasing attention has been given to pushing the envelope

of e�cient GPU implementations of NN computation. Over several years, it became clear that,

rather than layering on BLAS libraries for NN computation, much more e�cient special-purpose

libraries were possible. Yet, even given the high level of interest in the domain, and the signi�cant

speedups that were possible, the availability of such a library from NVIDIA took years. The �rst

o�cial release of NVIDIA’s NN computation library cuDNN [33] was not until 2014-09. Given

that, at a high level, the cuDNN library is only a special-case optimization of a few modestly

generalized BLAS functions, why did it take almost 2 years to release? To answer this question,

we must consider the current state of high-performance, high-e�ciency numerical programming

for GPUs. Then, we will consider if this state is desirable or acceptable, and what alternatives

might exist.

1.2.2 GPU Programming for Numerical Applications
GPUs o�er a large amount of potential performance, but it is often not easily accessible. As a case

study, consider the development of the cuBLAS library. Early versions (up to 1.2) of the cuBLAS

library, released in 2007, could only achieve about 35% of the peak available computation (or 35%

computational e�ciency) for matrix-matrix multiplication on the hardware of that time. By 2008,

research e�orts were able to greatly improve on this, with Volkov achieving >90% computational

e�ciency [34]. These improvements were subsequently integrated into cuBLAS, yielding the

tuned, performant library used by Krizhevsky for NN computations in 2011. Although details

are not public, it seems likely that cuDNN development followed a similar pattern. In 2011, re-

search by Catanzaro and co-authors demonstrated advanced techniques for high-e�ciency GPU

programming [35]. From that time until 2014, Catanzaro was employed by NVIDIA, roughly co-

inciding with the development timeframe of cuDNN. In both the case of cuBLAS and cuDNN, it

seems development required long-term e�orts by key, perhaps nearly uniquely quali�ed, indi-

CHAPTER 1. INTRODUCTION 13

viduals to achieve good results. In short, only a very small number of programmers are capable

and willing to map new applications to GPUs, and even then the process often su�ers from high

complexity and low productivity. So, considering this, it is no surprise that the development of

cuDNN took almost 2 years. Thus, in practice, the bulk of high-performance, high-e�ciency

GPU code resides inside highly tuned, costly to develop libraries for a few speci�c task/platform

combinations.

1.2.3 Why not just use NVIDIA/cuDNN?
Imagine that, for a given task, a high-performance vendor library exists for at least one platform.

Currently, for NN computation, that vendor is NVIDIA and the library is cuDNN [33]. So, why

not simply use NVIDIA’s platform and libraries for all NN computation applications and be sat-

is�ed? One reason is quite simple: in industrial use cases, choice of platform may be dictated

by business concerns. Further, those same business concerns may preclude dependence on any

single vendor. For example, the �agship Samsung Galaxy S7 mobile phone shipped in two ver-

sions: one using a Samsung-proprietary Exynos 8890 System-on-Chip (SoC), the other using the

Qualcomm Snapdragon 820 [36] SoC. Neither of these SoCs contains NVIDIA GPUs or are other-

wise capable of running cuDNN. Further, NVIDIA, Qualcomm, and Samsung have engaged in a

long running patent dispute over GPU technologies. Based on the uncertainties associated with

such litigation, SoC and/or GPU alternatives are subject to constant change. Further, even once

a hardware platform is chosen, business needs may dictate the speci�c software tasks that must

be supported. Any research or practical application that requires operations that the vendor is

not willing or able to support in a timely manner will su�er. Together, these uncertainties about

both target hardware and particular use-case create a strong pressure for portability: the ability

to quickly achieve reasonably performance for a variety of tasks across a variety of platforms. In

Section 6.2.4, we will discuss in more detail the issues of reliance on hardware vendors for NN

computation libraries. For now, the key point is that there are clear reasons to, at a minimum,

have reasonable alternatives to such reliance.

1.2.4 What would be the ideal situation for NN Computation?
A key assertion of this work is as follows: To support ongoing research, development, and de-

ployment of systems that include NNs, it is desirable to nurture a diverse enabling ecosystem

of tools and approaches. In particular, it is desirable to support many hardware and software

platforms to enable new applications across many areas, including mobile, IoT, transportation,

medical, and others. Consider a use-case consisting of a speci�c combination of:

• a target computational device (i.e. a hardware architecture), and

• a graph of neural network primitives (i.e. a NN for some task).

Using existing common general-purpose computational primitives and libraries (e.g. BLAS) gen-

erally achieves only limited e�ciency [27]. Improving on such approaches requires tuning use-

CHAPTER 1. INTRODUCTION 14

case speci�c computational kernels for the desired target. Further, reliance on special-case tuned

vendor libraries is not always possible or desirable. In particular, for new uses cases, achieving

good computational e�ciency and/or meeting particular performance requirements is, in gen-

eral, di�cult. As previously discussed, such e�orts require months, or even years, of e�ort led

by very specialized programmers. Such programmers must be both capable of producing high-

e�ciency code for the target platform as well as being familiar with the details of the needed NN

computations. Such programmers are not common and thus their time is a very limited resource.

Ideally, tools and frameworks would exist to amplify the e�orts of such programmers, helping

them easily tune multiple operations across multiple targets. Such a framework should address

all the concerns we have discussed. It should:

• Help maintain accuracy and correctness, the cornerstones of any robust NN computation

system.

• Achieve reasonable speed and e�ciency for all desired targets, as needed by use-cases.

• Enable portability, to reduce duplicated e�orts (and thus development costs) across targets.

• Aid in meeting constants on energy and power usage.

• O�er paths to reduce the �nal cost of deployment.

1.3 Speci�c Motivating Problems and Trajectory of
Research

Neural networks are currently the dominant approach for many machine learning tasks. Further,

GPUs are the most common type of computing platform on which they are currently run. Hence,

addressing the above concerns when running NNs on GPUs is the focus of the framework that

represents the culmination of this work. However, our research trajectory began before neural

networks became dominant, and the basic concerns we address apply to both other machine

learning approaches and other target hardware platforms. In this section, we give an overview of

the two speci�c problems we addressed in our earlier research. These works served an important

role in de�ning and shaping the research trajectory that led to our key research questions and

our �nal results. Then, to conclude this section, we brie�y discuss our observations on how the

modern rise of neural networks in machine learning has changed the landscape of implementing

machine learning computations.

1.3.1 Speed and Energy E�cient Histogram-of-Oriented-Gradients
Calculations: libHOG

Prior to the widespread adoption of NNs for object detection, calculation of hand-designed fea-

tures such as Histograms-of-Oriented-Gradients (HOG) was commonly the �rst step in machine-

CHAPTER 1. INTRODUCTION 15

learning pipelines operating on images. Even now, HOG features remain attractive in some sce-

narios due to their easily understood semantics and ease of computation. The initial motivation

for the �nal proposed framework of this dissertation was rooted in our experience addressing

our core concerns for the task of computing HOG features on CPUs. While we achieved good

results in this work, various challenges we encountered highlighted opportunities to improve the

development process for such tasks. In particular, even though the scope of the task was rela-

tively small, writing and testing the relevant highly-tuned CPU code was very time consuming.

Further, deploying the resulting code in a form usable by the machine learning community was

problematic. Both the contributions of this work and the way in which it motivated our later

work will be discussed in Chapter 2.

1.3.2 Speed and Energy E�cient Dense, Multiscale Convolutional
Neural Net Features: DenseNet

The �rst task at which NNs rose to dominance in the modern era was image classi�cation (as in

our example task). At that time, it was natural to attempt to leverage and extend image classi-

�cation NNs to the more di�cult task of object detection. For object detection, the task is not

simply to determine if a given type of object is in an image, but to localize all objects (of some

type) within an image.

Figure 1.4: Object detection example, using bounding boxes for localization.

Typically, an object is localized by giving a bounding region for it, such as a bounding box.

Consider extending our running example image classi�cation task (“Is there a person in this im-

age?”) to object detection (“Where are the people, if any, in this image?”). The green rectangles

(bounding boxes) in Figure 1.4 would then an example of typical output. One way to extend an

CHAPTER 1. INTRODUCTION 16

image classi�cation method into an object detection method is to apply the classi�er at every re-

gion in the image that might contain an object. However, this method is prohibitively expensive

when applied to NN-based classi�ers. To reduce the overhead of this method, approaches such

as R-CNN [37] applied the NN-based classi�er only at a sparse set of object proposal regions from

the original image. However, such approaches were, while tractable for research, still quite com-

putationally intensive and too slow for use in various real-world applications. In our DenseNet

approach, we leveraged the fact that, even when object proposal regions are sparse, they share

much overlapping area. Thus, in our approach, we could calculate dense, multiscale NN features

for the entire input image in ∼1s. This is 10X faster than the time taken to evaluate the same fea-

tures for 2000 individual regions, as needed for approaches like R-CNN. This work is discussed

in detail in Chapter 3.

Unlike our prior work with libHOG, the DenseNet library focused more on issues of integra-

tion rather than tuning speci�c computations. While we achieved good results, the experience

of creating DenseNet highlighted certain problems related to integrating NN computations into

complex machine learning �ows. In particular, it was di�cult to cleanly encapsulate DenseNet

into a broadly usable library. The core calculations could be exposed fairly easily: the input

was the desired image for which to calculate features, and the output was a pyramid of dense-

NN-feature images, with one image per desired scale (i.e. a dense multiscale feature pyramid).

However, the mapping from regions in the original image to regions in the dense feature space

was complex and dependant on the speci�c NN that was used to generate the features. This

complicated both correctness testing of DenseNet as well as usage in existing machine learning

pipelines. This motivated a more holistic approach, where all stages of the pipeline could be

integrated within a single framework. In such a framework, issues related to mapping regions

between input and feature space (for localization) could be handled correctly and consistently

across pipeline stages. To experiment with this idea, we re-implemented DenseNet inside a pro-

totype vertical framework that included support for input, output, correctness testing, and visual

demonstrations. In this framework, we were able to perform extensive correctness testing that

was not possible in the prior implementation. It was indeed much easier to correctly manage

issues of input-to-feature-space conversions once all stages of the pipeline were contained in a

single framework. The key overall idea was that, even if such a framework would not generally

be used by machine learning researchers, it provides key bene�ts to those that need to imple-
ment the core operations needed for machine learning. That is, at the time, there was no exist-

ing platform suitable for the development and testing of libraries like DenseNet. Our prototype

framework proved the idea that it was indeed possible to rectify that lack of suitable platform.

Going forward, this prototype framework formed the foundation for the culminating project of

this dissertation.

CHAPTER 1. INTRODUCTION 17

1.3.3 The E�ect of the Rise of Neural Networks on Research
Implementations

As NNs have become more dominant in machine learning, a general shift in approach has become

evident. In the past, machine learning pipelines were often comprised of many di�erent types of

operations, composed in an ad-hoc manner. For example, when working on libHOG, we observed

this pattern in DPM-based object detection �ows [38]. Then, when working on DenseNet, we

observed this again when analyzing the implementation of R-CNN [37]. Di�erent pipeline stages

were often implemented in di�erent languages and frameworks. Then, stages were simply glued

together in whatever manner was expedient for research. Thus, optimization, testing, and real-

world deployment of such �ows was quite problematic. Optimizing each individual stage would

potentially require re-implementation in high-performance languages. Worse, e�ciently gluing

together existing stages together could sometimes be intractable due to di�ering languages, data

formats, and approaches to parallelism. Often, the only feasible approach was to re-implement

many pipeline stages together into a new, cohesive �ow, where all stages could be optimized and

tested together for a particular hardware target.

At the same time, we observed that NNs were replacing stage after stage in many �ows.

Eventually, the state of the art for many tasks consisted of either one or several NNs with few

other types of operations [4]. Currently, progress for many machine learning tasks is achieved by

�nding new types or structures of NNs rather than using new algorithms or approaches. Thus,

support for NN computation is increasingly important. Further, in the past, supporting e�cient

computation for a single type of machine learning primitive could have only limited overall use-

fulness, since state-of-the-art machine pipelines would generally involve using many type of

operations. Now, however, just supporting e�cient NN computations can be a key enabler for

overall e�cient research and practical deployment. This motivates the culminating e�ort of this

work, our proposed framework for implementing e�cient neural network computations, as dis-

cussed in Chapter 6. In the following, we brie�y introduce our proposed framework and how

we will use it to address our concerns and, though its development, answer our key research

questions.

1.4 Solution for implementing NN Computations: The
Boda Framework

After our work on libHOG and DenseNet, we considered all our concerns in the context of NN

computations. Then, with our key research questions in hand, we began work on the culminating

project of this dissertation, the Boda framework. Boda is an open-source, vertically-integrated

framework for developing and deploying NN computations. While we will discuss our approach

in more detail in Chapter 6, we give a brief introduction here.

CHAPTER 1. INTRODUCTION 18

820

Figure 1.5: Boda Framework Overview: Portable Deployment of NNs

A high level overview of our motivation and goals is shown in Figure 1.5. The framework

combines parts of the functionality of NN middleware frameworks such as Ca�e [39] or Tensor-

Flow [40] with the functionality of NN computation libraries such as NVIDIA’s cuDNN [33] or

Nervana System’s NervanaGPU/Neon [41] [42]. “Out-of-the-box,” our framework does not at-

tempt to have the breadth or depth of features of a typical general-use middleware such as Ca�e

or TensorFlow. Also, it does not attempt to achieve the same e�ciency as a highly-target-speci�c

computational library such as cuDNN. Instead, we aim to allow for the rapid development and de-

ployment of new use-cases/�ows, while achieving reasonable computational e�ciency. Metapro-
gramming [43] is a key programming technique needed to create e�cient implementations of

NN operations on modern GPUs. Metaprogramming is the act of writing programs that, when

run, produce some desired �nal program as output. Typically, this is helpful when the desired

�nal program is too hard, repetitive, or long to write manually, or more generally, when it is

simply more productive to create it using another program. Thus, our framework focuses on

enabling productive metaprogramming for NN operations across various hardware targets. Build-

ing on the basic metaprogramming support, we enable specialization: only when desired, code

can be customized at runtime. This allows for maximum �exibility in terms of opportunities for

special-case optimization. Additionally, we employ autotuning to further improve productivity

and portability. In the end, we are able to quickly create relatively e�cient implementations

of NN operations (particularly convolution), targeting both NVIDIA and Qualcomm GPUs. We

achieve speed within 2X of the NVIDIA library in less than 4 months of developer time. Then,

in less than 1 additional month, we achieve 30% e�ciency on the Qualcomm platform, where no

vendor library for NN computations is available.

1.5 Thesis Contributions
Here, we give a brief overview of the key contributions of this work:

CHAPTER 1. INTRODUCTION 19

• First, we developed libHOG [44], a library which implements e�cient calculation of HOG

features on CPUs using SIMD parallelism. We achieved a 3X speedup over the state of the

art at that time.

• Then, we enabled previously prohibitively slow multiscale sliding window object detection

using dense convolutional neural network features inDenseNet [45], yielding a 10X or more

speedup over existing approaches.

• Finally, in our Boda framework, we explore in depth the development of e�cient NN con-

volution operations across various types of hardware. With less than 4 months of e�ort, we

achieve speed within 2X of the highly-tuned vendor library on NVIDIA GPUs. With less

than a month of additional e�ort, we achieve up to 30% e�ciency on Qualcomm mobile

GPUs, where vendor libraries remain unreleased [46] [47]. In both cases, we provide both

details on our implementation and experimental results.

Now, we brie�y explain the overall outline of this work.

1.6 Thesis Outline
The rest of this work is organized as follows:

• In Chapter 2, we discuss libHOG, a library for e�ciently computing Histogram-of-Oriented-

Gradient features, which provided initial motivation and direction to our work.

• In Chapter 3, we discuss DenseNet, a library for extracting dense, multiscale neural network

features. After the initial implementation of DenseNet, we then created a prototype of our

Boda framework as a proof-of-concept development aid.

• In Chapter 4, we review various background details concerning machine learning and nu-

merical computation as are relevant for e�cient computation for neural networks.

• In Chapter 5 we review the related work for the core problems we address in Boda, including

various NN frameworks and computation libraries.

• In Chapter 6 we detail our culminating e�ort, our proposed Boda framework for e�ciently

implementing NN computations.

• Finally, we review the key conclusions of our research in Chapter 7.

20

Chapter 2

Motivating Early Work : libHOG

2.1 Introduction
Now, we discuss the development of libHOG, work that occurred early in our exploration of

computational e�ciency in computer vision. The motivating application for this work was ob-

ject detection using a technique called Deformable Parts Models or DPMs [38]. At the time, such

approaches were state of the art in terms of accuracy, but were also typically too slow and en-

ergy/compute intensive to consider using in practical embedded applications. So, with the end

goal of speeding up such �ows, we performed performance analysis on a reference DPM-based

object detection �ow. We found that one particularly slow and energy/compute intensive part of

the �ow was the calculation of Histogram of Oriented Gradients (HOG) features from the input

image. We then used various techniques to optimize this portion of the �ow. Further, along the

way, we encountered various issues that would inform our future work.

The rest of this chapter is organized as follows. First, in Section 2.2, we brie�y describe HOG

features and motivate our work. In Section 2.3, we survey other HOG computation methods

from the related literature. In Section 2.4 we review the general procedure for calculating HOG

features. In Section 2.5 we describe how we accelerate HOG computation. In Section 2.6, we

evaluate the overall speed and energy of libHOG and the accuracy of an object detector using

libHOG. Finally, in Section 2.7, we conclude with a summary of our contributions, a discussion of

issues that arose during our e�orts, and our conclusions on them that informed our future work.

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 21

2.2 HOG Features and Detailed Motivation

UC Berkeley

2"

Endtoend(pipeline(

Forrest"Iandola""""""""""""""""forres/@eecs.berkeley.edu"

88bit"
88bit"

Input"
Image"

Pyramid"
Gradients"

1D"Grad"
gradX"

gradY"

168bit"

TODO:"
8  picture"of"gradX,"gradY"
8  picture"of"magnitudes"

2D"Grad"
orienta/on"

magnitude"
168bit"

88bit"

Histogram"

hist(x,y,ori)"="mag"

328bit"
Histogram"

with"gaussian8
weighted"filter"

Normalize"

normalize"with"
respect"to"the"4"

neighborhoods"in"2x2"
window"

328bit"

Normalized"
Histogram"

HOG"Pyramid"

Figure 2.1: Our fast, energy-e�cient HOG pipeline. This produces Felzenszwalb [38] HOG

feature maps. We only show 3 HOG pyramid resolutions here, but a typical HOG pyramid in [38]

has 40 or more resolutions.

Histograms of Oriented Gradients (HOG) are a popular type of feature used in computer vision

algorithms. While there are several variants of HOG features, at a high level they all contain in-

formation about the distribution of edge directions and strengths at various scales and locations

within an image. Computing HOG features from input images is an initial step in DPM-based

object detection �ows and various other image-processing machine learning systems. In partic-

ular, HOG has been ubiquitous in advanced driver assistance systems (ADAS). Some examples

include:

• In 2011, HOG features were used in a collision avoidance system to detect pedestrians and

vehicles [48].

• In 2013, HOG features were used in a lane departure warning system [49].

• Also in 2013, HOG features formed the base for a tra�c sign detection algorithm [50].

• In 2014, HOG features were used in a driver alertness monitoring system for tracking head

and eye movement [51].

Real-time computation is crucial in ADAS applications. It is not very useful to detect that

the car has drifted out of the lane if the car has crashed by the time the computer vision system

has identi�ed the lane departure. Tra�c light detection is of limited value if the vehicle has al-

ready violated a red light by the time the vision system has detected the light. ADAS systems

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 22

typically must run at a speed of at least 30 fps, and HOG feature calculation is only one of sev-

eral computations performed per frame. Therefore, it should come as a surprise that the fastest

publicly-available HOG implementation (FFLD [52]) runs at just 20 frames per second on rela-

tively powerful commodity CPUs. In this work, we propose libHOG, which runs at 70 fps on a

commodity CPU. This is fast enough for real-time usage in ADAS applications ranging from lane

identi�cation to pedestrian and vehicle detection.

Energy e�ciency is also important in ADAS. While many DARPA Grand Challenge vehicles

used auxiliary generators to power multiple high-end computers, this approach is clearly un-

desirable for consumer automotive applications. In order to compare energy e�ciency across

implementations, one could consider simply measuring total system power during operation.

However, without normalization due to the di�ering frame rates of various implementations, to-

tal system power can be a misleading metric. Instead, we use the metric of energy per frame or

J/frame. Our libHOG implementation requires just 2.6 J/frame, which is 3.6x less energy than the

previous state-of-the-art.

Note that, although NN-based approaches are increasing displacing all other methods for ob-

ject detection, their high computational requirements remain a signi�cant impediment to prac-

tical deployment, and thus NN-based object detection is still too slow and/or energy intensive

for many ADAS applications. Thus, interest in HOG-based approaches, and possibly hybrid ap-

proaches, is expected to continue for some time.

2.3 libHOG Related Work
Histograms of Oriented Gradients (HOG), pioneered by Dalal and Triggs [53], are an extremely

widely-used type of hand-designed feature in computer vision. A number of HOG variants have

been developed over the years, such as Felzenszwalb HOG [38], Circular Fourier HOG [54], Mo-

tion Contour HOG [55], and Compressed HOG [56]. Felzenszwalb HOG is used in numerous

object recognition methods including Deformable Parts Models [38], Poselets [57], and Exem-

plar SVMs [58]. The main di�erence between the Dalal HOG [53] and Felzenszwalb HOG [38]

is that Felzenszwalb HOG uses a special normalization scheme (see Section 2.5.3). The canoni-

cal reference implementation of Felzenszwalb HOG can be found in the voc-release5 [59]

Deformable Parts Model codebase. In particular, the core of that implementation resides in the

single source �le features.cc. This implementation is included in numerous open-source

computer vision projects, such as frameworks for vehicle tracking [60].

In the literature, we have observed a few attempts to accelerate HOG feature computation.

Each of the following implementations produce Felzenszwalb HOG features. First, Dollár’sfhog [61]

exploits SIMD vector parallelism to run faster than the reference voc-release5 implementation.

Next, FFLD [52], [62] achieves speedups via outer-loop parallelism across image scales, but does

not employ SIMD parallelism. Finally, while Dollár and FFLD run on multicore CPUs,cuHOG [63]

runs on NVIDIA GPUs.

While we focus on Felzenszwalb HOG calculation, there is also some work on accelerating

Dalal HOG calculation. OpenCV [64] provides modestly optimized implementations of Dalal

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 23

c a l c _ h o g (image) :

grad_mags , g r a d _ o r i e n t s = c a l c _ g r a d i e n t s (image)

g r a d _ h i s t o g r a m = b i n _ g r a d s (grad_mags , g r a d _ o r i e n t s)

return n o r m a l i z e _ h i s t o g r a m (g r a d _ h i s t o g r a m)

Figure 2.2: Per-image HOG feature computation high-level pseudo code

HOG calculation for both CPUs and GPUs. Further, both groundHOG [65] and fastHOG [66]

produce Dalal HOG features using NVIDIA GPUs. There are also a number of HOG implemen-

tations that use more exotic hardware such as FPGAs or custom silicon; several of these are

surveyed in [67].

In our evaluation in Section 2.6, we compare our work with best-of-breed approaches: voc-
release5 (widely-used baseline), Dollár (vectorized CPU), FFLD (multithreaded CPU), and

cuHOG (best-of-breed GPU implementation).

2.4 Background on HOG Features

2.4.1 Single Image HOG
A single HOG feature image is produced from a single input RGB or grayscale image. Intuitively,

HOG features contain information about the spatial distributions of the gradient (i.e. edge) ori-

entations and magnitudes in the input image. There are many variants of HOG features, but they

generally share certain key properties from Dalal’s original work: quantized orientations, spatial

pooling, and local contrast normalization [53]. Pseudo-code for the general computation of HOG

features is shown in Figure 2.2. We begin with a general, but moderately detailed, operational de-

scription of each function in the pseudocode. Although there are no doubt many possible ways to

compute HOG features, the description we give here forms a basic outline from which to explain

the details of various speci�c implementations. In particular, we will describe a reference imple-

mentation, our best new high-speed implementation, and various other possible design choices

and experimental implementations we have tried.

Returning to Figure 2.2, we will now give a general operational description of how to calculate

HOG features for a single grayscale image (noting how the procedure extends to RGB images).

Much of the �ow is generic with respect to the speci�c type of HOG feature being computed.

However, in this work we consider only Felzenszwalb HOG Features [38] unless otherwise noted.

Thus, some of the details of the computation are speci�c to Felzenszwalb HOG.

First, the calc_дradients () function computes 1D gradients in the X and Y dimensions by ap-

plying the standard centered derivative �lter [-1 0 1] (for the X gradient) and its transpose

(for the Y gradient) at each pixel of the input grayscale image. Then, the magnitude and orienta-

tion (or angle) of the (x,y) gradient vector is computed for each pixel. Orientations are quantized

to 18 discrete angle values. Note that these 18 orientations consist of 9 pairs of orientations that

di�er only by the sign of their magnitude (or equivalently by a rotation of 180 degrees). If the in-

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 24

put image is multi-channel (i.e. RGB as opposed to grayscale), calc_дradients () is called for each

color channel, and then for each pixel the maximum gradient value across color channels (and its

corresponding orientation) are selected and computation then proceeds as in the grayscale input

image case.

Next, the bin_дrads () function smoothly spatially bins the per-pixel gradient magnitudes and

orientations at a lower resolution than the original image. Typically, the resolution of the gradient

histogram is either 1/8 (or sometimes 1/4) that of the input image. Each histogram bin is formed

by an approximately-Gaussian weighted pooling over the 16x16 (or 8x8 in the 1/4 scale case)

window of gradient pixels centered over the bin.

Finally, the normalize_histoдram() function computes the �nal per-bin output HOG fea-

tures using various local normalizations and combinations of the contents of the “raw” or un-

normalized gradient histogram just computed by bin_дrads (). Note that computation of the �nal

features is independent for each bin. For each bin, we consider the 4 possible 2x2 sub-windows

of the 3x3 window of bins centered over that bin. Based on the total per-bin non-normalized

gradient energy in each of the 4 sub-windows we compute 4 local “directional” (+X+Y, +X-Y, -

X+Y, -X-Y) normalization factors. The average of these 4 directed normalization factors is the bin

normalization factor BNF . Then, a total of 31 features are computed as follows: 18 features are

computed by taking BNF times the 18 per-bin non-normalized gradient magnitudes; these are

termed the contrast-sensitive features. Next, 9 more features are formed by taking BNF times

the 9 sums of pairs of magnitudes of the 9 per-bin pairs of 180-degree-rotated orientations; these

are termed the contrast-insensitive features. Finally, the last 4 features are created by summing

recomputations of all 27 prior features using each of 4 “directional” bin-local normalization con-

stants individually instead of BNF .

2.4.2 Existing Implementation Details
In the following sections we will present tables that, for each speci�c stage of computing HOG

features, compare our new algorithm to various existing algorithms. However, here we �rst

highlight the key overall design choices in the other HOG implementations that we have cited

and with which we will compare our computational e�ciency.

First, we consider the baseline/reference voc-release5 [59] HOG implementation. For

the most part, this implementation is a straight-forward standard C-programming-language elab-

oration of the above description. No SIMD or process/thread parallelism is used. A mix of 32-bit

f loat and 64-bitdouble datatypes are used. Gradient normalization uses the standard L2 norm. In

calc_дradients (), orientation quantization is accomplished by taking the dot product of the (x,y)

gradient vector with 18 reference orientation vectors and choosing the maximum. Inbin_дrads (),
the gradient pixels are iterated over and added to each histogram bin that they in�uence. We term

this a scatter style approach as illustrated in Figure 2.3.

Dollár’s fhog [61] implementation improves over voc-release5 primarily in its use of

SIMD parallelism. For determining the quantized gradient orientation, it uses an arccos () lookup-

table (or LUT). It also uses a scatter style bin_дrads (). The FFLD [52], [62] implementation uses

thread-level parallelism across image scales, but without SIMD parallelism. For determining the

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 25

quantized gradient orientation, it uses an arctan() lookup-table (or LUT). Like the prior two

implementations, it also uses a scatter style bin_дrads (). cuHOG [63], as a GPU based imple-

mentation, uses GPU-style SIMT parallelism rather than the SIMD and coarse thread parallelism

used by the other (all CPU-based) algorithms discussed here. As it uses the CUDA programming

environment, it runs only on NVIDIA GPUs.

2.4.3 Multiple Image HOG and Image Resizing
So far, we have described how to compute HOG features for a single image. However, in practice it

is often desired to compute HOG features at many scales. This can be accomplished by computing

many HOG feature images from many scaled copies of an input image. Note that the computation

of HOG features is independent across scales. In this work, we primarily consider a common case

where 10+30 scales of a 640x480 size input image are desired. First, 30 1/8-bin-resolution HOG

feature images are computed from 30 progressively downsampled versions of the input image,

with 10 equally-logarithmically-spaced scales for every factor of 2 (octave) of downsampling.

Then, an additional 10 1/4-bin-resolution HOG feature images are computed from reusing the

�rst 10 largest-scale copies of the input image. The resultant 10 HOG feature images are the

same size as would be the �rst 10 1/8-bin-resolution HOG feature images computed from a 2X

upsampled version of the input image.

The HOG implementations in the related work (voc-release5, FFLD, and Dollár) each

have custom, from-scratch implementations of image resizing. There are also a number of o�-

the-shelf image resizing implementations, found in libraries such as OpenCV [64] and Intel Per-

formance Primitives (IPP) [68]. In Table 2.1, we compare the speed of image pyramid computation

using OpenCV, IPP, and the HOG related work. For OpenCV and IPP, we show two variants: a

serial version, and a version with OpenMP parallelism across image scales. We found that the

image resizing functions in OpenCV and Intel Performance Primitives (IPP) are quite e�cient. In

libHOG, we use the IPP image resizing function with parallelism across scales. One interesting

note is that the majority (∼80%) of the time spent on resizing is on the 10 largest image scales.

This is sensible since these largest scales contain ∼80% of the total pixels across all scales.

Additionally, while it is possible to exploit thread-level parallelism within a single image, as

with FFLD we also choose to exploit thread-level parallelism across scales by default.

2.5 Our Approach to HOG
In this section we explain our techniques to accelerate per-image HOG feature computation. As

per Figure 2.2, there are three major steps: gradient computation (calc_дradients ()), histogram

accumulation (bin_дrads ()), and normalization (normalize_histoдram()). To achieve high speed,

we follow two simple high level design principles: First, we wish to minimize memory tra�c to

avoid being bound by communication costs. Second, we wish to maximize vectorization to avoid

being bound by maximum rate at which computations can be issued.

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 26

Table 2.1: Image Resizing with bi-linear interpolation. Comparison with related work. This

is simply “making 40 copies of a 640x480 input image at various resolutions." Each experiment is

the average of at least 100 runs.

Precision Runtime Frame Rate

voc-release5 64-bit double 0.16 sec 6.25 fps

Dollár 32-bit �oat 0.045 sec 22.2 fps

FFLD-serial 8-bit char 0.076 sec 13.2 fps

FFLD-OpenMP 8-bit char 0.016 sec 62.5 fps

OpenCV-serial 8-bit char 0.018 sec 55.5 fps

OpenCV-OpenMP 8-bit char 0.0049 sec 204 fps

Intel IPP-serial 8-bit char 0.0071 sec 141 fps

Intel IPP-OpenMP 8-bit char 0.0023 sec 435 fps

One key technique that helps with both of these issues is to use the most narrow data type

possible at each stage of the computation. Sometimes, this involves storing narrower data in

memory and expanding it on the �y for computation. Another important general technique is

that of composition. In general, it is best to perform as much computation as is possible for a given

data item, or in a given local area of data, before writing it back to memory. As a toy example,

when calculating the L2-norm magnitude of (x,y) per-pixel gradients, it would be superior to

calculatemaд = sqrt (x2 +y2) for each pixel rather than �rst computingmaд2 = x2 +y2
for each

pixel and then computingmaд = sqrt (maд2) in a second pass.

Note: all reported results are for computing HOG features at 10+30 scales for 640x480 input

images on a 6-core Intel i7-3930k processor unless noted otherwise.

2.5.1 Gradient Computation

Table 2.2: Gradient Computation. Comparison with related work. In the related work, only

FFLD uses multithreading. Where relevant, we report results with and without OpenMP multi-

threading. (640x480 images, 10+30 pyramid resolutions.)

Vectoriza-

tion

Precision Magnitude

Calculation

Orientation

Binning

Frame

Rate

voc-release5 None 32-bit �oat L2 norm iterative arctan

LUT

6.25 fps

Dollár SSE 32-bit �oat L2 norm arccos LUT 30.3 fps

FFLD-serial None 32-bit �oat L2 norm arctan LUT 15.1 fps

FFLD-OpenMP None 32-bit �oat L2 norm arctan LUT 58.8 fps

libHOG-L2-OpenMP

(ours)

SSE 32-bit int &

�oat

L2 norm arctan LUT 143 fps

ibHOG-L1-serial (ours) SSE 16-bit int L1 norm arctan LUT 102 fps

libHOG-L1-OpenMP

(ours)

SSE 16-bit int L1 norm arctan LUT 244 fps

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 27

Calculating 1D gradients in X and Y. First, as noted in the resizing discussion, our im-

plementation stores the resized images using the same 8-bit unsigned integer values per-pixel-

per-color as the input image. Thus, the input pixels have a range of [0,255], and the resultant X

and Y derivatives have a range from [−255,255]. We choose the simple option of storing the X

and Y components of the gradient each as 16-bit signed integers. Thus, the input of the gradient

calculation is 1 byte per pixel, and the output is 2×2 = 4 bytes per pixel. To perform the actual

calculation, we �rst load the input pixel data, widen it, and then compute the gradients using

128-bit-wide packed-16-bit-SIMD SSE (hereafter 128w16si) operations. This allows us to perform

8 concurrent arithmetic operations per CPU clock cycle.

We also considered using 256-bit AVX instructions. We wrote some HOG-like microbench-

marks in AVX, and we saw no speedup for AVX over SSE. We speculate that 128-bit SSE computa-

tion combined with OpenMP parallelism is su�cient to saturate the available memory bandwidth.

Magnitude. Next, we use the X and Y gradients to compute the per-pixel gradient magnitude.

At this stage, our gradients are stored as 16-bit signed integers, albeit with a limited range of

[−255,255]. However, when computing the L2 norm, the expression дradX 2 + дradY 2
can still

(just) over�ow a 16-bit integer, and current CPUs do not support vectorized 16-bit �oating-point

math. Thus, we use 32-bit intermediates for the L2 magnitude calculation to avoid over�ow.

Additionally, although it has di�erent semantics, we also chose to experiment with using

the L1 norm |дradX | + |дradY | instead of the L2 norm. The output range of this expression is

[0,510], which still easily �ts within a 16-bit signed integer. For the L1 norm calculation we

again use 128w16si operations. Note: in our evaluation in Section 2.6, we will show that training

Deformable Parts Model object detectors on HOG features that use the L1 norm (for gradient

magnitudes) produces lower but similar accuracy to using the more typical L2 norm for gradient

magnitudes.

Handling RGB images. As previously mentioned, for RGB images we must calculate the

gradient for all three color channels and select the one with the maximum magnitude. Frustrat-

ingly, SSE instructions do not natively have the ability to compute the needed argmax opera-

tion across 3 channels. Thus, we implement our own vectorized argmax primitive, again using

128w16si operations. In summary, we iterate over the 3 per-channel magnitudes and compare

them against the largest magnitude seen so far for this pixel. If it is larger than the best seen

magnitude, we:

• replace the best seen magnitude with the current channel magnitude, and

• store the corresponding X and Y gradients from the current channel for later use.

Standard SIMD comparisons and bit-wise Boolean operations are used to perform these opera-

tions in a fully vectorized manner; consult the code for more details.

Orientation. The non-quantized gradient orientation for each pixel is de�ned asatan2(дradY ,дradX).
However, there does not currently exist a vectorized atan2 instruction. Also, atan2 is typically a

relatively expensive operation. Further, we need only the 18-levels-quantized angle, which allows

for various possible optimizations. Currently, we choose to use a modestly sized look-up table:

atan2[gradX][gradY]. Given that gradX and gradY both have a range of [−255,255], a

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 28

LUT with 512×512 entries is su�cient. Further, the elements of the table need only have a range

of [0,17] for the 18 quantized orientations, so 1 byte per entry is su�cient. Thus, the total LUT

size is only 256 KB. We also experimented with using a directly vectorized version of the voc-

release5 orientation computation method, but determined that the LUT-based method was faster

to compute.

In Table 2.2, we compare our gradient (orientation and magnitude) computational e�ciency

with previous HOG implementations. We �nd that our gradient implementation is 39x faster

than voc-release5 and 4.1x faster than the fastest known implementation.

2.5.2 Histogram Accumulation
Histogram computation. Recall that the gradient histogram consists of both spatial binning

(at 1/8 or 1/4 the input image resolution) and orientation binning. We choose to iterate over the

spatial dimension �rst. At each spatial location, the histogram to be computed by bin_дrads () has

18 orientation bins to �ll in, one for each quantization level of the orientations; we term this set of

18 orientation bins a “spatial bin”. The contribution of each gradient pixel to each bin is weighted

by an approximately-Gaussian function centered over the spatial bin with a width of 8 (or 4 in

the 1/4 resolution case) pixels. The spatial bin includes only contributions from the 16x16 (or 8x8

in the 1/4 resolution case) gradient pixels nearest to its center; note that this range is somewhat

arbitrarily chosen, but the intent is that pixels further away would not signi�cantly contribute to

the bin due to having low weights as the Gaussian falls o�. The actual weighting function used

is decomposable into the product of symmetric X and Y terms, and thus can be computed using

only a multiply and two lookups into a 16 (or 8 in the 1/4 resolution case) element LUT. Note that

we do not attempt to apply SIMD parallelism for this stage.

Optimization: gather instead of scatter. As previously mentioned, implementations like

voc-release5, FFLD, and Dollár use scatter-style histogram construction, as shown in

Figure 2.3. In our experiments, however, we found that using a gather-style method yielded

faster computation times, particularly in the multi-threaded case. Our theory is that the memory

accesses used by scatter-style histogram construction are the limiting factor for the speed of

bin_дrad () in the multi-threaded case, regardless of the level (over scales or within a single image)

at which multi-threading is used. For each gradient pixel, scatter-style histogram creation will

perform one write to each of the 2×2 = 4 spatial bins that include contributions from that pixel.

However, only one orientation bin in each spatial bin will be modi�ed. The result is a stream

of sparse read-modify-write operations to the full set of 2×2×18 = 72 individual orientation

bins that may be a�ected by each pixel. In contrast, for the gather-style approach, we need

only a single spatial bin (of 18 orientation bins) as our output working set, and we will perform

all needed writes to it within a small time window (i.e. with good temporal locality of writes).

We illustrate the gather-style approach in Figure 2.4. While the gather-style approach needs an

input working set of 8×8×2 = 128 X/Y gradients, this set is read-only, has a simple access pattern,

and is substantially shared among spatial bins. Thus, overall it seems plausible that the gather-

style histogram signi�cantly reduces write overhead while not overly increasing read memory

bandwidth or cache pressure.

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 29

for (mX, mY) in magnitude a r r a y :

hX_ = (mX− s b i n / 2) / s b i n

hY_ = (mY− s b i n / 2) / s b i n

o r i = o r i e n t a t i o n (mX, mY)

for (hX , hY) in (hx_ : hx_ +1) and (hy_ : hy_ +1)

xOf f = mX − hX ∗ s b i n + (s b i n / 2)

yOf f = mY − hY ∗ s b i n + (s b i n / 2)

vx = a p p o x _ g a u s s _ w e i g h t _ l u t [xOf f]

vy = a p p o x _ g a u s s _ w e i g h t _ l u t [yOf f]

h i s t (hX , hY , o r i)+= magnitude (mX, mY) ∗ vx ∗ vy

Figure 2.3: Scatter histogram code (baseline). This scatters data from the magnitude array to the

histogram.

for (hX , hY) in h i s t :

mX_ = hX ∗ s b i n − (s b i n / 2)

mY_ = hY ∗ s b i n − (s b i n / 2)

for (xOff , yOf f) in (0 : s b i n ∗ 2) , (0 : s b i n ∗ 2)

mX = mX_ + xOf f

mY = mY_ + yOff

o r i = o r i e n t a t i o n (mX, mY)

vx = a p p o x _ g a u s s _ w e i g h t _ l u t [xOf f]

vy = a p p o x _ g a u s s _ w e i g h t _ l u t [yOf f]

h i s t (hX , hY , o r i)+= magnitude (mX, mY) ∗ vx ∗ vy

Figure 2.4: Gather histogram code (our approach, which maintains a smaller working set).

In Table 2.3, we �nd that our histogram implementation is 8.6x faster than voc-release5 and

1.2x faster than the best known implementation. Note that our L2-norm histogram numerical

results precisely match those of voc-release5. When using the L1 norm, our numerical results

also agree with a version of voc-release5 similarly modi�ed to use the L1 norm.

Table 2.3: Histogram Accumulation, 640x480 images, 40 pyramid resolutions.

Precision Loop Ordering Frame Rate

voc-release5 32-bit �oat scatter 13.9 fps

Dollár 32-bit �oat scatter 35.7 fps

FFLD-serial 32-bit �oat scatter 21.3 fps

FFLD-OpenMP 32-bit �oat scatter 100 fps

libHOG-serial (ours) 32-bit �oat gather 45.7 fps

libHOG-OpenMP (ours) 32-bit �oat gather 120 fps

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 30

2.5.3 Neighborhood Normalization
Recall that during normalize_histoдram(), 4 local “directional” ((+X + Y), (+X − Y), (−X + Y),
(−X − Y)) normalization factors are needed, each based on computing the average energy of

one of the four 2x2 windows of bins that contain the current bin. However, it can be observed

that the total number of unique 2x2 windows of bins is roughly the same as the total number of

bins; each 2x2 window and its corresponding normalization constant will be used four times in

each of the four di�erent orientations. For example, the 2x2 normalization window and resultant

normalization constant for the (+X − Y) direction of bin (x ,y) is the same for the (−X − Y)
direction of bin (x + 1,y). Yet, in previous HOG implementations (voc-release5, FFLD, Dollár),

the four directional normalization constants are computed for each neighborhood. We avoid this

redundant computation by caching the per-2x2-window normalization constants. This yields

roughly a 4x reduction in computation for this portion of normalize_histoдram(). In Table 2.4,

we �nd that our normalize_histoдram() is 66x faster than voc-release5 and 2.9x faster than the

fastest previous HOG implementation.

Table 2.4: Neighborhood Normalization, 640x480 images, 40 pyramid resolutions.

Precision Normalization Map Frame Rate

voc-release5 32-bit �oat redundant computation 35.7 fps

Dollár 32-bit �oat redundant computation 25.6 fps

FFLD-serial 32-bit �oat redundant computation 34.5 fps

FFLD-OpenMP 32-bit �oat redundant computation 83.3 fps

libHOG-serial (ours) 32-bit �oat amortized computation 137 fps

libHOG-OpenMP (ours) 32-bit �oat amortized computation 238 fps

2.5.4 Attempts at Fusion of Kernels
Given the desire to avoid unnecessary communication, one natural optimization to attempt is

to fuse the three steps of this overall algorithm. The goal of such a fusion would be that each

pixel (or group of pixels) in the input is processed from beginning to end, without needing to

write signi�cant intermediates to memory. While it is not clear how to fuse all three steps, we

did some initial experiments with fusion of the gradient calculation and histogram binning. In

our admittedly limited experiments and microbenchmarks in this direction, we not did achieve

any speedup using fusion. In this case, based on microbenchmarks, it seems the communication

between stages likely doesn’t take a signi�cant fraction of the overall runtime. Thus, we speculate

that the added overheads and complexities of fusion can easily outweigh the small possible gains.

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 31

Table 2.5: End-to-endHOGE�ciency, 640x480 images, 40 pyramid resolutions. cuHOG results

are claimed in [63]. All other results were produced by the authors of this work. libHOG-L2-
OpenMP-pipelined produces numerically identical results to voc-release5.

Hardware Frame Rate Watts (idle: 86.8W) Energy

voc-release5 Intel i7-3930k 6-core CPU 2.44 fps 140W 57.4 J/frame

Dollár Intel i7-3930k 6-core CPU 5.88 fps 155W 26.4 J/frame

FFLD-serial Intel i7-3930k 6-core CPU 4.59 fps 137W 29.9 J/frame

FFLD-OpenMP Intel i7-3930k 6-core CPU 19.6 fps 185W 9.44 J/frame

cuHOG NVIDIA GTX560 GPU 20 fps not reported not reported

libHOG-L1-serial (ours) Intel i7-3930k 6-core CPU 12.3 fps 140W 11.3 J/frame

libHOG-L1-OpenMP (ours) Intel i7-3930k 6-core CPU 52.6 fps 185W 3.52 J/frame

libHOG-L1-OpenMP-pipelined (ours) Intel i7-3930k 6-core CPU 71.4 fps 185W 2.59 J/frame
libHOG-L2-OpenMP-pipelined (ours) Intel i7-3930k 6-core CPU 58.8 fps 185W 3.15 J/frame

2.6 Evaluation of libHOG

2.6.1 Speed and Energy
In Table 2.5, we show the overall speed and energy footprint of libHOG compared to other HOG

implementations. In libHOG-OpenMP, we parallelize each stage individually, with a barrier after

each stage – this is essentially the sum of the timings from Sections 2.5.1 to 2.5.3. However, in

libHOG-OpenMP-pipelined we put one OpenMP parallel loop over all stages in the HOG pipe-

line, where each thread is responsible for completing a HOG scale from beginning to end. The

pipelined version also has the advantage that processors can continue to the next stage when

�nished, rather than waiting on stragglers.

When using L2 gradient magnitude, Table 2.5 shows that libHOG is 24x faster than voc-

release5, and 3.0x faster than the fastest known implementation. When we use L1 gradient mag-

nitude, we �nd that libHOG is 29x faster than voc-release5 and 3.6x faster than the fastest known

implementation. This is a 3.0x - 22x reduction in energy per frame compared to previous HOG

implementations.

2.6.2 Accuracy
So far, we have focused on how to make libHOG as computationally e�cient as possible. Now, we

verify that libHOG works well in an end-to-end computer vision application. The PASCAL Visual

Object Classes (VOC) challenge ran from 2005 to 2012 [69]. A subset of the challenge tasks focused

on detecting the occurrence and bounding boxes of 20 types of objects (car, person, dog, ...) in 5000

realistic photographs. The datasets from this challenge are commonly used for the evaluation of

object detection methods. Generally, accuracy on the PASCAL datasets are reported in terms

of the single-number mean average precision (mAP) across the 20 object categories. We have

observed that ADAS work (such as on-road multivehicle tracking [60]) often looks at PASCAL

results for inspiration on object detection methods. With this in mind, we evaluate the accuracy

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 32

Table 2.6: Accuracy for PASCAL 2007 object detection using HOG implementations with De-

formable Parts Models [38].

HOG Implementation Gradient Magnitude

Calculation

Object Detector Mean Avg

Precision

voc-release5 L2 norm Deformable Parts

Model [38]

33.1%

libHOG-L2-OpenMP-pipelined

(ours)

L2 norm Deformable Parts

Model [38]

33.1%

libHOG-L1-OpenMP-pipelined

(ours)

L1 norm Deformable Parts

Model [38]

31.2%

of libHOG with the popular Deformable Parts Model (DPM) [38] detector on the PASCAL 2007

dataset. We parallelized the DPM Cascade [70] to run at 20fps on a multicore CPU, including the

overhead of computing HOG pyramids in libHOG.

In Table 2.6, we �nd that libHOG-L2+DPM produces the same object detection accuracy as

voc-release5+DPM. This is expected given that libHOG-L2 and voc-release5 should produce nu-

merically identically HOG features. Recall from Section 2.5.1 that we can achieve an additional

speedup by using an L1 instead of L2 norm to compute the gradient magnitude. In Table 2.6,

we �nd that using the L1 norm degrades accuracy by approximately 2 percentage points. In our

libHOG code release, we provide both L1 and L2 HOG implementations, so the user can select

the appropriate accuracy/e�ciency tradeo� for their application.

2.7 libHOG Conclusions and Lessons Learned
The development of libHOG can be summarized as a case of �nding a well-motivated, computa-

tionally intensive application and then applying analysis and optimization e�ort to speed it up.

But, beyond that, our work on libHOG provided key insights into the relationship between com-

putational e�ciency and computer vision which would inform our future work. In this section,

we:

• Review the key independent contributions of libHOG and present our conclusions on them.

• Discuss some challenges we encountered during the development of libHOG and how they

de�ned the trajectory of our future research.

2.7.1 Key Research Contributions of libHOG
In libHOG, we focused on reducing both the time taken and the energy used for computing HOG

features. We achieved our results though a combination of reduced precision, SIMD parallelism,

algorithmic changes, and outer-loop parallelism. In particular, we addressed a bottleneck in his-

togram accumulation by phrasing the problem as a gather instead of the (traditional) scatter.

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 33

Overall, we were able to compute multiresolution HOG pyramids at a rate of 59 frames-per-

second for 640x480 images on a multicore CPU. This represented a 3X improvement in speed

and energy usage compared to the state of the art without compromising accuracy. Additionally,

we explored the tradeo�s of using L1 instead of L2 norms to compute gradients, which enabled

the use of smaller operands and thus allowed more SIMD parallelism. When using L1 norms,

we achieved a rate of 70 frames-per-second, increasing our speed and energy improvement over

the state of the art to 3.6X, at the price of some accuracy loss. Further, we packaged libHOG as

a drop-in replacement for the standard and commonly-used voc-release5 HOG calculation code.

We tested libHOG (using standard L2 norms) for equivalence and �nal correctness in a full DPM

�ow that normally uses the voc-release5 code. For the feature calculation portion of the �ow, lib-

HOG ran at 59 frames-per-second and gave a 24X speed improvement and an 18X improvement

in per-frame energy usage over the voc-release5 reference code.

2.7.2 Conclusions on the Speci�c Contributions of libHOG
HOG feature calculation is a core building block in numerous computer vision applications in-

cluding advanced driver assistance systems (ADAS). Further, real-time, energy-e�cient compu-

tation is crucial to real-world deployability of such systems. However, prior to our work, existing

implementations of HOG feature calculation were both slow in absolute terms and ine�cient

in their use of computational resources (leaving room for optimization). The core independent

results and contributions of this work were released in our open-source HOG implementation,

libHOG. It is 3.0X - 29X faster (and 3.0X - 22X more energy-e�cient) than previous HOG im-

plementations. We computed HOG pyramids at 71 fps, enabling ADAS applications like object

detection and lane detection to compute HOG pyramids in real-time.

2.7.3 Contributions of this Work to De�ning our Research Trajectory
This work was a good case study in optimizing a core operation for computer vision. There were

two categories of tasks involved in this e�ort:

• Performing the core analysis, implementation, optimization, and tuning of the operation at

hand.

• Packaging the results of our e�ort in a way usable by the computer vision community (i.e.

as a library).

While we achieved good results in the end, there were issues associated with both of these aspects

of our e�orts. We will now discuss the issues we encountered and how they informed our future

work, organized by the above two categories.

2.7.3.1 Issues with Core Implementation E�orts

For the �rst aspect, the core implementation work, we were hindered by a lack of tools and

frameworks in several ways:

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 34

• Writing this type of highly-tuned code manually is time consuming, error prone, and di�-

cult to maintain. This limited our ability to explore the design space and exploit special-case

optimizations.

• The existing �ows and projects using HOG calculations were not well suited to the type

of development needed for optimization e�orts. Thus, our work required a combination of

writing custom test harnesses and using existing �ows in awkward ways. The net result

was reduced testing coverage and increased development time.

Our di�culties informed our later e�orts to build a vertical framework that would address these

issues. In particular:

• Support for metaprogramming was included in our framework to help reduce e�ort spent

manually writing low-level code. Metaprogramming and other framework features work

together to provide greater �exibility to explore the space of possible implementation choices

and to enable the programmer to exploit special-case optimizations without undue e�ort

or complexity.

• Our framework was designed to include a full vertical slice of �ows in which the operations

to implement are used. This allows for continuous, full testing during implementation.

Also, if desired, the vertical nature of the framework provides a smooth path to deploying

full systems without needing to integrate additional dependencies.

2.7.3.2 Issues with Packaging libHOG for Reuse in Research and Practice

The development of libHOG provided key insights into the overall software ecosystem for ma-

chine learning and computer vision research. In particular, the computer vision �ows we exam-

ined had an ad-hoc combination of languages, frameworks and methodologies. As is common

in research [71], new functionality was layered over existing functionality in ways such that

resultant full codebases were di�cult to understand or modify. While this approach to devel-

opment may be reasonable and justi�ed in a research context, it often makes optimization and

replacement of any one part of a computer vision �ow problematic. In general, an optimization

e�ort begins with the observation that some particular �ow is too slow, or at least that it might

bene�t from being more e�cient. However, just understanding how a typical research-quality

computer-vision software pipeline operates can be quite daunting. And, even when certain parts

of the �ow are isolated as good targets for optimization, the interface between those parts and

the rest of the �ow may not be clear. While it is often easy to get a single reference �ow working

after some optimizations, it is generally unclear how such changes might a�ect other �ows or

projects using similar (older, newer, or diverged) codebases.

Given that the barrier to entry for optimizing such �ows is high, such work is less likely to be

performed. And, even in the cases where such optimizations are performed, the high di�culty of

packaging and integrating such work can lead to low adoption in research and practice. Some-

times, optimizations only apply to narrow use-cases, and thus new �ows are unable to use them.

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 35

Other times, the cost for individual researchers to integrate such optimizations outweighs any

bene�ts, especially if any particular optimization provides only limited bene�ts in the context of

full �ows (i.e. due to Amdahl’s law). The end result of this situation is that researchers can be

limited by needlessly slow software.

At the time when libHOG was created, this was a problem with no easy solutions in sight.

However, the rise of neural networks has o�ered various opportunities to reconsider this issue

and potentially make progress toward a solution, as will be discussed in Section 3.5.3.2.

2.7.4 Conclusions from libHOG that De�ned our Research Trajectory
While computer vision researchers do not view computational e�ciency as their primary con-

cern, their work is fundamentally enabled by computation. Further, while it is only one of several

concerns, improvements in computational e�ciency can enable new lines of research. Comple-

mentarily, the lack of computational e�ciency can seriously limit research productivity. In this

work, we observed that computer vision researchers are often driven to attempt various opti-

mizations on their own. They hand-code critical operations in low-level performance languages

(such a C) or try to write custom code to exploit parallel hardware (such as GPUs or multicore

CPUs). But, their approaches to achieving high computational e�ciency often su�er from a lack

of focus and engineering rigor. In turn, this leads to unreliability, sub-optimal speed, poor mod-

ularity/reusability, and poor maintainability of the resulting implementations. This gives an op-

portunity for contributions though research speci�cally targeting computational e�ciency. But,

there are several key challenges that arise for any such research:

• Analysis and optimization of research-quality computer vision codebases can be quite dif-

�cult.

• For any optimization work to have maximal impact, it must be general and well-packaged

enough for other researchers to easily use.

In the context of libHOG, the �rst issue limited our ability to explore the full design space. While

we successfully focused our e�ort on the most critical aspects of HOG computation, there were

various other areas we wished to explore but were not able to due to productivity limitations.

For example, we did not attempt to apply SIMD optimizations to histogram binning or try to

develop our own image resizing routines. In this case, we were lucky that focused optimization

of a very small section of the overall operation (gradient calculation), when combined with a

reasonable-overall-quality uni�ed implementation in a performance language, was enough to

achieve high overall speedup. But, in general, this is not the case, and the approach we used here

would not easily scale to optimization of more complex algorithms. Further, we were only able to

target a single hardware platform: multicore CPUs. It would have been desirable to support more

portability, but this was quite di�cult to even contemplate given the development environments

and tools we had at our disposal. Further, potential deployment of a library that could use multiple

hardware targets introduces additional challenges we were not prepared to address at that time.

But, if we wished to consider a broader space of problems and hardware targets going forward, it

CHAPTER 2. MOTIVATING EARLY WORK : LIBHOG 36

was clear that we would need to �nd ways to improve the productivity of such optimization and

deployment e�orts. Similarly, while we were able to fairly cleanly package our work in a library,

we still struggled to achieve wide direct adoption of our work. Our conclusion is that there are

two key sub-issues with packaging and deployment:

• First, the bene�ts of any library must exceed the e�ort required for researchers to integrate

and use it. In the case of libHOG, we are only optimizing a small portion of the overall

detection pipeline. Especially in research �ows, speeding up HOG calculation alone may

give only a limited overall bene�t.

• Secondly, researchers often (but not always) want to modify various aspects of high-level

operations in their pipelines. Thus, any �xed library for a high-level operation (such as

libHOG) can be too �xed in terms of functionality and interface for research use.

As our research moved into the domain of e�cient computation for neural networks, all these

issues became guideposts to inform and direct our future e�orts.

37

Chapter 3

Bridge to Our Boda Framework:
DenseNet

3.1 Introduction to DenseNet: Speeding up
Neural-Network-based Object Detection

The modern era of high interest in neural networks (NNs) started with their successful application

to image classi�cation. As per our running example from Section 1.1.1, image classi�cation is the

task of determining if an image contains a certain type of object (at any location in the image).

In contrast, object detection (as introduced in Section 1.3.2) is the more di�cult task of localizing

(i.e. putting a bounding box around) each instance of some type of object in an image. Given the

early success of NNs for image classi�cation, it was natural to try to extend them to the more

general problem of object detection. However, early e�orts in this direction were hampered by

the high computational requirements of NNs. So, as with libHOG, we analyzed this situation

and searched for research opportunities related to optimizing both existing and future NN-based

object detection �ows.

In this chapter, we present the results of this e�ort: DenseNet, an open source system that

computes dense, multiscale features from the convolutional layers of a convolutional-NN-based

image classi�er. As with libHOG, while our work on DenseNet has independent research con-

tributions, it also taught us various lessons that informed our future work. In particular, while

our initial implementation approach yielded timely results, various challenges impeded our abil-

ity to build on that implementation. Thus, we later reimplemented our DenseNet approach in

a new prototype framework. This prototype became the base for our future work on the Boda
framework for implementing portable, e�cient NN convolutions and other operations.

The rebirth of neural networks has led to profound improvements in the state-of-the-art

benchmark accuracy for various computer vision tasks. The key algorithms of the so-called “deep

learning” revolution can be traced back at least to the late 1980s [72]. However, the rise of big data

has led to huge labeled datasets (e.g. ImageNet [73] with >1M labeled images) for training and

evaluating image classi�cation systems. Additionally, neural network frameworks such as Berke-

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 38

Unstitch
Multiresolution
CNN Descriptors!

Descriptors on a plane!Stitch to large plane!~25 Resolutions!Input Image!
Caffe Convolutional !

Neural Network!

optional warping!

Figure 3.1: DenseNet multiscale feature pyramid calculation

ley’s Ca�e [74] and Toronto’s cuda-convnet [30] utilize enough parallelism to make ImageNet

a tractable benchmark for neural-network-based approaches to image classi�cation. The Ca�e

framework is also designed to encourage research, development, and collaboration though a ro-

bust open source development model and a rich set of features for con�guration, testing, training,

and general CNN experimentation. By 2012, early convolutional neural networks (CNNs) such

as AlexNet [30] achieved 80% accuracy (top-5) on the 1000-category 2012 ImageNet Large Scale

Visual Recognition Challenge (ILSVRC2012) image classi�cation benchmark [75]. Over time, the

state of the art has risen to 88% in 2014 with the Oxford VGG networks [76], and then again to 97%

in 2016 with a combination of residual networks [77], ensembles, and other techniques [78]. Fur-

ther, in areas such as �ne-grained recognition and image segmentation, using ImageNet-trained

deep CNNs as a building block has advanced the state-of-the-art accuracy substantially [79] [4].

For object detection, one key observation is that every object in an image has some bounding

box that depends on the position and apparent size of the object. Thus, if we desire to localize

objects using bounding boxes, and we accept some �nite desired level of precision in the posi-

tioning of these boxes, we can enumerate all possible object bounding boxes as an exhaustive set

of object proposal regions that are valid and complete for any input image. For example, consider

the case of a 640×480 input image. If we require that the smallest detectable objects be localized

to within 4 pixels, this yields about (640/4)×(480/4) = 1920 ≈ 20K possible object bounding

boxes. However, we must also consider how to detect larger sizes of objects. Larger objects gen-

erally require less localization precision, but considering all possible object sizes will still increase

the total number of regions to consider by factor of 1.5X to 4X depending on the particular task

parameters.

But, the key point is that any image classi�er can be extended to perform object detection

by iteratively applying it to a suitable set of such regions. That is, the image classi�er is simply

applied to every object proposal region in the input image that might contain an object. This is

termed the dense sliding window approach to object detection.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 39

Ground Truth!

Detection!

Filter Placement!

Templates!

HOG Pyramid!Input Image!
Detection Score Map!

!

pyra = featpyramid(image)

root filter! part filters!

*!

Figure 3.2: Sliding-window object recognition. A number of detection methods including De-

formable Parts Models (DPMs) and Poselets are built on pipelines like this.

Traditionally, algorithms such as Deformable Parts Models [38] and Poselets [57] achieved

high-quality object detection using this approach. As shown in Figure 3.2, for each input image,

these approaches compute the score for their detectors (based on multiple rectangular templates)

at every position of a multi-scale pyramid of HOG [53] features. Note that evaluating these

detectors generally only requires a dot product between the HOG features and the templates

at each location. Given the relatively low dimensionality of HOG features (e.g. ∼31 values per

pixel), this operation is not particularly computationally intensive, even when the number of

object proposal regions is relatively high (i.e. 20K or more regions). The best of the sliding-

window detector breed have typically yielded around 33% mean average precision (mAP) on the

PASCAL [69] 2007 object detection dataset.

Naturally, early attempts at NN-based object detectors also attempted to use the dense sliding

window approach. However, given the large number of possible sizes and positions of objects (and

thus their bounding-boxes/object-proposal-regions), calculating NN features for each such region

was very expensive. For example, with a per-region classi�cation time of ∼50ms and ∼20K regions,

the per-image detection time would be ∼20 minutes. So, extending CNN-based image classi�ers

into object detectors using a naive dense sliding window set of region proposals was prohibitively

slow. Hence, early work in this direction, such as R-CNN [37], by necessity used a sparse set of

object proposal regions for each input image. These sparse region sets were derived using existing

non-NN-based region-proposal-generation methods [80]. Still, the R-CNN approach signi�cantly

improved the state of the art for object detection.

Compared to approaches that use a sparse set of object proposal regions, one advantage of the

dense approach is that it is trivial to create an exhaustive, dense set of object proposal regions.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 40

However, as stated, depending on the desired density in position and scale, the number of region

proposals may become quite large. To avoid this issue, one can either reduce the number of

region proposals, decrease the time spent per region, or some combination of the two. In the

related work section, we consider various approaches that explore speci�c design points in this

space of options.

Of particular note for decreasing the time spent per region, the convolutional nature of CNNs

o�ers the potential to share signi�cant work between overlapping regions. However, in practice,

there are various challenges that complicate achieving this sharing. Speci�cally, in this work

we consider what is necessary to e�ciently support the classi�cation method of CNNs such as

AlexNet [30] over many possible region proposals for an image. In particular, we must address

the key issues of supporting per-region data centering, varied region sizes, and varied region

aspect ratios.

The remainder of this chapter is organized as follows: In Section 3.2, we review related

work on dense CNN features, particularly for object detection. Then, in Section 3.3 we propose

DenseNet, our approach to e�ciently computing pyramids of CNN features. Next, in Section 3.4,

we brie�y and qualitatively evaluate the correctness of our approach. Finally, in Section 3.5 we

present our conclusions. There, we include discussion about our second implementation of the

DenseNet method, DenseNet-v2, and the relationship of the entire DenseNet e�ort to shaping

our research trajectory.

3.2 DenseNet Related Work
CNNs for Object Detection. DetectorNet [81] performs sliding-window detection on a coarse

3-scale CNN pyramid. Due to the large receptive �eld of CNN features, localization can be a

challenge for sliding-window detection based on CNNs. Toward rectifying this, DetectorNet adds

a procedure to re�ne the CNN for better localization. However, DetectorNet does not pretrain its

CNN on a large data corpus such as ImageNet, and this may be a limiting factor in its accuracy.

In fact, DetectorNet reported 30% mAP on PASCAL VOC 2007, less than the best HOG-based

methods.

OverFeat [82] generates dense, multi-scale CNN features suitable for object detection and clas-

si�cation for square regions. OverFeat does not consider the issue of non-square region proposals

as they are not necessary for their approaches to detection or classi�cation. In our approach, we

support both the extraction of non-square regions of features as well as the higher level approach

of constructing multiple feature pyramids where, for each pyramid, the input has been warped to

a selected aspect ratio. While pre-compiled binaries for running the OverFeat CNN to create such

features using provided pre-trained CNN model parameters are provided, training code is explic-

itly not provided. Further, it is unclear how much of the source code for the rest of the OverFeat

system is available; some is part of the Torch [83] framework used by OverFeat. This lack of

openness hinders the usage of OverFeat as the basis for exploring the design space of CNN-based

detection algorithms, particularly for benchmark sets where no OverFeat-based detection results

are available (such as the PASCAL VOC benchmarks). Also, unlike the Ca�e system into which

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 41

Per-Region!
Descriptors!

Convolutional Neural
Network!

Warped
Regions!

Region Proposals!

HOG Pyramid!Input Image!

DenseNet: Efficient Object Detection with!
! ! ! ! ! Deep ConvNet Feature Pyramids!

Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Yangqing Jia, !
Kurt Keutzer, and Trevor Darrell!

Deformable Parts Model Detection!

1.  P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan. Object Detection with
Discriminatively Trained Part Based Models. PAMI, 2010.!

2.  H. Song, R. Girshick, T. Darrell. Discriminatively Activated Sparselets. ICML, 2013.!
3.  T. Dean, et al. (Google, Inc.) Fast, Accurate Detection of 100,000 Object Classes on a

Single Machine. CVPR, 2013.!
4.  C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors. ECCV, 2012.!
5.  F. Iandola, D. Sheffield, M. Anderson, P. Phothilimthana, and K. Keutzer.

Communication-Minimizing 2D Convolution in GPU Registers. ICIP, 2013.!
6.  H. Niknejad et al. On-Road Multivehicle Tracking Using Deformable Object Model and

Particle Filter With Improved Likelihood Estimation. IEEE Trans. Intell. Transportation.
2012.!

7.  M. Andriluka et al. Vision based victim detection from unmanned aerial vehicles. IROS,
2010. !

References!

forresti@eecs.berkeley.edu !

Input Image! Extract HOG
feature descriptors !
!

Feature matching
with learned
model!
!
!

Distance
transform and
scoring !

Structured grid!
Histogram and!
Convolution!

Structured grid!
Convolution with !
several filters!

 Output Detections!
!

Vector distance,!
Structured grid!

…

Linear !
Classifier!

pyra = featpyramid(image)

Input Image!

Figure 3.3: Object Detection with R-CNN [37]: region proposals and CNN features.

DenseNet is integrated, it appears that OverFeat does not focus on providing a robust, general,

open platform for research, development, and e�cient GPU computation of CNNs.

Another recent approach called Regions with Convolutional Neural Network features (R-

CNN) [37] leverages features computed using an ImageNet-trained CNN to achieve a profound

boost in accuracy: 54% mAP on PASCAL 2007, and up to 59% with bounding box regression. Un-

like traditional sliding-window detection approaches, R-CNN decouples the localization and clas-

si�cation portions of the object detection task. R-CNN begins by generating class-independent

region proposals with an algorithm such as Selective Search [80]. Then, it calculates CNN fea-

tures for the proposed regions after warping them to a �xed square size. Finally, R-CNN scores

and classi�es the proposed regions using a linear SVM template on the CNN features.

Currently, the overall runtime of R-CNN yields a latency of ∼10s per image. This latency

renders the approach unsuitable for interactive applications such as image labeling or search.

However, since many of the region proposals for a given image overlap, much image area is

being processed by the CNN many times. Further, the bulk of the computation occurs in the

early layers of the CNN and does not depend on the relative position of image patches within

regions. This suggests that it may be possible to share a great deal of work among all the region

proposals for a given image. However, data centering issues and the fact that the regions are of

di�ering sizes and aspect ratios makes this reuse more di�cult to achieve. In DenseNet, we aim

to produce features that are suited for speeding up pipelines like those of R-CNN.

OtherUses of Dense andMultiscale CNNPyramids. A number of approaches have arisen

for computing dense pyramids of CNN features in various computer vision applications outside of

object detection. Farabet et al. [84] and Jiu et al. [85] construct multiresolution pyramids of 2-layer

CNNs. Farabet et al. apply their network to scene parsing, and Jiu et al. showed multiscale CNN

results on human pose estimation. Along the same lines, Giusti et al. compute CNN pyramids and

perform sliding-window processing for image segmentation [86]. Several years earlier, Vaillant

et al. densely computed CNNs on full images for robust face localization [87].

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 42

3.3 DenseNet CNN Feature Pyramids
As a reasonable example of a CNN-based image classi�er, let us consider the landmark AlexNet

from 2012 [30]. It operates on relatively small, square, �xed size square images, around ∼250 pixels

in size. The bulk of the computation performed by AlexNet occurs in the �rst �ve convolutional

layers of the neural network and takes time roughly proportional to the number of input pixels.

As a preprocessing step, the per-pixel data of the input image is centered by subtracting the mean

image created from a large data set. However, after this step, the computation performed in the

convolutional layers is translationally invariant. Thus, the value of each output pixel in the output

image of any layer depends only on the values of the pixels in the corresponding supporting input

image region, not on the absolute spatial location of the pixel. Hence, for two overlapping region

proposals of the same size and aspect ratio, the values of any pixels at any layer that share the

same supporting image patch will be identical, and need not be recomputed.

Consider the following simpli�ed example: assume an image classi�er that operates on im-

ages of size M×M (e.g. 200×200) and an overall input image (for object detection) of size N×N
(e.g. 1000×1000). With a stride of 16 pixels, there are R ≈ ((N − M)/16)2 (e.g. ∼2.5K) possible

M×M regions within the N×N image. Recall that we can roughly estimate the time taken by the

image classi�er as proportional to the number of input pixels. So, running the image classi�er on

these R regions takes time roughly proportional to R×M×M (e.g. ∼100M operations). Recall that

computing the convolutional layers of the image classi�er CNN dominates the overall runtime of

the classi�er. However, computing the convolutional layers on the overall input image directly

only takes time proportional to N×N (e.g. ∼1M operations). Thus, a single full-image dense

computation of the features yields a speedup of 100X over computing the features per-region.

Note, however, that practical overall speedups for examples such as this may be more limited,

since the remainder of the detection pipeline must still be run on every region. For example,

in the case of AlexNet, let us suppose that the computation time required after the �rst �ve

convolutional layers is 10% of the overall runtime (which is perhaps an overestimate). Thus, in

that case, Amdahl’s law would limit the overall speedup to 10X, no matter how little aggregate

time is spent on the �rst �ve convolutional layers.

Our full goal is more complex than the prior simple example. Firstly, we wish to accelerate

object detection over a set of object proposal regions that covers many aspect ratios and sizes,

not just a single size and aspect ratio as in the above example. Further, we must somehow deal

with the mean-image data centering issue as well. We will detail our approach to these problems

in the following sections. In summary:

• For the issue of di�ering scales, we take the traditional approach of constructing a multi-

resolution pyramid of images formed by up- and down- sampling the input image with a

con�gurable selection of scales. Additionally, we must deal with some complexities of e�-

ciently processing such pyramids of di�erently-sized images in the Ca�e [74] framework.

• For the issue of data centering, we choose to center the per-pixel data using a single mean

pixel value, rather than a mean image, and provide some experimental justi�cation that

this simpli�cation is acceptable.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 43

• For the issue of multiple aspect ratios, we choose to push the problem downstream to later

detector stages, but also consider the possibility of creating multiple image pyramids at a

selection of aspect ratios.

3.3.1 Multiscale Image Pyramids for CNNs
We show the overall �ow of our DenseNet multiscale feature computation in Figure 3.1. The

selection of scales chosen for our pyramids is similar to that used for other features in other

object detectors, such as the HOG feature pyramids used by DPM-based object detectors [59].

The maximum scale is typically 2, and the minimum scale is chosen such that the down-sampled

image maintains a particular minimum size (often ∼16-100 pixels). There are typically 3, 5, or 10

scales per octave (depending on application), yielding pyramids with ∼10-50 levels and ∼3-8X the

total number of pixels as the original image.

A key factor in the rebirth of CNNs is the rise of e�cient CPU and GPU implementations

such as cuda-convnet [30], Torch [83], and Ca�e [74]. To maximize computational e�ciency,

these CNN implementations are optimized for batch mode, where tens or hundreds of equal-

sized images are computed concurrently. However, to compute feature pyramids, our goal is

to compute CNN features from an input image sampled at many resolutions. Thus, our multi-

resolution strategy is at odds with the CNN implementations’ need for batches of same-sized

images.

However, with at least the Ca�e framework’s implementation CNNs computations, a single

large image (with a similar total pixel count as compared to a normal batch of smaller images)

can also be e�ciently computed. Using the Bottom-Left Fill (BLF) algorithm as implemented in

FFLD [52], we stitch the multiple scales of the input image pyramid onto as many large (often of

size 1200x1200 or 2000x2000, depending on available GPU memory) images as needed, and then

run each individual image as a batch. Finally, we unpack the resulting stitched convolutional

feature planes into a feature pyramid.

Using this approach, however, raises a new issue. Given the kernel/window sizes of the con-

volutional and max-pooling layers commonly found in CNNs, each output pixel from a deep

convolutional layer can have a large (perhaps ∼200 pixels square) supporting region in the input

image. Thus, stitching could lead to edge/corner artifacts and receptive �eld pollution between

pyramid scales that are adjacent in the large stitched images. To mitigate this, we add a 16 pixel

border to each image, so that there is a total of at least 32 pixels of padding between any pair

of per-scale images that are packed together. We �ll the background of the large image with the

mean pixel value used for data centering (as discussed below). Finally, in the padding regions,

we linearly interpolate between the image’s edge pixel and the mean pixel value. Experimentally,

we �nd that this scheme seems successful in avoiding obvious edge/corner artifacts and receptive

�eld pollution.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 44

3.3.2 Data Centering / Simpli�ed RGB mean subtraction
The CNN-based image classi�er AlexNet [30] subtracts a mean image (derived from ImageNet [73])

from each input image to center it prior to processing it with the CNN. For stitched images con-

taining many pyramid levels, or even for a single image that is to be processed to support many

possible region proposals, it is unclear how achieve per-region centering by a mean image. There-

fore, we instead use a mean pixel value: the mean-over-all-pixels of the ImageNet mean image.

Remember from the previous subsection that we �ll the background pixels in our planes with

this mean pixel value, so that the background pixels on planes end up being zeros after centering.

As a validation of this simpli�ed mean-pixel centering scheme, we ran an experiment using a

pretrained AlexNet model. We performed a standard evaluation on the test set, but using mean-

pixel instead of mean-image centering. We found that using mean-pixel centering was 0.2% less

accurate than using mean-image centering for top-1 classi�cation. Thus, our simpli�cation of

using mean-pixel centering does not appear to substantially a�ect accuracy.

3.3.3 Aspect Ratios
For the most part, we choose to delegate the handling of di�erent aspect ratios to later stages

in the detection pipeline. In particular, such stages may utilize multiple templates with various

aspect ratios or warp regions in feature space using non-square down-sampling methods such as

non-square max-pooling. However, note that for any selection of interesting aspect ratios it is

possible to, for each aspect ratio, warp the input image and construct an entire warped feature

pyramid as per the above procedure. Of course, in this case the overall feature computation time

will scale as the number of desired aspect ratios.

3.3.4 Measured Speedup
To validate our expected theoretical speedups, we conducted some simple experiments using the

AlexNet CNN in the Ca�e framework running on an NVIDIA K20 GPU. We observed that it takes

10 seconds to compute the �rst �ve convolutional layers for 2000 object proposal regions. For the

output of the same �ve layers, DenseNet takes 1 second to compute a 25-scale feature pyramid

for a standard-sized 640×480 pixel object detection input image. This represent a 10X speedup in

feature computation time.

3.3.5 Straightforward Programming Interface
We provide DenseNet pyramid calculation APIs for Matlab and Python integrated into the open

source Ca�e framework. Our API semantics are designed for easy interoperability with the ex-

tremely popular HOG implementation in the Deformable Parts Model (DPM) codebase:

DPM HOG: pyra = featpyramid(image)
DenseNet: pyra = convnet_featpyramid(image_filename)

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 45

3.4 Qualitative Evaluation of DenseNet
One of our main goals in densely computing CNN features is to avoid the computational cost

of independently computing CNN features for overlapping image regions. Thus, it is important

that we evaluate whether or not our dense CNN features can approximate CNN features that are

computed for individual image regions in isolation. In other words, when computing features for

regions of an image, how di�erent do the features look whether we crop the regions before or

after doing the CNN feature computation?

To perform this evaluation, we visualize the outputs of two di�erent feature calculation pipe-

lines. In Figure 3.4, we crop regions from pixel space and compute features on each window

independently. This pipeline is computationally ine�cient with large numbers of regions. But, it

is a reasonable baseline for comparison with the approach to NN feature computation in appli-

cations such as R-CNN [37]. In contrast to Figure 3.4, DenseNet �rst computes features densely

for the entire input image (without regard for object proposal regions), and then object proposal

regions can be cropped from DenseNet feature pyramids in feature space. In Figure 3.5, we show

an example scale from a DenseNet feature pyramid, and we crop feature regions based on the

same regions used in Figure 3.4. Note that features are visualized here as the sum over channels.

This preserves spatial resolution while su�ciently reducing dimensionality for straightforward

2D visualization. The key takeaway from comparing these two pipelines is that the features in

the rightmost boxes of Figures 3.4 and 3.5 look similar, so DenseNet features appear to be a good

approximation of per-region features computed in isolation.

3.5 DenseNet Conclusions and Lessons Learned
As with libHOG, DenseNet is an example of research focused on computational e�ciency for an

important application in computer vision. HOG features were and continue to be an important

and useful tool for computer vision. But, after our work on libHOG, it was clear that neural

networks were becoming the dominant focus of research. So, we decided to focus our atten-

tion on the nascent area of NN-based object detection. The result was DenseNet, where, for a

particular approach to NN-based object detection, we achieved large speedups by plucking the

low-hanging fruit of removing redundant computation. Several key ideas introduced in DenseNet

became standard features of future NN-based object-detection pipelines. However, our attempt

to package our work for direct reuse had limited success. In this section, we attempt to analyze

both the successes and limitations of DenseNet in order to guide our future e�orts. First, we sum-

marize and present our conclusions on the independent contributions of DenseNet itself. Then,

we discuss more broadly how our DenseNet work shaped our research trajectory towards our

culminating framework for NN computation, Boda.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 46

Input Images! Example Regions!

Per-Region
sum(descriptors) !

Per-Region
sum(descriptors) !

Cropped Regions!Input Images! Example Regions!

Per-Image
sum(descriptors)!

Figure 3.4: Features independently computed on image regions. Here, we �rst crop object pro-

posal regions from images, then compute features. This is the type of approach used in R-

CNN [37]. The regions were chosen arbitrarily, not taken from [80]. Also notice that the regions

used in this example are square, so no pixel warping is needed.

Input Images! Example Regions!

Per-Region
sum(descriptors) !

Per-Region
sum(descriptors) !

Cropped Regions!Input Images! Example Regions!

Per-Image
sum(descriptors)!

Figure 3.5: Features computed on a full image. These features can be cropped to approximate

features for each object proposal region (rightmost panel). DenseNet is optimized for this type

of feature calculation.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 47

3.5.1 DenseNet Summary of Contributions
In DenseNet, we have enabled dense sliding window approaches for object detection using re-

purposed image-classi�cation CNNs. As an alternative to expensive per-object-proposal-region

calculations, we have shown that it is possible to share signi�cant work among overlapping re-

gions to be classi�ed. In DenseNet, we achieved this by creating a multi-scale pyramid of dense

convolutional NN features that can serve as the input to various NN-based approaches to object

detection. More speci�cally, we used several techniques to achieve high speed computation of

dense NN features:

• We exploited the convolutional nature of NNs designed for image classi�cation to repur-

pose them to produce dense feature maps for object detection.

• We packed di�erent scales of an image pyramid into large, equal-sized image planes for

e�cient batched NN computation using existing NN computation frameworks.

• We used mean-pixel, rather than mean-image, data centering, and showed that this was

acceptable.

Compared to the naive dense approach, these techniques greatly reduce the computation needed

to create the sort of dense, multiscale features needed for object detection. Our key result is that

DenseNet can create a 25-scale dense feature pyramid in about 1 second per frame. This is 10X

faster than computing NN features for even a sparse set of 2000 regions, as would be needed for

sparse object-proposal-region approaches such as R-CNN [37]. So, for approaches with sparse

sets of region proposals like R-CNN, this increased speed is a signi�cant step toward enabling

real-time applications. But, perhaps more importantly, the DenseNet approach enables research

into various approaches using denser region proposals over NN features (20K or more regions per

image). Without the techniques of DenseNet, these approaches would require at least 100 seconds

of processing per image. Typical current object detection and image classi�cation data sets set

sizes range from 10K to 1M or more images. So, without e�cient dense feature computation

like in DenseNet, dense methods applied to such datasets would be impractically slow for both

training and deployment.

3.5.2 Conclusions on Contributions of DenseNet
Since our DenseNet work, the general approach of computing dense NN features early in NN-

based object detection pipelines has become the norm. In addition, the DenseNet approach of

using mean-pixel centering, rather than a mean-image centering, has also become standard in

such �ows. For example, in work building on R-CNN, the Fast R-CNN [88] approach for object

detection used dense convolutional NN features, calculated on a mean-pixel centered full image.

In general, using dense convolutional features enables both training and testing for object detec-

tion �ows that would be too slow if one were to try to calculate CNN features for each image clip

in a dense set of object region proposals.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 48

3.5.3 Issues with DenseNet that Informed our Research Trajectory
The DenseNet approach was a natural evolution of existing object detection approaches at that

time, and has become a common building block in NN-based object detection. Indeed, in later

work by some DenseNet co-authors [5], it was shown that the older Deformable Parts Model

approach [38] to object detection could be formulated in terms of NNs, and thus could leverage

DenseNet-style NN features. However, in the course of the DenseNet work, two particular issues

shaped our continuing research trajectory going forward:

• Repurposing object-classi�cation NNs for object-detection highlighted issues related to

mapping spatial coordinates across NN layers. These issues could only be incompletely

explored and addressed in the context of DenseNet, and motivated the reimplementation

of DenseNet within a custom vertical framework designed to help explore such issues.

• While the concepts of DenseNet were often cited and used various contexts, packaging

DenseNet for direct use in research and practice proved di�cult. As with libHOG, it was

often the case that, for researchers, the integration costs exceeded the bene�ts. This pro-

vided motivation to explore methods whereby such optimizations could be performed in a

manner that was more deployable in both research and practice.

We now explain in detail how these two issues tie DenseNet together with the overall body of

work presented in this dissertation.

3.5.3.1 Feature Space Mapping and DenseNet-v2

One of the key aspects of the DenseNet approach is the idea of repurposing convolutional-NN-

based image classi�ers for object detection. In this section, we will �rst explain some key technical

details of this process. Then, we will discuss some of the challenges we encountered related to

this process, and how they informed our future work.

As will be discussed in Section 4.1.2, deep NNs transform an input image into di�erent rep-

resentations layer-by-layer. For image classi�cation, the spatial resolution of the �nal output

layer must be a single pixel, since the classi�cation task is to return a single Boolean value, is-
X-in-image, for each entire input image. But, the input image has some �nite image resolution,

such as X×Y = 227×227 as in our running example (introduced in Section 1.1.1). Typically, the

spatial resolution is gradually decreased layer-by-layer from the input to the �nal output. Thus,

the outputs of intermediate layers will have intermediate spatial resolutions, progressively lower

than that of the input image. The two primary methods by which the spatial resolution decreases

from layer to layer are downsampling and padding-related-e�ects. Resolution reduction due to

downsampling is straightforward: some layers use strided convolution or pooling such that, for

each spatial dimension, they produce only 1 pixel of output for every 2 or 4 input pixels. Thus,

if the �rst layer employs convolution with a stride of 4, the �rst layer output will have spatial

resolution of about 227/4 ≈ 56. However, padding-related-e�ects are a bit more subtle. They

arise from the fact that, for each output point, convolution and pooling often have a kernel size

greater than one. So, unless some form of padding is employed, the spatial size of the output of

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 49

a convolution or pooling operation will also be reduced by one-less-than-the-size of that opera-

tion’s spatial window (i.e. its kernel size minus 1). For example, to re�ne our prior example, if

the �rst layer has a stride of 4, no padding, and a convolution kernel size of 11, then resulting

spatial dimension will be exactly 55. In general, the spatial output size of a layer is calculated as

1 + (INSIZE + PAD − KERNELSZ)/STRIDE or 1 + (227 + 0 − 11)/4 in this case.

As a particularly important special case, if the kernel size is the same size as the entire input to

a given layer, and no padding is used, then the output of that layer will have a spatial resolution

of 1×1 (i.e. it will be a single pixel). This is commonly termed a fully-connected layer. Note

that, in this case, stride has no e�ect on the operation, since there is only a single output point

to compute. In fact, the stride for such layers may not even be speci�ed, but can typically be

assumed to be 1 by default. After such a layer, all information that was previously distributed in

the spatial dimensions has been merged, so that the per-pixel feature space now represents the

entire input image.

Now, consider that case where a convolutional NN-based image classi�er is given an input

image larger than which it was designed for. In this case, the spatial dimensions at all layers,

including the output, will increase proportionally to the increase in the input image size. For

example, typically, the total end-to-end NN downsampling factor due to strided convolution and

pooling might be around 32X. Thus, for each 32 pixels added to the spatial dimensions of the

input, the output will increase in spatial size by 1. Intermediate layers will increase by 32, 16, 8,

4, 2, or 1 pixel(s), depending on how much stride-induced downsampling has accrued up to each

layer. But, in short, this method of using increased input image sizes is the basic method by which

dense features usable for localization (and thus object detection) are formed. However, the �nal

relationship between regions of the input image and regions of intermediate layers is complex

and depends on the stride and padding applied at each layer. In DenseNet, this relationship was

not well understood or fully explored. In turn, this created uncertainly in:

• how to properly localize detection results corresponding to spatial sub-regions of interme-

diate NN layers.

• how to test that DenseNet was correctly calculating the deep NN features for any given

sub-region.

A desire to more fully study and understand this issue prompted reimplementing DenseNet in-

side a purpose-built vertical framework. In this new framework, termed DenseNet-v2, we were

able to fully understand and automate the mapping of spatial regions between layers of convo-

lutional NNs. Using these feature space mappings, we were able to perform various testing and

experiments that were not possible in the original DenseNet implementation. In particular, when

padding and strides were correctly controlled, we could quantitatively verify that the DenseNet-

calculated features corresponding to sub-regions of large images were numerically equivalent to

computing the same features for the sub-region directly. The lack of such quantitative correct-

ness testing was a signi�cant limitation of the original implementation, which we have recti�ed

in our reimplementation.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 50

3.5.3.2 Often Cited, Sometimes Re-implemented, Never Directly Used

Over time, the research contributions of DenseNet are commonly cited by researchers in terms

such as “Our feature calculation is slow, but could be speed up using the methods of DenseNet.” As

with libHOG, DenseNet su�ered from a lack of direct research or practical adoption. As discussed

in Section 2.7.3.2, packaging research-quality optimization work so that it can be used by other

researchers, or perhaps even in real-world practice, is quite di�cult. Certainly, such packaging

for direct use is not a requirement of such research. However, good packaging can only increase

the impact of a given piece of optimization research. Further, it is valid topic of research in and

of itself, and, in the context of the rise of NNs, it seems that are good opportunities to explore

this area. In particular, modern NN frameworks, including our Boda framework that we will

present in Chapter 6, allow for more portability and modularity with respect to implementing

core operations, such that:

• Optimizations of individual core operations can be performed more easily.

• Machine learning researchers can easily bene�t from optimization of small parts of their

�ows without per-researcher overhead.

In the end, this avoids the situation where many individual optimizations are not adopted since

their individual e�ects on a given �ow are not enough to warrant special e�ort to include them.

Thus, eventually, as all parts of a given �ow are optimized, researchers and practical applications

can eventually see signi�cant overall speedups.

In our work, we embrace the higher levels of abstraction and modularity that are achieved by

using NN operations as pre-speci�ed building blocks for larger systems. We envision an ecosys-

tem consisting of set of frameworks for neural network related activities, each geared toward

di�erent tasks and goals. As long as these frameworks use a common layer of abstraction to

encapsulate lower-level computations, they will have an inherent level of compatibility. With

this in mind, the culminating framework of this dissertation is intended primarily to support the

development of new NN operations and the optimization of existing ones. However, once opera-

tions are developed or tuned, the clean, simple operation-level interface of functions acting over

�xed-size groups of numbers (i.e. N-Dimensional-Arrays, or ND-Arrays) allows for reasonably

easy sharing of such e�orts across frameworks. Further, as another feature of our framework,

we want to provide support for a wide range of deployment scenarios as well, giving users more

choices for practical deployments on various target platforms.

So, one goal of reimplementing DenseNet as DenseNet-v2 was as a prototype for this vision.

To further explore this concept, we extended DenseNet-v2 to include a full object detection pipe-

line. While such a system was not intended to give state-of-the-art results, it provided a testing

environment to evaluate our ideas about enabling more portable deployment of optimizations

such as DenseNet and the vision pipelines that would use them. In our framework, we were able

to use the same detection pipeline for both:

• Image classi�cation, using the original unmodi�ed convolutional NN, and

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 51

• Object detection, using an automatically repurposed version of the original NN (operating

on larger images).

The detection pipeline operates on ND-Arrays of NN features as input, without dependencies on

where the ND-Arrays came from. For multi-scale detection, the detection pipeline was simply

run on multiple ND-Arrays, one per scale. Thus, the detection pipeline is agnostic to all the

details of the implementation of DenseNet-style NN feature calculation. Internally, the feature

calculation stages in DenseNet-v2 were free to pack multiple scales into large images, perform NN

computations on the large images, and then unpack the resultant dense per-scale feature images,

with all this being transparent to the rest of the detection pipeline. This type of transparency

was not possible in the original DenseNet, due to the restrictions of working within existing

NN frameworks (such as Ca�e) that had no notion of using general ND-Arrays as an interface

between pipeline stages in a uni�ed manner. In particular, the ability to map between spatial

regions of NN features at di�erent scales and layers of abstraction was critical to enabling this

�ow.

In summary, while DenseNet and DenseNet-v2 did not focus on direct optimization of core NN

computations, they explored key issues associated with composition and reuse of such operations.

The reimplementation work of DenseNet-v2 was a prototype, proof-of-concept, and foundation

for our future work on a more general framework for implementing, optimizing, and deploying

general NN computations.

3.5.4 Conclusions From DenseNet that Shaped our Research Trajectory
One goal of DenseNet was to achieve direct use of our optimization research by speeding up the

relatively high-level operation of multiscale feature pyramid creation. DenseNet was packaged in

such a way that it could be used as a drop-in replacement for pipelines that previously used other

types of features, such as HOG features. However, computer vision researchers at the time had

other plans. Instead of retro�tting other pipelines with NN features, they were more interested

in creating entire end-to-end systems using new con�gurations of NNs. In particular, they were

interested in creating NN-based systems that could be trained as a whole, rather than having

some �xed-function, pre-trained, or separately trained components.

For example, consider the case of Fast R-CNN, which was the next iteration of the R-CNN �ow

that DenseNet used as a model �ow to target for optimization. After computing dense features at a

single scale, Fast R-CNN employs a Region-of-Interest (RoI) pooling layer. This RoI pooling layer

uses max-pooling to form �xed-length features for each object proposal region, thus avoiding

the need for calculating dense NN features at multiple scales. Since this is a somewhat di�erent

approach for handling multiple scales than the feature pyramid approach employed in DenseNet,

Fast R-CNN did not directly use the DenseNet library. This sort of change in approach, from one

iteration of a �ow to the next, is common in computer vision. Thus, the optimization of very high-

level NN primitives, like the multi-scale feature pyramids of DenseNet, seems less than ideal, due

to the rapid current rate of progress in �eld. Simply put, in the current climate, any high-level

NN operation in use today is likely to be modi�ed or changed substantially by next year.

CHAPTER 3. BRIDGE TO OUR BODA FRAMEWORK: DENSENET 52

Again, we note that direct use of the artifacts of research is not a requirement to make a

good contribution. Further, for any optimization research, it is important to release a reference

implementation in any event. Such a reference implementation can be inspected, built on, or

used to replicate results. However, the impact of such usage alone falls short having the resultant

library directly used in research or practice. So, as we moved forward in our research trajectory,

we continued to consider this issue in the context of NNs.

Overall, when choosing our next optimization research target, we looked for an aspect of NN

computation that was:

• low-level enough to remain a commonly-used building block for a long time, and

• packageable in a way that the results of our optimizations could be directly used.

The increasing success of neural networks over the period from ∼2012-2017 suggests that NNs

have unprecedented current and future importance, far beyond the norm for any single technique.

Although the space of NN-based approaches is large, one can isolate a key set computational

primitives, particularly convolutions, that play a large role across many usages of NNs. However,

unlike the relatively easy to exploit opportunities for optimization of libHOG and DenseNet, the

optimization of NN convolutions is a signi�cantly more complex problem. In particular, it re-

quires high-di�culty low-level GPU parallel programming. Both teaching and automating such

programming remain unsolved problems, and thus such tasks require signi�cant manual e�ort

by rare skilled programmers. However, with these challenges and complexities come opportu-

nities for research. In particular, one key concern we choose to focus on was that of portability.

Given the di�cult of implementing e�cient convolutions, it was no surprise that many reason-

able target hardware platforms had no such implementations. So, by steering our work toward

targeting such platforms, we aimed to increase the chance of real adoption of our work. That

is, if we can create reasonably e�cient implementations for platforms that currently lack any

implementation, it creates signi�cant incentive for direct usage of our work.

In the following chapters, we will discuss our culminating contribution: the Boda framework

for e�cient, productive implementation of NN computations. Brie�y revisiting our outline, the

remaining chapters are organized as follows:

• In Chapter 4, we review background details speci�cally relevant for Boda.

• In Chapter 5 we isolate the core problem we will address in Boda and review the relevant

related work.

• Then, in Chapter 6 we present the Boda framework itself.

• Finally, we give our overall conclusions on all our work (libHOG, DenseNet, and Boda) in

Chapter 7.

53

Chapter 4

Background

As discussed in Chapter 1, the Boda framework addresses problems that span several domains.

In this chapter, we will give a summary and references for the needed background across all the

relevant areas. In the following chapters, we will refer back to the relevant sections of this chapter

when appropriate. Hence, especially to the degree the reader is familiar with various topics, this

chapter can be skipped, skimmed, and/or read later on an as-needed basis. Note that, for many

of the topics in this chapter, the 2016 book Deep Learning [14] is a good general (and currently

freely available online) reference, and we will cite speci�c chapters and sections in that work

throughout this chapter. Further, for general information on current trends and applications in

machine learning, a good starting reference is the short 2015 article by Jordan and Mitchell [89].

4.1 What are Neural Networks?
Neural Networks, or perhaps more properly Arti�cial Neural Networks, have a long history in

machine learning. Much of the terminology and conventions associated with the current state of

the �eld are historical. Indeed, many terms serve mostly to distinguish current approaches from

historical ones. For an extensive historical overview of NNs as they pertain to this work, the

reader is encouraged to start with a focused survey such as that from Schmidhuber [1]. However,

in this work, we are mainly concerned with current practice. Conveniently, we can describe cur-

rent types of NNs relatively easily using basic concepts without much reference to their historical

development.

4.1.1 Deep and/or Convolutional NNs
In this work, we deal mainly with what are commonly termed Deep and/or Convolutional Neural

Networks (DNNs, CNNs, or DCNNs). Since these are commonly used terms in machine learning

literature, it is important to try understand what they typically mean. At a high level, both terms

can be de�ned simply:

CHAPTER 4. BACKGROUND 54

• Deep NNs are NNs that have more layers or depth than historical or traditional NNs (which

commonly had 3 layers and hence a depth of 3).

• Convolutional NNs are NNs that include convolution operations.

Of course, that raises the following two questions:

• What are NN layers, and how exactly is the depth of a NN quanti�ed?

• What is the convolution operation in the context of NNs?

We will now brie�y answer these questions; see Deep Learning [14], chapter 9, for a more com-

prehensive treatment of deep convolution neural networks.

4.1.2 Depth and NN Function Structure
Recall from Section 1.1.1 that neural networks can be modeled as functions, as depicted in Fig-

ure 1.2. Using a biologically-inspired term, NN functions were historically decomposed into lay-
ers. Each layer is, like the NN as a whole, a computable, stateless, deterministic function. The

composition of some number of these layer functions then forms the complete NN.

L3 → LN-1

Figure 4.1: Neural Network as Linear Composition of Layers.

For now, we restrict our discussion to simple, linear, non-branching topologies, as shown in

Figure 4.1. In such a topology, the output of each layer is the input of the next. The depth of such

a NN is then simply de�ned as the number of layers that it contains. To be fully explicit, for such

NN topologies:

• The input to the �rst layer is the overall input for the NN; the type of this input is de�ned

by the task.

• Similarly, the output of the last layer is the overall output of the NN; the type of this �nal

output is also de�ned by the task.

• However, the output of the �rst layer, which is the input to the second layer, can have any

type. More generally, the output of all layers except the last can have any type.

CHAPTER 4. BACKGROUND 55

Thus, an NN organized in this fashion transforms the input into di�erent representations, layer

by layer, until the desired result is formed. It is perhaps this notion of sequentially transforming

the input into di�erent representations, rather than having some speci�c number of layers, that is

most strongly associated with the notion of deep NNs. Still, typically, deep NNs would be expected

to have 4 or more layers. This is as opposed to historical/traditional NNs, which commonly

have exactly 3 layers: an input layer, a single hidden layer, and an output layer. But, from a

computational perspective, it can be seen that the depth of a NN is not a particularly de�ning

aspect of the problem. That is, computationally, we must simply compute all layers, regardless

of how many there are. Certainly, the speci�c set of functions to compute across all layers will

dictate the details of the computational problem, but the mere number of layers doesn’t determine

much or change the nature of the problem.

It should be also be noted that almost all modern NNs are deep, and that this term mainly

serves to distinguish current approaches from historical ones. This is universal enough that, in

modern work, if the modi�er deep isn’t applied to a NN, it is probably safer to assume that the

NN actually is deep rather than the reverse.

4.1.3 Branching NNs and Compute Graphs
In Figure 4.1, we have informally depicted the decomposition of a neural network function into

a pipeline of component layer functions. Intuitively, it can be seen that this decomposition can

be modeled as a graph. Speci�cally, it is a directed acyclic graph (DAG) with two types of nodes:

• functions nodes (yellow rectangles), each representing some concrete function to compute,

and

• value nodes (blue rounded rectangles), each representing a value consisting of some �xed

set of bits.

Edges show which values are used as the inputs and outputs of each function. Although there is

some variance in conventions and terminology, this general concept of a computation graph or

compute graph (or other similar spellings) is broadly accepted and has been used in literature and

practice throughout the modern rise of neural nets [39] [40]. Note that each value node (aside

from the primary input) is the output of exactly one function node. Hence, each directed edge

will always go from a value to a function (showing a function input), or from a function to a value

(showing a function output). No edge will ever go from a function to a function or a value to a

value. In our prior example in Figure 4.1, each value was used as input by only one function, and

each function took only one value as input.

However, in general, values can be used as inputs to multiple functions, and functions can

take multiple inputs. Figure 4.2 shows an example of a such a branching NN function. Note that,

as before, every value will still only have one incoming edge (expect the primary input, which has

zero). Further, note that an edge from a value to a function indicates that the entire value is used

by that function. When this is not the case, explicit splitting function nodes are used to break

one value into multiple sub-values. Finally, note that functions may have multiple outputs (in

CHAPTER 4. BACKGROUND 56

Neural Network Function (with Branching)

Input
Output

L
1

Func

L
1

Out
Rep

L
2,1

Func
L

2,1
Out Rep

L
3

Func

L
2,2

Func
L

2,2
Out Rep

L
2,3

Func
L

2,3
Out Rep

Figure 4.2: Neural network with branching.

particular, functions that split values into multiple parts must have multiple outputs), and there

may be multiple primary inputs and outputs. See Deep Learning [14], chapter 6, section 5, for a

more extensive treatment of compute graphs.

4.1.4 Introduction to Layer Functions
We have stated that a NN is the composition of multiple stateless, deterministic layer functions.
In this section, we introduce the general kinds of functions that are commonly used as layer

functions. Recall that, for a layered NN, the intermediate representations (which are the inputs

and outputs of the layer functions) can be of any type. However, it is commonly the case that, for

image-based tasks, all internal intermediate representations are images. These images may di�er

in size, number of channels (i.e. numbers) per pixel, and the type of number that constitutes

the per-channel-per-pixel data itself. However, this still provides a great simpli�cation in terms

of understanding layer functions. That is, under this convention, all layer function inputs and

outputs are images. So, each layer function will map from one image to another image, where the

input and output images may have di�erent sizes or numbers of channels. In our running example

from Section 1.1.1, the �nal Boolean output can be viewed as a 1×1 image (i.e. a single pixel), with

one channel (i.e. person-in-image), and with one bit of data per-channel-per-pixel (i.e. a Boolean).

While this notion of all function inputs and outputs being images is quite useful and general,

especially in the domain of image processing, it is not a general or universal convention. As seen

in the above case of viewing the output of the person-in-image task as a degenerate (1×1) image,

it can be a bit inelegant. Further, in di�erent application domains for NNs, or in the domains of

e�cient computation and software architecture, various di�erent terms are used to refer to such

image-like types. In many cases the de�nitions of these various terms are synonymous, overlap,

or represent special cases of each other.

So, before discussing the detailed semantics of common layer functions, we will review the

relevant issues with respect to cross-domain terminology for values (i.e. function inputs and

CHAPTER 4. BACKGROUND 57

outputs). In particular, we discuss a common and important way to organize groups of numbers

(including, but not limited to, images): N-Dimensional-Arrays or ND-Arrays. We also note the

meanings of several terms commonly used to refer to similar or synonymous concepts.

4.2 Groups of Numbers: ND-Arrays; relationship to
Tensors, Images, and Matrices

Recall that in our running example, the overall input to the task is a X×Y = 227×227 image.

We will now be more concrete about the exact encoding of the image. In particular, for each

image pixel, there are three color values, representing the pixel’s red, green, and blue intensities.

We will represent each intensity as an 8-bit unsigned integer, yielding 24-bits per pixel. Each

individual color intensity that constitutes the image can be referenced with three integer indices:

an x index in [0,227), a y index also in [0,227), and a c (which color channel: red, green, or

blue) index in [0,3). As a general convention, we assume that the range of an index starts at 0

unless otherwise stated. Thus, we more can compactly specify that the dimensions of the image

are X×Y×C = 227×227×3. Here, X, Y, and C name the dimensions, and 227, 227, and 3 are the

concrete sizes of those dimensions.

To generalize this organization beyond images, we use the concept of the N-Dimensional

Array, orND-Array: a collection of numbers with N indices/dimensions. In this work, we will deal

extensively with ND-Arrays, both in terms of de�ning the operational semantics of operations,

as well as using them as our key data type for implementing NN operations such as convolution.

For the most part, we use ND-Arrays in a manner consistent with existing literature and practice.

However, terminology and syntax for handling ND-Arrays varies considerably across libraries,

languages, and research domains. Luckily, ND-Arrays are a simple and intuitive concept, and the

level of understanding required for our purposes is relatively limited.

Conveniently, ND-Arrays can be used for most of the types of multiple-number aggregate

values (such as images) that we are concerned with in this work. A concrete ND-Array value

must have both a �xed number of dimensions and a �xed size (or length) in each dimension.

Thus, the total number of elements (numbers) in an ND-Array is the product of the sizes of the

dimensions. As with the image example above, we generally assume all ND-Array indices range

from 0 to the size of the corresponding dimension (exclusive).

Often, we discuss ND-Arrays where the dimensionality happens to be �xed for some partic-

ular usage. In such cases, then either the N in ND-Array can be replaced with the speci�c value,

or a special term used to denote an ND-Array with that particular speci�c dimensionality can be

used. Here, we give examples of speci�c terminology and types associated with ND-Arrays of

dimensionality from zero to four:

• A 0D-Array, or a scalar, is a single number (and has no indices). For example, the intensity

of a single (grayscale or single-channel) pixel in a image is a scalar.

CHAPTER 4. BACKGROUND 58

• A 1D-Array, or an (unquali�ed) array, is a list of numbers. One index is needed to indicate

a speci�c element in the list. For example, the red, green, and blue intensities of a single

color pixel in a image constitute a 1D-Array of length 3. The set of valid indices for this

example is 0,1,2.

• A 2D-Array, or a matrix, requires two indices to indicate a speci�c element. For example, a

2D grayscale image can be represented as a 2D-Array, with the 2 dimensions being height

(Y) and width (X). Note that for matrices, particularly in the domain of dense linear algebra,

it is common to name the two dimensions rows (R) and columns (C).

• A 3D-Array uses three indices. For example, a multi-channel image (such as an RGB color

image) is a 3D-Array, with the 3 dimensions being height, width, and channel. An RGB

image has three color channels, but there many other types of images. For example, one

might have: (1) a grayscale image with only one color channel, as in the 2D-Array example,

but where the channel dimension is still present but with size 1 (which is termed a degen-
erate dimension), (2) an RGBD image that adds a depth channel to the RGB case for a total

of four channels, or (3) an image with some arbitrary number of channels corresponding

to many di�erent types of arbitrary per-pixel data.

• A 4D-Array requires four indices. For example, a group or list of multi-channel images is

a 4D-Array, with the 4 dimensions being image, height, width, and channel. 4D-Arrays are

a particularly common type of value in image-based NN processing, where computations

are often performed on batches of multi-channel images.

Note that, for a given type of ND-Array, the ordering of dimensions is generally �xed for no-

tational convenience. That is, the dimensions of an ND-Array are themselves an ordered list (a

1D-Array) of sizes, with length equal to the dimensionality of the ND-Array. In this work, in ad-

dition to the size, we also typically associate a per-ND-Array-unique, mnemonic name with each

dimension as well. This is less common in practice, but we �nd it quite useful, and this will be

discussed in more detail in Chapter 6. In particular, in some scenarios, we can alternately think

of the set of dimensions for an ND-Array as an ordered or unordered mapping from names to

sizes, as opposed to just a list of sizes. The key idea is that, fundamentally, ND-Array dimensions

need not be ordered, as long as indices can be mapped to the proper dimensions somehow. This

is useful when dealing with choices for the concrete bit-level encoding of ND-Arrays, as will be

discussed later.

As mentioned, the term ND-Array is commonly used in the domains of numerical and scien-

ti�c computing; for example, libraries such as Numpy [90] and Eigen [91] use the term in the same

sense we do here. Similarly, the venerable MATLAB environment simply uses the term Array to

refer to ND-Arrays, and the term Matrix to refer to 2D-Arrays. In other domains, similar terms

are used to refer to roughly the same notion of ND-Arrays. In particular, the popular TensorFlow

project [40] uses the more general mathematical term tensor for values, but then states in their

documentation that “You can think of a TensorFlow tensor as an n-dimensional array or list.”

CHAPTER 4. BACKGROUND 59

4.2.1 Applying Functions to ND-Arrays
Strictly speaking, a function can only be applied to an ND-Array where the type of the ND-Array

matches that of the domain of the function.

Input
4D-Array

2×227×227×3
Batch of 2 Images, each

227×227 with 3 channels

LayerFunc:
Domain

2×227×227×3
->

Range
2×55×55×96

Output
4D-Array

2×55×55×96
Batch of 2 Images, each
55×55 with 96 channels

Figure 4.3: Normal application of a function to an ND-Array with type matching the function’s

domain.

As shown in Figure 4.3, in this case the function is applied in the normal manner, and the

resulting ND-Array will have the type of the range of the function. However, for convenience, it

is common both in practice and discussion to relax this restriction using certain implicit rules to

handle cases where the type of the domain of a function does not match, but is compatible with

the type of some ND-Array to which it is applied.

Any time a layer function can be de�ned as the application of a lower-dimensional func-

tion to every slice of a higher-dimensional input, it is common to simply de�ne the core, lower-

dimensional function, and then it is understood that it can be extended in the trivial manner to

apply to higher dimensional inputs and produce higher-dimensional outputs.

Automatically Created Extended Function

Input
4D-Array

2×227×227×3

per-image func:
227×227×3 →

 55×55×96

Output
4D-Array

2×55×55×96
per-image func:
227×227×3 →

 55×55×96

Image
227×227×3

Image
227×227×3

Image
55×55×96

Image
55×55×96

Figure 4.4: Automatic extension of per-slice function to an ND-Array with compatible higher-

dimensionality type.

Figure 4.4 show the case of extending a per-image function to handle a batch of images. First,

the input 4D-Array is split on the batch dimension, represented by the splitting of the arrow at

the boundary of the extended function. Then, the per-image function can be applied to each

CHAPTER 4. BACKGROUND 60

of these two images, in this case yielding two spatially smaller, 96-channel images. Finally, the

two 3D-Array outputs (images) are concatenated, as shown by the merging arrows, to form a

4D-Array output (a batch of the two images).

4.2.2 ND-Arrays and Layer Functions
As mentioned in Section 4.1.4, for the types of layers functions we deal with in this work, both

the domain and range are commonly and conveniently representable as ND-Arrays. Further,

particularly in image processing, the most common type of ND-Arrays are 4D-Arrays consisting

of batches of multi-channel images with 2 spatial dimensions (i.e. X/Y or width/height).

Generally, the batch index of a given image has no semantics. That is, the individual images in

these batches have no ordering. Further, all images in a batch are generally treated equivalently.

As discussed in Section 4.2.1, full-batch layer functions can be implicitly de�ned by specifying

a per-image function that maps from a 3D-Array to another 3D-Array (i.e. from a multi-channel

image to another multi-channel image). The full-batch layer function is then constructed by

slicing, applying the per-image layer function is to each input image, and then concatenating

the images to form the full 4D-Array (batch-of-multi-channel-images) output. Note that, in this

construction, clearly the number of images in the domain and range of the layer function will

always be identical.

Note that, in general, the number of spatial dimensions in an image can be more or less than

2. For example, tasks using volumetric data might use images with three spatial dimensions

(e.g. X/Y/Z or width/height/depth). Combined with a batch dimension, and multiple channels of

information per volumetric pixel (i.e. voxel), NNs for such tasks would thus use 5D-Arrays as

their input and intermediate types. Typically, the ND-Arrays used in NNs have:

• A channel dimension, whose size determines the dimensionality of the feature space at the

point in the NN where the ND-Array in question is used. May sometimes be omitted if the

per-sample data is a single value (i.e. a scalar).

• Some number of spatial dimensions that represent a space over which the features are de-

�ned/distributed/sampled. May be omitted when the input consists of a single (�at) feature

vector (i.e. a single sample). For example, there are commonly 2 or 3 spatial dimensions in

image-based applications (X, Y, and sometimes Z), and 2 dimensions in audio applications

(time and frequency).

• A batch dimension, so that multiple items of the basic task-input-type can be grouped to-

gether for more e�cient computation (in implementation) or to specify the batching to

be used for a training algorithm (see Section 4.5). In short, batching allows for higher ef-

�ciency due to increased opportunities to reuse data (primarily convolution �lter values)

during computation. We will discuss this more in Sections 4.2.5 and 4.5.2.

While these cases cover much of present and historical usages, they are not exhaustive and there

are no strict rules or conventions on exactly what types of data can be used in NNs. To simplify

CHAPTER 4. BACKGROUND 61

discussion, we often neglect the batch dimension and consider only the per-image de�nition of

any given layer function. In such cases, we assume that when a batch/multi-image version of the

function is required, it is constructed by the method of Section 4.2.1.

For many types of inputs, the term spatial dimensions is a misnomer, as the spatial dimensions

can refer to sampling over time, frequencies, or other spaces. For example, a batch of (�xed-

length) videos could be input to a NN as a 5D-Array: a batch dimension, a channel dimension

(i.e. the per-pixel RGB data), and 3 spatial dimensions: X, Y, and T (for time).

4.2.3 Discussion of Common Dimensions of ND-Arrays in NNs
Taking aside the batch dimension, all other ND-Array dimensions together represent either:

• the per-task input type, or

• one of the internal representations into which the NN transforms the input.

That is, the product of the sizes of all non-batch dimensions for the ND-Array at the input rep-

resents the dimensionality of the domain of the overall task-level NN-function. Similarly, this

concept can be applied to every intermediate ND-Array in the NN, to give the dimensionality of

each intermediate representation in the NN. So, one might ask, why not simply use a (�at) 1D-

Array as the basic data type for the input and intermediate representations? One reason is that,

if the input or internal representations have some natural structure that can be expressed using

ND-Arrays (such as 3D-Arrays for RGB images), it would seem sensible to use that representation

for clarity and convenience. In particular, many useful operations can be de�ned over particular

types of ND-Arrays, leveraging the additional metadata provided by organizing the data in an

ND-Array instead of a �at 1D-Array. In the case of 2D images, as in our running example, the

use of two spatial dimensions derives from the common convention of using a uniform 2D grid

to sample light intensities in cameras. But, further, many forms of image processing are built on

this convention.

NNs are composed of many such operations which rely on understanding the structure of

the data on which they act. Such operations expect some set of spatial dimensions which are

treated di�erently from any others. Usually, there is only a single catch-all non-spatial channel
dimension, but this need not strictly be the case. Instead, it is generally only required that any

speci�c spatial dimensions required for a given operation be present. All other dimensions are

then ignored (i.e. �attened or merged), and the entire ND-Array is treated as a set of �at 1D-

Arrays of data attached to each point in the space de�ned by the spatial dimensions used by the

given operation. For example, downsampling an image by a set factor is a common operation that

can easily be performed on any image represented as a 3D array. Speci�cally, consider a simple

image-downsample-by-2 operation. In general, such a resize might support any number of spatial

dimensions, but for this example, we will consider a 2D resize. In this case, any ND-Array that

has an X and Y dimension (in addition to any number of other dimensions) is an acceptable input.

The output ND-Array will have the same dimensions and dimension sizes as the input, except

that the sizes of the X and Y dimensions will be half that of the input. Note that, for simplicity,

CHAPTER 4. BACKGROUND 62

we assume that the input X and Y dimension sizes are evenly divisible by two. The semantics of

this downsize can be expressed as several steps:

• First, slice the input array for each pair of unique X and Y values, yielding per-pixel ND-

Arrays that have no X or Y dimension, but have all other dimensions unchanged.

• Then, these per-pixel values are grouped together in non-overlapping 2×2 windows, yield-

ing one group per output pixel. Recall that the output X and Y dimensions are both 1/2 the

size of the corresponding input dimension, so there will be 1/4 as many output pixels as

input pixels.

• Then, the per-output-pixel groups of 4 input pixels are element-wise averaged. Since this

operation is uniform over all elements of the per-pixel ND-Arrays, it does not depend on

their dimensionality, and can thus treat the 4 pieces of per-pixel data as �at 1D-Arrays.

• Finally, the output per-pixel ND-Arrays are concatenated, with the output X and Y dimen-

sions inserted at their “original” locations, so that the output dimension order matches the

input.

4.2.4 Spatial vs. Channel Dimensions in NNs
There are cases where it is not clear if a given natural dimension of some input type should

be treated as a spatial dimension or folded into the channel dimension. This is particularly true

when the top level task is not a clear �t for existing sets of operations in some NN framework. For

example, when processing audio data in the frequency domain, sampling over both the temporal

and frequency domains can be reasonably considered as either spatial dimensions or folded into

the channel dimension. Thus, if a given audio sample type (used as input for some NN task) had

20 frequency bins and 100 temporal samples, it could be treated as any of the following ND-Array

types:

• A 1D-Array with size 2000, with only a channel dimension, containing all temporal and

frequency data �at.

• A 3D-Array with dimensions either 20×100×1 or 100×20×1, with two spatial dimensions

for time and frequency, and a degenerate (size 1) channel dimension (which holds the single

per-frequency-per-timeslice intensity). Depending on conventions and implementation is-

sues, the degenerate channel dimension might be omitted, as it does not impact the number

of ND-Array elements.

• A 2D-Array with dimensions 20×100, where the frequency sub-space of each sample is

considered spatial, but the temporal sub-space is folded into the channel dimension.

• Similarly, A 2D-Array with dimensions 100×20, where the temporal sub-space of each sam-

ple is considered spatial, but the frequency sub-space is folded into the channel dimension.

CHAPTER 4. BACKGROUND 63

Generally, which type is chosen will depend on the existing library of NN operations, how �exible

they are with respect to dimension layout, and what operations are desired to be performed within

the NN. In this work, the net e�ect of such issues is that, across various NN tasks, we are likely

to see a diverse set of input sizes for many operations, as they may be applied in many di�erent

scenarios.

4.2.5 Aside on the Batch Dimension and Computation
As with the overall number of layers in a NN, neither the number of images in a batch, nor

even the existence of the batch dimension, signi�cantly e�ects the core computational problems

we must solve. For correctness, we must simply evaluate whatever per-image function we are

given for all images in the batch at each layer. However, in current implementation practice,

optimizations that depend on the size of the batch are more common and important than those

that depend on the number of NN layers. In particular, since all convolutional �lters are reused

for each input, batching allows reusing �lter values across images, which, if feasible, will lower

communication costs.

So, when we discuss the computation of layer functions over batches of inputs, two cases arise.

In the �rst case, similar to how we de�ned the semantics of layer functions, we omit discussion

of the details of extending per-task-level-input (i.e. per-image in our example task) computation

over the batch dimension. Instead, we assume that simple iteration or similar methods are used

to extend the per-task-level-input implementation to multiple-input batches. However, in the

second case, we may explicitly consider and discuss performing our calculations across an entire

batch of inputs to expose additional opportunities for optimization.

4.3 Details of Neural Network Layer Functions
Having introduced the basic semantics and terminology for the values on which NN layer func-

tions operate, we now discuss in detail the semantics of some common layer functions. While

there is no particular de�nition or hard limit on what can constitute a layer function, there are var-

ious historical and current conventions. Generally, layer functions are relatively simple primitive

operations with well de�ned semantics. Typically, each is used in the context of many di�erent

high-level machine learning tasks. Thus, they represent the building blocks from which per-task

NNs are created.

Focusing on image-based tasks (like our example task from Section 1.1.1), many historical and

current NNs can be realized using only three basic types of image-to-image layer functions:

• Activation: Apply a simple function to each per-channel-per-pixel value.

• Pooling: Combine nearby values.

• Convolution: Convolve a set of (given/constant) �lters or kernels with the input image.

CHAPTER 4. BACKGROUND 64

We will now give an overview of each of these classes of functions. In general, see Deep Learn-
ing [14] chapters 6 and 9 for more details on NN layer functions. However, note that we will cite

speci�c chapters and sections below for each of these three categories of layer functions.

4.3.1 Activation Functions
Of these three types of functions, activation functions are the both the simplest and least com-

putationally intensive. However, from a machine learning perspective, they are both critically

important and subtle. Intuitively, activation functions are one key source of non-linearity in

NNs. By de�nition, non-linearity in NNs allows them to perform logical operations over inputs

and intermediates, as opposed to just creating linear combinations of them.

There are a wide variety of common activation functions, but from a computational perspec-

tive, they generally have two key properties:

• Activation functions generally consist of the application of a core scalar or per-value func-

tion to every input per-channel-per-pixel value. Thus, for an activation layer, each output

image will have the same size and number of channels as its corresponding input image.

• Further, usually only a few simple computations per value are needed.

So, the computation of activation functions tends to be focused mostly on the overheads of read-

ing the input image and writing the output image, rather than on the application of scalar func-

tion itself. Typically, the main optimization that is applied to activation functions is to perform

them inline with (at the same time and place as) some other operation, to avoid data movement

overheads.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

ta
nh

(x
)

tanh

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R
eL

U
(x

)

ReLU

Figure 4.5: Plots of the common tanh() and ReLU() activation functions.

Two of the more common core scalar activation functions are tanh (the hyperbolic tangent)

and recti�ed linear units (ReLU (x) =max (0,x)), illustrated in Figure 4.5. For more details on why

these or other particular functions are used, the reader is referred to the ample existing literature,

such that by LeCun [92]. Note that the name of the scalar function that is used to form the full

CHAPTER 4. BACKGROUND 65

layer activation function (by its application to all values) is used interchangeably with the name

of the overall per-image or per-batch layer activation function. Thus, a layer consisting of the

application of the scalar ReLU function to all values is simply termed a ReLU layer.
Note that, as a convention, activation layers are often disregarded for the purpose of counting

depth. In particular, it is very common to follow convolution layers with activation layers. Such

combinations are often considered to be a single layer for the purpose of counting depth. SeeDeep
Learning [14], chapter 6, section 3, for more details on various activation functions, including tanh

and ReLU.

4.3.2 Pooling Functions
In traditional NNs, activation functions were the only source of non-linearity. However, in mod-

ern deep NNs, pooling functions add another source of non-linearity. Spatial pooling functions

are intuitively motivated by the notion of spatial invariance. Spatial invariance is the idea that,

for many local properties of images, the absolute location of set of pixels is not signi�cant. That

is, a cluster of pixels that represents a person is a still person regardless of if it is on the left or

right side of an image, or in fact in any position in the image. Similarly, spatial invariance is ex-

pected to hold for many other properties at all levels of abstraction. For example, acute-corners

or red-blobs are examples of simple local features where the pixel representation is not expected

to depend on the speci�c location in the image.

There are a wide variety of pooling function, but the most common are spatial max pooling
and spatial average pooling. These forms of pooling operate on a single channel of an image. The

intuition is that each channel of a given image represents some particular feature, and that, due

to spatial invariance, it may useful to spatially pool the value of that feature. The value of each

channel at each spatial (X/Y) point in the image gives the score or intensity of that feature at that

point in the image.

0 2 4 6 8

0

2

4

6

8

RGB

0 2 4 6 8

0

2

4

6

8

RED

0 2 4 6 8

0

2

4

6

8

GREEN

0 2 4 6 8

0

2

4

6

8

BLUE

Figure 4.6: 10x10 pixel 3-channel (RGB) image split into 3 10x10 pixel 1-channel images.

As shown in Figure 4.6, for a small clip of an input image from our running NN example,

each channel represents the intensity of one of the three color channels. With max-pooling, the

intensity at each location is replaced with the maximum intensity of that feature in a small spatial

CHAPTER 4. BACKGROUND 66

window. That is, if a given channel of a pixel in an image represents “how red is this point?”, then

the corresponding pixel-channel in the max-pooled-output represents “how red is the most red

point within K pixels of this point?” Similarly, average-pooling performs an average over the

spatial window, rather than a maximum. So, each average-pooled-output pixel would represent

“on average, how red is the window within K pixels of this point?” Note that average-pooling does

not introduce a non-linearity like max-pooling does, but simply linearly combines information

within each spatial window.

0 2 4 6 8

0

2

4

6

8

RED

0 2 4 6 8

0

2

4

6

8

MAX-POOL

0 2 4 6 8

0

2

4

6

8

AVG-POOL

Figure 4.7: 3x3 max-pooling and average-pooling applied to 10x10 pixel 1-channel (Red) image.

Typically, the window over which pooling acts is small, such as 3×3 pixels, and each output

pixel is created by centering this window over each input pixel. An example of 3×3 max-pooling

and average-pooling applied to the red channel of our 10×10 pixel example clip is shown in

Figure 4.7.

However, even at the input, it is clear that treating the three color channels separately might

not be the most sensible idea. While each channel in the input image has clear semantics (Red,

Green, and Blue intensities), it is really the full space de�ned by all three channels that is mean-

ingful. For example, certain combinations of the input channels represent other interesting prop-

erties, such as hue, saturation, luminosity, or other speci�c colors like orange, purple, pink, and

so on.

Of course, this intuition might or might not apply for the all the various per-layer represen-

tations within deep neural networks. Several years after the initial widespread empirical usage

of pooling, it was noted that, indeed, randomly chosen linear combinations of channels seemed

to have just as interesting semantics as individual channels [93]. This draws into question the

fundamental validity of the intuition behind per-channel spatial pooling. However, the use of

1×1 convolution layers (see the following section) that allow for arbitrary remapping of the basis

vectors of a given representation prior to pooling would intuitively seem to mitigate this de�-

ciency. Indeed, empirically, the use of a combinations of 1×1 convolutions prior to spatial pooling

is now quite commonplace.

In any event, regardless of motivation or intuition, pooling is both:

CHAPTER 4. BACKGROUND 67

• a valid mechanism to allow information to be combined across spatial dimensions, and

• a commonly used operation in modern NNs.

See Deep Learning [14], chapter 9, section 3, for more details on pooling as used in NNs.

4.3.3 Convolution Functions
Although we spend a large amount of e�ort to e�ciently implement convolution operations for

NNs, they are not a complicated operation. First, recall the case of average-pooling from the prior

section. To simplify, let us consider the case of a single channel input image with dimensions

X×Y . In the case of average pooling, the output pixel value at location (x,y), Oxy , is the average

of the 9 pixels in a 3×3 window of input pixels, Pxy , centered over the point (x,y) in the input. One

way to calculate this average would be to multiply each input pixel value in the window by 1/9
and take the sum. We can express this as the element-wise dot (or inner, or Frobenius) product

of the 3×3 window of input pixels P with a 3×3 matrix F where every element in F is 1/9. So, for

every output pixel, the output value will be: Oxy = Pxy · F
If we generalize this operation to allow the values in F to have any �xed values (for all out-

puts), this yields the NN image convolution function, where F is the �lter that de�nes the behav-

ior of the convolution. Note: confusingly, unlike the mathematical de�nition of convolution, NN

convolution slides F across the input without �ipping, and so might be better called correlation.

However, fundamentally, the to-�ip-or-not-to-�ip-F issue is only one of convention, and does not

much change the implementation problem. So, average-pooling is a special case of convolution,

with an F matrix where all 9 entries are 1/9. Additionally, the X and Y gradient �lters from Sec-

tion 2.4 are also special cases of convolution. Here, we show the convolution �lter matrices for

these three example cases:

FAVG_POOL =

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

,FX_GRAD =

0 0 0

−1 0 1

0 0 0

,FY_GRAD =

0 −1 0

0 0 0

0 1 0

In the case of average-pooling, there was exactly one output channel for every input channel.

However, for convolution, multiple output channels can be created by applying multiple distinct

convolutions (i.e. each with their own �lter) to the same input channel. For example, if we keep

our input as a single channel, we could create 3 output channels using the 3 example convolution

�lters we have described above: the average-pooling, X-gradient, and Y-gradient �lters. Thus, a

single input image (with only one channel) can yield 3 output images, or a single 3-channel image,

if we apply a convolution layer with 3 �lters to it. The 3 output channels would correspond to

the local average value, local X gradient, and local Y gradient around each pixel.

CHAPTER 4. BACKGROUND 68

0 2 4 6 8

0

2

4

6

8

RED

0 2 4 6 8

0

2

4

6

8

AVG-POOL

0 2 4 6 8

0

2

4

6

8

X-GRAD

0 2 4 6 8

0

2

4

6

8

Y-GRAD

Figure 4.8: Three examples of 3x3 convolutions applied to a 10x10 pixel 1-channel (Red) image.

In Figure 4.8, we visualize example outputs of these three convolutions.

In general, for a convolution layer in a NN, the number of output channels is determined by

the number of �lters, with one output channel per �lter. But, there is one important further gen-

eralization to consider. So far, we have applied convolution to single-channel inputs. However,

in general, we can apply convolution to multi-channel inputs. Unlike the case of average-pooling,
each convolution typically acts on all input channels. Thus, the number of output channels for a

convolution layer does not depend on the number of input channels. In our prior examples, F was

a 3×3 matrix. To generalize our example to the case of multiple input channels, each convolution

�lter F becomes a 3D array, with dimensions IC×3×3, where IC is the number of input channels.

Fundamentally, the computationally intensive nature of convolution is a result of the fact that

each output pixel depends on all input channels. To be concrete, the total number of multiplies

required for each output pixel, for each output channel/�lter is IC×3×3. For example, if there

are 64 input channels and 256 output channels/�lters for a given convolution layer (with a 3×3

window size), then 64×3×3×256 = 147456 multiplies are required for each output pixel. For an

input image with 50×50 pixels, and assuming a stride of 1 and a padding of 1 (so the output image

is also 50×50), this yields 147456×50×50 ≈ 369×10
6

multiplies per image. Finally, in Figure 4.9,

we show an illustration of a typical NN convolution, as might commonly be found as the �rst

convolution layer in 2012-era image-processing NNs such as Alexnet [30].

CHAPTER 4. BACKGROUND 69

Input
3-channel (RGB)
(227x227)

Output
96-channel
(55x55)

96 Filters, each:
3-channel (11x11)

Figure 4.9: A typical NN convolution layer with stride 4, as might be found at the start of an

image-processing NN.

See Deep Learning [14], chapter 9, section 1, for more details on convolution in NNs.

4.4 Machine Learning Terminology
Although the focus of this work is on computation, some familiarity with machine learning is re-

quired to understand how to ensure the correctness of our implementations. In this dissertation,

one of our key concerns is to concretely determine if an algorithm is maintaining accuracy, espe-

cially when its results are not identical to a reference. So, we must understand how accuracy is

measured in some detail. Let us return to our running example of person-in-image classi�cation,

and discuss the basic needed terminology.

4.4.1 Accuracy vs. Precision/Recall
Earlier, when we referred to accuracy, we used it in the general sense of “how well does this

function perform at this task?” However, when evaluating classi�cation task performance, there

is a more speci�c quantitative set of metrics that are commonly employed. Concretely, in our

example from Section 1.1.1, let us assume for simplicity that each input image either has a person

or does not (neglecting corner cases). For a set of images, the images with a person are termed

positives, and the images with no person are termed negatives. If the total number of images is

N , then we use NPOS to refer to the number of positives, and NNEG to refer to the number of

negatives. Thus, there are four possible outcomes when running a given function on each image:

• The image has a person, and the function (correctly) outputs true. This is termed a true
positive. We refer to the number of such cases as NTP .

• The image has no person, and the function (correctly) outputs false. This is termed a true
negative. We refer to the number of such cases as NTN .

CHAPTER 4. BACKGROUND 70

• The image has a person, and the function (incorrectly) outputs false. This is termed a false
negative. We refer to the number of such cases as NFN .

• The image has no person, and the function (incorrectly) outputs true. This is termed a false
positive. We refer to the number of such cases as NFP .

For a given set of images, the results of running a function can be summarized using the metrics

precision and recall. Recall is de�ned as the ratio of true positives to all positives, or NTP/NPOS .

Thus, recall simply measures how many of images with a person were found. Note that a func-

tion which simply always returns true will have a perfect recall score of 1.0. Complementarily,

precision is de�ned as NTP/(NTP +NFP); perfect precision is thus 1.0. Note that a function which

always returns true will have a precision of NTP/NP . Thus, in the case where most examples are

true, the trivial always-true function will have perfect recall and near-perfect precision. Such a

case is known as a class imbalance. In the case of binary classi�cation (as in our example) where

there are only two classes, the convention is that the less common class should be the true case.

In this way, precision and recall form easy to interpret measures of how well a given function

performs binary classi�cation. Finally, to reduce precision and recall to a single metric, the con-

cept of �delity is often used. This is simply the (potentially weighted) harmonic mean of recall

and precision. The most common �delity metric, or the F1 score, is the unweighted harmonic

mean: (2×recall×precision)/(recall + precision). For more details, see the work of Davis [94].

4.4.2 Precision/Recall tradeo�s, PR curves, and Fidelity
Often, a binary classi�cation function is built from the composition of a real-valued classi�cation

function and a threshold function. That is, the bulk of the computation is a function that maps

from images to a real value, typically normalized to be in the range [0,1]. This value represents

the con�dence of the function that the desired output value is true. There is no particular scale

assumed, only that higher values are more likely to be true. To get a �nal binary result, a threshold

function is applied to the con�dence value. If the real value is less than the threshold, false is

returned; otherwise, true is returned. Note that choosing a threshold of 0.0 always yields the

always-true function, which has maximum recall. On the other hand, choosing a high threshold

will only return true when the con�dence is high. Thus, higher thresholds will tend to have lower

recall, but (potentially) higher precision. The choice of threshold is termed the operating point for

the classi�er. Depending on the use-case, di�erent tradeo�s between recall and precision may

be desired. Thus, for a given real-valued classi�er, it is common to evaluate it at many operating

points by sweeping the threshold value from 0.0 to 1.0. Sometimes, for a given evaluation set of

inputs, every possible unique operating point is considered. Otherwise, some particular sampling

of thresholds is used. Then, after performing this sweep, a PR-curve graph is drawn, which shows

precision vs recall, and two common summary metrics are derived:

• The maximum �delity operating point, de�ned as the point with highest with �delity, using

the F1 score or similar metric.

CHAPTER 4. BACKGROUND 71

• The average precision or area-under-curve metrics, which are roughly equivalent modulo

interpolation of the precision in-between operating points.

Finally, when evaluating multiple classi�ers as a group with a single metric is desired, often the

mean average precision or mAP score is used. The mAP score is simply the mean of the average

precision (AP) scores of multiple classi�ers. For more details, see the work of Powers [95].

4.4.3 Over�tting and Computation
In machine learning, the term over�tting refers to the case where a function:

• performs well on some input data used to create the function (termed training data)

• performs less well (or poorly) on other input data (termed validation or real-world data)

In such cases, the function is said to fail to generalize to new data that it has not previously

“seen” as part of the training data. For the most part, over�tting is an issue that arises in the

process of creating functions, not when optimizing their computation. However, as previously

mentioned, e�orts to optimize the computation of a given function can also create a form of

over�tting. Rather than some abstract description of a computable function, the starting place

for optimization is often a reference algorithm from which the underlying function must be de-

duced. Checking that accuracy has been maintained is generally accomplished by checking the

accuracy of the optimized algorithm over some set of validation inputs. But, care must be taken

that any approximations or other deviations from the reference algorithm are valid in general.

That is, assume that some approximation scheme or set of optimizations is chosen out of many

possibilities. Further, assume that this was done by �nding trying many schemes, and �nding a

particular con�guration that was both fast and performed well on the validation set. However,

such a scheme might then only work well for the validation set, which �ts our above de�nition of

over�tting. To combat this possibility, it is generally preferable to ensure good numerical agree-

ment among all algorithms to the degree possible and practical. Ideally, this includes not just the

�nal output values of the function, but any comparable intermediate values as well. This gives

a higher degree of con�dence that the function to compute has not been substantially altered by

numerical issues. Thus, the approximate function should generalize beyond the validation set

as well as the original function. However, in current practice, such testing for numerical agree-

ment is often quite cumbersome, and is thus often neglected. For more details on Over�tting and

related topics in machine learning, see Chapter 5, Section 2 of Deep Learning [14].

4.5 Training vs. Deployment
In machine learning, one approach to creating a system that performs a particular task, given

some set of (hopefully correct-enough) input/output pairs, is termed supervised learning. Using

this method speci�cally for �nding a good NN function for a given task is commonly approached

using two steps:

CHAPTER 4. BACKGROUND 72

• First, a graph of parameterized layer functions is chosen. This graph is variously called

the NN architecture, the space of models, or the function structure. The parameters to be

�xed to select a �nal, concrete NN function (termed a model) for the task are called model
parameters. In particular, the model parameters include all the �lters of any convolution

layers of the type described in Section 4.3.3. This process perhaps has no clear common

term in the literature; here we will refer to it as NN architecture design space exploration.

• Second, an optimization algorithm is run to determine good values for the model parame-

ters. This part of the process is termed training.

Then, once a system has been created, we term using it to perform the desired task deployment.
For NNs, then, deployment consists of evaluating some existing, �xed NN function.

As a general reference on the fundamentals of machine learning and training NNs, the reader

is referred to chapters 5 and 8 in Deep Learning [14]. As mentioned in Section 1.1.2, the issue of

NN architecture design space exploration is outside the scope of this dissertation. The reader is

referred to the recent work of Iandola [17] for details on this process.

So, from a computational standpoint as relevant for this dissertation, we split the space of

machine learning use-cases into the two remaining parts: training and deployment. For our proof-

of-concept use of Boda in Chapter 6, we focus on the deployment use-case. For deployment, we

must simply evaluate NN functions consisting of various layer functions, such as the common

types described in Section 4.3.

4.5.1 Computation for Training
However, the training use-case is also of interest. In this section, we consider the ways in which

the computational requirements of training di�er from those of deployment. In particular, we

consider the general �ow of one common family of training procedures called stochastic gradient
descent or SGD. At a high level, such procedures consist of selecting some initial value for all

model parameters, and then repeatedly:

• Applying the current NN function (as determined by the current values of the model pa-

rameters) to a batch of inputs.

• Calculating the error of the current model for the current batch of inputs.

• Calculating the gradient of the error with respect to each model parameter.

• Using the per-model-parameter (error) gradients to adjust all model parameters slightly so

as to decrease the error (i.e. optimization by gradient decent).

From a computational standpoint, it can be seen that training involves both the application

of the NN function itself (as determined by the constantly changing model parameters), but also

the calculation of the gradient of the error with respect to the model parameters. Commonly,

an algorithm called backpropagation [96] is used to calculate the needed gradients. See Deep

CHAPTER 4. BACKGROUND 73

Learning [14], chapter 6, section 5, for a more modern treatment of backpropagation for general

NNs. Using that approach, the calculation of the gradient of convolutions is performed using

other convolutions. For an accessible explanation on the speci�c convolutions that result when

calculating the gradients of other of convolutions, see the tutorial of Gibiansky [97]. However, the

key point here is that the particular convolution operations required for the gradient calculation

may have quite di�erent input sizes than their counterparts in the NN function itself. Thus, at

a minimum, they represent additional cases that may require tuning or optimization. Further, in

practice, they commonly happen to be at least somewhat more di�cult to implement e�ciently

then their deployment counterparts, although there is no clear fundamental reason why this need

be true. This means that supporting NN computations for training is very similar to, but broader

than, just supporting NN computations for deployment.

4.5.2 Batch Sizes in Training and Deployment
One important detail is that, in training, the error is calculated for a batch of inputs, not a sin-

gle input. Thus, the size of the batch is an important parameter that a�ects the optimization

algorithm. However, the nature of the model-parameter updates is such that it is permissible to

compute the outputs, errors, and model-parameter-error-gradients of each input individually, if

desired, and combine (via simple summation) the model-parameter-updates incrementally until

the batch is complete. Thus, computationally, we never need compute more inputs at the same

time than we desire. However, the reverse is not true: based on the details of the training proce-

dure, we may not process more inputs than have been requested for a training batch, because we

must actually update the model parameters (using the accumulated updates) between batches.

So, it should be noted that the batch size speci�ed for training has important semantics, but does

not strictly determine the batch size that must be used for computation. Instead, it only places a

maximum on the batch size that may be used for computation.

As with training, there is no minimum batch size for deployment. If desirable for e�ciency,

each input can be computed individually. However, in general, more data reuse is possible with

larger batches, albeit generally at the price of needing additional intermediate storage space. In

deployment, the maximum batch size is e�ectively determined by the latency tolerance of the

application. The minimum input-to-output latency will always achieved by using a batch size of

1. However, if the application can tolerate some delay in the production of the output, it may be

permissible to wait for multiple inputs and process them in a batch. This will increase latency

due to:

• needing to wait for multiple inputs, and

• the fact that processing a larger batch should always take longer than processing a smaller

one.

For more details speci�cally on batches and SGD, see Deep Learning [14], chapter 8, sections 1

and 3.

CHAPTER 4. BACKGROUND 74

4.5.3 Scale of Computation: One GPU or Many?
When batch sizes are large, one method to improve speed is to divide batches across multiple

GPUs and process the resulting sub-batches in parallel. However, this practice is not generally

relevant for the deployment use-case, even when considering cloud-scale deployments. As men-

tioned in the prior section, multiple requests (where each request is one input) may be batched

together to improve overall e�ciency when the application permits the additional latency. At the

other extreme, it is possible to conceive of some extremely compute intensive application where

a latency advantage can be achieved by using multiple GPUs to service a single request. How-

ever, for typical current applications, it is wasteful to occupy an entire GPU with serving a single

request, let alone to distribute one request across GPUs. This can be seen in real world use-cases

such as at Baidu [2], where batching is performed only to increase e�ciency at the level of a sin-

gle GPU. In such cases, there is no advantage in waiting for 2N independent requests only to then

divide them into two batches of N requests to be processed by di�erent GPUs. Instead, one should

wait for at most the number of requests needed to create a single e�cient batch, and then pro-

cess that batch immediately. So, for current deployment scenarios, performance within a single

GPU (for optimal-or-smaller batch sizes) is typically the chief concern. In fact, even for training,

this still holds at the level of each individual GPU, but with additional concerns at a higher level

related to communication and synchronization between GPUs. In this dissertation, we do not

address these additional issues that arise when trying to distribute batches across multiple GPUs.

For more details on this topic, see the recent work of Iandola [17].

75

Chapter 5

Boda Related Work

In chapters 2 and 3, we have discussed both:

• the independent contributions of libHOG and DenseNet, as well as

• how they de�ned and shaped our research trajectory.

In both libHOG and DenseNet, we choose an important use case from machine learning, applied

analysis, and focused on optimization with respect to our motivating concerns: accuracy, speed,

energy, portability, and cost. In each case, we made signi�cant contributions and learned impor-

tant lessons about computation for machine learning. But, along the way, we encountered two

general categories of issues that limited the impact of our work:

• It was di�cult to perform our optimization work directly in the context of the machine

learning �ows we were trying to optimize.

• It was di�cult to package our reference implementations in ways that allowed for practical

extension and reuse of our e�orts.

After our work with DenseNet, it was natural and timely to pursue further research into ef-

�cient computation for neural networks. Since then, the immense popularity and generality of

neural-network-based techniques in machine learning has shown no signs of decreasing. So,

considering both the successes and limitations of our prior work, we chose the problem of im-
plementing neural network computations as our next research area. Based on our experience with

libHOG, we learned that optimizing high-level operations has clear advantages and drawbacks.

High-level machine-learning operations, such as the multi-scale HOG feature pyramid creation of

libHOG, may o�er easy opportunities for optimization, due to the overheads and naive implemen-

tations of existing codebases. Further, they may o�er simple high-level interfaces for deployment.

However, the resulting optimized code is can be too �xed-function and brittle to integrate into

new projects, especially when the underlying machine-learning use models are rapidly evolving.

Thus, we choose to attempt to optimize low-level, rather than high-level, computing primitives.

Certainly, there is a similar danger that the computing primitives of today may be less useful

CHAPTER 5. BODA RELATED WORK 76

tomorrow. However, when considering neural networks in general, and convolutional neural

networks in particular, evidence and opinion points to their likely ongoing importance for many

years.

One consideration, however, is that optimizations to low-level operations tend to be better ad-

dressed by existing work. Thus, one must expect that the bar for useful contributions is higher;

the low hanging fruit is likely already plucked. Further, compared to our prior e�orts, the imple-

mentation complexity of NN operations, such as convolution, is signi�cantly higher than that of

the gradient-histogram-creation of libHOG or the pyramid-creation of DenseNet. Thus, manag-

ing this complexity during the implementation process will be a signi�cant challenge.

But �rst, given that we have speci�ed the key problem we will consider, we now ask the

natural question: how well does existing work address this problem? For each approach, with

respect to all our concerns, what are its advantages and limitations?

Given that our concerns span many levels of abstraction, there are several broad categories

of related work to consider. In general, when using computers, there are many methods (and

combinations of methods) that can be used to bridge the gap between each application and the

underlying computer hardware. So, we will start with a brief, high-level overview of the overall

space of methods that can be used to create software systems. In particular, we consider the

general categories of libraries, compilers, and templates/skeletons. As we do this, we will note

examples of how each of these general techniques is currently being applied in the context of

NN computations. In general, we �nd that, at a high level, all of the possible general approaches

to mapping computation are indeed in use for NN computation with varying degrees of success.

So, conveniently, for the most part we can focus our discussion on work that is speci�c to NN

computation and simultaneously cover most of the space of all approaches for general numerical

computation targeting GPUs.

As we discuss in detail the space of existing systems for NN computations, there are two

recurring motifs:

• Existing approaches o�er high computational e�ciency or portability, but not both.

• Existing approaches with high computational e�ciency have high development costs.

For example, one hardware vendor, NVIDIA, has implemented a very e�cient NN computa-

tion library (cuDNN). However, as we will discuss in Sections 6.2.3 and 6.2.4, the existence of this

single implementation does not address our full set of concerns. Instead, we seek an approach that

combines portability and reasonable computational e�ciency, while maintaining accuracy and

minimizing development costs. Overall, we �nd that none of the existing approaches achieves

this balance that we seek.

5.1 General Approaches to Implementing Computation
In this work, we focus on implementing computations on GPUs. Since GPUs are highly parallel

computational devices, this implies that we are interested in parallel computation. In fact, for

CHAPTER 5. BODA RELATED WORK 77

the computations we consider in this work, serial computation is simply not an option, as the

amount of computation to be performed is impractical without the application of parallelism.

For example, a neural network for image classi�cation, as in our example of Section 1.1.1, can

easily require 90 billion operations per image [76] during training. Modern computer clock rates

are limited to around 5 billion cycles per second [98]. Thus, roughly speaking, a purely serial

computation would require ∼18 seconds per image. Common datasets for image classi�cation

have 1M images [75]. Training a NN generally requires at least 10 passes over such datasets [99].

So, using serial computation would yield a training time of 180M seconds or 5.7 years.

Further, for the most part, we are concerned only with core computations, rather than full

complex pieces of software. Thus, while the space of possible historical and current mapping

strategies for serial and/or complex software is quite large, much of that space is not of signi�cant

concern for our work. For additional background material on the general problem of bridging

the implementation gap between application and hardware, the reader is referred to the work of

Chong [100], Catanzaro [35], and Gonina [101]. In particular, we need only be concerned with

methods that can e�ciently exploit parallelism for the NN operations we consider. Further, since

we do not have a complex system to map, we are less concerned with approaches whose bene�t

is in the management of such complexity.

5.1.1 Compilers (and their Languages)
In general, the lowest level at which hardware can be programmed is with what is called as-
sembly language. At this level, a sequence of very low level instructions is directly and explic-

itly given the to hardware [102]. These operations are at the granularity of moving individual

numbers between storage locations and performing individual mathematical operations between

several numbers. However, even this assembly-language/instruction level can include various

more complex operations, such as those that operate on multiple numbers in parallel. This is one

type of instruction level parallelism (ILP), and includes single-instruction-multiple-date (SIMD),

very-long-instruction-word (VLIW), and other types of instructions. Note that other types of ILP

involve the concurrent execution of multiple instructions. For more details on ILP, the reader is

referred to the work of Rau [103].

While it is tractable to write simple functions in assembly language, it can be very time

consuming, error prone, and lacks portability, leading to overall high development costs [104].

Thus, higher level languages are created to more compactly and conveniently describe compu-

tations [105]. Then, compilers translate these higher level languages to assembly language, pre-

serving the semantics of the computation as described by the programmer [106]. In addition to

preserving semantics, compilers are generally also tasked with �nding optimized mappings that

minimize the time and/or memory consumed by a particular computation [107].

A stack of languages and compilers can be created by employing compilers that map from one

language to another. Over time, some languages have gained special status as a common ground

with which to express computations without reference to any speci�c computer. In particular,

the C language contains primitives that map well to the common data types and operations sup-

ported for all modern hardware [108]. Thus, C can easily describe the semantics of any given

CHAPTER 5. BODA RELATED WORK 78

computation. However, C is an inherently serial language that describes a single sequence of

primitive operations. So, the C description of any given computation only represents one valid
sequence of primitive operations that performs that computation. In general, it is di�cult to map

from the C description of a computation to an e�cient implementation for hardware that can

execute many operations in parallel [109].

For GPU programming, there are two primary languages: OpenCL [110] and CUDA [24]. Both

of these languages use C syntax and semantics to describe primitive computations and data move-

ment. However, unlike C, both OpenCL and CUDA but expose an abstract-but-explicit model of

the parallel capabilities of GPU hardware. Further, also unlike C, they expose details of the seg-

regated and non-homogeneous storage present in GPUs. This allows-and-requires the program-

mer to explicitly manage the parallel and heterogeneous nature of GPU computation and storage.

Unfortunately, OpenCL and CUDA happen to use totally di�erent syntax for these GPU-speci�c

features, rendering them incompatible. However, for basic features, the two programming models

are mostly semantically compatible. But, considering more advanced features, CUDA generally

exposes hardware-speci�c functionality directly, whereas OpenCL (as a rule) hides, abstracts, or

simply ignores it.

OpenCL and CUDA are generally the lowest level of programming language that is recom-

mended for general use by GPU hardware vendors. For a given GPU, an assembly language inter-

face may or may not be provided. But, a key point is that, when compared with OpenCL/CUDA,

GPU assembly language generally does not present a substantially di�erent abstraction of the

underlying GPU hardware. Still, if provided, GPU assembly language typically allows for �ner

control of storage allocation (i.e. for registers), and sometimes exposes particular hardware prim-

itives, limitations, or capabilities that are abstracted away at the OpenCL/CUDA level.

In theory in is possible to create an e�cient general-purpose compiler that maps from serial-

C to OpenCL, CUDA, or GPU assembly language directly. However, currently no general ap-

proaches to this problem achieve good e�ciency for the type of numerical computations we

consider in this work [109].

5.1.2 Libraries
The concept of a library is quite simple. If there is way to clearly de�ne the inputs and outputs

of some operation (i.e. as a function), then this can be used to de�ne an interface boundary. So,

anytime one desires to perform the given operation, one need only call a pre-de�ned function

that matches this interface. A library is simply a collection of such functions delivered in a ready-

to-use form. In general, this means that the user of the function and the creator of the function are

insulated from each other. As long as they agree on the interface, they can each use any methods

they prefer on their side of the interface boundary. In particular, this means they are each free

to use the languages, compilers, and (other) libraries that they prefer. Hence, the term library
can legitimately include a very wide range of approaches. In order to discuss this spectrum of

approaches, we de�ne an axis based on the usage of code generation techniques inside the library

boundary. As one end point, we de�ne a traditional library as a library that does not utilize

code generation in any form. Then, as more techniques are used inside the library boundary,

CHAPTER 5. BODA RELATED WORK 79

such as C++ templates or general metaprogramming (see the following section), we term it a

general library. Eventually, in cases where complex code generation and compilation �ows are

used inside the library boundary, we instead consider such systems as frameworks with a library-
like interface (see the section after the next). However, note that all libraries share the de�ning

characteristic of having a well-de�ned interface to perform speci�c operations. In the context of

NNs, NervanaGPU (Section 5.4.3) is an example of a library for NN computation. However, as

it uses code generation, it does not �t our de�nition of a traditional library. In fact, it is worth

noting that there are no e�cient NN libraries that �t our de�nition of a traditional library. This

is not too surprising, since we use the notion of a traditional library to de�ne the extreme end of

a spectrum. However, since traditional libraries are, perhaps, the most common type of library

in general usage (i.e. at a broader scope than numerical computing for GPUs), this point is still

noteworthy.

5.1.3 Templates/Skeletons
In the basic case, a library function takes some speci�c concrete types of data as input, performs

some �xed operation over the input, and returns some �xed type of data as output. For example, a

matrix-matrix multiplication function might take two 2D-Arrays of 32-bit �oating point numbers

(of any valid sizes) as input, multiply them, and return a 2D Array of 32-bit �oating point numbers

as a result. In order to enhance the performance of the library model in cases where the data types

or operation are not �xed, various techniques can be used. One common technique is known as

templates, or sometimes historically as skeletons. In general, the idea is that some elements of

the implementation and/or interface of a library function become meta-level input parameters

to the function. Because it employs parameters-about-parameters and code-that-generates-code,

this technique falls into the general category of metaprogramming [43]. For example, a matrix-

matrix multiplication function might use a meta-parameter to set the bit-width and type (�oating

or �xed point) of numbers that it uses for input and output. Or, a sorting function might take

a snippet of C-code as a string parameter that represents the desired comparison semantics for

the sort. In general, the usage of such parameters will require that the function be compiled for

each set of meta-parameters. This can be accomplished either by pre-compilation of all desired

cases (i.e. to produce a �xed library of functions), by compilation at the time when the code that

calls the function is compiled (e.g. C++ templates), or at runtime when the call to the function

is executed (e.g. runtime compilation in metaprogramming-based libraries and frameworks). For

NN computation, the convolution implementation inside cuda-convnet2 [111] (see Section 5.3.5)

is a good example of an archetypal template-based approach, using C++ templates and CUDA. We

will discuss metaprogramming in more detail in the context of our Boda framework in Section 6.3.

Also, we will speci�cally discuss C++ templates in more detail in Section 6.3.6, in the context of

a direct comparison with our approach.

CHAPTER 5. BODA RELATED WORK 80

5.1.4 Frameworks
Framework is a general catch-all term for approaches that don’t neatly �t into the above cate-

gories. One common class of frameworks are those that implement a particular style of input in-

terface called a domain speci�c language orDSL. DSLs are languages that attempt to allow the easy

expression of computations associated with speci�c application areas. For example, SQL [112] is

a DSL for database operations, and HTML [113] is a DSL for web-page speci�cation. For NNs,

rather than one speci�c DSL with agreed syntax and semantics, compute graphs (serialized in

various semi-compatible forms) serve the same role as DSLs do in other domains. Frameworks

associated with DSLs are typically vertical: they take programs in the DSL as input, and then

produce the output of running the program as output, without any intermediate steps.

Often, however, the boundary between the DSL and the framework itself is somewhat blurry,

and some classes of user are intended to modify the framework, and perhaps the DSL, in the

course of normal usage. A lack of �xed, clear, or traditional interface boundaries, combined with

spanning vertically from DSL to execution, is typical of such approaches. Together, these are

important reasons to distinguish them from more modular and/or self-contained compilers, lan-

guages, and libraries. The SEJITS[114] family of frameworks are typical examples of this vertical-

framework approach. In particular, Latte (see Section 5.5.2) is an example of a SEJITS-style frame-

work for NN computations.

More broadly, there are a wide variety of frameworks for NN computation, with di�erent

scopes and approaches. Some are examples of DSL-based frameworks, such as Ca�e and cuda-

convnet. Some of these have their own implementation of the needed operations (such as cuda-

convnet), but most use libraries for the actual NN computations. Other frameworks have wider

scope, and attempt to address a broad set of work�ows for machine learning, such as TensorFlow,

Torch, and Theano. We will discuss all these in detail in Section 5.3.

5.1.5 Note on Autotuners
Typi�ed by projects such as OpenTuner [115], autotuners are a general tool for optimization. In

general, an implementation of some computation may have tuning parameters. These are param-

eters that impact e�ciency, but where optimal or good values are not known, so they cannot

be �xed. Generally, either the space of tuning parameter values is too large to manually search

over, or the optimal values may di�er depending on hardware target or input classes that can not

be anticipated during implementation. In such cases, an autotuner can be used to automatically

explore the space of tuning parameters and select good values. We mention autotuners here to

be clear that, like compiler optimizations, we view them as an important piece of any approach

to implementing e�cient computation. So, we would expect that any solution for e�cient NN

computation might bene�t from using this general approach. However, as with DSLs, the there is

no single autotuner that is suitable all tasks. Projects like OpenTuner attempt to gather multiple

approaches to autotuning together, to encourage reuse. Considering the cases where details are

public, autotuners are not used in current implementations of NN computations. So, it seems

that an exploration of using autotuners for NN computation is needed. However, this �rst re-

CHAPTER 5. BODA RELATED WORK 81

quires some approach to NN computation where autotuning is applicable, as autotuners are not

in themselves a method for implementing computations.

5.2 Existing Flows for NN Computations
For surveying existing approaches to NN computation, a good starting place is to consider gen-

eral frameworks for machine learning. These frameworks generally form the top level of the

abstraction stack, at least for research use cases. For each framework, we will consider both:

• The degree to which the framework’s current support for NN computation meets our re-

quirements.

• If the framework generally enables accurate, e�cient, portable, productive development of

NN operations.

That is, we must consider both if each framework has already achieved the end goal of portable,

e�cient NN computations, but also we must consider if it is suitable for the development such op-
erations in the �rst place. We will consider the second point on a case-by-case basis. For the

�rst point, however, there is a general common pattern. When frameworks support native (i.e.

implemented inside the framework) NN computations, these implementations generally lack ef-

�ciency. So, typically, current frameworks delegate e�cient computation of NN computations to

libraries.

Hence, libraries for NN computation, in their various forms, are the second general area of

related work we consider. While such libraries may be quite e�cient, they generally su�er from

high development costs and low portability. Due to the variation across the di�erent library

approaches, we will consider the speci�c details of each library on a case-by-case basis.

Finally, the last overall category of approaches to consider are compilers or compiler-like ap-

proaches. In general, NN computations are easy to express in high level languages. So, it would

be ideal to be able to take high-level, programmatic descriptions of NN operations and create

e�cient low-level implementations directly. In many ways, the di�erence between the library

and compiler approaches to computation can be more philosophical or stylistic than practical.

Typically, we consider an approach compiler-like if it has certain properties:

• If it aspires to generality, in particular by using simple code in a general programming

language to specify the semantics of operations.

• If it uses standard compiler frameworks (e.g. LLVM), techniques (e.g. syntax directed trans-

lation and optimization passes), and abstractions (e.g. internal representations or IRs) as

building blocks.

In general, note that there may be no clear line between these various categories of approaches,

and this is true in particular of compilers, compiler-like frameworks, and libraries that make use

of compiler-like techniques.

CHAPTER 5. BODA RELATED WORK 82

5.3 Frameworks for Machine Learning
As of early 2017, there are a large number of active, popular machine learning frameworks. Fur-

ther, if we consider lesser known, less active, or defunct frameworks, the number is even larger.

However, as stated, machine learning frameworks generally do not focus on having e�cient inter-

nal implementations of NN operations, nor do they focus on the development of such operations.

Here, we focus on a selection of frameworks that o�er novel combinations of features in regard

to the development of implementations of NN computations.

5.3.1 TensorFlow
Released in late 2015, TensorFlow [40] is a relatively recent but increasing popular brand of

machine-learning software from Google. According to the 40-author whitepaper from 2016: “Ten-

sorFlow is an interface for expressing machine learning algorithms, and an implementation for

executing such algorithms.” To further elaborate on this, the documentation states: “TensorFlow

programs are usually structured into a construction phase, that assembles a graph, and an ex-

ecution phase that uses a session to execute ops in the graph.” The graph referred to here is a

compute graph as introduced in Section 4.1.3. In summary, TensorFlow de�nes a format for com-

pute graphs suitable for expressing machine learning algorithms, and also for executing them. At

a high level, this is similar to other machine learning frameworks. Generally, the key goal of such

frameworks is to enable machine learning researchers to operate productively. So, speed is an

important concern, but portability is less so, since researchers are generally free to choose their

hardware platform. Thus, like most other current machine-learning frameworks, it is no surprise

that TensorFlow primarily supports NVIDIA as their platform, and uses NVIDIA’s cuDNN [33]

library for performing NN computations. TensorFlow also supports using Google’s cloud infras-

tructure for various use cases. However, beyond supporting mixes of CPUs and GPUs, details of

what hardware and software can used in this case are scant.

As mentioned, the TensorFlow branding is applied to many related projects at Google, and

this makes it di�cult and perhaps misleading to discuss TensorFlow as if it was a single project.

Here, we discuss several of these.

5.3.1.1 Google Tensor Processing Unit (TPU)

Google claims to have developed a custom accelerator for neural network computations that it

calls the Google Tensor Processing Unit or TPU. Speci�c details on the properties and capabilities

of the TPU are not available. However, Google claims that the TPU provides much better NN

computing throughput per Watt than alternatives such as GPUs. Based on the minimal released

information, one might speculate that a single TPU, for certain use cases, provides similar NN

compute throughput to that of a ∼400W NVIDIA GPU, with some unknown (but claimed to be

as much as 10X) savings in power. The support for using TPUs in TensorFlow is not released,

though, so we can only speculate on the software development methods and costs of TPUs. Given

CHAPTER 5. BODA RELATED WORK 83

that both TPU hardware and software are only available to a single company (Google), portability

is a signi�cant concern with respect to the usage of TPUs.

5.3.1.2 Google Accelerated Linear Algebra (XLA)

By default, TensorFlow executes compute graphs primarily by calling various external library

functions for each function node in the graph. However, TensorFlow provides a new experimen-

tal (labeled as alpha-quality) approach to execute compute graphs. This project is called Google
Accelerated Linear Algebra, or XLA. In summary, XLA inserts a compiler between the compute

graph and execution. Based on the description and stated goals of XLA, it clearly appears to fall

in the category of compiler-like approaches. The stated goals of XLA are to perform graph level

optimizations, including specializing computations for particular graph instances. Also, it wishes

to handle the general case of e�ciently executing complex operations speci�ed as the combina-

tion of many simple primitives. For example, consider the case where a convolution is implicitly

speci�ed using multiplies and adds (i.e. the graph equivalent of a C-nested-loop convolution).

XLA envisions that this graph could be executed as e�ciently as when the convolution is speci-

�ed as a single monolithic high-level operation. However, achieving this in general (as opposed

to just using graph-pattern-matching to recognize speci�c high-level operations) would seem to

require solving the general problem of parallel compilation for GPUs.

Concrete released work using XLA to actually implement e�cient NN computations on GPUs

in any form seems to be nascent or non-existent. Currently, XLA just calls out to cuDNN to

perform NN convolutions on GPUs, similar to the �ow in non-XLA TensorFlow graph execution.

That is, XLA does not yet seem to have actual implementations of either:

• the idea of specialized per-graph convolutions, or

• the idea of e�ciently executing NN convolutions speci�ed using compositions of low-level

primitives.

Further, while some documentation discusses portability to various platforms as a goal, it

appears that XLA currently only supports NVIDIA GPUs using CUDA as a backend language. So,

while XLA promises to support the sort of implementation work we are interested in, it is very

di�cult to judge if it could actually be used to productively, e�ciently, and correctly perform

such development. Given that XLA is highly complex and embedded in TensorFlow, it certainly

does not seem to be a project focused on enabling development, but rather on speeding up end-

usage once suitable compiler technology for executing NN operations on GPUs is (somehow)

developed.

Considered from another view, XLA is actually very complimentary to, rather than competing

with, any work that �nds ways to e�ciently implement NN convolutions on various targets.

The interface that XLA creates between the compute graph and execution is a good match for a

variety of complex, compiler-like techniques that operate on compute graphs. Thus, XLA enables

integration of such techniques into TensorFlow, regardless of how they are developed, allowing

CHAPTER 5. BODA RELATED WORK 84

their use by the entire TensorFlow ecosystem. As eluded to in Google’s stated motivation for

releasing XLA in such an early state, it is perhaps for just this reason that XLA exists.

5.3.2 Ca�e
Ca�e [39] was one of the earliest machine learning frameworks with a focus on using GPUs for

NN computations. It was derived from the earlier cuda-convnet [30] framework with additional

features and user interface enhancements. Both cuda-convnet and Ca�e can perform CNN con-

volutions internally by leveraging NVIDIA’s cuBLAS [22] matrix math (BLAS) library.

However, this BLAS-based approach to NN convolution limits achievable e�ciency in several

ways:

• It does not reuse input data for adjacent output pixels whose input windows overlap.

• It sometimes requires expensive input and output transformations to convert 4D-Arrays

into 2D matrices.

• It does not allow fusion of an activation function with the convolution operation.

Additionally, the underlying BLAS matrix-matrix multiply function(s) may not be well optimized

for the problem sizes required. Finally, other higher-level optimizations for convolutions, such as

Winograd convolution [116], require monolithic implementations and cannot leverage existing

BLAS kernels at all.

Ca�e’s original implementation of NN operations (including convolution) using BLAS primi-

tives is not substantially di�erent from that in the cuda-convnet code from which it was derived.

Some amount of custom GPU programming is required to implement the data format conversions

needed for convolution, as well as to implement the other various NN operations with reason-

able e�ciently. However, overall, the amount of high-e�ciency GPU programming required for

Ca�e was limited. And, it was implemented by machine learning researchers with an eye to-

ward an expedient solution to their current problems. Overall, Ca�e is not designed to aid in the

implementation of NN computations, but just to use them.

In current common usage, Ca�e now uses the cuDNN library to perform computationally

expensive NN operations such as convolutions, rather than its own internal implementation. In

fact, Ca�e was the motivation for (and initial use case of) the cuDNN library.

5.3.3 Nervana Neon
The Neon framework was released in mid 2015 as a general purpose machine learning framework

with a focus on high performance for NVIDIA GPUs. Thus, it was unique among frameworks

in that it not only implemented the core computations of neural networks itself, but was able

to compete with and surpass the performance of NVIDIA’s vendor libraries. Note that the NN

computation part of Neon consists of a library called NevranaGPU [41] that was originally inde-

pendent but was later folded into Neon. We will discuss this library in more detail in Section 5.4

CHAPTER 5. BODA RELATED WORK 85

below. However, as a framework, Neon had no particular support for NN computation or de-

velopment of NN operations itself. It should also be noted that Nervana Systems, the company

that developed Neon, was acquired by Intel in 2016-09. Around that time, the key developer of

NervanaGPU left the company, and little development on NervanaGPU or Neon has occurred

since.

5.3.4 Theano
The Theano [117] framework predates the modern rise of neural networks. The authors of

Theano describe it as a Python library for de�ning, optimizing, and e�ciently evaluating math-

ematical expressions involving multi-dimensional arrays. However, for executing NN computa-

tions on GPUs, Theano functions similarly to other compute-graph based frameworks. In partic-

ular, in standard practice, NN convolutions are handled by calling cuDNN functions. At a high

level, Theano seems like a potentially reasonable platform to input high-level descriptions of NN

operations and then generate e�cient GPU code. However, currently, it appears that Theano

does not o�er any speci�c support for either implementing NN computations or for creating ef-

�cient GPU code. Also, Theano’s support for GPUs is focused on using CUDA to target NVIDIA

hardware, with only limited experimental support for OpenCL. So, despite Theano having the

sort of high-level �ow from application to hardware that we would desire, there appears to be

little advantage in using Theano as a starting point for implementing e�cient, portable NN com-

putations.

5.3.5 Other Frameworks
MXNet is a second-generation machine learning framework from the authors of the prior CXXNET,

Minerva, and Purine frameworks [118]. Recently, MXNet has gained attention due to its adop-

tion by Amazon as a preferred framework. At a high level, it is a compute-graph based machine

learning framework similar to TensorFlow and others. Like Ca�e, it has a BLAS-based inter-

nal implementation of convolution. But, again as is common, the standard use model assumes

NVIDIA hardware and defers to the cuDNN library to perform e�cient convolutions for GPUs.

Keras [119] is popular framework that operates as a wrapper on top of TensorFlow, Theano,

and MXNET. It has no speci�c features related to low-level NN Computation.

Microsoft CNTK is another general-purpose machine learning framework [120]. In particular,

they claim better support for distributed processing (using multiple systems with multiple GPUs

each) in their released, public code as compared to other frameworks. However, in terms of NN

computation, CNTK provides only an ine�cient internal reference implementation using BLAS,

and then defers to cuDNN for e�cient computation.

The Torch [83] framework focuses on combining a lua-based frontend with a C/CUDA back-

end. It also places emphasis on a collaborative development model and a large library of primitive

operations. For NN operations, it employs an abstraction layer, where a broad set of NN opera-

tions is de�ned, and then these can be implemented by any number of independent backends. In

CHAPTER 5. BODA RELATED WORK 86

particular, bindings for cuDNN are provided, as well as an implementation based on BLAS prim-

itives, which in turn can be provided by various libraries. Given this library-interface approach,

the Torch framework somewhat distances itself from the details of implementing e�cient NN

computations. Instead, it presents a clear interface that describes the operations that it needs,

and relies on the separate development of libraries that meet this interface. Later, in Section 5.4,

we will discuss one particular torch-based library for NN computations that is of direct interest:

cltorch [121]. Related to torch, the DXTK [122] framework provides a wrapper for torch that can

be used on android-based mobile platforms. DXTK focuses on various optimizations and trans-

formations of NNs, but simply defers to Torch for the execution of NNs themselves. In turn, Torch

(when running on android) uses a BLAS-library-based approach, yielding limited performance,

especially if no e�cient BLAS library is available for the given hardware target.

As a successor to cuda-convnet, cuda-convnet2 [111] contains a custom CUDA implemen-

tation of NN convolution that does not require BLAS, and o�ers substantial improvements in

performance over the original cuda-convnet’s BLAS-based approach. Additionally, it serves as

a vehicle to demonstrate certain techniques for speeding up training for certain classes of NNs

for computer vision. The implementation of convolution in cuda-convnet2 speci�cally targets

particular versions of NVIDIA hardware (Kepler) that were common in the 2012-2014 timeframe.

Further, the code is complex, poorly documented, and has not been signi�cantly updated since

mid 2014. Thus, while it is an open codebase with reasonable performance, it is di�cult to extend,

and it shares similar portability issues as compared to NVIDIA’s vendor libraries.

5.4 Libraries

5.4.1 BLAS Libraries
NN Convolution can implemented on top of Basic Linear Algebra Subroutines (BLAS) library

calls. Here, we brie�y note some of the most common such BLAS library implementations for

GPUs. The NVIDIA vendor BLAS library is cuBLAS [22]. It currently o�ers near-theoretical-peak

performance on current NVIDIA hardware. However, it has taken a large amount of developer

e�ort to create and maintain, and has also required key contributions from the research com-

munity [34] to reach its current levels of performance. The OpenCL-based clBLAS [32] library

is supported by AMD and primarily targets AMD GPUs. The MAGMA [123] open-source BLAS

library targets GPUs using both CUDA and OpenCL. Note that, with the exception of cuBLAS

where implementation details are not public, all these libraries uses metaprogramming, ranging

from C++ templates in Magma to string-based code generation in clBLAS.

5.4.2 cuDNN
NVIDIA’s popular cuDNN [33] library achieves much higher e�ciency than BLAS-based ap-

proaches [27]. In particular, it achieves close to (>90% of) the peak computational rate supported

by NVIDIA’s current Maxwell and Pascal generations of hardware. But, it is closed-source and

CHAPTER 5. BODA RELATED WORK 87

limited to NVIDIA hardware. Thus, it is not extensible to support new operations or to target

other hardware platforms. Further, the development of cuDNN was extremely expensive and

time consuming. Anecdotally, developing cuDNN required a large amount of engineering e�ort

by a team of specialized programmers, perhaps in total more than 15 sta�-years to date.

Still, it forms a good baseline for speed comparisons. Matching the speed of cuDNN may be

very di�cult, and not necessary for many applications. However, the quality of any implemen-

tation that cannot o�er speed that is at least reasonably competitive with cuDNN is suspect. Al-

though details are not public, anecdotally, cuDNN has used C++ templates for metaprogramming

in the past, and presumably either continues to do so or uses other metaprogramming techniques.

5.4.3 Neon/NervanaGPU
With similar performance to cuDNN, a more open family of libraries based on an assembly-

language-level metaprogramming �ow is embodied in Nervana System’s “Neon” framework [124] [42].

However, as with cuDNN, this approach is limited to NVIDIA hardware. One key advantage of

NervanaGPU is that the code is open source. However, it uses a Perl-based metaprogramming

system to generate low-level GPU assembly code for a custom-written, uno�cial/unsupported

GPU assembler. This extreme approach, while perhaps necessary to match the performance of

cuDNN, creates signi�cant hurdles to extending this approach for new operations or platforms.

5.4.4 Greentea LibDNN and cltorch
All of the above machine learning frameworks currently focus on NVIDIA hardware as the pri-

mary/default target, using the CUDA language and/or NVIDIA libraries. Recognizing the value of

portability, there have been several attempts to enable e�cient NN computations on other plat-

forms. In particular, there are two projects that derive from early e�orts to add OpenCL support

to the Ca�e framework: Greentea LibDNN [125] and cltorch [121]. Both projects originally used

BLAS-based approaches, but both have moved toward metaprogramming-based special-purpose

code generation for NN operations. These e�orts have seen some level of success in target-

ing AMD GPUs, which are the main type of alternate hardware that is generally considered for

general-purpose use in machine learning. The overall e�ciency of these approaches is still cur-

rently relatively low, although it is unclear if this is due to the quality of the implementations

or to more fundamental limitations of AMD GPUs with respect to implementing NN convolu-

tions. However, since OpenCL can also target NVIDIA GPUs, we can consider the performance

of these approaches on NVIDIA hardware as well. Based on published results [121] [27], cltorch

and Greentea do not appear to be currently competitive with cuDNN on NVIDIA platforms. So,

either these approaches are not portable between AMD and NVIDIA, or the overall quality of the

implementations is not high. Also, it appears that neither project currently attempts to support

mobile GPUs, which is a key type of target to consider for future applications of neural networks.

In general, despite the use of the potentially-cross-platform OpenCL language, each project seems

focused on e�ciency only for a single target: AMD GPUs.

CHAPTER 5. BODA RELATED WORK 88

In terms of general approach, neither project o�ers any overall framework to support their

development. That is, both are independent libraries which rely on a hosting machine learning

framework (Ca�e and Torch respectively) for testing and development. While both include some

limited internal unit testing, they are not capable of independent autotuning or testing based on a

full machine learning �ow. And, as neither Ca�e nor Torch is designed to aid in such development,

this development methodology impedes exploration of the full design space for NN operations.

In particular, it is di�cult to experiment with autotuning and graph-level optimizations in the

context of Ca�e or Torch.

5.5 Compiler-like Approaches

5.5.1 Halide
The Halide [126] project describes itself as a “language designed to make it easier to write high-

performance image processing code on modern machines.” Halide targets a broad set of opera-

tions, pipelines, and hardware platforms. In general, Halide appears to focus more on issues of

fusing and scheduling multiple operations at the level of compute graphs, rather than focusing

on optimization of individual operations. One key element of Halide’s approach is to separate the

semantics of what is to be computed from the scheduling of that computation. This recognizes

the fact that scheduling of operations and data movement is perhaps the most challenging aspect

of creating high e�ciency implementations of numerical computations for modern computers.

Currently, usage of Halide for implementing NN operations seems to be at an early stage,

and absolute performance results on GPUs do not seem to be competitive with purpose-built

libraries. In particular, in 2016, e�orts were made to automatically schedule operations using

Halide, including a few cases of NN calculations [127]. One of the two NN cases benchmarked in

that work is the deployment calculations for the VGG16(D) NN [76] for a batch of 4 images.

For this benchmark, results for running on GPUs are reported for three cases:

• a baseline case, described as what might be written by a novice Halide programmer,

• a manually-optimized-by-an-expert case, and

• a automatically-scheduled case.

Oddly, in this case, manual scheduling did not achieve gains over the baseline case runtime of 5s.

Automatic scheduling showed modest gains over manual scheduling, yielding a runtime of 3.8s.

This calculation requires ∼120GF and was run on an NVIDIA K40 with a peak compute rate of

4.3TF/s. So, we can calculate that the fastest result of 120GF/3.8s corresponds to a compute rate

of 32GF/s. This represents an absolute e�ciency of <1%.

However, the general techniques for at least modestly e�cient (i.e. >= 10%) GPU implemen-

tations of NN convolutions using direct convolution (i.e. not using a BLAS library) are well

known [124] and not too di�cult to implement for a skilled GPU programmer. So, we specu-

late that:

CHAPTER 5. BODA RELATED WORK 89

• Even for an expert-Halide-scheduler, the abstractions of Halide somehow make it di�cult

to exercise the needed level of control over data movement and computation to achieve an

e�cient implementation of convolution.

• Automated techniques, at least in the context of Halide, are also not able to match the

performance of skilled GPU programmers.

This suggests Halide is not currently well suited for developing or optimizing NN calculations

for GPUs, either manually or automatically. However, as was the case with TensorFlow XLA,

it may be quite reasonable to integrate any discovered techniques for implementing e�cient

convolutions into Halide, where they may well be more generally useful.

5.5.2 Latte
Another compiler-style approach, Latte [128], also focuses on front-end generality and the ability

to support arbitrary NN code. However, it mainly targets Intel CPUs and accelerators, as opposed

to the more popular GPU platforms. Thus, the portability of the approach to a variety of plat-

forms, such as mobile GPUs and others, is questionable. Overall, Latte seems intended more as a

black-box solution for NN computations, rather than a framework for exploring and producing

such implementations in the �rst place. Thus, like XLA and Halide, it may be a natural place to

embed various techniques for creating e�cient implementations of NN operations, but it is not

focused on the initial development such techniques.

90

Chapter 6

Implementing E�cient NN
Computations : The Boda Framework

6.1 Introduction to Boda
As discussed in Chapter 5, our research trajectory led us to consider the issue of implementing

low-level neural network computations. To summarize, NN operations are both important and

highly compute intensive, and thus are a well motivated area to study that was a good �t for

our research agenda. In particular, after surveying the related work while considering all our

key concerns, we isolated a middle ground on the productivity-e�ciency axis as under-served

by existing approaches. Further, we felt that, going forward, portability and high development

costs would be key limiting issues for practical deployment of NN based technology (see Sec-

tion 1.2.3), and thus key concerns to address. So, we made it our goal to carve out a rectangle

at that point on the productivity-e�ciency Pareto frontier (see Figure 6.1). Or, to restate: our

goal was to enable the productive creation of e�cient, portable, accurate implementations of NN

computations. But, there was clearly risk in this endeavor. To sum up our key questions from

Section 1.1.7: without too much compromise on e�ciency, can we address our concerns of porta-

bility and development cost? That is, any implementation of NN computations we might create

would also need to have reasonable speed and energy usage, limiting our ability to compromise

on computational e�ciency in pursuit of portability and productivity. GPU programming is dif-

�cult, and achieving high e�ciency for the wide space input sizes for NN operations was surely

a large task [29] [24](see Section 1.1.7). Further, it would be important to maintain accuracy

throughout the development process. And, as we had learned, current NN frameworks were not

designed to aid in such implementation e�orts (see Section 5.3). In this chapter, we present our

e�orts to address our concerns, and, in doing so, to answer our key research questions.

Our practical starting point was the prototype framework we had developed as part of our

DenseNet e�ort (see Chapter 3). This prototype already had some support for the type of full-�ow

(vertical) development cycle we desired: it could read inputs, execute a NN (using an external

NN framework), and compare the correctness of the outputs. So, our plan was to add support

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 91

Increasing Computational Efficiency

D
ec

re
as

in
g

D
ev

el
op

m
en

t T
im

e

50%

Months

Years

25%

Days

100%

Boda

BLAS

cuDNN

Existing Approaches

Our Claimed Area

Development Time / Computational Efficiency Pareto Frontier

Figure 6.1: Position of Boda in productivity/e�ciency space.

for using our own implementation of NN computations to the framework, while preserving the

ability to use other frameworks as references for testing. For our approach to the implementation

itself, we speci�cally did not plan to address the general problems of parallel programming, such

as language and compiler design. We instead chose the more pragmatic approach of layering

over existing languages and compilers that are available on the platforms we target. While the

semantics of NN operations are generally easy to express in a few lines of code in any language,

e�cient implementations for GPUs, such as cuDNN, require many programmer-years of e�ort

(see Section 5.4.2). In our framework, we propose and provide one alternative method to develop

such implementations. We employ a vertical approach spanning from application to hardware.

Further, we leverage the key technique of metaprogramming [43] (see Section 1.4) in order to

magnify developer e�ort. We show that our approach to such development represents a novel

tradeo� among portability, speed, and productivity.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 92

The rest of this chapter is organized as follows: In Section 6.2, we brie�y review some back-

ground on NN operations and ND-Arrays (see Chapter 4 for more details) and motivate our ap-

proach. Then, in Section 6.3 we introduce the Boda framework. We explain our general devel-

opment methodology as well as our proof-of-concept implementation of a set of NN deployment

computations. In Section 6.4, we present experimental results highlighting the novel tradeo� we

achieve among the concerns of portability, speed, and development productivity. In Section 6.5,

we highlight some key features of Boda’s support for regressing testing, which is key to maintain-

ing accuracy when implementing computations. In Section 6.6, we analyze the productivity of

Boda using its development history. Finally, we discuss our conclusions on the Boda framework

in Section 6.7.

6.2 Boda Background and Motivation
Neural networks (NNs) have recently enhanced predictive power in many di�erent machine

learning applications. Convolutional neural networks (CNNs) are NNs which make heavy use

of 2D convolutions over multi-channel 2D images. CNNs have been quite successful in many

computer vision applications such as object detection [5] and video classi�cation [6]. Motivated

by this, the proof-of-concept NN operations we choose to implement using Boda are drawn

from three common CNNs: “AlexNet” [30], “Network-in-Network” [129], and the �rst version

of Google’s “Inception” network [130].

In addition to convolutions, CNNs commonly contain other operations such as pooling and

nonlinear activation functions (see Section 4.3 for details on all three classes of operations). How-

ever, for CNNs, convolution operations typically constitute >90% of the total computation time.

For example, using our framework, we can measure that convolutions and their associated data

transformation operations take >97% [131] of the runtime for executing a 5 image batch with the

“Network-in-Network” [129] NN. Of course, note that the relative contributions of pooling and

convolution will vary depending on how e�ciently they are each implemented. But, intuitively,

convolutions require many operations (100s to 1000s or more) to produce a single output pixel,

as each output pixel depends on all input pixels across all input channels within a convolution

kernel-sized window of the input. In contrast, activation functions typically are applied element-

wise, and require only one or a few operations per output pixel. Similarly, the most common

type of pooling, spatial max-pooling, typically has a small window (often 3×3) and operates per-

channel, thus requiring only a few operations (∼9 for the 3×3 case) per output pixel. Though

they require little computation, activation and pooling still may require some care to implement

e�ciently, especially with regard to their memory access.

But, in particular, if one:

• considers fully-connected layers to be a special case of convolution (as mentioned in Sec-

tion 3.5.3.1), and

• assumes activation functions will be grouped/fused with the convolution opertation they

follow.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 93

Input
3-channel (RGB)
(227x227)

Output
96-channel
(55x55)

96 Filters, each:
3-channel (11x11)

Data
3x227x227

Conv1_filts
96x3x11x11

output
96x55x55

Conv+ReLU
stride=4
pad=0

Figure 6.2: An illustration of a typical NN convolution (left) and the corresponding compute graph

fragment (right).

Then, common CNNs consist of only pooling and fused convolution/activation functions. Further,

computationally, pooling can be viewed as a signi�cantly simpli�ed version of convolution: it

operates channel-wise and has no �lters to load. So, in research and practice, the assumtion that

convolution dominates the computation for CNNs is common and non-controversial.

In our discussion, we focus on convolution operations, as they are the most challenging op-

erations to implement. However, note that we do implement all the operations necessary for

deployment of our three considered CNNs, including the pooling and activation operations.

ND-Arrays, or collections of numbers with N indices (sometimes also called N-D Matrices

or tensors), are the main data type used for CNN computations. See Section 4.2 for more de-

tails, but we here we brie�y review the salient points. In particular, the input image, the �ltered

images produced by each layer (and fed as input to the next layer), and the �lters themselves

are all ND-Arrays. That is, each layer of convolutions in a CNN can be de�ned as the function

output=conv(input,�lters), where output, input and �lters are all ND-Arrays. The left side of Fig-

ure 6.2 shows an example of a single convolutional layer with 96 �lters applied to an input of a

single multi-channel (RGB) image with 3 dimensions for image width, image height and channels.

We can express this compactly saying the dimensions of the image are X×Y×C = 227×227×3.

Here, X, Y, and C name the dimensions (width, height, and channels), and 227, 227, and 3 are the

concrete sizes of those dimensions. Each �lter has size 11×11×3, and is slid over the input with a

spatial stride of 4. Thus, output has size 55×55×96 (see Section 3.5.3.1 for details of padding and

stride issues). Each output value of the convolution is the result of a dot (element-wise) product

between one of the 96 (11×11×3) �lters and an 11×11×3 (11×11 pixels, using all 3 channels for

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 94

each pixel) region of the input image.

6.2.1 Problem Statement and Motivation
Convolution, as used in neural networks, has simple-to-express semantics in languages such as

C. Here, we show simple C-pseudocode for a NN convolution layer (with no padding and a spatial

stride of 1) applied to a single image (note: processing a batch of images would simply add an

output loop over images-per-batch):

// the first 3 loop nests iterate over all output pixels
for(out_chan = 0; out_chan < out_chan_size; ++out_chan) {
for(out_y = 0; out_y < out_y_size; ++out_y) {
for(out_x = 0; out_x < out_x_size; ++out_x) {

// the remaining 3 loop nests calculate the dot-product for a single output pixel
out[out_chan][out_y][out_x] = 0;
for(in_chan = 0; in_chan < in_chan_size; ++in_chan) {
// wind_x_sz and wind_y_sz are the filter/kernel window size, typically 1, 3, or 5
for(wind_x = 0; wind_x < wind_x_sz; ++wind_x) {
for(wind_y = 0; wind_y < wind_y_sz; ++wind_y) {

out[out_chan][out_y][out_x] +=
filters[out_chan][in_chan][wind_y][wind_x] *
in[in_chan][out_y+wind_y][out_x+wind_x];

}}}}}}

However, consistent with implementing other numerical operations on GPUs [28], naive imple-

mentations yield less than 5% e�ciency. Further, e�cient implementations that work across the

needed wide ranges of input sizes currently take years to develop, as discussed in Section 5.4.

Further, discussions with NN library developers and inspections of released documentation sug-

gest that such e�orts invariably involve both low level programming and a signi�cant degree of

metaprogramming [124] [33]. Thus, rather than try to shield the programmer from such issues,

we embrace both metaprogramming and direct, low-level programming in our approach, and

attempt to make both activities as productive as possible.

Ideally, a programmer could express NN operations such as convolution in a simple form,

such as the above set of six nested loops, in the language of their choice. Then, the compiler (or

entire development toolchain) would create or provide an e�cient implementation for the target

platform. However, this has always been an elusive goal for numerical computing in general.

At best, it simply shifts the fundamental implementation problems from the end developer to

the developer of the toolchain. At worst, it adds substantial new problems, since the toolchain

must solve a much more general problem than that of implementing a speci�c, known operation.

In general, the details of parallel languages, programming, and compiler design are beyond the

scope of this work. However, for background the reader is invited to consider the simpler, but

related history of matrix-matrix multiplication. A reasonable starting point is the work by Volkov

in tuning linear algebra for GPUs [34]. But, the relevant point here is that creating high-e�ciency

GPU implementations of numerical operations is no simple task. Many algorithmic and imple-

mentation issues must be considered, and a wide design space must be explored. In the end, the

result of such work may be packaged in many forms: libraries, frameworks, languages, or com-

pilers. However, in this work, we are particularly concerned with what must happen before such

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 95

packaging can occur. That is, one of our key goals is to enable the initial algorithmic work and

exploration required to create e�cient implementations. To summarize, let us say one believes

that a compiler or language should handle some general case of creating e�cient numerical code

for some platform. However, in that case, it is still a prerequisite that it is known how to create

e�cient code for such operations for the given platform in the �rst place; Boda is a framework

designed to aid in that process.

That said, we note that, after an implementation is created, we are also concerned with de-

ployment for both research and practical use. Our vertical approach and focus on portability are

natural enablers for easy deployment. In particular, as required by our development approach,

Boda can be used to run Boda-created implementations inside full �ows (as used for testing and

development) on multiple platforms without additional dependencies.

Now, with the above intuition in mind, we state our high-level task more generally and for-

mally: Given a NN and its inputs, e�ciently compute its outputs. Recall from Section 4.1.3 that

we can de�ne a NN as a directed acyclic compute graph of (stateless) functions and ND-Arrays.

Figure 6.2 shows an example of a convolution operation and its corresponding compute graph

fragment. We term the process of converting from some description of a NN to the corresponding

compute graph the NN front-end. In this work, as we are focused on the implementation of core

computations, we are NN front-end neutral; as long as a suitable compute graph can be produced,

any NN front-end can be used with our approach. Further, as mentioned earlier, while there are

various operations in the compute graph, convolution is the most computationally challenging.

So, much of our discussion here will focus on the details of implementing convolution.

After convolution, the next most complex operation we consider is pooling (see Section 4.3

for a detailed description of pooling). Compared to convolution, pooling is relatively simple,

not computationally intensive, and does not require signi�cant additional implementation e�ort

beyond what is already needed for convolution. In particular, the performance of pooling is gen-

erally limited by memory access to its inputs and outputs, rather than by computation. We �nd

that, conveniently, the access pattern of pooling is reasonably e�ciently handled by the compiler

and hardware without signi�cant manual e�ort. While optimizations are no doubt possible, the

low overall contribution of pooling to total application runtime made optimization of pooling a

lower priority. While we still leverage specialization over the pooling window size, we were able

use a single version of our pooling code across all input sizes and hardware targets without issue.

The �nal broad category of operations, activation functions, are purely memory bound and

operate element-wise. Their standalone implementations are trivial, but one key optimization is

fusing them into preceding operations, and thus avoiding memory access for them entirely.

6.2.2 Key Problems of E�cient GPU Convolutions
When implementing convolutions across multiple types of GPUs, there are two categories of

problems. First, there are the fundamental challenges of implementing e�cient convolutions

on any GPU. Second, recalling our discussion of the importance of portability in Section 1.1.5,

there are the issues that arise when targeting multiple GPUs. Together, the full set of high-level

problems we address with our approach are:

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 96

• Incompatible GPU programming models across di�erent hardware: OpenCL and CUDA.

• GPU-hardware-speci�c constraints: memory size and access methods, organization and

control of hardware execution primitives such as multiply-accumulate (MAC) instructions.

• Data movement: getting data from o�-chip to compute units and back, considering the

sizes and bandwidths of all storage locations.

• Scheduling/Resource-Management/Parallelism: what computations happen when, where,

and how.

• Managing overheads: minimizing the use and impact of conditionals, control �ow, and

indexing.

To the best of our knowledge, our approach is the �rst to address these concerns in a uni�ed,

vertical framework for implementing NN convolutions on GPUs. In Section 6.3, we will discuss

how our approach addresses each of these concerns using metaprogramming, autotuning, and

other techniques.

6.2.3 NVIDIA and GPU Computation
When Krizhevsky developed cuda-convnet in 2011, early in the modern rise of neural networks,

NVIDIA was the clear platform of choice for NN computation. However, it is worth noting that

this was no accident. NVIDIA had been developing their hardware and software with a focus on

high-throughput scienti�c and general purpose computing since roughly 2001 [132]. Certainly by

2005, it was clear that general-purpose-GPU (GP-GPU) programming was beginning to mature,

with GPUs outperforming CPUs on relatively complex linear algebra computations such as LU

factorization [133]. An important milestone was the release of version 1.0 of NVIDIA’s CUDA

development environment in 2007, which o�cially promoted computation to a peer of graphics

at the interface level. So, use of NVIDIA GPUs for NN computing represents a 10-years-awaited

payo� for NVIDIA’s bet on using GPUs for general purpose computing. NVIDIA shows every sign

of attempting to capitalize on this trend and continue to develop their capabilities in this area.

However, they seem clearly interested in maintaining and enhancing their market dominance,

rather than broadening the overall GPU compute market though increased competition.

In particular, let us consider the ongoing development of NVIDIA’s NN computation library,

cuDNN. Despite the large e�ort for its original creation, cuDNN is not a once-and-done endeavor.

Due to constantly changing hardware capabilities and software requirements, signi�cant ongoing

e�ort is required to maintain cuDNN. Over time, important improvements and new features have

continued to appear, with cuDNN v5 released 2016-04. These improvements and new features

generally track new developments in the ML community, but with a signi�cant real-time lag

of many months. Anecdotally, the reason for this long latency is simple: developing cuDNN

requires a large amount of engineering e�ort by a team of specialized programmers, perhaps in

total more than 15 sta�-years to date. Given this history, it is unclear if it is even possible for

other vendors to compete with cuDNN using the same closed, single-vendor development model.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 97

Worse, it is unclear if NVIDIA itself can continue to support the ever growing set of use-cases

for NN computation. This highlights one of the issues with reliance on any single vendor for

critical parts of any software ecosystem. We now discuss this issue in more detail in the following

Section 6.2.4.

6.2.4 Why Not Rely on Hardware Vendors for Software?
Here, we build on our prior discussion from Section 1.2.3 on the topic of vendor-supplied libraries

for computation. One general approach to the problem of e�cient numerical computation is to

rely on individual hardware vendors to provide e�cient implementations of all needed opera-

tions. However, this su�ers from several problems:

• It does not address the fundamental issues with creating e�cient implementations (as listed

in Section 6.2.2), but only shifts them to hardware vendors.

• Vendors typically only support only their own hardware.

• Vendors may not provide timely support for all needed functions.

Despite focusing only on their own hardware and business-need-selected features, vendors have

still required many years (and anecdotally, many times that number of sta�-years) to release NN

computation software packages. Further, to gain competitive advantages over each other, ven-

dors have incentive both to hide their e�orts and provide unique functionality. The end result is

considerable duplicated e�ort and patchwork functionality across hardware targets. Worse, many

vendors may simply not have the motivation (due to lack of su�cient perceived return on invest-

ment / market potential) or capability (due to lack of the rare skilled programmers capable of such

work) of delivering any robust software system at all. In short, all users, in research and business,

are at the �ckle mercy of hardware vendors for the implementation of any needed functionality.

Some research users may have the luxury of working around these issues to some degree, due

to hardware and support subsidies from speci�c vendors. However, business customers may not

have such luxuries of platform choice and support, or may be (rightfully) hesitant to become too

dependant on speci�c hardware vendors. But, some dependence on hardware vendors is both

inevitable and perhaps desirable. Indeed, vendors should be expected to be adept at creating soft-

ware for their own hardware. That is, vendors have a privileged position to develop software

for their own hardware. They generally have proprietary access to some combination of tools,

hardware, software, knowledge, and experience. Yet, even with these advantages, vendors have

not been, as whole, able to deliver NN computation libraries in a timely manner. Thus, for a

healthy software ecosystem, reliance on vendors must be balanced with freedom, independence,

and competition. In particular, users should be able to:

• choose among multiple hardware vendors for each task, and

• have the freedom to modify and enhance the software systems they require.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 98

6.3 Boda Approach
In this section, we will discuss our overall approach to implementing NN computations as embod-

ied in the Boda framework. At a high level, our vertically-integrated approach falls somewhere

between that of compilers and traditional libraries (see Section 5.1 for an overview of general

approaches to computation).

Like a library, Boda aims to help deliver e�cient implementations of speci�c, predetermined

sets of operations. From an interface perspective, using a Boda-created implementation to actu-

ally perform NN computations feels similar to using a library. However, bear in mind that a main

goal of Boda is to help create e�cient implementations in the �rst place, not simply to deliver an

implementation with a library-like interface for later use.

The sorts of implementations that Boda helps to create are, by necessity, generally not a �xed

set of functions that can be compiled and placed into a independent library. Instead, achieving

high e�ciency for operations such as NN convolutions requires the use of various metaprogram-

ming techniques, where functions dynamically generate and transform other functions. Boda

provides support for general-purpose metaprogramming and dynamic compilation, and thus acts

somewhat like a traditional compiler. However, compared to a full compiler, we do not aspire

to support general purpose programming, and we avoid all mandatory, pre-existing, already-

speci�ed intermediary layers (such as the LLVM IR [134]) present in typical compilation �ows.

Thus, we can avoid much of the complexity of full, general purpose compilers. Overall, using

this approach, we can achieve high e�ciency for the set of operations required for our applica-

tions of interest, while keeping overall complexity manageable.

6.3.1 Justi�cation for Metaprogramming
Although powerful, metaprogramming is a technique to be used judiciously, due to the com-

plexity it adds to any implementation. In this section, we motivate the use of metaprogramming

for e�ciently implementing NN computations. Firstly, it should be noted that the notion that

metaprogramming is currently necessary for high e�ciency numerical computing on GPUs is

not particularly controversial, as seen from our survey of related work in Chapter 5. At the least,

empirically, all current libraries for e�cient NN computing on GPUs use at least some form of

metaprogramming.

To illustrate this trend towards metaprogramming, let us consider the example of matrix-

matrix multiplication. In Volkov’s work in 2008, he focused on performance for large, square

matrices [34]. In this case, it was possible, albeit with great di�culty, to hand-write a single

function with reasonable performance for a single GPU target. As can be seen in later work, var-

ious optimization were possible in the case of small and/or non-square matrices. However, these

optimizations required hard-coding problem sizes into the code, which is generally intractable

without metaprogramming [135]. Currently, it can be seen that use of metaprogramming tech-

niques is now quite common in GPU BLAS libraries [32] [136].

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 99

6.3.1.1 Intuition for Metaprogramming from Matrix-Matrix Multiply Example

To gain a qualitative intuition as to why it is di�cult to write a single version of an operation

to handle all possible inputs, let us consider the technical details of the case of matrix-matrix

multiplication. To simplify somewhat, let us consider just the case of a single, general matrix

multiplication:

C = AB

Where:

• A is an M×K matrix,

• B is a K×N matrix,

• and the result, C , is an M×N matrix.

The space of all possible input sizes for matrix-matrix multiply is de�ned by all possible values

of M , K , and N . That is, each point in Z+3

given by some value of the positive integers M , K , and

N represents a unique set of input sizes to handle. For dense linear algebra, the behavior of an

implementation of a function like matrix-matrix multiply, in terms of the sequence of primitive

operations it performs (e.g. loads, stores, multiplies, and adds), is fully determined by the sizes

of its inputs. That is, the actual values of the numbers in the input matrices will not (neglecting

corner cases) a�ect the computational e�ciency; only the sizes of the inputs are relevant. In the

case of square matrices, M = K = N , and the space of possible input sizes is reduced to one

dimension N . Further, �nite GPU memory places an upper limit of ∼8196 on N , and sizes below

a certain minimum are often neglected as less interesting. In Volkov’s work, for square matrices

above a certain minimum size (perhaps 256), a single pre-compiled function can o�er reasonable

performance over the entire space of input sizes (especially if all sizes are, for example, multiples

of 64). However, as mentioned, later work has shown that having input-size-speci�c code helps

optimize over the full space of possible input sizes [135]. In particular, in any case where one

of M , N , or K is much smaller than the others, or when (more generally) the ratios between the

three values span a large range (i.e. extreme aspect ratios), the behavior of the function becomes

qualitatively di�erent:

• The relative and absolute needed amounts of di�erent kinds of intermediate storage will

vary considerably.

• The ratios of computation and communication in di�erent parts of the algorithm will vary.

• The relative contribution of overheads, such as those from looping and indexing, will vary.

Especially when any inputs sizes are small, this will lead to scenarios where it becomes more

critical to avoid various overheads. Typically, this is accomplished using metaprogramming to

unroll loops, avoid conditionals, or hard-code speci�c patterns and amounts of register usage.

Further, data that can be stored in shared local memory in one input-size-regime may �t in reg-

isters in another regime, or require spilling to global memory in a third regime. In one regime,

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 100

it may be important to unroll a loop somewhat (to reduce overhead), but not too much (to avoid

excessive register usage). In another regime, it might be important, and perhaps a simpli�ca-

tion, to fully unroll the same loop. In yet a third regime, the loop might have only one iteration,

making it possible to simplify the code by removing the loop and all relevant indexing and setup

overheads.

To illustrate this issue, let us consider a simpli�ed example. Let us assume that achieving 100%

computational e�ciency requires that the hardware perform a non-overhead calculation on every

cycle in every available computation unit (which is, in fact, quite close to true on modern GPUs).

Let us start with a loop that performs 1 non-overhead multiply instruction per iteration, and

further assume that the hardware requires 2 instructions to implement the needed logic for the

loop. Then, assuming the hardware performs 1 instruction per cycle, e�ciency for this loop will

be limited to 1/3 or ∼33% of the peak possible. So, in this case, unrolling the loop to performing

8 multiplies per iteration would raise the e�ciency of the loop to 8/10 or ∼80% (assuming a large

number of iterations). However, let as assume that each additional multiply added to the loop

requires an additional register for temporary storage, and that the hardware only has 16 registers

available for this loop. So, if we attempted to put 32 multiplies in the loop, to try to achieve

32/34 or ∼94% e�ciency, the compiler would need to add many loads/stores inside the loop due

to register spilling (needing to use bigger-but-slower storage to emulate extra registers). Not

only would this lower the percentage of instructions spent on multiplies, but would also incur

slowdowns due to accessing slower-than-registers storage, and e�ciency would perhaps drop to

<5%. But, however important these issues may be for matrix-matrix multiplication, we shall see

that they are magni�ed in the case of NN convolution.

6.3.1.2 Bene�ts of Metaprogramming for NN Convolutions

Convolution (as used in NNs and shown in Figure 6.2) can be viewed as a generalization of matrix-

matrix multiplication. First, consider a C-pseudocode representation of the matrix-matrix multi-

ply example of the prior section:

// the first 2 loop nests iterate over all elements of C
for(n = 0; n < N; ++n) {
for(m = 0; m < M; ++m) {

// the remaining loop nest calculates the dot-product for a single output element
C[m][n] = 0;
for(k = 0; k < K; ++k) {

C[m][n] += A[m][k] * B[k][n];
}}}

Then, recall the C-pseudocode for NN convolution from 6.2.1. Note that both functions iterate

over output elements in their outer set of loop nests, and then iterate over the elements of a dot-

product in their inner loop nests. In order to compute NN convolutions using matrix-matrix

multiply, we need only �atten all the inner loops of convolution (which iterate over all values in

the �lter and corresponding input window) and treat them as the K dimension, and then �atten

the out_x and out_y dimensions and treat the combination as the M dimension.

Thus, many of the same algorithms and optimizations used for matrix-matrix multiplication

also apply to convolution [135]. However, instead of three integers (M, N, and K) as in the case of

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 101

matrix-matrix multiplication, NN convolution has an input space de�ned by considerably more

(six or more) values. These consist of a mix of small/enumerated integers (e.g. padding, stride,

kernel size), large integers (e.g. input X and Y sizes, input and output number-of-channels), and

Booleans (e.g. “has activation function fused to output?”, see Section 6.3.9 for details on the fusion

of activation functions with convolutions). Thus, the dimensionality of the space of problem sizes

for convolution is both larger and more complex than that of matrix-matrix multiplication. Fur-

ther, di�erent parts of this space may be qualitatively quite di�erent in terms of the calculations

they perform. For example, the data reuse patterns for kernel sizes of 1 are quite di�erent from

those for kernel sizes of 3, and then in turn the patterns for a size of 3 are quite di�erent from

those for a size of 11. But, given that only a few sparse points in this space are needed for any

particular application, NN convolution can particularly bene�t from metaprogramming, where

(if needed), code can be specialized for each case.

6.3.2 Comparison with Libraries
The need for metaprogramming does not, by itself, preclude the traditional library approach (as

de�ned in Section 5.1.2). In this section, we show how a traditional library-based approach is

insu�cient for NN computations.

As discussed earlier, metaprogramming can be used to create various versions of an operation

to handle di�erent points in the operation’s space of input sizes. For NN convolutions, the number

of such needed versions can be quite high when considering all common scenarios in modern

NNs. In Table 6.1 (Section 6.4), we show all the unique convolution input sizes that we implement

for our proof-of-concept of Boda. From just the three NNs we considered, there are over 40 unique

convolution con�gurations spanning a wide range of input sizes. Further, this number is then

multiplied by the product of the number of input formats, output formats, and potential fusion

scenarios. For example, assume that N pre-compiled versions of a convolution are required to

cover the space of input con�gurations. So, it might be tractable to support 2 output formats and

2 fusions, yielding N×2×2 = 4N versions. But, extending this support to 2 output formats, 2

input formats, and 3 fusions, now N×2×2×3 = 12N versions are needed. Especially if N is large,

the size of a library that held all needed pre-compiled versions could quickly become impractical.

Worse, given the large and complex space of possible input sizes, one is faced with the unfortunate

choices of either:

• Attempting to e�ciently handle the entire space of possible input sizes.

• Attempting to guess what input con�gurations are likely to be encountered in the future.

• Spending additional optimization e�ort to reduce the number of functions needed to handle

various sets of input sizes while still preserving performance.

So, avoiding all these issues (and their attendant development and/or speed costs) is a key bene�t

of our per-input-size-compilation approach. As a note, it is sometimes desired to avoid run-
time compilation in deployment use-cases. However, for a �xed application, it is always possible

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 102

to generate, as part of the application, an application-speci�c computation library containing all

needed functions for that particular application, and thus avoid runtime compilation. However,

this should not be confused with the notion of a traditional library, which is not application spe-

ci�c, and must handle all possible input sizes.

6.3.3 Specialization and Comparison with General-Purpose
Compilation

In this section, we consider in more detail the concept of specialization (using metaprogram-

ming to tailor code for particular use-cases, as introduced in Section 1.4) and how it is used in

Boda. Along the way, we contrast this approach with that of a general purpose compiler (see

Section 5.1.1), and show how our approach sidesteps the unsolved problem of general-purpose

e�cient parallel compilation.

One key to e�ciency and managing complexity in our approach is that, at runtime, we need

only handle the speci�c instances of operations needed for our applications. That is, unlike a

traditional library, we need not write and pre-compile code to handle the general cases of opera-

tions, and we are free to use all input-speci�c runtime information to aid in optimization. For the

types of NN computations we consider here, there are several key pieces of runtime information

we can exploit:

• Perhaps most importantly, for each operation, we need only handle the speci�c input sizes

and operational modes used.

• Additionally, for each use-case, we only need to handle the speci�c overall graph of opera-

tions used. So, this allows: (1) graph level optimizations such as fusions (see Section 6.3.9),

and (2) the use of optimized intermediate types.

Using SEJITS [114] terminology, we term this usage of runtime information to generate special-

case implementations of operations specialization. As discussed in the prior section, as the num-

ber of possible input sizes is very large, specialization of individual operations for each input size

is cumbersome and/or limited in the traditional library approach. However, compared to a gen-

eral purpose compiler, the types of program generation we need to perform are quite simple. The

expectation is that the generated functions will handle parallelism and data movement explicitly.

Thus, these problems need only be solved for the speci�c operations to be performed. In contrast,

a parallelizing compiler must solve these problems in general for some class of input programs.

While we believe our approach is perhaps the most productive way to achieve our particular

goals, we also realize the bene�ts of the traditional library and compiler approaches as well. In

fact, we would argue that, as progress is made on the key problems of implementing e�cient

GPU convolutions (using our approach), it is then natural to: (1) generalize the techniques and

embed them in a compiler, or (2) apply additional e�ort (and perhaps compromise speed) to allow

for a �xed-library implementation.

Additionally, we mention here that there are certain compiler features that would have been

helpful to us during our e�orts. In particular, in cases where the existing compiler heuristics were

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 103

NN
Front-end

Target back-ends: Allocation,
Compilation, ExecutionBoda

Compute
Graph

Variant
selection Autotuning

Graph-level
optimizations

Scheduling

Code
Generation

Template
substitution

Snapdragon 820
(Qualcomm GPUs)

Nvidia GPUs

AMD GPUs

Figure 6.3: Overall structure of Boda.

sub-optimal, we found that we were “�ghting” with the compiler for low-level control over the

�nal generated code. At both the level of the OpenCL GPU programming API and of the various

per-vendor GPU compilers, our task would have been easier if there had been more methods to,

when needed, allow direct control over data movement and operation ordering.

6.3.4 Framework Structure
So far, we have given some justi�cation and intuition for the use of metaprogramming in our

approach. Further, we have positioned our approach with respect to traditional compilers and

libraries. Now, we will discuss the concrete structure and details of our approach.

An overview of our framework for mapping NN computations to GPU hardware is shown in

Figure 6.3. A compute graph is input to Boda, which performs various tasks to map it to di�erent

target back-ends. As with the front-end, our framework is back-end neutral. We require only that

the target platform provide mechanisms for:

• Run-time Compilation (for metaprogramming/specialization),

• Memory allocation and execution of code, and

• Per-function-call timing (for pro�ling/autotuning).

Note that we do not support arbitrary languages or programming models throughout our frame-

work, but only what is necessary for the back-ends we wish to target. Conveniently, all modern

GPUs support similar programming models and input languages. NVIDIA hardware supports

both CUDA [137] and OpenCL [110]. Other hardware vendors, such as AMD and Qualcomm,

support only OpenCL. Both OpenCL and CUDA o�er comparable interfaces for memory alloca-

tion, compilation, and execution of code. Further, the core language for describing computation

supported by both OpenCL and CUDA has C-like syntax and semantics.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 104

6.3.4.1 Programming Model Portability with CUCL

For portability across GPUs, one key issue is the incompatibility between the two main GPU

programming languages, OpenCL and CUDA (as introduced in Section 5.1.1). Any approach that

wishes to portably target both OpenCL and CUDA must somehow surmount this problem. In

particular, while CUDA and OpenCL share C as a base, they use di�erent syntax for various GPU-

programming-speci�c concepts. But, importantly, the core computational semantics and parallel

programming models of OpenCL and CUDA are fairly compatible. Conveniently for our work on

implementing NN convolutions, this cross compatible core of functionality is mostly su�cient

for our needs. So, as our solution, we start with the cross-compatible intersection of CUDA and

OpenCL and form a language we call CUCL. However, it should be noted from the start that CUCL

is not a new language in the normal sense of the word. Instead, it simply adds new features to

both OpenCL and CUDA that the programmer can use instead of OpenCL/CUDA speci�c ones.

So, to program in CUCL with Boda, an OpenCL or CUDA programmer need not learn anything

new to start working. However, if they use OpenCL or CUDA speci�c features, their code will

only work on the corresponding back-end. If, and only if, they desire portability, then they must

replace OpenCL/CUDA idioms with corresponding CUCL ones. The optional nature of CUCL

re�ects our overall pragmatic philosophy and approach, as will be discussed later in this section.

To summarize, in CUCL, we abstract away the syntactic di�erences for the basic GPU pro-

gramming concepts shared by OpenCL and CUDA. For example, CUDA uses a special variable

threadIdx to allow each thread to determine its thread index. By contrast, OpenCL uses a

function named get_local_id() for a similar purpose. While the syntax and semantics

di�er slightly between these two systems, common use cases can be easily be mapped to either

one. In CUCL, to handle the common case where threads are treated as a 1D array, we intro-

duce a new primitive LOC_ID_1D, which yields the current thread index as a single integer.

This CUCL primitive maps to get_local_id(0) in OpenCL and threadIdx.x in CUDA. For a

complete list of the current CUCL abstractions and their mappings to OpenCL and CUDA syntax,

see the relevant Boda source code [138] in the �lesocl_util.cc (for OpenCL) andnvrtc_-
util.cc (for CUDA).

In general, OpenCL lags behind CUDA in terms of supporting various GPU programming

features. Some of these features relate to hardware speci�c capabilities of NVIDIA GPUs. For

example, the warp-shu�e operation was exposed to CUDA users in CUDA version 4.2 in early

2012. However, as of 2017, no version of OpenCL explicitly exposes this operation, considering it

too low-level, even though by now many other vendors provide hardware primitives with simi-

lar functionality. Instead, as of the OpenCL 2.0 speci�cation, released in mid 2013, just the most

common higher-level operations (such as reductions) that typically bene�t from warp shu�es

are exposed. In general, OpenCL chooses not to expose low-level hardware features, even when

they are necessary to achieve the best performance on a given hardware target. On non-NVIDIA

hardware, this is mitigated by the ability and willingness for vendors to expose vendor-speci�c

features though the OpenCL extension mechanism. On NVIDIA hardware, OpenCL support lags

behind that which is typical from other vendors, and so usage of hardware-speci�c features gen-

erally necessitates using CUDA.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 105

Further, considering the full software development stack, the CUDA Toolkit (or CUDA SDK)

tends to be more aggressive than OpenCL in terms of supporting additional features throughout

the toolchain. For example, CUDA o�ered dynamic parallelism as early as 2012, whereas the

OpenCL standard did not have such a concept until OpenCL 2.0 (in mid 2013). Note that while

the OpenCL 2.0 standard was released in mid 2013, at that point no hardware vendors supported

it. By 2014, only few GPU vendors supported OpenCL 2.0. Even by 2016, NVIDIA still did not

support OpenCL 2.0 on its own hardware. Thus, as with the warp-shu�e operation, the use

of CUDA is required to use dynamic parallelism on NVIDIA hardware. So, CUCL’s ability to

use either CUDA or OpenCL as a backend is helpful insurance when targeting both NVIDIA and

non-NVIDIA hardware, since usage of various target-speci�c optimizations on NVIDIA hardware

might (for no clear technical reason) require using CUDA.

Our framework is fairly pragmatic about this general situation. That is, Boda allows full free-

dom to implement portability at any level of abstraction. At the extreme low level of abstraction,

the user is free to add new primitives to CUCL. This is generally most useful for basic, low-level

features that can be supported across di�erent hardware/languages with compatible semantics,

such as the LOC_ID_1D example above. At the extreme high level of abstraction, entirely dif-

ferent per-target implementations of some high level function (such as NN convolution) can be

used. Such per-target implementations would be free to use any back-end speci�c features they

desired, even perhaps inline assembly code. But, of course, the use of such back-end speci�c

features limits the portability of any code that uses them. Naturally, if portability is desired, and

per-target implementations are used, then the implementation e�ort will rise accordingly.

But, why not simply avoid any such back-end speci�c features, since the basic CUCL language

is easily able to express our needed computations? This brings us to the core fundamental issue

of performance portability. While it is convenient to share a common syntax and semantics for

computation (i.e. C) across targets, this ensures only functional equivalence. This is very helpful

for development, testing, and debugging. However, it does not address our goal of achieving high
e�ciency across all back-ends. Currently, GPU compilers are unable to produce e�cient runtime

code from high-level, portable descriptions of convolutions. So, we instead aim to minimize the

e�ort needed in order to optimize and specialize (to whatever degree in necessary) operations

of interest across our limited set of target back-ends. A key point is that, in general, it is not a

lack of ability to use back-end speci�c features that limits performance portability. That is, for

some operation to compute, we can generally �nd some implementation in CUCL (or directly in

OpenCL) that is reasonably e�cient on a given hardware target without using features such as

inline assembly or compiler intrinsics. However, CUCL (or OpenCL) code that is e�cient on one

target is rarely e�cient on another. In short, the main reason for this situation is that, for modern

GPUs, the ordering of computation and the movement of data must be explicitly and carefully

orchestrated in target-speci�c ways to achieve e�ciency. While these tasks might ideally be

handled by the compiler, it appears that the current set of layered abstractions employed on

modern GPUs, from hardware to compiler, do not give performance portability for the type of

computations we are interested in implementing. In summary, in the Boda framework, CUCL

is the functionally portable base on which we tackle this greater issue of performance portability
using metaprogramming and autotuning.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 106

6.3.4.2 ND-Arrays

One key guiding observation for Boda is that, as discussed in Section 4.2, most NN operation

inputs and outputs can be well represented using ND-Arrays. Hence, ND-Array speci�c support,

particularly for metaprogramming, forms a cornerstone of our approach. Typically, ND-Arrays

consist of a single contiguous block of memory �lled with a �at array of elements. Importantly, in

our application, the sizes of all such arrays are known and �xed at the compute graph level. Thus,

we may statically specialize all operations based on the sizes of their input and output ND-Arrays.

All indexing and bounding calculations on such ND-Arrays may be reduced to multiplication,

division, and modulo by constants. The resulting expressions are amenable to e�cient imple-

mentation and various optimizations.

Further, in user-written templates, we require that all dimensions of each ND-Array must be

named. This use of mnemonic, semantically-signi�cant names for array dimensions helps clarify

code using ND-Arrays. By analogy, imagine code that used C structures where each �eld was

simply referred to by index rather than name. Not only do named ND-Array dimensions improve

readability, but they are used to implement a form of type checking for all ND-Array arguments.

All ND-Array arguments passed to a function must have the same number of dimensions with
the same names as given in their argument declarations. For example, a function expecting a

4D-Array with dimension names in_chan:out_chan:y:x (i.e. a set of �lters) could not be passed a

4D-Array with dimension names img:chan:y:x (i.e. a batch of images).

6.3.5 General Metaprogramming in Boda
As discussed in Section 5.4, metaprogramming is commonly used to create high e�ciency GPU

implementations of NN operations. Thus, the novelty of our approach is not merely the usage

of metaprogramming, but in the speci�c design choices made to balance speed, portability, and

productivity. Now, we discuss our overall metaprogramming �ow, which includes the framework

layers shown in Figure 6.4.

Annotated
 CG

Compute
Graph (CG)

Refined
CG

Variant selection per-operation &
setting tuning parameters

Graph-level
optimizations

Performance portability

Code generation with metadata
& template substitution

Pre-allocation
& scheduling

Compilation
& execution

Programming
model portability

Generated
function

CUCL
function

Figure 6.4: Boda �ow: from compute graph to code.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 107

We start with allowing the user to write only mildly restricted native GPU code in our CUD-

A/OpenCL subset language, CUCL. Compared to directly using CUDA or OpenCL, CUCL:

• provides language-neutral idioms to replace those from CUDA and OpenCL, and

• requires all ND-Array function arguments to be decorated with their dimension names, and

• requires access to ND-Array metadata (sizes, strides) to use a special template syntax:

%(myarray_mydim_size).

Many simpler operations can be directly written as a single CUCL function template. To produce

OpenCL or CUDA functions from a CUCL function template, the framework: (1) replaces CUCL

idioms with OpenCL or CUDA ones, and (2) replaces references to ND-Array sizes and strides

with either (at the user’s explicit choice) (2a) constants for the speci�c input ND-Array sizes, or

(2b) references to dynamically-passed ND-Array metadata. Typically, we care most about the case

where the sizes are replaced with constants, as this gives the most possibility for optimizations

and therefor e�ciency. However, this does require instantiation of the given CUCL template for

every unique set of called argument sizes. Sometimes, for a given operation, this is unnecessary

for performance, and perhaps even creates prohibitive overhead due to having an excess number

of versions of a function. Thus, at the user’s selection, our framework also allows dynamically

passing the sizes and strides of ND-Arrays as automatically-generated function arguments. Note,

however, that CUCL code insulates the user from this issue, since the same syntax is used to refer

to ND-Array metadata regardless of if it is dynamic or static, allowing easy experimentation with

both methods for each function argument.

Then, for general metaprogramming support, we employ a string-template based approach,

using the framework’s host language (C++) to write code-generators that set the values of string

template variables inside CUCL function templates. Bear in mind that while the framework itself

and the code generators are written in C++, the GPU code is generated by C++ functions, not

written in C++ itself. We argue that our approach of writing a C++ program that generates CUCL

(i.e. C for GPUs) code is straightforward, and relatively easier to work with than, for example,

writing Perl to generate assembly (as in NervanaGPU, see Section 5.4.3). In particular, using C,

many constructs look roughly the same at the metacode and code levels. As will be shown shortly

in the example in Section 6.3.7, to statically unroll a loop, one simply moves the loop from the

code to the metacode, and “escapes” the body of the loop so as to print the code it previously

contained. In essence, we claim the similarity and compatibility between the metacode and code

languages eases the burden on the programmer to operate across both levels.

6.3.6 Boda Metaprogramming vs. C++ Templates
One common approach to metaprogramming is to use built-in language level metaprogramming

facilities. In particular, C++ templates are commonly used for high performance GPU metapro-

gramming with CUDA. However, C++ templates have the following disadvantages as compared

with the Boda approach:

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 108

• C++ template support for OpenCL is only starting to become available.

• All C++ template programs must run at compile time, and thus cannot use run-time infor-

mation.

• Like Perl, C++ templates are a signi�cantly di�erent language compared to C, and are gen-

erally considered di�cult to use.

• C++ templates do not o�er the practical ability to implement complex code generation

methods and heuristics at the meta level.

• C++ templates do not allow the ability to inspect the generated C level code for a given

instantiation in order to perform debugging and analysis.

6.3.7 Details of Boda Metaprogramming for NN Convolutions
As mentioned in Section 6.3.1.2, NN convolution can be viewed as generalized matrix-matrix

multiplication. In fact, in early approaches, NN convolution was often implemented using BLAS

(Basic Linear Algebra Subroutines) library SGEMM (Single-precision General Matrix-Matrix mul-

tiply) invocations for the bulk of the computation. But, as discussed in Chapter 5, the use of

special-purpose libraries for NN convolutions is currently the dominant approach. However, cre-

ating an e�cient NN Convolution implementation is di�cult, as it requires:

• writing large blocks of code consisting of many moves and/or multiplies,

• supporting many regimes of input sizes, and

• exercising �ne-grained control over data storage and movement, and

• careful scheduling of all primitive operations, including storage blocking and loop tiling/un-

rolling.

All of these issues share a common solution: metaprogramming [43] (as introduced in Section 1.4).

With metaprogramming, one can easily write loops at the metacode level to generate long se-

quences of moves or multiplies. Multiple input regimes can be handled with metacode level case-

splits that do not incur runtime overhead. Finally, one can generate speci�c memory and register

indexing patterns without repetitive, error-prone manual e�ort. Where such details are public,

prior e�orts have indeed uniformly used metaprogramming to varying degrees to address these

issues (see Section 5.4). At a high level, we choose to take a very general and �exible approach to

metaprogramming. Rather than use some language-level metaprogramming facility, we choose to

directly write code generators in our framework’s host language of C++. We use our framework’s

native support for ND-Arrays at the metacode layer to (when desired) allow code generation to

exploit �xed, exact sizes for all inputs and outputs. For example, when cooperatively loading data

across threads on a GPU, one must typically employ a loop with a conditional load. If there are N
threads loadingW words, the loop must iterate dW /N e times. For each iteration, the load must

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 109

be guarded on the condition that i ∗ N + thread_id <W . In CUCL, OpenCL, or CUDA, here is a

simpli�ed version of how such a loop might appear:

for(int i = 0; i < ((W-1)/N)+1; ++i) {
int const ix = i*N + thread_id;
if(ix<W){filts_buf[ix] = filts[ix];}

}

However, if N and W are �xed, we know we need exactly dW /N e individual loads. Further,

only the last load need be conditional, and then only if (W mod N) is non-zero. In some cases,

just making W and N constant may allow the platform-speci�c compiler to unroll the loop and

eliminate unneeded conditionals without additional e�ort. We show our framework’s support

for this simple metaprogramming approach here, where we have replaced the W and N variables

with template variables that will be expanded to integer string constants:

#pragma unroll
for(int i = 0; i < ((%(W)-1)/%(N))+1; ++i) {

int const ix = i*%(N) + thread_id;
if(ix<%(W)){filts_buf[ix] = filts[ix];}

}

Further, in the event that W and N can be �xed at compile time, even simpler metaprogramming

approaches (such as C++ templates, discussed in Section 6.3.6) might be su�cient to handle this

case. However, note that for NN convolutions, it not easy to �x such constants at compile time.

One alternate approach, that is compatible with static metaprogramming methods such as C++

templates, is tiling. In this method, operations are decomposed into tiles of �xed, pre-determined

sizes with some additional code to handle remainders. While this is a reasonable and useful

approach that we also support, it is inconvenient and limiting for it to be the only viable technique.

Further, even in seemingly simple and ideal cases of loops with static bounds, we have ob-

served that the platform-speci�c compiler often does not successfully unroll the loop and remove

unneeded conditionals (we give an example later in this section). A burden of targeting multiple

hardware platforms is the variable quality of the OpenCL implementations, which can often in-

clude unpredictable or otherwise lacking optimization capabilities in the compiler. In such cases,

our framework allows us to smoothly and easily shift more complexity to the metacode level and

directly emit the sequence of desired loads. To do this, we move the loop to the metacode level,

and replace it entirely with a template variable in the CUCL code:

%(filts_buf_loads);

Then, at the metacode level, we write code to generate the needed sequence of loads, which is

similar in structure to the original loop:

string ix_str, load_str;
for(int i = 0; i < ((W-1)/N)+1; ++i) {

int const max_ix = i*N + (N-1);
ix_str = str(i*N)+"+thread_id";
load_str = "filts_buf["+ix_str+"]";
load_str += "= filts["+ix_str+"];";
if(max_ix >= W){ // need bound check

load_str = "if("+ix_str+"<"+str(W)
+ "){"+load_str+"}";

}

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 110

emit("filts_buf_loads", load_str);
}

While metaprogramming clearly adds complexity, the virtue of a string-based C++ approach is

simplicity. If the programmer can write GPU-style C code, they can certainly write C (or C++)

that prints the same GPU-style C code. Thus, they can easily promote code to the metacode level

to exploit run-time information to specialize the �nal generated code. And, in the event of errors

at the generator level, or for pro�ling, they can easily inspect the generated code. We argue that,

compared to compiler-style approaches, our approach is both valid and one that some fraction

of the rare programmers expert in e�cient low-level numerical programming favor. Returning

to our example, when this metacode is run for the case of (N=96,W=256), the result is exactly the

desired sequence of loads, with no loop overhead and the minimal single conditional:

filts_buf[0+thread_id] = filts[thread_id];
filts_buf[96+thread_id] = filts[96+thread_id];
if(192+thread_id<256){

filts_buf[192+thread_id] = filts[192+thread_id];
}

In one case (with N=128,W=512), this approach resulted in 4 assembly-level load instructions.

In contrast, a loop-based approach failed to remove the conditional guarding the load, and yielded

dozens of instructions in including four conditional jumps. The technical details of this example

are available in the Boda source in the �le test/meta-smem-load-example.txt [139].

As further examples, generation of shared-memory-to-register load sequences (where access

patterns are critical), and generation of register-blocked, unrolled sequences of fused multiply-

adds (which are often hundreds of instructions long) were tasks that signi�cantly bene�ted from

metaprogramming. The reader is referred to our full metacode implementation of convolution in

cnn_codegen.cc for details [138].

6.3.7.1 Detailed Technical Example

To give a concrete, albeit quite technical example that includes many of the key techniques we

employ to implement e�cient convolution, consider Figure 6.5. This �gure shows an example

of the type of convolution function we generate with metaprogramming using Boda. In this

particular case, we show the storage layout and execution �ow for single work-block of our tiled
convolution or tconv convolution variant. Firstly, note that all constant values shown are inlined

as constants into the code, using specialization. Some of these values are determined by the input

sizes of the convolution to be computed. Others are chosen using heuristics or autotuning (as

discussed in the next section). Note: a detailed understanding of all the methods we employ is

not required to understand the remainder of this dissertation, so the rest of this section may be

skipped if desired. However, this example does give at least an overview of some of our methods,

without the need to dive into the full details of the source code. The following list highlights the

various techniques we employ in this example, all of which rely on metaprogramming to generate

sections of the �nal code:

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 111

Figure 6.5: Storage layout and execution �ow of one work block of an example NN convolution.

• For data reuse across all 128 threads in the work-block, the threads cooperatively load

input and �lter data from o�-chip to work-block-shared memory. The code for these o�-

chip to shared-memory loads is generated as per the example of the prior section. Then,

the metacode that generates the shared-memory to register loads must take additional care

to minimize hardware resource (i.e. memory bank) con�icts.

• The outermost loop is over the 384 input channels. For each thread we will accumulate into

each of the 64 �nal output values during each iteration.

• In this example, we are computing convolutions with a 3×3 kernel size. We choose to

exploit input data reuse across a 10×10 spatial tile of the input, which allows us to use

8×8 = 64 overlapping 3×3 input windows across the entire work block. Groups of 16

threads use blocks of 8 of the 64 windows, so that all 64 windows are used across 8 blocks

of 16 threads.

• In the inner loop, we �rst load the 3×128 needed �lter values (1 row (3 values) of 128 �lters,

for 1 input channel) from o�-chip to shared memory. Groups of 8 threads (where each

group is formed by taking 1 thread from each of the 8 input-window blocks) use blocks of

8 of the 128 output channels, so that all 128 output channels are used across all 128 threads.

• Then, for each thread working alone, we load a single 10-value row of the input into reg-

isters, and use it for all 3 columns of all 8 �lters to compute (i.e. for the 8 overlapping 3×1

per-�lter-row sub-windows).

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 112

• For the remainder of the inner loop, we unroll 3 times over the columns of the �lters.

• For each unrolling, we load 8 �lter values (one per output channel) from shared memory

into registers, and perform 64 inlined multiply accumulates, one per output value. This

step is accumulating the result of an 8×8 outer product into the output registers.

• Finally, we write the 64 outputs directly from registers to o�-chip memory.

Note that, to form a complete convolution, this work-block will be tiled out across the full input

and full number of output channels. So, it can e�ciently handle any convolution where the

number of output channels is near a multiple of 128, and the input can be approximately tiled

into 8×8 regions. However, these values are not �xed, and were instead chosen by the metacode

to tile well for some desired full convolution. For some other case where these constants did

not yield a good tiling, a di�erent version of convolution with di�erent work-block geometry (or

using a di�erent variant entirely) would be generated. But, overall, it can be seen that:

• We employ data reuse at the shared-memory and register levels, exploiting the speci�c data

reuse patterns of convolution.

• We choose computation/thread geometry to match the speci�c input sizes.

• We unroll loops to exploit data reuse in registers and register tiled computation.

6.3.7.2 Summary of Boda Metaprogramming

In summary, it is not easy to determine what sequences of C-level code will execute well on a

given platform, but our framework aims to make the process easier. Further, metaprogramming

allows the programmer to exploit run-time knowledge to make many values (such as sizes, strides,

loop bounds, and o�sets) constant, and to reduce the usage of loops and conditionals. Generally,

this allows the platform-speci�c compiler to generate more e�cient binary code. But, perhaps

more importantly, when the compiler fails to automatically generate e�cient code, metaprogram-

ming allows for the ability to emit very low-level code, so that the �nal instruction sequence can

be carefully guided. This allows the ability to productively experiment with di�erent compute

and memory access patterns. This can be done without needing to manually rewrite large sec-

tions of target-speci�c code. And, lest it be forgotten, the compiler need not be modi�ed for

such experiments either, as long as it allows su�cient control over detailed execution. Access to

detailed documentation, compiler source code, disassemblers and/or instruction-level pro�ling

tools for each target platform make this process much more productive. However, it is perhaps

when such aids are not available that Boda’s ability to speed the cycle of experimentation is most

vital.

6.3.8 Variant Selection and Autotuning
As mentioned, NN Convolutions have a wide range of possible input sizes and parameters. It

is di�cult to write a single function, even with metaprogramming, that runs well over a broad

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 113

range of input sizes. Furthermore, each back-end target may need speci�c optimizations, which

may be di�cult to combine in a single function. Perhaps one target can use a single function for

many input sizes, but requires special techniques for memory access. On the other hand, perhaps

a range of targets can share code, but only for certain ranges of input sizes. Thus, depending

on their speci�c goals, we expect the user will create multiple variants of certain important op-

erations (such as convolution). Further, each variant may have various tuning parameters that

a�ect code generation, so they can run well in more cases. Such tuning parameters might control

thread blocking, memory access patterns, or load/store/compute vector widths. Consider a typi-

cal set of tuning parameters and their values: MNt=4:4,MNb=16:16,Kb=4,vw=4. These parameters

specify 4×4 register blocking, 16×16 thread blocking, an inner-loop-unroll-factor of 4, and a vec-

tor/SIMD width of 4. Given an input size and target platform, it may be tractable to manually or

heuristically choose a variant and its tuning parameters – particularly when variants are written

with speci�c targets and input size ranges in mind. However, when considering many operations

across many input sizes across many target platforms, this task becomes at best onerous and at

worst impractical. Thus, an important complimentary technique is autotuning, where such pa-

rameters can be selected automatically by the framework. By performing a brute-force, guided,

or sampled exploration of the space of variants and tuning parameters, we can both: (1) �nd the

best parameters for a given operation, as well as (2) learn much about a new target platform.

Figure 6.6 demonstrates the key features of autotuning: automatic per-platform variant se-

lection and automated sweeps over tuning parameters. Currently, we apply a simple brute-force

search combined with some heuristic parameter selection, which is tractable given the relatively

small number of operations, variants, and tuning parameters. For example, in the experimental

evaluation of Section 6.4, which considers 43 operations on 3 targets, we needed to compile and

execute a total of 1150 functions. This took on the order of 1 hour, with compilation time being

the dominant cost. In the future, it is expected that the tuning space will grow, and eventually

using brute-force will become impractical. In that case, the natural �rst approach would be to

use techniques such as those from OpenTuner [115] to limit the number of points in the space

that must be tested.

Convolution
3x227x227
96x55x55
stride=4

Platform Info
BW=1 TB/s

PC=9 TFLOPS Autotuner:
pick variant
& set tuning

params

variant=tconv
vector_width=4

blocking=8:8:4:16

Figure 6.6: Autotuning in Boda.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 114

6.3.9 Graph-level Optimizations
Next, we discuss graph-level optimizations: a critical but relatively simple part of our �ow. In

particular, there are two important graph-level optimizations for NN compute graphs:

• Fusing of adjacent convolution and activation operations, and

• Inserting any needed data-format-conversion operations.

Convolution operations are commonly followed by the application of some element-wise activa-

tion function (see Section 4.3 for details on common types of activation functions). In some cases,

the overhead to read and re-write the output ND-Array to apply the activation function is signif-

icant. In these cases, one may inline the code for the activation function into the output-writing

portion of the convolution operation to avoid a read-modify-write of the output. While this may

increase the code size of the output-writing part of the convolution operation, it is generally still

favorable to do this, as activation functions such as ReLU add only a few instructions per existing

output store. So, our framework simply always performs this fusion when possible, using string

substitution to insert an application of the activation function for all output-value writes.

The second optimization, insertion of data-format-conversion operations, is necessary due to

the fact that some variants may use di�erent layouts or padding of their input or output ND-

Arrays. That is, since we are able to freely choose the format of most internal ND-Arrays, we

can exploit this to achieve higher e�ciency within each variant. While the user must generally

manually pick data layouts chosen to work well for a given case, the framework’s support for

ND-Array access and metadata handling eases the burden of creating transformation functions

and experimenting with di�erent layouts. Also, as long as di�erent layouts are distinguished by

di�erent ND-Array signatures (di�erent dimension cardinality or naming), the framework can

error-check that all ND-Arrays are in the proper format prior to each operation. In many cases,

data-format-conversion operations can be inserted automatically, based on the context in which

an ND-Array is used.

6.3.10 Code Generation, Scheduling, and Execution
Once we have generated and compiled callable functions for each needed operation, we exe-

cute the compute graph. For this, we must �rst perform operation scheduling and ND-Array

allocation. For compute graphs derived from our current proof-of-concept set of target applica-

tions, scheduling is not di�cult. The bulk of execution time is spent on functions that can each

individually saturate the target hardware’s compute capacity by themselves. So, we need not

attempt to run multiple function nodes (from the graph) in parallel; any topological sort of the

compute graph yields a reasonable execution order. Further, for our current use cases, we are

generally not limited by GPU memory. Hence, we can employ a naive allocation strategy and

simply pre-allocate all ND-Arrays in the compute graph. However, with some additional work,

our framework should be easily capable of supporting more complex scheduling and allocation

policies if needed or desired. After allocation and scheduling, we issue the resultant sequence

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 115

of function calls to the target back-end, which in turn performs all the desired computations.

The output ND-Arrays are then resident in GPU memory, ready to be read back to the CPU or

processed further as desired.

6.4 Boda Results
We now report per-convolution-operation runtime results across hardware targets and program-

ming models, organized to illustrate the key contributions of Boda. The benchmark set of opera-

tions was chosen by extracting the unique convolutions from three common DNNs: “AlexNet” [30],

“Network-in-Network” [129], and the �rst version of Google’s “Inception” network [130]. Fur-

ther, we choose to report a selection of 43 operations with:

• a batch size of 5, which models a streaming deployment scenario with some latency toler-

ance, and

• more than 1e8 FLOPS (as we focused our optimization e�orts on these more computation-

ally intensive sizes).

As show in Table 6.1, we organize the operations by sorting them by FLOP count, which is a

reasonable proxy for the di�culty of a given operation. However, depending on the exact con-

volution parameters, two operations with similar FLOP counts may substantially di�er in both:

• their theoretical maximum e�ciency for a given hardware platform (based on Roo�ine [140]

analysis), as well as

• the empirical performance of any given convolution algorithm.

So, while one expects a general trend that operations with larger FLOP counts will take longer to

execute, there is no expectation of smoothness. Of particular note, the two operations with large

spikes in runtime in most graphs are Fully Connected layers, where each �lter is the size of the full

input image and thus there is only one output pixel per image. Compared to other convolutions

with similar FLOP counts, such operations o�er less opportunity for parallelism and data reuse,

and thus tend to be slower to execute. However, these fully connected layers can be handled

with a faster, less general version of convolution. This special case is not fully implemented

in Boda yet, and it appears cuDNN does not properly invoke its specialized version for these

cases, perhaps since they are not explicitly marked as fully connected (though this can be easily

deduced). Adding optimizations for these special cases to Boda would be a natural extension of

our work so far.

The NVIDIA GPU used is a Titan-X(Maxwell). The AMD GPU used is an R9-Nano. The Qual-

comm GPU used is the Adreno 530 GPU portion of the Snapdragon 820 System-on-Chip (abbre-

viated “SD820” hereafter). For the CUDA platform, we use the NVIDIA-provided nvrtc library to

allow run-time compilation for CUDA. All timings are performed using CUDA and OpenCL level

timing functions, and thus should include only time spent on the GPU, and should not depend on

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 116

1.28× 108 1.66× 108 2.69× 108 5.78× 108 1.27× 109 FLOPS

10−4

10−3

S
ec

s

boda-autotuned-TITAN-OpenCL

boda-autotuned-TITAN-CUDA

Figure 6.7: OpenCL vs CUDA. Runtime on NVIDIA Titan-X (Maxwell)

the host CPU or other machine con�guration details. The input data given to the convolutions is

all-non-zero pseudo-random noise. Note that runtimes should not (in general) depend on the in-

put data, as long as it has proper range and sparsity. All outputs are cross-checked for numerical

correctness using a hybrid relative/absolute tolerance of 1e-3. See Section 6.5 for more details on

testing and numerical tolerance issues.

6.4.1 Programming model portability – OpenCL vs. CUDA
On NVIDIA hardware, we show that we can achieve almost identical per-operation runtime, using

the same CUCL code, regardless of which programming interface we use (programming model

portability). This is contrary to the common perception that CUDA o�ers higher performance

than OpenCL for NVIDIA hardware. Although this may often be true in practice, the fact that

Boda emits only low-level code insulates the user from the di�erences between OpenCL and

CUDA. Instead of using complex programming methods at the level of OpenCL and CUDA, Boda

instead shifts much of the implementation complexity into the metacode layer, which is relatively

programming platform neutral. Thus, the resulting generated OpenCL and CUDA code is quite

simple and portable, using little beyond basic C constructs and the (common to OpenCL and

CUDA) GPU threading model. Also, we abstract away various higher-level issues in terms of

compilation, allocation, scheduling, and execution that di�er between the two platforms. This

is (to the best of the author’s knowledge) a novel illustration of the lack of importance of using

CUDA versus OpenCL for a high-e�ciency, di�cult-to-implement GPU programming task. A

comparison of CUDA vs. OpenCL e�ciency on our benchmark set of operations is given in Figure

6.7. In the �gure, all runtimes are for running each operation using the best function generated

by Boda for that operation, selected by autotuning. The two plotted cases di�er only in the choice

of backend (OpenCL or CUDA) for compilation and execution; the generated CUCL code for both

cases is identical. In both the OpenCL and CUDA backends, it is possible to output the compiled

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 117

1.28× 108 1.66× 108 2.69× 108 5.78× 108 1.27× 109 FLOPS

10−4

10−3

S
ec

s

boda-autotuned-TITAN

NVIDIA-cuDNNv5-library

Figure 6.8: Comparison of Boda with cuDNNv5 on NVIDIA Titan-X

“binary” code (in this case, NVIDIA PTX portable assembly code). For several cases that were

inspected, the same CUCL source code yields the nearly the same PTX when compiled using

either OpenCL or CUDA. However, there are some minor di�erences: the addressing modes and

internal LLVM compiler versions appear to slightly di�er between NVIDIA’s internal OpenCL

and CUDA compilation �ows. These issues, combined with normal runtime variation/noise, can

easily explain the remaining small di�erences in runtime between the OpenCL and CUDA cases.

In order to gauge the overall quality of our results, in Figure 6.8, we compare to the most

highly tuned vendor CNN library that is available: cuDNN version 5. Note that Boda is particu-

larly slower in cases with 3x3 kernel sizes, where cuDNN is using Winograd convolution [116],

which is not yet implemented in Boda. A case study to determine the e�ort/speed tradeo� of

implementing Winograd convolution in Boda is a key topic of future work. However, overall,

we are reasonably competitive, and even faster than the reference library in a few cases. This

is particularly impressive given that private sources indicate cuDNN to be the result of ∼15 sta�

years of e�ort, whereas Boda comes close with only a few months of e�ort, and is portable to

other platforms as well (note: we perform a detailed productivity analysis later in Section 6.6).

6.4.2 Tuning for QualcommMobile GPUs
In Figure 6.9, the boda-initial values show the initial (poor) performance when running the

general-case fallback convolution variant on the SD820 platform. When starting work on this

platform, the general-case fallback variant was the only variant that could be run, since bugs

in the Qualcomm OpenCL implementation and portability issues (primarily related to usage of

shared memory and high register usage) prevented any of the existing optimized-for-NVIDIA

variants from running at all. The few missing bars in the boda-initial series denote cases where

even the simple fallback variant failed to compile or run. However, with a few weeks of e�ort, we

were able to create a new convolution variant that both worked around bugs in the Qualcomm

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 118

1.28× 108 1.66× 108 2.69× 108 5.78× 108 1.27× 109 FLOPS

10−2

10−1

100S
ec

s

boda-autotuned-SD820

boda-intial-SD820

Figure 6.9: Initial vs. optimized results on Qualcomm Snapdragon 820

platform as well as used some platform-tailored optimizations for memory access. Additionally,

based on analysis and experimentation, we added new points in the space of tuning parameters

(speci�c thread and register blocking constants) to be searched over. The �nal results of using

the combination of the new variant and expanded tuning space are shown in the �gure as boda-
autotuned, with the same meaning as in other �gures: the values show the runtimes of the best

variant and tuning parameters for each operation.

6.4.3 Easily Improving E�ciency with Autotuning on New Platforms
We now move to some initial results on AMD hardware that demonstrate the value of autotun-

ing. In particular, we show that autotuning enables initial portability to a new platform with

low development cost. Using the expanded library of variants and tuning space from targeting

NVIDIA and Qualcomm hardware, we perform an experiment to isolate the e�ect of autotuning.

In Figure 6.10, we compare two cases. First, we consider the runtimes one might achieve without

autotuning. In this case, it is too time consuming to select the best variant and tuning parameters

for each operation individually. Instead, the boda-manual-tune values show the runtimes that

result from:

• using a simple “choose-most-specialized-possible” heuristic to select the per-operation vari-

ant, and

• choosing the single overall best setting for tuning parameters, judged by the sum of runtime

over all cases.

The second step in this process, while automatic, is designed to mimic the actual process and

results of previous e�orts at manual tuning that we performed prior to having autotuning sup-

port in our framework. Thus, in addition to giving better results, autotuning requires much less
e�ort than manual tuning. Additionally, the overall result of exploring the tuning space provides

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 119

1.28× 108 1.66× 108 2.69× 108 5.78× 108 1.27× 109 FLOPS

10−3

10−2

S
ec

s

boda-manual-tune-R9

boda-autotuned-R9

Figure 6.10: Manually-tuned and autotuned runtime on AMD R9-Nano (Fiji)

signi�cant insight into this new platform. By seeing which variants and tuning parameter set-

tings work well, and which do not, and comparing results across platforms, we can more quickly

determine where to focus future optimization e�orts. As with all new platforms, it is di�cult

to predict how much speed improvement is possible with a given amount of optimization e�ort.

However, we are now well positioned to explore this question for the AMD platform as future

work.

6.4.4 Performance Portability on Di�erent Targets
In Figure 6.11, we show the overall portability of our benchmark convolution operations across

three di�erent platforms. Using a single framework and library of variants and tuning parameters,

we achieve reasonable performance across three di�erent hardware platforms (AMD, NVIDIA,

and Qualcomm) and two di�erent programming platforms (OpenCL and CUDA). Note that the

generated code has no dependencies on any platform-speci�c libraries (or any libraries at all),

and all code is generated and compiled at run-time speci�c to each operation instance. In partic-

ular, for testing, the framework can run the same operation on all platforms supported within a
single process and compare full results across platforms on the �y. Currently, the results for the

AMD platform are signi�cantly slower than those on the NVIDIA platform, especially for the

smaller (lower FLOP count) operations. OpenCL is presented as a standard for portable parallel

computing across many types of hardware. This leads to a common perception that OpenCL

provides general (both functional and performance) portability. However, these results clearly

demonstrate that, for these operations, OpenCL does not provide performance portability even

between two relatively similar platforms (AMD and NVIDIA) with comparable peak computa-

tional and memory performance. Of course, the intent of Boda is to allow programmers to close

this portability gap, and proving that this can be done for the AMD platform is an important topic

for future work. Similarly, while the SD820 results are much slower than the NVIDIA results (by

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 120

1.28× 108 1.66× 108 2.69× 108 5.78× 108 1.27× 109 FLOPS
10−4

10−3

10−2

10−1

S
ec

s

boda-autotuned-TITAN

boda-autotuned-R9

boda-autotuned-SD820

Figure 6.11: Autotuned runtime on NVIDIA Titan-X, AMD R9-Nano, and Qualcomm Snapdragon

820

perhaps 2 orders of magnitude), it must be remembered that the SD820 GPU is (by design) a much

smaller device with much lower power usage and correspondingly lower peak performance. At

this time, we present these results mainly to show the functional portability of our entire frame-

work, including testing and pro�ling, and not to directly compare these platforms. However, with

modest additional optimization e�orts on the AMD and Qualcomm platforms, one may be able

to draw fairer comparisons between these disparate platforms.

6.5 Key Features of Boda’s Support for Regression Testing
As mentioned in Section 1.1.7, one of the goals of Boda is to support maintaining accuracy during

the implementation process by means of continuous testing. In general, the Boda philosophy of

testing is that the best tests are the ones that actually get written. At the top level, any invocation

of the Boda framework that produces output can be trivially converted into a regression test.

First, the relevant command line is added to the list of tests. When the new test is �rst run, the

framework will automatically store the output as a known-good result. Then, when run again as

part of testing, the framework will compare all outputs to ensure they have not changed.

This facility forms a base on which more specialized testing can be developed. For example,

in the case of NN computations, it is not possible to simply output all intermediate values across

many test cases, since the resulting data size would be too large to store in a database of known-

good test results. Further, even if storage of all results was possible, in many cases, especially

when comparing di�erent implementations across hardware targets and vendors, the results of

various operations will not be in exact numerical agreement. There are various factors that can

cause such e�ects. For example:

• At the hardware level, �oating point computations can have slightly di�erent semantics,

especially related to rounding and corner-cases.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 121

• Sometimes, di�erent high-level algorithms can be used to compute the same operation.

Again, due to the nature of �oating-point calculations, one would not expect the results of

such di�erent approaches to agree exactly.

• Even when nominally the same algorithm is used, di�erences in operation ordering and

compiler optimizations can cause di�erences in numerical results.

• Further, some algorithms may o�er internal speed/precision tradeo�s. Di�ering choices

for these tradeo�s will of course yield di�erent results.

6.5.1 Approximate Numerical Agreement for NN Calculations
For the problem of dealing with approximate numerical comparison, Boda utilizes a hybrid abso-

lute/relative error metric, derived from the nature of NN calculations. For the results of a given

intermediate layer, values tend to span a limited range which includes zero. However, it is typi-

cally numbers with higher absolute values that are most semantically important. Thus, neither a

�xed absolute error tolerance nor a relative tolerance works well in practice. For large values, a

relative error tolerance of between 0.001 and 0.00001 is generally appropriate. But, for small val-

ues near zero, much larger relative di�erences are acceptable. In particular, for a NN layer with

outputs ranging from 0 to ∼1000, some values might be zero in the output of one implementation,

but have a small non-zero value in another, yielding a large relative di�erence. Conveniently, it is

generally the case that NN calculations do not rely on precision for values with very small mag-

nitudes (i.e. large negative exponents). So, when comparing each value between known-good

and under-test implementations, we calculate a relative di�erence, but clamp it to the maximum

absolute value of the two values being compared. Thus, as the values to compare become smaller

than the speci�ed relative error tolerance, the tolerance becomes absolute instead of relative. See

the function min_sig_mag_rel_diff() in boda_base.cc for the exact implementa-

tion [138].

6.5.2 Using ND-Array Digests to Compactly Store Known-Good Test
Results

For the problem of results being too large to store, Boda provides two solutions:

• When possible, Boda will run the reference and under-test implementations at the same

time, so that comparison between all known-good and under-test results can be performed

online.

• In addition, Boda will create digests of known-good ND-Arrays, where a sampling approach

is used to reduce the amount of data needed to later check approximate equivalence with

under-test ND-Arrays.

The digests consist of a moderately large set of variable length periodic-sampled checksums.

This approach allows both detecting changes anywhere in the results (like a hash), but also allows

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 122

for approximate numerical comparison (like a simple checksum). For more details, see the class

nda_digest_T in boda_base.cc [138].

6.6 Boda Enables Productive Development of NN
Operations

In the best case, measuring developer productivity is a di�cult task [141]. For the case of im-

plementing e�cient NN computations on GPUs, the problem is magni�ed. Globally, there are

only a few historical instances of such implementations [33] [41], and, as both were commercial

endeavors, details on their development processes are lacking. Similarly, it appears that very few

programmers are capable of addressing this type of problem, and it is hard to generalize about

programmer skills and preferences from such a small set. Still, from the release history of cuDNN

and Neon, we can at least infer that development took years in both cases. In Section 1.1.7, we

asked if it was possible to improve on this situation, and reduce development time from years to

months. When analyzing the development of Boda, we must decouple e�ort spent on the frame-

work itself from that spent actually implementing NN operations. However, these two activities

are, by design, closely coupled in Boda, and it is thus di�cult (and perhaps not meaningful) to

make a hard distinction. Instead, work on Boda consists of a spectrum of development activities,

ranging from general framework support (which should be amortized fully over all operations

and targets) to speci�c optimizations for a given hardware/operation pair (for which all costs are

fully attributable to that speci�c operation and target). Here, we list the broad classes of Boda

development activity, ordered from general framework support to operation/target speci�c opti-

mizations. Near the center of the list, we draw a rough boundary between activities that are more

focused on general framework features versus those that are more focused on operation/target

speci�c optimizations:

• Boda’s support for ND-Arrays and compute graph handling is general, albeit with special

support for NNs. So, it should be useful for implementations of a wide range of operations

over ND-Arrays. Hence, e�ort related to these parts of the framework can (in theory) be

amortized over many targets and operations.

• Similarly, Boda’s support for autotuning is general, and can be amortized across all hard-

ware targets and operations.

• Boda’s support for testing has both general components as well as those that are more

operation speci�c. Thus, such e�orts should be amortized across all hardware targets, but

only partially amortized across operations.

• Boda’s backends for OpenCL and CUDA are generally useful for running any compute

graph of functions over ND-Arrays on the respective programming platforms (assuming a

GPU-like target). Basic support for CPUs in the OpenCL backend would not be di�cult to

add, but would not be useful without a full �ow to generate e�cient CPU code. Still, e�orts

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 123

for this portion of Boda are amortized across all OpenCL and CUDA targets and across all

operations.

– General/Speci�c Development Activity Boundary –

• Boda’s code generation and metaprogramming support is specialized both for GPUs as tar-

gets and for NN operations as the functions to compute. In general, adding new operations,

or new variants of existing operations, requires some e�ort at this level, but it is still par-

tially amortized across di�erent operations.

• Boda requires some e�ort at the framework level to add new operations. But, this e�ort

is low when the new operations have similar interfaces to existing ones. And, the needed

e�ort is amortized across all variants of each operation, which includes any hardware-

target-speci�c variants.

• Each new operation requires a general-case reference/fallback implementation. Generally,

this can be shared across all hardware targets.

• If needed to meet e�ciency goals, each operation may require some amount of tuning

and optimization. This may require writing per-hardware-target variants, and/or variants

specialized for particular types of inputs. E�ort for this category of development should be

fully attributed to the speci�c use-case that is being optimized.

When comparing against the development of cuDNN and Neon, the time spent in the last

category listed above gives the best case bound on the productivity improvement of using Boda.

In addition to a best case estimate, we also consider a reasonable worst case estimate that includes

all activities below the general/speci�c boundary line. This includes most of the development

e�ort that is at all related to the entire code generation �ow, much of which can in theory be

reused across many platforms and operations. But, for now, it has only been used for our proof-

of-concept set of NN computations across three targets (NVIDIA, Qualcomm, and AMD). So, we

recognize that the degree of generality of these parts of Boda remains to be demonstrated.

In order to perform our analysis, we examine the entire development history of Boda on a

commit-by-commit basis, as provided by the version control system used for development (git).

Also, it should be noted that the primary developer for Boda was only working part-time on

development during this period, due to work, family, and academic commitments (Note: the

developer recommends avoiding such multitasking if possible). From the commit log, we derive

a summary timeline of development related to the implementation of NN operations in Boda

across the NVIDIA and Qualcomm platforms:

• 2015-05: Development using runtime compilation for NVIDIA begins with running a dot-

product example using the vendor-provided nvrtc (NVIDIA Run Time Compilation) library.

• 2015-06: A reference, general-case version of convolution targeting NVIDIA hardware is

developed, along with various related additions to the framework to support it.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 124

• 2015-07 though 2015-08: The two main optimized convolution variants (k1conv and tconv)

are developed, which improve speed by more than 2X over the Boda reference convolution

on our benchmark set (see Table 6.1), yielding our current best speed results on NVIDIA

hardware (see Figure 6.8).

• 2016-05: The entire development of Qualcomm-speci�c (conv-simd and tconv-simd) con-

volution variants occurred during this month, yielding our current best results for the Qual-

comm platform, which are roughly 10X better (see Figure 6.9) than the initial results we

achieved on that platform.

Considering the above timeline, it can be seen that it took 4 real-time months of part-time

e�ort to achieve our current results on the NVIDIA platform. However, the �rst two months of

this period involved setting up our general run-time compilation �ow for the NVIDIA platform,

as well as implementing a reference version of convolution. Note that, although the developer is

an experienced algorithmic and performance programmer, this was their �rst attempt at both dy-

namic compilation and high-e�ciency numerical GPU programming. So, there was a signi�cant

learning curve to be climbed in the those �rst few months. The second two months, however,

felt qualitatively quite productive. During this period, we developed, optimized, and tuned two

special-case variants of convolution for the NVIDIA platform. So, one can legitimately say that

only it took two months of part-time e�ort to move from a reference GPU convolution imple-

mentation to our current best (within 2X of the vendor library) results.

Finally, for our e�orts on the Qualcomm platform, there were some signi�cant initial costs

associated with targeting an Android-OS based platform, as well as dealing with the quirks of

the Qualcomm OpenCL implementation. After this platform bootstrapping was complete, we

began our e�ort to improve e�ciency. Initially, it took some time and research to isolate the key

needed optimization for the Qualcomm platform: manual SIMD memory access. Still, including

this research, it only took a month of part-time e�ort to develop our �nal optimized variants for

the Qualcomm platform.

In summary, Boda enabled the rapid development of reasonably e�ciency implementations

of NN convolutions for two GPU platforms in just a few months.

6.7 Summary of Boda’s Contributions
By 2006, it was clear that parallel computing would be a critical challenge going forward [109].

More than ten years later, productive, e�cient parallel programming still remains a challenging

task with no general solution, especially for GPUs [24]. Combined with the promise of modern,

compute-intensive machine learning [14], this makes enabling the productive creation of e�-

cient, portable, accurate implementations of machine learning computations an important sub-

ject for research. While only a single facet of this broad issue, the implementation of just neural

network operations on GPUs is still a worthy challenge by itself, and has tractable scope for a

single research project. In this chapter, we have presented our answer to this challenge: the Boda

framework for productive implementation of e�cient neural network computations.

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 125

Taking a vertical approach spanning from high-level application to low-level programming,

we have presented several contributions:

• The Boda framework itself, which provides a novel uni�ed methodology, based on metapro-

gramming and autotuning, for productive development of portable, e�cient implementa-

tions of a broad class of numerical functions targeting GPUs or similar platforms.

• Metaprogramming with named ND-Arrays dimensions for improved productivity and type

checking.

• A proof-of-concept use of the framework to implement the core set of operations needed

for deploying three common image-processing neural networks (AlexNet, Network-in-

Network, and Inception-V1) across three di�erent GPU targets.

• An experimental evaluation of the resulting implementation, including a comparison to a

highly-tuned vendor library.

Additionally, Boda provides a platform for future research, further experiments, and benchmark-

ing related to GPU portability and metaprogramming.

Our experimental results show that Boda eases the path to portable, e�cient implementations.

In particular, we have shown how Boda’s metaprogramming and autotuning support enables pro-

gramming model and performance portability. On NVIDIA hardware, we achieve performance

competitive with the vendor library using either OpenCL or CUDA, demonstrating programming

model portability. On Qualcomm hardware, we show that we can quickly develop new variants

and otherwise tune our generated code to achieve reasonable performance on a mobile GPU. On

AMD hardware, we show that autotuning and pro�ling pre-existing code on a new platform pro-

vides a good foundation for future platform-speci�c optimization e�orts. Further, as an open,

vendor-neutral framework, we avoid dependencies on any speci�c hardware platforms or unex-

tensible vendor libraries. Thus, our framework provides a productive method for implementing

existing and new NN operations while targeting various hardware platforms. As a �nal note,

the entire framework, including support for automated replication of all results presented here,

and the entire development history, is made available online as open source with a permissive

license [142].

CHAPTER 6. IMPLEMENTING EFFICIENT NN COMPUTATIONS : THE BODA FRAMEWORK 126

KSZ S OC B input X×Y×Chan FLOPs

5 1 32 5 28×28×16 1e+08

5 1 64 5 14×14×32 1e+08

1 1 256 5 7×7×832 1.04e+08

1 1 112 5 14×14×512 1.12e+08

1 1 128 5 14×14×512 1.28e+08

1 1 64 5 28×28×256 1.28e+08

1 1 64 5 56×56×64 1.28e+08

1 1 128 5 14×14×528 1.32e+08

1 1 144 5 14×14×512 1.45e+08

1 1 96 5 28×28×192 1.45e+08

1 1 384 5 7×7×832 1.57e+08

1 1 160 5 14×14×512 1.61e+08

1 1 160 5 14×14×528 1.66e+08

1 1 4096 5 1×1×4096 1.68e+08

1 1 192 5 14×14×480 1.81e+08

5 1 128 5 14×14×32 2.01e+08

3 1 320 5 7×7×160 2.26e+08

1 1 384 5 13×13×384 2.49e+08

1 1 128 5 28×28×256 2.57e+08

1 1 256 5 14×14×528 2.65e+08

1 1 96 5 54×54×96 2.69e+08

3 1 384 5 7×7×192 3.25e+08

3 1 208 5 14×14×96 3.52e+08

1 1 1000 5 6×6×1024 3.69e+08

1 1 1024 5 6×6×1024 3.77e+08

6 1 4096 5 6×6×256 3.77e+08

3 1 224 5 14×14×112 4.43e+08

1 1 256 5 27×27×256 4.78e+08

3 1 256 5 14×14×128 5.78e+08

5 1 96 5 28×28×32 6.02e+08

3 1 288 5 14×14×144 7.32e+08

3 1 128 5 28×28×96 8.67e+08

3 1 320 5 14×14×160 9.03e+08

11 4 96 5 224×224×3 1.02e+09

11 4 96 5 227×227×3 1.05e+09

7 2 64 5 224×224×3 1.18e+09

3 1 1024 5 6×6×384 1.27e+09

3 1 256 5 13×13×384 1.5e+09

3 1 384 5 13×13×256 1.5e+09

3 1 192 5 28×28×128 1.73e+09

3 1 384 5 13×13×384 2.24e+09

3 1 192 5 56×56×64 3.47e+09

5 1 256 5 27×27×96 4.48e+09

Table 6.1: List of benchmark convolution operations. KSZ: kernel X/Y window size; S: X/Y stride;

OC: # of output channels; B: # input images per batch

127

Chapter 7

Summary, Conclusions, and Future Work

With recent advances in machine-learning, it appears that an era of pervasive machine-learning

in all aspects of life is imminent or, possibly, has already arrived, quietly working behind the

scenes in datacenters [143]. Implementing the e�cient parallel computations upon which ma-

chine learning relies, however, is still an endeavor that needs signi�cant manual human e�ort.

And, although existing libraries e�ciently support some operations on some hardware, there will

always be new algorithms and hardware platforms to consider. So, in this work, we strive to am-

plify the e�ort of the few humans willing and able to work on such problems. In this chapter, we

will summarize all the contributions we have made in this work and consider the natural next

steps for future work.

7.1 Contributions
This dissertation has several categories of contributions:

• Contributions related to libHOG and DenseNet, early work that motivated the Boda frame-

work,

• Contributions directly embodied in the Boda framework,

• Contributions related to performance experiments performed with the Boda framework.

• Contributions related to an analysis of developer productivity when using the Boda frame-

work.

First, we consider contributions are related to our early work that motivated and guided the

early design of the framework:

• Our �rst project was libHOG [44]. Here, we sped up a key machine learning computation,

HOG feature pyramid calculation, on CPUs by 3X over the state of the art. To achieve this,

CHAPTER 7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 128

we implemented a reasonably well engineered pipeline using reduced precision, SIMD par-

allelism, algorithmic changes, and outer-loop parallelism. However, we encountered var-

ious challenges associated with the development and deployment of libHOG. These pro-

vided inspiration for our later work and de�ned our research trajectory.

• Following the same theme, our next project was DenseNet [45]. There, we achieved a

10X speedup for the calculation of dense convolutional neural network feature pyramids.

This enabled multiscale sliding window object detection �ows (over DenseNet features)

that were previously too slow to consider. Again, the implementation and deployment

challenges of this work shaped our research trajectory and motivated our future work.

In particular, after the initial implementation of DenseNet, we then reimplemented it as

DenseNet-v2, a prototype of what would become our Boda framework.

Then, moving to our �nal project, we consider our contributions related to Boda framework

itself, the experiments we performed with it, and our productivity analysis of its development:

• In Boda, we have produced a framework that supports the development of e�cient GPU

implementations of numeric operations on GPUs.

• As our proof-of-concept for Boda, we have presented the speci�c techniques we used to

achieve our best speed results for NN convolutions on NVIDIA and Qualcomm GPUs. We

achieved speed within 2X of the highly-tuned vendor library on NVIDIA GPUs, and did

so with only a few months of part-time e�ort. With a few additional weeks of e�ort, we

achieved up to 30% e�ciency on Qualcomm mobile GPUs, where vendor libraries for NN

computation remain unreleased [46].

• Further, we showed that the addition of an autotuning method into the framework im-

proved portability and development productivity. Using it, we showed initial results that

indicate our framework can yield reasonable performance on a new platform, AMD GPUs,

with minimal e�ort [47].

Finally, although it does not map one-to-one with to speci�c research contributions, another

way to organize our e�orts is using our list of concerns. Organized by concern, our contributions

are:

• Speed contribution: In libHOG and DenseNet, we directly speed-up particular use-cases.

In Boda, our goal is to generally enable creating high e�ciency implementations across

di�erent hardware targets and use cases, and we show a proof-of-concept of this approach

for implementing NN operations on GPUs.

• Accuracy contribution: In general, our focus for this concern is on maintaining accuracy

versus reference implementations. In both the second iteration of DenseNet and in Boda,

we provide advanced testing support, including numerical accuracy checking using both

golden results (ND-Array digests) and live full-�ow per-ND-Array comparisons.

CHAPTER 7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 129

• Energy contribution: As discussed in 1.1.4, for our targets (CPU and GPU), more speed

conveniently means less energy usage. So, our contributions in libHOG, DenseNet, and

Boda related to speed also yield improvements in energy usage.

• Portability contribution: As a key focus of Boda, we provide the CUCL language to al-

low programming model portability between OpenCL and CUDA, as well as leveraging

metaprogramming to deal with target-speci�c issues to enable performance portability.

• Cost contribution: As discussed in 1.1.5, more portability and more speed yield lower costs

for development and deployment.

7.2 Conclusions: Answering Key Research Questions
Let us return to the key research questions we asked in Section 1.1.7. Now, at the conclusion of

our e�orts, we can answer them:

• Is possible to reduce the time taken to implement e�cient neural net computations on new

GPU platforms from years to months?

Yes. In Boda, we showed that, without reliance on any existing libraries, we can implement

e�cient NN computations on several platforms. As discussed in Section 6.6, we needed only ∼2

months of e�ort to tune our NN convolutions for NVIDIA hardware. Then, we needed only ∼1

additional month to tune for Qualcomm GPUs.

• If so, for platforms where they apply, can we improve on the e�ciency of existing portable

(numerical library-based) approaches by at least 2X? That is, can we achieve ∼50% e�-

ciency, which is generally about the best that can be expected for GPU code, short of using

assembly language?

Yes. For the NVIDIA platform, for our benchmark cases, we achieved roughly 50% peak e�ciency,

or 2X that which is achievable using BLAS libraries. Further, this is within a factor of 2 of the

performance of the vendor library cuDNN (which achieves near 100% e�ciency).

• Then, for platforms with no libraries to build upon or compare with, can we achieve at least

25% e�ciency? This represents the low end of the expected e�ciency of optimized GPU

code, but is at least 5X better than what would be expected from naive code.

Yes. For the Qualcomm SD820 platform, we achieve ∼%30 e�ciency. Since the SD820 lacks both

GPU NN computation and GPU BLAS libraries, comparison is di�cult, and the maximum achiev-

able e�ciency is an open question. But, our results represent a solid lower-bound for what can

be achieved, and thus are a good benchmark for future e�orts to compare against.

CHAPTER 7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 130

• In order to maintain accuracy during implementation and optimization, can we fully auto-

mate continuous numerical regression testing of NN computations for full �ows with full

inputs?

Partially. As discussed in Section 6.5, we enabled two methods: approximate testing using ND-

Array digests, and full live testing that requires being able to run reference and under-test calcu-

lations simultaneously. Neither option is perfect, but both represent a signi�cant improvement

on existing practice.

7.3 Future Work

7.3.1 Boda for Other Operations
While our current focus is on neural network operations, any numerical operations that operate

over ND-Arrays should be reasonably well supported by our approach. Thus, exploring the space

of such operations is a good subject for future work. In particular, signal processing, �nancial

calculations, and scienti�c computation are all interesting areas where some applications use

GPUs to process data that is well represented using ND-Arrays [144].

7.3.2 Boda on Other Hardware
While we have focused on GPUs, Boda’s vertical nature and unrestricted support for metapro-

gramming allow for extension to other parallel hardware targets. Natural candidates include

FPGAs, CPUs, hardware description languages, and DSPs. However, the tradeo� for Boda’s �ex-

ibility is that such extensions will require e�ort that is the sum of two parts:

• an amount proportional to how di�erent each new platform is from the existing supported

ones (i.e. currently just GPUs), and

• an amount proportional to how many operations require signi�cant tuning for the new

platform.

Without actually performing such extensions, it is di�cult to speculate on exactly how high these

costs might be for any particular set of operations on a new hardware target. However, many of

Boda’s features are clearly independent of both the operations to compute and hardware target,

such as:

• testing (to maintain accuracy),

• metaprogramming using ND-Arrays with named dimensions,

• compute graph creation and execution.

CHAPTER 7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 131

So, even if much of the metacode and CUCL for particular operations must be rewritten for a new

hardware target, the basic sca�olding provided by Boda provides a good starting point.

Also, we only had time to perform initial experiments on the AMD platform. It would be

natural to try to improve our results on this platform, and see what gains could be made with a

few months of e�ort. In particular, a key question is: can we achieve 50% e�ciency, as we did on

the NVIDIA platform?

7.3.3 Broader Scope of NN Computations
We believe the set of NN operations that we implemented is su�cient to prove the concept of

Boda. However, the space of NN operations is very broad, and true practical deployment of Boda

would certainly require implementing more operations, or at least tuning for additional points in

the space of all possible convolutions. In particular, it would be sensible to examine the broader

space of NNs outside of CNNs, such as recurrent NNs and others (see Part 2 of Deep Learning for

a comprehensive list [14]).

7.4 Final Thoughts
We believe that e�ciently implementing computations on parallel hardware will remain an im-

portant problem with no general solution for the foreseeable future. So, it is vital to research

tools and methods to continue to improve the ability for programmers to productively tackle

this issue. With each new application domain and each new generation of hardware, require-

ments shift, and new implementation challenges arise. In this work, we focused on the speci�c

challenges associated with performing neural network computations on modern GPU hardware.

In each of the three projects that constitute this dissertation (libHOG, DenseNet, and Boda),

we optimized an important machine learning operation. In Boda, we present a general framework

that embodies our vision for how to productively implement e�cient computations for GPUs, and

we provided a proof-of-concept by implementing key NN operations on NVIDIA, Qualcomm, and

AMD GPUs. We look forward to extensions of Boda to other operations and hardware targets

in order to further demonstrate the value of our approach. Further, as Boda matures, we see it

moving from a research project to a legitimate alternative to vendor-supplied libraries for NN

computation in real-world practical deployments across a variety of hardware platforms.

132

Bibliography

[1] J. Schmidhuber, “Deep learning in neural networks: an overview”, Neural networks, vol.

61, pp. 85–117, 2015.

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,

A. Coates, G. Diamos, et al., “Deep speech 2: end-to-end speech recognition in english and

mandarin”, arXiv:1512.02595, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go

with deep neural networks and tree search”, Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features o�-the-shelf:

an astounding baseline for recognition”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2014, pp. 806–813.

[5] R. Girshick, F. Iandola, T. Darrell, and J. Malik, “Deformable part models are convolutional

neural networks”, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 437–446.

[6] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale

video classi�cation with convolutional neural networks”, in Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.

[7] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action

recognition”, IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1,

pp. 221–231, 2013.

[8] K.-S. Oh and K. Jung, “Gpu implementation of neural networks”, Pattern Recognition, vol.

37, no. 6, pp. 1311–1314, 2004.

[9] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-

level classi�cation of skin cancer with deep neural networks”, Nature, vol. 542, no. 7639,

pp. 115–118, 2017.

[10] G. E. Dahl, N. Jaitly, and R. Salakhutdinov, “Multi-task neural networks for qsar predic-

tions”, arXiv preprint arXiv:1406.1231, 2014.

[11] J. Chung, K. Cho, and Y. Bengio, “A character-level decoder without explicit segmentation

for neural machine translation”, arXiv preprint arXiv:1603.06147, 2016.

BIBLIOGRAPHY 133

[12] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style”, arXiv preprint
arXiv:1508.06576, 2015.

[13] C. Chen, A. Se�, A. Kornhauser, and J. Xiao, “Deepdriving: learning a�ordance for direct

perception in autonomous driving”, in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 2722–2730.

[14] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning”, Book in preparation for MIT

Press, 2016, [Online]. Available: http://www.deeplearningbook.org.

[15] D. Goldberg, “What every computer scientist should know about �oating-point arith-

metic”, ACM Computing Surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[16] M Leeser, J Ramachandran, T Wahl, and D Yablonski, “Opencl �oating point software on

heterogeneous architectures–portable or not”, in Workshop on Numerical Software Veri�-
cation (NSV), 2012.

[17] F. Iandola, “Exploring the design space of deep convolutional neural networks at large

scale”, arXiv preprint arXiv:1612.06519, 2016.

[18] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of pedestrian detection for

advanced driver assistance systems”, IEEE transactions on pattern analysis and machine
intelligence, vol. 32, no. 7, pp. 1239–1258, 2010.

[19] M. Horowitz and W. Dally, “How scaling will change processor architecture”, in Solid-
State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International,
IEEE, 2004, pp. 132–133.

[20] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-smartphone concerns: a

study of battery life”, in International Conference on Pervasive Computing, Springer, 2011,

pp. 19–33.

[21] M. Moskewicz, Boda framework core source code, master branch, sgemm benchmarking re-
sults, https://github.com/moskewcz/boda/blob/master/src/
doc/sgemm-notes.txt, [Online; accessed 04-April-2017], 2017.

[22] NVIDIA, Cublas, https://developer.nvidia.com/cublas, [Online; ac-

cessed 27-May-2016], 2016.

[23] K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. D. Nguyen, “Managing the cost, energy

consumption, and carbon footprint of internet services”, ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 1, pp. 357–358, 2010.

[24] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel processors: a hands-on
approach. Morgan Kaufmann, 2016.

[25] T. Dettmers, Which gpu for deep learning, http://timdettmers.com/2017/
03/19/which-gpu-for-deep-learning/, [Online; accessed 04-April-2017],

2017.

http://www.deeplearningbook.org
https://github.com/moskewcz/boda/blob/master/src/doc/sgemm-notes.txt
https://github.com/moskewcz/boda/blob/master/src/doc/sgemm-notes.txt
https://developer.nvidia.com/cublas
http://timdettmers.com/2017/03/19/which-gpu-for-deep-learning/
http://timdettmers.com/2017/03/19/which-gpu-for-deep-learning/

BIBLIOGRAPHY 134

[26] Wikipedia, List of nvidia graphics processing units — wikipedia, the free encyclopedia, [On-

line; accessed 6-April-2017], 2017. [Online]. Available:\url{https://en.wikipedia.
org/w/index.php?title=List_of_Nvidia_graphics_processing_
units&oldid=773358079}.

[27] S. Chintala, Convnet-benchmarks, https://github.com/soumith/convnet-
benchmarks, [Online; accessed 4-April-2016], 2016.

[28] C. Nugteren, Tutorial: opencl sgemm tuning for kepler,https://cnugteren.github.
io/tutorial/pages/page12.html, [Online; accessed 04-April-2017], 2014.

[29] NVIDIA, Cuda c best practices guide, http://docs.nvidia.com/cuda/cuda-
c-best-practices-guide/, [Online; accessed 04-April-2017], 2017.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi�cation with deep con-

volutional neural networks”, in Advances in neural information processing systems, 2012,

pp. 1097–1105.

[31] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image

classi�cation”, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, IEEE, 2012, pp. 3642–3649.

[32] AMD et al., A software library containing blas functions written in opencl, https://
github.com/clMathLibraries/clBLAS, [Online; accessed 31-May-2016],

2016.

[33] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer,

“cuDNN: e�cient primitives for deep learning”, arXiv:1410.0759, 2014.

[34] V. Volkov and J. W. Demmel, “Benchmarking gpus to tune dense linear algebra”, in High
Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International
Conference for, IEEE, 2008, pp. 1–11.

[35] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: compiling an embedded data

parallel language”, ACM SIGPLAN Notices, vol. 46, no. 8, pp. 47–56, 2011.

[36] Qualcomm, Snapdragon 820 processor,https://www.qualcomm.com/products/
snapdragon/processors/820, [Online; accessed 4-April-2016], 2016.

[37] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate ob-

ject detection and semantic segmentation”, in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2014, pp. 580–587.

[38] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with

discriminatively trained part-based models”, IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[39] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T.

Darrell, “Ca�e: convolutional architecture for fast feature embedding”, in Proceedings of
the 22nd ACM international conference on Multimedia, ACM, 2014, pp. 675–678.

\url{https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_processing_units&oldid=773358079}
\url{https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_processing_units&oldid=773358079}
\url{https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_processing_units&oldid=773358079}
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://cnugteren.github.io/tutorial/pages/page12.html
https://cnugteren.github.io/tutorial/pages/page12.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clBLAS
https://www.qualcomm.com/products/snapdragon/processors/820
https://www.qualcomm.com/products/snapdragon/processors/820

BIBLIOGRAPHY 135

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, et al., “Tensor�ow: large-scale machine learning on heterogeneous

distributed systems”, arXiv preprint arXiv:1603.04467, 2016.

[41] S. Gray and N. Systems,Nervana library for gpus,https://github.com/NervanaSystems/
nervanagpu, [Online; accessed 4-April-2016], 2016.

[42] N. Systems, Fast, scalable, easy-to-use python based deep learning framework by nervanaâďć,
https://github.com/NervanaSystems/neon, [Online; accessed 4-April-

2016], 2016.

[43] Wikipedia, Metaprogramming — wikipedia, the free encyclopedia, [Online; accessed 12-

April-2017], 2017. [Online]. Available: \url{https://en.wikipedia.org/w/
index.php?title=Metaprogramming&oldid=773634179}.

[44] F. N. Iandola, M. W. Moskewicz, and K. Keutzer, “libHOG: energy-e�cient histogram of

oriented gradient computation”, in ITSC, 2015.

[45] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer, “Densenet:

implementing e�cient convnet descriptor pyramids”, arXiv preprint arXiv:1404.1869, 2014.

[46] M. Moskewicz, F. Iandola, and K. Keutzer, “Boda-rtc: productive generation of portable,

e�cient code for convolutional neural networks on mobile computing platforms”, arXiv
preprint arXiv:1606.00094, 2016.

[47] M. W. Moskewicz, A. Jannesari, and K. Keutzer, “A metaprogramming and autotuning

framework for deploying deep learning applications”, arXiv preprint arXiv:1611.06945,

2016.

[48] C. G. Keller, T. Dang, H. Fritz, A. Joos, C. Rabe, and D. M. Gavrila, “Active pedestrian safety

by automatic braking and evasive steering”, IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 4, pp. 1292–1304, 2011.

[49] H. Y. Yalic, A. S. Keceli, and A. Kaya, “On-board driver assistance system for lane departure

warning and vehicle detection”, International Journal of Electrical Energy, 2013.

[50] S. Salti, A. Petrelli, F. Tombari, N. Fioraio, and L. Di Stefano, “A tra�c sign detection

pipeline based on interest region extraction”, in Neural Networks (IJCNN), The 2013 Inter-
national Joint Conference on, IEEE, 2013, pp. 1–7.

[51] A. Tawari, K. H. Chen, and M. M. Trivedi, “Where is the driver looking: analysis of head,

eye and iris for robust gaze zone estimation”, in Intelligent Transportation Systems (ITSC),
2014 IEEE 17th International Conference on, IEEE, 2014, pp. 988–994.

[52] C. Dubout and F. Fleuret, F�d, http://www.dubout.ch/en/code/ffld.
tar.gz, [Online; accessed 3-March-2017].

[53] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection”, in Com-
puter Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference
on, IEEE, vol. 1, 2005, pp. 886–893.

https://github.com/NervanaSystems/nervanagpu
https://github.com/NervanaSystems/nervanagpu
https://github.com/NervanaSystems/neon
\url{https://en.wikipedia.org/w/index.php?title=Metaprogramming&oldid=773634179}
\url{https://en.wikipedia.org/w/index.php?title=Metaprogramming&oldid=773634179}
http://www.dubout.ch/en/code/ffld.tar.gz
http://www.dubout.ch/en/code/ffld.tar.gz

BIBLIOGRAPHY 136

[54] H. Skibbe and M. Reisert, “Circular fourier-hog features for rotation invariant object de-

tection in biomedical images”, in Biomedical Imaging (ISBI), 2012 9th IEEE International
Symposium on, IEEE, 2012, pp. 450–453.

[55] S. Köhler, M. Goldhammer, S. Bauer, K. Doll, U. Brunsmann, and K. Dietmayer, “Early

detection of the pedestrian’s intention to cross the street”, in Intelligent Transportation
Systems (ITSC), 2012 15th International IEEE Conference on, IEEE, 2012, pp. 1759–1764.

[56] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, Y. Reznik, R. Grzeszczuk, and B. Girod,

“Compressed histogram of gradients: a low-bitrate descriptor”, International journal of
computer vision, vol. 96, no. 3, pp. 384–399, 2012.

[57] L. Bourdev, S. Maji, and J. Malik, “Describing people: a poselet-based approach to attribute

classi�cation”, in Computer Vision (ICCV), 2011 IEEE International Conference on, IEEE,

2011, pp. 1543–1550.

[58] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms for object detection

and beyond”, inComputer Vision (ICCV), 2011 IEEE International Conference on, IEEE, 2011,

pp. 89–96.

[59] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan, voc-release5,https:
//people.eecs.berkeley.edu/~rbg/latent/index.html, [Online;

accessed 3-March-2017].

[60] H. T. Niknejad, A. Takeuchi, S. Mita, and D. McAllester, “On-road multivehicle tracking

using deformable object model and particle �lter with improved likelihood estimation”,

IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 2, pp. 748–758, 2012.

[61] P. Dollár, Piotr’s Computer VisionMatlab Toolbox (PMT),https://pdollar.github.
io/toolbox/, [Online; accessed 04-April-2017], 2017.

[62] C. Dubout and F. Fleuret, “Exact acceleration of linear object detectors”, Computer Vision–
ECCV 2012, pp. 301–311, 2012.

[63] M. Pedersoli, J. Gonzalez, X.Hu, and X. Roca, “Towards a real-time pedestrian detec-

tion based only on vision”, Journal of Intelligent Transportation Systems, under review,

https://github.com/hushell/CUHOG.

[64] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library. "

O’Reilly Media, Inc.", 2008.

[65] P. Sudowe and B. Leibe, “E�cient use of geometric constraints for sliding-window ob-

ject detection in video”, in International Conference on Computer Vision Systems, Springer,

2011, pp. 11–20.

[66] V. Prisacariu, I. Reid, et al., “Fasthog-a real-time gpu implementation of hog”, Department
of Engineering Science, vol. 2310, no. 9, 2009.

[67] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “Architec-

tural study of hog feature extraction processor for real-time object detection”, in Signal
Processing Systems (SiPS), 2012 IEEE Workshop on, IEEE, 2012, pp. 197–202.

https://people.eecs.berkeley.edu/~rbg/latent/index.html
https://people.eecs.berkeley.edu/~rbg/latent/index.html
https://pdollar.github.io/toolbox/
https://pdollar.github.io/toolbox/
https://github.com/hushell/CUHOG

BIBLIOGRAPHY 137

[68] E. Stewart, Intel Integrated Performance Primitives: How to Optimize Software Applications
Using Intel IPP. Intel Press, 2004.

[69] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal

visual object classes (voc) challenge”, International journal of computer vision, vol. 88, no.

2, pp. 303–338, 2010.

[70] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object detection with de-

formable part models”, in Computer vision and pattern recognition (CVPR), 2010 IEEE con-
ference on, IEEE, 2010, pp. 2241–2248.

[71] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns: refac-
toring software, architectures, and projects in crisis. John Wiley & Sons, Inc., 1998, pp. 49–

53.

[72] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,

“Backpropagation applied to handwritten zip code recognition”, Neural computation, vol.

1, no. 4, pp. 541–551, 1989.

[73] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: a large-scale hierar-

chical image database”, in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, IEEE, 2009, pp. 248–255.

[74] Y. Jia and et al., Ca�e: an open source convolutional architecture for fast feature embedding,

http://caffe.berkeleyvision.org, [Online; accessed 04-April-2017], 2017.

[75] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.

Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition

Challenge”, International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,

2015. doi: 10.1007/s11263-015-0816-y.

[76] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition”, arXiv:1409.1556, 2014.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–

778.

[78] C. Szegedy, S. Io�e, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and the

impact of residual connections on learning”, arXiv preprint arXiv:1602.07261, 2016.

[79] J. Donahue, Y. Jia, O. Vinyals, J. Ho�man, N. Zhang, E. Tzeng, and T. Darrell, “Decaf:

a deep convolutional activation feature for generic visual recognition.”, in Icml, vol. 32,

2014, pp. 647–655.

[80] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective search for

object recognition”, International journal of computer vision, vol. 104, no. 2, pp. 154–171,

2013.

[81] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection”, in

Advances in Neural Information Processing Systems, 2013, pp. 2553–2561.

http://caffe.berkeleyvision.org
http://dx.doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY 138

[82] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: inte-

grated recognition, localization and detection using convolutional networks”, arXiv preprint
arXiv:1312.6229, 2013.

[83] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: a matlab-like environment for

machine learning”, in BigLearn, NIPS Workshop, 2011.

[84] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Scene parsing with multiscale feature

learning, purity trees, and optimal covers”, arXiv preprint arXiv:1202.2160, 2012.

[85] M. Jiu, C. Wolf, G. Taylor, and A. Baskurt, “Human body part estimation from depth im-

ages via spatially-constrained deep learning”, Pattern Recognition Letters, vol. 50, pp. 122–

129, 2014.

[86] A. Giusti, D. C. Ciresan, J. Masci, L. M. Gambardella, and J. Schmidhuber, “Fast image scan-

ning with deep max-pooling convolutional neural networks”, in Image Processing (ICIP),
2013 20th IEEE International Conference on, IEEE, 2013, pp. 4034–4038.

[87] R. Vaillant, C. Monrocq, and Y. Le Cun, “Original approach for the localisation of objects

in images”, IEE Proceedings-Vision, Image and Signal Processing, vol. 141, no. 4, pp. 245–

250, 1994.

[88] R. Girshick, “Fast r-cnn”, in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 1440–1448.

[89] M. Jordan and T. Mitchell, “Machine learning: trends, perspectives, and prospects”, Sci-
ence, vol. 349, no. 6245, pp. 255–260, 2015.

[90] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a structure for e�cient

numerical computation”, Computing in Science & Engineering, vol. 13, no. 2, pp. 22–30,

2011.

[91] Eigen, Eigen, http://eigen.tuxfamily.org, [Online; accessed 13-Febuary-

2017], 2017.

[92] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “E�cient backprop”, in Neural net-
works: Tricks of the trade, Springer, 2012, pp. 9–48.

[93] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,

“Intriguing properties of neural networks”, arXiv preprint arXiv:1312.6199, 2013.

[94] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves”, in

Proceedings of the 23rd international conference on Machine learning, ACM, 2006, pp. 233–

240.

[95] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informedness,

markedness and correlation”, 2011.

[96] Y. Chauvin and D. E. Rumelhart, Backpropagation: theory, architectures, and applications.
Psychology Press, 1995.

http://eigen.tuxfamily.org

BIBLIOGRAPHY 139

[97] A. Gibiansky, Convolutional neural networks, http://andrew.gibiansky.com/
blog/machine-learning/convolutional-neural-networks/, [On-

line; accessed 04-April-2017], 2017.

[98] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “Cpu db: recording

microprocessor history”, Communications of the ACM, vol. 55, no. 4, pp. 55–63, 2012.

[99] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural network design. Martin

Hagan, 2014.

[100] J. Chong, “Pattern-oriented application frameworks for domain experts to e�ectively uti-

lize highly parallel manycore microprocessors”, PhD thesis, University of California, Berke-

ley, 2010.

[101] E. Gonina, “A framework for productive, e�cient and portable parallel computing”, PhD

thesis, University of California, Berkeley, 2013.

[102] D. A. Patterson, “Reduced instruction set computers”, Communications of the ACM, vol.

28, no. 1, pp. 8–21, 1985.

[103] B. R. Rau and J. A. Fisher, “Instruction-level parallel processing: history, overview, and

perspective”, The journal of Supercomputing, vol. 7, no. 1-2, pp. 9–50, 1993.

[104] C. Jones, “Software metrics: good, bad and missing”, Computer, vol. 27, no. 9, pp. 98–100,

1994.

[105] T. J. Bergin Jr and R. G. Gibson Jr, History of programming languages—II. ACM, 1996.

[106] D. S. Scott and C. Strachey, Toward a mathematical semantics for computer languages.
Oxford University Computing Laboratory, Programming Research Group, 1971, vol. 1.

[107] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. Tjiang,

S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, et al., “Suif: an infrastructure for research

on parallelizing and optimizing compilers”, ACM Sigplan Notices, vol. 29, no. 12, pp. 31–37,

1994.

[108] D. M. Ritchie, “The development of the c language”, ACM SIGPLAN Notices, vol. 28, no. 3,

pp. 201–208, 1993.

[109] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patter-

son, W. L. Plishker, J. Shalf, S. W. Williams, et al., “The landscape of parallel computing

research: A view from berkeley”, Technical Report UCB/EECS-2006-183, EECS Depart-

ment, University of California, Berkeley, Tech. Rep., 2006.

[110] J. E. Stone, D. Gohara, and G. Shi, “Opencl: a parallel programming standard for heteroge-

neous computing systems”, Computing in science & engineering, vol. 12, no. 3, pp. 66–73,

2010.

[111] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv
preprint arXiv:1404.5997, 2014.

http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/

BIBLIOGRAPHY 140

[112] C. J. Date and H. Darwen, A Guide to the SQL Standard. Addison-Wesley New York, 1987,

vol. 3.

[113] D. Raggett, A. Le Hors, I. Jacobs, et al., “Html 4.01 speci�cation”, W3C recommendation,

vol. 24, 1999.

[114] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,

and A. Fox, “Sejits: getting productivity and performance with selective embedded jit

specialization”, ProgrammingModels for Emerging Architectures, vol. 1, no. 1, pp. 1–9, 2009.

[115] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, and

S. Amarasinghe, “Opentuner: an extensible framework for program autotuning”, in Pro-
ceedings of the 23rd international conference on Parallel architectures and compilation, ACM,

2014, pp. 303–316.

[116] A. Lavin, “Fast algorithms for convolutional neural networks”, arXiv preprint arXiv:1509.09308,

2015.

[117] Theano Development Team, “Theano: A Python framework for fast computation of math-

ematical expressions”, arXiv e-prints, vol. abs/1605.02688, May 2016. [Online]. Available:

http://arxiv.org/abs/1605.02688.

[118] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang,

“Mxnet: a �exible and e�cient machine learning library for heterogeneous distributed

systems”, arXiv preprint arXiv:1512.01274, 2015.

[119] F. Chollet, Keras, https://github.com/fchollet/keras, 2015.

[120] D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev, Y. Zhang, F.

Seide, H. Wang, et al., “An introduction to computational networks and the computational

network toolkit”, Microsoft Technical Report MSR-TR-2014–112, 2014.

[121] H. Perkins, “Cltorch: a hardware-agnostic backend for the torch deep neural network

library, based on opencl”, arXiv preprint arXiv:1606.04884, 2016.

[122] N. Lane, S. Bhattacharya, A. Mathur, C. Forlivesi, and F. Kawsar, “Dxtk: enabling resource-

e�cient deep learning on mobile and embedded devices with the deepx toolkit”, in Pro-
ceedings of the 8th EAI International Conference on Mobile Computing, Applications and
Services, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering), 2016, pp. 98–107.

[123] Y. Li, J. Dongarra, and S. Tomov, “A note on auto-tuning gemm for gpus”, Computational
Science–ICCS 2009, pp. 884–892, 2009.

[124] A. Lavin, “maxDNN: an e�cient convolution kernel for deep learning with maxwell gpus”,

arXiv:1501.06633, 2015.

[125] F. Tschopp, “E�cient convolutional neural networks for pixelwise classi�cation on het-

erogeneous hardware systems”, arXiv preprint arXiv:1509.03371, 2015.

http://arxiv.org/abs/1605.02688
https://github.com/fchollet/keras

BIBLIOGRAPHY 141

[126] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, “Halide: a

language and compiler for optimizing parallelism, locality, and recomputation in image

processing pipelines”, ACM SIGPLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[127] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian, “Automatically

scheduling halide image processing pipelines”, ACM Transactions on Graphics (TOG), vol.

35, no. 4, p. 83, 2016.

[128] L. Truong, R. Barik, E. Totoni, H. Liu, C. Markley, A. Fox, and T. Shpeisman, “Latte: a

language, compiler, and runtime for elegant and e�cient deep neural networks”, in Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, ACM, 2016, pp. 209–223.

[129] M. Lin, Q. Chen, and S. Yan, “Network in network”, arXiv preprint arXiv:1312.4400, 2013.

[130] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions”, arXiv:1409.4842, 2014.

[131] M. Moskewicz, Per-layer pro�le of nin, https://github.com/moskewcz/
boda/blob/master/test/nin-profile-example.txt, [Online; ac-

cessed 14-April-2017], 2017.

[132] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell,

“A survey of general-purpose computation on graphics hardware”, in Computer graphics
forum, Wiley Online Library, vol. 26, 2007, pp. 80–113.

[133] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha, “Lu-gpu: e�cient algo-

rithms for solving dense linear systems on graphics hardware”, in Proceedings of the 2005
ACM/IEEE conference on Supercomputing, IEEE Computer Society, 2005, p. 3.

[134] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong program analysis

& transformation”, in Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, IEEE Computer Society, 2004,

p. 75.

[135] M. J. Anderson, “A framework for composing high-performance opencl from python de-

scriptions”, PhD thesis, University of California, Berkeley, 2014.

[136] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, “Ac-

celerating numerical dense linear algebra calculations with gpus”, in Numerical Compu-
tations with GPUs, Springer, 2014, pp. 3–28.

[137] NVIDIA, Cuda, https://developer.nvidia.com/cuda-zone, [Online;

accessed 01-Oct-2016], 2016.

[138] M. Moskewicz, Boda framework core source code, master branch, https://github.
com/moskewcz/boda/blob/master/src, [Online; accessed 14-March-2017],

2017.

https://github.com/moskewcz/boda/blob/master/test/nin-profile-example.txt
https://github.com/moskewcz/boda/blob/master/test/nin-profile-example.txt
https://developer.nvidia.com/cuda-zone
https://github.com/moskewcz/boda/blob/master/src
https://github.com/moskewcz/boda/blob/master/src

BIBLIOGRAPHY 142

[139] ——, Example of usingmetaprogramming for shared-memory load sequences on gpus,https:
//github.com/moskewcz/boda/blob/master/test/meta-smem-
load-example.txt, [Online; accessed 14-April-2017], 2017.

[140] S. Williams, A. Waterman, and D. Patterson, “Roo�ine: an insightful visual performance

model for multicore architectures”, Communications of the ACM, vol. 52, no. 4, pp. 65–76,

2009.

[141] S. Moser and O. Nierstrasz, “The e�ect of object-oriented frameworks on developer pro-

ductivity”, Computer, vol. 29, no. 9, pp. 45–51, 1996.

[142] M. Moskewicz, Boda framework, https://github.com/moskewcz/boda,

[Online; accessed 14-March-2017], 2017.

[143] N. P. Jouppi, C. Young, N. Patil, D. Patterson, et al., “In-datacenter performance analysis

of a tensor processing unit”, Preprint; To appear at the 44th International Symposium on
Computer Architecture (ISCA), 2017.

[144] J. Nickolls and W. J. Dally, “The gpu computing era”, IEEE micro, vol. 30, no. 2, 2010.

https://github.com/moskewcz/boda/blob/master/test/meta-smem-load-example.txt
https://github.com/moskewcz/boda/blob/master/test/meta-smem-load-example.txt
https://github.com/moskewcz/boda/blob/master/test/meta-smem-load-example.txt
https://github.com/moskewcz/boda

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem: Computation for Machine Learning
	Example Task; Introduction to Concerns and Problems
	Accuracy
	Speed
	Energy
	Portability
	Cost
	Key Research Questions

	We Focus on GPUs for NN Computation
	Details of Current Approaches to NN Computation and Their Deficiencies
	GPU Programming for Numerical Applications
	Why not just use NVIDIA/cuDNN?
	What would be the ideal situation for NN Computation?

	Specific Motivating Problems and Trajectory of Research
	Speed and Energy Efficient Histogram-of-Oriented-Gradients Calculations: libHOG
	Speed and Energy Efficient Dense, Multiscale Convolutional Neural Net Features: DenseNet
	The Effect of the Rise of Neural Networks on Research Implementations

	Solution for implementing NN Computations: The Boda Framework
	Thesis Contributions
	Thesis Outline

	Motivating Early Work : libHOG
	Introduction
	HOG Features and Detailed Motivation
	libHOG Related Work
	Background on HOG Features
	Single Image HOG
	Existing Implementation Details
	Multiple Image HOG and Image Resizing

	Our Approach to HOG
	Gradient Computation
	Histogram Accumulation
	Neighborhood Normalization
	Attempts at Fusion of Kernels

	Evaluation of libHOG
	Speed and Energy
	Accuracy

	libHOG Conclusions and Lessons Learned
	Key Research Contributions of libHOG
	Conclusions on the Specific Contributions of libHOG
	Contributions of this Work to Defining our Research Trajectory
	Issues with Core Implementation Efforts
	Issues with Packaging libHOG for Reuse in Research and Practice

	Conclusions from libHOG that Defined our Research Trajectory

	Bridge to Our Boda Framework: DenseNet
	Introduction to DenseNet: Speeding up Neural-Network-based Object Detection
	DenseNet Related Work
	DenseNet CNN Feature Pyramids
	Multiscale Image Pyramids for CNNs
	Data Centering / Simplified RGB mean subtraction
	Aspect Ratios
	Measured Speedup
	Straightforward Programming Interface

	Qualitative Evaluation of DenseNet
	DenseNet Conclusions and Lessons Learned
	DenseNet Summary of Contributions
	Conclusions on Contributions of DenseNet
	Issues with DenseNet that Informed our Research Trajectory
	Feature Space Mapping and DenseNet-v2
	Often Cited, Sometimes Re-implemented, Never Directly Used

	Conclusions From DenseNet that Shaped our Research Trajectory

	Background
	What are Neural Networks?
	Deep and/or Convolutional NNs
	Depth and NN Function Structure
	Branching NNs and Compute Graphs
	Introduction to Layer Functions

	Groups of Numbers: ND-Arrays; relationship to Tensors, Images, and Matrices
	Applying Functions to ND-Arrays
	ND-Arrays and Layer Functions
	Discussion of Common Dimensions of ND-Arrays in NNs
	Spatial vs. Channel Dimensions in NNs
	Aside on the Batch Dimension and Computation

	Details of Neural Network Layer Functions
	Activation Functions
	Pooling Functions
	Convolution Functions

	Machine Learning Terminology
	Accuracy vs. Precision/Recall
	Precision/Recall tradeoffs, PR curves, and Fidelity
	Overfitting and Computation

	Training vs. Deployment
	Computation for Training
	Batch Sizes in Training and Deployment
	Scale of Computation: One GPU or Many?

	Boda Related Work
	General Approaches to Implementing Computation
	Compilers (and their Languages)
	Libraries
	Templates/Skeletons
	Frameworks
	Note on Autotuners

	Existing Flows for NN Computations
	Frameworks for Machine Learning
	TensorFlow
	Google Tensor Processing Unit (TPU)
	Google Accelerated Linear Algebra (XLA)

	Caffe
	Nervana Neon
	Theano
	Other Frameworks

	Libraries
	BLAS Libraries
	cuDNN
	Neon/NervanaGPU
	Greentea LibDNN and cltorch

	Compiler-like Approaches
	Halide
	Latte

	Implementing Efficient NN Computations : The Boda Framework
	Introduction to Boda
	Boda Background and Motivation
	Problem Statement and Motivation
	Key Problems of Efficient GPU Convolutions
	NVIDIA and GPU Computation
	Why Not Rely on Hardware Vendors for Software?

	Boda Approach
	Justification for Metaprogramming
	Intuition for Metaprogramming from Matrix-Matrix Multiply Example
	Benefits of Metaprogramming for NN Convolutions

	Comparison with Libraries
	Specialization and Comparison with General-Purpose Compilation
	Framework Structure
	Programming Model Portability with CUCL
	ND-Arrays

	General Metaprogramming in Boda
	Boda Metaprogramming vs. C++ Templates
	Details of Boda Metaprogramming for NN Convolutions
	Detailed Technical Example
	Summary of Boda Metaprogramming

	Variant Selection and Autotuning
	Graph-level Optimizations
	Code Generation, Scheduling, and Execution

	Boda Results
	Programming model portability – OpenCL vs. CUDA
	Tuning for Qualcomm Mobile GPUs
	Easily Improving Efficiency with Autotuning on New Platforms
	Performance Portability on Different Targets

	Key Features of Boda's Support for Regression Testing
	Approximate Numerical Agreement for NN Calculations
	Using ND-Array Digests to Compactly Store Known-Good Test Results

	Boda Enables Productive Development of NN Operations
	Summary of Boda's Contributions

	Summary, Conclusions, and Future Work
	Contributions
	Conclusions: Answering Key Research Questions
	Future Work
	Boda for Other Operations
	Boda on Other Hardware
	Broader Scope of NN Computations

	Final Thoughts

	Bibliography

