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Abstract

Tools for Trustworthy Autonomy:
Robust Predictions, Intuitive Control, and Optimized Interaction

by

Katherine Rose Driggs Campbell

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

In the near future, robotics will impact nearly every aspect of life. Yet for technology to
smoothly integrate into society, we need interactive systems to be well modeled and pre-
dictable; have robust decision making and control; and be trustworthy to improve coopera-
tion and interaction. To achieve these goals, we propose taking a human-centered approach
to ease the transition into human-dominated fields. In this work, our modeling methods
and control schemes are validated through user studies in a realistic motion simulator and
demonstrate improved interaction, predictability, and trustworthiness. Autonomous vehicles
are a great motivating example, due to the wealth of interesting problems that arise with
human-in-the-loop control and multi-agent interaction and cooperation. While autonomous
vehicles will likely be publicly available soon, it can be assumed that the transition will not
be instantaneous, suggesting that: (1) levels of autonomy will be introduced incrementally,
and (2) autonomous vehicles will have to be capable of driving in a mixed environment,
with both humans and autonomy. In both cases, the human drivers must be modeled in an
accurate and precise manner that easily integrates into control frameworks.

We present a data-driven approach to hybrid system tools, that approximates the forward
reachable set of a coupled human-robot system. This empirical reachable set is an alternative
look at a classic control theoretic safety metric and allows us to predict driver behavior over
long time horizons in a robust, yet informative, manner. This method is compared to an
extension of traditional reachability, in which the optimal disturbances are uncovered using
empirical metrics with probabilistic guarantees. Applications of this work include the design
of minimally invasive intervention schemes for semi-autonomous vehicles and of planning
nuanced interactions between humans and autonomy in interactive maneuvers. We also
consider concerns that arise with shared control. Given a fixed semi-autonomous framework,
we model the communication between the human and automation using information theory
metrics. By controlling information flow, we observe an information/performance trade-off
that follows a strongly concave relationship. This is formulated as an optimization paradigm,
giving a model-based approach to interface design for optimizing interaction.
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Chapter 1

Introduction to Human-Centered
Autonomy

This challenge has an added
layer of complexity when
humans are added to the
interaction: the notorious
human-in-the-loop.

Ruzena Bajcsy

It is an exciting and pivotal moment in the history of robotics. As the gap between the-
oretical research and fully-fledged technology continues to close, important advances from
mechanical design to decision algorithms are enabling robots to reliably carry out more com-
plex tasks than ever before, unlocking an enormous potential for new applications. Once
confined to the manufacturing floor, robots are quickly entering the public space at multi-
ple levels: drones, surgical robots and self-driving cars are becoming tangible technologies
impacting the human experience.

One of the most impactful and most dreamed of applications of robotics lies in self-
driving vehicles (Fig. 1.1), [97]. While there has been on-going research and even successful
demonstrations since the 1980’s [96, 119], advances in sensing, communication, artificial in-
telligence, and control have led to breakthroughs in bringing autonomous vehicles to fruition
[124, 53]. Moreover, the societal support and interest is higher than ever, implying that the
futuristic dream of autonomy is drawing near [57]. Autonomous vehicles will have a huge
impact on our everyday lives. Notably, autonomy will change the city scape and infrastruc-
ture, provide mobility to those less abled, make commuting time more useful, and improve
traffic flow and efficiency (if implemented correctly [38, 11]. However, the most commonly
cited impact is that of safety.

There is a general consensus among studies that more than 90% of car crashes are due
to human error [116]. Moreover, multi-tasking while driving is a growing phenomenon [109].
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Figure 1.1: 1950s Advertisement Featuring Autonomous Vehicles. [97]

Studies claim that at any given moment in America, approximately 660,000 drivers are using
cell phones or another electronic device while driving, even though doing so increases the risk
of getting into an accident by three times [122, 118]. This has brought rise to a great deal
of research in driver modeling and autonomous vehicles to mitigate or hopefully eliminate
these collisions [43]. Introducing autonomy is expected to drive the fatality rate to zero by
taking the human out of the loop completely. Despite these capricious and easily avoided
errors, humans have many innate skills that make them adept at driving (e.g. flexible and
adaptable to new situations, good at decision making). Depending on the study, human
drivers cause minor accidents every 2,500 to 6,000 hours, (roughly 10 to 20 years) and cause
fatal accidents roughly every 2,000,000 hours (roughly 10,000 years) [95, 82]. This sets a
high bar for autonomous vehicles.

However, if we look at the current state of the art in self-driving vehicles, we find some
troubling trends. According to Google’s Self-Driving Car Report, their vehicle has been
in 17 minor accidents in 1.3 million miles driven [51, 105]. While it was not technically
at fault, it appears that a strange phenomenon is emerging where new causes of accidents
are occurring—most humans are not rear ended that many times in their lifetime. Further,
researchers from Michigan studied the emerging behaviors with regard to accidents in early
stage autonomous vehicles [111]. They concluded that the autonomous vehicles do in fact
have a higher crash rate than human drivers, although they are less fatal. This sheds light on
the importance of considering the transition to fully automated streets and in the interaction.

This observation is unfortunately not surprising. If we consider the aerospace domain,
which has a longer history of integrated autonomy into human dominated fields, we see an
ominous trend. As illustrated in Figure 1.2, when each new generation of airplane automation
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Figure 1.2: Fatality Rate over Time by Aircraft Generation. Illustrated from data
found in [23].

is released, there is a spike in the fatality rate that takes about five to ten years to settle to
the steady state of safety, which does decrease from generation to generation as desired [23].

While technology has come a long way, we should still heed this cautionary tale. This
trend in aerospace is the best case scenario, as all airplane pilots are specially trained and
the time scale is much greater than what is available in vehicles. The probability of collisions
must be carefully computed before automation is used, with a strict limit on a probability of
failure on the order of 10−9 [7]. Given the human dominated nature of the road scene and the
ubiquitous nature of vehicles in the public space, these pristine conditions are unachievable
in the vehicle space. Furthermore, there is evidence of this increasing collisions due to
simple driver assistance systems in the automotive space [69]. Even experts in the artificial
intelligence and computer vision advise people to be wary about the young technology:

Knowing what I know about computer vision, I wouldn’t take my hands off the
steering wheel. – Jitendra Malik [78]

To address these concerns, I propose approaches and methods for integrating the human
into the control framework, by developing models that can predict the human driver in
robust ways, achieve control guarantees, and integrate with human drivers. Incorporating the
human in autonomous vehicles in and of itself is not a novel idea. There have been many great
research efforts pushing a human centered approach [94]. Further, it is commonly believed
that autonomy will be released incrementally (e.g. active safety systems and advanced driver
assistance systems) and that the human will have an active role in the autonomy’s decision
making for many years to come [52]. While for many hopeful researchers, this might seem
as if it is damaging to the bright, imagined future of pervasive autonomy. This, however, is
not the case. As Professor David Mindell said:

There’s an idea that progress in robotics leads to full autonomy. That may be a
valuable idea to guide research . . . but when automated and autonomous systems
get into the real world, that’s not the direction they head. [133]
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Human-in-the-loop control has contributed huge impact to technology in the real world,
and has for people to accomplish great feats. For example, the Apollo program was intended
to be a fully automated mission. However, due to the concerns of the passengers, the
astronauts assumed control over many of the critical functions (e.g. the actual moon landing)
[84]. Similarly, we see this trend in commercial aircraft today, where the automation simple
reduces the complexity of the flying task, but allows the people to have true control when
needed [93].

While there is a great history of shared autonomy in specific applications, robotics as a
field is on the precipice of truly entering and engaging in the public domain. However, if such
technology is going to come into fruition and integrate into society, these systems must be
dependable, meaning that we need the systems to be (1) well modeled and predictable; (2)
have robust decision making and control for integration; and (3) be trustworthy to improve
cooperation and interaction. In pursuit of these goals, we have focused on developing formal,
rigorous models of human behaviors in the automotive scene, as one can easily imagine
autonomous vehicles being released on the road in the near future.

Although this future is rapidly approaching, it is widely agreed that we have a long way
to go. Gill Pratt from Toyota states that full autonomy is “a wonderful goal but none of
us in the automobile or IT industries are close to achieving true Level 5 autonomy [2].”
Thus, it can be assumed that this transition will not be instantaneous, suggesting two key
points: (1) levels of autonomy will be introduced incrementally (e.g. active safety systems
as currently released), and (2) autonomous vehicles will have to be capable of driving in a
mixed environment, with both humans and autonomous vehicles on the road. In both of
these cases, the human driven vehicle (or generally the human-in-the-loop system) must be
reliably modeled in an accurate and precise manner that is easily integrated into control
frameworks. This has ranged from deriving probabilistic models of driving behaviors to
quantify performance (e.g. probability of failure) via formal methods and model checking
techniques [107] to developing improved driver assistance systems that design interventions
by modeling the driver’s likely response as a partially observable Markov decision process.

In this work, we present our efforts to develop mathematical models of driver behaviors,
primarily taking a data-driven approach control theoretic models and interaction. One of the
main focuses of this work was formalizing a modeling method we call the empirical reachable
set, which is an alternative look at a classic control theoretic safety metric, and allows us
to predict driver behavior over long time horizons with very high accuracy. This method
considers the reliability and stability of predictions and decision making in control. This
work has been applied to intervention schemes for semi-autonomous vehicles and to nuanced
interactions between humans and autonomy in cooperative maneuvers (e.g. lane changing).
By using these human-centered approaches, we observe improved predictability and trust-
worthiness of the automation from the users perspective, leading to greater acceptance and
ability to face the challenges of the real-world.

The remainder of this work is organized as follows:
The subsequent sections of this chapter will present the notion to be used throughout the
work as well as a cursory overview of the mathematical modeling and tools used in this work.
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The experimental setup used to collect most of the data and to validate the control schemes
will also be presented, since this work relies on careful integration of the human driver, a great
deal of effort was expended on experimental design and validation. The following chapters
present the work in the following areas: (1) robust and informative modeling; (2) applying
said model to human-in-the-loop frameworks and interactive planners; (3) validating said
control schemes in user studies; and (4) optimizing interaction through intelligent design.

1.1 Technical Preliminaries

The results from this work are derived primarily from tools in control theory and optimiza-
tion. A brief overview and references to relevant material will be presented for convenience.

Majority of the work to be presented is motivated by set based approaches. By thinking
in terms of sets and spaces, it is easy to intuitively understand driver behavior. Set-based
approaches also allow for more robust predictions as well as easy integration into optimization
constraints.

1.1.1 Control Tools

Suppose we are given robot (or vehicle) dynamics:

x[k + 1] = f(x[k], u[k], d[k]) (1.1)

where x[k] ∈ X is the state of the system, u[k] is the input to the system from where
U ⊂ Rm is a compact, connected set containing the origin of possible inputs, d[k] ∈ D is the
disturbance to capture uncertainty in the system and modeling errors, and k ∈ N denotes
the time step.

Throughout this work, some dynamics used will assume that the disturbances are encap-
sulated in the uncertainty of the input, meaning that d[k] = 0 for all time. For brevity, this
dynamics will be referred to as f(x[k], u[k]).

Given that we are interested in human-robot systems, we define the coupled system as a
hybrid system H :M×X , which consists of the following:

• mode of behavior m ∈M, which is a finite collection of discrete states

• discrete inputs signifying mode transitions σ ∈ Σ, which is a finite collection of variables

• continuous state x ∈ X , which will be confined to Rn, which evolves through Eq. 1.1

• continuous inputs u ∈ U , where U ⊂ Rm is a compact, connected set containing the
origin of possible inputs

• disturbances d ∈ D, which capture uncertainty and modeling errors

• set of initial states are given by X0
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In general, since the dynamics of the vehicle do not change between modes, we will assume
that there is an algorithm Am that determines the input / control law for particular mode
of behavior.

Reachable sets are the gold standard for safety and provide a tool to understand the set
of possible states the system may pass through, given the physical dynamics of the system
in a given time horizon, T . Formally, a state (m′, x′) ∈ M × X of H is reachable if there
exists a finite execution that ends in (m′, x′).

Reachability is a well developed tool that provides guarantees on safe behaviors for control
systems [136]. This methodology has been effectively used in many settings for provably
correct control, optimal control for hybrid systems, and multi-agent applications. To utilize
this tool, the dynamics and model parameters must be known (and relatively simple to
address complexity issues) and the disturbance bounds must be predetermined [85].

The definition of forward reachable set used in this work is the maximal forward reachable
tube described in [86]. To use this method, we suppose we have access to the continuous
dynamics, associated with Eq. 1.1:

ẋ(t) = f(x(t), u(t), d(t)) (1.2)

where x(t) ∈ X is the state of the system, u(t) ∈ U is the input to the system, d(t) ∈
D is the disturbance to capture uncertainty in the system and modeling errors, and t ∈
[0 T ] denotes time. Throughout this work, continuous dynamics will be used for computing
traditional reachable sets, but the discrete approximation will be used in the optimization
and implementation of control for ease of use. This will be made clear through notation;
for example, x(t) refers to the continuous representation and x[k] refers to the discrete
representation.

We define the worst-case forward reachable set for R ⊂ X , as:

R , {x ∈ X | ∃d ∈ D,∃x0 ∈ X0,∃t ∈ [0, T ], s(t, 0, x0, d) = x} (1.3)

where D is the space of possible disturbance input trajectories, X0 is the set of initial states,
and s(t, 0, x0, d) is the state evolved by the continuous dynamics associated with Eq. 1.1 at
time t ≥ 0 starting at condition x0 subject to disturbance d. Generally, we will be interested
in the reachable set from a particular initial state, and will refer to this worst-case set as
R(x0).

There are many methods for computing reachable sets, including brute force, bisimula-
tion, and level set methods. For for simple systems, these methods work quite well; however,
this computation becomes very difficult when we consider realistic, high-dimensional systems
with multiple inputs [87].These dimensionality issues motived much of the work that will
be presented in Chapter 2. For comparison, we will compute reachable sets on a simplified
vehicle model using the Level Set Toolbox [85].

The forward reachable set is computed based on a Hamilton-Jacobi Partial Differential
Equation (HJ PDE) formulation using the Level Set Toolbox [88]. In particular, the forward
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reachable set at time t is the zero sublevel set of J(k, x), the solution to the following PDE:

∂J
∂k

+ max
d

∂J
∂x
· f(x, u, d) = 0

subject to J(x, 0) = g(x)
d ∈ D

(1.4)

where g(x) is a implicit surface function for which the zero sublevel set is the initial condition
set, and f(x, u, d) is the system evolution ODE in Equation 1.1. For more information about
how to solve these problems, we guide the reader to [85].

Suppose we are given the set of constraints C and/or the safe region S, as well as a safety
function that will tell us whether or not the safety constraints are satisfied:

ψ(x[k], Ck) =

{
1, if x[k] ∈ Ck
0, otherwise

(1.5)

It is assumed that the states of surrounding vehicles are included in the constraint set, as
well as a prediction of what the vehicles will do. Additionally, current and future road
information is considered given. This allows us to compute safe control laws, ensuring that
we satisfying safety criteria.

Given that we would like for our system H to always be safe, we need to guarantee that
the states of the system (m,x) will always remain in the safe set S, which can be proven by
showing that R(x0) ⊆ S.

This statement, however, is difficult to define for human controlled systems, for which
there are some very strict safety assumptions that can be made, these are typically not
viable or useful in practice where errors are dynamically compensated for in social settings
like driving. Further, traditional reachability is over-conservative, meaning that safety is
often violated, even when collisions do not occur. Much of the attention of this work is on
how to reduce the inherently over conservative nature of sets, subject to some probabilistic
guarantee, to achieve safe interaction.

Many approaches to stochastic reachability focus on discretization in the form of modeling
the system as a Markov Decision Process [55]. This has been successfully applied to traffic
scenarios to guarantee safe maneuvers on the road [4]. Similarly, stochastic reach-avoid
formulations have shown promising results in multi-agent autonomous settings [67]. In [80],
stochastic reachable sets were used in a path planning framework, assuming discrete modes
of behavior for each obstacle. While this work is promising, the approach lacks the generality
of the continuous domain and requires assumptions that might not hold in human-in-the-
loop systems [32]. Emerging areas in this work include data-driven approaches, which will
be discussed in the chapters to come.

1.1.2 Optimization Tools

Majority of this work focuses on modeling human behaviors in such a way that they can
intuitively be integrated into control frameworks. Generally, the control implementations will
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rely on optimization based methods, like trajectory optimization [113] and model predictive
control (MPC) [16]. For firm details about how these methods can be implemented, we guide
the reader to the aforementioned citations.

In general, we formulate the problem as an optimization program to compute the optimal
control:

minimize
x,u

∑T
k=0 J(x[k], u[k])

subject to x[0] = x0

x[k + 1] = f(x[k], u[k])
ψ(x[k], Ck) < 0
k = 0, . . . , T

(1.6)

where J(·, ·) is a cost function we aim to minimize, ψ(·, ·) constrains the feasible set to those
that are safe (as defined in Equation 1.5),all variables are as previously described. While
choosing the correct or learning appropriate cost functions are open areas of research [1, 44],
we generally assume that we aim to minimize control effort and ensure smooth trajectories
as discussed in [115], unless otherwise specified.

This is typically not a convex problem to solve due to nonlinear dynamics and complicated
constraints. This can be solved as a receding time horizon problem through nonlinear MPC,
which not only achieves good computation time and works well in practice [115]. Other
approaches include nonconvex solvers and sequential convex programming [100]. Similarly,
trajectory optimization even in the presence of gritty, non-convex obstacle avoidance has
been showing promising results in reasonable time [113].

One of the key contributions of this work is a set prediction algorithm that is ultimately
formulated as a Mixed Integer Linear Program (MILP), meaning that some optimization
variables are constrained to be integer values, which makes solving this program quite diffi-
cult and at it’s core combinatorial [10]. Such problems are generally solved using a linear-
programming based branch-and-bound algorithm.

Basic branch-and-bound methods for linear programs relax the original mixed integer
program by removing the binary/integer restrictions, which is easily solvable as a linear
program. Supposing we have a sample original MIP which has a binary variable b, this
is branched into two new programs where the variable is restricted to b ≤ 0 and b ≥ 1.
This variable is then called a branching variable, and we are said to have branched on b,
generating two sub-programs. By taking the optimal solutions for each program, the better
solution will be optimal in the original MIP as well. This is iteratively done for all integer
variables to create a tree structure or search tree. In general, once all of the leaves of the
tree can be solved or removed, then we will have solved the original MIP.

A key component of combinatorial programing is the idea of submodularity and submod-
ular functions. Such functions are set function for which the difference in the incremental
value of the function that a single element makes when added to an input set decreases as
the size of the input set increases [112]. This is formally defined as follows:

If Ω is a finite set, a submodular function is a set function h : 2Ω → R, where 2Ω

denotes the power set of Ω, then for every A,B ⊆ Ω with A ⊆ B and every a ∈ Ω \B
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we have that h(A ∪ {a})− h(A) ≥ h(B ∪ {a})− h(B).
Moreover, in the work presented here, the submodular function will be monotone, meaning
that it satisfies the following definition:

A submodular function h is monotone if for every A ⊆ B, we have that h(A) ≤ h(B).
This means that submodular functions have a natural diminishing returns property which
makes them suitable for many applications and exhibit properties which are very similar
to convex and concave functions. Intuitively, we can think of precision of driver behaviors
(or the size of the sets of vehicle trajectories), in that there are all possible actions and
trajectories contained within the reachable set, and as we decrease our uncertainty about the
possible actions of the human, we uncover smaller and smaller subsets of likely trajectories
the driver might take. This is concept is utilized in our optimization programs, simplifying
the complexity in many of the inherently combinatorial problems.

1.2 Experimental Design

A challenging component of studying human-in-the-loop systems is collecting data, especially
when safety is of concern. To address this, we have developed an experimental setup for
studying human-in-the-loop systems in vehicles, tailored toward driving applications. The
testbed was designed to recreate the feeling of moving in a vehicle and is equipped with
monitoring devices to observe the human. Evidence of the utility of motion simulators are
can be found in [59, 63] and an overview of the validity of such methods is reviewed in [66].

Using this human-in-the-loop testbed, we are able to reliably and realistically obtain
driver data that can illustrate the utility of our models and provide useful motion feedback
to the drivers. This experimental setup is unique in that it allows us to collect data for
and test human-in-the-loop systems, while maintaining safety measures and control of the
environmental surroundings. This aids in creating a robust system as we can push the
data collection to the search out corner cases or infrequent events that often arise in driving
scenarios. By creating a flexible, context aware system, the identification is limited to regions
that it has seen before yet is flexible enough to handle variances in scenarios.

There are three key components of this setup: (1) the motion platform, (2) the environ-
ment and dynamics simulation, and (3) the driver monitoring setup.
(1) Motion Platform Vehicle Simulator.
The basis of this setup centers around a Force Dynamics CR401, a 4-axis motion platform
simulator (Figure 1.3), which recreates the forces experienced while driving [42]. This pro-
vides the driver with a more realistic and engaging experience, and addresses many of the
issues that occur in static simulations (i.e. on a computer at a desk). Namely, common
issues and how they are addressed are:

• Lack of haptic feedback leading to uncertainty in speed, causing unlikely occurrences
like taking turns at extremely high speeds.
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• Lack of awareness of lane positioning, which is fixed by different friction coefficients on
and off the road, which can only be conveyed through force feedback.

• Increased visual awareness is provided by the 120 deg view.

• Boredom is often a concern when collecting typical driving data. The motion provides
a more engaging experience with some sense of risk, leading to higher quality data.

• Motion sickness is actually improved though motion. Nausea tends to occur when the
visual and motion feedback are misaligned [62].

Figure 1.3: Pictures of Simulator. (a) Image of the simulator. (b) Picture of test subject
driving. (c) Visualization of force feedback [42].

In using this force feedback system, we not only provide realistic feedback to the driver
to create a more engaging experience to create better models, but we also can validate and
test control schemes to get user feedback on co
(2) Environment and Dynamics Simulation.
This system has been integrated with PreScan software, which provides vehicle dynamics and
customizable driving environments [99]. This allows for precision in designing the scenarios
we wish to study and rapid implementation and validation of control methods.

Images from the simulation are provided in Figure 1.4. In particular, the realistic visual-
izations and perspectives give the driver similar visual information as would be available in a
real vehicle. We noted significant changes in behaviors depending on the visual information
provided, affirming the need for high fidelity simulation and visualization.
(3) Driver Monitoring.
In addition, this testbed is equipped with driver monitoring devices to sense and observe the
driver state. The sensor and detection suite is shown in Figure 1.5.
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Figure 1.4: Prescan Visualization. (a) Visualization of intelligent vehicle sensors. (b)
Top view of sample test track. (c) Driver’s viewpoint.

Figure 1.5: Driver Monitoring Setup. Sensor suite includes distraction detection in-
tegrated on a smart phone, driver face and pose monitoring via MS Kinect [83, 131], user
interface and interaction detection via entertainment tablet (explained in Chapter 4), virtual
reality integration, motion capture for ground truth on driver pose and movement, and eye
tracking glasses for attention studies.
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This complete setup allows us to analyze the driver’s behavior under various conditions
(e.g. cognitive load), response to various scenarios (e.g. sudden events), and reactions to
different control implementations (e.g. interacting with autonomous vehicles). For more
information, we guide the reader to [35]. Further details about the specific monitoring of the
driver will be provided in the relevant chapters.

1.2.1 Experimental Protocol

While each experiment conducted, majority of the experiments followed identical baseline
protocols. A minimum of 10 participants in the age range of 18-61 with at least one year of
driving experiences were recruited for each study. In order to ensure the users safety, each
subject was also screened to make sure they met safety criteria to use the motion platform.

Prior to any formal experiment, initial tests were done on a separate test group to opti-
mize the experiment and identify informative questions. For consistency, we used a within-
subjects design and the order of conditions was counterbalanced. Surveys were used to
collect feedback after each trial, asking questions relevant to the specific study, but also on
the experimental design to improve the overall experience. Details about the experimental
protocol and user feedback can be found in [31].
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Chapter 2

Empirical Approaches to Reachability

A theory has only the
alternative of being right or
wrong. A model has a third
possibility: it may be right, but
irrelevant.

Manfred Eigen

In order to develop provably safe human-in-the-loop systems, accurate and pre-
cise models of human behavior must be developed. In the case of intelligent
vehicles, one can imagine the need for predicting driver behavior to develop min-
imally invasive active safety systems or to safely interact with other vehicles
on the road. We present a optimization based method for approximating the
stochastic reachable set for human-in-th-loop systems. This tool provides set
predictions consisting of trajectories observed from the nonlinear dynamics and
behaviors of the human driven car, and can account for modes of behavior, like
the driver state or intent. This allows us to predict driving behavior over long
time horizons with extremely high accuracy. By using this realistic data and flex-
ible algorithm, a precise and accurate driver model can be developed to capture
likely behaviors. The resulting prediction can be tailored to an individual for use
in semi-autonomous frameworks or generally applied for autonomous planning in
interactive maneuvers.
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2.1 Overview of Human-in-the-Loop Modeling

When considering human-robot interaction and human-in-the-loop systems, one of the pri-
mary concerns is how to estimate and guarantee safety. From a design perspective, there are
many different approaches that can be used. Some robotic systems approach safety from a
mechanical point of view by creating systems that physically cannot harm the human [103].
Another approach is to develop controllers and sensor systems that can guarantee safety
for a given system [46]. However, when considering systems that involve or interact with
humans (e.g. human-in-the-loop systems), deriving safety boundaries and assessments is
not a simple task, as many of the classical assumptions break down when giving the human
influence in the system. This is due to the fact that human actions and behaviors are often
unpredictable and cannot easily be described by known distributions or by normal dynamical
methods [32]. Another difficulty comes from the computational complexity that arises from
humans possible action spaces. To compensate for this, simplified models are used to repre-
sent the system without proper metrics to measure how well the model matches real-world
behavior.

To develop provably safe human-in-the-loop systems, first an informative and accurate
model of the human must be developed that can be incorporated into control frameworks. In
deriving the modeling methodology, we consider two possible approaches to modeling human
behavior: informative and robust methods.

2.1.1 Informative Predictions

In order to have safe and interactive systems, predictive modeling is incredibly important
[33]. Ideally, for each obstacle in the environment, the exact future trajectory would be
able to be uncovered for all scenarios. Having a precise trajectory would maximize the
informativeness or the utility of the prediction.

However, given the randomness of human motion, it is unlikely that the precise trajectory
will be uncovered uniquely [127]. While this has been applied to very specific situations
under strict assumptions [6], the probability of this functioning reliably is negligible. In the
realm of intelligent vehicles, many works have developed models attempt to predict the exact
trajectory, but either do not generalize well or cover unknown situations [56, 132].

To gain more utility, probabilistic approaches have been applied to allow some uncer-
tainty about a nominal trajectory [48, 134]. Again, this requires many assumptions on the
distribution over driving behavior, which is often violated [18]. Stochastic models have also
been developed, but make many assumptions on the underlying model of human behavior
(e.g. Markov Decision Processes assume humans satisfy the Markov property [1]) or on the
distribution on human actions [32].
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2.1.2 Robust Predictions

In contrast to informative models, reachable sets maximize the robustness and accuracy of
the prediction. This modeling methodology is inspired by the control theoretic tool of forward
reachability, which gives certificates and provable guarantees of encapsulating the systems
behaviors, assuming the model and disturbances are well known. Given these assumptions,
these and related methods can provide certificates that give an exact proof of safety [98]. As
a consequence, these methods tend to be over-conservative, meaning that the prediction is
highly accurate, but not informative.

In order to utilize these techniques, many assumptions must be made on the model being
used. There has been a great deal of work aiming to a address these issues by considering
stochastic reachability or by applying safe learning techniques.

For human controlled systems, the disturbances are often difficult to model and use
in control frameworks [115]. The disturbances, however, are crucial in robust modeling–if
the assumed disturbance bounds do not globally capture the true disturbance, reachability
methods can no longer guarantee safety. On the other hand, if the disturbances are over
approximated, the resulting control will be over-conservative [33].

To address this issue, there has been growing interest in learning these disturbances
online to reduce the conservativeness of these methods [47]. In [3], the authors designed
a safe online learning framework to both learn disturbances and modeling errors, while
applying reinforcement learning for control.

A key inspiration for considering the reachability framework is the Volvo City Safety
system, a successful semiautonomous system that relies on such reachable sets to mitigate
collisions. When driving in the city (below 35 miles per hour), the system calculates the
forward reachable set of the vehicle for the future 500ms and anticipates collisions by checking
to see if a detected object is within that set [25]. As noted, this method does not work at
high speeds as the reachable set of the vehicle itself becomes too large, leading to an overly
invasive system. When considering high speeds, the human can no longer be considered as a
disturbance in the system, as the driver has significant influence over the future trajectories
of the vehicle. Ideally, the system would function at high speeds and consider the likely
actions of the human by modeling the driver to create a more informative reachable set.

A visualization of these different approaches is provided in Figure 2.1. Here, we present
a method for identifying the subset of the reachable set that is useful up to some probability
threshold, which we will call the empirical reachable set. The algorithm estimates the non-
parametric distribution empirically induced by a dataset of trajectories, giving it the power
to rejecting outliers and identify the likely behaviors of the coupled human-robot system.

From a safety and interaction perspective, predicting the drivers behavior is incredibly
important, as autonomous vehicles are on the precipice of being a part of everyday life. Here,
beyond presenting the algorithm, we focus on two key components of driver behavior: the
influence of distraction (i.e. texting while driving) and the impact of intent (i.e. deciding
whether or not to change lanes). We specifically consider building models of individual
driver behavior, but the algorithm presented generalizes across datasets of human-in-the-
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Figure 2.1: Informative versus Robust Modeling. (a) Maximally informative, but
least robust prediction. (b) Informative prediction with assumptions over distributions on
human behavior. (c) Maximally robust prediction, requiring exact model and disturbance
bounds and over-conservative. (d) Visualization of prediction that identifies useful subsets
of reachable set, balancing robustness with informativeness.

loop systems–extensions to general models and autonomous planning will be presented in
Chapter 3.

Frequently, driver monitoring systems that estimate the driver state, are used in Ad-
vanced Driver Assistance Systems (typically warning systems) [28, 74]. If we want to take
an active and preventative approach by integrating these driver models into control frame-
works, a predictive model of the effect on the dynamical system is needed. Building off the
data-driven reachable set concept [32] and control framework presented in [115], we aim to
create a highly precise and accurate model of human behavior.

The algorithm presented here takes a dataset from a human-in-the-loop system under
different conditions (e.g. driver state, environmental conditions, etc.) and outputs empirical
reachable sets that have rejected unlikely samples up to some probability threshold. By
selecting observed trajectories of the system, the explicit calculation of the reachable set is
estimated by finding the bounds on the dataset, given a mode of behavior. This can be
used to identify mislabeled data or identify the most likely behaviors from the human-robot
system. Due to the flexibility of the modeling method, we can build a more informative and
useful reachable set that is usable in a wide variety of scenarios, if represented in the dataset.

2.2 Modeling Methodology

As previously described, in this work we aim to develop a framework that when given a
dataset of human-robot behaviors, can identify the likely empirical reachable set. First,
we state the assumptions, and present the formulation of the problem in terms of finding
representative subsets of data.
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2.2.1 Modeling Assumptions

In this subsection, we provide the notation and assumptions for the formulation of empirical
reachable set to be used as a driver model.
Assumption 1: Existence of Human-in-the-Loop Dataset.
Consider a vehicle with a set of dynamics:

x[k + 1] = f(x[k], u[k]) (2.1)

where x[k] ∈ Rn is the state of the vehicle, u[k] ∈ U is the vehicle inputs where U ⊂ Rm is a
compact, connected set, k ∈ {0, . . . , T} denotes the time step, and T ∈ N is the finite time
horizon. Since we are interested in the human-in-the-loop system, we suppose that the input
u comes from the human driver. For now, we will consider the case where the dynamics f of
the vehicle and/or the human control input u is unknown, but we can observe trajectories
and recover the observable states.

Suppose we have a dataset X that consists of N sample trajectories of the system over
a given time horizon T :

X =

x1[0] . . . x1[T ]
...

...
...

xN [0] . . . xN [T ]

 (2.2)

where xi[t] ∈ Rn is a trajectory indexed by i. It is assumed that the initial positions of these
trajectories are centered, meaning xi[0] = x0, ∀i. For notational simplicity, we will denote a
sample trajectory as xi := [xi[0] . . . xi[T ]].
Assumption 2: Existence of Scenario Modes.
We also assume that we have associated observations of the surrounding vehicles and the en-
vironment (e.g. data from radar and road sensors), which we can use to create environmental
abstractions.

Suppose given the current sensor information, et, and the dataset of past observations
(or environment abstractions) E, we are able to map the current scenario to a past similar
scenarios or mode.

θ : et × E →M (2.3)

where M is a finite set of scenario modes that the vehicle could be in.
This is similar to the hybrid systems formulation where we identify the current mode of

operation. We can associate this with a set of mental states for the driver (e.g. attentive or
distracted), as presented in [34], and/or states of the environment.
Assumption 3: Existence of Distinct Behavior Modes.
Given that driver behavior heavily depends on context and that we can identify this mode
through θ(et, E), we assume that these modes have associated behaviors and that these
behaviors are unimodal. As was previously mentioned, we are interested in long time horizon
trajectory predictions that will encapsulate the uncertainties and the bounds of the potential
future states of the vehicle.
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For a particular mode m ∈M, we suppose there exists some function:

A(X,m)→ ∆m(α) (2.4)

where we have some function A that utilizes the dataset X to produce a prediction set
as ∆m(α). For a given α, the set will encompass the α-likely trajectories for mode m, as
identified by θ. The formulation and algorithm to identify this set will be presented in the
following section.

2.2.2 Identifying the Empirical Reachable Set

In order to approximate the reachable set and give a reasonable prediction of the system, we
present an algorithm (previously denoted A) for deriving the empirical reachable set with
outlier rejection to capture the likely behavior of the system.

To find a more useful representation of this dataset, we’d like to find the minimum area
set that contains the α-likely trajectories. Formally:

argmin∆⊆Rnc λ(∆)

subject to P̂X(∆) ≥ α
(2.5)

where ∆ is the predicted set, λ(·) is the Lebesgue measure that gives the size of the set, and
P̂X(∆) ∈ σ(Rnc) is the empirical probability over the trajectories in dataset X:

P̂X(∆) =
1

N

N∑
i=1

I{xi ∈ ∆} (2.6)

Since our primary concern is interaction and safety in terms of constraints on the vehicles
motion, the trajectories of the high dimensional dynamics are projected into Rnc , where
nc = 2, to capture vehicle position.

To make this optimization more concrete, we rephrase the problem as a mixed integer
linear program (MILP) that minimizes the area between two bounding hyperplanes that
select a subset of the trajectories to meet the probability threshold:

argmin
x,x∈Rnc

area(x, x)

subject to bi(x− xi) ≥ 0
bi(x− xi) ≤ 0∑

i bi ≥ N(1− α)

(2.7)

where bi is the decision variable associated with trajectory i. This decision variable chooses
whether or not this trajectory will be included in the set or not, ensuring that more than
N(1− α) trajectories are included. The area between the bounding hyperplanes x and x is
approximated using the Riemann sum approximation.
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These bounds optimally result in being the pointwise minimum and maximum over the
subset of the data, determined by the constraints. Simply put, this algorithm identifies
the lines that bound the most precise subset of the trajectories that captures the α-likely
trajectories behaviors.

However, this is a bilinear constraint and is therefore not easily solvable. In order to make
these constraints linear, we use a cute trick to recast the constraints as linear equations:

x− xi ≥ (1− bi)(xmin − xi)
x− xi ≤ (1− bi)(xmax − xi)

(2.8)

where xmin is the pointwise minimum and xmax is the pointwise maximum of the dataset.
This changes the decision variables to select when the trajectory will be included in the set
and when a trivial constraint will be satisfied (i.e. when the upper boundary x is greater
than the minimum of the set).

By casting this problem as a mixed integer program, we can efficiently solve for the set
that will allow us to choose the trajectories in the data that maximize the precision, given an
empirical probability threshold. This formalization allows us to capture likely behaviors of
the system, and reject outliers from the dataset to derive a more precise and useful trajectory
prediction set.

2.2.3 An Example

Suppose we have a dataset consisting of sample trajectories of a human driver lane keeping,
which may consist of some outliers, as visualized in the first panel of Figure 2.2.

Figure 2.2: Driver Modeling Algorithm. This flowchart shows how the dataset of trajectories
(left) with some outliers (labeled in red) becomes disturbance bounds with some probability thresh-
old (right). For all trajectories, the initial position is centered at (0,0), heading in the positive x
direction. The center image shows the initial set and the new, more precise set with the outliers in
red rejected. The right image shows the full empirical distribution over the dataset.
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By simply taking the pointwise bounds of the samples, a conservative estimate of the
empirical set is found (as was done in [34]). However, we would like to find a representative
set and use the algorithm to reject the outliers. Using the algorithm presented and allowing
a rejection of up to 10% of the samples, the optimization program identifies the outliers,
as labeled in red sample trajectories in center panel of Figure 2.2. By sweeping over the
probability threshold, the empirical reachable sets with are identified.

We note two key points. First, an interesting observation can be made by looking at the
effect of the precision as we vary probability thresholds1, as seen in the right-most figure in
Figure 2.2. A sort of invariant set appears, when the precision no longer changes significantly
by throwing out more samples (this will be discussed in more detail shortly).

Second, this data is associated with a specific mode of operation or scenario. In general,
this algorithm assumes a unimodal data distribution, to uncover the the most precise, repre-
sentative subset of the data. Our method of overcoming this will be discussed in Section 2.5.
Much like the reachable set analysis utilized by the hybrid systems community, the power of
this tool comes from looking at modes which will determine the high level control actions of
the human.

2.3 Algorithm Evaluation

To demonstrate the functionality of the algorithm in a tangible ground truth, the method is
employed on known distributions to make sure these empirical sets are providing useful set
with respect to probability thresholds in a reasonable computation time.

2.3.1 Distribution Analysis

To exemplify and validate algorithm performance, baseline results on known distributions
were performed for uniform, normal, extreme value, and log-normal distributions. These
were selected to span a range of distributions with varying likelihood of outliers.

To test this, N data-points were drawn at random from each distribution. These datasets
are passed through the ERS algorithm to identify sets that capture the most precise subset of
αN samples of the data. Samples of the sets overlayed with the probability density functions
for the extreme value, normal, and log-normal distributions are visualized in Figure 2.3.

It can be observed that this method tends to capture the high density regions well and
quickly rejects the extreme samples from the sets. For a more quantitative sanity check, a
normal distribution, the sets found to capture the 1 and 2-σ bounds that capture 68% and
90% of the data, respectively, in Figure 2.4. We observe that the sets match the tighter
bound quite well, but the 2-σ bound has some error. This is to be expected, as the empirical

1 In general, choosing heuristics and thresholds is difficult to do in a sound manner, in particularly for
highly adaptive and ever-changing systems, like humans. While choosing this α value will be discussed briefly
in the following chapter, methods for selecting this value is left for future work. One suggestion for selecting
this value is to find the value associated with the invariant set as will be discussed in the following Section.
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Figure 2.3: Distribution Analysis of ERS Algorithm. Sweeping over probability thresh-
olds, we approximate the distribution using data sampled from known distributions.

Figure 2.4: Comparing ERS Method to Known Standard Deviation Metrics. Given
a normal distribution, this plot visualizes and compares our results with the known sets
associated with one and two standard deviations.

data is more likely to appear near the mean, capturing the typical sets, rather than the
distribution itself.

If we consider the size of the sets for each distribution, we see the trend illustrated in
Figure 2.5. This plot shows the area reduction (δA = λ(∆(α))− λ(∆(β))), where β ∈ [0 1]
and α > β, for each of the distributions. We note that this value is normalized for plotting
convenience and that the x-axis shows the rejection ratio, which is 1− α and (1− β) in the
above notation.

We can see the shape of this curve is dependent on the likelihood of outliers in the
data. For the uniform distribution, we have a linear relationship between the size of the set
and number of samples rejected (or the number remaining in the set). For the Log-Normal
distribution, we see that after rejecting the extreme outliers, the size of the set approaches
a steady state, where the subset nearly remains the same. Using these observations, we
see that a typical set can be identified when we have diminishing returns on the objective
function.
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Figure 2.5: Change in Area and Typical Sets. This plot shows the change in the size of
the set as more and more samples are rejected from the sets. The lines for each distribution
tested show the average area reduction and the maximum and minimum bounds are shown
by the shaded regions.

2.3.2 Comparing Efficiency

As an additional evaluation, the computational efficiency of the MILP formulation of the
problem compared to naive approaches for rejecting outliers, without assuming an underlying
distribution. A Leave-k Out method was implemented for comparison:

[A∗, i∗]← min (λ(X|I)) (2.9)

where A∗ is the minimum area associated at index i∗. All combinations of the trajectory
indices is given by the N -Choose-N -k combinatorial function, where N is the total number
of samples and k is the number to reject, is denoted I ∈ NNc×N−k. Each row contains one
of the combinations of trajectories to be included in the set. The minimum function returns
the minimum area subset given the areas for all Nc enumerated areas, given by λ(·).

The computation time for our formulation and the leave-k out method are shown in Table
2.1 and Figure 2.6.

We note that the complexity of this optimization problem grows as more trajectories
are included in the dataset and generally as more trajectories are rejected. For the former
point, the complexity has not proven itself a serious concern compared to other set-based
approaches, due to the assumptions made and the straightforward formulation. The latter
point is intuitive, due ot the fact that region is more dense making the decision variables
more difficult to optimally identify. In some cases (e.g. N � 0, X is quite dense), high
values of α are intractable in reasonable time.

To speed up the process of estimating the prediction set over varying values of α, we can
take advantage of the fact that these sets are submodular. This means that ∆m(αp) ⊆ ∆m(αq)
for all αp ≤ αq. In practice, this means we can more efficiently calculate the prediction set in
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Figure 2.6: Efficiency of the MILP Implementation Compared to Naive Ap-
proaches. Computation time of rejecting increasing numbers of samples for the two different
implementations are shown for N = 100 and N = 500. Our approach is shown in the blue
lines and the naive approach is shown in green.

Table 2.1: Comparing Computation Time for MILP Implementation and Leave-k
Out Approach. Results showing computation time in seconds for increasing number of
samples to be rejected.

k 1 2 3 4 5 10

N=100
ERS 0.005 0.030 0.025 0.041 0.048 0.44
Leave-k Out 0.019 0.261 10.572 310.917 — —

N=500
ERS 0.019 0.098 0.095 0.161 0.181 0.257
Leave-k Out 0.303 152.352 — — — —

dense regions (i.e. high values of α, denoted ᾱ), by iteratively computing decreasing values of
α ∈ [ᾱ 1] and reducing the search region to the area from the previous set. This allows us to
chip away at the problem and provides the full approximation of the empirical distribution.

The ratio of the baseline implementation over the submodular approach is shown in
Figure 2.7. As shown, we significantly improve the computation time. We also note that the
plot shows the best case baseline implementation, meaning that we considered the minimum
time to compute. This baseline implementation frequently timed out at 10 minutes, due to
the underlying complexity of these dense regions.

Moreover, this integer program can be relaxed to penalize deviations from the typical
trajectories instead of requiring strict constraints and the number of trajectories can be
weighted by importance or similarity to reduce the number of samples. Such tricks would
improve the computation, but further details and implementations are left as future work.
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Figure 2.7: Comparing the Submodular Approach to the Baseline Method.

2.4 Model Validation Metrics

Before presenting the results, the methods for validating the set prediction to ensure that it
is both robust and informative. These performance metrics describe how well we can predict
human-in-the-loop behaviors given our methodology. We introduce two performance metrics
to validate this model with respect to the ego vehicle trajectories:
1) Accuracy Metric: Does the actual trajectory lie within the prediction set?
2) Precision Metric: How informative is this predictive set when compare to a generic set
prediction? In essence, we would like to verify that we are reliably predicting driver behavior,
and that we are using a set prediction that is relatively small and informative.

We formalize these metrics in the following equations. Accuracy is defined as:

A = 1
NT

∑NT

j=1 I {xj ∈ ∆m(α)} (2.10)

where NT is the number of samples in the validation set with elements xi, ∆m(·) denotes the
ERS, where the mode m is determined by θ(ej, E) for each sample for a given α.

This gives a very strict interpretation of how robust the prediction set is. For comparison,
the reachable set would give an accuracy metric of 1 (assuming the model and disturbances
are known), while a single trajectory prediction would almost certainly give an accuracy
metric of 0.

Precision is defined as:

P =
1

NT

NT∑
j=1

1− λ(∆m(α))

λ(R(x0))
(2.11)

where R(x0) represents an over-conservative reachable set of the vehicle, given the initial
state x0 and all other variables are as previously described.

This gives us an idea of how informative the set is by assessing how much the set is
reduced compared to the generic prediction. If the precision metric is 1, the size of the
prediction set is 0, meaning that we have precisely predicted the exact trajectory. If the
precision metric is 0, then we are not reducing the size of the set and we can surmise that
this prediction is not informative.
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2.5 ERS on a Lane Changing Example

As previously described, we would like to follow the example of the hybrid systems commu-
nity, we introduce the concept of driver modes to apply this approximation of the reachable
set to human modeling. It is assumed that the way a human controls a system is dependent
upon a number of different influences. For example, a driver will behave differently if they
are attentive or distracted, or if they are planning on staying in their lane or executing a
lane change.

In our formulation, these modes will come with different partitions in the dataset, as
guided by the scenario mode function θ. This means that by identifying modes of behavior
and collecting a sufficient dataset corresponding to that mode, that we can build these
predictive sets to represent these different behaviors. We consider the affects on the predictive
sets who’s modes change based off of driver intent, as example of how to identify typical sets.

To do this, we will explore different ways of determining modes of intent. In this formula-
tion, the prediction set ∆m(α) and the associated mode m is determined by the driver mode
identification function, θ(et, E). There are many different methods for determining modes of
behaviors, including supervised approaches that predict specific predetermined modes and
unsupervised approaches to identify natural groupings within the observed data. As a sim-
ple example, we will considered the supervised approach in this section, and will provide
implementation details of this and other methods in the following sections and chapters.

To apply our method for predicting human-in-the-loop behaviors in the context of driving,
we must collect our trajectory dataset X and for each method of detecting driver modes.
Using the experimental setup outlined in Chapter 1, Section 1.2, we collected 1000 sample
lane changes from ten subjects. The resulting dataset consisted of lane changing maneuvers
in dynamic environments with up to three vehicles. For simplicity, we examine a simple
scenario of driving in a two-lane, one way road, in a non-urban setting with a varying number
of vehicles. Multiple scenarios were created in which the driver traverses a straight two lane
road attempting to maintain a speed between 15 and 20 m/s. Scenarios were generated by
creating combinations of the simulation parameters to collected a complete dataset. The
following parameters were varied: (1) the initial speed and lane location of ego vehicle; (2)
the number and location of surrounding vehicles, varied from one to three; and (3) the initial
and final speed of each surrounding vehicle.

For example, in some scenarios, the lead vehicle would slow down, forcing the driver to
change lanes only if there was room in the next lane. Thus, the key here is finding the
configurations of the environment states that cross the boundary or safety margin of the
human and allows us to identify their likely action between staying in the lane (i.e. braking)
or changing lanes to maintain her desired speed. We note that some scenarios did not
require a lane change (e.g. the relative speed of the lead vehicle was initialized such that the
driver never felt the need to overtake them), while other scenarios which heavy traffic caused
multiple lane changes, but varied depending on the driver’s behaviors in the simulation.

To take a supervised approach, we actively label the data using the driver’s turning signal
(blinker) to determine when the transition between the lane keeping mode and lane changing
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mode. By using the driver input to label the signal, the driver’s thought process is captured
and arbitrary heuristics are avoided. This transition generally occurred one to two sections
prior to exiting the lane. This means that learning these transitions inherently capture a
predictive model, meaning that the lane change will be predicted prior to the maneuver
actually occurring.

2.5.1 Mode Identification

Figure 2.8: Discrete states of
Driving Example. Illustration of
discrete modes in our hybrid model
of driver intent, where we model the
transitions as discrete inputs, σ∗.

Detecting lane changes from a dataset has tradition-
ally been done by determining when a lane change
occurs by some heuristic (e.g. when the heading an-
gle passes a particular threshold or when the vehicle
exits the lane). These models look at the data leading
up to this point in order to predict that a lane change
will occur in the next few seconds [28, 73]. This, how-
ever, does not capture the decision making process of
the human, or capture the idea that these decisions
occur as a function of the environment, not just time.
In the proposed detection method, we choose to only
rely on the state of the environment, not a predeter-
mined time horizon, meaning that the resulting model allows the prediction time horizon
to change. Further, this approach captures typical human interactions. While drivers often
rely on turning indicators to convey our intent to surrounding vehicles, humans can estimate
intent without these visual cues, just by observing the motion of nearby vehicles [36].

To do this, given some sample data from sensors, ek, we wish to uncover the driver mode
identification function θ(ek, E) given previously observed data in E. Given that we are
interested in simple lane changing maneuvers (finer analysis of lane changes will be covered
in the following chapter), we wish to identify when the driver transitions from lane keeping
to lane changing. This mapping is uncovered using classification techniques. Many different
tools were examined, and many existing approaches demonstrated similar results. We will
generally discuss classification techniques, focusing on support vector machines which aim
to uncover the separating hyperplane between the behavior modes [22, 34].

Classifying data is a common task in machine learning. Suppose some given data points
each belong to one of two classes, and the goal is to decide which class a new data point
will be in. While there are many hyperplanes that might separate the data, support vector
machines aim to select the one with the largest margin between data samples. This implies
that the distance from the boundary to the nearest data point on each side is maximized. This
resulting separation boundary is known as the maximum-margin hyperplane and provides
optimal stability for the classifier [58].

For lane changing, we wish to uncover the transitions as shown in Figure 2.8. Using the
labeled data previously described, these transition points are learned, and the decision mak-
ing processes is approximated by these boundaries. Additionally, each mode will represent a
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subset of the data that is associated with each mode. We will denote this as Xm = X(I(m)),
where I(m) subset of the dataset that has been associated with mode m.

Figure 2.9: Learning Separating Hyperplane between Modes of Intent. Sample
trajectories of lane changes are shown as the black paths, with the transition points labeled:
lane keeping ends at the square points and the beginning of lane changing are shown as
circles. The learned separating hyperplane is shown in purple.

2.5.2 ERS Results

Using this collected data and the intent detection function, we apply the modeling method-
ology and run the optimization program to identify the probability distribution over trajec-
tories. The output of this framework are shown in Figure 2.10.

Figure 2.10: ERS Output for Lane Changing Modes. The empirical set predictions are
provided for varying α values.
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(a) Accuracy/Precision Trade-off Curve. (b) Area Reduction Curve.

Figure 2.11: Results from the Lane Change Example. (a) Accuracy/Precision Trade-
off Curve. This plot shows the trade-off between accuracy and precision. The expected
uniform baseline performance is shown by the dashed line. (b) Area Reduction Ratio for
Lane Change. The amount the size of the set decreases by rejection ratio is shown for both
modes. The trend is similar to those of the evaluated heavy tailed distributions.

Using the performance metrics defined in Section 2.4, we validate this method as a
predictive model. The accuracy/precision trade-off curve is shown in Figure 2.11a in addition
to the results provided in Table 2.2. Since these sets are determined by a probability threshold
(i.e. sweeping over values of alpha), we hope to exceed a baseline performance of a uniform
rejection, which is also provided in the figure. Additionally, to visualize accuracy in a
more fluid fashion, the total cumulative error is computed as the total distance between the
trajectory and the set prediction, when not on the interior of the set.

Thus, we have produced sets that encapsulate the empirical behaviors of drivers in these
modes with reasonable accuracy. For further nonparametric distribution analysis, we con-
sider the area reduction by rejection ratio as shown in Figure 2.11b. As expected, we see
the same trend as the evaluated heavy tailed distributions. It can be observed that after
rejecting 20% of the data, we see a nearly linear reduction in the size of the set with each
increased step in α. This implies that after this point in the graph, we are no longer rejecting
outliers, but eliminating boundary trajectories that have little influence on the precision of
the set.
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Table 2.2: ERS Lane Changing Results. Performance metrics and cumulative errors (m)
are provided for the two modes presented for lane changes.

Lane Keeping Mode

α 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
Accuracy 0.98 0.72 0.63 0.53 0.43 0.31 0.21 0.15 0.10 0.05
Precision 0.64 0.72 0.79 0.84 0.88 0.91 0.93 0.95 0.98 1.00

Cumulative Error 0.14 0.17 0.18 0.21 0.26 0.33 0.40 0.47 0.57 1.48

Lane Changing Mode

α 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
Accuracy 0.84 0.68 0.66 0.66 0.59 0.48 0.38 0.27 0.24 0.05
Precision 0.11 0.43 0.51 0.62 0.66 0.75 0.80 0.83 0.92 1.00

Cumulative Error 0.99 1.49 1.67 1.69 1.76 1.90 2.09 2.14 2.83 2.98

Figure 2.12: Histograms Cumulative Prediction Errors for Lane Change Example.
The change of the error distribution is shown for the tested values of α. As shown, as we
reject more samples, the errors increase but still remain within normal bounds.
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2.6 Alternative Approach: Optimal Disturbances for

Traditional Reachability

Up to this point, the empirical reachable sets exhibit nice behavior and usable results, but
unfortunately, many of the guarantees from true reachability are lost in the formulation.
Further, we wish to develop sets that capture behaviors in terms of disturbances but better
capture influences from multiple facets, like noise, uncertainty, and, most importantly, other
agents. To address this problem, we propose wrapping traditional reachability techniques in
an optimization program using empirical metrics as constraints with interaction.

We aim to relax some of the assumptions required to develop safe, interactive human-
in-the-loop systems by using empirical methods in order to (1) learn the disturbances of
the system and (2) balance accuracy, precision, and risk. The advantage of this approach
is that we can capture the wide variety of human behaviors and express these observations
succinctly using reachability analysis, which provides a certificate on safety.

Building off of the concept of forward reachable sets, we aim to empirically optimize dis-
turbance bounds with respect to this utility/robustness trade-off. When forward reachable
sets are used to predict sets of possible trajectories, they provide nice safety guarantees,
subject to some assumptions on disturbance input bounds that might not hold in practice.
To address this, we evaluate the effectiveness of these sets for predicting human driven ve-
hicles trajectories, verifying robustness and identifying the correct disturbances for accurate
predictions. Moreover, supposing we have an accurate prediction that provide safety bounds
for interaction, we assess how these are violated by other agents on the road. This gives us a
measure of how over-conservative the prediction set is with respect to interaction. We then
evaluate these competing constraints to optimize predictive power subject to robustness and
risk for multi-agent applications.

In order to properly assess and optimize this set, we assume the existence of a human-
in-the-loop dataset of driving behaviors and interactions, which will be discussed in detail in
Section 3.2.1. We focus on scenarios similar to Figure 2.13, where vehicle A seeks to merge
in front of vehicle B. The reachable set is used to model possible actions of vehicle B, which
we want to be accurate and informative, but also risk averse with respect to vehicle A. Thus,
we have a set of trajectories representing the in-lane vehicle XB and the other vehicle XA.
Given our motivating example (Figure 2.13), we will denote an instance of a lane change
execution l and the corresponding reaction as a pair of trajectories, denoted xAl ∈ XA and
xBl ∈ XB.

To compute the reachable set, we require a continuous model of our system dynamics.
We’ll write the dynamics of the vehicle in Equation 1.2 as a simplified kinematic model:

ẋ(t) = v(t) cos(θ(t))
ẏ(t) = v(t) sin(θ(t))

θ̇(t) = ω(t)
v(t) ∈ Dv

ω(t) ∈ Dω

(2.12)
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Figure 2.13: Motivating Example for Multi-Constrainted Reachable Sets. Reach-
able sets with varying disturbance bounds are shown for vehicle B, with decreasing robust-
ness. Sample trajectories for each vehicle is shown, exemplifying how they might interact
with these sets.

where x(t) and y(t) denote the position, θ(t) denotes the heading, v(t) denotes the speed,
ω(t) is the steering rate, and t ∈ [0 T ] denotes time. As this is a human driven vehicle, we
suppose that there is uncertainty in the control of the vehicle, denoted Dv and Dω, which are
compact, connected sets in R. It is assumed that all other noise, uncertainties, and modeling
inconsistencies are encompassed by these disturbance sets.

Further, we assume we are able to compute the forward reachable set for a fixed time
horizon, T , which will be denoted Λ(Dv, Dω). Given that methods for computing this set
are well-studied, we focus our attention on identifying the tunable parameters, i.e. the
disturbances.

2.6.1 Risk Constraints

The following section presents our approach for optimizing the reachable set to satisfy our
goal of balancing accuracy of predicting trajectory behavior against risk with respect to other
agents. In essence, we aim to find the set that maximizes precision subject to constraints on
accuracy and a new performance metric with respect to other vehicles: risk.
3) Risk Metric: How frequently is this set violated by the other agent?

The reachable set formulation provides a set of states that the vehicle of interest may
visit in a given time horizon. The boundaries of this set provide safety guidelines for ad-
jacent vehicles (i.e. vehicle A) on the road, given that control input bound assumptions
hold. However, humans often violate these safety boundaries. For example, in a high traffic
situation, there simply may not be enough space to maintain a large lane gap and still make
a lane change. To quantify how risky a human behaves with respect to a given reachable
set, we develop interaction metrics that capture how much a given trajectory intrudes on
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the reachable set. We define a risk metric, R, analogous to the accuracy metric:

R = 1
N

∑N
j=1 I{xAj ∩ Λ(Dv, Dω) 6= ∅} (2.13)

where xAj is the trajectory of the adjacent vehicle (A) that merges and Λ(Dv, Dω) is the set
of predictions for vehicle B. We wish to see if the adjacent vehicle enters the reachable set
for the vehicle in lane. The risk metric determines, for the given dataset, how often the
adjacent vehicle intrudes on the reachable set.

If the risk metric is 0, then the set Λ is never intruded on by vehicle A and can be treated
as a hard safety bound for planning by vehicle A. In contrast, if the risk metric is 1, then
that implies the set Λ is over-conservative, as the adjacent vehicle never avoided this set.

2.6.2 Optimizing Disturbance Bounds

We formalize this as the following optimization program:

maxΛ⊂Rn P (Λ(Dv, Dω))
subject to A(Λ(Dv, Dω)) ≥ ā

R(Λ(Dv, Dω)) ≤ r̄
(2.14)

where Λ(Dv, Dω) ⊂ Rn is the prediction set or reachable set, P (·) is the precision of the set,
A(·) is a measure of how accurately the ego vehicle behavior is being predicted (as previously
defined), and R(·) is a measure of the risk with respect to the other agent (which will be
formally defined in the following section).

By relaxing strict bounds on safety and interaction, we are able to sacrifice some robust-
ness for utility. However, this is a difficult problem to solve in general, given that (1) finding
the set is difficult; (2) these constraints are not easily written as simple constraints; and (3)
these constraints are at odds with one another.

To make this problem well-posed, we rephrase the approximate the solution using iterative
methods2, where we iteratively solve for the optimal reachable set. We write this nested
problem as follows:

(D∗v, ω
∗
1)← argmaxDv⊂R,ω1∈R P (Λ(Dv, Dω))

subject to A(Λ(Dv, Dω)) ≥ ā
Dω = [ω1, ω

∗
2]

ω∗2 ← argmaxω2∈R λ(Dω)
subject to R(Λ(D∗v, Dω)) ≤ r̄

Dω = [ω∗1, ω2]

(2.15)

where the steering disturbance is separated into its bounds Dω = [ω1, ω2], and size of the dis-
turbance sets are given by the Lebesgue measure λ(·) and all other variables are as previously
defined.

2 The first suggestions of using an iterative method is attributed to Gauss, who wrote a letter to a
student and suggested solving a linear system of equations by repeatedly solving the component in which
the residual was the largest.
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The separation of disturbance sets and constraints simplified the optimization program,
and allows for the competing objectives to be optimized iteratively. The selection of op-
timization variables arose from the fact that risk constraint is more influenced by lateral
motion primarily in the direction of vehicle A; while the accuracy is more influenced by
longitudinal motion.

This cost function is motivated by the fact that the reduction in the disturbance will lead
to a smaller reachable set, thus improving precision, as was proven in [3]. At the same time,
the resulting reachable set will be large enough to capture the most likely behaviors at an
acceptable level of risk.

2.6.3 Implementation, Evaluation, and Results

We use forward reachable sets to determine the likely positions the vehicle may occupy in
T = 3 seconds. This time horizon was chosen to capture the following distance often used
in practice [90].

In order to compute the metrics and validate our approach, we require a dataset of
interactions, XA and XB. To get these sample trajectories, we use the NGSIM dataset,
which has been used to do microscopic traffic modeling [54]. From the full dataset from
the US Highway 101, we select lane change scenarios that match the scenario presented in
Figure 2.13, resulting in 65 samples.

Using this data, we can compute the precision, accuracy, and risk for various disturbance
bounds. The predetermined sets were chosen using disturbance bounds drawn from the
empirical distributions in the data. The resulting bounds that were selected are shown in
Table 2.3. These bounds reflect the fact that, in the dataset, there was more variation in
the longitudinal velocity than there was in turning rate.

Table 2.3: Disturbance Bounds Used to Compute Reachable Sets. Disturbance
bounds were selected based on empirical distributions in the NGSIM dataset.

v (m/s) ω (rad/s)
D1

v (31.0, 36.0) D1
ω (−0.003, 0.003)

D2
v (29.0, 39.0) D2

ω (−0.010, 0.010)
D3

v (25.0, 44.0) D3
ω (−0.085, 0.085)

D4
v (15.0, 52.0)

Some sample reachable sets are shown in Figure 2.14 for varying disturbance bounds.
Please note that we project the computed 3D (i.e., x, y, θ) reachable set down to 2D (i.e.,
x, y) and use the 2D set for analysis. Given the reachable sets, we characterize robustness and
utility via accuracy and precision metrics. We also determine the level of set violation based
on the risk metric. Finally, we describe an example solution to the optimization problem
detailed in Equation 2.15.
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(a) Varying Dω (b) Varying Dv

Figure 2.14: Sample Reachable Sets for the Vehicle. Sets generated for T = 3 with
varying Dv and Dw bounds, as found in Table 2.3. (a) Reachable sets generated with Dv

fixed at D4
v and Dw varied from D1

w to D3
w. As the turning rate increases, so does lateral

deviation. (b) Reachable sets generated with Dw fixed at D1
w and Dv varied from D1

v to D4
v.

As speed increases, both lateral and longitudinal deviation increase. However, most of the
growth is in the longitudinal deviation.

2.6.3.1 Empirical Metrics Evaluation

The trade-off between accuracy and precision is demonstrated in Figure 2.15a. The key
result is that we can pick to have high robustness sets or high utility sets; achieving both
objectives is not feasible. Figure 2.15b shows that as the size of the reachable set increases
and accuracy goes up, so does the risk level with respect to that set.

It is important to note that these are a sample of reachable sets based on preselected
disturbance bounds. While this sample is adequate to illustrate the trade-off between ac-
curacy and precision, it does not demonstrate how to actually construct a set that solves
the optimization problem detailed in Equation 2.15. We next discuss how to get a suitably
precise set to meet accuracy and risk requirements.

2.6.3.2 Identifying Optimal Disturbance Bounds

So far, we have constructed reachable sets based on empirically determined disturbance
bound choices with varying levels of accuracy and precision. We then saw that humans
violate these safety sets in practice. The question then becomes how to choose the right set
given these relationships. Given a risk profile of a given driver in vehicle A, we wish to pick
the reachable set for vehicle B that maximizes accuracy subject to an appropriate level of
risk.
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(a) Accuracy vs. Precision Curves (b) Accuracy vs. Risk Curves

Figure 2.15: Accuracy versus Precision and Risk.(a) Each curve shows, for a fixed
dω-bound, how accuracy and precision change with the dv-bound. We observe the expected
trend: as precision increases, accuracy is sacrificed. (b) Each curve shows, for a fixed dω-
bound, how accuracy and intrusion change with the dv-bound. We observe the expected
trend: as the set size becomes larger, risk increases.

To solve this problem, we look at the optimization framework outlined in Equation 2.15.
The key changes are that we start with a collection of precomputed reachable sets based on
bounds in Table 2.3, for simplicity, and allow asymmetric boundaries (i.e. the turning rate
to the left can be different than the turning rate to the right). We use a greedy approach to
solve the problem.

For analysis, we choose disturbances such thatDω = [ω1, ω2], where ωi ∈ Wi, i = 1, 2. The
sets are partitioned into positive and negative turning rates, i.e. W1 = {−0.085,−0.01,−0.003}
and W2 = {0.085, 0.01, 0.003}. For this choice of W1, it was noted that ω1 did not impact
risk, as the dataset involved lane changes from the right. Thus, Dv and ω1 were chosen to
optimize precision subject to the accuracy constraint in the first step. In the second step, ω2

was maximized subject to a risk constraint. The final result is a set that minimizes precision
while balancing accuracy and risk. Figure 2.16 shows how the set is morphed to achieve
constraints 90% accuracy and 15% risk.
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Figure 2.16: Iteratively Optimizing Disturbance Bounds. Example output from the
optimization program, showing six iterations as the reachable set converges, meeting the
specified criteria of at least 90% accuracy with less than 15% risk. For each subplot, the step
is shown in the top left corner, the disturbance bounds are provided in the bottom right,
and the computed accuracy and risk are provided in the bottom left.
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2.7 Application in Minimally Invasive Active Safety

Models of human behavior like the one presented here are crucial for human-in-the-loop
systems for developing provably safe control mechanisms or giving feedback to the driver.
This model is able to identify the likely set of actions, which can be thought of a highly
probably reachable set. This set formulation also allows us to examine the varying behaviors
of people depending on the context in a quantitative manner. Using this empirical model,
we can quantify the likelihood of “good” driving behavior, as was shown in [107]. This
is valuable as the driver would be able to receive useful feedback on their regular driving
behaviors and can be used to develop a provably correct controller.

In [34], we demonstrated how this can be applied to predict driving behavior in highway
and intersection settings and, most importantly, under different levels of cognitive loads.
In this work, we assume this set of mental states to be attentive, partially attentive, and
distracted. This is similar to work in psychology and discrete event systems, which identifies
tasks to have no, low, or high mental workload or cognitive distraction, and adjusts based on
discrete mental modes [61, 64]. Using this methodology, we were able to accurately predict
driver behavior while distracted, as summarized in Figure 2.17, which can then be used to
design semiautonomous systems. For more information and commentary on these results,
we guide the reader to [31].

Figure 2.17: Overview of Distracted Driving Results. The input to the mode identifi-
cation is visualized in the right panel. The center panel shows example ERS from this test
case. The left panel shows the Accuracy/Precision trade-off curve for varying time horizons.

2.7.1 Semiautonomous Controller Design

In addition, this model can be incorporated in a semiautonomous framework, as whas demon-
strated in [115]. There are two main control frameworks in which this model will easily
integrate: switched and augmented control.
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Suppose that we are given the unsafe regions of the environment can be estimated,
denoted as C. It is assumed that for a given fixed time horizon, N ∈ N, and a given cost
function, there exists an optimal control algorithm that is able to keep the vehicle outside
the unsafe set. This assumption can be satisfied by model predictive control (MPC) [17, 15].

Ideally, the optimal semiautonomous system would be minimally invasive. Using this
model, determining when the system should intervene can be calculated using the following
probabilistic intervention function, denoted G:

G(∆m(α), τ, C) ={
1 if ∃k s.t. P [∆m(α) ∩ C] ≥ τ

0 otherwise

(2.16)

where k ∈ {0, . . . , T} represents the time step in the time horizon T , ∆m(α) refers to the
probability distribution on the set of α probable trajectories at time k, C is the unsafe set,
and τ ∈ [0, 1] is a predefined threat threshold. This means that the vehicle intervention
function is 1 if the probability of the α probable trajectory set intersecting with an obstacle
at any time k is greater than the threshold τ , indicating that the driver is unsafe similar to
the strict safety guarantees in Chapter 1 Section 1.1.

This framework allows for the uncertainty of modeling and prediction to be incorporated
in the threat assessment of the driver in a particular situation. By using the intervention
functions, a decision can be made by the semiautonomous system as to whether or not control
should be applied. Assuming the prediction is accurate and has good precision, the system
will intervene only when necessary leading to fewer interventions than a simpler method
using the reachable set of the vehicle.

Switched Control

The most obvious method of semiautonomous intervention is switched control. By this, it
is meant that if the system detects danger for the driver, complete control will be taken
from the driver, operating under the assumption that the system can outperform the driver.
In the framework presented here, the controller would take over whenever the intervention
function was set to 1.

There are a number of issues that arise from this method. The most prominent issue is
dealing with handing control back to the human. This is an interesting engineering question,
but also has implications for human factors and psychology, concerning how a driver will
react to the intervention and determining when it safe to hand control back to the human
(see Chapter 4).

Augmented Control

Instead of completely relieving the human of his duties as driver, augmented control adds
the minimum amount of control to the driver’s input to keep the driver safe. The augmented



CHAPTER 2. EMPIRICAL APPROACHES TO REACHABILITY 39

control is always on, removing the need to switch between autonomous and human control.
The simulation described in the experimental setup also tested an augmenting control strat-
egy using MPC. The controller algorithm runs in real-time to minimize a quadratic cost
function as well as the following minimization problem:

minimize
x,u

∑N
k=0 x[k]>Px[k] + u[k]>Qu[k]

subject to G(∆m(α), τ) ≤ 0
x[k + 1] = f(x[k], u[k]),
u[k] = udm[k] + δu[k]
ψ(x[k], Ck) < 0

∀k = {0, . . . , N}

(2.17)

where udm is given by the driver model associated with the mean trajectory, δu is a small
perturbation added to the driver input to achieve optimal performance, and all other vari-
ables are as previously described. This minimization problem adds the minimal input needed
to keep the driver safe. This method has been implemented in a real-time framework and
has shown, promising and successful results [115].

In general controllers that share control with the driver (such as those above) suffer from
many user issues that can lead to instability or cause the driver to choose not to engage the
system [43]. Some of these issues will be addressed in Chapter 4.

2.8 Summary

This chapter presented methods for predicting human driving behaviors that break down
the assumptions required in other approaches. These assumptions are dropped by using
empirical methods and expanding the current of reachability tools. This allows for easy
integration of data collected from a simulator and guarantees that the resulting model will
be usable in practice (assuming the data is generated from a similar source). Data-driven
methods such as this also allow for nonlinear dynamics to be captured. This not only gives
us insight to driving behaviors, but this framework can also be applied to semi-autonomous
frameworks, as was shown in [115]. This model can be tailored to an individual human, as
was shown in this chapter, or can be used in a general context, as will be presented in the
following chapter.

We note that this method has a few drawbacks. First, this is highly dependent upon
the mode identification and scene classification, meaning that if the dataset is partitioned
improperly, you’ll likely get uninformative results. Second, given the cost function currently
used (minimizing precision), the algorithm primarily penalizes lateral variation, meaning
that it will eliminate trajectories with extreme steering first. This also means that it favors
trajectories that slow down (minimizing the longitudinal distance traveled), which is where
most of the errors lay. More consideration in cost functions is left as future work.

Future works include adding more contexts, like night-time driving, poor weather con-
ditions, icy roads, levels of traffic, etc.; examining different distractions and the resulting
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variation in behaviors; and testing various control methods while the human is driving to
verify that the system is minimally invasive and maintains appropriate safety margins. In
particular, implementing and identifying parameters for the probabilistic control framework
will be explored to verify feasibility and reliability.
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Chapter 3

Integrating Driver Models in
Autonomous Planning

It’s the transition that’s
troublesome.

Isaac Asimov

Autonomous vehicles will have to be capable of driving in a mixed environment,
with both humans and autonomous vehicles. To guarantee smooth integration
and maintain the nuanced social interactions on the road, a shared mental model
must be developed. This means that the behaviors of human driven vehicles
and their typical interactions in collaborative maneuvers must be modeled and
understood in an accurate and precise manner, as was previously presented. By
integrating such models into autonomous planning, we can develop control frame-
works that mimic this shared understanding. We extend the empirical driver
modeling framework to capture typical lane changing behaviors and demonstrate
90% accuracy and cumulative errors less than 1 meter. Leveraging this driver
model in an optimization-based trajectory planning framework, we can generate
trajectories that are similar to those performed by humans. This scheme captures
the subtle motions of low-level lane change executions. By properly conveying
intent through nuanced trajectory planning, we demonstrate a 40% increase in
predictability when compared to traditional control methods. Thus, we improve
understanding and integration of nuanced interactions to enhance collaboration
between humans and autonomy.
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3.1 Motivation for Interactive Driving

Despite the fact that full-fledged autonomy will be publicly available in the near future, it can
be assumed that the transition will not be instantaneous [76]. This means that one cannot
assume that humans will be completely out of the loop or off the road during this transitory
period, leaving open questions on how intelligent vehicles will interact and communicate with
drivers inside the car as well as with surrounding cars [32]. Since people interact with other
drivers regularly, it can be assumed that if an autonomous vehicle can understand the drivers’
behaviors and intent, there will be a smoother integration of autonomous vehicles on the
roads. This means autonomous vehicles must be able to drive well in a mixed environment,
with both humans and other autonomous vehicles on the road. This leaves a number of
concerns for autonomous vehicles in terms of dealing with understanding human drivers as
well as interacting with them, particularly with regard to cooperative maneuvers.

This concern is more broadly applicable to all interactive systems, and in particular, the
concept of conveying intent through motion is well supported by studies in neuroscience
and in human-robot interaction. Specifically, sharing mental models and integrating the
human into planning has been shown to improve the acceptance of autonomy [135]. In
[9], it was found that intent through motion is crucial in social settings when humans are
interacting. Similarly, [29] showed that by motion planning with intent in mind will lead to
more understandable interactions between humans and robots.

There has been extensive research studying driver modeling within the ego vehicle [77,
129], as well as driver perception [72]. However, there are still many human understanding
problems that have not been addressed, including predicting drivers’ behaviors and how to
interact with human drivers. As humans drive, we are able to assess what other vehicles are
likely to do and how they will likely respond to various actions. For example, when driving
on the freeway, many drivers can estimate when another driver wants to change lanes, even
if she has not turned on her turning signal [30]. Through experience, we learn cues from
drivers’ motions and gain intuition about how our actions will influence those around us.
This is intuitive in the driving scenario, as this represents the subtle nudging motions that
aim to see how the other vehicle on the road will react to the ego vehicle’s desired action
[32]. Gauging this reaction, beyond heuristic detection, is a difficult problem. Not only does
the intent of the other driver need to be detected (e.g. will the driver let me merge into their
lane or not), but their trajectory response is also essential.

It’s also imperative to note the effect of an autonomous vehicle on the road. When as-
sessing interaction, it is highly dependent on the perceptions of and actions by all agents
involved. Most models are developed by looking at human drivers interacting with other
human drivers. This means that such models are developed based on homogeneous envi-
ronments of all humans on the road. This implies that when introducing autonomy, it is
important to produce human-like maneuvers to meet expectations of users on the road, mak-
ing the mixed heterogeneous environment similar to the original homogeneous environment.

Another key part to consider is the sheer number of drivers on the road and the wide
variety of driver behaviors. That means if modeling methods are to be useful, they need to
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scale well, be representative of a large number of drivers in real world scenarios, and adapt
easily over time.

From the planning and control perspective, we need to develop autonomous systems that
are robust to human interaction. If we consider drivers on the road to be a disturbance,
there are two well-known control frameworks that can handle this sort of uncertainty. First,
we have stochastic control schemes that can analytically compute optimal control policies,
given a parametric representation of the probability distribution (ideally Gaussian) of the
disturbance [13]. This, however, limits the types of disturbances that can be considered.
Second, we have robust control that puts strict bounds on disturbances. While this provides
more flexibility, in general this leads to over conservative control implementations [136].

In response to where these methods are lacking, a scenario approach has been developed
[19]. This incorporates disturbances as soft chance constraints. One of the key results from
this work is that, given some confidence threshold for the particular scenario, you can sample
from a distribution or historical data to provide a representation of the disturbance. This
means that the likely disturbances can be captured via sampling, leading to approximately
robust control implementations that reduce the conservative nature of robust control. Our
approach builds off of this sampling-based method, extending the work to human-in-the-loop
settings.

Here, we present a framework and implementation of a driver model that will predict
driver behaviors and responses to desired actions in Figure 3.1, in a similar manner to
scenario approaches for control. Similar to the approach presented in Chapter 2 Section 2.6,
we aim to capture the merging response of the driver but in a more generalizable fashion
using the ERS formulation. Using a model that captures the boundaries of likely trajectories
and integrating this in a trajectory planning algorithm, we aim to assist the integration of
autonomy into society. The resulting framework automatically generates human-like paths,
matching typical human interaction metrics in cooperative maneuvers.

This chapter presents the following contributions:

1. Introducing a driver modeling framework that can be utilized in collaborative maneu-
vers that captures the non-deterministic behaviors of humans.

2. Verifying that this model effectively predicts driver behaviors on a large dataset with
many different drivers.

3. Analyzing typical human driving interactions with respect to these predictions during
lane changes.

4. Implementing an optimization-based planning framework that use these findings to
mimic human driving interactions to ease integration.

3.1.1 Overview of Multi-Agent Driving Applications

Cooperative and interactive driving has been a topic of interest for many years [126]. Many
cooperative driving projects focused on platooning with a homogeneous network of vehicles.
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Figure 3.1: Motivating Example for Interactive and Cooperative Planning. Given
the vehicle network state, the ego vehicle determines the optimal lane change execution given
the likely merging response of the vehicle in the adjacent lane. For optimal collaboration,
Vehicle A must project future actions (sA) and predict the response of Vehicle B (sB), to
plan its trajectory and match expected interaction.

For example, [70] developed a protocol for cooperative merging that allows a vehicle to merge
into a platoon. This approach was also used for merging two platoons at a lane reduction
scenario. Extensions have considered human drivers as disturbances in these platooning
structures, but were primarily concerned with safety protocols [114].

Although there have been multiple studies on human modeling for driving, develop-
ing accurate and high fidelity models for cooperative driving behavior remains an unsolved
problem. Here, we present a literature review of relevant driver modeling frameworks for
cooperative maneuvers. We consider perspectives from traffic modeling and large-scale em-
pirical driver studies, learning approaches, the control community, and finally present our
approach.

3.1.1.1 Traffic Modeling and Empirical Driving Studies

In [65], a macroscopic model of lane changing traffic on a section of a freeway was developed.
The paper provided a formulation to measure lane changing intensity and then looked at the
relationship between this intensity metric and traffic density to evaluate the impact of lane
changing on overall traffic flow. While empirical freeway data was used to test the model,
only the kinematics of the lane change were required to build an estimate of lane change
intensity. Cooperative maneuvers were not explicitly studied.

In contrast, [37] proposed a lane change assistance system using a Bayes classifier and
decision tree to determine whether or not a lane change should be made. Using vehicle tra-
jectory data from the NGSIM dataset, the authors trained the model and used an ensemble
method to produce the prediction. While this method helped capture a single driver’s lane
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change decision behavior, the model was only trained at lane drops (i.e. where lane changes
are eventually forced) and does not provide insight into more general lane change behavior.

Another study analyzed driver behavior from data collected in the 100-Car Naturalistic
Driving Study [41]. Each car was instrumented to collect driving data unobtrusively over a 12
month period. The study mainly focused on crashes and near-crashes of vehicles during lane
change maneuvers–essentially the failure of cooperative maneuvers. The key results found
that incidents were primarily due to inadequate awareness of the environment. In particular,
the authors emphasized the complex competing objectives of maintaining awareness of the
forward and rear roadway versus monitoring the adjacent lane in executing the lane change
maneuver. This study revealed some of the key limitations of human cognition in lane
changing, which should be accounted for in modeling and planning for autonomous vehicles.

3.1.1.2 Learning Frameworks and Cognitive Modeling

More recent advancements in cooperative behaviors for autonomous vehicles have begun to
consider heterogeneous environments and have generally focused on lane changing. In [123],
authors developed a decision making scheme that effectively decided when a lane change was
advantageous and when it was admissible, subject to predictions of the other vehicles on the
road. Despite the success of this approach in traffic, the approach did not scale well to high
traffic density scenarios due to a simple driver prediction model. Thus, by incorporating
improved human models into lane changing frameworks, we can improve the robustness of
automated vehicle cooperative maneuvers under heavy traffic.

In [108], the authors applied the ACT-R (Adaptive Control of Thought-Rational) cog-
nitive architecture to develop an ACT-R driver model. Evaluation of the model involved
comparing predicted steering wheel angle, lateral lane position, and gaze distributions to
actual driver simulator measurements. While the ACT-R model was able to capture the
overall trends of driver behavior quite well, the lane change component was a simple binary
decision based on distance and time gap parameters in the adjacent lane. Thus the ACT-R
model does not incorporate the complexity of driver interaction in making the lane change
decision.

Recently in [44], the authors sought to model driver behavior using human learning tech-
niques. They incorporated long-term and short-term memory structures into a Q-learning
framework to mimic human cognition. This framework better predicted actual driver be-
havior in dilemma zones as compared to Q-learning without the memory structure model.
While a promising approach, this human modeling technique has not yet been applied to
more complex cooperative behaviors like lane changing.

Additionally, these methods do not recognize the effect of integrating automation into
the social system on the roads, where models evolve over time and change according to the
perceptions of other vehicles. Furthermore, such learning approaches suffer from dimension-
ality and scaling issues and typically utilize a small dataset with only a few sample drivers,
which prevents generalization to roadways with a wide variety of drivers and vehicle types.



CHAPTER 3. INTEGRATING DRIVER MODELS IN AUTONOMOUS PLANNING 46

In general, learning methods assume humans can be modeled by Markov Decision Pro-
cesses, as used in (inverse) reinforcement learning approaches [1]. However, because human
behaviors are often peculiar and irrational, they generally do not satisfy the Markov prop-
erty or align with known-parametric distributions. This implies that in order to capture the
nuances of human behaviors, an innovative, nonparametric model must be developed.

3.1.1.3 Control Approaches

Multi-agent interactions have also been modeled by the control community, with particular
success using the concept of reachable sets [24]. For human-in-the-loop systems, where there
is a complicated coupling between the human and autonomy, traditional control methods may
not be able to effectively model the joint system without many assumptions on behavior [32].
When attempting to predict other drivers on the road, issues arise when the exact dynamical
model may be unknown, making the application of reachable sets impossible. Previous work
has centered around approximating reachable sets for human-in-the-loop systems, which
was applied to semiautonomous control frameworks [115, 127], as covered in the previous
chapter. Here, we extend the work to planning frameworks subject to interaction metrics,
which enables more effective cooperative driving.

3.1.1.4 Our Contributions

In order to realize truly collaborative systems on the road, reliable and useful models of
human drivers need to be developed in a flexible and adaptable manner. We hypothesize
that by carefully analyzing human behaviors, we can develop a complete autonomous system
that will integrate into and be more prepared for mixed environments on the road.

We present a method that leverages a nonparametric driver model that can readily be
adapted to many scenarios for the purposes of collaborative planning. We utilize a large
dataset for an empirical method to capture interaction in lane changing maneuvers in an
online fashion. This planning framework aims to mimic the interactions and collabora-
tive behaviors that humans exhibit on the road. In doing so, the understandability and
predictability of the autonomous vehicle can be improved for smooth integration into the
driving scene, as will be shown in the following Chapter.

3.2 Extending ERS to Interaction Scenarios

In our previous driver modeling methodologies, the goal was to connect concepts of safety
from control theory to data-driven frameworks that capture the likely behaviors of drivers
under different conditions [115, 34]. To do this, an algorithm was developed that, given
a dataset of sample trajectories, would deliver the α-likely set that the vehicle would stay
within for a predetermined time horizon. When considering interaction on the road, this
framework applies quite nicely, as it seems desirable to predict the likely actions and reactions
for cooperative maneuvering.
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Given that we can identify a predictive set of vehicle trajectories, we would like to for-
mulate the problem so we can have a predictive model for interactive lane changing that is
inspired by human behavior. We ask the question: Given the current scenario, how is the
adjacent vehicle likely to respond if I decide to change lanes?

To do this, we would like to reframe the problem, such that the predictive set is condi-
tioned on the actions of the vehicles:

argmin∆⊂Rn λ(∆)

subject to P̂X(∆|sA, sB) ≥ α
(3.1)

where sA and sB are the actions of the ego vehicle (A) and the rear vehicle (B) in the target
lane (see Figure 4.1). All other variables are as previously described. For context, actions
for vehicle A could be lane keeping or deciding to lane change, and actions for vehicle B
could be how they allow a merge.

Assuming we can convey the actions of vehicle A (as shown in [30]) and we can determine
vehicle B will allow us to merge (as shown in [123]) in some time horizon T , can we accurately
predict how driver B will respond and assess interactivity with respect to the trajectory of
driver A?

To do this, a dataset of cooperative manuevers and interactions associated with actions
is required. Suppose we have N samples of lane changes from small networks of human
drivers, which gives us lane change maneuvers and the associated trajectory of the vehicle
that allowed the merge to occur. In addition, we suppose that for each instance, we have
some state and feature information about this vehicle network, including the ego vehicle
(vehicle A), the lead vehicle (vehicle C), the lead vehicle in the target lane (vehicle D), and
the rear vehicle in the target lane that the ego vehicle would like to merge in front of (vehicle
B), as shown in in Figure 4.1.

Figure 3.2: Flowchart for Predicting Driver Interactions.

Since we are primarily concerned with predicting the possible responses or trajectories
of vehicle B, we reduce the complexity of the network of vehicles to a scenario abstraction
mode. This is motivated by the idea that patters of driving behavior can be well generalized
by similar contexts and situations, even to across vehicle network and road topologies [102].
Moreover, this is supported by predictive concepts that propose humans make predictions
of the environment by matching the current scenario to previously experienced instances [5].
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These works imply that it is likely sufficient to identify the similar contexts to capture likely
actions, despite varied influences from variations in the environment and from other vehicles,
assuming that the dataset is consistent and rich enough [39, 40, 102]. This idea is inspired
by hybrid systems frameworks and is formalized in [127]. This is motivated by the idea that
humans make predictions of the environment by matching the current scenario to previously
experienced instances [5]. We will recreate this cognitive architecture by estimating the
current state of the environment, identifying similar scenarios, and using this to build a
prediction of what will happen in the current situation.

Thus, we assume there exists a dataset will consist of the following libraries:

D = {XA, XB, E} (3.2)

where XA is a collection of trajectories (as in Eq. 2.2) associated with sA actions lane change
executions, XB is a collection of trajectories associated with with sB actions allowing merges,
and E is the set of features that describe the state of the environment (including vehicles C
and D) at each lane change.

For each lane change sample, suppose we can estimate the current state of the environ-
ment at time t = 0, ei ∈ Rp, which is a vector where each element represents one of the
observable states or features of all the vehicles in the network previously described at the
beginning of the trajectory samples.

This gives us a library of past observed states of the environment at lane change instances:

E =

e1,1 . . . e1,p
...

...
...

eN,1 . . . eN,p

 (3.3)

Given that we have a representation of the environment at time t0 prior to the lane
change, we would like to predict how vehicle B will react if a lane change were to occur some
time in the following T seconds.

As previously described, we take advantage of cognition models to predict actions based
off of pattern matching to similar scenarios. Given the complete dataset D, we can identify
similar instantiations of the environment, meaning we can ask the question: “Given that
lane change is going to happen sometime in the next T seconds, how will it be executed
given what has been observed in the past?”

This means that, given the current scenario el, we would like to identify the subset
of similar scenarios in our environment library E, which we will denote S ⊆ {1, . . . , N}
of cardinality K, and then predict the lane change merging behaviors from our dataset
XB(S), and finally calculate ∆(XB(S), α) to predict the likely behavior from vehicle B. The
prediction algorithm is visualized as a flowchart in Figure 3.2.

Intuitively, as K → N , we consider more variations in the scenarios and thus include
a wider variety of responses in the prediction set. This means that we will decrease the
informativeness or precision of the prediction but likely increase the predictive power or
accuracy. In Section 3.3, we assess the utility of this algorithm with respect to prediction
accuracy, as well as with interactivity with trajectories from vehicle A.
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3.2.1 Implementation Details

To verify that this methodology is a feasible method for predicting interactive behaviors for
driving, the NGSIM dataset was used as the library of trajectories and environment scenarios
[54]. This dataset utilized cameras and video processing to finely track vehicle trajectories
(see Fig. 3.3) and has been primarily used in microscopic modeling of driving and traffic
behaviors. The subset of the dataset used consists of 45 minutes of finely processed highway
traffic data from the US Highway 101. Given the robustness of the driver model framework,
the only preprocessing performed eliminating entry/exit lanes and identifying samples of lane
changes, which was labeled as when the lane changing vehicle entered the target lane, which
consisted of relatively smooth trajectories (δx < 3m) and extreme outliers (e.g. double lane
changes). This resulted in about 500 samples of lane changes.

Figure 3.3: Experimental Design for the NGSIM Dataset. For details, see [54].

For this pilot study, the following parameters were considered. The prediction time
horizon was varied T = {3, 4, 5, 7} seconds, meaning that lane change instances were used if
a lane change and recovery (which was assumed to take 2 seconds after entering the target
lane) occurred at some point in the future T seconds.

For generating the predictive set, α is fixed to be 1 to capture all likely behaviors, although
the relationship between α and the interactions will briefly be discussed. The number of
similar instances (K) was varied: K = {10, 25, 50, 75, 100} for each tested lane change, and
was identified using the k-nearest-neighbors algorithm using the feature representation of
the environment [8].

Each instantiation of the environment (el) consists of the following features, which have
been estimated in the dataset:

el =
[
yA yA,B yA,C yA,D HWA,C THWA,C

]
(3.4)

where yi (yj,i) are the observable (relative) states, including position, velocity, and accel-
eration, for vehicle i (relative to vehicle j). HWA,C and THWA,C are the space and time
headway between the vehicle A and C, as defined in [72].
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3.3 Evaluation Metrics and Results

The following section presents our performance and interaction metrics that validate the
utility of this driver model. The performance metrics describe how well we can predict
merging behavior, while the interaction metrics will allow us to analyze how these sets related
to the interaction between the ego vehicle and the vehicle adjacent lane. For simplicity, we
will denote the prediction set for instance l given α as ∆B

l .

3.3.1 Performance Metrics

Using the same metrics as presented in Chapter 2 Section 2.4, we validate this model with
respect to the trajectories of vehicle B, ensuring that the actual trajectories lie within the
prediction set and that this method is informative relative to a generic set prediction.

The only adjustment made is to the precision metric:

P = 1− λ(∆B
l )

λ(G(vBl ))
(3.5)

where λ(·) is the Lebesgue measure that gives the size of the set, ∆B
l is the predicted set

for instance l, and G(vBl ) represents a generic set prediction for the vehicle, instead of an
over-conservative reachable set.

This replacement was made due to the fact that the underlying dynamics of the vehicle
in this setting is unknown. This prediction, G(vBl ), assumes that vehicle B will stay in its
lane and continue at a constant velocity, vBl , and thus predicts the region within the road
boundaries that extends vBl · T meters from the initial position, as visualized in Figure 3.5.

The performance results of our prediction ∆B
l compared to the generic constant velocity

prediction G(vBl ) are shown in Table 3.1, and the Accuracy/Precision trade-off is visualized
in Figure 3.4a.

As shown, we are able to reduce the size of the prediction set to approximately 50%
of the generic prediction size, with very high accuracy (about 90%). We note that the
accuracy drops to between 60 and 70% at higher precision, corresponding to the predictions
where |S| = 10. As expected, this indicates that incorporating more data improves the
prediction power of the model. Nonetheless, in these cases, the trajectory’s cumulative error
(i.e. distance from set boundary) is less than one meter, as shown in Figure 3.4b. Although
the strict accuracy as computed by Equation 2.10 is low, the prediction still estimates the
driver’s merging behaviors quite well.

We note a few interesting points for the general prediction. First, the cumulative errors
are typically two to three times higher for the baseline than our method. Second, the
accuracy metric increases with longer time horizons showing that changes in acceleration
have less impact averaged over time.
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Table 3.1: Accuracy Results. The accuracy performance metric and mean cumulative
error results for the generic prediction (R(vBl )) and our method (∆B

l ). The results are
shown for all tested time horizons and the sweep over the number of scenarios included in
the intelligent set prediction.

Metric Generic |S| = 10 |S| = 25 |S| = 50 |S| = 75 |S| = 100

T = 3
Accuracy 14.2% 69.0% 81.7% 89.5% 92.4% 93.6%
Mean Error 0.280m 0.141m 0.104m 0.089m 0.085m 0.079m

T = 4
Accuracy 16.8% 67.1% 81.2% 89.4% 92.3% 94.1%
Mean Error 0.774m 0.247m 0.178m 0.152m 0.133m 0.127m

T = 5
Accuracy 18.6% 64.5% 81.1% 88.3% 92.3% 93.1%
Mean Error 1.302m 0.355m 0.185m 0.139m 0.110m 0.111m

T = 6
Accuracy 23.1% 61.9% 75.9% 82.7% 86.5% 89.0%
Mean Error 1.679m 0.496m 0.281m 0.213m 0.162m 0.155m

T = 7
Accuracy 26.4% 61.3% 75.1% 85.4% 88.4% 91.0%
Mean Error 2.341m 0.769m 0.472m 0.320m 0.273m 0.217m

(a) Accuracy/Precision Trade-off Curve. (b) Mean Cumulative Error versus Precision.

Figure 3.4: Accuracy/Precision Trade-off and Mean Cumulative Error Plots. (a)
We observe the expected trend: as precision increases, accuracy is sacrificed. (b) We ob-
serve that even when we have high precision (corresponding to lower accuracy), the mean
cumulative error is less than one meter.

3.3.2 Interaction Metrics

The goal of the interaction metrics is to quantify the amount of interaction between the ego
vehicle and the prediction set for the vehicle in the adjacent lane. Given the ego vehicle’s
trajectory, xAl , and the prediction set for the adjacent vehicle, ∆B

l , we measure interaction
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by considering how intrusive xAl is with respect to ∆B
l , similar to the risk metric previously

used.
To quantify this, we present two interaction metrics:

1) Intrusion Metric, I: How far does vehicle A intrude on the likely set of vehicle B?
2) Overlap Metric, Θ: How much of the prediction set is encapsulated by the intrusion of
vehicle A?

In essence, we’d like to quantify how humans generally interact with these constraints
and to see if these sets correspond to how human drivers interpret and predict other drivers.

Intrusion is defined as follows. First, for each point p in the vehicle’s trajectory xAl , we
compute the minimum signed distance to points q on the prediction set boundary ∂∆B

l :

D(p,∆B
l ) =

− min
q∈∂∆
‖p− q‖2 , p ∈ int(∆B

l )

+ min
q∈∂∆
‖p− q‖2 , otherwise

(3.6)

where int(∆B
l ) is the set of points on the interior of the set, and all other variables are as

previously defined.
Once this is computed, we then calculate the interaction metric, I, as the minimum of

this signed distance D for all points p:

I = min
p∈xAl

D(p,∆B
l ) (3.7)

where all variables are as previously described.
This intrusion metric quantifies how close the ego vehicle has come to the prediction set

boundary, if positive, or how far the ego vehicle has traversed into the set, if negative. This
also gives us insight to how comparable this model is to the driver’s prediction of the merging
behavior.

The overlap interaction metric aims to quantify the area overlap between the ego vehicle’s
trajectory and the prediction set. To calculate this, we first define the overlap set O as the
set generated by the trajectory of vehicle A and the boundary of the prediction set. Formally,
this set is defined as:

O = O ∩ int(∆B
l ) (3.8)

where the set O generated by the intersection of O = {x ≥ xAl }, which is the set of points
that are greater than the trajectory, and the prediction set ∆B

l .
We note that this is assuming the lane change is occurring from the right and that the

inequality is switched depending on the direction of the lane change. We also note that this
can return an empty set, meaning that there is no overlap. When this occurs, we have the
case where the intrusion metric is positive.1 To normalize this set, we compute the following

1For more information about the implementation of these metrics and details about corner cases, we
guide the reader to supplemental material, which can be found at the following website: http://www.purl.
org/simulator_code/

http://www.purl.org/simulator_code/
http://www.purl.org/simulator_code/
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Figure 3.5: Visualization of the Interaction Metrics. The shaded rectangular region of
the road represents the generic prediction, while the cyan trajectory tube shows our predicted
set for the merging behaviors. The overlap set is shown in blue.

ratio of the size of the overlap set relative to the size of the prediction set:

Θ =
λ(O)

λ(∆B
l )

(3.9)

where all variables are as previously described. This proportion provides an idea of how
much of the predicted set the ego trajectory encapsulates.

These two interaction metrics are visualized in Figure 3.5. Using this overlap and intru-
sion metric for interaction, we have an estimate of how the human perceives and interacts
with the likely actions of the other drivers on the road. The observed metrics for humans
interacting on the road are presented in Figure 3.6.

3.3.3 Interaction Analysis

We note the following trends for each of the interaction metrics, illustrated in Figure 3.6.
This shows the results for one set of tuning parameters, but we note that the trends hold in
general for all tested parameters.

For the overlap metric, we note that there is a bimodal distribution of behaviors, cor-
responding to when there is no or very little intrusion and when there is an intrusion.
Conditioned on the event that there is overlap, drivers exhibit fairly normal behaviors for
all time horizons. Frequently, the human drivers will edge around this set, depending on
number of similar scenarios included in the prediction.

This fact is more obviously noted with the intrusion metric. It was observed that for the
shortest time horizons the drivers almost never intrude into the set, which implies that the
humans have a better prediction of the other driver’s response as they get closer to executing
the lane change and are more risk averse.

AsK grows and more scenarios are considered, the prediction set grows larger, and drivers
tend to intrude more on the prediction set. This seems to imply that they are rejecting the
unlikely scenarios and trajectories, willing to take more risk with respect to the empirical
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Figure 3.6: Empirical distributions of the intrusion metric (top) and overlap
metric (bottom), for parameters S = 50 and T = 5s. We note that similar trends were
observed for all parameters (see the supplemental results for more information). We note
that the overlap metric is bimodal, as zero overlap corresponds to cases where there is a
positive intrusion. The shaded regions show the 90% confidence bounds on the empirical
distribution.

probability of those trajectories. Indeed, if the probability threshold for generating the set is
decreased to estimate 0.9-likely trajectory set, the intrusion metric almost exclusively skirts
the edge of the set.

3.4 Integrating the Driver Model in Planning

We now present a formulation of how this model can be applied to trajectory planning
frameworks. As a proof of concept, we aim to incorporate these predictions and interaction
metrics as soft constraints in an optimization-based path planner, similar to the robust
control methods presented in [19]. The purpose of this section is to provide a methodology
for using these predictions to generate human-like trajectories that can then be applied in
trajectory following control schemes.

Supposing we have computed a set prediction ∆B
l to predict the rear vehicle’s behavior,

how can we plan the ego vehicle’s trajectory to exhibit similar metrics to that of human
drivers?

We propose a control framework that provides an optimized trajectory given a cost func-
tion, subject to feasibility, safety, and interactivity. This will hopefully produce human-like
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trajectories, acting as a shared model between the human and autonomous vehicle. To
implement this idea in our framework, we first would like to decouple planning for com-
fort, interaction, and safety. This focuses the goal in on determining when and where the
trajectory should be executed. To do this, we make the following assumptions:
Assumption 1: We assume there exists a partial template trajectory xd that lasts Td<T
seconds that has been optimized for feasibility and comfort during the lane change execution.
In this framework, we wish to identify the time and placement at which this occurs, as well
as modifications to meet our desired interaction metrics.
Assumption 2: The path generated for interactivity can be executed safely by a provably
safe trajectory following controller at run time [92].

We propose optimizing the time at which a lane change is executed, simultaneously
warping the trajectory to match the interaction metrics typically exhibited by humans. The
following optimization planning framework is used to plan the interactive trajectory:

minimize
x[0,··· ,T ],λ,tl

tl+Td∑
t=tl

(x[t]− xd[t])>P (x[t]− xd[t])+1>λ (3.10a)

subject to x[t+ 1] = f(x[t], u[t]), ∀t (3.10b)

x[0] = x0, x[T ] ∈ G (3.10c)

x[t] ∈ C, u[t] ∈ U, ∀t (3.10d)

x[0, . . . , tl] = LK(x[0], x[tl]) (3.10e)

x[tl + Td, . . . , T ] = LK(x[tl + Td], x[T ]) (3.10f)

Θ(∆, x[0 · · ·T ]) ≤ O + λ1 (3.10g)

I − λ2 ≤ I(∆, x[0 · · ·T ]) ≤ I + λ3 (3.10h)

λi ≥ 0, ∀i (3.10i)

where the following notation is used:

• x[0, · · · , T ] is the resulting autonomous trajectory

• xd is template lane change execution over Td seconds

• P � 0 is a diagonal matrix that penalizes deviations in the longitudinal velocity but
allows lateral deviations from the nominal trajectory

• f(·, ·) provides dynamics to ensure feasibility

• x0 is the initial position of the vehicle

• G is the goal set representing points in the adjacent lane

• U is the input space to control the vehicle

• C represents the safety constraints
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• The variable tl designates when the lane change should be executed to meet interaction
and safety constraints. The template lane change is executed at time tl; prior to this
point in time and space, simple lane keeping is performed by function denoted LK for
time periods [0, tl] and [tl+Td, T ], which gives a trajectory to stay in either the starting
or target lane.

These components will provide a safe autonomous trajectory that will act as our baseline
framework.

The interactive components are the additional gray items in the optimization program
(Eq. 15g-15i). Soft constraints encourage trajectories to match the interaction metrics typi-
cally exhibited by humans, where O is the maximum allowed overlap and I, I are minimum
and maximum bounds on intrusion. Slack variables λi are included to soften the constraints
and ensure feasibility for meeting the safety constraints. We propose Algorithm 1 for utilizing
such a control scheme.

Algorithm 1 Planning Trajectory τ Subject to Interaction

Given: M := {O, I, I} . set interaction metrics
for each time step, t do

update(xt, C, et)
sA ← HighLevelPlanner(xt, C, et)

. decide if lane change is desirable
if sA == execute lane change then

∆B ← ComputePredictionSet(XB, α, et)
τ ← InteractivePlanning(∆B, C,M)

else
τ ← LaneKeeping(C)

ApplyControlPolicy(sA, τ)

For this proof of concept test, the sets were calculated for α = 1, K = 50, and T = 5. The
bounds on the interaction metrics were identified as the threshold that captured 90% of the
empirical data, as shown by the shaded regions in Figure 3.6. An example output from this
framework is illustrated in Figure 3.7, where the set prediction of likely merging behavior and
resulting planned trajectory are visualized.2 The actual trajectories of vehicles A and B are
plotted for comparison. We note that the interactive trajectory exhibits similar behaviors
to the human trajectory, automatically mimicking the cooperative nature of drivers on the
road.

2This was implemented with off-the-shelf nonlinear optimization solvers that utilize genetic algorithms
in Matlab 2016b to compute the trajectory, with an average computation time < 0.5 seconds. There are
many improvements to be completed on the implementation, but we note that the initial proof of concept
implementation shows promise for real-time feasibility.

Videos of the resulting autonomous trajectories can be found with the supplemental material at http:

//www.purl.org/simulator_code/.

http://www.purl.org/simulator_code/
http://www.purl.org/simulator_code/
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Figure 3.7: Sample Output from the Planning Algorithm with Interaction Con-
straints Vehicle A and B trajectories illustrate the actual path of the human drivers taken
from this instance.

3.5 Assessment of Human-Like Motion

In the previous sections, we presented a method that effectively incorporates driver modeling
and interaction as a soft constraint for planning purposes. To further validate this framework
and the generated trajectories, we assess the resulting trajectories to make sure they are more
carefully mimicking the human motions and interactivity observed in homogeneous networks.

One of the goals of this work was to create a control framework that mimics human
behaviors, in hopes to capture a shared mental model that improves interaction and inte-
gration. To do this, we compare the trajectories generated using the interactive framework
with a baseline autonomous trajectory, which is generated using the optimization program
excluding the gray components.

We compare the interactive and baseline trajectories with the human trajectory using
the Hausdorff distance. This metric is designed for trajectories or sets, by checking if all
points in each set is close to some point of the other [60]. This metric is computed as follows:

dj(xj, xh) = max{sup
p∈xj

inf
q∈xh

d(p, q), sup
q∈xh

inf
p∈xj

d(p, q)} (3.11)

where dj is the Hausdorff distance between the human trajectory xh and the autonomous
trajectory xj, with elements p and q. Subscript j indicates interactive (i) or baseline (b)
trajectories. The Euclidean distance metric was used for d(·, ·).

In order to validate that the proposed method is more similar, we compute the difference
in the distance measures for each test case and determines which is more similar. The
percentage in which the interactive autonomous trajectory proved to be more similar is
computed by:

r =
1

L

L∑
i=1

I{db − di ≥ 0} (3.12)
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where r is average number of instances the interactive was more similar to the human tra-
jectory (meaning the distance is smaller) and all other variables are as previously described.
Given our tests, the interactive measure more effectively mimicked the human behaviors
87.2% of the instances. The distance difference distribution over all samples is shown in
Figure 3.8.

Figure 3.8: Distribution of the distance difference db−di, comparing the similarity be-
tween the human trajectory and the baseline and the interactive trajectories. The blue region
shows instances that the interactive path more effectively mimicked the human behaviors
compared to the baseline, which was true for 87.2% of the cases.

By mimicking the human behaviors, the resulting autonomous control scheme more
closely shares a mental model with other drivers on the road. Not only does this ensure pre-
dictability and understanding [30], but also helps to smooth the integration of autonomous
vehicles, as the control policy is similar to the human policy that collected data and built
the driver model. If the resulting control policy was significantly different, then the model
would almost surely not capture the interactions of vehicles on the road.

The following section shows how applying such interactive planning mechanisms can
affect drivers on the road by validating the control scheme in a user study.

3.6 Impact of Mimicking Human Behaviors

To further validate this methodology, we aim to implement controllers that mimic subtle
human motions and interactions during a lane change. This work is motivated by [32], in
which we attempted to estimate the driver intent by building a dataset of lane changes, where
the driver subjects actively labeled their mode of intent as they were driving. Using these
labels, it was possible to accurately predict the driver intent based on the observable states
of surrounding vehicles. Meaning that by observing the vehicle and the states of nearby
vehicle, it is possible to identify the driver state, as we described in the previous chapter.

One of the key findings of this study was that human drivers convey their intent through
their motions. Seconds before a driver begins executing a lane change maneuver, the driver
will edge towards the next lane until there is sufficient space to safety merge. This is intuitive,
as this preparation motion can be thought of as when a driver turns on her turning signal
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and will communicate their intent to surrounding drivers. As was mentioned, as a seasoned
driver drives, she can predict that a vehicle in the next lane wants to change lanes even when
no turning signal is used.

Here, we wish to examine what effect of communicating intent has on predictability for
passengers within an autonomous vehicle as well as surrounding vehicles. Additionally, we
hope to validate the impact of mimicking low-level control actions, as presented earlier in
this chapter. Incorporating nuanced motions will hopefully lead to better social acceptance
and understanding when released on the roads with other human drivers. This is similar
to the work presented in [1], where qualitative driver behaviors were learned using inverse
reinforcement learning. The work presented here attempts to capture behaviors in the con-
tinuous space by integrating aggregated driver data into a control scheme, rather than learn
discrete actions.

By using the data collected in [32] and the tools for planning trajectories subject to inter-
action, we wish to mimic the human driver’s motions to capture the subtle communication
that occurs in cooperative and collaborative maneuvers. These human-like trajectories are
evaluated, validated, and compared to traditional controllers and human controlled vehicles
through user studies.

3.6.1 Modeling Driving as a Hybrid System

When we consider how the vehicle is controlled by humans, we suppose that the control
law for a given vehicle changes depending on the mode of intent. This can be thought of
as a high level decision making function, that determines what the best course of action is
given the scenario and implies that depending on what high level action the driver wants to
execute, the control law will change. This conveniently falls nicely into the hybrid systems
framework presented in the preliminary section.

Formally, we can assume that the future input is defined by some algorithm that is
dependent upon the discrete mode m ∈ M, which is assumed to be known (or estimated)
from a defined, finite set of modes of intent:

u[k, . . . , k + T ]← Aq(xk, Ck,∆B
k ) (3.13)

where u[· · · ] is the string of inputs from the compact, connected input space U over the
time horizon T , Am is the control algorithm associated with mode m, x[k] is the state of the
vehicle at time k, the constraints Ck are given, and the surrounding vehicle’s motions are
predicted via ∆B

k .
Thus, building off of the mode identification as described in Chapter 2 and the planning

algorithm presented here, we aim to mimic the underlying control law to capture driving
behavior during a complete lane changing maneuver. While the low-level lane change exe-
cution is well captured from the previous sections, the details of the behaviors leading up to
this remain untouched.

In [32], we presented a driver model that is able to identify the following modes of
behavior: lane keeping, preparing to change lanes, and lane changing (see Fig. 3.9). This was



CHAPTER 3. INTEGRATING DRIVER MODELS IN AUTONOMOUS PLANNING 60

executed using observable features in the environment and human labeled data to classify
what mode the driver was in. Specifically, we are interested in this new mode of intent,
preparing to change lanes, to captured how drivers convey their intent leading up to the
execution of the actual lane change. As previously described, assuming we can detect when
these transitions occur, we can effectively capture each driver’s decision making process.

Figure 3.9: Driver Modes for Lane Changing, as presented in [32]. It is assumed that
the vehicle begins lane keeping, switches to preparing to lane change one the decision to
change lanes occurs (i.e. when planning begins or when the turning signal is engaged), and
then the vehicle executes the lane change.

A dataset of lane changes was collected on the driving simulator, where ten subjects were
asked to execute lane changes, resulting in over 200 example lane changes per driver. The
following features were collected, which we will use to understand the driver behavior in each
mode: (1) ego vehicle information, including vehicle states and inputs; and (2) environment
constraints, including road boundaries and observable, relative states of surrounding vehicles.
Using the methods described in Chapter 2, we are able to further partition the driver modes
to detect the transitory period leading up to the lane change. The detection is based on
environmental cues, designed to give us insight to the decision making process of the human
driver. The resulting identification algorithm attempted to be as flexible and as portable as
possible, meaning that it didn’t rely directly on the control actions or state of the driver.

One of the key findings of this initial study was that driver’s convey their intent through
motion. It was observed that prior to executing a lane change, humans will edge over to the
next lane, signaling to surrounding drivers their intent to change lanes. As shown in Figure
3.10c, the distributions associated with these two modes are distinct.

Using this data, our goal is to understand how the control law of the vehicle changes with
respect to driver mode as well as the changes in the environment, to better understand the
communication and negotiation that occurs before a lane change. Thus, we further consider
the subtle behavior in these lane keeping and preparing to lane change modes and how to
easily incorporate this into control frameworks.

3.6.2 Resulting Controllers for Driver Modes

Given that the given dataset consists of multiple drivers with unknown distributions, we
wish to further analyze how the drivers behave in the different modes. To do this, we utilize
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(a) Lane Keeping (b) Prior to Lane Change

(c) Deviation from Lane Center.

Figure 3.10: Empirical Distributions by Driver Mode. (a) and (b): In these two figures,
the cost maps for the two similar modes are visualized. The dark areas show locations with
low probability, and light areas show locations with high probability. The pink line shows
the mean position within the lane given the distance to the lead vehicle. (c) Distribution of
lane position by mode, as presented in [34]. It can be noted that the driver edges toward
the next lane while preparing to change lanes.

a concept similar to a cost map, which is built by discretizing the space and looking at how
frequently the vehicle passed through a particular location. When staying in lane, this is
defined by the position in the lane and the distance to the lead vehicle, if present; otherwise,
this is defined globally. This can be thought of as the spatial, empirical distributions asso-
ciated with each driver mode. By looking at the regions that the drivers frequently inhabit,
we can analyze how they generally behave. These empirical cost maps for lane keeping and
preparing to change lanes are shown in Figure 3.10. It can be noted that the although the
modes are similar, drivers tend to communicate their intent by edging toward the next line
prior to indicating that they are changing lanes.

By analyzing this cost map, we see that we can simplify the problem by assuming that
the drivers wish to follow some nominal trajectory, given by the empirical distribution on
the cost maps. This is identified by finding the expected lateral position, associated with
a longitudinal coordinate (i.e. expected lane position given a distance to the lead vehicle).
The smoothed nominal trajectory is shown as the pink line in the distributions in Figures
3.10.
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As a proof of concept, a straight-forward trajectory following controller is implemented,
taking the following form, where u[k, . . . , k + T ] is the output of an optimization program:

argmin
x,u

Jm(x, u)

subject to x[i+ 1] = f(x[i], u[i])
ψ(x[i], Ci) > 0
u[i] ∈ U, x[0] = x0

∀i = {0, . . . , T − 1}

(3.14)

where Jm(x, u) is the cost function that is defined for each mode q, x and u are a concatenated
vectors of states and inputs from time step 1 to T , which is the pre-defined time horizon,
x0 is assumed to be given, and all other variables are as previously defined. In essence,
this finds the optimal control over the next T time steps, given our safety constraints, input
limits, and initial conditions. This implementation is can be thought of as similar to a Model
Predictive Control framework [15, 115].

Given that we can effectively identify the mode of intent, the underlying cost function or
control scheme must be identified. There are many advanced techniques for identifying the
cost function of a system, but many become infeasible when dealing with highly noisy data
[91]. We note that there are extensions to many learning methods that include noisy models,
but often a distribution must be assumed. From this dataset, it can be shown that driver’s
do not always follow known distributions, and particularly when looking at a collection of
different drivers.

Thus, for simplicity, our cost function is assumed to be of the form:

Jm(x, u) = (x− xm)>P (x− xm) + u>Qu (3.15)

where xm ∈ Rn×T is our desired nominal position trajectory associated with mode m that
is zero padded to account for the vehicle states other than position and velocity, P and
Q are weighting matrices to tune the costs on the states and inputs respectively (which
for simplicity are set to identity), and all other variables are as previously described. The
velocity of the vehicle is set to be 15 m/s, to match the conditions set in the original data
collection process.

The resulting scheme is a trajectory following framework, where the most significant
change between modes is the x and y position. Given the cost map above, we can compute
the expected lateral lane position given a distance to the lead vehicle, which we use as a
nominal trajectory to follow in the framework presented. This allows us to mimic the driver
behaviors and hopefully capture the subtle communication that occurs in this social scene.

3.6.3 Validating and Comparing Control Schemes

To show that by mimicking the driver data we are effectively communicating to the other
drivers, a pilot validation study was completed as a proof of concept. The goal of this
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Figure 3.11: Perspectives Used in Validation Study. The validation study asked the
driver to indicate when the autonomous vehicle (shown in red) was about to change lanes
from view 1, as a passenger in the driver seat, and from view 2, as another vehicle on the
road.

study was to verify two concepts: (1) that humans understand other human motions more
effectively than generic autonomous motions and (2) that our control scheme using nominal
trajectories is effectively capturing the non-verbal communication between drivers.

In this study, we compared three nominal trajectory methods for identifying xm in Equa-
tion 3.15:

1. Controller design using standard methods, where the vehicle uses generic trajectory
templates for lane keeping and lane changing. In lane keeping, xm = xc, where xc
denotes the lane center. This does not change prior to the execution of a lane change,
which is determined by a generic lane change template as provided by [99]. The
decision making still aims to mimic the human decision making process to match
decision timing, but the trajectory the controller follows standard methods that aim
to minimize deviation from the center of the lane.

2. Controller design using the human inspired methods, where the desired lane position
is given by: xm = E[Xm|d], where we compute the expected lane position of the
data associated with the current mode, Xm, given the distance to the lead vehicle, d.
Not only does the decision making process mimic the human, but the trajectories are
derived by using the templates found using the cost maps shown in Figure 3.10. The
low-level lane change itself is determined by the intuitive path planning and control
methods utilizing ERS and interaction metrics previously described in this Chapter.

3. Human controlled baseline, where the inputs from a human driver are used to act
as a baseline for understanding, meaning that the optimization control framework is
not used. The input from a human driver is replayed, so the subject experiences the
control scheme as if it where autonomous. These inputs were taken from a sample of
the dataset, with the trajectory most similar to the previous control schemes, using
city-block nearest neighbor as a distance metric.

In this study, these control schemes were implemented in a scenario where the autonomous
vehicle merges in front of a vehicle in the next lane, with the presence of a lead vehicle. In



CHAPTER 3. INTEGRATING DRIVER MODELS IN AUTONOMOUS PLANNING 64

addition, these control schemes are examined from two different perspectives: (1) when the
driver is experiencing the autonomy as a passenger in the driver’s seat and (2) as another
vehicle on the road. The scenario and the two viewpoints are visualized in Figure 3.11.
Subjects were recruited to experience these autonomous (or seemingly autonomous) control
schemes in a random order, riding in the motion platform vehicle simulator to give insight
and feedback to the underlying control laws.

To understand how effective the communication of intent was for each method, the subject
was asked to indicate in real-time when they thought the autonomous vehicle was about to
change lanes, similar to when they believed the vehicle might turn its turning signal on. We
note that no blinkers were used to verify that the subjects could predict the lane change
using just motion cues. In addition, feedback from the subjects were obtained through a
survey, targeting the understandability of the autonomous vehicle as well as user experience
during the interaction.

For the three tested control schemes, the subjects were asked to experience the au-
tonomous vehicle from view 1 and press a button when they believed the autonomous vehicle
was about to change lanes. This was repeated multiple times to account for human error
and uncertainty. Then, the subject answered survey questions to obtain feedback on the
three different control schemes. This was then repeated from view 2 to obtain feedback from
a different perspective.

3.6.4 Predictability Results

To gauge how predictable the autonomous vehicle was, we compare the time that the subject
indicated when the autonomous vehicle was about to change lanes relative to the time the
vehicle exits the lane, crossing over into the next lane. For each method, this is defined as:

tP = tLaneExit − tHuman (3.16)

where tP is the prediction time (i.e. the time horizon prior to the lane change), tLaneExit is
the time at which the autonomous vehicle exits the lane, and tHuman is the time indicated
by the human to let us know she believes the autonomous vehicle is about to change lanes.
Ideally, the subject will be able to predict that the vehicle is intending on changing lanes
well before it actually happens.

The average timing responses are provided in Table 3.2 and a visualization of the im-
provement in prediction time compared to standard control methods is shown in Figure 3.12.
As shown, the prediction time is increased to more than a one second time horizon, which
is significant given the limitations of human reaction time. By giving the driver extra time
to react, smoother responses and improved acceptance can be expected.

From this study of predictability, the following observations can be made about how
humans communicate on the road and the different control schemes:

1. Effect of Lane Position vs. Heading Angle: A common technique for predicting lane
departures is to look at the distance to the lane marker and heading angle and compute
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Table 3.2: Average Prediction Time. Results presented for each method in seconds.

Method Standard Human-Inspired Baseline

View 1 0.958 1.462 2.307
View 2 1.110 1.452 2.102

Figure 3.12: Visualization of Increased Time Prediction Performance. Comparing
relative to the standard methodology, calculated as (TP − TS)/TS, where TP is the expected
prediction time (E[tp]) with the associated each method and TS is the expected prediction
time associated with the standard control design method, across both view points.

the time to lane exit based on the current speed [81]. This means that if the heading of
the vehicle is pointing toward the next lane, a time prediction can be calculated for the
lane change. To see if the human prediction was similar to this model based method, we
counted the instances when subjects indicated the lane change versus instances when
there was a lane change predicted using this model based method within the next two
seconds. We found that these two predictions were only in agreement approximately
40% of the time, indicating that humans are using cues other than heading angle to
predict lane changes.

2. Standard Methods: From both viewpoints, the user is generally able to predict when
the lane change is about to occur with approximately one second prediction time. It
was also noted that this was prediction time was more consistent between subjects
than the other methods, in terms of the variance. It was noted by subjects that timing
of this lane change was highly predictable, due to the fact that the decision making
and timing came across as human-like.

3. Human-Inspired Methods: As we can see, this shows a significant improvement of pre-
dictability from subjects within the vehicle. We see approximately a 40% increase in
the time prediction, implying that the lane positioning is a key component of commu-
nicating on the road.

4. Human Controlled Baseline: This method provides the best predictability, verifying the
hypothesis that humans understand their behaviors even without the traditional visual
cues (like turning signals). This also validates the claim that humans communicate
through motion while driving to convey their intent, which is well understood by other
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drivers. We note that although this scheme gave a high predictability measure, the
majority of subjects preferred the other control schemes, describing this its behavior
as “erratic.”

Subject Feedback:
Interesting feedback and comments were obtained through survey and comments that shed
light on the user experience. When riding in the autonomous vehicle, just over half of
the subjects preferred the Standard Method, stating that it felt smoother than the other
methods. About half of these subjects indicated that it was also more predictable than
other methods. This is somewhat counter-intuitive, as we can see in Figure 3.12, that this
is not necessarily the case given the subjects’ prediction time.

Majority subjects also commented that the Standard Control Method executed a smooth
and safe lane change. Meanwhile, comments and feedback on the Human-Inspired Method
revealed that it came across as being less aggressive, which may have impacted the subjects
perception on the automation’s competence. For the human controlled vehicle, the drivers
stated that the controller seemed more erratic than other methods and indicated that this
was the least trusted control scheme.

3.7 Summary

In summary, we presented a nonparametric driver model that can be adapted to many dif-
ferent applications in human-in-the-loop predictions. Leveraging a large dataset of many
real interactions on US highways, we were able to effectively predict merging behavior with
high precision and accuracy. We also demonstrated how these predictions can be used in op-
timization frameworks to generate more intuitive trajectories for autonomous vehicles. The
resulting framework presents similar guarantees as was found in the scenario control com-
munity. Additionally, this model leverages the cognitive model of projection and prediction,
demonstrating that a shared mental model is key for automatic human-like control.

Further, we present the findings of a pilot study on human-inspired control schemes that
could safely communicate through motion to surrounding drivers. This was completed by
using human-inspired nominal trajectories for different driver modes that have been identified
using realistic driver data from multiple drivers. The following ideas were confirmed: (1)
humans communicate through motion while driving and (2) the presented control scheme
was able to capture this and convey its intent to surrounding drivers.

Other applications of this method include using this methodology to act as a baseline for
autonomy, to match expectations of all vehicles as they are introduced onto the road. This
can also be used in an adaptive setting that learns how people react to autonomous systems
and their slightly different nuanced behaviors, as your control scheme changes and influences
other vehicles differently over time.

There are many extensions to this problem. This method could readily be extended to
include more modes of behaviors to be more widely applied to other collaborative maneuvers.



CHAPTER 3. INTEGRATING DRIVER MODELS IN AUTONOMOUS PLANNING 67

By combining this work with estimating driving styles, more precise predictions can be
formulated, resulting in more nuanced interaction. For instance, how you interact with timid
drivers is different than with aggressive drivers. Since this study was a proof of concept, there
is a great deal of future work to be completed. More advanced methods for identifying the
nominal trajectories and for controlling the vehicle must be explored to improve the feel of
the autonomous system, and expand the framework to include a wider variety of scenarios
and driver modes.

Collaborative behaviors for autonomous vehicles are an extremely important part of
integrating these intelligent systems on the road. Modeling the interaction and cooperation
between vehicles is a key part of this. This work draws attention to the fact that common
static methods that estimate driver behaviors do not properly capture the variance in driver
behavior, and are not easily adaptable to many situations. By approximating shared mental
models, estimating driver reactions, and mimicking cooperation, we take one step closer to
smooth collaboration between humans and autonomy.
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Chapter 4

Optimizing Interaction by Design

How well we communicate is
determined not by how well we
say things, but how well we are
understood.

Andrew Grove

As fully autonomous vehicles come into fruition, the role of the driver will transi-
tion from controlling the vehicle to monitoring the autonomy’s operation. How-
ever, there is substantial evidence that as new levels of automation are intro-
duced, systems still are prone to unsafe behaviors when interacting with humans.
This means that the communication and interaction between the driver and the
automation must be carefully modeled and optimized to guarantee safe perfor-
mance. We present a framework that formalizes designing user interfaces for
intelligent vehicles, by optimizing informativeness subject to brevity and utility.
By modeling the system as a communication channel, we estimate the reduction
of entropy of human-autonomy system, given a probability distribution over at-
tributes obtained from user data, and information constraints to ensure brevity.
Through this, we observe an approximately quadratic relationship between the
amount of information displayed to the user and performance metrics, referred
to as the information-performance trade-off curve. This trend was found in sit-
uational awareness, driving performance, and trust in the autonomy. Thus, in
order optimize interaction and performance, quantifying the informativeness of
attributes and the conciseness of the interface is key in developing systems that
must smoothly interact with humans.
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4.1 Introduction to Inter-Vehicle Communication

As autonomy becomes increasingly prevalent, the role of the human driver will transition
from being fully in control to simply monitoring the vehicle’s operation. This rise in automa-
tion will lead to safer streets, decreased energy consumption, and changes in how people
commute [12]. However, when introducing autonomy into human-dominated fields, model-
ing and integrating the human is crucial to reaching these aspirations, particularly in cases
where the human is in the loop, monitoring the performance of the system [34].

For example, in the aerospace domain, a pilot is always required to be ready to take over
control for difficult tasks, e.g. landing or take off [93]. This shared control scheme does not
always guarantee success, however. In [23], it was found that introducing new generations
of automation was in fact more dangerous than the previous generation. The cause of the
danger was not the automation, but in the combined human-autonomy system.

Similarly, it is safe to assume that drivers will be required to be ready to take over if
the autonomous system detects difficult situations that humans would be better at handling
[75, 45]. Given that vehicles are significantly more ubiquitous than airplanes, and therefore
more dangerous, human issues with transfer of control must be carefully studied and driver
performance must be optimized.

In the case of control hand-off, the interaction and method of interfacing with the driver
is a major concern, as miscommunication leads to misunderstanding. A disparity between
true functionality and the human’s expectation of the system, which is common in vehicular
systems, can lead to an increase in collision rates [50, 68]. Moreover, transfer of control
schemes can lead to a number of other concerns, like mode confusion or lack of situational
awareness [106].

To avoid these confusions and to tap into the potential benefits of autonomy, the inter-
action and communication between humans and autonomy must be carefully modeled and
optimized. The success of shared control schemes depend on various variables, including:
(1) reaction time, which relates to driver’s situational awareness [75]; (2) the anomaly that
caused the transfer of control; (3) the interface methods used to warn the driver; and (4) the
amount of information presented to the driver.

There has been a great deal of research effort into designing user interfaces (UIs) to
address these issues. To address reaction time, studies have found that providing the driver
with a warning 5 to 8 second prior to the hand-off leads to a safe transfer of control [89].
In [14], authors found that advanced warnings correlated with a decrease in collision rates.
Gold et al. suggests that shorter takeover requests cause faster reaction times yet poorer
performance in taking over control [49]. Audio warnings have been found to be sufficient to
warn a driver of takeover request [89]. Without audio, visual cues alone have been found to
be poor at demanding a driver’s attention during a control transfer [128].

In this work, we focus on quantifying and optimizing the amount of information commu-
nicated to the driver. Studies have shown that cluttered interfaces decrease user performance
[20], but few study the brevity and conciseness of UI design to identify the trade-off in per-
formance.
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Supposing the automation has access to information about the environment (including
anomalies that might cause a transfer of control) and the ego vehicle state information, the
interface mechanism must decide what and how much information should be displayed to
the driver. Our key insight is that there exists a quadratic-esque relationship between the
amount of information and the user performance, as visualized in Figure 4.1. By designing
interfaces with this trade-off in mind, optimal performance and interaction can be targeted
via model-based design.

Figure 4.1: Visualization of Information-Performance Trade-off Conjecture. Given
the vehicle state and external scenario information, the amount of information presented will
influence the interaction and performance of the human-system.

We consider an autonomous vehicle that has certain known limitations, much like the
current Tesla Autopilot [101] and Level 4 Autonomous Vehicles that function only on desig-
nated highways [71]. Assuming the system is capable of knowing when a transfer of control is
required, the question of interest is: Can we optimally select which attributes to be presented
to optimize driver performance?

Here we present an innovative, practical solution to intelligently assist the intercommu-
nication between human and autonomous systems. This method is experimentally validated
by designing multiple UIs with increasing information that verify the performance trade-off
conjecture. This evaluation includes analysis of user feedback via surveys; driver monitoring
to assess situational awareness; and assessment of driver performance after assuming control.

We present the following contributions:

1. Taking a model-based approach to UI design, using information theory metrics and
user data;

2. Optimizing the informativeness of design, subject to information constraints to enforce
brevity; and

3. Quantifying the information/performance trade-off for situational awareness, driver
performance, and trust in the automation.
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4.2 Overview of Interface Design for Autonomy

This work aims to evaluate the information flow between humans and autonomy through UI
design. In particular, we examine the transfer of control scenario where a distracted driver
takes control from an AutoPilot. We emulate a scenario in which the driver engages the
AutoPilot and relaxes with in-vehicle entertainment (similar to the setup patented by Ford
in early 2016 [27]), which is commonly used in transfer of control studies [89].

There is a rich body of research in human factors and human-computer interaction asso-
ciated with how to best increase situational awareness in operators [21, 110]. Walker et al.
demonstrated that providing drivers with information about their surroundings results in
less time spent scanning the environment and improved takeovers [130]. This finding was
confirmed by [104], where presenting detailed information about the reason of transition
decreases searching time.

In the human-robot interaction community, concise UIs that present vital information
are key for positive user experiences [117]. Similarly, Comber et al. conducted a study that
evaluated the usability and effectiveness of different UI layouts of varying levels of complexity
[120]. It was found that UIs with a medium level of complexity were rated higher overall
based on user error, time to complete a task, and satisfaction surveys. These findings inspired
the this work’s multiple levels of UI design to uncover the relationship between information
presented, performance, and user preference.

Vanderdonckt developed a model-driven system to building user interfaces [125]. The
model had four steps in order to produce an effective UI which included developing a task
model, abstract UI, concrete UI, and final UI. Our user interface creation process was in-
spired by this model-driven approach in order to produce effective interfaces. Macbeth et
al developed a method called the Hybrid Cognitive Task Analysis (hCTA), which is a four
step analysis to develop an effective interface design. It includes creating a scenario task
overview, event flow diagram, decision ladders and situational awareness requirements. We
utilized aspects of their interface development process, specifically the situation awareness
requirements, to develop the UIs for this study [79].

In our previous studies, participants were asked to draw their ideal UI before and after
their experience with a semiautonomous vehicle in a realistic motion simulator [104]. Given
this data, we adapt the design of the interface based on the distribution of attributes found
in the user drawings. The primary focus of this study is to take a more rigorous approach
to UI design, taking inspiration from information theory to model the communication be-
tween humans and autonomy. By increasing the quantity of information subject to brevity
constraints for easy understanding, we develop a more trustworthy semi-autonomous system.

4.3 Optimizing Communication and Interaction

Often when designing user interfaces for such systems, it is difficult to take a quantitative
approach to selecting attributes to be displayed. To formalize this procedure, we propose
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a model based approach that models the attributes of human preferences and monitors the
resulting performance.

Suppose we have set of attributes A that can readily be presented to the driver (e.g.
current speed via speedometer, current position via navigation, weather forecast, etc.). A
subset of A consists of attributes necessary and informative, denoted set J . For instance,
clearly presenting whether or not the AutoPilot is in control to avoid mode confusion is
necessary in semi-autonomous systems [106]. Another subset of A consists of attributes that
the driver expects the user interface to present, E , which may or may not intersect with the
informative set. Our goal is to design a user interface that utilizes an optimized set O of
attributes, which maximizes the useful information, subject to a set size constraint and user
preference. The relationships between these sets are shown in Figure 4.2.

Figure 4.2: Set Visualization of Attributes. Given the set of all attributes A, the
expected set E , and the informative set J , this work aims to identify and present the
optimized set O to intelligently design the user interface.

The ultimate goal of this UI is to effectively convey this information to the driver. We
aim to generate UIs that:

maximize informativeness
subject to brevity and utility

(4.1)

The following subsections present the concepts of informativeness, brevity, and utility in
the context of UI design for autonomy, and discuss how we use these to generate UIs.

4.3.1 Informativeness

The first goal is to maximize information throughput to the driver. We break this down
into two distinct components: (1) scenario information and (2) state information. For the
quantity of environment or scenario information required, we refer the reader to [104]. In
the previous study, we examined the influence of increasing information about the external
environment, specifically focusing on the cause of transition. It was found that presenting a
visualization for the reason of transition improved situational awareness, driver performance,
and trust. For the internal state information, we suppose we have access to the following
state signals: position, velocity, acceleration, heading, throttle, and brake. All of these
signals have attributes that can be presented in the UI and have insight to how to best
control the vehicle.
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If we were to maximize information, we would simply include UI elements representing
all attributes. However, not all signals are informative and users have preferences. This
introduces constraints on the amount and type of information that should be presented.

To measure the informativeness, we compute the differential entropy as a measure of
how much information is contained in a signal [26]. This is an extension of the discrete
interpretation of entropy and is defined as:

h(x) = −
∫ ∞
−∞

f(x) log f(x)dx (4.2)

where f(x) is the continuous probability distribution of signal x. To approximate this, we
find the the limit of the discretization of the contiuous signal:

h(x) = lim
∆→0

(
H∆ + log ∆

)
(4.3)

where ∆ represents the discretization bin and the entropy for said discretization is computed
by:

H∆ = −
∑
x

p̂∆(x) log p̂∆(x), (4.4)

where p̂∆ empirical distribution of the binned signal.
We can see that the binned entropy value approximates the continuous entropy with

some offset (log ∆), which grows as N → ∞. However, this growth is compensated for by
the logarithm in H∆, meaning that this offset is negligible.1

By fixing bin number and sizes across all signals, we find the limiting value to obtaining a
comparable estimate of informativeness. Intuitively, this gives a measure of how much varia-
tion is in the signal and how much knowledge is gained by communicating this information.
Further, the preferences of particular attributes can be empirically computed from user data
(as will be discussed later), giving us an importance ranking. Interestingly enough, there is
a strong correlation between importance ranking and the entropy of each signal, as shown
in Figure 4.3. This not only validates the assumption that entropy is a useful measure for
informativeness, but also allows us to conflate informativeness with user preference.

As shown, we can see that the entropy is correlated with the user ranking, meaning that
for an attribute a: h(xa) ≈ wa where xa is the signal and wa is the importance ranking
associated with attribute a. Thus, we define the informativeness I as the total entropy of
the selected signals:

I =
∑
a∈O

h(xa) =
∑
a∈O

wa (4.5)

where a indicates a particular attribute, O is the optimized set of attributes, and all other
variables are as previously described.

1 We note that there are many ways to approximate entropy for continuous signals, including approx-
imating the kernel density function and directly computing the differential entropy. Given sample testing,
both methods produce similar results, but the approximation via discretization was completed to fruition
for the purposes of simplicity.
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Figure 4.3: Entropy and Importance. This plot shows the relationship between the
calculated entropy of the signal and the user ranking from the drawing study for each of the
vehicle states.

By maximizing this quantity, we reduce the uncertainty in the system by sending the
messages to the user to give relevant state information.

4.3.2 Brevity

In previous studies, it was found that situational awareness initially increased as more infor-
mation was presented to the driver but began to decrease as the UI became more cluttered
(see Figure 4.1). This motivates the idea of introducing brevity as a constraint on the infor-
mation presented to the user. We formally define brevity as the total number of attributes
visualized on a particular user interface:

|O| ≤ B (4.6)

where | · | gives the cardinality of the set and B represents the brevity.
In this study, we would like to examine the how varying brevity as an information con-

straint affects the communication and the interaction between the human and the autonomy.
Considering that there are different types of people who prefer different levels of brevity, we
hope to target the correlation between performance and preference.

4.3.3 Utility

The final constraint on the problem is utility. This constraint is introduced to enforce at-
tributes that are necessary (e.g. displaying who is in control to eliminate mode confusion),
and to take into account user data. Using the conditional probability distribution of at-
tributes from user data and a necessary baseline set of attributes, we compute the ordering



CHAPTER 4. OPTIMIZING INTERACTION BY DESIGN 75

of the most likely (preferred) attributes that should be presented. By doing this, we obtain
an ordering over attributes in terms of how prevalent they are. When determining the opti-
mal design, we weight the informativeness with the utility, with the brevity constraint, and
use this distribution to find the most likely location for each attribute.

This required set is denoted U and used as a strict constraint, meaning that all elements
in this set must be included in the optimal set:

U ⊆ O (4.7)

4.3.4 Optimizing Attributes

Using these formalisms, the resulting optimization can be written as follows:

argmin
O

I =
∑

a∈O wa

subject to |O| ≤ B
U ⊆ O

(4.8)

Thus, once we have the prior data required to assess the informativeness and utility, our
key tunable parameter is the brevity constraint which determines the overall information
flow of the system.

4.3.5 User Inspired Design

In order to uncover the expectation set E of users, initial studies were completed to see
what attributes the drivers found most useful. After experiencing an autonomous vehicle
that transfers control in the previous study [104], users were asked to draw their ideal user
interface. Each drawing was converted to a set of attributes on a 3 by 4 grid, with different
icons representing different features they desired. A total of 23 sample user interfaces were
collected and converted. An example drawing and conversion are shown in Figure 4.4.

Figure 4.4: Example of User Drawing Conversion. Given user data on the left, the
attributes are extracted and gridded.
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Figure 4.5: Graphical Representation of Attributes. All attributes are shown as nodes
in the graph, where the size indicates the informativeness (i.e. frequency) of that particular
attribute. The graph edges represent the conditional probability, (P (ai|aj)), or the likelihood
that one attribute ai will appear in proximity to attribute aj. The attributes used in each
UI are marked in color, while the uninformative features are in gray.

With this method, we were able to extract the most important information users’ want
in the UI (which in turn gives us wa) and their preference for where that information should
be placed. The distribution over attributes is visualized graphically in Figure 4.5.

Thus, using this formulation, we generate three UIs to span the amount of information
presented, ranging from a baseline minimal UI to an extensive UI. Given we require the
control mode and the time to hand-off attributes, we approximate the optimization in Eq.
1 by taking a greedy approach by adding the most informative and desired attributes until
the desired brevity limit (i.e. number of attributes) is met.

The baseline UI featured: control mode (which indicated whether the AutoPilot is ac-
tive), speed (visualized by a number), time to hand-off once anomaly was detected, and a
visualization of the reason for transfer of control. The next UI featured all previous at-
tributes as well as navigation. The most extensive UI included those in the previous UIs as
well as an RPM gauge, speedometer (which inherently conveys the acceleration), and large
warning icon. The resulting UI graphics are shown in Figure 4.6.
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Figure 4.6: Generated User Interfaces, ordered with increasing information (i.e. decreas-
ing brevity constraints). Left: The baseline UI featured four attributes: controller, speed,
timer, and anomaly visualization. Center: The next UI features all previous attributes in
addition to navigation. Right: The extensive UI includes all previous attributes in addition
to RPM, speedometer, and warning icon.

4.4 User Study

The user study extended the work in [104] and was designed to test users’ reactions to UIs
with increasing information (i.e. decreasing brevity) paired with a various driving scenarios.
The driving scenarios were selected such that they were variable and comprehensive, captur-
ing three types of transitions: baseline, static anomalies, and dynamic anomalies. Baseline
transitions represent low-danger events where the autonomous system has reached the end
of a known route or area, triggering a transfer of control back to the human driver. Static
anomalies represent unexpected static obstacles that appear (e.g. construction), while dy-
namic anomalies represent unexpected moving obstacles (e.g. an unpredictable or peculiar
nearby driver). For complete information on the types of transitions, we refer the reader to
[104]. The following sections describe the experimental design for this pilot validation study.

4.4.1 Manipulated Factors:

We manipulate the level of brevity by constraining the amount of information presented
to the driver. We consider three UI designs: (1) a modified version of a UI from previous
experiments to act as a baseline; (2) a UI designed with slightly increased information; and
(3) an extensive UI with maximal useful information.

4.4.2 Dependent Measures:

Given these manipulated factors, we measure the impact on performance in three aspects.
First, we monitor the driver’s attention, (i.e. how often the driver looks at the front screen
or the UI), via head pose and gaze tracking to estimate situational awareness. Second, we
evaluate measures for driver performance for a short period of time after taking control. We
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Figure 4.7: Experimental Setup. The steering wheel, MS Kinect for driver monitoring,
the UI, and the entertainment tablet are specified above.

consider the average of the human’s throttle and braking input, as well as the difference
between the human driver’s trajectory and a nominal trajectory in the same short horizon
after human takes over control. We also consider measures regarding safety and trust based
on a user survey.

4.4.3 Hypothesis:

We hypothesize that the amount of information presented will influence the driver’s situa-
tional awareness, driving performance, and trust in the vehicle. We anticipate an approxi-
mately quadratic relationship between these metrics and the amount of information present-
ing, implying that UI2 will result in optimal performance. However, as initially observed in
[104], we also forecast a general trend that providing the driver with more information would
increase the driver’s level of trust in the semiautonomous vehicle.

4.4.4 Experimental Setup

Using the vehicle simulator previously described, a Level 4 Autonomous Vehicle was designed
and implemented. The driver was monitored using a Microsoft Kinect 2.0 [83], which was
used to monitor the attention of the driver. The driver was monitored at a rate of 30 Hz,
which was synchronized with the simulation data.

The user interface, which presents important information for the AutoPilot to human
control transfer, is displayed over the dashboard of the simulated vehicle. We attached a
tablet to the side of the simulator to provide entertainment and distract the driver while in
AutoPilot mode. The complete experimental setup is shown in Figure 4.7.
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Each of the three user interfaces is implemented in Python 2.7 using the software package
TkInter as the main GUI library [121]. A visualization of the user interface integrated into
the simulator is shown in Figure 4.8.

Figure 4.8: User Interface Used in Study. The base interface (UI1) includes the control
mode, time to transfer, scene visualization and speed. UI2 includes the basic features as well
as navigation as seen in the blue box. UI3 builds off of UI2 and includes an RPM gauge,
speedometer, and warning icon, as seen in the purple boxes.

One test course was created and used for all experiments, with visual variations to make
certain the driver did not become too familiar with the course and with varying transition
times and locations to limit the anticipation of the hand off. The AutoPilot was controlled
via a path following controller that would attempt to maintain a speed of 15 m/s and stay
in the center of the lane.

For each user interface, the three scenarios were each tested in a random order with an
additional dynamic encounter, due to the fact that this tends to generate the most extreme
responses from the drivers.

For each trial, the AutoPilot drives for three to five minutes, during which the driver
watches videos on the attached tablet2. After the allotted time passes, one of the three
scenarios triggers a transfer in control from AutoPilot to the human driver. The UI was
programmed to warn the driver fives seconds before the transition of control occurred. To
maintain consistency between different scenarios, the transition of control would occur when
the driver has two seconds of time headway to the obstacle [72].

4.5 Performance/Information Trade-off

This section summarizes the findings from the study. Quantitative and qualitative assess-
ments were performed to examine the affect of information constraints on situational aware-
ness, driver performance after the transfer of control, and survey feedback to query user
preferences.

2Simple distraction tests were performed prior to the experiment to verify that three minutes of watching
videos was enough time for the driver to lose interest in the autonomous vehicle.
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4.5.1 Situational Awareness

To assess situational awareness, we calculate the search time for each transition instance, as
presented in [104]. We define search time as the amount of time it takes the driver to react
to the hand-off warning, check the UI, and identify the cause of transition in the simulation.
By monitoring the head pose and eye movement of the user, we compute the amount of time
it takes the driver to look ahead and for eye movement to settle after the warning signal,
after looking up from then entertainment.

This metric acts as a quantifiable surrogate for the situational awareness that the UI is
providing the driver. A low search time would imply that the driver was able to quickly
parse the information presented on the UI and find the reason for the hand-off, while a high
search time would imply that the driver spent more time trying to understand the UI and
identify the problem.

The search time is normalized relative to UI1, which acts as the baseline for reaction
time. The median relative search times are shown in Figure 4.9a. We find the expected
trend: as information increases, we initially observe an increase in situational awareness,
which then decreases as the interface becomes cluttered.

4.5.2 Driver Performance

To assess driver performance, the vehicle dynamics are examined by quantifying the driver
response in terms of control inputs for a short period after the hand-off. A safe takeover
does not involve significant deviation from a nominal trajectory with minimal braking or
acceleration.

The median acceleration (normalized throttle and brake) of twenty seconds after hand-
off is shown in Figure 4.9b. We observe that there is no significant difference in positive
acceleration, but there is greater control action exerted for braking under UI1 and UI3,
evidence of a less smooth transition. We also note that the distribution for UI2 is distinct
from the others (p = 0.02), which implies that this interface invokes a different mode of
behavior.

To assess deviation of a nominal trajectory, steering and lateral deviation from the center
of the lane just after the transition was examined. Surprisingly, there was no significant
difference in the steering control between the UIs.

4.5.3 Survey Feedback

The surveys conducted between each trial and the final survey at the end of the experiment
indicates that, as expected, the most preferred user interface was UI2.

The survey measured the driver’s feelings of safety, distractedness, and trust with respect
to their experience with the simulated semiautonomous vehicle. The data in Figure 4.9c
demonstrates a clear trend in a steady increase in distraction from UI1 to UI3. This indicates
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that as more information was displayed on the user interfaces, people felt more distracted
when attempting to interpret it.

The survey results show a trend where feelings of trust and safety towards the user
interface peaks with UI2. This demonstrates that in user interfaces it is important to develop
an interface that is not too brief (UI1) and not overly informative (UI3). Developing and
testing multiple UIs with various levels of information is critical to finding the most effective
interface. As the graph shows, there is a strong impact of how much information is presented
on a UI on a driver’s level of safety and trust in the vehicle.

(a) Situational Awareness.

(b) Driver Performance.
(c) Survey Results.

Figure 4.9: Performance Results. (a) The difference in search times for each UI. A neg-
ative (positive) search time corresponds to finding the cause of transfer faster (slower) than
the baseline UI, implying a increase (decrease) in situational awareness. (b) Driver perfor-
mance in terms of acceleration by UI. The median normalized throttle (positive acceleration)
is shown in blue and median normalized brake (negative acceleration) is shown in pink with
error bars. (c) The ratings for different characteristics by UI. Ratings were normalized to
lie between zero and one. A high rating corresponds to a strong feeling of the specified
characteristic.

4.6 Summary

This work presents a pilot study of a model-based approach to designing user interfaces. We
aim to optimize informativeness subject to brevity and utility. Using this optimal design
framework, we show the relationship between communicated information and performance.
In general, this trend is approximately strongly concave, with respect to situational aware-
ness, the driver’s dynamic performance, and trust. By analyzing the effects of brevity and
information constraints, we demonstrate the importance of modeling the impact of commu-
nication on interaction to achieve optimal results.

In future works, we aim to incorporate adaptive user interfaces that can dynamically
adapt to the individuals performance. There are also individual capabilities and preferences
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that can be taken into account to further optimize the system. Additionally, we hope to
expand this methodology to other scenarios and generalize the framework to other modalities.
We hope to assess the impact of design more rigorously as a communication channel, using
optimal channel design as a new paradigm to think about how to best to implement these
attributes on a UI.
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Chapter 5

Conclusion and Future Works

We need to rethink the notion
of progress, not as progress
toward full autonomy, but as
progress toward trusted,
transparent, reliable, safe
autonomy that is fully
interactive.

David Mindell

5.1 Future Directions

Autonomous vehicles are showing great results and, as described, have great potential for
impact. Gill Pratt from the Toyota Research Institute was asked about how far autonomous
vehicles have to come before they are released publicly, and responded with the following
statement:

Are we as a society ready to accept 10 percent better than human driving? One
percent better than human driving? Ten times better than human driving? I
don’t know, and to be honest, it’s not our role as technologists to tell society
what the answer is.

Following this point, there is a great deal of attention that needs to go in to acceptance and
reliability before such technologies are ready to hit the road. In this work, we attempted
to address these issues by rigorous, formal models of human behaviors that have effectively
been able to mimic and integrated with the other humans both in the vehicle and in the road.
This is by no means a solved problem, and there are many continuations and extensions that
can be implemented to improve this work.
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This work can be expanded to assess the impact of human-inspired designs and imple-
mentations in the grand scheme and at high-levels of abstraction (e.g. effects on traffic
flow). Further, there are many computation concerns that need to be addressed as humans
are inherently combinatorial, particularly with respect to decision making in this multi-
agent setting. One key area of research with regard to this interaction is in communication,
be that through motion as suggested here or through new vehicle-to-vehicle or vehicle-to-
infrastructure technologies. Additionally, the impact on the users and other road users must
be examined, particularly with the impact over time. An extension of this work is aiming to
address this issue by looking at how humans adapt to these systems and how the systems
can adapt to the ever-changing human.

Generally, when human models are developed or learned, they are learned with respect
to some initial dataset, priors, or control policy. However, once we close the loop and start
influencing the human in a shared control scheme or in an interactive framework, the be-
haviors change and adapt, rendering the initial model outdated. To do this, I propose the
concept of on-policy learning. Most learned autonomous are optimized to generate off-policy
models, which give no guarantee that human behavior is captured or that resulting policy
elicits the expected response. An on-policy approach to learning and modeling would cap-
ture the closed-loop interactions of controlled human-in-the-loop systems, similar in spirit to
adaptive control. I envision developing adaptive systems take advantage of multiple learners
in aggregate to leverage experience to efficiently adapt, combining communication, sensing,
and action. The resulting automation should utilize the knowledge-rich interactions gained
through experience and exploration via on-policy learning. Further, developing generalized
models of intent and driver modes in a robust and unsupervised manner will be more im-
portant as the driving scene changes.

For semiautonomous applications, there is opportunity for collaboration and innovation
in assistance systems. In particular, there are open problems in identifying novel sensing
modalities to properly assist the driver and to augment the driver to improve performance.
There are also many questions regarding viability of shared control schemes. Despite many
challenges, there is potential for vast impact for the mobility impaired. For these case,
providing partial assistance has a huge impact on quality of life and gives a sense of control.
Despite this high impact area, little attention is going in to addressing concerns of these
particular users.

There is a famous quote saying: “Simulations are doomed to succeed.” In this work, the
simulation pushed the limits of simulation to make the data and validation as realistic as
possible, but there are many open questions about how to transfer findings from simulation
to the real-world. Moreover, the methods presented here all rely on data collection and ef-
fective representation. However, there are currently few methods to assess data validity that
are widely applicable for determining if enough samples have been collected for nonpara-
metric models. For autonomous vehicles, there is a lot of concern about ensuring scenario
coverage for proving safety guarantees. I think there is an interesting applications in the
idea of providing “certificates” for data-driven methods, similarly to those provided through
reachability, and quantifying the effects of labeling and outliers in datasets. By modifying
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tools from statistics and looking at rates of convergence, ideally we would to quantify how
representative the data is to its underlying (nonparametric) distribution.

5.2 Peroration

This dissertation focused on empirical methods for control and design of semi- and fully
autonomous systems in hopes to developing trustworthy, dependable human-centered au-
tomation, primarily focusing on the transition where there is a heterogeneous mix of agents
sharing the road and control. This was motivated by the following points: (1) levels of au-
tonomy will be introduced incrementally (e.g. active safety systems as currently released),
and (2) autonomous vehicles will have to be capable of driving in a mixed environment, with
both humans and autonomous vehicles on the road. In both of these cases, the human driven
vehicle must be reliably modeled in an accurate and precise manner that is easily integrated
into control frameworks.

In order to develop such models, we focused on experimental design and empirical ap-
proaches to estimate the human behaviors for control theoretic models, interactive planning,
and user design. By using these human-centered approaches, we observe improved pre-
dictability and trustworthiness of the automation from the users perspective, leading to
greater acceptance and ability to face the challenges of the real-world. We presented the
following contributions.

5.2.1 Empirical Approaches to Reachability

To balance robustness and informativeness, we developed a model for predicting human
driving behaviors that break down the assumptions required in other approaches. These
methods can be used to generally bound likely system behaviors, or wrap around current
reachability approaches. This allows for easy integration of data collected from a simulator
and guarantees that the resulting model will be usable in practice (assuming the data is
generated from a similar source). This not only gives us insight to driving behaviors, but
this framework can also be applied to semi-autonomous frameworks, as was shown in [115],
and autonomous planning, as was shown in [33].

There are many extensions to this specific application, including adding more driver
modes or contexts (e.g. time of day, weather, road conditions). Additionally, we can examine
different cognitive loads distractions and assess the resulting variation on behaviors. Further,
much of the testing and validation of various control methods while the human is driving to
verify that the system is minimally invasive and maintains appropriate safety margins is left
as future works. In particular, implementing and identifying parameters for the probabilistic
control framework will be explored to verify feasibility and reliability.
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5.2.2 Planning Subject to Interaction

Using the nonparametric driver model developed, we adapted the methods to muli-agent
applications in cooperative maneuvers. Leveraging a large dataset of many real interactions
on US highways, we were able to effectively predict merging behavior with high precision
and accuracy. This was integrated in to an optimization frameworks to generate more
intuitive trajectories for autonomous vehicles. Since this method leverages the ideas similar
to cognitive models, we demonstrate that a shared mental model is key for generating human-
like control. As a simple validation of these findings, a pilot study on human-inspired control
schemes verified the positive impact. This confirmed that humans communicate through
motion while driving and the presented control scheme was able to capture this and convey
its intent to surrounding drivers.

Since this study was a proof of concept, there is a great deal of future work to be
completed. This method could readily be extended to include more modes of behaviors
to be more widely applied to other collaborative maneuvers. More advanced methods for
identifying the nominal trajectories and for controlling the vehicle must be explored to
improve the feel of the autonomous system, and expand the framework to include a wider
variety of scenarios and driver modes.

5.2.3 Adding Rigor to Design

By considering the information/performance trade-off, we developed a generative method for
a model-based approach to designing user interfaces for shared autonomy. This relationship
was shown to be strongly concave, with respect to situational awareness, the driver’s dynamic
performance, and trust. By analyzing the effects of brevity and information constraints,
we demonstrate the importance of modeling the impact of communication on interaction to
achieve optimal results. This can be readily extended to other case studies and to incorporate
more modes of interaction. Further, this can be extended to be an adaptive user interface
to dynamically adapt to the individuals performance and to also individual capabilities and
preferences.
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