
TurtleGuard: Helping Android Users Apply Contextual
Privacy Preferences

Lynn Tsai
Primal Wijesekera
Joel Reardon
Irwin Reyes
Jung-Wei Chen
Nathan Good
Serge Egelman
David Wagner

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-44
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-44.html

May 10, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

I would like to give thanks to Primal Wijesekera for the help, kindness, and
support he has shown me throughout this project. I would also like to
thank David Wagner, Doug Tygar, and Serge Egelman for their words of
wisdom and everything they have taught me. Lastly, I would like to thank
Alec Guertin and my hamster, Santa, for moral support.

TurtleGuard:

Helping Android Users Apply Contextual Privacy Preferences

Lynn Tsai
University of California,

Berkeley
lynntsai@berkeley.edu

Primal Wijesekera
University of British Columbia

primal@cece.ubc.ca

Joel Reardon
University of California,

Berkeley
joel.reardon@berkeley.edu

Irwin Reyes
University of California,

Berkeley
ioreyes@berkeley.edu

Jung-Wei Chen
Good Research

jennifer@goodresearch.com

Nathan Good
Good Research

nathan@goodresearch.com

Serge Egelman
University of California,

Berkeley
egelman@berkeley.edu

David Wagner
University of California,

Berkeley
daw@berkeley.edu

ABSTRACT
Current mobile platforms provide privacy management in-
terfaces to regulate how applications access sensitive data.
Prior research has shown how these interfaces are insuffi-
cient from a usability standpoint: they do not allow users
to make contextual decisions (i.e., different decisions for a
given application based on what the user was actually doing
with that application). Prior work has demonstrated that
classifiers can be built to automatically make privacy deci-
sions that are more in line with users’ preferences. How-
ever, if certain privacy decisions are automatically made—
without immediate user consent—feedback mechanisms are
needed to allow users to both audit those decisions and cor-
rect errors. In this paper, we describe our user-centered ap-
proach to designing such an interface. In addition to imple-
menting this interface in Android, we created an interactive
HTML5 simulation that we used to perform two large-scale
user studies. Our final 580-person validation study showed
that as compared to the default Android settings interface,
users of our new interface were significantly more likely to
understand and control the circumstances under which ap-
plications could access sensitive data.

1. INTRODUCTION
Smartphones store a great deal of personal information, such
as the user’s contacts, location, and call history. Mobile op-
erating systems use permission systems to control access to
this data and prevent potentially malicious third-party ap-
plications (“apps”) from obtaining sensitive user data. These
permission systems inform and empower users to make ap-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2017, July 12–14,
2017, Santa Clara, California.

propriate decisions about which apps have access to which
pieces of personal information.

The popular open-source Android mobile platform has used
two general approaches to give users control over permis-
sions. Initially, permissions were presented as an install-
time ultimatum, or ask-on-install (AOI): at installation, an
application would present the full list of sensitive resources
it wished to access. Users must either grant access to all
requested permissions or, if any are deemed unacceptable,
abort the installation entirely. More recently, an ask-on-
first-use (AOFU) permission system has replaced these install-
time disclosures. Under AOFU, the user is prompted when
an application requests access to a sensitive resource for the
first time. The user’s response to this permission request
carries forward to all future requests by that application for
that permission.

The AOFU approach, however, fails to consider that the
user’s preferences, as expressed in the first-use prompt, may
not be appropriate under all future contexts. For instance,
a user might feel comfortable with an application requesting
location data to deliver desirable location-based function-
ality. The same user, however, might find it unacceptable
for the same application to persistently access location data
while in the background for advertising or tracking purposes.
Prior research has analyzed the effectiveness of AOI as a
predictive model by comparing it to user responses to run-
time prompts. These studies found that although AOFU is
an improvement over install-time permissions, AOFU still
frequently fails to match user preferences [38]. When mak-
ing privacy decisions, users consider a richer space of fac-
tors than just simply the requesting application and the re-
sources it wishes to access [26]. Android currently does not
provide a practical mechanism for users to audit and ad-
just contextually-incorrect decisions made by the platform:
it lacks a contextually-aware permission manager.

The contextual integrity framework suggests that many per-
mission models fail to protect user privacy because of their
inability to account for the context surrounding data flows [26].

1

That is, privacy violations occur when a data flow (e.g., a
resource access request) defies the user’s expectation. In re-
cent work [37, 38], researchers found that a significant por-
tion of participants made contextual privacy decisions. In
theory, asking the user to make a decision for every request
is optimal, as the user will be able to account for the sur-
rounding context and can then make decisions on a case-by-
case basis. In practice, however, this results in less-usable
privacy controls, as the frequency of these requests will likely
overwhelm the user [37]. Thus, automating these decisions
is likely to yield a balance between respecting users’ privacy
preferences and not overburdening them with many deci-
sions. When automated decisions are made, however, it is
imperative for users to have feedback mechanisms so that
prior decisions can be reviewed and errors can be corrected,
thereby leading to fewer errors in the future.

Machine learning techniques are capable of capturing the
context surrounding each resource request and predicting
users’ contextual privacy preferences [38, 20]. Recent work
has also shown that machine learning techniques can reduce
privacy violations by inferring users’ privacy profiles [21, 22].
All of these methods, however, still produce erroneous in-
ferences at times. These errors necessitate continuous user
feedback to retrain the model and adapt to user expecta-
tions. Prior work has emphasized the importance of provid-
ing user interfaces as feedback to the classifier: users need a
way to correct classifier results in order to improve the ac-
curacy of future decisions, and account for users’ changes in
preferences over time [38].

To this end, we designed a novel permission manager, Turtle-
Guard, which allows access to sensitive information at some
times and protects the information with a hard shell at oth-
ers. It helps users to make contextual privacy decisions
about the apps that they use by providing a feedback loop
for them to audit and modify how automated decisions are
made. We allow users to (i) vary their decisions based on the
surrounding context, and (ii) have a better understanding
of how third-party applications access resources in the real
world and under varying contexts. We conducted an initial
400-person experiment to evaluate our initial design. Based
on this data, we iterated on our design. We then conducted a
580-person validation study to demonstrate the effectiveness
of our design. Both experiments had four tasks: three tasks
that involved using the system to locate information about
current application permissions, and one task that involved
modifying settings. We observed that participants who used
TurtleGuard were significantly more likely to apply contex-
tual privacy preferences than the control group. We believe
these results are a critical contribution towards empowering
mobile users to make their own contextual choices efficiently
on mobile phone platforms. Our contributions are as follows:

• We present the first contextually-aware permission man-
ager for third-party applications in Android.

• We show that when using our new interface compared
to the existing Android interface, participants were sig-
nificantly more likely to both understand and control
when applications had foreground versus background
access to sensitive data.

• Similarly, we observed that our interface requires no
learning curve: having never used TurtleGuard before,
participants were successful at accomplishing informa-

tion retrieval tasks that were previously possible in the
existing Android interface.

2. RELATED WORK
The Android OS has operated under two permission mod-
els: ask-on-install permissions, and ask-on-first-use (AOFU)
permissions. Versions of Android before version 6.0 (Marsh-
mallow) implemented ask-on-install permissions. Under this
model, applications request that the user grant all permis-
sions to the application at install time. The user must con-
sent to all requested permissions in order to complete instal-
lation. Otherwise, if the user wishes to deny any permission,
the only option available is to abort the installation entirely.
Research has shown that few users read install time permis-
sions, and fewer yet understand their meaning [13, 19].

Versions of Android from 6.0 (Marshmallow) onward use
the AOFU permission model instead. Under AOFU, appli-
cations prompt users for sensitive permissions at run time;
these include access to geolocation data, contact lists, and
photos, among others. Prompts appear when the appli-
cation attempts to access protected resources for the first
time. This has the advantage of giving users contextual
clues about why an application requires a protected resource:
users can consider what they are doing when the prompt ap-
pears to help determine whether to approve the request. Al-
though AOFU offers an improvement over the install-time
model in this regard, first-use prompts insufficiently capture
user privacy preferences after an initial decision is made [37].
That is, the AOFU model does not consider scenarios where
an application requests access to data under varying con-
texts. For instance, a user may grant an application access
to location data after she is prompted while attempting to
use location-based features. That same user, however, will
not receive any more prompts when that same application
subsequently accesses location data to perform tracking—a
use of location data that the user might find objectionable.

Research on permission models has found that users are of-
ten unaware how apps access protected resources and how
access may be regulated [13, 9, 12, 35, 33]. Almuhimedi
et al. studied AppOps, a permission manager introduced in
Android 4.3 but removed in Version 4.4.2 [1]. AppOps al-
lowed users to review and modify application permissions
post-install, as well as set default permissions for newly in-
stalled applications to follow. They examined the use of
AppOps with privacy nudges that were designed to increase
user awareness of privacy risks and facilitate the use of Ap-
pOps. They concluded that Android users benefit from the
use of a permission manager, and that privacy nudges are
an effective method of increasing user awareness [1].

Although AppOps was removed from Android, the 6.0“Marsh-
mallow” release reintroduced permission management. An-
droid 6.0 included an updated interface that allows the user
to view all of the permissions that a particular app has been
granted, as well as all of the apps that have been granted a
particular permission (Figure 1). Unfortunately, these con-
trols are buried deep within the stock Settings app, and
therefore it is unlikely that many users know about them.
For instance, viewing a particular app’s permissions requires
navigating four levels of sub-panels, whereas viewing all the
apps that have requested a particular permission requires
navigating five levels. By comparison, TurtleGuard is one

2

Figure 1: After navigating through four and five levels of
sub-panels within the default Android Settings app, respec-
tively, users can limit an individual app’s access to specific
permissions (left) or limit the apps that can access a partic-
ular permission (right).

click from the main Settings panel and explicitly presents the
relationships between applications, permissions, and con-
trols.

Beyond AppOps, other third-party privacy and permission
management tools exist. Permission Master [24], Donkey-
Guard [7], XPrivacy [6], and LineageOS’s1 Privacy Guard [25]
are examples of such third-party permission management
software. These utilities require additional privileges and
techniques to install because Android provides no official
mechanisms for third-party programs to modify the per-
mission system. For instance, Privacy Guard is built into
the LineageOS custom ROM [25], while the others use the
Xposed Framework [31], which itself requires an unlocked
bootloader and a custom recovery partition. Such restric-
tions are necessary to prevent malicious software from inter-
fering with the existing permission system.

Third-party permission managers offer users a variety of fea-
tures to fine-tune access to sensitive resources on their de-
vices. XPrivacy has the option to pass fake data to applica-
tions that have been denied access to protected resources [2].
Hornyack et al.’s AppFence similarly allows users to deny
permissions to applications by providing fake data [17]. Pro-
viding fake data is more desirable than simply failing to pro-
vide any data at all, as the latter may cause functionality
loss or application failures.

These managers follow an Identity Based Access Control
model (IBAC), where individual permissions can be set for
each app [27]. Although this model allows users to specify
fine-grained permission preferences, this may be ineffective

1LineageOS is a recent fork of CyanogenMod after the lat-
ter’s discontinuation.

in practice for two reasons. First, users may be overwhelmed
by the number of settings available to them, some of which
are only tangentially relevant to privacy. XPrivacy and Per-
mission Master show controls for resources whose direct ef-
fects on user privacy are unclear, such as keeping a device
awake. Our dashboard improves usability by showing only
controls for resources deemed “dangerous” in the Android
platform [16] and others that warrant run-time prompts [11].
Second, none of the existing permission managers display the
context in which protected resources were accessed. XPri-
vacy, Donkey Guard, and LineageOS’s Privacy Guard pro-
vide timestamps for resource accesses, but the user does not
receive important information about the app’s state, such
as whether it was actively being used when it requested ac-
cess to sensitive data. Permission Master offers no histori-
cal information at all. TurtleGuard addresses this problem
by listing recently allowed and denied permission access re-
quests, along with the state and visibility of the requesting
application at the time the permission was requested.

Apple’s iOS mobile platform offers visibility-sensitive loca-
tion privacy settings: “Never” and “Always” (the two set-
tings analogous to Android’s permission on/off toggles), and
a “While using the app” option, which only permits an ap-
plication to access geolocation data while the application is
active on the screen. We use the same options for Turtle-
Guard. Our design is novel in both the extent of these set-
tings and in who controls them. Apple’s iOS platform al-
lows developers to control which of the three options are
available to users to select [3]. Application developers have
faced criticism for removing the “While using the app” op-
tion, forcing users to choose between reduced functionality
and granting the application unrestricted access to sensitive
location data [28]. Our design, by contrast, gives users all
three of these options for all sensitive permissions. Table 1
lists the permissions we consider sensitive. Furthermore, de-
velopers cannot restrict user choice with these settings, as
TurtleGuard is implemented in the operating system.

Wijesekera et al. show that although AOFU improves on
install-time permissions, AOFU is insufficient because it does
not account for the context of the requests [38]. They exam-
ined this by instrumenting the Android platform to log all
instances of apps accessing sensitive resources. In addition
to this instrumentation, the platform randomly prompted
users about the appropriateness of various permission re-
quests as those requests occurred. Participant response to
these prompts was treated as the dependent variable for a
training set. Their study showed that 95% of participants
would have chosen to block at least one access request had
the system notified them. On average, participants would
have preferred to block 60% of permission requests. Indeed,
other work suggests that contextual cues are key in deter-
mining whether privacy violations may have occurred [26, 5].

A natural extension of AOFU is “ask on every use”: rather
than extrapolating the user’s first-time preference to all fu-
ture accesses to a given resource, each access would require
user input instead. Such a model would conceivably allow
users to specify their contextual preferences more accurately;
users know exactly which apps attempted to gain access to
which resources under which circumstances. This approach,
however, is unusable in practice. Research has shown that
applications request access to permission-protected resources

3

Permission Explanation

call phone
process outgoing calls
read phone
read call log
add voicemail
write call log

Make and process calls as well
as read information about call
status, network information and
previously made phone calls

camera Access camera devices

get accounts Access to list of accounts

read calendar
write calendar

Read and write events to the
user’s calendar

read contacts
write contacts

Read and write to user’s con-
tacts

read external storage
write external storage

Read and write files to the user’s
external storage

record audio Record audio

access coarse location
access fine location
access wifi state

Read location information in
various ways including network
SSID-based location

read sms
send sms
receive sms

Read SMS messages from the de-
vice (including drafts) as well as
send and receive new ones SMS

Table 1: Sensitive permissions managed by TurtleGuard.
Permissions grouped by a single explanation form the fam-
ilies used in our system to reduce the number of managed
permission.

with regular frequency: on an average smartphone, roughly
once every 15 seconds [37]. Such a high frequency not only
risks user habituation, it is beyond practical limits to seek
user consent on every access.

Recent research on permission models has turned towards
using machine learning (ML) [38, 21, 22, 20]. One advan-
tage is its ability to capture the surrounding context to pre-
dict user preferences; the approach has shown significantly
lower error rates over the status-quo, i.e., AOFU. Wijesek-
era et.al [38] showed that ML also reduces user involvement
and thereby avoids user habituation. They emphasize, how-
ever, the importance of having a user interface that functions
as a feedback-loop to the classifier. Users can use the inter-
face to audit the decisions made by the classifier and correct
any decisions that do not match their preferences. Such a
mechanism not only ensures the machine-learning classifier
improves its accuracy over time, it also keeps users aware
of decisions that are being made on their behalves and in-
forms them of how third-party apps are accessing sensitive
resources under various circumstances.

We present two core components necessary for usability un-
der such contextual privacy models: we present users with
key contextual information when deciding access to sensitive
resources, and we provide a method for users to regulate and
correct decisions automatically made on their behalf by the
system. We designed TurtleGuard to be easily understood
by users of any technical background.

3. DESIGN OBJECTIVES
In this section, we describe the design philosophy behind
TurtleGuard. TurtleGuard’s primary function is to inform
users about the decisions that have been automatically made

for them, while allowing them to easily correct errors (thereby
improving the accuracy of future decisions). These errors
can be either false positives—an app is denied a permission
that it actually needs to function—or false negatives—an
app is granted access to data against the user’s preferences.

Thompson et al. showed how attribution mechanisms can
help users better understand smartphone application resource
accesses [36]. They found that users expect this information
to be found in the device’s Settings app. In our initial ex-
periment, we evaluated TurtleGuard as a standalone app,
though for this reason we ultimately moved it within the
Android Settings panel prior to our validation experiment.

3.1 Incorporating Context
In prior work, researchers observed that only 22% of partic-
ipants understood that applications continue to run when
not visible and have the same access to sensitive user data
that they do when they are visible [36]. This means that the
majority of users incorrectly believe that applications either
stop running when in the background or lose the ability to
access sensitive data altogether. Wijesekera et al. corrobo-
rated this observation in a recent field study of users’ pri-
vacy expectations: users are more likely to deem permission
requests from background applications as being inappropri-
ate or unexpected, and indicate a desire to regulate applica-
tions’ access to sensitive data based on whether or not those
applications are in use [37].

In the default permission manager, users cannot vary their
decisions based on the visibility of the requesting applica-
tion. Our goal in this work is to empower the user to make
contextual decisions, to let users vary their decisions based
on context (i.e., what they were doing on the device), and to
let these contextual decisions be applied to future requests.

option meaning

always The permission is always granted to the re-
questing application, regardless of whether
the application is running in the fore-
ground or background.

when in use The permission is granted to the request-
ing application only when there are cues
that the application is running, and denied
to the requested application when the ap-
plication is running invisibly in the back-
ground.

never The permission is never granted to the re-
questing application.

Table 2: The three possible permission settings under
TurtleGuard. The when in use option accounts for the visi-
bility of the requesting app, which is a strong contextual cue.

Moving one step beyond the all-or-nothing approach, our
new design gives the user a third option: allowing applica-
tions to access protected data only when in use (Table 2 and
Figure 2). When the when in use mode is selected, the plat-
form only allows an application to access a resource if the
application is running in such a way that it is conspicuous to
the user of the device. We consider the following behaviors
conspicuous: (i) the application is running in the foreground
(i.e., the user is actively using it), (ii) the application has a

4

notification on the screen, (iii) the application is in the back-
ground but is producing audio while the device is unmuted.
If these conditions do not hold, then the application is con-
sidered not in use and access to the resource is denied.

In the default permission model, only the application re-
questing the resource and resource type are taken into ac-
count. Prior work has shown that users do make contextual
decisions and disregarding contextual information can cause
the AOFU model to fail [26, 37, 38]. The when in use option
allows the system to take the visibility—which provides a
strong contextual cue—into account when making decisions.

3.2 Auditing Automatic Decisions
Although Android currently provides an interface to list the
applications that recently accessed location data, similar in-
formation is unavailable for other protected resources. Ad-
ditionally, the existing Android interface does not differenti-
ate between actions that applications take when in use and
when not in use. TurtleGuard’s main design objective is
therefore to communicate the types of sensitive data that
have been accessed by applications and under what circum-
stances.

Our initial design of TurtleGuard can be seen in Figure 2.
The first tab (labeled “activity”) shows all of the recently al-
lowed or denied permission requests, including when those
requests occurred and whether the application was in use
at the time. Only particularly sensitive permissions (i.e., a
list of permissions based on those deemed “dangerous” by
the Android platform and those that should have run-time
prompts [11]) are displayed in this activity log to avoid over-
whelming the user. Table 1 provides our list of permissions.

TurtleGuard presents this information as a running timeline—
a log sorted chronologically. A second tab lists all of the
apps installed on the phone in alphabetical order, allowing
the user to examine what decisions have been made for all
permissions requested by a particular app. The user can ex-
pand a log entry to change future behavior, if the platform’s
decision to allow or deny a permission did not align with
the user’s preferences. When the user uses this interface to
change a setting, the classifier is retrained based on the up-
dated information.

3.3 Permission Families
Android uses over 100 permissions and a given resource can
have more than one related permission. Felt et al. found that
not all the permission types warrant a runtime prompt—it
depends on the nature of resource and the severity of po-
tential privacy threat [10]. Consequently, TurtleGuard only
manages a subset of permissions (Table 1 in the Appendix)
based on those deemed sensitive by prior work and by the
latest Android platform. In the original version of Turtle-
Guard, we had listed the original names of permissions, un-
grouped. One of the changes we made as we iterated on our
design after our pilot experiment was to implement permis-
sion families.

We further simplify permissions by grouping related per-
missions into a single sensitive resource, so as not to over-
whelm users with too many redundant decisions. For ex-
ample, read contacts and write contacts are grouped
into a single contacts permission, or family. This means
that within TurtleGuard users only see the human-readable

Figure 2: The pilot design of TurtleGuard listed recent app
activity (top left), a list of installed apps and their associated
permissions (top right). Permissions can be always granted,
granted only when in use, or never granted (bottom).

resource type and not the underlying permissions that are
managed by the family. Any changes that a user makes
about granting a resource therefore affects all permissions in
the same family. For example, there is no longer a distinc-
tion between coarse and fine location data; both are either
allowed or denied by a location settings change made using
the TurtleGuard interface [14].

4. METHODOLOGY
We conducted two online experiments to evaluate the effec-
tiveness of TurtleGuard at providing users with information
and control over app permissions, as compared to Android’s
default permission manager (as of versions 6.0 through 7.1).
The first experiment was designed to examine our initial de-
sign decisions, as described in the previous section. Based
on the results of that experiment, we made changes to our

5

design, and then validated those changes through a second
experiment. In both experiments, we asked participants to
perform four different tasks using an interactive Android
simulation. These tasks involved either retrieving informa-
tion about an application’s prior access to sensitive resources
or preventing access in the future (i.e., modifying settings).

In both experiments, we randomly assigned participants to
either the control or experimental conditions. We presented
control participants with the default permission manager,
which is accessible using the Settings app. We presented ex-
perimental participants with our novel permission manager,
TurtleGuard. During our pilot experiment, TurtleGuard
was accessible through an icon on the home screen labeled
“Privacy Manager,” though we added it as a sub-panel to the
Settings app prior to the validation experiment (Figure 10
in the Appendix). The questions and tasks for participants
were identical for the two conditions and both experiments.

4.1 Tasks
We presented participants with four tasks to complete us-
ing an interactive Android simulation: three tasks to re-
trieve information about permission settings, and one task
to modify permission settings. Some of these tasks required
participants to find information about a specific app’s abil-
ities. In order to avoid biases from participants’ prior ex-
periences and knowledge of specific real-world apps, these
questions instead focused on a fictitious app, ZvW. While
we randomized the order of the tasks, we ensured that Task
3 always came before Task 4 (i.e., we never asked them to
prevent background location data collection prior to asking
them whether background location data was possible). Af-
ter each task, we asked participants to rate the difficulty of
the task using a 5-point Likert scale (“very easy”to“very dif-
ficult”). Finally, upon completing all tasks, we asked them
several demographic questions and then compensated them
$2. We now describe the four tasks in detail.

Task 1: What were the two most recent applications
that accessed this device’s location?
In this task, we asked participants to use the Android sim-
ulation and identify the two applications that most-recently
accessed location data. Participants used two open-ended
fields to answer this question. In the control condition, this
task was correctly accomplished by navigating to the “loca-
tion” screen from within the Settings application (Figure 3).
This screen presents information about applications that re-
cently requested location data.

In the experimental condition, this task was accomplished by
simply studying the “activity” screen, which was displayed
immediately upon opening TurtleGuard (Figure 2). Given
that this task was already supported by the default permis-
sion manager, we wanted to verify that TurtleGuard per-
formed at least as well.

Task 2: Currently, which of the following data types
can be accessed by the ZvW application?
In the control condition, this was was accomplished by per-
forming the four steps to access the screen in Figure 5 (right):
selecting the “Apps” panel within the Settings app (Figure
3, left), selecting the ZvW application, and then selecting
the “Permissions.” This screen depicted a list of permissions

available to the application based on what the application
declares as its required permissions; the user is able to fine-
tune this by selectively disabling certain permissions using
the sliders on this screen. We wanted participants to iden-
tify the permissions that were enabled, rather than all of
those that could be enabled in the future.

In the experimental condition, participants could accomplish
this task by selecting the “Apps” tab from within Turtle-
Guard and then expanding the ZvW application to view its
requested permissions (Figure 2, top right). In both condi-
tions, the correct answer to the question was that “location”
is the only data type that can be accessed by the ZvW ap-
plication. Again, given that this task was already supported
by the default permission manager, we wanted to verify that
TurtleGuard performed at least as well.

Task 3: Is the ZvW application able to access location
data when it is not being actively used?
We designed this task to determine whether TurtleGuard
was effective at communicating to participants in the ex-
perimental condition the difference between foreground and
background data access. Similarly, we wanted to examine
whether participants in the control condition understood
that once granted a permission, an application may access
data while not in use. Based on the settings of the simula-
tions, the correct answer across both conditions was “yes.”

Participants in the control group must navigate to Settings,
then the “Apps” panel, and view the list of permissions cor-
responding to the ZvW application, similar to Task 2. Lo-
cation is turned on, and so participants must be able to
understand that this means that the permission is granted
even when it is not actively being used. Participants in the
experimental condition can use TurtleGuard’s “Apps” tab
to view the requested permissions for the ZvW application.
This shows that the location permission is listed as “always”
(Figure 2, top right) and that “when in use” is an unselected
option (Figure 2, bottom).

Task 4: Using the simulation, prevent ZvW from being
able to access your location when you aren’t actively
using ZvW (i.e., it can still access location data when
it is being used). Please describe the steps you took to
accomplish this below, or explain whether you believe
this is even possible.
As a follow-up to the third task, the fourth task involved
participants explaining the steps that they went through in
order to limit background location access, or to explain that
it is not possible.

Those in the experimental condition could locate and change
this permission setting either through the activity timeline
or by locating ZvW from the “Apps” tab (Figure 2). We
marked answers correct that specifically mentioned changing
the setting to “when in use.”

Those in the control condition could not prevent this access.
We marked responses correct if they indicated that this task
was impossible to complete. Two coders independently re-
viewed the responses to this task (Cohen’s κ = 0.903). The
objective of this task was to see how successful TurtleGuard
is at allowing participants to vary settings based on applica-

6

tion use (a strong contextual cue) and to examine whether
participants knew that this was not possible when using the
default permission manager.

4.2 UI Instrumentation
We built interactive HTML5 simulations of the UI designs
described in the previous section, developed using proto.io.
We instrumented the simulations to log all user interactions
(e.g., panels visited, buttons clicked, etc.). This data al-
lowed us to analyze how participants navigated the UI to
accomplish their tasks.

4.3 Qualitative Data
In addition to analyzing the participants’ responses to the
four tasks, their perceived difficulty of each of the tasks, and
their demographic information, we also collected responses
to two open-ended questions:

Thinking about the tasks that you performed in this sur-
vey, have you ever wanted to find similar information
about the apps running on your smartphone?
We coded participants’ responses as a binary value. Re-
sponses indicating sentiments such as “yes” and “I always
wanted that”were coded as true. Clear negative answers and
weak affirmative answers such as “sometimes” and “maybe”
were coded as false. The purpose of this question is to see
how prevalent seeking information is in the real world.

Thinking about the simulation that you just used, what
could be done to make it easier to find information
about how apps access sensitive information?
We coded participants’ responses in multiple ways. First,
as binary values indicating contentment with the presented
design. Responses that affirmed that the user would change
nothing about the presented design was coded as true. Any
complaint or proposed suggestion was coded as false, as well
as responses with uncertainty, confusion, or ambivalence
(e.g., “I don’t know”). We further coded their responses for
those that had specific suggestions, using tags for the differ-
ent themes of their suggestions.

Each response was coded by two experienced coders working
independently, who then compared responses and recorded
the number of conflicts. The coders discussed and recon-
ciled the differences using the stricter interpretation given
the tasks. This produced the final coding of the data, which
is used in our analysis.

5. PILOT EXPERIMENT
Using the methodology outlined in the previous section, we
recruited 400 participants from Amazon’s Mechanical Turk
for a pilot experiment. We discarded 8 incomplete sets of
responses, leaving us with 392 participants. Our sample was
biased towards male respondents (65% of 392), however, a
chi-square test indicated no significant differences between
genders with regard to successfully completing each task.
Disclosed ages ranged from 19 to 69, with an average age of
33. In the remainder of this section, we describe our results
for each task, and then describe several changes we made to
TurtleGuard’s interface as a result of this initial experiment.
In all of our tasks we also asked participants to evaluate
perceived difficulty using a 5-point Likert scale.

Figure 3: In Task 1, participants in the control condition
could identify the most recent applications that requested
location data from within the Settings application. This was
also a valid method for Task 1 in the experimental condition
for the validation study.

5.1 Task 1: Recent Location Access
In the control condition, 84% of participants (167 out of 198)
correctly completed this task, whereas only 68% (132 out of
194) completed it correctly in the experimental condition.
This difference was statistically significant (χ2 = 14.391,
p < 0.0005), though with a small-to-medium effect size
(φ = 0.192). In both cases, answers were marked correct
if they mentioned both the Browser and ZvW applications
(Table 3). We examined the incorrect responses from the
experimental group. Of the 49 participants in this condi-
tion who tried but failed, 13 never opened TurtleGuard, and
over 73% (36 of 49) entered“Browser”and“Contacts”, which
were the first two applications listed (Figure 4) in the activ-
ity tab of the Permission Manager. The activity tab showed
recent resource accesses in a chronological order—“Browser”
has been denied a location request and “Contact” has suc-
cessfully accessed call logs.

Participants were unable to comprehend that the activity log
was not all about location. This confusion might also stem
from their familiarity with the location access panel in stock
Android, where only location access requests are presented
in chronological order. We hypothesize that this confusion
is addressable by redesigning the activity log to better dis-
tinguish between data types and allowed versus denied per-
mission requests. One possible solution is to create separate
tabs for allowed and denied requests, as well as to group sim-
ilar data types together (rather than presenting all activity
in chronological order).

5.2 Task 2: Finding Granted Permissions
In the second task, we asked participants to list all of the
data types that the ZvW application currently had access
to. We observed that 140 participants in the control con-
dition (70.7% of 198) and 116 participants in the experi-

7

Figure 4: Browser and contacts listed first; a likely reason
for incorrect answers in Task 1.

Condition Correct Incorrect

Task 1
control 167 (84%) 31 (16%)
experimental 132 (68%) 62 (32%)

Task 2
control 140 (71%) 58 (29%)
experimental 116 (60%) 78 (40%)

Task 3
control 86 (43%) 112 (57%)
experimental 153 (79%) 41 (21%)

Task 4
control 47 (24%) 151 (76%)
experimental 144 (75%) 49 (25%)

Table 3: Participants in each condition who performed each
task correctly during the pilot experiment.

mental condition (59.8% of 194) performed this task cor-
rectly. After correcting for multiple testing, this difference
was not statistically significant (χ2 = 5.151, p < 0.023).
However, despite the lack of statistical significance, we were
surprised that not more people in the experimental condi-
tion answered correctly. Upon investigating further, we no-
ticed several confounding factors that might have made this
task more difficult for people in this condition. First, while
the control condition displays the currently allowed permis-
sions as grayed-out text on the “App Info” page (Figure 5),
the experimental condition lists all requested permissions—
which is a superset of the allowed permissions (top-right of
Figure 2). Second, we noticed that due to an experimental
design error, the permissions requested by the ZvW app in
the experimental condition included several that are not in-
cluded in the options presented to participants (e.g., “Write
Contacts” and “Read Call Log”). These were were also dif-
ferent from the permissions seen by the control group. This
may have made this task confusing for these participants.

Figure 5: In Task 2, participants in the control condition
could identify the permissions granted to the ZvW applica-
tion by selecting the “Apps” panel from within the Settings
application, and then selecting the application, followed by
the “Permissions” panel.

5.3 Task 3: Finding Background Activity
In the third task, we asked participants whether the ZvW
application had the ability to access location data while not
actively being used. We observed that 86 participants in
the control condition (43% of 198) correctly answered this
question, as compared to 153 participants in the experimen-
tal condition (78% of 194). This difference was statistically
significant (χ2 = 51.695, p < 0.0005) with a medium effect
size (φ = 0.363). Thus, the new dashboard interface suc-
cessfully differentiated between foreground and background
permission usage.

5.4 Task 4: Limiting Background Activity
We observed that only 47 participants in the control con-
dition (23% of 198) correctly stated that this task was im-
possible. In the experimental condition, 144 (74% of 193)2

clearly articulated the steps that they would go through us-
ing the privacy dashboard to change location access from
“always” to “when in use.” This difference was statistically
significant (χ2 = 101.234, p < 0.0005) with a large effect
size (φ = 0.509).

5.5 Design Changes
Based on the results of our first two tasks, in which partici-
pants in the control condition were more likely to correctly
locate information about recent app activities and the per-
missions that apps had requested, we made several design
changes to the TurtleGuard interface. First, we split the ac-
tivity timeline into two separate tabs: recently allowed per-
mission requests, and recently denied permission requests.
Second, rather than showing all activity in chronological
order, the activity timeline is now categorized by resource

2One person could not load the iframe containing the sim-
ulation during this task.

8

Figure 6: TurtleGuard separates recently allowed (top left)
and denied (top right) permissions. The “Apps” tab lists the
allowed permissions of all apps (bottom left). Expanding an
app allows the user to make changes (bottom right).

type, with the events for each resource type sorted chrono-
logically). These changes can be seen in the top of Figure 6.

In addition to these changes, we also modified the apps tab
to show grayed-out allowed permissions for each app, similar
to the App Info panel in the default permission manager.
Due to the error we noted in the experimental condition in
Task 2, we made sure that all app permissions were the same
in both conditions.

Finally, we integrated TurtleGuard into the stock Settings
app, so that it appears as a panel labeled “Permissions Man-
ager” (Figure 10 in the Appendix). For consistency, when
participants in the experimental condition select the “Per-

Condition Correct Incorrect

Task 1
control 237 (82.6%) 50 (17.4%)
experimental 241 (82.5%) 52 (17.5%)

Task 2
control 232 (77.1%) 55 (22.9%)
experimental 226 (80.8%) 67 (19.2%)

Task 3
control 108 (37.6%) 179 (62.4%)
experimental 230 (78.5%) 63 (21.5%)

Task 4
control 79 (27.5%) 208 (72.5%)
experimental 224 (76.5%) 69 (23.5%)

Table 4: Participants in each condition who performed each
task correctly during the validation experiment.

missions” sub-panel from within the “App Info” panel (Fig-
ure 5, left), they are now redirected to TurtleGuard’s“Apps”
panel, pre-opened to the app in question (Figure 6, bottom
right).

6. VALIDATION EXPERIMENT
Following our pilot experiment and subsequent design changes,
we performed a validation experiment. In the remainder of
this section, we discuss our results (Table 4).

6.1 Participants
Because of several known biases in Mechanical Turk’s de-
mographics [29, 32, 23], we decided to compare a sample of
298 Mechanical Turk participants to a sample of 300 Pro-
lific Academic participants. Peer et al. recently performed
several studies on various crowdsourcing platforms and con-
cluded that the latter yields more diverse participants [30].
We limited both groups to participants based in the U.S.,
over 18, owning an Android phone, and having a 95% ap-
proval rating on their respective platform. After removing
18 incomplete responses, we were left with a combined sam-
ple of 580 participants. We analyzed the results from the
two groups, and discovered that the high-level findings (i.e.,
task performance) did not observably differ. For the remain-
der of our study, we therefore discuss the combined results.
Our sample was biased towards male respondents (63% of
580), however, a chi-square test indicated no significant dif-
ferences between genders with regard to successfully com-
pleting each task. Disclosed ages ranged from 19 to 74, with
an average age of 33. Participants performed the same tasks
as those in the pilot experiment.

6.2 Task 1: Recent Location Access
Recall that in this task, we asked participants to identify the
two most recent applications that accessed location data.
For the experimental condition, in addition to using the
same method as the control (navigating to the “Location”
sub-panel of the Settings app), participants could navigate
to the “Allowed” tab within TurtleGuard, and then examine
the“Location”permission to see the two most recent accesses
(top left of Figure 6). In the control condition, 237 partici-
pants (82.6% of 287) correctly completed this task, whereas
241 (82.5% of 293) completed it correctly in the experimen-

9

tal condition. A Wilcoxon Rank-Sum test revealed that this
difference was not statistically significant (p < 0.918).

Examining our instrumentation, we observed that most of
the participants in both conditions used the default method
of accomplishing this task (i.e., accessing the Location sub-
panel): 80.1% of those who answered correctly in the exper-
imental condition and 92.8% of those in the control condi-
tion. (There were fifteen participants in the control condi-
tion who answered correctly despite not accessing the panel—
likely by random guessing, and two who answered correctly
by exhaustively searching the “App Info” panels of installed
apps, to see which had been granted the location permission;
48 participants in the experimental condition used Turtle-
Guard to yield the correct answer.)

A total of 102 participants incorrectly answered the ques-
tion in Task 1. Of the incorrect responses, five participants
failed to properly navigate the emulator and wrote that the
emulator was broken or the buttons did not work; 9 partic-
ipants simply left it blank or wrote that they did not know.
From the other 88 participants who provided responses, 38
(43%) listed “App Store” as one of their selections, making
it the most-frequent error.

More specifically, 18 of the participants listed their answer
as “App Store” and “Browser”. We believe that this is be-
cause both the stock Android Apps Manager and Turtle-
Guard’s “Apps” tab (Figure 6, bottom) sorts the entries al-
phabetically, and by looking at the permissions available to
both these apps, the participant would see that both have
location access. Nevertheless, they are not the most recent
apps to access location data.

Overall, these results suggest that the changes we made af-
ter our pilot experiment resulted in marked improvements.
We further investigated this by examining participants’ per-
ceived ease-of-use, as measured using the 5-point Likert scale
(“very easy (1)” to “very difficult (5)”). In the experimen-
tal condition, 84 participants accessed TurtleGuard to com-
plete this task (regardless of whether or not they answered
correctly). We compared these 84 responses with the 463
responses from participants who only used the default Set-
tings panel (i.e., 195 in the experimental group and 268
in the control group). The median responses from both
groups was “easy” (2), however there was a statistically sig-
nificant difference between the groups (Wilcoxon Rank-Sum
test: Z = −3.9605, p < 0.0005), with a small effect size
(r = 0.17)—participants who used TurtleGuard found it
more difficult compared to the default Settings panel. This
difference appears to be due to those who performed the task
incorrectly: the median response for TurtleGuard users who
answered incorrectly was “difficult (4),” whereas it was “neu-
tral (3)” for other participants. This may actually be a good
thing: participants who confidently answered incorrectly are
at greater risk due to over confidence, whereas those who had
difficulty may be more likely to seek out more information.

6.3 Task 2: Finding Granted Permissions
In this task, participants had to locate the app’s allowed
permissions to discover that “location” was the only allowed
permission in both the experimental and control conditions.
This could be accomplished by viewing TurtleGuard’s Apps
tab (bottom of Figure 6) for those in the experimental con-
dition, or by viewing an app’s App Info panel from within

the Settings app (Figure 5), which was available to those in
either condition.

In total, 458 participants correctly performed this task (79%
of 580). Table 4 displays the breakdown of the results by
condition. A chi-square test did not yield statistically sig-
nificant results between the two conditions in terms of task
completion (χ2 = 0.984, p < 0.321).

Of the 226 experimental condition participants who per-
formed the task correctly, 127 (56.2%) did so by using Turtle-
Guard. In total, 145 experimental condition participants ac-
cessed TurtleGuard, and reported a median task difficulty
of “easy (2).” This did not significantly differ from the 375
other participants in both conditions who only examined the
default Settings panels to perform the task and also reported
a median difficulty of “easy” (Z = 1.808, p < 0.238); 60 par-
ticipants never opened Settings (10 of whom answered the
question correctly, likely due to random guessing).

6.4 Task 3: Finding Background Activity
To perform this task, participants in the control group had
to navigate to Settings, then the “Apps” panel, and view the
list of permissions corresponding to the ZvW application
(Figure 5). However, performing this sequence of steps still
did not guarantee they would answer the question correctly:
they needed to observe that location data was allowed, as
well as understand that this meant that location data could
be accessed by the app even when it is not actively being
used. Participants in the experimental condition answered
this question through TurtleGuard, which shows that the lo-
cation permission was listed as “Always” (Figure 6), thereby
eliminating the ambiguity.

We observed that 230 experimental condition participants
answered this question correctly (78.5% of 293), as com-
pared to only 108 control participants (37.6% of 287). A
chi-square test showed that this difference was significant
(χ = 97.914, p < 0.0005) with a medium-to-large effect size
(φ = 0.414). This observation corroborates Thompson et
al.’s findings [36] that users are largely unaware that apps
can access sensitive data when not in use. TurtleGuard,
however, was more effective at communicating this informa-
tion to participants. Among the participants in the experi-
mental condition, 24.57% took the extra step to click on the
location entry (bottom right of Figure 6) to see the other op-
tions available (Figure 2): always, when in use, and never.

Our instrumentation showed that 129 participants used Turtle-
Guard to perform this task, which suggests that 101 (34.5%
of experimental condition participants) still got it correct ei-
ther based on prior knowledge—a proportion consistent with
Thompson et al.’s findings [36]—or after having used Turtle-
Guard in preceding tasks. There were 383 participants who
completed the task by examining existing areas of the Set-
tings app, whereas 68 participants never bothered to open
Settings to complete this task. The median ease of use for
those who used TurtleGuard was “easy (2)”, while the me-
dian ease of use for those who used the default permission
manager was “neutral (3)”. This difference was statistically
significant (Z = −2.885, p < 0.004) with a small effect
size (r = 0.13). Participants in the control condition also
took significantly longer to complete the task: 49.63 seconds
versus 26.65 seconds. A Wilcoxon Rank-Sum test found
this difference to be statistically significant (Z = −5.239,

10

p < 0.0005, r = 0.22).

6.5 Task 4: Limiting Background Activity
Recall that Task 4 asked participants to describe the steps to
prevent an application from accessing location information
while the application was not in use, or to state that it is
not possible to prevent it. It is only possible to prevent it
using TurtleGuard.

In the experimental condition, 224 (76.5% of 293) explic-
itly stated how they would use TurtleGuard to change the
permission to “when in use”,3 whereas only 79 (27.5% of
287) control group participants correctly stated that this
task was impossible using the default permission manager.
This difference was statistically significant (χ2 = 137.14,
p < 0.0005) with a large effect size (φ = 0.49).

A majority of the participants (72.5%) in the control group
incorrectly believed that they could vary their decisions based
on the visibility of the application. The most common re-
sponses involved disabling location data altogether, prevent-
ing the app from running, or restricting “background data”:

• Settings > Apps > ZvW > Toggle Location Off

• Disable or Force Stop the Application

• Settings > Location > ZvW > Permissions > Toggle
Location Off

• Settings > Apps > ZvW > Data Usage > Restrict
Background Data

• Settings > Location > Toggle Location Off

A considerable portion (14%) chose to “restrict background
data,” which does something else entirely: it prevents data
surcharges while roaming on foreign networks. This is an-
other example of a disconnect between users’ mental models
and the true meaning of these configuration options. That
said, a small number of participants in the control condition
correctly stated that they would need to disable the app’s
location permission, and then re-enable it every time they
wanted to use that app, a tedious process that is prone to
forgetfulness—we treated this response as correct. Another
substantial portion in the control condition (46%) wanted to
block the location globally (from the default location panel)
or block the location access from ZvW app entirely. While
this is an overly restrictive option compared to when in use,
this the closest option provided in Android—we treated this
as an incorrect response.

As expected, participants in the control condition rated the
difficulty of this task as “neutral (3)”, whereas the median
Likert score from those in the experimental condition was
“easy (2)”. This difference was statistically significant with
a large effect size (p < 0.0005, φ = 0.49). The partici-
pants in the control condition who successfully completed
the task (e.g., by acknowledging it was impossible) strug-
gled immensely with it, evaluating it as “difficult (4)”.

7. USER PERCEPTIONS
After completing the four tasks, participants answered two
open-ended questions about whether they have looked for

3We used a very conservative rubric: 11 participants who
described using TurtleGuard, but did not explicitly use the
phrase “when in use,” were coded as being incorrect.

this type of permission information in the past, and whether
they have any suggestions to offer us about the design of the
interface they had just used. Two researchers independently
coded each question and then resolved conflicts. Cohen’s
inter-rater reliability score (κ) is provided for the coding
with each statistic.

7.1 Prior Experiences
Our first question asked: Thinking about the tasks that you
performed in this survey, have you ever wanted to find simi-
lar information about the apps running on your smartphone?

Our goal was to determine whether or not participants had
previously thought about resource access or configuring con-
textual privacy preferences, and therefore if having such fea-
tures would be beneficial. On average, 63.1% of partic-
ipants stated that they had thought about this (Cohen’s
κ = 0.792), and the experimental condition they were in
proved to be insignificant. We did, however, observe a posi-
tive correlation between performance on the four tasks (i.e.,
number of tasks performed correctly) and reporting hav-
ing previously thought about these issues (p < 0.007511,
r = 0.155).

Among the people who chose to be more detailed in their
responses, several themes emerged. A large portion men-
tioned that the reason they have tried these tasks before is
that they wanted to be able to exert more control over their
installed apps:

• “I was somewhat familiar with these menus already be-
fore starting this task. I like to have control over my
app permissions including location and data manage-
ment.”

• “Yes, I’ve often wanted a little more control over what
my apps get to access”

A minority of users expressed their frustrations on how the
current default user interfaces in Android were confusing
and did not let them set privacy preferences the way they
wanted to:

• “Yes but usually can’t find anything on there either like
these. So I gave up trying.”

• “Yes. I want to know what they collect, although it gets
tedious to try to figure it all out. Sometimes I’d rather
just ignore it.”

• “Yes. I haven’t had enough time to play with various
apps and/or permissions to understand their function-
ality without certain permissions. I feel like I’ve been
forced to assume certain permissions to ensure the app
in question works correctly.”

These comments highlight the fact that many users want to
have control over resource usage by applications, and that
many feel helpless to do so, given the options offered by
current privacy management interfaces. These observations
further strengthen the need for a more usable interface that
will help people to feel more empowered.

7.2 Suggestions
The second question asked: Thinking about the simulation
that you just used, what could be done to make it easier to

11

Changes No Changes

control 245 (85.4%) 42 (14.6%)
experimental 187 (63.8%) 106 (36.3%)

Table 5: Whether participants believed changes were needed
to the interfaces they used during the validation study.

find information about how apps access sensitive informa-
tion?

This question has two purposes: (i) to gather specific design
recommendations from participants who used TurtleGuard;
(ii) to get general suggestions from participants who used
the default permission manager.

In total, 66.03% of participants (383 of 580) suggested at
least some change or improvement (Cohen’s κ = 0.896). Ta-
ble 5 shows the breakdown of how many participants in each
condition prefer a change in the dashboard within their con-
dition. A chi-square test shows a statistically significant
association between a participant’s condition and whether
the participant wanted changes in how privacy is managed
(p < 0.00005, φ = 0.237). This suggests the participants in
the experimental condition are more satisfied with the con-
trols provided by the new design than those in the control
condition. Our work aims to fill the need users have regard-
ing control over permissions and their personal privacy.

The most common suggestion (32.24% of all participants)
was to reduce the number of layers to the actual permis-
sion interface (Cohen’s κ = 0.603). Participants complained
about number of different interfaces they had to traverse be-
fore reaching the actual permission interface. Many partici-
pants suggested that they prefer to reach respective the per-
mission control interface directly through the application—
either as part of the application or by pressing the app icon.
TurtleGuard addresses this frequent concern by providing a
path to permission management that involves fewer clicks
and centralizes all permission functionalities.

• “Streamline the interface to require less touches to find
the information about permissions and make it explicit
as to what type of data would be collected if allowed.”

• “Perhaps have an easier way to access the app’s set-
tings, such as holding onto an app’s icon will bring up
its specific settings.”

• “Make each app itself have the option to find that infor-
mation instead of going to the general phone settings.”

• “There should be one centralized location, or maybe an
app for that. Just to toggle with these very important
settings.”

• “Most of the tasks are easily found, but I would like a
setting that plainly shows whether the app can access
certain permissions only while it is being actively used.

Seven participants thought having a log of recent resource
usage by applications would be useful. Some went further,
mentioning that the log should also provide contextual cues,
such as the visibility of the application at the time it makes
the request. This finding provides evidence in support of
Liu et al. [21] that recent statistics help users make bet-
ter decisions. TurtleGuard provides this functionality with

a surrounding context, where the new interface shows all
the recent resource requests along with (i) the decision that
platform took on behalf of the users, (ii) the time that the
decision was made, and (iii) the visibility of requesting ap-
plication.

• “It would be useful to have a dashboard which shows
which apps are accessing what and when. Being able
to see a log of the actual data that was accessed would
also be useful.”

• “A log could be provided as an option in the settings
that shows all times an app accessed sensitive infor-
mation.”

A few participants (14.6%) also suggested that there should
be a tutorial, wizard style guide, or a FAQ to explain how
to manage permissions (Cohen’s κ = 0.651). Some wanted
the applications to explain why they need access certain re-
sources. Some even suggested runtime prompts for every
sensitive request access. The highlight of the responses was
the suggestion to hold a YouTube Q&A session on resource
usage after each release.

• “As the app is being introduced to the users, they should
make a youtube q&a to answer any simple questions
like this.”

• “Perhaps a wizard-style guide that can walk people through
the process.”

Prior work has already shown that having runtime prompts
on every sensitive request is not feasible [37]—we believe
that a log of recent resource accesses with surrounding con-
text is the closest practical solution, which TurtleGuard pro-
vides.

Interestingly, some of these suggestions show a lack of un-
derstanding of the Android permissions model. Some partic-
ipants suggested an integration into the actual application
itself, which is impossible until Android forces an API onto
the developers and reinforces their policies. Furthermore it
would fall into the hands of third party application develop-
ers to honestly enforce the permissions requested. Leaving
permission enforcement in the hands of third party devel-
opers is currently impossible and unreliable. Another user
recommended having a notification for every single resource
request by every application:

• “Make a pop-up every time an app is trying to access
information.”

• “PROVIDE A NOTIFICATION EVERY TIME AN
APP IS ACCESSING SUCH DATA.”

Studies have shown that there would be one sensitive per-
mission request every 6 seconds per participant–and that
would only be for sensitive permissions [38]. Notifying users
of every permission request would be infeasible and likely
cause annoyance to the users.

8. FURTHER IMPROVEMENTS
We plan to deploy TurtleGuard as part of a field study. Our
goal is to evaluate how TurtleGuard performs in the wild and

12

Figure 7: Crash Reporting panel

further improve on the existing model. To give users more
fine-grained control and provide them with more detailed
application information we made modifications to Turtle-
Guard that add the following features:

• Crash Reporting

• Location Granularity

• Statistics Reporting

8.1 Crash Reporting
Many third party applications are not equipped for dealing
with permission denials. If a user chooses to deny a per-
mission, our goal is to minimize the functionality loss of the
application by giving the application fake data. For exam-
ple, if an application is expecting a location coordinate, we
feed them a random or nearby location coordinate, protect-
ing the users’ real one.

By feeding third party applications fake data, there is al-
ways the possibility that the application will not accept the
fake data. This could be either the fake data is not rec-
ognized (invalid value), or that apps may even detect fake
data and crash when it suspects it. Upon an application’s
crash, it is imperative that users have a method to fix such
a crash. To address this in a future design, we give users an
interface through which they can understand and remedy
crashes caused by permission denials.

TurtleGuard will feature crash reporting (Figure 7). This
tab lists the applications that have recently crashed and
gives users the option to fix it by keeping track of the appli-
cation’s recently denied permissions. Recently denied per-
missions are the most likely culprit that caused an appli-
cation to crash, and therefore are the only ones listed. If
there were not any denied permissions, we do not list the
crash incident under the “Crashes” tab because it cannot be
fixed by Turtle Guard and is not a problem caused by feed-
ing the application fake data. If no permission was denied,
then no fake data was inputted. Upon clicking on a per-
mission, TurtleGuard attempts to fix the crash. It does so
by “allowing” the selected permission for that application.

Figure 8: New location granularity options

This will cover the scenarios where i) an application consid-
ers our fake data invalid, and ii) an application detects our
fake data and refuses to accept it by crashing. Upon allow-
ing the permission, the permission will be removed from the
list of permissions that may have resulted in the application
crash. This ensures that a user will not continuously try to
fix a permission that has already been set to allow.

8.2 Location Granularity
In the validation experiment, location was treated in the
same way as other permissions. Many mobile privacy studies
in the past have focused specifically on the location permis-
sion [4, 8, 34]. Location is a sensitive permission as deemed
by the users, and therefore should require more attention.
To this end, we add additional granularity options to the lo-
cation permission:

• Always (Real): always allow user’s exact location

• Always (City): always allow user’s city location

• Always (State): always allow user’s state location

• When in use (Real): allow user’s exact location
when in use

• When in use (City): allow user’s city location when
in use

• When in use (Never): allow user’s state location
when in use

• Never: never allow user’s location in any granularity

These options are reflected in Figure 8. By allowing users to
have more control over their location, they are still able to
retain application functionality while also protecting their
privacy. For example, an application that reports weather
does not need your exact location to work: the city level
granularity would function just the same. Many applications
base the information they present to you based on your gen-
eral location, rather than exact one. This would help users
protect their privacy by still allowing for full functionality
of the application.

13

Figure 9: Statistics display

8.3 Statistics Reporting
Users are frequently uninformed regarding application re-
source usage [13, 19]. We aim to inform users regarding ap-
plication permission usage, including request rates and types
of permissions requested. We accomplish this by keeping a
record of every time a permission is denied. We do this with
various levels of granularity such as just the permission, per-
mission and application, or permission, application, and vis-
ibility. This allows users to see the average denial rates, and
how many times a particular permission is requested by the
application. Not only does this bring awareness to the user,
it could also help users in making their decisions regarding
whether or not they want to allow a permission for a partic-
ular application and under what circumstances.

9. DISCUSSION
Our primary goal is to empower users to make privacy de-
cisions better aligned with their preferences and to keep
them informed about how third-party applications exercise
granted permissions, and under what circumstances. We
performed iterative design on a new permissions manage-
ment interface, TurtleGuard, which offers users significant
improvements in their ability to control permissions when
compared to the default permission manager.

Auditing Automated Decision Making Recent re-
search uses machine-learning techniques to automatically
predict users’ permission preferences [38, 21, 20, 22]. While
machine-learning (ML) techniques have been shown to be
better at predicting users’ preferences [38], they are still
prone to errors.

If systems are going to use ML in the future, there must be
mechanisms for users to audit the decisions made on their
behalves. We believe that the design we present in our study
is a critical first step towards achieving that goal. Partici-
pants using TurtleGuard are better able to understand and
control when apps have access to sensitive data than partic-
ipants using the default permission manager. A substantial
portion of participants mentioned the desire to have a log
that they could use to see how each application accesses sen-

sitive resources—functionality that is missing in the default
permission manager, but is provided by TurtleGuard.

Correcting Mental Models In Task 4, we asked par-
ticipants to turn off location permissions when the example
app, ZvW, was not actively being used, or to explain that
this was not possible. We found that 72.5% of the partici-
pants in the control condition incorrectly believed that this
was possible. Analyzing the different paths that participants
in the control condition took while using the Android sim-
ulation, it was evident that the majority of participants did
not understand the permission interface’s provided function-
ality (or the limits of that functionality). This mismatch
between users’ mental models and actual functionality may
lead to users into believing that they have denied access to
certain requests for sensitive data despite the fact that ap-
plications can access the data.

Privacy Nudges Previous work investigated ways to nudge
users to configure their privacy settings and make them
aware of how applications access their data [21, 15, 18].
While helping motivate users to use TurtleGuard (and other
privacy interfaces) is important, it is out of scope for this
work. Nevertheless, our survey results shows that 63.1% of
participants—independent of condition—previously searched
for permission information on their smartphones. This shows
that users are keen to understand how applications use their
sensitive resources, and interfaces similar to the one we present
in this study fill a critical need.

Conclusion Android’s existing permission models, ask-
on-install and ask-on-first-use, are insufficient at fulfilling
users’ privacy desires and needs. Neither of the existing
models factor context into their decisions, as they are a bi-
nary allow-or-deny decision. Users want to protect their
sensitive information, but have a hard time understanding
when access to data is and is not being allowed. Turtle-
Guard adds both ease of use and functionality, including the
ability to consider application visibility when specifying pri-
vacy preferences, which has been shown to be a strong con-
textual cue. We recruited participants to perform a study
of TurtleGuard: we had participants perform permission-
related tasks and compared the performance of participants
using TurtleGuard with a control group using the default
permission manager. Based on our results, we iterated on
TurtleGuard’s design, and then performed a validation ex-
periment to confirm those changes. Our results show that
users are significantly better at performing tasks with Turtle-
Guard than the default permission manager and offered fewer
suggestions for improving it.

10. REFERENCES
[1] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid,

A. Acquisti, J. Gluck, L. F. Cranor, and Y. Agarwal.
Your location has been shared 5,398 times!: A field
study on mobile app privacy nudging. In Proc. of the
33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 787–796. ACM, 2015.

[2] P. Andriotis and T. Tryfonas. Impact of user data
privacy management controls on mobile device
investigations. In IFIP International Conference on
Digital Forensics, pages 89–105. Springer, 2016.

[3] Apple. About privacy and location services for ios 8 and
later. https://support.apple.com/en-us/HT203033.

14

Accessed: March 4, 2017.

[4] L. Barkhuus. Privacy in location-based services,
concern vs. coolness. In Workshop on Location System
Privacy and Control at MobileHCI ’04, Glasgow,
Scotland, 2004.

[5] A. Barth, A. Datta, J. C. Mitchell, and
H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In Proc. of the 2006
IEEE Symposium on Security and Privacy, SP ’06,
Washington, DC, USA, 2006. IEEE Computer Society.

[6] M. Bokhorst. Xprivacy.
https://github.com/M66B/XPrivacy, 2015.

[7] CollegeDev. Donkeyguard. https://play.google.
com/store/apps/details?id=eu.donkeyguard, 2014.

[8] S. Consolvo, I. E. Smith, T. Matthews, A. LaMarca,
J. Tabert, and P. Powledge. Location disclosure to
social relations: why, when, & what people want to
share. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’05, pages
81–90, New York, NY, USA, 2005. ACM.

[9] S. Egelman, A. P. Felt, and D. Wagner. Choice
architecture and smartphone privacy: There’s a price
for that. In The 2012 Workshop on the Economics of
Information Security (WEIS), 2012.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In Proc.
of the ACM Conf. on Comp. and Comm. Sec., CCS
’11, pages 627–638, New York, NY, USA, 2011. ACM.

[11] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and
D. Wagner. How to ask for permission. In Proc. of the
7th USENIX conference on Hot Topics in Security,
Berkeley, CA, USA, 2012. USENIX Association.

[12] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99
problems, but vibration ain’t one: a survey of
smartphone users’ concerns. In Proc. of the 2nd ACM
workshop on Security and Privacy in Smartphones and
Mobile devices, SPSM ’12, pages 33–44, New York,
NY, USA, 2012. ACM.

[13] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention,
comprehension, and behavior. In Proc. of the Eighth
Symposium on Usable Privacy and Security, SOUPS
’12, New York, NY, USA, 2012. ACM.

[14] H. Fu and J. Lindqvist. General area or approximate
location?: How people understand location
permissions. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, pages 117–120.
ACM, 2014.

[15] H. Fu, Y. Yang, N. Shingte, J. Lindqvist, and
M. Gruteser. A field study of run-time location access
disclosures on android smartphones. Proc. USEC, 14,
2014.

[16] Google. Normal and dangerous permissions.
https://developer.android.com/guide/topics/

permissions/requesting.html#normal-dangerous.

[17] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from
imperious applications. In Proc. of the ACM Conf. on
Comp. and Comm. Sec., CCS ’11, pages 639–652, New
York, NY, USA, 2011. ACM.

[18] L. Jedrzejczyk, B. A. Price, A. K. Bandara, and

B. Nuseibeh. On the impact of real-time feedback on
users’ behaviour in mobile location-sharing
applications. In Proceedings of the Sixth Symposium
on Usable Privacy and Security, page 14. ACM, 2010.

[19] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,
N. Sadeh, and D. Wetherall. A conundrum of
permissions: Installing applications on an android
smartphone. In Proc. of the 16th Intl. Conf. on
Financial Cryptography and Data Sec., FC’12, pages
68–79, Berlin, Heidelberg, 2012. Springer-Verlag.

[20] H. Lee and A. Kobsa. Privacy Preference Modeling
and Prediction in a Simulated Campuswide IoT
Environment. In IEEE International Conference on
Pervasive Computing and Communications, 2017.

[21] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi,
S. A. Zhang, N. Sadeh, Y. Agarwal, and A. Acquisti.
Follow my recommendations: A personalized assistant
for mobile app permissions. In Twelfth Symposium on
Usable Privacy and Security (SOUPS 2016), 2016.

[22] B. Liu, J. Lin, and N. Sadeh. Reconciling mobile app
privacy and usability on smartphones: Could user
privacy profiles help? In Proceedings of the 23rd
International Conference on World Wide Web, WWW
’14, pages 201–212, New York, NY, USA, 2014. ACM.

[23] W. Mason and S. Suri. Conducting behavioral
research on amazon’s mechanical turk. Behavior
Research Methods, 44(1):1–23, 2012.

[24] D. Mate. Permission master.
https://play.google.com/store/apps/details?id=

com.droidmate.permaster, 2014.

[25] M. McLaughlin. What is lineageos. https:
//www.lifewire.com/what-is-cyanogenmod-121679,
2017.

[26] H. Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 79:119, February 2004.

[27] A. Oglaza, R. Laborde, A. Benzekri, and F. BarrÃĺre.
A recommender-based system for assisting
non-technical users in managing android permissions.
In 2016 11th International Conference on Availability,
Reliability and Security (ARES), pages 1–9, Aug 2016.

[28] K. Opsahl. Uber should restore user control to location
privacy. https://www.eff.org/deeplinks/2016/12/
uber-should-restore-user-control-location-privacy,
12 2016.

[29] G. Paolacci and J. Chandler. Inside the turk. Current
Directions in Psychological Science, 23(3):184–188,
2014.

[30] E. Peer, L. Brandimarte, S. Samat, and A. Acquisti.
Beyond the turk: Alternative platforms for
crowdsourcing behavioral research. Journal of
Experimental Social Psychology, 70:153–163, May 2016.

[31] X. M. Repository. http://repo.xposed.info/,
http://repo.xposed.info/.

[32] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and
B. Tomlinson. Who are the crowdworkers?: Shifting
demographics in mechanical turk. In CHI ’10
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’10, pages 2863–2872, New York,
NY, USA, 2010. ACM.

[33] J. L. B. L. N. Sadeh and J. I. Hong. Modeling users’
mobile app privacy preferences: Restoring usability in
a sea of permission settings. In Symposium on Usable

15

Privacy and Security (SOUPS), 2014.

[34] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley,
M. Prabaker, and J. Rao. Understanding and
capturing people’s privacy policies in a mobile social
networking application. Personal and Ubiquitous
Computing, Forthcoming 2008.

[35] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, and
H. Borgthorsson. Leakiness and creepiness in app
space: Perceptions of privacy and mobile app use. In
Proc. of the 32nd Ann. ACM Conf. on Human Factors
in Computing Systems, CHI ’14, pages 2347–2356,
New York, NY, USA, 2014. ACM.

[36] C. Thompson, M. Johnson, S. Egelman, D. Wagner,
and J. King. When it’s better to ask forgiveness than
get permission: Designing usable audit mechanisms for
mobile permissions. In Proc. of the 2013 Symposium
on Usable Privacy and Security (SOUPS), 2013.

[37] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android permissions
remystified: A field study on contextual integrity. In
Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’15, pages 499–514, Berkeley,
CA, USA, 2015. USENIX Association.

[38] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon,
S. Egelman, D. Wagner, and K. Beznosov. The
feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences. arXiv
preprint 1703.02090, 2017.

APPENDIX

Condition Correct Incorrect All

Task 1
control 2 3 2
experimental 2 4 2

Task 2
control 2 3 3
experimental 2 3 2

Task 3
control 2 4 3
experimental 2 3 2

Task 4
control 4 2 3
experimental 2 2 2

Table 6: Median ease-of-use Likert scores for all tasks, con-
ditions, and correctness. Higher scores indicate more diffi-
culty.

16

Figure 10: In the pilot experiment, TurtleGuard was
launched via the icon labeled “Privacy Manager” (top left),
but then added as a sub-panel to the Settings app, labeled
“Permissions Manager,” for the validation experiment (top
right). In the control condition in the pilot experiment and
both conditions in the validation experiment, the Settings
app was accessible from the home screen (bottom).

Figure 11: Ease of use histograms for each task

17

Figure 12: Ease of use histogram for Task 1 Figure 13: Ease of use histogram for Task 2

18

Figure 14: Ease of use histogram for Task 3 Figure 15: Ease of use histogram for Task 4

19

