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ABSTRACT
Accurate localization is a critical enabling technology
for sensor networks and context awareness in the In-
ternet of Things. As localization plays an increasingly
safety-critical role in applications, engineers must have
confidence in the validity of location data. In this pa-
per we consider the sensor network localization prob-
lem with noisy distance measurements and propose a
method to detect adversarially corrupted values. Our
algorithm, Gordian SMT, rapidly finds attacks on dis-
tance measurements by identifying geometric inconsis-
tencies at the graph level without requiring assumptions
about hardware, ranging mechanisms or cryptographic
protocols. We give the necessary and sufficient condi-
tions for which attack detection is guaranteed to be pos-
sible in the noiseless case, and present Gordian SMT
as a sound and complete algorithm for well-posed noise-
less input. We extend Gordian SMT to the case of
noisy measurements where our empirical analysis shows
good performance at a run-time several orders of mag-
nitude faster than the naive brute force algorithm.

1. INTRODUCTION
Accurate real-world location data are already cru-

cial input for cyber-physical systems and stand to be-
come even more important in the coming Swarm [18] of
ubiquitous computing devices. Location-based services
with dynamic functionality for users in different places
are an exciting possibility for the Swarm, but are sub-
ject to dangerous failure-modes when location informa-
tion is incorrect. Consider a home automation system
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complete with smart locks that automatically unlocks
the doors when it detects a resident is approaching the
house from the outside. A malicious adversary could
break into the home if he/she were to trick the system
into thinking the resident is outside when in fact the
resident is away, or lock the resident outside by “trans-
porting” the resident somewhere distant when he/she
is trying to legitimately enter the house. An adversary
might crash a driverless car with a similar ploy.

Fortunately, in a ubiquitous computing world there
are many sensors embedded in the environment, and
many sources of localization data. If used to their full
capacity, these sources could provide a great deal of re-
dundancy in position estimation to aid in preventing
location-attacks. We explore this scenario in this paper
through the lens of sensor network localization: distance
measurements are known between Swarm devices (sen-
sors), only some of which have known locations, and we
seek to localize the entire network in the presence of
corrupted measurements.

We propose Gordian SMT1, an attack detection
and localization method , to rapidly identify inconsis-
tencies in localization data. Detecting and mitigating
attacks on sensor data is, in general, a combinatorial
problem [25], which has been typically addressed by
either brute force search, suffering from scalability is-
sues [25], or via convex relaxations using algorithms
that can terminate in polynomial time [8] but are not
necessarily sound. On the other side, recent advances in
combinatorial search techniques and in particular those
used in Satisfiability Modulo Theories (SMT) solvers
showed how combinatorial problems can be cast into
smaller problems that can be solved efficiently. How-
ever, current state-of-art SMT solvers cannot handle
those problems that arise in the area of localization in
sensor networks.

Gordian SMT is an attack detection algorithm at
the distance-graph abstraction level that requires no
custom hardware, no special nodes, and no specific rang-
ing techniques. We empirically show it to be orders of
magnitude faster than the brute force equivalent. The

1The name Gordian SMT is a reference to a legend of
Alexander the Great in which he“untied”the impossible
Gordian knot by slicing it in half with his sword.



algorithm is sound and complete for a class of noiseless
secure localization problems we define in this paper, and
can be extended with useful results to the noisy domain.

In Section 2 we introduce conventional and secure
localization algorithms, define our formal model of a
sensor network and introduce rigidity theory. Next in
Section 3 we identify and prove the necessary and suf-
ficient conditions for Gordian SMT’s correct behav-
ior in the noiseless case. We present Gordian SMT’s
architecture in Section 4 and elucidate the algorithms
for localization graph embeddability testing and coun-
terexample generation. We extend Gordian SMT to
the noisy case in Section 5, prove the soundness of noisy
embeddability testing, and discuss the noisy conditions
needed for correct Gordian SMT performance. An
empirical evaluation is given in Section 6 and we con-
clude in Section 7.

2. BACKGROUND AND RELATED WORK
Researchers have proposed a wide variety of localiza-

tion methods [22] including techniques as diverse as RF
signal strength and fingerprinting [11, 27], propagation
time of an ultrasonic pulse [16,26], and range-free tech-
niques [10]. Many of these techniques assume complete
trust of the entire localization system. The field of se-
cure localization goes a step further to explore methods
that work in the presence of malicious attacks.

2.1 Secure Localization in Sensor Networks
According to Zeng et al.’s survey of secure localiza-

tion [33], methods in the literature fall into three broad
categories: prevention methods which prevent the sen-
sor network from collecting bad data in the first place,
detection methods which identify and remove bad local-
ization data, and filtering methods which are robust to
bad localization as part of the localization procedure.
Under this taxonomy, Gordian SMT is a centralized
detection method designed to identify and eliminate
range-change attacks (i.e. attacks that corrupt inter-
node distance measurements) at the location determi-
nation step.

Prevention schemes usually require special-purpose
hardware on nodes, or specific ranging techniques. SeR-
Loc [17] for example requires directional antennas. Other
techniques assume the sensing mechanism used in rang-
ing prohibits an adversary from shrinking range mea-
surements (such as RF time of flight). This property,
known as distance bounding, is the key requirement for
Verifiable Multilateration [6] inspired techniques.

Detection methods in the literature such as [20] focus
on identifying malicious nodes by catching them in a lie.
In Liu et al.’s scheme, some sensors with known position
pretend to be unlocalized. If the ranging information
they receive from another node is incorrect, foul play is
evident.

Filtering methods attempt to perform accurate local-
ization in the presence of attacks. Li et al. [19] propose

localization via least median squares (LMS) instead of
the more typical least squares (LS) approach. If attacks
always appear as statistical outliers, Li et al.’s method
will filter them out. Similarly, Liu et al. propose an AR-
MMSE scheme in which nodes vote for plausible rect-
angles consistent with their observations [21].

Gordian SMT has advantages over existing secure
localization techniques in the following respects: It re-
quires no specialized hardware or assumptions for trust
beyond the anchor positions needed for basic localiza-
tion. Like filtering algorithms Gordian SMT can be
used at the location computation stage, but because
it detects attacks rather than filtering them, Gordian
SMT can be used in conjunction with state-of-the-art
trusted localization algorithms such as [3]. Finally, Gor-
dian SMT has theoretical grounding in rigidity the-
ory [7] which allows a deeper analysis of vulnerabilities
to which the method is susceptible.

2.2 Rigidity and Unique Localizability
We apply a simple and common model [1,4,7,9,21,24,

27,30,32] of a sensor network: Incomplete pairwise dis-
tance measurements are known between sensors. Some
sensors, referred to as anchors, have known positions
and other unlocalized sensors do not. There are numer-
ous (mostly equivalent) formulations of this setup in
the literature, but somewhat arbitrarily we have chosen
Anderson et al.’s problem statement [1].

We assume a set of N nodes representing sensors
S = {s1, s2, . . . , sN} with S = {1, 2, ..., N} as their in-
dex set. Sa ⊆ S represents anchor nodes with a priori
known locations. The rest, Sx = S \ Sa, have unknown
locations. The distance from node si to sj is given by
dij . An undirected graph G = (S,E) is a natural choice
of model for the sensor network where the sensor nodes
are treated as graph nodes and weighted edges E repre-
sent distance measurements. Let Ea ⊆ E represent the
edges (i, j) such that both i, j ∈ Sa and Ex = E \ Ea.
Define a framework F := (G, p) where p : S → R2,
a “placement”, assigns coordinates p(si) ∈ R2 to each
sensor node. When ‖p(si) − p(sj)‖ = dij ∀(i, j) ∈ Ex,
the framework is consistent. For our purposes, p∗ rep-
resents the ground truth positions of the nodes, and p
represents the positions we are trying to infer. For the
remainder of this paper we will make a minor abuse of
notation and use p(i) to represent p(si).

Perhaps the most important question to ask about a
framework in the context of attack detection is whether
or not the framework corresponds to a unique embed-
ding. This is known as Unique Localizability (UL). If
a framework corresponds to two distinct embeddings in
the absence of attack, an adversary does not have to
take any action to create ambiguity in the localization
result.

Eren et al. [7] were the first to identify rigidity as
the link between sensor network localization, the above-
mentioned mathematical concept of a framework, and
the theory of structures from mechanical and civil engi-



neering. The mechanical analogue of rigidity is easiest
to visualize: consider a collection of solid metal rods
connected to each other at flexible joints. Mechanical
and civil engineers are interested to know if such a struc-
ture will continuously deform as force is applied to a
point. Deformation is probably desirable in a robotic
leg, but potentially catastrophic in a sky scraper. If we
replace joints with sensors and metal rods with our dij
terms, there is a strong metaphor between distorting a
structure and finding an ambiguous embedding of the
network.

To formalize this notion, we again borrow the lan-
guage of [1]. Two frameworks (G, p), and (G, p′) are
equivalent if ‖p(i)− p(j)‖ = ‖p′(i)− p′(j)‖ ∀(i, j) ∈ E.
There is a stronger property: (G, p), and (G, p′) are
congruent when ‖p(i)− p(j)‖ = ‖p′(i)− p′(j)‖ ∀i, j re-
gardless of whether or not (i, j) ∈ E. Equivalent, but
non-congruent frameworks are ambiguous. With these
definitions in hand, (G, p) is rigid if when (G, p) is equiv-
alent to (G, p′) and ‖p(i) − p′(i)‖ < ε ∀i ∈ S for some
positive ε, then the two frameworks are congruent.

Intuitively, this states that a rigid network does not
have an infinite family of ambiguous embeddings in the
neighborhood of the ground truth. However as demon-
strated by the rigid frameworks depicted in Figure 1,
a rigid framework does not exclude all ambiguities pro-
vided they are at least ε distant from p. The two frame-
works depicted in Figure 1(a) are equivalent to each
other, but they are not congruent (e.g. ‖p(2)− p(3)‖ >
‖p(2′) − p(3)‖). A rigid structure is resistant to pla-
nar deformations, but clearly this is insufficient for con-
gruence. Figure 1 represents two varieties of rigid am-
biguities: (a) a flip ambiguity obtained by rotating a
graph component through a third dimension and (b) a
discontinuous flex ambiguity obtained by temporarily
removing an edge, deforming the graph, and snapping
the removed edge back into place.

Figure 1: An illustration of ambiguous rigid embeddings
from [9], (a) flip ambiguity and (b) discontinuous flex
ambiguity.

Whether or not a framework is rigid in two dimen-
sions can be determined by way of the well known Laman
Theorem [14] and can be tested in polynomial time with
the Pebble Game algorithm [13]. In this paper we will

keep the discussion of rigidity at a high level, but we
refer the interested reader to [1, 7] for a thorough pre-
sentation.

A globally rigid framework can be identified by the
following topological conditions: G is 3-connected (at
least three edges must be removed to partition G) and
G is redundantly rigid (any one edge may be removed
fromG and the resultingG′ is still rigid) [12]. A globally
rigid framework is UL if it is also generic, i.e. the coor-
dinates of p are algebraically independent over the ra-
tionals. Essentially, the generic requirement forces the
framework not to correspond to a ground truth configu-
ration that is entirely co-linear or otherwise degenerate.
Such a globally generically rigid framework is UL and
ambiguity free.

2.3 Problem Statement
The exact localization problem is the following task:

Given a graph G along with the p∗(si) values for all
i ∈ Sa, find a p : S → R2 that assigns coordinates
p(si) ∈ R2, such that p∗(si) = p(si) ∀i ∈ Sa and
‖p(si) − p(sj)‖ = dij ∀(i, j) ∈ Ex. We refer to such
a p as an embedding because if it exists for a G we have
succeeded in consistently embedding G in R2.

For our purposes, the embedding is 2-dimensional be-
cause certain technical conditions (specifically, Laman’s
Theorem) have no complete analogue in three dimen-
sions [7].

Because the frameworks we consider are meant to rep-
resent real sensor networks for which there ought to ex-
ist a consistent p∗, the exact localization problem should
always have at least one solution. Observe that this is
not true in general without this assumption: for exam-
ple, if a framework were to have distance values that
violated the triangle inequality. Such a framework has
no embedding, but also does not represent any possible
ground truth sensor network so we would reject it as an
ill-formed input to the exact localization problem.

2.4 Threat Model
In the context of attack detection, we consider two

agents: the system who attempts to localize the frame-
work by finding a p that corresponds to the ground
truth placement of sensors in the world, and the ad-
versary who modifies the framework with the goal of
causing the system to incorrectly localize one or more
sensors to the wrong locations. The threat model we
consider in this paper does not allow the system to di-
rectly use dij values from the ground truth distances.
Instead, the system has access to indirect measurements
mij = dij · (1 +nij) +aij . The nij terms represent mul-
tiplicative noise in the distance obtained from the sys-
tem’s observations of dij . In the exact (noiseless) case,
nij = 0 and in the noisy case, nij ∈ [−h, h] for some
positive real 0 ≤ h < 1.

The aij ∈ R terms are controlled by the adversary
who does not have access to the nij values. Furthermore
for some k ∈ N we assume |{aij : aij 6= 0}| ≤ k. An edge



(i, j) is “clean” if aij = 0 and “corrupted” when aij 6= 0.
We assume from the system’s perspective there is no
otherwise distinguishing feature between clean and cor-
rupted edges. The attack detection problem is the task
of identifying the corrupted measurements and solving
the localization problem with the remaining clean (un-
corrupted) mij .

3. ATTACK DETECTION

3.1 Localization Algorithms
Localization algorithms attempt to solve the local-

ization problem (finding a p consistent with the dij),
which may appear difficult considering that the problem
of determining if a graph has an embedding (that pre-
serves the dij) is known to be NP hard [28]. Researchers
tackle intractability through two broad classes of meth-
ods: local methods that enable each node to determine
its location from its neighbors and global methods that
simultaneously localize all nodes from an external per-
spective to the network. Gordian SMT makes use of
both.

The most basic local algorithm, provided by Eren et
al. is iterative trilateration, but it is only possible for
a specific kind of trilateration graph. The definition of
a trilateration graph is given in [7], but informally it
can be thought of as a graph that admits the following
localization procedure: Begin with a set of three nodes
{si, sj , sk} with known location (initially these can be
anchor points). Find a node, sn, that is currently with-
out known location and is connected to three nodes si,
sj , and sk in the known set. Draw three circles cen-
tered p(i), p(j), and p(k) with radius din, djn, and dkn
respectively. The value of p(n) is given by the unique
intersection of the circles. Add sn to the known set,
and repeat the above procedure.

An advantage of this procedure is Eren et al. prove
trilateration graphs are uniquely localizable, and can be
localized in polynomial time. However the procedure is
incomplete and fails to localize a broad class of uniquely
localizable graphs such as bipartite and wheel (see Fig-
ure 2) graph formations. Furthermore this method has
significant error problems in the presence of noisy mea-
surements [24]. Other incremental methods such as an
iterative procedure for bilateration graphs [9] have been
proposed to localize wheel graph formations in sparse
networks, but these suffer an exponential blow up when
handling wheel graphs, and still fail to localize bipartite
graphs.

Alternatives to the iterative localization methods dis-
cussed above use some sort of optimization framework
to localize all nodes at once [1,3,4,30]. Although actual
formulations vary, these approaches frame localization
as an optimization problem and (very broadly speak-
ing) aim to minimize the sum of some sort of squared

errors resembling

min
p(i),i∈Sx

∑
(i,j)∈Ex

∣∣‖(p(i)− p(j)‖2 −m2
ij

∣∣ . (3.1)

where p(i) ∈ R2 is a decision variable representing the
estimated location of sensor i, and mij is the measured
distance between i and j.

These methods commonly rely on a relaxation of the
general optimization problem stated in (3.1) from a non-
convex program in two dimensions to a Semidefinite
Program (SDP) in a higher dimensional space (refer to
(4.5) for the statement of the SDP used by Gordian
SMT). The relaxation was first proposed by Biswas and
Ye [4] with good empirical performance, then proved
by So and Ye [30] to have important theoretical con-
nections to rigidity and UL. Most significantly, So and
Ye show that the optimum value of the SDP is 0 if the
problem is UL.

Although a slight departure from the localization al-
gorithms in the rest of this section, Yang et al. demon-
strate in [32] how rigidity can be used to identify outlier
distance measurements. Their scheme uses the sweeps
algorithm from [9] to find inconsistent edges in rigid
subgraphs and is a major influence on the direction of
our research. However, Yang et al.’s methods are not
applicable to intelligent attackers who are able to specif-
ically tune the size of errors to match alternative graph
realizations such as in Figure 3.

Figure 2: An illustration of a uniquely localizable wheel
graph that cannot be localized through iterative trilat-
eration. Image courtesy of [7].

3.2 Attack Tolerance
As mentioned in the discussion on rigidity, there are

certain graph properties that must be present for the lo-
calization problem to be well-posed even in the absence
of attacks. It should be no surprise then, that stronger
properties are required for the attack detection problem
to be well-posed in the presence of attacks. A frame-
work is k-attack tolerant (k-AT) when it is well-posed
for the attack detection problem (i.e. it is always pos-
sible for the system to identify corrupted edges) in the
presence of up to k attacks in the absence of noise.

First we provide the intuition. Figure 1(a) is obvi-
ously not well-posed for attack detection because as ev-
idenced by the two consistent embeddings, it is not even
UL. However, neither is Figure 3, and the latter is UL.



It appears some redundancy is needed in a UL graph to
achieve AT, but Figure 4 shows a single redundant edge
and this is still not enough to identify the corrupted
edge. An attack is evident to the system in Figure 4,
but it is unclear if the attack is on m4,7 or on m8,7.

Figure 3: A UL graph that is 0-AT. Observe that a
clever adversary corrupting the edge from node 4 to 7
can control which of two consistent placements are real-
ized by the system with no perceptible inconsistencies.

Figure 4: A 0-AT graph that is unembeddable in the
presence of one attack. It is impossible to decide
whether the red edge or the green edge is corrupted,
although it is evident one of the two has been modified.

Clearly, there is a relationship in these graphs be-
tween attack tolerance and redundancy in connections.
We can formalize this idea. A framework is n redun-
dantly UL (n-UL) when after the removal of any n edges
the remaining subgraph is still UL. Armed with this def-
inition, we present the following theorem.

Theorem 1. A framework F is k-AT if and only if
it is 2k-UL.

Proof (Necessity). Recall from the definition of
UL, that a UL graph is redundantly rigid. Therefore
2k-UL actually provides 2k+1 redundancy to the rigid-
ity. We give a counterexample F in Fig. 5with 2k−1-UL
that is not k-attack tolerant. This is evident because the
triangular structure in the center is rigid and node A is
connected to the rest of the graph by 2k edges, imply-
ing 2k redundant rigidity and (as it is 3-connected and
generic), 2k− 1-UL. All k corrupted edges in the graph

come out of the totally connected network on the left
and attempt to drag node A to its flip position on the
other side of the triangle. Another k clean edges are
accurately connected to node A in its true position on
the right side of the triangle. Like in figure 4, it is im-
possible to distinguish from G′ alone if the k edges from
the totally connected network on the left are corrupted
and A’s true position is to the right of nodes C and B
or if the k edges from the totally connected network on
the right are corrupted and A ought to be located to
the left of nodes C and B. Therefore F is not k-AT.

Figure 5: A counterexample graph with 2k− 1-UL that
is not k-AT. To see this, remove 2k − 1 edges from the
unlocalized node - the result is minimally UL because
it is connected to three anchors.

We make use of the following lemma in our proof of
the sufficient direction.

Lemma 2. A framework F that is k-UL with 1 ≤
m ≤ k non-trivial attacks is unembeddable.

Proof. Construct F ′ by removing the attacked edges
from F . F ′ is UL and has a unique embedding, p = p∗.
Now consider a hypothetical embedding for F . It must
be consistent with both the clean edges in F ′ and the
attacked edges, but this is impossible because any non-
trivial attack is inconsistent with p. Since F ′ has no
other consistent embedding, F is unembeddable.

Proof (Sufficiency). We give an (inefficient) al-
gorithm for identifying the attacks in F . Construct an
F ′ by removing any k edges from the graph. Maybe all
of the attacked edges were removed, maybe not. If some
or all of the attacked edges remain, F ′ is still k-UL, so by
Lemma 2 it is unembeddable. If they were all removed,
F ′ is embeddable and the attack is a subset of the re-
moved edges. Enumerate all combinations of k edges
and the attack can be identified as the minimal attack
hypothesis that yields a consistent framework.

Our empirical results in section 6 suggest the nec-
essary direction of theorem 1 should be taken with a
grain of salt: Gordian SMT is usually effective even
for densely connected UL frameworks that aren’t 2k-
UL. For these frameworks, the theoretical guarantee of
correctness is lost, but the outcome is still usually suc-
cessful.

4. GORDIAN SMT



Algorithm 1 Attack Detection

1: procedure AttackDetection( Graph)
2: for mij ∈M do
3: Declare pseudoboolean variable bij . 1 represents corrupted, 0 represents clean

4: C ←
∑

(i,j)∈Ex
bij ≤ k . C is the set of pseudoboolean SAT clauses

5: while Satisfiable( C) do
6: AttackHypothesis← GetSatisfyingAssignment( C)
7: CleanedGraph← Graph \ {mij : AttackHypothesis(bij) = 1}
8: (TestResult, SortedHighResidueEdges)← EmbeddabilityTest(CleanedGraph)
9: if TestResult = IsEmbeddable then

10: return AttackHypothesis . True attack believed to be subset of AttackHypothesis
11: else
12: NewC← GenCounterexamples(SortedHighResidueEdges)
13: if IsEmpty(NewC) then
14: NewC←

∨
(i,j)∈CleanedGraph bij . Use trivial counterexample as learned conflict clause

15: C ← C ∪ NewC
16: return Failure

4.1 Design: Lazy SMT
Gordian SMT architecture follows the lazy Satisfia-

bility Modulo Theories (SMT) paradigm [2], like Shourky
et al.’s lazy SMT solver for secure state estimation in
the presence of attacks: Imhotep [29]. Imhotep’s chief
insight is that identifying attacks in state estimation
problems involves a combinatorial attack identification
sub-problem that can be isolated from an otherwise con-
vex optimization problem. Gordian SMT can be seen
as a application of the Imhotep approach from linear
systems to the range-based nonlinear localization prob-
lem described in this paper. However, instead of using
slack variables to identify bad sensors as in [29], we ap-
ply a graph-rigidity specific method outlined in Sec. 4.3.

We present Gordian SMT’s high level workflow in
algorithm 1: Assume we begin with a graph satisfying
the UL+2k condition from Theorem 1. Gordian SMT
assigns a Boolean variable to each edge of the graph
with a 1 indicating that the edge is corrupted and a 0
that the edge is accurate. Initially the SAT solver is only
given the constraint there are fewer than k attacks in the
graph, but as time progresses it acumulates counterex-
ample clauses learned from the EmbeddabilityTest
and GenCounterexamples. In the noiseless problem
statement, the SAT solver should always be able to find
a satisfying assignment: if it cannot, there is a violation
in the assumptions of the algorithm, such as too many
corrupted edges.

Gordian SMT’s design is modular and does not de-
pend on the implementations of the Satisfiable, Em-
beddabilityTest, and GenCounterexamples func-
tions in algorithm 1. Considering any modern out-of-
the-box pseudoboolean SAT solver could be used to im-
plement Satisfiable we will instead elaborate on the
other more exotic problems.

4.2 Noiseless Embeddability Test

We will show in this section how to frame the em-
beddability (and localization) problem as a convex op-
timization problem. An efficient implemenatation mat-
ters here because in our experience, embeddability test-
ing takes orders of magnitude longer than SAT solv-
ing. At first glance, this may appear odd - that the NP
problem (SAT) runs faster than a convex optimization
problem - but can be explained by the relative size of
the problems.

For clarity, we will first discuss the implementation
of the embeddability solver in the noiseless case. We
discuss the noisy implementation in section 5.

We rely on a key result from [30]: UL frameworks
with no attacks can always be localized in the plane
with a zero cost solution from the relaxed SDP local-
ization algorithm from [3]. In consideration of lemma 2,
attacked graphs have no consistent embedding and will
yield a nonzero cost when tested by the same local-
ization algorithm. Therefore to test embeddability we
must simply run the localization algorithm and check
the optimal cost value against zero. If we assume the in-
put to Gordian SMT is a noiseless k-attack detectable
framework with no more than k corrupted edges, this
will yield the desired result.

We outline the SDP procedure: Let the unknown p(i)
for i ∈ Sx be decision variables and define

X = [p(1), p(2), ..., p(|Sx|)]

as the 2× |Sx| matrix of decision variables obtained by
stacking the first and second coordinates of the p(i).
Also, let ηi ∈ {0, 1}n be a unit column vector whose
i-th component is 1 and all other components 0, and
aj ∈ R2 be the position of anchor node j. The pairwise
distance between si and sj can be represented as:

‖p(i)− p(j)‖2 = (ηi − ηj)TXTX(ηi − ηj). (4.1)



and the distance between sensor si and anchor sj

‖p(i)− p(j)‖2 = (Xηi − aj)T (Xηi − aj) (4.2)

=
[
ηTi −aTj

] [XTX XT

X Id

] [
ηi
−aj

]
.

We define gij =

[
ηi − ηj

0

]
if both si and sj are sen-

sors, and gij =

[
ηi
−aj

]
if either of si and sj is an an-

chor. Now, the squares of sensor-sensor distance (4.1)
and sensor-anchor distance (4.2) can be uniformly rep-
resented as

mij =

∣∣∣∣gTij [XTX XT

X Id

]
gij

∣∣∣∣ . (4.3)

where Id is a 2× 2 identity matrix. With this represen-
tation for the aggregate ‖p(i)− p(j)‖2, we can set up
an optimization problem of the form in (3.1).

min
X,Y

∑
(i,j)∈Ex

∣∣∣∣(gTij [Y XT

X Id

]
gij −m2

ij

)∣∣∣∣ : Y = XTX.

(4.4)

We define the residue on edge (i, j), residue(i,j) =

‖p(i)− p(j)‖2−m2
ij , and observe the objective in prob-

lem (4.4) is a summation over residues.
We can see (assuming the mij are noiseless), the ob-

jective of (4.4) can attain a minimum of zero. How-
ever, (4.4) is not a convex optimization problem, be-
cause Y = XTX expresses a non-convex constraint on
the rank of Y . Biswas et al.’s solution to this dilemma is
to relax the offending constraint to Y � XTX [4], yield-
ing problem (4.5) by way of standard manipulations of
linear algebra [5].

min
Z

∑
(i,j)∈Ex

∣∣gTijZgij −m2
ij

∣∣ : Z =

[
Y XT

X Id

]
� 0.

(4.5)

Problem (4.5) is an SDP and can be solved in poly-
nomial time by interior point methods. Conceptually,
this relaxation allows the solver to localize each sensor
in R|Sx| instead of R2 [3]. The component of Z corre-
sponding to X can be read off as the projection of the
high dimensional solution back down to the plane of the
anchors. This is the localization result.

Finally, we are ready to express the embeddability
test: First extract X from Z and compute the residues
with respect to X. If ∀(i, j) ∈ Ex residue(i,j) = 0 the
framework has a consistent 2-dimensional embedding
and X is it. If ∃(i, j) ∈ Ex, residue(i,j) 6= 0 the situa-
tion is as described in lemma 2 where a corrupted edge
is inconsistent with p∗. As So and Ye assure us, prob-
lem (4.5) always finds 2-dimensional solutions when the
input is UL [30] Therefore the only explanation for a

nonzero residue is an unembeddable graph2.

4.3 Trilateration Counterexamples
Minimal counterexample generation is the chief ad-

vantage of Gordian SMT over the brute force ap-
proach outlined in the proof of theorem 1. As illus-
trated in algorithm 1, it is always possible to conclude
an iteration of attack detection with the trivial coun-
terexample on line 14. Such a conflict specifically dis-
allows the current attack hypothesis from being tested
on a later iteration, amounting to a brute force search
for the attacked edges. Our empirical evaluations show
attack detection can be significantly accelerated with
the use of small counterexamples generated by the tri-
lateration graph-based heuristic algorithm presented in
algorithm 2.

Our approach is motivated by the observation that
high residue values from SDP localization tend to occur
in the vicinity of attacked edges in the graph. Biswas
et al. suggest large residue values can be directly used
to identify faulty measurements [4]. However, a large
residue value is not enough to implicate an edge in a co-
ordinated attack. There are examples, such as the graph
in Fig. 6, where a cleverly engineered attack causes
larger residues on clean edges than corrupted ones.

Placements:
Node 1:   (5,5)
Node 2:   (15,5)
Node 3:   (5,15)
Node 4:   (15,15)
Node 5:   (10,15)
Node 6:   (10,10)
Node 6':  (9.5,12)
Node 7:   (3,10)
Node 8:   (18,10)
Node 9:   (10,3)
Node 10: (11,17)

Significant Residues
Edge (6,9):  24.72
Edge (6,10): 20.20
Edge (5,6):  13.54
Edge (6,8):  7.74
Edge (3,6):  4.41
Edge (2,6):  4.41
Edge (1,9):  0.20
Edge (2,9):  0.20
Edge (2,8):  0.10
Edge (1,8):  0.10
Edge (1,7):  0.06
Edge (2,7):  0.06
Edge (1,10): 0.05

Figure 6: An example showing that cleverly coordinated
attacks in problem (4.5) can 1) incur high residues on
edges not under attack and 2) spread non-negligible
residues over clean edges. Here, squares represent an-
chors and circles represent sensors. As shown in this
figure, the adversary has made a coordinated effort with
respect to four attacked edges (in dashed lines) to de-
ceive problem (4.5) into localizing node 6 further to the
top of the figure than it ought to be.

Instead of treating large residues as an infallible indi-
cator of corruption, Gordian SMT uses them as a good
heuristic indicator of the region of the graph where an
attack is taking place. Our algorithm searches for small-
sized subgraphs that fail the embeddability test in the
vicinity of high-residue edges. The trick is to find sub-
graphs that should be UL in the absence of an attack

2Practical tests should test residue(i,j) > ε for some
small ε > 0 to account for numerical errors in optimiza-
tion



due to their connectivity. For this, we use Eren et al.’s
iterative trilateration method [7] along with their the-
oretical guarantee that clean trilateration graphs are
UL. When a small trilateration graph fails the embed-
dability test, it gives a very useful counterexample. We
outline this procedure in Alg. 2 where we first add a
fast triangle inequality check for three node subgraphs.

If Alg 2 finds no small counterexamples, the entire
attack hypothesis can be returned as a counterexample
reducing Gordian SMT to a “brute force” search for the
attack.

A successful run of Gordian SMT terminates with
an attack-hypothesis that contains all corrupted edges.
However in cases where Gordian SMT is looking for
up to k attacked edges, but fewer than k attacked edges
are present in the graph, it is possible that clean edges
might unintentionally be included in a successful attack
hypothesis. From a certain perspective, this is an ac-
ceptable outcome because the remainder of the graph
is UL. But if the specific list of corrupted edges is de-
sired, they can be identified by testing subsets of the
successful hypothesis for embeddability until a minimal
unembeddable subset is found.

5. ATTACK DETECTION WITH NOISY
MEASUREMENTS

As we have shown, localization and attack detection
in the absence of noise is a very tidy subject. Gor-
dian SMT will always find the attacks in a k-AT frame-
work thanks to the heroics of the noiseless embeddabil-
ity solver: it just has to solve a localization problem
to test a framework for consistency. However, when
noise is introduced into the attack detection problem,
the localization problems we must ask the embeddabil-
ity solver to test usually don’t have a solution! As
Anderson et al. observe, solving a noisy UL localiza-
tion problem is equivalent to finding the solution to an
over-determined system of polynomial equations (the
distance constraints), and such solutions do not in gen-
eral, exist [1]. Indeed, Anderson et al. show that it is
very unlikely for a noisy localization problem to have an
exact solution. To proceed we must redefine localization
and attack detection in the presence of noise.

5.1 Noisy Localization
To properly frame the noisy localization problem, we

must first articulate the desiderata for noisy localiza-
tion in the absence of an adversary. Although it is
no longer possible to expect a consistent framework
with a true embedding, a good localization result ought
to find a “good” approximate embedding that matches
the observed mij as well as possible. This suggests an
optimization-based localization approach matching the
general form of equation (3.1) is an effective strategy.
Anderson et al. propose the following goals of such
an optimization: “First, if the data are noiseless, the
correct sensor positions are returned. Second, when

the noise is not great, the solution of the minimization
problem is unique and returns sensor position estimates
which are not far from the correct values. Third, the
errors between the true sensor positions and the esti-
mates returned by solving the minimization problem go
to zero continuously as the noise perturbations in the
true distances go to zero. ” [1]

Anderson et al. use the implicit function theorem to
prove these properties hold under certain conditions for
the non-convex optimization problem in (5.1) where we
replace the mij terms from equation (3.1) with d2ij+nij .
Their result suggests the efficacy of similar optimization
methods under noise, however the specific noise model
and optimization statement suffers a significant techni-
cal issue: noise is expressed in the square of the distance.
The consequence is noise in the distance becomes insep-
arable from the length of an edge.

min
p(i),i∈Sx

∑
(i,j)∈Ex

(
‖(p(i)− p(j)‖2 − (d2ij + nij)

)2
(5.1)

s.t. p(i) = p∗(i) ∀i ∈ Sa

This same problem is manifested to a lesser degree in
(4.5) due to the use of m2

ij in the objective. In the

multiplicative noise model, m2
ij = d2ij · (1 +nij)

2 relates
the cost of an edge to its length. Even if we had chosen
an additive noise model (for example m′ij = dij + nij ,

yielding m′2ij = d2ij + 2 · dij · nij + n2ij) there is again an
undesired product of dij and nij . Errors in longer edges
are biased to contribute more cost.

We give an alternative optimization problem for noisy
localization in (5.2) with an important technical advan-
tage over formulations in equations (5.1) and (4.5): the
effect of multiplicative noise can be disentangled from
the length of measurements. Let

min
p(i),i∈Sx

cost(p) (5.2)

s.t. p(i) = p∗(i) ∀i ∈ Sa,

cost(p) =
∑

(i,j)∈Ex

|‖(p(i)− p(j)‖2 −m2
ij |

m2
ij

.

The objective in (5.2) is a reasonable choice in its own
right. In [3], Biswas et al. define multiplicative γij pa-
rameters to weight the effect of more significant terms in
the localization objective on cost. We can interpret the
denominator mij as a parameter assignment designed
to increase emphasis on short edges and reduce the sig-
nificance of small errors relative to the length of long
ones. Furthermore, (5.2) is compatible with the follow-
ing SDP relaxation (5.3), so we can efficiently solve it.

min
Z

∑
(i,j)∈Ex

∣∣gTijZgij −m2
ij

∣∣
m2

ij

: Z =

[
Y XT

X Id

]
� 0.

(5.3)

5.2 Noisy Embeddability Testing



Algorithm 2 Trilateration Counterexamples

1: procedure GenCounterexamples(SortedHighResidueEdges)
2: C ← ∅
3: for e = (n1, n2) ∈ SortedHighResidueEdges do
4: ThirdNodeCands← {k | k ∈ V ′, (n1, k), (n2, k) ∈ E′}
5: for k ∈ ThirdNodeCands do
6: N ← {n1, n2, k}
7: if ObeysTriangleInequality(n1, n2, k) then
8: while |N | < MaxSubgraphSize do
9: NextNodeCands← {n | n ∈ V ′\N,∃i, j, k ∈ N s.t. (i, n), (j, n), (k, n) ∈ E′}

10: NextNode← PickRandomElement(NextNodeCands)
11: N ← N ∪ NextNode
12: Subgraph← GetSubgraphFromNodes(N) . Include as many edges as possible
13: if EmbeddabilityTest(Subgraph) = NotEmbeddable then
14: C ← C ∪ Subgraph
15: break
16: else . n1, n2, k cannot form a triangle
17: Subgraph← GetSubgraphFromNodes(N)
18: C ← C ∪ Subgraph
19: return C . C is the set of counterexamples

Just as noisy localization has fewer guarantees than
the exact version, noisy embeddability testing (and thus
attack detection) is no longer surefire. With noise it is
not enough to check edge residues and reject a frame-
work with non-zero values because non-zero values are a
side effect of ordinary noise on clean distance measure-
ments. Instead we consider the h bound on the magni-
tude of noise on a particular measurement. Theorem 3
introduces an upper bound on the optimal cost value
of the optimization problem (5.3) that is an effective
indicator of corrupted measurements.

The corresponding noisy embeddability testing algo-
rithm is quite simple: solve the SDP formulation in
(5.3) and compare the optimal value to |Ex| · h

1−h . If we
require all input frameworks to represent a consistent
ground truth, and multiplicative noise in the square of
the distance bounded by h, then vSDP > |Ex| · h

1−h can
only be explained by a corrupted edge.

Theorem 3. Let p∗ be the ground truth placement of
a consistent framework F with noisy distance measure-
ments mij. For (i, j) ∈ Ex, we represent the squared
measurement as follows: m2

ij = d2ij · (1 +n′ij) (note that
n′ij is multiplicative in the square of the edge length).
Suppose n′ij ∈ [−h, h] with 0 ≤ h < 1 . Then cost(p∗) ≤
|Ex| · h

1−h .

Proof. For the ground truth p∗, we have:

cost(p∗) =
∑

(i,j)∈Ex

∣∣d2ij − d2ij · (1 + n′ij)
∣∣

d2ij · (1 + n′ij)

=
∑

(i,j)∈Ex

∣∣n′ij∣∣
1 + n′ij

≤
∑

(i,j)∈Ex

h

1− h
= |Ex| ·

h

1− h

Therefore, if an instance of problem (5.1) achieves an
optimal cost greater then the threshold in Theorem 3

either it does not correspond to a consistent F (and
has no consistent ground truth) or an edge has been
corrupted. If we require consistent F , the latter is the
only possibility.

Of course, we are unable to solve the non-convex
problem for vopt efficiently. Rather, we solve for vsdp,
the minimum of the SDP problem (5.3) that can be
solved in polynomial time by interior point methods.
However, since the ground truth placement is a feasi-
ble solution to (5.3) , it is clear that we have vsdp ≤
cost(p∗), and so Theorem 3 applies.

Note, in Theorem 3 we use a bound on the noise
which is multiplicative in the square of the edge length.
In our experiments the noise bound is multiplicative in
the edge length itself. If the multiplicative noise in the
edge length is nij and the multiplicative noise in the
square of the error is n′ij , we have, with mij as the
noisy measurement of true length dij :

m2
ij = d2ij · (1 + n′ij) = d2ij · (1 + nij)

2

⇒ n′ij = 2nij + n2ij (5.4)

And so, if we require n′ij ∈ [−h, h] as in Theorem 3,

noting that x2+2x is monotonic in [−1,∞), we have the
slightly asymmetric result for corresponding nij bounds:

√
1− h− 1 ≤ nij ≤

√
1 + h− 1 (5.5)

5.3 Resilient Frameworks
The noisy embeddability testing algorithm is sound

(it never returns false positives), but incomplete (it some-
times misses attacks). To a certain extent, this problem
is fundamental: soundness requires the algorithm adopt
a conservative stance to allow for worst-case noise, but
certain noise assignments below the threshold of detec-
tion facilitate low-cost attacks. For example, when noise



distributed over the entire framework pushing an unlo-
calized node in a consistent direction coincides with an
attack pushing the node in the same direction, the at-
tack may go undetected. Bad localization results may
appear compelling with respect to the cost function even
without attacks. Geometric Dilution of Precision [15]
is a well known result within the world of navigation
systems like GPS that describes how the geometry of
noisy range measurements can affect localization preci-
sion. Moore et al.’s iterative localization algorithm by
the use of robust quadrilaterals [24] applies a similar
intuition.

These weaknesses in even non-adversarial localization
hint at a flaw in the paradigm of optimization-based lo-
calization: a low cost p does not necessarily correspond
to a qualitatively good localization result. We term this
often implicit assumption to the contrary as resilience.
Articulating its topological and geometric requirements
is beyond the scope of this paper and is a topic for fu-
ture research. We postulate that the result, will draw
upon rigidity and be applicable to noisy attack detec-
tion in much the same way the result in theorem 1 uses
UL in the noiseless case.

Since the noisy embeddability test does not iden-
tify low cost attacked graphs as problematic, Gordian
SMT may fail to identify all the attacked edges. How-
ever, if we may assume redundant resilience, i.e. low
cost results are qualitatively good, whatever attacks
Gordian SMT misses are low cost with respect to a
clean subset of the edges and must not be that bad.

6. EMPIRICAL EVALUATION
Our goals in experimental evaluation are two-fold:

evaluate the accuracy of Gordian SMT for frameworks
with random attacks and varying degrees of noise, and
demonstrate the performance advantages of Gordian
SMTs trilateration counterexamples in comparison to
brute force trivial counterexamples.

We implemented Gordian SMT in Matlab 2014b,
using the Yalmip toolbox [23] to model the SDP prob-
lem. Our implementation uses SeDuMi [31] and SAT4J’s
pseudoboolean solver as the underlying SDP and SAT
solvers. Our testing platform is a Linux Virtual Ma-
chine (VM) running on a server. The VM is allocated
with 4 Intel Xeon E5-2667v2 3.3GHz cores and 8GB
memory.

All of our experiments begin by randomly generating
a grid-like ground truth sensor network such as figure
7 in a 15 unit by 15 unit box. We place four anchors
along the corners and use the unit disc graph model to
determine the connectivity of nearby nodes. To gen-
erate larger graph instances we increase the number of
complete rows and columns of unlocalized nodes in the
convex hull of the anchors. Gordian SMT problem in-
stances are created by computing m2

ij = d2ij · (1 + n′ij)
with n′ij values selected uniformly at random in a spec-
ified range (refer to equation 5.5 to compute the corre-

sponding nij). Attacks are generated by randomly pick-
ing an edge (i, j) and corrupting m2

ij = d2ij · (1 + a′ij),
with a′ij outside the noise range. We take care to main-
tain 0 < mij < UnitDiscSize, ensuring attacked edges
remain in a plausible range between 0 and the maximum
distance over which nodes are connected.

We expect Gordian SMT to have a harder time cor-
rectly identifying attacks in noisier and larger graphs
because the noisy embeddability testing bound depends
on both h and |Ex|. Figure 8 shows the effect of noise
bounds on the performance (number of detected at-
tacks and and average runtime) of Gordian SMT in
the presence of two, three, and four attacks. The ex-
periment was performed on the ground truth graph as
shown in Figure 7. For each combination of the parame-
ters, we resample noise in the specified range and gener-
ate new attacks to create 3 different problem instances.
We run Gordian SMT over each instance for 3 trials
(because the counterexample generation process is ran-
dom). The average values of the results are reported in
Figure 8.

The number of detected attacks in Figure 8 appears
to decrease in noisier problems as expected. However it
is difficult to interpret the significance of figure 8 with
respect to the discussion on resilience in section 5.3. It
is possible that the undetected attacks in our experi-
ments are undetected because they cause very little dis-
turbance in the localization result and there is minimal
harm leaving them in.
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Figure 7: The ground truth with 20 nodes and 166 edges
for the noise vs accuracy comparison in Figure 8.We give an evaluation of worst-case running time for
four different ground truth graphs in Table 1. We set
a small noise bound, h = 0.01, in the square of the
distance and report the worst case runtime for three
trials3. It appears Gordian SMT is able to detect at-
tacks in a range of sizes fairly efficiently, but it occa-
sionally struggles (as in the case for Graph A with 2
attacks) to find effective counterexamples. This is still
much better than the brute force algorithm that tries

O(
(|Ex|

k

)
) attack hypothesis in expectation. As a point

of comparison, the runtime for brute force attack detec-
tion on Graph B with 2 attacks with two attacks was

3We discard trials that find no attacks, because such
trials terminate after a single SDP invocation and have
an uninteresting (very fast) run-time.
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Figure 8: The effect of noise bounds on accuracy.

1146 seconds (the 514th guessed attack hypothesis was
successful).

7. CONCLUSION
We have presented Gordian SMT, an attack detec-

tion algorithm at the distance-graph abstraction level
that requires no custom hardware, no special nodes,
and no specific ranging techniques. In the noiseless case
we prove Gordian SMT a sound and complete algo-
rithm for detecting up to k attacks in a 2k-UL frame-
work. Gordian SMT leverages an SMT solving ar-
chitecture and our trilateration counterexamples algo-
rithm to achieve a over a naive brute force implemen-
tation. We leverage embeddability testing by way of
the SDP relaxation for localization [4] to detect incon-
sistent frameworks in the noiseless case. We also prove
a bound on the cost of a consistent embedding that fa-
cilitates the extension of embeddability testing to the
case of multiplicative noise. Finally, we give empirical
results demonstrating Gordian SMT’s success on re-
alistic noisy input.

In future work we intend to investigate the resilience
property that we postulate plays a similar role to unique
localizability in the noisy case to guarantee total attack
detection of serious attacks. Interesting extensions of
the Gordian SMT approach include alternative noise
models, alternative cost functions, 3-dimensional local-
ization, and alternative attack models such as malicious
anchors.
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