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Abstract

The Scaling Up project aims to develop a state-of-the-art machine learning frame-

work that e�ciently leverages the power of a cluster of machines. As data becomes

increasingly more plentiful (Hilbert 2011), methods for e�ciently leveraging computing

power to crunch these numbers are becoming more critical. Typical industry datasets

are on the order of 1 Terabyte and growing (Canny 2013), making them infeasible to

process using a single machine. As a result, developing algorithms and frameworks for

training statistical models in a distributed, cluster-accelerated setting is a hot area of

research today.

Professor John Canny, our capstone advisor, has developed the BIDData Suite,

a machine learning toolkit that expertly utilizes GPUs to achieve record-breaking

”roofline” performance on a single machine (Canny 2015). Our capstone focuses on

extending BIDData’s statistical models with the ability to train e↵ectively in parallel

on a cluster.

Our team has succeeded in developing multiple cluster-enabling modules within

BIDData’s codebase, including (1) an inter-machine communication framework, cov-

ered in Jiaqi Xie’s technical report, (2) a network throughput monitor, covered in

Quanlai Li’s technical report, and (3) several distributed variants of practical machine

learning models, covered in depth in Chapter 1 of this report.

Chapter 2 focuses on the issues that arise as a consequence of the growing trends

of using machine learning to analyze massive datasets in industry, and how our project

aims to alleviate some of these issues. Chapter 2 also provides an analysis of the market

strategy for our industry partner, OpenChai, who is trying to bring the benefits of

machine learning to lagging enterprise like healthcare and banking.
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1 Technical Contribution

1.1 Problem Definition

The Scaling Up project aims to develop a state-of-the-art machine learning framework

that e�ciently leverages the power of a cluster of machines. As data becomes increasingly

more plentiful (Hilbert 2011), methods for e�ciently leveraging computing power to crunch

these numbers are becoming more critical. Typical industry datasets are on the order of

1 Terabyte and growing (Canny 2013), making them infeasible to process using a single

machine. As a result, developing algorithms and frameworks for training statistical models

in a distributed, cluster-accelerated setting is a hot area of research today.

Professor John Canny, our capstone advisor, has developed the BIDData Suite, a ma-

chine learning toolkit that expertly utilizes GPUs to achieve record-breaking ”roofline” per-

formance on a single machine (Canny 2015). Our capstone focuses on extending BIDData’s

statistical models with the ability to train e↵ectively in parallel on a cluster.

This report will focus on my work in developing distributed (cluster-enabled) variants

of the Random Forest, Logistic Regression, and Sequence-To-Sequence statistical models in

BIDData. A large part of this work was enabled by Jiaqi, who is the primary developer of

the communication framework that enables the machines in our clusters to coordinate with

each other.

1.2 Distributed Random Forest

For our first task, we chose to implement a distributed variant of the Random Forest

(RF) model. This choice was motivated by the simple yet e↵ective nature of RFs, and also

because this model falls under the category of “embarrassingly parallel”1, discussed below.

RF is a statistical model for classification and regression. An RF consists of multiple weak

1A problem that is “embarrassingly parallel” can be broken up into parts and solved in parallel such that
no pair of workers need to communicate while solving their respective parts.
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decision trees, making it a kind of ensemble method, i.e. an aggregate of weaker decisions.

Figure 1: A simple example of a decision tree, the building block of Random Forests.

For a classifying forest, during inference, each decision tree in the forest is fed the same

input, and the forest outputs the plurality vote of its decisions as the composite output of

the entire forest. Despite their simple nature, RFs are surprisingly e↵ective; they are often

used in industry due to their quick inference speed and robustness to outliers in data (Stripe

2016).

Furthermore, Random Forests are relatively easy to parallelize because they are embar-

rassingly parallel. This means that we can run multiple instances of the Random Forest

training procedure on multiple machines without having these machines communicate with

each other at all throughout the training procedure. We simply place the dataset on each

machine2 and kick o↵ the training process on each machine independently, just as if each

machine were training in a single-machine setting. Once all machines finish training, we

collect the forests constructed by each machine and concatenate them to construct a larger,

aggregate forest with more inference power.

In theory, we can scale the distributed Random Forest algorithm linearly: if it takes 100

minutes for a single machine to train 10 decision trees, then it should only take 10 minutes

2Each machine gets the entire dataset; we do not need to divide the data in this case.
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for 10 machines to train 1 tree each — assuming the time to distribute the dataset and to

collect all trained subparts are both negligible, which is usually a safe assumption.

The e↵ectiveness and “easy” parallelizability of Random Forests made them a good can-

didate for our first distributed model. Therefore, our challenge for implementing distributed

RFs was mainly a systems and data distribution one: we had to become intimately familiar

with both BIDData and Apache Spark, the latter being our chosen framework for cluster

management and data distribution. Some of the work we did to run the system included: (1)

making the existing BIDData Random Forest model serializable so that a copy could be sent

to each machine in the Spark cluster, (2) tweaking the memory and processing parameters

of Spark to avoid Out-Of-Memory errors and ensure proper data/work distribution in the

cluster, (3) writing code to actually distribute the model and data, kicking o↵ the learners on

each machine and subsequently collecting all of the trained trees. I have spared the details

here since much of the work was cosmetic and not particularly innovative.

Nevertheless, our results for the distributed Random Forests model are promising.

Table 1: Distributed Random Forest training time

Single-Machine 300s

4 Machine 140s

Ideal3 75s

Training time for 100 trees at depth 10 on the 201MB Year Prediction dataset (UCI 2011).
(Accuracy numbers are omitted because they are identical.)

Table 1 indicates that we achieve a close-to-linear performance boost on the Year Pre-

diction dataset (UCI 2011) using our distributed implementation. The discrepancy from the

ideal linear speed-up is likely due to data distribution time and model collection time, since

the size of our benchmarking dataset lies at an unfortunate point where distribution time is

3An ideal speed-up would be at least linear. If we use N machines, we would ideally like a � N times
speed-up.
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somewhat significant compared to training time. Prediction accuracy was roughly equivalent

for both variants of the algorithm, barring some very small random perturbations. These

results prove the feasibility of our distributed Random Forest implementation.

1.3 Distributed Logistic Regression (Distributed General Linear

Model)

Following our successful distributed Random Forest implementation, we chose to focus

on developing a distributed variant of the General Linear Model (GLM). This second choice

was motivated by the wide applicability and popularity of GLM; it is a core component

of any machine learning toolkit. Additionally, though the standard, single-machine variant

of GLM is simple, developing a distributed variant is considerably di�cult, unlike Random

Forest models. This posed an interesting challenge for our capstone.

As its name suggests, GLM is a generalization of the linear model, i.e. “fitting a line

to the data”4. For this report, I will be focusing on Logistic Regression (logit), one of the

models described by GLM5.

Logistic Regression is a probabilistic model that is used when the dependent variable of

the data is categorical. In other words, Logistic Regression is used for classification. For

demonstration, we consider the 0/1 binary case: during training, logit fits a “best line” to

the data according to some parameters. Points on one side of the boundary are more likely

to have a true category6 of 0, and points on the other side are more likely to have a true

category of 1 (see Figure 2 below for an example). During inference, a new point is assigned

a probability according to how close it is to the boundary. The further away a point lies

from the boundary, the more confident we are of that point’s true category.

4Or, in higher dimensions, a hyperplane.
5Our work enables the distribution of any model described by GLM, but I focus on Logistic Regression

for brevity.
6The true category of a data point is the real, underlying category of the data point which we are trying

to predict but do not know in general.
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Figure 2: An example of Logistic Regression with 2 independent variables. Fitting a relationship
between scores on 2 exams.

One popular use case of Logistic Regression is Click-Through Rate (CTR) Prediction:

given information about an online advertisement and a particular consumer, how likely is

the consumer to click the advertisement? This question ultimately boils down to a 0/1

categorical problem where we try to maximize our prediction accuracy so that we can serve

advertisements more optimally to generate more revenue. CTR datasets present a compelling

problem because their size is on the order of terabytes (Criteo 2015); most logistic regression

systems would struggle to crunch through a dataset this large. Consequently, our capstone

team focused on enabling training for large CTR datasets.

1.3.1 SGD - Stochastic Gradient Descent

Dataset size is a decisive factor for choosing a training method. Small logit models, for

example, can be solved optimally via a single matrix-multiplication step on a commodity
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laptop. However, even medium size datasets in the gigabyte range are already unable to fit

into memory7 on a commodity computer, so we need to a take a di↵erent approach that avoids

loading the full dataset at once. The most popular such alternative is SGD, or Stochastic

Gradient Descent. In SGD, we partition our dataset into chunks called mini-batches and

iteratively crunch through them. For each minibatch, we compute the gradient of a chosen

loss function with respect to the mini-batch and then update our model by taking a small

step in the direction of this mini-batch gradient.

Figure 3: Noisy trajectory of an SGD-based iterative optimization vs. vanilla gradient descent, a
much slower approach.

SGD takes the model in a “noisy” trajectory (see Figure 3 above) from the initial model

parameters, but is nevertheless proven to eventually converge to the global optimal solution,

given some mild assumptions.8 (Shamir 2015).

But as previously mentioned, modern day CTR datasets are on the order of terabytes.

Even with SGD and a powerful processor, taking a single pass through one of these datasets

7By “memory” here I mean volatile storage like RAM, not persistent storage like a hard drive.
8SGD has become the de facto approach for optimizing many statistical models. Its variants are used in

everything from K-Means to Deep Learning.
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would take many days. Consequently, we are interested in developing a method to speed up

our training by processing these datasets in parallel using multiple machines.

1.3.2 Parallelization via EASGD - Elastic Averaging SGD

At first glance, it is not immediately clear how one can train multiple distinct Logistic

Regression models and coherently combine their predictive capabilities. Suppose we partition

our dataset and fit a best line to each partition separately. How can we then combine these

independent line segments? One approach that may seem natural is to take some sort of

“average” of these multiple logit models. Fortunately, this takes us a step towards the

approach that we ultimately implemented: Elastic Averaging SGD, or EASGD.

In EASGD, we partition our terabyte dataset into distinct partitions, which I will denote

“slabs”, that can be reasonably handled with a standard SGD approach. We assign each

slab to one worker in our cluster and kick o↵ our workers to train on their respective slabs

using some variant of SGD. Simultaneously, we start a coordinating master process. The

master orchestrates the cluster workers to periodically9 communicate their evolving models

throughout the SGD optimization procedure. At each round of communication, called an

allreduce step, we compute a global average of all of the workers’ models. The master then

instructs each worker to nudge its local model parameters10 towards this average by some

elastic factor. We continue this coordination process continuously and asynchronously, until

we complete a desired number of aggregate passes11 through the entire dataset. Finally, we

take the average of all of our workers as our trained model.

We chose to use EASGD as our approach for distributing Logistic Regression because it

has empirically shown very promising results12 (Zhang 2015).

9The faster, the better.
10In the case of Logistic Regression, the model parameters are the slope of the line in each dimension of

the dataset space.
11A single aggregate pass through the entire dataset corresponds to each worker completing a single pass

through its slab.
12Although it has yet to be rigorously proven to converge.
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1.3.3 Implementing EASGD on top of Spark

As described, the EASGD algorithm requires that the workers in our cluster are con-

stantly communicating. This presents a significant design challenge because Spark restricts

workers to only communicate at specific times during the distributed program13. To get

around this limitation, we had to build an out-of-band communication framework that was

able to mesh well with Spark’s dynamic worker allocation. The framework is described in

detail in Jiaqi’s paper, but briefly, it consists of a fault-tolerant BIDData Master process

that communicates with multiple BIDData Worker processes on other machines.

With this communication layer in place, I was able to patch the missing pieces in BID-

Data’s EASGD and GLM code and implement a distributed GLM model on Spark.

Table 2: Distributed Logistic Regression training time

Time (Seconds)
Validation Set

Accuracy (AUC)

Single-Machine 1395 0.7808

4 Machine 433 0.7809

Ideal 348.75

5 passes through the 12GB Criteo CTR dataset (Criteo 2014).

Over multiple trial runs, we were able to achieve a close-to-linear speed-up over single-

machine Logistic Regression while achieving near-equivalent prediction accuracy on a smaller

12GB CTR dataset (Criteo 2014). These results are surprising since Logistic Regression is

traditionally di�cult to parallelize, proving the usefulness of our system on an industry

standard dataset. Training on a larger, order-terabyte dataset should be feasible with our

system.

13Inter-machine communication can be a significant performance bottleneck. Therefore, Spark is
communication-restrictive to prevent the programmer from making poor decisions. Our use case is unique,
however.
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1.4 Distributed Sequence-To-Sequence Model

Our work on distributed Logistic Regression, especially the underlying communication

framework, laid the foundation for our next task: developing a distributed neural network

model. Furthermore, since EASGD is model agnostic, we are able to use it in this neural

network setting. We chose to focus on the Sequence-To-Sequence (S2S) neural model because

it is a recently invented and particularly relevant model.

A S2S model does what its name suggests: it takes a sequence of tokens as input and

generates a corresponding output sequence. One practical use case of S2S models is language

translation, which I will use to give a high-level description of how an S2S works (Figure 4

below provides a complementary illustration). An S2S consists of two Recurrent Neural

Networks (RNNs), an “encoder” and a “decoder”. We feed an input sentence word for word

into the encoder to produce an “embedding” of the input sentence — a matrix that attempts

to tightly encode the context of the input sentence. This embedding is fed into the first stage

of the decoder, along with a “<START>” token, producing the first token of the output

sentence and a new embedding. We then recursively feed the output token and embedding

into the further stages of the decoder until it outputs an “<END>” token, indicating the

end of the output sequence (Ram 2016).

Figure 4: An S2S model for generating email replies. (Ram 2016)

S2S models are a recent and exciting development. In fact, Google Translate now uses

a S2S model as its backend to achieve incredibly accurate translation (Le 2016). Other
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use cases include image captioning, dialogue generation, and word grapheme-to-phoneme

conversion.

S2S models present an important problem because most models take days (or weeks) to

train on a datasets that are large enough to produce good results. For example, the authors

of the seminal paper on the S2S model trained for 10 days on an 8-GPU14 machine in order to

achieve good results on a French-to-English translation task (Sutskever 2014). And despite

gradual hardware and software improvements since the Sutskever paper, training time has

yet to be significantly reduced. As a result, a method that enables significant training speed

improvement for S2S models would be a novel breakthrough.

1.4.1 S2S Results

We believe that our technology is a worthy contender for approaching this problem. Us-

ing EASGD for parallelization, we achieve impressive speed-ups in Sequence-to-Sequence

model training. Below we summarize our results for training an S2S model on the CMU

Pronunciation Dictionary Dataset (CMU 2014):

Table 3: Distributed Sequence-to-Sequence training time

Time (Seconds) Word Error Rate (%)

Single-Machine 3004 45.2

4 Machine 919 46.8

Ideal 751

10 passes through the CMUdict dataset. (CMU 2014)

Some important caveats for these results: (1) we are not achieving state-of-the-art accu-

racy with this model because we have not yet tuned our model hyperparameters, and (2)

data distribution and model collection time are not included in this benchmark because these
14Graphics Processing Unit
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experiments did not use Spark. Nevertheless, these results presented in the second column

are encouraging — BIDData is on the cusp of a novel and practical technique for improving

the speed of S2S model training without sacrificing accuracy. Furthermore, we have set the

groundwork for experimenting with larger S2S datasets and for running distributed vari-

ants of other kinds of neural networks (like Convolutional Neural Networks, used for image

classification).

1.5 Conclusion

This report describes our work on extending BIDData to train distributed variants of the

Random Forest, Logistic Regression, and Sequence-To-Sequence statistical models. It also

describes our use of Elastic Averaging SGD, a contemporary method for parallelizing Lo-

gistic Regression, Sequence-To-Sequence models, and other neural models. Using EASGD,

we achieve substantial training speed improvements over the respective single-machine algo-

rithms while preserving prediction accuracy.

Extending these models to work in a cluster setting enables users of BIDData to process

datasets with order-terabyte size at impressive speed. This was previously infeasible due to

the memory and computational limits of single-machine algorithms.

Furthermore, our work is relevant for improving training speed of recently developed but

cumbersome models, like Sequence-To-Sequence models applied to language translation.
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2 Engineering Leadership

2.1 Project Context Introduction

Big Data is a growing trend in the technology and business markets. More companies

are collecting, storing, and analyzing enormous amounts of data to gain meaningful insight

into their business practices. One study claims that the average industry dataset size is �

1TB and growing (Canny 2013). As a result, these companies are in eager need of large-scale

data storage and Machine Learning systems. The recent explosion of the Data Center and

Cloud Service industry is a testament to these computational demands.

However, the growth of Data Centers and Cloud Services comes at a price. Three im-

portant challenges emerge for today’s Machine Learning systems:

1. Maximizing computational throughput

2. Balancing energy consumption

3. Preserving data privacy

This chapter introduces the context behind these surfacing issues; namely, how they are a

consequence of the industry’s recent and zealous interest in using machine learning methods

to analyze big data.

Our capstone project aims to tackle these three issues using BIDData, a novel Machine

Learning developed by our advisor Prof. John Canny. On a single machine, BIDData is

currently the fastest toolkit for multiple machine learning models (BIDData 2015). Our

team’s work lays the foundation to scale these models to e↵ectively utilize the power of

cloud clusters, enabling analysis of massive datasets with unprecedented e�ciency. This

addresses the first two challenges.

To approach the third challenge, data privacy, our team is partnering with OpenChai to

deliver BIDData to the consumer on a secure, standalone platform — a cloud-in-a-box. We

finish this chapter with a market analysis of OpenChai’s business strategy.
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2.2 Booming Machine Learning Industry

After six decades of research since its conception, artificial intelligence (i.e. machine

learning) is receiving unprecedented attention. Leading technology giants, like Google, Mi-

crosoft, and Uber (Mercer 2016) are in intense competition with each other to build the most

intelligent systems. Search engines, autonomous vehicles, language translation services, and

more are becoming more advanced every day (Merrett 2015).

Other industries besides software are also catching up by integrating machine learning

algorithms into their products and services. These newcomers, ranging from the financial

industry to the manufacturing industry, are increasingly investing in AI (Naimat 2016).

Figure 5: Companies Investing In AI By Industry (Naimat, 2016)

These investments seem to be worthwhile, driven by lucrative projected revenues. A
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market forecast by Tractica shows the momentum of artificial intelligence revenue in the

following decade (Tractica 2015).

Figure 6: Artificial Intelligence Revenue by Region, World Markets (Tractica, 2015)

Naturally, the booming of machine learning and artificial intelligence necessitates more

research into better methods, models, and algorithms.

2.2.1 New Machine Learning Research Topics

To meet industry needs, machine learning models are becoming more sophisticated. This

fact is especially apparent with the recent popularity in neural networks. A popular computer

vision competition, the ImageNet challenge, shows an increase in the depth (i.e. complexity)

of neural networks correlating with a significant decrease in classification error (Vieira 2016).
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Figure 7: Revolution of Depth (He, 2015)

This increasing complexity calls for better utilizations and management of computational

resources.

Until recently, machine learning algorithms have been made faster via hand-tuning of

algorithms and improvements in hardware capabilities (e.g. leveraging a new GPU’s15 com-

putation throughput). However, the need for faster algorithms is beginning to outpace these

methods. Methods for scaling algorithms to be e�ciently computable in parallel using mul-

tiple machines are gaining traction.

An algorithm’s scalability is a measure of how well it is able to run on a distributed

system, like cluster of machines. A machine learning model with perfect scalability can run

at a speed proportional to the size of cluster. Scalable machine learning would allow us to

learn from massive datasets at high speeds, enabling us to solve previously unprecedented

problems (Braun 2014).

15Graphics Processing Unit
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2.3 Big Data

The Big Data industry lies at an intersection of Business Analytics and Technology.

Analytics teams of large companies have been using data mining and other predictive analytic

techniques for a long time (Blau 2016). With the rapid development of the Internet of Things

industry in the 21st century, massive volumes of data — 50,000GB per second — are being

created every day (VCloudNews 2015). Companies leverage this data by using powerful

Machine Learning algorithms to extract meaningful information, creating real business value.

As predicted by McKinsey Global Institute 5 years ago, ”Big data [is becoming] a key basis

of competition, underpinning new waves of productivity growth, innovation, and consumer

surplus” (Manyika 2011).

We anticipate a significant growth potential in the data analytics market. U.S. Industry

Report predicts that in 5 years, increasingly powerful computing technology will drive rev-

enues for the data analytics industry to $53.9 billion, with an annual increasing rate of 5.5%

(Blau 2016). Consequently, today is an opportune time to make an impact in the industry.

2.3.1 Data Center & Cloud Service Industries

The Data Center industry is long established, helping companies store and process data

since the 1950s. However, in the current era of Big Data, data centers have been evolving to

fit a booming demand, resulting in modern day Cloud Service Providers. These providers

modularly rent out their networked data center machines for expensive computing tasks.

The Cloud Service Provider industry is in rapid development, and its customers have a

variety of interesting requirements (Blau 2016). Mainstream cloud solutions are far from

perfect. Our capstone team aims to improve these services.

2.3.2 Problems

The first challenge our project attempts to address is computational throughput maxi-

mization. One advantage of a cloud compute cluster is its higher computational capability
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compared to a single machine. In theory, a cluster of 1,000 computers could achieve a peak

performance equivalent to 1,000 times that of a single machine. However, in practice, this

is not the case. Communication and synchronization bottlenecks between the machines in

a cluster cause latency, reducing aggregate computing speed. This problem is exacerbated

as data sizes grow and the system is scaled to more machines. By maximizing network

throughput and lowering communication overhead, our capstone is able to improve upon the

status-quo.

Power consumption and energy waste in data centers is a second challenge. An envi-

ronmental action organization — Natural Resources Defense Council (NRDC) — pointed

out the problem in a recent report stating that, in 2013 alone, U.S. data centers used an

amount of energy equivalent to the annual output of 34 large (500-megawatt) power plants.

This amount of energy could be used to provide two years’ worth of power for all of New

York City’s households (Delforge 2014). Pierre Delforge, an expert on energy e�ciency from

NRDC, claims that the Data Center industry is ”one of the few large industrial electricity

uses which are growing” (Thibodeau 2014). This is growth in energy consumption is tied to

the growing sizes of datasets, so the problem will continue to compound unless preventative

measures are taken. Our capstone project aims to alleviate energy waste by utilizing data

centers more e�ciently, requiring fewer machines to do the same data analytics and therefore

using less energy.

Finally, data security and privacy is also becoming an important issue in this emerging

industry. As stated previously, companies collect massive amounts of data in order to extract

useful insights for their business. The drawback is that a malicious organization could

extract private information if it were to get access to the such data. Since cloud services

require network connectivity, many company’s data is not protected by physical boundaries

— there may always be a possibility of private information being exposed via a leak or a

hack. Furthermore, as the market expands with more data-driven organizations, the attack

surface will only broaden. For industries like healthcare and banking, where data contains
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highly confidential client information, this issue becomes a top priority. Our capstone also

targets these industries, and this is where our industry partner enters the picture.

2.4 Tackling the Data Privacy Issue with OpenChai

Our capstone team is partnering with OpenChai to tackle the security concerns which

surface from sending data into the cloud. Together, we aim to avoid this issue by enabling

enterprise customers to run their machine learning models entirely o✏ine and in-house.

OpenChai is using mobile GPUs16 to craft a energy-e�cient yet computationally powerful

desktop product that is optimized for machine learning; essentially, OpenChai is building a

cloud-in-a-box (OpenChai 2016). This means that OpenChai customers get total visibility

and control of their information assets. Our team is working to adapt the BIDData suite to

run e�ciently on OpenChai hardware.

2.4.1 Smartphone Market Analysis

OpenChai’s product is only feasible because of their novel use of mobile (e.g. smart-

phone) processors. Consequently, OpenChai’s market strategy rides on the crest of the

global proliferation of smartphones. As shown in Figure 8 below, in China alone, the num-

ber of smartphones has increased from 189M in 2012 to over 600M in 2015, and is projected

to grow to 1.6B by 2021.

16Graphics Processing Unit
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Figure 8: The number of mobile phones in China is growing quickly. (IBISWorld 2016, p.4)

India, too, is likely to follow a similar trajectory according to Morgan Stanley Research

(Truong 2016). To sustain a competitive advantage under this rising demand, manufacturers

are pushed to innovate (IBISWorld 2016, p. 19). One crucial avenue for innovation lies in

developing more powerful mobile processors. ARM and Nvidia are two of the most prolific

producers of mobile CPUs17 and GPUs18, respectively; they are also the main suppliers of

the mobile processors OpenChai is putting into their product. We extrapolate that the rapid

growth of the global smartphone market trickles down to pave the way for OpenChai. As

the smartphone market expands, ARM, Nvidia, and by extension OpenChai, will continue

to innovate with better, faster products.

17Central Processing Unit
18Graphics Processing Unit
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2.4.2 Nvidia and the TX1

Nvidia in particular, a company specializing in GPU design, is a key enabler for Open-

Chai’s strategy. Nvidia hit the machine learning world in a blaze in 2012 when Krizhevsky et

al. won the yearly ImageNet Image Classification Challenge (ILSVRC) with a neural model

using Nvidia GPUs (ILSVRC Results 2012). The research group used these GPUs to engi-

neer a novel computer vision method, producing the most outstanding result in ILSVRC to

date (Russakovsky et al., Table 8). Following this event, the use of Nvidia GPUs in machine

learning exploded, correlating with continuing improvements in machine vision accuracy (as

shown in Figure 9 below).

Figure 9: Following the ”Krizhevsky result” of 2012, the use of GPUs in computer vision has
exploded. (Gray 2015, Figure 2)

Fast forward to 2015: Nvidia unveils the TX1, one of the first processors that brings

the same machine learning capabilities of high-end desktop GPUs to a mobile chip (CES
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2015). The TX1 boasts impressive performance while staying up to 4x more e�cient than

its desktop counterpart on heavy machine learning workloads (Nvidia 2015). The TX1 forms

the backbone of OpenChai’s product. Using multiple networked TX1 chips, OpenChai can

perform swift machine learning computations on large datasets o✏ine and at a fraction of

the power and cost of the GPUs provided by cloud computing platforms.

2.4.3 Conclusion

Through our analysis of the expanding smartphone landscape and the machine learning

space, we believe that OpenChai is poised for growth and success. Nvidia, the main GPU

hardware supplier for OpenChai, is fueled by the these two markets. Any innovation in mobile

GPU technology for these factors will be realized in better performance and e�ciency of

machine learning algorithms on mobile GPUs, transparently improving OpenChai’s product.
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