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I. Executive Summary 

 As the number of patents filed with the US Patent Office has ballooned over the last two 

decades, the need for more powerful patent analytics tools has grown stronger. In 2012, the US 

Federal Government’s America Invents Act (AIA) put into place a new post-grant review process 

by which any member of the public could challenge an existing patent through the Patent Trials 

and Appeal Board (PTAB). Our capstone team has developed a tool to predict outcomes for this 

post-grant review process. We developed algorithms to predict two major outcomes: whether a 

case brought by a member of the public will be accepted by the Patent Trials and Appeal Board 

and, once that case is accepted, whether the relevant patent will be invalidated by the Board. 

 In this report, I focus on the former algorithm—acceptance vs. denial prediction. To predict 

case acceptance/denial we use natural language processing (NLP) techniques to convert each 

litigated patent document into thousands of numeric features. Upon combining these text-based 

features with patent metadata, we used two primary machine learning algorithms to attempt to 

classify these documents based on their case acceptance/denial outcome: support vector 

classification and random forests. In this report, I focus both on the efforts we went through to 

wrangle the data as well as the hyperparameters we tuned across these two algorithms. We found 

that we were able to achieve performant algorithms that exhibited classification accuracy slightly 

better than the base rate data skew, although further room for improvement exists. As the post-

grant review process matures, there will be further opportunity to gather more case data, refine the 

tools we have built over the past year, and increase the confidence associated with post-grant 

review analytics. 
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II. Individual Technical Contributions 

Project overview 

 Over the last two decades, the pace of innovation in the United States, and correspondingly, 

the number of patents filed with the US Patent and Trademark Office, has grown dramatically. In 

2014, 300,000 patents were filed with the US Patent and Trademark office, and this number 

continues to grow every year (U.S. Patent Statistics Chart, 2016). This rise in the number of patents 

has also led to a corresponding increase in the quantity of human and financial resources spent on 

patent filing, post-grant review, and litigation. The focus of our capstone project has been on 

building a machine learning tool for patent applicants and examiners to predict the outcomes of 

post-grant review for their patents (e.g., the probability that a case would be litigated before the 

Patent Trials and Appeal Board (PTAB) if the patent were challenged, and whether that case would 

be successful). By providing this information before patents are approved, we hope to limit the 

cost that bad patents impose on the legal system and the economy—estimated to be up to $26 

billion every year (Beard, Ford, Koutsky, & Spiwak, 2010, p. 268).  

Our project had three main phases: data collection, machine learning model design, and 

application creation (Figure 1). In the data collection phase, we gathered the data needed to train 

our machine learning algorithms—prediction of trial outcomes from the US PTAB (which 

comprise our independent variables) and the text associated with each contested patent (our 

dependent variable, along with additional metadata associated with each case). My teammates 

William Ho and Joong Hwa Lee led these data wrangling efforts and discuss in their reports, 

respectively, our team’s use of existing APIs for gathering data as well as the less-structured PDF 

data that we parsed in order to gather metadata features. In the modeling phase, we built upon 

existing machine learning and natural language processing technologies to construct a machine 
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learning algorithm that can use text data to predict the likelihood of two outcomes: case 

acceptance/denial and invalidation. Case acceptance/denial refers to the initial outcome for a case 

brought before the PTAB—whether the Board agrees to hear the case or not (Marco 2016). Cases 

that are denied cannot be subsequently be brought before the PTAB for invalidation hearings. Only 

once a case is accepted can it then be ruled on as valid or invalid. My teammate Dany Srage led 

the design of the invalidation algorithm and discusses that algorithm in his report, while I will 

focus on the acceptance/denial algorithm. Finally, after creating and evaluating machine learning 

algorithms to predict both of these outcomes, we designed and deployed a web GUI application 

that predicts the likelihood of invalidation for a given patent uploaded by the user. My teammate 

TS Yew led the design of the web application we used to make our two algorithms publicly 

available and discusses that work in greater detail in his report. 

 My primary contribution to the project involved predicting whether a case will be accepted 

or denied by the Patent Trial and Appeals Board (hereafter referred to as the “denials algorithm”). 

In this report, I will discuss the different steps taken to develop this algorithm, in particular: 

wrangling the PTAB case and patent text data necessary for this algorithm, selecting and tuning 

models appropriate for the task, and evaluating the outcomes of each model.  

Figure 1: Predicting Bad Patents project breakdown—focus of this report highlighted in blue 

Algorithm design and 

evaluation 

Data collection 
Invalidation algorithm 

 

Case 

acceptance/denial 

algorithm 

Algorithm 

deployment 

1 2 3 
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Wrangling PTAB case data 

Data subset Number of examples 

All cases brought before the Patent Trials and Appeals 

Board (2012-2016) 
6,450 

Cases with sufficient data available from PTAB API 

(case filed and metadata fields available) 
4,273 

Case status known or inferred (2012-2016) 

(data used for training case denial classifier)  
3,644 

 

Table 1: Project data funnel (summary) 

Data for this algorithm came from the US PTAB bulk data Representational State Interface 

(REST) API. This API provided tabular information on each of the patent invalidation cases 

brought before the PTAB, with key trial data fields associated with each case (US Patent and 

Trademark Office). We issued a series of HTTP GET requests to retrieve JSON data containing 

information relevant to each case, including the patent application number, the final patent number 

(when the patent is granted), the prosecution status, the trial number, and the filing date. My 

teammate William Ho led this data wrangling effort and provides more information in his report 

on the scripts we wrote to download this data, parse it, and insert it into our MySQL database. For 

the denials prediction algorithm, the dependent variable was the prosecution status—whether it 

was listed as “denied” or not. 
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Figure 2: Visual representation of data pipeline 

 To acquire the text of the patents, we used an existing UC Berkeley Fung Institute MySQL 

database containing the text of all US patents from 1976-2015. For each of our patent cases, we 

submitted a SQL query to the Fung database to retrieve all relevant claims associated with that 

patent. After retrieving these claims, we merged them together using simple string concatenation 

in Python. 

 Of these cases, we found that not all of them actually had a relevant denial status—56% of 

them had a null value in this field (Patent Trial and Appeal Board). The breakdown of cases from 

the raw data extracted from the API is shown in Table 2.  

 Value Proportion 

Total PTAB cases 4273 100% 

Denied status provided 2490 58% 

No status 1783 42% 

 

Table 2: PTAB cases by denial status (raw data) 

 It was surprising that over 40% of the patent cases had missing case statuses. We expected 

this tag to be unpopulated for currently in-progress cases, but this set comprised a small minority 

of the data. Specifically, we found that in almost no cases did the PTAB allow more than 200 days 

to elapse from filing to decision due to regulations set forth by the US Patent Office (Figure 3); 

however, only 15% of the cases in the dataset had been filed fewer than 200 days before the data 

was downloaded. As a result, we concluded that a number of the cases had missing statuses due to 

reporting errors. To correct for this missing data, we employed the heuristic that any cases that 

were filed outside of the prior 200 days must have been either accepted or denied. For those in this 

set that had no invalidation decision reported or relevant invalidation documents, we assumed that 

those cases had been denied—a conclusion also supported by the PTAB’s published figures on 
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how many cases it has accepted and ruled on (Patent Trial and Appeal Board Statistics). This 

approach increased the number of patents in our training dataset from 2,490 to 3,644, as shown in 

Table 3, and visually represented in Figure 2. 

 Value Proportion 

Total PTAB cases 4273 100% 

Denied status provided 

or inferred 
3644 85% 

No status 629 15% 

 

Table 3: PTAB cases by denial status (wrangled data) 

 

Figure 3: Time from case filing to decision (raw data) 

Engineering appropriate features for PTAB case data  

Our approach to variable extraction for the denials algorithm was relatively 

straightforward. For each patent, we used word frequencies to create thousands of numeric 

features. We replicated this method for bigrams (ordered pairs of words), trigrams (ordered triplets 

of words), and tetragrams (ordered quadruplets). As shown in Figure 4, each linear increase in the 



PREDICTING BAD PATENTS 9 

number of words included in the feature led to an exponential increase in the number of features—

and therefore the complexity of the model. 

This naïve approach is known as the “bag of words” or “bag of phrases” method (Cambria 

and White, 2014, p.50). We found, for a subset of our data, however, that this approach gave far 

too much weight to common but relatively non-informative words. Accordingly, we implemented 

an approach called term frequency-inverse document frequency (TF-IDF). This method takes our 

simple bag-of-words frequency variables and normalizes them based on the frequency with which 

each word is used across all patents (Berger and Lafferty, 2016, p.5).  As a result, each word 

frequency score in a given patent represents how rare that word is within the patent relative to the 

set of all patents. This approach ensures that the variables that we are feeding into our statistical 

model truly measure the differences across the full corpus of US patents and do not give undue 

weight to common but non-predictive words. Additionally, prior to applying the TFIDF 

transformation to our data, we stripped out stop-words like “the” and “and,” which we anticipated 

would add more noise to our model than predictive power. 

Additionally, we had to handle the fact that words with the same root (e.g., “hop,” 

“hopping,” “hopped”) would count as separate features in the algorithm even though they likely 

reflect the same concept across different patents in the corpus. To resolve this issue, we used the 

Natural Language Toolkit (NLTK) Snowball Stemmer to use stem words as features (NLTK 

2016). This approach essentially reduced each variation on the root of a word down to its word 

stem. In the example provided above, the Stemmer would map the words “hop,” “hopping,” and 

“hopped” to the same word feature—“hop.”  

Finally, we used a latent semantic analysis approach for dimensionality reduction. By 

computing the singular value decomposition of our tetragram model and choosing the top N 
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features (where N = 1K, 5K, 10K, and 20K) from this decomposition, we were able to reduce the 

level of complexity introduced from the n-gram approach described above. Mathematically, this 

approach works by computing a change of basis from the original set of features and selecting the 

top N most informative dimensions—i.e., the dimensions that harbor the greatest variation among 

the different patents (Landauer, Foltz, & Laham, 1998). Results from these dimensionality 

reduction efforts are shown in Figure 5. 

Finally, after performing text featurization, we included the patent art unit and examiner as 

metadata fields. The wrangling conducted to gather these data fields is further discussed by my 

teammates William Ho and Dany Srage in their reports. 

After these featurization techniques, we split the data by setting aside 80% of it as our 

training dataset and leaving aside the remaining 20% for evaluation (our test set). This approach 

allowed us to ensure that our model has sufficient generalizability and is not over-fit on the data it 

was trained on.  

Figure 4: Model complexity increases exponentially with each word added to n-grams 
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Model choice: Support vector classification and random forest 

For the denials algorithm, we tested out two very different machine learning models: support 

vector classification and random forest classification. We chose these models for their simplicity 

and the fact that the underlying statistical classification methods are different enough between 

them that they would provide us some variety in our approach to classification. I will discuss each 

of them in turn.  

Support vector classification 

This approach maps each patent as a point in high-dimensional space, where each TF-IDF 

feature is one dimension. The objective of our classification algorithm is then to find a plane in 

high-dimensional space that can separate the positive and negative examples (a two-dimensional 

graphical representation of this approach is shown in Figure 8). While conducting this work, the 

main hyper-parameters we tuned included the feature kernel and the level of regularization. I will 

address each of them in turn. 

i. Kernel 

 A support vector machine operates by finding a decision boundary between positive and 

negative examples in a dataset. This decision boundary is a simple linear function of the input 

features. For example, if we have the feature vector x = [x1, x2], the decision boundary between 

our positive and negative examples (for this problem, denied and approved cases) is an inequality: 

Outcome = { 1 if 𝒂𝑇𝒙 > 0
0 otherwise

                  (1) 

In this case, a is the learned vector of coefficients. This is limiting because it requires the decision 

boundary to be a linear function of the input features x1, x2; however, for most applications, the 

boundary will be substantially more complex. For example, the data might be better separated 

using a quadratic decision boundary: 
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a1x1 + a2x2 + a3x1
2
 + a4x2

2 + a5x1x2 = 0                  (2) 

In this case, we would use a second-degree polynomial kernel to transform our input features from 

a linear feature space to a quadratic feature space. The input features can undergo a similar 

transformation for any higher-degree polynomial space. 

 For our work, we performed a sweep using a linear support vector classification over a 

number of different feature kernels, including linear, quadratic, and radial basis (Gaussian) kernels. 

The latter radial basis kernel refers to a feature space with arbitrarily high dimensionality (i.e., a 

feature space with a polynomial that goes out to degree infinity). This is possible because, due to 

a method called the kernel trick, these features never have to be computed directly; all that must 

be computed is the kernel dot product aTx, which can be computed directly in spite of this infinite-

dimensional feature mapping (Hastie, Tibshirani, & Friedman, 2009). 

ii. Level of regularization 

The level of regularization employed by our model refers to the degree to which we constrain 

the support vector model during training to prevent it from overfitting to the training data (and, as 

result performing poorly on the test set). The regularization parameter, 𝜆, is what we manipulate 

to prevent overfitting. In this case, the higher the regularization, the worse the model will perform 

on the training set (although the better it should perform on the test set, up to a point). 

For this work, we tested out regularization for 1/𝜆 = 10, 1, and 0.1. This sweep of parameters 

reflects models that go from minimally regularized (minimally controlled to prevent overfitting) 

to not at all regularized (very controlled to prevent overfitting). 

Random forest classification 

In addition to support vector classification, the second type of classification method we 

attempted was random forest classification. The primary difference between this method and the 
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support vector approach is that, instead of finding a boundary between positive and negative 

examples, this method uses decision trees based on word/phrase frequency from the TFIDF 

features. 

For example, in the decision tree shown in Figure 9 (appendix), we would like to classify a 

new patent. We evaluate that patent’s word frequency by stepping through the tree until hitting a 

leaf node. When a leaf node is found, we take a vote among examples in the leaf node and use the 

majority class in that node to determine a class for that example. So for example, using the decision 

tree shown in Figure 9, a case covering a patent with more than 5 instances of the word “software,” 

more than 3 instances of the word “semiconductor,” and fewer than 5 instances of “biotechnology” 

would be classified as denied. This tree is constructed by choosing feature splits within the data 

that maximize the ability to separate the positive from negative examples at each level of the tree. 

Our use of a “random forest” of trees (instead of just one decision tree) allows us to construct 

10 different decision trees using samples of our training data, and ensemble them to produce a 

consensus prediction. This method produces lower variance prediction models than using a single 

tree alone (Hastie, Tibshirani, & Friedman, 2009). 

In the case of random forests/decision trees, the regularization parameter is the depth of the 

tree. In the case of the example shown in Figure 9, we have a relatively shallow tree (depth of 3). 

As we increase the maximum depth, however, we increase the prediction algorithm’s ability to 

discriminate between different examples and classify complex examples. For this work, we tested 

out different tree depths to assess the effects of different levels of model complexity (depth varied 

among 10, 20, 30, and 60 maximum depth). 
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Results and discussion 

Classifier results 

         

Figure 5: Support vector classification accuracy by number of training features 

extracted with singular value decomposition 

 

Using the support vector classification model, we were able to construct a classification 

algorithm that performed better than simply guessing (full results shown in Table 4). Using 

tetragrams reduced down to 1K dimensions and a weakly regularized model, we were able to attain 

a validation accuracy of 0.78, 8 percentage points better than intelligent guessing could achieve 

(based on the data skew). Notably, we do not need many dimensions from the original dataset in 

order to achieve these sorts of results. Evaluated on a similar support vector classification model, 

we saw very little difference in the prediction accuracy attained from reducing dimensionality from 

the original set of features to 1,000 compared to reducing to 10,000 features (Figure 5).  

 Across regularization parameters, we found that simpler models (i.e., linear kernel) 

outperformed more complex models. Our best-performing algorithm was the linear support vector 

machine with  1 𝜆⁄  set to 10. This essentially means that the predictive power that we gained from 
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increasing the complexity of the machine learning model did not outweigh the benefits that might 

have been incurred from algorithm simplicity (i.e., maintaining generalizability across training and 

test datasets). 

Kernel 𝟏
𝝀⁄  

Algorithm 

accuracy 

on training 

data 

Algorithm 

accuracy 

on test data 

Precision Recall 

Linear 

10 0.92 0.78 0.82 0.87 

1 0.86 0.75 0.76 0.94 

0.1 0.70 0.69 0.69 1.0 

Polynomial 

(degree 3) 

10 0.70 0.69 0.69 1.0 

Radial basis 

function 

(Gaussian) 

10 0.70 0.69 0.69 1.0 

 

Table 4: Kernel SVC results 

The need to favor simplicity was also reflected in the receiver operating characteristic 

(ROC) curve that we found for each of our primary support vector classification algorithms. We 

found that we were able to attain the highest area under the ROC curve (i.e., maximizing the true 

positive rate while minimizing the false positive rate) using simpler, well-regularized kernel 

support vector classification. These results are shown in Figure 6. 
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Figure 6: Classifier ROC curves 

Using the random forest approach, we were able to attain slightly poorer performance than 

with linear support vector classification. This is likely due to random forest’s lesser ability to model 

complex decision boundaries between positive and negative examples (i.e., denied and accepted 

cases). That said, the best performing random forest model, with a maximum tree depth of 60, still 

performs 4 percentage points better than the base rate (0.74 accuracy on test data vs. 0.70 base rate 

based on data skew). These results are illustrated in Table 5. 

Maximum 

tree depth 

Algorithm 

accuracy on 

training data 

Algorithm 

accuracy on 

test data 

Precision Recall 

10 0.70 0.70 0.70 1.0 

20 0.71 0.70 0.70 0.99 

30 0.74 0.70 0.70 0.98 

60 0.80 0.74 0.74 0.97 

 

Table 5: Random forest results  
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Once again, we see little benefit of maintaining model simplicity by limiting tree depth—

as we increase the maximum allowed depth of each tree, we increase both training and testing 

accuracy. 

Lastly, we were able to extract from the unigram TFIDF vectorization algorithm the most 

and least predictive words for and against case denial. Because the TFIDF algorithm normalizes 

frequencies across the document corpus, the regression coefficients can be directly used to infer 

each word stem’s impact on case denial or acceptance. The results from this analysis are shown in 

Figure 7. It is challenging to draw direct inferences from these individual word stems, although 

the top stems indicating denial are likely those that are used across multiple different technical 

fields and likely make a patent sufficiently general (e.g., “name,” “element,” and “spatial”) such 

that a claim of direct conflict with an existing patent is more difficult to verify, causing the case to 

be more likely to be denied outright.   

 

Figure 7: Top 10 and bottom 10 words that are most and least  

likely to indicate case denial 
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Limitations of analysis and discussion 

 There were two primary limitations we encountered when designing and analyzing the case 

denial algorithm. The first was the lack of data available. The dataset we employed for this 

algorithm was relatively limited—we had many more features than training examples. This is 

primarily due to the small number of cases that have been accepted by the Patent Trials and 

Appeals Board under the new America Invents Act post-grant review process (instituted in late 

2012).  In the case of the stemmed unigram data with stop-words removed, we had only 3,644 case 

examples but 16,458 features. These data result in a relatively shallow learning curve where we 

see relatively small improvement from a small number of training examples to a large number, as 

reflected in Figure 8. For a typical support vector classification task with a large number of 

features, we would ideally want significantly more training examples to continue to see large 

improvements in the learning curve (Perlich, 2011).  

 

Figure 8:  Learning curve (validation accuracy by number of training examples) reflects 

relatively small improvement as we increase the number of examples. 

 

The second limitation was that there were a number of cases that were repeated on the same 

patent. Specifically, we found that 38% of the cases on the dataset were on patents that were 
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repeated across multiple cases. We thought at first that this repetition might artificially increase 

the accuracy of our classifier, however, we found that in many cases there was a not a consensus 

among all cases litigated regarding a certain patent. In fact, for 46% of patents that appeared in 

multiple cases, the PTAB provided at least one conflicting decision (i.e., accepted one case 

presented over that patent and denied another). These results for the top 10 most frequently 

repeated patents across cases are shown in Figure 9. 

 

Figure 9: Acceptance/denial outcomes for top 10 most frequent patents (e.g., left bar reflects that 

patent 6853142 was reviewed in 23 total cases, of which 5 were denied and 18 were accepted) 

 

 As a result, we cannot conclude that repeated cases resulted in greater accuracy of our 

algorithm, since conflicting results over the same patent likely caused lower accuracy than we 

could otherwise attain on a significant portion of our data. Still, this aspect of the case data—that 

there are different examples with redundant independent variables—is a limitation of the training 

data that hinders our algorithm. 
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Conclusion and discussion of future work 

 In this set of experiments, we were able to show that fairly simple classification models are 

able to do substantially better than chance in predicting patent case denial. Provided more time, 

there are a number of next steps that we would take to further this work. First, we would like to 

attempt more sophisticated approaches for classification that would enable us to go beyond the 

traditional statistical methods we have used here. For example, recently neural networks have been 

proven useful by for text classification of large document sets (Lai, Xu, Liu, & Zaho, 2015). Since 

such approaches often require large amounts of training data, we would suffer from similar 

limitations as we experienced in this set of experiments. 

Accordingly, the second major next step is to evaluate this algorithm on new patents as 

they are granted and to refresh it after sufficient data has been collected. Since the Patent Trials 

and Appeal Board is a relatively new entity (first cases available from 2013), additional data and 

observation of patents through their full lifecycle will further inform how to most effectively 

perform this sort of classification. Specifically, we found that the number of PTAB cases is 

growing at 20-30% per year (Patent Trial and Appeal Board Statistics, 2016). Projecting this trend 

outward, by the end of 2019 there ought to be ~16K cases available for review, and the number of 

examples would exceed the number of features for a standard TFIDF featurization algorithm (see 

Figure 10, appendix). At this point, it would be valuable to reproduce this methodology in an 

attempt to build an even more robust classifier.  
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III. Engineering Leadership 

Introduction and project overview 

 In this section, my teammates and I examine the industry context and business 

considerations associated with building our post-grant review prediction algorithms. First, we will 

discuss the current patent landscape and how it informs the marketing strategy for potential 

customers. Second, we will analyze the different competitors in the legal services space and define 

how our tool differs from existing offerings. Third, we will discuss the current state and trends in 

the machine learning field today and how they can be applied to our tool. Fourth and finally, we 

will close with an ethics section that will examine the ethical issues we considered in designing 

and deploying the algorithm in the form of a website. 

Designing a tailored marketing strategy  

 It is becoming increasingly challenging for research-oriented firms and their attorneys to 

navigate the intellectual property landscape in the United States. In addition to the increase in the 

sheer number of patents, recent changes in US law have made it significantly easier for members 

of the public to challenge existing patents. In 2012, the US federal government enacted the Leahy-

Smith America Invents Act (AIA). This legislation substantially expanded the role of the US Patent 

and Trademark Office in post-grant patent reexamination (Love, 2014, Background). The AIA 

opened the gates of post-grant patent opposition to members of the public by providing a much 

less costly and more streamlined avenue for post-grant opposition through the Patent Office’s 

Patent Trial and Appeals Board (PTAB). Any member of the public could challenge an existing 

patent for only a few thousand dollars—relatively inexpensive compared to litigation (Marco, 

2016).  
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Accordingly, the patent application process is under two types of strain: it is resource 

constrained—since there are more and more patents being filed every year—and it is coming under 

more scrutiny due to the America Invents Act. There are two main sets of stakeholders that have 

an interest in improving the current application process: (1) the USPTO and (2) patents filers and 

their lawyers. 

First, because “IP-intensive industries accounted for about […] 34.8 percent of U.S. gross 

domestic product […] in 2010” (Economics and Statistics Administration and United States Patent 

and Trademark Office, March 2012, p. vii), reducing the time it takes to effectively examine a 

patent—perhaps through assistance from a computerized algorithm—is a critical priority for the 

USPTO (appendix A). Indeed, helping patent examiners reduce the time they spend on each patent 

(while still maintaining the quality of examinations) would mean reducing the cost and time 

associated with filing patents, proving economically accretive and reflecting well on the US Patent 

and Trademark Office. In fact, the USPTO has expressed interest in a predictive service in the past 

and has conducted its own research into predicting invalidation (US Patent and Trademark Office, 

2015, p. 38).  

Secondly, when applying for patents, patent filers and their attorneys have a strong interest 

in preempting potential litigation through effective framing and wording of their patents. Patent 

litigation is becoming more and more common as evidenced by IBISWorld: “Demand for litigation 

services has boomed over the past five years” (Carter, 2015, p. 4). Therefore, a tool that could help 

patent filers prevent litigation would be valuable during the application process. One industry that 

may be especially interested in this sort of tool is Business Analytics and Enterprise Software. In 

the past several years, the costs associated with protecting “a portfolio of patents” have 

disproportionately increased in this industry (Blau, 2016, p. 22). 
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Competition in the patent analytics space 

Patent validity is a major concern for the $40.5 billion intellectual property licensing 

industry, whose players often must decide whether to license a patent or challenge its validity 

(Rivera, 2016, p. 7). These decisions are currently made through manual analysis conducted by 

highly-paid lawyers (Morea, 2016, p. 7). Because of the cost of these searches, data analytics firms 

such as Juristat, Lex Machina, and Innography have created services to help lawyers perform 

analyses more effectively. 

One common service is semantic search for prior art and similar patents, where queries 

take the form of natural language instead of mere keywords. Other services include statistics about 

law firms, judges, and the patent-granting process. These services build their own high-quality 

databases by crawling court records and other public data sources, correcting or removing 

incomplete records, and adding custom attributes to enable such search patterns and reports. Their 

prevalence reflects the trend towards data analysis as a service, since law firms are not in the data-

analysis business (Diment, 2016). 

The above services lie outside the scope of predicting invalidation from patent text and 

metadata but become relevant when discussing commercialization because high-quality data 

improves model accuracy and enables techniques like concept analysis that are difficult or 

impossible with raw unlabeled datasets. As such, partnering with existing firms that provide clean 

datasets or otherwise cross-licensing our technologies may be advantageous. 

While these services help lawyers make manual decisions with historical statistics, we have 

found no service that attempts to predict invalidation for individual patents. Juristat is the only 

major service we found that performs predictions on user-provided patent applications. 

Specifically, Juristat predicts how the patent office will classify a given application and highlights 
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key words contributing to that classification, with the goal of helping inventors avoid technology 

centers in the patent office with high rejection rates (Juristat, n.d.). 

Our project, if successful, can become a Juristat-like service for predicting post-grant 

invalidation. While we cannot speculate on existing firms’ development efforts, the lack of similar 

services on the market suggests a business opportunity. Whereas existing services target law firms 

and in-house IP lawyers, our project aims to help the USPTO evaluate post-grant petitions, which 

are brought forth by parties attempting to invalidate a patent.  

Review of machine learning technology trends 

 This work has been enabled by many recent advances in the application of machine 

learning to large data problems. Even though machine learning has been around for several 

decades, it took off within the past decade as a popular way of handling computer vision, speech 

recognition, robotic control, and other applications. By mining large datasets using machine 

learning, one can “improve services and productivity” (Jordan & Mitchell, 2015 p. 255-256), for 

example by using historical traffic data in the design of congestion control systems, or by using 

historical medical data to predict the future of one’s health (Jordan & Mitchell, 2015 p. 255-256). 

For this project, we had access to a large dataset of historical patent filings since 1976, for which 

recently developed machine learning techniques proved especially useful. 

Machine learning algorithms generally fall into one of two categories: supervised and 

unsupervised (Jordan & Mitchell, 2015 p. 256). Supervised learning algorithms need to be run on 

training data sets where the correct output is already known. Once the algorithm is able to generate 

the correct output, it can then be used for regression or clustering. In contrast, unsupervised 

learning algorithms use data sets without any advance knowledge of the output, and perform 

clustering to try to find relationships between variables which a human eye might not notice. 
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Recent trends indicate that supervised learning algorithms are far more widely used (Jordan & 

Mitchell, 2015 p. 257-260). Our historical data set indicated whether or not patents were 

invalidated/denied during past disputes, which made a supervised learning algorithm the 

appropriate choice.  

Ethical challenges associated with patent prediction  

 Due to the legal stakes associated with patent applications and review, we anticipated the 

possibility of running into potential ethical conflicts when completing this project. We used the 

Code of Ethics, written by the NSPE (National Society of Professional Engineers) (NSPE, 2017), 

as a guideline for our planning. We identified two components of the Code of Ethics, which our 

project could potentially violate if left unchecked. 

 The first is Rule of Practice 2: “Engineers shall perform services only in the areas of their 

competence” (NSPE, 2017). One of our potential target customers is the United States Patent and 

Trademark Office, who would ideally use our project to aid with their patent approval decisions. 

If our project were seen to be an automated replacement, rather than a complement, for trained 

patent examiners or attorneys, that may be considered an attempt to perform services outside of 

our “areas of competence.” While we cannot dictate how our customers ultimately utilize our 

product, we can mitigate the issue through thorough written recommendations in our 

documentation to hopefully encourage responsible usage.  

 The second ethical consideration is Professional Obligation 3: “Engineers shall avoid all 

conduct or practice that deceives the public” (NSPE, 2017). While we fully intend our project to 

be used in service to the public, we recognize the possibility of bias in our supervised machine 

learning algorithm (Reese, 2016), with the resulting output capable of unfairly swinging the 

outcome of a patent decision. Unlike the prior ethical issue, we have more control in this situation, 
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since we do not have a viable product without a sufficiently trained algorithm. By verifying our 

datasets to ensure equal representation and objective input, we can avoid inserting biases and thus 

maintain ethical integrity.  

Engineering leadership conclusions 

        Collectively, recent economic and regulatory trends have made now an exciting but 

uncertain time for inventors, attorneys, and the US Patent and Trademark Office. Thoughtful 

applications of machine learning and statistics can make sense of these recent changes and assist 

stakeholders in truly understanding what drives patent invalidation. As we pursue this technology, 

our understanding of the industry landscape of potential customers/competitors, leading trends in 

machine learning research, and the ethical considerations associated with our technology will drive 

our research. Ultimately, we hope that our technology contributes to the continued development 

of a patent ecosystem that enables inventors to do what they do best: developing novel and socially 

valuable inventions.  
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Appendix 

Section A: How will the invalidation prediction algorithm help the US Patent 

and Trademark Office? 

In 2015, the USPTO received 629,647 applications and this number is steadily growing (Patent 

Technology Monitoring Team, 2016). If our classifier can help them save only two hours on 

each application by predicting the outcome of an invalidation request and therefore help them 

make their decision more easily, it would save them about 430 working days (of 8 hours each). 

Section B: Additional figures 

 

Figure 8: Two-dimensional example of support vector machine 
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Figure 9: Example of decision tree (note that the actual tree will likely employ >1 n-gram 

frequency feature for each split) 
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Figure 10: Estimated cumulative PTAB cases by year (last 4 months of 2016 and 2017-2019 

estimated based on historical growth)  
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Section C: Denial prediction code  

Note: all code can also be found at https://github.com/davidjwiner/cal-patent-lab 
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