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|. Executive Summary

As the number of patents filed with the US Patent Office has ballooned over the last two
decades, the need for more powerful patent analytics tools has grown stronger. In 2012, the US
Federal Government’s America Invents Act (AIA) put into place a new post-grant review process
by which any member of the public could challenge an existing patent through the Patent Trials
and Appeal Board (PTAB). Our capstone team has developed a tool to predict outcomes for this
post-grant review process. We developed algorithms to predict two major outcomes: whether a
case brought by a member of the public will be accepted by the Patent Trials and Appeal Board
and, once that case is accepted, whether the relevant patent will be invalidated by the Board.

In this report, | focus on the former algorithm—acceptance vs. denial prediction. To predict
case acceptance/denial we use natural language processing (NLP) techniques to convert each
litigated patent document into thousands of numeric features. Upon combining these text-based
features with patent metadata, we used two primary machine learning algorithms to attempt to
classify these documents based on their case acceptance/denial outcome: support vector
classification and random forests. In this report, I focus both on the efforts we went through to
wrangle the data as well as the hyperparameters we tuned across these two algorithms. We found
that we were able to achieve performant algorithms that exhibited classification accuracy slightly
better than the base rate data skew, although further room for improvement exists. As the post-
grant review process matures, there will be further opportunity to gather more case data, refine the
tools we have built over the past year, and increase the confidence associated with post-grant

review analytics.
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I1. Individual Technical Contributions

Project overview

Over the last two decades, the pace of innovation in the United States, and correspondingly,
the number of patents filed with the US Patent and Trademark Office, has grown dramatically. In
2014, 300,000 patents were filed with the US Patent and Trademark office, and this number
continues to grow every year (U.S. Patent Statistics Chart, 2016). This rise in the number of patents
has also led to a corresponding increase in the quantity of human and financial resources spent on
patent filing, post-grant review, and litigation. The focus of our capstone project has been on
building a machine learning tool for patent applicants and examiners to predict the outcomes of
post-grant review for their patents (e.g., the probability that a case would be litigated before the
Patent Trials and Appeal Board (PTAB) if the patent were challenged, and whether that case would
be successful). By providing this information before patents are approved, we hope to limit the
cost that bad patents impose on the legal system and the economy—estimated to be up to $26
billion every year (Beard, Ford, Koutsky, & Spiwak, 2010, p. 268).

Our project had three main phases: data collection, machine learning model design, and
application creation (Figure 1). In the data collection phase, we gathered the data needed to train
our machine learning algorithms—prediction of trial outcomes from the US PTAB (which
comprise our independent variables) and the text associated with each contested patent (our
dependent variable, along with additional metadata associated with each case). My teammates
William Ho and Joong Hwa Lee led these data wrangling efforts and discuss in their reports,
respectively, our team’s use of existing APIs for gathering data as well as the less-structured PDF
data that we parsed in order to gather metadata features. In the modeling phase, we built upon

existing machine learning and natural language processing technologies to construct a machine
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learning algorithm that can use text data to predict the likelihood of two outcomes: case
acceptance/denial and invalidation. Case acceptance/denial refers to the initial outcome for a case
brought before the PTAB—whether the Board agrees to hear the case or not (Marco 2016). Cases
that are denied cannot be subsequently be brought before the PTAB for invalidation hearings. Only
once a case is accepted can it then be ruled on as valid or invalid. My teammate Dany Srage led
the design of the invalidation algorithm and discusses that algorithm in his report, while I will
focus on the acceptance/denial algorithm. Finally, after creating and evaluating machine learning
algorithms to predict both of these outcomes, we designed and deployed a web GUI application
that predicts the likelihood of invalidation for a given patent uploaded by the user. My teammate
TS Yew led the design of the web application we used to make our two algorithms publicly
available and discusses that work in greater detail in his report.

My primary contribution to the project involved predicting whether a case will be accepted
or denied by the Patent Trial and Appeals Board (hereafter referred to as the “denials algorithm”).
In this report, 1 will discuss the different steps taken to develop this algorithm, in particular:
wrangling the PTAB case and patent text data necessary for this algorithm, selecting and tuning

models appropriate for the task, and evaluating the outcomes of each model.

Algorithm
deployment

Data collection

Algorithm design and
evaluation

Figure 1: Predicting Bad Patents project breakdown—focus of this report highlighted in blue
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Wrangling PTAB case data

Data subset Number of examples
All cases brought before the Patent Trials and Appeals 6.450
Board (2012-2016) ’
Cases with sufficient data available from PTAB API 4973
(case filed and metadata fields available) ’
Case status known or inferred (2012-2016)
. : . 3,644
(data used for training case denial classifier)

Table 1: Project data funnel (summary)

Data for this algorithm came from the US PTAB bulk data Representational State Interface
(REST) API. This API provided tabular information on each of the patent invalidation cases
brought before the PTAB, with key trial data fields associated with each case (US Patent and
Trademark Office). We issued a series of HTTP GET requests to retrieve JSON data containing
information relevant to each case, including the patent application number, the final patent number
(when the patent is granted), the prosecution status, the trial number, and the filing date. My
teammate William Ho led this data wrangling effort and provides more information in his report
on the scripts we wrote to download this data, parse it, and insert it into our MySQL database. For
the denials prediction algorithm, the dependent variable was the prosecution status—whether it

was listed as “denied” or not.

PTAB CASE PIPELINE, 2012-2016

Insufcient data

Denied

Mo invealidated

Invalidated
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Figure 2: Visual representation of data pipeline

To acquire the text of the patents, we used an existing UC Berkeley Fung Institute MySQL
database containing the text of all US patents from 1976-2015. For each of our patent cases, we
submitted a SQL query to the Fung database to retrieve all relevant claims associated with that
patent. After retrieving these claims, we merged them together using simple string concatenation
in Python.

Of these cases, we found that not all of them actually had a relevant denial status—56% of
them had a null value in this field (Patent Trial and Appeal Board). The breakdown of cases from

the raw data extracted from the API is shown in Table 2.

Value Proportion
Total PTAB cases 4273 100%
Denied status provided 2490 58%
No status 1783 42%

Table 2: PTAB cases by denial status (raw data)

It was surprising that over 40% of the patent cases had missing case statuses. We expected
this tag to be unpopulated for currently in-progress cases, but this set comprised a small minority
of the data. Specifically, we found that in almost no cases did the PTAB allow more than 200 days
to elapse from filing to decision due to regulations set forth by the US Patent Office (Figure 3);
however, only 15% of the cases in the dataset had been filed fewer than 200 days before the data
was downloaded. As a result, we concluded that a number of the cases had missing statuses due to
reporting errors. To correct for this missing data, we employed the heuristic that any cases that
were filed outside of the prior 200 days must have been either accepted or denied. For those in this
set that had no invalidation decision reported or relevant invalidation documents, we assumed that

those cases had been denied—a conclusion also supported by the PTAB’s published figures on



PREDICTING BAD PATENTS 8

how many cases it has accepted and ruled on (Patent Trial and Appeal Board Statistics). This
approach increased the number of patents in our training dataset from 2,490 to 3,644, as shown in

Table 3, and visually represented in Figure 2.

Value Proportion
Total PTAB cases 4273 100%
De_nled status provided 3644 8506
or inferred
No status 629 15%

Table 3: PTAB cases by denial status (wrangled data)

Days elapsed from filing to decision date for

PTAB cases, 2012-2016
1800 -

Number of cases

1600
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 - I
o - —.---.-... -
50 0 200

100 15 250 300 350
Gap from filing to decision in days

Figure 3: Time from case filing to decision (raw data)

Engineering appropriate features for PTAB case data

Our approach to variable extraction for the denials algorithm was relatively
straightforward. For each patent, we used word frequencies to create thousands of numeric
features. We replicated this method for bigrams (ordered pairs of words), trigrams (ordered triplets

of words), and tetragrams (ordered quadruplets). As shown in Figure 4, each linear increase in the
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number of words included in the feature led to an exponential increase in the number of features—
and therefore the complexity of the model.

This naive approach is known as the “bag of words” or “bag of phrases” method (Cambria
and White, 2014, p.50). We found, for a subset of our data, however, that this approach gave far
too much weight to common but relatively non-informative words. Accordingly, we implemented
an approach called term frequency-inverse document frequency (TF-IDF). This method takes our
simple bag-of-words frequency variables and normalizes them based on the frequency with which
each word is used across all patents (Berger and Lafferty, 2016, p.5). As a result, each word
frequency score in a given patent represents how rare that word is within the patent relative to the
set of all patents. This approach ensures that the variables that we are feeding into our statistical
model truly measure the differences across the full corpus of US patents and do not give undue
weight to common but non-predictive words. Additionally, prior to applying the TFIDF
transformation to our data, we stripped out stop-words like “the” and “and,” which we anticipated
would add more noise to our model than predictive power.

Additionally, we had to handle the fact that words with the same root (e.g., “hop,”
“hopping,” “hopped”) would count as separate features in the algorithm even though they likely
reflect the same concept across different patents in the corpus. To resolve this issue, we used the
Natural Language Toolkit (NLTK) Snowball Stemmer to use stem words as features (NLTK
2016). This approach essentially reduced each variation on the root of a word down to its word
stem. In the example provided above, the Stemmer would map the words “hop,” “hopping,” and
“hopped” to the same word feature—*hop.”

Finally, we used a latent semantic analysis approach for dimensionality reduction. By

computing the singular value decomposition of our tetragram model and choosing the top N
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features (where N = 1K, 5K, 10K, and 20K) from this decomposition, we were able to reduce the
level of complexity introduced from the n-gram approach described above. Mathematically, this
approach works by computing a change of basis from the original set of features and selecting the
top N most informative dimensions—i.e., the dimensions that harbor the greatest variation among
the different patents (Landauer, Foltz, & Laham, 1998). Results from these dimensionality
reduction efforts are shown in Figure 5.

Finally, after performing text featurization, we included the patent art unit and examiner as
metadata fields. The wrangling conducted to gather these data fields is further discussed by my
teammates William Ho and Dany Srage in their reports.

After these featurization techniques, we split the data by setting aside 80% of it as our
training dataset and leaving aside the remaining 20% for evaluation (our test set). This approach
allowed us to ensure that our model has sufficient generalizability and is not over-fit on the data it

was trained on.

1o 166 Number of features by featurization method
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Figure 4: Model complexity increases exponentially with each word added to n-grams
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Model choice: Support vector classification and random forest

For the denials algorithm, we tested out two very different machine learning models: support
vector classification and random forest classification. We chose these models for their simplicity
and the fact that the underlying statistical classification methods are different enough between
them that they would provide us some variety in our approach to classification. I will discuss each

of them in turn.

Support vector classification

This approach maps each patent as a point in high-dimensional space, where each TF-IDF
feature is one dimension. The objective of our classification algorithm is then to find a plane in
high-dimensional space that can separate the positive and negative examples (a two-dimensional
graphical representation of this approach is shown in Figure 8). While conducting this work, the
main hyper-parameters we tuned included the feature kernel and the level of regularization. 1 will
address each of them in turn.

I. Kernel

A support vector machine operates by finding a decision boundary between positive and
negative examples in a dataset. This decision boundary is a simple linear function of the input
features. For example, if we have the feature vector x = [x1, X2], the decision boundary between
our positive and negative examples (for this problem, denied and approved cases) is an inequality:

lifa’Tx>0 (1)
0 otherwise

Outcome =

In this case, a is the learned vector of coefficients. This is limiting because it requires the decision
boundary to be a linear function of the input features xi, x2; however, for most applications, the
boundary will be substantially more complex. For example, the data might be better separated

using a quadratic decision boundary:
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aiX1 + azx2 + asx1® + asx2? + asxix2 = 0 (2
In this case, we would use a second-degree polynomial kernel to transform our input features from
a linear feature space to a quadratic feature space. The input features can undergo a similar
transformation for any higher-degree polynomial space.

For our work, we performed a sweep using a linear support vector classification over a
number of different feature kernels, including linear, quadratic, and radial basis (Gaussian) kernels.
The latter radial basis kernel refers to a feature space with arbitrarily high dimensionality (i.e., a
feature space with a polynomial that goes out to degree infinity). This is possible because, due to
a method called the kernel trick, these features never have to be computed directly; all that must
be computed is the kernel dot product a™, which can be computed directly in spite of this infinite-
dimensional feature mapping (Hastie, Tibshirani, & Friedman, 2009).

ii. Level of regularization

The level of regularization employed by our model refers to the degree to which we constrain
the support vector model during training to prevent it from overfitting to the training data (and, as
result performing poorly on the test set). The regularization parameter, A, is what we manipulate
to prevent overfitting. In this case, the higher the regularization, the worse the model will perform
on the training set (although the better it should perform on the test set, up to a point).

For this work, we tested out regularization for 1/A = 10, 1, and 0.1. This sweep of parameters
reflects models that go from minimally regularized (minimally controlled to prevent overfitting)
to not at all regularized (very controlled to prevent overfitting).

Random forest classification
In addition to support vector classification, the second type of classification method we

attempted was random forest classification. The primary difference between this method and the
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support vector approach is that, instead of finding a boundary between positive and negative
examples, this method uses decision trees based on word/phrase frequency from the TFIDF
features.

For example, in the decision tree shown in Figure 9 (appendix), we would like to classify a
new patent. We evaluate that patent’s word frequency by stepping through the tree until hitting a
leaf node. When a leaf node is found, we take a vote among examples in the leaf node and use the
majority class in that node to determine a class for that example. So for example, using the decision
tree shown in Figure 9, a case covering a patent with more than 5 instances of the word “software,”
more than 3 instances of the word “semiconductor,” and fewer than 5 instances of “biotechnology”
would be classified as denied. This tree is constructed by choosing feature splits within the data
that maximize the ability to separate the positive from negative examples at each level of the tree.

Our use of a “random forest” of trees (instead of just one decision tree) allows us to construct
10 different decision trees using samples of our training data, and ensemble them to produce a
consensus prediction. This method produces lower variance prediction models than using a single
tree alone (Hastie, Tibshirani, & Friedman, 2009).

In the case of random forests/decision trees, the regularization parameter is the depth of the
tree. In the case of the example shown in Figure 9, we have a relatively shallow tree (depth of 3).
As we increase the maximum depth, however, we increase the prediction algorithm’s ability to
discriminate between different examples and classify complex examples. For this work, we tested
out different tree depths to assess the effects of different levels of model complexity (depth varied

among 10, 20, 30, and 60 maximum depth).
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Results and discussion

Classifier results

Training and testing accuracy by number of features,
support vector classification

B Training accuracy

Testing accuracy
0.4

1000 2000 5000 10000
Mumber of features

.':'.ffl.]l'ﬂl::_.'

Figure 5: Support vector classification accuracy by number of training features
extracted with singular value decomposition

Using the support vector classification model, we were able to construct a classification
algorithm that performed better than simply guessing (full results shown in Table 4). Using
tetragrams reduced down to 1K dimensions and a weakly regularized model, we were able to attain
a validation accuracy of 0.78, 8 percentage points better than intelligent guessing could achieve
(based on the data skew). Notably, we do not need many dimensions from the original dataset in
order to achieve these sorts of results. Evaluated on a similar support vector classification model,
we saw very little difference in the prediction accuracy attained from reducing dimensionality from
the original set of features to 1,000 compared to reducing to 10,000 features (Figure 5).

Across regularization parameters, we found that simpler models (i.e., linear kernel)

outperformed more complex models. Our best-performing algorithm was the linear support vector

machine with 1/ 4 setto 10. This essentially means that the predictive power that we gained from
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increasing the complexity of the machine learning model did not outweigh the benefits that might

have been incurred from algorithm simplicity (i.e., maintaining generalizability across training and

test datasets).
Algorithm Algorithm
1 accuracy .
Kernel / 1 i accuracy | Precision Recall
on training
on test data
data
10 0.92 0.78 0.82 0.87
Li 1 0.86 0.75 0.76 0.94
inear
0.1 0.70 0.69 0.69 1.0
Polynomial 10 0.70 0.69 0.69 1.0
(degree 3)
Radial basis | 0.70 0.69 0.69 1.0
function
(Gaussian)

Table 4: Kernel SVVC results

The need to favor simplicity was also reflected in the receiver operating characteristic

(ROC) curve that we found for each of our primary support vector classification algorithms. We

found that we were able to attain the highest area under the ROC curve (i.e., maximizing the true

positive rate while minimizing the false positive rate) using simpler, well-regularized kernel

support vector classification. These results are shown in Figure 6.
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Receiver operating characteristic
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Figure 6: Classifier ROC curves
Using the random forest approach, we were able to attain slightly poorer performance than
with linear support vector classification. This is likely due to random forest’s lesser ability to model
complex decision boundaries between positive and negative examples (i.e., denied and accepted
cases). That said, the best performing random forest model, with a maximum tree depth of 60, still

performs 4 percentage points better than the base rate (0.74 accuracy on test data vs. 0.70 base rate

based on data skew). These results are illustrated in Table 5.

i Algorithm Algorithm

Maximum -

tree depth | J2cturacyon | accuracyon Precision Recall

training data test data

10 0.70 0.70 0.70 1.0
20 0.71 0.70 0.70 0.99
30 0.74 0.70 0.70 0.98
60 0.80 0.74 0.74 0.97

Table 5: Random forest results
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Once again, we see little benefit of maintaining model simplicity by limiting tree depth—
as we increase the maximum allowed depth of each tree, we increase both training and testing
accuracy.

Lastly, we were able to extract from the unigram TFIDF vectorization algorithm the most
and least predictive words for and against case denial. Because the TFIDF algorithm normalizes
frequencies across the document corpus, the regression coefficients can be directly used to infer
each word stem’s impact on case denial or acceptance. The results from this analysis are shown in
Figure 7. It is challenging to draw direct inferences from these individual word stems, although
the top stems indicating denial are likely those that are used across multiple different technical
fields and likely make a patent sufficiently general (e.g., “name,” “element,” and “spatial”) such
that a claim of direct conflict with an existing patent is more difficult to verify, causing the case to
be more likely to be denied outright.

Relative influences on probability of denial
(top and bottom word stems from TFIDF)
name ]
bracket I
collect ]
stage |
spatial |
limit —
element I
volatil I
communications -

assist
communication
episod

cia

whereina

ddr

view

repositori

field

=5

-2 -1 1 2 3 4

Regression coefficient

(positive means word stem improves likelihood of denial,
negative means stem hurts likelihood)

| _
S
(i
w
o -

Figure 7: Top 10 and bottom 10 words that are most and least
likely to indicate case denial
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Limitations of analysis and discussion

There were two primary limitations we encountered when designing and analyzing the case
denial algorithm. The first was the lack of data available. The dataset we employed for this
algorithm was relatively limited—we had many more features than training examples. This is
primarily due to the small number of cases that have been accepted by the Patent Trials and
Appeals Board under the new America Invents Act post-grant review process (instituted in late
2012). Inthe case of the stemmed unigram data with stop-words removed, we had only 3,644 case
examples but 16,458 features. These data result in a relatively shallow learning curve where we
see relatively small improvement from a small number of training examples to a large number, as
reflected in Figure 8. For a typical support vector classification task with a large number of
features, we would ideally want significantly more training examples to continue to see large
improvements in the learning curve (Perlich, 2011).

o Denials algorithm learning curve

o o o
I o =]
| |
II
|
|
|
|
|

Validation accuracy

o
¥

0.0 i i i i i i i i |
200 400 600 800 1000 1200 1400 1600 1800 2000

Number of training examples

Figure 8: Learning curve (validation accuracy by number of training examples) reflects
relatively small improvement as we increase the number of examples.

The second limitation was that there were a number of cases that were repeated on the same

patent. Specifically, we found that 38% of the cases on the dataset were on patents that were
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repeated across multiple cases. We thought at first that this repetition might artificially increase
the accuracy of our classifier, however, we found that in many cases there was a not a consensus
among all cases litigated regarding a certain patent. In fact, for 46% of patents that appeared in
multiple cases, the PTAB provided at least one conflicting decision (i.e., accepted one case
presented over that patent and denied another). These results for the top 10 most frequently
repeated patents across cases are shown in Figure 9.

Case review

b5 outcomes for top 10 repeated patents

mEm Accepted cases

20 B Denied cases

0- |||I|||

\J}x o

Number of cases
=
D

w

@‘?’6 '1\ '1'1 '16 '1*5 '1’1 '1,"5
Patent number

Figure 9: Acceptance/denial outcomes for top 10 most frequent patents (e.g., left bar reflects that
patent 6853142 was reviewed in 23 total cases, of which 5 were denied and 18 were accepted)

As a result, we cannot conclude that repeated cases resulted in greater accuracy of our
algorithm, since conflicting results over the same patent likely caused lower accuracy than we
could otherwise attain on a significant portion of our data. Still, this aspect of the case data—that
there are different examples with redundant independent variables—is a limitation of the training

data that hinders our algorithm.
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Conclusion and discussion of future work

In this set of experiments, we were able to show that fairly simple classification models are
able to do substantially better than chance in predicting patent case denial. Provided more time,
there are a number of next steps that we would take to further this work. First, we would like to
attempt more sophisticated approaches for classification that would enable us to go beyond the
traditional statistical methods we have used here. For example, recently neural networks have been
proven useful by for text classification of large document sets (Lai, Xu, Liu, & Zaho, 2015). Since
such approaches often require large amounts of training data, we would suffer from similar
limitations as we experienced in this set of experiments.

Accordingly, the second major next step is to evaluate this algorithm on new patents as
they are granted and to refresh it after sufficient data has been collected. Since the Patent Trials
and Appeal Board is a relatively new entity (first cases available from 2013), additional data and
observation of patents through their full lifecycle will further inform how to most effectively
perform this sort of classification. Specifically, we found that the number of PTAB cases is
growing at 20-30% per year (Patent Trial and Appeal Board Statistics, 2016). Projecting this trend
outward, by the end of 2019 there ought to be ~16K cases available for review, and the number of
examples would exceed the number of features for a standard TFIDF featurization algorithm (see
Figure 10, appendix). At this point, it would be valuable to reproduce this methodology in an

attempt to build an even more robust classifier.
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I11. Engineering Leadership

Introduction and project overview

In this section, my teammates and | examine the industry context and business
considerations associated with building our post-grant review prediction algorithms. First, we will
discuss the current patent landscape and how it informs the marketing strategy for potential
customers. Second, we will analyze the different competitors in the legal services space and define
how our tool differs from existing offerings. Third, we will discuss the current state and trends in
the machine learning field today and how they can be applied to our tool. Fourth and finally, we
will close with an ethics section that will examine the ethical issues we considered in designing

and deploying the algorithm in the form of a website.
Designing a tailored marketing strategy

It is becoming increasingly challenging for research-oriented firms and their attorneys to
navigate the intellectual property landscape in the United States. In addition to the increase in the
sheer number of patents, recent changes in US law have made it significantly easier for members
of the public to challenge existing patents. In 2012, the US federal government enacted the Leahy-
Smith America Invents Act (AlA). This legislation substantially expanded the role of the US Patent
and Trademark Office in post-grant patent reexamination (Love, 2014, Background). The AIA
opened the gates of post-grant patent opposition to members of the public by providing a much
less costly and more streamlined avenue for post-grant opposition through the Patent Office’s
Patent Trial and Appeals Board (PTAB). Any member of the public could challenge an existing
patent for only a few thousand dollars—relatively inexpensive compared to litigation (Marco,

2016).
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Accordingly, the patent application process is under two types of strain: it is resource
constrained—since there are more and more patents being filed every year—and it is coming under
more scrutiny due to the America Invents Act. There are two main sets of stakeholders that have
an interest in improving the current application process: (1) the USPTO and (2) patents filers and
their lawyers.

First, because “IP-intensive industries accounted for about [...] 34.8 percent of U.S. gross
domestic product [...] in 2010 (Economics and Statistics Administration and United States Patent
and Trademark Office, March 2012, p. vii), reducing the time it takes to effectively examine a
patent—perhaps through assistance from a computerized algorithm—is a critical priority for the
USPTO (appendix A). Indeed, helping patent examiners reduce the time they spend on each patent
(while still maintaining the quality of examinations) would mean reducing the cost and time
associated with filing patents, proving economically accretive and reflecting well on the US Patent
and Trademark Office. In fact, the USPTO has expressed interest in a predictive service in the past
and has conducted its own research into predicting invalidation (US Patent and Trademark Office,
2015, p. 38).

Secondly, when applying for patents, patent filers and their attorneys have a strong interest
in preempting potential litigation through effective framing and wording of their patents. Patent
litigation is becoming more and more common as evidenced by IBISWorld: “Demand for litigation
services has boomed over the past five years” (Carter, 2015, p. 4). Therefore, a tool that could help
patent filers prevent litigation would be valuable during the application process. One industry that
may be especially interested in this sort of tool is Business Analytics and Enterprise Software. In
the past several years, the costs associated with protecting “a portfolio of patents” have

disproportionately increased in this industry (Blau, 2016, p. 22).
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Competition in the patent analytics space

Patent validity is a major concern for the $40.5 billion intellectual property licensing
industry, whose players often must decide whether to license a patent or challenge its validity
(Rivera, 2016, p. 7). These decisions are currently made through manual analysis conducted by
highly-paid lawyers (Morea, 2016, p. 7). Because of the cost of these searches, data analytics firms
such as Juristat, Lex Machina, and Innography have created services to help lawyers perform
analyses more effectively.

One common service is semantic search for prior art and similar patents, where queries
take the form of natural language instead of mere keywords. Other services include statistics about
law firms, judges, and the patent-granting process. These services build their own high-quality
databases by crawling court records and other public data sources, correcting or removing
incomplete records, and adding custom attributes to enable such search patterns and reports. Their
prevalence reflects the trend towards data analysis as a service, since law firms are not in the data-
analysis business (Diment, 2016).

The above services lie outside the scope of predicting invalidation from patent text and
metadata but become relevant when discussing commercialization because high-quality data
improves model accuracy and enables techniques like concept analysis that are difficult or
impossible with raw unlabeled datasets. As such, partnering with existing firms that provide clean
datasets or otherwise cross-licensing our technologies may be advantageous.

While these services help lawyers make manual decisions with historical statistics, we have
found no service that attempts to predict invalidation for individual patents. Juristat is the only
major service we found that performs predictions on user-provided patent applications.

Specifically, Juristat predicts how the patent office will classify a given application and highlights
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key words contributing to that classification, with the goal of helping inventors avoid technology
centers in the patent office with high rejection rates (Juristat, n.d.).

Our project, if successful, can become a Juristat-like service for predicting post-grant
invalidation. While we cannot speculate on existing firms’ development efforts, the lack of similar
services on the market suggests a business opportunity. Whereas existing services target law firms
and in-house IP lawyers, our project aims to help the USPTO evaluate post-grant petitions, which

are brought forth by parties attempting to invalidate a patent.

Review of machine learning technology trends

This work has been enabled by many recent advances in the application of machine
learning to large data problems. Even though machine learning has been around for several
decades, it took off within the past decade as a popular way of handling computer vision, speech
recognition, robotic control, and other applications. By mining large datasets using machine
learning, one can “improve services and productivity” (Jordan & Mitchell, 2015 p. 255-256), for
example by using historical traffic data in the design of congestion control systems, or by using
historical medical data to predict the future of one’s health (Jordan & Mitchell, 2015 p. 255-256).
For this project, we had access to a large dataset of historical patent filings since 1976, for which
recently developed machine learning techniques proved especially useful.

Machine learning algorithms generally fall into one of two categories: supervised and
unsupervised (Jordan & Mitchell, 2015 p. 256). Supervised learning algorithms need to be run on
training data sets where the correct output is already known. Once the algorithm is able to generate
the correct output, it can then be used for regression or clustering. In contrast, unsupervised
learning algorithms use data sets without any advance knowledge of the output, and perform

clustering to try to find relationships between variables which a human eye might not notice.
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Recent trends indicate that supervised learning algorithms are far more widely used (Jordan &
Mitchell, 2015 p. 257-260). Our historical data set indicated whether or not patents were
invalidated/denied during past disputes, which made a supervised learning algorithm the

appropriate choice.

Ethical challenges associated with patent prediction

Due to the legal stakes associated with patent applications and review, we anticipated the
possibility of running into potential ethical conflicts when completing this project. We used the
Code of Ethics, written by the NSPE (National Society of Professional Engineers) (NSPE, 2017),
as a guideline for our planning. We identified two components of the Code of Ethics, which our
project could potentially violate if left unchecked.

The first is Rule of Practice 2: “Engineers shall perform services only in the areas of their
competence” (NSPE, 2017). One of our potential target customers is the United States Patent and
Trademark Office, who would ideally use our project to aid with their patent approval decisions.
If our project were seen to be an automated replacement, rather than a complement, for trained
patent examiners or attorneys, that may be considered an attempt to perform services outside of
our “areas of competence.” While we cannot dictate how our customers ultimately utilize our
product, we can mitigate the issue through thorough written recommendations in our
documentation to hopefully encourage responsible usage.

The second ethical consideration is Professional Obligation 3: “Engineers shall avoid all
conduct or practice that deceives the public” (NSPE, 2017). While we fully intend our project to
be used in service to the public, we recognize the possibility of bias in our supervised machine
learning algorithm (Reese, 2016), with the resulting output capable of unfairly swinging the

outcome of a patent decision. Unlike the prior ethical issue, we have more control in this situation,
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since we do not have a viable product without a sufficiently trained algorithm. By verifying our
datasets to ensure equal representation and objective input, we can avoid inserting biases and thus

maintain ethical integrity.
Engineering leadership conclusions

Collectively, recent economic and regulatory trends have made now an exciting but
uncertain time for inventors, attorneys, and the US Patent and Trademark Office. Thoughtful
applications of machine learning and statistics can make sense of these recent changes and assist
stakeholders in truly understanding what drives patent invalidation. As we pursue this technology,
our understanding of the industry landscape of potential customers/competitors, leading trends in
machine learning research, and the ethical considerations associated with our technology will drive
our research. Ultimately, we hope that our technology contributes to the continued development
of a patent ecosystem that enables inventors to do what they do best: developing novel and socially

valuable inventions.
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Appendix

Section A: How will the invalidation prediction algorithm help the US Patent

and Trademark Office?

In 2015, the USPTO received 629,647 applications and this number is steadily growing (Patent
Technology Monitoring Team, 2016). If our classifier can help them save only two hours on
each application by predicting the outcome of an invalidation request and therefore help them

make their decision more easily, it would save them about 430 working days (of 8 hours each).

Section B: Additional figures

Feature A
. Denied case

. Accepted case

Decision
boundary

Feature B

Figure 8: Two-dimensional example of support vector machine
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Is the word “software” used more than 5 times?

Yes No

Is the word “semiconductor” used more than 3

times?
Yes No
Is the word “biotechnology” used Is the word “dopant” used more
more than 5 times? than 4 times?
IiYes#No‘I IiYesJ;No‘l
® 04 o O o0, °
o0 o0 P P
Class: Class: Class: Class:
Accepted Denied Denied Accepted

Figure 9: Example of decision tree (note that the actual tree will likely employ >1 n-gram

frequency feature for each split)

Other
sections of
the tree
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Estimated cumulative PTAB cases by year
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Figure 10: Estimated cumulative PTAB cases by year (last 4 months of 2016 and 2017-2019
estimated based on historical growth)

Cumulative PTAB cases
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Section C: Denial prediction code

Note: all code can also be found at https://github.com/davidjwiner/cal-patent-lab

Imports and utility functions

in [4):

iapoct suspy &3 =p

inport pandass s pd

inpost ve

from pandas isport Datafrase

frem sqlalchemy import creats engine
from matplotlid import pyplot as plt
inport matplotlih s spl

trom sqlalchemy import create sngine
from matplotlid ispert pyplot a8 plt
ingort osv

isport dealals coafig # costaiss sessitive dats (git lgsored)

from shlears. feature_estraction.test ispert TfidfVectoriser, CountVectorizer, TIdfTranaformer
from shlesara.sve laport LisesrSVC

from shlsara laport cross validation

from shiears.linear model import Logisticiegression

from sklears.metrics isport preciiion score

from skiears.metrics import recall score

frem sklesara import linear sodel, dSecompositics, datasets
trom skiears import svm

fros shlears.setrics lsport roc curve, aoe

from shlsars.saive_bayes isport Gaussianid

from shiears.easssble isport NandomForestClassifier

from shlsars.swe isport VO

it.style.vse| ‘gaplot’)

fros satplotlid isport rcPurans

rcParess| "fost.family ] = "sens-serif
scParans| ‘foat . sarif’ ) » | ‘Tines New Ronas’ )

‘matplotiid isline
pd.set_option( display.mes colwidth’, -1)

Ia | )s

# Deilicy fuscetlon Lo test
dof trais model(X, ¥, classifier):
X trals, X tast, y train, y test » cross wvalldation trals test splicg
X ¥, teet_size~d. 2, tandon _state-id)

sodel » classifier.fit(X traia, y trais)

precision ~ precision_score(y_test, model.predict(k_test))
recall « recall score(y _test, sodel predict(X teat))

prist( "Tralaisg accuracy is (0)".forsat(modal score(X traln, y trals)))
prist("Testing sccuracy is (0)°.formatisodel .score(X _test, ¥y test)))
prist( Precision is (0)".formati{precision))

prist( Recall is (0)" forsat(recall))

returs sodel, X test, y teat, X trais, y trais

In J20):

¢ Siaple functioz Lo prettify chart axes
def ainpleaxisjax):
an.spines| ‘top’ |.set_visible|False)
ax.spises| right' | .set visible(False)
AX .90t xaxis().tick botton )
ax.get _yaxis().tick_lef:()

Data downloading

Fast, we pull down all of The patents Tht have sver Deen Drought Delore the PTAS and jon with patent leat
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N

# Connecting to the db

host_db = “cal-patent-lab.chhaitskvEds.us-west-2,rds.amazonawe.com”
username = denials config.team username

password = denials_conflig.team password

db = "teamrocketr”

engine » create _engine("mysql://():{)}8(})/(})".tormar|
username, password, host _db, db))
connection = engine.connect()
q = "SELECT case_id, patent_id, invalidated, denied, filing date, decision date FROM ptab cases”
ptab_patents =~ pd.read sql(g, engine)
connection.closel)

In |19]):

# Next, we want to grab the claime text associated with each patent and insert it into the dataframe

host db » "rosencrantz.berkeley.edu”
username ~ denials conflg.fung username
password = denials config.fung password
db =~ “uspto”®

engine = create_engine( " mysql://(}:{)}8()/ ()" .format(
username, password, host _db, db))
connection « engine.connect|)

patent id ~ int(ptab patents.patent id|:1}])

In | )3

# Inserting concatenated claim text into ptab patents

found = listy)
for idx, patent id is ate(ptab patents.patent id):
qQ = "SELECT text from uspto.claim where patent_id = "{} ".format(patent_id)
clains = pd.read sql(gq, engine)
claina concat » claims.text.str.cat()
ptab_patents.loc|ptab_patents.patent_id == () .format(patent_id), ‘claim text’' ) = claims concat
found .append(not claims.empty)
if idx § 100 == 03
print(‘Processing patent {)".format(idx))

In [106]:

# Plckling file for later use -- uncomment this line to overwrite the existing pickle
# ptab _patents.to _pickle( ‘ptab patents.pkl’)

Overall data description histogram

In (321

ptab_patents » pd.read pickle('./pickles/ptab patents.pkl’)
num denled « ptab_patents|ptab patents.denled == 1).count()(0)

Out|31):
2052

Data cleaning

In [19):
ptab_patents = pd.read pickle(’'./pickles/ptab patents.pkl’)
# First get rid of patents where we cansot find the claim text

mask = (ptab_patents.claim_text.str.len() » 1)
df = ptab patents.loc|mask])

null denied counts = df.denied.notnull().value counts()
print(“Out of (0) total cases, (1) have null for thelr denied status”.format(sum(null denled counts), null
_denied_counts[i]))

Out of 4271 total cases, 2490 have null for their denied status
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In [16):

sull denied counts
Outflé€)

Troe 24%

False 1783

Name: denied, dtype: intéd
In [1Ej:

dup patent cocats = df duplicated{schset='patent id', ksep>'first').valoe counts{)
prist("(0) patents shovw up more thas once” . format(dup pateat countsll)))

1656 patents shov up sore than once

Inferring denied status when possible

In f21):

11

# First we vant to repoedent the null denlal status with an actual value — we'll use -1 for thls (0 means
2ot denied, ! meana denied)

df .denied » df .denied.fillna(value~-1)

df . invalidated = 4f. invalidated.fillna(valuoe=-1)

df . invalidated.value counts()

/Users/davidiviner/anacondal/envs/py27/11b/pythonl. 7/slte-packeges/pandas/core/generic.py: 2701 SettingWit
5

bCopyMarning
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc|row_indexer,col iadexer] = value instead

See the caveats in the documentatioa: http://pandas.pydata.org/pasdas-docs/stable/indexing.btaldindexing-v
self{name) = value

Outf2l):

-1.0 1783
0.0 1527
1.0 963

Name: invalidated, dtype: intéd

In [22):

stacked = df .groupby (by~| ‘denled’, "“invalidated’ )).count()
unstacked = stacked.unstack()
unstacked| ‘case_id° |

Out[22):
invalidated |-10 |00 1.0
dered
-1.0 17830 NaN | NaN
00 NaN |1400 {9630
10 NaN | 1387.0 | NaN

As we'd expect, most i of the cases Ihat were not denied had a nuing. There are nO cases that were both mvalidated and denied (which
makes sense). We'd lose a signiicant amount of data by caling all cases that are densed “denied.* We can get asound this by counting all of
the cases that have an nvallcation decsion as not denied.

In [23)s
df| tiling to decision’] = df.decision date - df.filing date

/Users/davidjwiner/anaconds)/envs/py27/1ib/python?. /site~-packages/ipykernel/ main .py:ls
SettingWithCopyMarning:

A value is trying to be set on a copy of & slice from a DataFrame.

Try using .loc|row_indexer,col_ indexer] = value instead

See the caveats in the documentation: Attp://pandas.pydata.org/pandas-docs/stable/indexing.htalfindexing-v
Llew-versus-copy

if name == ' main_ ':

35
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AR Jae

Gap in days « df. fLlling to decision|df . filing to decision.notaulli()] / sp.tinedeltadd(i, 0
ax = plt.subplot(ill)

9ap_in days. histi{bina~i0)

simpleaxis|ax)

pit.titiel Duys alapoed from filing to decision date for \aPTAD cases, 2012-20147)
pit.xlabel( Cap from filing to decizion in days’)

pit.ylsbel( ' muaber of casme ')

prist| Average nusber of days elapeed is (0)" . format(gap in days.mean()))

Aversge nunber of days elapsed Is 171034941744

Days elapsed from filing to decision date for
PTAB cases, 2012-2016

Number of cases

0 =0 100 150 200 7% 00 10
Gap from filing to decision in days

S0 # locks ke, for afl cases Fom more than 200 days peor 10 when s case was led, § there & N0 decision we Can count them 23 “dened*
for the purposes of our slgorithm.
Is (25

# Elininste any nissing witils the scceptable filing-to-deciszion yap

df decision date » pd.to datetime(df .decision date)
@f . tiling date ~ pd.to datetime(df.filing date)

Bax_date « df decialon date . max()
min _filing date « max date - pd Tisedeltal 390 days ')

n_should be denied = df|((df . denied »= ~1) & (df.filing date < min filing date))|.count{)|?)

8 out of progress period ~ 4f| (4f.filing date « mia filing date)|.count{)|?)

n_ia progress period =~ df| (df.filing date >~ min filing date)).count()|0)

In |24):

df « af| (df . denled =« ) | (af . denied «= 0) | ((df . denled == 1) & (Of . filing date « nin filing date)))
4f danisd|df denied »» 1] = |}

Ia (33

@f .denied. value countal)

Out{ii
.0 s
0.0 1103

Name: denied, dtype: intéd

That ncreased the amount that we have 10 work with from ~2500 to ~3600 ~ a pretty substantial increase’

Feature engineering
Removing stop words and applying stemmer
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In |6
X » af clainm text.as matrix()
Yy~ Af . denied. as matring)

from alth. corpus inport stopwords
from alth. stes. snowball Laport Snovballftesne:
P~ SpovbaliStenmer( english’ )

2L0p * set(stopwords .vorda( english’))

X mod » [)
for Ldx, olaim in eoumerste(X):
eyt
text = ' join((pe.stenivord) for word im clais.aplit() Af word met is stop))
evcept:
text » 7 jein|{wvord for wood in clain aplit() Af wvord net im stop))

X_pod, append| text |

Plotting number of features by featurization method

In |2

tiide unigras = T{idfVectorizer|ngran cange~(i, 1))
LAl _higram « TfidfVectoriser (ngran range=<(i, 1))
LEidf _trigram » TiidfVectoriser(ngran _range~(i, 3))
tfidf _tetragran = TidfVectoriser(ngranm range~(1, 4))

X unigram « Lfldf unigram. fis cransforn(x med)
X bigram » tidf bigram.fit _transform(X)

X _trigram =~ tfldf _tcigram fit transform(X)

X tetragran « LOLAf tetvagran, fit transfors|X)

nim festures = (feature satsix.shape|l] for feature matris in (X _unigram, X bigram, X _trigram, X _tetcagras)
1

In (420

# riotting nusber of fosturvs

from satplotlih inport pyplot s plt
poa » list(range(leninun festures)))
width = 0.)

fig, ax = plt.subplots()
flg. tight layout()

plt . bar(|p » vioth for p in pon|,
nun_tostuces,
wideh,
alphaso. s,
color="darkblue’,
Labels "Training sccurscy’)

ax ot _ylabel( Wunber of festures (nllllons)’)

ax.pet_zlabel( Festurizetion sethod )

AN et _titiel Munber of fTeatures by festurization method ., fontsise~il)
pit.tickiabel format(style='sci’', axis='y’', seilimita=(0,0))

An. et mtieks((p * 1.5 C width Ter p in pow))

ax st _stichlabels(| Unigrams', Bigrass , ‘Trigrass , ‘Tetragrass'))

Osta2 )

[<matplotlib.text . Text at OxlleSbfldo>,
<patplotlib.text.Text at OxiJedbdsdts,
<matplotlib.text . Text at Oxlled20090>,
“matplotlib. tant . Text at OxlZed20810>)

Lo 308 Number of features by featurization method
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o

Singular value decomposition: effects of reducing the number of features

In |351):

from sklears isport linear model, decosposition, datasets
from shlears Lsport svn

from matplotlib ispert pyplot as plt

from shlears isport cross validation

plt.style.vee( ‘ggplot’)
aun_svd_features = [1000, 2000, 3000, 10020)

X train, X test, y _traim, y test » cross_validation.train test split(
X _unigram, y, test size~0.2, random state-20)

def plot_accuracies(train acc, test acc, figure, classifier name):
pos = list(range(len(train scc)))
wideh « 0.2
plit.figure|figure)
fig, ax = plt.subplotsy)
fig.tight layout()

plt. bar(|p * wideh for p is pos),
train_ace,
width,
alpha=0.5,
color= dariblue’,
label="Training accurscy’)

plt.bar(|p + I * width for p ia pos],
test_scc,
wideh,
alpha*0.3,
color="lightsteelblue’,
label = "Testing sccurscy’)

slepleaxisiax)

ax.set_ylabel{ Accarscy’)

ax.set _xlabel( Nusber of fesatures')

ax.set title( ' Training and testing sccurscy by nusber of festures, a0} .forsat(classiflier name), fon
tsize=il)

ax.set _xticks{|p + & * width for p in posj))

ax.set xticklabels(num svd features)

plt.legend(bbox_to_anchor=(1, 1.02), loc~"upper left’, ncol=~l)

pit.abow()

sve = svm, LinearsVC(C-10)
clfs = [ 'support vector classlfication’, sve) |

for idx, (name, clf) im enumerate(clfs):

training accuracies =~ [)

testing scourscies ~ ||

for n_components in num_svd festutes:
priat("Working on conponenants {0)°. fosmat (& components))
svd » decomposition.TruncatedSVD(n_comp & *a_comp 2)
svd. fit(X_train)
X_train_transformed - svd. transform(X_train)
K_test _transformed ~ svd.transform(X_test)
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clf.far(X _train transformed, y train)

training_accuracies.append(clf.score(X_train transformed, y_train))

testing accuraclies.append(clf.score(X test transformed, y test))
plot_accuracies(training accuracies, testing accuracies, idx, nane)

In [152)1
plot_accuracies(training accuracies, testing accuracies, idx, name|
<matplotlib.figure.figure at O0xlZcccde50>

Training and testing accuracy by number of features,

10 support vector classification

s Training accuracy

Testing accuracy
08
06
04
0.2
0.0

1000 2000 S000 10000
Number of features

Accuracy

Primary classification results

In| s

from sklearn.metrics import roc_curve, auc

from sklearn.naive_bayes import GaussianMB

from sklearn.ensenble inmport RandoaPorestClassifier
from sklearn.sva import SVC

import matplotlib

import csv

# SVC clasaification algorithne

SVC_clfm = [("Linear SVC, C=10%, SVC(C+i0, kernel="linear’)),
(“Linear SVC, Cw1" , SVC(C~1, kernel~'linear')),
("Linear SVC, C=0.1%, SVC(C~0.1, kernel="linear')),
("Polynomial SVC, C=10", SWC(|C~10, kernel='poly’)),
("RBF SVC, C~10%, SVC(C«10, kernel=‘rbf"))]

# Random forest algorithns

random_forest clfs » |("Random forest, 10", RandomForestClassifier(max_features=10, max depth=10)),
(“Random forest, 20", RandonForestClassifier(max_features~10, max depth~20)),
("Rundong forest, 307, RandomForestClassifier(max features=10, max depth=10)),
("Randon forest, €0°, RandonForestClassifler(max featuress=10, max depth=&0)))

deof get results(clfs, filenane):
for (name, classifier) im clfs;

print{name)

nodel, X test, y test, X train, y train « traln model(X mod, ¥, classlifler)

with open{filename, 'w') as csvfile:
vriter = csv.writer(csviile)
writer . writerow(| ' 'Training sccuracy', 'Testing accuracy’))
vriter.writerov((model. score(X train, y train), nodel.score(X _test, y test)))

get results(random forest clfs, “random forest classifier accuracies.csv")

ROC curves

39
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SVC_elfs = [("Linear SVC, C=10%, SVC(|C~10, kernel='linear’)),
("Linear &VC, Ce=1" , SVC(C«l, kernels'linear')),
("Linear SVC, C#0.1%, SVC(C»0.1, kernel='linear’)),
("Polynamial SVC, C=10", SVC(C»10, kernel»'poly’)),
("REF SVC, C=10", SVC(C+10, kernels'rbf’)))

for (name, clf) im EVC clfs
model, X_test, y test, X _train, y_train = train model(X_unigram, y, clf)
y_score = model.decislon_function(X test)
fpr, Spr, _ ~ roc _curve(y test, y score)
fprainane | = fpr
tpralnane | = tpr

In (58]
ax ~ plt.subplot()

for name, i SVC clfs:
tpr = tprafnane |
fpr » fpra(nane |
plt.plot(fpr, tpr, labele«name)
plt.xlim((0.0, 1.0])
plt.ylim([0.0, 1.0%))
plt.xlabel( 'Yalse Positive Nate')
pit.ylabel( True Positive Rate')
plt.title| 'Recoiver operating characteristic’)
plt.legend|{loc~"lower right")

simploaxie(oax)

plt.show()

Receiver operating characteristic

1.0
o o8
3
Y oo
g o4 Linear SVC, C=10
5 Linear SVC, C=1
= Linear SVC, C=0.1
" Polynomial SVC, C=10
RBF SVC, C=10
’ oo‘o 02 0.4 0.6 0s 10

False Positive Rate

Learning curve

In |
from sklears lmport utils

n_training examples = [50, 250, 500, 1000, 1350, 1500, 1750, 2000)
training accuracios =~ (|
tasting accuracies = ||

X _subset, X cross_val, y subset, y cross val = cross_validation.train_test split|
X _unigram, y, test _size~0.J, randaom_state~il)

for n im n_training examples:
ave = BVC(C~10, kernel='linear')
X _train, y_train = utlils . resanple(X_subset, y subset, replace~false, n_sanples~n, random state~l0)
ave.fit(X_train, y train)
training accurscies,append(sve.score(X_train, y train))
teating accuracles.append(sve.score(X test, y teat))
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In [189):

£, ax » plt.subplots|)

pit.plot(n _traiaing examples{i:|], testing accuraciesfi:], "o-')
plt.ylim(o, 1)

plt . xlabel( " Nunber of training exssples”)

plt.ylabel( "Validation accuracy”)

pit.titiel"Denials algorithm learaing curve®)

simpleaxisjax)

plt.show()

Denials algorithm learning curve
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“ o ™)

Validation accuracy
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Repeated patents

In j200):
top_patents « 4f . groupby(by~ patent id').count().sort{columsns« case id ., ascendingFTalee) .case id

fUwers/davidiviner/anacondal/enve/py27/1ib/pythond .7 /site-packages/ipykernel/ main__.pyils Puturedarning:
w‘:(w....) u_:-uu‘. use sort values(by=.....)
_bame == ' _3 "

In §27%5):

freqe ~ top_patents
patents « top patents.index

wab_freqe = freqe|fregs » 1)

b patents < sub freqs. index

rum denials =~ [}

for p in sub_p i
nun_deciale.append|sun(df [df .patent id = patent).denied))

consensus « [nun denlala(l] =« sub frege|i] for L in range(leninum denials)))

Im 1279)s

rum_patents withoot consensus = float{sum(consensus)/float|len|nus deaials)))
prist(“Tor (0) perceat of patents that are duplicated acroes cases ve bhave cosflicting decisions”.format(n
u=_p s_without »

For 0.544827586207 percent of patents that are dupliceted across cases we have conflicting decisions

In 1220
freqs » top pateats|:i0)

patents = top patents{:ll].index
num denials ~ |}

for patent im patents:
nun denials.append|sun(df(df.pateat id »» patent].denied))

In [355):
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ind = ap.arange(len{fregs)) # the x locations for the groups
width « 0,35 # the width of the barw: can also be lea(x) seguence

ax =~ plt.subplot(ilil)
sinpleaxis(ax)

Pl = plt . bar(ind + width, freqs, width, color="#dé2728°, label~"Accepted ceses”)
P2 = plt.bar(ind + width, num denlals, width, label~"Denied cases™)

plt.xticks(ind « 1.5 * widih, pateats)
plt.xticks|rotation=31)

plt.xlabel( 'Fatest number’')
plt.ylabel( Sunber of cases')

plit,legend{loc~'best’)
pit.title( 'Case review \soutcomes for top 14 repeated patents’)

pit.ahow()
Case review
- outcomes for top 10 repeated patents
. Accepted cases
< mmm Denied cases
w
@
=
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£
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>
z
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.,b"’\ 1\.1‘ 11\10 & 10\\ ﬂﬂ’- 3 Sb’)e o 2®” ﬁ1\1 ‘\5

Patent number

Getting most/least predictive words from SVM classifier

In | Iz
best _clf = SVC(C~10, kernel="linear’, probebility-True)

X train, X test, y train, y test « cross _validation.train test splity
X mod, y, test size=0.2, random states2d)

tfide = TiidfVectorizer()

tfide fig(X mod)

X train » tfidf transform(X train)
X_test = tfidf.transform(X_test)

model « best clf.fit(X train, y _train)
vals « @f . invalidated.value counts()
In (39

nanes = tfidf.get feature names|)
coeffs « model .coef

In [40):

sorted_labels » |y for (x, y) im sorted(zip{coeffs.todense(), names))|
sorted coeffs » sortedicoeffs)

nonzerce ~ coeffa.nonzerol()[l)
out = (]

42
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for idx in noaseros:
out append| (coaffs|l, ldx]|, names|idx]))

sorted labels ~ |y for (x, ¥) An sortediout) )
sorted coeffs » sorted(coeffs.codense(). tolist()lo))

In [42):

# Plotting

X _vals » sorted coeffal-101-1] * sorted coeffs|0i1¥)
inant_likely denied = sorted lebels|-101-1]
most_likely denied » sorted labels[0i¥)
sioplessis(ax)

from pylab import *
pos » arange(lenix _vals)) # LA Dar conters on the ¥y axis

£, axarr = plt,subplote(l, sharex~True)
plt.suptitie( Relative infloences on probabllity of denisl ‘\n (top and bottom word stems from TFIOF) ')

for ax is axarn:
simpleaxis(ax)

2 1 = sorted coafls|-10s-1)

x 1 _pos = arange(lenix 1))

& oanarr|o)

Abarhix i pos, x 1)

a.set _yticklabels(' ')

f Cuntonize mimor tick labels
aoset_yricka(n_ 1 pos * 0.5, minor-True)
acset_yricklabels(least likely denled, minor+True)
a.tick paramsiaxiz='both’', which+ both , length+0)

» ~ axarcll)

X 2 = sorted coeffn|ii¥)
X 2 pos = arange(lenix_21)
a.barhix 2 pos, x_2)
aovet_yricklabels( ')

# Cuntonize minor vick labels

aohet _yrichu(x 2 pos + 0.5, sinor+Trus)

aeet _yticklabels(nost likely denied, minor-True)
a.tick params(axia~'y', which= both', length~0)

plt . xlabel( ' Regression cosflicient ‘s (positive seans word stem lagroves Likelihood of denial, \anegetive
feans stem hurts Likelihood)')
pit.show()
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