
Distributed Visualization for Genomic Analysis

Alyssa Morrow
Anthony D. Joseph, Ed.
Nir Yosef, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-82
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-82.html

May 12, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

Frank A. Nothaft, Justin Paschall, George He, Devin Petersohn, Michael
Heuer

Distributed Visualization for Genomic Analysis

Alyssa Morrow

May 12, 2017

Submitted to the Department of Electrical Engineering and Computer
Sciences,of California at Berkeley

1

Abstract

The transition from Sanger to second and third generation sequencing technolo-

gies in the past decade has led to a dramatic increase in the availability of genomic

data. The 1000 Genomes Project provides over 1.6 terabytes of variant data and 14

terabytes of alignment data, laying the foundation for large-scale exploration of hu-

man variation across 2,504 individuals [1]. Sequencing is useful beyond identifying

DNA variation: the ENCODE Consortium project has collected 20TB of sequenc-

ing data across various assays, which has enabled novel insights into the role of

epigenetics in human disease [2]. However, current genomic visualization tools are

intended for a single-node environment and cannot scale to terabyte scale datasets.

To enable visualization of terabyte scale genomic datasets, we develop Mango.

Mango is a visualization tool that selectively materializes and organizes genomic

data to provide fast in-memory queries driving genomic visualization. Mango ma-

terializes data from persistent storage as the user requests different regions of the

genome, and efficiently organizes data in-memory using interval arrays, an opti-

mized data structure derived from interval trees. This interval based organizational

structure supports ad hoc queries, filters, and joins across multiple samples at a

time, enabling exploratory interaction with genomic data. When used in conjunc-

tion with Apache Spark, Mango allows users to query large datasets and predictive

models built from such datasets, while exploring results in real time.

Chapter 1

Introduction

Next generation sequencing technologies have greatly decreased the cost of genetic sequenc-

ing, leading to a dramatic increase in the availability of genomic data [3]. The Human Genome

Project was a 15 year effort to sequence a single human, costing over $2.7 billion [4]. Today, se-

quencing for an individual costs approximately $1000, and can be completed in days [5]. This

dramatic decrease in cost and time has led to projects such as the 1000 Genomes Project [1]

and The Cancer Genome Atlas [6], generating 15 TB and 2 PB, respectively. Next generation

sequencing technologies have also led to an explosion of new assays, characterizing the tran-

scriptome and epigenome. Projects like the ENCODE Consortium have produced open access

datasets 20 TB in size [2]. This combination of high throughput DNA sequencing and epige-

nomic datasets has introduced new challenges of how to compute, interact and learn from large

genomics datasets.

This advent of big data was not novel to the field of genomics. Amidst completion of the Hu-

man Genome Project in 2003, Google MapReduce introduced a fault-tolerant, distributed pro-

gramming model that allowed common data reduction tasks to be run in a distributed environ-

ment [7]. Google MapReduce was closely tied to Google File System (GFS), which stored large

datasets in partitioned replicates across executing machines, reducing network bandwidth re-

quirements for transferring data during compute [8]. After the introduction Google MapReduce

2

CHAPTER 1. INTRODUCTION 3

and GFS, Apache Hadoop and Hadoop Distributed File System (HDFS) were created as an open

source alternative to Google’s solution to distributed computing [9]. Apache Hadoop’s open

source implementation of fault-tolerant, commodity hardware computing allowed all cloud sup-

porters, such as AWS and Microsoft Azure, to provide easy access to distributed computing on

commodity machines, democratizing access to large-scale data analysis.

Although MapReduce pioneered an accessible programming model for distributed comput-

ing on commodity hardware, Apache Spark modified the existing model to move lineage of data

transformations from persistent storage to an in-memory structure, called Resilient Distributed

Dataset (RDD). Apache Spark’s optimization of in-memory processing removed overhead of

IO intensive transactions between data transformations inherent in Apache Hadoop, providing

near real time analytics [10, 11]. Apache Spark’s fast in-memory transactions and adaptive

fault tolerance model led to a myriad of downstream applications. One such application in-

cluded ADAM, a genomic data processing system intended for preprocessing, storage and batch

analyses of large genomic datasets [12, 13]. ADAM provides cheaper genome alignment and

preprocessing, decreasing costs of previous best practice genomic pipelines by 66% [14]. More

specifically, the combination of Apache Spark and ADAM allowed users to perform iterative

analyses on genomic datasets in-memory, reducing latency between analyses.

However, as sequencing and genomic preprocessing costs continue to fall, the ability to

perform fast and scalable interactive analytics on genomic data has not kept up. Traditionally,

genome browsers have served as a “data reduction” tool, summarizing overwhelmingly large

genomic datasets into single tracks in a browser window [15]. Such visualizations aid clin-

icians and researchers in making decisions from these genomic datasets. However, existing

visualization tools are bottlenecked by the following criteria:

1. Interactive Analytics. The ability to interactively query data with sub-second response

times is crucial for exploratory data analysis (EDA). Liu and Heer conclude that visual

CHAPTER 1. INTRODUCTION 4

latency in 500ms increments degrades the rate at which users can make observations

from visualizations [16]. An example analysis where interactive response times improve

analysis is de novo variant discovery. Currently, visualization tools such as IGV and IGB

require external systems to query for de novo variants in the proband of high coverage

pedigrees, incurring significant overhead from switching between single-node systems.

However, optimizing coordinate queries on these variant datasets in a unified distributed

environment allows users to quickly query de novo regions and view the results within the

same system. This interactive analysis allows users to quickly iterate on variant calling

methods based on visual output of initial results.

Enabling interactive analytics and visualizations on genomic data requires a coordinate-

based distributed system that can access data quickly while enabling fast, iterative ana-

lytics on such data. With the existence of such a system, we can explore and solve many

interesting problems regarding genomic analysis. However, systems such as Hadoop

MapReduce and Apache Spark are intended for batch processing of large datasets, and

do not natively support low latency, fine-grained queries that are intended for interactive

analysis.

2. Visualization. Current genomic visualization software is computationally constrained

by the amount of genomic data they can quickly display. Current visualizations, such as

track layouts and Circos diagrams, are optimized only to view individual genomes [17].

Specifically, alignment record track layouts, or pileups, require approximately 1.3 kilo-

bytes per read under GA4GH schemas [18]. Using these schemas, data transfer for four

high coverage alignment file at 40,000 bp is 2.4 GB, already exceeding the recommended

Apache 2 Server REST sizes of 2GB [19]. Data transfer sizes grows linearly with the

number of files viewed. Leveraging a distributed coordinate optimized system would

CHAPTER 1. INTRODUCTION 5

allow for more powerful data reduction methods, supporting population scale visualiza-

tions such as interactive heat maps, SNP comparisons, and summary statistics that can be

computed in real time.

3. Location independent data-serving: Current desktop browsers require specific file for-

matting and preprocessing prior to visualization. To view large files on a desktop appli-

cation, regions of interest (ROI) must first be sub-selected from high coverage files using

tools such as bedtools, vcftools and igvtools [20, 21, 22]. Desktop tools such as the Inte-

grative Genome Viewer (IGV) and Integrated Genome Browser (IGB) require presorting

and indexing of VCF and BAM files, creating mandatory preprocessing prior to visualiza-

tion. Similarly, web based genome browsers require uploading genomic files in specific

legacy format, incurring overhead from upload times. Using a schema independent end-

point would abstract away requirements of preprocessing, sorting and indexing, allowing

users to swap out abstracted data endpoints with local files during visualization.

This thesis introduces Mango, an interactive genomic visualization tool intended to drive

EDA on large genomic datasets. Preliminary results show Mango’s efficient use of in-memory

indexing supports sub-second query for visualizations on 800 GB of high coverage alignment

data from the Platinum dataset [23]. Mango addresses the following problems in state of the art

genomic visualization tools:

1. Scalable visualizations: We use Apache Spark to optimize data locality by implement-

ing per-partition coordinate-based data organization and partition across sorted chromo-

somal locations for quick access of multiple samples around a given genomic loci. This

coordinate-based system can be leveraged to quickly produce visualizations that encour-

age exploration and hypotheses of population genomics. An important visualization for

genome wide association studies include the ability to group samples and study aggregate

CHAPTER 1. INTRODUCTION 6

single nucleotide polymorphisms (SNPs) between groups. Such interactive visualizations

would initially provide higher level views and the ability to zoom in on specific regions

and samples.

2. Location independent data-serving: While current browsers depend on data-aware po-

sitioning, Mango removes the constraint of location aware data partitioning. Mango uses

REST integration to separate the visualization and data-serving layers, making visualiza-

tions agnostic to data location. Therefore, users can interact with local and staged datasets

seamlessly.

3. Single Genomic Pipeline for Exploratory Data Analysis (EDA): Mango is built on

the Apache Spark and ADAM infrastructure, allowing users to efficiently preprocess and

query datasets in the same environment. This design removes the constraint of using

different tools to join, query and visualize data.

Mango and its dependencies are all open source, freely available projects licensed under the

Apache 2 license. Mango is available at https://github.com/bigdatagenomics/mango.

Chapter 2

Related Work

This chapter explains current state of the art tools for visualizing genomic datasets. Several

different genome browsers exist, each supporting a range of functionality and features. Genome

browsers can be classified into the following three categories:

1. Desktop Application: Genome browsers used for browsing personal data are often built

as desktop applications. Desktop applications integrate visualization and data access and

are optimized for end-to-end performance. Popular browsers include IGV [21], IGB [24],

and Savant [25].

2. Local Web Application: Local web applications are primarily optimized for visualiza-

tion of genomic data in a web browser. These tools are built in popular front-end lan-

guages such as JavaScript, HTML and AngularJS. Commonly used front-end browsers

include pileup.js [26], igv.js [27], and JBrowse [28].

3. Online Web Application: Online web applications support visualization of open access

datasets through a web portal. Visualizations in online browsers are constructed from

static, curated datasets that are controlled by an external organization. Examples of online

browsers include the UCSC Genome Browser [29].

7

CHAPTER 2. RELATED WORK 8

In the following sections, we discuss each category of genome browsers and the correspond-

ing strengths and weakness of each category.

Desktop Applications

State of the art genome browsers intended to run in a desktop environment include IGV [21],

IGB [24], and Savant [25]. In this section, we assess the strengths and weakness of each tool in

terms of intended use case, feature availability, scalability, and performance.

Integrative Genome Viewer (IGV)

IGV is a genome visualization tool built to run on a single-node. It is well supported by a

wide community of engineers, and thus supports robust visualization of multiple data types,

including NGS sequence alignment, genome annotation, and array-based datasets [21]. Be-

cause IGV’s primary use case is single-node visualization, IGV puts primary focus on minimal

memory footprint by precomputing data tiles for multiple resolutions, which decreases memory

consumption at low resolution regions. IGV achieves efficient memory allocation by precom-

puting multiple zoom levels for each track, and fetches each data tile based on the base pair

resolution requested by the user [21]. To minimize the computational burden of data tiling on

large files, IGV uses a hybrid approach, tiling data at low resolution, computing tiles for high

resolution views on the fly. This bypasses the need to store all zoom levels in-memory before

the user views them. IGV’s data tiling approach allows users to view regions with low latency

after tiles are computed. However, initial computation of data tiles is incurred during runtime

and is transparent to the user. To eliminate transparency of such overhead, IGV supports ad-

ditional file formats that optimize data tiling at run time. One example of this is the tiled data

frame (TDF) file format, which is computed from alignment files and summarizes coverage over

the whole genome. Computation of TDF files reduces file size and removes the requirement for

CHAPTER 2. RELATED WORK 9

coordinate-based joins at run time [21].

Because IGV runs on a single-node, it is limited in the file sizes it can display. Alterna-

tively, IGV can run remotely, allowing users to view files on computers with sufficient memory

resources to store large files. Although files on IGV can be stored in arbitrary locations, individ-

ual files are read from a single-node endpoint, enforcing hardware specific constraints of data

storage limits and I/O performance.

Integrated Genome Browser (IGB)

Similar to IGV, the Integrated Genome Browser (IGB) is a desktop tool intended for viewing

NGS sequencing data, annotation and array data [24]. IGB puts greater emphasis on user ex-

perience when traversing zoom levels and genomics coordinates. One mechanism IGB uses to

re-orient user focus when traversing datasets is one-dimensional, animated semantic zooming,

which centralizes the user focus to the center of the viewing screen while panning and zooming

[24]. Like IGV, IGB has the ability to run on remote machines. However, IGB does not support

data tiling at low resolutions, inhibiting users from visual information gain at large genomic

regions.

Savant

Similar to IGV and IGB, Savant is a genome browser intended for a single-node environment.

However, Savant puts greater emphasis on the ability to easily run on a remote server, allowing

users to run queries on datasets without having to physically move files. Savant uses data tiling

to view large genomics ranges, and additionally computes read coverage from alignment files

on the fly when viewing alignments at zoomed out ranges. Savant supports coverage precom-

putation, similar to TDF generation in IGV. Preprocessing times for precomputing coverage for

a high coverage file is 40 minutes. Queries in Savant run on average in sub-second latency, with

worst case queries of up to 2 seconds [25].

CHAPTER 2. RELATED WORK 10

Table 2.1: Functional comparison of three categories of genome browsers. ‘X’ indicates exis-
tence of functionality.

Trait Desktop Local Web Online Web
Data Expressibility X X -

Modularity - X -
End-to-End Optimization X - -

Local Web Applications

Although tools like IGV, IGB and Savant provide full end-to-end data access and visualization,

tools such as JBrowse [28], pileup.js [26] and igv.js [27] are lightweight local applications that

only support data visualization, accessing data over a REST API or through local computer

I/O. Front end browsers enforce strong stack modularity, requiring developers to serve genomic

data, independent of front-end architecture. However, this removes the potential for integrated

optimization between front-end and back end, incurring higher latencies when integrating with

a modular back end.

Online Web Applications

Tools such as the UCSC Genome Browser eliminate single-node scalability constraints by pro-

viding an elastic back end server which stores datasets to be viewed by the user [29]. UCSC

Genome Browser stages large amounts of precomputed annotation data that can be searched and

visualized by the user. Staged datasets include 1000 Genomes datasets and TCGA. However,

UCSC Genome Browser has limited bandwidth for users to upload personal files, limiting the

user to explore data prestaged by the browser.

We summarize the functionality of these three categories of genome browsers in Table 2.1,

comparing features relating to data expressibility, modularity, and end-to-end optimizations.

The first feature, dataset expressibility, allows browsers to easily import and adapt to new

CHAPTER 2. RELATED WORK 11

datasets, agnostic of location or data schema. Examples of location-based expressibility in-

clude the ability to access data either locally or remotely. Schema-based expressibility is the

ability to retrieve data independent of storage and file format. Desktop applications allow inter-

change between local and remote resources, providing location-based expressibility. However,

desktop applications do not provide any support for schema-based expressibility, handing only

legacy file formats. Local web applications allow back end implementation to dictate dataset

expressibility. However, local web applications offer no potential solutions to expressibility,

requiring the back-end to address such problems.

The second feature, modularity, allows users to interchange stack layers of browser infras-

tructure based on personal preference and computational requirements. Examples of genome

browser modularity include replacing front end visualizations based on the datasets being viewed,

or being able to move data storage endpoints based on file size requirements. However, modu-

larity and end-to-end optimization are mutually exclusive features. While desktop applications

and online web applications implement end-to-end optimizations for low latency, architecture

boundaries are unclear, thus inhibiting users from reconfiguring the browser based on specific

needs. Local web applications enforce modularity, allowing flexibility in the use of a back-end

based on data requirements.

In the design of Mango, we sacrifice end-to-end optimization for a modular stack. Shown

in Figure 3.1, we introduce a layered architecture, allowing users to substitute out layers of the

stack for custom architectures. This modular architecture is explained in the next chapter.

Chapter 3

Architecture

This chapter explains the architecture of Mango. Mango is a distributed visualization tool built

on Apache Spark [10] and ADAM [12]. It uses a layered stack architecture, divided into client,

server and cluster components. Figure 3.1 depicts Mango’s architecture.

The cluster layer builds upon data layout patterns and genomic transformations introduced

in ADAM [12], and implements optimizations for fine-grained genomic data access. The

service layer provides standalone data access to genomic endpoints, supporting standardized

schemas such as GA4GH schemas [18]. The client layer provides genomic visualizations, built

on pileup.js [26].

Cluster

The cluster layer of the stack is built on Apache Spark and ADAM. Apache Spark is a distributed

general purpose cluster computing framework intended for fast in-memory data processing of

large datasets [10]. Apache Spark is fault-tolerant, allowing Apache Spark to gracefully han-

dle failures from commodity hardware. With the increase in accessibility to cloud computing

in environments such as AWS and Microsoft Azure, Apache Spark serves as a low cost, low

maintenance computing option over single node custom architecture.

Apache Spark is a general framework, and does not natively support genomic file formats

12

CHAPTER 3. ARCHITECTURE 13

Service Data

Custom In-memory
Optimizations

Distributed Data
Transformations

Data Formats

Visualize Data
Angular.js, D3.js,
Pileup.jsClient

Server

Cluster

Scalatra,
Schemas

Interval RDD, Lazy
Materialization

ADAM/Spark

Legacy (BAM,
vcf, fasta),
Parquet

Figure 3.1: Mango Stack Architecture

CHAPTER 3. ARCHITECTURE 14

Table 3.1: Legacy file formats supported in genome browsers and ADAM equivalent formats.
Data File Format ADAM and Mango Support
Variant Calls VCF ADAM VariantContext, VCF
Alignment Data BAM ADAM AlignmentRecord, BAM
ChIP-seq, RNA-seq BAM, WIG ADAM Coverage, BAM
Numeric data, features BED, WIG ADAM Feature, BED
Annotations GTF ADAM Feature, GTF

and transformations. ADAM is a framework for processing genomic data, and is built to run on

Apache Spark. ADAM uses distributed abstractions in Apache Spark to batch process raw ge-

nomic datasets in parallel. More importantly, ADAM provides standardized schemas intended

for various types of genomic datasets, presented in a narrow waist design that can be easily ac-

cessible by external applications. Schemas that are used for genomic visualization from ADAM

include alignment, features, and variant schemas. ADAM and Mango also support legacy file

formats, including VCF, BAM, BED and GTF files. However, legacy formats can be trans-

formed into ADAM format and viewed in Mango. Table 3.1 lists file formats supported in IGV

and corresponding file format supported in Mango.

Although ADAM and Apache Spark provide fast data transformations in a distributed en-

vironment, neither tool is optimized for fine-grained, low latency queries. To modify these

systems to support low latency queries, we adopt two strategies for selective access of genomic

regions from persistent storage and low latency in-memory queries. The first adaptation, lazy

materialization, is a technique that fetches fine-grained genomic regions from persistent storage,

using Apache Parquet predicates to selectively access genomic regions from persistent storage

[30]. Granularity of genomic region size can be adopted to the amount of memory available in

a given environment. The second adaptation, Interval RDD, are optimized for interval-keyed

lookups, and are compatible with Apache Sparks RDD interface.

CHAPTER 3. ARCHITECTURE 15

Lazy Materialization

Lazy materialization is a data management layer used in Mango that selectively accesses records

from persistent storage based on the genomic region requested. This structure fetches data from

storage upon each query and materializes the selected range as well as surrounding regions

for fast subsequent access to specific loci. Lazy materialization aggressively manages mem-

ory resources to purge least recently accessed materialized regions. This design is motivated

by visualization applications’ tendency to access data in small, localized areas. For genomics,

users might be interested in a particular gene, and will look in the immediate area around that

particular gene rather than jump around to random locations in the genome. This observation

of visualization informed navigation patterns is not unique to genomics and was observed more

generally by Battel et. al. [31]. Due to these fine-grained, strategic access patterns in visu-

alization tools, batch caching strategies traditionally used in Apache Spark would incur mem-

ory overhead of 300,000x from loading the whole genome, but only visualizing a subselected

10,000 bp region. By constructing a caching layer that scales to application requests, system

memory requirements only need to scale to the fraction of dataset requested.

IntervalRDD

In genomics, record indexing and filtering is dictated by interval-keyed records. Figure 3.2

demonstrates a query on interval-keyed records, called overlapping range queries. Querying

over interval-keyed records requires finding all records whose segment lies within or overlaps

that interval.

Existing solutions to filtering interval-keyed records in distributed environments such as

Apache Spark are:

1. Linear traversal: Store unsorted records and filter all records by start and end interval

value.

CHAPTER 3. ARCHITECTURE 16

Figure 3.2: Overlapping Range Query: In querying interval-keyed records, only the black seg-
ments overlapping or contained in the query boundaries should be returned. All dotted segments
should be omitted.

2. Indexed traversal: Store sorted records, indexed by start value, in a persistent adaptive

radix tree structure.

3. Interval Tree traversal: Store interval keyed records in an interval tree structure.

4. Interval Array traversal: Binary search and fetch records stored by interval in an array.

Performing linear traversal (Option 1) in Apache Spark’s RDD requires a full data scan.

Another consideration for sorting interval keyed records in Apache Spark is the Indexed RDD

[32]. The IndexedRDD project [32] uses persistent adaptive radix trees (PARTs) [33] to opti-

mize point queries on RDDs. However, PART’s are optimized for one-dimensional keys, and

thus can also incur a worst case time complexity of full data scans on interval-keyed records.

Interval trees are an efficient sorting schema for fetching interval-keyed records in O(logn+m)

time, where n is the total number of records and m is the density of records overlapping a given

CHAPTER 3. ARCHITECTURE 17

Table 3.2: Query Complexity for Overlap Range Queries: n is the number of interval-keyed
records and m denotes record density at a given interval.

Method Creation Query Worst Case Query Memory
Linear O(1) O(n) O(n) O(n)
PART O(nlogn) O(n) O(n) O(n)
Interval Tree O(nlogn) O(logn+m) O(logn+m) O(n)
Interval Array O(nlogn) O(logn+m) O(logn+m) O(n)

query [34]. Table 3.2 shows the creation and runtime complexities of the options explained

above.

The ideal structure for range lookups of interval-keyed records is the interval tree. How-

ever, in practice, interval trees incur high space complexity and memory consumption, which

are generated from the objects required for tree design. An alternative to the interval tree is

an interval array, which maintains a sorted list of interval-keyed records and runs an expanding

binary sort on records, terminating when the search reaches non-overlapping intervals. There-

fore, we have implemented interval arrays as the primary interval-keyed lookup structure. We

maintain average query complexity of O(logn + m) for interval-keyed records, while storing

all data in a simple array structure.

Server and Client

The remaining two layers of the stack are the server and client. Genomic endpoints in the server

layer are exposed through a common API for external access to genomic datasets. Mango in-

tegrates standardized endpoint schemas built from GA4GH through the alignment record end-

point [35, 18]. The remaining client layer implements commonly used genomic visualizations

to be visualized in a web browser. Mango implements a front-end interactive browser using

pileup.js [26].

Chapter 4

Experiments

This chapter explains two use cases for the integration of genomic visualization into large-scale

EDA, and assesses the runtime and feature compatibility of Mango to drive such analyses.

De Novo Variant Exploration

One use case for genomic EDA is discovery of de novo mutations in the proband. De novo

mutation discovery has become an increasingly important in analysis of the effect of muta-

tional processes in development of neurodevelopmental diseases [36]. Additional applications

of de novo variant discovery include pediatric diagnosis of rare diseases [37]. In this EDA

experiment, we analyze six high coverage alignment files from the Illumina Platinum datasets

[23]. Individuals assessed in this analysis are shown in Figure 4.1. Two trios for NA12877 and

NA12878 are queried in parallel for de novo mutations.

Preprocessing

Six raw BAM files totaling 691.8 GB from the Platinum Genomes dataset were converted to

ADAM format and loaded in Hadoop’s Distributed File System across 200 partitions. File con-

version ran on 36 Intel E5-2670 2.6 GHz 8 core machines with 480 GB RAM. Mean conversion

times for each alignment file was 15.89 seconds per file with standard deviation of 3.21 seconds.

18

CHAPTER 4. EXPERIMENTS 19

Figure 4.1: Platinum Pedigree for NA128* individuals. De novo analysis is run on the NA12877
and NA12878 trios, highlighted in red.

Total ADAM file sizes for the six Platinum individuals was 821.9 GB. The six files were variant

called through avocado, a distributed variant calling tool [38], resulting in 3.525 GB of variant

data. Final variant files for each trio were joined using Gnocchi [39], averaging a merge time of

41 seconds per trio. Final variant file sizes in ADAM format were 1.365 GB.

De Novo Variant Queries

Merged variant files were queried for de novo mutations in the proband of each trio. Genomic

regions were binned into 1000 bp regions and scanned for de novo mutations called in avocado

that were absent in the parents. Final results were filtered by mutations overlapping genes or

in the vicinity of enhancer regions upstream from a given gene. Final genome wide densities

for de novo variants were 74593 regions for NA12877 and 82823 regions for NA12878. Query

times for de novo discovery were 4.2 minutes and 11.7 minutes for NA12877 and NA12878,

respectively.

CHAPTER 4. EXPERIMENTS 20

Figure 4.2: Average response times in Mango for Alignment and Variant data from Platinum
datasets.

Analysis of De Novo Mutations with Mango

From the resulting de novo queries, genomic region 78309000-78310821 on chromosome 1 was

isolated as a hot spot for plausible de novo mutations in NA12878. This region was isolated due

to direct overlap with the protein coding GIPC2 gene. Mango was then run on 637 cores on Intel

E5-2670 2.6 GHz 8 core machines with 1.7 TB RAM. To assess latency times in Mango, we

adopt a common query exploration access pattern, zooming in on the GIPC2 region of interest,

and panning left and right, then zooming in and out [31]. Timing results are shown in Figure 4.2.

Overhead of initial load time averages 110 seconds for 821 GB of alignment data and 20

seconds 1.5 GB of variant data. High latency results from range query scans in Apache Parquet

files. However, subsequent requests are cached, and thus achieve average response times of

1ms.

Figure 4.3 shows initial variant and alignment resolution of variant hot spot at a 233 bp

range. Figure 4.4 demonstrates detailed annotation of de novo variants in NA12878 at 59 bp,

CHAPTER 4. EXPERIMENTS 21

Figure 4.3: Initial resolution of variants at 233 bp, demonstrating potential de novo sites for
NA12878, outlined in red.

highlighted in red. From further visual analysis of raw alignment data for NA12878, we see

that the specific genotype for this potential de novo mutations for NA12878 at this region are

uncertain, as calls at this location display similar proportions of the ‘G’ and ‘T’ alternate allele.

At large ranges (more than 40,000 bp), variants are binned by region to give coordinate-

based summary of variant density. This is demonstrated in the final zoomed out query of 60,000

bp, and is explained in Figure 4.5.

CHAPTER 4. EXPERIMENTS 22

Figure 4.4: High resolution image of 59 bp, demonstrating potential de novo sites for NA12878,
outlined in red. Final variant calls at this site for NA12878 have potential alternates, given base
changes in the raw alignment data.

CHAPTER 4. EXPERIMENTS 23

Figure 4.5: Final query of 60,000 bps zoomed out to GIPC2 gene. Regions of high density
variants are outlined in red. From this image, users can summarize hotspots for differential
variation in the NA12878 trio around 78,309,000 bp.

EDA for Epigenetic Analysis

Although Mango provides a powerful tool for visualizing large datasets, using Mango as an

integrated step in EDA allows for users to investigate specific questions while visually exploring

interesting regions of the genome. Here, we use the combinatorial power of Apache Spark,

ADAM and Mango to demonstrate a use case of EDA in a distributed environment. This use

cases addresses the question of investigating differentiation in binding patterns of transcription

factors (TFs) in seven cell types.

This pipeline queries ChIP-seq for TF CEBPB and corresponding DNase-seq data from

seven cell types from the ENCODE consortium. The investigated cell types include A549,

H1-hESC, HCT116, HeL1-S3, HepG2, IMR-90 and K562.

Preprocessing

This section explains required preprocessing steps for DNase-seq and ChIP-seq datasets. Thirty-

three BAM files of DNase-seq data were taken for the seven cell types listed above from the

CHAPTER 4. EXPERIMENTS 24

Table 4.1: Cell type specific technical and biological replicate files. File sizes include raw BAM
and processed ADAM files.

Cell Type Replicates Raw BAM Size (GB) Final Size (GB)
A549 3 5.1 0.34
H1-hESC 2 4.1 0.47
HCT116 2 3.3 0.35
HeLa-S3 2 17 1.1
HEPG2 3 28.6 1.1
HeLa-S3 2 17 1.1
HepG2 3 28.6 1.1
IMR-90 2 5.1 0.45
K562 19 47.7 2
Total 33 110.9 9.275

ENCODE Consortium [2]. Each cell type had a combination of technical and biological repli-

cates. The replicates and file sizes for each cell type are shown in Table 4.1.

Raw DNase-seq alignment data for each cell type were aggregated together into two ADAM

formatted coverage files, one representing positive strands and the other representing negative

strands. Negative strands were shifted one bp towards the 5 direction to account for bias in

binding [40]. This preprocessing pipeline was executed in Apache Spark using ADAM on 384

cores with 120GB RAM. This preprocessing pipeline leads to approximately a 10x compression

size from original BAM files to coverage files stored in ADAM format.

Preprocessing Transcription Factor Peak Datasets

Narrowpeak files representing peaks of transcription factor binding sites for the seven cell types

were processed from the ENCODE consortium into ADAM format using ADAM on a single

core on a Intel E5-2670 2.6 GHz machine with 20 GB RAM. Total time for processing these

files totaled 118s, with a mean of 16.9s per file and standard deviation of 3.5s. The final repre-

sentation of narrowpeak files in ADAM format totaled 4.1MB.

CHAPTER 4. EXPERIMENTS 25

Query Explanations

In this EDA pipeline, three queries on the preprocessed ChIP-seq and DNase-seq datasets were

run prior to visualization in Mango. These queries include the following:

1. Find regions in ChIP-seq that have the highest consistent binding across all seven cell

types.

2. Find regions where binding sites have low accessibility, measured from DNase-seq.

3. Find regions where binding sites have consistently high accessibility from DNase-seq

across cell types.

All three queries were run in 5 minutes 57 seconds on 385 virtual cores totaling 1.8 TB

memory.

These genomic regions from all three queries were used as a driver for ad-hoc queries in

Mango. Using these query results, we chose chromosomes most commonly identified in the

query sets, chromosome 7 and 11, and preloaded these chromosomes into Mango with 385

cores and 1.4 TB RAM. Total preloading time for chromosomes 7 and 11 had a mean of 87.5

seconds with a sample standard deviation of 2.1 seconds.

Upon load time, Mango displays density of peak files, displayed in Figure 4.6. Here, we

can see high density binding regions across the genome.

Next, we navigate the region of the genome that had the top hit for Query 1, or highest

binding sites that are consistent across all cell types. Initial visualization, shown in Figure 4.7,

demonstrates a summary of accessibility and binding regions in a 250,000 bp region. In Fig-

ure 4.7, both features and accessibility coverage are binned to provide efficient visualizations

at large regions. A high resolution region on chromosome X is shown in Figure 4.8. At high

resolution, DNase-seq footprinting across all cells is clearly evident.

CHAPTER 4. EXPERIMENTS 26

Figure 4.6: Initial loading screen in Mango. Black bars indicate high density binding regions
for transcription factor CEBPB in seven different cell types.

Run time for visualizing the region with most binding sites across celltype from query 1 is

shown in Figure 4.9. This query fetches from chromosome 7, which is a region from a preloaded

chromosome. Therefore, mean initial fetch times for DNase- and ChIP-seq peaks averages

around 500ms interactive latencies, with maximum times of 1695 and 1711 ms, respectively.

Here, we first visualize a region sized 250,000 bps and follow a similar zooming pattern in

Battel et. al. [31], starting at a zoomed out region and navigating to higher resolution windows.

Mango’s binning strategy reduces the need to collect data at these large regions. The initial

latency is 62315 and 7791 bps when a new zoom region is computed.

Next, the top hit from query 2 was loaded into the browser from chromosome X, shown in

Figure 4.10. This chromosome was not preloaded, so we incur 18.7 seconds of latency while

loading raw data from persistent storage. However, subsequent query times match the caching

patterns from query 1.

Evaluation of Coverage

Coverage in Mango allows users to receive summary statistics of alignment, variant and feature

data at zoomed out ranges. Because raw alignment data is too large to collect and communicate

CHAPTER 4. EXPERIMENTS 27

s

Figure 4.7: Zoomed out region of 250,000 bp of binding sites with consistently accessibly
regions across seven cell types. Region is binned into 100 bp bins.

CHAPTER 4. EXPERIMENTS 28

Figure 4.8: Initial loading screen in Mango. Black bars indicate high density binding regions
for transcription factor CEBPB in seven different cell types.

CHAPTER 4. EXPERIMENTS 29

Figure 4.9: Average response times in Mango for coverage and feature data from ENCODE
datasets. Response times at query 3 increases in latency due to transition to a higher resolution
layer.

Figure 4.10: Average response times in Mango for Coverage and Feature data from ENCODE
datasets.

CHAPTER 4. EXPERIMENTS 30

Figure 4.11: Average response times in Mango for raw alignment data and feature data from
ENCODE datasets. Increased latency at query 4 indicates initial load of alignment data. Align-
ment data is not shown at resolution lower than 40,000 bp, generating a spike in load time for
coverage and features at the fourth query.

at large genomics regions, coverage summarizes these data set sizes up to genomic ranges the

size of the entire genome. In this section, we evaluate runtime on the same query set shown

in Figure 4.10 with raw alignment data in place of coverage data. Here, we load in the data

aggregated from the original 33 raw DNase-seq BAM files into seven different tracks. The

runtime for these queries are shown in Figure 4.11. Raw ADAM sizes for the 33 aggregated

files totals 103.8 GB. Preload time for chromosomes 7 and 11 totaled 4 minutes and 34s.

At low resolution, the user no longer is able to access summary data regarding DNase-seq

data. Initial load time of alignment data at 32000 bp is 31 seconds, as alignment data is not

cached during preloading due to extensive memory overhead.

CHAPTER 4. EXPERIMENTS 31

Interactive Model Serving for Regulatory Genomics

The last use case we demonstrate is that of model serving for genomic workloads in a visual-

ization environment. This use case is to address the issue of pipeline segmentation in training

and analyzing machine learning models on genomic workloads. Currently, there is no infras-

tructure available for users to upload and predict on their models, allowing them to visually

annotate prediction results in real time. This use case demonstrates an end-to-end pipeline that

efficiently computes and predicts on user-provided DNA sequence while maintaining seamless

integration between processing steps. In previous work, we used a scalable parallel algorithm

to efficiently compute protein binding sites without the use of specialized hardware, allowing

us to flexibly use hardware independent systems such as Apache Spark for training [41]. We

utilize this algorithm to predict the binding affinity of the EGR1 protein using ChIP-seq and

DNA sequence, and provide a full analysis pipeline to visualize results. This novel pipeline

allows users to interactively predict on a ROI in a query genome.

For preliminary results, we train a model predicting protein binding sites using the kernel

approximation featurization method described in [41]. This model was solved using Keystone

MLs Weighted Least Squares estimator, which accounts for large class imbalance of positive

binding sites across the genome [42]. This model was trained in a distributed environment

from 200 million sequences extracted from transcription factor EGR1 ChIP-seq binding re-

gions, generating a 4 MB model to be tested on new datasets. Training the model took 58

minutes parallelized across 16 nodes with Intel E5-2670 2.6 GHz 8 core CPU, 256 GB RAM

and 4 1 TB HDFS hard drives. The resulting model was saved and loaded into Mango to visu-

alize predictions on raw datasets. Raw ChIP-seq peaks and sequencing data were loaded and

visualized in Mango. Regions sized 2000 bp, 2000 bp, 4000bp, 8000 bp and 16000 bp were

queried, predicting binding results at user request. Minimum, maximum and mean times to

predict on new sequences using the model are shown in Table 4.2.

CHAPTER 4. EXPERIMENTS 32

Table 4.2: Minimum, maximum and mean prediction response times for transcription factor
EGR1.

Min Max Mean
3.09ms 3.98s 402.31ms

Figure 4.13 visualizes the resulting predictions in Mango on a 10,000 bp region. Here, we

predict the binding affinity of EGR1 on the GM12878 cell type. Visualization of EGR1 binding

predictions suggest that the algorithm predicts more binding sites than are actually bound by

ChIP-seq experiments. These visual insights dictate modifications to subsequent prediction

algorithms.

Concordance with Local Genome Browsers

IGV is a well supported genome browser commonly used in the research and clinical genetics

communities. For this reason, we compare Mango and IGV on a a single machine with 24 Xeon

processors and 256 GB of RAM. For this workload, we analyze the runtimes of the NA12878

trio of sorted and indexed alignment files, sized 310 GB. We analyze a query pattern on an

initial 1000 bp region and traversal of surrounding regions. Total run times for each query are

shown in Figure 4.12. Mango and IGV start up times are comparable. IGV initial load times,

however, range from 2.8 seconds, while Mango initial load times are 25 s. Overhead in Mango

is due to IO overhead from Hadoop access with Hadoop-BAM [43]. Subsequent request for

cached regions are comparable between Mango and IGV.

Here, we do not include runtimes of ADAM file formats for a local machine due to extensive

overhead from Apache Parquet predicates. Although initial response times for Mango range 24

seconds, subsequent requests meet interactive thresholds of 500ms.

CHAPTER 4. EXPERIMENTS 33

Figure 4.12: Average response times in Mango for raw alignment data and feature data from
ENCODE datasets. Although Mango incurs initial 24 second latency on data load, subsequent
response times are concordant with IGV.

Figure 4.13: Visual representation of predictions for EGR1 TF with raw datasets and labels. (A)
shows model predictions. (B) shows true labels indicating binding sites. (C) and (D) display
raw ChIP-seq datasets. From this image, a researcher learns that the presented model has high
false positive rates, suggesting implementation of stricter class imbalance.

Chapter 5

Feature Compatibility

Mango implements many features available in other genome browsers. In Table 5, four main

features are listed and evaluated for inclusion across IGV, IGB, Mango, and Savant. These

features were listed in the analysis by Robinson et. al. [21]. Although Mango does not currently

support access to public hosted datasets, Mango is the only tool that allows users to scale out to

multiple nodes in a distributed environment.

Feature Mango IGV IGB Savant
Alignment X X X X

Multiple Resolution and Binning X X - X
Multinode Scalability X - - -

Public Hosted Datasets - X X -

Table 5.1: Feature comparison of Mango and common genome browsers.

34

Chapter 6

Conclusion

This thesis introduces Mango, a visualization tool intended for large genomic workloads. Mango

takes advantage of existing distributed systems intended for batch processing and modifies them

to support fine-grained, low latency queries. We have analyzed the ability of Mango to execute

important EDA pipelines under a single system.

Future Work

Integration of exploratory data tools into the genomics community depends on intuitiveness and

robustness. Thus, we design our future work around integrating scalable EDA pipelines for use

in the genomics community.

1. Notebook Integration: Improving the integration of the EDA pipeline to a single inter-

face would enhance the efficiency of executing EDA pipelines in a single system. In the

future, we plan to implement user facing abstractions in Mango into a notebook form,

where users can execute queries and interact with results in a single environment.

2. Intuitive visualizations: Although Mango supports traditional track visualization of

commonly viewed genomic formats, scalable visualizations for population level analysis

must be developed for large-scale analysis. Effective integration of heat map structures to

35

CHAPTER 6. CONCLUSION 36

visualize population SNP density and Manhattan plots for GWAS visualization is crucial

to make conclusions from large population studies.

With notebook integration and intuitive population scale visualizations, we will have a fully

integrated genomic EDA pipeline for large-scale genomic analysis.

Conclusion

In this thesis, we have introduced a data independent, horizontally scalable visualization tool

intended for genomic workloads. We have identified key weaknesses in current tools used for

visualization and address scalability and system unification required for an efficient EDA stack.

We have demonstrated, under two unique use cases, compelling full stack EDA analyses that

are simplified under a single system. Most importantly, we have published a tool that abstracts

away programming semantics, allowing users to interact with large-scale genomic data in an

intuitive and interactive environment.

Bibliography

[1] The 1000 Genomes Project Consortium, “A global reference for human genetic variation,”

Nature, vol. 526, pp. 68–74, 10 2015.

[2] The ENCODE Project Consortium, “An integrated encyclopedia of dna elements in the

human genome,” Nature, vol. 489, pp. 57–74, 2012.

[3] J. Shendure and H. Ji, “Next-generation dna sequencing,” Nat Biotech, vol. 26, pp. 1135–

1145, 10 2008.

[4] International Consortium Completes Human Genome Project, “National human genome

research institute,” 2015. Web. 6 Oct. 2015.

[5] Illumina, “An introduction to next generation sequencing,” 2016.

[6] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A. Ozenberger, K. Ell-

rott, I. Shmulevich, C. Sander, J. M. Stuart, and e. a. Cancer Genome Atlas Research Net-

work, “The cancer genome atlas pan-cancer analysis project.,” Nature Genetics, vol. 43,

pp. 1113–1120, 2013.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”

in OSDI’04: Sixth Symposium on Operating System Design and Implementation, (San

Fransisco, CA), 2004.

37

BIBLIOGRAPHY 38

[8] H. G. Sanjay Ghemawat and S.-T. Leung, “The google file system,” in 19th ACM Sympo-

sium on Operating Systems Principles, (Lake George, NY), 2003.

[9] Apache, “Hadoop.” http://hadoop.apache.org, 2017.

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

computing with working sets,” in Proceedings of the 2Nd USENIX Conference on Hot

Topics in Cloud Computing, HotCloud’10, (Berkeley, CA, USA), pp. 10–10, USENIX

Association, 2010.

[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing,” in Presented as part of the 9th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 12), (San Jose, CA), pp. 15–28,

USENIX, 2012.

[12] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. Joseph, , and D. A.

Patterson, “Adam: Genomics formats and processing patterns for cloud scale comput-

ing.,” Technical report, UCB/EECS-2013-207, EECS Department, University of Califor-

nia, Berkeley, 2013.

[13] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksigian, J. Kottalam,

A. Ahuja, J. Hammerbacher, M. Linderman, M. J. Franklin, A. D. Joseph, and D. A. Patter-

son, “Rethinking data-intensive science using scalable analytics systems,” in Proceedings

of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD

’15, (New York, NY, USA), pp. 631–646, ACM, 2015.

[14] F. Nothaft, “Scalable genome resequencing with adam and avocado,” Technical report,

UCB/EECS-2015-65, EECS Department, University of California, Berkeley, 2015.

BIBLIOGRAPHY 39

[15] T. S. Furey, “Comparison of human (and other) genome browsers,” Human Genomics,

vol. 2, no. 4, pp. 266–70, 2006.

[16] Z. Liu and J. Heer, “The effects of interactive latency on exploratory visual analysis,” in

IEEE Transactions on Visualization and Computer Graphics, 2014.

[17] M. P. Schroeder, A. Gonzalez-Perez, and N. Lopez-Bigas, “Visualizing multidimensional

cancer genomics data,” Genome Medicine, vol. 5, no. 1, p. 9, 2013.

[18] ga4gh, “ga4gh-schemas.” https://github.com/ga4gh/ga4gh-schemas, 2017.

[19] A. Foundation, Apache HTTP Server Version 2.4, 2017. LimitRequestBody.

[20] A. Quinlan and I. Hall, “Bedtools: a flexible suite of utilities for comparing genomic

features,” Bioinformatics, vol. 26, pp. 841–842.

[21] J. T. Robinson, H. Thorvaldsdttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, and

J. P. Mesirov, “Integrative genomics viewer,” Nature Biotechnology, vol. 29, pp. 24–26,

2011.

[22] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, and M. A. DePristo, “The

variant call format and vcftools,” Bioinformatics, pp. 2156–2158, 2011.

[23] M. Eberle and et al., “A reference data set of 5.4 million phased human variants validated

by genetic inheritance from sequencing a three-generation 17-member pedigree.,” Genome

Research, vol. 27, pp. 157–164, 2017.

[24] N. Freese, D. Norris, and A. Loraine, “Integrated genome browser: Visual analytics plat-

form for genomics,” Bioinformatics, vol. 32, pp. 2089–95, 2016.

BIBLIOGRAPHY 40

[25] M. Fiume, V. Williams, A. Brook, and M. Brudno, “Savant: genome browser for high-

throughput sequencing data,” Bioinformatics, vol. 26, no. 16, p. 1938, 2010.

[26] D. Vanderkam, B. Aksoy, I. Hodes, J. Perrone, and J. Hammerbacher, “pileup.js: a

javascript library for interactive and in-browser visualization of genomic data,” Bioinfor-

matics, vol. 32, no. 15, pp. 2378–2379.

[27] igvteam, “igv.js.” https://github.com/igvteam/igv.js, 2017.

[28] M. E. Skinner, A. V. Uzilov, L. D. Stein, C. J. Mungall, and I. H. Holmes, “Jbrowse: A

next-generation genome browser,” Genome Research, vol. 19, pp. 1630–1638, 2009.

[29] D. Karolchik, A. Hinrichs, and W. Kent, “The ucsc genome browser,” Current protocols

in bioinformatics / editoral board, Andreas D Baxevanis, 2009.

[30] Apache, “parquet.” http://parquet.incubator.apache.org, 2017.

[31] L. Battle, R. Chang, and M. Stonebraker, “Dynamic prefetching of data tiles for interac-

tive visualization,” Technical report, MIT-CSAIL-TR-2015-031, EECS Department, MIT,

2015.

[32] Amplab, “Indexedrdd.” https://github.com/amplab/spark-indexedrdd, 2016.

[33] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful indexing for main-

memory databases,” pp. 38–49, ICDE, 2013.

[34] H. Samet, The Design and Analysis of Spatial Data Structures. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1990.

[35] B. Paten, M. Diekhans, B. J. Druker, S. Friend, J. Guinney, N. Gassner, M. Guttman,

W. James Kent, P. Mantey, A. A. Margolin, M. Massie, A. M. Novak, F. Nothaft,

BIBLIOGRAPHY 41

L. Pachter, D. Patterson, M. Smuga-Otto, J. M. Stuart, L. Vant Veer, B. Wold, and D. Haus-

sler, “The nih bd2k center for big data in translational genomics,” Journal of the American

Medical Informatics Association, vol. 22, no. 6, p. 1143, 2015.

[36] J. A. Veltman and H. G. Brunner, “De novo mutations in human genetic disease,” Nat Rev

Genet, vol. 13, pp. 565–575, 08 2012.

[37] R. Ribiero, “Advances in treatment of de-novo pediatric acute myeloid leukemia,” Curr

Opin Oncol., vol. 26, pp. 656–62, 2014.

[38] BigDataGenomics, “avocado.” https://github.com/bigdatagenomics/avocado, 2017.

[39] BigDataGenomics, “Gnocchi.” https://github.com/bigdatagenomics/gnocchi, 2017.

[40] C. A. Meyer and X. Liu, “Identifying and mitigating bias in next-generation sequencing

methods for chromatin biology,” Nature Reviews, vol. 15, pp. 709–721.

[41] A. Morrow, V. Shankar, D. Petersohn, A. Joseph, B. Recht, and N. Yosef, “Convolutional

sinks for transcription factor binding site prediction,” in NIPS workshop, 2016.

[42] E. Sparks, S. Venkataraman, T. Kaftan, M. Franklin, and B. Recht, “Keystoneml: Opti-

mizing pipelines for large-scale advanced analytics,” in arXiv preprint, 2016.

[43] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemel, E. Korpelainen, and K. Heljanko

Bioinformatics, vol. 28, pp. 876–877, 2012.

