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Abstract

Algorithmic Mechanism Design in Dynamic Environments

by

Christos Alexandros Psomas

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos H. Papadimitriou, Chair

Over the past two decades, a new field has emerged between Computer Science and Game
Theory: Algorithmic Mechanism Design. Despite tremendous growth and success in tackling
a wide variety of problems, the vast majority of this literature to date focuses on static, one-
time decisions. In many situations of interest, however, this simplification is quite unrealistic.
For example, a search engine must choose how to allocate its advertising inventory in the face
of changing search queries and advertiser budgets. In a cloud computing center resources
need to be dynamically reallocated in response to the arrival of new computational tasks
of varying priority. This thesis explores the interplay between incentives and the dynamic
nature of decision-making in the design of efficient mechanisms.

In the first part of this thesis we study Dynamic Auction Design. We introduce a novel
class of dynamic auction problems in which a monopolist is selling m items to n buyers in m
consecutive stages. We study this problem from several different perspectives: Computational
Complexity, i.e. how hard is it to compute the optimal auction; Competition Complexity,
i.e. how much additional competition is necessary for a standard Vickrey (second-price)
auction at every stage to extract more revenue than the optimal auction; Power of Adaptivity,
i.e. what is the revenue gap between adaptive and non-adaptive auctions; and Power of
Commitment, i.e. what happens if the seller cannot commit to her future behavior - for
example when contracts are not possible.

In the second part we study Dynamic Fair Division. We introduce a novel class of resource
allocation problems in which resources are shared between agents dynamically arriving and
departing over time. For a single resource, when n agents are present, there is only one truly
“fair” allocation: each agent receives 1/n of the resource. However, implementing this static
solution over time is impractical: there are too many disruptions to existing allocations,
since, for a new agent to get her fair share, all other agents must give up a small piece.
What if, at every c arrivals we could only reclaim resources from a fixed number of agents d?
We provide algorithms that are non wasteful (they do not leave resources unallocated) and
yet are almost optimal with respect to fairness, even for multiple, heterogeneous resources.
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Chapter 1

Introduction

In traditional algorithm design we are given an input and we must design an efficient al-
gorithm that produces a desired output. A subtle but very important assumption is that
the input is accurate. What happens when the input is controlled by selfish agents that
have their own preferences over the outputs? The challenge we are faced with is designing
efficient algorithms that are robust to strategic manipulations. The field that studies these
questions and lies at the intersection of computer science and economics is called Algorithmic
Mechanism Design. At a high level, Algorithmic Mechanism Design can be classified in two
categories, based on whether monetary transfers can be used as a tool in incentivizing agents
to behave honestly:

• Mechanism Design with Money. The centerpiece for this category is the auction:
a seller is auctioning off m items to n interested buyers, each with a private valuation
for different subsets of the items. The abstraction of the auction allows us to model and
study many important problems. Some applications include Internet search auctions,
wireless spectrum auctions, as well as - in the case of “reverse” auctions - goverment
procurement of goods and services from the private sector.

• Mechanism Design without Money. In many situations of interest, even though
the input comes from selfish agents, using monetary tranfers might be illegal or im-
moral, e.g. political decisions or organ donations. In such settings, in addition to
strategyproofness, there is also an emphasis on fairness and envy-freeness. Applications
include matching doctors to hospitals, kidney exchange markets, resource allocation in
the cloud and elections.

Despite the explosion of work in this realm, most of the literature focuses on static, one-
time decisions. Nevertheless, many environments of interest are inherently dynamic. In this
thesis we explore the interplay of incentives and the dynamic nature of decision-making in
the design of efficient mechanisms in two subareas: Auctions and Fair Division.
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1.1 Part I: Dynamic Auction Design
One of the most celebrated results of Game Theory is Myerson’s theorem [86], for which he
was awarded the 2007 Nobel Prize in Economics. Myerson gave an elegant solution to the
following problem: a single item is auctioned off to potential buyers. The auctioneer wants to
design a mechanism to maximize her revenue, while simultaneously incentivizing the buyers
to participate, but doesn’t know how much the buyers might be willing to pay; she only
has a prior. One of the most salient problems in the field is generalizing Myerson’s auction
to more general settings. Typically, the literature has focused on one-shot mechanisms.
However, mechanisms of an implicit multi-stage nature are a lot more common. For example,
ad auctions, like the ones used by Facebook and Google, are in truth dynamic; they are
happening in distinct and correlated stages. In fact, bidders participating in these auctions
change their bids multiple times per hour, suggesting that they’re using learning algorithms
to handle the complicated dynamics that arise.

In the first part of this thesis we introduce and study the problem of a monopolist that
is auctioning off m items in m consecutive stages to n interested buyers. A buyer learns
her value for the k-th item at the beginning of stage k. For the future items only a prior
distribution is known. The prior of buyer i can depend on the values of that buyer for the
items so far. How should this monopolist behave in order to maximize her expected revenue?

For example, consider a wireless company that wants to sell you two phones, one now
and one in three years. You know precisely how much the phone is worth to you now (the
company has some prior X1 from which your value was drawn), but for the future you only
have a prior X2, that is also known to the company. To make the problem even simpler,
suppose for now that X2 does not depend on your current value. One way the seller could
go about this is to sell you today’s phone optimally - Myerson’s theory readily applies - and
make you a take-it-or-leave-it offer for the future phone: “pay E [X2] now, and in three years
you’ll get the new phone for free.”. The unsettling feature of this mechanism is that, for some
realizations of the future value, the buyer ends up with negative utility. This feature gets
exacerbated as the number of stages increases and the same kind of auction can be used.
How could we fix this? A natural approach is to ask for stronger participation guarantees.
The utility at every period should be non-negative; the new goal is to design an ex-post
individually rational mechanism.

Subject to ex-post individual rationality, what can the auctioneer do to maximize rev-
enue? One approach would be to completely ignore the dynamic nature of the problem, and
run the optimal static, single-shot mechanism at each stage. When the values for today’s and
future phone are independent random variables, it is tempting to assume that this should
surely be a good approximation to the optimal mechanism, or perhaps even be optimal. As
we see in the next example, this is far from true.

Example 1 ([90]). Let X1 and X2 be the random variables indicating the value of the buyer
for the first and second stage item. X1 takes value 2i with probability 2−i for i = 1, . . . , n,
and value 0 with probability 2−n. X2 takes value 2i with probability 2−i for i = 1, . . . , 2n, and
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value 0 with probability 2−2n. It can be verified that the optimal static auction for both X1
and X2 extracts revenue at most 2 ( Consider setting some price 2k. The expected revenue
is at most 2k ·∑i≥k 2−i ≤ 2 ). Therefore, running the optimal static auction at each stage
extracts revenue at most 4. On the other hand, there exists a dynamic mechanism that
extracts revenue n: on the first stage the buyer pays her report v̂. On the second stage the
item is given for free with probability v̂

E[X2]
1. An easy calculation shows that truthful reporting

is a weakly dominant strategy. The revenue extracted is E [X1] = n.

In the first part of this thesis we explore several different facets of the problem of de-
signing dynamic mechanisms. We are first interested in the revenue gaps introduced by
the dynamic nature of the problem - what is the Power of Adaptivity? We present strong
separations between: Non-adaptive mechanisms and the optimum deterministic adaptive
mechanism (even for uncorrelated distributions); the optimum deterministic and the opti-
mum randomized mechanism; the optimum randomized mechanism and the optimum social
welfare. Another subtlety of our model is Commitment: What happens when contracts
about future behavior cannot be written and enforced? We demonstrate an interesting facet
of the complexity of dynamic mechanisms: even for two stages and one buyer, the revenue-
optimal randomized auction requires the auctioneer and buyer to interact through multiple
rounds of communication in the first period.

We proceed to study the Computational Complexity of designing dynamic auctions. Can
the optimal adaptive auction be computed efficiently? We prove that the problem of finding
the optimum randomized mechanism can be solved in polynomial time, and in fact for any
finite number of periods of sale and for any finite number of buyers. But, is this a reasonable
mechanism? In Example 1 we already saw how a randomized auction can extract a lot of
revenue by offering “lotteries”. Can we efficiently compute a more reasonable auction? We
focus on deterministic and ex-post IR dynamic mechanisms. The reason we insist on such
mechanisms is because we believe that they draw the boundary of mechanisms in which
people are likely to choose to participate - and of course because Myerson’s archetype is
such a mechanism. We prove that it is strongly NP-complete to find the optimum such
mechanism, even for a single buyer and two stages. Since we cannot think of a simpler
dynamic mechanism design problem, this result suggests that there is no grand sweeping,
Myerson-like positive result lurking somewhere in the realm of dynamic mechanism design.

All told, optimality is riddled with complexity issues, both computationally and in terms
of its description. Even worse, the optimal mechanism depends on detailed knowledge of the
buyers’ distributions (across time) in intricate ways. Our final topic on dynamic auctions is
revenue guarantees for simple, prior-independent auctions. We study the Competition Com-
plexity of dynamic auction design: How many additional buyers are necessary and sufficient
for a second price auction at each stage to extract revenue at least that of the optimal dy-
namic auction? We prove that the Competition Complexity of dynamic auctions is at most
3n - and at least linear in n - even when the buyers’ values are correlated across stages, under

1Notice that E [X2] > 2n, therefore v̂
E[X2] is a probability.
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a monotone hazard rate assumption on the stage (marginal) distributions. This assumption
can be relaxed if one settles for independent stages. We also prove results on the number of
additional buyers necessary for VCG at every stage to be an α-approximation of the optimal
revenue; we term this number the α-approximate Competition Complexity. For example,
under the same mild assumptions on the stage distributions we prove that one extra buyer
suffices for a 1

e
-approximation. As a corollary we get results on prior-independent dynamic

auctions.

Organization of Part I
The results in this part are based on joint work with Christos Papadimitriou, George Pier-
rakos and Aviad Rubinstein ([90]), and Siqi Liu ([80]). In Chapter 2 we formally present the
model, related work, and present our results Power of Adaptivity. In the same Chapter we
study the Power of Commitment. In Chapter 4 we study the Computational Complexity; we
present the NP-hardness proof for deterministic auctions and the algorithm for computing
the optimal randomized auction. In Chapter 4 we present our results on the Competition
Complexity of dynamic auctions.

1.2 Part II: Dynamic Fair Division
In the second part of this thesis we study settings where monetary transfers cannot be used to
incentivize agents to behave honestly. Fair division has been a central topic in economics and
mathematics (e.g., Alon [1987], Brams and Taylor [1995], Dubins and Spanier [1961], Pazner
and Schmeidler [1978], Steinhaus [1948], Stromquist [1980], Aziz and Mackenzie [2016], Aziz
and Mackenzie [2016] ). More recently, it has received more attention in computer science
due to its applications to resource sharing in data centers and the cloud (e.g., Ghodsi et
al. [2011], Dolev et al. [2012], Popa et al. [2012], Bhattacharya et al. [2013],Wang, Li, and
Liang [2014] ). Traditionally, research on fair division has focused on static allocations;
contemporary resource allocation protocols, however, need to be dynamic in nature. This has
led to more research on fairness in the dynamic setting (e.g.,Walsh [2011], Kash, Procaccia,
and Shah [2013], Aleksandrov et al. [2015], Friedman, Psomas, and Vardi [2015], Friedman,
Psomas, and Vardi [2017]): There is some finite amount of resource(s), agents arrive and
depart, and the goal is to constantly maintain allocations that are “fair”. There are several
accepted notions of fairness in the literature, for example, envy-freeness (no agent would like
to exchange shares with any other agent) and equitability (every agent has the same utility).
Arguably the most widely accepted notion is proportionality: if there are n agents in the
system, each agent is allocated at least a 1/n fraction of what she would receive if she were
allocated all of the resource. If there are multiple resources and agents have heterogeneous
demands, the notions of fairness become more complex; two of the most common notions in
this setting are Competitive Equilibrium from Equal Incomes (CEEI) and Dominant Resource
Fairness (DRF). We elaborate more on these later on.
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A major difficulty in maintaining fairness in dynamic settings comes from the price of
reallocating resources. Even if there exist good solutions for k agents and for k + 1 agents,
these solutions do not typically include instructions for transitioning from one solution to
the other without reclaiming and reallocating all the resources. As an example, consider the
case of a single homogeneous resource. If reallocating resources is cheap and efficient, it is
trivial to satisfy any and all of the above fairness notions in the dynamic setting: when there
are k agents, allocate each one 1/k of the resource. When a new agent arrives, reallocate the
resource evenly once more; note that this necessitates reducing the allocation of all agents,
whenever a new agent arrives. If there are many successive arrivals, much of the time could
be spent on reallocation, instead of resource consumption. This is an important issue in
practice (e.g., Milojičić et al. [2000], Isard et al. [2009], Verma et al. [2015]).

“The offline scheduler is not applicable in this environment because, if we simply
called it each time a resource freed up, we might have to reallocate a large number
of machines to obtain the configuration it returns. ” Ghodsi et al. [2013].

Motivated by these issues, we study simple dynamic fair division problems where the
amount of disruption is a hard constraint. We introduce a natural benchmark - the fairness
ratio - the ratio of the minimal share to the ideal share (1/k when there are k agents in
the system). We describe an algorithm that obtains the optimal fairness ratio when d ≥ 1
disruptions are allowed per arriving agent. However, in systems with high arrival rates even
1 disruption per arrival can be too costly. We proceed to study the scenario when fewer than
one disruption per arrival is allowed. We show that we can maintain high levels of fairness
even with significantly fewer than one disruption per arrival. In particular, we present an
instance-optimal algorithm (the input to the algorithm is a vector of allowed disruptions)
and show that the fairness ratio of this algorithm decays logarithmically with c, where c is
the longest number of consecutive time steps in which we are not allowed any disruptions.
We then consider dynamic fair division with multiple, heterogeneous resources. In this
model, agents demand the resources in fixed proportions, known in economics as Leontief
preferences. We show that the general problem in NP-hard, even if the resource demands are
binary and known in advance. We study the case where the fairness criterion is Dominant
Resource Fairness (DRF), and the demand vectors are binary. We design a generic algorithm
for this setting using a reduction to the single-resource case. To prove an impossibility result,
we take an integer program for the problem and analyze an algorithm for constructing dual
solutions to a “residual” linear program. The results in this part are based on joint work
with Eric Friedman and Shai Vardi ([47, 49]), and can be found in Chapter 5.
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Dynamic Auction Design
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Chapter 2

Dynamic Auctions: Definitions,
Separations and Commitment

In this chapter we formally introduce the dynamic auctions model and present some prelim-
inary results on dynamic auctions. We define the model in Section 2.1. In Section 2.2 we
mention the related work. We present our separations between non-adaptive, deterministic
and randomized auctions in Sections 2.3 for the case of a single buyer and two stages. For
the same setting, we study the situation when contracts about future behavior cannot be
written and enforced in Section 2.4.

2.1 The Model
A seller is auctioning off m items to n buyers in m consecutive stages. The value of buyer
i for the item on stage k is vik ∈ V i

k = [vik, vik] and is distributed according to a random
variable X i

k. These random variables are independent among buyers, but for the same buyer
can be correlated across stages, i.e. X i

k can be correlated with X i
k′ , but not with X i′

k . X i
k has

distribution Di
k with density f ik and cumulative density F i

k. It will be often convenient to
use random variables rather than distributions and thus we use X and D interchangeably.
Throughout Part I of this thesis we use superscript to denote an agent and subscript to
denote the stage. We write Xk = ∏n

i=1X
i
k for the product distribution for stage k (across all

buyers). Let X be the input to the seller’s problem; X includes all the stage distributions,
as well as their correlation. We assume that the value for each item is revealed at the
beginning of each stage: at the beginning of stage k, buyer i knows her private history
vi<k =

(
vi1, v

i
2, . . . , v

i
k−1

)
, her value vik for the item in stage k, as well as the public history

v̂<k =
(
v̂1

1:k−1, v̂
2
1:k−1, . . . , v̂

n
1:k−1

)
, where v̂ia:b =

(
v̂ia, v̂

i
a+1, . . . , v̂

i
b

)
are the reported values of

buyer i for stages a through b.
From the revelation principle, it is sufficient to consider direct revalation mechanisms. A

mechanism M is a sequence of m allocation functions (x1, . . . xm) and m payment functions
(p1, . . . pm), both taking as input all the reported valuations so far v≤k. The allocation
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function for stage k has a component xik (v≤k) that represents the probability that buyer
i gets the item in stage k. Similarly the payment function for stage k has a component
pik (v≤k) for the payment of buyer i in stage k. A mechanism is feasible if for all stages k
and all histories v≤k, xik (v≤k) ∈ [0, 1] for all agents i, and ∑n

i=1 x
i
k (v≤k) ≤ 1. We assume

quasi-linear utilities; the utility of buyer i in stage k is vik · xik (v≤k)− pik (v≤k).

Incentive Compatibility. At stage k we would like to have a mechanism where agent i,
with real value vik, maximizes her utility when reporting vik, among all possible reports v̂ik.
This utility is in expectation over the other agents’ current values, as well as her own and
other agents’ future values. When deciding what value v̂ik to report in stage k, the agent
has to take into account that the future allocation and payments (and therefore the future
utility) will be affected by this report. It could be the case that lying only in stage k or lying
only in stage k+ 1 results in lower overall utility, but lying in both stages results in a higher
utility! Thus, when deciding when to lie, the buyer must choose in advance a strategy that
deviates from the truth now and in the future.

Let Sk be the set of all “future deviation strategies” at stage k. A deviating strategy
s ∈ Sk is a function from possible “futures”, i.e. elements of ∏n

i=1
∏m
t=k+1 V

i
t to possible

reports, i.e. elements of (v̂k+1, . . . , v̂m) ∈ Vk+1:m = ∏m
i=k+1 Vi. Note that in our definition

of Sk the deviation in stage k is not included. A mechanism is incentive compatible if, for
every buyer i, every stage k, all possible histories v<k, for all values vik ∈ Vk on stage k, and
all possible current deviations v̂ik ∈ Vk and future deviation strategies s ∈ Sk:

Ev−i≥k,v
i
k+1:m

∑
j≥k

vijx
i
j

(
v−i≤j, vi1:k−1, v

i
k, v

i
k+1:j

)
− pij

(
v−i≤j, vi1:k−1, v

i
k, v

i
k+1:j

) ≥
Ev−i≥k,v

i
k+1:m

∑
j≥k

vijx
i
j

(
v−i≤j, vi1:k−1v̂

i
k, s

(
v−ik:j, v

i
k:j

))
− pij

(
v−i≤j, vi1:k−1, v̂

i
k, s

(
v−ik:j, v

i
k:j

)) (2.1)

Intuitively, buyer i at stage k compares her expected utility when telling the truth now
and in the future, with her expected utility for reporting v̂ik now, s

(
v−ik:j, v

i
k:j

)
in stage j,

where v−ik:j is the rest of the buyers’ values in stages k through j and vik:j are the true values
of buyer i in stages k through j.

If Sk is the set of all function from ∏n
i=1

∏m
t=k+1 V

i
t to ∏m

i=k+1 Vi, and Equation 2.1 is
satisfied, we say that the mechanism is incentive compatible in a perfect Bayesian equilibrium.
If Sk only includes the “identity function”, i.e. the agent assumes truthful reporting for future
stages, we say that the mechanism is periodic incentive compatible.

Individual Rationality. We focus on ex-post individual rationality. Every buyer’s utility
is non-negative at every stage, no matter what the other buyers’ valuations are. Formally,
for every buyer i, stage k, and possible history v≤k:
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vik · xik (v≤k)− pik (v≤k) ≥ 0. (2.2)

The seller’s problem. The seller’s goal is to find the revenue optimal mechanism that
is incentive compatible and individually rational. Let OPT [X , n,m] denote the revenue of
the optimal mechanism for n buyers and m stages, when the buyers’ valuations are drawn
according to X . For the special case of m = 1 the solution is given by Myerson [1981]. For a
general m, the seller’s problem can be expressed as a linear program with variables xik and
pik, objective

maxE
[
m∑
k=1

n∑
i=1

pik (v≤k)
]
,

subject to constraints 2.1 and 2.2, as well as the allocation x being feasible (a linear con-
straint). Note that the seller’s revenue is smaller for ex-post IR than ex-ante IR. Furthermore,
it weakly decreases as the set Sk of deviations considered becomes larger. Therefore, the
best upper bounds possible would be for ex-ante IR and periodic IC.

2.2 Related Work
Dynamic Auctions. Dynamic mechanisms have been studied extensively in quite general
settings; see [13] for a recent survey. Many works study problems where agents arrive and
depart dynamically, e.g. [92, 89, 50, 51], or problems with evolving private information, e.g.
[32, 72, 93, 24, 25, 75].

The study of dynamic auctions where ex-post individual rationality is a hard constraint,
was first studied in Papadimitriou et al. [2016]. Ashlagi, Daskalakis, and Haghpanah [2016]
provide characterizations of the optimal ex-post IR, periodic IC dynamic mechanism, with
m independent stages and n buyers. They show that there exists an optimal mechanism
that has stage utility equal to zero for all stages, except maybe the last. In last stage the
seller might have to pay the buyers1. Surprisingly, their mechanism can be described via
updates, at every stage, to a scalar variable that guides the future allocation and payments.
The authors use this characterization to give a mechanism that obtains a 1

2 approximation
to the optimal revenue for the single buyer problem.

Mirrokni et al. [2016] study dynamic mechanisms with an ex-interim IR constraint. They
define a class of mechanisms called bank account mechanisms. Bank account mechanisms
maintain a state variable, the balance, that is updated throughout the execution of the mech-
anism depending on a “spending” and “depositing” policy. The allocation and payment at

1To see this most clearly, consider a single agent, two stage situation where X1 and X2 are such that
E [X1] > Mye [X1] + E [X2]; the RHS is an upper bound to the optimal revenue by Lemma 32 in Chap-
ter 4. The characterization of Ashlagi, Daskalakis, and Haghpanah [2016] says that there exists an optimal
mechanism that extracts E [X1] in the first stage; in the second stage the seller must pay back at least
E [X1]− (Mye [X1] + E [X2])
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each stage depend on the report and the balance. Mirrokni et al. [2016] study revenue max-
imization for bank account mechanisms subject to an ex-post IR constraint. Mirrokni et
al. [2016] study the design of oblivious dynamic mechanisms. An oblivious dynamic mecha-
nism decides on the allocation and payment for stage k using information only about the cur-
rent and past stages, i.e. it is oblivious about the buyers’ value distributions Dk+1, . . . , Dm.
Their mechanism ObliviousBalance runs at each stage a combination of Myerson’s optimal
auction, a second price auction, and the money burning mechanism of Hartline and Rough-
garden [2008]. Their mechanism obtains a 1

5 approximation to the optimal revenue.

2.3 The Power of Adaptivity
In this section we compare deterministic and randomized auctions for a two stage setting in
terms of the revenue generated, against each other and against two other benchmarks:

• the optimal non-adaptive auction — i.e. running an independent Myerson’s auction
on each stage; and

• the optimal social welfare SW — the expected utility of the buyer from receiving both
items for free.

The following is immediate:

Fact 2. For any distribution of valuations,

Rev (non-adaptive) ≤ Rev (deterministic) ≤ Rev (randomized) ≤ SW

But are these inequalities strict for some valuation distributions? And by how much?

Theorem 3. Let v∗ be the maximal buyer’s valuation in any stage, and assume that all
valuations are integral. Then in any two-stage auction, the maximum, over all auctions,
ratio:

• between SW and any of {Rev (non-adaptive) ,Rev (deterministic) ,Rev (randomized)} is
exactly the harmonic number of v∗, Hv∗ = ∑v∗

i=1 1/i;

• between either of {Rev (deterministic) ,Rev (randomized)} and Rev (non-adaptive) is at
least Ω

(
log1/2 v∗

)
(and at most O (log v∗)); and

• between Rev (randomized) and Rev (deterministic) is at least Ω
(
log1/3 v∗

)
( and at most

O (log v∗) ).

Furthermore, even when the valuations on the different stages are independent, there
exists a two-stage auction with ratio of Ω (log log v∗) between either of Rev (deterministic),
Rev (randomized) and Rev (non-adaptive).
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Warm up: Revenue vs Social Welfare
To compare non-adaptive auctions to optimal social welfare, we can assume with no loss of
generality that the auction occurs in a single stage.

Proposition 4. Let v∗ be the maximal buyer’s valuation, and assume that all valuations are
integral. For a single stage auction, the maximum ratio between SW and Rev (non-adaptive)
is at least log(v∗)

2 .

Proof. Suppose that the buyer has valuation 2 with probability 1/2, 4 with probability 1/4,
etc. until 2z with probability 2−z (and 0 also with probability 2−z). Now, if the auctioneer
hands out the item for free, the expected social welfare is SW = ∑z

i=1 2−i · 2i = z.
For any choice of price 2k chosen by the non-adaptive auction, the expected revenue is

Rev (non-adaptive) = 2k ·
n∑
i=k

2−i < 2.

The construction above is extremely useful in proving such lower bounds. In fact it is
also used in our NP-hardness result. The distribution used is approximately the well known
equal-revenue distribution. We will refer to it as pow2 [1, z] to unify our notation. In general:

Definition 5. We say that v ∼ c · pow2 [a, b] if v = c · 2a+i with probability 2−i−1 for all
i ∈ [b− a], and v = 0 with probability 2a−b−1. Note in particular that the expectation is

E [pow2 [a, b]] = 2a−1 (b− a+ 1) .

We conclude this introductory subsection by proving a tight version of the above propo-
sition, namely

Lemma 6. Let v∗ be the maximal buyer’s valuation, and assume that all valuations are inte-
gral. The maximum, over all single stage auctions, ratio between SW and Rev (non-adaptive)
is exactly the harmonic number of v∗.

Proof.

SW =
v∗∑
t=1

tPr [v = t] =
v∗∑
t=1

t (Pr [v ≥ t]− Pr [v ≥ t+ 1]) =
v∗∑
t=1

Pr [v ≥ t]

=
v∗∑
t=1

Rev (p = t)
t

≤
v∗∑
t=1

Rev (non-adaptive)
t

= Rev (non-adaptive) ·Hv∗

where Rev (p = t) denotes the expected revenue from charging t. Finally, note the in-
equality can be made tight by setting Pr [v ≤ t] = 1

t
for all 1 ≤ t ≤ v∗.

Note that in the single stage setting, the optimal randomized auction does not achieve
more revenue than Myerson’s fixed price; therefore the same bound immediately holds for
adaptive deterministic and randomized auctions.
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Corollary 7. Let v∗ be the maximal buyer’s valuation, and assume that all valuations are
integral. The maximum (over all single stage auctions) ratio between Rev (deterministic) and
SW, and between Rev (randomized) and SW is exactly the harmonic number of v∗.

Independent valuations
Surprisingly, adaptive auctions achieve a higher revenue even when the valuations on the
different stages are independent. A well-known approach for extracting the entire social
welfare under ex-ante individual rationality is the sale of “lottery-tickets”, i.e. sell the item
before the buyer sees her valuation. A rational, risk-neutral buyer would be willing to pay the
expected social welfare. Here, ex-post individual rationality excludes many such auctions.
In the two-stage setting this may still be possible: We could sell on the first stage a “lottery-
ticket” for the second stage; we will remain ex-post IR because of the utility derived from
the first-stage item.

This sounds promising, but there is one more obstacle to overcome: If the value of the
first stage is higher than the cost of the lottery ticket, why can’t we extract it by a fixed
price auction on the first stage? We will use the same construction from Proposition 4 to
ensure that the welfare on the first stage cannot be extracted using a fixed price mechanism.
Informally, we are hiding the ex-post vs ex-ante IR issue in the IC constraints, which we
only require to be satisfied ex-interim.

Lemma 8. Let v∗ be the maximal buyer’s valuation, and assume that all valuations
are integral. For a two-stage auction, the ratio between the Rev (deterministic) and
Rev (non-adaptive) can be as large as (log log v∗)

4 , even when the valuations on each stage
are independent.

Proof. Let Z = 2z. Let the valuation the first stage be distributed as v1 ∼ pow2 [1, z],
and on the second stage v2 ∼ pow2 [1, Z]. The optimal revenue for running two separate
fixed-price auctions is a constant Rev (non-adaptive) < 4.

What about deterministic adaptive auctions? The same idea works, except that in the
deterministic case, the auctioneer ”punishes” the buyer for lower bids by charging higher
prices on the second stage.

On the first stage, the deterministic adaptive mechanism will charge the buyer almost the
full price v1−(2− 2−v1). On the second stage, we will offer the item for price p2 (v1) = 2Z−v1 .
The buyer’s expected utility from the second stage is now exactly

∑
i : 2i≥p2(v1)

2−i
(
2i − p2 (v1)

)
= v1 −

∑
i : 2i≥p2(v1)

2−ip2 (v1)

= v1 −
∑

0≤i≤v1−1
2−i

= v1 −
(
2− 2−v1

)
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Once again, the buyer’s expected utility on the second stage exactly covers the price on the
first stage, which guarantees that this auction satisfies IC. Finally, note the expected revenue
is almost as large as the expected valuation on the first stage Rev (deterministic) > z−2.

Stronger adaptivity gaps for correlated valuations
When the valuations are correlated, we can show stronger adaptivity gaps.

Lemma 9. Let v∗ be the maximal buyer’s valuation, and assume that all valuations
are integral. For a two-stage auction, the ratio between the Rev (deterministic) and
Rev (non-adaptive) can be as large as

√
log v∗/4

Proof. Let the first-stage valuation be distributed v1 ∼ pow2 [1, z]. The second-stage val-
uation v2 will be conditioned on the first stage: v2 | v1 ∼ (v1/z) · pow2 [1, z2]. We already
saw that the non-adaptive policy’s revenue on the first stage is less than 2. What is the
optimal price for the second stage? To answer this question we must consider the marginal
distribution of the second stage:

Pr
[
v2 = 2l/z

]
=
∑
k∈[z]

Pr
[
v1 = 2k/z

]
Pr
[
v2 = 2l | v1 = 2k

]
≤
∑
k∈[z]

2−k2k−l = z · 2−l.

Therefore, Pr
[
v2 ≥ 2l/z

]
≤ z · 21−l, which implies Rev (non-adaptive) < 4. Now, consider

the randomized mechanism that on the first stage charges the buyer v1 = 2k (and allocates
the item), and on the second stage allocates the item for free with probability k/z. When
the buyer’s true valuation on the first stage is 2k, her the expected utility from reporting 2l
is given by

U
(
2k, 2l

)
= (l/z) E

[
v2 | v1 = 2k

]
− 2l = l · 2k − 2l ,

which is maximized by l ∈ {k, k + 1}. The expected revenue from this randomized auction
is again z. Similarly, a deterministic auction can charge v1 = 2k on the first stage, and offer
the item on the second stage for price p2

(
2k
)

= 2n2−nk/z

U
(
2k, 2l

)
=

∑
i : 2k+i/z≥p2(2l)

2−i
(
2k+i/z − p2

(
2l
))
− 2l

=
(
l − k

z

)
2k −

∑
i : 2k+i/z≥p2(2l)

2−i · p2
(
2l
)
− 2l =

(
l − k

z

)
2k −

∑
0≤i≤zl+k−1

2−i
(
2k/z

)
− 2l

=
(
l − k

z

)
2k −

(
2− 2−(zl+k)

) (
2k/z

)
− 2l =

(
l + 2−(zl+k)

z

)
2k − 2l −

(
k + 2
z
· 2k

)

The second line follows because there are zl − k i’s for which i : 2k+i/z ≥ p2
(
2l
)
. Notice

that indeed,
(
l + 2−(zl+k)

z

)
2k − 2l is maximized at l = k.
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Deterministic vs randomized auctions
Naturally, one would expect that deterministic and randomized auctions yield different rev-
enues because we can optimize the latter in polynomial time, while optimizing over deter-
ministic auctions is NP-hard. In this subsection we show that randomized auctions can in
fact yield much more revenue.

Lemma 10. Let v∗ be the maximal buyer’s valuation, and assume that all valuations are inte-
gral. For a two-stage auction, the ratio between the Rev (randomized) and Rev (deterministic)
can be as large as (log v∗)1/3

7

Our proof builds on the constructions in the proof of Lemma 9. A key observation is
that by modifying the parameters for the second stage distribution, we can shift the prices
without changing the expected utility. Choosing those parameters based on the valuation
in the first stage, will allow us to break the deterministic auctioneer’s strategy, without
changing the revenue of the randomized auction.

Proof. Let v1 ∼ pow2 [1, z]. For type i with value 2i on the first stage, the valuation on the
second stage will be 0 with probability 1− 2−2n2i. The remaining 2−2z2i will be distributed
according to 2(2z2+1)i

z
pow2 [1, z2]. For any i ∈ [z], let V i

2 \ {0} be the set of nonzero feasible
valuations on the second stage, conditioned on valuation 2i on the first stage. Notice that
for any i < j, all the values in V i

2 \ {0} are much smaller than all the values in V j
2 \ {0}.

The randomized mechanism, again charges full price v1 = 2k on the first stage, and gives
the item for free on the second stage, with probability k/z. The buyer’s utility from reporting
2l is:

U
(
2k, 2l

)
= (l/z) E

[
v2 | 2k

]
− 2l = l · 2k − 2l ,

which is maximized by l ∈ {k, k + 1}. The expected revenue from this randomized auction
is again z.

What about the deterministic auctioneer? Given any deterministic mechanism, let k∗ be
the minimal k for which a buyer with first-stage valuation 2k has a nonzero probability of
affording both items. In other words, after declaring valuation 2k∗ for the first stage, her
second-stage price is at most p2

(
2k∗
)
≤ 2(2z2+1)k∗+1

z
< 22z2(k∗+1/2).

Assume that the buyer has valuation v1 = 2l > 2k∗ . If she deviates and declare type
2k∗ , she receives the first item, and she also receives the second time whenever she has
nonzero valuation. On the second stage, she pays less than 22z2(k∗+1/2) with probability
2−2z2l ≤ 2−2z2(k∗+1). Therefore her expected pay on the second stage has a negligible expected
cost (less than 2−z2). On the first stage, her price cannot be greater than 2k∗ . The total
expected payment made by the buyer with v1 = 2l > 2k∗ is bounded by 2k∗+2−z2 . Summing
over the probabilities of having first-stage valuation v1 = 2l > 2k∗ , this is still less than 1.

Consider all the types whose first-stage valuations are lower than 2k∗ , and yet they receive
the first item. Since they can never afford the second item, on the first stage they must all
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be charged the same price, thus yielding a total revenue less than 2. Similarly, the types for
which the first-stage item is not allocated, must all be charged the same price on the second
stage. Finally, by IR constraints the expected revenue from v1 = 2k∗ is at most 2. Therefore,
the total expected revenue is less than 7.

2.4 The Power of Commitment
In this section we restrict the two-stage auction problem to the design of mechanism where
the auctioneer cannot commit to an action in the future. There are indeed many well studied
situations in economics in which contracts are impossible, legally problematic, or costly to
enforce (see for example [1, 2]). But beyond this consideration, the no-contract case raises
hopes of escaping the negative results in Chapter 3: Since the second stage of any no-contract
mechanism is trivial (the designer will make a Myerson offer), perhaps the overall complexity
can be more modest. Let us clarify the model a bit: “No contract” means that it is impossible
to sign and enforce contracts that span the two periods. However, the auctioneer can commit
to any (possibly randomized) behavior during the first period, including in future stages of
a multi-stage communication that takes place during the first period.

We point out that the no-contract dynamic mechanism design problem faces an obstacle
of a very different nature: the revelation principle no longer holds on the first stage, and
in a very strong sense. More specifically, we prove that the optimal no-contract mechanism
requires multiple rounds of communication on the first stage. Our lower bound does not de-
pend on any computation or communication limitations and is based purely on the structure
of the agents’ information (in contrast to e.g. [31, 39]). Before we continue into the details
we remark that there is a beautiful literature by economists and game theorists on lower
bounds on the number of rounds in cheap talk (e.g. [46, 6, 77, 76]). The concepts there are
quite similar to what happens here, but the techniques are rather different.

Model and result
In the No-contract Two-stage Auction problem, we have one buyer and two items
auctioned in two stages. The communication between the auctioneer and the bidder on the
first stage is used to determine the price and allocation of the first item, as well as update
the auctioneer’s prior about the bidder’s type. On the second stage, the auctioneer offers the
second item for the Myerson optimal price given the updated prior. Our goal is to design an
IC and ex-post IR mechanism for the first stage that maximizes the auctioneer’s expected
total revenue from both stages.

Theorem 11. The optimal mechanism for the No-contract Two-stage Auction re-
quires multiple rounds of communication on the first stage.
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How can extensive communication increase revenue?

We construct an example where the bidder’s valuations on the two stages are independent,
yet on the first stage she has a more refined prior over her second-stage valuations. Further-
more, she has a strong incentive to share her information about the second period with the
auctioneer (while the auctioneer is approximately indifferent). In order to credibly report
her information about the second period, she needs the auctioneer’s help in setting up an
incentive compatible mechanism. Informally, the auctioneer now has another “product” she
can sell for profit: the opportunity to report information about the second period. We will
refer to this new product as OTR, for the “opportunity to report”.

The OTR has two important properties that distinguish it from the real items sold in
the auction: (1) because it is not a real item, it does not contribute to the bidder’s valuation
when evaluating the IR constraints; and (2) the auctioneer knows its ex-interim value to the
bidder (we’ll set things up so that this value is independent of the partial information the
bidder has in the first period; see Bullet 12 in Lemma 12). This latter property is useful
when considering the IC constraints.

How does the OTR lead to multiple rounds of communication? In order to satisfy the
IR constraints, the OTR must be bundled with the first (real) item. Given the results from
recent years about menu complexity (e.g [65, 34]), it is not surprising that the optimal way
to sell this bundle is fractional; i.e. for each price π, the bidder receives the OTR with some
probability ρOTR (π) (and the real item with probability ρ(1) = 1 to satisfy the ex-post IR
constraints). Thus we have: in round 1, the bidder places a bid; in round 2, the auctioneer
allocates the OTR with some probability that depends on the bid; and in round 3, if allocated
the OTR, the bidder reports her information about the second period. We next present the
details of the construction.

Construction
The bidder’s valuation on the second stage is drawn from one of two distributions D1, D2.
Before the auction, the auctioneer has a prior of (1/2, 1/2) over (D1, D2), but the bidder
knows on the first stage from which of the two distributions she will draw her valuation on the
second stage. We denote the mixed distribution known to the auctioneer by

(
1
2D1 + 1

2D2
)
.

We will introduce many constraints on those distributions, but the most important one for
now is that the Myerson price2 for each separate distribution is low (either 1 or 1 + ε for
ε � 1), while the Myerson price for the mixed distribution (i.e. the auctioneer’s prior) is
high: k, for some sufficiently large integer 1� k � 1/ε. In order to compensate a truthful
bidder who may end up paying the slightly higher price (1 + ε) on the second stage, the
auctioneer gives her a discount of ε/5 on the first stage. The following lemma lists all the
properties we require from D1 and D2, as well as some useful notation. We will assume that
we have such distributions for now, and construct them explicitly later.

2Throughout this section, we use the term Myerson price of a distribution D to refer to the revenue-
maximizing price for a single bidder who samples her valuations for a single item from D.
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Lemma 12. There exist distributions D1, D2 that satisfy all of the following conditions:

Myerson pricing The Myerson price given prior D1 over the valuations is 1 + ε, for prior
D2 it is 1, and for prior 1

2D1 + 1
2D2, it is k. Furthermore, for any convex combination

of D1 and D2, every Myerson price is one of these three possible prices.

Bidder’s utility Let u2 (D′ | D) denote the bidder’s expected utility from the second stage
auction when her true distribution is D, but the auctioneer runs a Myerson auction
against a (possibly misreported) prior of D′. Then we require:

Truthfulness u2 (D1 | D1)+ε/5 > u2 (D2 | D1) and u2 (D2 | D2) > u2 (D1 | D2)+ε/5.
(Note that in this case we can ensure incentive compatibility by giving a discount
of ε/5 on the first stage whenever the bidder reports D1.)

Value of OTR The value of the OTR to the bidder does not depend on her private
information. We use θ to denote this value.

u2 (D1 | D1)+ε/5−u2
(

1
2D1 + 1

2D2 | D1
)

= θ = u2 (D2 | D2)−u2
(

1
2D1 + 1

2D2 | D2
)
.

Auctioneer’s revenue By learning whether the second stage’s valuation is drawn from dis-
tribution D1 or D2, the optimal expected revenue increases by at most O (ε).

Rev
(1

2D1 + 1
2D2

)
≤ 1

2Rev (D1) + 1
2Rev (D2) ≤ Rev

(1
2D1 + 1

2D2

)
+O (ε) .

Given the distributions guaranteed by Lemma 12, we travel back in time and construct a
price distribution for the first stage. We want to construct a distribution where the revenue
that the auctioneer can generate by using a Myerson single-item auction is significantly lower
than the optimal social welfare (i.e. the bidder’s expected valuation). Intuitively, the latter
can only be translated into revenue by bundling with the OTR. In particular, this property
can be achieved by the well-known equal-revenue distribution. Let δ be a small parameter
(ε� δ � 1/k), and let l be a sufficiently large integer (say, l = 100). We set

Pr [v1 = δj] =


1
j
− 1

j+1 j ∈ {1, . . . l − 1}
1
j

j = l

Let R denote the expected revenue from the second stage when the auctioneer knows
which distribution is used, i.e. R = 1

2Rev (D1)+ 1
2Rev (D2) . We prove that with three rounds

of communication, the expected revenue is at least

Rev3 ≥ R + δHl −O (ε) , (2.3)

where Hl is the l-th harmonic number. With one round the expected revenue is at most

Rev1 ≤ R + 3δ. (2.4)
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Three rounds of communication
We begin by describing an approximately optimal protocol:

1. The bidder sends her true valuation v1;

2. With probability v1/θ, the auctioneer allocates the OTR (i.e. the auctioneer asks the
bidder for her prior on the second stage’s valuation);

3. If allocated the OTR, the bidder reports from which distribution (D1 or D2) she will
draw her valuation on the second stage.

• The first item is always allocated (x1 = 1), and the auctioneer charges price p1 =
v1 − ε/5 if the bidder reported prior D1, and p1 = v1 otherwise. (On the second stage,
the second item is offered for the Myerson price for the auctioneer’s updated prior.)

It is easy to see that the IR constraints are satisfied because p1 ≤ v1, and the first item is
always allocated. We continue to compute the expected revenue from this auction, assuming
the bidder reports truthfully. On the first stage, the revenue is at least E [v1] − ε/5 =
δHl − O (ε). On the second stage, by Bullet (12) in Lemma 12, the expected revenue is at
least R−O (ε). Overall we match our guarantee (2.3).

Finally, we prove that this mechanism satisfies the IC constraints. Given that she is
allocated the OTR, it follows by Bullet (12) in Lemma 12 that she maximizes her utility by
reporting truthfully on the third round. We now consider two cases, based on the bidder’s
prior for the second stage. We prove that in both cases, the bidder’s expected utility does
not depend on the reported valuation (and thus satisfies IC):

D1 The bidder’s expected utility on the second stage from the OTR is θ − (ε/5). Upon
reporting a first-stage valuation v′, she receives the OTR with probability v′/θ, so
her added utility is v′ − (ε/5) v′/θ. Similarly, on the first stage her expected price is
v′ − (ε/5) v′/θ. Her total utility is therefore independent of the valuation she reports
in the first stage.

D2 Analogously to the previous case, the bidder’s expected utility on the second stage from
the OTR is θ. Upon reporting a first-stage valuation v′, she receives the OTR with
probability v′/θ, so her added utility is v′. On the first stage her price is always v′.
Her total utility is again independent of the valuation she reports in the first stage.

One round of communication
Recall that by our construction for the second-stage distributions, for any convex combina-
tion of D1 and D2, the Myerson price charged in the second stage by the greedy auctioneer is
always one of three possibilities: p2 ∈ {1, 1 + ε, k}. The choice of p2 depends on the updated
prior based on the bidder’s single message.
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We divide the universe of legal bidder’s messages into three: Mp ⊂ Σ∗ is the subset of
messages for which the second-stage price is p, for each of p ∈ {1, 1 + ε, k}. Note that for
each subset Mp, the allocation and price on the second stage are independent of the choice
of message m ∈Mp. In particular, any difference between messages must be due to different
outcomes on the first stage.

Fix any p ∈ {1, 1 + ε, k}, and let R(1)
p be the expected revenue on the first stage when

the bidder’s message is in Mp. We show that R(1)
p ≤ δ by a reduction to selling only the first

item. For message m ∈ Mp, let xm denote the probability that the auctioneer allocates the
first item to the bidder, and let πm denote the expected price when allocated. In fact, since
both the bidder and the auctioneer are risk-neutral, we can assume wlog that the auctioneer
charges exactly πm whenever the first item is allocated (note that ex-post IR constraints are
preserved). Consider the single-item auction (for the first item) which requires the bidder
to submit a message m ∈ Mp, and then with probability xm offers the item for price πm.
By IC constraints, whenever the bidder submitted a message m ∈ Mp in the original (two-
stage) auction, she will continue to submit the same message in the modified (single-item)
auction. Therefore, the revenue collected from this single-item auction is at least R(1)

p .
Finally, observe that due to the equal-revenue construction, the revenue from from selling
the first item independently is at most δ.

Adding the expected revenues from all the feasible p’s we have that the total expected
revenue on the first stage at most 3δ. Since the revenue on the second stage is always at
most R, (2.4) follows. This completes the proof of Theorem 11.

Construction of D1 and D2: Proof of Lemma 12
Proof. We explicitly define D1 and D2, and then check that they satisfy all the require-
ments. We use D (v) to denote the probability that distribution D assigns to value v. Let
O (1/ ln (k)) ≤ α < 1/5 and 1/2 ≤ β ≤ 1 be parameters to be defined soon. We define the
first distrbution as follows:

D1 (v) =



1− α v = 0(
α · 1

2

)
− 2ε2 v = 1 + ε

α ·
(

1
v
− 1

v+1

)
v ∈ {2, . . . , k}(

α · 1
v

)
+ 2ε2 v = k

Notice that prices 1 + ε and k have probabilities higher than the equal-revenue curve for
v ∈ {2, . . . , k}; one of them will always be optimal. Similarly, we let

D2 (v) =



1− β v = 0(
β · 1

2

)
+
(
k
2 + 1

)
ε2 v = 1

β ·
(

1
2 −

1
k

)
− k

2ε
2 v = 2(

β · 1
v

)
− ε2 v = k
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Price 1 has relatively high probability, and price k comes after; thus for D2 alone price 1 will
be optimal, but together with D1, price k maximizes the revenue.

Myerson pricing For prior D1 the maximal revenue is achieved by p2 = 1 + ε:

∀p′ ∈ {2, . . . , k} (1 + ε) · Pr
v2∼D1

[v2 ≥ 1 + ε] = α (1 + ε) > α+ 2p′ε2 = p′ · Pr
v2∼D1

[v2 ≥ p′] . (2.5)

Similarly, for D2 the revenue is maximized by p2 = 1:

∀p′ ∈ {2, k} 1 · Pr
v2∼D2

[v2 ≥ 1] = β > β − kε2 = p′ · Pr
v2∼D1

[v2 ≥ p′] . (2.6)

For the auctioneer’s initial prior, 1
2D1 + 1

2D2, the revenue is maximized by k:

k · Pr
v2∼ 1

2D1+ 1
2D2

[v2 ≥ k] = 1
2α + 1

2β + k

2 ε
2 >

1
2α + 1

2β = 1 · Pr
v2∼ 1

2D1+ 1
2D2

[v2 ≥ 1] . (2.7)

Finally, we show that for any convex combination λD1+(1− λ)D2 of the distributions,
the revenue is maximized by some price p2 ∈ {1, 1 + ε, k}. It is easy to see that
the the optimal price belongs to the support of the mixed distribution. Yet, for any
p′ ∈ {3, . . . , k − 1} we have:

k · Pr
v2∼γD1+(1−γ)D2

[v2 ≥ k] = γα + (1− γ) β + (3γ − 1) · kε2

> γα + (1− γ) β · p
′

k
+ (3γ − 1) p′ε2

= p′ · Pr
v2∼γD1+(1−γ)D2

[v2 ≥ p′]

Similarly, for p′ = 2 and γ < 1, we still have

k · Pr
v2∼γD1+(1−γ)D2

[v2 ≥ k] > γα + (1− γ) β + (6γ − k) ε2 = 2 · Pr
v2∼γD1+(1−γ)D2

[v2 ≥ 2] .

Bidder’s utility Recall that u2 (D′ | D) denotes the bidder’s expected utility from the
second-stage auction when her true distribution is D, but the auctioneer runs a Myer-
son auction against a (possibly misreported) prior of D′.

Truthfulness When the bidder draws her second stage valuation from D1 and the
price is p (D1) = 1 + ε, her utility is

u2 (D1 | D1) = α · (Hk − 1− ε/2) + 2ε2 · (k − 1− ε)

together with a discount of ε/5 on the first stage, it is greater than the utility
from price p (D2) = 1:

u2 (D2 | D1) = α · (Hk − 1 + ε/2) + 2ε2 · (k − 1− ε) = u2 (D1 | D1) + αε.



CHAPTER 2. DYNAMIC AUCTIONS: DEFINITIONS, SEPARATIONS AND
COMMITMENT 21

On the other hand, if the bidder draws her valuation from D2, then we have:

u2 (D1 | D2) =
(
β
(1
k

)
− ε2

)
· (k − 1− ε) +

(
β
(1

2 −
1
k

)
− k

2 ε
2
)
· (1− ε) ;

as well as

u2 (D2 | D2) =
(
β
(1
k

)
− ε2

)
· (k − 1) +

(
β
(1

2 −
1
k

)
− k

2 ε
2
)

= u2 (D1 | D2) +
((

β · 1
2

)
−
(
k

2 + 1
)
ε2
)
· ε.

Therefore, the discount must satisfy
(
β · 1

2 −
(
k
2 + 1

)
ε2
)
ε > ε/5 > αε

Value of OTR The value of the OTR for a bidder with prior D1 is given by

u2 (D1 | D1) + ε/5− u2

(1
2D1 + 1

2D2 | D1

)
= α · (Hk − 1− ε/2)− 2ε2 · (k − 1− ε) + ε/5 = α · (Hk − 1) +O (ε) .

The value for a bidder with prior D2 is given by

u2 (D2 | D2)− u2

(1
2D1 + 1

2D2 | D2

)

=
(
β
(1
k

)
− ε2

)
· (k − 1) +

(
β
(1

2 −
1
k

)
− k

2 ε
2
)

= β
(

1.5−O
(1
k

))
+O

(
ε2
)
.

Finally, in order to achieve equal value of the OTR, choose α and β such that

α · (Hk − 1− ε/2)− 2ε2 · (k − 1− ε) + ε/5

=
(
β
(1
k

)
− ε2

)
· (k − 1) +

(
β
(1

2 −
1
k

)
− k

2 ε
2
)

(In particular we can take β = 1 and α ≈ 1.5/Hk.)

Auctioneer’s revenue As we already showed in (2.5)-(2.7), the optimal expected revenue
from the second item is approximately the same whether the auctioneer learns the
bidder’s partial information or not:

1
2Rev (D1) + 1

2Rev (D2) = 1
2α (1 + ε) + 1

2β = 1
2α + 1

2β +O (ε)

versus
Rev

(1
2D1 + 1

2D2

)
= 1

2α + 1
2β + k

2 ε
2 = 1

2α + 1
2β +O

(
ε2
)

.
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Chapter 3

The Computational Complexity of
Dynamic Mechanism Design

In this Chapter we study the Computational Complexity of Dynamic Auctions; we prove the
following two Theorems, in Sections 3.1 and 3.2 respectively.

Theorem 13. Finding the optimal deterministic auction is strongly NP-hard, even for n = 1
buyers and m = 2 stages.

Theorem 14. For any number of stages m, and a constant number of independent buyers
n, the optimal adaptive randomized auction can be found in time polynomial in the number
of types and in the number of stages.

3.1 Computing the Optimal Deterministic Auction
In this section we prove that finding the optimal deterministic dynamic auction is NP-hard
even for two stages and a single buyer; we call this the Two-stage Auction problem. In
order to make the reduction cleaner we slightly alter the notation. The buyer can have one
of N types. The i-th type has probability fi, valuation vi1 for the first item, and probability
distribution Xi over valuations for the second item. We will assume that 0 is always in the
support of Xi, for all i. Our goal is to design an auction that maximizes the designer’s
revenue, subject to incentive compatibility in a perfect Bayesian equilibrium and ex post
individual rationality.

What can we say about the structure of revenue-optimal deterministic dynamic auctions?
The point of this chapter is that they are quite complex. Nonetheless we can significantly
restrict our search space. Notice that by the revelation principle the most general (adaptive)
mechanism can be described as a function that maps declared types to a price for the first
item, and the combination of declared type and second stage valuation to a price for the
second item. Call a mechanism semi-adaptive if it depends only on the buyer’s declared
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type. In such a mechanism the buyer submits a bid for the first stage, and the seller, based
on it, produces a price p1 for the first stage and a price p2 for the second (a price can be
infinity, in which case the seller does not offer this item).

Semi-adaptive auctions are optimal
Rather surprisingly, this seemingly weak protocol is optimal.

Lemma 15. There is a revenue-optimal deterministic mechanism which is semi-adaptive.

Proof. Suppose that in a deterministic revenue-optimal auction satisfying incentive compat-
ibility and ex-post individual rationality, the price on the second stage p2(v1, v2) depends on
the buyer’s valuations on both stages, v1 and v2. Fix any first-stage valuation v1 = w, and
let u∗ = arg minu≥p2(w,u) p2(w, u) be the second-stage valuation which minimizes that second
stage price, among all second-stage valuations for which the item is allocated.

• v2 > p2(w, u∗): the buyer could declare valuation u∗ in order to buy the item for the
minimum price. Therefore, since the auction is incentive compatible, it must charge
p2(w, v2) = p2(w, u∗).

• v2 < p2(w, u∗): we can assume wlog that the price is again p2(w, u∗), since the buyer
would not buy the item anyway for the current price p2(w, v2)(≥ p2(w, u∗)).

• v2 = p2(w, u∗): the buyer’s utility remains zero for any price p2(w, v2) ≥ p2(w, u∗);
however, the auctioneer’s revenue is clearly maximized when selling the item for price
p2(w, v2) = q(w, u∗)

Finally, any buyer with a different first-stage valuation v1 = w′ that attempts to deviates
to a bid w on the first stage, would wlog also deviate her second-stage valuation to u∗.

Note that it is not clear whether the same is true for randomized auctions, because we
do not have an order over distributions of prices: one distribution may be more attractive
to one type, while another distribution is more attractive for another type.

Incentive compatibility constraints
Once we restrict ourselves to semi-adaptive auctions, the auction becomes two functions
p1, p2 mapping the support of the prior to the reals. Let p1(v) be the price charged for the
first stage item, and p2(v) the price charged for the second stage item, when the bidder
reports valuation v. Let u(v, v′) be the expected utility of the bidder when her true value
in stage one is v and she declares v′. This utility is the utility of the first stage plus the
expected utility for the second stage, when offered a take-it-or-leave-it price p2(v′). We want
u(v, v) ≥ u(v, v′) for all v, v′.
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A nice, compact form to express our IC constraints is using the cumulative distribution
of the second stage: F̄v(x) = Pr[v2 ≥ x|v1 = v]. The observation here is that the buyer’s
second stage utility for valuation v, when charged price p2 in stage 2, is

∫∞
p2
F̄v(x)dx. So, for

any two possible first-stage valuations v and v′, the IC constraints are:

• If both v and v′ receive the item on the first stage:∫ p2(v)

p2(v′)
F̄v′(x)dx ≥ p1(v′)− p1(v) ≥

∫ p2(v)

p2(v′)
F̄v(x)dx

• If neither receives the item on the first stage:

p2(v) = p2(v′)

• If v′ receives the item on the first stage, but v does not:∫ p2(v′)

p2(v)
F̄v(x)dx ≥ v − p1(v′)

v′ − p1(v′) ≥
∫ p2(v′)

p2(v)
F̄v′(x)dx

We write Rev(ti, pi1, pi2) to denote the auctioneer’s revenue, when charging type ti the
first stage price pi1 and second stage price pi2. We write Rev1 or Rev2 when we refer only to
the revenue from the first or second stage, respectively.

Theorem 13. Finding the optimal deterministic auction is strongly NP-hard, even for n = 1
buyers and m = 2 stages.

Outline
Given a graph G = (V,E), we construct a joint distribution of valuations such that the
optimal feasible revenue (for deterministic IC and IR auctions) is a strictly increasing function
of the maximum independent set in G.

More specifically, with each vertex i ∈ G we associate a type ti with valuation v1 = Bi

for the first stage. For each type ti, we want to have two candidate price pairs: (Bi, Ci)
or (Ai, Di). The former will give more revenue, but for every edge (i, j) ∈ E, it will be a
violation of the IC constraints to charge both type ti (Bi, Ci) and type tj (Bj, Cj). Thus,
if the difference r in expected revenue between (Bi, Ci) and (Ai, Di) is the same for all i,
charging the former for all the vertices of an independent set S and the latter for the rest of
the vertices will be a valid pricing, with revenue ∑i∈V Rev(ti, Ai, Di) + r|S|.

In order to impose the (Bi, Ci) vs (Ai, Di) structure, we have an extra type t∗, with
valuation v1 = P ∗ on the first stage. t∗ appears with very high probability. This way we
make most of our revenue from this type, and thus force every revenue-optimal auction to
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charge this type the optimal prices, (P ∗, Q∗). The IC constraints for type t∗ introduce strong
restrictions on the prices for other types.

The restriction on each edge (i, j) is forced by the IC constraints for ti and tj, via a
careful construction of the distributions over their second-stage valuations. The second
stage distribution of ti will be F̄i and will change behavior between Dj−1 and Dj depending
on whether or not (i, j) ∈ E. See Figure 3.1.

xCi Di Dj−1 Cj Dj

F̄i

F̄j

Pr[v2 ≥ x]

Figure 3.1: F̄i when there is (dotted) an (i, j) edge for j > i, and when there isn’t (dashed).

Construction
The distribution of valuations on the first stage is rather simple. Let N = |V | denote the
number of vertices in G. With probability 1 − p, the buyer is of type t∗ and has first-stage
valuation v1 = P ∗ = N ; with probability p · wi, the buyer is of type ti and has first-stage
valuation v1 = Bi = N2 + 2N + 1− i, i ∈ [N ]. The parameters p and wi will be defined soon.
Notice that the first stage has support of size N + 1.

We will show that it is always possible to charge type i either her full value Bi on stage
1, or slightly less: Ai = Bi − ε, for ε = 1/N2. For type t∗, we always want to charge the full
price, P ∗. Observe that

P ∗ < AN < BN < · · · < A1 < B1.

Furthermore, Bi −Bj = j − i = Ai − Aj, Bi − Aj = j − i+ ε, and Ai −Bj = j − i− ε.
For the second stage we are interested in pricings Ci or Di for ti, and Q∗ for t∗. Although

we only have N types, it will be convenient to think about two more special prices, which
we denote CN+1 and DN+1. We will define Ci, Di and Q∗ later; for now let us mention that

C1 < D1 < · · · < CN < DN < CN+1 < DN+1 < Q∗.
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Second stage valuations

The crux of the reduction lies in describing the distributions of the second-stage valuations for
each type. It will be convenient to describe the cumulative distributions F̄i(z) = Pr[v1 ≥ z|ti]
and F̄∗(z) = [v1 ≥ z|t∗].

The choices of the cumulative distributions in our construction are summarized in Table
3.1. Type ti never has nonzero second-stage valuation less than Ci, thus the cumulative
distribution F̄i(x) for x ∈ (0, Ci) is hi = γ−4i, for γ = 1 + 1/N . Intuitively, this will make Ci
an attractive price for the seller. Notice that γN ≈ e is a constant.

At each special price thereafter, F̄i decreases by some multiplicative factor that is related
to γ. The exact value of F̄i(x) for x ∈ (Dj−1, Dj) depends on whether there is an edge (i, j)
in G.1 After DN+1, the distribution for all types ti is the same. F̄i halves at each 2kDN+1,
and it is 0 after Q∗ = 28γ4(N+1)

DN+1.
The distribution F̄∗ is simpler to describe. F̄∗(x) is h1 for x ∈ (0, C1), and decreases by

a multiplicative factor of γ2 at each special price thereafter. Type t∗ never has valuations
between DN+1 and Q∗ = 28γ4(N+1)

DN+1. F̄∗ is constant in this domain; in particular F̄∗(x) =
h∗ = AN+1−P ∗

Q∗−DN+1
. Intuitively, this will make Q∗ an attractive price for the auctioneer. Notice

also the contrast between this and the gradual decrease of F̄i’s. Next, we describe how to
fix the last parameters.

Fixing the last parameters
One of the most important parameters in our construction is ri: we later prove that ri is
the difference in expected revenue, conditioned on type ti, between pricing at (Bi, Ci), and
pricing at (Ai, Di).

We set rN+1 = (AN+1−P ∗)(γ−1)
2γ4(N+1) = Θ(N); the rest of ri’s are defined recursively:

ri = γ4ri+1 − (γ − 1)[ε(γ3 − γ) + γ]. (3.1)

Notice that r1
rN+1

≤ γ4(N+1) = Θ(1).

Let Ci =
γ
γ−1 ri−ε

hi
and Di = γri

(γ−1)hi . Observe that with the recursive definition of ri (3.1)
we can get a nice expression for the following difference:

Ci+1 −Di = γ2 1− ε
hi

.

The differences between pairs of special prices are summarized in Table 3.2.
Finally, we want the contribution towards the revenue from each vertex in the independent

set to be the same. To that end, we set r = ∑ 1/ri = Θ(1), and weight the probability of
observing each type ti by wi = r/ri. We set the total probability of observing any of the ti’s
to be p = ε

16Nr = Θ(N−3).

1For the extra special prices, CN+1 and DN+1, assume that all F̄i’s behave as in the “no edge” case.
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Type 0→ Ci Ci → Di Di → Ci+1 Dj−1 → Cj Cj → Dj

2kDN+1 →

2k+1DN+1

F̄i hi
hi
γ

hi
γ2

1−ε(2− 1
γ

)
1−ε

hj−1
γ2 (2− 1

γ
)hj hN+1

2k+1γ

edge
1− ε

γ

1−ε
hi
γ2

hj−1
γ2 hj no edge

F̄∗ hi
hi
γ2

hj−1
γ2 hj h∗

Table 3.1: Cumulative distributions

Bi − Ai Ai −Bi+1 An+1 − P ∗ Di − Ci Ci+1 −Di Q∗ −DN+1

ε 1− ε N2 +N − ε ε
hi

γ2 · 1−ε
hi

(
28γ4(N+1) − 1

)
DN+1

Table 3.2: Differences between prices

Recall that the IC constraints depend on the integrals of the cumulative distribution
functions. The values of the F̄i’s and F̄∗ in our construction are tailored to make sure that
their integrals have the values described in Table 3.3.

Type Ci → Di Di → Ci+1 Dj−1 → Cj Cj → Dj DN+1 → Q∗

∫
F̄i

ε
γ

1− ε 1− (2− 1
γ
)ε (2− 1

γ
)ε

AN+1 − P ∗
edge

1− ε
γ

1− ε ε no edge∫Dj
Ci

F̄i = Bi − Aj

∫
F̄∗

ε 1− ε 1− ε ε AN+1 − P ∗∫Q∗
Ci

F̄∗ = Bi − P ∗

Table 3.3: Integrals of cumulative distributions

Claim 16. The integrals of the F̄i’s and F̄∗ have values as stated in the Table 3.3

Proof. Follows from multiplying the correct combination of entries of Table 3.1 and Table 3.2.
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This completes the construction of the instance of Two-stage Auction, starting from the
instance of Independent Set. Incidentally, notice that the numbers used are polynomial
in the size of the input graph.

Proof of the NP-hardness construction
Completeness

In this subsection we show that any independent set S in G corresponds to a feasible pricing
in our auction: (Bi, Ci) for i ∈ S, (Aj, Dj) for j /∈ S, and (P ∗, Q∗) for type t∗.

Lemma 17. Let S be an independent set of G. There exists a pricing for our auction that
satisfies IC and IR and achieves revenue:

(1− p)Rev(t∗, P ∗, Q∗) + p
∑
i∈V

wiRev(ti, Ai, Di) + pr|S|

We first show that the IC constraints are satisfied between any pair of types ti and tj

that are not both charged (Bi, Ci) - edge or no edge in the graph (Claim 18). Then, we show
that the IC constraints are satisfied between type t∗ and type ti, for any i ∈ [N ] (Claim 19).
Finally we prove that charging (Bi, Ci) and (Bj, Cj) does not violate the IC constraints if
there is no (i, j) edge in the graph (Claim 20).

Claim 18. Charging types ti and tj, for j > i, any of the pairs (Bi, Ci)/(Aj, Dj),
(Ai, Di)/(Bj, Cj) or (Ai, Di)/(Aj, Dj), satisfies the IC constraints between ti and tj.

Proof. We need to show that all the following are always true:

1. ∫ Dj

Ci
F̄i(x)dx ≥ Bi − Aj ≥

∫ Dj

Ci
F̄j(x)dx

2. ∫ Dj

Di
F̄i(x)dx ≥ Ai − Aj ≥

∫ Dj

Di
F̄j(x)dx

3. ∫ Cj

Di
F̄i(x)dx ≥ Ai −Bj ≥

∫ Cj

Di
F̄j(x)dx

It follows from Table 3.3 that the left hand sides hold. For the right hand sides, first
notice that Fj is always lower than F̄i in the intervals we’re interested in. The first inequality
is tight for F̄i, thus

∫Dj
Ci

F̄j(x) ≤ Bi−Aj. For (Ai, Di)/(Bj, Cj) and (Ai, Di)/(Aj, Dj) we will
use induction:
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• Basis j = i+ 1:∫ Ci+1
Di

F̄i+1(x)dx = (Ci+1 −Di)hi+1 = (Ci+1 −Di) hiγ4 = 1−ε
γ2 < 1− ε = Ai −Bi+1.

And:∫Di+1
Di

F̄i+1(x)dx = (Ci+1 −Di)hi+1 + (Di+1 − Ci+1)hi+1
γ

= 1−ε
γ2 + ε

γ
< 1 = Ai − Ai+1.

• For j we have the following:∫ Cj
Di
F̄j(x)dx ≤

∫Dj−1
Di

F̄j−1(x)dx+
∫ Cj
Dj−1

F̄j(x)dx ≤ (Ai−Aj−1) + (Aj−1−Bj) = Ai−Bj

and∫Dj
Di

F̄j(x)dx ≤
∫Dj−1
Di

F̄j−1(x)dx+
∫Dj
Dj−1

F̄j(x)dx ≤ Ai−Aj−1 +Aj−1−Aj = Ai−Aj.

Claim 19. When type t∗ is charged (P ∗, Q∗), charging ti the pair (Bi, Ci) or the pair (Ai, Di)
doesn’t violate the IC constraints between ti and t∗.

Proof. The IC constraints between ti and t∗ are either∫ Q∗

Ci
F̄i(x)dx ≥ Bi − P ∗ ≥

∫ Q∗

Ci
F̄∗(x)dx

or ∫ Q∗

Di
F̄i(x)dx ≥ Ai − P ∗ ≥

∫ Q∗

Di
F̄∗(x)dx

In both cases, the inequalities can be verified easily using Table 3.3.

Claim 20. If (i, j) 6∈ E the charging type ti the pair (Bi, Ci) and type tj the pair (Bj, Cj)
doesn’t violate the IC constraints between ti and tj.

Proof. The IC constraint between ti and tj for this pricing is:∫ Cj

Ci
F̄i(x)dx ≥ Bi −Bj ≥

∫ Cj

Ci
F̄j(x)dx

• j = i + 1:
∫ Ci+1
Ci

F̄i(x)dx =
∫Di
Ci
F̄i(x)dx +

∫ Ci+1
Di

F̄i(x)dx. The first term is equal to ε
γ
,

and when there is no (i, i + 1) edge, the second term is equal to 1 − ε
γ
, thus the left

hand side is immediate. The right hand side is satisfied trivially, since F̄i+1 is always
below F̄i between Ci and Ci+1 and F̄i gives a tight constraint.

• j > i + 1: Again,
∫ Cj
Ci
F̄i(x)dx =

∫Dj−1
Ci

F̄i(x)dx +
∫ Cj
Dj−1

F̄i(x)dx. From Table 3.3 we
can see that the first term is always j − 1 − i + ε, and the second term is 1 − ε when
(i, j) 6∈ E.
For the right hand side we have

∫ Cj
Di
F̄j(x)dx ≤ Ai − Bj from Claim 18. Since F̄j is

below F̄i between Ci and Di, and
∫Di
Ci
F̄i(x)dx = ε

γ
< ε we get that:∫ Cj

Ci
F̄j(x)dx =

∫Di
Ci
F̄j(x)dx+

∫ Cj
Di
F̄j(x)dx <

∫Di
Ci
F̄i(x)dx+Ai−Bj < ε+Ai−Bj = Bi−Bj.
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Soundness

Lemma 21. Let S be a maximum independent set in G. Then any IC and IR auction has
expected revenue at most

(1− p)Rev (t∗, P ∗, Q∗) + p
∑
i∈V

wiRev(ti, Bi, Di) + pr |S| (3.2)

Proof outline

We first show that charging the pair (P ∗, Q∗) maximizes the revenue that can be obtained
from type t∗ (Claim 22), and that (Bi, Ci) yields the optimal revenue from type ti (Claim
23). Observe that even if we could charge the optimal prices from every type, our expected
revenue would be (1 − p)Rev(t∗, P ∗, Q∗) + p

∑
wiRev(ti, Bi, Ci), which improves over (3.2)

by less than prN = ε/16. Intuitively, this means that any deviation that results in a loss of
prN in terms of revenue, cannot compete with (3.2).

Next, we show (Claim 24) that if (i, j) ∈ E, then we cannot charge both ti and tj the opti-
mal prices (Bi, Ci) and (Bj, Cj). In fact, we need a robust version of this statement: Specifi-
cally, for some small parameters ζ(1), ζ

(2)
i (to be defined later), we show that we cannot charge

both ti and tj prices in
[
Bi − ζ(1), Bi

]
×
[
Ci − ζ(2)

i , Ci
]

and
[
Bj − ζ(1), Bj

]
×
[
Cj − ζ(2)

j , Cj
]
,

respectively.
What can we charge type ti instead? In Claim 25 we show that charging less than Ci

would require us to either not sell the item on the first stage, or charge type t∗ less than
the optimal price. On the former case, we would lose pwi · Bi > ε/16 revenue, and would
immediately imply smaller revenue than (3.2). On the latter case, we can use the robustness
of Claim 24; namely, we use the fact that we cannot charge i prices that are

(
ζ(1), ζ

(2)
i

)
-close

to (Bi, Ci). This will imply that we must change the prices for type t∗ by some ζ(1)
∗ on the

first stage or ζ(2)
∗ on the second stage. In either case the lost revenue is again greater than

what we could potentially gain over (3.2). Therefore, we must charge ti more than Ci on the
second stage. Claim 26 shows that charging Di is the best option in this case.

Therefore an upper bound to the revenue we can make is the following: charge (Bi, Ci)
for all i belonging to some independent set S ′, and (Bj, Dj) for all other j /∈ S ′. (It is easy
to see than in our construction even these prices won’t satisfy the IC constraints). Now, the
revenue given by these prices is:

(1− p)Rev (t∗, P ∗, Q∗) + p
∑
i∈S′

wiRev
(
ti, Bi, Ci

)
+ p

∑
j /∈S′

wjRev
(
tj, Bj, Dj

)

Notice that∑
i∈S′

wiRev
(
ti, Bi, Ci

)
≤

∑
i∈S′

wi
(
Rev

(
ti, Bi, Ci

)
−Rev

(
ti, Ai, Di

)
+Rev

(
ti, Bi, Di

))
=

∑
i∈S′

wi
(
ri +Rev

(
ti, Bi, Di

))
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Therefore, the total expected revenue

(1− p)Rev (t∗, P ∗, Q∗) + pr|S ′|+ p
∑
i∈S′

wiRev
(
ti, Bi, Di

)
+ p

∑
j /∈S′

wjRev
(
tj, Bj, Dj

)

which is at most the expression in (3.2)

Preliminaries

We begin by setting our padding parameters: let ζ(1) = ε
4 , and for each i let ζ(2)

i = ε
4γ2hi

. In
particular, this implies that for every i, ζ(2)

i hi + ζ(1) < ε
2 < ε − ε′. Next, let ζ(1)

∗ = ε
8 , and

ζ
(2)
∗ = ε

8h∗ . We now have that ζ(2)
i hiγ

2 = ζ(1) = ζ
(2)
∗ h∗ + ζ

(1)
∗ , which we will use later in the

proof. Most importantly, recall that losing ε
8 from the revenue from type t∗, is equivalent to

a loss of (1− p) ε
8 >

ε
16 from the total expected revenue, which immediately implies that the

expected revenue is less than (3.2).

Optimality of (P ∗, Q∗)

We will now prove that prices (P ∗, Q∗) maximize the revenue from type t∗, in a robust sense:

Claim 22. Charging type t∗ prices (P ∗, Q∗) maximizes the revenue from that type. Further-
more, if p∗1 < P ∗ − ζ(1)

∗ or p∗2 < Q∗ − ζ(2)
∗ , then the revenue from type t∗ is lower than the

maximal revenue by at least ζ(1)
∗ or ζ(2)

∗ h∗, respectively.

Proof. Clearly, P ∗ is the most that we can charge type t∗ on the first stage. It is left to show
that Q∗ maximizes the revenue on the second stage.

On the second stage, we have: Rev2 (t∗, Q∗) = Q∗h∗ > AN+1−P ∗. Recall that F̄∗ changes
on Ci’s and Di’s, so those are the only candidates we should compare with Q∗. For any Ci,
we have

Rev2 (t∗, Ci) = Cihiγ
2 <

γ3ri
γ − 1 ≤

γ3r1

γ − 1 ≤
γ4(N+1)rN+1

γ − 1 = AN+1 − P ∗

2 .

Similarly, for Di,
Rev2 (t∗, Di) = Dihi <

γri
γ − 1 <

AN+1 − P ∗

2 .

Optimality of (Bi, Ci)

Similarly, we show that (Bi, Ci) maximize the revenue from type ti.

Claim 23. ∀x 6= Ci Rev2 (ti, Ci) > Rev2 (ti, x).
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Proof. Since F̄i is constant for all x ≤ Ci, the claim for this domain follows trivially. We will
prove that Rev2 (ti, Ci) > Rev2 (ti, Di) and deduce from Claim 26 that the claim continues
to holds for any other x.

Rev2
(
ti, Ci

)
= Ci · F̄i (Ci) = γ

γ − 1ri − ε = ri
γ − 1 + ri − ε >

ri
γ − 1 = Rev2 (ti, Di) .

Condition on edges

Below we show that if there is an edge (i, j), then we cannot charge both ti and tj close to
their optimal prices:

Claim 24. If (i, j) ∈ E then it cannot be that (pi1, pi2) ∈
[
Bi − ζ(1), Bi

]
×
[
Ci − ζ(2)

i , Ci
]

and(
pj1, p

j
2

)
∈
[
Bj − ζ(1), Bj

]
×
[
Cj − ζ(2)

j , Cj
]

Proof. Wlog, let i < j. Assume by contradiction that the conclusion is false.
Then we get

∫ pj2
pi2
F̄i < pi1 − p

j
1, which is a contradiction to IC constraints for type i:

∫ pj2

pi2

F̄i =
∫ Ci

pi2

F̄i +
∫ Cj

Ci
F̄i +

∫ pj2

Cj
F̄i

≤
∫ Cj

Ci
F̄i + ζ

(2)
i hi = j − i− ε+ ε′ + ζ

(2)
i hi

< j − i− ζ(1)

= Bi −Bj − ζ(1)

≤ pi1 − p
j
1 ,

where the third line follows by ζ(2)
i hi + ζ(1) < ε− ε′.

Restriction imposed by charging (P ∗, Q∗) for type ∗

The claim below essentially shows that we cannot go around the restriction on prices for
neighbors by reducing the prices:

Claim 25. If p∗1 > P ∗ − ζ(1)
∗ and p∗2 > Q∗ − ζ(2)

∗ , then in any IC solution either:

• pi1 > Bi - note that this means that type i cannot purchase the item on the first stage;
or

• pi2 > Ci - note that this substantially decreases our revenue for type i on the second
stage; or

• pi1 ≥ Bi − ζ(1) and pi2 ≥ Ci − ζ(2)
i
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Proof. The negation of the claim gives us two configurations: having pi1 ≤ Bi and pi2 <

Ci−ζ(2)
i , and having pi1 < Bi−ζ(1) and pi2 ≤ Ci. We show the Claim is true by contradiction,

i.e. both these configurations are violating.
Assume first that pi1 ≤ Bi and pi2 < Ci − ζ(2)

i . Consider the IC constraint comparing t∗’s
utility when telling the truth and when claiming that she is type ti:∫ p∗2

pi2

F̄∗ =
∫ Ci

pi2

F̄∗ +
∫ Q∗

Ci
F̄∗ +

∫ p∗2

Q∗
F̄∗

>
∫ Ci

Ci−ζ
(2)
i

F̄∗ +
∫ Q∗

Ci
F̄∗ +

∫ Q∗−ζ(2)
∗

Q∗
F̄∗ =

∫ Q∗

Ci
F̄∗ + ζ

(2)
i

hi−1

γ2 − ζ
(2)
∗ h∗

=
∫ Q∗

Ci
F̄∗ + ζ(1)

∗ = Bi − P ∗ + ζ(1)
∗

≥ pi1 − p∗1

where the third line follows from ζ
(2)
i

hi−1
γ2 = ζ

(2)
∗ h∗ + ζ

(1)
∗ .

We now return to the other violating configuration, namely pi1 < Bi − ζ(1) and pi2 ≤ Ci.
We now have ∫ p∗2

pi2

F̄∗ =
∫ Ci

pi2

F̄∗ +
∫ Q∗

Ci
F̄∗ +

∫ p∗2

Q∗
F̄∗

>
∫ Ci

Ci
F̄∗ +

∫ Q∗

Ci
F̄∗ +

∫ Q∗−ζ(2)
∗

Q∗
F̄∗ =

∫ Q∗

Ci
F̄∗ − ζ(2)

∗ h∗

=
∫ Q∗

Ci
F̄∗ − ζ(1) + ζ(1)

∗ = Bi − ζ(1) − P ∗ + ζ(1)
∗

≥ pi1 − p∗1

where the third line follows from ζ
(2)
i

hi−1
γ2 = ζ

(2)
∗ h∗ + ζ

(1)
∗ .

Optimality of (Bi, Di)

We now show that Di is the optimal price on the second stage for type ti, conditioned on
charging more than Ci.

Claim 26. ∀y > Ci Rev2 (ti, Di) ≥ Rev2 (ti, y)

Proof. It is easy to see that the second stage revenue is maximal for one of the “special
points” where F̄i changes. At Di we have:

Rev2
(
ti, Di

)
= Di · F̄i (Di) = γri

(γ − 1)hi
· hi
γi

= ri
γ − 1 .

We now compare with each of type of special point:
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• What happens if we set pi2 = Ci+1?

Rev2
(
ti, Ci+1

)
= Ci+1 · F̄i (Ci+1) ≤

γ
γ−1ri+1 − ε
hiγ−4 · hi

γ2

(
1− ε/γ
1− ε

)

≤ γ5ri+1

γ2 (γ − 1) (1 + 2ε) = γri + (γ − 1) [ε (γ4 − γ2) + γ2]
γ2 (γ − 1) (1 + 2ε)

≤ 1 + 2ε
γ (γ − 1)ri +

[
ε
(
γ2 − 1

)
+ 1

]
(1 + 2ε)

≤ γ

γ (γ − 1)ri −
(
γ − (1 + 2ε)
γ (γ − 1)

)
ri +

[
ε
(
γ2 − 1

)
+ 1

]
(1 + 2ε)

≤ ri
γ − 1 −

ri
2γ +

[
ε
(
γ2 − 1

)
+ 1

]
(1 + 2ε) .

The equation in the second line follows from the recursive definition of ri; the last
inequality follows from γ > 1 + 4ε. Now, using that ri > 2γ [ε (γ2 − 1) + 1] (1 + 2ε) for
all i, we have that Rev2 (ti, Ci+1) < Rev2 (ti, Di).

• What happens if we set pi2 = Di+1?

Rev2
(
ti, Di+1

)
= Di+1 · F̄i (Di+1) ≤ γri+1

(γ − 1)hi+1
hi+1 (2− 1/γ)

≤ ri+1

(γ − 1) (2γ − 1) = 2γ − 1
γ3 · γri + (γ − 1) [ε (γ4 − γ2) + γ2]

γ2 (γ − 1)

≤ γri + (γ − 1) [ε (γ4 − γ2) + γ2]
γ2 (γ − 1)

≤ Rev2
(
ti, Di

)
where the last inequality follows from the analysis for Rev2 (ti, Ci+1).

• What about the revenue when we charge Ci+2, Di+2 ? We reduce this case to what we
already know about the revenue from type i+ 1:
Observe that F̄i (Ci+1) > F̄i+1 (Ci+1), but F̄i (Ci+2) < F̄i+1 (Ci+2). Therefore,

Rev2
(
ti, Ci+2

)
< Rev2

(
ti+1, Ci+2

)
≤ Rev2

(
ti+1, Ci+1

)
< Rev2

(
ti, Ci+1

)
.

A similar argument works for Di+2, and the claim follows by induction for all Cj, Dj.

• Finally, for points x > DN+1, we will show that Rev2
(
tN , DN+1

)
is greater than

Rev2
(
tN , x

)
, and the claim will follow for all i ≤ N by the previous argument. (Recall

that in the domain x > DN+1, F̄i is the same for all i.)
F̄n changes its values at points 2kDN+1. We have:

Rev2
(
tN , 2kDN+1

)
= 2kDN+1 · F̄N

(
2kDN+1

)
= DN+1hN+1

2γ < DNhN
2γ = Rev2(tN ,DN)

2 .
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Putting it all together

In Lemma 17 we saw that if there exists an independent set of size |S| there exists an IC and
IR satisfying pricing which yields revenue (1−p)Rev(t∗, P ∗, Q∗)+p

∑
i∈V wiRev(ti, Ai, Di)+

pr|S|. In Lemma 21 we saw that no auction can revenue more than (1− p)Rev (t∗, P ∗, Q∗)+
p
∑
i∈V wiRev(ti, Bi, Di) +pr |S|, where |S| is the size of the maximum independent set in G.
All that’s left is to show that a graph with maximum independent set of size |S| − 1

cannot yield revenue (1 − p)Rev(t∗, P ∗, Q∗) + p
∑
i∈V wiRev(ti, Ai, Di) + pr|S|. To this end

we need to show that,

(1− p)Rev(t∗, P ∗, Q∗) + p
∑
i∈V

wiRev(ti, Ai, Di) + pr|S| >

(1− p)Rev(t∗, P ∗, Q∗) + p
∑
i∈V

wiRev(ti, Bi, Di) + pr(|S| − 1).

or equivalently,

pr > p
∑
i∈V

wi(Rev(ti, Bi, Di)−Rev(ti, Ai, Di)) = p
∑
i∈V

wiε

⇐⇒ r >
∑
i∈V

rε

ri

⇐⇒ 1 >
∑
i∈V

ε

ri
,

which is true since ε = 1
N2 , and each ri = O(N). With this the reduction is complete.

3.2 Computing the Optimal Randomized Auction

Semi-adaptive Auctions
Can we do better by using randomization? We first construct an LP that gives a randomized
mechanism that performs at least as well — and sometimes much better — than the optimal
deterministic mechanism. A randomized semi-adaptive auction takes as input the buyer’s
declared type on stage one, and outputs a distribution over pairs of prices. It is not clear
that the optimum randomized auction is semi-adaptive. But the optimum semi-adaptive
randomized auction has at least as good a revenue as any two-stage deterministic auction.

A key observation that significantly reduces the search space is the following: when
considering randomized auctions, we can assume without loss of generality that every price
in the support is exactly equal to a feasible valuation in the support of buyer’s types, zero,
or infinite.

Lemma 27. Let Vk be the set of possible valuations on stage k. Then given any semi-
adaptive auction A (randomized or deterministic), there exists a randomized semi-adaptive
auction A′, with at least as good revenue, which on stage k only offers prices in Vk ∪{0,∞}.
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Proof. Let Vk = {vk,1 ≤ vk,2 ≤ · · · ≤ vk,n}, and let vk,0 = 0 and vk,n+1 = ∞. Let pk ∈
(vk,i, vk,i+1) be a possible price A charges on stage k. We can construct an auction A′
identical to A, except that A′ asks for vk,i and vk,i+1 on stage k with different probabilities,
and never asks for pk. Applying this argument recursively proves the claim.

Let π, πi, πi+1 be the probabilities that A charges pk,vi and vi+1 respectively, on stage k,
and pk = αvk,i + (1 − α)vk,i+1. Then A′ simply charges vk,i with probability πi + απ and
vk,i+1 with probability πi+1 + (1− α)π. Observe that the expected price is the same.

Notice that the probability of allocation of the item on stage k can only increase: if the
buyer bought the item on stage k for price pk, her valuation could only be vk,j ≥ vk,i+1, so
the probability she buys is unchanged. If she didn’t buy with price pk and her valuation was
vk,i, she will buy with (απ) higher probability in A′. When vk,j < vk,i nothing changes.

Since the probability of allocation increases, with the same expected prices, the revenue
also increases. On the other hand the buyer’s utility remains unchanged between A and A′:
the expected price is the same, and the extra probability of allocation comes from cases when
the buyer pays her valuation. Thus, the IC constraints of A continue to hold in A′.

It is easy to see that this proof did not use in any crucial way the semi-adaptive property,
so this normalization is possible for all randomized auctions. We are now ready to describe
our LP for two-stage semi-adaptive randomized auctions:

Theorem 28. The optimal two-stage semi-adaptive randomized auction can be found in time
polynomial in the number of types.

Proof. We construct an LP of size O (|V1| · (|V1|+ |V2|)) that optimizes over all two-stage
semi-adaptive randomized auctions:

• Variables: The variables in our LP will specify the distribution of prices given the
valuation on the first stage. Notice that because of the restriction on the class of
auctions, we can assume wlog that given the valuation on the first stage, the prices on
the two stages are independent. Let the variable x (k, p, v1) denote the probability that
we offer the item on stage k for price p given first-stage valuation v1. By Lemma 27,
we only need to consider Vk + 2 different prices on each stage.

• Objective: Our expected revenue on the first stage is given by:

Rev1 =
∑
v1

∑
p≤v1

x (1, p, v1) Pr [v1] · p

On the second stage, we must also sum over the new valuations v2

Rev2 =
∑
v1

∑
v2

∑
q≤v2

x (2, q, v1) Pr [(v1, v2)] · q

Our objective is to maximize the total revenue: max Rev1 + Rev2.
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• Feasibility constraints: In order for x (k, p, v1) to be feasible probabilities, their
sum, for each k and v1 must be one: ∀k ∈ {1, 2} ∀v1

∑
p x (k, p, v1) = 1. Similarly,

they should all be non-negative: ∀k ∈ {1, 2} ∀v1 ∀p x (k, p, v1) ≥ 0.

• IC constraints: Given that the buyer’s true valuation on the first stage is v1, her
utility from declaring u is given by:

U (v1, u) =
∑
p≤u

x (1, p, u) · (v1 − p) +
∑
v2

∑
q≤v2

x (2, q, u) · (v2 − q) · Pr[v2|v1]

The IC constraints require that

∀ (v, u) U (v, v) ≥ U (v, u)

Notice that the IR constraints are implied by the fact that we only add up prices smaller
than valuations. The variables x(k, p, u) for p > u don’t show up anywhere in the LP.

Adaptive Auctions
In this subsection we write an LP for the revenue-optimal and adaptive randomized auction,
that is incentive compatible in a perfect Bayesian equilibrium and ex-post individually ra-
tional, for n independent bidders and m stages. The main challenge with optimizing over
dynamic (and adaptive) auctions is the structure of the IC constraints. As was the case for
semi-adaptive auctions, we do not lose generality by restricting to prices that are exactly
feasible valuations:

Claim 29. Let V i
k be the set of possible valuations of buyer i on stage k. Then, given any

feasible adaptive auction A, there exists a feasible randomized adaptive auction A′ where i
is always charged on stage k prices in V i

k ∪ {0,∞}.

Proof. Essentially the same as the proof of Lemma 27.

Finally, we are ready to describe our LP a randomized adaptive auction for n > 1 bidders
and m > 2 stages.

Theorem 14. For any number of stages m, and a constant number of independent buyers
n, the optimal adaptive randomized auction can be found in time polynomial in the number
of types and in the number of stages.

Note that typically, the number of types grows exponentially with m.

Proof. We define an LP that optimizes over all feasible joint distributions of allocations
and prices. The most interesting part is the dynamic programming definition of the IC
constraints.
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• Probability Variables: We define variables that specify the joint distribution of
prices and allocations. Let v≤k denote the history of valuations up to stage k, and let
p<k and x<k denote the prices and allocations determined prior to stage k. Let the
variable π (k,x≤k,p≤k,v≤k) denote the probability that we offer allocate all the items
up to time k to bidders x≤k and charge prices p≤k given valuations v≤k. (Of course,
we only maintain variables that corresponds to feasible and IR allocations and prices.)

• Objective: Our expected revenue from allocating all the items up to time m to bidders
x≤m and charge prices p≤m given valuations v≤m is f (v≤m)∑k≤m p≤k. Our overall
expected revenue is therefore:

Rev =
∑
v≤m

∑
x≤m,p≤m

π (m,x≤m,p≤m,v≤m) · f (v≤m)
∑
k≤m

p≤k

• “Ignorance about the future” constraints: Although our distribution is fully
described by the variables π (m,x≤m,p≤m,v≤m) corresponding to the last stage m, we
must make sure that the marginals on stages k < m do not depend on future valuations
vik′ for k′ > k. For every feasible choice of k,v≤k,x≤k,p≤k:

π (k,x≤k,p≤k,v≤k) =∑
uk+1

∑
yk+1,qk+1

π (k, [x≤k; yk+1] [p≤k; qk+1] , [v≤k; uk+1]) · f (uk+1 | v≤k)

where [x≤k; yk+1] denotes the concatenation of x≤k and yk+1, and similarly [p≤k; qk+1]
and [v≤k; uk+1].

• Feasibility constraints: In order for π (k,x≤k,p≤k,v≤k) to be feasible probabilities,
their sum, for each k and v≤k must be one:

∀k ∀v≤k
∑

π (k,x≤k,p≤k,v≤k) = 1

Similarly, they should all be non-negative:

∀k ∀x≤k,p≤k,v≤k, π (k,x≤k,p≤k,v≤k) ≥ 0

• IC constraints: As we mentioned earlier, at any stage k, each bidder must choose
among exponentially many strategies to deviate from the truth: today, and in the
future.
Our LP will use dynamic programming to recursively define the optimal deviation,
starting from the last stage m and moving back in time. The utility for any action
today is the value of today’s allocation minus today’s price, plus the expected utility of
the maximum among all future deviations. Since the maximum is not a linear function,
we use U(·) to denote an upper bound on the utility from the optimal deviation. Then
we use V(·) to denote the expected utility from always reporting truthfully (now and
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in the future); here there is no maximum so the LP can compute this quantity exactly.
Finally the IC constraint will require that V(·) ≥ U(·).
Begin from the last stage m. Suppose that bidder’s i current valuation is vim, that
her previous valuations were vi<m, and she has reported ui<m; suppose further that the
history of other bidders’ valuation is v−i≤m, and that items were allocated according to
x<m for prices p<m. Then bidder’s i utility from reporting uim on stage m is given by:

U
(
m, vim, u

i
m | v−i<m, ui<m,x<m,p<m

)
=∑

v−im

f
(
v−im | v−i<m

) ∑
xm : xim>0

π
(
m,x≤m,p≤m,

[
ui≤m; v−i≤m

]) (
vim − pm

)

Similarly, the utility from reporting truthfully is simply given by:

V
(
m, vim | v<m,x<m,p<m

)
=∑

v−im

f
(
v−im | v−i<m

) ∑
xm : xim>0

π
(
m,x≤m,p≤m,

[
ui≤m; v−i≤m

]) (
vim − pm

)

Next, for any k ≤ m, given history v<k, ui<k,x<k,p<k, we let U∗ denote an upper bound
on the buyer’s maximal utility from any current and future deviation:

U∗
(
k, vik | v<k, ui<k,x<k,p<k

)
≥ max

uk
U
(
k, vik, u

i
k | v<k, ui<k,x<k,p<k

)
Now, given the values of U∗ for stage k + 1, we can compute the utility of the buyer
from deviating on stage k:

U
(
k, vik, u

i
k | v<k, ui<k,x<k,p<k

)
=

∑
xk : xi

k
>0
π
(
k,x≤k,p≤k,

[
ui≤k; v−i≤k

]) (
vik − pk

)
+
∑
vi
k+1

f
(
vik+1 | vi≤k

)
U∗
(
k + 1, vik+1 | v≤k, ui≤k,x≤k,p≤k

)

For the truthful bidding, we simply have

V
(
k, vik | v<k, ui<k,x<k,p<k

)
=

∑
xk : xi

k
>0
π
(
k,x≤k,p≤k,

[
vi≤k; v−i≤k

]) (
vik − pk

)
+
∑
vi
k+1

f
(
vik+1 | vi≤k

)
V
(
k + 1, vik+1 | v≤k, ui≤k,x≤k,p≤k

)

Finally, our IC constraints require that whenever the buyer reported truthfully so far,
she must maximize her value by continuing to report truthfully. For every feasible
choice of uik, vik,v<k,x<k,p<k,

V
(
k, vik | . . .

)
≥ U

(
k, vik, u

i
k | . . .

)
.
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Chapter 4

The Competition Complexity of
Dynamic Mechanism Design

4.1 Introduction
As we’ve already seen, the optimal dynamic mechanism can be extremely complex, both
computationally and in terms of its description. Even worse, the optimal mechanism depends
on detailed knowledge of the buyers’ distributions (across time) in intricate ways. This
Chapter aims to answer the following question: Can we design simple dynamic mechanisms
that do not depend on details of the underlying distributions?

We are not the first to face such problems. Optimal mechanisms can be extremely
complex even for a static auction with a single additive buyer (e.g. m uniform i.i.d. items on
[c, c+ 1] as observed by Daskalakis, Deckelbaum, and Tzamos [2015]). But even for the case
of n i.i.d. buyers and a single item for sale, where Myerson’s theory Myerson [1981] readily
applies, the necessity of good prior information makes the solution somewhat less appealing
in practice. Can this be avoided? An elegant result from auction theory, by Jeremy Bulow
and Peter Klemperer Bulow and Klemperer [1996], states that the revenue of a second price
auction with n+1 buyers with valuations drawn i.i.d. from a regular distribution1 is at least
that of the optimal auction, tailored for the exact distributions, for n buyers. In other words,
it is better to invest in recruiting one more agent and run VCG, than to invest in exactly
learning the underlying value distribution and then run the revenue-maximizing auction
tailored to this distribution. One of the reasons this theorem is so appealing is because VCG
is prior-independent, meaning its description is independent of the underlying distribution.
The Bulow-Klemperer theorem can also be seen as a “resource augmentation” argument.
The optimal auction extracts more revenue than a second price auction by definition; their
theorem gives an intuitive characterization of how much. A generalization to non-identical
distributions was given by Hartline and Roughgarden [2009], and more recently, Eden et

1A distribution D with density f and cumulative density F is regular if Myerson’s virtual function
φ(v) = v − 1−F (v)

f(v) is monotone non-decreasing.
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al. [2016] proved the first full Bulow-Klemperer result for multi-dimensional static settings2.
Here, we prove the first Bulow-Klemperer type results for dynamic auctions. We are

interested in the number of additional buyers necessary (these extra buyers will be present
in all stages) for a second price auction at every stage to have expected revenue at least that
of the optimal dynamic auction. We adopt the terminology of Eden et al. [2016] and call
this number the Competition Complexity. We also define the α-approximate Competition
Complexity to be the extra number of buyers necessary for a second price auction at each
stage to be an α approximation (in terms of revenue) of the optimal dynamic auction. Thus,
in this terminology, Bulow and Klemperer’s theorem says that the Competition Complexity
of a single item static auction with n buyers is 1.

The original result of Bulow-Klemperer stems from our deep understanding of revenue
optimal auctions in the single item case, thanks to Myerson’s work. In contrast, maxi-
mizing revenue in dynamic or other multi-dimensional environments is poorly understood.
Moreover, the gaps between the revenue of adaptive and non-adaptive dynamic auctions we
presented in Chapter 2 imply that assumptions stronger than regularity of the stage dis-
tributions will be necessary. Despite these obstacles, for correlated stages we can show the
following bounds:

Informal Theorem 1. In the case of n buyers and m correlated stages (the value of buyer
i on stage k can be correlated with past and future values, but not with other buyers’ values),
if all the stage (marginal) distributions have monotone hazard rate (MHR)3:

• The Competition Complexity is at most 3n and at least (e− 1)n.

• The 1
e
-approximate Competition Complexity is 1.

• The 1
3-approximate Competition Complexity is 0.

In other words, if the stage distributions have monotone hazard rate, recruiting 3n addi-
tional buyers is strictly better than learning all m stage distributions exactly, including the
possible correlation between stages. If an approximation of 1

e
suffices, only one additional

buyer is necessary. Even more suprisingly, simply running a second price auction at each
stage extracts a 1

3 -approximation of the optimal revenue. These bounds hold even against
ex-ante IR dynamic auctions. In other words, running a second price auction at each stage,
which requires no distributional knowledge whatsoever, is a 1

3 approximation to the impos-
sible benchmark of an optimal, ex-ante IR auction that uses full knowledge of the buyers’
arbitrarily correlated distributions!

Many common families of distributions such as the Uniform, Exponential and Normal
have MHR. To get the theorem we prove new bounds on the expected order statistics of

2By “full” we mean that the revenue of VCG with n + c buyers is at least that of the optimal auction
with n buyers. No approximations.

3A distribution has monotone hazard rate (MHR) if its hazard rate h(v) = f(v)
1−F (v) is monotone non-

decreasing.
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MHR distributions and combine them with an upper bound (for the optimal dynamic rev-
enue) equal to the social welfare, i.e. the sum (over stages) of the expected first order statistic
E [(Xk)1:n] of n i.i.d. samples from the stage distribution Xk. The expected second order
statistic E [X2:n], i.e. the expected second highest value, from n i.i.d. samples from distribu-
tion X is equal to the expected revenue of a second price auction with n buyers from X. For
our Competition Complexity result we need a strict inequality between the expected second
order statistic E [X2:n+c] of n+ c samples and the expected first order statistic E [X1:n] (the
expected highest value, the social welfare) of n samples. More specifically, we need to find
a c large enough for E [X2:n+c] to be at least as large as E [X1:n]. For MHR distributions
strong tail bounds are known (see for example [19]), that can be used for approximations of
the expected order statistics, by combining for example with Markov-type inequalities4. If
we insist on strict bounds though, we cannot afford to use such lossy arguments, and new
ideas are necessary. We postpone further discussion until the next Section. We proceed to
explore the extend to which the assumption on the stage distributions can be relaxed.

Informal Theorem 2. In the case of n buyers and m independent stages, ex-post IR dy-
namic auctions, if m − 1 stage distributions have monotone hazard rate and the remaining
stage distribution is regular, the bounds on the Competition Complexity and α-approximate
Competition Complexity are the same.

This theorem requires much better upper bounds on the optimal dynamic revenue, which
we obtain via an extension of the duality framework recently proposed by Cai, Devanur, and
Weinberg [2016]. The upper bound in Cai, Devanur, and Weinberg [2016] improves on the
trivial upper bound of the social welfare by substituting the value of each buyer’s favorite
item with the corresponding Myerson’s virtual value. Our bound resembles this format: the
largest expected first order statistic is substituted by the corresponding expected virtual
value, i.e. optimal (static) revenue. Moreover, our dual solution also induces a virtual value
function Φk(.) at each stage k. The benchmarks we get from duality do not depend on “tail
assumptions” like regularity and monotone hazard rate, but they do need stage distributions
to be independent; the tail assumptions are necessary for the revenue of VCG to surpass the
benchmark.

Can the tail assumptions on the stage distributions be relaxed even further? Surprisingly,
the answer is no! If two stage distributions are regular, even if the stages are independent,
there is only a single buyer and we ask for non-negative utility at each stage (ex-post IR),
the α-Competition Complexity is unbounded, for all constants α > 0. This fact is a corollary
of Example 1 from Chapter 2.

4Incidentally, the approximations between the expected first and second order statistics we present
here don’t use this approach directly. We instead take an “auction flavored” approach and go through a
comparison with the revenue of Myerson’s auction.
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4.2 Preliminaries

Competition Complexity.
Let Rev [M,X , n,m] denote the expected revenue of running auction M at every stage,
for m stages, with n buyers whose values are drawn according to X . We are interested in
the number c of extra buyers necessary such that Rev [V CG,X , n+ c,m] to be at least
OPT [X , n,m], where V CG is simply a second price auction. This number is called the
Competition Complexity with respect to V CG, defined by Eden et al. [2016]. We also study
approximations:

Definition 30 (α-approximate Competition Complexity). The α-approximate Competition
Complexity with respect to V CG is the minimum number c such that Rev [V CG,X , n+ c,m]
is at least α ·OPT [X , n,m].

Note that we can define the α-approximate Competition Complexity and Competition
Complexity to be with respect to any prior-independent auction M . In this chapter we focus
on V CG. At a high level our approach is the following: (1) Find an upper bound B to
OPT [X , n,m]. (2) Prove that the revenue of running a second price auction at every stage
with c additional buyers (present in every stage) yields revenue at least B. We present each
step seperately. For different distributions and different constraints the bounds in steps (1)
and (2) are different. Our final bounds on the Competition Complexity come from mix and
matching these different bounds.

Upper bounds on OPT.
Buyers’ valuations X i

k on stage k are independent draws from a distribution Xk. We can
arrange the values in a descending order: (Xk)1:n ≥ (Xk)2:n ≥ · · · ≥ (Xk)n:n. We call
(Xk)r:n the r-th order statistic5. Given a product distribution Xk = ∏n

i=1Xk, let Mye [Xk]
be the revenue of Myerson’s optimal auction, i.e. the revenue optimal mechanism for a
one-shot auction where buyers’ valuations are drawn i.i.d. from Xk. Our upper bounds on
OPT [X , n,m] do not require any tail assumptions.

Social welfare. Our first upper bound on OPT [X , n,m] is the trivial one: the social
welfare. At every stage k we can extract revenue at most the expected maximum valuation
at that stage.

Claim 31. OPT [X , n,m] ≤ ∑m
k=1 E [(Xk)1:n] , where (Xk)1:n is the highest-order statistic of

n i.i.d. samples drawn from Xk.
5We write Xr:n for the r-th order statistic of n samples from a distribution X. In the auctions context

we write vt:t′ = (vt, vt+1, . . . , vt′) for the reported values in stages t through t′. It will be clear from context
which of the two notions we refer to.
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Note that this bound holds even for ex-ante IR and periodic IC mechanisms, and even
if the stages are correlated6. Surprisingly, as we see later, if we restrict the marginal dis-
tributions at each stage to have monotone hazard rate we can still provide bounds on the
Competition Complexity even with this trivial upper bound.

Duality based bounds. To improve on the trivial bound we ask for (1) independent
stages, (2) ex-post IR mechanisms. Our improved bound is as follows. Choose any stage j;
the contribution of stage j is Mye [Xj], the optimal revenue we would extract from stage
j in a non-dynamic setting. The contribution of every other stage k 6= j is the expected
maximum E [(Xk)1:n] of n samples drawn from Xk.

Lemma 32. For independent stages, ex-post IR and periodic IC dynamic mechanisms

OPT [X , n,m] ≤ min
j=1,...,m

Mye [Xj] +
m∑

k=1,k 6=j
E [(Xk)1:n]

 ,
where (Xk)1:n is the highest-order statistic of n samples drawn from Xk, and Xj is the product
distribution for stage j.

For the special case of j = m the Lemma could perhaps be proven via a combinatorial
argument of the form: “Because of the IR constraints, in the first m − 1 stages one could
make at most the expected maximum of n samples. The last stage is a static problem, and
therefore by Myerson’s theorem the revenue is at most Mye [Xm]”. But, even for example
for two stages and a single buyer, it is not clear how to prove that the optimal revenue is at
most Mye [X1] + E [X2].

Our proof is via an extension of the Cai-Devanur-Weinberg duality framework to the
dynamic setting. The work of Cai, Devanur, and Weinberg [2016] unified many different
recent advances in Bayesian mechanism design by providing an approximately tight upper
bound for the optimal revenue using a single dual solution. In their work, they start from
a certain linear program for revenue maximization and Lagrangify the Bayesian IC and IR
constraints. Their partial Lagrangian function has the following interesting property: dual
solutions λ that yield finite upper bounds form a flow for every buyer i. The nodes in buyer
i’s flow correspond to possible valuations of this buyer. The flow λi(v, v̂) from node v to
node v̂ captures the IC constraints between v and v̂. All the nodes have default incoming
flow equal to the probability f(v) that value v is realized. Furthermore, these flows induce
a “virtual valuation function” similar to Myerson’s virtual value φ(v) = v − 1−F (v)

f(v)
7.

By Lagrangifying the IC and IR constraints of our linear program for maximizing revenue
in the dynamic setting we can get similar characterizations. Interestingly, dual solutions

6Recall that we allow the value vi
k of agent i in stage k to be correlated with her value in stage k′. We

don’t allow this value to be correlated with some other value vj
k of a different agent.

7In fact, for the case of a single item, their virtual value function is identical to Myerson’s virtual value
function.
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with finite upper bounds correspond to flows at every stage with the following twist: a node
vik, of some player i in stage k, can push flow λis(vik, v̂ik) to a node v̂ik in the same stage,
corresponding to the IC constraints between the two types and a deviation strategy s. But,
it can also push flow κik(vik) to its children nodes in the next stage k + 1, corresponding to
the IR constraint of type vik. The amount of flow pushed from vik to its children in the next
stage controls their “default” incoming flow, which depending on the choice of κik, can vary
from zero to f(vik+1). The bound of Cai, Devanur, and Weinberg [2016] improves on the
social welfare upper bound by substituting the value of each buyer’s favorite item with the
corresponding Myerson’s virtual value. Our bound substitutes the largest expected order
statistic with the corresponding expected virtual value. Even more interestingly, the same
Myerson-like virtual valuation function is induced for every stage! We get the Lemma by
carefully constructing a dual solution. In order to develop some intuition we first prove the
single agent, two stage case in Section 4.3. The general proof can be found in Section 4.4.

Discrete vs Continuous. For simplicity of presentation, we prove Lemma 32 for dis-
tributions with discrete support. Our proof can be easily modified to hold for continuous
distributions.

Lower bounds on the revenue of Vickrey.
After finding suitable bounds for OPT [X , n,m], we need to show that the revenue of VCG
(a second price auction at each stage) with additional buyers surpasses these bounds. A first
observation is that the expected revenue of VCG is the expected second order statistic:

Observation 33. The expected revenue of a second price auction with n agents whose values
are drawn i.i.d. from X is E [X2:n].

Our upper bounds on OPT [X , n,m] ( Claim 31 and Lemma 32 ) are sums over m terms.
The term that corresponds to stage k is either the expected revenue of the optimal static
auction Mye [Xk] for that stage, or the expected highest order statistic E [X1:n] of n samples.
We upper bound each term separately. This gives us a sufficient number of extra buyers, i.e.
an upper bound on the Competition Complexity. For the terms involving the optimal static
auction, the original Theorem of Bulow and Klemperer provides a good bound for E [X2:n+c]
and regular distributions:

Theorem 34 (Bulow-Klemperer). Let X be a random variable with a regular distribution
D. Let X be the product distribution of n samples drawn i.i.d from D. Then E [X2:n+1] ≥
Mye [X].

The following corollary can be shown:

Corollary 35. Let X be a random variable with a regular distribution D. Let X be the
product distribution of n samples drawn i.i.d from D. Then E [X2:n] ≥ n−1

n
Mye [X]. In
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other words, the revenue of a second price auction is an n−1
n

approximation to the revenue
of the optimal auction.

We first note that for terms involving the expected highest order statistic similar bounds
are impossible for regular distributions, as we’ve already seen in Example 1:

Example 36. Let X be a random variable following the equal revenue distribution with
F (x) = 1 − 1

x
, for x ∈ [1,∞). E [X] =

∫∞
0

1
x
dx is unbounded, while E [X2:n] = n − 1, i.e.

bounded for all n.8.The example can be modified to hold for truncated distributions: for all n,
there exists a truncation value V , such that for the truncated distribution E [X] > E [X2:n].

Therefore, in order to get a bound on the Competition Complexity we need to impose
a restriction stronger than regularity on some stage distributions. A natural candidate is
distributions with Monotone Hazard Rate; a distribution has Monotone Hazard Rate (MHR)
if its hazard rate h(v) = f(v)

1−F (v) is monotone non-decreasing. MHR distributions are a
subset of regular distributions and have various nice properties, like bounded expected order
statistics, small tails, etc. In this Chapter we show the following new bounds:

Theorem 37. Let Xr:n the r-th order statistic of n i.i.d samples from a continuous distri-
bution X with monotone hazard rate. Then:

1. If X has bounded support, then E [X2:4n] ≥ E [X1:n].

2. E [X2:n+1] ≥ 1
e
E [X1:n].

3. E [X2:n] ≥ 1
3E [X1:n].

MHR distributions have been studied extensively in the Statistics literature under the
(perhaps better) name of IHR, Increasing Hazard Rate, and IFR, Increasing Failure Rate
(e.g. Barlow and Proschan [1966], Barlow and Proschan [1996])9. A common trick when
working with MHR distributions is to write the cdf as F (x) = 1 − e−

∫ x
0 h(z)dz. Then, since

h(x) is non-decreasing, H(x) =
∫ x

0 h(z)dz is a convex function. Using one sided bounds for
H(x) (for example a linear approximation) one can provide lower bounds and upper bounds
for quantities like the expected minimum of two samples (e.g. [15, 38, 68]). When working
with order statistics of many samples though, one sided bounds such as these do not work,
since the closed form for the expected second order statistic has both positive and negative
terms that involve H(x). Moreover, taking more samples will not compensate for a lossy
argument; the proofs need to work for distributions that are essentially point masses, where
all the order statistics are equal for any number of samples.

For each of the bounds in Theorem 37 we take a different approach. For the first one,
we start by showing a one sample bound: E [X2:4] ≥ E [X]. This bound is tight for the
exponential distribution (in a sense that E [X2:3] < E [X]). We first prove that the inequality

8See Claim 93 in Appendix A.2 for a calculation.
9To keep consistency with the auctions community we refer to them as MHR distributions in this Chapter.
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is strict when H(x) is piece-wise linear and convex, and then show that every convex function
with bounded domain can be approximated by a piece-wise linear function. We combine the
one sample result, the fact that order statistics of MHR distributions have MHR distributions
themselves, and a coupling argument to generalize to n samples.

For the second bound, E [X2:n+1] ≥ 1
e
E [X1:n], we take an “auction flavored” approach.

First, the LHS is at least Mye [X] using Bulow and Klemperer’s result. Second, we compare
Mye [X] with Mye [X1:n], the expected revenue of the optimal auction in a (one-shot) single
agent auction with distribution X1:n, using a coupling argument. Third, since order statis-
tics of MHR distributions have MHR distributions, we can use known bounds to compare
Mye [X1:n] and E [X1:n].

For the last bound, E [X2:n] ≥ 1
3E [X1:n], we combine a (known) bound on the expected

minimum of two samples from an MHR distribution with the (also known) fact that spacings
of order statistics of MHR distributions, i.e. E [X1:n]−E [X2:n], are non-increasing functions
of the number of samples. We prove Theorem 37 as three separate Lemmas in Section 4.5.

Discrete vs Continuous. For a distribution over a discrete domain {1, 2, . . . , N}, the
definition of hazard rate is h(i) = p(i)∑

j≥i p(j)
(see Barlow and Proschan [1996]). Some known

inequalities for MHR distributions fail for the discrete case. For example, for continuous
MHR distributions one can show that Pr[X ≥ E [X]] ≥ 1

e
; the inequality fails for a geometric

distribution. Our proofs hold only for continuous distributions. It remains open whether the
statements are true for discrete MHR distributions.

Putting everything together.
By combining the different upper bounds on OPT [X , n,m] with the corresponding lower
bounds for VCG we can get upper bounds for the Competition Complexity and approximate
Competition Complexity of dynamic auctions. We prove our lower bounds for the Competi-
tion Complexity in Section 4.6. Our lower bounds work for (1) independent stages, m MHR
distributions, for ex-ante IR auctions (applied in Theorem 38), and (2) independent stages,
m − 1 MHR and 1 regular distribution, for ex-post IR auctions (applied in Theorem 39).
The proofs are similar. The auction in the second bound is a generalization of Example 1
from Chapter 2. The auction in the first bound exploits an unsettling feature of ex-ante IR
mechanisms: the buyers are willing to give up their expected future (net) utility just to be
able to participate in the future auction. An ex-ante IR auction that extracts all of the social
welfare is the following: at every stage the seller runs a second price auction, but before that,
all buyers pay an entree fee equal to their expected utility for participating (expected value
subject to being the winner, minus expected second highest value, multiplied by probabil-
ity of winning). A common difficulty in both proofs is the algebraic manipulations of the
expected first and second order statistics10. Combining with the upper bounds we get the
following Theorems:

10The Lambert W-function makes an appearance.
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Theorem 38. For a dynamic environment where every stage distribution Xk is continuous
and bounded, and has monotone hazard rate then, even for periodic IC and ex-ante IR
dynamic auctions (by combining Claim 31 + Theorem 37):

• The Competition Complexity is at least (e− 1)n and at most 3n.

• The 1
e
-approximate Competition Complexity is 1.

• For n ≥ 2, the 1
3-approximate Competition Complexity is 0.

Theorem 39. For a dynamic environment where every stage distribution Xk is continuous
and bounded, the stage distributions are independent, m−1 stage distributions have monotone
hazard rate and the remaining stage distribution is regular, then even for periodic IC and
ex-post IR dynamic auctions:

• The Competition Complexity is at least (e−1)n and at most 3n. (For the upper bound:
Lemma 32 + Thms 34, 37)

• The 1
e
-approximate Competition Complexity is 1. (Lemma 32 + Thms 34, 37)

• For n ≥ 2, the 1
3-approximate Competition Complexity is 0. (Lemma 32 + Corol-

lary 35, Thm 37)

Our lower bound for the Competition Complexity in Theorem 39 uses m−1 MHR distri-
butions and one regular distribution. It remains open whether the Competition Complexity
is sublinear for the case of m independent and MHR stages.

Related Work
Bulow-Klemperer Type Results. Prior-independent mechanisms have been developed
in both single and multi-dimensional static settings, e.g. [7, 37, 57, 97]. Sivan and Syrgka-
nis [2013] give a version of the Bulow-Klemperer theorem for non-i.i.d. irregular distribu-
tions. Eden et al. [2016] provide the first full Bulow-Klemperer result for multidimensional
static auctions, i.e. without any loss or approximation. They introduce the term Com-
petition Complexity, that we also adopt here. Their main result is that the Competition
Complexity of n buyers with additive valuations over m independent, regular items is at
most n + 2m− 2 and at least log(m). Their upper bounds on the optimal static revenue is
also via an extension of the duality framework of Cai, Devanur, and Weinberg [2016]. More
recently, Feldman, Friedler, and Rubinstein [2017] also study a relaxed notion of Competi-
tion Complexity; they show that when auctioning m items separately the 99%-Competition
Complexity is O(logm), and (for regular distributions) this further goes down to constant
when auctioning the items as one bundle. A closely related line of work considers mechanism
design with limited information in the form of samples, e.g. [38, 30, 35, 85].
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The Cai-Devanur-Weinberg Duality Framework, Extensions and Related Tech-
niques. Multiple strong duality frameworks have been developed recently, e.g. [33, 34, 56,
55], that can be seen as an optimal transport/bipartite matching problem. Haghpanah and
Hartline [2015] provide an alternative strong duality framework. Closer to the framework we
extend, Carroll [2017] takes a partial Lagrangian over IC and IR constraints; the application
is a screening problem. In Chapter 4 we present an extension of the duality framework
of Cai, Devanur, and Weinberg [2016] for dynamic settings. This framework was used to
unify and improve the results of several recent works on Bayesian mechanism design (e.g.
[64, 79, 10, 108, 26, 28, 27] ). It was recently extended by Cai and Zhao [2016] to prove
approximation results for simple mechanisms in settings with multiple subadditive bidders.
It was also extended in a different way by Eden et al. [2016] for a single buyer with values
that exhibit a “limited complementarity” property.

4.3 Warm up: One Buyer, Two Independent Stages
In this Section we prove the special case of Lemma 32 for one buyer and two stages.

Lemma 40. For single agent, two independent stages, ex-post IR and periodic IC dynamic
mechanisms

OPT [X , 1, 2] ≤ min {Mye [X1] + E [X2] ,E [X1] + Mye [X2]} .

The Partial Lagrangian.
The optimal dynamic auction needs to satisfy the following two types of constraints:

• Periodic incentive compatibility (PIC). At any stage k, assuming truthfulness in the
future stages, truthfully revealing vk maximizes the buyer’s expected utility, among
all possible reports v̂k. For the first stage, this constraint can be expressed as: for all
v1, v̂1 in V1

v1x1(v1)− p1(v1) + Ev2∈V2 [v2x2 (v1, v2)− p2 (v1, v2)] ≥
v1x1(v̂1)− p1(v̂1) + Ev2∈V2 [v2x2 (v̂1, v2)− p2 (v̂1, v2)] .

For the secong stage: for all v1 in V1, and all v2, v̂2 in V2

v2x2(v1, v2)− p2(v1, v2) ≥ v2x2(v1, v̂2)− p2(v1, v̂2).

• Ex-post individual rationality. The buyer’s stage utility is non-negative at every stage
k, no matter what the reports were in the previous stage (in the case of stage 2).

vkxk(v≤k)− pk(v≤k) ≥ 0
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The revenue objective can be written as:

Ev1,v2 [p1(v1) + p2(v1, v2)]
Thus, we have the following primal program11:

max
∑
v1∈V1

f(v1)p1(v1) +
∑
v1∈V1

f(v1)
∑
v2∈V2

f(v2)p2(v1, v2)

subject to:
∀v1, v̂1 ∈ V1 : v1x1(v1)− p1(v1) +

∑
v2∈V2

f(v2) (v2x2(v1, v2)− p2(v1, v2)) ≥

v1x1(v̂1)− p1(v̂1) +
∑
v2∈V2

f(v2) (v2x2(v̂1, v2)− p2(v̂1, v2))

∀v1 ∈ V1,∀v2, v̂2 ∈ V2 : v2x2(v1, v2)− p2(v1, v2) ≥ v2x2(v1, v̂2)− p2(v1, v̂2)
∀v1 ∈ V1 : v1x1(v1)− p1(v1) ≥ 0

∀v1 ∈ V1, v2 ∈ V2 : v2x2(v1, v2)− p2(v1, v2) ≥ 0
∀v1 ∈ V1 : x1(v1) ∈ [0, 1]

∀v1 ∈ V1,∀v2 ∈ V2 : x2(v1, v2) ∈ [0, 1]

We introduce a variable λk(v≤k, v̂k) for the periodic IC constraints for stage k and a
variable κk(v≤k) for the ex-post IR constraints for stage k. In other words, the dual variables
are λ1(v1, v̂1), λ2(v1, v2, v̂2), κ1(v1) and κ2(v1, v2). Cai, Devanur, and Weinberg [2016] include
the IR constraints with the IC constraints, by introducing a null type ⊥, with zero allocation
and zero payment; in our case, this is possible only for the ex-post IR constraint in the last
stage. Similarly to them, we do not take Lagrangian multipliers for the feasibility constraints.
The partial Lagrangian L(λ, κ, x, p) of the primal program is as follows:

L(λ,κ, x, p) =
∑
v1∈V1

f(v1)p1(v1) +
∑
v1∈V1

∑
v2∈V2

f(v1)f(v2)p2(v1, v2)

+
∑
v1∈V1

∑
v̂1∈T1

λ1(v1, v̂1) (v1x1(v1)− p1(v1)− v1x1(v̂1) + p1(v̂1))

+
∑
v1∈V1

∑
v̂1∈V1

λ1(v1, v̂1)
∑
v2∈V2

f2(v2) (v2x2 (v1, v2)− p2 (v1, v2)− v2x2 (v̂1, v2) + p2 (v̂1, v2))

+
∑
v1∈V1

∑
v2∈V2

∑
v̂2∈V2

λ2(v1, v2, v̂2) (v2x2(v1, v2)− p2(v1, v2)− v2x2(v1, v̂2) + p2(v1, v̂2))

+
∑
v1∈V1

κ1(v1) (v1x1(v1)− p1(v1)) +
∑
v1∈V1

∑
v2∈V2

κ2(v1, v2) (v2x2(v1, v2)− p2(v1, v2))

Re-grouping gives the following form:
11The support is discrete for simplicity of presentation.
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L(λ, κ,x, p) =
∑
v1∈V1

p1(v1)
f(v1)− κ1(v1)−

∑
v̂1∈V1

λ1(v1, v̂1) +
∑
v̂1∈V1

λ1(v̂1, v1)


+
∑
v1∈V1

x1(v1)
v1κ1(v1) +

∑
v̂1∈V1

v1λ1(v1, v̂1)−
∑
v̂1∈V1

v̂1λ1(v̂1, v1)


+
∑

v1∈V1,v2∈V2

p2(v1, v2)
f(v1)f(v2)− κ2(v1, v2)−

∑
v̂2∈V2

λ2(v1, v2, v̂2)+

∑
v̂2∈V2

λ2(v1, v̂2, v2) + f(v2)
 ∑
v̂1∈V1

λ1(v̂1, v1)−
∑
v̂1∈V1

λ1(v1, v̂1)


+
∑

v1∈V1,v2∈V2

x2(v1, v2)
v2κ2(v1, v2) +

∑
v̂2∈V2

v2λ2(v1, v2, v̂2)−
∑
v̂2∈V2

v̂2λ2(v1, v̂2, v2)

+v2f(v2)
 ∑
v̂1∈V1

λ1(v1, v̂1)−
∑
v̂1∈V1

λ1(v̂1, v1)
 .

Duality theory tells us that for any choice of λ, κ ≥ 0, the primal objective OPT [X , 1, 2]
is upper bounded by maxx∈F ,p L(λ, κ, x, p), where F is the set of feasible allocations:

OPT [X , 1, 2] ≤ max
x∈F ,p

L(λ, κ, x, p) (4.1)

In order to get non-trivial upper bounds, we need maxx∈F ,p L(λ, κ, x, p) to be bounded.
Next, we give constraints on λ and κ for this to be true. Since p1(v1) is an unconstrained vari-
able, if its multiplier is non-zero setting p(v1) to∞ or −∞ will make L(λ, κ, x, p) unbounded.
Therefore:

f(v1)− κ1(v1)−
∑
v̂1∈V1

λ1(v1, v̂1) +
∑
v̂1∈V1

λ1(v̂1, v1) = 0 (4.2)

Similarly for the multiplier of p2(v1, v2):

f(v1)f(v2)− κ2(v1, v2)−
∑
v̂2∈V2

λ2(v1, v2, v̂2) +
∑
v̂2∈V2

λ2(v1, v̂2, v2)

+ f(v2)
 ∑
v̂1∈V1

λ1(v̂1, v1)−
∑
v̂1∈V1

λ1(v1, v̂1)


=Eq. 4.2 f(v1)f(v2)− κ2(v1, v2)−
∑
v̂2∈V2

λ2(v1, v2, v̂2) +
∑
v̂2∈V2

λ2(v1, v̂2, v2)

+ f(v2) (κ1(v1)− f(v1))
= f(v2)κ1(v1)− κ2(v1, v2)−

∑
v̂2∈V2

λ2(v1, v2, v̂2) +
∑
v̂2∈V2

λ2(v1, v̂2, v2) = 0 (4.3)
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Similarly to Cai, Devanur, and Weinberg [2016] we call dual solutions that satisfy Con-
straints 4.2 and 4.3 useful. Useful solutions can be seen as flows in a certain tree. At the top
of a tree we have a source. The nodes in the first level correspond to values in the support
of the first stage; a node v1 receives flow f(v1) from the source. v1 can push flow λ1(v1, v

′
1)

to some other node v′1 on the same level, or push flow κ1(v1) to its children. A child-node
(v1, v2), or simply v2 (we explicitly say the parent when necessary), receives incoming flow
κ1(v1) · f(v2) from its parent. See Figure 4.1. A similar structure is satisfied for more stages
and multiple agents. We note that for correlated stages this structure fails; the incoming
flow of a child-node v2 depends on the flow pushed to and from its parent v1.

Source

v1,←

f(v1,←
)

v1

v2,←

κ 1(v
1)
· f(
v 2,←

)

v2

Sink

κ
2 (v

1 ,v
2 )

κ
1 (v

1 )·f(v
2 )

v2,→

κ
1 (v1 ) · f(v2,→ )

κ
1 (v

1 )
f(v

1 )
v1,→

f(v1,→)

λ1(v1, v1,→)

λ1(v1,→, v1)

λ1(v1,←, v1)

λ1(v1, v1,←)

λ2(v1, v2, v2,→)

λ2(v1, v2,→, v2)

λ2(v1, v2,←, v2)

λ2(v1, v2, v2,←)

κ
2 (v1 , v2,← ) κ 2(v

1,
v 2,→

)

Figure 4.1: Constraints of useful dual solutions form a flow.

It is possible to derive familiar expressions for the multipliers of x1 and x2. Gathering
all the terms that x1 appears in L(λ, κ, x, p) we have:

∑
v1∈V1

x1(v1)
v1κ1(v1) + v1

∑
v̂1∈V1

λ1(v1, v̂1)−
∑
v̂1∈V1

v̂1λ1(v̂1, v1)


=Eq. 4.2 ∑
v1∈V1

x1(v1)
v1κ1(v1) + v1

f(v1)− κ1(v1) +
∑
v̂1∈V1

λ1(v̂1, v1)
− ∑

v̂1∈V1

v̂1λ1(v̂1, v1)


=
∑
v1∈V1

x1(v1)f(v1)
v1 −

1
f(v1)

∑
v̂1∈V1

(v̂1 − v1)λ1(v̂1, v1)


=
∑
v1∈V1

x1(v1)f(v1)Φ1(v1),
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where Φ1(v1) = v1 − 1
f(v1)

∑
v̂1∈V1

(v̂1 − v1)λ1(v̂1, v1). Therefore, every useful dual solution

induces a “virtual value” function Φ1(.), such that the contribution of the first stage to
the L(λ, κ, x, p) is the expected virtual value. A similar structure is derived for the terms
involving of x2:

∑
v1∈V1

∑
v2∈V2

x2(v1, v2)
v2κ2(v1, v2) +

∑
v̂2∈V2

v2λ2(v1, v2, v̂2)−
∑
v̂2∈T2

v̂2λ2(v1, v̂2, v2)

+v2f(v2)
 ∑
v̂1∈V1

λ1(v1, v̂1)−
∑
v̂1∈V1

λ1(v̂1, v1)


=Eq. 4.3 ∑
v1∈V1

∑
v2∈V2

x2(v1, v2)
v2f(v2)κ1(v1) +

∑
v̂2∈V2

(v2 − v̂2)λ2(v1, v̂2, v2)

+v2f(v2)
 ∑
v̂1∈V1

λ1(v1, v̂1)−
∑
v̂1∈V1

λ1(v̂1, v1)


=Eq. 4.2 ∑
v1∈V1

∑
v2∈V2

x2(v1, v2)
v2f(v2)κ1(v1) +

∑
v̂2∈V2

(v2 − v̂2)λ2(v1, v̂2, v2)

+v2f(v2) (f(v1)− κ1(v1)))

=
∑
v1∈V1

∑
v2∈V2

x2(v1, v2)
v2f(v2)f(v1) +

∑
v̂2∈V2

(v2 − v̂2)λ2(v1, v̂2, v2)


=
∑
v1∈V1

∑
v2∈V2

x2(v1, v2)f(v1)f(v2)
v2 −

1
f(v1)f(v2)

∑
v̂2∈V2

(v̂2 − v2)λ2(v1, v̂2, v2)


=
∑
v1∈V1

∑
v2∈V2

x2(v1, v2)f(v1)f(v2)Φ2(v1, v2),

where Φ2(v1, v2) = v2− 1
f(v1)f(v2)

∑
v̂2∈T2(v̂2− v2)λ2(v1, v̂2, v2). Combining all the observa-

tions so far, we have that given a useful dual solution λ, κ:

L(λ, κ, x, p) =
∑
v1∈V1

x1(v1)f(v1)Φ1(v1) +
∑
v1∈V1

∑
v2∈V2

x2(v1, v2)f(v1)f(v2)Φ2(v1, v2)

Therefore, given a useful dual solution λ, κ, the revenue of any dynamic mechanism
M = (x, p) that is ex-post IR and periodic IC, is at most the virtual welfare of x with
respect to the virtual value functions Φ1 and Φ2 corresponding to λ and κ. In other words,

∑
v1∈V1

f(v1)
p1(v1) +

∑
v2∈V2

f(v2)p2(v1, v2)


≤
∑
v1∈V1

f(v1)
x1(v1)Φ1(v1) +

∑
v2∈V2

f(v2)x2(v1, v2)Φ2(v1, v2)
 .
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Canonical Flows.
The Lemma 40 is proved as two separate Claims. We need the following definitions.

Definition 41. For all vik ∈ V i
k define vik,→ and vik,← to be the values in V i

k immediately
larger and immediately smaller than vik (respectively) :

vik,→ = inf
v̂i
k
∈V i

k
:vi
k
<v̂i

k

v̂ik vik,← = sup
v̂i
k
∈V i

k
:vi
k
>v̂i

k

v̂ik.

Definition 42. Myerson’s virtual value for distribution Xk is

φ(vk) = vk −
(vk,→ − vk) · Prv∼Xk [v > vk]

f(vk)
= vk −

(vk,→ − vk) · (1− F (vk))
f(vk)

.

Claim 43. For a single agent, two independent stages, ex-post IR and PIC dynamic mech-
anisms:

OPT [X , 1, 2] ≤ E [X1] + Mye [X2] .

Proof. Consider the following dual solution:

κ1(v1) = f(v1) λ1(v1, v̂1) = 0

κ2(v1, v2) =
f(v1) if v2 = v2

0 o.w.
λ2(v1, v2, v̂2) =

f(v1)(1− F (v̂2)) if v̂2 = v2,←

0 o.w.

It’s easy to verify that constraints 4.2 and 4.3 are satisfied; the solution is useful. See
Figure 4.2. These flows induce virtual values Φ1(v1) = v1 for the first stage nodes. For the
second stage nodes, Φ2(v1, v2) becomes equal to φ(v2), Myerson’s virtual value for X2. For

Source

v1,←

f(v
1
,←

)

f(v1,←
)

v1

v2,←

f(v
1)
· f(
v 2,←

)

v2

Sink

f(v
1 )·f(v

2 )

v2,→

f(v1 ) · f(v2,→ )

f(v
1 )

f(v
1 )

v1,→

f(v
1
,→

)

f(v1,→)

f(v1) · f(v2,→)f(v1) · f(v2,→)

+f(v1) · f(v2)

f(v1 )

Figure 4.2: An example with support
3 of the flow with Lagrangian E [X1] +
Mye [X2].

Source

v1,←

1

f(v1,←
)

v1

v2,←
v2

Sink

v2,→

κ1(v1) = 0

f(v
1 )

v1,→

f(v1,→)

f(v1,→)f(v1,→) + f(v1)

Figure 4.3: An example with support 3
of the flow with Lagrangian Mye [X1] +
E [X2].
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simplicity we assume that X2 is regular, i.e. the virtual value Φ2 induced by our flow is
monotone non-decreasing; if this is not the case we can “iron” our flow by adding loops (See
the ironing procedure in [20]). By Equation 4.1,

OPT [X , 1, 2] ≤ max
x,p
L(λ, κ, x, p)

= max
x,p

∑
v1∈V1

x1(v1)f(v1)Φ1(v1) +
∑

v1∈V1,v2∈V2

x2(v1, v2)f(v2)f(v1)Φ2(v1, v2)

= max
x,p

∑
v1∈V1

x1(v1)f(v1)v1

+
∑

v1∈V1,v2∈V2

x2(v1, v2)f(v2)f(v1)
v2 −

1
f(v1)f(v2)

∑
v̂2∈V2

(v̂2 − v2)λ2(v1, v̂2, v2)


= E [X1]

+ max
x,p

∑
v1∈V1,v2∈V2

x2(v1, v2)f(v2)f(v1)
(
v2 −

1
f(v1)f(v2)(v2,→ − v2)f(v1) (1− F (v2))

)

= E [X1] +
∑
v1∈V1

f(v1) max
x,p

∑
v2∈V2

x2(v1, v2)f(v2)(v2 −
1− F (v2)
f(v2) (v2,→ − v2))

= E [X1] +
∑
v1∈V1

f(v1) max
x,p

∑
v2∈V2

x2(v1, v2)f(v2)φ(v2)

= E [X1] +
∑
v1∈V1

f(v1)Mye [X2]

= E [X1] + Mye [X2]

Claim 44. For single agent, two independent stages, ex-post IR and PIC dynamic mecha-
nisms:

OPT [X , 1, 2] ≤Mye [X1] + E [X2]

Proof. Similar to the proof of Claim 43. Start with an assignment of λ, κ:

κ1(v1) =
1 if v1 = v1

0 o.w.
λ1(v1, v̂1) =

1− F (v̂1) if v̂1 = v1,←

0 o.w.

κ2(v1, v2) =
f(v1)f(v2) if v1 = v1

0 o.w.
λ2(v1, v2, v̂2) = 0

It’s easy to verify that Constraints 4.2 and 4.3 are satisfied. This time, Φ1(v1) is Myerson’s
virtual value and Φ2(v1, v2) = v2, for every node v2, expect the children of v1. Note that, given
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κ1(v1) = 0, the every child-node under v1 has no incoming flow; therefore, it is unavoidable
for their virtual value to be equal to their value. See Figure 4.3.

OPT [X , 1, 2] ≤ max
x,p
L(λ, κ, x, p)

= max
x,p

∑
v1∈V1

x1(v1)f(v1)Φ1(v1) +
∑

v1∈V1,v2∈V2

x2(v1, v2)f(v2)f(v1)Φ2(v1, v2)

= max
x,p

∑
v1∈V1

x1(v1)f(v1)
(
v1 −

1− F (v1)
f(v1) (v1,→ − v1)

)

+
∑
v1∈V1

∑
v2∈V2

x2(v1, v2)f(v1)f(v2)v2

= max
x,p

∑
v1∈V1

x1(v1)f(v1)φ(v1) + E [X2] = Mye [X1] + E [X2] .

4.4 Revenue Upper Bounds for n Buyers and m

Independent Stages
In this Section we prove Lemma 32, using an approach similar to the previous Section.

The Partial Lagrangian.
The optimal dynamic mechanism needs to satisfy the following two types of constraints:

• Periodic incentive compatibility (PIC). At any stage k for every buyer i, assuming
truthfulness in all future stages, revealing the true value vik maximizes the buyer’s
expected utility among all possible values v̂ik. For stage k and buyer i, this constraint
can be expressed as: for all v≤k−1 in Vk−1:

Ev−i
k

vikxik(v−i≤k, vi≤k)− pik(v−i≤k, vi≤k) + Ev−i
k+1:m,v

i
k+1:m

∑
j>k

vijx
i
j(v−i≤j, vi≤j)− pij(v−i≤j, vi≤j)


≥ Ev−i

k

vikxik(v−i≤k, vi<k, v̂ik)− pik(v−i≤k, vi<k, v̂ik)+
Ev−i

k+1:m,v
i
k+1:m

∑
j>k

vijx
i
j(v−i≤j, vi<k, v̂ik, vik+1:j)− pij(v−i≤j, vi<k, v̂ik, vik+1:j)


• Ex-post individual rationality. At any stage k, the stage utility of every buyer i is

non-negative regardless of the reports from previous stages. For all v≤k in V≤k:

vikx
i
k(v≤k)− pik(v≤k) ≥ 0 (4.4)
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As noted in Ashlagi, Daskalakis, and Haghpanah [2016], the following constraints are
equivalent to Constrains 4.4: for all v≤k−1 in Vk−1, and vik in Vk

Ev−i
k

[vikxik(v≤k)− pik(v≤k)] ≥ 0 (4.5)

Any xik, p
i
k satisfying Constraint 4.4 naturally satisfy Constraint 4.5; furthermore, for

any auction M with xik, p
i
k satisfying 4.5, there exists another auction M̂ defined as:

p̂ik(v≤k) =
Ev−i

k
[pik(v≤k)]

Ev−i
k

[xik(v≤k)]

x̂ik(v≤k) =
1 if item k is allocated to buyer i in M

0 o.w.

It’s easy to verify that x̂ik, p̂ik satisfy 4.4 and Rev
[
M̂,X , n,m

]
= Rev [M,X , n,m].

We use Constraints 4.5 for the primal program.

Thereby, we obtain the following primal program:

max
m∑
k=1

n∑
i=1

∑
v≤k

f(v≤k)pik(v≤k)

subject to:
∀i = 1, . . . , n, ∀k = 1, . . .m,∀v≤k−1 ∈ Vk−1, v

i
k, v̂

i
k ∈ Vk :

∑
v−i
k

f(v−ik )
vikxik(v−i≤k, vi≤k)− pik(v−i≤k, vi≤k)

+
∑

vk+1:m

f(vk+1:m)
∑
j>k

vijx
i
j(v−i≤j, vi≤j)− pij(v−i≤j, vi≤j)

 ≥
∑
v−i
k

f(v−ik )
vikxik(v−i≤k, vi<k, v̂ik)− pik(v−i≤k, vi<k, v̂ik)

+
∑

vk+1:m

f(vk+1:m)
∑
j>k

vijx
i
j(v−i≤j, vi<k, v̂ik, vik+1:j)− pij(v−i≤j, vi<k, v̂ik, vik+1:j)


∀k = 1, . . . ,m, ∀v≤k−1 ∈ Vk−1, v

i
k ∈ Vk :∑

v−i
k

f(v−ik )
(
vikx

i
k(v≤k)− pik(v≤k)

)
≥ 0

∀i = 1, . . . , n∀k = 1, . . . ,m, ∀v≤k ∈ Vk : xik(v≤k) ∈ [0, 1]

∀k = 1, . . . ,m, ∀v≤k ∈ Vk :
n∑
i=1

xik(v≤k) ≤ 1
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We introduce a Lagrangian multiplier λk(v<k, vik, v̂ik) for each periodic IC constraint and
κk(v<k, vik) for each ex-post IR constraint. The partial Lagrangian, after re-grouping the
terms, is the following:

L(λ, κ, x, p) =
n∑
i=1

m∑
k=1

∑
v≤k

pik(v≤t)

f(v≤k)− f(v−ik )κk(v<k, vik) + f(v−ik )
∑
v̂i
k

(λk(v<k, v̂ik, vik)

−λk(v<k, vik, v̂ik)) +
k−1∑
j=1

∑
v̂ij

f(v−ij ,vj+1:k)(λj(v<j, v̂ij, vij)− λj(v<j, vij, v̂ij))

+

n∑
i=1

m∑
k=1

∑
v≤k

xik(v≤k)

vikf(v−ik )κk(v<k, vik) + f(v−ik )
∑
v̂i
k

(vikλk(v<k, vik, v̂ik)

−v̂ikλk(v<k, v̂ik, vik)) +
k−1∑
j=1

∑
v̂ij

f(v−ij ,vj+1:k)(vikλj(v<j, vij, v̂ij)− vikλj(v<j, v̂ij, vij))



Duality theory tells us for any λ, κ ≥ 0, the primal objective is upper bounded by
maxx∈F ,p L(λ, κ, x, p), where F is the set of possible allocations:

OPT [X , n,m] ≤ max
x∈F ,p

L(λ, κ, x, p) (4.6)

upper bounds the primal objective. If we want to find non-trivial upper bounds, we need to
ensure that maxx∈F ,p L(λ, κ, x, p) is bounded. This requires that the free variables pik(v≤k)
have multipliers equal to zero. Therefore: for stage k, buyer i and reports v≤k in Vk

f(v≤k)− f(v−ik )κk(v<k, vik) + f(v−ik )
∑
v̂i
k

(λk(v<k, v̂ik, vik)− λk(v<k, vik, v̂ik))

+
k−1∑
j=1

∑
v̂ij

f(v−ij ,vj+1:k)(λj(v<j, v̂ij, vij)− λj(v<j, vij, v̂ij)) = 0. (4.7)

Noticing the recursive structure of Equation 4.7, we take the constraint for stage k − 1,
buyer i and reports v≤k−1 in Vk−1:

f(v≤k−1)− f(v−ik−1)κk−1(v<k−1, v
i
k−1) + f(v−ik−1)

∑
v̂i
k−1

(λk−1(v<k−1, v̂
i
k−1, v

i
k−1)

− λk−1(v<k−1, v
i
k−1, v̂

i
k−1)) +

k−2∑
j=1

∑
v̂ij

f(v−ij ,vj+1:k−1)(λj(v<j, v̂ij, vij)− λj(v<j, vij, v̂ij)) = 0.

(4.8)
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Next, we simplify the LHS of Equation 4.7 with Equation 4.8:

0 = f(v≤k)− f(v−ik )κ(v<k, vik) + f(v−ik )
∑
v̂i
k

(λk(v<k, v̂ik, vik)− λk(v<k, vik, v̂ik))

+
k−1∑
j=1

∑
v̂ij

f(v−ij ,vj+1:k)(λj(v<j, v̂ij, vij)− λj(v<j, vij, v̂ij))

=Eq. 4.8 f(v≤k)− f(v−ik )κ(v<k, vik) + f(v−ik )
∑
v̂i
k

(λk(v<k, v̂ik, vik)− λk(v<k, vik, v̂ik))

+ f(vk)(f(v−ik−1)κk−1(v<k−1, v
i
k−1)− f(v≤k−1))

= f(v−ik−1,vk)κk−1(v<k−1, v
i
k−1)− f(v−ik )κk(v<k, vik)

+ f(v−ik )
∑
v̂i
k

(λk(v<k, v̂ik, vik)− λk(v<k, vik, v̂ik)) = 0.

Since the last line equals zero, we obtain:

f(v−ik−1,vk)κk−1(v<k−1, v
i
k−1)− f(v−ik )κk(v<k, vik) =

f(v−ik )
∑
v̂i
k

(λk(v<k, vik, v̂ik)− λk(v<k, v̂ik, vik)). (4.9)

Recall that we call solutions of λ, κ ≥ 0 that satisfy Equation 4.7 useful solutions.
Then, given a set of useful λ, κ we can simplify L(λ, κ, p, x) using Equations 4.7, 4.8 and 4.9.
Gather all the terms in L(λ, κ, x, p) that involve xik for k > 1 and simplify the terms using
Equation 4.9:

n∑
i=1

m∑
k=2

∑
v≤k

xik(v≤k)

f(v−ik )
∑
v̂i
k

(vikλk(v<k, vik, v̂ik) + vikf(v−ik )κk(v<k, vik)− v̂ikλk(v<k, v̂ik, vik))

+ vik

k−1∑
j=1

∑
v̂ij

f(v−ij ,vj+1:k)(λj(v<j, vij, v̂ij)− λj(v<j, v̂ij, vij))


=Eq. 4.9

n∑
i=1

m∑
k=2

∑
v≤k

xik(v≤k)

f(v−ik )
∑
v̂i
k

(vikλk(v<k, vik, v̂ik)− v̂ikλk(v<k, v̂ik, vik))

vikf(v−ik )κk(v<k, vik)− vikf(vk)(f(v−ik−1)κk−1(v<k−1, v
i
k−1)− f(v≤k−1))


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=
n∑
i=1

m∑
k=2

∑
v≤k

xik(v≤k)

vikf(v≤k−1)f(vk)− f(v−ik )
∑
v̂i
k

(v̂ik − vik)λk(v<k, v̂ik, vik)


=

n∑
i=1

m∑
k=2

∑
v≤k

xikf(v≤k)(v≤k)

vik − 1
f(v≤k−1, vik)

∑
v̂i
k

(v̂ik − vik)λk(v<k, v̂ik, vik)


=

n∑
i=1

m∑
k=2

∑
v≤k

xikf(v≤k)Φk(v≤k)

where Φi
k(v≤k) = vik − 1

f(v≤k−1,v
i
k
)
∑
v̂i
k
(v̂ik − vik)λk(v<k, v̂ik, vik). Finally, simplify the terms

involving xi1(v1) using Equation 4.7 evaluated at k = 1:

n∑
i=1

∑
v1

xi1(v1)

vi1f(v−i1 )κ1(vi1) + f(v−i1 )
∑
v̂i1

(vi1λ1(vi1, v̂i1)− v̂i1λ1(v̂i1, vi1))


=Eq. 4.7

n∑
i=1

∑
v1

xi1(v1)

vi1f(v1)− f(v−i1 )
∑
v̂i1

(v̂i1 − vi1)λ1(v̂i1, vi1)


=

n∑
i=1

∑
v1

xi1(v1)f(v1)

vi1 − 1
f(vi1)

∑
v̂i1

(v̂i1 − vi1)λ1(v̂i1, vi1)


=

n∑
i=1

∑
v1

xi1(v1)f(v1)Φ1(v1),

where Φi
1(v1) = vi1 − 1

f(vi1)
∑
v̂i1

(v̂i1 − vi1)λ1(v̂i1, vi1).
Combining all the observations so far, we have that given any useful solution λ, κ:

L(λ, κ, x, p) =
n∑
i=1

m∑
k=1

∑
v≤k

xik(v≤k)f(v≤k)Φi
k(v≤k).

Main Claim
Claim 45. For n agents, m independent stages, ex-post IR and PIC dynamic mechanisms

OPT [X , n,m] ≤Mye [Xj] +
m∑

k=1,k 6=j
E [(Xk)1:n]

for any j = 1, . . . ,m.
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Proof. Consider the following dual solution:

κk(v<k, vik) =


f(v<k, vik) k < j
f(v<k,vik)
f(vij)

k ≥ j ∧ vij = vij

0 o.w.

λk(v<k, vik, v̂ik) =
f(v<k)(1− F (v̂ik)) k = j ∧ v̂ik = vik,←

Dfn 41

0 o.w.

It’s easy to verify that Constraint 4.7 is satisfied. These flows induce virtual value
Φi
k(vk) = vik for all k 6= j. For stage j, Φi

j(v≤j) becomes φ(vij), Myerson’s virtual value
for Xj. For simplicity we assume that Xj is regular, so that the virtual values induced are
non-decreasing; if this is not the case, we use an “ironing” procedure to the flow λj in stage
j, similar to [20].

Then by Inequality 4.6:

OPT [X , n,m] ≤ max
x,p
L(λ, κ, x, p)

= max
x,p

n∑
i=1

m∑
k=1

∑
v≤k

f(v≤k)xik(v≤k)Φi
k(v≤k)

=Dnf 41 +
n∑
i=1

m∑
k=1,k 6=j

∑
v≤k

f(v≤k)vik

+ max
x,p

n∑
i=1

∑
v≤j

f(v≤j)xij(v≤j)
(
vij −

1
f(vij,v<j)

(vij,→ − vij)f(v<j)(1− F (vij))
)

=Dnf 42
m∑

k=1,k 6=j
E [(Xk)1:n] + max

x,p

∑
v<j

f(v<j)
∑
vj
f(vj)

n∑
i=1

xij(v≤j)φ(vij)

=
m∑

k=1,k 6=j
E [(Xk)1:n] +

∑
v<j

f(v<j) max
x,p

∑
vj
f(vj)xj(v≤j)φ(vj)

=
m∑

k=1,k 6=j
E [(Xk)1:n] + Mye [Xj] .

4.5 Lower Bounding the Revenue of VCG
In this section we prove Theorem 37. The proof is broken into three Lemmas. Recall that
the hazard rate of a distribution F is h(x) = f(x)

1−F (x) . F has monotone hazard rate (MHR)
if h(x) is a non-decreasing function. We restrict ourselves to continuous distributions. For
Lemma 46 we also need the distribution to be supported on [0, V̄ ].
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Lemma 46. Let Xr:n be the r-th order statistic of n i.i.d. samples from a continuous
and bounded distribution with monotone hazard rate. Then 4n samples are necessary and
sufficient for E [X2:4n] to be at least as large as E [X1:n].

Lemma 47. Let Xr:n be the r-th (highest) order statistic of n i.i.d. samples from a con-
tinuous (possibly unbounded) distribution with monotone hazard rate. Then E [X2:n+1] ≥
1
e
E [X1:n].

Lemma 48. Let Xr:n be the r-th (highest) order statistic of n i.i.d. samples from a continu-
ous (possibly unbounded) distribution with monotone hazard rate. Then E [X2:n] ≥ 1

3E [X1:n].

A useful fact about order statistics of MHR distributions that we use throughout this
section is that order statistics of MHR distributions have themselves an MHR distribution:

Lemma 49 (Barlow and Proschan [1996]). Assume X is a random variable with distribution
F and density f which is MHR. If X1, X2, . . . , Xn, are n independent observations on X,
the order statistics formed from the Xi’s are also MHR.

We break the proof of Lemma 46 into two parts. We first prove the result for n = 1 in
Subsection 4.5. We complete the proof of general n by combining the n = 1 case, Lemma 49
and a coupling argument in Subsection 4.5. We prove Lemmas 47 and 48 (necessary for our 1

e

and 1
3 -approximate Competition Complexity bounds) in Subsections 4.5 and 4.5 respectively.

Single sample bound
Lemma 50. Let Xr:n the r-th order statistic of n i.i.d. samples from a continuous and
bounded distribution with monotone hazard rate. Then 4 samples are necessary and sufficient
for E [X2:4] to be at least as large as E [X] = E [X1:1].

Let H(x) =
∫ x
0 h(z)dz. If F is MHR, then H(x) is a convex function as it is the integral

of a non-decreasing function. The proofs of the next Claims can be found in Appendix A.1.

Claim 51. F (x) = 1− e−H(x) and E [X] =
∫ V̄

0 e−H(x)dx.

Claim 52. E [X2:4] =
∫ V̄

0 3e−4H(x) − 8e−3H(x) + 6e−2H(x)dx.

For the upper bound on the number of samples, it suffices to show that
∫ V̄

0 3e−4H(x) −
8e−3H(x)+6e−2H(x)−e−H(x)dx ≥ 0 for all non-negative, convex and continuous functionsH(x).
We first prove this statement for all non-negative, piecewise linear and convex functions Ĥ(x)
in Lemma 53. We then show how to approximate any convex function by a piecewise linear
convex function in Lemma 54. We combine Lemmas 53 and 54 to prove the upper bound in
Lemma 50. The lower bound comes from considering a (truncated) exponential distribution.

Lemma 53. Let Ĥ(x) be a non-negative, piecewise linear and convex function in [0, V̄ ], with
Ĥ(0) = 0. Then

∫ V̄
0 3e−4Ĥ(x) − 8e−3Ĥ(x) + 6e−2Ĥ(x) − e−Ĥ(x)dx > 0.
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Proof. For a general piecewise linear and convex function Ĥ(x) with c linear pieces, we have

Ĥ(x) =


a0x+ b0 if x1 ≥ x ≥ x0

a1x+ b1 if x2 ≥ x ≥ x1

. . .

acx+ bc if xc+1 ≥ x ≥ xc

where b0 = 0 and aixi + bi = ai−1xi + bi−1, ∀i ≥ 1. x0 = 0, xc+1 = V̄ and xi+1 > xi for
all i ≥ 0. Since Ĥ(x) is convex, ai+1 ≥ ai > 0, for all i. Let I =

∫ V̄
0 3e−4Ĥ(x) − 8e−3Ĥ(x) +

6e−2Ĥ(x) − e−Ĥ(x)dx.

I =
c∑
i=0

∫ xi+1

xi
3e−4(aix+bi) − 8e−3(aix+bi) + 6e−2(aix+bi) − e−(aix+bi)dx

=
c∑
i=0
−
[

3e−4(aix+bi)

4ai

]xi+1

xi

+
[

8e−3(aix+bi)

3ai

]xi+1

xi

−
[

3e−2(aix+bi)

ai

]xi+1

xi

+
[
e−(aix+bi)

ai

]xi+1

xi

=
c∑
i=0

1
ai

(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)

−
c∑
i=0

1
ai

(
−3e−4(aixi+bi)

4 + 8e−3(aixi+bi)

3 − 3e−2(aixi+bi) + e−(aixi+bi)
)

=
c∑
i=0

1
ai

(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)

+ 1
12a0

−
c∑
i=1

1
ai

(
−3e−4(aixi+bi)

4 + 8e−3(aixi+bi)

3 − 3e−2(aixi+bi) + e−(aixi+bi)
)

=
c∑
i=0

1
ai

(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)

+ 1
12a0

−
c∑
i=1

1
ai

(
−3e−4(ai−1xi+bi−1)

4 + 8e−3(ai−1xi+bi−1)

3 − 3e−2(ai−1xi+bi−1) + e−(ai−1xi+bi−1)
)

=
c∑
i=0

1
ai

(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)

1
12a0

−
c−1∑
i=0

1
ai+1

(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)

= 1
12a0

+ 1
ac

(
−3e−4(acxc+1+bc)

4 + 8e−3(acxc+1+bc)

3 − 3e−2(acxc+1+bc) + e−(acxc+1+bc)
)

+
c−1∑
i=0

(
1
ai
− 1
ai+1

)(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)
.
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We add and subtract ∑c
i=1

1
12ai :

I = 1
ac

(
−3e−4(acxc+1+bc)

4 + 8e−3(acxc+1+bc)

3 − 3e−2(acxc+1+bc) + e−(acxc+1+bc)
)

+ 1
12a0

+ 1
12a1

+ 1
12a2

+ · · ·+ 1
12ac

− 1
12a1

− 1
12a2

− · · · − 1
12ac

+
c−1∑
i=0

(
1
ai
− 1
ai+1

)(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)

= 1
ac

(
−3e−4(acxc+1+bc)

4 + 8e−3(acxc+1+bc)

3 − 3e−2(acxc+1+bc) + e−(acxc+1+bc)
)

+
( 1

12a0
− 1

12a1

)
+
( 1

12a1
− 1

12a2

)
+ · · ·+

(
1

12ac−1
− 1

12ac

)
+ 1

12ac

+
c−1∑
i=0

(
1
ai
− 1
ai+1

)(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi)
)

= 1
ac

(
−3e−4(acxc+1+bc)

4 + 8e−3(acxc+1+bc)

3 − 3e−2(acxc+1+bc) + e−(acxc+1+bc) + 1
12

)

+
c−1∑
i=0

(
1
ai
− 1
ai+1

)(
−3e−4(aixi+1+bi)

4 + 8e−3(aixi+1+bi)

3 − 3e−2(aixi+1+bi) + e−(aixi+1+bi) + 1
12

)
.

Let
g(y) = −3e−4y

4 + 8e−3y

3 − 3e−2y + e−y + 1
12 .

Taking the derivative gives g′(y) = 3e−4y−8e−3y+6e−2y−e−y. Solving for g′(y) = 0 for y ≥ 0
when y = 0, ln

(
5+
√

13
2

)
and as y goes to infinity. For y = 0, g(0) = 0. limy→∞g(y) = 1

12 . For
y = ln

(
5+
√

13
2

)
,

g

(
ln
(

5 +
√

13
2

))
= 1

12 −
12

(5 +
√

13)4
+ 64

3(5 +
√

13)3
− 12

(5 +
√

13)2
+ 2

5 +
√

13
> 0.

Since 1
ai
− 1

ai+1
, 1
ac

, acxc+1 + bc and aixi+1 + bi are all strictly positive, I > 0.

Our next step is to show that any convex function H(x) can be approximated by a
piecewise linear and convex function Ĥ(x). An elementary theorem from Real Analysis tells
us that for every continuous function f(x) in a closed interval [a, b] and every ε > 0, there
exists a piecewise linear function gε(x) such that ∀x ∈ [a, b], |f(x)− gε(x)| < ε. We show
that the same is true for every continuous and convex function f(x), ε > 0, where this time
the approximation is by a piecewise linear and convex function g(x)12. The proof can be
found in Appendix A.1.

12We don’t believe this Lemma to be new.
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Lemma 54. For every function f(x) that is continuous and convex in a closed interval
[a, b], ε > 0, there exists a convex piecewise linear function gε(x) such that for all x ∈ [a, b]:
|f(x)− gε(x)| < ε.

We are now ready to prove Lemma 50:

Proof of Lemma 50. Assume there is a non-negative convex and continuous function H(x)
in [0, V̄ ] such that

I [H] =
∫ V̄

0
3e−4H(x) − 8e−3H(x) + 6e−2H(x) − e−H(x)dx = −δ,

for some δ > 0. Let Ĥε(x) be a piecewise linear and convex function that ε-approximates
H(x), as in Lemma 54. Since I [H] is a bounded integral, we can choose ε small enough such
that ∣∣∣I [H]− I

[
Ĥε

]∣∣∣ < δ.

This would imply that
∫ V̄

0 3e−4Ĥε(x) − 8e−3Ĥε(x) + 6e−2Ĥε(x) − e−Ĥε(x)dx < 0, a contradiction
to Lemma 53. Therefore, 4 samples are sufficient for E [X2:4] ≥ E [X1:1].

To see that 4 samples are also necessary, consider the second order statistic from 3 samples
with cdf F2:3 = 3F (x)2 − 2F (x)3 and expectation E [X2:3] =

∫ V̄
0 3e−2H(x) − 2e−3H(x)dx. An

exponential distribution with parameter λ = 1 gives E [X2:3] = 5
6 < 1 = λ = E [X] = E [X1:1],

but is not bounded. We can truncate at some large V̄ in a way that neither E [X2:4] nor
E [X] change by more than a negligible amount (truncated exponential distributions still
have non-decreasing hazard rate). Therefore, 4 samples are also necessary.

Proof of Lemma 46
Proof. We have already shown (for n = 1) that 4n samples are necessary in Lemma 50.
Therefore, it remains to show that 4n samples are sufficient. Let Y = X1:n be the maximum
of n i.i.d. samples from F . Let the Fy be the cdf of Y . If F is MHR, then so is Fy
(Lemma 49).

Since Y is MHR, by Lemma 50 we have that E [Y2:4] ≥ E [Y ] = E [X1:n], where Y2:4
is the second order statistic of 4 samples drawn from Fy. Therefore, it suffices to show
that E [X2:4n] ≥ E [Y2:4]: Draw 4n samples X1, . . . , X4n from F . Let Z1 = max

i=1:n
Xi, Z2 =

max
i=n+1:2n

Xi, Z3 = max
i=2n+1:3n

Xi and Z4 = max
i=3n+1:4n

Xi. Y2:4 is the second largest of the Zi’s. On
the other hand, X2:4n is the second largest of the Xi’s, and therefore at least as large as Y2:4,
for every single outcome.

Bounding E [X2:n+1]: Proof of Lemma 47
We are going to use the following technical lemma:
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Lemma 55. Let X be a random variable from an MHR distribution D. Let X1:n be the largest
order statistic of n samples from D, and let X = Πn

i=1X denote the product distribution of
n agents. Then OPT [X] ≥ OPT [X1:n], i.e. the optimal revenue of n i.i.d. agent from X
is larger than the optimal revenue of one agent from X1:n.

Proof. The optimal auction M on distribution X is a second price auction with some reserve
p. The optimal auction M ′ on X1:n is a posted price auction, with some posted price p′.
We can calculate the revenue of M ′ on X1:n as follows: first draw v1, v2, . . . , vn be n i.i.d.
samples from X, i.e. a sample v from X. If the maximum of the vi’s is larger than p′, then
the revenue of M ′ on this outcome is p′: OPT [X1:n] = ∑

v∼D Pr[v] · p′ · 1 [maxi vi ≥ p′].
Let M̂ be a second price auction with reserve p′. If the maximum of the vi’s is larger

than p′, then the revenue of M̂ on this outcome is the larger of p′ and the second largest
vi. Therefore Rev

[
M̂,X

]
≥ OPT [X1:n]. But, M is the second price auction with the

optimal posted price, and therefore OPT [X] = Rev [M,X] ≥ Rev
[
M̂,X

]
. The Lemma

follows.

Proof of Lemma 47. First, since X is a random variable from an MHR distribution D, we
can lower bound E [X2:n+1] (the revenue of a second price auction) using the original Theorem
of Bulow and Klemperer([18]):

E [X2:n+1] = Rev [Vickrey, n+ 1 i.i.d. agents from D] ≥ OPT [n i.i.d. agents from D] .
(4.10)

Second, by Lemma 55:

OPT [n i.i.d. agents from D] ≥ OPT [one agent from X1:n] . (4.11)

Third, by Lemma 49 order statistics of MHR distributions have MHR distributions them-
selves, i.e. X1:n has monotone hazard rate. Fourth, from a known result from auction theory
(e.g. [66], Lemma 5.14) we have that the optimal expected revenue from an MHR distribution
is an e approximation to the optimal expected surplus. Applying to X1:n gives:

OPT [X1:n] ≥ 1
e
E [X1:n] . (4.12)

Combining Equations 4.10, 4.11 and 4.12 gives the Lemma.

Bounding E [X2:n]: Proof of Lemma 48
Proof. We need the following two Lemmas. The first Lemma is proved in [15]. The proof
uses that F2:2(x) = 1 − (1 − F (x))2 = 1 − e−2H(x) and the fact that H(x) is convex. The
second Lemma was proved by Barlow and Proschan [1966]13. We include the proofs in
Appendix A.1.

13Also see Szech [2011]
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Lemma 56. E [X1:2]− E [X2:2] ≤ 2
3E [X1:2].

Lemma 57. E [X1:n] − E [X2:n] = E
[

1
h(X1:n)

]
, where h(x) = f(x)

1−F (x) , and thus is a non-
increasing function of n for MHR distributions.

Given the two Lemmas above, we get the desired bound on E [X2:n] as follows:

E [X1:n]− E [X2:n] ≤ E [X1:2]− E [X2:2] ≤ 2
3E [X1:2] ≤ 2

3E [X1:n]

4.6 Lower Bounds on The Competition Complexity
Lemma 58. For independent stages, m− 1 MHR and 1 regular stage, and ex-post IR auc-
tions, the Competition Complexity is at least (e − 1)n, even for auctions that are incentive
compatible in a perfect Bayesian equilibrium.

Proof. For the first m − 1 stages, let the value distributions be X = Exp(1, V ) is an expo-
nential distribution with parameter λ = 1, truncated at some large value V 14. The value
distribution Y for the last stage is an equal revenue distribution truncated at some large
value V̂ 15, with Fy(x) = 1− 1

x
.The following auction is IC in a perfect Bayesian equilibrium

and ex-post IR:

• In the first m − 1 stages run a first price auction: the winner is the buyer with the
highest value with a payment equal to that value.

• In the last stage, the item is given for free to buyer i, with probability equal to
∑m−1

k=1 pik
E[Y ] ,

where pik is the price payed by agent i in stage k. In other words, every buyer i wins
by bidding v, the probability that she gets the last stage item is increased by v

E[Y ] .

The revenue of this auction is

(m− 1) · E [X1:n] . (4.13)

The revenue of VCG at every stage with c additional buyers is at most

(m− 1) · E [X2:n+c] + E [Y2:n+c] ≤ (m− 1) · E [X2:n+c] + n+ c. (4.14)

We used that the expected second order statistic of k samples from an equal revenue
distribution is at most k. For a calculation see Claim 93 in Appendix A.2. We want to
find the smallest c such that 4.14 is at least 4.13. For simplicity we compute the expected
order statistics of X as if it is an untruncated exponential distribution. We can pick V large
enough such that the conclusion is the same.

14Truncated exponential distributions have monotone hazard rate.
15 Y has revenue 1 for a single agent, and expectation ln

(
V̂
)

.
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For an exponential distribution Z ∼ Exp(1) we have that E [Z1:n] = ∑n
i=1

1
i

= Hn and
E [Z2:n] = ∑n

i=2
1
i

= Hn − 1, where Hn is the n-th harmonic number. For large n, Hn can be
approximated by lnn. Therefore, expression 4.14 being at least expression 4.13 is equivalent
to :

(m− 1) · E [X2:n+c] + n+ c > (m− 1) · E [X1:n]
(m− 1) · (Hn+c − 1) + n+ c > (m− 1) ·Hn

Hn+c −Hn + n+ c

m− 1 > 1

ln
(
n+ c

n

)
+ n+ c

m− 1 > 1

(n+ c)e
n+c
m−1 > ne

n+ c

m− 1e
n+c
m−1 >

ne

m− 1
n+ c

m− 1 > W
(

ne

m− 1

)
c > (m− 1) ·W

(
ne

m− 1

)
− n

where W is the Lambert function. limk→∞ kW ( en
k

) = en, therefore c > (e− 1)n.

Lemma 59. For m MHR stages, and ex-ante IR auctions, the Competition Complexity is
at least (e− 1)n, even for independent stages and for auctions that are incentive compatible
in a perfect Bayesian equilibrium.

Proof. For the first stage, X1 is uniform [0, ε] for some small ε > 0. For k = 2, . . . ,m,
Xk = Exp(1, V ) is an exponential distribution with parameter λ = 1, truncated at some
large V . We describe an ex-ante IR auction that is incentive compatible in a perfect Bayesian
equilibrium, with revenue ∑m

k=2 E [(Xk)1:n], i.e. essentially the social welfare: on stages 2
throughm the auctioneer will run a second price auction, extracting revenue∑m

k=2 E [(Xk)2:n].
The extra ∑m

k=2 (E [(Xk)1:n]− E [(Xk)2:n]) will be charged upfront; in stage 1 every buyer is
offered the option to pay 1

n

∑m
k=2 (E [(Xk)1:n]− E [(Xk)2:n]) in order to participate in stages

2 through k. This is equal to the expected utility of each buyer, and therefore, since they
are expectation maximizers, they will accept the offer.

Given this auction, the calculation for lower bounding the Competition Complexity is
almost identical (in fact much simpler) to Lemma 58.
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Part II

Dynamic Fair Division
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Chapter 5

Controlled Dynamic Fair Division

In this Chapter we introduce a simple dynamic fair division problem, where agents arrive
and depart over time, and the amount of disruption is a hard constraint. We formally
introduce the model and related work in Section 5.1. We present our algorithm for a single,
homogeneous resource in Section 5.2. We then study multiple, heterogeneous resources. For
this case, there are many popular notions of fairness. We show NP-hardness for a generic
one in Section 5.3, and provide algorithms (and impossibility results) when the notion of
fairness is Dominant Resource Fairness (DRF) in Sections 5.4 and 5.5.

5.1 The Dynamic Fair Division Model
We first consider the case of a single homogeneous resource.

Dynamic fair division of a single resource. One unit of a homogeneous resource is
shared among agents that arrive and depart over time. An allocation for t agents is denoted
by a vector alloct ∈ [0, 1]t. The utility of agent j at step t is proportional to alloct(j).
An allocation is feasible if talloct = ∑t

j=1 alloct(j) ≤ 1. alloc and talloc are usually
defined with respect to a resource allocation algorithm; this is omitted from the notation
when the algorithm is obvious from context. An allocation algorithm is feasible if it always
outputs a feasible allocation. An allocation is Pareto optimal if talloct = 1. An allocation
algorithm is Pareto optimal if it always outputs Pareto optimal allocations. An allocation for
t agents is σt-fair if min

j=1,...,t
{alloct(j)} ≥ σ

t
. An allocation algorithm is σ-fair if it outputs a

σt-fair allocation in the presence of t agents, and σ ≤ mint{σt}.
We restrict our algorithms to disrupt a small number of agents when a new agent arrives:

An allocation algorithm is d-disruptive if it is allowed to decrease the allocation of at most
d agents at every arrival. Upon departure, the algorithm is not allowed to reduce the
allocation of any agent except the departing agent (this is known as population monotonicity).
Augmenting the resource of any agent is always allowed (for both arrivals and departures).
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Example 60. Assume we would like to design a Pareto optimal 1-disruptive algorithm for a
system with a capacity for 3 agents. The näıve algorithm divides the largest available share
equally at each arrival: When the first agent arrives, she is allocated the entire resource;
σ1 = 1. When the second agent arrives, she is given half of the resource, and the first
agent’s resource is halved: σ2 = mini{alloc2(i)}

1/2 = 1. When the third agent arrives, one agent
is allocated half of the resources and the two other agents are allocated one quarter of the
resource each: σ3 = 1/4

1/3 = 3
4 . The fairness ratio of this algorithm is σ = mini{σi} = 3

4 . It
is easy to verify that there is no algorithm that guarantees perfect fairness (σ = 1), even in
this simple scenario.

The optimal algorithm is the following (Friedman, Psomas, and Vardi [2015]): when the
second agent arrives, she is given 3/7 of the resource; σ2 = 3/7

1/2 = 6
7 . Then when the third

agent arrives, the first agent’s share is split evenly between the first and third agents, giving
the allocation (2/7, 3/7, 2/7); σ3 = 2/7

1/3 = 6
7 . This fairness ratio of this algorithm is 6

7 .

d disruptions per arrival. Define σ∗ (d) to be the optimal fairness ratio of any d-
disruptive mechanism (with an unbounded number of agents). We prove tight bounds on
σ∗ (d), for all (integer) d ≥ 1. At first glance, one might think that a single disruption per
arrival is the best we can hope for; this is true if, for example, we require Pareto optimality
(Lemma 61). However, if n agents arrive, this still mandates n disruptions! Next, we con-
sider what can be done with even fewer disruptions. In particular, we study the problem of
maximizing the fairness ratio, when fewer than one disruption is allowed per arrival.

Fewer than one disruption per arrival. Consider following scenario. An algorithm
designer is given a list of constraints: for each arrival, the number of disruptions allowed is
denoted. The algorithm designer’s goal is to design an algorithm that maximizes the fairness
ratio subject to these constraints. Ideally, the algorithm designer should design an instance-
optimal algorithm: one that takes the list of constraints as an input and outputs a set of
allocations that maximizes the fairness ratio for that list. We consider the case that fewer
than one disruption is allowed per arrival, and model it as follows: the algorithm takes as
input a vector ψ (which we call a control vector), and is allowed to use di donors at step i if
ψ[i] = di. We call this problem Controlled Dynamic Fair Division (CDFD). For simplicity,
we only consider binary control vectors (i.e., at each time step, the algorithm is either not
allowed to use a donor or allowed to use one). It is straightforward to extend the results
to non-binary vectors. If ψ has at most c consecutive zeros, we call it a c-control vector.
We say that a c-control vector implies a 1

c+1 -disruptive algorithm. Notice that the case of d
donors per arrival is a special case; ψ has “d” at every coordinate.

Let σ∗ (ψ) be the optimal fairness ratio for a given control vector ψ. We overload the
notation and define σ∗ ((c+ 1)−1) to be the optimal fairness ratio for all c-control vectors ψ,
i.e., σ∗ ((c+ 1)−1) = minψ{σ∗ (ψ)}. Note that, with fewer than one disruption per arrival,
Pareto optimality is impossible.
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Lemma 61. For any c > 0, there is no Pareto optimal algorithm for CDFD that guarantees
a fairness ratio of σ((c+ 1)−1) > 0.

Proof. Assume that such an algorithm exists. Let i be the first coordinate for which ψ[i] = 0.
As the algorithm is Pareto optimal, there is no available resource, and agent i receives
nothing.

Multi-resource fairness. Consider the case of multiple heterogeneous resources. Let r
be the number of resources in the system and, without loss of generality, assume there is 1
unit of each resource available. As in the single resource case, define alloct(j) to be the
allocation of the j-th agent at step t. Notice that the allocation of agent j this time is a
vector, not a number.

Every agent i has a demand vector Dj ∈ [0, 1]r over the resources. Let Dt (or simply
D) be the t by r matrix of demands for t agents. For example, if 3 agents with demands
D1 = [1, 1/2], D2 = [0, 1], and D3 = [1, 1] are present

D =


1 1/2

0 1

1 1

 .

Assume that the agents demand the resources in fixed proportions, known in economics
as Leontief preferences, and have binary demand vectors. Let uj(alloct(j)) be the utility
of agent j for an allocation alloct(j). It is convenient to think of Dj,l as the amount of
resource l agent j needs to execute a task. For example, if r = 3, agent j with demand vector
Dj = [1, 0, 1], needs 1 unit of resource 1 and 1 unit of resource 3 to execute a task. In this
example, Leontief preferences imply that given the resource vector alloct(j) = (1

2 , 0,
1
2),

the agent would have utility uj(alloct(j)) = 1
2 . The agent would have the same utility for

resource vector (1, 0, 1
2).

In the case of multiple resources, the definition of fairness is not as straightforward. One
could define fairness in a very general way: at every step t the minimum utility of an agent
should be L(t), for some non increasing function L(t), and the maximum utility should be
U(t). L(t) dictates the lower bound on the satisfaction of each agent, and U(t) maintains
fairness in the sense of envy-freeness. (An allocation of (1

3 ,
1
4 ,

1
4) is intuitively more fair than

an allocation of (1
2 ,

1
4 ,

1
4), and this notion of fairness is enforced by an upper bound.) Define

General Dynamic Fair Division (GDFD) to be this problem; the inputs are agents’ demands
D, the number of resources r, and vectors L and U , and the algorithm is asked to decide
whether there exist feasible allocations (i.e., ones that satisfy all the constraints).

Dominant Resource Fairness. We show in Section 5.3 that GDFD is computationally
intractable, even in simple settings and for clairvoyant allocation algorithms. We focus on a
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less general, well-studied notion of fairness: Dominant Resource Fairness (DRF), introduced
by Ghodsi et al. [2011].

The dominant resource of an agent is the resource for which the agent’s task requires
the largest fraction of total availability. The dominant share of an agent is the fraction of
her dominant resource she receives. The DRF algorithm seeks to maximize the minimum
dominant share. DRF can also be interpreted as the leximin mechanism, i.e., it maximizes
the minimum utility, and subject to that, maximizes the second minimum utility, and so
on, when applied to Leontief utilities ( Kurokawa, Procaccia, and Shah [2015]). DRF has
multiple advantages: it is Pareto optimal, strategy-proof, envy-free, and proportional: it
guarantees to each agent a utility of

DRFDt =
 max
l=1,...,r

t∑
j=1
Dtj,l

−1

.

The notion of DRF is naturally extendable to the dynamic case:

Dynamic fairness for multiple resources. An allocation is σt-DRF fair at step t, if

min
j=1,...,t

{uj(alloct(j))} ≥ σtDRFDt .

An allocation algorithm is σ-DRF fair if outputs a σt-DRF fair allocation when t agents
are present, and σ ≥ min

t
{σt}. Let σ∗ (d, r) be the optimal fairness ratio in the case of r > 1

resources, when d donors are allowed at every arrival, over all possible agent demands D.
We allow d to be less than 1; we discuss this in more detail later on. We define Dynamic
Dominant Resource Fairness (DDRF) to be the problem of maximizing σ∗ (d, r).

Results and Techniques
Controlled dynamic fair division. Given a binary control vector ψ as an input, the
goal is to output a set of allocations that gives the best possible fairness ratio. We describe
an instance-optimal algorithm for this case, which we call Skip. Skip has two stages; in
the first (which we sometimes refer to as the preprocessing stage), it computes the optimal
fairness ratio σ∗(ψ); in the second, it allocates the resource frugally, giving each agent the
least amount of resource possible in order to maintain σ∗(ψ).

Theorem 62. Skip is an instance-optimal algorithm for controlled dynamic fair division.

To prove Theorem 62, we show that for any allocation algorithm A and any control vector
ψ, if the allocations produced by A for ψ give a fairness ratio of σ, then the allocations
produced by Skip do too. Although, by Lemma 61, Skip cannot be Pareto optimal, it
can accommodate departures, and is population-monotone - it does not disrupt any agent
when there is a departure (except the departing agent); it is only allowed to re-allocate the
departing agent’s share.
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We would like to provide a lower bound1 σ on the fairness ratio of Skip. This is partic-
ularly important for unbounded systems; while Skip is optimal for any finite control vector
ψ,2 it is not defined on infinite vectors, which are necessary for systems that can accommo-
date an arbitrary number of agents. In such a case, we skip the preprocessing stage of Skip,
and simply give Skip σ as an auxiliary input. As long as σ is upper bounded by the worst
fairness ratio possible for any number of agents, the allocations produced by Skip will be
feasible.

We first bound σ∗ (d) for d ≥ 1, the optimal fairness ratio possible for all control vectors
ψ such that ψ[i] = d; at every arrival d disruptions are allowed. We show that Skip can
guarantee performance σ∗ (d) =

(
(d+ 1) ln

(
d+1
d

))−1
, for all (integer) d ≥ 1. Furthermore,

Skip can be modified to be Pareto Optimal at every step. In [47] we provide a different
algorithm with the same fairness bounds, and also a bound of 3(d+1)2

2d2 on the envy ratio of
this algorithm, the ratio of the maximum and minimum allocations.

Theorem 63. σ∗ (d) =
(
(d+ 1) ln

(
d+1
d

))−1
, for all (integer) d ≥ 1.

Then, we bound σ∗ ((c+ 1)−1), the optimal fairness ratio possible for all control vec-
tors ψ with at most c consecutive zeros (in particular, including infinite vectors such as
(1, 0, 0, 1, 0, 0, . . .)). Showing bounds for σ∗ ((c+ 1)−1) is much more complicated than for
σ∗ (d), d ≥ 1: there are infinitely many possible control vectors, and the allocations Skip
produced for each of these are different; furthermore, they are not as “well behaved” as the
allocations for d ≥ 1. Compare Figures 5.1 and 5.2.3. Figure 5.1 shows the allocations
created by the optimal algorithm when 1 donor is allowed at every step (for an unbounded
number of agents, truncated at 100). Figure 5.2 shows the allocations created for 4 different
infinite control vectors (truncated at 30 agents). The difficulty in the second setting comes
from several facts: the allocations are not monotone, they are not pointwise comparable, and
they are not simple transformations one of the other. Furthermore, the allocations do not
necessarily take their maxima at the limit. Still, in both cases, the total allocation converges
to a limit as the number of agents grows (in the second case, all infinite allocations that
obey certain natural requirements converge to the same limit (Theorem 66). The horizontal
line in both figures denotes this limit. It is easy to see (this is formally proved for the two
cases in [47] and Section 5.2 respectively), that the first set of allocations takes its maximum
at the limit, while the second case does not.4

1Note that upper bounds on the fairness ratio are negative results, while lower bounds are positive
results.

2We do not explicitly compute the running times of the algorithms, but all are easily implemented in
time linear in the size of the input.

3The graphs are normalized by artificially setting σ = 1, and then running the respective optimal
algorithms without any constraints on the amount of available resource. While this obviously leads to the
total allocation being greater than 1, it is still instructive, as the optimal fairness ratio of these algorithms
can be easily be deduced from these plots - it is simply the inverse of the maximal total allocation created

4It might be tempting to think that, as in Figure 5.2, there always exists some basic c-control vector
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Figure 5.1: Optimal values of talloc for d = 1.

Figure 5.2: Optimal values of talloc for some 2-control vectors.

We show almost matching upper and lower bounds for the optimal fairness ratio attain-
able for any (possibly infinite) c-control vector. Let Hn = ∑n

i=1
1
i

be the n-th harmonic
number.

Theorem 64. The optimal fairness ratio of CDFD for any c-control vector is bounded by

(Hc+1)−1 ≥ σ∗
(
(c+ 1)−1

)
≥
(
H2c+3 −

1
2

)−1
.

(see Section 5.2 for a definition of basic c-control vectors) that takes its maximum at the limit, and this is
indeed the case for c < 8 (we do not prove this, but it is easy to verify). However, for c ≥ 8, every basic
c-control vector has its maximum at a finite number of agents (see Figure B.1 in Appendix B.5 for a pictoral
example.)
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In order to prove Theorem 64, we need to be able to argue about allocations of optimal
algorithms for any ψ. For this, we define basic control vectors - vectors that always have
exactly 1 donor every c+ 1 agents, and show that for any c-control vector, there exists some
basic c-control vector whose allocations are pointwise greater. For any c, there are exactly
c + 1 basic control vectors, therefore it remains to reason about them. For the cases c = 1
and c = 2, it turns out that the worst allocations are always at the limit. In order to show
this, we consider allocations (of the basic control vectors) that are a certain distance apart
(specifically (c+ 1)(c+ 2)), and show that these special allocations are monotone increasing,
and each is greater than the (c+ 1)(c+ 2) allocations that came before it. This gives exact
bounds:

Theorem 65. (Appendix B.3) The optimal fairness ratio of CDFD for any c control vector
for c = 1 and c = 2 are

σ∗ ((2)−1) = 2(3 ln 3)−1 and σ∗ ((3)−1) = 3(4 ln 4)−1

respectively.

For c > 2, we consider a set of allocations that are pointwise greater than the allocations
for all basic vectors simultaneously, and bound them, to obtain Theorem 64. In addition,
we show that as the number of agents grows, the optimal allocations for all basic c-control
vectors converge to the same value:

Theorem 66. There exists a number n0 such that, for all c > 2, all c-control vectors, and
agents t > n0, the allocation of Skip is σt-fair, where σt = (c+ 1) ((c+ 2) ln (c+ 2))−1.

We show that Skip can accommodate departures, and therefore all the bounds on the
fairness ratio hold even when we allow agents to depart.

We summarize our main results for σ∗ ((c+ 1)−1) in Table 5.1.

Disruptions Bound on the fairness ratio

d ≥ 1
(
(d+ 1) ln

(
d+1
d

))−1
(tight)

2−1 2 (3 ln 3)−1 (tight)

3−1 3 (4 ln 4)−1 (tight)

(c+ 1)−1 , c > 2
(Hc+1)−1 ≥ σ∗ ((c+ 1)−1) ≥

(
H2c+3 − 1

2

)−1

(c+ 1) ((c+ 2) ln(c+ 2))−1 (asymptotic bound, tight)

Table 5.1: Results for 1 resource
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Multiple resource dynamic fair division. In the multiple resource case, we consider
the uncontrolled setting. The input to the algorithm is a demand matrix D and the number
of disruptions allowed per arrival, d. We consider two settings: in the first, the clairvoyant
setting, D is known in advance. In the non-clairvoyant (or online) setting, row i of D is
revealed upon arrival of agent i. We focus on two notions of fairness, GDFD and DDRF .

Our first result is that GDFD is NP-hard (Section 5.3):

Theorem 67. GDFD is NP-hard, even for 2 resources, 1 donor, binary demand vectors,
and clairvoyant algorithms.

In Section 5.4 we consider DDRF , for binary demand vectors. To see why the techniques
of the single resource case do not extend to the multi-resource case, consider the following
simple example, for d = 1: Three agents arrive; the first has a demand vector [1, 0], the
second [0, 1], and the third [1, 1]. The following algorithm gives the optimal allocation of
2/3 (see Section 5.5 for the upper bound): the first two agents receive 2/3 of their respective
resource (we do not use a donor at the second arrival), and at the third arrival, one of the two
agents has her allocation reduced by half, and the arriving agent is given 1/3 of that resource.
1/3 of the other resource is taken from the ”bank” - the resource that was left unallocated.
It is easy to see that a non-clairvoyant algorithm can never do as well as a clairvoyant one (in
contrast to the single resource case): in the non-clairvoyant case, if an agent with demand
[0, 1] arrives, how much do we allocate her? Even if we know three agents will arrive in
total, and the second one has demand [1, 0], if the third agent has demand vector [1, 0], we
“should have” given the first agent all of the first resource, to get a fairness ratio of 1, but
we have to allow for the possibility of the third agent’s demand being [1, 1]. To complicate
matters further, it is possible to find examples where solutions that seem intuitively correct
are wrong; consider the following set of demands:

[0, 1], [1, 0], [0, 1], [1, 0], [1, 0], [1, 1], [1, 1].

Surprisingly, the only optimal algorithm uses an agent with demand [0, 1] as a donor when
the fifth agent (who has demand [1, 0]) arrives!

We prove upper and lower bounds on σ∗ (d, r) for DDRF for the non-clairvoyant setting
for three cases: (1) d = kr for some integer k, (2) d = 1 and (3) d = (c + 1)−1 for c > 0.
For the lower bounds (positive results), we use the single resource algorithms as subroutines.
The challenge is choosing which donor to use when only one donor is allowed. Our negative
results make use of the single resource upper bounds bounds.

Theorem 68. The optimal fairness ratio of DDRF for d = k · r donors and r resources is
bounded by (

(kr + 1) ln
(
kr+1
kr

))−1
≥ σ∗ (kr, r) ≥

(
(k + 1) ln

(
k+1
k

))−1
.

Theorem 69. The optimal fairness ratio of DDRF for d = 1 donors and r ≥ 2 resources
is bounded by
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• σ∗ (1, 2) ≥ 2 (3 ln 3)−1 ≈ 0.6068

• σ∗ (1, 3) ≥ 3 (4 ln 4)−1

• σ∗ (1, r) ≥
(
H2r+1 −

1
2

)−1
, r > 3.

Theorem 70. The optimal fairness ratio of DDRF for r resources and (c+ 1)−1 donors (1
donor allowed per c+ 1 arrivals) is bounded by

(Hc+1)−1 ≥ σ∗
(
(c+ 1)−1 , r

)
≥
(
H2r(c+1)+1 − 1

2

)−1
.

The gap between the upper and lower bounds for DDRF is far from tight. Even for d = 1,
r = 2, a seemingly simple case, the best lower bound we have for σ∗ (1, 2) is 2 (3 ln 3)−1 ≈
0.6068, by using the single resource algorithm with 1-control vectors (c = 1). An immediate
upper bound is (ln 4)−1 ≈ 0.7213; the fairness ratio σ∗ (d, r) is non-increasing in the number
of resources r, and we have tight bounds for σ∗ (d, 1) (a subtle but necessary condition for
this argument to go through is that DRF reduces to proportionality when there is only one
resource). In Section 5.5 we improve this upper bound.

Theorem 71. The optimal fairness ratio of DDRF for d = 1 and r ≥ 2 resources is bounded
by

σ∗ (1, r) ≤ 0.6318 . . .

Our proof technique for Theorem 71 may be of independent interest. We first identify a
set of bad inputs (demand matrices D): n [0, 1]’s followed by n [1, 0]’s, followed by a series of
2n [1, 1]’s. We describe the optimal mixed integer program for maximizing the fairness ratio.
Let Z be the set of all integer variables. Given an algorithm for DDRF we can simulate
its execution on the bad input and fix these integer variables. Fixing Z allows us to use
LP duality! We take the dual with respect to the remaining (non-integer) variables, and
give a procedure for constructing feasible dual solutions, for any choice of Z, and therefore
any algorithm for DDRF . Notice that the bound is independent of r. For r > 2, the same
technique does not seem to provide better results, at least not for choices of D that are
the most natural; for example, for r = 3, one would expect that the worst inputs are n
[0, 0, 1]’s, followed by n [0, 1, 0]’s, followed by n [1, 0, 0]’s, followed by a series of 3n [1, 1, 1]’s.
Surprisingly, the fairness ratio for these inputs is an increasing function of n, at least for
n small enough for us to verify computationally. Our main results for the optimal fairness
ratio of DDRF are summarized in the following table.
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r Disruptions Bound on the fairness ratio

2 1 0.6318 . . . ≥ σ∗ (1, 2) ≥ 2 (3 ln 3)−1 ≈ 0.6068

3 1 0.6318 . . . ≥ σ∗ (1, 3) ≥ 3 (4 ln 4)−1

r > 3 1 0.6318 . . . ≥ σ∗ (1, r) ≥
(
H2r+1 − 1

2

)−1

r kr
(
(kr + 1) ln

(
kr+1
kr

))−1
≥ σ∗ (kr, r) ≥

(
(k + 1) ln

(
k+1
k

))−1

r (c+ 1)−1 (Hc+1)−1 ≥ σ∗
(
(c+ 1)−1 , r

)
≥
(
H2r(c+1)+1 − 1

2

)−1

Table 5.2: Results for many resources and DRF

Related Work
Competitive Equilibrium from Equal Incomes (CEEI) was introduced by Nash Jr [1950] and
has been studied extensively in the economics and theoretical computer science literature (for
some recent results see Devanur et al. [2008], Budish [2011], Othman, Papadimitriou, and
Rubinstein [2014], Cole and Gkatzelis [2015], Caragiannis et al. [2016]). Dominant Resource
Fairness was proposed by Ghodsi et al. [2011]. DRF attracted significant attention from the
computer systems community([69, 71, 100, 54]), as well as the theoretical computer science
community ([91, 62, 74, 48]). It is interesting to note that DRF can also be interpreted as
the Kalai-Smorodinsky bargaining solution (Kalai and Smorodinsky [1975]).

Walsh [2011] was the first to study the problem of online fair cake cutting when agents
arrive, receive a piece and depart. He showed how several well-known fair division solutions
(cut-and-choose, Dubins-Spanier, etc) can be adapted to satisfy desirable properties in an
online setting with a single (heterogeneous) divisible cake. More recently, and closer to
our problem, Kash, Procaccia, and Shah [2013] introduced a model of dynamic allocations.
However, their model only considers arrivals and their main algorithm reserves resources for
future arrivals; it does not allow the reallocation of resources, or agents to depart. This leads
to allocations that satisfy neither fairness nor Pareto efficiency, as resources are left idle.

Guo, Conitzer, and Reeves [2009] study the problem of repeatedly allocating a single
item between competing agents, and give allocation algorithms that don’t allow monetary
transfers with good competitive ratios with respect to optimal allocation algorithms with
payments. Segal-Halevi [2016] studied the problem of re-dividing a two-dimensional resource,
subject to fairness and ”geometric” constraints on the allocations.

Finally, the idea of making a small number of alterations to maintain a good solution
in online settings had been studied for other problems. In online scheduling, one of the
earliest works is by Phillips and Westbrook [1993], who show that linear preemption in the
number of tasks yields a competitive ratio of O(log n) on makespan, where n is the number
of tasks. Preemption in their context means reassigning jobs to a different machine. Sanders,
Sivadasan, and Skutella [2009] study online scheduling when the migration is bounded by a
constant, and Epstein and Levin [2011] who study a similar problem with bounded migra-
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tions, where the capacity of change is based on the size of the new input. Gupta, Kumar,
and Stein [2014] consider online matching, online flow and online scheduling, and the num-
ber of changes they allow is an amortized constant per step. For scheduling they show a
O(log log(nm)) approximation to the makespan, where n is the number of tasks and m is
the number of machines. Other examples include Gu, Gupta, and Kumar [2016] and Gupta
and Kumar [2014] who show how to maintain an online Steiner tree, vertices arriving online,
where the algorithm can change an edge at every arrival.

5.2 Singe Resource Fair Division
In this section we study CDFD. The algorithm is given as input a control vector ψ (Defi-
nition 72). A solution consists of a fairness ratio σ and a set of allocations A1, . . . , A|ψ|, one
for each number of agents present t, such that: (1) for every 1 ≤ t ≤ |ψ|, the fairness ratio
σt is at least σ, and (2) some agent’s resource is reduced from step t to step t+ 1 if and only
if ψ[t + 1] = 1. Note that only one agent can have their resource reduced at any time. In
some cases (for example, when the control vectors are unbounded), we allow the algorithm
to receive σ as an auxiliary input, in which case a possible output is “infeasible”, if no such
set of allocations exists. For now, we assume that agents only arrive, and do not depart; we
can use t both for the time and the number of agents present. At the end of the Section we
show how to augment Skip to accommodate departures.

Definition 72. [Control vector] Let ψN be a binary vector of length N . ψN [i] = 1 means
that we use a donor when agent i arrives, and a ψN [i] = 0 means we do not. If the maximal
number of consecutive 0s is c, we call this a c-control vector.

We define a basic c-control vector to be one in which there is exactly one donor every
c+1 arrivals; otherwise the control vector is non-basic. There are c+1 possible basic control
vectors.

Example 73. For c = 2, the three possible basic control vectors are:

1. (0,1,0,0,1,0,0,1,0,. . . ), denoted (0, 1, 0)∞,

2. (0,0,1,0,0,1,0,0,1,. . . ), denoted (0, 0, 1)∞, or (02, 1)∞.

3. (1,0,0,1,0,0,1,0,0,. . . ), denoted (1, 0, 0)∞, or (1, 02)∞.

We will also use the following definition.

Definition 74. Let A = (a1, . . . , at) and be B = (b1, . . . , bt) be two sorted vectors. We say
that A dominates B, denoted A�B, if ∀i ∈ [1, t], ai ≥ bi.
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SKIP - an Instance-Optimal Algorithm
Definition 75 (Algorithm Skip). Algorithm Skip receives as an input a control vector ψ.
Set n = |ψ|. Skip has a preprocessing stage (which we describe after the main algorithm
description), in which it computes the optimal σ. When agent 1 ≤ i ≤ n arrives, allocate
her σ

i
of the resource. If ψ[i] = 1, take the agent with the most resource to be the donor, and

reduce her allocation to σ
i

as well.
The preprocessing stage is the following: simulate the arrivals of the agents 1, . . . , n, with

σ = 1, and compute the sum of allocations at each step, talloci. Set the optimal fairness
ratio to be σ = (max1≤i≤n{talloci})−1.

First, note that the allocations created by Skip are always feasible, by the choice of σ.
We prove Skip is optimal among all feasible allocation algorithms, for any control vector.

Theorem 62. Skip is an instance-optimal algorithm for controlled dynamic fair division.

Proof. Let ψ be an input for any allocation algorithm A and Skip. Let σ be the maximum
fairness ratio achievable by A and σ′ the maximum fairness ratio achievable by Skip. We
consider Skip when σ′ is replaced by σ during its execution. We show that Skip is feasible
in this case, therefore σ′ ≥ σ. We assume w.l.o.g. that A never increases the allocation of
any agent (except the arriving agents).

Let At and Skipt be the sorted allocations of A and Skip, respectively, for t agents in
the system. It suffices to show that At�Skipt for all t ≤ |ψ|. The proof is by induction on
the number of agents in the system, t.

The base case: By the definition of Skip, Skip1(1) = σ. Because A’s fairness ratio is σ,
it must hold that A1(1) ≥ σ.

The inductive step: Assume the statement holds for t − 1 agents. We show it holds for
t. There are two cases: ψ[t] = 0 and ψ[t] = 1.

Case ψ[t] = 0 : Let the allocation of Skip at time t−1 be (Skipt−1
1 , . . . ,Skipt−1

t−1). Then
Skipt = (Skipt−1

1 , . . . ,Skipt−1
t−1,

σ
t
). Algorithm A will allocate an amount of resource x ≥ σ

t

to the incoming agent. Let the allocation of A at time t− 1 be (At−1
1 ,At−1

2 , . . . ,At−1
t−1). Then

At = (At−1
1 ,At−1

2 , . . . ,At−1
j , x,At−1

j+1, . . . ,At−1
t−1),

for some 0 ≤ j ≤ t − 1. It is easy to see that At�
(
At−1

1 , At−1
2 , . . . , At−1

t−1,
σ
t

)
for any such

value of j. Furthermore, by the induction hypothesis,(
At−1

1 ,At−1
2 , . . . ,At−1

t−1,
σ

t

)
�(Skipt−1

1 , . . . ,Skipt−1
t−1,

σ

t
) = Skipt.

This concludes the proof for ψ[t] = 0 .
Case ψ[t] = 1 : Starting with the allocation vector at time t − 1, At−1, we break the

allocation changes at time t into two steps:

1. Reduce the share of the donor, to get Ât−1.
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2. Allocate x to the incoming agent, to obtain At.

Denote Amin = (At−1
2 , . . .At−1

t−1,
σ
t
). We show that at the end of the first step, Ât−1�Amin.

The second step is identical to the ψ[t] = 0 case, hence we can combine the two results to
conclude that At�Skipt. Assume algorithm A reduced the allocation of an agent from At−1

j

to y, where 1 ≤ j ≤ t − 1 (possibly At−1
j = y). There is some k, j ≤ k ≤ t − 1 such that

At−1
k ≥ y ≥ At−1

k+1. Then,

Ât−1 = (At−1
1 ,At−1

2 , . . . ,At−1
j−1,At−1

j+1,At−1
j+2, . . . ,At−1

k , y,At−1
k+1, . . .At−1

t−1).

For i ∈ [1, j − 1], Ât−1
i ≥ Amin

i . For i ∈ [j, k], Ât−1
i = Amin

i . Then, by definition of y,
Ât−1
k+1 = y ≥ At−1

k+1 = Amin
k+1. Similarly, Ât−1

i ≥ Amin
i , for all i ∈ [k+ 1, t−2]. For the last term,

we note that since A is σ-fair, At−1
t−1 ≥ σ

t−1 ≥
σ
t

(possibly y is the last share, but then y ≥ σ
t

as A is σ-fair).

At Least One Disruption Per Arrival
We show a proof sketch of Theorem 63 for Skip and the special case of d = 1; the proof
can be easily extended to general d. In fact, in [47] we show that a different algorithm can
achieve the same bound, with additional bounds on the envy ratio, the ratio of the maximum
and minimum allocations.

step allocation for (1, 1, . . .) sum
1 σ σ

2 σ
2 ,

σ
2 σ

3 σ
2 ,

σ
3 ,

σ
3

7σ
6

4 σ
3 ,

σ
3 ,

σ
4 ,

σ
4

7σ
6

5 σ
3 ,

σ
4 ,

σ
4 ,

σ
5 ,

σ
5

7σ
6

6 2× σ
4 , 2×

σ
5 , 2×

σ
6

37σ
30

Table 5.3: Allocations for the first 6 steps of Skip with basic control vector (1, 1, . . .).

Proof sketch of Theorem 63 for d = 1. The input to Skip is a control vector ψ, such that
ψ[i] = 1, for all i. The allocations output by Skip have a very specific structure (see
Table 5.3): On all even steps t the allocation is

(
2× σ

t/2+1 , 2×
σ

t/2+2 , . . . , 2×
σ
t

)
. It is easy

to see that the total allocation is increasing, hence focusing on the even steps is without loss of
generality. Therefore, the total amount of resource allocated is 2·∑t

i= t
2 +1

1
i
≈ 2·ln

(
t

t
2−1+1

)
=

2 ln(2)5. The Theorem follows.
5See Appendix B.1 for the harmonic sum approximation
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At Most One Disruption Per Arrival: Reduction to Basic Control
Vectors
Here, we wish to compute a lower bound (positive result) on the fairness ratio of Skip for
all c-control vectors, but the optimal fairness ratio for any control vector depends on the
vector itself. We show that basic control vectors have the worst fairness ratio; hence in order
to provide a lower bound on the fairness ratio, it suffices to analyze basic control vectors.
We allow Skip to receive a fairness ratio, σ as an auxiliary input. Denote the (possibly
infinite) set of allocations of Skip when ψN is the control vector and σ is the fairness ratio
by Skip(ψN , σ). It will be useful to think of the unallocated resource as a “bank”: Let
bank(ψN , t) = 1− talloc(ψN , t).

We want to show that for any legal c-control vector ψN and real number σ, it holds that
if Skip(ψ̂N , σ) is feasible, then Skip(ψN , σ) is feasible, where ψ̂N is a basic c-control vector.
To this end, we define a series of control vectors ψ̂N = ψN1 , ψ

N
2 , . . . , ψ

N
k = ψN such that if

Skip(ψNi , σ) is feasible, then Skip(ψNi+1, σ) is feasible, for all 1 ≤ i < k. We define these
vectors inductively: Let t∗i be the leftmost coordinate on which ψNi and ψN differ. The first
t∗i − 1 entries of ψNi+1 are the same as ψNi , the t∗i -th entry becomes the same as ψN [t∗i ], and
the remainder continues as (0c1)∞.

Example 76. Let ψ7 = (0, 1, 1, 1, 0, 1, 0, 0, 1). We derive the ψ7
i s.

ψ̂N = ψ7
1 = (0, 1), (0, 0, 1)∞,
ψ7

2 = (0, 1, 1), (0, 0, 1)∞,
ψ7

3 = (0, 1, 1, 1), (0, 0, 1)∞

ψ7
4 = (0, 1, 1, 1, 0, 1), (0, 0, 1)∞ = ψ7(0, 0, 1)∞

Lemma 77. For every c-control vector ψ, there exists some basic c-control vector ψ′ such
that σ∗ (ψ) ≥ σ∗ (ψ′).

Proof. We prove that, if Skip(ψNi , σ) is feasible, then Skip(ψNi+1, σ) is feasible, for all steps
t such that t = t∗i (mod c+ 1) in Lemma 78. We then show the same holds for steps t 6= t∗i
(mod c+ 1) in Lemma 79.

Notice that alloc(ψNi ) and alloc(ψNi+1) are identical up to step t∗i − 1. Then, on step
t∗i , necessarily ψNi [t∗i ] = 0, ψNi+1[t∗i ] = 1.

Lemma 78. alloc(ψNi , t)�alloc(ψNi+1, t) for all t = t∗i (mod c+ 1).

The proof of Lemma 78 is by simple induction and is deferred to Appendix B.2. Showing
that if Skip(ψNi , σ) is feasible, then Skip(ψNi+1, σ) is feasible, for steps t 6= t∗i (mod c+ 1) is
more involved. First observe that there exists some tmax such that, for all steps t > tmax,
alloc(ψNi+1, t) is identical to the allocation of some basic control vector at step t (as the
allocations produced by Skip are memoryless). Hence, it suffices to show the result for all
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t ≤ tmax. The value of tmax is computed as follows: Let p be number of 0s between t∗i and the
previous 1, and p′ = c+ 1− p. In Example 76, for ψ7

4, p = 1, p′ = 2. Set k = t∗i − (c+ 2) + p′.
Once the largest share is σ

k
(and the second largest is strictly smaller), the allocation is the

same as it would have been at time k for some basic control vector (in Example 76, this
allocation is (1

4 ,
1
5 ,

1
6 ,

1
6 , . . .)). A straightforward calculation gives tmax = t∗i + (c+ 1)(k− 1) =

(c + 2)t∗i + (c + 1)(p′ − c − 3). Note that this is exactly the time at which the allocations
converge.

Lemma 79. For all t 6= t∗i (mod c+1), t∗i ≤ t ≤ tmax, it holds that bank(ψNi+1, t) ≥
c∑
j=1

σ

t+ j
.

The proof for this Lemma is quite technical, and as it mostly involves applications of
known techniques, it is deferred to Appendix B.2.

Bounding the Fairness Ratio of SKIP
The allocations created by Skip have a particular structure: they resemble a segment of the
harmonic series, with some doubled entries (see Example 80 and Table B.1). Even though we
showed that in order to bound the fairness ratio, it is enough to consider only basic control
vectors, each basic control vector has a different fairness ratio. Nevertheless, we would like
to provide some upper bound on the fairness ratio of Skip, for each c. We give two types of
bounds: an upper bound that applies to all control vectors for any number of agents, and
an asymptotic bound. The asymptotic bound is particularly useful for systems that wish
to be able to accommodate an unbounded number of agents, and in which the amount of
time the system will have fewer than n0 agents is vanishingly small. In this case, one can set
the fairness ratio to be the asymptotic fairness ratio, with an arbitrary ”quick fix” heuristic
for when there are fewer than n0 agents in the system (for example, allowing slightly more
disruptions to guarantee the asymptotic fairness ratio).

To better characterize these allocations, we need some notation. Elements of an allocation
(an element is a real number6) that appear once are called singletons, and those that appear
twice doubles. We use the following to make our notation more compact:

onc represents the following; the first two shares are a double, continuing the series from
the last term. The allocation then alternates between c singletons and a double; the last c
are singletons.

⇀k represents k more singletons continuing the series, including the one just before the
symbol, k ≥ 0. k = 0 means there are no singletons (we’ll use this to simplify the notation
later on).

Example 80. The following are possible allocations, written in full and abbreviated.

1.
(
σ
3 ,

σ
4 ,

σ
5 ,

σ
5 ,

σ
6 ,

σ
7 ,

σ
8 ,

σ
8 ,

σ
9 ,

σ
10

)
or
(
σ
3 ⇀2,on2,

σ
8 ,

σ
8 ,

σ
9 ⇀2

)
.

6In all of the algorithms that we describe, shares are rational numbers.
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2.
(
σ
2 ,

σ
3 ,

σ
4 ,

σ
5 ,

σ
5 ,

σ
6 ,

σ
7 ,

σ
8

)
, or

(
σ
2 ⇀3,

σ
5 ,

σ
5 ,

σ
6 ⇀3

)
.

3.
(
σ
4 ,

σ
4 ,

σ
5 ,

σ
6 ,

σ
7 ,

σ
8 ,

σ
8 ,

σ
9 ,

σ
10 ,

σ
11 ,

σ
12 ,

σ
12 ,

σ
13 ,

σ
14 ,

σ
15

)
or
(
σ
3 ⇀0,on3,

σ
12 ,

σ
12 ,

σ
13 ⇀3

)
.

Instead of individually analyzing each basic control vector, for any c > 0, we define a set
of allocations:

Sc = Sc1,1, . . . S
c
1,c+1, S

c
2,0, S

c
2,1 . . . , S

c
2,c+1, S3,0, S

c
3,1 . . . , S

c
3,c+1, . . .

that simultaneously upper bounds all allocations created by all basic control vectors, for a
fixed c. (This series is not a series of valid allocations; it is only used for the analysis.) At a
high level, St,i is the allocation created by some basic control vector ψ, such that the largest
share is 1

t
(all of the allocations in Example 80 are such allocations; they correspond to

S2
3,2, S

3
2,3 and S3

3,0 respectively). For ψ, the allocation at this time is necessarily greater than
the previous c allocations (as there was no donor for c rounds). The following observation is
a characterization of the allocations just before the round when a donor is used. Note that
the control vector is characterized by the variable k, which does not appear in the expression;
we only claim that for every k and every round t that is just before the donor, there is some
i for which the expression holds.

Definition 81. For t = 1 and j ∈ {1, . . . , c+ 1},

Sct,j = σ ⇀(j) .

For t > 1 and j ∈ {0, 1, . . . , c+ 1}, t′t,j = (t− 1)(c+ 2) + j − c,

Sct,j = σ

t
⇀(j),onc,

σ

t′
,
σ

t′
,

σ

t′ + 1 ⇀(c) .

It is easy to verify that these are exact descriptions of all possible allocations of Skip in
the round before a donor is used; we invite the reader to consult Example 80 in which the
allocations correspond to S2

3,2, S
3
2,3 and S3

4,0 respectively.

Lemma 82. The fairness ratio of Skip for any t > 1, j is at mostarg maxt∈N+,j∈{0,...,c+1}

(t−1)(c+2)+j∑
i=t

1
i

+
t−2∑
i=0

1
t+ i(c+ 1) + j

−1

.

Proof. The maximal allocation of S is an upper bound on the maximal allocation of Skip,
with a basic control vector. The allocation of St,j is

(t−1)(c+2)+j∑
i=t

1
i

+
t−2∑
i=0

1
t+ i(c+ 1) + j

,

by straightforward summation over the allocation vector of Definition 81, where the first is
a sum of all the values appearing in the allocation vector and the second part is a sum of
the duplicates.



CHAPTER 5. CONTROLLED DYNAMIC FAIR DIVISION 86

The following is our bound for basic control vectors, for c > 3. For the cases of c = 1
and c = 2, we get a stronger bounds. We note that this discrepancy between c = 1, 2 and
c = 3 is unavoidable, as the asymptotic bound holds for all time periods for c = 1, 2, but not
for c = 3. The plot for c = 3 is slightly misleading, in that it appears that for some control
vectors, the asymptotic bound holds. While this is true for all c < 8, it ceases to be true
thereafter. The plot in Appendix B.5 (taken with Lemma 77) shows that no control vector
has fairness ratio at most the asymptotic bound. See Appendix B.3 for the missing proofs
and the analysis for c = 1 and c = 2.

Theorem 83. For all c > 2, the fairness ratio, σ∗
(
(c+ 1)−1

)
for all c-control vectors and

all steps t satisfies:
1

Hc+1
≥ σ∗

(
(c+ 1)−1

)
≥ 1
H2c+3 − 1

2
.

Proof. We consider two cases: t = 1 and t > 1. For the former, the allocation simply is
1 + 1

2 + · · · + 1
j
. For control vector (10c)∞ this is the first c + 1 elements of the harmonic

progression. For t > 1, the total resource allocated is:

(t−1)(c+2)+j∑
i=t

1
i

+
t−2∑
i=0

1
t+ i(c+ 1) + j

≤
(t−1)(c+2)+c+1∑

i=t

1
i

+
t−2∑
i=0

1
t+ i(c+ 1) .

We bound each term separately. For the term on the left, one can show that the expression

is decreasing in t (Lemma 97 in Appendix B.2), and therefore is upper bounded by
2c+3∑
i=2

1
i

=

H2c+3 − 1. The term on the right is upper bounded by 1
2 (Lemma 98 in Appendix B.2).

Combined, we get that the total resource allocated is at most H2c+3− 1
2 . H2c+3− 1

2 > Hc+1,
for all c ≥ 2. Furthermore, the bound of the total resource for t = 1, is tight.

We show a tight asymptotic bound on the fairness ratio of Skip as the number of agents
tends to infinity.

Theorem 66. There exists a number n0 such that, for all c > 2, all c-control vectors, and
agents t > n0, the allocation of Skip is σt-fair, where σt = (c+ 1) ((c+ 2) ln (c+ 2))−1.

Proof. We use the following fact about harmonic sums (Appendix B.1):
b∑

x=a

1
x
≤ ln

(
b

a− 1

)
.

We bound the total allocation at step t, as it appears in Lemma 82. For the first term:

(t−1)(c+2)+j∑
i=t

1
i
≤ ln

(
(t− 1)(c+ 2) + j

t− 1

)
= ln

(
c+ 2 + j

t− 1

)
,
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which approaches ln(c+ 2) as t→∞. For the second term:

t−2∑
i=0

1
t+ i(c+ 1) + j

≤
t−2∑
i=0

1
t+ i(c+ 1) = 1

c+ 1

t−2∑
i=0

1
t

c+1 + i
= 1
c+ 1

t
c+1 +t−2∑
i= t

c+1

1
i

≤ 1
c+ 1 ln

( t
c+1 + t− 2

t
c+1 − 1

)
= 1
c+ 1 ln

(
t+ (t− 2)(c+ 1)

t− c− 1

)
,

which approaches 1
c+1 ln(c + 2) as t → ∞. Combining the two gives a bound of (c+2) ln(c+2)

c+1
on talloct as t goes to infinity; the theorem follows.

Accommodating Departures
So far, we have described the input to CDFD as a c-control vector ψ. This was sufficient
in the “arrivals-only” model, but when allowing for departures of agents the situation can
get more complex; the optimal fairness ratio could depend on a number of parameters, for
example who the departing agent is. In this subsection we prove that this is not the case.

The problem now is the following: we are given a c-control vector ψ. Agents arrive and
depart arbitrarily. If ψ[t] = 1 the algorithm is allowed to use a donor when there are t − 1
agents in the system and a new one arrives. This could happen multiple times. Call this
the arrivals-departures model. We prove that the fairness ratio of Skip for a given control
vector ψ is the same as when agents are not allowed to depart.

Theorem 84. The optimal fairness ratio σ∗ (ψ) of Skip with input ψ is the same in the
arrivals-departures model as in the arrivals-only model.

Proof. Let alloct and alloct+1 be the (sorted) allocations of Skip for a given vector ψ.
It suffices to show that even when an arbitrary agent from alloct+1 departs, it is possible
to distribute her share in a way that the sorted allocation is alloct. If ψ[t + 1] = 0, this
is trivial; we focus on the case that ψ[t + 1] = 1, i.e., the agent with the highest utility
at step t was a donor. The two allocations we consider are alloct = (a1, a2, . . . , at) and
alloct+1 =

(
a2, a3, . . . , at,

σ
t+1 ,

σ
t+1

)
.

Assume that one of the last two agents, with a σ
t+1 share, departs. Since both alloct

and alloct+1 are feasible, a1− 2 σ
t+1 is equal to the difference bankt+1− bankt. Therefore,

there must be a way to combine the departing agent’s share σ
t+1 , with the other share equal

to σ
t+1 , and the unallocated amount bankt+1, to get a1. Assume for contradiction this is not

the case; then a1 > 2 σ
t+1 + bankt+1, which implies that a1 − 2 σ

t+1 > bankt+1. The LHS is
equal to bankt+1 − bankt. Combining gives bankt < 0, a contradiction.

If the departing agent is some agent j ∈ [2, t− 1], we can do the following: allocate the
difference aj − σ

t+1 (which is positive since the allocation is sorted) to one of the last two
agents. The amount left to distribute is exactly σ

t+1 ; we’ve already shown this is sufficient
to increase the share of the other of the last two agents to a1.
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5.3 GDFD is NP -hard
In this section we prove Theorem 67.

Theorem 67. GDFD is NP-hard, even for 2 resources, 1 donor, binary demand vectors,
and clairvoyant algorithms.

We show a reduction from the Bounded Partition Problem (BPP): we are given a set
S = {a1, . . . , a2n} of rational numbers, ai ∈ (α, β). The goal is to partition S into two
subsets of equal size, such that the sums of the numbers in each subset are equal. This
problem is NP-hard for any β > α. Assume w.l.o.g. that a1, . . . , a2n are non-decreasing.

In order to make the construction cleaner, and w.l.o.g., allow resources to have capacity
more than 1. We reduce BPP to the following instance of GDFD with 2 resources of capacity
3
2
∑2n
i=1 ai each, 1 donor, and

• 4n agents: the first n have a demand vector [0, 1], the next n have a demand vector
[1, 0], and the last 2n agents have a demand vector [1, 1],

• U = (1, . . . , 1, a2n) (4n− 1 “1”’s, followed by a2n), and

• L = (1, . . . , 1, a2n, a2n−1, . . . , a1) (2n “1”’s, followed by a2n, . . . , a1).

The key observation is that up to step 2n, the first 2n agents must have utility 1, but at
step 4n they all must have utility less than or equal to a2n, and thus each one of them must
be a donor exactly once. Therefore, the utility of an agent i, for i > 2n, never changes, is at
least a4n−i+1, and it contributes that amount to each of the two resources. Picking a [1, 0] or
a [0, 1] agent as a donor for that step is equivalent to deciding in which partition the number
a4n−i+1 belongs.

We need to show that there is a satisfying allocation if and only if there is a partition.

Observation 85. The following must hold:

1. The utilities of all agents up to time 2n must be exactly 1.

2. Since a2n < 1, in order to meet the final upper bound U(4n) = a2n, each of the first 2n
agents must be a donor at least once. But since there are only 2n time steps, each of
the first 2n agents must be a donor exactly once.

3. None of the last 2n agents can be donors.

Let x1, . . . , x2n denote the final utilities of the first 2n agents, and let z1, . . . , z2n denote
the final utilities of the last 2n agents (in reverse order). Consider how these utilities evolve,
starting from step 2n. Notice that, by Observation 85, the values of the last 2n agents do
not change once they are set, and the values of the first 2n agents are initially set to 1 (at
time 2n), and then change once.
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Therefore, if the lower bounds L are satisfied, zi ≥ ai for all i ∈ [2n], and there is some
permutation π of X = {x1, . . . , x2n} such that π(xi) ≥ ai for all i ∈ 2n. Note that each
[1, 1] contributes twice its utility to the total resource allocated. Hence, the total allocated
resource is:

2n∑
i=1

xi + 2zi =
2n∑
i=1

π(xi) + 2zi ≥
2n∑
i=1

3ai.

As this is exactly the total available resource, equality must hold everywhere; that is, for all
i ∈ [2n], zi = π(xi) = ai. For each of the two resources, the amount allocated to the last
2n agents is ∑2n

i=1 ai, hence 1
2
∑
ai of each resource is allocated to the first 2n agents; hence

there is a partition of the numbers ai, . . . a2n into equal sized subsets such that the sum of
elements of each subset is 1

2
∑
ai, as required.

To verify that a partition implies a good allocation, we need to verify that

1. U and L are not violated.

2. The capacity of the resources is never exceeded.

The first requirement is immediate from the allocation process described above; as the final
allocation satisfies the capacity bound, the following Lemma suffices to prove the second.

Lemma 86. The allocation of each resource is monotone non-decreasing.

Proof. There are no donors in the first 2n rounds, therefore it suffices to look at the final
2n rounds (which we now label 1, . . . , 2n). We have verified that in each of these rounds,
an agent with demand [1, 1] arrives, and either [1, 0] or [0, 1] is the donor. An agent with
demand [1, 1] arrives at round i ∈ [2n]. Assume w.l.o.g. that the donor is [1, 0]. The amount
allocated of the second resource increases by ai > 0, and of the first decreases by 1− ai, and
increases by ai, for a total increase of 2ai − 1 > 0, as ai > 0.5.

5.4 Lower and Upper Bounds for Multiple Resources
We show lower and upper bounds for the optimal fairness ratio of DDRF . In Section 5.5
we show a tighter upper bound for the case d = 1 and r resources. We describe algorithms
for the following cases:

1. the number of donors allowed is a multiple of the number of resources (d = kr), for
some integer k ≥ 1,

2. d = 1, (r is any integer),

3. one disruption is allowed for per c+ 1 arrivals, for c ≥ 1.
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Our algorithms use solutions to the single resource algorithms as subroutines: For each
resource l, we run a copy of a single resource algorithm. Let SR be an algorithm for the
single resource case (we expand shortly about the exact nature of SR). When the t-th agent
arrives with demand Dt = (Dt,1,Dt,2, . . . , Dt,r), the l-th copy of SR is given as an input the
number Dt,l: a 0 or a 1. If the number is 1, SR behaves as if an agent arrived. If the number
is 0, SR ignores it. The total amount of resource l allocated to agent i is dictated by the
l-th copy. The following lemma enables us to combine the single resource algorithms:

Lemma 87. Let MR be a multiple resource algorithm that executes a single resource algo-
rithm SR with fairness ratio σ∗ for each resource. Then, MR is σ∗-DRF fair.

Proof. The DRF allocation at step t is: DRFDt =
(

max
l=1,...,r

{∑t
j=1Dtj,l

})−1
, where Dj,l is the

demand for the l-th resource by agent j.
Notice that the amount of resource l agent i has at step t is at least σ∗ Di,l∑t

j=1Dj,l
≥

σ∗ · Di,l ·DRFt, since the l-th copy of the single resource algorithm has received as input the
numbers {D1,l, . . . ,Dt,l} by step t, and their sum is exactly the number of agents that demand
resource l. The utility of agent i for a vector of resources v = (v1, . . . , vr) is min

l=1...r

{
vl
Di,l

}
.

Therefore, for the vector of resources

(σ∗k · Di,1 ·DRFt, . . . , σ∗k · Di,r ·DRFt) = σ∗DRFt (Di,1, . . . ,Di,r) .

The fairness ratio is therefore σ∗ ·DRFt .

Theorem 68. The optimal fairness ratio of DDRF for d = kr donors and r resources is
bounded by (

(kr + 1) ln
(
kr + 1
kr

))−1

≥ σ∗ (kr, r) ≥
(

(k + 1) ln
(
k + 1
k

))−1

Proof. For the upper bound, notice that σ∗ (kr, r) ≤ σ∗ (kr, 1) ≤
(
(kr + 1) ln

(
kr+1
kr

))−1
.

For the lower bound, our algorithm for d = kr runs r copies of the optimal single resource
algorithm, one for each resource, where every copy is allowed to use at most k donors per
arrival. The total number of donors is d = kr, and by Lemma 87 the algorithm guarantees
a σ∗k fraction of the DRF utility for each agent.

Theorem 69. The optimal fairness ratio of DDRF for d = 1 donors and r ≥ 2 resources
is bounded by

• σ∗ (1, 2) ≥ 2 (3 ln 3)−1 ≈ 0.6068

• σ∗ (1, 3) ≥ 3 (4 ln 4)−1

• σ∗ (1, r) ≥
(
H2r+1 −

1
2

)−1
, r > 3.
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Proof. Our algorithm for d = 1 will run r copies of the Skip algorithm, one for each resource,
where every copy can use a at least one donor for every r arrivals.

The algorithm maintains a priority list Ot over the copies of Skip. Let O1 = (1, 2, . . . , r):
at step t = 1, the first copy has the highest priority, the second copy has the second highest,
and so on. At the arrival of the t-th agent with demand Dt = (Dt,1, Dt,2, . . . , Dt,r), the l-th
copy of the single resource algorithm will be given as an input the number Dt,l if that number
is non-zero (otherwise it receives no input). All copies that received a non-zero input request
a donor. Copies with no input stay idle. If there are conflicts, (two or more copies request
different donors), then the copy with the highest priority in Ot, among those that requested
a donor, is the only one allowed to use a donor, and is moved to have the lowest priority
in Ot+1. The total amount of resource l allocated to agent i is dictated by the l-th copy of
Skip.

Clearly, only one donor is used per step. Therefore we only need to show that the
algorithm guarantees a σ∗ (r−1) fraction of the DRF utility for each agent (recall that here
σ∗ (r−1) is the fairness ratio of Skip when one donor every r arrivals is allowed). Notice
that for each step that a copy requests a donor but is not allowed to use one, it moves
up one spot in the priority list. A copy cannot be denied a donor more than r − 1 times
consecutively. This implies that the l-th copy, if seen independently, behaves identically to
Skip, and therefore, by Lemma 87 the algorithm is σ∗ (r−1)-DRF fair.

Using a similar approach we can show positive results for d = (c + 1)−1. The main
observation here is that each single resource subroutine cannot be denied a donor for more
than r(c+1)−1 steps. The upper bound on the fairness ratio is implied by the upper bound
on the single resource case.

Theorem 70. The optimal fairness ratio of DDRF for r resources and (c+ 1)−1 donors (1
donor allowed per c+ 1 arrivals) is bounded by

(Hc+1)−1 ≥ σ∗
(
(c+ 1)−1 , r

)
≥
(
H2r(c+1)+1 −

1
2

)−1
.

5.5 Bounds for σ∗ (1, r) via Duality
We prove the following theorem.

Theorem 71. The optimal fairness ratio of DDRF for d = 1 and r ≥ 2 resources is bounded
by

σ∗ (1, r) ≤ 0.6318 . . .

The high level of our approach to the proof of Theorem 71 is the following.

1. Write the optimal mixed integer program for a general number of donors d and fix an
input D (to be described later).
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2. Notice that the only integer variables are variables Zt,i ∈ {0, 1}, encoding whether the
i-th agent is a donor at step t. If we fix these variables, the remaining program is an
LP. Treat these variables as constants Z and consider the dual of this LP.

3. Show an algorithm that, given Z, outputs a feasible solution for the dual with a value
of at most σ∗ ≈ 0.6318.

The main difficulty is showing that no matter what the adversary picks Z to be, a feasible
dual solution can always be constructed, such that we get the desired bound. The optimal
integer program for general d is:

max σ

subject to: ∀i ≤ t, t ∈ [N ] : uti ≥
σ

DRFt

∀r ∈ [R], t ∈ [N ] :
t∑
i=1

utirDi,r ≤ 1, ∀t ∈ [N ] :
t∑
i=1

Zt,i ≤ d

∀i, t ∈ [N ] : uti − ut−1
i ≤ 1− Zt,i, uti − ut−1

i ≥ −zti
Zt,i ∈ {0, 1}

Fixing our integer variables Zt,i and taking the dual for the resulting linear program
gives:

min
∑
t,r

f(t, r) +
∑
t,i

x(t, i) (1− Zt,i) +
∑
t,i

y(t, i)Zt,i

subject to ∑
t,i

l(t, i) ≥ 1

∀t ∈ [N − 1], i ∈ [t] :
∑
r

Di,rf(t, r) + x(t, i)− x(t+ 1, i) + y(t+ 1, i)− y(t, i) ≥ l(t, i)
DRFt

∀i ∈ [N ] :
∑
r

Di,rf(N, r) + x(N, i)− y(N, i) ≥ l(N, i)
DRFN

A Feasible Dual Solution
Let Ẑ be an 4n by 4n lower triangular matrix such that Ẑt,i = DRFt if and only if Zt,i = 1,
and Zt′,i = 0 for all t′ > t. In other words, Ẑt,i = DRFt if t is the last time agent i becomes
a donor. If agent i is never a donor, then we let Ẑi,i = DRFi.

Let s1 be the sum of all elements in the first n columns of Ẑ, s2 the sum of all elements
in the next n columns of Ẑ, and s3 the sum of all elements in the last 2n columns. We say
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that a column i is valid if i > 2n, or i ∈ [1, n] and s1 > s2, or i ∈ [n + 1, 2n] and s2 > s1.
Finally, let σ = 1

max{s1,s2}+s3
.

Our dual solution for a given choice of Z is as follows:

• x(t, i) = 0, ∀t, i, and f(t, r) = 0, ∀t ≤ N − 1, r ∈ {1, 2}.

• f(N, 1) = σ if s1 ≥ s2, and zero otherwise. f(N, 2) = σ if s1 > s2, and zero otherwise.

• y(t, i) = σ, for all t > t′, where t′ is such that Ẑt′,i 6= 0, and i is valid. y(t, i) = 0
everywhere else. In other words, y(t, i) is σ from the time after i was a donor for the
last time, but only for i that is valid. Notice that this makes y(t, i)·Zt,i = 0 everywhere.

• l(t, i) = σ ·DRFt if and only if Ẑt,i 6= 0, and i is valid.

See Appendix B.4 for an example.

Lemma 88. The solution described above is feasible for all Z and n, and the value of the
objective is σ.

Proof. • Objective: Notice that x(t, i) = y(t, i)Zt,i = 0, for all t, i, therefore the ob-
jective is simply ∑r f(N, r). At most one of f(N, r) can be non-zero, with a value of
σ.

• First line of constraints:

∑
t,i

l(t, i) = σ

 ∑
t,i valid

Ẑt,i

 = σ (max{s1, s2}+ s3) = 1.

• Second line of constraints:
These constraints reduce to y(t + 1, i) − y(t, i) ≥ 1

DRFt
l(t, i). l(t, i) is non zero only

when Ẑt,i is non-zero and i is valid, in which case, y(t, i) = 0, but y(t + 1, i) = σ,
therefore the constraint is satisfied. When l(t, i) is zero, either both y(t, i), y(t + 1, i)
are zero, or both are equal to σ, therefore the constraint is again satisfied.

• Third line of constraints:
These constraints reduce to ∑r f(N, r)− y(N, i) = σ − y(N, i) ≥ 1

DRFN
l(N, i). l(N, i)

is non-zero only when Ẑt,i is non-zero and i is valid, in which case y(N, i) = 0, and
therefore the constraint is satisfied. If l(N, i) = 0, then notice that the RHS is zero,
and y(N, i) ≤ σ, therefore the constraint is again satisfied.
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Bounding σ

We now show that no matter how Z is chosen, σ is at most 0.6318 . . . Recall that σ =
1

max{s1,s2}+s3
. Therefore, in order to maximize σ, an adversary that picks Z needs to minimize

max{s1, s2}+ s3. Every choice of Z yields Ẑ in a unique way, with all non zero Ẑt,is taking
certain values that depend on DRF.

Define D as follows: n [0, 1]’s followed by n [1, 0]’s, followed by a series of 2n [1, 1]’s This
input has: DRFt = 1

t
for t = 1, . . . , n, DRFt = 1

n
for t = n + 1, . . . , 2n, and DRFt = 1

t−n
for t = 2n+ 1, . . . , 4n. Instead of bounding the minimum (max{s1, s2}+ s3), we bound the
minimum

(
s1+s2

2 + s3
)
. Notice that this value is only smaller, therefore our bound for σ is

worse. Minimizing
(
s1+s2

2 + s3
)

is equivalent to the following game:
We have an ordered set of 4n numbers A, where At = DRFt as described above. We also

have a set of 4n− 1 numbers B = A \ {1}. Replace numbers in A with numbers in B, using
each number in B at most once, to obtain Â. s1 is the sum of the first n elements of Â,
s2 the sum of the next n elements, and s3 the sum of the last 2n elements. Associate each
number Ai ∈ A with a weight wi, which is 1

2 if i ≤ 2n, and 1 otherwise. Our objective is
to minimize the weighted sum ∑4n

i=1wiÂi. We show a strategy for this game that has value
1.58258. This gives σ ≈ 0.6318.

Example 89. For n = 2, we have

B = {1/2, 1/2, 1/2, 1/3, 1/4, 1/5, 1/6}.

A possible way to change A into Â is the following (numbers that were not replaced are
in bold):

w 1/2 1/2 1/2 1/2 1 1 1 1

A 1 1/2 1/2 1/2 1/3 1/4 1/5 1/6

Â 1/5 1/4 1/6 1/3 1/3 1/4 1/5 1/6

The sum of the first n = 2 elements of Â is 1
5 + 1

4 = 0.45, the sum of the next n elements
is 1

3 + 1
6 = 0.5, and the sum of the last 2n elements is 1

3 + 1
4 + 1

5 + 1
6 = 0.95. The tight bound is

max{0.45, 0.5}+ 0.95 = 1.45. The value of the game, i.e., the weighted sum of Â, s1+s2
2 + s3,

is 1.425.

Observation 90. In the optimal solution, Âi ≤ 1
n

, for all i.

Notice that if all the weights are the same, the problem is trivial: greedily replace the
largest number in A with the smallest number in B, until the largest number in A is smaller
than the smallest available number in B.
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In order to minimize the weighted sum of A by replacing numbers in A with numbers in
B, observe the following: for each pair of numbers Ai, Aj ∈ A, with wi < wj, we can find a
number xi,j, such that replacing Ai with a number x ≥ xi,j gives a smaller or equal weighted
sum than replacing Aj with xi,j, and xi,j is the smallest such number. Therefore, xi,j is the
solution to Aiwi + wjx ≥ wjAj + wix, which is xi,j = wjAj−wiAi

wj−wi . If wi = wj then it is better
to replace the smaller of the two.

The following Lemma is immediate:

Lemma 91. In the optimal solution: (1) all i ≥ 3n are never replaced, and (2) all i ≤ n
2

are always replaced.

Proof. We show that if for i ≥ 3n, i.e., Ai ≤ 1
2n and wi = 1, then xj,i ≤ 0, for all j ≤ 2n

(wj = 1/2). This implies that for all positive numbers x, replacing Aj with x is better than
replacing Ai with x. It suffices to consider the maximum reasonable value that Aj can
take, which is 1

n
(Observation 90). By replacing wi = 1, Aj = 1

n
and wj = 1

2 we have:
xj,i = wiAi−wjAj

wi−wj = 2Ai − 1
n
, which less than zero, exactly when Ai ≤ 1

2n . The proof of the
second part of the lemma is similar and is omitted.

Even though, given a number x ∈ B, we can find the optimal number to replace, it is not
generally true that the optimal algorithm considers all Bi in decreasing order. Regardless,
we can show the following structure for the optimal strategy:

Lemma 92. In the optimal solution, if some i > 2n is replaced by b ∈ B, then for all b′ ∈ B
that replaced j ∈ [0, 2n], we have b ≤ b′.

Proof. Assume this is not the case. This means that there is some j ∈ [0, 2n] such that
Aj was replaced by some b′ < b. Let S + b′

2 + b be the value of the game in this strategy.
Consider instead the following strategy: replace Aj with b and Ai with b′. The value now
is S + b

2 + b′ = S + b
2 + b′

2 + b′

2 < S + b + b′

2 , which is the value of the optimal strategy; a
contradiction.

An immediate corollary is that the smallest numbers in B are used to replace the largest
numbers Ai, for i > 2n. Combining with Lemma 91, we get that in the optimal solution, a
fraction f ∗ of the n smallest numbers in B is used to replace all i ∈ [2n+ 1, (2 + f ∗)n], while
the remaining numbers in B are used to replace i ≤ 2n. There are 2n numbers in B that
are smaller than 1

n+1 , therefore for i ≤ 2n, a 1− f∗

2 fraction of them are replaced, while the
f ∗n numbers remaining are equal to 1

n
. The value of the optimal strategy is:
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V ∗ =
4n∑
i=1

wiÂi = 1
2

2n∑
i=1

Âi +
4n∑

i=2n+1
Âi

= 1
2

 n∑
i=f∗n+1

Bi + f ∗n
1
n

+
f∗n∑
i=1

Bi +
4n∑

i=(2+f∗)n+1
Âi

= 1
2

(3−f∗)n∑
i=n+1

1
i

+ f ∗

+
3n∑

i=(3−f∗)n

1
i

+
3n∑

i=(1+f∗)n+1

1
i
.

At the limit this converges to:

f ∗

2 + 1
2 ln (3− f ∗) + ln

(
3

3− f ∗

)
+ ln

(
3

1 + f ∗

)
.

This function is convex for f ∈ [0, 1], with a minimum at 5−
√

17
2 ≈ 0.4384, with a value

of 1.5825. We conclude that σ is at most 1
1.58258 ≈ 0.6318.
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Appendix A

Missing Proofs From Part I

A.1 Proofs missing from Section 4.5

Proof of Claim 51. d
dx

log (1− F (x)) = −f(x)
1−F (x) = −h(x). Therefore, 1 − F (x) = e−

∫ x
0 h(z)dz.

Re-arranging proves the first part of the claim. We get the second part from the definition
of expectation for non-negative random variables.

Proof of Claim 52.

E [X2:4] =
∫ V̄

0
1− F2:4(x)dx =

∫ V̄

0
1− 4F (x)3 + 3F (x)4dx

=
∫ V̄

0
1− 4

(
1− e−H(x)

)3
+ 3

(
1− e−H(x)

)4
=
∫ V̄

0
3e−4H(x) − 8e−3H(x) + 6e−2H(x)dx

Proof of Lemma 54. Since f(x) is continuous, we can pick a δ(ε) = δ > 0, such that for any
x, x′ ∈ [a, b] such that |x− x′| < δ, we have |f(x)− f(x′)| < ε. Let n be an integer such that
b−a
n

< δ, and let xj = a + j · b−a
n

, for j = 0, 1, . . . , n. On each [xj, xj+1] define gε(x) to be
the function whose graph is the line segment connecting (xj, f(xj)) with (xj+1, f(xj+1)), i.e.
gε(x) = f(xj) + t · (f(xj+1)− f(xj)) for some t ∈ [0, 1]. Since gε(x) ∈ [f(xj), f(xj+1)], the
Intermediate Value Theorem implies that for all x ∈ [xj, xj+1] there exists a yj ∈ [xj, xj+1],
such that gε(x) = f(yj). Since each x ∈ [a, b] belongs in some [xj, xj+1], the choice of δ
implies that |f(x)− gε(x)| = |f(x)− f(yj)| < ε. It remains to show that gε(x) is convex: by
construction, the slope of gε(x) for x ∈ [xj, xj+1] is (f(xj+1)− f(xj)) / (xj+1 − xj), which is
strictly increasing with j since f(x) is convex.

Proof of Lemma 56.

E [X2:2] =
∫ ∞

0
(1− F (x))2dx =

∫ ∞
0

e−2H(x)dx ≥
∫ ∞

0
e−H(2x)dx

= 1
2

∫ ∞
0

1− F (x)dx = 1
2E [X] ,
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where the first line holds because H(x) is a convex function. Since E [X1:2] + E [X2:2] =
2E [X], we have that E [X1:2] = 2E [X] − E [X2:2] ≤ 3

2E [X]. Therefore, E [X2:2] ≥ 1
2E [X] ≥

1
2

2
3E [X1:2] = 1

3E [X1:2]. The Lemma follows.

Proof of Lemma 57.

E [X1:n]− E [X2:n] =
∫ ∞

0
F2:n(x)− F1:n(x)dx

=
∫ ∞

0
nF n−1(x)− (n− 1)F n(x)− F n(x)dx

=
∫ ∞

0
nF n−1(x) (1− F (x)) dx

=
∫ ∞

0
nF n−1(x)f(x) 1

h(x)dx

=
∫ ∞

0
f1:n(x) 1

h(x)dx = E
[

1
h(X1:n)

]
.

A.2 Proofs missing from Section 4.6
Claim 93. The expected second order statistic of an equal revenue distribution of k samples
is k − 1.

Proof. For simplicity we show the proof for an untruncated equal revenue distribution X.
F2:k(x) = F k(x) + kF k−1(x) (1− F (x)) =

(
1− 1

x

)k
+ k

(
1− 1

x

)k−1 1
x

=
(
x−1
x

)k (
1− k

1−x

)
.

Therefore, E [X2:k] =
∫∞

1 1−
(
x−1
x

)k (
1− k

1−x

)
dx. The antiderivative of 1−

(
x−1
x

)k (
1− k

1−x

)
is x

(
1−

(
x−1
x

)k)
. Therefore:

E [X2:k] =
∫ ∞

1
1−

(
x− 1
x

)k (
1− k

1− x

)
dx

=
[
x

(
1−

(
x− 1
x

)k)]∞
1

=
(

lim
x→∞

xk − (x− 1)k
xk−1

)
− 1

= k − 1.
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Appendix B

Missing Proofs From Part II

B.1 Number Theory Facts
Fact 94.

Hn ≥ lnn+ γ′, (B.1)

Hn ≤ lnn+ γ′ + 1
2n, (B.2)

It is easy to derive the following:

Lemma 95. [47] For natural numbers b > a > 1,

ln(b)− ln(a− 1)− 1
2a− 2 ≤

b∑
x=a

1
x
≤ ln(b)− ln(a− 1).

B.2 Missing Proofs from Section 5.2

Proof of Lemma 78
Lemma 96. alloc(ψNi , t)�alloc(ψNi+1, t) for all t = t∗i (mod c+ 1).

Proof. If t < t∗i , the Lemma holds trivially. We prove the case t ≥ t∗i by induction on t. For
the base case, denote alloc(ψi, t∗i − 1) = alloc(ψi+1, t

∗
i − 1) = (a1, a2, . . . , at∗i−1).

Then

alloc(ψNi , t∗i ) = (a1, a2, . . . , at∗i−2, at∗i−1, σ/t
∗
i ),

alloc(ψNi+1, t
∗
i ) = (a2, a3, . . . , at∗i−1, σ/t

∗
i , σ/t

∗
i ).

Noticing that alloc(ψi, t∗i − 1) is sorted (hence a` ≥ a`+1 for all `), and at∗i−1 = σ
t∗i−1 >

σ
t∗i

completes the proof of the base case.
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For the inductive step, let alloc(ψNi , t) = (a1, a2, . . . , at) and also let alloc(ψNi+1, t) =
(b1, b2, . . . , bt). Since t = t∗i (mod c + 1), we know that ψNi [t + j] = 0, for all 0 ≤ j ≤ c− 1,
ψNi [t+c] = 1 and ψNi+1[t+j] = 0 for j 6= 1 (mod c+1). p is the distance of t∗i to the previous
1. p′ = (c+ 1− p). (In Example 76, ψ7

4, p = 2. )

alloc(ψNi , t) = (a1, . . . , at−1, at),

alloc(ψNi , t+ p) = (a2, . . . , at,
σ
t+1 ⇀(p−1)

σ
t+p ,

σ
t+p),

alloc(ψNi , t+ c+ 1) = (a2, . . . , at,
σ
t+1 ⇀(p−1)

σ
t+p ,

σ
t+p ,

σ
t+p+1 ⇀(c−p))

and
alloc(ψNi+1, t) = (b1, . . . , bt−1, bt),

alloc(ψNi+1, t+ c+ 1) = (b2, . . . , bt,
σ
t+1 ⇀(c−1)

σ
t+c ,

σ
t+c+1 ,

σ
t+c+1).

The inductive step holds, as a` ≥ b` for all `.

Proof of Lemma 79

Lemma 96. For all t 6= t∗i (mod c+1), t∗i ≤ t ≤ tmax, it holds that bank(ψNi+1, t) ≥
c∑
j=1

σ

t+ j
.

Proof. Recall that p′ is the distance from t to the next 1. It must be that bank(ψNi , t+p′) ≥
c∑
j=1

σ

t+ j + p′
, as the c entries following the next 1 in ψNi are 0. Therefore it suffices to prove

that

talloc(ψNi , t+ p′)− talloc(ψNi+1, t) ≥
c∑
j=1

σ

t+ j
−

c∑
j=1

σ

t+ j + p′

=
p′∑
j=1

σ

t+ j
−

c∑
j=c−p′+1

σ

t+ j + p′
.

Some simple arithmetic shows that

talloc(ψNi , t+ p′)− talloc(ψNi+1, t) =

p′∑
j=1

1
t+ j

+
(

1
t∗i + p′

+ 1
t∗i + c+ 1 + p′

+ · · ·+ 1
t+ p′

)
+
(

1
t∗i

+ 1
t∗i + c+ 1 + · · ·+ 1

t

)

We show that this is at least
p′∑
j=1

σ

t+ j
−

c∑
j=c−p′+1

σ

t+ j + p′
, or equivalently, that

c∑
j=c−p′+1

1
t+ j + p′

+
(

1
t∗i + p′

+ 1
t∗i + c+ 1 + p′

+ · · ·+ 1
t+ p′

)
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−
(

1
t∗i

+ 1
t∗i+c+1 + 1

t∗i+2(c+1) + · · ·+ 1
t

)
≥ 0.

It is easily verifiable that the LHS is decreasing in t in this range (t∗i ≤ t ≤ tmax), therefore
its suffices to prove the inequality for t = tmax. Let

f(t∗i ) =
(

1
tmax + c+ 1 + 1

tmax + c+ 2 + · · ·+ 1
tmax + c+ p′

)
+
(

1
t∗i+p′ + 1

t∗i+c+1+p′ + · · ·+ 1
tmax+p′

)
+
(

1
t∗i

+ 1
t∗i+c+1 + 1

t∗i+2(c+1) + · · ·+ 1
tmax

)
.

Consider f(t∗i + c + 1)− f(t∗i ). We prove that f(t∗i + c + 1)− f(t∗i ) ≤ 0, for all t∗i and c
in Lemma 96. Given this inequality holds, it remains to show that f(t∗i ) is non-negative in
the limit. We can re-write the function as:

f(t∗i ) =
p′∑
j=1

1
tmax + j

+ 1
c+ 1

t∗i+p′−c−3∑
j=0

1
t∗i+p′
c+1 + j

+ 1
c+ 1

t∗i+p′−c−3∑
j=0

1
t∗i
c+1 + j

=

= 1
c+1

(∑ (c+2)t∗
i

+(c+1)(p′−c−3)+p′

c+1
j=(t∗i+p′)/(c+1)

1
j
−∑ (c+2)t∗

i
+(c+1)(p′−c−3)
c+1

j=t∗i /(c+1)
1
j

)
+

(c+2)t∗i+(c+1)(p′−c−3)+c+p′∑
j=(c+2)t∗i+(c+1)(p′−c−3)+c+1

1
j

Applying the approximations for the Harmonic number from Appendix B.1 and taking
the limit as t∗i goes to infinity completes the proof.

Lemma 96. f(t∗i + c+ 1)− f(t∗i ) ≤ 0, for all t∗i and c.

Proof. Set tmax = (c + 2)t∗i + (c + 1)(p′ − c − 3) (this is the tmax w.r.t. t∗i ) and t′max =
(c+ 2)(t∗i + c+ 1) + (c+ 1)(p′ − c− 3) = tmax + (c+ 1)(c+ 2) (this is w.r.t. t∗i + c+ 1). We
have that ∆ = f(t∗i + c+ 1)− f(t∗i ) is:

∆ =
(

1
tmax + (c+ 1)(c+ 2) + c+ 1 + · · ·+ 1

tmax + (c+ 1)(c+ 2) + c+ p′

)

+
(

1
t∗i + c+ 1 + p′

+ · · ·+ 1
tmax + (c+ 1)(c+ 2) + p′

)

−
(

1
t∗i + c+ 1 + 1

t∗i + 2(c+ 1) + · · ·+ 1
tmax + (c+ 1)(c+ 2)

)

−
(

1
tmax + c+ 1 + 1

tmax + c+ 2 + · · ·+ 1
tmax + c+ p′

)

−
(

1
t∗i + p′

+ 1
t∗i + c+ 1 + p′

+ · · ·+ 1
tmax + p′

)

+
(

1
t∗i

+ 1
t∗i + c+ 1 + 1

t∗i + 2(c+ 1) + · · ·+ 1
tmax

)
.
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This can be re-written as:

f(t∗i + c+ 1)− f(t∗i ) =
p′∑
j=1

(
1

tmax + (c+ 1)(c+ 2) + c+ j
− 1
tmax + c+ j

)

+
c+2∑
j=1

1
tmax + (c+ 1)j + p′

− 1
t∗i + p′

−

c+2∑
j=1

1
tmax + (c+ 1)j

+ 1
t∗i

= p′

t∗i (t∗i + p′) −
c+2∑
j=1

p′

(tmax + (c+ 1)j + p′) (tmax + (c+ 1)j)

−
p′∑
j=1

(c+ 1)(c+ 2)
(tmax + (c+ 1)(c+ 2) + c+ j) (tmax + c+ j)

≤ p′

t∗i (t∗i + p′) −
(c+ 2)p′

(tmax + (c+ 1)(c+ 2) + p′) (tmax + (c+ 1)(c+ 2))

−
p′∑
j=1

(c+ 1)(c+ 2)
(tmax + (c+ 1)(c+ 2) + c+ j) (tmax + c+ j)

≤ p′

t∗i (t∗i + p′) −
(c+ 2)p′

(tmax + (c+ 1)(c+ 2) + p′) (tmax + (c+ 1)(c+ 2))

− p′(c+ 1)(c+ 2)
(tmax + (c+ 1)(c+ 2) + c+ p′) (tmax + c+ p′) .

The expression above is equal to:

f(t∗i + c+ 1)−f(t∗i ) ≤
1

−1 + (2 + c)p+ (c+ 2)t + 1
3 + c2 − 2p− 2t− c(−3 + p+ t)

+ ((c+ 1)(1− 3p− 4t+ c(−1 + p+ t)2 + 2(p+ t)2))
(t(t+ p)(−1 + p+ 2t+ c(−1 + p+ t))(−1 + 2p+ 2t+ c(−1 + p+ t))) .

This is easily verified computationally to be non-positive.

Lemma 97. The function f(t) =
(t−1)(c+2)+c+1∑

i=t

1
i

is monotone decreasing in t, for integer

values of t and integer c > 0.
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Proof.

f(t)− f(t+ 1) =
(t−1)(c+2)+c+1∑

i=t

1
i
−

t(c+2)+c+1∑
i=t+1

1
i

= 1
t
−

t(c+2)+c+1∑
i=t(c+2)

1
i
>

1
t
− (c+ 2) 1

t(c+ 2) = 0

Lemma 98. For integer c > 1 and integer t ≥ 2,
t−2∑
i=0

1
t+ i(c+ 1) ≤ 1/2.

Proof. It suffices to prove the Lemma for c = 2, as the sum decreases as c increases.
t−2∑
i=0

1
t+ 3i = 1

t
+

t−2∑
i=1

1
t+ 3i

≤ 1
t

+
∫ t−2

0

1
t+ 3xdx = 1

t
+ 1

3 ln(4− 6/t)

≤ 1
t

+ 1
3 ln 4 ≤ 1/2,

for t ≥ 27. It is easy to computationally verify the Lemma holds for smaller t.

B.3 The Fairness ratio of CDFD for c = 1 and c = 2
We prove the following.

Theorem 65. The optimal fairness ratio of CDFD for any c control vector for c = 1 and
c = 2 are

σ∗
(
(2)−1

)
= 2(3 ln 3)−1 and

σ∗
(
(3)−1

)
= 3(4 ln 4)−1

respectively.

For c = 1, there are two basic control vectors: (1, 0, 1, 0, . . .) and (0, 1, 0, 1, . . .). For c = 2,
there are three basic control vectors (Example 73). We prove the bound in Theorem 65 for
each basic control vector separately. The theorem then follows from Lemma 77. Here we
only present the proof for one of the two control vectors. We omit the proof for the latter
control vector as it is virtually identical. Furthermore, we only present the proof for c = 1;
the proof for c = 2 is by similar (slightly more involved) case analysis.
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step allocation for (0, 1, . . .) sum allocation for (1, 0, . . .) sum
1 σ σ σ σ

2 σ
2 ,

σ
2 σ σ, σ2

90σ
60

3 σ
2 ,

σ
2 ,

σ
3

80σ
60

σ
2 ,

σ
3 ,

σ
3

70σ
60

4 σ
2 ,

σ
3 ,

σ
4 ,

σ
4

80σ
60

σ
2 ,

σ
3 ,

σ
3 ,

σ
4

85σ
60

5 σ
2 ,

σ
3 ,

σ
4 ,

σ
4 ,

σ
5

92σ
60

σ
3 ,

σ
3 ,

σ
4 ,

σ
5 ,

σ
5

79σ
60

6 σ
3 ,

σ
4 ,

σ
4 ,

σ
5 ,

σ
6 ,

σ
6

82σ
60

σ
3 ,

σ
3 ,

σ
4 ,

σ
5 ,

σ
5 ,

σ
6

89σ
60

Table B.1: Allocations for the first 6 steps of Skip with basic 1-control vectors.

Lemma 99. The allocations created by Skip, with basic control vector ψ1 = (0, 1, . . .) (from
step 6 onward) are

1. On steps t = 0 (mod 6): σ
(t/3)+1 ,on1,

σ
t
, σ
t
.

2. On steps t = 2 (mod 6):
(

σ
((t+1)/3)+1

)
on1,

σ
t
, σ
t
.

3. On steps t = 4 (mod 6): σ
((t+2)/3) ,⇀1,on1,

σ
t
, σ
t
.

On odd steps, add σ
t

to the previous step (note the denominators have “changed” relative to
the new step).

Proof. The proof is by induction on the round number. The base case (step 6) appears in
Table B.1. The move from even to odd steps is immediate, as there is no donor. Because
only the agent with the highest utility has her allocation decreased, it is easy to verify the
transition from odd to even steps, by renaming the denominators.

In order to compute the optimal fairness ratio achieved by Skip on ψ1, we bound the sum
of allocations at odd steps, as each odd step uses strictly more resources than the previous
even step.

We bound the size of bank(ψ1, t), noting for all t > 0, bank(ψ1, t) < 1. On odd steps,
we take σ

i
from the bank. On all even steps except the second and fourth, we return some

resource to the bank. (Note that to be able to reach step 5, we need 23σ
15 in the bank; this

immediately implies that σ ≤ 15
23 .) First, we show that the resource allocated monotonically

increases, when we look at it through a slightly wider lens:

Lemma 100. The total resource allocated by Skip(ψ1) in steps t = 5 (mod 6) is (strictly)
monotone increasing.

Proof. It is easy to verify the following, from Lemma 99:
Fix some τ = 0 (mod 6), τ ≥ 6.
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1. On step τ , we give σ
(

σ
τ/3 −

2
τ

)
= σ

τ
to the bank.

2. On step τ + 2, we give σ
(

1
τ/3+1 −

2
τ+2

)
= στ

(τ+2)(τ+3)

3. On step τ + 4, we return σ
(

1
τ/3+2 −

2
τ+4

)
= στ

(τ+4)(τ+6) .

On steps τ + 1, τ + 3, τ + 5, we take σ
τ+1 ,

σ
τ+3 ,

σ
τ+5 respectively. It is easy to verify (by simple

calculus), that for τ ≥ 6, the sum of what we take over these 6 steps is greater than the sum
of what we give. The proof follows.

We now complete the proof of Theorem 65 (for the control vector (1, 0, 1, 0, . . .)).

Sketch of proof of Theorem 65. From Proposition 100, the amount of resource allocated in-
creases; therefore we only need to make sure the algorithm doesn’t over allocate when t goes
to infinity. We analyze the case when the allocation is larger than all previous allocations,
t = 5 (mod 6). At time t = 0 (mod 6), the total resource allocated is

σ

2
t/3∑
i=1

1
t/3 + 2i +

t/3∑
i=1

1
t/3 + 2i− 1

 ≈ σ

3
2

t∑
i=t/3

1
i

 ≈ σ
3 ln 3

2 .

It must hold that σ 3 ln 3
2 ≤ 1, and the allocations at times t = 0 (mod 6) and t = 5 (mod 6)

are asymptotically the same. The theorem follows.

B.4 Example of constructing a feasible dual solution
For a concrete example, let n = 2, with Z and Ẑ as follows:

Z =



0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0


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Ẑ =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

DRF4 0 0 0 0 0 0 0

0 0 DRF5 0 0 0 0 0

0 0 0 DRF6 0 DRF6 0 0

0 DRF7 0 0 0 0 DRF7 0

0 0 0 0 DRF8 0 0 DRF8


with s1 = DRF4 +DRF7, s2 = DRF5 +DRF6, s3 = 2∗DRF8 +DRF6 +DRF7. We have

that DRF4 = 1
2 , DRF5 = 1

3 , DRF6 = 1
4 , DRF7 = 1

5 and DRF8 = 1
6 . Therefore, s1 = 0.7,

s2 = 7
12 and s3 = 7

12 + 1
5 . Therefore, we have that

σ = 1
s1 + s3

= 0.6741.

This gives us:

y =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

σ 0 0 0 0 0 0 0

σ 0 0 0 0 0 0 0

σ 0 0 0 0 σ 0 0

σ σ 0 0 0 σ σ 0


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l =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

σDRF4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 σDRF6 0 0

0 σDRF7 0 0 0 0 σDRF7 0

0 0 0 0 σDRF8 0 0 σDRF8


and f(N, 1) = σ, f(N, 2) = 0.

B.5 Additional Figures

Figure B.1: Optimal values of talloc for different control vectors when c = 10.
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