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Abstract

Supporting Asynchronous Interactive Visualization for Exploratory Data Analysis
by
Larry Xu
Master of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Interactive data visualizations have become a powerful tool for exploratory data anal-
ysis, allowing users to quickly explore different subsets of their data and visually test
hypotheses. While new design tools have made creating such visualizations easier, these
tools often do not scale well to large datasets that do not fit on a user’s machine. This
becomes increasingly more common as data collection grows and storage costs become
cheaper. In such cases, the visualization must request new data across a network for
each interaction. When interactive latencies are introduced to a visualization, the user
experience can deteriorate to the point of being inconsistent and unusable. To address
these issues we present a new interaction design technique, Chronicled Interactions, which
allows for creating asynchronous interactive visualizations that are resilient to latency.
Through online user studies, we validate that users are able to complete visual analysis
tasks quicker with this new design compared to a traditional interface under conditions
of latency.
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Chapter 1

Introduction

Visualization plays a large role in exploratory data analysis as a method of gaining
valuable insights from looking at data. Visual analysis leverages human perception to
find patterns that may not be immediately evident from looking at a table of numbers.
A classical example of this is shown in Figure 1.1, Anscombe’s quartet [2]—four datasets
with the exact same descriptive statistics (mean, variance, correlation), but that reveal
wildly different patterns when plotted. This simple example highlights the ability of
visualizations to easily reveal trends and anomalies in data. Heer et al. [19] present a
comprehensive list of visualization techniques for exploratory analysis.

Figure 1.1: Anscombe’s quartet
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The creation of domain-specific tools and languages has made designing such data
visualizations progressively easier. ggplot2 [43] in R allows for declaratively specifying
graphs without any imperative logic involved. With only a few simple commands, users
are able to visualize data and customize a visualization through specifying different
encodings. D3 [5] has become widely used for its ability to easily author visualizations
on the web. It supports a diverse set of charts through visual primitives and plugins.
The success of ggplot2 and D3 has shown that lowering the complexity for creating
visualizations enables people to perform quicker analysis and communicate their results
faster.

More recently, interactive data visualizations have enabled richer user experiences
for exploring data. Visualizations that support interactions allow the user to directly
manipulate the data and process multiple views or subsets. While static visualizations
are useful for analyzing small datasets with simple quantitative or categorical variables,
accommodating large datasets with different kinds of variables such as geospatial, time
series, or relational data can be challenging. To support a wide variety of variable types,
it is useful to display data in an integrated visual dashboard with multiple different
coordinated views.

& MAPD

NYC Taxi Rides

Taxi Dropoffs # Records By Payment Type #Records By Trip Distance

55555555555

nnnnnnn

New York
#Records By Pickup Time

Figure 1.2: MapD NYC Taxi Rides interactive data visualization. This visual dashboard
lets users explore multiple dimensions of taxi data and uses a variety of visual displays
including map, time series, and histograms. These displays are coordinated, such that
interactions which filter one display affect the other displays.
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Consider the MapD visual dashboard of NYC taxi rides in Figure 1.2 [26]. This high-
density display allows exploration of one billion records of data. Such information den-
sity cannot be captured with tabular data displays or static visualization displays. For
the dashboard to be effective, it relies heavily on interaction to allow users to explore dif-
ferent parts of the data and gain relevant insights. The dashboard itself does not leverage
particularly complex visualizations. Maps, line charts, and histograms are common rep-
resentations used in data analytics. Interactive visual dashboards can contain a diverse
assortment of charts and visualizations, and any interactive filtering applied to one view
will affect the others in a technique called brushing and linking [3].

Developing interactive visualizations like this can be much more difficult and time-
consuming compared to their static counterparts. Designers must reason about impera-
tive event handling and state management to support interactions. Common visualiza-
tion toolkits such as ggplot2 and D3 do not natively support interactions, so new tools
have been developed specifically for interactive visualizations. Vega [35] is an interac-
tive visualization grammar which attempts to address these issues through declarative
abstractions. It is able to support high-level descriptions of interaction behaviors with-
out needing to specify imperative event handling procedures. Although less declarative
than Vega, Plotly [36] similarly provides a library for easily creating interactive visual-
izations without the need for complex code. Both of these tools are targeted at authoring
interactive web visualizations.

Despite this progress in easily specifying interactive visualizations, there exists an-
other issue that needs to be addressed when creating high-density interactive visualiza-
tions as in the MapD example. The visualization must be able to scale to large datasets to
support interactive big data analytics. This typically requires querying data across a net-
work. Data may be distributed across multiple machines and geographically decentral-
ized. When trying to explore and analyze such a large distribution of data, queries must
be made to multiple different nodes involving potentially large data transfers across a
network. For example, consider a sales analyst looking at data managed by an Apache
Spark [45] cluster to aggregate their company sales data from across multiple geographic
regions. Each query they run can take on the order of seconds to complete [8], making
it prohibitively expensive to interactively explore multiple slices of data in sequence.

One of the prominent challenges of visual analysis today is enabling interactive data
visualization for large-scale exploratory data analysis scenarios such as these. The core
issue is limiting latency and its effects on the usability of a visualization. Given that the
data analyzed in a visualization may not be immediately available on a user’s machine,
they must make network requests to one or more remote sources for data. These requests
inherently incur latency that scales with the size of the data or workload being queried.
When every user interaction performs a new request, this can slow down productivity
and the ability to effectively explore the data. Variance in latencies can cause out-of-order
responses, and potentially result in inconsistencies on the interface. These can create a
frustrating user experience by exacerbating cognitive issues in visualizations such as
change blindness [31], short term memory limits [6], and the gulf of evaluation [30].
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In response to these challenges, special-purpose systems such as MapD’s GPU ac-
celerated database and visual interface have been built to handle low-latency visual
analytics queries on large datasets. Tableau [42] offers its own system for composing vi-
sualizations from heterogeneous data sources such as multiple different databases. Such
tools can be compelling for interactive big data analytics, where visual toolkits like D3
cannot scale. Although proprietary end-to-end visualization systems like Tableau and
MapD are making the problems of latency in interactive visualizations easier, they re-
quire buying into an ecosystem rather than allowing visualization designers freedom to
work with their own tools. Similarly, while a large variety of known backend techniques
exist for decreasing latency such as sampling, aggregation, and caching; these are not
general-purpose enough to work with all data sources and are still limited by variance
in network speeds.

So the motivating question becomes, can we create simple interaction designs that are
still effective in the face of latency? By starting with the assumption that latency exists
in an interactive visualization, we can better design around this issue. In this thesis we
present Chronicled Interactions, a model for designing asynchronous interactive visual-
izations that are resilient to issues of interactive latency. The model is meant to extend
existing visualization toolkits to better support large datasets for exploratory analysis
across a variety of backend data systems. Through a set of online user studies, we
demonstrate that users can effectively leverage these new interaction designs to improve
performance on a variety of visual analysis tasks under latency compared to traditional
interfaces.



Chapter 2

Modeling Interactive Visualizations

To design effective interactive visualizations for large-scale exploratory data analysis
scenarios, we first survey existing methods of modeling interactions and their corre-
sponding visual results. These will help inform the design decisions of our Chronicled
Interactions model in the next chapter. We broadly look at literature from the systems,
human-computer interaction, and cognitive science communities for ways to design and
reason about interactive visualizations.

2.1  Event streams

One approach to working with interactions is to model them as event streams. Each type
of user input represents a separate stream, so for example there can be a mousemove
stream, a click stream, and a keypress stream; and different interface elements can have
their own separate event streams. Thus, the actual mechanism for producing the inter-
action can be abstracted away as purely an event source in a dataflow architecture. See
Figure 2.1 for an example event stream diagram.

This approach is adopted by Reactive Extensions [28] and Cycle,js [11] to build re-
active user interfaces that can automatically propagate user input events to the appro-
priate application functions which re-render the Ul These frameworks are built off of
functional reactive programming principles as a way to control asynchronous event han-
dling. The Vega runtime [35] also incorporates this idea and allows for declaratively
performing operations on streams of input events. Vega is able to create interactive vi-
sualizations through a declarative specification without the need for imperative event
handling logic.

The reactive dataflow programming paradigm has been previously explored in other
languages such as Haskell [29]. It offers a powerful method for composing programs
as a directed operation graph. Data flows through the graph and can be transformed at
each operation. The user interface rendering can also be modeled as an operator in such
a graph. It processes a stream of render events which are mapped to visual updates
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Figure 2.1: Mousemove event stream. Upon each movement of the user’s mouse cursor,
the stream propagates an event with the (x,y) coordinates of the cursor position. This
stream can be fed into a reactive dataflow architecture or mapped to other streams for
further processing of the events.

on screen. The developer defines the operators, and the execution environment streams
data through them at runtime.

Van Wijk explored a similar model of interactive visualization as an operation graph
[41]. A key difference is that in his model, interactions only modify the visual speci-
fication of how data gets mapped into visual marks. We consider this a subset of in-
teractions, and also consider cases where interactions can modify the actual data being
visualized. This is the case when an interaction issues a new query for data. For ex-
ample, when a user pans a map and new data points are drawn according to the new
region of interest. In all future discussion of interactions, we consider interactions that
affect both the visual specifications and underlying data.

2.2 Human-in-the-loop distributed systems

Typical distributed system models only consider the actual machines communicating
over the network, while abstracting away the human user as part of the client machine.
However, we can adopt a human-in-the-loop view which considers the user as a node in
the system much like any other machine node as in Figure 2.2. The user sends requests
to the client machine in the form of interactions and receives responses through visual
updates to their screen. And so we can model the user in the context of the whole
distributed system, with consideration of how communication is handled between the
user and rest of the system. This approach is helpful for considering the needs of the
user and applying systems ideas to explain user behaviors. For example, consider the
following sequence of events that occur during a single user interaction:
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Figure 2.2: Human-in-the-loop view of an interactive visualization system

1. User Joe hovers over a data point A through a mouse interaction, represented here
as a “request” from Joe to the client interface.

2. The client receives Joe’s request via a mousemove event handler and processes it
by

a) immediately responding back to Joe’s request, represented here as an update
to the visual marks on the screen (e.g. showing a loading indicator)

b) sending a new request to a backend server for more data, parameterized by
the id of the data point A which Joe selected

3. Joe receives the immediate visual feedback that his request is being processed

4. The backend server receives the request for data on point A, processes it (poten-
tially requiring even more requests to other remote machines), and then sends back
a response

5. The client receives the server’s response, processes it, and then sends another mes-
sage to Joe by updating the visual marks on the screen (e.g. rendering a new
visualization)

6. Joe receives the new information, processes it, and performs a new interaction
(back to step 1)

This short example sequence demonstrates the inherent difficulty and complexity of
designing an interactive user interface that supports large-scale data exploration. Mul-
tiple points of communication between the user, client, and server means that a ro-
bust visualization should mitigate failures and handle them appropriately if they occur.
Speaking only from the client machine’s perspective, it must carefully keep track of in-
ternal state and know how to respond to messages both from the user and the server.
Handling this logic and carefully managing the state can become a challenge for the
developer working on the visualization software. If not handled properly, subtle bugs
are likely to be introduced in complex applications.

For each interaction the user performs, there are actually two responses that they
receive. One is the immediate visual feedback that acknowledges their request, and the
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other is the intended visual effect upon receiving data from the server. By decoupling
these two, we make an important distinction that many interfaces fail to address. Inter-
faces that lack proper visual feedback mechanisms such as loading spinners or progress
bars can leave the user confused about the state of UL Such confusion can often lead to
the user performing multiple repeated interactions such as repeatedly clicking a button
when unsure if previous clicks were being registered and processed. If left in a state of
confusion for too long or if the interface actually does become broken from a subtle bug,
the user may become frustrated and restart their entire interactive session.

An interaction can also initiate more than one request. For example if the user pans
across a map, the client machine could send one request for additional data to load
the underlying geographic map, as well as another request for data points within the
specified area of the map which are rendered as a layer on top of the map. If the request
for the data points finishes before the request for the mapping data, then the developer
must decide whether it makes sense to render the data points without the context of the
map or to delay the rendering until the mapping data is also received.

Furthermore, consider the fact that within a single interactive session, a user can
issue multiple interactions concurrently while other results are still processing. In the
mapping example, the user could pan across the map multiple times in quick succession
before any data points load. In which case the client should ignore the previous requests
for data, and render the response data for only the region of the map which is actually
being viewed.

Though not a focus of this work, the model described here can be extended to support
real-time streaming updates represented as data being sent from the server irrespective
of any requests from the user or client. Therein lies another set of challenges of effectively
communicating updates to the user with real-time constraints.

2.3 Visual encodings

So far in this chapter we have examined models of the user interaction process with
examples that are grounded in interactive visualization interfaces. However, these in-
teraction models are applicable to any interactive user interface in general. So to better
motivate the design of a new model for interactive data visualizations, we now spend
the rest of the chapter discussing models focused specifically around data visualization.

Data visualization can be described as the process of encoding data into visual marks.
A visual mark is the basic unit of a visualization, such as a point, line, or area. Vari-
ables of the data are encoded as visual properties of the marks called visual variables.
Examples of commonly used visual variables are position, size, and color. These visual
marks can then be decoded by a human’s perceptual system to read the data. Figure 2.3
presents a diagram of this model. The process of perceptual decoding is imperfect,
and is highly affected by both the visual encodings used and the user’s own percep-
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tual idiosyncrasies. We discuss the cognitive aspects of reading and interacting with a
visualization in the next section, but for now focus on the aspects of visual mapping.

o
{age: ..., ® @
weight: ..., } '
data >  marks > knowledge

visual perceptual
encoding decoding

Figure 2.3: The visual encoding and decoding process

In his book, Semiology of Graphics, Jacques Bertin describes cartographic visualiza-
tions as the composition of marks, which serve as the basic unit of visualization, as
well as visual variables which can vary the properties of those marks (e.g. size, color,
shape) [4]. His initial list of seven visual variables was later expanded upon by Mackin-
lay et al. [25], who provided a ranking of their effectiveness for various perceptual tasks
in order to guide visual design recommendations. More recently, variables such as time,
motion, 3D, and transparency were introduced, made possible through the use of com-
puters and animated graphics for visualization. Beyond Mackinlay et al.’s work, there
has been a large body of research over the years which seeks to understand which vi-
sual variables are more effective for perceptual accuracy in a variety of tasks [9, 20, 37].
Understanding the effects of different visual encodings is important for designing visu-
alizations that are usable and effective at conveying information. This is especially true
in settings when visualizing multi-dimensional data where a separate visual encoding
must be used for each dimension of the data.

2.4 Cognition

The process of viewing and interacting with a data visualization can be further examined
through a cognitive lens to better understand usability constraints and human difficulties
when using a visualization. This is critical for designing human-in-the-loop data analysis
systems so that failure cases and human error can be mitigated. There is a variety of
cognitive science literature focused on the areas of perception and memory which can
be relevant to interactive visualizations. By modeling user behavior when interacting
with a visualization, we can design better interfaces that leverage the user’s cognitive
abilities.

As described in the previous section, the process of visually decoding a visualization
inherently relies on the user’s perceptual system to read an accurate value from the
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marks on their screen. This can be a difficult or easy task depending on the type of
visual encoding used. Cleveland et al. studied perceptual accuracy rankings for reading
different types of charts such as aligned bar charts, stacked bar charts, and pie charts [9].
Their findings showed significant differences in users’ abilities to read certain charts
and accurately describe their encoded values. This motivates careful consideration for
designing visualizations, which should ideally leverage encodings with high perceptual
accuracy.

Change blindness is the perceptual phenomenon of humans being unable to perceive
a visual change, even if the change is not very subtle. Applied to an interactive visu-
alization setting, this can happen when there are many updates that are happening too
quickly or to different parts of the screen. It can be difficult for a user to focus their
attention on multiple coordinated views and be consciously aware of every change that
occurs on screen. Finding methods to counteract change blindness is an active area of
research that can be applied to visualization designs [31]. For example, one such method
is to leverage pre-attentive visual attributes. These are attributes which human eyes are
able to notice typically within less than 200-250 ms [17]. The use of pre-attentive visual
attributes such as hue, size, and orientation, removes the need for humans to perform
focused visual attention processing on areas of the screen, lessening the time required to
absorb information and increasing the likelihood of noticing changes of a visual inter-
face.

In an interactive environment with latency, it might be difficult for humans to under-
stand how their interactions affected the results on screen if it takes multiple seconds for
interactions to be processed. Referred to as the “gulf of evaluation”, the user has diffi-
culty determining the state of the system when no visual feedback is given in response to
their interactions [30]. Hutchins et al. advocated the use of direct manipulation to lessen
this gulf by directly fulfilling user’s expectations of how their actions are interpreted
by the interface [22]. While direct manipulation may seem impractical in an interactive
setting with latency, there are other methods which can be used to help reduce the gulf
of evaluation. For example, visual feedback mechanisms such as progress indicators can
be displayed when interactions are being processed so that the user knows their actions
have been acknowledged by the system.

While most cognitive information visualization research has focused on the topic of
human visual perception, the emergence of highly interactive visualizations makes it rel-
evant to look at a broader scope of HCI research. Card et al. defined the Model Human
Processor in 1983 as a method for modeling the time spent by a user performing a cog-
nitive task, broken down by perception, memory, and motor functions [6]. This model
is useful for estimating how a user might interact with a visualization. For example,
their experiments suggest that an average human working memory can hold about 7
chunks of information with a half-life decay of about 7 seconds. When interacting with
a visualization, a user typically employs their short term memory. In an exploratory
data analysis setting, the visualization that a user interacts with can change quickly over
the course of an interaction sequence and so it is likely for the human memory to fill up.
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Unlike computer memory, human memory is limited and so visualization tools can ac-
count for this by reducing human memory load when possible, for example by keeping
important data visible on screen.

Hollan et al. introduced the Distributed Cognition framework in 2000 for reasoning
about the cognitive effects of embodied agents interacting within an environment [21].
Their work explores multiple ideas of how to design tools in the context of a networked
and distributed environment. Relevant to the study of interactive visualizations is their
notion of history-enriched digital objects and effective use of spatial layouts. They argue
that applications which encode the history of past use can facilitate interaction similar to
affordances in the physical world such as physical wear of a tool. The more recent work
on HindSight [13], a system for encouraging exploration by visualizing past interaction
history, embodies this notion. The Distributed Cognition framework also argues that
effective use of space can reduce the time and memory demands of certain tasks, as space
can be used to encode ordering and off-load human memory. Their primary examples
focus on the physical world and spatial arrangement of objects in a 3D environment,
so there is an interesting question of whether these ideas can be effectively applied to
digital interfaces. We explore this idea further in Section 3.2.
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Chapter 3

Chronicled Interactions

In this chapter we introduce the main contribution of this thesis, Chronicled Interac-
tions, a new model for designing asynchronous interactive visualizations. This model
builds upon ideas discussed in the previous chapter for designing interactive visual in-
terfaces, while introducing new ways to express interactions specifically in the context of
latency. The main idea behind Chronicled Interactions is to store and visualize a history
of past interactions and their corresponding results, which allows the user to execute
interactions concurrently while reducing their cognitive memory load. This chapter de-
tails the different aspects of the model starting with a description of the data and visual
layers, followed by methods of corresponding the two layers. The visualization designs
produced by this model can be demonstrably more effective at targeting large-scale ex-
ploratory data analysis problems. The following chapter evaluates the effectiveness of
Chronicled Interactions through user experiments incorporating different visual designs
from the model design space.

The primary motivation for defining a new model stems from the lack of readily
usable means of modeling asynchronous interactions in a visual interface. Traditional
methods assume all interactions are resolved immediately, whereby their effects are ren-
dered on screen and no additional loading happens. This is an inaccurate depiction of
current data analytics scenarios which require that interactions are resolved after some
amount of latency due to data querying and processing times. These scenarios introduce
new challenges for the designers of highly interactive visualizations who now need to
handle complex asynchronous event handling and potential consistency issues. In ad-
dition, new cognitive challenges arise for users of such visualizations who must now
endure longer wait times per interaction and can have more difficulty in understanding
the state of a continually changing interface.
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3.1 Data layer: history of interactions

Chronicled Interactions is comprised of two important abstractions. The data layer de-
scribes how interactions and their corresponding data updates are modeled, while the
visual layer describes how this data is visualized. The data layer is purely responsible
for managing interactions and their responses, irrespective of how these interactions, re-
sponses, or any intermediate state is visualized on a user’s screen. By introducing these
separate abstractions, we are able to build a robust method for dealing with asynchrony:
manage a history of interactions and their responses over time, and have methods of
visualizing that history as it changes over time.

Interaction History

History of interactions has been well studied as a tool for understanding and making use
of interactive processes [13]. Heer et al. [20] provides a description of the design space
of graphical histories to support navigation and exploration in visualization interfaces.
Chronicled Interactions requires a model of interaction history and methods to visualize
it so the user can track their recent results and enable more concurrent interactivity.

As previously discussed in Section 2.1, all interactions can be modeled as a stream of
user input events. A single unit of interaction is a user event that causes a data update.
The data update is a request to a server whose response results are used to modify the
underlying dataset of a visualization. In practice there are often well-defined semantics
for an interaction, as seen in research projects investigating latency [24, 15]. For example,
when clicking on a data point in a chart, a new query for data is processed which
is parameterized by the coordinates of the data point selected. The interaction can be
translated directly into a SQL query or any other well-formed request to an API endpoint
that serves data. Thus the design of Chronicled Interactions is backend-agnostic, which
is useful for directly applying it to any application.

This stream of interaction events has a strict total order, which is defined by the time
at which each interaction occurred. However the corresponding responses to the data
updates for these interactions can occur in an arbitrary ordering, and in some cases may
even fail. The ordering of responses is dependent upon the latency of each data update,
and some updates may have higher latency than others. This can be caused by several
different reasons such as varying query workload, network speed, dataset size, or cache
misses. Case 4 of Figure 3.1 demonstrates how responses can be rendered out of order
under varying latency.

These potential re-orderings of responses can be resolved by associating them with
their corresponding interactions. Using the order that the interactions occurred, the re-
sponses are stored and versioned such that the responses can then be later differentiated.
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Figure 3.1: A sequence of interaction requests and responses under different conditions
visualized on a horizontal time axis. Colored arrows represent request/response pairs
over time. Light vertical lines highlight request times. (1) The ideal no latency scenario
commonly assumed by visualization designers. (2) With latency, the user waits for each
response to load before interacting. (3) With latency, the user interacts without waiting.
(4) With varying latency, the user interacts without waiting and may see responses in a
different order than requests were issued.

Data Versioning

When a data update is resolved, its results are used to update the underlying dataset of
a visualization. As described in Section 2.3, conceptually the visualization maps values
in the data domain to marks in the visual domain. Section 3.2 provides details of this
mapping for Chronicled Interactions. Upon each new update, this dataset is simply
augmented with a new value in a separate dimension which denotes its version. In
essence we are now versioning the underlying dataset, and specifying these versions by
interaction history. See Table 3.1 for an example.
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year price version

year price 2015 10 V1
2016 20 V4

2015 10— 5017 50 \&!

2016 20

2017 50 2015 20 V2
2016 30 v2
2017 20 V2

Table 3.1: Adding History Dimension to a Dataset

Buffer Management of History

Rather than store all of a user’s interaction history, we can maintain a buffer of only the
most recent interactions and data updates. Providing a bound on the history stems from
a variety of design and implementation constraints.

From a cognitive perspective, a user may be able to view and process the results from
a few interactions at a time, but the difficulty of understanding and making comparisons
among the results increases as more interactions are displayed. Assuming the user iter-
atively updates their data exploration strategy over time, it makes sense that they care
most about the most recent results which were created as a result of their own interac-
tions. As time progresses, users may not be able to keep track of multiple versions and
so it is natural to cut off the history.

From a visualization perspective, a simple line chart may be capable of rendering 5
distinct versions of a time series, but it may not be able to effectively render 50 versions,
e.g. due to over-plotting points on the same space. While there exist various techniques
for reducing the over-plotting problem such as jittering and transparency [14], these can
only extend the amount of versions visible on screen. There still exists a physical limit
to how much data can be displayed effectively.

From a systems perspective, the resulting data of these interactions can be quite large
in memory size, and thus can easily run up against the client machine’s memory limits
if stored indefinitely. Thus, we capture this limit via a sliding window semantic on the
interaction history and keep a relevant buffer of interactions, which helps guarantee that
the complexity of the resulting visualization is bounded.

When maintaining a fixed set of interaction history, a new interaction being pushed
into a buffer that is currently full must evict an existing interaction. A simple strategy is
to evict the oldest interaction immediately upon user interaction, or evict upon the data
update for the new interaction having been resolved. Other buffer management policies
could also be implemented, with varying effects on the end visualization.

The notion of a history buffer can also be used for expressing traditional interfaces
that show only one result at once. Such an interface can be expressed as having a
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buffer size of exactly 1, where only the result of the most recent interaction is stored
and managed. Chronicled Interactions extends the size of this buffer, and the history
can contain arbitrarily long sequences of interactions. An unbounded history could
even store every single interaction and corresponding result in an interactive session.
However for practical implementation purposes, a bounded buffer on the history should
be used. In Section 4.2, we evaluate the effects of multiple different buffer sizes on a set
of visual analysis tasks.

3.2 Visual layer: visualizing history

Given our model of interaction history and the associated versioned data updates, we
now take a look at how to expose this history to the user interface through visualization.
Properly communicating the state of the interface and leveraging the user’s cognitive ca-
pabilities can improve the interactive visualization experience in the presence of latency.

Visualizing Interaction History

In our framework, we model visualizations purely as a functional mapping of some
dataset to visual components on screen. These visual components can be formed by
arbitrary mappings, but it is helpful to think of them in terms of common charts and
layouts. Interactive visual components that accept user inputs are referred to here as
widgets. Interactions on a widget are captured and processed in the data layer as de-
scribed in the previous section. A widget can either be an interactive chart or a separate
component such as a menu which is not meant to visualize data. In the latter case, a
widget is generally paired with a corresponding chart which gets updated in response
to interactions on the widget component. An example of this can be seen in Figure 3.2.

The only significant requirement for the chart and widget to properly expose a user’s
interaction history is that they need to be able to visualize another dimension: the version
history. For an example, see the mapping in Figure 3.2. The chart introduces color
as a third visual encoding on top of its existing positional encodings to represent the
version history. Both the input widget and the output chart need to encode the history
of interactions and results. In some ways widgets can be more constraining than charts
due to a lack of viable visual encoding channels. For example, a more difficult interactive
widget might be a checkbox, where it becomes unclear how one would easily visualize
the version history of past clicks.

Techniques for Visualizing Versions

Chronicled Interactions requires visualizing the new versions of data without changing
existing visual encodings. This could be achieved by adding another visual encoding
channel that is not currently used by the existing visualization. Edward Tufte explored
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Interactive widget Overlay Small multiples

Figure 3.2: Different visual techniques for displaying multiple versions of a dataset at
the same time: overlay (middle), and small multiples (right). Visual correspondence is
achieved through a shared color encoding on the interactive widget (left) and display
charts. All the Ul elements are able to indicate whether more data is currently being
loaded through the use of a loading spinner.

the idea of viewing multiple connected images through his notion of visual parallelism.
In his book, Visual Explanations, Tufte describes two different methods for leveraging
visual parallelism using either space or time [39]:

Spatial parallelism takes advantage of our notable capacity to compare and
reason about multiple images that appear simultaneously within our eyespan.
We are able to canvass, sort, identify, reconnoiter, select, contrast, review—
ways of seeing all quickened and sharpened by the direct spatial adjacency
of parallel elements.

Parallel images can also be distributed temporally, with one like image fol-
lowing another, parallel in time. For time-bound sequences, comparisons
must be made by contrasting a remembered image with a currently viewed
image, a sometimes difficult task.

We can apply these ideas of visual parallelism to help broadly classify different tech-
niques for displaying multiple datasets in a single visualization. Here we describe in de-
tail three common categories of techniques which encode multidimensional data through
an additional visual variable:

e Small multiples is an established visualization technique that draws different
graphs corresponding to each slice of data to reveal change and patterns. In Tufte’s
explanation of spatial parallelism, he explicitly refers to using small multiples in
space to effectively enable comparisons. Using multiples to represent history has
been extensively studied in the past with favorable results for aiding exploratory
analysis [20, 34, 12]. See Figure 3.2 (right) for an example.
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e Overlay is a common technique used to perform comparisons across multiple data
series by overlaying them on top of each other. Tufte describes this technique as
“superimposed parallelism, directly overlapping rather than side by side”. See
Figure 3.2 (middle) for an example. Overlay makes effective use of space by lever-
aging an additional encoding such as color to differentiate different sets of data.
This technique can only work well for certain types of charts. For example, a line
chart or scatterplot is a natural fit for using overlay, but a pie chart or bar chart
may require modifications such as stacking in order to make use of overlay.

e Animation is a technique that has become more common with the advent of highly
interactive visual interfaces. Whereas the previous two techniques leverage addi-
tional space on the screen to render multiple versions of data, animation renders
different versions at different points in time.

3.3 Correspondence: mapping interactions to results

While the previous section described methods for visually differentiating multiple ver-
sions of a dataset in the same visualization, in order for the user to understand which
data corresponded to an earlier interaction, the correspondence must be explicitly visu-
alized. In the scenario where the interactive widget and chart are separate Ul elements,
this means the widget and chart must share a common visual encoding to correspond
the interaction with the result. Figure 3.2 presents an example using color.

This visual encoding can be used to match the sequence of interaction history to
response history. Explicit visual correspondence is important because it can be unclear
which results on screen correspond to the user’s earlier interactions when there is latency
and possible reordering. Furthermore, the shared encoding must be unique across the
UI to prevent mistaken inferences of correspondence and confusion for the user.

When choosing the visual variable for encoding interaction history, it is important
to decide whether the variable should support an ordered reading. An ordered visual
variable allows for perceiving the order in which interactions occurred, whereas an un-
ordered one does not. Figure 3.3 shows two different color encodings that could be used
for visually representing history. In the ordered case, darker colors could be used to
represent more recent interactions, with the least recent ones appearing lightly faded as
they are less likely to be relevant to the user. In the unordered case, each interaction is
represented with a distinct color which makes differentiating between them easier, but
the ordering is lost.

Comparisons between ordered and unordered encoding types have been well stud-
ied [25, 38], and ordered encodings of interactions have proven valuable in previous data
exploration designs [13]. However, while it might seem beneficial to always use an or-
dered color encoding, we have found that this might not always be the case. Some visual
analysis tasks such as trend detection can make use of the visual ordering, whereas for
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ordered color encoding unordered color encoding

Figure 3.3: Two possible color encodings used for visualizing interaction history. The
left is an ordered sequential encoding of blue values, and the right is an unordered
categorical encoding of multiple color values. These palettes were selected from Color-
Brewer [16].

other tasks the ordering may be irrelevant. For example, consider the case when a user
is exploring multiple subsets of data to find out whether any subset satisfies some condi-
tion. This is a common scenario when investigating multiple regions of a map, locating
outliers among many points, or aggregating results from multiple sources. Such a task
may not require investigating the data in a certain order, and may instead require being
able to distinguish the data from one another. In such cases, an unordered encoding
can actually make the task easier. In Section 4.2, we evaluate the effects of ordered and
unordered color encodings on different visual analysis tasks.

3.4 Summary

Chronicled Interactions manages and visualizes user interaction history to support asyn-
chronous interactive visualization. Showing graphical histories was motivated by exist-
ing visual interfaces that effectively leverage history to aid data exploration. Users can
perform multiple asynchronous interactions concurrently and process results as they ar-
rive, reducing wait times caused by latency. This enables quicker iterative analysis by
shortening the feedback loop between the user and the interface. Furthermore, visualiz-
ing multiple results at once lets users easily make comparisons, and alleviates the need
for them to remember previous results or open multiple sessions of the same visual
interface. We summarize here the three main aspects of the model:

1. Data layer: Store and manage a buffered history of interactions and their corre-
sponding results. The history is modeled as a multi-versioned dataset. Even when
results are received out of order due to varying latency, they can be assigned ver-
sions according to the order of the original interaction sequence.

2. Visual layer: Visualize interaction history using available encoding channels. Exist-
ing methods for visualizing multidimensional data such as small multiples, overlay,
and animation can be used. Both the interactive widgets and chart displays should
be embedded with the visual interaction history.
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3. Correspondence: Establish visual correspondence of interactions and results via a
shared encoding of interaction history on both charts and widgets. The choice of
encoding can be visually ordered or unordered depending on the analysis tasks
supported.
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Chapter 4

User Experiments

In this chapter we evaluate the effectiveness of the Chronicled Interactions model by
testing a set of visual designs expressed by different design parameters of the model.
The goal was to understand whether the model is useful for designing interactive visu-
alizations that encounter latency, and measure any tradeoffs in the design parameters.
We conducted a set of online user studies in which participants were tested on a va-
riety of visual analysis tasks, and found that user performance improved overall with
the Chronicled Interactions designs compared to a traditional interface. These results
suggest that large-scale interactive data visualizations can be improved by leveraging
interaction history.

4.1 Spatial vs. temporal designs

We designed an initial pilot study meant to explore the different methods of visualizing
interaction history as described in the previous chapter. Specifically, the study focused
primarily on animation as a means of displaying history, while including a small multi-
ples design for comparison. Users were presented with a simple interactive visualization
of a line chart and asked to perform various visual analysis tasks. Conditions of latency
were simulated upon each interaction.

The pilot study found that animation did not significantly improve a user’s ability to
perform various visual analysis tasks compared to a traditional interactive visualization
that can show only one result at a time. Users would often wait for the results after per-
forming an interaction, and repeat until fulfilling the task. These findings are consistent
with previous research on the cognitive issues underlying the effective use of animation
for perceptual tasks [39, 34, 40]. In general animation appears to be most effective as
a presentational tool, and when performing exploratory analysis it can be difficult to
perceive changes as they happen very quickly. Furthermore, animation relies heavily
on the user’s working memory, since they must remember previous frames in order to
perform comparisons.
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In contrast, the small multiples design showed a significant effect on user behavior.
Under conditions of latency, users would perform multiple interactions concurrently
and analyze the results after they all loaded. This behavior was possible because the
user could view multiple data series on screen at once. This finding led to the insight
that spatial parallelism might be an effective means of visualizing interaction history,
an idea that we decided to further explore in a full user study described in the next
section. These findings are consistent with previous research on Distributed Cognition
which suggests that effective use of space can be a tool for off-loading human memory
workloads [21].

4.2 Experiment design

The experiment used a 4 (buffer size) x 2 (order) x 3 (task) x 3 (latency) x 2 (encoding)
mixed factorial design. The between-subjects parameters were the task and encoding
(small multiples, overlay). The within-subjects parameters were the buffer size, order,
and latency distribution as described below:

e Buffer size: The number of recent interactions stored and visualized on screen.
The four values tested were 1, 4, 8, and 12. 1 is the baseline used in traditional
visualizations, and 12 is the total number of facets in the experiment visualization.
The other two values were chosen by a linear interpolation between the two ex-
tremes. For the rest of this paper we will refer to buffer size of 1 as baseline, 4 as
small buffer, 8 as medium buffer, and 12 as large buffer for the ease of discourse.

e Order: Whether the visual variable for encoding interaction history supports or-
dered reading. An ordered visual variable allows for perceiving the order in which
interactions occur, whereas an unordered one does not. Since the visual correspon-
dence encoding for the experiment was color, two different ColorBrewer palettes
[16] were chosen: sequential shades of blue for ordered, and discrete colors for
unordered. Figure 3.3 shows the different encodings used for the experiment.

e Latency: The distribution of the amount of time to process each interaction. Three
different latency distributions were tested. The first is the none latency case where
each interaction is processed immediately. This was chosen as a baseline to em-
ulate existing interactive visualizations in small data scenarios. The second is the
short latency case where latency for each interaction is drawn uniformly at ran-
dom between o and 1 seconds. The uniform distribution was chosen to simulate
some amount of variance, which can happen under multiple scenarios as described
in Section 3.1. The average latency of this distribution is aligned with the latency
introduced in previous experiments [24]. The third is the long latency case where
latency for each interaction is drawn uniformly at random between o and 5 sec-
onds. The range for this latency distribution corresponds with benchmarks for
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streaming workloads in production scenarios [8]. In all cases the latency was sim-
ulated upon each interaction, so no actual network requests were made to prevent
unpredictable network interference from polluting the experiment setup.

The experiment design parameters are summarized in Table 4.1.

buffer size order task latency encoding
1 ordered | threshold | none overlay
4 unordered | maximum | short | small multiples
8 trend long
12

Table 4.1: Experiment Design Parameters

For the experiment visualization, we created an interactive faceted line chart repre-
senting stock prices shown in Figure 4.1. Faceted visualizations are common in analytics
dashboards [7, 10, 33, 44], and the specific interactive visualization chosen is versatile
and easily generalizable. For instance, the line chart could be changed to a bar chart,
area chart, or scatter plot, and the month selector widget could be changed to a slider
or a dropdown menu. Furthermore, time series data is a natural candidate for visual
analytics, since it appears in nearly every domain and has been extensively studied [1,
34]. The experiment setup visualizes stock price data, which is easy to understand and
familiar to a wide audience. The actual data that the users interacted with was fictitious
and randomly generated based on real stock data. This was important in preventing any
prior knowledge of real-world stocks from affecting how participants responded to the
tasks.

We tested three simple tasks that are similar to those used in previous visual analysis
experiments [1, 34]: maximum, trend, and threshold. These tasks were selected based
on two criteria. The first is ecological validity; these tasks are appropriate because they
model real-world visual analytics tasks such as outlier detection, pattern recognition,
and trend detection. The second criteria is variety; these tasks pose different memory,
correspondence, and ordering requirements. This allows for drawing insights into how
latency affects tasks based on their specific cognitive difficulties. We describe the three
selected tasks below, along with how each task was phrased in the context of the exper-
iment visualization shown in Figure 4.1.

e Maximum: Identify the maximum value. This requires the participant to remem-
ber the largest value seen so far, and the corresponding month.
“Which month had the highest stock price for the year 2010?”

e Trend: Identify a trend across multiple interactions. This requires the participant
to read the values and remember their order.
“What is the trend in stock price from Jan to Dec for the year 2010?”
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Figure 4.1: Two separate experiment visualization setups featuring a faceted line chart
visualization representing stock prices for the years 2008-2012, split by month, with
small buffer (size 4), and ordered color encoding. (top): overlay design, (bottom): small
multiples

e Threshold: Identify if any value satisfies a condition. This requires the participant
to scan each value of the chart to check if any value crosses the threshold.
“Does any month have a stock price higher than 8o for the year 2010?”

Data Generation

We generated 29 datasets per task type, 5 for training, and 24 for evaluation. Each
dataset contained 70 numbers (5 years x 12 months) between the values 5 and 95. To
ensure that the setup of each task was comparable, we normalized raw stock data [32]
and made specific modifications to the data based on task:

e Threshold: For 50% of the datasets, exactly one month crossed the threshold, oth-
erwise none did.
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e Trend: Generated simple, smooth sequences that follow one of the following four
patterns: (1) increasing, (2) increasing then decreasing, (3) decreasing then increas-
ing, and (4) decreasing.

e Maximum: The maximum value was greater than all the others by at least 5.

The datasets were randomly generated offline, and randomly matched to different
experimental conditions for each participant.

Procedure

Study participants were recruited online using Amazon Mechanical Turk, a popular
experiment platform for visualization studies [18, 37]. All participants were US citizens
above the age of 18. Participants were rewarded $o.10 per task within an experiment,
and a $1.00 bonus for completing all tasks. Participants were allowed a maximum of 60
minutes to complete the experiment. 50 participants were recruited for each combination
of between-group parameters, for a total of 300 (50 x 3 task x 2 encoding) participants.
The participant population was 39% female and 61% male. 57% of participants held
a college degree or higher. The average age of the participants was 35 years old. At
the beginning of each experiment, the participant was randomly assigned to one of
the 6 different groups which determined the task and visualization that they would be
exposed to throughout the experiment. Each experiment consisted of the participant
going through the following procedure in order: training, tasks, and survey.

Training

Before beginning the experiment tasks, participants were first instructed on how to read
and interact with the visualization. They were presented with a single buffer visualiza-
tion with no latency, then one with short latency, and then with increased buffer sizes.
The same dataset was used throughout to ensure that participants focus on the change
in the conditions. After becoming familiar with the interactive visualization setup, the
participants watched two short videos demonstrating contrasting interaction behaviors:
one where the user would serially interact and look at results, and one where the user
would interact concurrently and then look at all the results. Participants were recom-
mended to try interacting concurrently to reduce the time spent waiting for results to
load.

Afterwards, participants were presented with one task out of the 3 different task
parameters, determined by the experiment group of the participant. This task remained
the same throughout the experiment for each participant. After completing the task and
submitting their answer, the correct answers were shown for comparison. Participants
completed four training tasks under different conditions: (1) no latency, single buffer, (2)
short latency, single buffer, (3) short latency, ordered, small buffer, and (4) long latency,
unordered, large buffer.
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The inclusion of training tasks was meant to validate the user’s understanding of
the tasks and prevent invalid responses. This technique has been successfully used in
other online studies to improve response quality [23]. This can also counter any initial
learning effects that might occur when the participant is familiarizing themselves with
the visualization interface. Showing the user the correct answer after their submission
allowed for them to correct for any mistakes and adjust their understanding of the visu-
alization. The answer submissions to these tasks were recorded, but not included for the
purposes of analysis.

Tasks

Each participant completed one task for each combination of within-subjects parameters,
for a total of 24 (4 buffer size x 2 order x 3 latency) tasks per participant. The tasks
were randomly ordered, so participants did not know the buffer size, order, or latency
parameters of the task beforehand. No time limit was imposed per individual task,
though participants were advised to complete tasks as quickly as they could to get an
accurate assessment of task completion time. The tasks followed the same setup as in the
training phase, except participants were not shown the correct answer before moving on
to the next task.

Survey

To assess the usability of different visualization designs beyond task performance, users
were asked to complete a survey at the end of the experiment after finishing all the
tasks. The goal of the survey was to gauge the perceived usability and preferences for
different designs among the study participants. The questions were presented as 5-
point Likert scales asking about (1) what buffer size they preferred, (2) task difficulty
with latency, and (3) whether they preferred the ordered or unordered color encoding.
Additional space was left at the end for open-ended comments about their experience.
These helped form valuable insights into user interaction strategies and explanations for
user behavior during the experiment analysis.

4.3 Experiment analysis

In this section we report the findings of our experiment analysis based on the experiment
design described in the previous section. We form four separate hypotheses which test
the effectiveness of Chronicled Interactions designs both from a task performance and
usability perspective. We then describe the methods of analysis and statistical tests
used to verify the hypotheses. Results are reported with accompanying figures and a
discussion of the key findings.
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Hypotheses

e H1: Users demonstrate a similar level of accuracy when using either the Chron-
icled Interactions design or traditional visualization. We expect that Chronicled
Interactions are intuitive to use and do not cause confusions.

e H2: Users are more efficient using Chronicled Interactions when there are long
latencies. Specifically with regard to the design parameters discussed in Sec-
tion 4.2, we expect that (1) increasing the buffer size lets users complete tasks
faster, and (2) ordered encoding will speed up tasks that are order sensitive, and
unordered encoding will speed up the tasks that require correspondence of the
visual responses.

e H3: Users demonstrate increased concurrent interactions using the Chronicled
Interactions design when there are long latencies. We expect a negative correla-
tion between degree of concurrency and task completion time.

e Hj: Users prefer a Chronicled Interactions interface over a traditional visualiza-
tion. We expect the participants to find the usability of Chronicled Interactions
designs less impaired by latencies.

Measures

e Accuracy: whether a task response is correct. For the purposes of analysis, this
was treated as a binary measure so that meaningful comparisons could be made
across tasks.

e Completion time: total time to complete a task, in seconds.

e Concurrency: percentage of time during a task when there were multiple inter-
action requests waiting for a response (as a result of latency). When participants
serialize their interactions such that they wait for a response before making a new
request, concurrency is o. When the participant interacts with everything before
the first response is loaded, concurrency is close to 1. We chose this measure as
an approximation of the degree of asynchrony. Note that even with buffer size of
one, it is still possible to have multiple requests waiting for a response, except only
at most one response is shown. Concurrency is derived from a log of request and
response data and timestamp.

o Preference: usability preferences measured by a 5-point Likert scale, the questions
are described in more detail in Section 4.2.
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Results

The participant responses were analyzed by performing pairwise comparisons across
different within-group experiment conditions using the Wilcoxon signed-rank test, which
is more robust to outliers and skewed distributions, while being almost as efficient as the
parametric version when the underlying distribution is normal. For the survey results
we use the one-sample version of Wilcoxon test. We report Wilcoxon T-value and p-
value for the test, along with the medians of the two groups (M; for controlled baseline,
and M, for treatment). The Holm-Bonferroni method is used to correct the significance
levels when considering multiple hypotheses. We use the Hodges-Lehmann estimator
to report population shift in the test as well when needed, abbreviated to hl.

Before analyzing the results, we performed a data cleaning step to filter out responses
with low quality, as is common when running online experiments [27]. Examples of
undesirable behavior include users who would submit the same answer for every task,
or users who would take prolonged breaks during the experiment. Such behavior can
skew the data, and cause inaccurate conclusions to be made. Because of the difficulty
of enforcing behavior over an online experiment, we still collected these responses and
tiltered them based on common patterns.

We removed tasks completed by participants who got the majority of the tasks wrong
(10%), tasks that took longer than two minutes (< 1%), and responses where the partic-
ipant did not interact at all with the visualization (< 1%). The effect of pruning using
2.5 median absolute deviation had no significant impact on the analysis, so we did not
perform further outlier removal.

Accuracy

Study participants completed all tasks with very high accuracy regardless of the visual-
ization design. Only 6% of all 6,362 tasks were inaccurate, suggesting that all three tasks
selected for the experiment were easy enough to complete for most users. The largest
factor in task accuracy was the type of task itself; the threshold task showing the least
amount of inaccurate responses and the maximum task showing the greatest amount.
The absolute numbers are quite small in comparison to the total number of submitted
answers, but Figure 4.2 shows the relative differences between number of inaccurate re-
sponses among different tasks and latency distributions. As expected, longer latencies
had the effect of producing less accurate answers among study participants.

No discernible difference was found when comparing accuracy between different
buffer sizes, designs, or encodings. This suggests that hypothesis H1 is correct. It would
be interesting to study how accuracy might be affected among more difficult analysis
tasks. It might be the case that accuracy could be improved with Chronicled Interactions
designs for scenarios where the average accuracy is much lower. We leave this open as
future work to be considered.
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Figure 4.2: Number of incorrect responses by task and latency. All other conditions
were pooled due to negligible differences across designs. The larger number of incorrect
responses for long latency suggests latency can have detrimental effects on participant
accuracy. The number of incorrect responses is reported because the vast majority of
tasks were completed correctly.

Completion time

While accuracy remained consistently low across conditions, completion time varied
significantly. Figure 4.3 summarizes the completion time results. Each plot compares the
median task completion time to the buffer size for three latency conditions: no latency,
uniform random latency between o and 1 seconds (short), and uniform random latency
between o and 5 seconds (long). The plots are faceted such that the rows are split by
encoding design: overlay (top) and multiples (bottom); while the columns are split by
task: maximum (left), trend (middle), and threshold (right).

Participants completed tasks much faster with Chronicled Interactions when there is
high latency i.e. increasing the amount of viewable interaction history correlated with
lower task completion times.

Figure 4.3 shows that for all the completion time plots, under the long latency case
users complete all tasks faster when the buffer size is greater than the baseline of 1.
The test statistics are reported in Table 4.2. The test statistics for the overlay design
suggest that users complete tasks faster with small buffer than baseline for all three
tasks: maximum (top left, blue), trend (top middle, blue), and threshold (top right,
blue). A similar behavior for the small multiples design is observed: maximum (bottom
left, blue), trend (bottom middle, blue), and threshold (bottom right, blue). For each
comparison, the p-value suggests a highly statistically significant outcome.

Under short latency, no significant completion time differences were observed be-
tween small buffer and baseline. The test statistics are reported in Table 4.3. Comparing
large buffer with the baseline, we observe more significant differences for the overlay
design on the maximum task (top left, green), and the threshold task (top right, green).
Similarly for small multiples on maximum (bottom left, green), and threshold (bottom
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Figure 4.3: Each chart of the plot visualizes median task completion time with 95% CI
(y-axis), for the conditions within an experiment group: buffer sizes (x-axis) with 1 as
the baseline, and latencies (hue); ordered and unordered encoding was combined due
to lack of significant difference. The charts are faceted by between-group conditions:
interaction design across rows, and task type is plotted across columns.

Design Task Samples | Medians (sec) Test statistics
overlay maximum 38 M; =60,My =39 | T=83,p=23.054e>
overlay trend 38 My =44,M; =30 | T=76,p = 1.947¢ 7>
overlay threshold 41 My =42, My, =25 | T =209,p = 4101e3
small multiples | maximum 30 My =62,M, =40 | T=230,p = 3.112¢°
small multiples trend 39 M; =38 M, =28 | T=150,p = 8.105e*
small multiples | threshold 41 My =45,Mp =26 | T =106,p = 2.611e>

Table 4.2: Completion time statistics for long latency comparing between baseline and
small buffer using the Wilcoxon signed-rank test.

right, green).

No significant difference was found for any of the tasks with the overlay design
under the no latency condition. However, participants were slower using small multiples
designs when there is no latency, indicating that the design is not a silver bullet that can
improve all interactive visualization cases. The test statistics are reported in Table 4.4.
In Figure 4.3, for small multiples on the bottom row, the red completion time plots
corresponding to no latency increase as buffer size increases. Reporting on test statistics
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Design Task Samples | Medians (sec) Test statistics
overlay maximum 39 My =29, M; =23 | T=159,p = 1.266e 3
overlay trend 42 My =20,My =19 | T =367,p = 2.907e !
overlay threshold 42 M =18, My, =12 | T=219,p = 3.648¢ 3
small multiples | maximum 36 M; =30,My; =25 | T =256,p = 2.264e 1
small multiples trend 46 M; =20,M; =18 | T =386,p = 9.142¢ 2
small multiples | threshold 42 My =19,M, =14 | T=201,p = 1.735e 3

Table 4.3: Completion time statistics for short latency comparing between baseline and
large buffer using the Wilcoxon signed-rank test.

between small buffer and baseline, we see a highly significant result for the maximum
task (bottom left, red), trend task (bottom middle, red), and threshold (bottom right,
red). We omit reporting the test statistics between medium buffer and baseline, and
between large buffer and baseline as they show similar statistics.

Design Task Samples | Medians (sec) Test statistics
overlay maximum 41 My =19,M; =19 | T =424,p = 9.329¢ 1
overlay trend 40 M =12,M; =13 | T=375,p = 6.380e 1
overlay threshold 46 M; =10,M,; =10 | T = 488, p = 5.663e !
small multiples | maximum 36 My =17,My; =27 | T=42,p = 4.836e~°
small multiples | trend 42 M;=10,My =15| T =96,p = 8.787¢°
small multiples | threshold 45 M; =10,M, =14 | T =196, p = 2.846e*

Table 4.4: Completion time statistics for no latency comparing between baseline and
small buffer using the Wilcoxon signed-rank test.

In general, there was no statistically significant difference between completion times
for ordered and unordered encodings within each of the six between-group conditions.
The only exception to this was the overlay design with medium and large buffer sizes.
Users completed the maximum task significantly faster with unordered color encoding
(distinct colors) than ordered color encoding (shades of blue), as illustrated in Figure 4.4.
The figure shows where the two series diverged with medium and large buffer. With
medium buffer, the completion time for ordered encoding vs. unordered is C=40, T=29,
Z=-2.4, p=.007. Similarly for large buffer: C=33, T=23, Z=-3.9, p=<1e-5. This agrees
with our initial analysis that shades of blue (ordered) causes more difficulty in perceiv-
ing correspondence compared to distinct colors (unordered). Thus it is likely that the
ordered encoding would decrease efficiency when the task requires correspondence, as
is the case in the maximum task.
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Figure 4.4: Median task completion time for the maximum task with overlay design
under long latency. At larger buffer sizes, the unordered encoding shows significantly

lower completion time than ordered encoding. This chart corresponds to a more detailed
breakdown of the blue long latency series in the top left facet in Figure 4.3.

Concurrency

Analysis of the interaction event logs show that users performed more concurrent in-
teractions with visualizations that leveraged Chronicled Interactions. Furthermore, task
completion time exhibits a negative correlation with concurrency. Specifically, we found
that (1) the higher the concurrency, the lower the task completion time, and that (2) in-
creased buffer size also tends to increase concurrency, shown in Figure 4.5. As a result,
the baseline case had low concurrency and higher completion time.

We also verify that the time savings are not due to the change of chart design, because
without latency, participants were not faster with Chronicled Interactions than baseline
(sometimes slightly slower, as in the case of small multiples), but were a lot faster using
Chronicled Interactions than baseline when there is interactive latency.

Under long latency, across both overlay and small multiples design, with all three
tasks, we found the concurrency of small buffer to be higher than baseline (Z>4, p<e-g),
and similarly for larger buffer sizes. The Pearson correlation coefficient r reveals mod-
erate correlation for long latency for Chronicled Interactions designs. For the maximum
task, r = —0.50; for the trend task, r = —0.54; and for the threshold task, r = —0.45. This
verifies H3.

User preference

So far the experiment analysis has been focused on understanding the effects of Chroni-
cled Interactions on user performance, specifically with regards to accuracy, completion
time, and concurrency. Another critical component for evaluating the benefits of a new
visualization interface is a usability assessment. This can help increase confidence in
the designs and explain user rationale and behaviors when interacting with the visual-
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Figure 4.5: Task completion time vs. concurrency for all responses split across differ-
ent buffer sizes, under long latency. The plots exhibit a similar negative correlation at
all buffer sizes, suggesting increased use of concurrent interactions enables lower com-
pletion time. Designs which make use of larger buffer sizes have a higher density of
respondents with high concurrency and low task completion time, corresponding to the
lower right region of each graph. This is in contrast to the baseline where buffer size is
1 whose points are clustered to the upper left.

izations. For the rest of this section, we focus on analyzing the results of the usability
survey that study participants completed at the end of each experiment.

Overall, usability survey results were aligned with the user performance results from
earlier as expected. Users had a significant preference for Chronicled Interactions across
different designs and tasks. When asked about buffer size preference on a 5-point Likert
scale, participants greatly preferred a buffer size greater than the baseline of 1 (p<e-5,
95% CI value=4.5, where 5 is “strongly prefer” buffer size greater than one). This verifies
Hy.

Participants found a larger buffer size to decrease the difficulty introduced by latency
(p<e-5, hl=1.5). This is consistent with some of the free response comments shared,
where negative words such as “painful”, “frustrating”, “tedious”, and “awful” were
often used to describe tasks with latency using the baseline buffer size. Some users said
that responses were hard to remember—"I had a hard time remembering what I'd just seen a
second ago.” In contrast, many commented on the ease of Chronicled Interactions when
faced with latency—"The ability to load several months at once definitely offsets any loading
latency — difficulty was roughly the same as one month with no latency. One month with latency
was a bit painful.”.

Interestingly, the perceived speed of loading seemed to have changed as well—"Some
of the tasks loaded really slow, single month got irritating waiting. Most of the multiple tasks
loaded fairly quickly.” This perceptual shift in how long interactive requests appear to
load is immensely valuable for designing visualizations which must commonly make
high-latency requests. This is a similar motivation for why interfaces display a progress
indicator such as a loading spinner or progress bar when making the user wait for a
process to complete [cite]. Giving the user feedback can reduce the perceived waiting
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time without actually increasing any processing speeds. This finding provides strong
support for use of Chronicled Interactions.

Participants preferred larger buffer sizes: they preferred medium to small, as op-
posed to being neutral (p<e-5, 95% Cl=4.5, variance=1.4), and large to medium (p<e-5,
95% ClI=4.9, variance=1.3).

When asked to rate preference for an ordered color encoding versus an unordered
color encoding, respondents tended to prefer the unordered encoding of distinct colors.
With small buffer size, they preferred unordered to ordered, (p<e-5, 95% Cl=4.0, vari-
ance=1.9), and with large buffer size (p<e-5, 95% Cl=4.5, variance=1.7). This preference
increased with a larger buffer size, (p=0.00016, hl=1.5).

While in aggregate there was no evidence for the preference for ordered encoding,
some participants voiced their favor for it such as one user who commented that they
“generally preferred the distinct colors but to figure out the corresponding month was a little
tedious”, and another “I actually thoughl[t] the shades of blue was much easier to read rather
the[n] having to reference the chart to see what color belonged to what month, the shades were
much more intuitive.”. Furthermore, for the trend task about 20% of the participants
strongly preferred ordered encodings. This indicates that a number of participants,
albeit small, were able to make use of ordered color encoding to better perform the task.
The trend task seems to be a good fit for ordered encodings because reading the ordered
history of past interactions is helpful for determining trends. Whereas the maximum
and threshold task do not require remembering the order of interactions. Enabling the
user to make better use of ordered encoding is of interest for future work.
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Chapter 5

Conclusion

In this thesis we presented Chronicled Interactions, a new model for designing asyn-
chronous interactive visualizations that are resilient to the effects of interactive latency.
The core idea was to explicitly manage a user’s interaction history, and visually encode
it within the interface so that users can interact concurrently while viewing results as
they are processed. Through a series of experiments, we verified that users are able to
leverage concurrency through using Chronicled Interactions for better performance and
usability compared to existing visual interfaces.

Designing a new model for interactions was motivated by current challenges facing
interactive visualizations as they scale to larger datasets and more complex workloads,
where data is distributed and partitioned among a network. Traditional interactive vi-
sualizations assume that all the data being visualized is locally available, and thus a gap
exists between these tools and the needs of new data processing platforms. To bridge this
gap, our interaction model assumes that latency exists rather than assuming interactions
are processed instantaneously.

While this new interaction design shows promising benefits for interactive visual-
izations of large datasets, there are multiple directions for future work. One aspect of
big data analytics systems that we have not addressed is support for real-time streaming
data from a server. Chronicled Interactions currently assumes a request-response model,
but could be augmented to express the history of streaming data as well. And as alluded
to in the first chapter, designing complex coordinated views with multiple linked filters
and dependencies is still currently a challenge. We have demonstrated success on sim-
ple visualizations, and so extending the model to support interaction techniques like
brushing and linking across multiple views is a useful follow-up.

We hope to incorporate the ideas presented here into a programming framework
that allows visualization designers to leverage the benefits of Chronicled Interactions
directly. Such a framework could automatically handle the storage of interaction history
and reactively render updates to the visualization UL This could help ease the burden of
developing user interfaces that are resilient to latency, and improve existing visualization
tools to support broader use cases.
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