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Abstract

Representations for Visually Guided Actions

by

Saurabh Gupta

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

In recent times, computer vision has made great leaps towards 2D understanding of sparse visual
snapshots of the world. This is insufficient for robots that need to exist and act in the 3D world
around them based on a continuous stream of multi-modal inputs. In this work, we present efforts
towards bridging this gap between computer vision and robotics. We show how thinking about
computer vision and robotics together brings out limitations of current computer vision tasks and
techniques, and motivates joint study of perception and action. We present some initial efforts
towards this and investigate a) how we can move from 2D understanding of images to 3D under-
standing of the underlying scene, b) how recent advances in representation learning for images
can be extended to obtain representations for varied sensing modalities useful in robotics, and c)
how thinking about vision and action together can lead to more effective solutions for the classical
problem of visual navigation.
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Chapter 1

Introduction

Computer vision started out as a field to enable robots to understand the world. Early work in
computer vision was readily applicable to robotic applications, be it modeling images with 3D
CAD models [134], or inferring the 3D structure of the world given multiple images [85, 122].
Not only this, but the first book in computer vision by Berthold Horn was in fact called Robot
Vision [84].

But in the 90s, computer vision researchers branched out and the focus was on problems that
could enable computer graphics applications [148]. Researchers designed techniques to stitch
images together into panoramas [166] and developed algorithms to render people and places from
novel viewpoints [149, 30].

And in the 2000s, computer vision found yet another buddy, this time in machine learning
and big data. Computer vision labs moved from stocking cameras to stocking hard-disks, so that
they could download big data from the Internet. Computer vision at this point has transformed
into something that is call Internet Computer Vision, where the dominant research paradigm is to
download and label large-scale image datasets over the Internet, analyze them using sophisticated
machine learning techniques to study image labeling problems. And this has been a successful
endeavor, leading up to algorithms such as Mask R-CNN [73] that can label complex real world
images with objects that are present in them.

This naturally presents us with the question: is the current paradigm of Internet Computer
Vision sufficient for Berthold Horn’s robot to successfully perceive the world?

To answer this question, let us examine what Internet Computer Vision can do for us. Given
an input image such as in Figure 1.1, Internet Computer Vision can label it with the objects in the
image. It can also tell us where they are, and what are the precise pixels that belong to the different
objects. While this is great, unfortunately, all of this understanding only exists in the 2D image
space. It tells us nothing about the 3D structure of the world. For example, it does not tell us that
the road extends behind these objects. It does not answer, if we can walk into the scene or not. It
does not even tell us, where would these objects be if we were to observe the scene from a slightly
different viewpoint. These are just some of the questions about the world, that a robot will need to
have answers of, to successfully act in the world.

Moreover, Internet Computer Vision is limited to understanding the world through RGB images
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Figure 1.1: Understanding an image, so as to take actions in the world, goes beyond merely detecting and
delineating objects of interest in the 2D image space. Image source: https://www.flickr.com/photos/secdef/
17790319373.

Figure 1.2: Internet Computer Vision vs. Robot Vision. Left shows sample images from the MS COCO
dataset, while right shows images in context of robotics. Image credits: Lin et al. [119], Finn et al. [43] and
Silberman et al. [156].

uploaded by people onto the Internet. For example, Figure 1.2 (left) visualizes images from the
MS-COCO dataset [119], a popular dataset in computer vision (and in fact the one that was used
to design and develop currently popular R-CNN line of object detectors). A day in the life of these
object detectors thus comprises of anal zing such interesting and photogenic images from Flickr.
On the other hand, Figure 1.2 (right) shows a typical day in the life of a robot: a mobile robot
that is moving around in indoor office environments and an armed robot that is learning to grasp
objects in clutter. Not only do these images look different from images on the Internet, these are
in fact not images but continuous streams of data. Streams of data that are determined by the robot
itself through its actions.

Furthermore, because we determine what sensors we put onto our robots, robots are not con-
strained to learn about the world only through RGB image observations. They can sense the world
through a plethora of different sensing modalities, such as through GelSight images from a haptic
sensor, or through point cloud data from a LiDAR scanner.

Thus, the current paradigm of Internet Computer Vision only tackles the narrow problem of 2D
understanding of images on the Internet, which forms only a small part of the perception problem
faced by a robot. In this work, we focus on bridging this gap between perception and action. We
investigate how to build actionable representations of the unstructured real world from raw sensory
inputs from different modalities. We demonstrate the utility of these representations for perceiving
the world in 3D and for acting in the 3D world to move around.

https://www.flickr.com/photos/secdef/17790319373
https://www.flickr.com/photos/secdef/17790319373
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This thesis starts by studying the problem of 3D scene understanding in context of range sensors
(such as Microsoft Kinect). Given observations from such sensors, we first study central computer
vision problems that of perceptual organization and recognition. We then go beyond these standard
tasks, that only make inferences about what is explicitly visible, to make predictions for parts of the
scene that aren’t directly visible. We do this for scene surfaces (via reasoning about their amodal
extent behind objects) and objects (by corresponding them with full 3D CAD models). This work
was presented in [58, 64, 63, 60], and is summarized in Chapter 2.

We then study how such 3D scene understanding can be used in context of the robotic tasks of
navigation. Most existing work in this area falls in one of two paradigms: classical robotics and
learning based robotics. Models in classical robotics use explicit hand-crafted geometric represen-
tations that capture the problem structure but ignore semantics and can’t be learned from data. In
contrast, models in learning based robotics can learn good representations in context of the end
task, but ignore the structure present in the problem. Thus, results have mostly been confined to
simple tasks often in 2D worlds, and extremely specialized behavior that does not generalize to
new environments. To address this divide we formulate a new paradigm, that instantiates insights
about problem structure (from classical methods) into learning formalisms (from learning-based
robotics) through use of specialized end-to-end trainable policy architectures that jointly map and
plan. Thus, our resulting policies not only benefit from learned task-driven representations, but
also leverage the problem structure appropriately, leading to effective performance in novel envi-
ronments. This work was presented in [61] and is summarized in Chapter 3.

While working on these problems, we saw improvements in performance when using infor-
mation from additional sensing modalities such as range scans. While, on the one hand, using
custom sensors simplified the task, the dominant paradigm for learning representation relies on
supervised training using large amounts of labeled data. This reliance on labeled data for learning
representations severely limits the information that can be derived from additional sensors. This
led to the study of how supervision could be transferred from well-labeled modalities (such as In-
ternet images) to such impoverished modalities. The was presented in [59] and is summarized in
Chapter 4.
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Chapter 2

3D Scene Understanding

Truly understanding a scene involves reasoning not just about what is visible but also about
what is not visible. Consider for example the images in Figure 2.1. After we recognize an object
as a chair, we have a pretty good sense of how far it extends in depth and what it might look like
from another viewpoint. One way of achieving this kind of understanding in a computer vision
system would be by ‘replacing in-place’ the chair pixels by the rendering of a 3D CAD model
of the chair. This explicit correspondence to a 3D CAD model leads to a richer representation
than output from traditional computer vision algorithms like object detection, semantic or instance
segmentation, fine-grained categorization and pose estimation. Each of these tasks by themselves
is insufficient from a robotics perspective for tasks like trajectory optimization, motion planning
or grasp estimation. Our proposed system starts from a single RGB-D image of a cluttered indoor
scene and produces the output visualized in Figure 2.1. Our approach is able to successfully
retrieve and align relevant models with objects in real-world cluttered scenes. We believe our rich
output representation will facilitate use of perception in robotics.

Figure 2.2 shows an overview of our approach. We approach the problem by first studying
bottom-up grouping, where we combine inputs from RGB and depth images to get improved RGB-
D contours. We then use these RGB-D contours to obtain bottom-up candidates for objects. We
then study the problem of feature learning for RGB-D images using convolutional neural networks
and classify the obtained bottom-up candidates to detect objects. We then analyze object detections
and reason about their pixel support, pose and sub-type, to obtain candidate 3D models which are
aligned and placed in the virtual scene. This work can also be seen as unifying three independent
strands of research in computer vision: perceptual grouping (chunking raw pixels in an image into
discrete entities), recognition (associating semantics with these groups of pixels), and 3D shape
inference (inferring the 3D shape of these objects). In the following sections, we describe our
approaches to each of these problems.

This chapter is based on work done with Pablo Arbeláez, Ross Girshick and Jitendra Malik, and is presented here
primarily as it appeared in CVPR 2013 [58], ECCV 2014 [64], IJCV 2015 [63], and CVPR 2015 [60]. Statements
about past work should be read with this context in mind.
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Figure 2.1: Output of our system: Starting from an RGB-D image, we produce a 3D scene where objects
have been replaced by corresponding 3D models.

Contour Detection

Color and Depth  
Image Pair Region Proposal  

Generation

Object Detection

Semantic Segm.

Input Re-organization Recognition

Instance Segm.

Detailed 3D 
Understanding

Pose Estimation

Figure 2.2: Overview: From an RGB and depth image pair, our system detects contours, generates 2.5D
region proposals, classifies them into object categories, and then infers segmentation masks for instances of
“thing”-like objects, as well as labels for pixels belonging to “stuff”-like categories. We then analyze the
detected objects and reason about their pixel support, and pose to finally replace it with a corresponding 3D
model to obtain a “virtual” scene.

2.1 Background
A large body of work in computer vision has focused on the problem of object detection, where
the final output is a bounding box around the object, [27, 42, 49, 137, 175]. There has also been
substantial work on labeling each pixel in the image with a semantic label e.g. [7, 21]. Recent
work from Hariharan et al. [70], Tighe et al. [170] brings these two lines of research together by
inferring the pixel support of object instances.

There have been corresponding works for RGB-D images studying the problems of object
detection [17, 90, 108, 109, 110, 118, 163, 97, 168], semantic segmentation [13, 104, 133, 156,
155], and more recently instance segmentation [155]. Since our approach builds on an object
detection system, we discuss this body of research in more detail. Modifications to deformable
part models [42] for RGB-D images were proposed in [90, 97, 168]. [102, 118] operate in a
similar paradigm of reasoning with bottom-up region proposals, but focus on modeling object-
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object, object-scene, and image-text relationships.
We note that, although all of these outputs are useful representations, each of them is far from

an understanding of the world that would enable a robot to interact with it.
We are of course not the first ones to raise this argument. There is a lot of research on 3D scene

understanding from a single RGB image [75, 141], and 3D object analysis [9, 77, 116, 147, 184].
Given the challenging nature of the problem, most of these works are restricted to unoccluded
clean instances and fail under clutter. In this paper, we study the problem in the context of the
challenging NYUD2 dataset and analyze how RGB-D data can be effectively leveraged for this
task.

The most relevant research to our work comes from Song and Xiao [163] and Guo and Hoiem
[56]. Song and Xiao [163] reason in 3D, train exemplar SVMs using synthetic data, and slide these
exemplars in 3D space to search for objects, thus naturally dealing with occlusion. Their approach
is inspiring, but computationally expensive (25 minutes per image per category). They also show
examples where their model is able to place a good fitting exemplar to data, but they do not address
the problem of estimating good 3D models that fit the data. We differ from their philosophy and
propose to reason on the problem in 2D to effectively prune large parts of the search space, and
then do detailed 3D reasoning with the top few winning candidates. As a result, our final system
is significantly faster (taking about two minutes per image). We also show that lifting from a 2D
representation to a 3D representation is possible and show that naively fitting a box around the
detected region outperforms the model from [163].

Guo and Hoeim [56] start with a bottom-up segmentation, retrieve nearest neighbors from the
training set, and align the retrieved candidate with the data. In contrast, we use category knowledge
in the form of top-down object detectors and inform the search procedure about the orientation of
the object. Moreover, our algorithm does not rely on detailed annotations (which take about 5
minutes for each scene) [57] of the form used in [56]. We also propose a category-level metric to
evaluate the rich and detailed output from such algorithms.

Finally, [140, 152], among many others, study the same problem but either consider known
instances of objects, or rely on user interaction.

2.2 RGB-D Reorganization

2.2.1 Contour Detection
Contour detection in images crucially depends on designing good local gradients that can capture
discontinuities of different kinds. For detecting contours in RGB-D images, we adopt standard
local gradients used for RGB images and design local gradients on depth images that capture
different kinds of shape discontinuities.

2.2.1.1 Local Gradients on Depth Images

We estimate three oriented contour signals at each pixel in the image: a depth gradient DG that
identifies the presence of a discontinuity in depth, a convex normal gradient NG+ that captures if
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the surface bends-out at a given point in a given direction, and a concave normal gradient NG−,
that captures if the surface bends-in.

Computing these gradients on RGB-D images is not trivial because of the characteristics of
the data, particularly: (1) a nonlinear noise model of the form |δZ| ∝ Z2|δd|, where δZ is the
error in depth observation, Z is the actual depth, δd is the error in disparity observation (due to
the triangulation-based nature of the Kinect), causing non-stochastic and systematic quantization
of the depth, (2) lack of temporal synchronization between color and depth channels, and (3)
missing depth observations. We address these issues by carefully designing geometric contour
cues that have a clear physical interpretation, using multiple sizes for the window of analysis,
not interpolating for missing depth information, estimating surface normals by least square fits to
disparity instead of points in the point cloud, and independently smoothing the orientation channels
with Savitsky-Golay [143] parabolic fitting.

In order to estimate the local geometric contour cues, we consider a disk centered at each image
location. We split the disk into two halves at a pre-defined orientation and compare the information
in the two disk-halves, as suggested originally in [123] for contour detection in monocular images.
In the experiments, we consider 4 different disk radii varying from 5 to 20 pixels and 8 orientations.
We compute the 3 local geometric gradients DG, NG+ and NG− by examining the point cloud
in the 2 oriented half-disks. We first represent the distribution of points on each half-disk with a
planar model. Then, for DG we calculate the distance between the two planes at the disk center
and for NG+ and NG− we calculate the angle between the surface normals of the planes.

These local gradients on depth images, can then be used with any standard contour detection
framework. We investigate use of these local gradients with gPb-ucm technique from Arbeláez
et al. [6] as well as with the structured forest approach from Dollár et al. [35]1. In both these
cases, we see significant improvements in performance for contour detection over the respective
baseline. This also resulted in state-of-the-art performance for this task at the time this research
was conducted. A number of works that use high-level semantic cues (via convolutional neural
network models) have since out-performed our approach.

2.2.2 2.5D Region Proposals
2.2.2.1 Candidate Ranking

From the obtained contour signal, we obtain object proposals by generalizing MCG to RGB-D im-
ages. MCG for RGB images [5] uses simple features based on the color image and the region shape
to train a random forest regressors to rank the object proposals. We follow the same paradigm, but
propose additional geometric features computed on the depth image within each proposal. We
compute: (1) the mean and standard deviation of the disparity, height above ground, angle with
gravity, and world (X, Y, Z) coordinates of the points in the region; (2) the region’s (X, Y, Z) ex-
tent; (3) the region’s minimum and maximum height above ground; (4) the fraction of pixels on
vertical surfaces, surfaces facing up, and surfaces facing down; (5) the minimum and maximum

1For use with [35], we additionally use geocentric pose (per-pixel height above ground and angle with gravity)
and richer appearance cues in the form of contour predictions of a contour detector trained on the BSDS dataset.
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Table 2.1: Contour Detection Performance. Left plot shows precision-recall plot for boundary detection
on the NYUD2 [156] dataset. Right table reports standard evaluation metrics for this task for different
methods (all numbers are percentages).
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(63.15) gPb−ucm [RGB]

(65.77) Silberman et al. [RGBD]

(68.66) Gupta et al. CVPR [RGBD]

(68.45) SE [RGBD]

(70.25) Our(SE + all cues) [RGBD]

(69.46) SE+SH [RGBD]

(71.03) Our(SE+SH + all cues) [RGBD]

ODS (Fmax) OIS (Fmax) AP

gPb-ucm [6] RGB 63.15 66.12 56.20
Silberman et al. [156] RGB-D 65.77 66.06 -
Our (gPb-ucm + DG,NG{+,−}) [58] RGB-D 68.66 71.57 62.91
SE [35] RGB-D 68.45 69.92 67.93
Our(SE + normal gradients) [64] RGB-D 69.55 70.89 69.32
Our(SE + all cues) [64] RGB-D 70.25 71.5 69.28
SE+SH [34] RGB-D 69.46 70.84 71.88
Our(SE+SH + all cues) [64] RGB-D 71.03 72.33 73.81

standard deviation along a direction in the top view of the room. We obtain 29 geometric features
for each region in addition to the 14 from the 2D region shape and color image already computed
in [5]. Note that the computation of these features for a region decomposes over superpixels and
can be done efficiently by first computing the first and second order moments on the superpixels
and then combining them appropriately.

2.2.3 Results
We now present results for contour detection and candidate ranking. We work with the NYUD2
dataset and use the standard split of 795 training images and 654 testing images (we further divide
the 795 images into a training set of 381 images and a validation set of 414 images). These splits
are carefully selected such that images from the same scene are only in one of these sets.
Contour Detection: To measure performance on the contour detection task, we plot the precision-
recall curve on contours in Table 2.1 (left) and report the standard maximum F-measure metric
(Fmax) in Table 2.1 (right). We start by reporting the performance when our proposed cues are
used with gPb-ucm [6]. We see large improvements in performance over gPB-ucm when addition-
ally using cues computed from depth images. This already performs comparably to the stronger
approach from Dollár et al. [35] that also uses RGB-D images as input.

Next, we report the performance when out proposed cues are used with the structured forest
approach from Dollár et al. [35]. We observe that adding normal gradients consistently improves
precision for all recall levels and Fmax increases by 1.2% points (Table 2.1 (right)). The addition of
geocentric pose features and appearance features improves Fmax by another 0.6% points, making
our final system better than the current state-of-the-art methods by 1.5% points.2

2.5D Region Proposals: The goal of the region generation step is to propose a pool of candidates
for downstream processing (e.g., object detection and segmentation). Thus, we look at the standard

2Dollár et al. [34] recently introduced an extension of their algorithm and report performance improvements
(SE+SH[RGB-D ] dashed red curve in Table 2.1). We can also use our cues with [34], and observe an analogous
improvement in performance (Our(SE+SH + all cues) [RGB-D ] dashed blue curve in Table 2.1).
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Figure 2.3: Region Proposal Quality: Coverage as a function of the number of region proposal per image
for 2 sets of categories: ones which we study in this paper, and the ones studied by Lin et al. [118]. Our
depth based region proposals using our improved RGB-D contours work better than Lin et al.’s [118], while
at the same time being more general. Note that the X-axis is on a log scale.

metric of measuring the coverage of ground truth regions as a function of the number of region
proposals. Since we are generating region proposals for the task of object detection, where each
class is equally important, we measure coverage for K region candidates by

coverage(K) =
1

C

C∑
i=1

(
1

Ni

(
Ni∑
j=1

max
k∈[1...K]

O
(
R
l(i,j)
k , I ij

)))
, (2.1)

where C is the number of classes, Ni is the number of instances for class i, O(a, b) is the intersec-
tion over union between regions a and b, I ij is the region corresponding to the jth instance of class
i, l (i, j) is the image which contains the jth instance of class i, and Rl

k is the kth ranked region in
image l.

We plot the function coverage(K) in Figure 2.3 (left) for our final method, which uses our
RGB-D contour detector and RGB-D features for region ranking (black). As baselines, we show
regions from the recent work of Lin et al. [118] with and without non-maximum suppression,
MCG with RGB contours and RGB features, MCG with RGB-D contours but RGB features and
finally our system which is MCG with RGB-D contours and RGB-D features. We note that there
is a large improvement in region quality when switching from RGB contours to RGB-D contours,
and a small but consistent improvement from adding our proposed depth features for candidate
region re-ranking.

Since Lin et al. worked with a different set of categories, we also compare on the subset used
in their work (in Figure 2.3 (right)). Their method was trained specifically to return candidates
for these classes. Our method, in contrast, is trained to return candidates for generic objects and
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therefore “wastes” candidates trying to cover categories that do not contribute to performance on
any fixed subset. Nevertheless, our method consistently outperforms [118], which highlights the
effectiveness and generality of our region proposals.

2.3 RGB-D Recognition

2.3.1 Object Detection
We generalize the R-CNN system introduced by Girshick et al. [49] to leverage depth information.
At test time, R-CNN starts with a set of bounding box proposals from an image, computes features
on each proposal using a convolutional neural network, and classifies each proposal as being the
target object class or not with a linear SVM. The CNN is trained in two stages: first, pretraining it
on a large set of labeled images with an image classification objective, and then finetuning it on a
much smaller detection dataset with a detection objective.

We generalize R-CNN to RGB-D images and explore the scientific question: Can we learn
rich representations from depth images in a manner similar to those that have been proposed and
demonstrated to work well for RGB images?

2.3.1.1 Encoding Depth Images for Feature Learning

Given a depth image, how should it be encoded for use in a CNN? Should the CNN work directly
on the raw depth map or are there transformations of the input that the CNN to learn from more
effectively?

We propose to encode the depth image with three channels at each pixel: horizontal disparity,
height above ground, and the angle the pixel’s local surface normal makes with the inferred gravity
direction. We refer to this encoding as HHA. The latter two channels are computed using the
algorithms proposed in [58] and all channels are linearly scaled to map observed values across the
training dataset to the 0 to 255 range.

The HHA representation encodes properties of geocentric pose that emphasize complementary
discontinuities in the image (depth, surface normal and height). Furthermore, it is unlikely that a
CNN would automatically learn to compute these properties directly from a depth image, especially
when very limited training data is available, as is the case with the NYUD2 dataset.

We use the CNN architecture proposed by Krizhevsky et al. in [105] and used by Girshick et
al. in [49]. The network has about 60 million parameters and was trained on approximately 1.2
million RGB images from the 2012 ImageNet Challenge [32]. We refer the reader to [105] for
details about the network. Our hypothesis, to be borne out in experiments, is that there is enough
common structure between our HHA geocentric images and RGB images that a network designed
for RGB images can also learn a suitable representation for HHA images. As an example, edges in
the disparity and angle with gravity direction images correspond to interesting object boundaries
(internal or external shape boundaries), similar to ones one gets in RGB images (but probably
much cleaner).
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Augmentation with synthetic data: An important observation is the amount of supervised
training data that we have in the NYUD2 dataset is about one order of magnitude smaller than
what is there for PASCAL VOC dataset (400 images as compared to 2500 images for PASCAL
VOC 2007). To address this issue, we generate more data for training and finetuning the network.
There are multiple ways of doing this: mesh the already available scenes and render the scenes
from novel view points, use data from nearby video frames available in the dataset by flowing
annotations using optical flow, use full 3D synthetic CAD objects models available over the Internet
and render them into scenes. Meshing the point clouds may be too noisy and nearby frames from
the video sequence maybe too similar and thus not very useful. Hence, we followed the third
alternative and rendered the 3D annotations for NYUD2 available from [57] to generate synthetic
scenes from various viewpoints. We also simulated the Kinect quantization model in generating
this data (rendered depth images are converted to quantized disparity images and low resolution
white noise was added to the disparity values).

2.3.1.2 Experiments

We work with the NYUD2 dataset and use the standard dataset splits into train, val, and test as
described in Section 2.2.3. The dataset comes with semantic segmentation annotations, which
we enclose in a tight box to obtain bounding box annotations. We work with the major furniture
categories available in the dataset, such as chair, bed, sofa, table (listed in Table 2.2).

Experimental setup: There are two aspects to training our model: finetuning the convolutional
neural network for feature learning, and training linear SVMs for object proposal classification.

Finetuning: We follow the R-CNN procedure from [49] using the Caffe CNN library [92]. We
start from a CNN that was pretrained on the much larger ILSVRC 2012 dataset. For finetuning,
the learning rate was initialized at 0.001 and decreased by a factor of 10 every 20k iterations. We
finetuned for 30k iterations, which takes about 7 hours on a NVIDIA Titan GPU. Following [49],
we label each training example with the class that has the maximally overlapping ground truth
instance, if this overlap is larger than 0.5, and background otherwise. All finetuning was done on
the train set.

SVM Training: For training the linear SVMs, we compute features either from pooling layer
5 (pool5), fully connected layer 6 (fc6), or fully connected layer 7 (fc7). In SVM training, we
fixed the positive examples to be from the ground truth boxes for the target class and the negative
examples were defined as boxes having less than 0.3 intersection over union with the ground truth
instances from that class. Training was done on the train set with SVM hyper-parameters C =
0.001, B = 10, w1 = 2.0 using liblinear [41]. We report the performance (detection average
precision AP b) on the val set for the control experiments. For the final experiment we train on
trainval and report performance in comparison to other methods on the test set. At test time, we
compute features from the fc6 layer in the network, apply the linear classifier, and non-maximum
suppression to the output, to obtain a set of sparse detections on the test image.

Results. We use the PASCAL VOC box detection average precision (denoted asAP b following
the generalization introduced in [70]) as the performance metric. Results are presented in Table 2.2.
As a baseline, we report performance of the state-of-the-art non-neural network based detection



CHAPTER 2. 3D SCENE UNDERSTANDING 12

Table 2.2: Control experiments for object detection on NYUD2 val set. We investigate different ways to
encode the depth image for use in a CNN for feature learning. Results are AP (in %). See Section 2.3.1.2.

DPM CNN

inputs? RGB RGBD RGB disparity HHA RGB + HHA

synthetic data? 2x 15x 2x 2x 2x
CNN layer? fc6 fc6 fc6 fc6 fc6 fc6 fc6 pool5 fc7 fc6
finetuned? no yes no yes yes yes yes yes yes yes

A B C D E F G H I J K L

bathtub 0.1 12.2 4.9 5.5 3.5 6.1 20.4 20.7 20.7 11.1 19.9 22.9
bed 21.2 56.6 44.4 52.6 46.5 63.2 60.6 67.2 67.8 61.0 62.2 66.5
bookshelf 3.4 6.3 13.8 19.5 14.2 16.3 20.7 18.6 16.5 20.6 18.1 21.8
box 0.1 0.5 1.3 1.0 0.4 0.4 0.9 1.4 1.0 1.0 1.1 3.0
chair 6.6 22.5 21.4 24.6 23.8 36.1 38.7 38.2 35.2 32.6 37.4 40.8
counter 2.7 14.9 20.7 20.3 18.5 32.8 32.4 33.6 36.3 24.1 35.0 37.6
desk 0.7 2.3 2.8 6.7 1.8 3.1 5.0 5.1 7.8 4.2 5.4 10.2
door 1.0 4.7 10.6 14.1 0.9 2.3 3.8 3.7 3.4 2.8 3.3 20.5
dresser 1.9 23.2 11.2 16.2 3.7 5.7 18.4 18.9 26.3 13.1 24.7 26.2
garbage-bin 8.0 26.6 17.4 17.8 2.4 12.7 26.9 29.1 16.4 21.4 25.3 37.6
lamp 16.7 25.9 13.1 12.0 10.5 21.3 24.5 26.5 23.6 22.3 23.2 29.3
monitor 27.4 27.6 24.8 32.6 0.4 5.0 11.5 14.0 12.3 17.7 13.5 43.4
night-stand 7.9 16.5 9.0 18.1 3.9 19.1 25.2 27.3 22.1 25.9 27.8 39.5
pillow 2.6 21.1 6.6 10.7 3.8 23.4 35.0 32.2 30.7 31.1 31.2 37.4
sink 7.9 36.1 19.1 6.8 20.0 28.5 30.2 22.7 24.9 18.9 23.0 24.2
sofa 4.3 28.4 15.5 21.6 7.6 17.3 36.3 37.5 39.0 30.2 34.3 42.8
table 5.3 14.2 6.9 10.0 12.0 18.0 18.8 22.0 22.6 21.0 22.8 24.3
television 16.2 23.5 29.1 31.6 9.7 14.7 18.4 23.4 26.3 18.9 22.9 37.2
toilet 25.1 48.3 39.6 52.0 31.2 55.7 51.4 54.2 52.6 38.4 48.8 53.0

mean 8.4 21.7 16.4 19.7 11.3 20.1 25.2 26.1 25.6 21.9 25.3 32.5

system, deformable part models (DPM) [42]. First, we trained DPMs on RGB images, which
gives a mean AP b of 8.4% (column A). While quite low, this result agrees with [154]. As a
stronger baseline, we trained DPMs on features computed from RGB-D images (by using HOG
on the disparity image and a histogram of height above ground in each HOG cell in addition to the
HOG on the RGB image). These augmented DPMs (denoted RGBD-DPM) give a mean AP b of
21.7% (column B). We also report results from the method of Girshick et al. [49], without and with
fine tuning on the RGB images in the dataset, yielding 16.4% and 19.7% respectively (column C
and column D). We compare results from layer fc6 for all our experiments. Features from layers
fc7 and pool5 generally gave worse performance.

The first question we ask is: Can a network trained only on RGB images can do anything when
given disparity images? (We replicate each one-channel disparity image three times to match the
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three-channel filters in the CNN and scaled the input so as to have a distribution similar to RGB
images.) The RGB network generalizes surprisingly well and we observe a mean AP b of 11.3%
(column E). This results confirms our hypothesis that disparity images have a similar structure to
RGB images, and it may not be unreasonable to use an ImageNet-trained CNN as an initialization
for finetuning on depth images. In fact, in our experiments we found that it was always better to
finetune from the ImageNet initialization than to train starting with a random initialization.

We then proceed with finetuning this network (starting from the ImageNet initialization), and
observe that performance improves to 20.1% (column F), already becoming comparable to RGBD-
DPMs. However, finetuning with our HHA depth image encoding dramatically improves perfor-
mance (by 25% relative), yielding a mean AP b of 25.2% (column G).

We then observe the effect of synthetic data augmentation. Here, we add 2× synthetic data,
based on sampling two novel views of the given NYUD2 scene from the 3D scene annotations
made available by [57]. We observe an improvement from 25.2% to 26.1% mean AP b points
(column H). However, when we increase the amount of synthetic data further (15× synthetic data),
we see a small drop in performance (column H to I). We attribute the drop to the larger bias that
has been introduced by the synthetic data. Guo et al.’s [57] annotations replace all non-furniture
objects with cuboids, changing the statistics of the generated images. More realistic modeling for
synthetic scenes is a direction for future research.

We also report performance when using features from other layers: pool5 (column J) and fc7
(column K). As expected the performance for pool5 is lower, but the performance for fc7 is also
lower. We attribute this to over-fitting during finetuning due to the limited amount of data available.

Finally, we combine the features from both the RGB and the HHA image when finetuned on
2× synthetic data (column L). We see there is consistent improvement from 19.7% and 26.1%
individually to 32.5% (column L) mean AP b. This is the final version of our system.

We also experimented with other forms of RGB and D fusion - early fusion where we passed in
a 4 channel RGB-D image for finetuning but were unable to obtain good results (AP b of 21.2%),
and late fusion with joint finetuning for RGB and HHA (AP b of 31.9%) performed comparably to
our final system (individual finetuning of RGB and HHA networks) (AP b of 32.5%). We chose
the simpler architecture.

Test set performance: We ran our final system (column L) on the test set, by training on the
complete trainval set. Performance is reported in Table 2.3. We compare against a RGB DPM,
RGB-D DPM as introduced before. Note that our RGBD-DPMs serve as a strong baseline and
are already an absolute 8.2% better than published results on the B3DO dataset [90] (39.4% as
compared to 31.2% from the approach of Kim et al. [97], detailed results are in the supplementary
material [65]). We also compare to Lin et al. [118]. [118] only produces 8, 15 or 30 detections per
image which produce an average F1 measure of 16.60, 17.88 and 18.14 in the 2D detection problem
that we are considering as compared to our system which gives an average Fmax measure of 43.70.
Precision Recall curves for our detectors along with the 3 points of operation from [118] are in the
supplementary material [65]. We also report performance of a number of variants, where we show
the effect of using more data for finetuning, and use of region features additionally computed from
underlying regions associated with the bounding box (as detailed in Section 2.3.2).
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Figure 2.4: Output of our system: We visualize randomly sampled instance segmentation output for bed
and chair categories from a more recent version of our system [59] that uses a deeper network and better
representation for depth images.

2.3.2 Instance Segmentation
Bounding boxes by themselves are a fairly crude representation for objects in a scene, specially
when we want to make 3D inferences about them. To address this, we study the problem of instance
segmentation [70, 170]. Instance segmentation additionally involves inferring the pixel support for
each object of the category of interest. We investigate two approaches for instance segmentation,
via Region Refinement and via Region Classification.

2.3.2.1 Region Refinement

We formulate mask prediction as a two-class labeling problem (foreground versus background) on
the pixels within the detection window. Our proposed method classifies each detection window
pixel with a random forest classifier and then smoothes the predictions by averaging them over
superpixels.

Learning framework: To train our random forest classifier, we associate each ground truth
instance in the train set with a detection from our detector. We select the best scoring detection
that overlaps the ground truth bounding box by more than 70%. For each selected detection, we
warp the enclosed portion of the associated ground truth mask to a 50 × 50 grid. Each of these
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Table 2.3: Test set results for detection on NYUD2 dataset. See text for details.
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RGB DPM 9.0 0.9 27.6 9.0 0.1 7.8 7.3 0.7 2.5 1.4 6.6 22.2 10.0 9.2 4.3 5.9 9.4 5.5 5.8 34.4
RGB-D DPM 23.9 19.3 56.0 17.5 0.6 23.5 24.0 6.2 9.5 16.4 26.7 26.7 34.9 32.6 20.7 22.8 34.2 17.2 19.5 45.1
RGB R-CNN train 22.5 16.9 45.3 28.5 0.7 25.9 30.4 9.7 16.3 18.9 15.7 27.9 32.5 17.0 11.1 16.6 29.4 12.7 27.4 44.1
Our (RGB + HHA, Box Feats.) train 35.9 39.5 69.4 32.8 1.3 41.9 44.3 13.3 21.2 31.4 35.8 35.8 50.1 31.4 39.0 42.4 50.1 23.5 33.3 46.4
Our (RGB + HHA, Box Feats., Aug) train 37.3 44.4 71.0 32.9 1.4 43.3 44.0 15.1 24.5 30.4 39.4 36.5 52.6 40.0 34.8 36.1 53.9 24.4 37.5 46.8
Our (RGB + HHA, Box Feats.) trainval 38.8 36.4 70.8 35.1 3.6 47.3 46.8 14.9 23.3 38.6 43.9 37.6 52.7 40.7 42.4 43.5 51.6 22.0 38.0 47.7
Our (RGB + HHA, + Region Feats.) trainval 41.2 39.4 73.6 38.4 5.9 50.1 47.3 14.6 24.4 42.9 51.5 36.2 52.1 41.5 42.9 42.6 54.6 25.4 48.6 50.2

2500 locations (per detection) serves as a training point.
Classifier: We train a single, monolithic classifier to process all 2500 locations. We implement

it with a random forests [18]. Random forests naturally deal with multi-modal data and have
been shown to work well with features derived from depth images [117, 153]. We adapt the open
source random forest implementation in [33] to allow training and testing with on-the-fly feature
computation. Our forests have ten decision trees.

Features: We compute a set of feature channels at each pixel in the original image (listed in
supplementary material [65]). For each detection, we crop and warp the feature image to obtain
features at each of the 50 × 50 detection window locations. The questions asked by our decision
tree split nodes are similar to those in Shotton et al. [153] (which are themselves a generalization
of those originally proposed by Geman et al. [48]). Specifically, we use two question types: unary
questions obtained by thresholding the value in a channel relative to the location of a point, and
binary questions obtained by thresholding the difference between two values, at different relative
positions, in a particular channel. Shotton et al. [153] scale their offsets by the depth of the point
to classify. We find that depth scaling is unnecessary after warping each instance to a fixed size
and scale.

Testing: During testing, we work with the top 5K detections for each category (and 10K
for the chair category, this gives us enough detections to get to 10% or lower precision). For
each detection we compute features and pass them through the random forest to obtain a 50 × 50
foreground confidence map. We unwarp these confidence maps back to the original detection
window and accumulate the per pixel predictions over superpixels. We select a threshold on the
soft mask by optimizing performance on the val set.

2.3.2.2 Region Classification

An alternative approach is to classify region proposals as obtained in Section 2.2 into object classes
based on region intersection over union with ground truth object segments rather than box inter-
section over union [49, 70]. We adopt the two-pathway network from Hariharan et al. [70], and
use CNN features computed from the region’s bounding box as well as the masked region itself.
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Table 2.4: Test set results for instance segmentation on NYUD2. See text for details.
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Bounding Box 14.0 5.9 40.0 4.1 0.7 5.5 0.5 3.2 14.5 26.9 32.9 1.2 40.2 11.1 6.1 9.4 13.6 2.6 35.1 11.9
Region 28.1 32.4 54.9 9.4 1.1 27.0 21.4 8.9 20.3 29.0 37.1 26.3 48.3 38.6 33.1 30.9 30.5 10.2 33.7 39.9
Foreground Mask 28.0 14.7 59.9 8.9 1.3 29.2 5.4 7.2 22.6 33.2 38.1 31.2 54.8 39.4 32.1 32.0 36.2 11.2 37.4 37.5
Our (RGB + HHA, Random Forest) train 32.1 18.9 66.1 10.2 1.5 35.5 32.8 10.2 22.8 33.7 38.3 35.5 53.3 42.7 31.5 34.4 40.7 14.3 37.4 50.3
Our (RGB + HHA, Region Feats.) train 34.0 33.8 64.4 9.8 2.3 36.6 41.3 9.7 20.4 30.9 47.4 26.6 51.6 27.5 42.1 37.1 44.8 14.7 42.7 62.6
Our (RGB + HHA, Region Feats.) trainval 37.5 42.0 65.1 12.7 5.1 42.0 42.1 9.5 20.5 38.0 50.3 32.8 54.5 38.2 42.0 39.4 46.6 14.8 48.0 68.4

2.3.2.3 Results

To evaluate instance segmentation performance we use the region detection average precisionAP r

metric (with a threshold of 0.5) as proposed in [70]. This extends the average precision metric used
for bounding box detection by replacing bounding box overlap with region overlap (intersection
over union). Note that this metric captures more information than the semantic segmentation metric
as it respects the notion of instances, which is a goal of this paper.

We report the performance of our system in Table 2.4. We compare against three baseline
methods: 1) Bounding Box where we simply assume the mask to be the box for the detection
and project it to superpixels, 2) Region where we average the region proposals that resulted in the
detected bounding box and project this to superpixels, and 3) Foreground Mask where we compute
an empirical mask from the set of ground truth masks corresponding to the detection associated
with each ground truth instance in the training set.

Both proposed methods, that of region refinement and region prediction perform better than
these baselines, and obtain a performance of 32.1% and 34.0% meanAP r. Our instance segmentor
is effective and corrects mis-localized detections. Some categories even have a higher AP r than
AP b. Region features additionally also boost performance for the object detection task (Table 2.3).
Figure 2.4 shows sample instance segmentations from a more recent version of our system [59].

We use these final instance segmentations for the rest of this work. Of course, one could
combine the region prediction and refinement [70] to obtain even better instance segmentations,
but we chose to work with this intermediate output to minimize the number of times we train on
the same data.

2.4 2.5D to Full 3D

2.4.1 Estimating Coarse Pose
In this section, we propose a convolutional neural network to estimate the coarse pose of rigid
objects from a depth image. Contemporary work [173] studies the problem on RGB images.
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Assume C(k, n, s) is a convolutional layer with kernel size k × k, n filters and a stride of
s, P{max,ave}(k, s) a max or average pooling layer of kernel size k × k and stride s, N a local
response normalization layer, RL a rectified linear unit, and D(r) a dropout layer with dropout
ratio r. Our network has the following architecture: C(7, 96, 4) − RL − Pmax(3, 2) − D(0.5) −
N − C(5, 128, 2)−RL− Pmax(3, 2)−N − C(3, (Npose + 1)Nclass, 1)−RL− Pave(14, 1).

As input to the network we use 3-channel surface normal images, where the three channels
encodeNx,Ny andNz using the angle the normal vector makes with the three geocentric directions
obtained with the gravity estimation algorithm from [58]. We use the angle in degrees and shift
it to center at 128 instead of 90. Note that we do not use the HHA embedding [64] because it
explicitly removes the azimuth information to allow learning pose-invariant representations for
object detection.

Given that reliable annotations for such a detailed task are extremely challenging to obtain [57],
we use 3D models from ModelNet [178] to train the network. In particular, we use the subset of
models as part of the training set and work with the 10 categories for which the models are aligned
to a canonical pose (bathtub, bed, chair, desk, dresser, monitor, night-stand, sofa, table, toilet).
We sample 50 models for each category and render 10 different poses for each model placed on a
horizontal floor at locations and scales estimated from the NYUD2 dataset [156] (some examples
are provided in supplementary material). We place one object per scene, and sample boxes with
more than 70% overlap with the ground truth box as training examples. We crop and warp the
bounding box in the same way as Girshick et al. [49]. Note that warping the normals preserves the
angles that are represented (as opposed to warping a depth image or a HHA image [64] which will
change the orientation of surfaces being represented).

We train this network for classification using a softmax regression loss and share the lower
layers of the network among different categories. We also adopt the geocentric constraint and
assume that the object rests on a surface and hence must be placed flat on the ground. Thus, we
only have to determine the azimuth of the object in the geocentric coordinate frame. We bin this
azimuth into Nposebin bins (20 in the experiments) and train the network to predict the bin for each
example.

At test time, we simply forward propagate the image through the network and take the output
pose bin as the predicted pose estimate. Given that the next stage requires a good initialization, in
the experimental section we work with the top k(= 2) modes of prediction.

2.4.2 Model Alignment
We now consider the problem of placing a 3D object model in the scene. We start from the instance
segmentation output from Section 2.3.2, and infer the coarse pose of the object using the neural
network introduced in Section 2.4.1. With this rough estimate of the pixel support of the object
and a coarse estimate of its pose, we solve an alignment problem to obtain an optimal placement
for the object in the scene.
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2.4.2.1 Model Search

Note that our pose estimator provides only an orientation for the model. It does not inform about
the size of the object, or about which model would fit the object best. Thus, in this stage, the
algorithm searches over scales and CAD models, inferring an optimal rotation R and translation t
for each candidate.

To search over scale, we gather category-level statistics from the 3D bounding box annotations
of [57]. In particular, we use the area of the bounding box in the top view, estimate the mean of
this area and its standard deviation, and take Nscale stratified samples from N (µarea, σarea). Such
statistics do not require annotations and can also be obtained from online furniture catalogues. To
search over scale, we isotropically scale each model to have the sampled area in the top-view.

To search over models, we select a small number Nmodels of 3D models for each category (5 in
our experiments). Care was taken to pick distinct models, but this selection could also be done in
a data-driven manner (by picking models that explain the data well).

Finally, we optimize over R and t iteratively using iterative closest point (ICP) [138], which
we modify by constraining the rotation estimate to be consistent with the gravity direction. We
initialize R using the pose estimate obtained from Section 2.4.1, and the inferred direction of
gravity [58]. We initialize translation components tx and tz by using the median of the world co-
ordinates of the points in the segmentation mask, and set ty such that the model is resting on the
floor (this constraint helps with heavily occluded objects, e.g. chairs, for which often only the back
is visible). The following describes the model alignment procedure.

2.4.2.2 Model Alignment

The input to the model alignment algorithm is a depth image D, a segmentation mask S, a 3D
model M at a given fixed scale s and an initial estimate of the transformation (a rotation matrix
R0 and a translation vector t0) for the model. The output of the algorithm is a rotation R and a
transformation t, such that the 3D model M rendered with transformations R and t explains as
many points as possible in the segmentation mask S. We solve this problem approximately by the
following procedure which we repeat for N iterations.

Render model: First, we use the current estimate of the transformation parameters (s, R, t) to
render the model M and obtain a depth image of the model. We then back-project pixels from the
segmentation mask S from the given depth image (to obtain point set Pobject), and the points from
the rendered model’s depth image (to obtain point set Pmodel) to 3D space.

Re-estimate model transformation parameters: We run ICP to align points in Pobject to
points in Pmodel: a) we form correspondence by associating each point in Pobject with the closest
point in Pmodel (this prevents associations for occluded points in the object), b) we reject the worst
20% of the matches based on the distance (this allows the association to be robust in the presence
of over-shoot in the segmentation mask S), and c) we constrain the rotation matrix R to operate
only about the direction of gravity.
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Figure 2.5: Performance on a NYUD2 val set. We plot accuracy (fraction of instances for which we are
able to predict pose within a δθ angle) as a function of δθ. The top plots show top1 accuracy and the bottom
plots show top2 accuracy. Note that real in the legend refers to model trained on real data, syn refers to the
model trained on synthetic data and NNN stands for normal image.

2.4.2.3 Model Selection

Now we need to select the fitted model that best explains the data among NscaleNmodel candidates.
We pose this selection as a learning problem and compute a set of features to capture the quality
of the fit to the data. We compute the following features: number and fraction of pixels of the
rendered model that are occluded, which are explained by the data, fraction and number of pixels of
the input instance segmentation which are explained by the model, intersection over union overlap
of the instance segmentation with mask of the model explained by the data, and mask of the model
which is unoccluded. We learn a linear classifier on these features to pick the best fitting model.
This classifier is trained with positives coming from rendered models which have more than 50%
overlap with a ground truth region.

2.4.3 Experiments
We evaluate our approach on the NYUD2 dataset from Silberman et al. [156] and use the standard
train set of 795 images and test set with 654 images. We split the 795 training images into 381
train and 414 validation images. For synthetic data we use the collection of aligned models made
available by Wu et al. [178].

2.4.3.1 Coarse Pose Estimation

Here we describe our experiments to evaluate our coarse pose estimator. We present two evalua-
tions, one on synthetic data and another one on real data.

To measure performance, we work with ground truth boxes and consider the distribution of
the angular error in the top view. In particular, we plot the angular error δθ on the X-axis and the
accuracy (the fraction of data which incurs less than δθ error) on the Y-axis. Note that we plot
this graph for small ranges of δθ (0◦ to 45◦) as accuracy in the high error ranges is useless from
the perspective of model alignment. Moreover, since selecting among multiple hypotheses can
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Table 2.5: Experiments for model placement on NYUD2: We report the APm for three different setting:
using ground truth object segmentation masks, using latent positive segmentation masks and using the de-
tection output from the instance segmentation from [64] (on the val set). We report performance on two
different values for threshold tagree. We also report performance on the test set. See Section 2.4.3.2 for
details.

val set test set

ground truth segm latent positive setting detection setting detection setting

0.5, 5 0.5, 5 0.5, 5 0.5, 5 AP r 0.5, 5 0.5, 5 AP r 0.5, 5 0.5, 5 AP r

tagree 7 ∞ 7 ∞ upper 7 ∞ upper 7 ∞ upper
bound bound bound

bathtub 57.4 76.8 55.3 83.3 94.7 6.7 19.4 25.7 7.9 50.4 42.0
bed 42.3 87.3 28.8 86.0 96.1 25.8 63.2 57.0 31.8 68.7 65.0

chair 45.3 74.1 29.0 56.9 70.1 11.8 25.2 30.4 14.7 35.6 42.9
desk 33.9 67.4 20.3 40.9 55.7 3.0 4.0 6.2 4.1 10.8 12.0

dresser 82.7 92.0 76.1 96.0 100.0 13.3 21.1 21.1 26.3 35.0 36.1
monitor 31.4 39.8 18.4 20.8 41.3 12.5 12.5 26.8 5.7 7.4 11.4

night-stand 62.5 77.6 51.3 65.2 87.9 18.9 21.6 25.5 28.1 33.7 34.8
sofa 45.1 85.0 28.5 72.0 92.4 10.5 30.4 37.7 21.8 48.5 47.4
table 18.8 52.2 15.8 34.3 46.8 5.5 11.9 13.3 5.6 12.3 15.0
toilet 66.0 100.0 46.0 86.0 100.0 35.9 72.4 73.2 41.8 68.4 68.4

mean 48.5 75.2 37.0 64.1 78.5 14.4 28.2 31.7 18.8 37.1 37.5

be beneficial for the alignment stage, a more appropriate metric is the topk accuracy (fraction of
instances which are within δθ of the topk predictions of the model).

To evaluate this task, we work with the annotations from Guo and Hoiem [57], who annotated
the NYUD2 dataset with 3D CAD models for the following 6 categories: chair, bed, sofa, table,
desk and book shelf. To obtain interpretable results, we work with categories which have a clearly
defined pose: chair, sofa and bed (bookshelf is not among the 10 categories which are pose aligned
in ModelNet [178]). The top row in Figure 2.5 plots the top1 accuracy and the second row plots
top2 accuracy. Note that there is a large number of objects which have missing depth data (for
instance 30% of chairs have more than 50% missing depth pixels), hence we plot these curves
only for instances with less than 50% depth pixels missing. We also experimented with the HHA
network from [64] with and without fine-tuning for this task, training a shallow network from
random initialization using HHA images and normal images. All these experiments are done by
training on the real data, and we see that we are able to outperform these variants by training on
clean synthetic data. Evaluation on the synthetic data is provided in the supplementary material.

2.4.3.2 Model Alignment

Performance Metric. Given that the output of our algorithm is a 3D model placed in the scene, it
is not immediately obvious how to evaluate performance. One might think of evaluating individual
tasks such as pose estimation, sub-type classification, key point prediction or instance segmenta-
tion, but doing these independently does not measure the performance of 3D model placement.
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Moreover, for many categories we are considering there may not be a consistent definition of pose
(e.g. table), or key points (e.g. sofa), or sub-types (e.g. chair).

Thus, to measure performance of placing 3D models in the scene, we propose a new metric
which directly evaluates the fit of the inferred model with the observed depth image. We assume
that there is a fixed library of 3D models L, and a given algorithm A has to pick one of these
models, and place it appropriately in the scene. We assume we have category-level instance seg-
mentation annotations.

Our proposed metric is a generalization of the Average Precision, the standard metric for evalu-
ating detection and segmentation [70]. Instead of just using the image-level intersection over union
of the predicted box (in case of AP b) or region (in case of AP r) with the ground truth, we also
enforce the constraint that the prediction must agree with the depth values observed in the image.
In particular, we modify the way intersection between a prediction and a ground truth instance in
computed. We render the model from the library L as proposed by the algorithm A to obtain a
depth map and a segmentation mask. We then do occlusion checking with the given image to ex-
clude pixels that are definitely occluded (based on a threshold tocclusion). This gives us the visible
part of the object Pvisible. We then compute the intersection I between the output and the ground
truth G by counting the number of pixels which are contained in both Pvisible and G, but in addi-
tion also agree on their depth values by being within a distance threshold of tagree with each other.
Union U is computed by counting the number of pixels in the ground truth G and the visible extent
of the object Pvisible as |G ∪ Pvisible|. If this I

U
, is larger than tiou then this prediction is considered

to explain the data well, otherwise not. With this modified definition of overlap, we plot a precision
recall curve and measure the area under it as measure of the performance of the algorithm A. We
denote this average precision as APm. To account for the inherent noise in the sensor we operate
with disparity as opposed to the depth value, and set thresholds toccluded and tagree on disparity.
This allows for larger error in far away objects as opposed to close by objects. While this behavior
may not be desirable, it is unavoidable given the noise in the input depth image behaves similarly.

Evaluation. We evaluate our algorithm in 3 different settings: first using ground truth segmen-
tations, second using high scoring instance segmentations from [64] that overlap with the ground
truth by more than 50% (denoted as ‘latent positive setting’), and third a completely unconstrained
setting using only the instance segmentation output without any ground truth (denoted as ‘detection
setting’). Table 2.5 left summarizes results in these settings on the val set.

We use an tiou of 0.5 to count a true positive, tocclusion of 5 disparity units, and report per-
formance at two different values of tagree 7 and ∞. An error of 7 disparity units corresponds to
a 20 cm error at 3 meters. A tagree of ∞ corresponds to AP r subject to the constraint that the
segmentation must come from the rendering of a 3D model.

We see that even when working with ground truth segmentations, estimating and placing a 3D
model to explain the segment is a hard task. We obtain a (model average precision) APm of 48.5%
in this setting. Even when evaluating at tagree of∞, we only get a performance of 75.2% which is
indicative of the variety of our 3D model library and accuracy of our pose estimator.

In the second setting, we take the highest scoring detection which overlaps with more than
50% with the ground truth mask. Note that this setup decouples the performance of the detector
from the performance of the model placement algorithm while at the same time exposing the
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Figure 2.6: Control Experiments: Variation in APm. See Section 2.4.3.2 for details.

model placement algorithm with noisier segmentation masks. Under this setting, the AP r upper
bound is 78.5% which means that only that percentage of regions have a bottom-up region which
overlaps with more than 0.5 with the ground truth mask, indicating the recall of the region proposal
generator that we are using [64]. In this setting the performance at tagree = ∞ is 64.1% and at
tagree = 7 is 37.0%. This shows that our model alignment is fairly robust to segmentation errors
and we see a small drop in performance from 48.5% to 37.0% when moving from ground truth
setting to latent positive setting.

In the detection setting (using no ground truth information at all), we observe an AP r upper
bound of 31.7% (which is comparable to AP r reported in Table 2.4 but slightly different because
(a) these are on the validation set, and (b) we ignore pixels with missing depth values in computing
this metric). In this setting we observe a performance of 14.4% for tagree of 7 and 28.2% for tagree
of∞. We also report APm on the test set in the detection setting in Table 2.5 right.

Control Experiments. We perform additional control experiments to study the affect of the
number of scales, the number of models, difference in hand picking models versus randomly pick-
ing models, number of pose hypotheses, and the importance of initialization for the model align-
ment stage. These experiments are summarized in Figure 2.6 and discussed below.

As expected, performance improves as we search over more scales (but saturates around 10
scales) (Figure 2.6 top). The performance increases as we use more models. Hand picking models
so that they capture different modes of variation is better than picking models randomly, and that
performance does not seem to saturate as we keep increasing the number of models we use during
model alignment step (Figure 2.6 bottom), although this comes at proportionately larger computa-
tion time. Finally, using two pose hypothesis is better than using a single hypothesis. The model
alignment stage is indeed sensitive to initialization and works better when used with the pose esti-
mate from Section 2.4.1. This difference is more pronounced when using a single pose hypothesis
(33% using our pose estimate versus 27% when not using it, Figure 2.6 middle).

Qualitative Visualizations. Finally, we provide qualitative visualizations of the output of our
method in Figure 2.7 where we have replaced multiple objects with correspondent 3D models.
Many more are available in the supplementary material.
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Table 2.6: Test set results for 3D detection on NYUD2: We report the 3D detection AP [163]. We use the
evaluation code from [163]. ‘3D all’ refers to the setting with all object instances where as ‘3D clean’ refers
to the setting when instances with heavy occlusion and missing depth are considered difficult and not used
for evaluation [163]. Note, the ‘no RGB’ version uses only the depth image for all steps except for region
proposal generation, we do not expect this to impact this result significantly. See Section 2.4.3.3 for details.

3D all 3D clean

mean bed chair sofa table toilet mean bed chair sofa table toilet

Our (3D Box on instance segm. from [64]) 48.4 74.7 18.6 50.3 28.6 69.7 66.1 90.9 45.9 68.2 25.5 100.0
Our (3D Box around estimated model) 58.5 73.4 44.2 57.2 33.4 84.5 71.1 82.9 72.5 75.3 24.6 100.0

Song and Xiao [163] 39.6 33.5 29.0 34.5 33.8 67.3 64.6 71.2 78.7 41.0 42.8 89.1
Our [no RGB] (3D Box on instance segm. from [64]) 46.5 71.0 18.2 49.6 30.4 63.4 62.3 86.9 43.6 57.4 26.6 96.7
Our [no RGB] (3D Box around estimated model) 57.6 72.7 47.5 54.6 40.6 72.7 70.7 84.9 75.7 62.8 33.7 96.7

2.4.3.3 3D Detection

We next illustrate the richness of our approach by demonstrating results on the task of 3D object
detection. Note that our method outputs a model aligned with objects in the image. A trivial
side-product of our output is a 3D bounding box (obtained by putting a box around the inferred
3D model). We use this 3D bounding box as our output for 3D detection task and compare to the
method from Song and Xiao [163] which was specifically designed and trained for this task.

We tackle the 3D detection task in the setting proposed by Song and Xiao in [163], who work
with images from the NYUD2 dataset but create different splits for different categories and consider
two levels of difficulty: a ‘clean’ task where they remove instances which are heavily occluded or
have missing depth, and an ‘all’ task in which they consider all instances. Given their use of non-
standard splits which are different from the standard NYUD2 dataset splits, we evaluate on the
intersection of the standard NYUD2 test set and their test set for each category being studied.

In addition, we also compare to a simple baseline using the instance segmentation from [64] as
described in Section 2.3.2 for 3D detection. We use a simple heuristic here: putting a tight fitting
box around the 3D points in the inferred instance segmentation. We determine the extent of the
box in the top view by searching over the orientation of the rectangular box such that its area is
minimized, set the bottom of the box to rest on the floor and estimate the height as the maximum
height of the points in the instance segmentation. All these operations are done using percentiles
(δ and 100− δ, with δ = 2) to be robust to outliers.

We report the performance in Table 2.6 (Precision Recall curves are available in the supple-
mentary material). We observe that this simple strategy of fitting a box around the inferred instance
segmentation (denoted as ‘Our (3D Box on instance segmentation from Gupta et al. [64])’ in Ta-
ble 2.6) already works better than the method proposed in [163] which was specifically designed
for this task. At the same time, this method is faster (40 seconds CPU + 30 seconds on a GPU)
and scales well with number of categories, as compared to 25 minutes per categories per image
for [163]. This result shows that starting with well established 2D reasoning (since [64] does 2D
reasoning, it is more readily able to leverage rich features for RGB images) to prune out large
parts of the search space is not only more efficient, but also more accurate than starting from 3D
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Figure 2.7: Visualizations of the output on the test set: We show images with multiple objects replaced
with corresponding 3D CAD models. We show the image, models overlaid onto the image and the depth
map for models placed in the scene. Depth maps are visualized using the ‘jet’ colormap, far away points are
red and and close by points are blue.

reasoning for such tasks.
Finally, a 3D box around our final output (denoted ‘Our (3D Box around estimated model)’)

outperforms both [163] and the baseline of putting a 3D bounding box around the instance seg-
mentation output, providing further empirical evidence for the efficacy and utility of the methods
proposed in the paper. We observe a large improvement over the baseline in performance for non-
box like objects, chair, sofa and toilet. The improvement for chair is particularly striking (18.6%
to 44.2% in the ‘all’ setting). This is because chairs are often heavily occluded (e.g. chair oc-
cluded behind a table) and the box around the visible extent systematically underestimates the
actual amodal box.

Guo and Hoiem [56] also align 3D CAD models to objects in the image. We also compare to
their work on this 3D detection task. We take the scenes produced by the algorithm from [56],
compute tight 3D bounding boxes around detected objects and benchmark them in the same setup
as described above to obtain a point on the Precision Recall plot (available in the supplementary
material) for categories that both works consider: bed, chair, table and sofa. This comparison is
also favorable to our method, and on average we obtain twice as much precision at the same recall
and twice as much recall at the same precision.
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Lastly, we also report performance of our system when only using the depth image for object
detection, pose estimation and model placement steps (last two rows) (the bottom-up region gen-
eration step still uses the RGB image, we do not expect this to impact this result significantly). We
see that this version of our system is better than the full version for some categories. We believe
the reason is RGB information allows our full system to detect objects with missing depth with
high scores which become high scoring false positives when the model placement step fails in the
absence of enough depth data. On average this ablated version of our system performs comparably
to our final system, and continues to outperform the algorithm from [163].
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Chapter 3

Visual Navigation

As humans, when we navigate through novel environments, we draw on our previous experi-
ence in similar conditions. We reason about free-space, obstacles and the topology of the environ-
ment, guided by common sense rules and heuristics for navigation. For example, to go from one
room to another, I must first exit the initial room; to go to a room at the other end of the building,
getting into a hallway is more likely to succeed than entering a conference room; a kitchen is more
likely to be situated in open areas of the building than in the middle of cubicles. The goal of this
paper is to design a learning framework for acquiring such expertise, and demonstrate this for the
problem of robot navigation in novel environments.

However, classic approaches to navigation rarely make use of such common sense patterns.
Classical SLAM based approaches [29, 169] first build a 3D map using LIDAR, depth, or structure
from motion, and then plan paths in this map. These maps are built purely geometrically, and
nothing is known until it has been explicitly observed, even when there are obvious patterns. This
becomes a problem for goal directed navigation. Humans can often guess, for example, where they
will find a chair or that a hallway will probably lead to another hallway but a classical robot agent
can at best only do uninformed exploration. The separation between mapping and planning also
makes the overall system unnecessarily fragile. For example, the mapper might fail on texture-less
regions in a corridor, leading to failure of the whole system, but precise geometry may not even be
necessary if the robot just has to keep traveling straight.

Inspired by this reasoning, recently there has been an increasing interest in more end-to-end
learning-based approaches that go directly from pixels to actions [183, 127, 114] without going
through explicit model or state estimation steps. These methods thus enjoy the power of being able
to learn behaviors from experience. However, it is necessary to carefully design architectures that
can capture the structure of the task at hand. For instance Zhu et al. [183] use reactive memory-less
vanilla feed forward architectures for solving visual navigation problems, In contrast, experiments
by Tolman [171] have shown that even rats build sophisticated representations for space in the form

This chapter is based on work done with Varun Tolani, James Davidson, Sergey Levine, Rahul Sukthankar, and
Jitendra Malik and was presented at CVPR 2017 [61].
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Figure 3.1: Overall network architecture: Our learned navigation network consists of mapping and plan-
ning modules. The mapper writes into a latent spatial memory that corresponds to an egocentric map of
the environment, while the planner uses this memory alongside the goal to output navigational actions. The
map is not supervised explicitly, but rather emerges naturally from the learning process.

of ‘cognitive maps’ as they navigate, giving them the ability to reason about shortcuts, something
that a reactive agent is unable to.

This motivates our Cognitive Mapping and Planning (CMP) approach for visual navigation
(Figure 3.1). CMP consists of a) a spatial memory to capture the layout of the world, and b) a
planner that can plan paths given partial information. The mapper and the planner are put together
into a unified architecture that can be trained to leverage regularities of the world. The mapper fuses
information from input views as observed by the agent over time to produce a metric egocentric
multi-scale belief about the world in a top-down view. The planner uses this multi-scale egocentric
belief of the world to plan paths to the specified goal and outputs the optimal action to take. This
process is repeated at each time step to convey the agent to the goal.

At each time step, the agent updates the belief of the world from the previous time step by a)
using the ego-motion to transform the belief from the previous time step into the current coordinate
frame and b) incorporating information from the current view of the world to update the belief.
This allows the agent to progressively improve its model of the world as it moves around. The
most significant contrast with prior work is that our approach is trained end-to-end to take good
actions in the world. To that end, instead of analytically computing the update to the belief (via
classical structure from motion) we frame this as a learning problem and train a convolutional
neural network to predict the update based on the observed first person view. We make the belief
transformation and update operations differentiable thereby allowing for end-to-end training. This
allows our method to adapt to the statistical patterns in real indoor scenes without the need for any
explicit supervision of the mapping stage.

Our planner uses the metric belief of the world obtained through the mapping operation de-
scribed above to plan paths to the goal. We use value iteration as our planning algorithm but
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Figure 3.2: Architecture of the mapper: The mapper module processes first person images from the robot
and integrates the observations into a latent memory, which corresponds to an egocentric map of the top-
view of the environment. The mapping operation is not supervised explicitly – the mapper is free to write
into memory whatever information is most useful for the planner. In addition to filling in obstacles, the
mapper also stores confidence values in the map, which allows it to make probabilistic predictions about
unobserved parts of the map by exploiting learned patterns.

crucially use a trainable, differentiable and hierarchical version of value iteration. This has three
advantages, a) being trainable it naturally deals with partially observed environments by explicitly
learning when and where to explore, b) being differentiable it enables us to train the mapper for
navigation, and c) being hierarchical it allows us to plan paths to distant goal locations in time
complexity that is logarithmic in the number of steps to the goal.

Our approach is a reminiscent of classical work in navigation that also involves building maps
and then planning paths in these maps to reach desired target locations. However, our approach
differs from classical work in the following significant way: except for the architectural choice of
maintaining a metric belief, everything else is learned from data. This leads to some very desirable
properties: a) our model can learn statistical regularities of indoor environments in a task-driven
manner, b) jointly training the mapper and the planner makes our planner more robust to errors
of the mapper, and c) our model can be used in an online manner in novel environments without
requiring a pre-constructed map.

3.1 Background
Navigation is one of the most fundamental problems in mobile robotics. The standard approach is
to decompose the problem into two separate stages: (1) mapping the environment, and (2) planning
a path through the constructed map [96, 39]. Decomposing navigation in this manner allows each
stage to be developed independently, but prevents each from exploiting the specific needs of the
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other. A comprehensive survey of classical approaches for mapping and planning can be found in
[169].

Mapping has been well studied in computer vision and robotics in the form of structure from
motion and simultaneous localization and mapping [46, 87, 79, 160] with a variety of sensing
modalities such as range sensors, RGB cameras and RGB-D cameras. These approaches take a
purely geometric approach. Learning based approaches [181, 67] study the problem in isolation
thus only learning generic task-independent maps. Path planning in these inferred maps has also
been well studied, with pioneering works from Canny [20], Kavraki et al. [94] and LaValle and
Kuffner [111]. Works such as [40, 44] have studied the joint problem of mapping and planning.
While this relaxes the need for pre-mapping by incrementally updating the map while navigating,
but still treat navigation as a purely geometric problem, Konolige et al. [103] and Aydemir et al.
[10] proposed approaches which leveraged semantics for more informed navigation. Kuipers et
al. [106] introduce a cognitive mapping model using hierarchical abstractions of maps. Semantics
have also been associated with 3D environments more generally [104, 58].

As an alternative to separating out discrete mapping and planning phases, reinforcement learn-
ing (RL) methods directly learn policies for robotic tasks [98, 132, 101]. A major challenge with
using RL for this task is the need to process complex sensory input, such as camera images. Recent
works in deep reinforcement learning (DRL) learn policies in an end-to-end manner [127] going
from pixels to actions. Follow-up works [126, 55, 146] propose improvements to DRL algorithms,
[130, 126, 176, 76, 182] study how to incorporate memory into such neural network based models.
We build on the work from Tamar et al. [167] who study how explicit planning can be incorpo-
rated in such agents, but do not consider the case of first-person visual navigation, nor provide a
framework for memory or mapping. [130] study the generalization behavior of these algorithms to
novel environments they have not been trained on.

In context of navigation, learning and DRL has been used to obtain policies [172, 183, 130,
167, 93, 51, 25, 2]. Some of these works [93, 51], focus on the problem of learning controllers
for effectively maneuvering around obstacles directly from raw sensor data. Others, such as [167,
16, 130], focus on the planning problem associated with navigation under full state information
[167], designing strategies for faster learning via episodic control [16], or incorporate memory
into DRL algorithms to ease generalization to new environments. Most of this research (except
[183]) focuses on navigation in synthetic mazes which have little structure to them. Given these
environments are randomly generated, the policy learns a random exploration strategy, but has no
statistical regularities in the layout that it can exploit. We instead test on layouts obtained from
real buildings, and show that our architecture consistently outperforms feed forward and LSTM
models used in prior work.

The research most directly relevant to our work is the contemporary work of Zhu et al. [183].
Similar to us, Zhu et al. also study first-person view navigation using macro-actions in more
realistic environments instead of synthetic mazes. Zhu et al. propose a feed forward model which
when trained in one environment can be finetuned in another environment. Such a memory-less
agent cannot map, plan or explore the environment, which our expressive model naturally does.
Zhu et al. also don’t consider zero-shot generalization to previously unseen environments, and
focus on smaller worlds where memorization of landmarks is feasible. In contrast, we explicitly
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handle generalization to new, never before seen interiors, and show that our model generalizes
successfully to floor plans not seen during training.

Relationship to contemporary research. In this paper, we used scans of real world envi-
ronments to construct visually realistic simulation environments to study representations that can
enable navigation in novel previously unseen environments. Since conducting this research, there
has been a major thrust in this direction in computer vision and related communities. Numerous
works such as [22, 26, 3] have collected large-scale datasets consisting of scans of real world envi-
ronments, while [144, 177, 179] have built more sophisticated simulation environments based on
such scans. A related and parallel stream of research studies the question of whether or not models
trained in simulators can be effectively transferred to the real world [139], and how the domain
gap between simulation and the real world may be reduced [179]. A number of works have studied
related navigation problems in such simulation environments [78, 23, 4]. Researchers have also
gone beyond specifying goals as a desired location in space and finding objects of interest as done
in this paper, for example, Wu et al. [177] generalize the goal specification to also include rooms of
interest, and Das et al. [28] allow goal specification via templated questions. Finally, a number of
works have also pursued the problem of building representation for space in context of navigation.
[131, 15, 95, 54] use similar 2D spatial representations, Mirowski et al. [125] use fully-connected
LSTMs, while Savinov et al. [142] develop topological representations. Interesting reinforcement
learning techniques have also been explored for the task of navigation [125, 38].

3.2 Problem Setup
To be able to focus on the high-level mapping and planning problem we remove confounding
factors arising from low-level control by conducting our experiments in simulated real world indoor
environments. Studying the problem in simulation makes it easier to run exhaustive evaluation
experiments, while the use of scanned real world environments allows us to retains the richness and
complexity of real scenes. We also only study the static version of the problem, though extensions
to dynamic environments would be interesting to explore in future work.

We model the robot as a cylinder of a fixed radius and height, equipped with vision sensors
(RGB cameras or depth cameras) mounted at a fixed height and oriented at a fixed pitch. The
robot is equipped with low-level controllers which provide relatively high-level macro-actions
Ax,θ. These macro-actions are a) stay in place, b) rotate left by θ, c) rotate right by θ, and d)
move forward x cm, denoted by a0, a1, a2 and a3, respectively. We further assume that the en-
vironment is a grid world and the robot uses its macro-actions to move between nodes on this
graph. The robot also has access to its precise egomotion. This amounts to assuming perfect visual
odometry [129], which can itself be learned [66], but we defer the joint learning problem to future
work.

We want to learn policies for this robot for navigating in novel environments that it has not
previously encountered. We study two navigation tasks, a geometric task where the robot is re-
quired to go to a target location specified in robot’s coordinate frame (e.g. 250cm forward, 300cm
left) and a semantic task where the robot is required to go to an object of interest (e.g. a chair).
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These tasks are to be performed in novel environments, neither the exact environment map nor its
topology is available to the robot.

Our navigation problem is defined as follows. At a given time step t, let us assume the robot
is at a global position (position in the world coordinate frame) Pt. At each time step the robot
receives as input the image of the environment E , It = I(E , Pt) and a target location (xgt , y

g
t , θ

g
t )

(or a semantic goal) specified in the coordinate frame of the robot. The navigation problem is
to learn a policy that at every time steps uses these inputs (current image, egomotion and target
specification) to output the action that will convey the robot to the target as quickly as possible.

Experimental Testbed. We conduct our experiments on the Stanford large-scale 3D Indoor
Spaces (S3DIS) dataset introduced by Armeni et al. [8]. The dataset consists of 3D scans (in
the form of textured meshes) collected in 6 large-scale indoor areas that originate from 3 different
buildings of educational and office use. The dataset was collected using the Matterport scanner
[124]. Scans from 2 buildings were used for training and the agents were tested on scans from the
3rd building. We pre-processed the meshes to compute space traversable by the robot. We also
precompute a directed graph Gx,θ consisting of the set of locations the robot can visit as nodes and
a connectivity structure based on the set of actionsAx,θ available to the robot to efficiently generate
training problems. More details in supplementary material [62].

3.3 Mapping
We describe how the mapping portion of our learned network can integrate first-person camera
images into a top-down 2D representation of the environment, while learning to leverage statistical
structure in the world. Note that, unlike analytic mapping systems, the map in our model amounts
to a latent representation. Since it is fed directly into a learned planning module, it need not encode
purely free space representations, but can instead function as a general spatial memory. The model
learns to store inside the map whatever information is most useful for generating successful plans.
However to make description in this section concrete, we assume that the mapper predicts free
space.

The mapper architecture is illustrated in Figure 3.2. At every time step t we maintain a cu-
mulative estimate of the free space ft in the coordinate frame of the robot. ft is represented as a
multi-channel 2D feature map that metrically represents space in the top-down view of the world.
ft is estimated from the current image It, cumulative estimate from the previous time step ft−1 and
egomotion between the last and this step et using the following update rule:

ft = U (W (ft−1, et) , f
′
t) where, f ′t = φ (It) . (3.1)

here, W is a function that transforms the free space prediction from the previous time step ft−1
according to the egomotion in the last step et, φ is a function that takes as input the current image
It and outputs an estimate of the free space based on the view of the environment from the current
location (denoted by f ′t). U is a function which accumulates the free space prediction from the
current view with the accumulated prediction from previous time steps. Next, we describe how
each of the functions W , φ and U are realized.



CHAPTER 3. VISUAL NAVIGATION 32

Fuser

Updated 
Value Maps

Q-Value 
Maps

Value 
Maps

l Iterations
Value Iteration Module

Fused world, goal 
and coarser scale 

value map

Fully 
Connected 

Layers 
with 

ReLUs

Action

Goal at Scale 0

Upsampled 
Value Maps 
from Scale 2

Scale 1

Fuser

Updated 
Value Maps

Q-Value 
Maps

Value 
Maps

l Iterations
Value Iteration Module

Fused world, goal 
and coarser scale 

value map

Output from 
mapper at Scale 0

Output from 
mapper at Scale 1

Goal at Scale 1

Upsampled 
Value Maps 
from Scale 1

Scale 0

Figure 3.3: Architecture of the hierarchical planner: The hierarchical planner takes the egocentric
multi-scale belief of the world output by the mapper and uses value iteration expressed as convolutions
and channel-wise max-pooling to output a policy. The planner is trainable and differentiable and back-
propagates gradients to the mapper. The planner operates at multiple scales (scale 0 is the finest scale) of
the problem which leads to efficiency in planning.

The function W is realized using bi-linear sampling. Given the ego-motion, we compute a
backward flow field ρ(et). This backward flow maps each pixel in the current free space image ft
to the location in the previous free space image ft−1 where it should come from. This backward
flow ρ can be analytically computed from the ego-motion (as shown in supplementary material
[62]). The function W uses bi-linear sampling to apply this flow field to the free space estimate
from the previous frame. Bi-linear sampling allows us to back-propagate gradients from ft to ft−1
[89], which will make it possible to train this model end to end.

The function φ is realized by a convolutional neural network. Because of our choice to repre-
sent free space always in the coordinate frame of the robot, this becomes a relatively easy function
to learn, given the network only has to output free space in the current coordinate, rather than in
an arbitrary world coordinate frame determined by the cumulative egomotion of the robot so far.

Intuitively, the network can use semantic cues (such as presence of scene surfaces like floor
and walls, common furniture objects like chairs and tables) alongside other learned priors about
size and shapes of common objects to generate free space estimates, even for object that may only
be partiality visible. Qualitative results in supplementary material [62] show an example for this
where our proposed mapper is able to make predictions for spaces that haven’t been observed.

The architecture of the neural network that realizes function φ is shown in Figure 3.2. It is
composed of a convolutional encoder which uses residual connections [71] and produces a repre-
sentation of the scene in the 2D image space. This representation is transformed into one that is
in the egocentric 2D top-down view via fully connected layers. This representation is up-sampled
using up-convolutional layers (also with residual connections) to obtain the update to the belief
about the world from the current frame.

In addition to producing an estimate of the free space from the current view f ′t the model also
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produces a confidence c′t. This estimate is also warped by the warping functionW and accumulated
over time into ct. This estimate allows us to simplify the update function, and can be thought of
as playing the role of the update gate in a gated recurrent unit. The update function U takes in the
tuples (ft−1, ct−1), and (f ′t , c

′
t) and produces (ft, ct) as follows:

ft =
ft−1ct−1 + f ′tc

′
t

ct−1 + c′t
and ct = ct−1 + c′t (3.2)

We chose an analytic update function to keep the overall architecture simple. This can be replaced
with more expressive functions like those realized by LSTMs [81].

Mapper performance in isolation. To demonstrate that our proposed mapper architecture
works we test it in isolation on the task of free space prediction. supplementary material [62]
shows qualitative and quantitative results.

3.4 Planning
Our planner is based on value iteration networks proposed by Tamar et al. [167], who observed
that a particular type of planning algorithm called value iteration [14] can be implemented as a
neural network with alternating convolutions and channel-wise max pooling operations, allowing
the planner to be differentiated with respect to its inputs. Value iteration can be thought of as a
generalization of Dijkstra’s algorithm, where the value of each state is iteratively recalculated at
each iteration by taking a max over the values of its neighbors plus the reward of the transition to
those neighboring states. This plays nicely with 2D grid world navigation problems, where these
operations can be implemented with small 3 × 3 kernels followed by max-pooling over channels.
Tamar et al. [167] also showed that this reformulation of value iteration can also be used to learn
the planner (the parameters in the convolutional layer of the planner) by providing supervision
for the optimal action for each state. Thus planning can be done in a trainable and differentiable
manner by very deep convolutional network (with channel wise max-pooling). For our problem,
the mapper produces the 2D top-view of the world which shares the same 2D grid world structure
as described above, and we use value iteration networks as a trainable and differentiable planner.

Hierarchical Planning. Value iteration networks as presented in [167](v2) are impractical to
use for any long-horizon planning problem. This is because the planning step size is coupled with
the action step size thus leading to a) high computational complexity at run time, and b) a hard
learning problem as gradients have to flow back for as many steps. To alleviate this problem, we
extend the hierarchical version presented in [167].

Our hierarchical planner plans at multiple spatial scales. We start with a k times spatially down-
sampled environment and conduct l value iterations in this downsampled environment. The output
of this value iteration process is center cropped, upsampled, and used for doing value iterations at
a finer scale. This process is repeated to finally reach the resolution of the original problem. This
procedure allows us to plan for goals which are as far as l2k steps away while performing (and
backpropagating through) only lk planning iterations. This efficiency increase comes at the cost of
approximate planning.
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Figure 3.4: We report the mean distance to goal, 75th percentile distance to goal (lower is better) and success
rate (higher is better) as a function of the number of steps for the 4 frame reactive agent, LSTM based agent
and our proposed CMP based agent when using RGB images as input (left three plots) and when using
depth images as input (right three plots). We note that CMP outperforms the two baselines in both cases,
and generally using depth images as input leads to better performance than using RGB images as input.
We also show the variance in performance over five re-trainings from different random initializations of the
agents when using depth images as input (the solid line plots the median performance and the surrounding
shaded region represents the minimum and maximum value across five different runs). We note that the
variation in performance is reasonably small for all models and CMP consistently outperforms the two
baseline.

Planning in Partially Observed Environments. Value iteration networks have only been
evaluated when the environment is fully observed, i.e. the entire map is known while planning.
However, for our navigation problem, the map is only partially observed. Because the planner
is not hand specified but learned from data, it can learn policies which naturally take partially
observed maps into account. Note that the mapper produces not just a belief about the world but
also an uncertainty ct, the planner knows which parts of the map have and haven’t been observed.

3.5 Joint Architecture
Our final architecture, Cognitive Mapping and Planning (CMP) puts together the mapper and plan-
ner described above. At each time step, the mapper updates its multi-scale belief about the world
based on the current observation. This updated belief is input to the planner which outputs the
action to take. As described previously, all parts of the network are differentiable and allow for
end-to-end training, and no additional direct supervision is used to train the mapping module –
rather than producing maps that match some ground truth free space, the mapper produces maps
that allow the planner to choose effective actions.

Training Procedure. We optimize the CMP network with fully supervised training using
DAGGER [136]. We generate training trajectories by sampling arbitrary start and goal locations on
the graph Gx,θ. We generate supervision for training by computing shortest paths on the graph. We
use an online version of DAGGER, where during each episode we sample the next state based on
the action from the agent’s current policy, or from the expert policy. We use scheduled sampling
and anneal the probability of sampling from the expert policy using inverse sigmoid decay.
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Figure 3.5: Representative Success and Failure Cases for CMP: We visualize trajectories for some typi-
cal success and failure cases for CMP. Dark gray regions show occupied space, light gray regions show free
space. The agent starts from the blue dot and is required to reach the green star (or semantic regions shown
in light gray). The agent’s trajectory is shown by the dotted red line. While we visualize the trajectories in
the top view, note that the agent only receives the first person view as input. Left plots show success cases
for geometric task. We see that the agent is able to traverse large distances across multiple rooms to get to
the target location, go around obstacles and quickly resolve that it needs to head to the next room and not the
current room. The last two plots show cases where the agent successfully backtracks. Center plots show
failure cases for geometric task: problems with navigating around tight spaces (entering through a partially
opened door, and getting stuck in the corner (the gap is not big enough to pass through)), missing openings
which would have lead to shorter paths, thrashing around in space without making progress. Right plots
visualize trajectories for ‘go to the chair’ semantic task. The first figure shows a success case, while the
right figure shows a typical failure case where the agent walks right through a chair region.

Note that the focus of this work is on studying different architectures for navigation. Our pro-
posed architecture can also be trained with alternate paradigms for learning such policies, such as
reinforcement learning. We chose DAGGER for training our models because we found it to be sig-
nificantly more sample efficient and stable in our domain, allowing us to focus on the architecture
design.

3.6 Experiments
All our models are trained asynchronously with 16 parallel GPU workers and 16 parameter servers
using TensorFlow [1]. We used ADAM [99] to optimize our loss function and trained for 60K
iterations with a learning rate of 0.001 which was dropped by a factor of 10 every 20K iterations
(we found this necessary for consistent training across different runs). We use weight decay of
0.0001 to regularize the network and use batch-norm [86].

We use ResNet-50 [72] pre-trained on ImageNet [31] to represent RGB images. We transfer
supervision from RGB images to depth images using cross modal distillation [59] between RGB-D
image pairs rendered from meshes in the training set to obtain a pre-trained ResNet-50 model to
represent depth images.

We compare our proposed CMP architecture to other alternate architectures such as a reactive
agent and a LSTM based agent. Since the goal of this paper is to study various architectures for
navigation we train all these architectures the same way using DAGGER [136] as described earlier.



CHAPTER 3. VISUAL NAVIGATION 36

Table 3.1: Navigation Results: We report the mean distance to goal location, 75th percentile distance to
goal and success rate after executing the policy for 39 time steps. The top part presents results for the case
where the goal is specified geometrically in terms of position of the goal in the coordinate frame of the robot.
The bottom part presents aggregate results for the case where the goal is specified semantically in the form
of ‘go to a chair’ (or door or table).

Method
Mean 75th %ile Success %age

RGB Depth RGB Depth RGB Depth

Geometric Task
Initial 25.3 25.3 30 30 0.7 0.7
No Image LSTM 20.8 20.8 28 28 6.2 6.2
Reactive (1 frame) 20.9 17.0 28 26 8.2 21.9
Reactive (4 frames) 14.4 8.8 25 18 31.4 56.9
LSTM 10.3 5.9 21 5 53.0 71.8
Our (CMP) 7.7 4.8 14 1 62.5 78.3

Semantic Task (Aggregate)
Initial 16.2 16.2 25 25 11.3 11.3
Reactive 14.2 14.2 22 23 23.4 22.3
LSTM 13.5 13.4 20 23 23.5 27.2
Our (CMP) 11.3 11.0 18 19 34.2 40.0

3.6.1 Geometric Task
We first present results for the task where the goal is specified geometrically in terms of position of
the goal in robot’s coordinate frame in Table 3.1 (top part) and Figure 3.4. Problems for this task
are generated by first sampling a start node on the graph and then sampling an end node which is
within 32 steps from the starting node and preferably in another room or in the hallway (we use
room and hallway annotations from the dataset [8]). The same sampling process is used during
training and testing. We sample 4000 problems for testing and these remain fixed across different
algorithms that we compare. We measure performance using the distance to goal after running the
learned policy for the episode length (39 time steps). We report multiple error metrics, the mean
distance to goal, the 75th percentile distance to goal and the success rate (the agent succeeds if it
is within a distance of three steps to the goal location at the end of the episode). Table 3.1 reports
these metrics at end of the episode, while Figure 3.4 plots them across time steps. We report all
numbers on the test set. The test set consists of a floor from an altogether different building not
contained in the training set. (See dataset website and supplementary material [62] for environment
visualizations.)

Nearest Neighbor Trajectory Transfer: To quantify similarity between training and testing en-
vironments, we transfer optimal trajectories from the train set to the test set using visual nearest
neighbors (in RGB ResNet-50 feature space). This transfer is done as follows. At each time step
we pick the location in the training set which results in the most similar view to that seen by the
agent at the current time step. We then compute the optimal action that conveys the robot to the
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same relative offset in the training environment from this location and execute this action at the
current time step. This procedure is repeated at each time step. Such a transfer leads to very poor
results. The mean and median distance to goal is 22 and 25 steps respectively, highlighting the
differences between the train and test environments.

No image, goal location only with LSTM: This refers to the experimental setting where we
ignore the image and simply use the relative goal location (in robot’s current coordinate frame) as
input to a LSTM, and predict the action that the agent should take. The relative goal location is
embedded into a K dimensional space via fully connected layers with ReLU non-linearities before
being input to the LSTM. As expected, this does rather poorly.

Reactive Policy, Single Frame: We next compare to a reactive agent which uses the first-person
view of the world. As described above we use ResNet-50 to extract features. These features
are passed through a few fully connected layers, and combined with the representation for the
relative goal location which is used to predict the final action. We experimented with additive and
multiplicative combination strategies and both performed similarly. Note that this reactive baseline
is able to perform well on the training environments obtaining a mean distance to goal of about 9
steps, but perform poorly on the test set only being able to get to within 17 steps of the goal on
average. This suggests that a reactive agent is able to effectively memorize the environments it
was trained on, but fails to generalize to novel environments, this is not surprising given it does not
have any form of memory to allow it to map or plan. We also experimented with using Drop Out
in the fully connected layers for this model but found that to hurt performance on both the train
and the test sets.

Reactive Policy, Multiple Frames: We also consider the case where the reactive policy receives
3 previous frames in addition to the current view. Given the robot’s step-size is fairly large we
consider a late fusion architecture and fuse the information extracted from ResNet-50. Note that
this architecture is similar to the one used in [183]. The primary differences are: goal is specified
in terms of relative offset (instead of an image), training uses DAGGER (which utilizes denser
supervision) instead of A3C, and testing is done in novel environments. These adaptations are
necessary to make an interpretable comparison on our task. Using additional frames as input leads
to a large improvement in performance, specially when using depth images.

LSTM Based Agent: Finally, we also compare to an agent which uses an LSTM based memory.
We introduce LSTM units on the multiplicatively combined image and relative goal location rep-
resentation. Such an architecture also gives the LSTM access to the egomotion of the agent (via
how the relative goal location changes between consecutive steps). Thus this model has access to
all the information that our method uses. We also experimented with other LSTM based models
(ones without egomotion, inputting the egomotion more explicitly, etc.), but weren’t able to reli-
ably train them in early experiments and did not pursue them further. This LSTM based model is
able to consistently outperform the reactive baseline.

We compare these baselines with of our proposed method. CMP is able to outperform all these
baselines across all metrics for both RGB and depth image case. CMP achieves a lower 75th %ile
distance to goal (14 and 1 as compared to 21 and 5 for the LSTM) and improves the success rate
to 62.5% and 78.3% from 53.0% and 71.8%.

We also report variance in performance over five re-trainings from different random initial-
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Figure 3.6: Comparison to Purely Geometric Mapping. We plot succcess rate for CMP and a purely geo-
metric incremental mapping and path planning policy. The latter is implemented by constructing occupancy
maps by projecting 3D points (either directly visible in case of depth images, or triangulated using SIFT
matching in case of RGB images), and using an explicit planner on this occupancy map. We experiment
with different image resolutions (225, 450, 900) as well as different imaging frequency. We note that when
using depth images as input, this baseline performs similar to CMP, but CMP performs much better when
considering RGB images as input.

izations of the network for the 3 most competitive methods (Reactive with 4 frames, LSTM &
CMP) for the depth image case. Figure 3.4 (right) shows the performance, the solid line shows the
median metric value and the surrounding shaded region represents the minimum and maximum
metric value over the five re-trainings. Variation in performance is reasonably small for all models
and CMP leads to significant improvements.

Ablations. We also studied ablated versions of our proposed method. We summarize the
key takeaways, a learned mapper leads to better navigation performance than an analytic mapper,
planning is crucial (specially for when using RGB images as input) and single-scale planning
works slightly better than the multi-scale planning at the cost of increased planning cost. More
details in supplementary material [62].

Additional comparisons between LSTM and CMP. We also conducted additional experi-
ments to further compare the performance of the LSTM baseline with our model in the most com-
petitive scenario where both methods use depth images. We summarize the key conclusions here
and provide more details in supplementary material [62]. We studied how performance changes
when the target is much further away (64 time steps away). We see a larger gap in performance
between LSTM and CMP for this test scenarios. We also compared performance of CMP and
LSTM over problems of different difficulty and observed that CMP is generally better across all
values of hardness, but for RGB images it is particularly better for cases with high hardness. We
also evaluate how well these models generalize when trained on a single scene, and when trans-
ferring across datasets. We find that there is a smaller drop in performance for CMP as compared
to LSTM. More details in supplementary material [62]. Figure 3.5 visualizes and discusses some
representative success and failure cases for CMP, video examples are available on the project web-
site.

Comparison to purely geometric mapping. We also implemented a purely geometric incre-
mental mapping and path planning policy. We projected observed 3D points incrementally into a
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Figure 3.7: We visualize the output of the map readout function trained on the representation learned by the
mapper (see text for details) as the agent moves around. The two rows show two different time steps from
an episode. For each row, the gray map shows the current position and orientation of the agent (red ∧), and
the locations that the agent has already visited during this episode (red dots). The top three heatmaps show
the output of the map readout function and the bottom three heatmaps show the ground truth free space at
the three scales used by CMP (going from coarse to fine from left to right). We observe that the readout
maps capture the free space in the regions visited by the agent (room entrance at point A, corridors at points
B and C).

top-down occupancy map using the ground truth egomotion and camera extrinics and intrinsics.
This occupancy map was used to compute a grid-graph. The policy outputs the action that leads
the agent on the shortest path from the current location to the goal location on this grid-graph. We
conducted this experiment with both depth and RGB images. When using RGB images as input,
we triangulated SIFT feature points in the RGB images (registered using the ground truth egomo-
tion) to obtain the observed 3D points (we used the COLMAP library [145]). We experimented
with different image sizes, as well as increased the frequency at which RGB or depth images were
captured. We plot the success rate in Figure 3.6 and compare to CMP policies that were trained and
tested at 225× 225 resolution with 1 image per time step. We see that when using depth images as
input, this baseline performs similar to our method, but our approach performs much better when
considering RGB images as input. We note that it took multiple minutes to detect and triangulate
feature points per test case when using RGB images, and thus we report this evaluation only over
a subset of 128 test cases.

3.6.2 Semantic Task
Here we present experiments where the target is specified semantically. We consider three tasks:
‘go to a chair’, ‘go to a door’ and ‘go to a table’. The agent receives a one-hot vector indicating
the object category it must go to and is considered successful if it can reach any instance of the
indicated object category. We use object annotations from the S3DIS dataset [8] to label nodes
in the graph Gx,θ with object categories. Note that this is only done to generate supervision for
optimal actions during training and to evaluate the performance of the agents at test time. This
supervision is not used by the agent in any way, it must learn appearance models for chairs jointly
with the policy to reach them. We initialize the agent such that it is within 32 time steps of at least
one instance of the indicated category, and train it to go towards the nearest instance. Table 3.1
(bottom) reports average and 75th %ile distance to nearest category instance and the success rate
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Figure 3.8: We visualize first-person images and the output of the readout function output for free-space
prediction derived from the representation produced by the mapper module (in egocentric frame, that is the
agent is at the center looking upwards (denoted by the purple arrow)). In the left example, we can make a
prediction behind the wall, and in the right example, we can make predictions inside the room.

after executing a fixed number of steps (39 steps) across tasks from all three categories.
We compare our method to the best performing reactive and LSTM based baseline models from

the geometric navigation task1. This is a challenging task specially because the agent may start in a
location from which the desired object is not visible, and it must learn to explore the environment to
find the desired object. CMP is able to achieve a higher success rate than the baselines. Figure 3.5
shows some sample trajectories for this task for CMP. Per category performance and more analysis
is presented in supplementary material [62]. Performance is currently hindered by the limited
ability of the network at recognizing objects and incorporating stronger appearance models may
boost performance.

3.6.3 Visualizations
We visualize activations at different layers in the CMP network to check if the architecture con-
forms to the intuitions that inspired the design of the network. We check for the following three
aspects: a) is the representation produced by the mapper indeed spatial, b) does the mapper cap-
ture anything beyond what a purely geometric mapping pipeline captures, and c) do the value maps
obtained from the value iteration module capture the behavior exhibited by the agent.

Is the representation produced by the mapper spatial? We train simple readout functions
on the learned mapper representation to predict free space around the agent. Figure 3.7 visualizes
the output of these readout functions at two time steps from an episode as the agent moves. We
see that the representation produced by the mapper is in correspondence with the actual free space

1This LSTM is impoverished because it no longer receives the egomotion of the agent as input (because the
goal can not be specified as an offset relative to the robot). We did experiment with a LSTM model which received
egomotion as input but weren’t able to train it in initial experiments.
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Figure 3.9: We visualize the first person image, prediction for all free space, prediction for free space in
a hallway, and prediction for free space inside a room (in order). Once again, the predictions are in an
egocentric coordinate frame (agent (denoted by the purple arrow) is at the center and looking upwards). The
top figure pane shows the case when the agent is actually in a hallway, while the bottom figure pane shows
the case when the agent is inside a room.

Figure 3.10: We visualize the value function for five snapshots for an episode for the single scale version of
our model. The top row shows the agent’s location and orientation with a red triangle, nodes that the agent
has visited with red dots and the goal location with the green star. Bottom row shows a 1 channel projection
of the value maps (obtained by taking the channel wise max) and visualizes the agent location by the black
dot and the goal location by the pink dot. Initially the agent plans to go straight ahead, as it sees the wall it
develops an inclination to turn left. It then turns into the room (center figure), planning to go up and around
to the goal but as it turns again it realizes that that path is blocked (center right figure). At this point the
value function changes (the connection to the goal through the top room becomes weaker) and the agent
approaches the goal via the downward path.
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Figure 3.11: Real World Experiments: Images and schematic sketch of the executed trajectory for each
of the 5 runs for the 10 test cases that were used to test the policy in the real world. Runs are off-set from
each other for better visualization. Start location (always (0, 0)) is denoted by a solid circle, goal location
by a start, and the final location of the agent is denoted by a square. Legend notes the distance of the goal
location from the final position. Best seen in color on screen.

around the agent. The representation produced by the mapper is indeed spatial in nature. We also
note that readouts are generally better at finer scales.

What does the mapper representation capture? We next try to understand as to what in-
formation is captured in these spatial representations. First, as discussed above the representation
produced by the mapper can be used to predict free space around the agent. Note that the agent was
never trained to predict free space, yet the representations produced by the mapper carry enough
information to predict free space reasonable well. Second, Figure 3.8 shows free space prediction
for two cases where the agent is looking through a doorway. We see that the mapper representa-
tion is expressive enough to make reasonable predictions for free space behind the doorway. This
is something that a purely geometric system that only reasons about directly visible parts of the
environment is simply incapable of doing. Finally, we show the output of readout functions that
were trained for differentiating between free space in a hallway vs. free space in a room. Fig-
ure 3.9 (top) shows the prediction for when the agent is out in the hallway, and Figure 3.9 (bottom)
shows the prediction for when the agent is in a room. We see that the representation produced by
the mapper can reasonably distinguish between free space in a hallway vs. free space in a room,
even though it was never explicitly trained to do so. Once again, this is something that a purely
geometric description of the world will be unable to capture.

Do the value maps obtained from the value iteration module capture the behaviour ex-
hibited by the agent? Finally, Figure 3.10 visualizes a one channel projection of the value map
for the single scale version of our model at five time steps from an episode. We can see that the
value map is indicative of the current actions that the agent takes, and how the value maps change
as the agent discovers that the previously hypothesized path was infeasible.
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Figure 3.12: Real World Deployment: We report success rate on different test cases for real world de-
ployment of our policy on TurtleBot 2. The policy was trained for the geometric task using RGB images in
simulation. The right plot shows breakdown of runs. 68% runs succeeded, 20% runs failed due to infrac-
tions, and the remaining 12% runs failed as the agent was unable to go around obstacles.

3.7 Real World Deployment
We have also deployed these learned policies on a real robot. We describe the robot setup, imple-
mentation details and our results below.

Robot description. We conducted our experiments on a TurtleBot 2 robot. TurtleBot 2 is a
differential drive platform based on the Yujin Kobuki Base. We mounted an Orbbec Astra camera
at a height of 80cm, and a GPU-equipped high-end gaming laptop (Gigabyte Aero 15“ with an
NVIDIA 1060 GPU). The robot is shown in Figure 3.12 (left). We used ROS to interface with
the robot and the camera. We read out images from the camera, and an estimate of the robot’s
2D position and orientation obtained from wheel encoders and an on-board inertial measurement
unit (IMU). We controlled the robot by specifying desired linear and angular velocities. These
desired velocity commands are internally used to determine the voltage that is applied to the two
motors through a proportional integral derivative (PID) controller. Note that TurtleBot 2 is a non-
holonomic system. It only moves in the direction it is facing, and its dynamics can be approximated
as a Dubins Car.

Implementation of macro-actions. Our policies output macro actions (rotate left or right by
90◦, move forward 40cm). We implement these macro-actions using an iterative linear–quadratic
regulator (iLQR) controller [88, 115]. iLQR leverages known system dynamics to output a dynami-
cally feasible local reference trajectory (sequence of states and controls) that can convey the system
from a specified initial state to a specified final state (in our case, rotation of 90◦ or forward mo-
tion of 40cm). Additionally, iLQR is a state-space feedback controller. It estimates time-varying
feedback matrices, that can adjust the reference controls to compensate for deviations from the
reference trajectory (due to mis-match in system dynamics or noise in the environment). These
adjusted controls are applied to the robot.

More formally, we use the robot 2D location and orientation as the state ~s, the linear and
angular velocity as the control inputs ~u to the system, and function f to model the dynamics of the
system as follows:
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~st =

xtyt
θt

 ~ut =

[
vt

ωt

]
f(~st, ~ut) =

xt + vt∆t cos(θt)

yt + vt∆t sin(θt)

θt + ωt∆t

 (3.3)

Given an initial state ~s0, and a desired final state ~sT (= ~0 without loss of generality), iLQR
solves the following optimization problem:

arg min
~ut

∑
t ~st

tQ~st + ~ut
tR~ut (3.4)

subject to ~st+1 = f(~st, ~ut)for t ∈ [1, . . . , T ] (3.5)

where, matrices Q and R are specified to be appropriately scaled identity matrices, ∆t controls
the frequency with which we apply the control input, and T determines the total time duration we
have to finish executing the macro-action. Matrix Q incentives the system to reach the target state
quickly, and matrix R incentives applying small velocities. The exact scaling of matrices Q and
R, ∆t and T are set experimentally by running the robot on a variety of start and goal state pairs.

Given Dubins Car dynamics are non-linear, iLQR optimizes the cost function by iteratively

linearizing the system around the current solution. As mentioned, iLQR outputs ~
xreft , ~

ureft , and a
set of feedback matrices Kt. The control to be applied to the system at time step t is obtained as
~
ureft + Kt

(
~̃st − ~

sreft

)
, where ~̃st is the estimated state of the system as measured from the robots

wheel encoders and IMU (after appropriate coordinate transforms).
Policy. We deployed the policy for the geometric task onto the robot. As all other policies,

this policy was trained entirely in simulation. However, to facilitate transfer to the real world, we
a) trained the policy for longer (120K vs. 60K iterations), b) used aggressive data augmentation
(varying the camera height and elevation, in addition to the usual color distortion), and c) used
six additional environments from the MP3D dataset [22] (on top of the 4 environments from the
S3DIS [8] dataset). These changes improved performance in simulation from 62.5% to 79.7% as
well as exhibited better real world behavior in preliminary runs.

Results. We ran the robot in 10 different test configurations (shown in Figure 3.11). These
tests were picked such that there was no straight path to the goal location, and involved situation
like getting out of a room, going from one cubicle to another, and going around tables and kitchen
counters. We found the depth as sensed from the Orbbec camera to be very noisy (and different
from depth produced in our simulator), and hence only conducted experiments with RGB images
as input. We conducted 5 runs for each of the 10 different test configurations, and report the
success rate for the 10 configurations in Figure 3.12 (middle). A run was considered successful if
the robot made it close to the specified target location (within 80cm) without brushing against or
colliding with any objects. Sample videos of execution are available on the project website. The
policy achieved a success rate of 68%. Executed trajectories are plotted in Figure 3.11. This is a
very encouraging result, given that the policy was trained entirely in simulation on very different
buildings, and the lack of any form of domain adaptation. Our robot, that only uses monocular
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RGB images, successfully avoids running into obstacles and arrives at the goal location for a
number of test cases.

Figure 3.12 (right) presents failure modes of our runs. 10 of the 16 failures are due to infractions
(head-on collisions, grazing against objects, and tripping over rods on the floor). These failures
can possibly be mitigated by use of a finer action space for more dexterous motion, additional
instrumentation such as near range obstacle detection, or coupling with a collision avoidance sys-
tem. The remaining 6 failures correspond to not going around obstacles, possibly due to inaccurate
perception.

3.8 Discussion
In this paper, we introduced a novel end-to-end neural architecture for navigation in novel envi-
ronments. Our architecture learns to map from first-person viewpoints and uses a planner with the
learned map to plan actions for navigating to different goals in the environment. Our experiments
demonstrate that such an approach outperforms other direct methods which do not use explicit
mapping and planning modules. While our work represents exciting progress towards problems
which have not been looked at from a learning perspective, a lot more needs to be done for solving
the problem of goal oriented visual navigation in novel environments.

A central limitations in our work is the assumption of perfect odometry. Robots operating in
the real world do not have perfect odometry and a model that factors in uncertainty in movement
is essential before such a model can be deployed in the real world.

A related limitation is that of building and maintaining metric representations of space. This
does not scale well for large environments. We overcome this by using a multi-scale representation
for space. Though this allows us to study larger environments, in general it makes planning more
approximate given lower resolution in the coarser scales which could lead to loss in connectivity
information. Investigating representations for spaces which do not suffer from such limitations is
important future work.

In this work we have exclusively used DAGGER for training our agents. Though this resulted
in good results, it suffers from the issue that the optimal policy under an expert may be unfeasible
under the information that the agent currently has. Incorporating this in learning through guided
policy search or reinforcement learning may lead to better performance specially for the semantic
task.
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Chapter 4

Cross Modal Distillation

Current paradigms for recognition in computer vision involve learning a generic feature rep-
resentation on a large dataset of labeled images, and then specializing or finetuning the learned
generic feature representation for the specific task at hand. Successful examples of this paradigm
include almost all state-of-the-art systems: object detection [49], semantic segmentation [120],
object segmentation [70], and pose estimation [173], which start from generic features that are
learned on the ImageNet dataset [31] using over a million labeled images and specialize them for
each of the different tasks. Several different architectures for learning these generic feature repre-
sentations have been proposed over the years [105, 158], but all of these rely on the availability of
a large dataset of labeled images to learn feature representations.

The question we ask in this work is, what is the analogue of this paradigm for images from
modalities which do not have such large amounts of labeled data? There are a large number of
image modalities beyond RGB images which are dominant in computer vision, for example depth
images coming from a Microsoft Kinect, infra-red images from thermal sensors, aerial images
from satellites and drones, LIDAR point clouds from laser scanners, or even images of intermediate
representations output from current vision systems e.g. optical flow and stereo images. The number
of labeled images from such modalities are at least a few orders of magnitude smaller than the RGB
image datasets used for learning features, which raises the question: do we need similar large scale
annotation efforts to learn generic features for images from each such different modality?

We answer this question in this paper and propose a technique to transfer learned representa-
tions from one modality to another. Our technique uses ‘paired’ images from the two modalities
and utilizes the mid-level representations from the labeled modality to supervise learning repre-
sentations on the paired un-labeled modality. We call our scheme supervision transfer and show
that our learned representations perform well on standard tasks like object detection. We also show
that our technique leads to learning useful feature hierarchies in the unlabeled modality, which can
be improved further with finetuning, and are still complementary to representations in the source
modality.

This chapter is based on work done with Judy Hoffman and Jitendra Malik, and is presented here primarily as it
appeared at CVPR 2016 [59]. Statements about past work should be read with this context in mind.
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Figure 4.1: Architecture for supervision transfer: We train a CNN model for a new image modality (like
depth images), by teaching the network to reproduce the mid-level semantic representations learned from a
well labeled image modality (such as RGB images) for modalities for which there are paired images.

As a motivating example, consider the case of depth images. While the largest labeled RGB
dataset, ImageNet [31] consists of over a million labeled images, the size of most existing labeled
depth datasets is of the order of a few thousands [156, 162]. At the same time there are a large
number of unlabeled RGB and depth image pairs. Our technique leverages this large set of unla-
beled paired images to transfer the ImageNet supervision on RGB images to depth images. Our
technique is illustrated in Figure 4.1. We use a convolutional neural network that has been trained
on labeled images in the ImageNet dataset [31], and use the mid-level representation learned by
these CNNs as a supervisory signal to train a CNN on depth images. This results in improvements
in performance for the end task of object detection on the NYUD2 dataset, where we improve the
state-of-the-art from 34.2% to 41.7% when using just the depth image and from 46.2% to 49.1%
when using both RGB and depth images together. We report similar improvements for the task
of simultaneous detection and segmentation [70] and also show how supervision transfer can be
used for a zero-shot transfer of object detectors trained on RGB images to detectors that can run
on depth images.

Though we show detailed experimental results for supervision transfer from RGB to depth im-
ages, our technique is equally applicable to images from other paired modalities. To demonstrate
this, we show additional transfer results from RGB images to optical flow images where we im-
prove mean average precision for action detection on the JHMDB dataset [91] from 31.7% to 35.7%
when using just the optical flow image and no supervised pre-training.

Our technique is reminiscent of the distillation idea from Hinton et al. [80] (its recent exten-
sion FitNets by Romero et al. in [135], and its application to domain adaptation by Tzeng et al.
in [174]). Hinton et al. [80] extended the model compression idea from Bucilua et al. [19] to
what they call ‘distillation’ and showed how large models trained on large labeled datasets can be
compressed by using the soft outputs from the large model as targets for a much smaller model
operating on the same modality. Our work here is a generalization of this idea: we explore transfer
of supervision at arbitrary semantic levels, and investigate how we can transfer supervision be-
tween different modalities using paired images. More importantly, our work allows us to extend
the success of recent deep CNN architectures to new imaging modalities without having to collect
large scale labeled datasets necessary for training deep CNNs.
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4.1 Background
There has been a large body of work on transferring knowledge between different visual domains,
belonging to the same modality. Initial work e.g. [11, 37, 53, 107] studied the problem in context
of shallow image representations. More recently, with the introduction of supervised CNN models
by Krizhevsky et al. [105], the community has been moving towards a generic set of features which
are specialized to specific tasks and domains at hand [36, 49, 150] and traditional visual adaptation
techniques can be used in conjunction with such features [47, 82, 121, 174].

All these lines of work study and solve the problem of domain adaptation within the same
modality. In contrast, our work here tackles the problem of domain adaptation across different
modalities. Most methods for intra-modality domain adaptation described above start from an
initial set of features on the target domain, and a priori it is unclear how this can be done when
moving across modalities, limiting the applicability of aforementioned approaches to our problem.
This cross-model transfer problem has received much less attention. Notable among those include
[24, 45, 128, 161, 165]. While [24, 165] hallucinate modalities during training time, [45, 128, 161]
focus on the problem of jointly embedding or learning representations from multiple modalities
into a shared feature space to improve learning [128] or enabling zero-shot learning[45, 161]. Our
work here instead transfers high quality representations learned from a large set of labeled images
of one modality to completely unlabeled images from a new modality, thus leading to a generic
feature representations on the new modalities which we show are useful for a variety of tasks.

4.2 Supervision Transfer
Let us assume we have a modality U with unlabeled data, Du for which we would like to train
a rich representation. We will do so by transferring information from a separate modality, L,
which has a large labeled set of images, Dl, and a corresponding #l layered rich representation.
We assume this rich representation is layered although our proposed method will work equally
well for non-layered representations. We use convolutional neural networks as our layered rich
representation.

We denote this image representation as Φ = {φi ∀i ∈ {1, . . . ,#l}}. φi is the ith layer repre-
sentation for modality L which has been trained on labeled images from dataset Dl, and it maps
an input image from modality L to a feature vector in Rni

φi : L 7→ Rni (4.1)

Feature vectors from consecutive layers in such layered representations are related to one an-
other by simple operations like non-linearities, convolutions, pooling, normalizations and dot prod-
ucts (for example layer 2 features may be related to layer 1 features using a simple non-linearity
like max with 0: φ2(x) = max(0, φ1(x))). Some of these operations like convolutions and dot
products have free parameters. We denote such parameters associated with operation at layer i by
wil . The structure of such architectures (the sequence of operations, and the size of representations
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at each layer, etc.) is hand designed or validated using performance on an end task. Such valida-
tion can be done on a small set of annotated images. Estimating the model parameters wil is much
more difficult. The number of these parameters for most reasonable image models can easily go up
to a few millions, and state-of-the-art models employ discriminative learning and use large scale
labeled training datasets.

Now suppose we want to learn a rich representation for images from modality U , for which we
do not have access to a large dataset of labeled images. We assume we have already hand designed
an appropriate architecture Ψ = {ψi ∀i ∈ {1, . . . ,#u}}. The task then is to effectively learn the
parameters associated with various operations in the architecture, without having access to a large
set of annotated images for modality U . As before, we denote these parameters to be learned by
W
{1,...,#u}
u = {wiu ∀i ∈ {1, . . . ,#u}}.

In addition to Dl, let us assume that we have access to a large dataset of un-annotated paired
images from modalities L and U . We denote this dataset by Pl,u. By paired images we mean a
set of images of the same scene in two different modalities. Our proposed scheme for training
rich representations for images of modality U is to learn the representation Ψ such that the image
representation ψ#u(Iu) for image Iu matches the image representation φi∗(Il) for its image pair
Il in modality l for some chosen and fixed layer i∗ ∈ {1, . . . ,#l}. We measure the similarity
between the representations using an appropriate loss function f (for example, euclidean loss).
Note that the representations φi∗ and ψ#u may not have the same dimensions. In such cases we
embed features ψ#u into a space with the same dimension as φi∗ using an appropriate simple
transformation function t (for example a linear or affine function)

min
W
{1,...,#u}
u

∑
(Il,Iu)∈Pl,u

f
(
t
(
ψ#u(Iu)

)
, φi

∗
(Il)
)

(4.2)

We call this process supervision transfer from layer i∗ in Φ of modality L to layer #u in Ψ of
modality U .

The recent distillation method from Hinton et al. [80] is a specific instantiation of this general
method, where a) they focus on the specific case when the two modalities L and U are the same
and b) the supervision transfer happens at the very last prediction layer, instead of an arbitrary
internal layer in representation Φ.

Our experiments in Section 4.3 demonstrate that this proposed method for transfer of supervi-
sion is a) effective at learning good feature hierarchies, b) these hierarchies can be improved further
with finetuning, and c) the resulting representation can be complementary to the representation in
the source modality L if the modalities permit.

4.3 Experiments
In this section we present experimental results on 1) the NYUD2 dataset where we use color and
depth images as the modality pairs, and 2) the JHMDB video dataset where we use the RGB and
optical flow frames as the modality pairs.
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Table 4.1: We evaluate different aspects of our supervision transfer scheme on the object detection task on
the NYUD2 val set using the mAP metric. Left column demonstrates that our scheme for pre-training is
better than alternatives like no pre-training, and copying over weights from RGB networks. The middle col-
umn demonstrates that our technique leads to transfer of mid-level semantic features which by themselves
are highly discriminative, and that improving the quality of the supervisory network translated to improve-
ments in the learned features. Finally, the right column demonstrates that the learned features on the depth
images are still complementary to the features on the RGB image they were supervised with.

Does supervision transfer work? How good is the transferred representation by itself? Are the representations complementary?

Exp. 1A no init 22.7 Exp. 2A copy from RGB (ft fc only) 19.8 Exp. 3A [RGB]: RGB network on RGB
images AlexNet

22.3

Exp. 1B copy from RGB 25.1 Exp. 2B supervision transfer (ft fc only)
AlexNet ∗→ AlexNet

30.0 Exp. 3B [RGB] + copy from RGB 33.8

Exp. 1C supervision transfer
AlexNet→ AlexNet

29.7 Exp. 2C supervision transfer (ft fc only)
VGG ∗→ AlexNet

32.2 Exp. 3C [RGB] + supervision transfer
AlexNet ∗→ AlexNet

35.6

Exp. 1D supervision transfer
AlexNet ∗→ AlexNet

30.5 Exp. 2D supervision transfer
VGG ∗→ AlexNet

33.6 Exp. 3D [RGB]+ supervision transfer
VGG ∗→ AlexNet

37.0

Our general experimental framework consists of two steps. The first step is supervision transfer
as proposed in Section 4.2, and the second step is to assess the quality of the transferred represen-
tation by using it for a downstream task. For both of the datasets we study, we consider the domain
of RGB images as L for which there is a large dataset of labeled images in the form of ImageNet
[31], and treat depth and optical flow respectively as U . These choices for L and U are of particular
practical significance, given the lack of large labeled datasets for depth images, at the same time,
the abundant availability of paired images coming from RGB-D sensors (for example Microsoft
Kinect) and videos on the Internet respectively.

For our layered image representation models, we use convolutional neural networks (CNNs)
[105, 112]. These networks have been shown to be very effective for a variety of image under-
standing tasks [36]. We experiment with the network architectures from Krizhevsky et al. [105]
(denoted AlexNet), Simonyan and Zisserman [158] (denoted VGG), and use the models pre-trained
on ImageNet [31] from the Caffe [92] Model Zoo.

We use an architecture similar to [105] for the layered representations for depth and flow im-
ages. We do this in order to be able to compare to past works which learn features on depth and
flow images [52, 64]. Validating different CNN architectures for depth and flow images is a worth-
while scientific endeavor, which has not been undertaken so far, primarily because of lack of large
scale labeled datasets for these modalities. Our work here provides a method to circumvent the
need for a large labeled dataset for these and other image modalities, and will naturally enable
exploring this question in the future, however we do not delve in this question in the current work.

We next describe our design choices for which layers to transfer supervision between, and the
specification of the loss function f and the transformation function t. We experimented with what
layer to use for transferring supervision, and found transfer at mid-level layers works best, and use
the last convolutional layer pool5 for all experiments in the paper. Such a choice also resonates well
with observations from [12, 113, 180] that lower layers in CNNs are modality specific (and thus
harder to transfer across modalities) and visualizations from [49] that neurons in mid-level layers
are semantic and respond to parts of objects. Transferring at pool5 also has the computational



CHAPTER 4. CROSS MODAL DISTILLATION 51

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 4.2: Visualization of learned filters (best viewed in color): (a) visualizes filters learned on RGB
images from ImageNet data by AlexNet. (b) shows these filters after the finetuning on HHA images, and
hardly anything changes visually. (c) shows HHA image filters from our pre-training scheme, which are
much different from ones that are learned on RGB images. (d) shows HHA image filters learned without
any pre-training. (e) shows optical flow filters learned by [52]. Note that they initialize these filters from
RGB filters and these also do not change much over their initial RGB filters. (f) shows filters we learn on
optical flow images, which are again very different from filters learned on RGB or HHA images. (g) shows
image patches corresponding to highest scoring activations for two neurons in the RGB CNN. (h) shows
HHA image patches corresponding to highest scoring activations of the same neuron in the supervision
transfer depth CNN. (i) shows the corresponding RGB image patch for these depth image patches for ease
of visualization.

benefit that training can be efficiently done in a fully convolutional manner over the whole image.
For the function f , we use L2 distance between the feature vectors, f(x,y) = ‖x − y‖22.

We also experimented with f(x,y) = 1(y > τ) · log p(x) + 1(y ≤ τ) · log(1 − p(x)) (where
p(x) = eαx

1+eαx
, 1(x) is the indicator function), for some reasonable choices of α and τ but this

resulted in worse performance in initial experiments.
Finally, the choice of the function t varies with different pairs of networks. As noted above, we

train using a fully convolutional architecture. This requires the spatial resolution of the two layers
i∗ in Φ and #u in Ψ to be similar, which is trivially true if the architectures Φ and Ψ are the same.
When they are not (for example when we transfer from VGG net to AlexNet), we adjust the padding
in the AlexNet to obtain the same spatial resolution at pool5 layer.

This apart, we introduce an adaptation layer comprising of 1 × 1 convolutions followed by
ReLU to map from the representation at layer #u in Ψ to layer i∗ in Φ. This accounts for difference
in the number of neurons (for example when adapting from VGG to AlexNet), or even when the
number of neurons are the same, allows for domain specific fitting. For VGG to AlexNet transfer we
also needed to introduce a scaling layer to make the average norm of features comparable between
the two networks.
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4.3.1 Transfer to Depth Images
We first demonstrate how we transfer supervision from color images to depth images as obtained
from a range sensor like the Microsoft Kinect. As described above, we do this set of experiments on
the NYUD2 dataset [156] and show results on the task of object detection and instance segmentation
[64]. The NYUD2 dataset consists of 1449 paired RGB and depth images. These images come from
464 different scenes and were selected from the full video sequence to ensure diverse scene content
[156]. The full video sequence that comes with the dataset has over 400K RGB-D frames, we use
10K of these frame pairs for supervision transfer.

In all our experiments we report numbers on the standard val and test splits that come with
the dataset [64, 156]. Images in these splits have been selected while ensuring that all frames
belonging to the same scene are contained entirely in exactly one split. We additionally made sure
only frames from the corresponding training split were used for supervision transfer.

The downstream task that we study here is that of object detection. We follow the experimen-
tal setup from Gupta et al. [64] for object detection and study the 19 category object detection
problem, and use mean average precision (mAP) to measure performance.

Baseline Detection Model We use the model from Gupta et al. [64] for object detection. Their
method builds off R-CNN [49]. In our initial experiments we adapted their model to the more
recent Fast R-CNN framework [50]. We summarize our key findings here. First, [64] trained the
final detector on both RGB and depth features jointly. We found training independent models all
the way and then simply averaging the class scores before the SoftMax performed better. While this
is counter-intuitive, we feel it is plausible given limited amount of training data. Second, [64] use
features from the fc6 layer and observed worse performance when using fc7 representation; in our
framework where we are training completely independent detectors for the two modalities, using
fc7 representation is better than using fc6 representation. Finally, using bounding box regression
boosts performance. Here we simply average the predicted regression target from the detectors on
the two modalities. All this analysis helped us boost the mean AP b on the test set from 38.80% as
reported by [60, 64] to 44.39%, using the same CNN network and supervision. This already is the
state-of-the-art result on this dataset and we use this as a baseline for the rest of our experiments.
We denote this model as ‘[64] + Fast R-CNN’. We followed the default setup for training Fast R-
CNN, 40K iterations, base learning rate of 0.001 and stepping it down by a factor of 10 after 30K
iterations, except that we finetune all the layers, and use 688px length for the shorter image side.
We used RGB-D box proposals from [64] for all experiments.

Note that Gupta et al. [64] embed depth images into a geocentric embedding which they call
HHA (HHA encodes horizontal disparity, height above ground and angle with gravity) and use
the AlexNet architecture to learn HHA features and copy over the weights from the RGB CNN that
was trained for 1000 way classification [105] on ImageNet [31] to initialize this network. All
through this paper, we stick with using HHA embedding1 to represent the input depth images, and
their network architecture, and show how our proposed supervision transfer scheme improves per-
formances over their technique for initialization. We summarize our various transfer experiments
below:

1We use the term depth and HHA interchangeably.
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Does supervision transfer work? The first question we investigate is if we are able to transfer
supervision to a new modality. To understand this we conducted the following three experiments:

1. no init (1A): randomly initialize the depth network using weight distributions typically
used for training on ImageNet and simply train this network for the final task. While training this
network we train for 100K iterations, start with a learning rate on 0.01 and step it down by a factor
of 10 every 30K iterations.

2. copy from RGB (1B): copy weights from a RGB network that was trained on ImageNet.
This is same as the scheme proposed in [64]. This network is then trained using the standard Fast
R-CNN settings.

3. supervision transfer (1C): train layers conv1 through pool5 from random initialization using
the supervision transfer scheme as proposed in Section 4.2, on the 5K paired RGB and depth
images from the video sequence from NYUD2 for scenes contained in the training set. We then
plug in these trained layers along with randomly initialized fc6, fc7 and classifier layers for training
with Fast R-CNN. We report the results in Table 4.1. We see that ‘copy from RGB’ surprisingly
does better than ‘no init’, which is consistent with what Gupta et al. report in [64], but our scheme
for supervision transfer outperforms both these baselines by a large margin pushing up mean AP
from 25.1% to 29.7%. We also experimented with using a RGB network Ψ that has been adapted
for object detection on this dataset for supervising the transfer (1D) and found that this boosted
performance further from 29.7% to 30.5% (1D in Table 4.1, AlexNet∗ indicates RGB AlexNet that
has been adapted for detection on the dataset). We use this scheme for all subsequent experiments.

Visualizations. We visualize the filters from the first layer for these different schemes of
transfer in Figure 4.2(a-f), and observe that our training scheme learns reasonable filters and find
that these filters are of different nature than filters learned on RGB images. In contrast, note that
schemes which initialize depth CNNs with RGB CNNs weights, filters in the first layer change very
little. We also visualize patches giving high activations for neurons paired across RGB and depth
images Figure 4.2(g-i). High scoring patches from RGB CNN (AlexNet in this case), correspond to
parts of object (g), high scoring patches from the depth CNN also corresponds to parts of the same
object class (h and i).

How good is the transferred representation by itself? The next question we ask is if our
supervision transfer scheme transfers good representations or does it only provide a good initial-
ization for feature learning. To answer this question, we conducted the following experiments:

1. Quality of transferred pool5 representation (2A, 2B): The first experiment was to evaluate
the quality of the transferred pool5 representation. To do this, we froze the network parameters
for layers conv1 through pool5 to be those learned during the transfer process, and only learn
parameters in fc6, fc7 and classifier layers during Fast R-CNN training (2B ‘supervision transfer
adapted (ft fc only)’). We see that there is only a moderate degradation in performance for our
learned features from 30.5% (1D) to 30.0% (2B) indicating that the features learned on depth
images at pool5 are discriminative by themselves. In contrast, when freezing weights when copying
from ImageNet (2A), performance degrades significantly to 19.8%.

2. Improved transfer using better supervising network Φ (2C, 2D): The second experiment
investigated if performance improves as we improve the quality of the supervising network. To do
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Table 4.2: Region detection average precision AP r on NYUD2 val set: Performance on NYUD2 val
set where we observe similar boosts in performance when using hyper-column transform with our learned
feature hierarchies (learned using supervision transfer on depth images) as obtained with more standard
feature hierarchies learned on ImageNet on RGB images.

val AP r at 0.5 AP r at 0.7

fc7 +pool2+conv4 fc7 +pool2+conv4

RGB 26.3 29.8 14.8 18.3
depth 28.4 31.5 17.4 19.6

Table 4.3: Region detection average precision on NYUD2 test set.

test modality RGB Arch. Depth Arch. AP r at 0.5 AP r at 0.7

[69] RGB AlexNet - 23.4 13.4
Gupta et al. [60] RGB + depth AlexNet AlexNet 37.5 21.8
Our (supervision transfer) RGB + depth AlexNet AlexNet 40.5 25.4

[69] RGB VGG - 31.0 17.7
Our (supervision transfer) RGB + depth VGG AlexNet 42.1 26.9

this, we transferred supervision from VGG net instead of AlexNet (2C)2. VGG net has been shown to
be better than AlexNet for a variety of vision tasks. As before we report performance when freezing
parameters till pool5 (2C), and learning all the way (2D). We see that using a better supervising net
results in learning better features for depth images: when the representation is frozen till pool5 we
see performance improves from 30.0% to 32.2%, and when we finetune all the layers performance
goes up to 33.6% as compared to 30.5% for AlexNet.

Is the learned representation complementary to the representation on the source modal-
ity? The next question we ask is if the representation learned on the depth images complementary
to the representation on the RGB images from which it was learned. To answer this question we
look at the performance when using both the modalities together. We do this the same way that we
describe for the baseline model and simply average the category scores and regression targets from
the RGB and depth detectors. Table 4.1(right) reports our findings. Just using RGB images (3A)
gives us a performance of 22.3%. Combining this with the HHA network as initialized using the
scheme from Gupta et al. [64] (3B) boosts performance to 33.8%. Initializing the HHA network
using our proposed supervision transfer scheme when transferring from AlexNet∗ to AlexNet (3C)
gives us 35.6% and when transferring from VGG∗ to AlexNet (3D) gives us 37.0%. These results
show that the representations are still complementary and using the two together can help the final
performance.

Transfer to other architectures. We also conducted preliminary experiments of transferring
supervision from RGB VGG to a depth VGG network, and found a performance of 33.5% (RGB
only VGG performance on the val set is 28.0%). Thus, supervision transfer can be used to transfer

2 To transfer from VGG to AlexNet, we use 150K transfer iterations instead of 100K. Running longer helps for
VGG to AlexNet transfer by 1.5% and much less (about 0.5%) for AlexNet to AlexNet transfer.
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supervision to different target architectures.
Does supervision transfer lead to meaningful intermediate layer representations? The

next questions we investigate is if the intermediate layers learned in the target modality U through
supervision transfer carry useful information. [100] hypothesize that information from intermedi-
ate layers in such hierarchies carry information which may be useful for fine grained tasks. Recent
work as presented in [69, 120, 151] operationalize this and demonstrate improvements for fine
grained tasks like object and part segmentation. Here we investigate if the representations learned
using supervision transfer also share this property. To test this, we follow the hyper-column archi-
tecture from Hariharan et al. [69] and study the task of simultaneous detection and segmentation
(SDS) [70] and investigate if the use of hyper-columns with our trained networks results in simi-
lar improvements as obtained when using more traditionally trained CNNs. We report the results
in Table 4.2. On the NYUD2 dataset, the hyper-column transform improves AP r from 26.3% to
29.8% when using AlexNet for RGB images. We follow the same experimental setup as proposed in
[68], and fix the CNN parameters (to a network that was finetuned for detection on NYUD2 dataset)
and only learn the classifier parameters and use features from pool2 and conv4 layers in addition
to fc7 for figure ground prediction. When doing the same for our supervision transfer network
we observe a similar boost in performance from 28.4% to 31.5% when using the hyper-column
transform. This indicates that models trained using supervision transfer not only learn good rep-
resentations at the point of supervision transfer (pool5 in this case), but also in the intermediate
layers of the net.

How does performance vary as the transfer point is changed? We now study how perfor-
mance varies as we vary the layer used for supervision transfer. We stick to the same experimental
setup as used for Exp. 1D in Table 4.1, and conduct supervision transfer at different layers of
the network. Layers above the transfer point are initialized randomly and learned during detector
training. For transferring features from layers 1 to 5, we use fully convolutional training as before.
But when transferring fc6 and fc7 features we compute them over bounding box proposals (we use
RGB-D MCG bounding box proposals [64]) using Spatial Pyramid Pooling on conv5 [50, 74].

We report the obtained AP b on the NYUD2 val set in Table 4.4. We see performance is poor
when transferring at lower layers (pool1 and pool2). Transfer at layers conv3, conv4, pool5, fc6
works comparably, but performance deteriorates when moving to further higher layers (fc7). This
validates our choice for using an intermediate layer as a transfer point. We believe the drop in
performance at higher layers is an artifact of the amount of data used for supervision transfer. With
a richer and more diverse dataset of paired images we expect transfer at higher layers to work
similar or better than transfer at mid-layers. Explained variance during supervision transfer is also
higher for transfers at layers 3, 4, and 5 than other layers.

We also conducted some initial experiments with using multiple transfer points. When trans-
ferring at conv3 and fc7 we observe performance improves over transferring at either layer alone,
indicating learning is facilitated when supervision is closer to parameters being learned. We defer
exploration of other choices in this space for future work.

Is input representation in the form of HHA images still important? Given our tool for
training CNNs on depth images, we can now investigate the question whether hand engineering the
input representation is still important. We conduct an experiment in exactly the same settings as
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Table 4.4: Mean AP b on NYUD2 val set as a function of layer used for supervision transfer.

pool1 pool2 conv3 conv4 pool5 fc6 fc7 conv3 + fc7

24.4 28.4 30.6 29.9 30.5 29.7 27.7 31.3

Table 4.5: Adapting RGB object detectors to RGB-D images: We transfer object detectors trained on
RGB images (on MS COCO dataset) to RGB-D images in the NYUD2 dataset, without using any annota-
tions on depth images. We do this by learning a model on depth images using supervision transfer and then
use the RGB object detector trained on the representation learned on depth images. We report detection
AP(%) on NYUD2 test set. These transferred detectors work well on depth images even without using any
annotations on depth images. Combining predictions from the RGB and depth image improves performance
further.

Train on MS COCO and adapt to NYUD2 using supervision transfer Train on NYUD2

bed chair sink sofa table tv toilet mean mean

RGB 51.6 26.6 25.1 43.1 14.4 12.9 57.5 33.0 35.7
depth 59.4 27.1 23.8 32.2 13.0 13.6 43.8 30.4 45.0
RGB + depth 60.2 35.3 27.5 48.2 16.5 17.1 58.1 37.6 54.4

Exp. 1D except that we work with disparity images (replicated to have 3 channels) instead of HHA
images. This gives a mAP of 29.2% as compared to 30.5% for the HHA images. The difference
in performance is smaller than what [64] reports but still significant (14 of 19 categories improve),
which suggests that encoding the depth image into a geocentric coordinate frame using the HHA
embedding is still useful.

Applications to zero-shot detection on depth images. Supervision transfer can be used to
transfer detectors trained on RGB images to depth images. We do this by the following steps. We
first train detectors on RGB images. We then split the network into two parts at an appropriate mid-
level point to obtain two networks Γlowerrgb and Γupperrgb . We then use the lower domain specific part of
the network Γlowerrgb to train a network Γlowerd on depth images to generate the same representation
as the RGB network Γlowerrgb . This is done using the same supervision transfer procedure as before
on a set of unlabeled paired RGB-D images. We then construct a ‘franken’ network with the
lower domain specific part coming from Γlowerd and the upper more semantic network coming from
Γupperrgb . We then simply use the output of this franken network on depth images to obtain zero-shot
object detection output.

More specifically, we use Fast R-CNN with AlexNet CNN to train object detectors on the MS
COCO dataset [119]. We then split the network right after the convolutional layers pool5, and
train a network on depth images to predict the same pool5 features as this network on unlabeled
RGB-D images from the NYUD2 dataset (using frames from the trainval video sequences). We
study all 7 object categories that are shared between MS COCO and NYUD2 datasets, and report
the performance in Table 4.5. We observe our zero-shot scheme for transferring detectors across
modalities works rather well. While the RGB detector trained on MS COCO obtains a mean AP b
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Table 4.6: Object detection mean AP(%) on NYUD2 test set: We compare our performance against
several state-of-the-art methods. RGB Arch. and depth Arch. refers to the CNN architecture used by
the detector. We see when using just the depth image, our method is able to improve performance from
34.2% to 41.7%. When used in addition to features from the RGB image, our learned features improve
performance from 44.4% to 47.1% (when using AlexNet RGB features) and from 46.2% to 49.1% (when
using VGG RGB features) over past methods for learning features from depth images. We see improvements
across almost all categories, performance on individual categories is tabulated in supplementary material.

method modality RGB Arch. depth Arch. mAP

Fast R-CNN [50] RGB AlexNet - 27.8
Fast R-CNN [50] RGB VGG - 38.8

Gupta et al. [64] RGB + depth AlexNet AlexNet 38.8
Gupta et al. [60] RGB + depth AlexNet AlexNet 41.2
Gupta et al. [64] + Fast R-CNN RGB + depth AlexNet AlexNet 44.4
Our (supervision transfer) RGB + depth AlexNet AlexNet 47.1

Gupta et al. [64] + Fast R-CNN RGB + depth VGG AlexNet 46.2
Our (supervision transfer) RGB + depth VGG AlexNet 49.1

Gupta et al. [64] + Fast R-CNN depth - AlexNet 34.2
Our (supervision transfer) depth - AlexNet 41.7

of 33.0% on these categories, our zero-shot detector on depth images performs comparably and has
a mean AP b of 30.4%. Note that in doing so we have not used any annotations from the NYUD2
dataset (RGB or depth images). Furthermore, combining predictions from RGB and depth object
detectors results in boost over just using the detector on the RGB image giving a performance of
37.6%. Performance when training detectors using annotations from the NYUD2 dataset (Table 4.5
last column) is much higher as expected. This can naturally be extended to incorporate annotations
from auxiliary categories as explored in [83], but we defer this to future work.

Performance on test set. Finally, we report the performance of our best performing supervi-
sion transfer scheme (VGG ∗ → AlexNet) on the test set in Table 4.6. When used with AlexNet for
obtaining color features, we obtain a final performance of 47.1% which is about 2.7% higher than
the current state-of-the-art on this task (Gupta et al. [64] Fast R-CNN). We see similar improve-
ments when using VGG for obtaining color features (46.2% to 49.1%). The improvement when
using just the depth image is much larger, 41.7% for our final model as compared to 34.2% for the
baseline model which amounts to a 22% relative improvement. Note that in obtaining these perfor-
mance improvements we are using exactly the same CNN architecture and amount of labeled data.
We also report performance on the SDS task in Table 4.3 and obtain state-of-the-art performance
of 40.5% as compared to previous best 37.5% [60] when using AlexNet, using VGG CNN for the
RGB image improves performance further to 42.1%.

Training Time. Finally, we report the amount of time it takes to learn a model using super-
vision transfer. For AlexNet to AlexNet supervision transfer we trained for 100K iterations which
took a total of 2.5 hours on a NVIDIA k40 GPU. This is a many orders of magnitude faster than
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Table 4.7: Action Detection AP(%) on the JHMDB test set: We report action detection performance on
the test set of JHMDB using RGB or flow images. Right part of the table compares our method supervision
transfer against the baseline of random initialization, and the ceiling using fully supervised pre-training
method from [52]. Our method reaches more than half the way towards fully supervised pre-training.

RGB optical flow

[52] [52] + [50] [52] [52] + [50] Random Init Our
Sup PreTr Sup PreTr No PreTr Sup Transfer

mAP 27.0 32.0 24.3 38.4 31.7 35.7

training models from random initialization on ImageNet scale data using class labels.

4.3.2 Transfer to Flow Images
We now report our experiments for transferring supervision to optical flow images. We consider
the end task of action detection on the JHMDB dataset. The task is to detect people doing actions
like catch, clap, pick, run, sit in frames of a video. Performance is measured in terms of mean
average precision as in the standard PASCAL VOC object detection task and what we used for the
NYUD2 experiments in Section 4.3.1.

A popular technique for getting better performance at such tasks on video data is to additionally
use features computed on the optical flow between the current frame and the next frame [52, 157].
We use supervision transfer to learn features for optical flow images in this context.

Detection model For JHMDB we use the experimental setup from Gkioxari and Malik [52] and
study the 21 class task. Here again, Gkioxari and Malik build off of R-CNN and we first adapt their
system to use Fast R-CNN, and observe similar boosts in performance as for NYUD2 when going
from R-CNN to Fast R-CNN framework (Table 4.7, full table with per class performance is in the
supplementary material). We denote this model as [52]+[50]. We attribute this large difference in
performance to a) bounding box regression and b) number of iterations used for training.

Supervision transfer performance We use the videos from UCF 101 dataset [164] for our pre-
training. Note that we do not use any labels provided with the UCF 101 dataset, and simply use the
videos as a source of paired RGB and flow images. We take 5 frames from each of the 9K videos
in the train1 set. We report performance on JHMDB test set in Table 4.7. Note that JHMDB has 3
splits and as in past work, we report the AP averaged across these 3 splits.

We report performance for three different schemes for initializing the flow model: a) Ran-
dom Init (No PreTr) when the flow network is initialized randomly using the weight initialization
scheme used for training a RGB model on ImageNet, b) Supervised Pre-training ([52]+[50] Sup
PreTr) on flow images from UCF 101 for the task of video classification starting from RGB weights
as done by Gkioxari and Malik [52] and c) supervision transfer (Our Sup Transfer) from an RGB
model to train optical flow model as per our proposed method. We see that our scheme for su-
pervision transfer improves performance from 31.7% achieved when using random initialization
to 35.7%, which is more than half way towards what fully supervised pre-training can achieve
(38.4%), thereby illustrating the efficacy of our proposed technique.
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Chapter 5

Conclusion

In this thesis, we argued for revisiting the connection between computer vision and robotics. We
showed that thinking about computer vision in context of robotics motivates new tasks in computer
vision. We showed that recent advances in representation learning in computer vision can be
extended to obtain representations for sensing modalities useful in robotics. We also demonstrated
that jointly learning perception and action modules leads to more efficient and effective solutions.

This thesis presents only a few initial steps towards reviving the link between computer vision
and robotics. There are a number of other ways in which a better understanding of the world
will improve how agents interact with the unstructured world around them. But perhaps more
importantly, mobile agents that can interact with the world will help scale up visual learning.

Learning for Moving in the World. In this work, we used low-level controllers for imple-
menting policies onto real robots. While this modularity allowed us to quickly deploy our policies
into the real world, this strict separation between high-level planning and low-level motor control
is limiting. It resulted in unnatural stop-and-go motion and failure to adjust the high-level plan
based on feedback from the low-level control. Future research will need to visit this connection
between high-level planning and low-level control.

A central question in building agents that can successfully move around is that of how to repre-
sent space and how to efficiently build these representations for previously unseen environments.
Our work, in this thesis, investigated metric (but abstract) representations of space. While this
performed well on the task of going from one room to another under perfect odometry assump-
tions, it does not scale well to large environments. Topological representations are attractive in
their robustness to imperfect odometry, but they do not allow spatial reasoning to find shortcuts.
Future research will need to investigate representations for space that allow for spatial reasoning,
are robust to registration error, and can scale to large environments.

Future research will also need to study navigation in dynamic environments with inanimate
objects (that can be made to move) and animate other agents (that can move at their own will).
Object-centered 3D representations for scenes (such as those pursued in this thesis) and techniques
for understanding humans and their actions will form important substrate for tackling these prob-
lem. At the same time, memory representations that can track the state of the world over time
will be crucial as objects and agents undergo occlusions while they move around. Beyond these
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technical challenges, a somewhat bigger interdisciplinary question is that of the design of socially
acceptable artificial mobility.

Artificial Embodied Cognition. As we think about a future with artificial robotic agents
embodied in the real world, a number of new research problems will emerge. Most current high-
performing computer vision systems are limited by the data that is available to train them. This
data is limited as it needs to be gathered by humans. As artificial robotic agents become mobile,
they can be instrumented to scale-up data gathering, both in terms of quantity and richness. As
we acquire more and more data, it will no longer be feasible for humans to manually annotate this
data. Thus, unsupervised learning, self-supervised learning, and cross-modal learning will become
important. Simultaneous access to multiple modalities plays a central role in bootstrapping learn-
ing in children [159]. It will be interesting to investigate if representations in computer vision can
similarly be bootstrapped when given access to rich multi-sensory observation of the environment
that can be gathered through mobile agents that move and interact with the world around them.

Moreover, rather than passively collecting and analyzing such datasets, machine learning al-
gorithms will have the opportunity to actively collect their own data. It will require designing al-
gorithms that know what they don’t know and can design real-world behaviors to teach themselves
what they don’t know. Embodied agents that continuously learn by themselves by interacting with
the world will lead to a paradigm shift in the way computer vision problems are thought of today.

And perhaps, computer vision will transform yet again to get back together with its old buddy,
robotics, and evolve from being Internet Computer Vision to Embodied Computer Vision. These
are exciting times in computer vision and artificial intelligence. I think the best is yet to come, and
I look forward to it.
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