
Soter: Programming Safe Robotics System using Runtime
Assurance

Ankush Desai
Shromona Ghosh
Sanjit A. Seshia
Natarajan Shankar
Ashish Tiwari

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-127
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-127.html

August 21, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The work of the first and third authors was supported in part by
the TerraSwarm Research Center, one of six
centers supported by the STARnet phase of the Focus Center Research
Program
(FCRP) a Semiconductor Research Corporation program sponsored by
MARCO
and DARPA, by the DARPA BRASS and Assured Autonomy programs,
and by Toyota under the iCyPhy center.

Soter: Programming Safe Robotics System using Runtime
Assurance

Ankush Desai◦, Shromona Ghosh◦, Sanjit A. Seshia◦, Natarajan Shankar∗, Ashish Tiwari∗
◦ University of California, Berkeley, CA, USA

∗ SRI International, Menlo Park, CA, USA

ABSTRACT

Autonomous robots increasingly depend on third-party off-the-
shelf components and complex machine-learning techniques. This
trend makes it challenging to provide strong design-time certifi-
cation of correct operation. To address this challenge, we present
Soter1, a programming framework that integrates the core princi-
ples of runtime assurance to enable the use of uncertified controllers,
while still providing safety guarantees.

Runtime Assurance (RTA) is an approach used for safety-critical
systems where design-time analysis is coupled with run-time tech-
niques to switch between unverified advanced controllers and veri-
fied simple controllers. In this paper, we present a runtime assur-
ance programming framework for modular design of provably-safe
robotics software. Soter provides language primitives to declara-
tively construct a RTAmodule consisting of an advanced controller
(untrusted), a safe controller (trusted), and the desired safety speci-
fication (ϕ). If the RTA module is well formed then the framework
provides a formal guarantee that it satisfies property ϕ. The com-
piler generates code for monitoring system state and switching
control between the advanced and safe controller in order to guar-
antee ϕ. Soter allows complex systems to be constructed through
the composition of RTA modules.

To demonstrate the efficacy of our framework, we consider a
real-world case-study of building a safe drone surveillance system.
Our experiments both in simulation and on actual drones show that
Soter-enabled RTA ensures safety of the system, including when
untrusted third-party components have bugs or deviate from the
desired behavior.

.

1 INTRODUCTION

Robotic systems are increasingly playing diverse and safety-critical
roles in society, including delivery systems, surveillance, and per-
sonal transportation. This drive towards autonomy is also leading
to ever-increasing levels of complexity, including integration of
advanced data-driven, machine-learning components. However,
advances in formal verification and systematic testing have yet to
catch up with this increased complexity. Moreover, the dependence
of robotic systems on third-party off-the-shelf components and
machine-learning techniques is predicted to increase. This has re-
sulted in a widening gap between the complexity of systems being
deployed and those that can be certified for safety and correctness
via formal verification.

1Soter: Greek god personifying the spirit of safety and deliverance from harm.

Draft, August 2018,

2018.

One approach to bridging this gap is to leverage techniques for
run-time assurance, where the results of design-time verification
can be leveraged in building a system that monitors itself and its
environment at run time, and switches to a provably safe operating
mode, potentially at lower performace and sacrificing certain non-
critical objectives. A prominent example of a Run-Time Assurance
(RTA) framework is the Simplex Architecture [1], which has been
used for building provably-correct safety-critical avionics [2, 3],
robotics [4] and cyber-physical systems [5–7]. The Simplex archi-
tecture combines an uncertified advanced controller (AC) with a
certified for correctness safe controller (SC) and a decision module
(DM), where the role of DM is to switch between AC and SC such
that the overall system remains safe. However, most of these prior
applications of RTA do not provide high-level language support
for constructing provably-safe RTA systems in a modular fashion
while designing for the timing and communication behavior of such
systems. Prior techniques either apply RTA to a single untrusted
component in the system or wrap the large monolithic system
into a single instance of Simplex which makes the design and ver-
ification of the corresponding SC and DM difficult or infeasible.
Schierman et al. [2] investigated how the RTA framework can be
used at different levels of the software stack of an unmanned air-
craft system. In a more recent work [8], Schierman et. al. proposed
a component-based simplex architecture (CBSA) that combines
assume-guarantee contracts with RTA for assuring the runtime
safety of component-based cyber-physical systems. However, in
order to ease the construction of RTA systems, there is a need for a
general programming framework for building provably-safe robotic
software systems with run-time assurance that also considers im-
plementation aspects such as timing and communication.

In this paper, we seek to address this need using Soter, a pro-
gramming framework for building safe robotics systems using run-
time assurance. A Soter program is a collection of periodic pro-
cesses, termed nodes, that interact with each other using a publish-
subscribe model of communication (which is popular in robotics,
e.g., [9]). An RTA module in Soter consists of an advanced con-
troller node, a safe controller node and a safety specification; if
the module is well-formed then the framework provides a guaran-
tee that the system satisfies the safety specification. Soter allows
programmers to declaratively construct an RTA module with speci-
fied timing behavior, combining provably-safe operation with the
feature of using the AC whenever safe so as to achieve good per-
formance. Our evaluation demonstrates that Soter is effective at
achieving this blend of safety and performance.

Soter incorporates constructs for decomposing the design and
verification of the overall RTA system into that for individual RTA
modules while retaining guarantees of safety for the overall com-
posite system. Soter includes a compiler that generates the DM
node that implements the switching logic, and which generates C

Draft, August 2018, Ankush Desai
◦
, Shromona Ghosh

◦
, Sanjit A. Seshia

◦
, Natarajan Shankar

∗
, Ashish Tiwari

∗

code to be executed on common robotics software platforms such
as Robot Operating System (ROS) [9] and MavLink [10].

We evaluate the efficacy of the Soter framework by building a
safe autonomous drone surveillance system. We show that Soter
can be used to build a complex robotics software stack consisting
of both third-party untrusted components and complex machine
learning modules, and still provide system-wide correctness guaran-
tees. The generated code for the robotics software has been tested
both on an actual drone platform (the 3DR [11] drone) and in sim-
ulation (using the ROS/Gazebo [12] and OpenAI Gym [13]). Our
results demonstrate that the RTA-protected software stack built
using Soter can ensure the safety of the drone both when using un-
safe third-party controllers and in the presence of bugs introduced
using fault-injection in the advanced controller.
To summarize, our papermakes the following novel contributions:
1. A programming framework for a Simplex-based run-time assur-

ance system that provides language primitives for the modular
design of safe robotics systems (Sec. 3);

2. A theoretical formalism based on computing reachable sets that
keeps the system provably safe while also maintaining smooth
switching behavior between the safe and advanced controllers
(Sec. 4), and

3. Experimental results in simulation and on real drone platforms
demonstrating how Soter can be used for guaranteeing correct-
ness of a system even in the presence of untrusted or unverified
components (Sec. 5).

2 OVERVIEW

In this section, we first provide a brief overview of the classic run-
time assurance architecture. Next, we present our robotics case
study, an autonomous drone surveillance system. Finally, we pro-
vide an overview of how our RTA framework can be used to guar-
antee the desired safety invariants of the surveillance system.

2.1 Runtime Assurance Architecture

Figure 1: RTA Architecture

Figure 1 presents the
RTA architecture (sim-
ilar to Simplex [1])
consisting of three
sub-components:
(1) The advanced

controller (AC) that
controls the robot
under nominal oper-
ating conditions, and
is designed to achieve
high-performance

with respect to spe-
cialized metrics (e.g.,

fuel economy, time). The AC is optimized for performance, and
does not come with a certificate of safety. (2) The safe controller
(SC) that can be pre-certified to keep the robot within a region of
safe operation for the plant/robot. (3) The decision module (DM)
which is pre-certified (or automatically synthesized to be correct)
to periodically monitor the state of the plant and determine when

to switch from AC to SC so that the system is guaranteed to stay
within the safe region.

When the AC is in control of the system, the DM monitors
(samples) the system state every ∆ period to check whether the
system can violate the desired safety specification (ϕ) in time ∆. If
so, the DM switches control to the SC. We refer to the conditions
under which DM switches from AC to SC as the switching condition.

The set of all states of the system that satisfy the safety speci-
fication ϕ is denoted as the safe set (ϕsaf e). Informally, a system
protected by runtime assurance is guaranteed to satisfy the safety
specification ϕ, if the following properties hold: (1) There exists
a subset of the safe set, denoted as the recoverable set, such that
if the DM switches control to the SC in a recoverable state, then
the system is guaranteed to remain in the safe set as long as the
SC is in control. (2) If AC is in control and the switching condition
evaluates to false, then the system is guaranteed to remain in the
recoverable states until the next DM period, irrespective of the
operations performed by the AC during that period.

2.2 Case Study: Drone Surveillance System

In this paper, we consider the problem of building a surveillance
system where an autonomous drone must safely patrol a city. Fig-
ure 2a (top) presents a snapshot of the workspace from the Gazebo
simulator [8]. Figure 2a (bottom) presents the obstacle map for the
workspace, all obstacles (houses, cars, etc.) being static.

Figure 2b presents the software stack for the drone surveillance
system. The application layer implements the surveillance proto-
col that ensures the application specific property (ϕapp), e.g., all
surveillance points must be visited infinitely often. The generic
components of the software stack consists of the motion planner
and the motion primitives. The application generates the next tar-
get location for the drone. The motion planner computes a motion
plan which is a sequence of waypoints from the current location to
the target location. The waypointsw1 . . .w6 in Figure 2a (bottom)
represent one such motion plan generated by the planner and the
dotted lines represent the reference trajectory for the drone. The
motion primitives module on receiving the next waypoint gener-
ates the required low-level controls necessary to closely follow the
reference trajectory. The trajectory in Figure 2a (bottom) represents
the actual trajectory of the drone, which deviates from the reference
trajectory because of the underlying dynamics, disturbances, etc.

In our drone surveillance case study, we would like the system to
satisfy two critical safety invariants: (1) Obstacle Avoidance (ϕobs):
The drone must never collide with any obstacle. (2) Battery Safety

(ϕbat): The drone must never crash because of low battery, in-
stead, when the battery is low it must land safely (e.g., in Fig-
ure 2a (bottom), low battery is detected at w6 and the mission is
aborted to land safely). ϕobs can be further decomposed into two
parts ϕobs := ϕplan ∧ ϕmpr ; (a) Safe Motion Planner (ϕplan): The
motion planner must always generate a motion-plan such that
the reference trajectory does not collide with any obstacle, (b)
Safe Motion Primitives (ϕmpr): When tracking the reference trajec-
tory between any two waypoints generated by the motion planner,
the controls generated by the motion primitives must ensure that
the drone closely follows the trajectory and avoids collisions.

Soter: Programming Safe Robotics System using Runtime Assurance Draft, August 2018,

(a) Case Study: Drone Surveillance (b) Robotics Software Stack for Drone Surveillance (c) RTA-Protected Robotics Software Stack

Figure 2: Runtime Assurance Protected Robotics Software Stack for Drone Surveillance using Soter

In practice, when implementing these modules, the programmer
may use several uncertified components (red blocks in Figure 2b).
The green blocks Figure 2 are trusted components. For example,
implementing an on-the-fly motion planner may involve solving
an optimization problem or using an efficient search technique
that relies on a solver or a third-party library (e.g., OMPL [14]).
Implementing planners that optimize for efficiency while satisfying
safety properties (e.g., the generated motion plan must be feasible
given the current battery charge) is challenging. Similarly, motion
primitives are either designed using machine-learning techniques
like Reinforcement Learning [15] or optimized for specific tasks
without considering safety, or are off-the-shelf controllers provided
by third parties. Ultimately, in the presence of such uncertified or
hard to verify components (Figure 2b), no formal guarantees of
safety can be provided.
Motivation: The underlying problem that motivates the RTA
framework is that it can be extremely difficult to design a single
controller that is both safe and high-performance. Furthermore, the
trend in robotics is towards advanced, data-driven controllers, such
as neural networks, that usually do not come with safety guaran-
tees. Our work is motivated by this need to enable the use of such
advanced controllers while retaining strong guarantees of safety.

In this paper, we present Soter that enables building a reliable
version (Figure 2c) of the software stack with runtime assurance of
safety invariant: ϕplan ∧ϕmpr ∧ϕbat . We decompose the stack into
three components: (1) An RTA-protected motion planner that guar-
antees ϕplan (Section 5.3), (2) A battery-safety RTA module that
guarantees ϕbat (Section 5.2), and (3) An RTA-protected motion
primitive module that guarantees ϕmpr (Section 5.1). Our theory
of well-formed RTA modules (Section 4) ensures that if the con-
structed modules are well-formed then they satisfy the desired
safety invariant and their composition (Section 4.1) helps prove
that the system-level specification is satisfied.

3 RUNTIME ASSURANCE MODULE

In this section, we present the generic RTA architecture imple-
mented in the Soter programming framework and formalize the
semantics of an RTA-protected system.

3.1 Topics and Nodes

Soter supports a publish-subscribe model of communication. A
program in Soter is a collection of periodic nodes communicating
with each other by publishing on and subscribing to message topics.
A node periodically listens to data published on certain topics,
performs computation, and publishes computed results on certain
other topics. A topic is an abstraction of a communication channel.
Formally, a topic is a tuple (e,v) consisting of a unique name e ∈ T ,
whereT is the universe of all topic names, and a valuev ∈ V , where
V is the universe of all possible values that can be communicated
using topic e . For simplicity of notation, assume all topics share the
same setV of possible values.

LetN represent the set of names of all the nodes. LetL represent
the set of all possible values the local state of any node could have
during its execution. A valuation of a set X ⊆ T of topic names is a
map from each topic name x ∈ X to the value v stored at the topic
(x ,v). We write Vals(X) for the valuations of set X .

A node in Soter is a tuple (N , I ,O,T ,C) where:
1. N ∈ N is the unique name of the node.
2. I ⊆ T is the set of names of all topics subscribed to by the node

(inputs).
3. O ⊆ T is the set of names of all topics on which the node

publishes (output). The output topics are disjoint from the set
of input topics (I ∩O = ∅).

4. T ⊆ L × (I → V) × L × (O → V) is the transition relation
of the node. If (l , Vals(I), l ′, Vals(O)) ∈ T , then on the input

(subscribed) topics valuation of Vals(I), the local state of the
node moves from l to l ′ and publishes on the output topics to
update its valuation to Vals(O).

5. C = {(N , t0), (N , t1), . . . } is the time-table or calendar represent-
ing the times t0, t1, . . . at which the node N takes a step.

Draft, August 2018, Ankush Desai
◦
, Shromona Ghosh

◦
, Sanjit A. Seshia

◦
, Natarajan Shankar

∗
, Ashish Tiwari

∗

Intuitively, a node is essentially a periodic input-output state-
transition system: at every time instant in its calendar, the node
reads the values in its input topics, updates its local state, and
publishes values on its output topics. Note that we are using the
timeout-based discrete event simulation [16] to model the periodic
real-time process as a standard transition system (more details
in Section 3.3). Each node specifies, using a time-table, the fixed
times at which it should be scheduled. For a periodic node with
period δ , the calendar will have entries (N , t0), (N , t1), . . . such that
ti+1 − ti = δ for all i .

We refer to the components of a node with name N ∈ N as
I (N),O(N),T (N) and C(N) (δ (N) as its period) respectively.
Assumptions. The formalism presented in the rest of paper makes
two simplifying assumptions: (1) each transition (code in the body
of the node) can be executed instantaneously, and (2) the underlying
system ensures that the transition system steps according to the
schedule specified in the node calendar C and for all nodes t0 = 0.

1 type coord = (x: f loat , y: f loat , z: f l o a t);
2 topic NextWaypoint : coord;
3 ...
4 node MotionPrimitive
5 period 10;
6 subscr ibes LocalPosition , NextWaypoint;
7 publishes Control;
8 { /* body */ }

Figure 3: Declaration of topics and nodes

Example 3.1 (Example of a Node in Soter). Figure 3 presents
the declaration of a node MotionPrimitive that subscribes to topics
LocalPosition and NextWaypoint. Figure 3 (line 2) declares the topic
NextWaypoint that can be used to communicate messages of type coord

(coordinates in 3D space). MotionPrimitive node runs periodically
every 10ms and publishes the next control action on the Control

topic. The body of the node is a sequential program that performs
local computations and publishes messages on the Control topic. For
the exposition of this paper, we ignore the details of the body, it
can be any sequential program that performs the required read-
subscribed-topics → compute → publish step. �

3.2 RTAModule

Let S represent the state space of the system i.e., the set of all
possible configurations of the system. We assume that the desired
safety property is given in the form of a subset ϕsaf e ⊆ S (safe
states). The goal is to ensure using an RTA module that the system
always stays inside the safe set ϕsaf e .

The Figure below illustrates the behavior of a Soter based RTA-
protected system. We want the drone to move from its current
locationwi to the target locationwf , and the desired safety prop-
erty is that the drone must always remain inside the region ϕsaf e
(outermost tube). Initially, the AC node is in control of the drone,
and since it is not certified for correctness it may generate controls
action that tries to push the drone outside the ϕsaf e region.

If the AC is wrapped in-
side an RTAmodule then the
DM must detect this immi-
nent danger and switch to
the SC with enough time for
SC to gain control over the

drone. The SC must be certified to keep the drone inside ϕsaf e and
also move it to a state in ϕsaf er where the DM evaluates that it
is safe enough to return control back to the AC. In the rest of this
section, we present the RTAmodule that enables such behavior and
formalize the properties components of the RTA module (e.g., SC,
ϕsaf er , etc.) must satisfy to ensure property ϕsaf e holds and also
allow control to return back to the AC to maximize performance.

Definition 3.1 (RTA Module). An RTA module is a tuple

(Nac ,Nsc ,Ndm ,∆,ϕsaf e ,ϕsaf er) where: (1) Nac ∈ N is the ad-

vanced controller (AC), (2) Nsc ∈ N is the safe controller (SC), (3)
Ndm ∈ N is the decision module (DM), (3) ∆ ∈ R+ represents the

period of the DM (δ (Nsc) = ∆), (4) ϕsaf e ⊆ S is the desired safety

property. (5) ϕsaf er ⊆ ϕsaf e is a stronger safety property.

1 i f (mode=SC ∧ st ∈ ϕsaf er) mode = AC /* switch to AC*/
2 e l s e i f (mode=AC ∧ ReachM (st , ∗, 2∆) * ϕsaf e) mode = SC /*

switch to SC*/
3 e l se mode = mode /* No mode switch */

Figure 4: Decision Module Switching Logic for Module M

Given an RTA moduleM as described above, Figure 4 presents
the switching logic that sets the mode of the RTA module given the
current state st of the system. TheDM node evaluates this switching
logic once every ∆ time units. When it runs, it first reads the current
state st and setsmode based on it. Note that the set ϕsaf er deter-
mineswhen it is safe to switch fromNsc toNac .ReachM (s, ∗, t) ⊆ S
represents the set of all states reachable in time [0, t] starting from
the state s , using any non-deterministic controller. We formally
define Reach in Section 3.3, informally, ReachM (st , ∗, 2∆) * ϕsaf e
checks that the system will remain inside ϕsaf e in the next 2∆ time.
This 2∆ look ahead is used to determine when it is necessary to
switch to using Nsc , in order to ensure that the Nsc (δ (Nsc) ≤ ∆)
will be executed at least once before the system leaves ϕsaf e . Soter
automatically generates a uniqueDM node (Ndm) for each primitive
RTA module declaration.

For an RTA module (Nac ,Nsc ,Ndm ,∆,ϕsaf e ,ϕsaf er), the deci-
sion module DM is the node (Ndm , Idm , ∅,Tdm ,Cdm) where:
1. The local state is a binary variable mode : {AC, SC}.
2. The topics subscribed by DM include the topics subscribed by

either of the nodes; that is, I (Nac) ⊆ Idm and I (Nsc) ⊆ Idm .
3. The node does not publish on any topic. But it updates a global

data structure that controls the outputs of AC and SC nodes
(more details in Section 3.3).

4. If (mode, Vals(Idm),mode ′, ∅) ∈ Tdm , then the local state moves
frommode tomode ′ based on the logic in Figure 4.

5. Cdm = {(Ndm , t0), (Ndm , t1), . . . } where ∀i |ti − ti+1 | = ∆ rep-
resents the time-table of the node.
We are implicitly assuming that the topics Idm read by the DM

contain enough information to evaluate ϕsaf e , ϕsaf er , and the
reachability computation.

3.3 Semantics of an RTA System

In Soter, a complex system is designed as a composition of RTA
modules. An RTA system S is a set of composable RTA modules.
Composable modules. A set of modules S = {M0,M1, . . . ,Mn }
are composable if:

Soter: Programming Safe Robotics System using Runtime Assurance Draft, August 2018,

1. The nodes in all modules are disjoint, if N i
ac , N i

sc , and N i
dm

represent the AC, SC and DM nodes of a module Mi then, for
all i, j s.t. i , j, {N i

ac ,N
i
sc ,N

i
dm } ∩ {N j

ac ,N
j
sc ,N

j
dm } = ∅.

2. The outputs of all modules are disjoint, for all i, j s.t. i , j,
O(Mi) ∩O(Mj) = ∅.
We use dom(X) to refer to the domain of map X and codom(X)

to refer to the codomain of X .
RTA system attributes. Given an RTA system S = {M0, . . . ,Mn },
its attributes (used for defining the operational semantics) can be
inferred as follows:
1. ACNodes ∈ N → N is a map that binds a DM node n to the

particular AC node ACNodes[n] it controls, i.e., ifMi ∈ S then
(N i

dm ,N
i
ac) ∈ ACNodes

2. SCNodes ∈ N → N is a map that binds a DM node n to the
particular SC node SCNodes[n] it controls, i.e., if Mi ∈ S then
(N i

dm ,N
i
sc) ∈ SCNodes

3. Nodes ⊆ N represents the set of all nodes in the RTA system,
Nodes = dom(ACNodes)∪codom(ACNodes)∪codom(SCNodes).

4. OS ⊆ T represents the set of outputs of the RTA system, OS =⋃
n∈Nodes O(n).

5. IS ⊆ T represents the set of inputs of the RTA system (inputs
provided by the environment), IS =

⋃
n∈Nodes I (n) \OS .

6. CS represents the calendar or time-table of the RTA system,
CS =

⋃
n∈Nodes C(n).

We refer to the attributes of a RTA system S as ACNodes(S),
SCNodes(S), Nodes(S), OS(S), IS(S), and CS(S) respectively.

We next present the semantics of an RTA system. Note that the
semantics of an RTA module is the semantics of an RTA system
where the system is a singleton set.

We use the timeout-based discrete event simulation model [16]
for modeling the semantics of an RTA system. The calendar CS
stores the future times at which nodes in the RTA system must
step. Using a variable ct to store the current time and FN to store
the enabled nodes, we can model the real-time system as a discrete
transition system.

Configuration. A configuration of an RTA system is a tuple
(L,OE, ct , FN ,Topics) where:
1. L ∈ Nodes → L represents a map from a node to the local state

of that node.
2. OE ∈ N → B represents a map from a node to a boolean value

indicating whether the output of the node is enabled or disabled.
This is used for deciding whether AC or SC should be in control.
The domain of OE is codom(ACNodes) ∪ codom(SCNodes).

3. ct ∈ R represents the current time.
4. FN ⊆ N represents the set of nodes that are remaining to be

fired at time ct .
5. Topics ∈ T → V is a map from a topic name to the value stored

at that topic, it represents the globally visible topics. If X ⊆ T
then Topics[X] represents a map from each x ∈ X to Topics[x].
The initial configuration of any RTA system is represented as

(L0,OE0, ct0, FN0,Topics0)where: L0 maps each node in its domain
to default local state value l0 if the node is AC or SC, otherwise,
mode = SC for the DM node, OE0 maps each SC node to true and
AC node to false (this is to ensure that each RTA module starts in

SC mode), ct0 = 0, FN0 = ∅, and Topics0 maps each topic name to
its default value v ∈ V .

We represent the operational semantics of a RTA system as a
transition relation over its configurations (Figure 5).

ITE(x, y, z) represents if x then y else z

(Environment-Input)
e ∈ I S v ∈ V

(L, OE, ct, FN , Topics) → (L, OE, ct, FN , Topics[e 7→ v])

(Discrete-Time-Progress-Step)
FN = ∅(dt1) ct ′ = min({t | (x, t) ∈ CS, t > ct })(dt2) FN ′ = {n | (n, ct ′) ∈ CS }(dt3)

(L, OE, ct, FN , Topics) → (L, OE, ct ′, FN ′, Topics)

(DM-Step)
dm ∈ FN FN ′ = FN \ {dm }

dm ∈ dom(ACNodes) (l, {(STATE, st)}, l ′, ∅) ∈ T (dm) ac = ACNodes[dm]
sc = SCNodes[dm] ITE(l ′ = AC, en = true, en = false)(dm1)

(L, OE, ct, FN , Topics) → (L[dm 7→ l ′], OE[ac 7→ en, sc 7→ ¬en](dm2), ct, FN ′, Topics)

(AC-or-SC-Step)
n ∈ FN FN ′ = FN \ {n }

n < dom(ACNodes) in = Topics[I (n)] (l, in, l ′, out) ∈ T (n)
ITE(OE[n], Topics′ = out ∪Topics[T \ dom(out)], Topics′ = Topics)(n1)

(L, OE, ct, FN , Topics) → (L[n 7→ l ′], OE, ct, FN ′, Topics′)

Figure 5: Semantics of an RTA System

There are two types of transitions: (1) discrete transitions that
are instantaneous and hence does not change the current time, and
(2) time-progress transitions that advance time when no discrete
transition is enabled. DM-Step and AC-or-SC-Step are the discrete
transitions of the system. Environment-Input transitions are trig-
gered by the environment and can happen at any time. It updates
any of the input topics e ∈ IS of the module to (e,v). Discrete-
Time-Progress-Step represents the time-progress transitions that
can be executed when no discrete transitions are enabled (dt1). It
updates ct to the next time at which a discrete transition must be
executed (dt2). FN is updated to the set of nodes that are enabled
and must be executed(dt3) at the current time. DM-Step represents
the transition of any of the DM nodes in the module. The important
operation performed by this transition is to enable or disable the
outputs of the AC and SC node (dm2) based on its current mode

(dm1). Finally, AC-or-SC-Step represents the step of any AC or SC
node in the module. Note that the node updates the output topics
only if its output is enabled (based on OE(n) (n1)).

Reachability. Note that the state space S of an RTA system is
the set of all possible configurations. The set of all possible reach-
able states of an RTA system is a set of configurations that are
reachable from the initial configuration using the transition system
described in Figure 5. Note that since the environment transitions
are nondeterministic, potentially many states are reachable even if
the RTA modules are all deterministic.

Let ReachM (s,Nsc , t) ⊆ S represent the set of all states of the
RTA system S reachable in time [0, t] starting from the state s , us-
ing only the controller SC node Nsc of the RTA module M ∈ S .
In other words, instead of switching control between SC and AC
of the RTA module M , the DM always keeps SC node in control.
ReachM (s, ∗, t) ⊆ S represents the set of all states of the RTA sys-
tem S reachable in time [0, t] starting from the state s , using only
a completely nondeterministic module instead ofM ∈ S . In other

Draft, August 2018, Ankush Desai
◦
, Shromona Ghosh

◦
, Sanjit A. Seshia

◦
, Natarajan Shankar

∗
, Ashish Tiwari

∗

words, instead of moduleM , a module that generates nondetermin-
istic values on the output topics ofM is used.

The notation Reach is naturally extended to a set of states:
ReachM (ψ ,x , t) = ⋃

s ∈ψ ReachM (s,x , t) is the set of all states reach-
able in time [0, t] when starting from a state s ∈ ψ using x . Note
that, ReachM (ψ , Nsc , t) ⊆ ReachM (ψ , ∗, t).

4 CORRECTNESS OF AN RTAMODULE

Given a safe set ϕsaf e , our goal is to prove that the RTA-protected
system always stays inside this safe set. We need the RTA module
to satisfy some additional conditions in order to prove its safety.

An RTA module M = (Nac ,Nsc ,Ndm ,∆,ϕsaf e ,ϕsaf er) is said
to be well-formed if its components satisfy the following properties:
1. (P1a) Themaximum period ofNac andNsc is∆, i.e., δ (Ndm) = ∆,
δ (Nac) ≤ ∆, and δ (Nsc) ≤ ∆.

2. (P1b) The outputs of the Nac and Nsc nodes must be same, i.e.,
O(Nac) = O(Nsc).

3. The safe controller, Nsc , must satisfy the following properties:
• (P2a) (Safety) ReachM (ϕsaf e ,Nsc ,∞) ⊆ ϕsaf e . This prop-
erty ensures that if the system is in ϕsaf e , then it will remain
in that region as long as we use Nsc .

• (P2b) (Liveness) For every state s ∈ ϕsaf e , there exists a
time T such that for all s ′ ∈ ReachM (s,Nsc ,T) , we have
ReachM (s ′,Nsc ,∆) ⊆ ϕsaf er . In words, from every state in
ϕsaf e , after some finite time the system is guaranteed to stay
in ϕsaf er for at least ∆ time.

4. (P3) ReachM (ϕsaf er , ∗, 2∆) ⊆ ϕsaf e . This condition says that
irrespective of the controller, if we start from a state in ϕsaf er ,
we will continue to remain in ϕsaf e for 2∆ time units. Note that
this condition is stronger than the condition ϕsaf er ⊆ ϕsaf e .

Theorem 4.1 (Runtime Assurance). For a well-formed RTA

module M , let ϕInv(mode, s) denote the predicate (mode=SC ∧ s ∈
ϕsaf e) ∨ (mode=AC ∧ ReachM (s, ∗,∆) ⊆ ϕsaf e). If the initial state
satisfies the invariant ϕInv, then every state st reachable from s will
also satisfy the invariant ϕInv. (Proof in the Appendix)

The invariant established in Theorem 4.1 ensures that if the
assumptions of the theorem are satisfied, then all reachable states
are always contained in ϕsaf e .

Remark 4.1 (Guarantee switching and avoid oscillation).
The liveness property (P2b) guarantees that the system will definitely

switch from Nsc to Nac (to maximize performance). Property (P3) en-

sures that the system will stay in AC for some time and not switch

back immediately to SC. Note that the liveness property (P2b) is not

needed for Theorem 4.1.

Remark 4.2 (AC is a black-box). Our well-formedness check

does not involve proving anything about Nac . (P1a) and (P1b) require

that Nac samples at most as fast as Ndm and generates the same

outputs as Nsc , this is for smooth transitioning between Nac and

Nsc . We only need to reason about Nsc , and we need to reason about

all possible controller actions (when reasoning with ReachM (s, ∗,∆)).
The latter is worst-case analysis, and includes Nac ’s behavior. One

could restrict behaviors to Nac ∪Nsc if we wanted to be more precise,

but then Nac would not be a black-box anymore.

Definition 4.1 (Regions). Let R(ϕ, t) = {s | s ∈ ϕ ∧
ReachM (s, ∗, t) ⊆ ϕ}. For example, R(ϕsaf e ,∆) represents the re-
gion or set of states in ϕsaf e from which all reachable states in time

∆ are still in ϕsaf e .

Regions of operation of a well-formed RTA module. We in-
formally describe the behavior of an RTA protected module by
organizing the state space of the system into different regions of
operation (Figure 6). R1 represents the unsafe region of operation
for the system. Regions R2-R5 represent the safe region and R3-R5
are the recoverable regions of the state space. The region R3\R4
represents the switching control region (from AC to SC) as the time
to escape ϕsaf e for the states in this region is less than 2∆.

Figure 6: Regions of State Space.

As the DM is guar-
anteed to sample the
state of the system at
least once in ∆ time
(property (P1a)), the
DM is guaranteed to
switch control from
AC to SC if the sys-
tem remains in the
switching control re-
gion for at least ∆
time, which is the
case before system

can leave region R3. Consider the case where T1 represents a tra-
jectory of the system under the influence of AC, when the system
is in the switching control region the DM detects the imminent
danger and switches control to SC. (P1a) ensures that Nsc takes con-
trol before the system escapes ϕsaf e in the next ∆ time. Property
(P2a) ensures that the resultant trajectory T2 of the system remains
inside the safe region and Property (P2b) ensures that the system
eventually enters region R5 where the control can be returned to
AC for maximizing the performance of the system. Property (P3)

ensures that the switch to AC is safe and the system will remain in
AC mode for at least ∆ time.

Remark 4.3 (Choosing ϕsaf er and ∆). The value of ∆ is critical

for ensuring safe switching from AC to SC. It also determines how

conservatively the system behaves: for example, large value of ∆
implies a large distance between boundaries of region R4 and R5

during which SC (conservative) is in control. Small values of ∆ and

a larger R5 region (ϕsaf er) can help maximize the use of AC but

might increase the chances of switching between AC and SC as the

region between the boundaries of R4 and R5 is too small. Currently,

we let the programmer choose these values and leave the problem of

automatically finding the optimal values as future work.

From theory to practice: We are assuming here that the checks
in Property (P2) and Property (P3) can be performed. The exact
process for doing so is outside the scope of this paper. However,
we leveraged existing work that can be used for performing these
checks. First, consider the problem of synthesizing the safe con-
troller Nsc for a given safe set ϕsaf e . Nsc can be synthesized using
pre-existing safe control synthesis techniques. For example, for the
motion primitives, we can use a framework like FaSTrack [17] for
synthesis of low-level Nsc . We elaborate on this further in Sec 5.1.

Soter: Programming Safe Robotics System using Runtime Assurance Draft, August 2018,

Next, we note that theDM needs to reason about the reachable set
of states for a system when either the controller is fixed to Nsc or is
nondeterministic. Again, there are plenty of tools and techniques for
performing reachability computations [18]. One particular concept
that Soter requires here is the notion of time to failure less than 2∆

(ttf2∆). The function ttf2∆ : S × 2S → B, given a state s ∈ S and
a predicate ϕ ⊆ S returns true if starting from s , the minimum time
after which ϕ may not hold is less than or equal to 2∆. The check
Reach(st , ∗, 2∆) * ϕsaf e in Figure 4 can be equivalently described
using the ttf2∆ function as ttf2∆(st ,ϕsaf e). We show how ttf2∆
for motion primitives is computed in Sec 5.1.

1 type State = ..;
2 ...
3 fun PhiSafer_MPr (s : State) : bool { ... }
4 fun TTF2D_MPr (s : State) : bool { ... }
5 ...
6 node MotionPrimitiveSC period 60;
7 subscr ibes LocalPosition , LocalVelocity , NextWaypoint;
8 publishes Control;
9 { /* body */ }
10
11 r ta SafeMotionPrimitive = { MotionPrimitive ,

MotionPrimitiveSC , 150, PhiSafer_MPr , TTF2D_MPr };

Figure 7: Declaration of a RTAmodule

Example 4.1 (Example of an RTA module). Figure 7 presents the
declaration of an RTA module consisting of the MotionPrimitive (Fig-
ure 3) and MotionPrimitiveSC as the AC and SC nodes. The boolean
function PhiSafer_Mpr is used to check if the system state is in ϕsaf er
and TTF2D_Mpr corresponds to the ttf2∆ function for the safe motion
primitives RTA module. These functions are used for evaluating
the switching logic described in Figure 4. �

4.1 Correctness of an RTA System

A large system is generally built by composingmultiple components
together. When the system-level specification is decomposed into a
collection of simpler component-level specifications, one can scale
provable guarantees to large, real-world systems.
Composition. If RTA modules P and Q are composable then their
composition P ∥ Q is a system consisting of the twomodules {P ,Q}.
The operational semantics of the RTA system P ∥ Q is as described
in Section 3.3. Note that composition of two RTA systems S1 and S2
is an RTA system S1 ∪ S2 if all modules in S1 ∪ S2 are composable.

Theorem 4.2 (Compositional RTA System). Let S =

{M0, . . .Mn } be an RTA system. If for all i , Mi is a well-formed

RTA module satisfying the safety invariant ϕiInv (Theorem 4.1) then,

the RTA system S satisfies the invariant

∧
i ϕ

i
Inv . (Appendix)

Theorem 4.2 plays an important role in building the reliable
software stack in Figure 2c. Each RTA module individually satisfies
the respective safety invariant and their composition helps establish
the system-level specification.

We note that the definition of DM for an RTA module M is
sensitive to the choice of the environment for M . Consequently,
every attribute of M (such as well-formedness) depends on the
context in whichM resides.We implicitly assume that all definitions
for a single RTA M are based on a completely nondeterministic
context. All results hold for this interpretation, but they also hold
for some more constrained environments.

Input-Output Contracts.An RTAmodule is an open system in-
teracting with its environment using the input-output topics. When
defining the semantics of an RTA module, we assumed that the
environment can generate any inputv ∈ V . Hence, SCmust satisfy
the correctness properties (P2) under any environment. Designing
such an SC is extremely hard and in most cases infeasible. In prac-
tice, a safe controller is designed under certain input assumptions.
Also, when an RTA module is composed with another module, the
input of one module may be an output of other. In which case, the
RTA module must provide output guarantees that satisfy the input
assumptions of the composed module. We would like to ensure that
the output guarantee holds even when the AC is in control.

To specify simple input-output contracts, Soter allows attaching
contracts to topics. The declaration below attaches an assumption
ControlRange with the values stored at topic VelocityControl.

1 fun ControlRange(c : controlType) : bool { .. }
2 topic VelocityControl :(controlType) assumes ControlRange;

To capture input assumptions, the Environment-Input rule
(Figure 5) is updated to allow only those values that satisfy the
corresponding topic assumption. To provide the output guarantees,
the publish semantics is updated such that a publish operation is
disabled if it does not satisfy the topic assumption on which it is
publishing the value.

5 CASE STUDY: SURVEILLANCE SYSTEM

We empirically evaluate Soter framework by building an RTA-
protected software stack (Figure 2c) that satisfies the safety invari-
ant: ϕplan ∧ ϕmpr ∧ ϕbat . The goal of our evaluation is threefold:
(Goal1) Demonstrate how the Soter-RTA can ensure that the drone
safely navigates (ϕmpr) in the workspace using untrusted low-level
controllers, and also how the programmable switching feature of an
RTA module can help maximize the performance. (Goal2) Demon-
strate how the Soter-RTA can safely switch from mission mode
to recovery mode under low-battery conditions to guarantee ϕbat .
(Goal3) Demonstrate how the Soter-RTA can ensure ϕplan in the
presence of software bugs in the third-party motion planner.

Soter Implementation. The Soter tool-chain consists of two
components: the compiler and a C runtime. The compiler converts
the source-level syntax of a Soter program into C code. This code
contains statically-defined C array-of-structs and functions for the
topics, nodes, and functions declarations. The OE that controls
the output of each node is implemented as a shared-global data-
structure updated by all the DMs in the program. The Soter C
runtime executes the program according to the program’s opera-
tional semantics by using the C representation of the nodes. The
periodic behavior of each node was implemented using OS timers
for our experiments, deploying the generated code on real-time
operating system is future work.

Experimental Setup For our experiments on real drone hard-
ware, we use 3DR Iris [11] drone that comes with the open-source
Pixhawk PX4 [10] autopilot. The simulation results were done in
Gazebo [12] simulator environment that has high fidelity models of
Iris drone. In our simulations, we execute the PX4 firmware in the
loop. Details about demonstration videos and other experiments
is available in the Supplementary Material.

Draft, August 2018, Ankush Desai
◦
, Shromona Ghosh

◦
, Sanjit A. Seshia

◦
, Natarajan Shankar

∗
, Ashish Tiwari

∗

5.1 RTA for Safe Motion Primitives

A drone navigates in the 3D space by tracking trajectories between
waypoints computed by the motion planner (Figure 2a). Given the
next waypoint, an appropriate motion primitive is used to track
the reference trajectory. Informally, a motion primitive consists
of a pre-computed control law (sequence of control actions) that
regulates the state of drone as a function of time.

In our experiments, we use the motion primitives provided
by the PX4 autopilot [10] as our advanced controller. A motion
primitives take as input the next waypoint and generates the low
level control to traverse the reference trajectory from current
position to the target waypoint. Since, the control is optimized
for performance rather than safety, it can be potentially unsafe.

To demonstrate this, we experi-
mented with the motion primi-
tives provided by the drone man-
ufacturers. The drone was tasked
to repeatedly visit locations д1 to
д4 in that order,i.e., the sequence
of waypoints д1, . . . д4. The blue
lines represent the trajectories of
the drone. Given the complex dy-
namics of a drone and noisy sen-
sors, ensuring that it precisely fol-

lows a fixed trajectory (ideally a straight line joining the waypoints)
is extremely hard. The advanced controller (untrusted) optimizes
for time and, hence, during high speed maneuvers the reduced
control on the drone leads to overshoot and trajectories that col-
lide with obstacles (represented by the red regions). Note that the
advanced controller can be used during majority of this mission
except for a few instances of unsafe maneuvers. This motivates our
case-study: to build a RTA-protected motion primitive that ensures
safety when using the performant third-party controller.

To achieve (Goal1), there are three important steps: (1) Design
of the safe controller Nsc ; (2) Designing the ttf2∆ function that
controls switching from the AC to SC for the motion primitive;
(3) Programming the switching from SC to AC and choosing an
appropriate ∆ and ϕsaf er so that the system is not too conservative.

Designing Nsc . For the motion primitive, we need to guarantee
that the trajectory taken by the drone does not collide with any
obstacles. The Nsc must satisfy the Property (P2), where ϕsaf e is
the region not occupied by any obstacle. Techniques from control
theory, like reachability [19] can be used for designing Nsc . How-
ever, reachability based techniques are slow and scale exponentially
with state dimension; and hence cannot be used to compute Nsc
in an online fashion. Recently, FaSTrack [17] has been proposed
which can compute a generic Nsc offline. FaSTrack helps quantifies
the maximum deviation from the reference trajectory that might
occur while regulating the drone to a desired waypoint using Nac .

To use FaSTrack, we need the non-linear 12D state dynamics
of the quadrotor with position (x ,y, z); velocity (vx ,vy ,vz); pitch,
roll and yaw (θx ,θy ,θz); and pitch, roll and yaw rates, (ωx ,ωy ,ωz).
For our analysis, we consider a 10D model by setting θz = ωz = 0
which can be solved using decomposition techniques [20] to make
the computations scalable. The advantage of using FaSTrack is two
fold; (1) it provides us Nsc and a tracking error bound (TEB) which

can be used to compute ϕsaf er ; and (2) the computations are done
offline but its results can be used online in an efficient manner.
Intuitively, TEB quantifies the maximum deviation between the
trajectories when using Nac and Nsc on the drone. We refer the
readers to [17] for the further details.

Designing ttf2∆ that controls switching from AC to SC. To
design the switching condition from AC to SC, we need to compute
the ttf function that checks Reach(st , ∗, 2∆) * ϕsaf e (Figure 4)
where st is the current state.

Consider the 2D representation of the workspace ((Figure 2a))
in Figure 8b. The obstacles (shown in grey) represent the ϕunsaf e
region, any region outside is ϕsaf e . We first pad all obstacles with
TEB (shown in red) for motion planning. A region of TEB thickness
around the obstacle is contained in ϕsaf e , but safety is guaranteed
only for Nsc in this region and not Nac . Moreover, Nsc can guar-
antee safety for all locations in ϕsaf e (P2). We can use the level set
toolbox [19], to compute the backward reachable set from ϕsaf e
in 2∆ (shown in yellow), i.e., the set between the boundary of the
yellow region and the obstacle represents the states from where
the drone can leave ϕsaf e (collide with obstacle) in 2∆. This set can
be represented as a value function V : S → R which associates a
real value to each state such that,

V (s) =


> 0 if s ∈ R(ϕsaf e , 2∆)
0 if s ∈ boundary of R(ϕsaf e , 2∆)
< 0 if s < R(ϕsaf e , 2∆)

(1)

Intuitively, V (s) ≤ 0 if it there exists a control law which can take
the drone less than 2∆ to leave ϕsaf e . Hence, ttf2∆ := V ≤ 0.

Programming switching from SC to AC. In order to maximize
the performance of the system, the RTA module must switch from
SC to AC after the system has recovered. In our experiments, we
choose ϕsaf er = R(ϕsaf e , 2∆) (shown in green). Nsc is designed
such that given ϕsaf er , Property (P2b) holds. The DM transfers
control to AC when it detects that the drone is in ϕsaf er , which
is the backward reachable set from ϕsaf e in 2∆ time. The value
function returned by this computation can be used to define the
check st ∈ ϕsaf er (Figure 4).

Choosing the period ∆ is an important design decision. Choos-
ing a large ∆ can lead to overly-conservative ttf2∆(st ,ϕsaf e) and
ϕsaf er . In other words, a large ∆ pushes the switching boundaries
further away from the obstacle. In which case, a large part of the
workspace is covered by red or yellow region where the SC (con-
servative controller) is in control. For the motion primitives, ttf is
the boundary of ϕsaf er .This is the largest ϕsaf er we can compute
without breaking the well-formed constraints.

Using FaSTrack with δ (Nac) = δ (Nsc) = 0.01, we get a TEB of
0.313m. We chose ∆ ∈ (0.05, 0.1) to get good performance.
Experimental results.We implemented the safe motion primitive
as a RTA module using the components described above. Figure 8a
presents one of the interesting trajectories where the SC takes con-
trol multiple times and ensures the over all correctness of the mis-
sion. The green tube inside the yellow tube represents the ϕsaf er
region. The red dots represent the points where the DM switches
control to SC and the green dots represents the points where the
DM returns control back to the AC for optimizing performance.
The approximate time taken by the drone to go from д1 to д4 is 10
secs when only the unsafe Nac is in control (can lead to collisions),

Soter: Programming Safe Robotics System using Runtime Assurance Draft, August 2018,

(a) RTA for Safe Motion Primitive (b) Safe Motion Primitives during Surveillance Mission (c) Battery Safety during Surveillance Mission

Figure 8: Evaluation of RTA-Protected Drone Surveillance System built using Soter

14 secs using the RTA protected safe motion primitive, and 24 secs
when only using the safe controller. Hence, using RTA provides a
“safe” middle ground without sacrificing performance too much.

Figure 8b presents the 2D representation of our workspace in
Gazebo (Figure 2a). The dotted lines represents one of the refer-
ence trajectories of the drone using the surveillance mission. The
trajectory in black shows the trajectory of the drone when using
the RTA-protected software stack consisting of the safe motion
primitive. The parts of trajectory marked N1 and N2 is where the
Nsc takes control, pushes the drone back in to ϕsaf er (green) and
returns control back to the Nac . We observe that the Nac is in con-
trol for most part of the surveillance mission even in cases when
the drone deviates from the reference trajectory (N3) but is safe.

5.2 RTA for Battery Safety

We would like our software stack to provide battery-safety guar-
antee (Goal2), that prioritizes landing the drone safely when the
battery charge reaches below a threshold level.

Defining RTA components.We first augment the state of the
dronewith the current battery charge,bt .Nac is a node that receives
the current motion plan from the planner and forwards it to the
motion primitives module. Nsc is a certified planner that safely
lands the drone from its current position. The set of all safe states
for the battery safety, ϕsaf e := bt > 0, i.e., the drone is safe as long
as the battery does not run out of charge. We define ϕsaf er := bt >
85%, i.e., the battery charge is greater than 85%. Since, the battery
discharges at a slower rate compared to changes in the position of
the drone, we can define a larger ∆ for the battery RTA compared to
the motion primitive RTA. For our experiments, we chose ∆ = 0.1s .

Designing ttf2∆(bt ,ϕsaf e). To design the ttf2∆, we first define
two terms: (1) Maximum battery charge to landTmax ; and (2) Maxi-
mum battery discharge in 2∆, cost∗. In generalTmax depends on the
current position of the drone. However, we approximateTmax as the
battery required to safely land from the maximum height attained
by the drone. Although, conservative it is easy to compute and can
be done offline. To find cost∗, we first define a function cost , which
given the low level control to the drone and a time period; returns
the amount of battery the drone discharges by applying that con-
trol for the given time period. Then, cost∗ = maxu cost(u, 2∆) is the
maximum discharge that occurs in time 2∆ across all possible con-
trols, u. We can now define ttf2∆(bt ,ϕsaf e) = bt − cost∗ < Tmax .

It guarantees that the DM switches control to SC if the current
battery level may not be sufficient to land safely if AC were to
apply the worst possible control.

Programming switching from SC to AC. The DM returns con-
trol to Nac once the drone is sufficiently charged. This is defined by
ϕsaf er , which is chosen to assert that the battery has at least 85%
charge before the DM can hand control back to AC. The resultant
RTA module is well formed and satisfies battery safety properties.

Experimental results.We implemented the battery safety RTA
module with the components defined above. Figure 8(c) shows
a trajectory, where the battery goes below the safety threshold
causing DM to transfer control to Nsc which safely lands the drone.
For the purposes of our experiment, wemock the battery sensor and
decrease the charge monotonically. The trajectory is broken down
into 4 regions, (1) dark green where the battery level is greater than
70%, (2) the light green where the battery level is in (50%, 70%), (3)
the orange where the battery level is in (30%, 50%), and (4) the red
where the ttf is true and the SC takes over to land the drone safely.
The video corresponding to a similar experiment on a real drone is

available in the supplementary material.

5.3 RTA for Safe Motion Planner

We use OMPL [14], a third-party motion-planning library that im-
plements many state-of-the-art sampling-based motion planning
algorithms. We implemented the motion-planner for our surveil-
lance application using the RRT* [21] algorithm from OMPL. To
evaluate (Goal3), we injected bugs into the implementation of RRT*
such that in some cases the generated motion plan can collide with
obstacles (violating ϕplan). To achieve (Goal3), we leverage input-
output contracts feature provided by Soter. We annotated the topic
MotionPlan on which the planner publishes the motion plan with an
assumption that the motion plan should not collide with an obstacle.
As a result the system was safe and the publish operations that
violate the assumption of the motion primitive were ignored.

5.4 Evaluation Summary

To summarize, we used the theory of well-formed RTA module to
construct three RTA modules: motion primitives, battery safety,
and motion planner. We leverage Theorem 4.1 to ensure that the
modules individually satisfy the safety invariants ϕmpr , ϕbat , and
ϕplan respectively. The RTA-protected software stack (Figure 2c)

Draft, August 2018, Ankush Desai
◦
, Shromona Ghosh

◦
, Sanjit A. Seshia

◦
, Natarajan Shankar

∗
, Ashish Tiwari

∗

is a composition of the three modules and using Theorem 4.2 we
can guarantee that the system satisfies the desired safety invariant
of ϕplan ∧ ϕmpr ∧ ϕbat . Most of the graphs shown in this section
are from the software-in-loop simulations of the RTA-protected
software stack. We also deployed the generated code on real drone
to conduct similar experiments. The details and videos are provided
in supplementary material.

6 RELATEDWORK

We have discussed related work throughout the paper. The sim-
plex architecture has popularly been used in applications other
than avionics and robotics as well. In [8], the authors present a
component-based simplex architecture and A-G contracts are used
to automatically determine the switching logic and perform coor-
dinated switching if required. The paper uses these principles to
design prototype software stack for QuickBot in Matlab. In this pa-
per, we take inspiration and address the two problems mentioned as
future work in the paper (1) we present a programming framework
for building systems compositionally so that the overall system
safety problem can be decomposed into RTA invariants guaran-
teed by individual modules (2) we use the framework to build safe
UAV missions. Another important distinction is that our formalism
uses ϕsaf er to ensure performant behavior of the system. In [5],
the authors apply simplex approach for sandboxing cyber-physical
systems and present automatic reachability based approaches for
inferring switching conditions. We formalize a generic runtime as-
surance architecture and implement it in programming framework
for mobile robotic systems.

Safe control of safety-critical systems is a very active area of
research. Reachability [19] analysis is frequently used to study the
safety of control systems. The idea of using an advanced controller
(AC) under nominal conditions; while at the boundaries, using
optimal safe control (SC) to maintain safety has been used in [22]
for operating quadrotors in the real world. In [23] the authors uses
a switching architecture ([24]) to switch between a nominal safety
model and learned performance model to synthesize policies for a
quadrotor to follow a trajectory. We can use these approaches to
design SC and also in some cases use our framework to build these
systems that already using switching logic.

Runtime verification has been applied to robotics [25–29] where
monitors are used to check the status of path planner and tasks
executions. In this paper, we formalize and implement a runtime
assurance based programming framework that supports recovery to
ensure safe execution of robotic system in the real-world. Recently,
ModelPlex [30] combines offline verification of CPS models with
runtime validation of system executions for compliance with the
model to build correct by construction runtime monitors which pro-
vides correctness guarantees for CPS executions at runtime. While
ModelPlex is similar in motivation to our RTA framework, it differs
in two aspects: (1) it relies on full knowledge of the model (or in
our case Nac) to be available, (2) while it synthesizes the switching
condition to theNsc , it does not provide the conditions under which
Nac can take over control, i.e., they do not build ϕsaf er .

REFERENCES

[1] L. Sha, “Using simplicity to control complexity,” IEEE Software, 2001.

[2] J. D. Schierman, M. D. DeVore, N. D. Richards, N. Gandhi, J. K. Cooper, K. R.
Horneman, S. Stoller, and S. Smolka, “Runtime assurance framework development
for highly adaptive flight control systems,” tech. rep., Barron Associates, Inc.
Charlottesville, 2015.

[3] D. Seto, E. Ferriera, and T. Marz, “Case study: Development of a baseline controller
for automatic landing of an f-16 aircraft using linear matrix inequalities (lmis),”
Tech. Rep. CMU/SEI-99-TR-020, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2000.

[4] D. Phan, J. Yang, R. Grosu, S. A. Smolka, and S. D. Stoller, “Collision avoidance
for mobile robots with limited sensing and limited information about moving
obstacles,” Formal Methods in System Design, 2017.

[5] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing controllers for
cyber-physical systems,” in IEEE/ACM Second International Conference on Cyber-

Physical Systems, 2011.
[6] M. Clark, X. Koutsoukos, J. Porter, R. Kumar, G. Pappas, O. Sokolsky, I. Lee, and

L. Pike, “A study on run time assurance for complex cyber physical systems,” tech.
rep., AIR FORCE RESEARCH LABWRIGHT-PATTERSON AFB OH AEROSPACE
SYSTEMS DIR, 2013.

[7] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha, “The
system-level simplex architecture for improved real-time embedded system
safety,” in IEEE Symposium on Real-Time and Embedded Technology and Applica-

tions, 2009.
[8] D. Phan, J. Yang, M. Clark, R. Grosu, J. D. Schierman, S. A. Smolka, and S. D. Stoller,

“A component-based simplex architecture for high-assurance cyber-physical
systems,” arXiv preprint arXiv:1704.04759, 2017.

[9] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Workshop on

Open Source Software, 2009.
[10] “PX4 Autopilot.” https://pixhawk.org/, 2017.
[11] “3D Robotics.” https://3dr.com/, 2017.
[12] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator,” IEEE, 2004.
[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” 2016. arXiv:1606.01540.
[14] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE

Robotics & Automation Magazine, 2012.
[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of artificial intelligence research, 1996.
[16] B. Dutertre and M. Sorea, “Modeling and verification of a fault-tolerant real-time

startup protocol using calendar automata,” in Formal Techniques, Modelling and

Analysis of Timed and Fault-Tolerant Systems, Springer, 2004.
[17] S. L. Herbert*, M. Chen*, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin, “Fas-

track: a modular framework for fast and guaranteed safe motion planning,” IEEE
Conference on Decision and Control, 2017.

[18] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, andO.Maler, “Spaceex: Scalable verification of hybrid systems,”
in Computer Aided Verification (CAV), 2011.

[19] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi
formulation of reachable sets for continuous dynamic games,” IEEE Transactions

on Automatic Control, 2005.
[20] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin, “Decom-

position of reachable sets and tubes for a class of nonlinear systems,” 2017.
arXiv:1611.00122v3.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The international journal of robotics research, 2011.

[22] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H. Gillula, and
C. J. Tomlin, “Reachability-based safe learning with gaussian processes,” in IEEE

Conference on Decision and Control,, 2014.
[23] A. Aswani, P. Bouffard, and C. J. Tomlin, “Extensions of learning-based model

predictive control for real-time application to a quadrotor helicopter,” inAmerican

Control Conference, ACC 2012, Montreal, QC, Canada, June 27-29, 2012, 2012.
[24] A. Aswani, H. González, S. S. Sastry, and C. Tomlin, “Provably safe and robust

learning-based model predictive control,” Automatica, 2013.
[25] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics and Au-

tonomous Systems, 2005.
[26] I. Lee, H. Ben-Abdallah, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “A

monitoring and checking framework for run-time correctness assurance,” 1998.
[27] A. Desai, T. Dreossi, and S. A. Seshia, Combining Model Checking and Runtime

Verification for Safe Robotics. 2017.
[28] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia, “Robust

online monitoring of signal temporal logic,” Formal Methods in System Design,
2017.

[29] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan, and G. Rosu,
“Rosrv: Runtime verification for robots,” in International Conference on Runtime

Verification, 2014.
[30] S. Mitsch and A. Platzer, “Modelplex: verified runtime validation of verified

cyber-physical system models,” Formal Methods in System Design, 2016.

Soter: Programming Safe Robotics System using Runtime Assurance Draft, August 2018,

[31] R. Alur and T. A. Henzinger, “Reactive modules,” Formal methods in system design,
vol. 15, no. 1, pp. 7–48, 1999.

[32] N. A. Lynch and M. R. Tuttle, “An introduction to input/output automata,” 1988.
[33] T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision processes,”

CoRR, 2012.

A THEOREMS AND PROOFS

Theorem A.1 (Runtime Assurance). For a well-formed RTA

module M , let ϕInv(mode, s) denote the predicate (mode=SC ∧ s ∈
ϕsaf e) ∨ (mode=AC ∧ ReachM (s, ∗,∆) ⊆ ϕsaf e). If the initial state
satisfies the invariant ϕInv, then every state st reachable from s will
also satisfy the invariant ϕInv.

Proof. Let (mode, s) be the initial mode and initial state of the
system. We are given that the invariant holds at this state. Since the
initial mode is SC, then, by assumption, s ∈ ϕsaf e . We need to prove
that all states st reachable from s also satisfy the invariant. If there
is no mode change, then invariance is satisfied by Property (P2a).
Hence, assume there are mode switches. We prove that in every
time interval between two consecutive executions of the DM, the
invariant holds. So, consider time T when the DM executes.
(Case1) The mode at time T is SC and there is no mode switch at
this time. Property (P2a) implies that all future states will satisfy
the invariant.
(Case2) Themode at timeT is SC and there is a mode switch toAC at
this time. Then, the current state sT at timeT satisfies the condition
sT ∈ ϕsaf er . By Property (P3), we know that ReachM (sT , ∗, 2∆) ⊆
ϕsaf e , and hence, it follows that ReachM (sT , ∗,∆) ⊆ ϕsaf e , and
hence the invariant ϕInv holds at time T . In fact, irrespective of
what actions AC applies to the plant, Property (P3) guarantees that
the invariant will hold for the interval [T ,T + ∆]. Now, it follows
from Property (P1) that the DM will execute again at or before the
time instant T + ∆, and hence the invariant holds until the next
execution of DM.
(Case3) The current mode at timeT isAC and there is a mode switch
to SC at this time. Then, the current state sT at time T satisfies the
condition ReachM (sT , ∗, 2∆) * ϕsaf e . Since the mode at timeT − ϵ
was still AC, and by inductive hypothesis we know that the invari-
ant held at that time; therefore, we know that ReachM (sT−ϵ , ∗,∆) ⊆
ϕsaf e . Therefore, for the period [T −ϵ,T −ϵ +∆], we know that the
reached state will be in ϕsaf e and the invariant holds. Moreover,
SC will get a chance to execute in this interval at least once, and
hence, from that time point onwards, Property (P2a) will guarantee
that the invariant holds.
(Case4) The current mode at time T is AC and there is a no
mode switch. Since there is no mode switch at T , it implies that
ReachM (sT , ∗, 2∆) ⊆ ϕsaf e and hence for the next ∆ time units, we
are guaranteed that ReachM (sT , ∗,∆) ⊆ ϕsaf e holds. �

Theorem A.2 (Compositional RTA). Let S = {M0, . . .Mn } be
an RTA system. If for all i ,Mi is a well-formed RTAmodule satisfying

the safety invariant ϕiInv (Theorem A.1) then, the RTA system S

satisfies the invariant

∧
i ϕ

i
Inv .

Proof. Note that this theorem simply follows from the fact that
composition just restricts the environment. Since we are guaran-
teed output disjointness during composition, composition of two
modules is guaranteed to be language intersection. The proof for
such composition theorem is described in details in [31, 32]. �

Draft, August 2018, Ankush Desai
◦
, Shromona Ghosh

◦
, Sanjit A. Seshia

◦
, Natarajan Shankar

∗
, Ashish Tiwari

∗

B EVALUATION

B.1 Runtime Assurance for Machine Learning

Components

Use of machine learning techniques for designing controllers and
policies in robotics is increasing as these systems grow in complex-
ity and operate in uncertain environments. Specifically, Reinforce-
ment learning [15] (RL) is being used intensively for synthesizing
controllers for robotic systems. In RL, an agent learns a controller
or policy by interacting with its environment and receiving a re-
wards for its action. However, the policy learned depends heavily
on the scenarios the agent has seen, and generalization to new
environments can be erroneous. Ideally the system uses the ma-
chine learned modules under nominal conditions but switches to a
safe component when the output of the learned module cannot be
trusted. This can be captured by RTA module.

Figure 9: Mountain-car environ-

ment with cliff

For our case
study, we use a
popular OpenAI
Gym [13] example
of a Mountain-car.
In the mountain-car
example (Figure 9),
a car is on a one-
dimensional track,
positioned between
two mountains. The
goal is to drive up
the mountain on
the right to the

flag; however, the car’s engine is not strong enough to scale the
mountain in a single pass. Therefore, the only way to succeed
is to drive back and forth to build up momentum. Moreover, we
modify the original scenario to include a cliff on the left, which
the mountain-car must avoid at all costs. The configuration of the
system is a pair xt = (xt ,vt) where pt is the current position and
vt is the current velocity of the car; and the input control is the
acceleration, u = at .

To design the RTAmodule, we need to (1) Design the components
of the RTA module Nac , Nsc , ∆, ϕsaf e and ϕsaf er ; and (2) Design
the switching logic from AC to SC and from SC to AC.

Designing the RTA components. Nac in this case is a state
based controller trained using reinforcement learning. Nsc and
ϕsaf e can be computed using the level set tool box [?]. We compute
the backward reachable set from the goal by treating the cliff as an
obstacle, which returns the set of all states which can ultimately
reach the goal without falling of the cliff. This set is our ϕsaf e .
Our Nsc is the safe optimal controller returned by the level set
toolbox. In our experiments we choose ϕsaf er = R(ϕsaf e , 2∆) and
∆ = δ (()Nsc) = δ (()Nac).

Designing switching logic. In this experiment, we define the
switching condition from AC to SC with the boolean function
ttf2∆(xt ,ϕsaf e) = xt < R(ϕsaf e , 2∆) which is true for all states
which can leave ϕsaf e in 2∆ time. In this example this ends up
being states in ϕsaf e which are outside ϕsaf er . For switching from
SC to AC, we choose the boundary of R(ϕsaf er ,∆) ⊂ ϕsaf er .

Experimental results. Figure 10 shows an unsafe behavior (blue
trajectory) of the learned controller where the trajectory starting
at s0 enters the unsafe region (shown in gray), which is the set of
position and velocities which lead to the car falling off the cliff.

Figure 10: RTA protected safe

mountain-car

ϕsaf e is the
region shown
in light orange,
and R(ϕsaf er ,∆) is
shown in green. The
system is designed
such that ∆ = 1 and
it satisfies all the
well-formedness
constrains for the
RTA module. The
resulting RTA mod-
ule produces the
trajectory shown
in blue (Nac in

control), green (Nsc in control) and blue (Nac back in control) with
the switching points shown as purple dots. The resultant system
is always able to drive the trajectory to the goal д, the advanced
controller is used most part of the trajectory (blue), except for safe
controller being used when the car is too close to the cliff.

B.2 Runtime Assurance for Safe Exploration

When operating in environments which are unknown a-priori, a
robot faces the challenge of exploring the environment safely and
still accomplishing the desired goal. A large body of research, clas-
sified as safe exploration [33], focuses on developing techniques to
explore the environment in a safe manner.

As a case study, we use the RTA approach for decomposing the
problem of optimized exploration from the problem of providing
safety guarantee for a robot working in a previously unknown
environment. In the obstacle avoidance property considered in the
Section 5.1 in the paper, the motion planner was aware of the static
obstacles in the system.

To design the RTA module to safely explore unknown environ-
ments, we need to (1) Design RTA components Nac , Nsc and ϕsaf e ,
(2) Design the switching condition ttf2∆ for switching from AC to
SC, and (3) Programming the switching from SC to AC and choosing
an appropriate ∆ and ϕsaf er .

Design RTA components. In this experiment, Nac is a motion
planner designed to explore the environment in an optimal way
with minimum number of steps and the Nsc is responsible to bring
the system to an a-priori known part of the environment. ϕsaf e is
the entire state space outside the obstacles.

Design ttf2∆ for switching fromAC to SC. If the environment
was known a-priori we could have used the reachability based
technique proposed in Section 5.1 in the paper. However, in the
absence of full knowledge of the environment, we approximate
ttf2∆ := {s : s ∈ S s.t. s + vmax · 2 · ∆ < ϕsaf e } where vmax
is the maximum velocity attainable by the quadrotor in x ,y, or z
direction. Intuitively, it checks if a state would leave ϕsaf e in 2∆
if it was moving with its highest velocity. This function is more
conservative compared to ttf2∆ proposed in Section 5.1 computed

Soter: Programming Safe Robotics System using Runtime Assurance Draft, August 2018,

using reachability. However, this is fast to compute and can be
computed on the fly, making it particularly attractive to be used in
partially observable environment.

Programming switching from SC to AC. Since the environ-
ment is unknown, we have to be conservative about our set ϕsaf er .
In our experiments, ϕsaf er is a predefined known area of the state
space. The switching from SC to AC occurs at the boundary of the
set R(ϕsaf er ,∆). Similar to Section 5.1, ∆ should be chosen to avoid
overly-conservative ttf2∆ and R(ϕsaf er ,∆).

Experimental results. We used our RTA module to safely ex-
plore an environment(Figure 11) by avoiding collision with the sur-
rounding wall in gray whose location is unknown a-priori. ϕsaf e is
the entire workspace contained within the gray wall, R(ϕsaf er ,∆)
is the green square at the center of the workspace. Additionally, ∆ is
chosen such that R(ϕsaf e ,∆) is the square with the black boundary
and R(ϕsaf e , 2∆) is the square with the dashed black boundary.

Figure 11: Safe exploration using

RTA module

In our experi-
ment, the exploring
motion planner
generates goal
points д1 − д10
(black crosses in 11)
for the drone to
traverse, sequen-
tially. For each goal
point, дi , Nac plans
a path from the
current position of
the quadcopter, xt
to the дi . However,
during exploration
when дi satisfies
ttf2∆, our RTA

module detects the wall at runtime, switches to SC (shown by
green dot in Figure 11) when the trajectory leaves R(ϕsaf e , 2∆)
while still inside R(ϕsaf e ,∆). Nsc brings the trajectory back to
ϕsaf er (shown by the orange trajectory). Once inside R(ϕsaf er ,∆),
the DM hands back control to the Nac (shown by red dot) and the
exploration process begins again.

	Abstract
	1 Introduction
	2 Overview
	2.1 Runtime Assurance Architecture
	2.2 Case Study: Drone Surveillance System

	3 Runtime Assurance Module
	3.1 Topics and Nodes
	3.2 RTA Module
	3.3 Semantics of an RTA System

	4 Correctness of an RTA Module
	4.1 Correctness of an RTA System

	5 Case Study: Surveillance System
	5.1 RTA for Safe Motion Primitives
	5.2 RTA for Battery Safety
	5.3 RTA for Safe Motion Planner
	5.4 Evaluation Summary

	6 Related Work
	References
	A Theorems and Proofs
	B Evaluation
	B.1 Runtime Assurance for Machine Learning Components
	B.2 Runtime Assurance for Safe Exploration

