Computational Sensorimotor Learning

Pulkit Agrawal

il Y

i |
il

11
.‘
;. ; :

]

Electrical Engineering and Computer Sciences
University of California at Berkeley

18

#
{¥:Y

Technical Report No. UCB/EECS-2018-133
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-133.html

September 23, 2018




Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Computational Sensorimotor Learning

By

Pulkit Agrawal

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Jitendra Malik, Chair

Professor Alexei A. Efros
Professor Jack Gallant

Summer 2018



Computational Sensorimotor Learning

Copyright 2018
by
Pulkit Agrawal



Abstract
Computational Sensorimotor Learning
by
Pulkit Agrawal
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Jitendra Malik, Chair

Our fascination with human intelligence has historically influenced Al research to
directly build autonomous agents that can solve intellectually challenging problems
such as chess and GO. The same philosophy of direct optimization has percolated
in the design of systems for image/speech recognition or language translation. But,
the Al systems of today are brittle and very different from humans in the way they
solve problems as evidenced by their severely limited ability to adapt or generalize.
Evolution took a very long time to evolve the necessary sensorimotor skills of an
ape (approx. 3.5 billion years) and relatively very short amount of time to develop
apes into present-day humans (approx. 18 million years) that can reason and
make use of language. There is probably a lesson to be learned here: by the time
organisms with simple sensorimotor skills evolved, they possibly also developed the
necessary apparatus that could easily support more complex forms of intelligence
later on. In other words, by spending a long time solving simple problems, evolution
prepared agents for more complex problems. It is probably the same principle at
play, wherein humans rely on what they already to know to find solutions to new
challenges. The principle of incrementally increasing complexity as evidenced in
evolution, child development and the way humans learn may, therefore, be vital to
building human-like intelligence.

The current prominent theory in developmental psychology suggests that seem-
ingly frivolous play is a mechanism for infants to conduct experiments for incre-
mentally increasing their knowledge. Infant’s experiments such as throwing objects,
hitting two objects against each other or putting them in mouth help them under-
stand how forces affect objects, how do objects feel, how different materials interact,
etc. In a way, such play prepares infants for future life by laying down the foundation



of a high-level framework of experimentation to quickly understand how things
work in new (and potentially non-physical/abstract) environments for constructing
goal-directed plans.

I have used ideas from infant development to build mechanisms that allow robots
to learn about their environment by experimentation. Results show that such learning
allows the agent to adapt to new environments and reuse its past knowledge to
succeed at novel tasks quickly.



To my parents — Sadhana & Ratan Agrawal



Contents

Acknowledgments
1 Introduction
1.1 Today’s Artificial Intelligence . . . . . . . . ... ... ... ... ..

1.2

1.3

1.4

1.5
1.6

Problem Formulation . . . . . . . ... ... oo
1.2.1 Task Communication . . . . . . . .. ... ... ... .....
Learning Sensorimotor Behavior . . . . . . ... ... ... ... ...
1.3.1 Reinforcement Learning (RL) . . . .. . ... ... ... ...
1.3.2 Learning from Demonstration/Imitation Learning . . . . . . .
Classical Model Based Control . . . . . . ... ... ... . ......
1.4.1 System Identification . . . . . . .. ... ...
1.4.2 State Estimation . . . . ... ... ... ... ...
1.4.3 Is the engineering wisdom of modularization the way to go?

Core problem of Artificial General Intelligence . . . . . . . .. .. ..
Summary of the Proposed Solution . . . . . ... ... ... .....

Learning to See by Moving

2.1
2.2

2.3

2.4

Related Work . . . . . . . . .o
A Simple Model of Motion-based Learning . . . . . .. . . ... ...
2.2.1 Two Stream Architecture . . . . . . . .. ... ... ... ..
2.2.2  Shorthand for CNN architectures . . . . . ... .. ... ...
2.2.3 Slow Feature Analysis (SFA) Baseline . . . . . . ... ... ..
2.2.4  Proof of Concept using MNIST . . . ... ... ... .. ...
Learning Visual Features From Egomotion in Natural Environments .
2.3.1 KITTI Dataset . . . . ... .. .. .. ... ... .....
2.3.2 SF Dataset . . . .. .. ...
2.3.3 Network Architecture . . . . . . . . ... ... ... ... ...
Evaluating Motion-based Learning . . . . . . . . . ... ... ....
2.4.1 Scene Recognition . . . . .. ... ..o

i

vi

16

29



CONTENTS iii
2.4.2  Object Recognition . . . . . . ... .. ... ... ... .. 33

2.4.3 Intra-Class Keypoint Matching . . . . .. ... .. ... ... 34

24.4 Visual Odometry . . . . .. .. ... .. ... .. 35

2.5 Discussion . . . . . ... 35

3 A Model for Intuitive Physics 38
3.1 Data . . . .. 40
3.2 Method . . . . . .. 40
3.21 Model . ... .. 42

3.2.2 Ewvaluation Procedure . . . . . . . ... ... ... ... ... 43

3.2.3 BlobModel . ... ... ... ... ... 44

3.3 Results. . . . . . . 45
3.3.1 Forward model regularizes the inverse model . . . . . . . . .. 46

3.4 Related Work . . . . . . . ... 47
3.5 Discussion . . . . . . ... 49

4 Learning from Experts 53
4.1 A Framework for Learning by Observation . . . . . . ... ... ... 54
4.1.1 Learning a Model to Imitate . . . . . .. ... ... ... ... 5}

4.2 Imitating Visual Demonstrations . . . . .. .. ... ... ... ... 56
4.2.1 Goal Recognizer . . . . . . . ... ... o7

4.3 Evaluation Procedure . . . . . . . .. ... ... L. o7
4.3.1 Baseline . . ... . . ... 58

4.4 Results. . . . . . . e 58
4.4.1 Importance of Imitation . . . . .. . . ... ... ... .... 59

4.4.2 Generalization to other ropes . . . . . ... .. ... ... .. 60

4.5 Expert Guided Exploration . . . .. ... ... 0oL 61
4.6 Related Work . . . . . . . ... 62

5 Revisting Forward and Inverse Models 64
5.1 Forward Consistency Loss . . . . . . . . . ... ... ... ... 64
5.2 Experiments . . . . . . . . ... 67
5.2.1 Ablations and Baselines . . . . ... ... ... ... .. ... 68

5.2.2 3D Navigation in VizDoom . . . . ... ... ... ... ... 71

5.3 Conclusions . . . . . . . . . ... 73

6 Exploration 75
6.1 Curiosity-Driven Exploration. . . . . . . . ... ... ... .. .... 7
6.1.1 Prediction error as curiosity reward . . . . . .. .. ... ... 78

6.1.2  Self-supervised prediction for exploration . . . . . . . .. ... 79



CONTENTS iv
6.2 Experimental Setup . . . . . .. ..o 80
6.3 Experiments . . . . . . ... 82

6.3.1 Sparse Extrinsic Reward Setting . . . . . . ... .. ... ... 83
6.3.2 No Reward Setting . . . . . .. ... ... .. ... ... .. 86
6.3.3 Generalization to Novel Scenarios . . . . . . . ... ... ... 87
6.4 Related Work . . . . . . .. oo 90
6.5 Discussion . . . . . . ... 90

7 Initial State 93
7.1 Investigating Human Priors for Playing Games . . . . . . . . . .. .. 93
7.2 Method . . . . . . . 96
7.3 Quantifying the importance of object priors . . . . . .. ... .. .. 96

7.3.1 Semantics . . . . .. ..o 97
7.3.2 Objects as Sub-goals for Exploration . . . ... .. ... ... 98
7.3.3 Affordances . . . . . .. ... 100
7.3.4 Things that look similarly, behave similarly . . . .. ... .. 101
7.3.5 How to interact with objects . . . . . . . ... ... ... ... 102
7.4 Concealing all object priors . . . . . . . ... ... L. 102
7.5 Physics and motor control priors. . . . . . ... 103
7.5.1 Gravity . . ... 103
7.5.2 Muscle memory . . . .. ... 104
7.6 Controlling for change in complexity . . . ... ... ... ... ... 105
7.7 Discussion . . . . . ..o 106

8 Intuitive Behavior 109

8.1 Forecasting Player Moves in Sports Videos . . . . . .. .. ... ... 109
8.1.1 Related Work . . . . . . .. ... 110
8.1.2 Team Sports Datasets . . . . . .. .. .. ... ... ..... 111
8.1.3 Methods: From Images to Overhead View . . . . . . ... .. 114
8.1.4 Forecasting Future Ball Position . . . . . . ... ... .. ... 115
8.1.5 DBasketball: Where will the ball go? . . . . . .. .. ... ... 120
8.1.6 Forecasting Events in Basketball . . . . . . ... .. ... ... 122
8.1.7 Conclusion . . . . . . . ... 123

8.2 Human Pose Estimation . . . .. . .. .. ... ... ... ...... 127
8.2.1 Learning . . . . . . . ... 129
822 Results. . . . .. .. 132
8.2.3 Analyzing IEF . . ... ... ... 134
8.24 Related Work . . . . . . ..o 137
8.2.5 Discussion . . . . . ... 138



CONTENTS v

9 Can Deep Learning Inform Neuroscience? 141
9.1 What we know about the human visual system . . . . . . . ... . .. 141
9.2 Framework for testing models of visual computation in the human brain142
9.3 Method . . . . . .. 144

9.3.1 Constructing Models for Predicting Brain Activity . . . . . . . 144
9.4 Results. . . . . . . 147
9.4.1 ConvNet predicts brain activity across the visual cortex . . . . 147
9.4.2 The hierarchy of visual representations in the ConvNet mimics
the hierarchy of visual representations in the human brain . . 148
9.4.3 Investigating Visual Representations in the Human Brain . . . 150
9.5 Discussion . . . . . . ... 152
9.6 Takeaways . . . . . . . . .. 153
10 Conclusions 155

Bibliography 156



vi

Acknowledgments

My dissertation would be impossible without the unconditional support, love,
inspiration and encouragement of my parents Sadhana Agrawal, Ratan Agrawal and
my sister Ishita Agarwal. They provided me with an invaluable platform to grow
from and a philosophy to live by and pursue my dreams.

My grandfather, Shyam Agrawal was very influential in my shaping my interests in
science during my childhood. Whenever he visited, we would have endless discussions
on physics, chemistry, mathematics, engineering, and politics. We would often go on
long walks to chat about my intellectual curiosities at the time. My grandmother,
Shail Agrawal was a constant source of encouragement to pursue education. She
took excellent care of me.

At a very young age, I found a partner in crime in my cousin Divyesh Gupta, and
we spent countless summers building and discussing crazy things. It had a profound
impact on me, and the invisible fingerprints of those times have left their mark on
this dissertation. I would especially point out encouragement and thought leadership
from Dinesh Gupta. I am thankful to have the company of Ranjana Gupta, Kalpana
Agrawal, Prashant Agrawal, Neetu Agrawal, Nandini Agrawal, Tanesha Gupta, Divas
Agrawal, and other extended members of my family who have always supported me.

[ am grateful to Jonathan Manton for introducing me to computer vision during
my first internship at the University of Melbourne.

Bhiksha Raj was pivotal in my decision to pursue a Ph.D. I met him first as an
undergraduate student at a machine learning winter school organized by him in 2010.
We have become friends since then, and I spent a wonderful summer at Carnegie
Mellon University working on analyzing group conversations, EEG, and auditory
signals. I owe the knowledge of basics of machine learning to him. He spent countless
hours coaching me. He has been a pillar of support throughout my Ph.D., and I am
grateful for his trust in my intuition and the advise to follow it. I wouldn’t be in
Berkeley, and this thesis would not have existed without his oversight. I would also
like to thank Carolyn Rose and Rita Singh for the wonderful time at Pittsburgh.

This dissertation is the culmination of the freedom of running my Ph.D. as my
start-up offered by my advisor Jitendra Malik. He ensured I had complete intellectual



ACKNOWLEDGMENTS vii

freedom and stood like a giant wall to support me. I could not have wished for a
better mentor. Jitendra is an ocean of knowledge: any research idea I took to him
for discussion was met with an entire lineage of references often dating back to the
early 20" century. From him, I learned how to think about a problem at the big
picture level, identify an appropriate line of attack and then concretely implement
the solution. He helped me realize, that in research, many times the devil is in the
details. He was instrumental in coming up with names for my various research papers
(including the title of this thesis), influenced my research directions and from him I
learned a great many things such as: how to choose research problems, how to be
extremely pragmatic and judge every situation/idea in an unbiased way and a lot
more. [ am incredibly grateful for his patience and his trust in me for letting me
pursue my own research projects and disappear for months. It has always been a
great pleasure to debate and discuss research ideas with him.

I found a great friend and mentor in Alyosha Efros. There were multiple days I
went into the lab, only in the hope that I would get to spend time with Alyosha. At
the end of my Ph.D.; it became a habit to drop by his office and chat about research
or other things about life. He has been a pillar of support, very encouraging of all
crazy ideas and always had an infinite amount of time to discuss anything, even
at 3 am in the night. Alyosha was the life of SDH 7th floor when we were there.
He would often ignite controversial discussions, and some of our best ideas came
in post-mid-night chats while savoring dark chocolates. I learned from him how to
communicate research ideas and identify the crux of a problem, how an okay job is
very different from a great job, and he helped me to be focused on core research
problems and avoid fluff. I have not learned more about research and life from anyone
but Alyosha during my Ph.D. I was very fortunate to spend time in his company!

I spent a significant portion of the first two years at Berkeley in Jack Gallant’s
lab. His lab meetings were among the most intellectually stimulating experience at
Berkeley. In his lab, I learned that the only truth in science is questions. It gave
me a perspective on how to think deeply about a problem and tackle it scientifically.
Jack taught me how to write a research paper, how to formulate experiments for
testing various explanations of the results and quickly iterate. Through conversations
with him, I got an insight into how the academic system functions. In him, I found
a mentor for life.

I thoroughly enjoyed time spent at the Redwood Center of theoretical neuroscience
and especially with Bruno Olshausen. I thank him for introducing me to the world
of computational neuroscience. We often discussed whether it is possible to create
an Al system with the same capabilities as a fly. These discussions forced me to
think about what intelligence means. From Bruno, I learned how to express ideas in
mathematics and to think about what an equation means/implies. It is beautiful



ACKNOWLEDGMENTS viii

how simple theoretical concepts can explain a lot of experimental observations. I am
grateful to Bruno for helping me get a taste of it!

I greatly benefited from Pieter Abbeel’s class on Advanced Robotics. I am
thankful for him for all the discussions during my Ph.D., providing resources and
time to help me get started in robotics and supporting me throughout my time at
Berkeley. Pieter is an inspiration. .

I thank Trevor Darrell for all the support, perspective on research problems
and ideas. From him I learned how to make things happen given the institutional
constraints; picked up advice on how to manage research groups and navigate the
academic/industrial eco-system.

My research interests align closely with Abhinav Gupta. Our discussions have
been fruitful, and I am grateful to him for his firm support and encouragement
to pursue self-supervised robotics. His papers have profoundly influenced me and
research in self-supervised robotics would be in dark-ages without his contribution.

I am grateful to Josh Tenenbaum for hosting me in his lab for a couple of weeks
in July 2017. With him, I had deep, long and invigorating discussions on Artificial
Intelligence that forced me to formulate my ideas more rigorously. He was very
helpful in this process. We had many fun dinners, and I learned a lot about what we
know about the intelligence of human babies and together we contemplated on good
benchmark problems for AI. He played a critical role in introducing me to the Al
ecosystem at MIT.

If Joao Carreira was not in Berkeley in 2015, I might have quit the Ph.D. program.
Joao remains my favorite postdoc for a good reason — he was immensely supportive
both intellectually and emotionally. He helped me write my first papers in computer
vision, was always full of crazy ideas and it’s still a pleasure to be in his company.

I am very grateful to Sergey Levine, whom I met while he was a post-doc at
Berkeley. He helped me transition into robotics. I learned a lot from him about
control, simulators and reinforcement learning. I found the technical rigor that
Sergey brought to all our discussions to be invaluable, and we spent countless hours
chatting about various topics. Sergey helped me run independent projects by playing
a pivotal role in recruiting many amazing undergraduate students such as Ashvin
Nair, Dian Chen and Fred Shentu whose contributions have been critical to this
dissertation.

I worked very closely with Deepak Pathak during the last two years of my Ph.D.
In terms of research, these were the most productive years of my student life. I
thoroughly enjoyed countless amazing discussions about all aspects of artificial intelli-
gence including learning loss functions, curiosity, hierarchical reinforcement learning,
imitation, segmentation, robotics, constrained optimization methods, generative
models, self-supervised learning and the list goes on an on. Our discussions would



ACKNOWLEDGMENTS X

often run up to 3-4am in the night, turn philosophical, and we would inevitably
be the last two people hanging out on the 7th floor of SDH (sometimes along with
Alyosha). In addition to research discussions, we enjoyed many delicious Indian
meals together, gelato bets and random ramblings about life. My Ph.D. experience
is incomplete and would have been very different without having Deepak as a peer.

With Mayur Mudigonda I had the most number of dinners discussing science. |
met him in my first semester at Berkeley, and he has been a great friend, collaborator,
and supporter. Our discussions played a significant role in biasing my interests in
studying sensorimotor and active learning systems. We titled our first co-submission
as “Learning Simultaneous Sensory and Motor Representations (SESEMO)”. We were
too naive at the time to get it published, but thoughts developed in that paper ended
up occupying a significant part of my Ph.D. I have continued to have stimulating
discussions with Mayur, and he has colored my time at Berkeley in artistic ways.

With Shiry Ginosar I pursued some of the most unusual ideas. Alas! None of
them came to fruition; nevertheless, I enjoyed the time spent with her. Her clarity
of thought is impeccable. I thank her for all the discussions and the time.

I thank Brian Cheung for all the thought-provoking discussions during our
interactions over the past six years. He was one of the few people who was already
doing deep learning before it took off.

I thank Panna for the wonderful collaboration on forecasting sports moves. I
learned a lot from her about sports in the United States among other things.

I thank Rachit Dubey for the enlightening discussions about cognitive science,
curiosity and artificial intelligence. It was a pleasure collaborating with him.

I had great discussions with Shubham Tulsiani about the utility of 3D repre-
sentations for control, extrapolative generalization, and many other applications.
Shubham sat on the desk next to me for a substantial part of my Ph.D. and always
got me thinking about something or the other. I was lucky to have him as a labmate.

I am grateful to be part of Jitendra’s research group. In the initial years of my
Ph.D., T was lucky to have Jon Barron, Bharath Hariharan and Saurabh Gupta
around. Not only were our interactions intellectually stimulating, but I am also
thankful to them for helping me with much mundane stuff such as running jobs
on the cluster and navigating other non-research related Ph.D. stuff. I also had
the opportunity to closely interact with many of Jitendra’s and Alyosha’s brilliant
students: Subhranshu Maji, Chunhui Gu, Jon Barron, Bharath Hariharan, Georgia
Gkioxari, Saurabh Gupta, Shiry Ginosar, Tinghui Zhou, Junyan Zhu, Carl Doersch,
Panna Felsen, Shubham Tulsiani, Ke Li, Weicheng Kuo, Ashish Kumar, Edmund Ye.
It is undoubtedly true that in a Ph.D. you learn the most from your labmates.

I had a fantastic opportunity to work with some remarkably brilliant undergrad-
uate students, Jacob Huh, Ashvin Nair, Dian Chen, Fred Shentu, Jeffrey Zhang and



ACKNOWLEDGMENTS X

many others. Not only did we chase our intellectual curiosities, but they challenged
my understanding of the field and research questions in a way very different than
my peers. I am grateful for their contributions in making this thesis possible. With
them, I was able to run the “Improbable Al lab", which was among the most fun
things I did at Berkeley.

I was lucky to be surrounded by exceptional Ph.D. students in the Berkeley
eco-system. In addition to the people mentioned above, I would like to thank
Alex Huth, Dustin Stansbury, Michael Oliver, James Gao, Natalia Bilenko, Anwar
Nunez-Elizande, Tuomas Haarnoja, Avi Singh, Abhishek Gupta, Chelsea Finn,
Karthik Narayan, Judy Hoffman, Jeff Donahue, Sergey Kayarev, Yangqing Jia, Evan
Shelhamer, Bradley Stadie, George Netscher, Daniel Aranki, Somil Bansal, Nick
Boyd, Michael Chang, Yusuf Erol, Yuansi Chen, Roel Dobbe, Mohit Bansal, Greg
Durrett, Carlos Florensa, Animesh Garg, Erin Grant, Allan Jabri, Forrest Iandola,
Gregory Kahn, Frederik Ebert, Jeff Mahler, Michael Lasky, Sanjay Krishnan, Alex
Lee, Parsa Mahmoudieh, Taesung Park, Vitchyr Pong, Fereshteh Sadeghi, Nihar
Shah, Rashmi Vinayak, Adam Stooke, Eric Tzeng, Richard Zhang, Ryan Zarcone,
Tijana Zrnic, Jessica Hamrick, Amik Singh and many others. I have learned a lot
from my interactions with them.

Berkeley Artificial Intelligence Research (BAIR) attracted excellent post-doctoral
researchers. I had the pleasure of working/interacting with Pablo Arbelaez, Ross
Girshick, Joao Carreira, Philipp Krahenbuhl, Katerina Fragkiadaki, Christian Hane,
David Fouhey, Andrew Owens, Sergey Levine, Mark Lescroart, Dinesh Jayaraman,
Roberto Calandra, Aviv Tamar, Amir Zamir, Phillip Isola, David Held, Sachin
Patil, Angjoo Kanazawa, Yong Jae Lee and many others with whom I crossed paths
with. At one point in my Ph.D., on every paper, I was a co-author with a different
post-doc. Closely working with many of them helped me imbibe diverse perspectives
on research methodologies and problems.

I spent an exciting summer at DeepMind where I developed a foundation in
reinforcement learning, and it was an incredibly stimulating place to pursue general
artificial intelligence. I found good friends and partners in crime in the Al dream. I
owe my knowledge about physics simulators (especially Mujoco) to Tom Erez and
Yuval Tassa. Volodymyr Mnih, Nicolas Hees, and Timothy Lillicrap were great
mentors in helping me figure out the nuts and bolts of reinforcement learning; I
had in-depth conversations with Nando Freitas, Tejas Kulkarni, Jon Scholz, Peter
Battaglia, Misha Denil, Andrew Zisserman, Andrei Rusu, Raia Hadsell, Jacob Menick
and many other colleagues. My time at DeepMind had a significant impact on the
course of my future research.

I thank Chirs Meyers, other staff at Berkeley’s invention lab, Ankur Agrawal and
Dian Chen for helping me design and construct the arena for robot experiments.



ACKNOWLEDGMENTS xi

Nothing in the Berkeley Al lab moves without Angie Abbatecola’s nod. I was
first introduced to her as Jitendra’s assistant, but with time she rose up to managing
the logistics entire BAIR. She along with her team comprising of Lena Lau Stewart
and others ensured that I was adequately taken care of and no hurdles bothered me.
Angie’s kindness deeply touched me. I am also thankful to SDH building manager
Domenico; Erin Skelly at the Berkeley International office; Shirley Salanio, Audrey
Sillers, Susanne Kauer and other staff at the Department of Electrical Engineering
and Computer Sciences and the greater University ecosystem for all the help.

For four years, I lived at the International House (I-House). Residing in I-House
was an enriching experience, and I made many friends. I am thankful for many
people I met at [-House for making my Ph.D. experience even more special.

The Ph.D. experience is only partly about the time spent in the lab. I found
close friends in Nitesh Mor, Prachi Shah, Ivana Stradner, Emily Campbell, Ali
Momin, Vishwanath Bulusu, BVV Srirajdutt, Anubhav Singla and many others
outside of my research circle. I thank all of them for their support, encouragement,
and understanding. I would especially like to thank Prachi for her support in the
final year of my Ph.D.

I was lucky to have great teachers and mentors at IIT Kanpur: Ajit Chaturvedi,
S.C. Srivastava, Amitabha Mukerjee, Manik Das, Surendra Baswana, Laxmidhar
Behera, Aloke Dutta, A.R. Harish, S.S.K Iyer, Anil Joshi, Ram Potluri, Naren Naik,
R.K Bansal, S. Umesh and Joseph John. In addition, I has the pleasure of spending
time with Kshitij Deo, Biplab Deka, Sourabh Sankule, Kartik Venkat, Ashish Agrawal,
Rahul Agrawal, Shantanu Agrawal, Shruti Agrawal, Ankur Agrawal, Anubhav
Singla, Vikram Rastogi, Geetak Gupta, Mainak Chowdhury, Nitish Srivastava, BVV
SrirajDutt, Sourav Khandelwal, Raghav Khanna, Gaurav Bhatele and many other
fellow students who profoundly influenced my thinking and my scientific interests. A
lot of good friendships were made I would like to specially mention the support of
the science and technology council and the water polo team at IIT Kanpur. Our
aquatics coach, Vivek Rao Vadi imparted invaluable life lessons..

Finally, I am indebted to my teachers in both my primary and high-school who
shaped my curiosity and were of immense support right from the beginning. I am
grateful to Pathak Sir (Mr. Manoj Pathak) for introducing me to music at a young
age. My instrument has been a good companion throughout my Ph.D.



Chapter 1

Introduction

Humans made machines to assist them to perform either mundane tasks such as
crunching numbers, washing clothes or physically challenging tasks such as harvesting
wheat or for enabling new possibilities such as quickly transporting themselves and
goods from one location to other. The guiding design principle behind building these
machines has been the efficient and precise execution of one very particular task over
and over again. Quite unsurprisingly, all the machines that we know of today are
very good at performing one very specific task and utterly incapable of executing
any other task. For instance, a robotic arm that can bolt a car door to the body will
completely fail to bolt together two parts of a toaster or even the door of another car
model. As humans, we understand the notion of bolting, and therefore it is trivial for
us to generalize and (if possible) bolt almost any given object parts together. More
generally, humans seem to possess what is colloquially referred to as “common sense’
knowledge that enables them to perform a “general set of humans” task. Developing
machines with such abilities has proven to be extremely challenging and is one of
the core topics of research in Artificial Intelligence. In this thesis, I will present
some ideas on how to go about building machines that can acquire “commonsense”
knowledge about their environment via self-supervised interactions and minimal
reliance on expert teachers.

Y

1.1 Today’s Artificial Intelligence

The past fifty years have seen impressive progress in artificial intelligence (AI).
Today, there exist systems that surpass humans at playing sophisticated games such
as chess [1], GO [2], the ATARI video games [3], can precisely segment objects in
complex natural images [4], accurately identify the type of objects in images [5, 6],
translate between languages [7], robots that can perform impressive maneuvers such



1.1. TODAY’S ARTIFICIAL INTELLIGENCE 2

as back-flips or play table-tennis [8] and numerous robots automating industrial
production lines [9]. In contrast to man’s historic journey to the moon, best described
in Neil Armstrong’s words, “that’s one small step for [a] man, one giant leap for
mankind. ", the great strides in artificial intelligence are only a small leap in our quest
for understanding and creating truly intelligent machines (see [10] for a discussion).
A closer look at current Al systems reveals why this is the case.

Game AI: Many of our successes have come in the domain of games such as Chess,
GO, Checkers, Poker, Backgammon or the ATARI video games [1-3,11-13|, which
run in simulation and is therefore possible to play the game millions of times to find
a winning strategy. The state of art algorithms work under strong assumptions such
as closed world (i.e., complete knowledge all possible game states and moves), rely
on random search for finding good strategies which is impractical for most real-world
problems and the learned strategies are extremely specific to one particular setup.
For instance, a machine that can play chess on a 8 x 8 board is utterly incapable of
playing on a 9 x 9 board, let alone playing a different game such as tic-tac-toe.

Computer Vision: In the recent years, computer vision underwent a deep learning
revolution starting from the unprecedented performance of a deep neural network at
the task of classifying images into one out of thousand categories [5] of the Imagenet
dataset [14]. Soon many more neural network architectures were proposed [6,15-17|
and the best systems reached close to human performance at identifying one of
thousand image categories in the Imagenet dataset [14]. Very significant performance
improvements were reported on almost all computer vision tasks including the
core problems of object detection [18-20], segmentation [4,21] and human pose-
estimation [22-24]. In addition to advances in computing power, these performance
improvements relied on large datasets containing millions of human annotated
images [25,26|. In summary, today we have techniques that are adept at solving the
mapping problem from images to a set of labels given enough annotated training
data is provided.

While many attempts have been made to build computer vision systems that
can transfer the representations learned by solving one task to another [18,27-31],
thousands (if not millions) of manually annotated examples are still required to
accurately identify new concepts such as a person lying down on bed or person
sitting. Our deep learning systems today have no abstraction of person, bed or
the concept of “lying down”. They appear to be making predictions based on some
rather lower-level image statistics. A different line of work based on generative
models [32,33] is promising but is yet to be scaled to real-world visual data.



1.2. PROBLEM FORMULATION 3

Robotics and Control: The story is not that different in the world of robotics
where we have built systems that are very good at executing one precise task. Today
there are robots like Honda Asimo or Atlas by Boston Dynamics that can walk on two
legs, perform impressive maneuvers such as back-flips, and there is an unprecedented
use of robotic automation in manufacturing and other industries. However, the
performance of the best systems in the DARPA Robotics Challenge is a reminder
that today’s robots are not robust and do not have even a remote resemblance to
the common sense abilities of humans.

In summary, today we have created Al systems that either require large amounts
of human supervision, are very specific to one particular task, operate under closed
world assumptions or work in simulated environments. How to create Al systems that
can work in the real world, do not require complete knowledge of their environment
(i.e., open world), are robust and don’t rely heavily on human supervision is an open
question.

1.2 Problem Formulation

Consider an agent that is capable of acting and observing its environment through
possibly multiple sensory modalities such as vision, audition, touch, smell, etc.
In general, we will assume that sensory observations might not contain enough
information to entirely infer the full state of the environment (i.e., sensing abilities
of the agent are possibly limited). The environment is also assumed to be large
enough that it is not possible to completely observe it any one point in time. Our
agent’s environment also consists of other agents that are either friendly, adversarial
or neutral. Our agent has no direct access to the state of the other agents but
can observe them if they are in the field of view. Lets further assume that the
environment is possibly stochastic and mostly stationary, except that the behavior
of all agents is non-stationary and is subject to change with time.

The task of designing the agent is to come up with a mapping from observations
to actions (called as a policy (7)), so that the agent can complete a task assigned to
it. Any given point in time, let the agent’s knowledge about its environment be k;
and what knowledge it starts off with (i.e., ko) is a free variable to decided by the
designer. The task provided to the agent might be solvable using k; or the other
agent might need to augment its knowledge by either exploring the environment or
by communicating with other agents. Exploration is defined merely as the process of
taking actions and observing the consequences. The strategy for exploration could
either be pre-defined or the agent can come up with a strategy given its current
knowledge about the world. It, however, must be the case that any task posed to



1.2. PROBLEM FORMULATION 4

the agent is solvable — i.e., there exists a strategy to accumulate knowledge using
the sensory observations of the agent and communication with other agents that is
sufficient to solve the task. Note that we are not assuming that there already exists
a language for communication. Assuming the existence of any language or leaving it
to the agent to come up with its own language is again a design choice. The agent
will only be evaluated by its success at solving the tasks given to it.

Grounding the abstract setup mentioned in the previous paragraph immediately
presents multiple questions: (a) What is the initial knowledge that should be designed
into the agent?; (b) How does the agent represent its current knowledge (k;)7; ()
How does the agent update its knowledge given new observations?; (d) How are the
tasks communicated to the agent? I will start by a possible answer to (d) and use
this to analyze the dominant paradigms for building Al systems today.

1.2.1 Task Communication

A task is defined to be a feasible manipulation of the state of the environment.
There are many ways to communicate the task:

1. Goal Observation: The observation corresponding to the desired state that
the agent must achieve. For instance, if the task is to re-arrange objects on
a table, the agent might be provided with a (target) image of objects in the
target configuration. While this formulation is sufficient for some family of
tasks, it has two drawbacks: (a) for some tasks such as pouring water from
one cup into a second one, the initial and final image might look identical if
the cups are not transparent and the image is taken from the side; (b) the
environment needs to be set into the target configuration to generate the target
configuration which can be cumbersome and defeats the purpose of designing
an autonomous agent for completing the task.

2. Goal State: Instead of providing the observation, communicate the underlying
ground truth state of the environment. While this solves the problem 1(a)
mentioned above, it leads to two other problems: (a) Defining how to charac-
terize the “state" of the environment is non-trivial. For e.g. in the example of
pouring water described above, the state might be yo, = 4cm, where y,, yo are
water-levels in both the cups. Not only is this representation very specific to
this task, but it also needs to be communicated to the agent what water-level
actually means (i.e. the symbol grounding problem [34]); (b) it requires an oracle
to identify the state of the environment (i.e. system identification problem).
Such oracle is not available in the real world.



1.2.

PROBLEM FORMULATION )

Observation of the task demonstration: Instead of just providing an
observation depicting a goal state, providing a sequence of observations is a
more expressive way to communicate the task. While it can potentially address
the problem mentioned in 1(a) by making the complete action of pouring
observable, it intensifies another problem. If for instance the agent observes
the video of an expert pouring the liquid, it needs to infer whether it is the
locations of the expert’s hands that is part of the task or whether it is the fact
that liquid is transferred from one cup to another. If the agent was to match
the task in a pixel-perfect manner it would be obsessed to exactly match the
demonstrated trajectory of the hand movement. However, if an adult human
were to observe a similar demonstration, she would immediately infer that the
task is to pour the liquid and the exact trajectory followed by the hand in the
demonstration is inconsequential. Making such inferences about what are the
relevant and irrelevant parts of the demonstrations is non-trivial and is the
core problem studied in inverse reinforcement learning and inverse optimal
control. Note that this problem also affects 1, but to a lesser extent.

Sequence of states from a task demonstration: Same as the point above,
but instead of observations the agent has access to the sequence of ground-
truth states of the environment. The benefits and disadvantages of this way of
expressing the goal can be easily inferred from points 2 and 3 above. Note that
the problem of inferring the relevant parts of the demonstration can be bypassed
in this scenario by choosing the state-representation to not include the location
of the demonstrator’s hands. However, such choices of state-representation are
extremely task-specific and state-representation requires access to an oracle
which is impractical in the real world.

Observation Sequence + Actions: This is similar to point 3 but in addi-
tion to observations of the demonstration, the agent is also provided with the
sequence of actions that would complete the task. In general such a descrip-
tion of the goal can be achieved when the expert either physically moves the
manipulators of the agent/robot to perform the task (i.e. kinesthetic teaching)
or tele-operates it. Problems of learning from demonstration (LfD) or behavior
cloning are concerned with using either a single or multiple demonstrations
to learn a policy for completing the task. Note that a single demonstration
is generally not enough, because simply replaying the actions might not suf-
ficient for reaching the goal because the initial state of the agent might be
different or something in the environment might have changed since the time
the demonstration was recorded. Note that this formulation of expressing
the task attempts to bypass the problem of explicitly inferring what are rele-



1.2. PROBLEM FORMULATION 6

vant /irrelevant parts of the demonstration (see point 3) by directly providing
actions to the agent. However, an agent with finite resources might not be
able to perfectly learn the mapping from observations to actions for every
observation in the demonstration. It might need to identify what are important
parts of the demonstrated trajectory and focus its resources there. In such a
realistic setting, the problem of inferring the intent of the demonstration is not
bypassed. Additionally, this process of expressing the task is extremely tedious
and the strategies learned by the agent to are likely to be very specific to the
end task.

6. State Sequence + Actions: Similar to above, but instead of observa-
tion/action trajectory, the agent is assumed to have access to the ground
truth state/action trajectory.

7. Formal /Natural Language Instruction: It is very tempting to express the
task in terms of a language instruction such as “pour liquid into the second cup”.
While language removes some of the issues of conveying the intent mentioned
in points 3, 5, it doesn’t get around the critical symbol grounding problem
described in point 2 above. If we are able to develop a grounded representation
of symbols, expressing goals in form of language is very expressive and opens
doors for easily expressing and performing complex tasks by making use of
compositional structure of language.

8. Abstract (possibly learned) representation of the Goal: Similar to
points 1, 3 above but with the difference that goals are expressed in an abstract
(feature) representation of the goal observation.The reason for expressing the
goal in an abstract space is to represent things that are relevant to completing
the task and ignoring the rest. For instance, in the running example of pouring
liquid, it is not necessary to represent the hand of the demonstrator, but only
the notion that liquid was poured from cut A into B. How to come up with
or learn such representations is unclear. There are multiple lines of work of
unsupervised learning, self-supervised learning or using pre-trained features
(say from a network trained on Imagenet classification task) aimed at learning
good representations of the data. However, what is good general representation
is a tricky question.

Unsupervised /self-supervised learning are closely related to each other and are
useful paradigms under the premise that there is either insufficient amount
of data or supervision available to directly optimize for the target task. The
general idea is to learn features by optimizing a proxy task for which large
amounts of data can be obtained and hope that these features will be useful



1.2.

PROBLEM FORMULATION 7

for one particular or a family of target tasks. Yes! You read it correctly, one
merely hopes the features are going to be useful. One reason for simply being
hopeful is that currently there are no good ways of choosing proxy tasks based
on the set of target tasks that the features are being learned for. Research in
this area typically relies on the intuition of the researcher to come up with
different proxy tasks and experimentally validate them on a battery of target
tasks.

One very popular such proxy task is to reconstruct the data itself. First, the data
is transformed into a representation (say by processing it with multiple layers
of neurons), and this representation is used to reconstruct the data. To prevent
the trivial solution of identity mapping, this representation is constrained to
be either low-dimensional [35-37] or sparse [38] or sometimes the different
dimensions of the representation are forced to be independent [39,40] or change
slowly [41,42] or satisfy some other constraint [43|. Let’s understand this
with an example: suppose that we want to learn good features for recognizing
what objects are present in an image. We set up the proxy task of taking a
large number of images and reconstructing them by constraining the different
dimensions of the representation to be independent of each other. A simple
model of image generation process has four independent parameters: (a) the
shape of the object; (b) the albedo of the object; (c) the angle at which the
light impinges the surface of the object (i.e. direction of light) and; (d) the
spectrum of light frequencies falling on the surface. One might hope that
by imposing independence on reconstruction, one can learn the four factors
mentioned above. However, it is improbable that this would be the case due
to two reasons: firstly, there are multiple combinations of independent factors
that can explain the data equally well; secondly, these factors are estimated
from data captured in a structured world. For instance, there exist correlations
between shapes of objects and their colors. E.g., spherically shaped fruits are
more likely to have shades of yellow /orange/red/green instead of blue. This
example suggests that from a finite amount of data it might not be possible to
infer the truly independent factors. The above discussion suggests that while
reconstruction can find a set of features, it is unknown what that set of features
would be and whether that set would be useful for the target task at all. It
is possible therefore that while reconstruction based methods have done very
well on simpler datasets such as MNIST [44] and CIFAR [45], they are yet to
find success on real-world data.

The recent wave of feature learning methods have posed proxy tasks differ-
ent from reconstruction and have used the name “self-supervised" learning to



1.2.

PROBLEM FORMULATION 8

differentiate from the conventional notion of unsupervised learning by cluster-
ing/reconstruction. Some representative works include learning features by
predicting relationship between different parts of the image [46,47|, correlating
ego-motion with visual inputs [48, 49|, tracking objects [50, 51], predicting
sound from videos [52|, using motion [53], inpainting [54], adversarial feature
learning [55], predicting color from grayscale images [56] etc. While these works
have enjoyed more success than the reconstruction based unsupervised learning
works at their usefulness at target tasks, it is far from clear that they provide
a good generic representation. The choice of a particular proxy task inevitably
dictates the what target tasks would benefit from the learned features.

On the other end of feature learning methods spectrum is feature learning via
supervision from manual annotations. One of the most successful instantiations
of this idea is to learn features by optimizing for image classification accuracy
on the Imagenet challenge and then using these features for other recognition
tasks [18,27,57,58]. However, as mentioned above the nature of the task (i.e.,
image classification) will inevitably bias the utility of these features for different
tasks. For instance, to classify what objects an image contains the learner
might find representations that are invariant to the pose of the object. Such
representations are unlikely to be of much use for the manipulation task of
rearranging objects in a target configuration.

The above discussion summarizes the difficulty of pre-determining a useful
abstract representation for specifying goals. This difficulty also manifests as
a central problem in hierarchical control /hierarchical reinforcement learning
in the form of how should sub-goals be represented. It seems that instead of
attempting to find a universally good representation, it is better to construct
an agent that through the process of solving N tasks learns a representation
that is sufficient to express the (N + 1) task.

Reward Function: Instead of expressing the goal as a description of a desired
state that has numerous challenges as pointed above, reward functions is a
seemingly ingenious way to define tasks where the agent receives a high-score if
it reaches a desired state. In this setup, the agent is never communicated what
a desired state is, but is simply rewarded when it stumbles upon that state.

While at first it appears we might have bypassed the problem of state description,
but it has simply been re-packaged into a different problem of reward function
design. Consider the running example of pouring the liquid, and let the r; be
a reward function that provides a reward of +1 if 200ml of liquid has been
poured into cup B and a reward of 0 otherwise. When the agent starts off, it



1.2. PROBLEM FORMULATION 9

is clueless about the task and might therefore simply perform random actions.
It is extremely unlikely that by random chance it would pick up the first cup
and pour at least 200ml of liquid into the second cup. This is referred to as
the exploration problem.

One way to remedy the exploration problem is to modify the reward function
(i.e. “shape” it) to the increase the likelihood the agent obtaining some reward
by random chance. For instance, let the reward function ro be the amount of
liquid poured into the second cup. Now this makes the task easier, because
the agent immediately gets a reward when it starts pouring in contrast to
waiting to pout 200ml before getting any reward. However this is still a tough
exploration challenge and to make the task easier, the reward designer might
also add an additional reward term that penalizes the distance of cup A from
B. While at first it might appear this should make the task easier, but there
are multiple considerations: (a) the optimizer might find a local optima and
not explore beyond reaching the second cup; (b) the distance between cups
need to be properly specified. For instance, if the reward is to align the center
of cup A with cup B, then if cup A is tilted to pour then the liquid will fall
out of B. The shaping reward possibly needs to align the edge of cup A with
center of cup B. In general it is non-trivial to design reward functions to obtain
desired behaviors [59-61].

In addition to the issues mentioned above, it is non-trivial to measure rewards.
In the running example, one would need to develop a system to infer how
much liquid has been poured into the cup and also to detect how far is cup A
from cup B. This entails detecting from sensory observations what is the state
of the environment, which is similar to describing the task as a sequence of
observations (i.e., point 3). In summary, while expressing tasks in the language
of reward functions is a viable option, it suffers from many of the same issues
as other ways of expressing tasks discussed above.

10. Other task-specific representation: It is possible to construct alternate
task descriptions such as providing the difference in observations/states from
the initial instead of providing the desired state or some other niche way of
expressing a specific task. However, in general any such representation can be
reduced to one of the cases mentioned above.

The discussion above suggests that the main problem in communicating goals if
of measuring progress towards the task from sensory observations. In points 1, 3, 5
it was hard to identify relevant parts of the observation, in points 2, 4 it was non-
trivial to define the state, in point 7 it was unclear how to ground language into



1.3. LEARNING SENSORIMOTOR BEHAVIOR 10

observations and in point 8 how to learn or construct the appropriate representation
of the observation. Resolving this issue is one of the core problems of building
sensorimotor agents.

It is natural to be curious how do we humans get around this problem. The
simple answer is that we are not optimized for performing a single task of pouring
liquid from one cup to another. Instead, our experience of multiple tasks informs us
that the exact trajectory of the demonstrator’s hand is irrelevant and what matters
is that the liquid was poured into the second cup. It seems that we have a prior over
the family of possible tasks that we bring to bear to infer task-relevant information.
How much of these priors are built in or learned is a separate question that we will
briefly touch upon later in the thesis.

Whatever our belief might be regarding how much knowledge to build in, it is
clear that at the starting of life the first unicellular organisms did not have any
knowledge that even remotely resembles the kind of common sense knowledge we
have today. How did evolution resolve the many problems we discussed above?
One thing in favor of evolution is that organisms, the environment, and the tasks
co-evolved. It was never the case that an organism started tabula-rasa and had
to make sense of high-dimensional sensory observations of vision, touch, etc. The
primordial organisms were attracted to sunlight or certain chemicals, and as their
sensory systems increased in complexity with evolution, these complex systems were
probably biased to replicate the same responses as the simpler versions of themselves.
Such biases naturally restrict the exploration space which in turn might have helped
the organism infer its more complex sensory signals much more easily as opposed
to starting from scratch. In formal terms, the learner acquires a prior over the
space of functions that it searches over (i.e., inductive bias) while solving more
straightforward tasks that constrains the space of functions it searcher over for more
complex tasks/sensory inputs.

It might, therefore, be the case that problems encountered in communicating
tasks are a byproduct of the experimental setup of communicating a single complex
task in a rich environment to an agent in a tabula-rasa state. Lets first review the
dominant approaches for learning sensorimotor skills to analyze whether and how
they resolve these issues.

1.3 Learning Sensorimotor Behavior

I will briefly discuss the dominant paradigms for learning sensorimotor behavior
through a few sample tasks shown in Figure 1.1. In the first task, the agent is required
to rearrange objects kept on a table from their current to target configuration shown



1.3. LEARNING SENSORIMOTOR BEHAVIOR 11

Current Observation Goal

Actions?

Figure 1.1: Sample Tasks: The agent visually observes the world and is tasked to
either rearrange objects into the target configuration shown in the goal image or
manipulate the rope from its current shape into a knot.

in the goal image. The agent only has access to visual observation. In the second
task, the agent is required to re-arrange the rope from its initial shape into a knot.

1.3.1 Reinforcement Learning (RL)

The objective in reinforcement learning is to find which action to take in every
state for maximizing the sum of future rewards. Let the current state/observation
be z; and let a; be the action taken by the agent in response to x;. The mapping
between states and actions (i.e., policy) can be found by optimizing,

max Er(;0)[2e7] (1.1)

where 6 denotes the parameters of the policy.

Lets consider the task of knot-tying (see Figure 1.1). Suppose the reward function
takes the following form: r, = 1 if the rope is configured into a knot and is set to
0 otherwise. Usually, at the start of training, the parameters 6 are initialized with
random values resulting in the agent executing random actions. Until the agent
ties the knot atleast once by random chance (i.e., by taking a sequence of random
actions), it will receive no reward and therefore its policy will remain unchanged (i.e.
random). In this scenario, it is highly improbable that the agent will tie knots by



1.3. LEARNING SENSORIMOTOR BEHAVIOR 12

(a) (b)

Policy

Policy oo
Ly—» m(xe; 0)

g m(z;0) | Qg > Tt41

4

T

initially random =" max £ ( 3 "r) Ti+1

initially random -

Figure 1.2: (a) In Reinforcement Learning the objective is to determine a mapping
(i.e. a policy) from state (x;) to action (a;) that maximizes the sum of rewards (X;r;).
The agent is rewarded when it reaches the goal (z¢). (b) At the start of training,
the parameters 6 are initialized to random values resulting in random actions. It is
highly improbable that the agent will tie a knot by a taking a sequence of random
actions and in absence of rewards its policy will continue to be random. The RL
agent is very likely to fail at this task.

random chance. This is known as the exploration problem. One reason for success
of RL in games/simulated environments is that one can simply wait for tens to
thousands of millions interactions in the hope that the agent will stumble upon the
reward. This is infeasible in real world setups.

Secondly, while in games the reward is available from the game itself, it is unclear
how such reward can be obtained in real world setups. For instance, in order to
calculate whether the rope is configured into a knot, one would either rely on a
human expert that provides reward to the agent or build a computer vision classifier
that seperates knots from other configurations. Relying on humans for measuring
rewards doesnot scale and is tedious. Building computer vision system is very tedious
too, because suppose if we did manage to gather enough data to train a classifer for
knots, the moment we change to a different task (e.g., configuring the rope into a “S”
or “L” shape), the data and training of the classifier would need to be repeated.

Thirdly, the policy learned for knot-tying will be very specific to this task and
will fail to generalize to even configure the same rope into different shapes. One
potential reason is optimization for a single task and there is no real incentive for
the agent to learn any generalizable behaviors /skills.

In summary, RL algorithms of today require a ginormous number of interactions,
learn policies that are specific to one task and it is unclear where do rewards come



1.4. CLASSICAL MODEL BASED CONTROL 13

from. These issues pose a challenge for scaling RL to real world environments.

1.3.2 Learning from Demonstration/Imitation Learning

he current dominant paradigm in learning from demonstration (LfD) [62-65]
requires the expert to either manually move the robot joints (i.e., kinesthetic teaching)
or teleoperate the robot to execute the desired task. The expert typically provides
multiple demonstrations of a task at training time, and this generates data in the
form of observation-action pairs from the agent’s point of view. The agent then
distills this data into a policy for performing the task of interest. Such a heavily
supervised approach, where it is necessary to provide demonstrations by controlling
the robot, is incredibly tedious for the human expert. Moreover, for every new
task that the robot needs to execute, the expert is required to provide a new set of
demonstrations.

Instead of communicating how to perform a task via observation-action pairs, a
more general formulation allows the expert to communicate only what needs to be
done by providing the observations of the desired world states via a video or a sparse
sequence of images. This way, the agent is required to infer how to perform the task
(i.e., actions) by itself. In psychology, this is known as observational learning [66].
While this is a harder learning problem, it is a more interesting setting, because the
expert can demonstrate multiple tasks quickly and easily.

An agent without any prior knowledge will find it extremely hard to imitate a
task by simply watching a visual demonstration in all but the simplest of cases. Thus,
the natural question is: in order to imitate, what form of prior knowledge must the
agent possess? A large body of work [67-72] has sought to capture prior knowledge
by manually pre-defining the state that must be inferred from the observations.
The agent then infers how to perform the task (i.e., plan for imitation) using this
state. Unfortunately, computer vision systems are often unable to estimate the state
variables accurately and it has proven non-trivial for downstream planning systems
to be robust to such errors.

1.4 Classical Model Based Control

At the first thought, it might appear quite stupid to some readers as to why would
one try to “learn policies” either via RL or through demonstrations/imitation when
we know the Newtonian physics that should suffice for a lot of manipulation tasks.
Why ignore all this knowledge that we have accumulated over the past centuries and
force an agent to learn from scratch?



1.4. CLASSICAL MODEL BASED CONTROL 14

Indeed, if it is possible to create a construction that fully describes a problem,
then such a construction should obviously should be exploited to find a solution. For
instance, consider the game of chess, GO or tic-tac-toe. A tree whose every node
denotes the current state of the game and the child nodes denote all possible next
moves provides a full description of the game. In such setups it makes sense to to
design algorithms for game play that exploit the knowledge of game trees [2|. This
process of reducing a problem to a construction that is suitable for finding solutions
is referred to as system identification. Even for manipulation tasks, ewtonian physics
does not operate on high-dimensional sensory observations such as images, but it
operates on quantities such as mass, friction, shape etc. For using physics, for
every problem it is required to identify what parameters are required to conduct the
simulation (see Figure 1.3).

System identification is only the first step and the agent must estimate these
parameters from its sensory observations. This is referred to as state estimation.
[ will now discuss the challenges in system identification (section 1.4.1) and state
estimation (section 1.4.2).

1.4.1 System Identification

The key component of system identification is the choice of the how the system is
represented. For instance, a tabletop environment with objects could be represented
by position of objects. While such a representation might allow an agent to push
objects to desired locations, it is insufficient to push objects into desired poses. The
solution is to augment the state representation with pose information. In case objects
are of irregular geometry, it might be necessary to also include object shape in the
representation. This simple example illustrates the intimate connection between the
state representation and the nature of tasks an agent can perform.

Identifying an “appropriate” representation for solving a given family of tasks
turns out to be quite non-trivial. I will present one more illustrative example to make
the point. Consider the task of indoor navigation. One common way of approaching
this problem is to represent indoor environments in terms of obstacles and free-space.
The process of finding obstacles and free spaces is typically referred to as estimating
the map and is widely studied in the SLAM literature [73]. The navigation problem
then reduces to finding a path between two points so that every point in the path
belongs to free space. Numerous motion planning [74| algorithms can be employed
to find paths from a current to a target position.

It might appear that this representation of obstacles and free space is appropriate
for navigation until the time the agent encounters a door, a fleet of stairs or an elevator.
The knowledge that doors can be opened to explore new space, stairs/elevators can



1.4. CLASSICAL MODEL BASED CONTROL 15

Mass

Friction Simulate

—_— —_— .
Shape Physics
L]

Mass

Friction :
Simulate

Physics

= Shape —>

Stiffness
®

Figure 1.3: System Identification: Newtonian physics does not operate on high-
dimensional sensory observations such as images, but it operates on quantities such
as mass, friction, shape etc. While for pushing objects we donot require to estimate
stiffness, for manipulating ropes it is critical. For using physics simulation, for
every problem it is required to identify what parameters are required to conduct
the simulation. This process is referred to as system identification and can often be
quite tedious.

be used to move between floors or the fact that some corridors lead to a dead-
end, while some lead to other corridors for further exploration is completely absent.
Incorporating such knowledge into state representation becomes necessary to navigate.
One might do so by constructing classifiers that identify these semantic entities in
the map. Note that just semantic identification is not sufficient and how to interact
with these entities must also be coded up and its ends up being non-trivial (see
section 5 in [73]). The core problem is that it is hard to enumerate all possible
interactions that the agent might require. For e.g., identifying the chair as a sittable
surface might not be sufficient and chair might need to be displaced to navigate to
the space behind it. Furthermore, our environments are not static and representing
dynamic entities such as humans and other agents further complicates things.

This problem of identifying the appropriate representation is not specific to
navigation or table top manipulation, but is a core problem at the root of design of
all Al systems. For instance, in computer vision, the initial work sought to represent
objects by relationships between edges that constitute it. Such representations
proved to be brittle and were succeeded by the era of feature descriptors such as



1.4. CLASSICAL MODEL BASED CONTROL 16

SIFT [75] and HOG [76] that were designed to be invariant to nuisance factors
to object categorization such as illumination, scale and rotation. While these
features were more successful than the previous approaches, it was realized that
hand-design of features was hard and deep learning based approaches [5,6, 77| that
sought to automatically learn task-specific features (aka representation) turned out
to be significantly more effective. The general difficulty of finding an appropriate
representation has been discussed in point 8 in section 1.2.1.

1.4.2 State Estimation

Deciding how to represent a given system is only part of the solution. In general,
an agent doesnot has direct access to the state (say z) of the system but can only
observe the environment through its sensors such as vision, audition, touch etc. Let
the sensory observation of the agent be denoted as X. Inferring the state (z) from
raw sensory observations (X) is referred to as state estimation.

State estimation is extremely challenging. Its been more that five decades of
computer vision and we simply donot know how to accurately estimate properties
such as mass, stiffness etc. directly from images. Even if were to use the latest
advances in computer vision relying on supervised learning, it is unclear from where
to obtain large datasets of annotations for such properties. Secondly, even if we
could get such supervision, the estimates are likely to be noisy, which in turn will
lead to inaccuracies in the output of the physics simulation (see Figure 1.3).

1.4.3 Is the engineering wisdom of modularization the way
to go?

It is engineering wisdom to decompose the problem into simpler modules, work on
these modules individually and compose them to solve the overall problem. Unless
these modules are perfect, there is always a danger that errors can compound when
these modules are connected together and thereby sacrificing the overall system
performance. In developing intelligent agents, we must be careful of this peril [78].
For instance, in order to use newtonian physics to solve manipulation problems, one
must decompose the system into atleast two parts: (a) State estimation from sensory
observations; and (b) forward simulation of the state using physics (see Figure 1.3).

In the sections above, we have already discussed some problems associated with
system identification and state estimation. Lets analyze these issues with one more
example. The conclusion that objects with feather like appearance fall slower than
objects with stone like appearance can be reached by either correlating visual texture
to observed speed of falling objects, or by computing the drag force after estimating



1.4. CLASSICAL MODEL BASED CONTROL 17

(b)

Mass

Shape
Physics — time to fall

Air drag —* v,

Computer
Vision Intuitive
Physics

[

B

=)

L.. s

Figure 1.4: (a) Consider the problem of inferring whether the stone will fall slower
than the feather when dropped from a tower. (b) In order to use (newtonian) physics
for computing feather’s descent time, from a single or multiple images of the feather
one must estimate physical parameters such as the mass, the shape etc. These
parameters are extremely hard to infer are their estimate will inevitably be noisy.
On the other hand, correlating from past experience that objects with fluffy texture
fall slower than solids is much easier. While such knowledge (i.e., intuitive physics)
is not as general as newtonian physics, it might suffice for solving a wide-variety of
common day tasks than donot require hyper-precision.

the cross section area of the object. Depending on whether estimation of visual
texture or cross section area is more robust, one of these methods will be more
accurate than other (see Figure 1.4).

This consideration is critical because estimating mass distribution, deformation
and friction properties, contact points etc from sensory data is very challenging and
it might just be the case that an alternate parameterization (such as the example of
visual texture versus cross section area mentioned above) may perform as well, but is
easier to estimate and more robust. Moreover, for many practical object manipulation
tasks of interest, such as re-arranging objects, cutting vegetables, folding clothes,
and so forth, small errors in execution are acceptable. The key challenge is robust
performance in the face of varying environmental conditions. This suggests that a
more robust but a somewhat imprecise model may in fact be preferred over a less
robust and a more precise model (see Figure 1.5).

We call these as as “intuitive” physics models [79-81|. Intuitive physics is the
simple understanding of how actions effect objects that is obtained from interaction
data and is possibly different from the physics that we know from Newton’s law.
The intuitive physics approach is in the spirit of recent successful deep learning
techniques in computer vision and speech processing that learn features directly
from data. However, it is unclear how to build these models, because as opposed to



1.5. CORE PROBLEM OF ARTIFICIAL GENERAL INTELLIGENCE 18

(2) (b)

Simulate

Computer H
+*| Physics

vision [t

intuitive physics that works
from vision

What is the appropriate representation?

P LT T
R T I I
LT T -Ill..-'

Figure 1.5: (a) The classical model based approach uses a two-staged pipeline to first
infer the state representation from sensory observations and then using a physics
simulator to infer the consequences of actions. It is not obvious what representation
should form the interface between what the sensory system estimates and what the
physics simulator operates upon. (b) Instead of separately solving the computer
vision and physic simulation problems, it might be easier to jointly learn an intuitive
physics models that operates on raw sensory inputs. See text for a more detailed
discussion.

image classification or speech recognition system, there is no dataset for intuitive
physics and the agent must explore its environment to collect such data. In human
development, it is well known that infants spend years worth of time playing with
objects in a seemingly random manner with no specific end goal [82|. It is possible
that this experience is distilled into “intuitive” models of dynamics that are later
used for inferring optimal actions for achieving specific goals.

1.5 Core problem of Artificial General Intelligence

As we have discussed above, a common characteristic of current Al systems is
that they are specialized in performing one specific task. For instance a machine
that can play chess on a 8 x 8 board is utterly incapable of playing on a 9 x 9 board,
let alone playing a different game such as tic-tac-toe. Human intelligence or common
sense reasoning on the other hand is characterized by the ability to use previous
knowledge to solve new problems either more efficiently or significantly faster than a
system that starts off with no prior knowledge.

The core problem of intelligence doesnot seems to be building agents that can
solve some particular complex tasks, but agents that continuously increase their
understanding of their environment. The issue with building agents to solve one
particular task is that there is no incentive to learn any generalizable skills and



1.6. SUMMARY OF THE PROPOSED SOLUTION 19

Initial state

What experiment to run? Model of how things work
(exploration policy) (intuitive physics, behaviour)

Learn from other agents/experts
(imitation)

Figure 1.6: An overview of the proposed approach to general artificial intelligence.

when they are posed a new-task they start off almost from a tabula-rasa state.
Furthermore, because such agents are not capable of exploring, they will be unable to
seek solutions to problems that cannot be solved with the agent’s current knowledge.
An agent that has the ability to increment its knowledge can find solutions by either
by communicating with other agents or by conducting experiments in its environment
to learn about the necessary things.

Furthermore, as discussed extensively in section 1.2.1 that the major problem in
communicating tasks might result as a by-product of trying to directly solve complex
problems instead of building agents that can leverage knowledge gained by solving
simpler problems to tackle more complex ones. It seems that if we direct efforts
towards building agents that gradually increase in complexity /understanding of their
environment, it might provide a way to deal with the challenges of working of sensory
observations and agents that are not completely reliant on external supervision, but
can find their own solutions.

1.6 Summary of the Proposed Solution

This dissertation takes inspiration from developmental psychology that studies
how infants learn about their environment to construct a paradigm for building
agents that can also continuously learn about their environment and bring to bear
this knowledge to accomplish target tasks.

The prominent theory in developmental psychology suggests that seemingly



1.6. SUMMARY OF THE PROPOSED SOLUTION 20

frivolous play is a self-supervised mechanism for infants to conduct experiments for
incrementally increasing their knowledge [82,83]. Experiments conducted by infants
such as throwing objects, hitting two objects against each other or putting them in
their mouth help them understand how forces affect objects, what happens when
objects are touched, how different materials interact, etc. In a way, play teaches
infants to use the tool of experimentation to learn a model of how things work, which
in turn could be used to perform new tasks or adapt to new environments.

There four main components of building an agent that can continously learn
by experimenting are (see Figure 1.6): (a) The agent must be able to explore
its environment to collect data for incrementing its knowledge. [84] provides a
formalization of curiosity based exploration that manages to overcome many pitfalls
of previous works. (b) The interaction data gathered from exploration is used to
learn models from raw sensory observations that are useful for performing previously
unseen tasks [79,85]. (c) There is just too much to learn about the world. Many
times what we learn is biased by observing other agents in our environment or by
taking cues from them. I will show how the models of the environment learned
by the agent enable imitation by watching experts [86, 87|, and bias the agent’s
exploration towards interesting visual states shown by an expert [86]. (d) Finally,
what an agent explores and learns inevitably depends on the initial state of the agent.
This dissertation provides some answers to these questions in the following chapters,
and this paradigm is called Computational Sensorimotor Learning.

In addition to interacting with objects, agents also interact with humans/other
agents in their environments. Interaction with other agents can be studied with a
paradigm similar to interaction with objects. Results of some initial investigation in
this direction are summarized in [24,88].

I believe that answers to intelligence will not be found by agents in
lab environments or simulation, but by robots that explore and conduct
experiments in the real world. My dissertation is an undertaking of the challenge
of putting this hypothesis to test.

The main challenge in constructing such an agent is of building a model that
summarizes the experience of the agent. One possibility is to build a model that
predicts the future sensory observations from the current observations and action.
Lets assume that our agent has access to visual observations. Building a model that
predicts in the visual space is very challenging because it requires predicting the
image at the next time step. Predicting the value of every pixel in a future image is
highly non-trivial in real world scenarios, and in most cases it is not the precise pixel
values that are of interest, but the occurrence of a more abstract event. For example,
predicting that a glass jar will break when pushed from the table onto the ground is
of greater interest (and easier) than predicting exactly how every piece of shattered



1.6. SUMMARY OF THE PROPOSED SOLUTION 21

glass will look. The difficulty, however, is that supervision for such abstract concepts
or events is not readily available.

One solution to this problem is proposed in chapter 2 that shows how the agent
can predict its own actions to learn visual representations for visual recognition tasks.
This idea is expanded in form of co-learning of forward and inverse dynamics in
chapter 3 that are shown to be useful for pushing objects kept on a table. A forward
model predicts the next state from the current state and action, and an inverse
model predicts the action given the initial and target state. In joint training,the
inverse model objective provides supervision for transforming image pixels into an
abstract feature space, which the forward model can then predict. The inverse model
alleviates the need for the forward model to make predictions in the raw sensory
space and the forward model in turn regularizes the feature space for the inverse
model.

Chapters 4 and 5 show how the joint forward-inverse model enables the agent
to easily imitate and bias its exploration by observing an expert. Chapter 6 makes
use of the abstract feature space learned by joint forward-inverse models to learn a
curiosity-driven exploration strategy. Further improvements to the model and the
utility of data collected from curiosity-driven exploration for learning good models
is presented in Chapter 5. Chapter 7 explores what might be good priors to build
into an agent to bootstrap learning by conducting a study on how humans explore
while playing video games. Chapter 8 describes a system for human pose estimation
and building models that predict the activity of other humans in sports-games (i.e.
intuitive behavior). Finally, chapter 9 contrasts the representations learned by deep
neural networks optimized for end tasks against the human visual representation
and presents an hypothesis about how deep learning systems might provide insights
into the human neural systems.



22

Chapter 2

Learning to See by Moving

Recent advances in computer vision have shown that visual features learnt by
neural networks trained for the task of object recognition using more than a million
labelled images are useful for many computer vision tasks like semantic segmentation,
object detection and action classification [5,27,58,89]. However, object recognition
is one among many tasks for which vision is used. For example, humans use visual
perception for recognizing objects, understanding spatial layouts of scenes and
performing actions such as moving around in the world. Is there something special
about the task of object recognition or is it the case that useful visual representations
can be learnt through other modes of supervision? Clearly, biological agents perform
complex visual tasks and it is unlikely that they require external supervision in form
of millions of labelled examples. Unlabelled visual data is freely available and in
theory this data can be used to learn useful visual representations. However, until
now unsupervised learning approaches [36,90-92] have not yet delivered on their
promise and are nowhere to be seen in current applications on complex real world
imagery.

Biological agents use perceptual systems for obtaining sensory information about
their environment that enables them to act and accomplish their goals [93,94]|. Both
biological and robotic agents employ their motor system for executing actions in
their environment. Is it also possible that these agents can use their own motor
system as a source of supervision for learning useful perceptual representations?
Motor theories of perception have a long history [93,94|, but there has been little
work in formulating computational models of perception that make use of motor
information. In this work we focus on visual perception and present a model based
on egomotion (i.e. self motion) for learning useful visual representations. When
we say useful visual representations [95|, we mean representations that possess the
following two characteristics - (1) ability to perform multiple visual tasks and (2)



23

ability of performing new visual tasks by learning from only a few labeled examples
provided by an extrinsic teacher.

Mobile agents are naturally aware of their egomotion (i.e. self-motion) through
their own motor system. In other words, knowledge of egomotion is “freely" available.
For example, the vestibular system provides the sense of orientation in many mam-
mals. In humans and other animals, the brain has access to information about eye
movements and the actions performed by the animal [94|. A mobile robotic agent
can estimate its egomotion either from the motor commands it issues to move or
from odometry sensors such as gyroscopes and accelerometers mounted on the agent
itself.

We propose that useful visual representations can be learnt by performing the
simple task of correlating visual stimuli with egomotion. A mobile agent can be
treated like a camera moving in the world and thus the knowledge of egomotion
is the same as the knowledge of camera motion. Using this insight, we pose the
problem of correlating visual stimuli with egomotion as the problem of predicting the
camera transformation from the consequent pairs of images that the agent receives
while it moves. Intuitively, the task of predicting camera transformation between two
images should force the agent to learn features that are adept at identifying visual
elements that are present in both the images (i.e. visual correspondence). In the
past, features such as SIF'T, that were hand engineered for finding correspondences
were also found to be very useful for tasks such as object recognition [75,96]. This
suggests that egomotion based learning can also result in features that are useful for
such tasks.

In order to test our hypothesis of feature learning using egomotion, we trained
multilayer neural networks to predict the camera transformation between pairs of
images. As a proof of concept, we first demonstrate the usefulness of our approach on
the MNIST dataset [97]. We show that features learnt using our method outperform
previous approaches of unsupervised feature learning when class-label supervision is
available only for a limited number of examples (section 2.2.4) Next, we evaluated
the efficacy of our approach on real world imagery. For this purpose, we used image
and odometry data recorded from a car moving through urban scenes, made available
as part of the KITTI [98] and the San Francisco (SF) city [99] datasets. This data
mimics the scenario of a robotic agent moving around in the world. The quality of
features learnt from this data were evaluated on four tasks (1) Scene recognition
on SUN [100] (section 2.4.1), (2) Visual odometery (section 2.4.4), (3) Keypoint
matching (section 2.4.3) and (4) Object recognition on Imagenet [14] (section 2.4.2).
Our results show that for the same amount of training data, features learnt using
egomotion as supervision compare favorably to features learnt using class-label
as supervision. We also show that egomotion based pretraining outperforms a



2.1. RELATED WORK 24

previous approach based on slow feature analysis for unsupervised learning from
videos [41,42,101]. To the best of our knowledge, this work provides the first effective
demonstration of learning visual representations from non-visual access to egomotion
information in real world setting.

The rest of this paper is organized as following: In section 2.1 we discuss the
related work, in section 2.2, 2.3, 2.4 we present the method, dataset details and we
conclude with the discussion in section 2.5.

2.1 Related Work

Past work in unsupervised learning has been dominated by approaches that pose
feature learning as the problem of discovering compact and rich representations of
images that are also sufficient to reconstruct the images [36,38,91,102-104]. Another
line of work has focused on learning features that are invariant to transformations
either from video [41,42,101] or from images [92,105]. [106] perform feature learning
by modeling spatial transformations using boltzmann machines, but donot evaluate
the quality of learnt features.

Despite a lot of work in unsupervised learning (see [90] for a review), a method
that works on complex real world imagery is yet to be developed. An alternative
to unsupervised learning is to learn features using intrinsic reward signals that are
freely available to a system (i.e self-supervised learning). For instance, [107] used
intrinsic reward signals available to a robot for learning features that predict path
traversability, while [62] trained neural networks for driving vehicles directly from
visual input.

In this work we propose to use non-visual access to egomotion information as a
form of self-supervision for visual feature learning. Unlike any other previous work,
we show that our method works on real world imagery. Closest to our method is the
the work of transforming auto-encoders [37] that used egomotion to reconstruct the
transformed image from an input source image. This work was purely conceptual
in nature and the quality of learned features was not evaluated. In contrast, our
method uses egomotion as supervision by predicting the transformation between two
images using a siamese-like network model [108].

Our method can also be seen as an instance of feature learning from videos.
[41,42,101] perform feature learning from videos by imposing the constraint that
temporally close frames should have similar feature representations (i.e. slow feature
analysis) without accounting for either the camera motion or the motion of objects
in the scene. In many settings the camera motion dominates the motion content of
the video. Our key observation is that knowledge of camera motion (i.e. egomotion)



2.2. A SIMPLE MODEL OF MOTION-BASED LEARNING 25

is freely available to mobile agents and can be used as a powerful source of self-
supervision.

2.2 A Simple Model of Motion-based Learning

Figure 2.1: Exploring the utility of egomotion as supervision for learning useful
visual features. A mobile agent equipped with visual sensors receives a sequence of
images as inputs while it moves in its environment. The movement of the agent is
equivalent to the movement of a camera. In this work, egomotion based learning is
posed as the problem of predicting camera transformation from image pairs. The
top and bottom rows of the figure show some sample image pairs from the SF and
KITTTI datasets that were used for feature learning.

We model the visual system of the agent with a Convolutional Neural Network
(CNN, [77]). The agent optimizes its visual representations (i.e. updating the weights
of the CNN) by minimizing the error between the egomotion information (i.e. camera
transformation) obtained from its motor system and egomotion predicted using its
visual inputs only. Performing this task is equivalent to training a CNN with two
streams (i.e. Siamese Style CNN or SCNN [108]) that takes two images as inputs
and predicts the egomotion that the agent underwent as it moved between the two
spatial locations from which the two images were obtained. In order to learn useful
visual representations, the agent continuously performs this task as it moves around
in its environment.

In this work we use the pretraining-finetuning paradigm for evaluating the
utility of learnt features. Pretraining is the process of optimizing the weights of a
randomly initialized CNN for an auxiliary task that is not the same as the target task.
Finetuning is the process of modifying the weights of a pretrained CNN for the given



2.2. A SIMPLE MODEL OF MOTION-BASED LEARNING 26

target task. Our experiments compare the utility of features learnt using egomotion
based pretraining against class-label based and slow-feature based pretraining on
multiple target tasks.

2.2.1 Two Stream Architecture

Each stream of the CNN independently computes features for one image. Both
streams share the same architecture and the same set of weights and consequently
perform the same set of operations for computing features. The individual streams
have been called as Base-CNN (BCNN). Features from two BCNNs are concatenated
and passed downstream into another CNN called as the Top-CNN (TCNN) (see
figure 2.2). TCNN is responsible for using the BCNN features to predict the camera
transformation between the input pair of images. After pretraining, the TCNN is
removed and a single BCNN is used as a standard CNN for feature computation for
the target task.

2.2.2 Shorthand for CNN architectures

The abbreviations Ck, Fk, P, D, Op represent a convolutional(C) layer with
k filters, a fully-connected(F) layer with k filters, pooling(P), dropout(D) and the out-
put(Op) layers respectively. We used ReLLU non-linearity after every convolutional/fully-
connected layer, except for the output layer. The dropout layer was always used
with dropout of 0.5. The output layer was a fully connected layer with number
of units equal to the number of desired outputs. As an example of our notation,
C96-P-F500-D refers to a network with 96 filters in the convolution layer followed
by ReLU non-linearity, a pooling layer, a fully-connected layer with 500 unit, ReL.U
non-linearity and a dropout layer. We used [109] for training all our models.

2.2.3 Slow Feature Analysis (SFA) Baseline

Slow Feature Analysis (SFA) is a method for feature learning based on the prin-
ciple that useful features change slowly in time. We used the following contrastive
loss formulation of SFA [101,108],

L<xt17$t27 W) =

{D(;ptl,%) if |t — b < T 21)

maz(0,m — D(zy,, xy,)) if [t —to| > T



2.2. A SIMPLE MODEL OF MOTION-BASED LEARNING 27

Base-CNN Stream-1

L, |P>|L| ® o |L.| >

A\

_n

\/

o

\
uonewJojsuel |

Base-CNN Stream-2 Top-CNN

Figure 2.2: Description of the method for feature learning. Visual features are
learnt by training a Siamese style Convolutional Neural Network (SCNN, [108]) that
takes as inputs two images and predicts the transformation between the images (i.e.
egomotion). Each stream of the SCNN (called as Base-CNN or BCNN) computes
features for one image. The outputs of two BCNNs are concatenated and passed
as inputs to a second multilayer CNN called as the Top-CNN (TCNN) (shown as
layers Fi, F»). The two BCNNs have the same architecture and share weights. After
feature learning, TCNN is discarded and a single BCNN stream is used as a standard
CNN for extracting features for performing target tasks like scene recognition.

where, L is the loss, xy,, x4, refer to feature representations of frames observed at
times t1,to respectively, W are the parameters that specify the feature extraction
process, D is a measure of distance with parameter, m is a predefined margin and T
is a predefined time threshold for determining whether the two frames are temporally
close or not. In this work, z; are features computed using a CNN with weights W
and D was chosen to be the L2 distance. SFA pretraining was performed using
two stream architectures that took pairs of images as inputs and produced outputs
Ty, Ty, as outputs from the two streams respectively.



2.2. A SIMPLE MODEL OF MOTION-BASED LEARNING 28

2.2.4 Proof of Concept using MNIST

On MNIST, egomotion was emulated by generating synthetic data consisting
of random transformation (translations and rotations) of digit images. From the
training set of 60K images, digits were randomly sampled and then transformed
using two different sets of random transformations to generate image pairs. CNNs
were trained for predicting the transformations between these image pairs.

Data

For egomotion based pretraining, relative translation between the digits was
constrained to be an integer value in the range [-3, 3| and relative rotation 6 was
constrained to lie within the range [-30 30. The prediction of transformation was
posed as a classification task with three separate soft-max losses (one each for
translation along X, Y axes and the rotation about Z-axis). SCNN was trained to
minimize the sum of these three losses. Translations along X, Y were separately
binned into seven uniformly spaced bins each. The rotations were binned into bins
of size 3ach resulting into a total of 20 bins (or classes). For SFA based pretraining,
image pairs with relative translation in the range [-1, 1] and relative rotation within
[-3 3 were considered to be temporally close to each other (see equation 2.1). A total
of 5 million image pairs were used for both pretraining procedures.

Network Architectures

We experimented with multiple BCNN architectures and chose the optimal
architecture for each pretraining method separately. For egmotion based pretraining,
the two BCNN streams were concatenated using the TCNN: F'1000-D-Op. Pretraining
was performed for 40K iterations (i.e. 5M examples) using an initial learning rate of
0.01 which was reduced by a factor of 2 after every 10K iterations.

The following architecture was used for finetuning: BONN-F500-D-Op. In order
to evaluate the quality of BCNN features, the learning rate of all layers in the BCNN
were set to 0 during finetuning for digit classification. Finetuning was performed
for 4K iterations (which is equivalent to training for 50 epochs for the 10K labelled
training examples) with a constant learning rate of 0.01.

Results

The BCNN features were evaluated by computing the error rates on the task of
digit classification using 100, 300, 1K and 10K class-labelled examples for training.
These sets were constructed by randomly sampling digits from the standard training



2.3. LEARNING VISUAL FEATURES FROM EGOMOTION IN
NATURAL ENVIRONMENTS 29

Table 2.1: Comparison of various pretraining methods on MNIST reveals that
egomotion based pretraining outperforms many previous approaches for unsupervised
learning. The performance is reported as the error rate.

Method # examples for finetuning
100 300 1000 10000
Autoencoder [109] |24.1 12.2 7.7 4.8

Ranzato et al. [92] | - 7.18 3.21  0.85
Lee et al. [91] - - 262 -

Train from Scratch|20.1 8.3 4.5 1.6
SFA (m=10) 11.2 64 3.5 2.1

SFA (m=100) 119 64 48 47
Egomotion (ours) [8.7 3.6 2.0 0.9

set of 60K digits. For this part of the experiment, the original digit images were
used (i.e. without any transformations or data augmentation). The standard test
set of 10K digits was used for evaluation and error rates averaged across 3 runs are
reported in table 2.1.

The BCNN architecture: C96-P-C256-P, was found to be optimal for egomotion
and SFA based pretraining and also for training from scratch (i.e. random weight
initialization). Results for other architectures are provided in the supplementary
material. For SFA based pretraining, we experimented with multiple values of the
margin m and found that m = 10,100 led to the best performance. Our method
outperforms convolutional deep belief networks [91], a previous approach based on
learning features invariant to transformations [92] and SFA based pretraining.

2.3 Learning Visual Features From Egomotion in
Natural Environments

We used two main sources of real world data for feature learning: the KITTI
and SF datasets, which were collected using cameras and odometry sensors mounted
on a car driving through urban scenes. Details about the data, the experimental
procedure, the network architectures and the results are provided in sections 2.3.1,
2.3.2, 2.3.3 and 2.4 respectively.



2.3. LEARNING VISUAL FEATURES FROM EGOMOTION IN
NATURAL ENVIRONMENTS 30

2.3.1 KITTI Dataset

The KITTI dataset provided odometry and image data recorded during 11 short
trips of variable length made by a car moving through urban landscapes. The total
number of frames in the entire dataset was 23,201. Out of 11, 9 sequences were used
for training and 2 for validation. The total number of images in the training set was
20,501.

The odometry data was used to compute the camera transformation between
pairs of images recorded from the car. The direction in which the camera pointed
was assumed to be the Z axis and the image plane was taken to be the XY plane.
X-axis and Y-axis refer to horizontal and vertical directions in the image plane. As
significant camera transformations in the KITTT data were either due to translations
along the Z/X axis or rotation about the Y axis, only these three dimensions were
used to express the camera transformation. The rotation was represented as the
euler angle about the Y-axis. The task of predicting the transformation between pair
of images was posed as a classification problem. The three dimensions of camera
transformation were individually binned into 20 uniformly spaced bins each. The
training image pairs were selected from frames that were at most £7 frames apart
to ensure that images in any given pair would have a reasonable overlap. For SFA
based pretraining, pairs of frames that were separated by atmost £7 frames were
considered to be temporally close to each other.

The SCNN was trained to predict camera transformation from pairs of 227 x 227
pixel sized image regions extracted from images of overall size 370 x 1226 pixels. For
each image pair, the coordinates for cropping image regions were randomly chosen.
Figure 2.1 illustrates typical image crops.

2.3.2 SF Dataset

SF dataset provides camera transformation between ~ 136K pairs of images
(constructed from a set of 17,357 unique images). This dataset was constructed using
Google StreetView [99]. ~ 130K image pairs were used for training and ~ 6K pairs
for validation.

Just like KITTI, the task of predicting camera transformation was posed as
a classification problem. Unlike KITTI, significant camera transformation was
found along all six dimensions of transformation (i.e. the 3 euler angles and the 3
translations). Since, it is unreasonable to expect that visual features can be used
to infer big camera transformations, rotations between [-30 30 were binned into 10
uniformly spaced bins and two extra bins were used for rotations larger and smaller
than 30nd -30espectively. The three translations were individually binned into 10



2.3. LEARNING VISUAL FEATURES FROM EGOMOTION IN
NATURAL ENVIRONMENTS 31

(a) KITTI-Net (b) SF-Net

Figure 2.3: Visualization of layer 1 filters learnt by egomotion based pretraining on
(a) KITTI and (b) SF datasets. A large majority of layer-1 filters are color detectors
and some of them are edge detectors. This is expected as color is a useful cue for
determining correspondences between image pairs.

uniformly spaced bins each. Images were resized to a size of 360 x 480 and image
regions of size 227 x 227 were used for training the SCNN.

2.3.3 Network Architecture

BCNN closely followed the architecture of first five AlexNet layers [5]: C'96-P-
C256-P-C384-C384-C256-P. TCNN architecture was: C256-C128-F500-D-Op. The
convolutional filters in the TCNN were of spatial size 3 x 3. The networks were
trained for 60K iterations with a batch size of 128. The initial learning rate was set
to 0.001 and was reduced by a factor of two after every 20K iterations.

We term the networks pretrained using egomotion on KITTI and SF datasets
as KITTI-Net and SF-Net respectively. The net pretrained on KITTI with SFA
is called KITTI-SFA-Net. Figure 2.3 shows the layer-1 filters of KITTI-Net and
SF-Net. A large majority of layer-1 filters are color detectors, while some of them
are edge detectors. As color is a useful cue for determining correspondences between
closeby frames of a video sequence, learning of color detectors as layer-1 filters is not
surprising. The fraction of filters that detect edges is higher for the SF-Net. This is
not surprising either, because higher fraction of images in the SF dataset contain
structured objects like buildings and cars.



2.4. EVALUATING MOTION-BASED LEARNING 32

2.4 Evaluating Motion-based Learning

For evaluating the merits of the proposed approach, features learned using
egomotion based supervision were compared against features learned using class-label
and SFA based supervision on the challenging tasks of scene recognition, intra-class
keypoint matching and visual odometry and object recognition. The ultimate goal
of feature learning is to find features that can generalize from only a few supervised
examples on a new task. Therefore it makes sense to evaluate the quality of features
when only a few labelled examples for the target task are provided. Consequently,
the scene and object recognition experiments were performed in the setting when
only 1-20 labelled examples per class were available for finetuning.

The KITTI-Net and SF-Net (examples of models trained using egomotion based
supervision) were trained using only only ~ 20K unique images. To make a fair
comparison with class-label based supervision, a model with AlexNet architecture was
trained using only 20K images taken from the training set of ILSVRC12 challenge (i.e.
20 examples per class). This model has been referred to as AlexNet-20K. In addition,
some experiments presented in this work also make comparison with AlexNet models
trained with 100K and 1M images that have been named as AlexNet-100K and
AlexNet-1M respectively.

2.4.1 Scene Recognition

SUN dataset consisting of 397 indoor/outdoor scene categories was used for
evaluating scene recognition performance. This dataset provides 10 standard splits
of 5 and 20 training images per class and a standard test set of 50 images per class.
Due to time limitation of running 10 runs of the experiment, we evaluated the
performance using only 3 train/test splits.

For evaluating the utility of CNN features produced by different layers, separate
linear (SoftMax) classifiers were trained on features produced by individual CNN
layers (i.e. BCNN layers of KITTI-Net, KITTI-SFA-Net and SF-Net). Table 2.2
reports recognition accuracy (averaged over 3 train/test splits) for various networks
considered in this study. KITTI-Net outperforms SF-Net and is comparable to
AlexNet-20K. This indicates that given a fixed budget of pretraining images, egomo-
tion based supervision learns features that are almost as good as the features using
class-based supervision on the task of scene recognition. The performance of features
computed by layers 1-3 (abbreviated as L1, L2, L3 in table 2.2) of the KITTI-SFA-Net
and KITTI-Net is comparable, whereas layer 4, 5 features of KITTI-Net significantly
outperform layer 4, 5 features of KITTI-SFA-Net. This indicates that egomotion
based pretraining results into learning of higher-level features, while SFA based



2.4. EVALUATING MOTION-BASED LEARNING 33

Table 2.2: Comparing the accuracy of neural networks pre-trained using motion-
based and class-label based supervision for the task of scene recognition on the SUN
dataset. The performance of layers 1-6 (labelled as L1-L6) of these networks was
evaluated after finetuning the network using 5/20 images per class from the SUN
dataset. The performance of the KITTI-Net (i.e. motion-based pretraining) fares
favorably with a network pretrained on Imagenet (i.e. class-based pretraining) with
the same number of pretraining images (i.e. 20K).

Method Pretrain Supervision|#Pretrain|#Finetune L1| L2 | L3 | L4 | L5 | L6 |#Finetune| L1 |[L2 |L3 |L4 | L5 | L6
AlexNet-1M Class Label M 5 5.3]10.5[12.1]12.5[18.0[23.6] 20  |11.822.2[25.0/26.8/33.3]37.6
AlexNet-20K 20K 5 49[63]6.6]63]6.6]6.7 20 8.7 |12.6]12.4[11.9[12.5[12.4

KITTI-SFA-Net Slowness 20.5K 5 45[57[62[34]05] - 20 82[11.2[120]7.3] 1.1

SF-Net Eeomoti [ 18K | 5 [44[52[49[51[47] - | 20  [8.6[11.6[10.9]104[9.1] -
KITTI-Net somotion | 205K | 5 |43]6059|58]64] - | 20 | 7.0 [12.2[12.1[11.7|124] -
GIST [100] | Human \ - \ 5 | 6.2 [ 20 ] 11.6
SPM [100] | Human | | 5 | 8.4 | 20 | 16.0

pretraining results into learning of lower-level features only.

The KITTI-Net outperforms GIST [110], which was specifically developed for
scene classification, but is outperformed by Dense SIFT with spatial pyramid match-
ing (SPM) kernel [96]. The KITTI-Net was trained using limited visual data
(~ 20K frames) containing visual imagery of limited diversity. The KITTI data
mainly contains images of roads, buildings, cars, few pedestrians, trees and some
vegetation. It is in fact surprising that a network trained on data with such little
diversity is competitive on classifying indoor and outdoor scenes with the AlexNet-
20K that was trained on a much more diverse set of images. We believe that with
more diverse training data for egomotion based learning, the performance of learnt
features will be better than currently reported numbers.

The KITTI-Net outperformed the SF-Net except for the performance of layer
1 (L1). As it was possible to extract a larger number of image region pairs from
the KITTI dataset as compared to the SF dataset (see section 2.3.1, 2.3.2), the
result that KITTI-Net outperforms SF-Net is not surprising. Because KITTI-Net
was found to be superior to the SF-Net in this experiment, the KITTI-Net was used
for all other experiments described in this paper.

2.4.2 Object Recognition

If egomotion based pretraining learns useful features for object recognition, then
a net initialized with KITTI-Net weights should outperform a net initialized with
random weights on the task of object recognition. For testing this, we trained CNNs
using 1, 5, 10 and 20 images per class from the ILSVRC-2012 challenge. As this



2.4. EVALUATING MOTION-BASED LEARNING 34

Table 2.3: Top-5 accuracy on the task of object recognition on the ILSVRC-12
validation set. AlexNet-Scratch refers to a net with AlexNet architecture initialized
with randomly weights. The weights of KITTI-Net and KITTI-SFA-Net were learned
using egomotion based and SFA based supervision on the KITTI dataset respectively.
All the networks were finetuned using 1,5, 10, 20 examples per class. The KITTI-Net
clearly outperforms AlexNet-Scratch and KITTI-SFA-Net.

Method 115 10] 20
AlexNet-Scratch 1.113.115.9|14.1
KITTI-SFA-Net (Slowness)|1.5[3.9]6.1{14.9
KITTI-Net (Egomotion) |2.3/5.1|8.6/15.8

dataset contains 1000 classes, the total number of training examples available for
training for these networks were 1K, 5K, 10K and 20K respectively. All layers of
KITTI-Net, KITTI-SFA-Net and AlexNet-Scratch (i.e. CNN with random weight
initialization) were finetuned for image classification.

The results of the experiment presented in table 2.3 show that egomotion based
supervision (KITTI-Net) clearly outperforms SFA based supervision(KITTI-SFA-
Net) and AlexNet-Scratch. As expected, the improvement offered by motion-based
pretraining is larger when the number of examples provided for the target task are
fewer. These result show that egomotion based pretraining learns features useful for
object recognition.

2.4.3 Intra-Class Keypoint Matching

Identifying the same keypoint of an object across different instances of the same
object class is an important visual task. Visual features learned using egomotion,
SFA and class-label based supervision were evaluated for this task using keypoint
annotations on the PASCAL dataset [111].

Keypoint matching was computed in the following way: First, ground-truth
object bounding boxes (GT-BBOX) from PASCAL-VOC2012 dataset were extracted
and re-sized (while preserving the aspect ratio) to ensure that the smaller side of the
boxes was of length 227 pixels. Next, feature maps from layers 2-5 of various CNNs
were computed for every GT-BBOX. The keypoint matching score was computed
between all pairs of GT-BBOX belonging to the same object class. For given pair
of GT-BBOX, the features associated with keypoints in the first image were used
to predict the location of the same keypoints in the second image. The normalized
pixel distance between the actual and predicted keypoint locations was taken as the



2.5. DISCUSSION 35

error in keypoint matching. More details about this procedure have been provided
in the supp. materials.

It is natural to expect that accuracy of keypoint matching would depend on
the camera transformation between the two viewpoints of the object(i.e. viewpoint
distance). In order to make a holistic evaluation of the utility of features learnt
by different pretraining methods on this task, matching error was computed as a
function of viewpoint distance [112|. Figure 2.4 reports the matching error averaged
across all keypoints, all pairs of GT-BBOX and all classes using features extracted
from layers conv-3 and conv-4.

KITTI-Net trained only with 20K unique frames was superior to AlexNet-20K
and AlexNet-100K and inferior only to AlexNet-1M. A net with AlexNet architecture
initialized with random weights (AlexNet-Rand), surprisingly performed better than
AlexNet-20K. One possible explanation for this observation is that with only 20K
examples, features learnt by AlexNet-20K only capture coarse global appearance
of objects and are therefore poor at keypoint matching. SIFT has been hand
engineered for finding correspondences across images and performs as well as the
best AlexNet-1M features for this task (i.e. conv-4 features). KITTI-Net also
significantly outperforms KITTI-SFA-Net. These results indicate that features learnt
by egomotion based pretraining are superior to SFA and class-label based pretraining
for the task of keypoint matching.

2.4.4 Visual Odometry

Visual odometry is the task of estimating the camera transformation between
image pairs. All layers of KITTI-Net and AlexNet-1M were finetuned for 25K
iterations using the training set of SF dataset on the task of visual odometry (see
section 2.3.2 for task description). The performance of various CNNs was evaluated
on the validation set of SF dataset and the results are reported in table 2.4.

Performance of KITTI-Net was either superior or comparable to AlexNet-1M
on this task. As the evaluation was made on the SF dataset itself, it was not
surprising that on some metrics SF-Net outperformed KITTI-Net. The results of this
experiment indicate that egomotion based feature learning is superior to class-label
based feature learning on the task of visual odometry.

2.5 Discussion

In this work, we have shown that egomotion is a useful source of intrinsic su-
pervision for visual feature learning in mobile agents. In contrast to class labels,



2.5. DISCUSSION 36

Table 2.4: Comparing the accuracy of various pretraining methods on the task of
visual odometry.

Method |Translation Acc.|Rotation Acc.
0X | oY 0z 061 | 06y | 005

SF-Net |40.2|58.2| 38.4 |45.0(44.8|40.5
KITTI-Net |43.4|57.9| 40.2 [48.4]44.0(41.0
AlexNet-1M|41.8 [58.0| 39.0 |46.0|44.5|40.5

o
5023 _ G (o1 _
< K ttiNet-20k-cv3 s K ttiNet-20k-cv4
g 0.21 - - wmKittiNet-SFA-20k-cv3 % KittiNet-SFA-20k-cv4
- - AlexNet-rand-cv3 0.19 ‘AlexNet-rand-cv4
0.19 - - pm/\lexNet-20k-cv3 - s/ lexNet-20k-cv4
- mmmlexNet-100k-cv3 017 1 - 7 mmmlexNet-100k-cv4
047 | - = AlexNet-1M-cv3 Ve = AlexNet-1M-cv4
P w—=SIFT 045 ==SIFT
0 18 36 54 72 90 108 126 144 162 0 18 36 54 72 90 108 126 144 162
Maximum viewpoint range Maximum viewpoint range

Figure 2.4: Intra-class keypoint matching error as a function of viewpoint distance
averaged over 20 PASCAL objects using features from layers conv3 (left) and conv4
(right) of various CNNs used in this work. Please see the text for more details.

knowledge of egomotion is "freely" available. On MNIST, egomotion-based feature
learning outperforms many previous unsupervised methods of feature learning. Given
the same budget of pretraining images, on task of scene recognition, egomotion-based
learning performs almost as well as class-label-based learning. Further, egomotion
based features outperform features learnt by a CNN trained using class-label super-
vision on two orders of magnitude more data (AlexNet-1M) on the task of visual
odometry and one order of magnitude more data on the task of intra-class keypoint
matching. In addition to demonstrating the utility of egomotion based supervision,
these results also suggest that features learnt by class-label based supervision are
not optimal for all visual tasks. This means that future work should look at what
kinds of pretraining are useful for what tasks.

One potential criticism of our work is that we have trained and evaluated high
capacity deep models on relatively little data (e.g. only 20K unique images available
on the KITTT dataset). In theory, we could have learnt better features by downsizing
the networks. For example, in our experiments with MNIST we found that pretraining
a 2-layer network instead of 3-layer results in better performance (table 2.1). In this



2.5. DISCUSSION 37

work, we have made a conscious choice of using standard deep models because the
main goal of this work was not to explore novel feature extraction architectures but to
investigate the value of egmotion for learning visual representations on architectures
known to perform well on practical applications. Future research focused on exploring
architectures that are better suited for egomotion based learning can only make a
stronger case for this line of work. While egomotion is freely available to mobile
agents, there are currently no publicly available datasets as large as Imagenet.
Consequently, we were unable to evaluate the utility of motion-based supervision
across the full spectrum of training set sizes.

In this work, we chose to first pretrain our models using a base task (i.e. egomotion)
and then finetune these models for target tasks. An equally interesting setting is that
of online learning where the agent has continuous access to intrinsic supervision (such
as egomotion) and occasional explicit access to extrinsic teacher signal (such as the
class labels). We believe that such a training procedure is likely to result in learning
of better features. Our intuition behind this is that seeing different views of the same
instance of an object (say) car, may not be sufficient to learn that different instances
of the car class should be grouped together. The occasional extrinsic signal about
object labels may prove useful for the agent to learn such concepts. Also, current
work makes use of passively collected egomotion data and it would be interesting
to investigate if it is possible to learn better visual representations if the agent can
actively decide on how to explores its environment (i.e. active learning [113]).



38

Chapter 3

A Model for Intuitive Physics

In this chapter we investigate whether a robot can use it’s own experience to
learn an intuitive model of physics that is also effective for planning actions. In
our setup (see Figure 3.1), a Baxter robot interacts with objects kept on a table in
front of it by randomly poking them. The robot records the visual state of the world
before and after it executes a poke in order to learn a mapping between its actions
and the accompanying change in visual state caused by object motion. To date our
robot has interacted with objects for more than 400 hours and in process collected
more than 100K pokes on 16 distinct objects.

What kind of a model should the robot learn from it’s experience? One possibility
is to build a model that predicts the next visual state from the current visual state
and the applied force (i.e forward dynamics model). This is challenging because
predicting the value of every pixel in the next image is non-trivial in real world
scenarios. Moreover, in most cases it is not the precise pixel values that are of
interest, but the occurrence of a more abstract event. For example, predicting that a
glass jar will break when pushed from the table onto the ground is of greater interest
(and easier) than predicting exactly how every piece of shattered glass will look. The
difficulty, however, is that supervision for such abstract concepts or events is not
readily available in unsupervised settings such as ours. In this work, we propose one
solution to this problem by jointly training forward and inverse dynamics models.
A forward model predicts the next state from the current state and action, and an
inverse model predicts the action given the initial and target state. In joint training,
the inverse model objective provides supervision for transforming image pixels into
an abstract feature space, which the forward model can then predict. The inverse
model alleviates the need for the forward model to make predictions in the pixel
space and the forward model in turn regularizes the feature space for the inverse
model.



39

Figure 3.1: Infants spend years worth of time playing with objects in a seemingly
random manner. They might use this experience to learn a model of physics relating
their actions with the resulting motion of objects. Inspired by this hypothesis, we
let a robot interact with objects by randomly poking them. The robot pokes objects
and records the visual state before (left) and after (right) the poke. The triplet of
before image, after image and the applied poke is used to train a neural network
(center) for learning the mapping between actions and the accompanying change
in visual state. We show that this learn model can be used to push objects into a
desired configuration.

We empirically show that the joint model allows the robot to generalize and plan
actions for achieving tasks with significantly different visual statistics as compared to
the data used in the learning phase. Our model can be used for multi step decision
making and displace objects with novel geometry and texture into desired goal
locations that are much farther apart as compared to position of objects before and
after a single poke. We probe the joint modeling approach further using simulation
studies and show that the forward model regularizes the inverse model.



3.1. DATA 40

3.1 Data

Figure 1 shows our experimental setup. The robot is equipped with a Kinect
camera and a gripper for poking objects kept on a table in front of it. At any given
time there were 1-3 objects chosen from a set of 16 distinct objects present on the
table. The robot’s coordinate system was as following: X and Y axis represented
the horizontal and vertical axes, while the Z axis pointed away from the robot. The
robot poked objects by moving its finger along the XZ plane at a fixed height from
the table.

Poke Representation: For collecting a sample of interaction data, the robot
first selects a random target point in its field of view to poke. One issue with random
poking is that most pokes are executed in free space which severely slows down
collection of interesting interaction data. For speedy data collection, a point cloud
from the Kinect depth camera was used to only chose points that lie on any object
except the table. Point cloud information was only used during data collection and
at test time our system only requires RGB image data. After selecting a random
point to poke (p) on the object, the robot randomly samples a poke direction ()
and length (). Kinematically, the poke is defined by points p;, p, that are é distance
from p in the directions 6°, (180 + 6)° respectively. The robot executes the poke by
moving its finger from p; to ps.

Our robot can run autonomously 24x7 without any human intervention. Some-
times when objects are poked they move as expected, but other times due to non-linear
interaction between the robot’s finger and the object they move in unexpected ways
as shown in Figure 3.2. Any model of the poking data must deal with such non-linear
interactions (see project website for more examples). A small amount of data in the
early stages of the project was collected on a table with a green background, but
most of our data was collected in a wooden arena with walls for preventing objects
from falling down. All results in this paper are from data collected only from the
wooden arena.

3.2 Method

The forward and inverse models can be formally described by equations 3.1 and
3.2, respectively. The notation is as following: x;, u; are the world state and action
applied time step ¢, 441, 441 are the predicted state and actions, and Wy, and
Wine are parameters of the functions F' and G that are used to construct the forward
and inverse models.

itJrl = F(xt, U, wad) (31) lzt = G([L’t, L41s I/I/znv) (32)


http://ashvin.me/pokebot-website/

3.2. METHOD 41

Figure 3.2: These images depict the robot in the process of displacing the bottle
away from the indicated dotted line. In the middle of the poke, the object flips
and ends up moving in the wrong direction. Such occurrences are common because
the real world objects have complex geometric and material properties. This makes
learning manipulation strategies without prior knowledge very challenging.

Given an initial and goal state, inverse models provide a direct mapping to actions
required for achieving the goal state in one step (if feasible). However, multiple
possible actions can transform the world from one visual state to another. For
example, an object can appear in a certain part of the visual field if the agent
moves or if the agent uses its arms to move the object. This multi-modality in the
action space makes the learning hard. On the other hand, given x; and w;, there
exists a next state x;.; that is unique up to dynamics noise. This suggests that
forward models might be easier to learn. However, learning forward models in image
space is hard because predicting the value of each pixel in the future frames is a
non-trivial problem with no known good solution. However, in most scenarios we
are not interested in predicting every pixel, but predicting the occurrence of a more
abstract event such as object motion, change in object pose etc.

The ability to learn an abstract task relevant feature space should make it easier
to learn a forward dynamics model. One possible approach is to learn a dynamics
model in the feature representation of a higher layer of a deep neural network trained
to perform image classification (say on ImageNet) [114]. However, this is not a
general way of learning task relevant features and it is unclear whether features adept
at object recognition are also optimal for object manipulation. The alternative of
adapting higher layer features of a neural network while simultaneously optimizing
for the prediction loss leads to a degenerate solution of all the features reducing to
zero, since the prediction loss in this case is also zero. Our key observation is that
this degenerate solution can be avoided by imposing the constraint that it should be
possible to infer the the executed action (u;) from the feature representation of two
images obtained before (x;) and after (x;,1) the action (u,) is applied (i.e. optimizing
the inverse model). This formulation provides a general mechanism for using general
purpose function approximators such as deep neural networks for simultaneously
learning a task relevant feature space and forecasting the future outcome of actions
in this learned space.

A second challenge in using forward models is that inferring the optimal action



3.2. METHOD 42

action
Pty Oty Ly i € -

(c)

—

\
|
!

S - ———— =

“conv1 “conv2

Figure 3.3: (a) The collection of objects in the training set poked by the robot.
(b) Example pairs of before (I;) and after images (I;41) after a single poke was
made by the robot. (c) A Siamese convolutional neural network was trained to
predict the poke location (p;), angle (6;) and length (I;) required to transform objects
in the image at the #!* time step (I;) into their state in ;1. Images I; and I;;,
are transformed into their latent feature representations (x4, z441) by passing them
through a series of convolutional layers. For building the inverse model, x;, x;,,1 are
concatenated and passed through fully connected layers to predict the discretized
poke. For building the forward model, the action u, = {p;, 6;,1;} and x; are passed
through a series of fully connected layers to predict x;,1.

inevitably leads to finding a solution to non-convex problems that are subject to
local optima. The inverse model does not suffers from this drawback as it directly
outputs the required action. These considerations suggest that inverse and forward
models have complementary strengths and therefore it is worthwhile to investigate
training a joint model of inverse and forward dynamics.

3.2.1 Model

A deep neural network is used to simultaneously learn a model of forward and
inverse dynamics (see Figure 3.3). A tuple of before image (1), after image (I;41) and
the robot’s action (u;) constitute one training sample. Input images at consequent
time steps (I3, I;11) are transformed into their latent feature representations (x4, z411)
by passing them through a series of five convolutional layers with the same architecture
as the first five layers of AlexNet [5]. For building the inverse model, x;, 2,4, are
concatenated and passed through fully connected layers to conditionally predict the
poke location (p;), angle (6;) and length (I;) separately. For modeling multimodal
poke distributions, poke location, angle and length of poke are discretized into a



3.2. METHOD 43

(a) Greedy Planner (b) Blob Model
[

| Action Predictor | ‘1’ .
I . b=

(c) Pose Error Evaluation

—F—

Angle (0)

Next Image (I;+1)

Figure 3.4: (a) Greedy planner is used to output a sequence of pokes to displace the
objects from their configuration in initial to the goal image. (b) The blob model
first detects the location of objects in the current and goal image. Based on object
positions, location and angle of the poke is computed and then executed by the
robot. The obtained next and goal image are used to compute the next poke and
this process is repeated iteratively. (c¢) The error of the models in poking objects to
their correct pose is measured as the angle between the major axis of the objects in
the final and goal images.

20 x 20 grid, 36 bins and 11 bins respectively. The 11** bin of the poke length is used
to denote no poke. For building the forward model, the feature representation of the
before image (r;) and the action (u;; real-valued vector without discretization) are
passed into a sequence of fully connected layer that predicts the feature representation
of the next image (z;41). Training is performed to optimize the loss defined in equation
3.3 below.

Ljoint = Linw(ts, e, W) + AL pra(2e41, Tog1, W) (3.3)

Lj,, is a sum of three cross entropy losses between the actual and predicted poke
location, angle and length. Ly,q is a L1 loss between the predicted (Z;.;) and the
ground truth (x;;1) feature representation of the after image (I;11). W are the
parameters of the neural network. We used A = 0.1 in all our experiments. We call
this the joint model and we compare its performance against the inverse only model
that was trained by setting A = 0 in equation 3.3. More details about model training
are provided in the supplementary materials.

3.2.2 Evaluation Procedure

One way to test the learnt model is to provide the robot with an initial and goal
image and task it to apply pokes that would displace objects into the configuration


http://ashvin.me/pokebot-website/

3.2. METHOD 44

shown in the goal image. If the robot succeeds at achieving the goal configuration
when the visual statistics of the pair of initial and goal image is similar to before and
after image in the training set, then this would not be a convincing demonstration
of generalization. However, if the robot is able to displace objects into goal positions
that are much farther apart as compared to position of objects before and after a
single poke then it might suggest that our model has not simply overfit but has learnt
something about the underlying physics of how objects move when poked. This
suggestion would be further strengthened if the robot is also able to push objects
with novel geometry and texture in presence of multiple distractor objects.

If the objects in the initial and goal image are farther apart than the maximum
distance that can be pushed by a single poke, then the model would be required to
output a sequence of pokes. We use a greedy planning method (see Figure 3.4(a)) to
output a sequence of pokes. First, images depicting the initial and goal state are
passed through the learnt model to predict the poke which is then executed by the
robot. Then, the image depicting the current world state (i.e. the current image)
and the goal image are fed again into the model to output a poke. This process
is repeated iteratively unless the robot predicts a no-poke (see section 3.2.1) or a
maximum number of 10 pokes is reached.

Error Metrics: In all our experiments, the initial and goal images differ in the
position of only a single object. The location and pose of the object in the final image
after the robot stops and the goal image are compared for quantitative evaluation.
The location error is the Euclidean distance between the object locations. In order
to account for different object distances in the initial and goal state, we use relative
instead of absolute location error. Pose error is defined as the angle (in degrees)
between the major axis of the objects in the final and goal images (see Figure 3.4(c)).
Please see supplementary materials for further details.

3.2.3 Blob Model

We compared the performance of the learnt model against a baseline blob model.
This model first estimates object locations in current and goal image using template
based object detector. It then uses the vector difference between these to compute
the location, angle and length of poke executed by the robot (see supplementary
materials for details). In a manner similar to greedy planning with the learnt model,
this process is repeated iteratively until the object gets closer to the desired location
in the goal image by a pre-defined threshold or a maximum number of pokes is
reached.


http://ashvin.me/pokebot-website/
http://ashvin.me/pokebot-website/
http://ashvin.me/pokebot-website/

3.3. RESULTS 45

Initial State Goal State
! lamn .
Trainingsetn 1 "N] 'NI 'N_I_FN 'N 1': i
object $J 4 { . \)
= | = b = & . 4k = [ SN |
T :
e T I "N "N "W T_"' :'1 [
object & m .__ ¥ i ¥ iﬂ a 1 _:_ | End of Sequence (EoS) Eh é& a_ |
NOT PNt " o PR s F] "- N 1o B o
Limitation Y ' & 1 I (EoS) . A
= - — - % ] B =4 B = = - :.“ - -

Figure 3.5: The robot is able to successfully displace objects in the training set (row
1; Nutella bottle) and objects with previously unseen geometry (row 2; red cup) into
goal locations that are significantly farther than pair of before and after images used
in the training set. The robot is unable to push objects around obstacles (row 3;
limitation of greedy planning).

3.3 Results

The robot was tasked to displace objects in an initial image into their configuration
depicted in a goal image (see Figure 3.5). The three rows in the figure show the
performance when the robot is asked to displace an object (Nutella bottle) present
in the training set, an object (red cup) whose geometry is different from objects in
the training set and when the task is to move an object around an obstacle. These
examples are representative of the robot’s performance and more examples can be
found on the project website. It can be seen that the robot is able to successfully
poke objects present in the training set and objects with novel geometry and texture
into desired goal locations that are significantly farther than pair of before and after
images used in the training set.

Row 2 in Figure 3.5 also shows that the robot’s performance in unaffected by the
presence of distractor objects that occupy the same location in the current and goal
images. These results indicate that the learnt model allows the robot to perform
tasks that show generalization beyond the training set (i.e. poking object by small
distances). Row 3 in Figure 3.5 depicts an example where the robots fails to push
the object around an obstacle (yellow object). The robot acts greedily and ends up
pushing the obstacle along with the object. One more side-effect of greedy planning
is zig-zag instead of straight trajectories taken by the object between its initial and
goal locations. Investigating alternatives to greedy planning, such as using the learnt
forward model for planning pokes is a very interesting direction for future research.

What representation could the robot have learnt that allows it to generalize?


http://ashvin.me/pokebot-website/

3.3. RESULTS 46

One possibility is that the robot ignores the geometry of the object and only infers
the location of the object in the initial and goal image and uses the difference vector
between object locations to deduce what poke to execute. This strategy is invariant to
absolute distance between the object locations and is therefore capable of explaining
the observed generalization to large distances. While we cannot prove that the
model has learnt to detect object location, nearest neighbor visualizations of the
learnt feature space clearly suggest sensitivity to object location (see supplementary
materials). This is interesting because the robot received no direct supervision to
locate objects.

Because different objects have different geometries, they need to be poked at
different places to move them in the same manner. For example, a Nutella bottle
can be reliably moved forward without rotating the bottle by poking it on the side
along the direction toward its center of mass, whereas a hammer is reliably moved by
poking it where the hammer head meets the handle. Pushing an object to a desired
pose is harder and requires a more detailed understanding of object geometry in
comparison to pushing the object to a desired location. In order to test whether the
learnt model represents any information about object geometry, we compared its
performance against the baseline blob model (see section 3.2.3 and figure 3.4(b))
that ignores object geometry. For this comparison, the robot was tasked to push
objects to a nearby goal by making only a single poke (see supplementary materials
for more details). Results in Figure 3.6(a) show that both the inverse and joint
model outperform the blob model. This indicates that in addition to representing
information about object location, the learn models also represent some information
about object geometry.

3.3.1 Forward model regularizes the inverse model

We tested the hypothesis whether the forward model regularizes the feature
space learnt by the inverse model in a 2-D simulation environment where the
agent interacted with a red rectangular object by poking it by small forces. The
rectangle was allowed to freely translate and rotate (Figure 3.6(c)). Model training
was performed using an architecture similar to the one described in section 3.2.1.
Additional details about the experimental setup, network architecture and training
procedure for the simulation experiments are provided in the supplementary materials.
Figure 3.6(c) shows that when less training data (10K, 20K examples) is available
the joint model outperforms the inverse model and reaches closer to the goal state in
fewer steps (i.e. fewer actions). This shows that indeed the forward model regularizes
the inverse model and helps generalize better. However, when the number of training
examples is increased to 100K both models are at par. This is not surprising because


http://ashvin.me/pokebot-website/
http://ashvin.me/pokebot-website/
http://ashvin.me/pokebot-website/
http://ashvin.me/pokebot-website/

3.4. RELATED WORK 47

(a) Pose error for nearby goals Initial ' Gosl
State : State
1.0 !
----- Inverse Model, #Train 10K
0.9 —— Joint Model, #Train 10K

0 20 40 60 50.8 R Inverse Model, #Train 20K
= — Joint Model, #Train 20K
50.7 N Inverse Model, #Train 100K
- Blob Model Inverse Model - Joint Model 3 —— Joint Model, #Train 100K
806
Losl AN
. . ST N e
s N~ ]
Doal N e,
0.3
0.
0.0 0.1 0.2 03 0.4 % 1 2 3
Number of Steps
(b) Relative location error for far away goals (c) Simulation experiments

Figure 3.6: (a) Inverse and Joint model are more accurate than the blob model
at pushing objects towards the desired pose. (b) The joint model outperforms
the inverse-only model when the robot is tasked to push objects by distances that
are significantly larger than object distance in before and after images used in the
training set (i.e. a test of generalization). (c¢) Simulation studies reveal that when less
number of training examples (10K, 20K) are available the joint model outperforms
the inverse model and the performance is comparable with larger amount of data
(100K). This result indicates that the forward model regularizes the inverse model.

training with more data often results in better generalization and thus the inverse
model is no longer reliant on the forward model for the regularization.

Evaluation on the real robot supports the findings from the simulation experiments.
Figure 3.6(b) shows that in a test of generalization, when an object is required to be
displaced by a long distance, the joint model outperforms the inverse model. Similar
performance of joint and blob model at this task is not surprising because even if the
pokes are somewhat inaccurate but generally in the direction from object’s current
to goal location, the object might traverse a zig-zag path but it would eventually
reach the goal. The joint model is however more accurate at displacing objects into
their correct pose as compared to the blob model (Figure 3.6(a)).

3.4 Related Work

Several recent works have proposed to learn visual control policies using rein-
forcement learning for tasks such as playing Atari games [3] and controlling robots
in simulation [115] and in the real world [116]. However, these methods are model
free and learn goal specific policies, which makes it difficult to repurpose the learned



3.4. RELATED WORK 48

policies for new tasks. In contrast, the aim of this work is to learn intuitive physical
models of object interaction in an unsupervised manner. Such models can then be
used to reach any target configuration.

A number of recent methods have also been proposed for learning representations
for vision-based control using autoencoders to transform visual inputs into a low-
dimensional state space [117-120]. However, these works have used model free
methods as training auto encoders on complex real world imagery is difficult, and it
is unclear that features obtained by optimizing pixelwise reconstruction are necessarily
well suited for model based control. Recently [114] proposed to build prediction
models in the space of features learnt by pretraining on image classification on
Imagenet. Their approach assumes that invariances learnt for object recognition are
also good for control. In contrast, our approach is entirely self-supervised, does not
require human-provided labels and is capable of learning task specific features.

[121,122] learn how to grasp objects by trial and error from a large number of
attempts. These methods aim to acquire a policy for solving a single concrete task,
while our work is concerned with learning a general predictive model that could
be used to achieve a variety of goals at test time. Furthermore, poking is a type
of nonprehensile manipulation (i.e. manipulation without grasping [74]). When an
object is grasped, it is possible to fully control the state of the grasped object. With
non prehensile manipulation, the state of the manipulated object is not directly
controllable and thus less predictable. This makes the problem of achieving the goal
state using non prehensile manipulation such as poking significantly more challenging
than achieving the goal state by grasping |74,123].

A good review of model based control can be found in [124] and [125,126] provide
interesting perspectives. [127] used deep learning based model predictive control
for cutting vegetables. However, their system did not use vision and relied solely
on the knowledge of the robotic state space and is thus limited in its generality.
Only very recently, [79,128-130] addressed the problem of model based control from
vision in synthetic domains of manipulating two degree of freedom robotic arm,
inverted pendulum, billiards and Atari games. In contrast to these works, we tackle
manipulation of complex, compressible real world objects. [131-133] proposed using
Newtonian physics in combination with neural networks to predict the dynamics
of objects in the future. However, they do not test their models for goal directed
actions. A second difference is that we use learn “intuitive" physics from data instead
of relying on Newtonian physics for reasons mentioned in the first chapter.

In robotic manipulation, a number of prior methods have been proposed that
use hand-designed visual features and known object poses or key locations to plan
and execute pushes and other non-prehensile manipulations [134-136]. Unlike these
methods, the goal in our work is to learn an intuitive physics model for pushing only



3.5. DISCUSSION 49

from raw images, thus allowing the robot to learn by exploring the environment on
its own without human intervention.

3.5 Discussion

We presented a method for jointly learning the inverse and forward models for
predicting the outcome of actions from raw visual inputs, as well as an empirical
evaluation of an experiential approach to learning intuitive physics models in the
context of robotic manipulation. In our experimental setup, we collected over 50
thousand interaction episodes to construct models that predict the outcome of robotic
pokes. We then evaluated our learned models by using them to choose pokes that will
push an object into a target configuration. Our results indicate that the proposed
joint inverse and forward models attain higher accuracy than more standard methods,
and also that active data collection, where the robot sets and attempts to reach its
own goals using the latest learned model, produces more accurate predictive models.

Nonprehensile manipulation is a hard problem, and although our models perform
better than the baseline methods, they are far from perfect. While poking, the robot
does not have full control of the object state, which makes it harder to predict and
plan for the outcome of the action. For example, depending on whether the poke is
slightly on the left or slightly on the right of a simple cuboidal object, the resulting
motion can be substantially different (i.e. clockwise or anti-clockwise). With real
world objects having complex geometry, this learning problem becomes even harder.
An interesting area of future investigation is to use continuous time control with
smaller pokes that are likely to be more predictable than the large pokes used in
this work.

Without any a priori knowledge and information about goals the robot has
no incentive to learn pokes that are more reliable at displacing objects from one
configuration to another. As there are multiple ways of displacing objects, this issue
can lead to non-robust planning solutions that are likely to fail. For addressing this
concern, we used active data sampling, which we show leads to better results. The
intuition behind this is as following: the robot chooses a desired target image (Z1qrget),
and then uses the learned model to predict the poke (a) that will transform the objects
in the current image (Zpefore) into the target configuration. The triplet of previous
state (Zpefore), the poke (a), and the new state (z4f1) that is obtained after executing
the predicted poke is used as training data to improve the model. This process
reinforces pokes that reliably transform Zpefore INt0 Zigrger (i-€ if Tofter = Trarget)-
However, if 24, is substantially different from x;4,4¢, there is no direct feedback
that biases the model into believing that action a is unreliable for achieving 4yget-



3.5. DISCUSSION 50

An interesting direction for future research is to either resolve this limitation by
incorporating the predictions of the forward model into the active sampling scheme,
or come up with alternative strategies or constraints that will bias the robot towards
learning reliable actions.

A neural network formulation for simultaneously learning and forecasting in an
abstract feature space is proposed in this work. We show that the forward model
regularizes the inverse model, but it might be possible that alternative loss functions
are even better regularizers. Also, using forward models just as regularizers is
unsatisfactory because forward models equip the agent with the ability to perform
rollouts, and consequently perform planning with longer horizons. This is in contrast
to inverse models that can be used for multistep execution only by executing actions
one after another, without any foresight. A detailed investigation of how forward
models can be effectively used for planning in the proposed framework is currently
pending and is an interesting avenue for future work.

Our experiments show generalization to the location and pose of objects, but
we have not shown any generalization to new objects. The primary reason is that
data collection on a real robot is slow and until now we have only collected data for
four objects. However, this is not a limitation of our approach as data collection
process can be easily parallelized across robots [122]. An open research question in
data collection is whether we should collect large amounts of data for few objects or
small amounts of data for a large number of objects. Future work addressing this
question and showing generalization to new objects would be of great interest.

In this work we have proposed the use of intuitive models of physics learned from
experience and simultaneous learning of forward and inverse models for vision based
control. Although our approach is evaluated on a specific robotic manipulation task,
there are no task specific assumptions, and the techniques are applicable to other
tasks. In future, it would be interesting to see how the proposed approach scales
with more complex environments, diverse object collections, different manipulation
skills and to other non-manipulation based tasks, such as navigation.

In this work we propose to learn “intuitive" model of physics using interaction
data. An alternative is to represent the world in terms of a fixed set of physical
parameters such as mass, friction coefficient, normal forces etc and use a physics
simulator for computing object dynamics from this representation [131,132,137,138|.
This approach is general because physics simulators inevitably use Newton’s laws
that apply to a wide range of physical phenomenon ranging from orbital motion of
planets to a swinging pendulum. Estimating parameters such as as mass, friction
coefficient etc. from sensory data is subject to errors, and it is possible that one
parameterization is easier to estimate or more robust to sensory noise than another.
For example, the conclusion that objects with feather like appearance fall slower than



3.5. DISCUSSION 51

objects with stone like appearance can be reached by either correlating visual texture
to the speed of falling objects, or by computing the drag force after estimating the
cross section area of the object. Depending on whether estimation of visual texture
or cross section area is more robust, one parameterization will result in more accurate
predictions than the other. Pre-defining a set of parameters for predicting object
dynamics, which is required by “simulator-based" approach might therefore lead to
suboptimal solutions that are less robust.

For many practical object manipulation tasks of interest, such as re-arranging
objects, cutting vegetables, folding clothes, and so forth, small errors in execution
are acceptable. The key challenge is robust performance in the face of varying
environmental conditions. This suggests that a more robust but a somewhat imprecise
model may in fact be desirable over a less robust and a more precise model. While
the arguments presented above suggest that intuitive physics models are likely to
be more robust than simulator based models, quantifying the robustness of these
models is an interesting direction for future work. Furthermore, it is non-trivial
to use simulator based models for manipulating deformable objects such as clothes
and ropes because simulation of deformable objects is hard and also also requires
representing objects by heavily handcrafted features that are unlikely to generalize
across objects. The intuitive physics approach does not make any object specific
assumptions and can be easily extended to work with deformable objects. This
approach is in the spirit of recent successful deep learning techniques in computer
vision and speech processing that learn features directly from data, whereas the
simulator based physics approach is more similar to using hand-designed features.
Current methods for learning intuitive physics models, such as ours are data inefficient
and it is possible that combining intuitive and simulator based approaches leads to
better models than either approach by itself.

In poking based interaction, the robot does not have full control of the object
state which makes it harder to predict and plan for the outcome of an action. The
models proposed in this work generalize and are able to push objects into their
desired location. However, performance on setting objects in the desired pose is not
satisfactory, possibly because of the robot only executing pokes in large, discrete
time steps. An interesting area of future investigation is to use continuous time
control with smaller pokes that are likely to be more predictable than the large pokes
used in this work. Further, although our approach is evaluated on a specific robotic
manipulation task, there are no task specific assumptions, and the techniques are
applicable to other tasks. In future, it would be interesting to see how the proposed
approach scales with more complex environments, diverse object collections, different
manipulation skills and to other non-manipulation based tasks, such as navigation.
Other directions for future investigation include the use of forward model for planning



3.5. DISCUSSION

52

and developing better strategies for data collection than random interaction.



53

Chapter 4

Learning from Experts

In theory an autonomous continually learning agent should not rely on any expert
supervision or communication from other agents to augment its knowledge. However
our world is incredibly rich and diverse and there is simply too much to learn. In
such a setup, an agent would greatly benefit if what it learns could be prioritized by
an expert or be biased by observing other agents. Such prioritization /biasing would
enable the agent to focus on learning relevant things.

There are multiple ways in which social learning or learning from experts can help.
A family of algorithms under the umbrella term of “imitation" learning or learning
by imitation have been widely used to teach agents to perform complex tasks. The
current dominant paradigm in learning from demonstration (LfD) [62—65] requires
the expert to either manually move the robot joints (i.e., kinesthetic teaching) or
teleoperate the robot to execute the desired task. The expert typically provides
multiple demonstrations of a task at training time, and this generates data in the
form of observation-action pairs from the agent’s point of view. The agent then
distills this data into a policy for performing the task of interest. Such a heavily
supervised approach, where it is necessary to provide demonstrations by controlling
the robot, is incredibly tedious for the human expert. Moreover, for every new
task that the robot needs to execute, the expert is required to provide a new set of
demonstrations. Such approaches can be broadly categorized as:

e Behavior Cloning: Expert demonstrates multiple trajectories. A mapping from
states (z;) to actions (a;) is then estimated using this data [139].

e Trajectory Learning: Multiple demonstrations are considered to be noisy
samples of an ideal trajectory the a demonstrator wishes to communicate [140].

e Inverse Optimal Control: The demonstrated trajectories are used to estimate



4.1. A FRAMEWORK FOR LEARNING BY OBSERVATION 54

a reward function that is optimized using a known/estimated model of the
system.

e Inverse Reinforcement Learning: Similar to inverse optimal control, but the
estimated reward function is optimized using reinforcement learning.

Using experts as a source of supervision for learning complex behaviors is only a
small part of how an agent can learn from other agents. In developmental psychology
it is well documented that infants engage in face-to-face interactions with their
mothers and over a lifetime it is very common for humans to learn from their peers
things about their environment that are not geared towards a particular end-task.
There are broadly five ways in which an agent can learn from experts/other agents:

1. Demonstrations of complex tasks.
2. Learning by passive observation of other agents [66].

3. Guided Exploration: Another agent provides cues on what to explore. This
can be considered as a case of providing weak supervision, where instead of
teaching an agent how to perform the task, the teacher provides hints about
what to explore. Such exploration may or may not be immediately useful to
the agent’s goals.

4. Active Imitation Learning: Instead of simply obtaining supervision from the
expert, the agent can query the expert as needed [141].

5. Learning about other Agents: Instead of learning a particular task, the agent’s
goal is to learn as much as possible about another agent. This process can
either enhance the knowledge of the agent or help in collaborative tasks with
the other agent later in time.

While there has been substantial research in (1), research in other problem setups
is much more limited. I will first present a framework for learning by observation
that enables all these forms of learning and present results on the task of rope
manipulation and indoor navigation. The formulations and results in this chapter
have been taken from my previous publications [86,87].

4.1 A Framework for Learning by Observation

Rizzolatti et al. [142,143| serendipitously discovered that some neurons in the
area F5 of the premotor cortex that fire when a macaque performs an action; also



4.1. A FRAMEWORK FOR LEARNING BY OBSERVATION 55

fire when the macaque does not perform the action, but simply observes a similar
action being performed by another macaque. Such neurons were termed as mirror
neurons. It was hypothesized that mirror neurons enable an animal to interpret the
actions of another animal by firing a group of neurons that would have fired if the
animal itself performed the task. In a more abstract sense, it means that an agent
can understand what another agent is doing by internally simulating how it would
perform the same actions as the another agent. While there is some controversy in
the research community about the specifics of mirror neurons [144], they do provide
a powerful idea for action understanding.

In the most general formulation, let S : {z9, 29, ..., 2%} be the sequence of raw
sensory observations of an agent makes of the other agent. If the agent possesses
an internal model that outputs a sequence of actions (a,; called as skill) required
to transition between a pair of observations {f,x7,,} (i.e., a; = (27,27, ,)), then
it could employ this model/skill to either repeat the demonstration (i.e. way #1,
#2) or if the agent is uncertain of its ability to repeat (because either its model is
imperfect or it was demonstrated a task that required skills it doesnot posses), it
could either ask for help from the other agent (i.e. way #4) or autonomously explore
its environment to become more capable of repeating what was demonstrated (i.e.
way #3). Note that this framing of the problem enables the agent to either stitch
skills it already possesses to perform new tasks or collect data by exploration to
learn newer skills as a result of observing another agent.

There are two components of the above formulation: (a) skill learning; (b) using
skills to imitate/explore. I will now describe them.

4.1.1 Learning a Model to Imitate

Let S : {z1,a1,x2,as,...,x7} be the sequence of observations and actions gener-
ated by the agent as it explores its environment using the policy a = 7wg(s). This
exploration data is used to learn the goal-conditioned skill policy (GSP) 7 takes as
input a pair of observations (z;, z,) and outputs sequence of actions (d@, : ay, as...ak)
required to reach the goal observation (z,) from the current observation (z;).

ar = (T, 245 0r) (4.1)

where states z;, z, are sampled from the S. The number of actions, K, is also inferred
by the model. We represent 7 by a deep network with parameters €, in order to
capture complex mappings from visual observations (x) to actions. 7w can be thought
of as a variable-step generalization of the inverse dynamics model [125], or as the
policy corresponding to a universal value function [145,146], with the difference that
x4 need not be the end goal of a task but can also be an intermediate sub-goal.



4.2. IMITATING VISUAL DEMONSTRATIONS 56

Robot execution

Human demonstration

Figure 4.1: We present a system where the robot is capable of manipulating a rope
into target configurations by combining a high-level plan provided by a human with
a learned low-level model of rope manipulation. A human provides the robot with
a sequence of images recorded while he manipulates the rope from an initial to
goal configuration. The robot uses a learned inverse dynamics model to execute
actions to follow the demonstrated trajectory. The robot uses a convolutional neural
network (CNN) for learning the inverse model in a self-supervised manner using 60K
interactions with the rope with no human supervision. The red heatmap on each
image of the robot’s execution trace shows the predicted location of the pick action
and the blue arrow shows the direction of the action. This image is best seen in
color.

4.2 Imitating Visual Demonstrations

Let the task to be imitated be provided as a sequence of images D : {x{, 24, ..., 2%}
captured when the expert demonstrates the task. This sequence of images D could
either be temporally dense or sparse. Our agent uses the learned GSP 7 to imitate the
sequence of visual observations D starting from its initial state z by following actions
predicted by m(zg, 2¢;0,). Let the observation after executing the predicted action be
x}. Since multiple actions might be required to reach close to z¢, the agent queries a
separate goal recognizer network to ascertain if the current observation is close to the
goal or not. If the answer is negative, the agent executes the action a = m(z{, 2¢; 6, ).
This process is repeated iteratively until the goal recognizer outputs that agent is
near the goal, or a maximum number of steps are reached. Let the observation of
the agent at this point be #;. After reaching close to the first observation (x¢) in the
demonstration, the agent sets its goal as (z¢) and repeats the process. The agent
stops when all observations in the demonstrations are processed.



4.3. EVALUATION PROCEDURE 57

4.2.1 Goal Recognizer

We train a goal recognizer network to figure out if the current goal is reached
and therefore allow the agent to take variable numbers of steps between goals. Goal
recognition is especially critical when the agent has to transit through a sequence
of intermediate goals, as is the case for visual imitation, as otherwise compounding
error could quickly lead to divergence from the demonstration. This recognition
is simple given knowledge of the true physical state, but difficult when working
with visual observations. Aside from the usual challenges of visual recognition, the
dependence of observations on the agent’s own dynamics further complicates goal
recognition, as the same goal can appear different while moving forward or turning
during navigation.

We pose goal recognition as a binary classification problem that given an obser-
vation z; and the goal x, infers if z; is close to x4 or not. Lacking expert supervision
of goals, we draw goal observations at random from the agent’s experience during
exploration, since they are known to be feasible. For each such pseudo-goal, we
consider observations that were only a few actions away to be positives (i.e., close
to the goal) and the remaining observations that were more than a fixed number of
actions (i.e., a margin) away as negatives. We trained the goal classifier using the
standard cross-entropy loss. Like the skill policy, our goal recognizer is conditioned
on the goal for generalization across goals. We found that training an independent
goal recognition network consistently outperformed the alternative approach that
augments the action space with a “stop” action. Making use of temporal proximity
as supervision has also been explored for feature learning in the concurrent work

of [147].

4.3 FEvaluation Procedure

The performance of the robot was evaluated by tasking it to reconfigure the rope
from a given initial configuration into target configurations of varying complexity
depicting “L", “S", “W" shapes and a knot.

The performance was quantitatively measured by calculating the distance between
the rope configurations in the sequence of images provided from the human demon-
stration and the sequence of images achieved by the robot after executing the actions
from the inverse dynamics model. The distance between two rope configurations is
computed by first segmenting the rope in each image, then aligning points in these
two segmentations with thin plate spline robust point matching (TPS-RPM) [148|
and calculating the mean pixel distance between the matched points. We compare
the performance of our method against a hand-engineered baseline, a nearest neigh-



4.4. RESULTS 58

bor baseline, and our method without imitation (see Section 9.3.1). Videos of the
self-supervised data collection, the demonstrations, and autonomous executions are
available at https://ropemanipulation.github.io/

4.3.1 Baseline

Hand-Engineered baseline: The first baseline we compare against is a hand-
engineered method that takes as input the sequence of images from the human
demonstration. For inferring which action should be executed to transform the rope
from the configuration in [; into the configuration in I;,, we first segment the rope
in both the images, and use TPS-RPM to register the segments. In the absence of a
model of rope dynamics, a simple way to move the rope into a target configuration is
to pick the rope at the point with the largest deformation in the first image relative
to the second and then drop the rope at the corresponding point in the second image.
As the point with largest distance may be an outlier, we use the point at the 90"
percentile of the deformation distances for the pick action.

Nearest Neighbor baseline: To evaluate whether the neural network simply
memorized the training data, we compared our method to a nearest neighbor baseline.
Given the current image (/;) and the target image in the human demonstration (17, ,),
a pair of images ([, [y11) in the training set that is closest to (I, I;,,) is determined
and the ground truth action used to collect this training sample is executed by the
robot. As the distance metric for nearest neighbor calculation, we used Euclidean
distance in raw RGB space after down-sampling images to 32 x 32.

No Imitation baseline: For understanding how critical is imitation for manipu-
lating the rope into desired shape, we evaluated the learned model by feeding in
only the initial and goal image (I, I+) without any intermediate steps. The inverse
model takes these images as inputs and the robot executes the predicted action and
image I5 is obtained. Next, the pair (Is, I7.) is fed into the inverse model to infer the
next action to execute and this process is repeated iteratively for the same number
of steps as in the human demonstration.

4.4 Results

Figure 4.2 qualitatively shows that using the learned inverse dynamics model,
the robot is capable of re-configuring the rope into many different shapes. It can
also be seen that when the rope is not bent sharply, the robot is more accurate at
manipulation.

Figure 4.3 compares the performance of our method against the hand-engineered,


https://ropemanipulation.github.io/

4.4. RESULTS 59

Knot (success)

Figure 4.2: Qualitative comparison of the robot’s performance in imitating the
human demonstration for arranging the rope into W, S, L and knot configurations.
The upper row in each example shows the sequence of demonstration images provided
as input to the robot and the second (lower) row shows the states achieved by the
robot as it tries to follow the demonstrated trajectory. The blue arrow on each image
of the robot’s execution trace shows the direction and the location of the pick point
of the action performed by the robot. Please see the supplementary materials on the
project website for more examples.

nearest neighbor and no-imitation baselines described in Section 9.3.1. Each subfigure
shows the performance for a different target configuration. The x-axis in each
subfigure corresponds to the number of intermediate images that were provided to
the robot via demonstration. The y-axis corresponds to the TPS-RPM distance
between the rope configuration achieved by the robot and the corresponding rope
configuration in the actual demonstration. Lower values indicate better performance.

For every sequence, mean accuracy and standard deviation are reported across
10 different repeats of two human demonstration sequences. The results demonstrate
that our method outperforms various baselines including a hand-engineered baseline
(i.e. TPS-RPM baseline), indicating that through self-supervision, the robot has
learned a dynamics model of rope motion that is useful for manipulation.

4.4.1 Importance of Imitation

How important are human demonstrations for manipulating the rope into a desired
configuration? Results in Figure 4.3 show that when the robot was only provided
the initial and final images instead of all the images in the human demonstration
sequence, the performance is significantly worse. Figure 4.3 further shows that
without imitation robot is able to tie the knot only 11/50 times instead of 19/50


https://ropemanipulation.github.io/

4.4. RESULTS 60

L Knot

Ours
Nearest Neighbor |

= No Imitation

Hand-Engineered |

TPS-RPM Error (pixels)
D

Knot Tying Success

( Tmitation?]| 30K | 60K
g W Yes  [6/50(19/50
140 b b P No 5/50 11/50

TPS-RPM Error (pixels)

Step

Figure 4.3: Performance comparison of the proposed method against the baselines
described in Section 4.3.1. Performance is measured as the TPS-RPM distance
metric between the rope configurations in the sequence of images achieved by the
robot and the ones provided by human demonstration. Lower distance indicates
better performance. Each subplot shows performance for a different target shape.
Our method outperforms the baseline methods.

times with imitation.

4.4.2 Generalization to other ropes

We tested if the learned model is successfully able to manipulate new ropes by
qualitatively evaluating performance on a white jute rope that was significantly stiffer
than the red rope used in the training and a black cotton rope that was significantly
thinner and less stiff than the red rope used in the training. We found that the robot
was successfully able to configure these ropes into relatively simpler “L" and “S"
shapes. Even though the model was trained using interaction data from a single rope,
it generalizes to other ropes. This shows that instead of learning features specific to
the particular rope used for data collection, our model learns features that generalize
to other ropes.



4.5. EXPERT GUIDED EXPLORATION 61

Knot Tying Success
Random|Active

13/50 [19/50

TPS-RPM Error

[=—60K (Random) | L

= 60K (Active)

L L
0 1 2
Step #

Figure 4.4: Using active data collection improves our capability in manipulating the
rope into desired shapes and tying knots.

One possible reason that the robot is unsuccessful at manipulating the white rope
into more curvy “W" and knot configurations is that the rope is too stiff to bend into
curves necessary for forming the “W" and the knot. With the black rope the robot
was able to successfully manipulate the rope until the penultimate step in tying a
knot, but failed at completing the knot. We also ran experiments where we changed
the background from green to white and found that our model was unsuccessful
at rope manipulation. This result is not surprising because all our training data
is collected using a single background and it is expected that with training data
collected on diverse backgrounds our method would be able to generalize to novel
backgrounds. The video demonstrations of these experiments are available at the
project website.

4.5 Expert Guided Exploration

Instead of providing a complete demonstration of how to perform the task,
sometimes a human/expert might simply provide a set of states which it deems
would be useful for an agent to explore. Can the agent make use of such hints to
improve its performance on a given end task? With randomized data collection it
is unlikely that the robot would place the rope in interesting configurations and
therefore the model may not be accurate at performing tasks such as knot-tying
that require moving the rope into complex configurations. In order to bias data
collection towards interesting configurations, we collected a set of 50 images of the
rope when it was manually arranged in a random configuration (i.e. the goal buffer).
We then used a model trained with 30K randomly collected data points and instead
of randomly sampling an action, we randomly sampled a image from the goal buffer


https://ropemanipulation.github.io/

4.6. RELATED WORK 62

and set that as the goal image. We passed the current and goal image into the
inverse model and used the action predicted by the inverse model for data collection.

Results in Figure 4.4 show that performance on knot tying improves to 38% from
26% using the biased data, thus indicating that using the strategy mentioned above
the agent was indeed able to bias its exploration in a manner that improved end-task
performance.

4.6 Related Work

Imitation Learning The two main threads of imitation learning are behavioral
cloning [62, 63|, which directly supervises the mapping of states to actions, and
inverse reinforcement learning [65,122,149-151], which recovers a reward function
that makes the demonstration optimal (or nearly optimal). Inverse RL is most
commonly achieved with state-actions, and is difficult to extend to fitting the reward
to observations alone, though in principle state occupancy could be sufficient. Recent
work in imitation learning [152-154| can generalize to novel goals, but require
a wealth of demonstrations comprised of expert state-actions for learning. Our
approach does not require expert actions at all.

Visual Demonstration The common scenario in LfD is to assume full knowl-
edge of expert states and actions during demonstrations, but several papers have
focused on relaxing this supervision to visual observations alone. [86] observe a
sequence of images from the expert demonstration for performing rope manipula-
tions. [147,155] imitate humans with robots by self-supervised learning but require
expert supervision at training time. Third person imitation learning [156] and the
concurrent work of imitation-from-observation [157] learn to translate expert observa-
tions into agent observations such that they can do policy optimization to minimize
the distance between the agent trajectory and the translated demonstration, but
they require demonstrations for learning. Visual servoing is a standard problem
in robotics [158] that seeks to take actions that align the agent’s observation with
a target configuration of carefully-designed visual features [159,160] or raw pixel
intensities [161]. Classical methods rely on fixed features or policies, but more
recently end-to-end learning has improved results [162, 163].

Manipulation of deformable objects has been of great interest to the
robotics community [164]. Prior works have considered problems such as surgi-
cal suturing [165,166], towel folding [167], knot tying and rope manipulation among
many others. Rope manipulation and knot tying are most closely related to our
work. Inoue et al. [168] investigated the problem of knot tying and following works
used motion planning [169], fixtures for open-loop execution [170] and robotic hands



4.6. RELATED WORK 63

with tactile feedback [171]. Morita et al. [172] developed a system for tying knots
from visual observations that makes use of knot theory [173] to identify a sequence
of knot states and then execute motor primitives to achieve these states. Wakamatsu
et al. [174] chose a sequence of robotic hand motion primitives from rope cross states
inferred by a planner to achieve a desired knot from a given initial state of the rope.
In contrast to these works, our goal is not to tie knots but to manipulate rope into
a general configuration by watching a human as she manipulates the rope. Our
system does not require any rope-specific knowledge and is therefore generalizable to
manipulating other deformable objects.



64

Chapter 5

Revisting Forward and Inverse
Models

In the previous chapter we used GSP for imitation. One critical challenge in
learning the GSP is that, in general, there are multiple possible ways of going
from one state to another: that is, the distribution of trajectories between states is
multi-modal. We address this issue with our novel forward consistency loss based on
the intuition that, for most tasks, reaching the goal is more important than how it is
reached. To operationalize this, we first learn a forward model that predicts the next
observation given an action and a current observation. We use the difference in the
output of the forward model for the GSP-selected action and the ground truth next
state to train the GSP. This loss has the effect of making the GSP-predicted action
consistent with the ground-truth action instead of exactly matching the actions
themselves, thus ensuring that actions that are different from the ground-truth—but
lead to the same next state—are not inadvertently penalized.

In addition to improving the GSP model, in this chapter we also investigate
how data collected from curiosity-driven exploration strategies affects the quality of
learned models as compared to random exploration.

5.1 Forward Consistency Loss

One way to account for multi-modality is by employing the likes of variational
auto-encoders [40,175]. However, in many practical situations it is not feasible to
obtain ample data for each mode. In this work, we propose an alternative based on
the insight that in many scenarios, we only care about whether the agent reached the
final state or not and the exact trajectory is of lesser interest. Instead of penalizing



5.1. FORWARD CONSISTENCY LOSS 65

By < L(og, Beg1)

N N . . fi d
L:(a'u(lt) L(ay, ay) »C($L+1~IL+1) L(a,ar) cor(:;i‘:‘?erncy
‘ . v : f
ag ay ‘/Et{r] ay ap < L(at, ar)
recurrent recurrent recurrent
state state state

forward
regularizer

Q Q
T

Gt—1 Ty Tg Gt

feed-forward C

Ty Tiq41 Qg1 Ty Tg Qp—1

- 5
L
—

&

&
8

Q

(a) Inverse Model  (b) Multi-step GSP  (c¢) Forward-regularized GSP  (d) Forward-consistent GSP
(ours)

Figure 5.1: The goal-conditioned skill policy (GSP) takes as input the current and
goal observations and outputs an action sequence that would lead to that goal. We
compare the performance of the following GSP models: (a) Simple inverse model;
(b) Mutli-step GSP with previous action history; (c¢) Mutli-step GSP with previous
action history and a forward model as regularizer, but no forward consistency; (d)
Mutli-step GSP with forward consistency loss proposed in this work.

the actions predicted by the GSP to match the ground truth, we propose to learn the
parameters of GSP by minimizing the distance between observation 2;,; resulting by
executing the predicted action a; = 7(xy, z441;0,) and the observation z,, 1, which is
the result of executing the ground truth action a; being used to train the GSP. In this
formulation, even if the predicted and ground-truth action are different, the predicted
action will not be penalized if it leads to the same next state as the ground-truth
action. While this formulation will not explicitly maintain all modes of the action
distribution, it will reduce the variance in gradients and thus help learning. We call
this penalty the forward consistency loss.

Note that it is not immediately obvious as to how to operationalize forward
consistency loss for two reasons: (a) we need the access to a good forward dynamics
model that can reliably predict the effect of an action (i.e., the next observation
state) given the current observation state, and (b) such a dynamics model should
be differentiable in order to train the GSP using the state prediction error. Both
of these issues could be resolved if an analytic formulation of forward dynamics is
known.

In many scenarios of interest, especially if states are represented as images, an



5.1. FORWARD CONSISTENCY LOSS 66

analytic forward model is not available. In this work, we learn the forward dynamics
f model from the data, and is defined as Z;.1 = f(xy, ar; 0y). Let T4yq = f(24, a4;0f)
be the state prediction for the action predicted by 7. Because the forward model is
not analytic and learned from data, in general, there is no guarantee that z,,1 = Z¢11,
even though executing these two actions, a;, a;, in the real-world will have the same
effect. In order to make the outcome of action predicted by the GSP and the
ground-truth action to be consistent with each other, we include an additional
term, |41 — @441]|3 in our loss function and infer the parameters 6; by minimizing
|Zes1—Te1 |3 + A||ep1 — 2421]|3, where ) is a scalar hyper-parameter. The first term
ensures that the learned forward model explains ground truth transitions (x, a;, z411)
collected by the agent and the second term ensures consistency. The joint objective
for training GSP with forward model consistency is:

min [z, — Teaalls + Moy — Zealls + Llar, @) (5.1)

™Y f
s.t. i'tJrl = f($t7 Qg ef)
JAZH_l = f(xh &t7 Hf)
dt = W(mt, Tt41;5 671')

Note that learning 6., 0, jointly from scratch is precarious, because the forward
model f might not be good in the beginning, and hence could make the gradient
updates noisier for 7. To address this issue, we first pre-train the forward model
with only the first term and GSP separately by blocking the gradient flow and then
fine-tune jointly.

Generalization to feature space dynamics Past work has shown that learn-
ing forward dynamics in the feature space as opposed to raw observation space is
more robust and leads to better generalization [85,176|. Following these works, we
extend the GSP to make predictions in feature representation ¢(x;), ¢(x;11) of the
observations x;, ;.1 respectively learned through the self-supervised task of action
prediction. The forward consistency loss is then computed by making predictions
in this feature space ¢ instead of raw observations. The optimization objective for
feature space generalization with mutli-step objective is shown in Equation (5.2).

Generalization to multi-step GSP We extend our one-step optimization to
variable length sequence of actions in a straightforward manner by having a multi-step
GSP 7, model with a step-wise forward consistency loss. The GSP 7, maintains
an internal recurrent memory of the system and outputs actions conditioned on
current observation x;, starting from x; to reach goal observation x7. The forward
consistency loss is computed at each time step, and jointly optimized with the action
prediction loss over the whole trajectory. The final multi-step objective with feature



5.2. EXPERIMENTS 67

space dynamics is as follows:

t=T

i, 3 (1oteeen) = Sl + M) = el + Llanin) (52

st. @) = f(d(e), as; ef)
Qg(xtﬂ) = f(d(x1), as;0¢)
a; = m(P(x1), p(x7); Ox)

where ¢(.) is represented by a CNN with parameters 6,. The number of steps taken
by the multi-step GSP 7, to reach the goal at inference is variable depending on the
decision of goal recognizer; described in next subsection. Note that, in this objective,
if ¢ is identity then the dynamics simply reduces to modeling in raw observation
space. We analyze feature space prediction in VizDoom 3D navigation and stick to
observation space in the rope manipulation and the office navigation tasks.

The multi-step forward-consistent GSP 7, is implemented using a recurrent
network which at every step takes as input the feature representation of the current
(¢p(zy)) state, goal (¢(x7)) states, action at the previous time step (a;—1) and the
internal hidden representation h;_; of the recurrent units and predicts a;. Note
that inputting the previous action to GSP 7, at each time step could be redundant
given that hidden representation is already maintaining a history of the trajectory.
Nonetheless, it is helpful to explicitly model this history. This formulation amounts
to building an auto-regressive model of the joint action that estimates probability
P(a|zy, a1, ...a4—1, 2, x4) at every time step. It is possible to further extend our
forward-consistent GSP 7, to build multi-step forward model, but we leave that
direction of future work.

5.2 Experiments

We evaluate our model by testing its performance on: rope manipulation using
Baxter robot, navigation of a wheeled robot in cluttered office environments, and
simulated 3D navigation. The key requirements of a good skill policy are that it should
generalize to unseen environments and new goals while staying robust to irrelevant
distractors in the observations. For rope manipulation, we evaluate generalization
by testing the ability of the robot to manipulate the rope into configurations such as
knots that were not seen during random exploration. For navigation, both real-world
and simulation, we check generalization by testing on a novel building/floor.



5.2. EXPERIMENTS 68

Step-1 Step-2 Step-3 Step-4

Camera to capture
RGB imagﬁes

Human Demo

Robot Failure Robot Success

Step-4 Step-5

Human Demo

Robot Success

(¢) Manipulating rope into ‘S’ shape

Figure 5.2: Qualitative visualization of results for rope manipulation task using Baxter
robot. (a) Our robotics system setup. (b) The sequence of human demonstration
images provided by the human during inference for the task of knot-tying (top row),
and the sequences of observation states reached by the robot while imitating the
given demonstration (bottom rows). (c) The sequence of human demonstration
images and the ones reached by the robot for the task of manipulating rope into ‘S’
shape. Our agent is able to successfully imitate the demonstration.

5.2.1 Ablations and Baselines

Our proposed formulation of GSP composed of following components: (a) recur-
rent variable-length skill policy network, (b) explicitly encoding previous action in
the recurrence, (c) goal recognizer, (d) forward consistency loss function, and (w)
learning forward dynamics in the feature space instead of raw observation space. We
systematically ablate these components of forward-consistent GSP, to quantitatively
review the importance of each component and then perform comparisons to the prior
approaches that could be deployed for the task of visual imitation.

The following methods will be evaluated and compared to in the subsequent
experiments section: (1) Classical methods: In visual navigation, we attempted to
compare against the state-of-the-art open source classical methods, namely, ORB-
SLAM2 [177,178| and Open-SFM [179]. (2) Inverse Model: [86] leverage vanilla



5.2. EXPERIMENTS 69

50

&
S

é Method Success %
g Inverse Model [Nair et.al. 2017] 36% =+ 9.6%
g Forward-regularized GSP 44% £ 9.9%
e

Forward-consistent GSP [Ours]  60% + 9.8%

N
5

Forward-consistent GSP [Ours]
=== Inverse Model [Nair et.al., 2017]

10
0 1 2 3 4 5 6

Step #
(a) TPS-RPM error for ‘S’ shape manipulation (b) Success rate for Knot-tying

Figure 5.3: GSP trained using forward consistency loss significantly outperforms
the baselines at the task of (a) manipulating rope into ‘S’ shape as measured by
TPS-RPM error and (b) knot-tying where we report success rate with bootstrap
standard deviation.

inverse dynamics to follow demonstration in rope manipulation setup. We compare
to their method in both visual navigation and manipulation. (3) GSP-NoPrevAction-
NoFwdConst is the ablation of our recurrent GSP without previous action history
and without forward consistency loss. (4) GSP-NoFwdConst refers to our recurrent
GSP with previous action history, but without forward consistency objective. (5)
GSP-FwdRegularizer refers to the model where forward prediction is only used to
regularize the features of GSP but has no role to play in the loss function of predicted
actions. The purpose of this variant is to particularly ablate the benefit of consistency
loss function with respect to just having forward model as feature regularizer. (6)
GSP refers to our complete method with all the components. We now discuss the
experiments and evaluate these baselines.

1) Goal Finding

We first tested if the GSP learned by the TurtleBot can enable it to find its way
to a goal that is within the same room from just a single image of the goal. To test
the extrapolative generalization, we keep the Turtlebot approximately 20-30 steps
away from the target location in a way that current and goal observations have no
overlap as shown in Figure ??7. We test the robot in an indoor office environment
on a different floor that it has never encountered before. We judge the robot to
be successful if it stops close to the goal and failure if it crashed into furniture or
does not reach the goal within 200 steps. Since the initial and goal images have
no overlap, classical techniques such as structure from motion that rely on feature
matching cannot be used to infer the executed action. Therefore, in order to reach



5.2. EXPERIMENTS 70

Model Name Run Id-1 Run Id-2 Run Id-3 Run Id-4 Run Id-5 Run 1d-6 Run Id-7 Run Id-8 Num Success
Random Search Fail Fail Fail Fail Fail Fail Fail Fail 0
Inverse Model [Nair et. al. 2017]| Fail Fail Fail Fail Fail Fail Fail Fail 0
GSP-NoPrevAction-NoFwdConst| 39 steps 34 steps  Fail Fail Fail Fail Fail Fail 2
GSP-NoFwdConst 22 steps 22 steps 39 steps 48 steps  Fail Fail Fail Fail 4
GSP (Ours) 119 steps 66 steps 144 steps 67 steps 51 steps  Fail 100 steps  Fail 6

Table 5.1: Quantitative evaluation of various methods on the task of navigating
using a single image of goal in an unseen environment. Each column represents
a different run of our system for a different initial/goal image pair. Our full GSP
model takes longer to reach the goal on average given a successful run but reaches
the goal successfully at a much higher rate.

the goal, the robot must explore its surroundings. We find that our GSP model
outperforms the baseline models in reaching the target location. Our model learns
the exploratory behavior of rotating in place until it encounters an overlap between
its current and goal image. Results are shown in Table 5.1 and videos are available
at the website .

2) Visual Imitation In the previous paragraph, we saw that the robot can
reach a goal that’s within the same room. However, our agent is unable to reach
far away goals such as in other rooms using just a single image. In such scenarios,
an expert might communicate instructions like go to the door, turn right, go to
the closest chair etc. Instead of language instruction, in our setup we provide a
sequence of landmark images to convey the same high-level idea. These landmark
images were captured from the robot’s camera as the expert moved the robot from
the start to a goal location. However, note that it is not necessary for the expert to
control the robot to capture the images because we don’t make use of the expert’s
actions, but only the images. Instead of providing the image after every action in
the demonstration, we only provided every fifth image. The rationale behind this
choice is that we want to sample the demonstration sparsely to minimize the agent’s
reliance on the expert. Such sub-sampling (as shown in Figure 5.4) provides an easy
way to vary the complexity of the task.

We evaluate via multiple runs of two demonstrations, namely, maze demonstration
where the robot is supposed to navigate through a maze-like path and perturbed loop
demonstration, where the robot is supposed to make a complete loop as instructed
by demonstration images. The loop demonstration is longer and more difficult than
the maze. We start the agent from different starting locations and orientations
with respect to that of demonstration. Each orientation is initialized such that no

'https://pathak22.github.io/zeroshot-imitation/


https://pathak22.github.io/zeroshot-imitation/

5.2. EXPERIMENTS 71

Demo Image-1

Initial Robot Tmage Robot WayPoint-1 Robot WayPoint-2 Robot WayPoint-3 Robot WayPoint-4 Robot WayPoint-5 Robot WayPoint-6

Figure 5.4: The performance of TurtleBot at following a visual demonstration given
as a sequence of images (top row). The TurtleBot is positioned in a manner such
that the first image in demonstration has no overlap with its current observation.
Even under this condition the robot is able to move close to the first demo image
(shown as Robot WayPoint-1) and then follow the provided demonstration until the
end. This also exemplifies a failure case for classical methods; there are no possible
keypoint matches between WayPoint-1 and WayPoint-2, and the initial observation
is even farther from WayPoint-1.

part of the demonstration’s initial frame is visible. Results are shown in Table 5.2.
When we sample every frame, our method and classical structure from motion can
both be used to follow the demonstration. However, at sub-sampling rate of five,
SIFT-based feature matching approaches did not work and ORBSLAM?2 [177] failed
to generate a map, whereas our method was successful. Notice that providing sparse
landmark images instead of dense video adds robustness to the visual imitation task.
In particular, consider the scenario in which the environment has changed since the
time the demonstration was recorded. By not requiring the agent to match every
demonstration image frame-by-frame, it becomes less sensitive to changes in the
environment.

5.2.2 3D Nayvigation in VizDoom

We have evaluated our approach on real-robot scenarios thus far. To further
analyze the performance and robustness of our approach through large scale ex-
periments, we setup the same navigation task as described in previous subsection
in a simulated VizDoom environment. Our goal is to measure: (1) the robustness
of each method with proper error bars, (2) the role of initial self-supervised data
collection for performance on visual imitation, (3) the quantitative difference in
modeling forward consistency loss in feature space in comparison to raw visual space.

In VizDoom, we collect data by deploying two types of exploration methods:



5.2. EXPERIMENTS 72

Magze Demonstration Loop Demonstration

Model Name Run-1 Run-2 Run-3 Run-1 Run-2 Run-3
SIFT 10% 5% 15% — — —
GSP-NoPrevAction-NoFwdConst 60% 70% 100%  — — —
GSP-NoFwdConst 65% 90% 100% 0% 0% 0%
GSP (ours) 100% 60% 100% 0% 100% 100%

Table 5.2: Quantitative evaluation of TurtleBot’s performance at following visual
demonstrations in two scenarios: maze and the loop. We report the % of landmarks
reached by the agent across three runs of two different demonstrations. Results show
that our method outperforms the baselines. Note that 3 more trials of the loop
demonstration were tested under significantly different lighting conditions and neither
model succeeded. Detailed results are available in the supplementary materials.

random exploration and curiosity-driven exploration [176]. The hypothesis is that
if the initial data collected by the robot is driven by a better strategy than just
random, this should eventually help the agent follow long demonstrations better.
Our environment consists of 2 maps in total. We train on one map with 5 different
starting positions for collecting exploration data. For validation, we collect 5 human
demonstrations in a map with the same layout as in training but with different
textures. For zero-shot generalization, we collect 5 human demonstrations in a novel
map layout with novel textures. Exact details for data collection and training setup
are in the supplementary materials of the paper [87].

Metric

We report the median of maximum distance reached by the robot in following
the given sequence of demonstration images. The maximum distance reached is the
distance of farthest landmark point that the agent reaches contiguously, i.e., without
missing any intermediate landmarks. Measuring the farthest landmark reached does
not capture how efficiently it is reached. Hence, we further measure efficiency of the
agent as the ratio of number of steps taken by the agent to reach farthest contiguous
landmark with respect to the number of steps shown in human demonstrations.

Visual Imitation

The task here is same as the one in real robot navigation where the agent is
shown a sparse sequence of images to imitate. The results are in Table 5.3. We



5.3. CONCLUSIONS 73

Same Map, Same Texture Same Map, Diff Texture Diff Map, Diff Texture
Model Name Median % Efficiency % Median % Efficiency % Median % Efficiency %

Random Exploration |for Data Collection: ‘ ‘

GSP-NoFwdConst  63.2 £ 5.7 364 +3.3 3224+0.7 289+4.0 345+06 23.1+24
GSP (ours pixels) [62.2 £ 5.1 43.0+26 (324 +0.8 30.9+29 354+ 1.1 29.3+ 3.9
GSP (ours features) [68.9 = 6.9 53.9+4.0 (324 £+ 0.7 474 £ 7.6 |39.1 £ 2.0 304 £+ 2.5

Curiosity-driven Ezploration for Data Collection:

GSP-NoFwdConst |78.2 £ 2.3 63.0+ 4.3 (432 4+ 26 339+ 3.0 [402+40 273 +£1.9
GSP-FwdRegularizer|78.4 + 3.4 59.8 £4.1 [50.6 = 4.7 30.9 £ 3.0 |37.9 £ 1.1 28.9 &£ 1.7
GSP (ours pixels) |78.2 £3.4 65.2+42 (471 £4.7 324 £+ 3.0 |44.8 £4.0 295+ 1.9
GSP (ours features) |78.2 + 4.6 67.0+ 3.3 (494 +4.8 269+ 1.5 |47.1 £ 3.0 24.1 £ 1.7

Table 5.3: Quantitative evaluation of our proposed GSP and the baseline models
at following visual demonstrations in VizDoom 3D Navigation. Medians and 95%
confidence intervals are reported for demonstration completion and efficiency over 50
seeds and 5 human paths per environment type.

found that the exploration data collected via curiosity significantly improves the final
imitation performance across all methods including the baselines with respect to
random exploration. Our baseline GSP model with a forward regularizer instead of
consistency loss ends up overfitting to the training layout. In contrast, our forward-
consistent GSP model outperforms other methods in generalizing to new map with
novel textures. This indicates that the forward consistency is possibly doing more
than just regularizing the policy features. Training forward consistency loss in feature
space further enhances the generalization even when both pixel and feature space
models perform similarly on training environment.

5.3 Conclusions

The results demonstrate that the forward-consistency loss helps in learning better
dynamics models that significantly improves performance on the tasks of knot-tying
and visual navigation. Moreover, results in VizDoom (section 5.2.2) show that using
data collected by curiosity-driven exploration leads to learning of better models as
compared to data collected via random exploration. These results taken together
suggest that better exploration strategies for collecting data and improvements in
model can improve the accuracy of imitation.

In the experiments presented above we have shown how an agent can imitate
by observing a single visual demonstration provided by the expert. An interesting



5.3. CONCLUSIONS 74

challenge for future research is how can an agent learn to perform the (N + 1) task
without any demonstration after having received demonstration for N tasks.



75

Chapter 6

Exploration

As human agents, we are accustomed to operating with rewards that are so sparse
that we only experience them once or twice in a lifetime, if at all. To a three-year-old
enjoying a sunny Sunday afternoon on a playground, most trappings of modern
life — college, good job, a house, a family — are so far into the future, they provide
no useful reinforcement signal. Yet, the three-year-old has no trouble entertaining
herself in that playground using what psychologists call intrinsic motivation [180)]
or curiosity [181]. Motivation/curiosity have been used to explain the need to
explore the environment and discover novel states. The French word flineur perfectly
captures the notion of a curiosity-driven observer, the “deliberately aimless pedestrian,
unencumbered by any obligation or sense of urgency” (Cornelia Otis Skinner). More
generally, curiosity is a way of learning new skills which might come handy for
pursuing rewards in the future.

Similarly, in reinforcement learning, intrinsic motivation/rewards become critical
whenever extrinsic rewards are sparse. Most formulations of intrinsic reward can be
grouped into two broad classes: 1) encourage the agent to explore “novel” states [182—
184] or, 2) encourage the agent to perform actions that reduce the error/uncertainty
in the agent’s ability to predict the consequence of its own actions (i.e. its knowledge
about the environment) [185-190].

Measuring ‘“novelty” requires a statistical model of the distribution of the envi-
ronmental states, whereas measuring prediction error/uncertainty requires building
a model of environmental dynamics that predicts the next state (s;11) given the
current state (s;) and the action (a;) executed at time ¢. Both these models are hard
to build in high-dimensional continuous state spaces such as images. An additional
challenge lies in dealing with the stochasticity of the agent-environment system, both
due to the noise in the agent’s actuation, which causes its end-effectors to move in a
stochastic manner, and, more fundamentally, due to the inherent stochasticity in



76

the environment. To give the example from [186], if the agent receiving images as
state inputs is observing a television screen displaying white noise, every state will
be novel as it would be impossible to predict the value of any pixel in the future.
This means that the agent will remain curious about the television screen because it
is unaware that some parts of the state space simply cannot be modeled and thus
the agent can fall into an artificial curiosity trap and stall its exploration. Other
examples of such stochasticity include appearance changes due to shadows from other
moving entities, presence of distractor objects, or other agents in the environment
whose motion is not only hard to predict but is also irrelevant to the agent’s goals.
Somewhat different, but related, is the challenge of generalization across physically
(and perhaps also visually) distinct but functionally similar parts of an environment,
which is crucial for large-scale problems. One proposed solution to all these problems
is to only reward the agent when it encounters states that are hard to predict but
are “learnable” [185]. However, estimating learnability is a non-trivial problem [184].

This work belongs to the broad category of methods that generate an intrinsic
reward signal based on how hard it is for the agent to predict the consequences of
its own actions However, we manage to escape most pitfalls of previous prediction
approaches with the following key insight: we only predict those changes in the
environment that could possibly be due to the actions of our agent or affect the
agent, and ignore the rest. That is, instead of making predictions in the raw sensory
space (e.g. pixels), we transform the sensory input into a feature space where only
the information relevant to the action performed by the agent is represented. We
learn this feature space using self-supervision — training a neural network on a proxy
inverse dynamics task of predicting the agent’s action given its current and next
states. Since the neural network is only required to predict the action, it has no
incentive to represent within its feature embedding space the factors of variation
in the environment that do not affect the agent itself. We then use this feature
space to train a forward dynamics model that predicts the feature representation of
the next state, given the feature representation of the current state and the action.
We provide the prediction error of the forward dynamics model to the agent as an
intrinsic reward to encourage its curiosity.

The role of curiosity has been widely studied in the context of solving tasks with
sparse rewards. In our opinion, curiosity has two other fundamental uses. Curiosity
helps an agent explore its environment in the quest for new knowledge (a desirable
characteristic of exploratory behavior is that it should improve as the agent gains
more knowledge). Further, curiosity is a mechanism for an agent to learn skills that
might be helpful in future scenarios. In this paper, we evaluate the effectiveness of
our curiosity formulation in all three of these roles.

We first compare the performance of an A3C agent [191] with and without



6.1. CURIOSITY-DRIVEN EXPLORATION 7

the curiosity signal on 3-D navigation tasks with sparse extrinsic reward in the
VizDoom environment. We show that a curiosity-driven intrinsic reward is crucial
in accomplishing these tasks (see Section 6.3.1). Next, we show that even in the
absence of any extrinsic rewards, a curious agent learns good exploration policies.
For instance, an agent trained only with curiosity as its reward is able to cross
a significant portion of Level-1 in Super Mario Bros. Similarly in VizDoom, the
agent learns to walk intelligently along the corridors instead of bumping into walls
or getting stuck in corners (see Section 6.3.2). A question that naturally follows is
whether the learned exploratory behavior is specific to the physical space that the
agent trained itself on, or if it enables the agent to perform better in unseen scenarios
too? We show that the exploration policy learned in the first level of Mario helps
the agent explore subsequent levels faster, while the intelligent walking behavior
learned by the curious VizDoom agent transfers to a completely new map with new
textures (see Section 6.3.3). These results suggest that the proposed method enables
an agent to learn generalizable skills even in the absence of an explicit goal.

6.1 Curiosity-Driven Exploration

Our agent is composed of two subsystems: a reward generator that outputs
a curiosity-driven intrinsic reward signal and a policy that outputs a sequence of
actions to maximize that reward signal. In addition to intrinsic rewards, the agent
optionally may also receive some extrinsic reward from the environment. Let the
intrinsic curiosity reward generated by the agent at time ¢ be r! and the extrinsic
reward be r¢. The policy sub-system is trained to maximize the sum of these two
rewards 7, = i + ¢, with 7§ mostly (if not always) zero.

We represent the policy m(s¢; 8p) by a deep neural network with parameters 6p.
Given the agent in state s;, it executes the action a; ~ 7(s;; 0p) sampled from the
policy. #p is optimized to maximize the expected sum of rewards,

max Er(s,:00) [2e7] (6.1)
P

Unless specified otherwise, we use the notation 7(s) to denote the parameterized
policy 7(s;6p). Our curiosity reward model can potentially be used with a range of
policy learning methods; in the experiments discussed here, we use the asynchronous
advantage actor critic policy gradient (A3C) [191] for policy learning. Our main
contribution is in designing an intrinsic reward signal based on prediction error
of the agent’s knowledge about its environment that scales to high-dimensional
continuous state spaces like images, bypasses the hard problem of predicting pixels



6.1. CURIOSITY-DRIVEN EXPLORATION 78

i ri
t 4
ICM ICM
Ara
e Hst+1) iooe > it
St--~ -S4l 4

P ——
>

S
(‘F\
m
> Zo
gz
® 2
L
<
&
N~—
=
—

ai4+1
it i i a St

Figure 6.1: The agent in state s; interacts with the environment by executing an
action a; sampled from its current policy 7 and ends up in the state s;. ;. The
policy 7 is trained to optimize the sum of the extrinsic reward (rf{) provided by
the environment E and the curiosity based intrinsic reward signal (r!) generated
by our proposed Intrinsic Curiosity Module (ICM). ICM encodes the states s;, s;11
into the features ¢(s;), ¢(s441) that are trained to predict a; (i.e. inverse dynamics
model). The forward model takes as inputs ¢(s;) and a; and predicts the feature
representation gZ;(sHl) of s;y1. The prediction error in the feature space is used as the
curiosity based intrinsic reward signal. As there is no incentive for ¢(s;) to encode
any environmental features that can not influence or are not influenced by the agent’s
actions, the learned exploration strategy of our agent is robust to uncontrollable
aspects of the environment.

and is unaffected by the unpredictable aspects of the environment that do not affect
the agent.

6.1.1 Prediction error as curiosity reward

Making predictions in the raw sensory space (e.g. when s; corresponds to images)
is undesirable not only because it is hard to predict pixels directly, but also because
some part of the input sensory space could be unpredictable and inconsequential
to the agent, for e.g., the movement and location of tree leaves in a breeze in the
environment.

For determining a good feature space for making future predictions, let’s divide
all sources that can influence the agent’s observations into three cases: (1) things
that can be controlled by the agent; (2) things that the agent cannot control but
that can affect the agent (e.g. a vehicle driven by another agent), and (3) things



6.1. CURIOSITY-DRIVEN EXPLORATION 79

out of the agent’s control and not affecting the agent (e.g. moving leaves). A good
feature space for curiosity should model (1) and (2) and be unaffected by (3). This
latter is because, if there is a source of variation that is inconsequential for the agent,
then the agent has no incentive to know about it.

6.1.2 Self-supervised prediction for exploration

Instead of hand-designing features for every environment, our aim is to come
up with a general mechanism for learning feature representations such that the
prediction error in the learned feature space provides a good intrinsic reward signal.
Given the raw state s;, we encode it using a deep neural network into a feature vector
¢(st;0), denoted as ¢(s;) for succinctness. We propose to learn the parameters of
this feature encoder using two sub-modules described as follows.

The first sub-module is the neural network g which takes the feature encoding
&(st), d(si11) of two consequent states as input and predicts the action a; taken by
the agent to move from state s; to s;y1, defined as:

ar = 9(#(s0), 6 (s111): 6 ) (62

where, a; is the predicted estimate of the action a;. The neural network parameters
01,0 are trained to optimize,

min Ly(ay, az) (6.3)
01,0
where, L; is the loss function that measures the discrepancy between the predicted
and actual actions. L; is modeled as soft-max loss across all possible actions when
a; is discrete, and euclidean regression loss for continuous actions a;. This learned
function g is also known as the inverse dynamics model and the tuple (s, as, S¢41)
required to learn g is obtained while the agent interacts with the environment using
its current policy 7(s).
In addition to the inverse dynamics model, we train another sub-module that
takes as inputs a; and ¢(s;) to predict the feature encoding of the state at time step
t+1,

Os141) = f<¢(5t),at; 9F> (6.4)

where ¢(s,41) is the predicted estimate of ¢(s,41). The function f is also known as
the forward dynamics model and is trained to optimize the regression loss,

min Lp <$<3t+1): ¢(5t)> (6.5)

0r,0E



6.2. EXPERIMENTAL SETUP 80

Finally, the intrinsic reward signal 7! is computed as,

i = 2l9(se1) = élsea) 3 (6.6)

where 1 > 0 is a scaling factor. In order to generate the curiosity-based intrinsic
reward, we jointly optimize the inverse and forward dynamics loss described in
equations (6.3) and (6.5) respectively. We refer to this proposed curiosity formulation
as Intrinsic Curiosity Module (ICM). The inverse model helps learn a feature space
that encodes information relevant for predicting the agent’s actions only and the
forward model error makes this learned feature representation more predictable as
long as it is rich enough to capture inverse dynamics. As there is no incentive for this
feature space to encode any environmental features that are not influenced by the
agent’s actions, our agent will receive no rewards for reaching environmental states
that are inherently unpredictable and its exploration strategy will be robust to the
presence of distractor objects, changes in illumination, or other nuisance sources of
variation in the environment. See Figure 6.1 for illustration of the formulation.

The overall optimization problem for learning the agent is a composition of
equations (6.1), (6.3) and (6.5), defined as

min - )\]Ew(st;gp)[Ztrt] + (1 - ﬂ)L[ + BLF (67)
0p,01,0r,0E

where 0 < 5 < 1 is a scalar that weighs the inverse model loss against the forward
model loss and A > 0 is a scalar that weighs the importance of the policy gradient
loss against the importance of learning the intrinsic reward signal.

The use of inverse models has been investigated to learn features for recognition
tasks [48,49,85|. Agrawal et al. [85] also used the forward model as a regularizer for
the features with no policy learning, while we use it to generate the curiosity reward
for training our agent’s policy.

6.2 Experimental Setup

To evaluate our curiosity module on its ability to improve exploration and provide
generalization to novel scenarios, we use two simulated environments.

Environments The first environment is the VizDoom [192] game where we consider
the 3-D navigation task with four discrete actions — forward, left, right and no-action.
Our testing setup in all the experiments is the ‘DoomMyWayHome-v0’ environment



6.2. EXPERIMENTAL SETUP 81

(a) Input snapshot in VizDoom (b) Input w/ noise
Figure 6.2: Frames from VizDoom 3-D environment which agent takes as input: (a)
Usual 3-D navigation setup; (b) Setup when uncontrollable noise is added to the
input.

which is available as part of OpenAl Gym [193]. The map consists of 9 rooms
connected by corridors and the agent is tasked to reach some fixed goal location
from its spawning location. Episodes are terminated either when the agent reaches
fixed goal or if the agent exceeds a maximum of 2100 time steps. The agent is only
provided a sparse terminal reward of +1 if it finds the vest and zero otherwise. For
generalization experiments, we pre-train on a different map with different random
textures from [194] with 2100 steps long episodes as there is no goal in pre-training.
Sample frames from VizDoom are shown in Figure 6.2a, and maps are explained in
Figure 6.3. It takes approximately 350 steps for an optimal policy to reach the vest
location from the farthest room in this map (sparse reward).

Our second environment is the classic Nintendo game Super Mario Bros [195].
We consider four levels of the game: pre-training on the first level and showing
generalization on the subsequent levels. In this setup, we reparametrize the action
space of the agent into 14 unique actions following [195]. This game is played using a
joystick allowing for multiple simultaneous button presses, where the duration of the
press affects what action is being taken. This property makes the game particularly
hard, e.g. to make a long jump over tall pipes or wide gaps, the agent needs to
predict the same action up to 12 times in a row, introducing long-range dependencies.
All our experiments on Mario are trained using curiosity signal only, without any
reward from the game.



6.3. EXPERIMENTS 82

_ |
— '

Room: 17
(“very sparse”)

(a) Train Map Scenario (b) Test Map Scenario
Figure 6.3: Maps for VizDoom 3-D environment: (a) For generalization experiments
(c.f. Section 6.3.3), map of the environment where agent is pre-trained only using
curiosity signal without any reward from environment. ‘S’ denotes the starting
position. (b) Testing map for VizDoom experiments. Green star denotes goal
location. Blue dots refer to 17 agent spawning locations in the map in the “dense’
case. Rooms 13, 17 are the fixed start locations of agent in “sparse” and “very sparse’
reward cases respectively. Note that textures are also different in train and test

9

)
maps.

Baseline Methods We compare our model (denoted as ‘ICM + A3C’) against
(a) vanilla ‘A3C’ with e-greedy exploration; (b) ‘ICM-pixels + A3C’ where we
predict the next observation in the pixel space instead of the feature space of the
inverse model (see supp. materials for implementation details). The performance
comparison between ‘ICM-pixels + A3C’ and ‘ICM + A3C’ is indicative of pros/cons
of our method over established methods of computing curiosity reward by making
predictions in observation space [186,189]; (¢) comparison with state-of-the-art
exploration methods based on variational information maximization (VIME) [190]
criterion.

6.3 Experiments

Three broad settings are evaluated: a) sparse extrinsic reward on reaching a
goal (Section 6.3.1); b) exploration with no extrinsic reward (Section 6.3.2); and c)
generalization to novel scenarios (Section 6.3.3). Generalization is evaluated on a



6.3. EXPERIMENTS 83

ICMRRA3C 127 ICMRER3C 127 ICMR+RA3C
—— ICMRpixels)R+RA3C —— ICMRpixels)R-RA3C —— ICMRpixels)R+-RA3C
ICMRaenc)R-A3C 1.01—— ICMRaenc)R-R3C 1.01—— ICMRaenc)R-R3C
A3C — A3C — A3C

°

° ° °
S & ®

ExtrinsicRRewardsRerfEpisode
°

°
o
°
5

1 2 3 4 5 6 7 8 9 2 4 6 8 10 12 14 16 18 12 3 4 5 6 7 8 9 10
NumberRfRrainingRtepsRinRnillions) NumberRfRrainingRtepsRinRnillions) NumberRfRrainingRtepsRinRnillions)

(a) “dense reward” (b) “sparse reward” (c) “very sparse reward”

Figure 6.4: Comparing the performance of the A3C agent with no curiosity (blue)
against the curiosity in pixel space agent (green) and the proposed curious ICM-A3C
agent (orange) as the hardness of the exploration task is gradually increased from
left to right. Exploration becomes harder with larger distance between the initial
and goal locations: “dense”, “sparse” and “very sparse”. The results depict that
succeeding on harder exploration task becomes progressively harder for the baseline
A3C, whereas the curious A3C is able to achieve good score in all the scenarios. Pixel
based curiosity works in dense and sparse but fails in very sparse reward setting.
The protocol followed in the plots involves running three independent runs of each
algorithm. Darker line represents mean and shaded area represents mean + standard

error of mean. We did not perform any tuning of random seeds.
novel map with novel textures in VizDoom and on subsequent game levels in Mario.

6.3.1 Sparse Extrinsic Reward Setting

In the ‘DoomMyWayHome-v0’ task (section 6.2) agent is provided with a sparse
extrinsic reward only when it finds the goal located at a fixed location in the map.
The episode terminates upon reaching goal or after a maximum of 2100 steps We
systematically varied the difficulty of this task and constructed “dense”, “sparse” and
“very-sparse” reward (see Figure 6.3b) scenarios by varying the distance between the
initial spawning location of the agent and the location of the goal. In the “dense’
reward case, the agent is randomly spawned in any of the 17 possible spawning
locations uniformly distributed across the map. This is not a hard exploration task
because sometimes the agent is randomly initialized close to the goal and therefore by
random e-greedy exploration it can reach the goal with reasonably high probability.
In the “sparse” and “very sparse” reward cases, the agent is always spawned in
Room-13 and Room-17 respectively which are 270 and 350 steps away from the

9



6.3. EXPERIMENTS 84

1.2+
ICMR+RA3C

—— |ICMRpixels)R+PA3C

=
o
1

o
(o]
1

o
(o)}
1

0.4 -

ExtrinsicRewardsRerREpisode

o
o
1

O 2 4 6 8 10 12 14 16 18 20
NumberRfRrainingRBtepsRinRnillions)

Figure 6.5: Evaluating the robustness of ICM to the presence of uncontrollable
distractors in the environment. We created such a distractor by replacing 40% of the
visual observation of the agent by white noise (see Figure 6.2b). The results show
that while ICM succeeds most of the times, the pixel prediction model struggles.

goal under an optimal policy. A long sequence of directed actions is required to reach
the goals from these rooms, making these settings hard goal directed exploration
problems.

Results in Figure 6.4 show that curious agents learn much faster indicating
that their exploration is more effective in compared to e-greedy exploration of the
baseline agent. One possible explanation of the inferior performance of ICM-pixels
in comparison to ICM is that in every episode the agent is spawned in one out of
seventeen rooms with different textures. It is hard to learn a pixel-prediction model
as the number of textures increases.

In the “sparse” reward case, as expected, the baseline A3C agent fails to solve the



6.3. EXPERIMENTS 85

Figure 6.6: Each column in the figure shows the coverage of an agent by coloring
the rooms it visits during 2100 steps of exploration. The red arrow shows the initial
location and orientation of the agent at the start of the episode The first three (in
green) and the last two columns (in blue) show visitation of curious (ICM) and
randomly exploring agents respectively. The results clearly show that the curious
agent trained with intrinsic rewards explores a significantly larger number of rooms
as compared to a randomly exploring agent.

task, while the curious A3C agent is able to learn the task quickly. Note that ICM-
pixels and ICM have similar convergence because, with a fixed spawning location
of the agent, the ICM-pixels encounters the same textures at the starting of each
episode which makes learning the pixel-prediction model easier as compared to the
“dense” reward case. Finally, in the “very sparse” reward case, both the A3C agent
and ICM-pixels never succeed, while the ICM agent achieves a perfect score in 66%
of the random runs. This indicates that ICM is better suited than ICM-pixels and
vanilla A3C for hard goal directed exploration tasks.

Robustness to uncontrollable dynamics For testing the robustness of the
proposed ICM formulation to changes in the environment that do not affect the
agent, we augmented the agent’s observation with a fixed region of white noise which
made up 40% of the image (see Figure 6.2b). In VizDoom 3-D navigation, ideally
the agent should be unaffected by this noise as the noise does not affect the agent
in anyway and is merely a nuisance. Figure 6.5 compares the performance of ICM
against some baseline methods on the “sparse” reward setup described above. While,
the proposed ICM agent achieves a perfect score, ICM-pixels suffers significantly
despite having succeeded at the “sparse reward” task when the inputs were not
augmented with any noise (see Figure 6.4b). This indicates that in contrast to
ICM-pixels, ICM is insensitive to nuisance changes in the environment.

Comparison to other baselines One possible reason for superior performance of
the curious agent is that the intrinsic reward signal is simply acting as a regularizer
by providing random rewards that push the agent out of the local minima. We sys-
tematically tested this hypothesis using many different random reward distributions



6.3. EXPERIMENTS 86

on the “sparse VizDoom" task and found that with just random rewards the agents
fail on sparse reward tasks. Please see supplementary materials for more details.
Comparison to the state of the art TRPO-VIME [190] agent in the table below
shows that the ICM agent is superior in performance. The hyper-parameters and
accuracy for TRPO and VIME agents follow from the concurrent work [196].

Method Mean (Median) Score
(“sparse” reward setup)  (at convergence)
TRPO 26.0 % (0.0 %)
A3C 0.0% (0.0 %)
VIME + TRPO 46.1 % ( 27.1 %)
ICM + A3C 100.0 % (100.0 %)

6.3.2 No Reward Setting

A good exploration policy is one which allows the agent to visit as many states
as possible even without any goals. In order to test if our agent can learn a good
exploration policy, we trained it on VizDoom and Mario without any rewards from
the environment. We then evaluated what portion of the map was explore (for
VizDoom), and how much progress it made (for Mario) in this setting. To our
surprise, we have found that in both cases, the no-reward agent was able to perform
quote well (see video at http://pathak22.github.io/noreward_rl/).

VizDoom: Coverage during Exploration. An agent trained with no extrin-
sic rewards was able to learn to navigate corridors, walk between rooms and explore
many rooms in the 3-D Doom environment. On many occasions, the agent traversed
the entire map and reached rooms that were farthest away from the room it was
initialized in. Given that the episode terminates in 2100 steps and farthest rooms are
over 250 steps away (for an optimally-moving agent), this result is quite remarkable,
demonstrating that it is possible to learn useful skills without the requirement of any
external supervision of rewards. Example explorations are shown in Figure 6.6. The
first 3 maps show our agent explore a much larger state space without any extrinsic
signal, compared to a random exploration agent (last two maps), which often has
hard time getting around local minima of state spaces, e.g. getting stuck against a
wall and not able to move (see video).

Mario: Learning to play with no rewards. Without any extrinsic reward
from environment, our Mario agent can learn to cross over 30% of Level-1. The
agent received no reward for killing or dodging enemies or avoiding fatal events,
yet it automatically discovered these behaviors (see video). One possible reason is


http://pathak22.github.io/noreward_rl/

6.3. EXPERIMENTS 87

Level Ids Level-1 Level-2 Level-3

Accuracy Scratch | Run as is Fine-tuned Scratch Scratch Run asis Fine-tuned Scratch Scratch
Iterations 1.5M 0 1.5M 1.5M 3.56M 0 1.5M 1.5M 5.0M
Mean + stderr  |711 = 59.3|31.9 + 4.2 466 4+ 37.9 399.7 £ 22.5455.5 £+ 33.4/1319.3 £ 9.797.5 £ 174 11.8 £ 3.342.2 £ 6.4
% distance > 200(50.0 = 0.0 0 642 £ 56 88.2+33 69.6=£57|500x£00 15+14 0 0

% distance > 400(35.0 + 4.1 0 63.6 6.6 332+71 519+£57|84+28 0 0 0

% distance > 600[35.8 = 4.5 0 426 £6.1 149+44 281+54 0 0 0 0

Table 6.1: Quantitative evaluation of the agent trained to play Super Mario Bros.
using only curiosity signal without any rewards from the game. The policy learnt on
Level-1 is evaluated both when it is is run “as is”, and further fine-tuned on subsequent
levels. The results are compared to settings when Mario agent is trained from scratch
in Level-2,3 using only curiosity without any extrinsic rewards. Evaluation metric is
based on the distance covered by the Mario agent.

because getting killed by the enemy will result in only seeing a small part of the
game space, making its curiosity saturate. In order to remain curious, it is in the
agent’s interest to learn how to kill and dodge enemies so that it can reach new
parts of the game space. This suggests that curiosity provides indirect supervision
for learning interesting behaviors.

To the best of our knowledge, this is the first demonstration where the agent
learns to navigate in a 3D environment and discovers how to play a game by making
use of relatively complex visual imagery directly from pixels, without any extrinsic
rewards. There are several prior works that use reinforcement learning to navigate
in 3D environments from pixel inputs or playing ATARI games such as [3,191,197|,
but they rely on intermediate external rewards provided by the environment.

6.3.3 Generalization to Novel Scenarios

In the previous section we showed that our agent learns to explore large parts
of the space where its curiosity-driven exploration policy was trained. However
it remains unclear, when exploring a space, how much of the learned behavior is
specific to that particular space and how much is general enough to be useful in novel
scenarios? To investigate this question, we train a no reward exploratory behavior
in one scenario (e.g. Level-1 of Mario) and then evaluate the resulting exploration
policy in three different ways: a) apply the learned policy “as is” to a new scenario;
b) adapt the policy by fine-tuning with curiosity reward only; c¢) adapt the policy
to maximize some extrinsic reward. Happily, in all three cases, we observe some
promising generalization results:



6.3. EXPERIMENTS 88

Evaluate “as is”: The distance covered by the agent on Levels 1, 2, and 3 when
the policy learned by maximizing curiosity on Level-1 of Mario is executed without
any adaptation is reported in Table 6.1. The agent performs surprisingly well on
Level 3, suggesting good generalization, despite the fact that Level-3 has different
structures and enemies compared to Level-1. However, note that running “as is”
on Level-2 does not do well. At first, this seems to contradict the generalization
results on Level-3. However, note that Level-3 has similar global visual appearance
(day world with sunlight) to Level-1, whereas Level-2 is significantly different (night
world). If this is indeed the issue, then it should be possible to quickly adapt the
agent’s exploration policy to Level-2 with a little bit of “fine-tuning”. We will explore
this below.

Fine-tuning with curiosity only: From Table 6.1 we see that when the agent
pre-trained (using only curiosity as reward) on Level-1 is fine-tuned (using only
curiosity as reward) on Level-2 it quickly overcomes the mismatch in global visual
appearance and achieves a higher score than training from scratch with the same
number of iterations. Interestingly, training “from scratch” on Level-2 is worse than
the fine-tuned policy, even when training for more iterations than pre-training +
fine-tuning combined. One possible reason is that Level-2 is more difficult than
Level-1, so learning the basic skills such as moving, jumping, and killing enemies
from scratch is harder than in the relative “safety” of Level-1. This result, therefore
might suggest that first pre-training on an earlier level and then fine-tuning on a
later one produces a form of curriculum which aids learning and generalization. In
other words, the agent is able to use the knowledge it acquired by playing Level-1
to better explore the subsequent levels. Of course, the game designers do this on
purpose to allow the human players to gradually learn to play the game.

However, interestingly, fine-tuning the exploration policy pre-trained on Level-1
to Level-3 deteriorates the performance, compared to running “as is”. This is because
Level-3 is very hard for the agent to cross beyond a certain point — the agent hits
a curiosity blockade and is unable to make any progress. As the agent has already
learned about parts of the environment before the hard point, it receives almost
no curiosity reward and as a result it attempts to update its policy with almost
zero intrinsic rewards and the policy slowly degenerates. This behavior is vaguely
analogous to boredom, where if the agent is unable to make progress it gets bored
and stops exploring.

Fine-tuning with extrinsic rewards: If it is the case that the agent has actually
learned useful exploratory behavior, then it should be able to learn quicker than
starting from scratch even when external rewards are provided by environment. We



6.3. EXPERIMENTS 89

1.2+

finetuned:RCMR+R3C
scratch:RCMR+BA3C
1.0 -— finetuned:RCMRpixels)R+-RA3C
—— scratch:RCMRpixels)R+-RA3C

0.4 1

0.2 A

ExtrinsicRewardsRerREpisode

0.0 A A A A an_o AASOA B L AR o | ssa o\

0 2 4 6 8 10 12 14
NumberRfRrainingRBtepsRinRnillions)

Figure 6.7: Curiosity pre-trained ICM + A3C agent when finetuned on the test map
with environmental rewards outperforms ICM + A3C agent trained from scratch
using both environmental and curiosity reward on the “very sparse” reward setting
of VizDoom. The pixel prediction based ICM agent completely fails. These results
indicate that our curiosity formulation is able to learn generalizable exploration
policies.

perform this evaluation on VizDoom where we pre-train the agent using curiosity
reward on a map showed in Figure 6.3a. We then test on the “very sparse” reward
setting of ‘DoomMyWayHome-v0’ environment which uses a different map with novel
textures (see Figure 6.3b) as described earlier in Section 6.3.1.

Results in Figure 6.7 show that the ICM agent pre-trained only with curiosity and
then fine-tuned with external reward learns faster and achieves higher reward than
an ICM agent trained from scratch to jointly maximize curiosity and the external
rewards. This result confirms that the learned exploratory behavior is also useful
when the agent is required to achieve goals specified by the environment. It is also
worth noting that ICM-pixels does not generalize to this test environment. This
indicates that the proposed mechanism of measuring curiosity is significantly better
for learning skills that generalize as compared to measuring curiosity in the raw



6.4. RELATED WORK 90

sensory space.

6.4 Related Work

Curiosity-driven exploration is a well studied topic in the reinforcement learning
literature and a good summary can be found in [198,199|. Schmidhuber [185,186|
and Sun et al. [200] use surprise and compression progress as intrinsic rewards.
Classic work of Kearns et al. [201] and Brafman et al. [202] propose exploration
algorithms polynomial in the number of state space parameters. Others have used
empowerment, which is the information gain based on entropy of actions, as intrinsic
rewards [188,203]. Stadie et al. [189] use prediction error in the feature space of an
auto-encoder as a measure of interesting states to explore. State visitation counts
have also been investigated for exploration [182,204,205]. Osband et al. [206] train
multiple value functions and makes use of bootstrapping and Thompson sampling for
exploration. Many approaches measure information gain for exploration [207-209].
Houthooft et al. [190] use an exploration strategy that maximizes information gain
about the agent’s belief of the environment’s dynamics. Our approach of jointly
training forward and inverse models for learning a feature space has similarities
to [85,125,126], but these works use the learned models of dynamics for planning a
sequence of actions instead of exploration. The idea of using a proxy task to learn a
semantic feature embedding has been used in a number of works on self-supervised
learning in computer vision [42,46,48-50, 54].

Concurrent work: A number of interesting related papers have appeared on
Arxiv while the present work was in submission. Sukhbaatar et al. [210] generates
supervision for pre-training via asymmetric self-play between two agents to improve
data efficiency during fine-tuning. Several methods propose improving data efficiency
of RL algorithms using self-supervised prediction based auxiliary tasks [211,212]. Fu
et al. [196] learn discriminative models, and Gregor et al. [213| use empowerment
based measure to tackle exploration in sparse reward setups.

6.5 Discussion

In this work we propose a mechanism for generating curiosity-driven intrinsic
reward signal that scales to high dimensional visual inputs, bypasses the difficult
problem of predicting pixels and ensures that the exploration strategy of the agent is
unaffected by nuisance factors in the environment. We demonstrate that our agent
significantly outperforms the baseline A3C with no curiosity, a recently proposed
VIME [190| formulation for exploration, and a baseline pixel-predicting formulation.



6.5. DISCUSSION 91

In VizDoom our agent learns the exploration behavior of moving along corridors
and across rooms without any rewards from the environment. In Mario our agent
crosses more than 30% of Level-1 without any rewards from the game. One reason
why our agent is unable to go beyond this limit is the presence of a pit at 38% of
the game that requires a very specific sequence of 15-20 key presses in order to jump
across it. If the agent is unable to execute this sequence, it falls in the pit and dies,
receiving no further rewards from the environment. Therefore it receives no gradient
information indicating that there is a world beyond the pit that could potentially be
explored. This issue is somewhat orthogonal to developing models of curiosity, but
presents a challenging problem for policy learning.

It is common practice to evaluate reinforcement learning approaches in the same
environment that was used for training. However, we feel that it is also important to
evaluate on a separate “testing set” as well. This allows us to gauge how much of what
has been learned is specific to the training environment (i.e. memorized), and how
much might constitute “generalizable skills” that could be applied to new settings. In
this paper, we evaluate generalization in two ways: 1) by applying the learned policy
to a new scenario “as is” (no further learning), and 2) by fine-tuning the learned
policy on a new scenario (we borrow the pre-training/fine-tuning nomenclature from
the deep feature learning literature). We believe that evaluating generalization is a
valuable tool and will allow the community to better understand the performance of
various reinforcement learning algorithms. To further aid in this effort, we will make
the code for our algorithm, as well as testing and environment setups freely available
online.

An interesting direction of future research is to use the learned exploration
behavior/skill as a motor primitive/low-level policy in a more complex, hierarchical
system. For example, our VizDoom agent learns to walk along corridors instead of
bumping into walls. This could be a useful primitive for a navigation system.

While the rich and diverse real world provides ample opportunities for interaction,
reward signals are sparse. Our approach excels in this setting and converts unexpected
interactions that affect the agent into intrinsic rewards. However our approach does
not directly extend to the scenarios where “opportunities for interactions” are also
rare. In theory, one could save such events in a replay memory and use them to
guide exploration. However, we leave this extension for future work.

One potential concern with our formulation is that since the inverse model only
needs to encode features relevant for predicting the agent’s actions it might totally
neglect representing interesting objects that the agent might interact with. For
example, consider a tabletop manipulation setting where the goal of a robotic hand
is to push a desired object into a target goal location. In the absence of extrinsic
rewards, the agent must itself discover that pushing the object is an interesting event



6.5. DISCUSSION 92

that must be explored further. However, the inverse model loss would be perfectly
satisfied if ¢(s;) only contains information about the location of the agent’s hand
and ignores all features describing the object. This is undesirable because it would
imply that the agent has no information about the object and would therefore be
unable to explore interesting pushing interactions. However, because we are also
training the forward model simultaneously with the inverse model this issue will not
happen in practice. To see why, consider this scenario: when the agent applies a 5N
force in free space, its end effector moves by 1m. Now, if the agent’s hand hits an
object with the same amount of applied force, the hand would move by a smaller
distance. This would lead to an error in the forward model prediction and force the
feature space to represent the object that was hit to minimize the loss. However,
if the object that the agent interacts with does not affect the agent at all then our
method would fail to represent it. While this situation may often occur in simulated
environments such as games, it is highly improbable in real world scenarios.

While following the above discussion, it is important to note that the feature
space will learn to represent objects being manipulated only if the agent is able
to make many interactions with objects in its environment. The real world is rich,
diverse and complex. While it provides ample opportunities for interaction, reward
signals are sparse. Our approach excels in this setting and converts unexpected
interactions that affect the agent into intrinsic rewards. The hitting interactions are
also not so rare, e.g. a navigating agent might keep issuing “down” command while
walking on hard floor but is unable to go down. Similarly a robot arm interacting
with multiple objects kept on a table is likely to hit at least one of them often enough.
In scenarios where “opportunities for interactions” are actually rare, one could, in
theory, save such events in a replay memory. However, we leave this extension for
future work.



93

Chapter 7

Initial State

A very important question in the design of continual learning agents is the
specification of the initial state. It has been fervently debated how much knowledge
should be built in and how much of it should be left to the agent to figure out. It is
obvious that starting tabula-rasa might require one to re-create evolution which is
daunting and probably infeasible (note that neural networks learning from scratch
also have carefully hand-crafted architecture). On the other extreme, building in too
much structure runs the risk of furnishing the agent too inflexible.

This debate of innate v /s acquired knowledge is also at the core of study of human
intelligence. No matter where one’s belief lies on this spectrum, one thing is clear
that humans are very proficient at acquiring new skills and learning about new things.
As pointed out earlier, in my view, the core problem of intelligence is not how much
knowledge an agent has, but how proficiently it can increase its knowledge. This view
provides a cue — we should design the initial state that enables the agent to quickly
increase its knowledge as opposed to optimizing for some particular end problem. To
understand what forms of prior knowledge allow for quick exploration and learning, I
will describe a human study investigating priors used by human subjects for efficiently
learning about their environment and consequently solving sparse reward task [214].
I will then present details of a followup work that implements some of these findings
to aid in downstream robotic tasks [215].

7.1 Investigating Human Priors for Playing Games

While deep Reinforcement Learning (RL) methods have shown impressive perfor-
mance on a variety of video games [3], they remain woefully inefficient compared
to human players, taking millions of action inputs to solve even the simplest Atari
games. Much research is currently focused on improving sample efficiency of RL



7.1. INVESTIGATING HUMAN PRIORS FOR PLAYING GAMES 94

-
7

EEE EEEEEEELH

EEEEERE BEEE

' '(b)l\'/iodiﬁed Game

Figure 7.1: Motivating example. (a) A simple platformer game. (b) The same
game modified by re-rendering the textures. Despite the two games being structurally
the same, human players took twice as long to finish the second game as the first
one. In comparison, the performance of an RL agent was approximately the same
for the two games.

algorithms [216,217]. However, there is an orthogonal issue that is often overlooked:
RL agents attack each problem tabula rasa, whereas humans come in with a wealth
of prior knowledge about the world, from physics to semantics to affordances.

Consider the following motivating example: you are tasked with playing an
unfamiliar computer game shown in Figure 7.1(a). No manual or instructions are
provided; you don’t even know which game sprite is controlled by you. Indeed, the
only feedback you are ever given is “terminal”; i.e. once you successfully finish the
game. Would you be able to successfully finish this game? How long would it take?
We recruited forty human subjects to play this game and found that subjects finished
it quite easily, taking just under 1 minute of game-play or 3000 action inputs. This
is not overly surprising as one could easily guess that the game’s goal is to move the
robot sprite towards the princess by stepping on the brick-like objects and using
ladders to reach the higher platforms while avoiding the angry pink and the fire
objects.

Now consider a second scenario in which this same game is re-rendered with new
textures, getting rid of semantic and affordance [218] cues, as shown in Figure 7.1(b).
How would human performance change? We recruited another forty subjects to play
this game and found that, on average, it took the players more than twice the time
(2 minutes) and action inputs ( 6500) to complete the game. The second game is
clearly much harder for humans, likely because it is now more difficult to guess the
game structure and goal, as well as to spot obstacles.

For comparison, we can also examine how modern RL algorithms perform on



7.1. INVESTIGATING HUMAN PRIORS FOR PLAYING GAMES 95

these games. This is not so simple, as most standard RL approaches expect very
dense rewards (e.g. continuously updated game-score [3]), whereas we provide only
a terminal reward, to mimic how most humans play video games. In such sparse
reward scenarios, standard methods like A3C [191] are too sample-inefficient and
were too slow to finish the games.

Hence, we used a curiosity-based RL algorithm specifically tailored to sparse-
reward settings [84], which was able to solve both games. Unlike humans, RL did not
show much difference between the two games, taking about 4 million action inputs
to solve each one. This should not be surprising. Since the RL agent did not have
any prior knowledge about the world, both these games carried roughly the same
amount of information from the perspective of the agent.

This simple motivating experiment highlights the importance of prior knowledge
that humans draw upon to quickly solve tasks given to them, as was also pointed
out by several earlier studies [219-222]. Developmental psychologists have also been
investigating the prior knowledge that children draw upon in learning about the
world [223,224|. However, these studies have not explicitly quantified the relative
importance of the various priors for problem-solving. Some studies have looked into
incorporating priors in RL agents via object representations [225,226| or language
grounding [227], but progress will be constrained until the field develops a better
understanding of the kinds of prior knowledge humans employ.

In this particular study, we systematically quantify the importance of different
types of priors humans bring to bear while solving one particular kind of problem —
video games. We chose video games as the task for our investigation because it is
relatively easy to methodically change the game to include or mask different kinds
of knowledge and run large-scale human studies. Furthermore, video games, such as
ATARI, are a popular choice in the reinforcement learning community.

This piece of work consists of a series of ablation studies on a specially-designed
game environment, systematically masking out various types of visual information
that could be used by humans as priors. The full game (unlike the motivating
example above) was designed to be sufficiently complex and difficult for humans to
easily measure changes in performance between different testing conditions.

We find that removal of some prior knowledge causes a drastic degradation in
the performance of human players from 2 minutes to over 20 minutes. Another key
finding of our investigation is that while specific knowledge, such as “ladders are
to be climbed”, “keys are used to open doors”, “jumping on spikes is dangerous”,
is important for humans to quickly solve games, more general priors about the
importance of objects and visual consistency are even more critical.



7.2. METHOD 96

7.2 Method

To investigate the aspects of visual information that enable humans to efficiently
solve video games, we designed a browser-based platform game consisting of an agent
sprite, platforms, ladders, angry pink object that kills the agent, spikes that are
dangerous to jump on, a key, and a door (see Figure 7.2 (a)). The agent sprite can
be moved with the help of arrow keys. A terminal reward of +1 is provided when
the agent reaches the door after having to taken the key, thereby terminating the
game. The game is reset whenever the agent touches the enemy, jumps on the spike,
or falls below the lowest platform. We made this game to resemble the exploration
problems faced in the classic ATARI game of Montezuma’s Revenge that has proven
to be very challenging for deep reinforcement learning techniques [3,182|. Unlike
the motivating example, this game is too large-scale to be solved by RL agents, but
provides the complexity we need to run a wide range of human experiments.

We created different versions of the video game by re-rendering various entities
such as ladders, enemies, keys, platforms etc. using alternate textures (Figure 7.2).
These textures were chosen to mask various forms of prior knowledge that are
described in the experiments section. We also changed various physical properties
of the game, such as the effect of gravity, and the way the agent interacts with its
environment. Note that all the games were exactly the same in their underlying
structure and reward, as well as the shortest path to reach the goal, thereby ensuring
that the change in human performance (if any) is only due to masking of the priors.

We quantified human performance on each version of the game by recruiting
120 participants from Amazon Mechanical Turk. Each participant was instructed
to finish the game as quickly as possible using the arrow keys as controls, but no
information about the goals or the reward structure of the game was communicated.
Each participant was paid $1 for successfully completing the game. The maximum
time allowed for playing the game was set to 30 minutes. For each participant,
we recorded the (x,y) position of the player at every step of the game, the total
time taken by the participant to finish the game and the total number of deaths
before finishing the game. We used this data to quantify the performance of each
participant. Note that each participant was only allowed to complete a game once,
and could not participate again (i.e. different 120 participants played each version of
the game).

7.3 Quantifying the importance of object priors

! Different game manipulations can be played at



7.3. QUANTIFYING THE IMPORTANCE OF OBJECT PRIORS 97

{e) Masked Affordances (f) Masked Visual Similarity {g) Changed ladder interaction {h} Changed Gravity direction

Figure 7.2: Various game manipulations. (a) Original version of the game. (b)
Game with masked objects to ablate semantics prior. (c¢) Game with reversed
associations as an alternate way to ablate semantics prior. (d) Game with masked
objects and distractor objects to ablate the concept of object. (e) Game with
background textures to ablate affordance prior. (f) Game with background textures
and different colors for all platforms to ablate similarity prior. (g) Game with
modified ladder to hinder participant’s prior about ladder interactions. (h) Rotated
game to change participant’s prior about gravity. Readers are encouraged to play all
these games online!.

The original game (available to play at this link) is shown in Figure 7.2(a). A
single glance at this game is enough to inform human players that the agent sprite
has to reach the key to open the door while avoiding the dangerous objects like spikes
and angry pink slime. Unsurprisingly, humans quickly solve this game. Figure 7.3(a)
shows that the average time taken to complete the game is 1.8 minutes (blue bar)
and the average number of deaths (3.3, orange bar) and unique game states visited
(3011, yellow bar) are all quite small.

7.3.1 Semantics

To study the importance of prior knowledge about object semantics, we rendered
objects and ladders with blocks of uniform color as shown in Figure 7.2(b). This
game can be played at this link. In this version, the visual appearance of objects

https://rach0012.github.io/humanRL_website/


https://dry-anchorage-61733.herokuapp.com/experiment
https://boiling-retreat-38802.herokuapp.com/experiment
https://rach0012.github.io/humanRL_website/

7.3. QUANTIFYING THE IMPORTANCE OF OBJECT PRIORS 98

conveys no information about their semantics. Results in Figure 7.3(b) show that
human players take more than twice the time (4.3 minutes), have higher number of
deaths (11.1), and explore significantly larger number of states (7205) as compared
to the original game (p-value: p < 0.01). This clearly demonstrates that masking
semantics hurts human performance.

A natural question is how do humans make use of semantic information? One
hypothesis is that knowledge of semantics enables humans to infer the latent reward
structure of the game. If this indeed is the case, then in the original game, where
the key and the door are both visible, players should first visit the key and then
go to the door, while in the version of the game without semantics, players should
not exhibit such bias. We found that in the original game, nearly all participants
reached the key first, while in the version with masked semantics only 42 out of 120
participants reached the key before the door (see Figure 7.4(a)). Moreover, human
players took significantly longer to reach the door after taking the key as compared
to the original game (see Figure 7.4(b)). This result provides further evidence that
in the absence of semantics, humans are unable to infer the reward structure and
consequently significantly increase their exploration. To rule out the possibility that
increase in time is simply due to the fact players take longer to finish the game
without semantics, the time to reach the door after taking the key was normalized
by the total amount of time spent by the player to complete the game.

To further quantify the importance of semantics, instead of simply masking,
we manipulated the semantic prior by swapping the semantics between different
entities. As seen on Figure 7.4(c), we replaced the pink enemy and spikes by coins
and ice-cream objects respectively which have a positive connotation; the ladder by
fire, the key and the door by spikes and enemies which have negative connotations
(see game link). As shown in Figure 7.3(c), the participants took longer to solve
this game (6.1 minutes, p < 0.01). The average number of deaths (13.7) was also
significantly more and the participants explored more states (9400) compared to the
original version (p < 0.01 for both). Interestingly, the participants also took longer
compared to the masked semantics version (p < 0.05) implying that when we reverse
semantic information, humans find the game even tougher.

7.3.2 Objects as Sub-goals for Exploration

While blocks of uniform color in the game shown in Figure 7.2(b) convey no
semantics, they are distinct from the background and seem to attract human attention.
It is possible that humans infer these distinct entities (or objects) as sub-goals, which
results in more efficient exploration than random search. That is, there is something
special about objects that draws human attention compared to any random piece


https://boiling-retreat-4.herokuapp.com/experiment

7.3. QUANTIFYING THE IMPORTANCE OF OBJECT PRIORS 99

o
L

Time Death State Time Death Stale Time Dealh State Time Death State Timo Death State Tine Dealh State Tane Dealh State
{a) Original (b) Masked (c) Reverse (d} Masked (e) Masked (f) Masked (g) Changed
Game Semantics Semantics Object Identities Affordances Similarity Interaction

Figure 7.3: Quantifying the influence of various object priors. The blue bar
shows average time taken by humans (in minutes), orange bar shows the average
number of deaths, and yellow bar shows the number of unique states visited by
players to solve the various games. For visualization purposes, the number of deaths
is divided by 2, and the number of states is divided by 1000 respectively.

of texture. To test this, we modified the game to cover each space on the platform
with a block of different color to hide where the objects are (see Figure 7.2(d), game
link). Most colored blocks are placebos and do not correspond to any object and
the actual objects have the same color and form as in the previous version of the
game with masked semantics (i.e., Figure 7.2(b)). If the prior knowledge that visibly
distinct entities are interesting to explore is critical, this game manipulation should
lead to a significant drop in human performance.

Results in Figure 7.3(d) show that masking the concept of objects leads to drastic
deterioration in performance. The average time taken by human players to solve the
game is nearly four times longer (7.7 minutes), the number of deaths is nearly six
times greater (20.2), and humans explore four times as many game states (12,232) as
compared to the original game. When compared to the game version in which only
semantic information was removed (Figure 7.3(b)), the time taken, number of deaths
and number of states are all significantly greater (p < 0.01). When only semantics
are removed, after encountering one object, human players become aware of what
possible locations might be interesting to explore next. However, when concept of
objects is also masked, it is unclear what to explore next. This effect can be seen by
the increase in normalized time taken to reach the door from the key as compared to
the game where only semantics are masked (Figure 7.4(b)). All these results suggest
that concept of objects i.e. knowing that visibly distinct entities are interesting
and can be used as sub-goals for exploration, is a critical prior and perhaps more
important than knowledge of semantics.


https://high-level-1.herokuapp.com/experiment
https://high-level-1.herokuapp.com/experiment

7.3. QUANTIFYING THE IMPORTANCE OF OBJECT PRIORS 100

~
N
1

Boh o o@

Average steps
=

SR
2 @

Number of subjects
=] 2 g

Percentage time taken

i

2 10

0 A
Original ~ No semantics  No object Original N semantics  No object “eight seachen.

(a) (b) (c)

Figure 7.4: Change in behavior upon ablation of various priors. (a) Graph
comparing number of participants that reached the key before the door in the original
version, game without semantics, and game without object prior. (b) Amount of
time taken by participants to reach the door once they obtained the key. (c) Average
number of steps taken by participants to reach various vertical levels in original
version, game without affordance, and game without similarity.

7.3.3 Affordances

Until now, we manipulated objects in ways that made inferring the underlying
reward structure of the game non-trivial. However, in these games it was obvious for
humans that platforms can support agent sprites, ladders could be climbed to reach
different platforms (even when the ladders were colored in uniform red in games
shown in Figure 7.2(b,c), the connectivity pattern revealed where the ladders were)
and black parts of the game constitute free space. Here, the platforms and ladders
afford the actions of walking and climbing [218], irrespective of their appearance. In
the next set of experiments, we manipulated the game to mask the affordance prior.

One way to mask affordances is to fill free space with random textures, which are
visually similar to textures used for rendering ladders and platforms (see Figure 7.2(e),
game link). Note that in this game manipulation, objects and their semantics are
clearly observable. When tasked to play this game, as shown in Figure 7.3(e), humans
require significantly more time (4.7 minutes), die more often (10.7), and visit more
states (7031) compared to the original game (p < 0.01). On the other hand, there is
no significant difference in performance compared to the game without semantics, i.e.,
Figure 7.2(b), implying that the affordance prior is as important as the semantics
prior in our setup.


https://fierce-sierra-47669.herokuapp.com/experiment

7.3. QUANTIFYING THE IMPORTANCE OF OBJECT PRIORS 101

7.3.4 Things that look similarly, behave similarly

In the previous game, although we masked affordance information, once the player
realizes that it is possible to stand on a particular texture and climb a specific texture,
it is easy to use color/texture similarity to identify other platforms and ladders in
the game. Similarly, in the game with masked semantics (Figure 7.2(b)), visual
similarity can be used to identify other enemies and spikes. These considerations
suggest that a general prior of the form that things that look the same act the same
might help humans efficiently explore environments where semantics or affordances
are hidden.

We tested this hypothesis by modifying the masked affordance game in a way
that none of the platforms and ladders had the same visual signature (Figure 7.2(f),
game link). Such rendering prevented human players from using the similarity
prior. Figure 7.3(f)) shows that performance of humans was significantly worse in
comparison to the original game (Figure 7.2(a)), the game with masked semantics
(Figure 7.2(b)) and the game with masked affordances (Figure 7.2(e)) (p < 0.01).
When compared to the game with no object information (Figure 7.2(d)), the time to
complete the game (7.6 minutes) and the number of states explored by players were
similar (11,715), but the number of deaths (14.8) was significantly lower (p < 0.01).
These results suggest that visual similarity is the second most important prior used
by humans in gameplay after the knowledge of directing exploration towards objects.

In order to gain insight into how this prior knowledge affects humans, we investi-
gated the exploration pattern of human players. In the game when all information
is visible we expected that the progress of humans would be uniform in time. In
the case when affordances are removed, the human players would initially take some
time to figure out what visual pattern corresponds to what entity and then quickly
make progress in the game. Finally, in the case when the similarity prior is removed,
we would expect human players to be unable to generalize any knowledge across the
game and to take large amounts of time exploring the environment even towards the
end. We investigated if this indeed was true by computing the time taken by each
player to reach different vertical distances in the game for the first time. Note that
the door is on the top of the game, so the moving up corresponds to getting closer
to solving the game. The results of this analysis are shown in Figure 7.4(c). The
horizontal-axis shows the height reached by the player and the vertical-axis show
the average time taken by the players. As the figure shows, the results confirm our
hypothesis.


https://high-level-3.herokuapp.com/experiment

7.4. CONCEALING ALL OBJECT PRIORS 102

L | Bl I,
gl WA RN
“.,A‘q_\ /AT ’.@fmhj

ol T S e ;
fE] Change in performance (d} Exploration in original game {e) Es|l:nlc|rs=.inn inmo uh|;clt priar game

{a) Ogiai Gam 15} Game wihelobjoct prior romovea
Figure 7.5: Masking all object priors drastically affects human performance.
(a) Original game. (b) Version without any object priors. (c¢) Graph depicting
difference in participant’s performance for both the games. (d) Exploration trajectory
for original version and (e) for no object prior version.

7.3.5 How to interact with objects

Until now we have analyzed the prior knowledge used by humans to interpret
the visual structure in the game. However, interpretation of visual structure is only
useful if the player understands what to do with the interpretation. Humans seem to
possess prior knowledge about how to interact with different objects. For example,
monsters can be avoided by jumping over them, ladders can be climbed by pressing
the up key repeatedly etc. Deep reinforcement learning agents, on the other hand,
do not possess such priors and must learn how to interact with objects by mere trial
and error.

To test how critical such prior knowledge is, we created a version of the game in
which the ladders couldn’t be climbed by simply pressing the up key. Instead, the
ladders were zigzag in nature and in order to climb the ladder players had to press
the up key, followed by alternating presses between the right and left key. Note that
the ladders in this version looked like normal ladders, so players couldn’t infer the
properties of the ladder by simply looking at them (see Figure 7.2(g), game link). As
shown in Figure 7.3(g), changing the property of the ladder increases the time taken
(3.6 minutes), number of deaths (6), and states explored (5942) when compared to
the original game (p < 0.01).

7.4 Concealing all object priors

In previous sections, we studied how different priors about objects affect human
performance one at a time. To quantify human performance when all object pri-
ors investigated so far are simultaneously masked, we created the game shown in
Figure 7.5(b) that hid all information about objects, semantics, affordance, and
similarity(game link). Results in Figure 7.5(c) show that humans found it extremely


https://calm-ocean-56541.herokuapp.com/experiment
https://high-level-4.herokuapp.com/experiment

7.5. PHYSICS AND MOTOR CONTROL PRIORS 103

hard to play this game. The average time taken to solve the game increased to
20 minutes and the average number of deaths rose sharply to 40. Remarkably,
the exploration trajectory of humans is now almost completely random as shown
in Figure 7.5(e) with the number of unique states visited by the human players
increasing by a factor of 9 as compared to the original game. Due to difficulty in
completing this game, we noticed a high dropout of human participants before they
finished the game. We had to increase the pay to $2.25 to encourage participants not
to quit. Many participants noted that they could solve the game only by memorizing
it.

Even though we preserved priors related to physics (e.g., objects fall down) and
motor control (e.g., pressing left key moves the agent sprite to the left), just by
rendering the game in a way that makes it impossible to use prior knowledge about
how to visually interpret the game screen makes the game extremely hard to play.
To further test the limits of human ability, we designed a harder game where we
also reversed gravity and randomly re-mapped the key presses to how it affect’s the
motion of agent’s sprite. We, the creators of the game, having played a previous
version of the game hundreds of times had an extremely hard time trying to complete
this version of the game. This game placed us in the shoes of reinforcement learning
(RL) agents that start off without the immense prior knowledge that humans possess.
While improvements in the performance of RL agents with better algorithms and
better computational resources is inevitable, our results make a strong case for
developing algorithms that incorporate prior knowledge as a way to improve the
performance of artificial agents.

7.5 Physics and motor control priors

In addition to prior knowledge about objects, humans also bring in rich prior
knowledge about intuitive physics and strong motor control priors when they approach
a new task [228-231|. Here, we have taken some initial steps to explore the importance
of such priors in context of human gameplay.

7.5.1 Gravity

One of the most obvious forms of knowledge that we have about the physical
world is with regards to gravity, i.e., things fall from up to down. To mask this prior,
we created a version of the game in which the whole game window was rotated 90°
(refer to Figure 7.2(h)). In this way, the gravity was reversed from left to right (as
opposed to up to down). As shown in Figure 7.6, participants spent more time to



7.5. PHYSICS AND MOTOR CONTROL PRIORS 104

6_

0- Time Death State Time Death State Time Death State
(a) Original (b) Gravity (c) Muscle memory

Figure 7.6: Physics and motor control priors. Performance of participants in
original version, game with gravity reversed, and game with key controls reversed.

solve this game compared to the original version with average time taken close to 3
minutes (p < 0.01). The average number of deaths and number of states explored
was also significantly larger than the original version (p < 0.01).

7.5.2 Muscle memory

Human players also come with knowledge about the consequences of actions
such as pressing arrow keys moves the agent sprite in the corresponding directions
(i.e., pressing up makes the agent sprite jump, pressing left makes the agent sprite
go left and so forth). We created a version of the game in which we reversed the
arrow key controls. Thus, pressing the left arrow key made the agent sprite go right,
pressing the right key moved the sprite left, pressing the down key made the player
jump (or go up the stairs), and pressing the up key made the player go down the
stairs. Participants again took longer to solve this game compared to the original
version with average time taken close to 3 minutes (refer to Figure 7.6). The average
number of deaths and number of states explored was also significantly larger than
the original version (p < 0.01). Interestingly, the performance of players when the
gravity was reversed, and key controls were reversed is similar, with no significant
difference between the two conditions.



7.6. CONTROLLING FOR CHANGE IN COMPLEXITY 105

Average # of steps

- - R it = : - - Original Semantics Object Affordance Similarity
(a) Masked semanlics (b) Masked object identiies () Masked affordances (d) Masked similarity (e} Performance of RL agenl

Figure 7.7: Quantifying the performance of RL agent. (a) Game without
semantic information. (b) Game with masked and distractor objects to ablate
concept of objects. (c¢) Game without affordance information. (d) Game without
similarity information. (e) Performance of RL agent on various game manipulations
(steps shown in order of million). Error bars indicate standard error of mean for the
5 random seeds. The RL agent performs similarly on all games except for the one
without visual similarity.

7.6 Controlling for change in complexity

So far in this paper, we have manipulated various visual priors while keeping
the underlying game and reward structure exactly the same. We have assumed
that this will influence human performance while keeping RL agent performance
unchanged, since RL does not have any priors to begin with. However, one possible
confound is that the visual complexity of the modified games might have changed
from the original game version, because masking out priors without changing visual
complexity is extremely difficult.

To control for this confound, we investigated the performance of an RL agent
on the various game manipulations. If RL agents are not affected by the game
manipulations, then it would suggest that prior knowledge and not visual complexity
is the main reason behind the change in human performance. Note that this confound
is not present in the physics and motor control experiments as the visual input stays
the same as the original game.

To this end, we systematically created different versions of the game in Fig-
ure 7.1(a) to ablate semantics, the concept of object, affordance, and similarity as
shown in Figure 7.7. Note that the game used for human experiments shown in
Figure 7.2 is more complex than the game used for RL experiments in Figure 7.7.
This is because the larger game was simply too hard for state-of-the-art RL agents
to solve. Apart from the difference in the game size, we tried to make the games as
similar as possible. Even though this version of the game is simpler (regarding size,
number of objects etc.), we note that this game is still non-trivial for an RL agent.
For instance, due to the sparse reward structure of the game, both A3C [191] and



7.7. DISCUSSION 106

breadth-first search didn’t come close to solving the game even after 10 million steps.
Hence, for our purpose, we used an RL algorithm augmented with a curiosity based
exploration strategy [84]. For each game version, we report the mean performance of
five random seeds that succeeded.

As shown in Figure 7.7(e), the RL agent was unaffected by the removal of
semantics, the concept of objects, as well as affordances — there is no significant
difference between the mean score of the RL agent on these games when compared
to the performance on the original game (p > 0.05). This suggests that the drop in
human performance in these game manipulations is not due to the change in visual
complexity, but it is rather due to the masking of the various priors. On the other
hand, the performance of the RL agent does worsen when visual similarity is masked
as it takes nearly twice as many interactions to complete the game compared to the
original version. We believe this is due to to the use of convolutional neural networks
that implicitly impose the prior of visual similarity rather than simply due to the
change in visual complexity.

7.7 Discussion

While there is no doubt that the performance of deep RL algorithms is impressive,
there is much to be learned from human cognition if our goal is to enable RL agents
to solve sparse reward tasks with human-like efficiency. Humans have the amazing
ability to use their past knowledge (i.e., priors) to solve new tasks quickly. Success in
such scenarios critically depends on the agent’s ability to explore its environment and
then promptly learn from its successes [232,233]. In this vein, our results demonstrate
the importance of prior knowledge in helping humans explore efficiently in these
sparse reward environments [234, 235].

While the study presented above primarily investigated object priors (and physics
priors to some extent), humans also possess rich prior knowledge about the world
in the form of intuitive psychology and also bring in various priors about general
video game playing such as that moving up and to the right in games is generally
correlated with progress, games have goals, etc. Studying the importance of such
priors will be an interesting future direction of research.

Building RL algorithms that require fewer interactions to reach the goal (i.e., sam-
ple efficient algorithms) is an active area of research, and further progress is inevitable.
In addition to developing better optimization methods, we believe that instead of
always initializing learning from scratch, either incorporating prior knowledge di-
rectly or constructing mechanisms for condensing experience into reusable knowledge
(i.e., learning priors through continual learning) might be critical for building RL



7.7. DISCUSSION 107

Learnt first Importance
A

Concept of object Similarity

Semantics Affordance

Object interactions

\/

Figure 7.8: Taxonomy of object priors. The earlier an object prior is obtained
during childhood, the more critical that object prior is in human problem solving
in video games.

agents with human-like efficiency. Our work takes first steps toward quantifying
the importance of various priors that humans employ in solving video games and in
understanding how prior knowledge makes humans good at such complex tasks. We
believe that our results will inspire researchers to think about different mechanisms
of incorporating prior knowledge in the design of RL agents. We also hope that
our experimental platform of video games, available in open-source, will fuel more
detailed studies investigating human priors and a benchmark for quantifying the
efficacy of different mechanisms of incorporating prior knowledge into RL agents.
While there are many possible directions on how to incorporate priors in RL and
more generally Al agents, it is informative to study how humans acquire such priors.
Studies in developmental psychology suggest that human infants as young as 2 months
old possess a primitive notion of objects and expect them to move as connected
and bounded wholes that allows them to perceive object boundaries and therefore
possibly distinguish them from the background [223,236|. At this stage, infants do
not reason about object categories. By the age of 3-5 months, infants start exhibiting
categorization behavior based on similarity and familiarity [237,238]. The ability to
recognize individual objects rapidly and accurately emerges comparatively late in
development (usually by the time babies are 18-24 months old [239]). Similarly, while
young infants exhibit some knowledge about affordances early during development,



7.7. DISCUSSION 108

the ability to distinguish a walkable step from a cliff emerges only by the time they
are 18 months old [240].

These results in infant development suggest that starting with a primitive notion
of objects, infants gradually learn about visual similarity and eventually about object
semantics and affordances. It is quite interesting to note that the order in which
infants increase their knowledge matches the importance of different object priors
such as the existence of objects as sub-goals for exploration, visual similarity, object
semantics, and affordances. Based on these results, we suggest a possible taxonomy
and ranking of object priors in Figure 7.8. We put ‘object interaction’ at the bottom
as in the context of our problem, knowledge about how to interact with specific
objects can be only learned once recognition is performed.



109

Chapter 8

Intuitive Behavior

8.1 Forecasting Player Moves in Sports Videos

In 2002, Billy Beane defied conventional wisdom by performing meticulous
statistical evaluations of undervalued players to assemble the Oakland Athletics
baseball team on a negligible budget. His team made history with a record-setting
20-game win streak, and this tremendous feat is documented in the academy award
nominated film Moneyball. Their success made an unprecedented case for competitive
advantages gained by new analyses of individual players’ game play. Now imagine if,
in addition to knowing the shot success rate of Stephen Curry, the best basketball
shooter, it is also possible to forecast that he is more likely to attempt a shot within
zero, one, and two seconds of a pass when his teammates are in a diamond, ring,
and triangle formation, respectively. Such forecasts are invaluable to the defending
team in planning strategy. Billy Beane’s analysis revolutionized strategic thinking in
baseball, and similarly, we believe statistical methods for forecasting player moves
have the potential to impact how teams plan their play strategies.

Predicting player moves in sports videos is an instance of a much grander research
agenda to develop algorithms that can forecast future events directly from visual
inputs. The ability to forecast is a key aspect of human intelligence, and as Kenneth
Craik famously wrote in 1943, “If the organism carries a ‘small scale model’ of
external reality and its own possible actions within its head, it is able try out various
alternatives, conclude which is the best of them, react to future situations before they
arise and in every way react in much fuller, safer and more competent manner to
emergencies which face it." While there has been a lot of interest in this problem [85,
104,130, 241-251], we lack a good benchmark for comparing different forecasting
algorithms.

For multiple reasons, it appears to us that team sports videos are a very good



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 110

benchmark for evaluating forecasting algorithms. Firstly, many human activities are
social and team sports provide an opportunity to study forecasting in an adversarial
multi-agent environment. Secondly, team sports are composed of a large and diverse
set of discrete events, such as passing, shooting, dribbling, etc. The sequence of events
reflects the game play strategies of the two teams, and thus forecasting requires game
specific knowledge combined with other visual cues, such as player pose and game
state. This implies that for any system to make accurate predictions directly from
visual imagery, it must distill game specific knowledge by crunching large amounts
of data. Representing such knowledge is a central problem in forecasting, which
is put to test in this setup. Expert players and coaches gain such knowledge via
experience gathered over long periods of time. An additional benefit of predicting
discrete events is crisp and straightforward evaluation of the information of interest
that avoids the problems associated with evaluating pixel-level predictions.

8.1.1 Related Work

Video analysis is an active research area. A large body of work has focused on
action recognition [89,252-256], people and object tracking [257-259]. In contrast
to these works we are interested in the problem of forecasting. Predicting pedestrian
trajectories [241,260-263] and anticipating future human activities [241,242,246,
264-266] has seen considerable interest over the past few years. However, these
works mostly consider predicting events related to a single human, while we attempt
to forecast events in multi-agent environments involving adversarial human-human
interaction. Other works have explored predicting future world states from single
images [132,247,249,267|, but have been limited to simulation environments or
involve a single agent. Predicting pixel values in future frames has also drawn
considerable interest [104,244] but is limited to very short term predictions.

Sport Video Analysis: Traditional work in computer vision analyzing sports
videos [268] has focused on either tracking players [269] or balls [270]. Another
body of work assumes the annotations of ball or player tracks to analyze game
formations or skill level of individual players. For instance, [271] use tracks of ball
trajectories in tennis games to predict where the ball would be hit, [272] analyze
soccer matches using player tracks. [273] discover team formation and plays using
player role representation instead of player identity. More recently techniques such
as [274] have looked at the problem of identifying the key players and events in
basketball game videos. Closest to our work is the work of [275] that proposes the
use of hidden conditional random fields for predicting which player will receive the
ball next in soccer games. They assume the knowledge of game state such as attack,
defense, counter attack, free kick etc. and assume that identity of players is known.



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 111

In contrast, we present a forecasting system that works directly from visual inputs. It
either uses images directly or converts them it into an overhead view representation
using computer vision techniques. We do not require any external annotations of
the game state.

8.1.2 Team Sports Datasets

We have focused our efforts on the most popular style of sport, team goal sports.
We select water polo and basketball as two canonical examples because together they
capture many diverse aspects of team goal sports: basketball is fast-moving and
high-scoring like hurling and handball, while water polo is low-scoring like soccer
and has man-up situations like hockey and lacrosse. Despite the different nuances
of each team goal sport, they all share many common “events" during game play.
For example, players advance the ball toward the goal themselves in a drive, and
sometimes this results in a goal and other times in a block or a missed shot. Players
pass the ball to their teammates, and sometimes the defense intercepts the pass.

Water polo

A water polo game naturally partitions into a sequence of alternating team
possessions. During a possession, the attacking team’s field players primarily spend
time in their front court, which accounts for most of the interesting game play. The
attacking team is required to take a shot within 30s, and failure to do so results in
a turnover. Players of the two teams wear dark colored (typically blue/black) and
light colored (typically white) caps. In the remainder of the paper we use dark-cap
and light-cap to refer to two teams.

We collected a dataset of front court team possessions from video recordings of 5
water polo games between Division I National Collegiate Athletic Association varsity
teams. Similar to the NBA for basketball, this represents the highest level of water
polo play in the United States. We chose to focus only on front court possessions, as
most interesting events happen during this period. The time intervals of the front
court possessions were hand-marked by an expert water polo coach. All the games,
four of which are men’s games and the other a women’s game, are played at the
same outdoor pool on different days at times ranging from morning until night; the
dataset exhibits a large range of lighting conditions. The games were recorded with a
single freely moving camera that pans between each side of the pool with resolution
720p at 25-30fps. Often the camera is adjusted for a new front court possession,
resulting in varied camera motions and zooms.

Player and Pool Track Annotations: Bounding box track annotations (Figure



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 112

Figure 8.1: From single-camera video recordings of 5 water polo games, we collected
bounding box track annotations of dark, light, and red-cap player heads. We also
collected annotations of pool points marking the field of play: the 2m and 5m lines,
the corner of the field, and the points where the cage and lane line meet.



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 113

8.1) of dark and light-cap player heads, goalkeepers, and the head of the player in
possession of the ball were collected using the VATIC toolbox [276] and Amazon
Mechanical Turk. Player possession is defined to begin at the moment a player grasps
the ball and ends at the moment that same player passes/shoots the ball or another
player steals the ball. Additional annotations of specific points marking the field of
play: the 5m line, the 2m line, the pool corner, and the cage posts were obtained.
These field markings provide necessary point correspondences between the image
view and overhead view of the game, which enable the computation of the player
trajectories in the overhead space from the player locations in the image view. For
increased data diversity, annotations were collected for 11 quarters of play from 20
quarters available in the 5 games.

Train/Test Splits: The splits were as follows - train: 7 quarters, randomly sampled
from the first 4 games; validation: light-capped team front court possessions in all 4
quarters of the fifth game; and test: dark-capped team front court possessions in all
4 quarters of the fifth game. In total, each split has 232, 134, and 171 respective
examples of a player passing the ball in a team’s front court.

Human Benchmark: Human subjects were shown every test image taken just
before a player loses possession of the ball and were required to draw a bounding
box around the head of the player which they thought would possess the ball next.
Two sets of subjects: nine non-experts and four water polo experts were evaluated.
Non-experts had never seen or played a water polo game. In order to account for their
inexperience, non-experts were shown all examples used to train computer algorithms
along with the the ground-truth answer before being asked to make predictions. The
experts had all played competitive water polo for at least four years. Expert and
non-expert humans accurately predicted the next ball possessor 73% and 55.3% of
the time respectively.

Basketball

The dataset is comprised of ground truth (in contrast to water polo, where it is
computed) 2D player and ball trajectories, sampled at 25 Hz, in 82 regular-season
NBA games obtained using the STATS SportVU system [277], which is a calibrated
six-camera setup in every NBA arena. The data includes labels for 16 basketball
events, including free throw, field goal, pass, dribble, (player) possession, etc. that
are detailed in the supplementary materials.

Train/Test Splits: A total of roughly 300k labeled events were randomly split into
180k, 30k, and 90k for train, validation, and test examples.

Human Benchmark: A set of 18 subjects familiar with basketball were shown a
series of fifteen 5-second clips of basketball data, ending with a labeled event. The



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 114

ball and player trajectories were removed from the final n seconds of the clip, and
the subjects were asked to predict the event at the end of the blanked portion. For
each n € {0.4,1,2}, each subject was shown 5 examples randomly sampled from a
pool of 80 examples (5 examples of each of the 16 events). Humans were correct
13.5%, 20.6%, and 24.4% for n = 2, 1, and 0.4, respectively.

8.1.3 Methods: From Images to Overhead View

2D overhead view of the game where players are represented as dots at their
(z,y) coordinate locations is often used by coaches because it provides immediate
insight into player spacing, and distills player movement into a canonical, simple
representation that is easy to compare across many game plays. We construct the
overhead representation by first detecting players and ball. Using knowledge of
playing field dimensions and locations of few landmarks, we estimate a homography
to transform these detections into a canonical frame. We then link players across
frames using tracking. Each step of this process is detailed below.
Player Detection: Off the shelf person detectors (like Fast-RCNN trained on
COCO [19]) perform very poorly on the water polo data as most of the body is
occluded by water and the size of fully visible player head is only about 30 x 30
pixels. We finetune VGG-16 network pre-trained on Imagenet for detecting light
and dark cap players using Fast R-CNN and the annotations we collected described
in section 8.1.2. The performance of dark and light color cap person detectors was
73.4% and 60.4%, respectively. We attribute the worse performance of the light-color
cap detector to a few confounding factors: 1) many light-color caps were annotated,
by one turker, with loose bounding boxes, 2) overhead lights produce specularities
and water splashes can appear visually similar to light-color caps.
Player Tracking: We track by detection. The Hungarian matching algorithm
[278] is used to link Fast-RCNN player detections to form player tracks. The
pairwise affinity between detections in two sequential frames is a linear combination
of Euclidean distance and bounding box overlap. Player tracking is essential for
identifying who is the player in the current image that will receive the ball in the
future. Additionally, tracking also helps prune spurious detections.
Overhead Projection: In the case of water polo (Figure 8.2) we used the an-
notations of 2m and 5m lines, the pool corner, and the cage posts to estimate the
homography between the current image captured by the camera and a canonical 2D
coordinate system representing the field of play using the normalized direct linear
transformation (DLT) algorithm [279]. Next, we transform the midpoint of bottom
edge of the player bounding box into a (x,y) location in the canonical frame. We
use the bottom edge because that is the point of the player that is closest to the



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 115

image view overhead view

Figure 8.2: The image is converted into the overhead view by first estimating the
homography between the image a canonical model of the playing field using field
markings such as 2m/5m lines etc. The players are then detected and their locations
are transformed using the estimated homography.

field of play, which in turn is mapped to the canonical frame by the homography
transformation.

8.1.4 Forecasting Future Ball Position

The movement of the ball determines the game outcome, and therefore, it is the
most important object in play at any moment of the game. We focus directly on the
most important question during the game: where will the ball go next? We study
two slightly different variants of this question: In the water polo dataset, we only
consider the frame before which the ball possessor is about to lose of the possession
of the ball, and we try to forecast which player will be in possession of ball next.
In the basketball domain, we have access to much more data, and we additionally
attempt the more general problem: where will the ball be in one or two seconds in
the future?

Water polo: Who will possess the ball next?

In the typical front court water polo scene, there are 6 field players on the attack,
defended by 1 goalkeeper and 6 field players on the opposing team. For example, in
Figure 8.2, the dark-cap players are on the attack and the light-cap players are on
defense. By definition, one of the attacking team players is in possession of the ball.
Our system takes as input the frame just before the player loses ball possession by
either making a pass to a teammate, shooting the ball, or committing a turnover.
The task is to predict which player will possess the ball next.

A random choice of player from either team would be correct roughly % ~ 8.3%



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 116

Fiy,2): (x,y) of player with ball
Fis 4: (x,y) of player

Fis,6: (x,y) of nearest defender
F7: same-team flag

Fy: ||Figq — i gll2

Fo: ||Fiz g — Fis,9l2

Figure 8.3: The features Fj;..q extracted from the 2D overhead view are used to
train a random forest to classify players as either receiving the ball next or not.

of the time. As a player is more likely to pass the ball to his teammate, a random
choice of player from the same team would be correct approximately 20% of the
time (empirically validated on the test set). Such random guesses are very naive.
Players often tend to pass the ball to nearer teammates, as shorter passes are easier
to execute and minimize turnover risk. Predicting the nearest teammate as the next
possessor is correct 28.1% of the time. Players also tend to pass the ball to open
teammates, those who are not closely guarded by defenders. Predicting a pass to a
teammate who is furthest from his nearest defender (i.e. most open) has accuracy
of 36.7%. These baselines are considerably worse than an average human with no
water polo expertise, who is correct 55.3% of the time.

In the next two sections, we describe how performance can be improved: (1)
using additional player features estimated from the overhead representation, and (2)
automatically learning feature representations directly from the input image. We
operationalize these approaches in the following way: Let there be K players each with
feature vector F(i € {1,2..,K}), let b € {1,2.., K} be a discrete random variable
that encodes the player in possession of the ball after a pass is made. The goal is to
find the player who is most likley to receive the ball, i.e. argmax; P(b = i|F'..FK).

Hand designed features from overhead view

When deciding where to pass the ball, players consider which teammates are in
good position to: score, advance the ball, and receive a pass. We formalize these
insights and characterize each player using a 9-D feature vector extracted from the



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 117

overhead representation: the (z,y) player coordinates, the (x,y) coordinates of the
nearest player on the opposite team, the (z,y) coordinates of the player in possession
of the ball, an indicator flag for whether the player is on the same team as the
player in possession of the ball, and the Euclidean distances of the player to the
player with the ball and to his nearest defender. This player-centric feature vector is
illustrated in Figure 8.3. We assume that features F'..F* are mutually independent,
and therefore computing P(b = i|F*..F*) reduces to estimating P(b = i|F").

We train a system to infer which player will possess the ball next in the following
way: we used the pipeline described in section 8.1.3 to convert the raw image into
it’s corresponding overhead representation. Next, feature vector of each player was
computed from the overhead representation. Finally, a random forest classifier was
trained on these features using the training data to estimate P(b = i|F"). Five-fold
cross-validation was performed to chose the optimal depth and number of trees.
This system achieved a performance of 45.5% (see Table 8.1) and outperformed the
baseline methods on the testing set. Analysis of the results revealed that this method
is biased towards predicting the most open perimeter player as the one receiving the
ball.

A common failure mode is predicting an open perimeter player, when he is not
even facing the player in possession of the ball. These mistakes are not surprising as
the overhead view has no access to visual appearance cues. Another possible reason
for failures is that the pipeline for converting image data into overhead representation
is inaccurate. To tease this apart, we re-ran the analysis using ground truth (instead
of estimated) detections. As reported in Table 8.1, the accuracy gap with and
without using ground truth detection is within the error bar of the performance on
the testing set. This suggests that the pipeline for obtaining overhead representation
is accurate and further performance improvements will be gained by building better
forecasting models.

Forecasting directly from image space While the overhead view provides a
good representation for analyzing game play, it loses subtle visual cues, such as the
pose of the player and direction they are facing, that might be very relevant for
forecasting. Instead of hand-designing such features, is it possible to automatically
discover features that are useful for forecasting next ball possession?

The set of features F1..F* is represented by image I; and we compute P(b = i|;)
in the following manner: Let [;, p* be random variables denoting the future location of
the ball and the k™ player respectively after the passed ball is received. Since only one
player can receive the ball, we assume that if the ball is at location [, it will be received
by the player who has highest probability of presence at [, (i.e. argmax; P(p* = 1;).



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS

Method Ground Truth Heads Detected Heads
Random, either team 9.5 £ 2.2 9.2 £ 22
Random teammate 19.1 £ 3.1 17.0 £ 2.8
Nearest neighbor teammate 28.1 £ 34 222 4+ 3.2
Most open teammate 36.7 £ 3.7 28.7 + 3.4
F[8...9 42.5 + 3.8 35.2 + 3.6
F7...9 45.4 + 3.4 38.4 + 4.0
F[3...9 48.8 + 4.3 44.1 + 3.7
Fl1...9 47.1 + 3.8 45.5 + 3.5
FCN, teammate 38.1 £ 3.5 35.2 + 3.6
Human, Non-Expert 55.3 £ 7.9 -
Human, Expert 73.1 £ 2.0 -

Table 8.1: Each row reports accuracy of a different method for predicting which player
will possess the ball next. The first four methods are baselines. The intermediate
rows provide an ablation study of using various features defined above. The FCN
is a deep learning based method and the last two rows report human performance.
Performance metrics are reported for two circumstances: using ground truth player
locations (column 1) and when detected instead of ground-truth locations (column
2) are used.

Let [{ denote the set of all locations at which i = arg maxy, P(p* = [,). With this,

HMﬁm:/_szmwm (8.1)
I Elz
assuming conditional independence,

=[ﬁPW=MMHMM (8.2)

We model P(l,|1;) using a Fully convolutional neural network (FCN; [280]), that
takes I; as input and predicts a confidence mask of the same size as the image
encoding P(ly|I;). The ground truth value of mask is set to 1 in pixel locations
corresponding to bounding box of the player who receives the ball and zero otherwise.
The player bounding box is a proxy for future ball location. We finetuned Imagenet
pre-trained VGG-16 network for this task.

As we only have 232 training examples, this vanilla system unsurprisingly did not
perform well and overfit very easily even with standard data augmentation techniques
such as image cropping and dropout regularization. One of our contributions is in



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 119

Figure 8.4: The FCN method (section 8.1.4) takes the left image as input and
predicts a heatmap (shown overlaid on right) encoding probable ball locations after
the ball is passed. The yellow, cyan and red squares indicate the player with the ball,
the ground truth player who actually receive the ball next, and the player predicted
to receive the ball by the FCN method respectively.

Non-expert Humans

Correct | Incorrect
Correct 32.8 15.8
Incorrect | 22.8 28.6

Random Forest

Table 8.2: Comparing agreement between the predictions of next ball possessor
made by humans and our best algorithm on the water polo data. Humans and the
algorithm both make correct and incorrect predictions on the same examples more
often than not.

showing that the performance can be significantly improved (from 10% to 38.1%)
by requiring the FCN system to output the location of players in addition to which
player will possess the ball next. Our hypothesis about why this modifications helps
is that forcing the CNN to predict player locations results in representations that
capture the important feature of player configurations and are thus more likely to
generalize than other nuisance factors that the CNN can latch onto given the small
size of the training set. This finding is interesting because it suggests that it might
be possible to learn even better features by forecasting future player locations for
which no additional annotation data is required once the detection and tracking
pipeline described in the previous sections is setup.



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 120

To estimate P(p*F = [,|I;) we first detect all the players in image I; using the
method described in section 8.1.3. We assume that players will be at the same
location after the pass is made. In order to make the ball assignment among
players to be mutually exclusive, we use the player locations to perform a Voronoi
decomposition of the playing field. Let c* be the voronoi cell corresponding to the
kth player. P(p* = I,) is then to set to ‘C—l,q if I, € ¢* and zero otherwise. We then use
equation (2) to compute P(b = i|l;).

This method performs comparably to the baseline that predicts the most open
teammate. Visualization in Figure 8.4 shows a dominant pattern with FCN pre-
dictions: it consistently places higher likelihood around the perimeter of team in
possession of the ball. This is a very sensible strategy to learn because players around
the perimeter are often more open and statistical analysis reveals that there are
more passes between perimeter players. Given the limited amount of data, the FCN
based approach is unable to capture more nuanced aspects of player configurations
or more fine grained visual cues such as the player pose.

Comparison to Human Performance Figure 8.5 compares the predictions of
human non-experts against our best performing system. Some common trends are:
Non-experts are more likely to incorrectly predict players near the cage. Table 8.2
reports agreement statistics between the predictions of our systems and non-expert
humans. These numbers suggest that humans and our system have similar biases
and are accurate/prone to errors on similar examples.

8.1.5 Basketball: Where will the ball go?

As more data was available for basketball, we attacked the more general problem
of predicting where the ball will go next after one and two second respectively.
We represented the overhead view as 64x64x3 images where the three channels
corresponded to location of players of team 1, players of team 2 and the ball
respectively. For capturing temporal context, we included 5 images from the past
taken at times {t,t — 1,...t — 4}s respectively. The task was to predict the ball
location at times {t + 1,¢ + 2}s respectively. To account for multimodality in the
output, we formulate this as a classification problem with the xy plane discretized
into 256 bins.

We experiment with two different CNN training strategies: (a) early fusion of the
temporal information by concatenating 5 images into a 15 channel image that was
fed into a CNN or, (b) late fusion by using a LSTM on the output of CNN feature
representation of the 5 images. The CNN architecture comprised of 4 convolutional
layers containing 32 filters each of size 3x3, stride 2 and ReLLU non-linearity. In case



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 121

Method Error (1s in Future) Error (2s in Future)
Distance (%) Angle (°) Distance (%) Angle (°)
Mean Median Mean Median Mean Median Mean Median

Last Position 11.7 104 - - 20.0 18.3 - -
Ball Velocity 100 100 89.3 88.7 100 100 88.8 85.9
CNN + LSTM 11.4 8.6 61.8 46.6 17.1 14.1 53.1 38.1

CNN (Early Fusion) 10.8 8.3 60.2 44.1 16.8 13.8 543 383

Table 8.3: The early fusion CNN outperforms Last Position and Ball Velocity baseline
methods and a late fusion CNN based approach in predicting (basket)ball position
1s and 2s in the future. We report mean and median errors in the distance and angle
of predicted ball positions.

of early fusion, the output of the last convolutional layer was fed into a 512-D fully
connected layer which in turn fed into the prediction layer. In case of late fusion,
the output of the last convolutional layer was fed into a 512-D LSTM layer which
in turn fed into a prediction layer. The performance of these networks and some
baseline methods is reported in Table 8.3.

We consider two baselines - one which predicts that the ball at time ¢ + 1,7 4 2
will remain at the same location as at time ¢ (i.e. Last position). This is a reasonable
baseline because in many frames the player is in possession of the ball and he does
not move. The second baseline estimates the ball velocity at time ¢ and uses it to
forecast the future location. We report mean and median errors in the distance
and the angle of prediction. The distance between the ground truth and predicted
location is reported as the percentage of the length of the basketball court. The
angular error is the angle between the vector 1 pointing from current position to
ground truth position in the future and vector 2 pointing from current to predicted
position. We find that the proposed methods outperform the baseline and the early
fusion method performs slightly better than the late fusion method. As expected,
the prediction errors in distance are larger when predicting for 2s as compared to 1s.
However, the errors in angle follow the reverse trend. One explanation is that in a
shorter period, the ball moves by small distances and therefore angle measures are
not robust.



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 122

Method Dataset AT FT made FT miss FG made FG miss Off. Rebound Def. Rebound Turnover Foul Time Out Dribble Pass Possession Block Assist Drive Screen mAP
Avg. Human H 1s 100.0 0 60.0 12,5 11.1 16.7 0 0 33.3 66.7 0 0 0 0 0 286 206
Random Forest H 1s 100.0 0 20.0 0 20.0 40.0 0 0 0 100.0  20.0 40.0 0 0 0 0 21.3
Image CNN A 1s 46.0 20.3 3.9 4.8 2.0 5.5 0.9 1.6 0 61.7 16.5 22.9 0.9 1.8 1.6 3.7 11.9
Overhead CNN A 1s 62.2 22.7 38.6 16.4 9.4 43.9 18 5.2 3.5 76.1 255 37.6 0.8 3.4 1.6 131 | 226
Random Forest A 1s 75.5 41.4 41.3 15.7 11.8 61.2 2.3 5.6 4.5 80.5 26.7 40.9 1.0 3.5 1.2 8.5 26.4
Avg. Human H 2s 33.3 20.0 14.3 0 0 0 0 0 37.5 75.0 0 0 0 0 16.7 200 | 135
Random Forest H 2s 100.0 0 0 0 20.0 40.0 0 0 0 100.0 0 20.0 0 0 0 0 17.5
Image CNN A 2s 32.5 7.8 1.9 2.5 0.9 2.7 0.5 0.8 0.2 53.8 14.7 19.9 0 0.6 0.6 2.9 8.8

Overhead CNN A 2s 39.8 19.0 7.3 6.9 3.8 12.9 1.5 2.2 1.6 71.0 18.3 25.3 0.4 2.7 1.1 5.8 13.7
Random Forest A 2s 66.9 29.7 11.8 7.3 5.0 35.4 1.5 2.6 2.7 76.4 214 30.2 0.3 25 0.9 50 | 187
Avg. Human H 40ms 28.6 28.6 83.3 0 50.0 0 0 0 0 25.0 57.1 14.3 0 0 20.0 833 | 244
Random Forest H 40ms | 100.0 0 40.0 80.0 40.0 100.0 0 20.0 0 100.0  60.0 100.0 0 0 0 80.0 | 45.0
Random Forest A 40ms 68.8 24.5 69.5 54.7 62.7 85.2 6.1 31.8 16.7 932 76.2 92.6 3.3 8.1 50  57.7 | 473

Table 8.4: Prediction accuracy AT seconds in the future of 16 basketball events:
free throw (FT) made and missed, field goal (FG) made and missed, offensive (off)
and defensive (def) rebound, etc. Methods were evaluated on the full (A) test split
of 90k events, as well as a smaller, 80-example subset (H) for human performance
evaluation and comparison.

Transferring from Basketball to Water polo

Basketball and water polo are both team sports that require scoring baskets/goals.
This suggests that there maybe general game play strategies, e.g., pass to the most
open player, that are shared between these two games. If this is indeed the case then
a model trained on one of these sports should perform reasonably well on forecasting
events in the other sport. In order to test this hypothesis we trained a random forest
model on the basketball data (the larger dataset) for predicting which player will
get the ball next using the same features as described in 8.1.4 and then tested it on
the water polo testing set.

The accuracy of this model on basketball itself was 69.9% and 36.8% on water
polo. The performance on water polo is worse than a model trained directly on water
polo (which achieves 45.5%) but same as the most open teammate baseline with
36.7% accuracy (Table 8.1). One explanation of these results is that differences in
game strategies arise from the differences in game rules, number of players, and field
size. Therefore the basketball model is outperformed by a model trained on water
polo itself. However, the transfer performance is significantly better than chance
performance and nearest teammate baseline, suggesting that our method is capable
of learning game-independent ball passing strategies. A more detailed analysis of
the error modes is provided in the supplementary materials.

8.1.6 Forecasting Events in Basketball

Predicting the ball location is just one out of many events of interest. For example,
whether a teammate would screen or whether dribble or a break would take place



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 123

are of great interest in basketball. In a manner similar to predicting where the ball
will be at times {t+ 1,¢+ 2}s, we predict which out 16 events of interest will happen
in the future.

We evaluate random forest and neural network based approaches for this task.
The input to the random forest are the following hand designed features, extracted
from the last visible frame: player and ball coordinates and velocities, distances
between each player and the ball, angles between each player and the ball, the time
remaining on the shot clock, the remaining game time in the period, and the time
since the most recent event for each event occurring in the visible history. In total,
we used 92 features. We tested two different neural networks - (a) Overhead CNN
that took as inputs the image representation of the overhead view (see Section 8.1.5)
along with the hand designed features described above and (b) Image CNN that took
as input raw RGB images. The neural network architectures and training procedure
are detailed in the supplementary materials.

Table 8.4 reports the performance of humans and various methods described
above at predicting player moves 1s, 2s and 40ms in advance. The two test splits, H"
and “A" correspond to 80 examples on which human subjects were tested and a set
90K examples on which the algorithm was evaluated. The purpose of reporting the
accuracy when predicting 40ms in advance is to obtain an upper bound on perfor-
mance. The results reveal that random forest outperforms CNN based approaches
and both these approaches perform better than an average human. The Overhead
CNN outperforms the Image CNN suggesting that extracting features relevant for
forecasting from raw visuals is a hard problem. It is also noteworthy that humans
are significantly better at identifying Field Goals (i.e. FG made), but worse at
identifying other events.

8.1.7 Conclusion

In this work we present predicting next players’ moves in basketball and water
polo as benchmark tasks for measuring performance of forecasting algorithms. Instead
of forecasting activities of a single human, sports require forecasting in adversarial
multi-agent environments that are a better reflection of the real world. As the events
we predict are discrete, our benchmark allows for a crisp and meaningful evaluation
metric that is critical for measuring progress. We compare the performance of two
general systems for forecasting player moves: 1) a hand-engineered system that
takes raw visuals as inputs, then transforms them into an overhead view for feature
extraction, and 2) an end-to-end neural network system. We find the hand-engineered
system is close to (non-expert) human performance in water polo and outperforms
humans in basketball. In both cases it outperforms the neural network system,



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 124

which raises a very interesting question - what auxiliary tasks/unsupervised feature
learning mechanisms can be used to improve prediction performance. We find that a
system trained on basketball data generalizes to water polo data, showing that our
techniques are capable of extracting generic game strategies.



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 125

Figure 8.5: Sample predictions of our algorithm (black) and of water polo laymen
(blue). The player in possession of the ball is marked in yellow, and in cases where
both our algorithm and the humans made incorrect predictions, the player who
actually received the ball is marked in red. A solid line indicates a correct prediction,
whereas a dashed line indicates an incorrect prediction. Row 1 shows examples
where both made the correct prediction. Row 2 shows examples where the algorithm
is correct, but humans are incorrect. Row 3 shows examples where humans are
correct, but our algorithm is incorrect. Finally, row 4 shows examples where both
our algorithm and humans were incorrect.



8.1. FORECASTING PLAYER MOVES IN SPORTS VIDEOS 126

Figure 8.6: Examples of the basketball event prediction task: forecast an event n
seconds in the future, provided a k-second history of the player and ball trajectories.



8.2. HUMAN POSE ESTIMATION 127

Figure 8.7: An implementation of Iterative Error Feedback (IEF) for 2D human pose
estimation. The left panel shows the input image I and the initial guess of keypoints
Yo, represented as a set of 2D points. For the sake of illustration we show only 3 out
of 17 keypoints, corresponding to the right wrist (green), left wrist (blue) and top of
head (red). Consider iteration ¢: predictor f receives the input z;, — image I stacked
with a “rendering" of current keypoint positions 3, — and outputs a correction ¢;. This
correction is added to ¥, resulting in new keypoint position estimates 1, 1. The new
keypoints are rendered by function g and stacked with image I, resulting in z;;, and
so on iteratively. Function f was modeled here as a ConvNet. Function g converts
each 2D keypoint position into one Gaussian heatmap channel. For 3 keypoints
there are 3 stacked heatmaps which are visualized as channels of a color image. In
contrast to previous works, in our framework multi-layered hierarchical models such
as ConvNets can learn rich models over the joint space of body configurations and
images.

8.2 Human Pose Estimation

Feature extractors such as Convolutional Networks (ConvNets) [281] represent
images using a multi-layered hierarchy of features and are inspired by the structure
and functionality of the visual pathway of the human brain [282,283|. Feature
computation in these models is purely feedforward, however, unlike in the human
visual system where feedback connections abound [284-286]. Feedback can be used to
modulate and specialize feature extraction in early layers in order to model temporal
and spatial context (e.g. priming [287]), to leverage prior knowledge about shape
for segmentation and 3D perception, or simply for guiding visual attention to image
regions relevant for the task under consideration.

Here we are interested in using feedback to build predictors that can naturally



8.2. HUMAN POSE ESTIMATION 128

handle complex, structured output spaces. We will use as running example the task
of 2D human pose estimation [288-291|, where the goal is to infer the 2D locations
of a set of keypoints such as wrists, ankles, etc, from a single RGB image. The space
of 2D human poses is highly structured because of body part proportions, left-right
symmetries, interpenetration constraints, joint limits (e.g. elbows do not bend back)
and physical connectivity (e.g. wrists are rigidly related to elbows), among others.
Modeling this structure should make it easier to pinpoint the visible keypoints and
make it possible to estimate the occluded ones.

Our main contribution is in providing a generic framework for modeling rich
structure in both input and output spaces by learning hierarchical feature extractors
over their joint space. We achieve this by incorporating top-down feedback — instead
of trying to directly predict the target outputs, as in feedforward processing, we
predict what is wrong with their current estimate and correct it iteratively. We call
our framework Iterative Error Feedback, or IEF.

In TEF, a feedforward model f operates on the augmented input space created
by concatenating (denoted by @) the RGB image I with a visual representation ¢
of the estimated output y; to predict a “correction" (¢;) that brings y; closer to the
ground truth output y. The correction signal ¢, is applied to the current output ¥, to
generate y;,1 and this is converted into a visual representation by g, that is stacked
with the image to produce new inputs ;11 = I @ g(y;) for f, and so on iteratively.
This procedure is initialized with a guess of the output (yo) and is repeated until
a predetermined termination criterion is met. The model is trained to produce
bounded corrections at each iteration, e.g. ||e;||2 < L. The motivation for modifying
y; by a bounded amount is that the space of x; is typically highly non-linear and
hence local corrections should be easier to learn. The working of our model can be
mathematically described by the following equations:

& = f(xy)
Yir1 = Y + € .
Top1 =1 ® g(Yesa), (8.5)

where functions f and g have additional learned parameters ©; and ©,, respec-
tively. Although we have used the predicted error to additively modify y; in equation
8.4, in general y;1 can be a result of an arbitrary non-linear function that operates
on Yy, €.

In the running example of human pose estimation, g, is vector of retinotopic
positions of all keypoints that are individually mapped by g into heatmaps (i.e. K
heatmaps for K keypoints). The heatmaps are stacked together with the image and
passed as input to f (see figure 8.7 for an overview). The “rendering" function ¢ in



8.2. HUMAN POSE ESTIMATION 129

this particular case is not learnt — it is instead modelled as a 2D Gaussian having a
fixed standard deviation and centered on the keypoint location. Intuitively, these
heatmaps encode the current belief in keypoint locations in the image plane and
thus form a natural representation for learning features over the joint space of body
configurations and the RGB image.

The dimensionality of inputs to f is H x W x (K + 3), where H, W represent
the height and width of the image and (K + 3) correspond to K keypoints and the 3
color channels of the image. We model f with a ConvNet with parameters O (i.e.
ConvNet weights). As the ConvNet takes I @ g(y;) as inputs, it has the ability to
learn features over the joint input-output space.

8.2.1 Learning

In order to infer the ground truth output (y), our method iteratively refines
the current output (y;). At each iteration, f predicts a correction (€;) that locally
improves the current output. Note that we train the model to predict bounded
corrections, but we do not enforce any such constraints at test time. The parameters
(©f,0,) of functions f and ¢ in our model, are learnt by optimizing equation 8.6,

min h(es, e(y,yt)) (8.6)

where, ¢, and e(y, y;) are predicted and target bounded corrections, respectively.
The function h is a measure of distance, such as a quadratic loss. T is the number
of correction steps taken by the model. T" can either be chosen to be a constant or,
more generally, be a function of ¢; (i.e. a termination condition).

We optimize this cost function using stochastic gradient descent (SGD) with
every correction step being an independent training example. We grow the training
set progressively: we start by learning with the samples corresponding to the first
step for N epochs, then add the samples corresponding to the second step and train
another N epochs, and so on, such that early steps get optimized longer — they get
consolidated.

As we only assume that the ground truth output (y) is provided at training time,
it is unclear what the intermediate targets (y;) should be. The simplest strategy,
which we employ, is to predefine y; for every iteration using a set of fixed corrections
e(y, y¢) starting from yo, obtaining (yo, y1, ..y). We call our overall learning procedure
Fized Path Consolidation (FPC) which is formally described by algorithm 1.

The target bounded corrections for every iteration are computed using a function
e(y, y:), which can take different forms for different problems. If for instance the



8.2. HUMAN POSE ESTIMATION 130

Figure 8.8: In our human pose estimation running example, the sequence of
corrections ¢; moves keypoints along lines in the image, starting from an initial
mean pose Yo (left), all the way to the ground truth pose y (right), here shown for
two different images. This simplifies prediction at test time, because the desired
corrections to each keypoint are constant for each image, up to the last one which is
a scaled version. Feedback allows the model to detect when the solution is close and
to reduce "keypoint motion", as in a control system. Linear trajectories are shown
for only a subset of the keypoints, to limit clutter.

output is 1D, then e(y, y;) = maz(sign(y — y;) -, y — y;) would imply that the target
“bounded" error will correct y; by a maximum amount of « in the direction of y.

Learning Human Pose Estimation

Human pose was represented by a set of 2D keypoint locations y : {y* € R% k €
[1, K]} where K is the number of keypoints and 3* denotes the k' keypoint. The
predicted location of keypoints at the #* iteration has been denoted by y; : {yF, k €
[1, K]}. The rendering of y; as heatmaps concatenated with the image was provided
as inputs to a ConvNet. The ConvNet was trained to predict a sequence of “bounded"
corrections for each keypoint (¢F) . The corrections were used to iteratively refine
the keypoint locations.

Let u = y* — ¥ and the corresponding unit vector be @ = m Then, the target
“bounded" correction for the t* iteration and k*" keypoint was calculated as:

e(y*,y;) = min(L, [[ull) - @ (8.7)



8.2. HUMAN POSE ESTIMATION 131

Algorithm 1 Learning Iterative Error Feedback with Fixed Path Consolidation

1: procedure FPC-LEARN

2 Initialize g

3 E+—{}

4 for ¢ <— 1 to (Tsteps) do

5: for all training examples (I,y) do
6 et < e(y, u)

7 end for

8 EF+ FUeg

9: for j < 1to N do

10: Update ©f and ©, with SGD, using loss h and target corrections £
11: end for

12: end for

13: end procedure

where L denotes the maximum displacement for each keypoint location. An interest-
ing property of this function is that it is constant while a keypoint is far from the
ground truth and varies only in scale when it is closer than L to the ground truth.
This simplifies the learning problem: given an image and a fixed initial pose, the
model just needs to predict a constant direction in which to move keypoints, and to
"slow down" motion in this direction when the keypoint becomes close to the ground
truth. See fig. 8.8 for an illustration.

The target corrections were calculated independently for each keypoint in each
example and we used an Lo regression loss to model h in eq. 8.6. We set L to
20 pixels in our experiments. We initialized gy, as the median of ground truth 2D
keypoint locations on training images and trained a model for T' = 4 steps, using
N = 3 epochs for each new step. We found the fourth step to have little effect on
accuracy and used 3 steps in practice at test time.

ConvNet architecture. We employed a standard ConvNet architecture pre-trained
on Imagenet: the very deep googlenet [16] . We modified the filters in the first
convolution layer (conv-1) to account for 17 additional channels due to 17 keypoints.
In our model, the conv-1 filters operated on 20 channel inputs. The weights of the
first three conv-1 channels (i.e. the ones corresponding to the image) were initialized
using the weights learnt by pre-training on Imagenet. The weights corresponding to
the remaining 17 channels were randomly initialized with Gaussian noise of variance
0.1. We discarded the last layer of 1000 units that predicted the Imagenet classes and

!The VGG-16 network [17] produced similar results, but required significantly more memory.



8.2. HUMAN POSE ESTIMATION 132

replaced it with a layer containing 32 units, encoding the continuous 2D correction
2 expressed in Cartesian coordinates (the 17th "keypoint" is the location of one
point anywhere inside a person, marking her, and which is provided as input both
during training and testing, see section 8.2.2). We used a fixed ConvNet input size
of 224 x 224.

8.2.2 Results

We tested our method on the two most challenging benchmarks for 2D human
pose estimation: the MPII Human Pose dataset [292], which features significant scale
variation, occlusion, and multiple people interacting, and Leeds Sports Pose dataset
(LSP) [293] which features complex poses of people in sports. For each person in
every image, the goal is to predict the 2D locations of all its annotated keypoints.

MPII — Experimental Details. Human pose is represented as a set of 16 keypoints.
An additional marking-point in each person is available both for training and testing,
located somewhere inside each person’s boundary. We represent this point as an
additional channel and stack it with the other 16 keypoint channels and the 3 RGB
channels that we feed as input to a ConvNet. We used the same publicly available
train/validation splits of [290]. We evaluated the accuracy of our algorithm on the
validation set using the standard PCKh metric [292], and also submitted results for
evaluation on the test set once, to obtain the final score.

We cropped 9 square boxes centered on the marking-point of each person, sampled
uniformly over scale, from 1.4x to 0.3x of the smallest side of the image and resized
them to 256 x 256 pixels. Padding was added as necessary for obtaining these
dimensions and the amount of training data was further doubled by also mirroring
the images. We used the ground truth height of each person at training time, which
is provided on MPII, and select as training examples the 3 boxes for each person
having a side closest to 1.2x the person height in pixels. We then trained googlenet
models on random crops of 224 x 224 patches, using 6 epochs of consolidation for
each of 4 steps. At test time, we predict which one of the 9 boxes is closest to 1.2x
the height of the person in pixels, using a shallower model, the VGG-S ConvNet [294],
trained for that task using an L, regression loss. We then align our model to the
center 224 x 224 patch of the selected window. The MatConvnet library [295] was
employed for these experiments.

We train our models using keypoint positions for both visible and occluded
keypoints, which MPII provides in many cases whenever they project on to the

2 Again, we do not bound explicitly the correction at test time, instead the network is taught to
predict bounded corrections.



8.2. HUMAN POSE ESTIMATION 133

image (the exception are people truncated by the image border). We zero out
the backpropagated gradients for missing keypoint annotations. Note that often
keypoints lie outside the cropped image passed to the ConvNet, but this poses no
issues to our formulation — keypoints outside the image can be predicted and are
still visible to the ConvNet as tails of rendered Gaussians.

100

80

60

= Head

=== Shoulder
Elbow

= Wrist

== Hip

Knee

PCK-0.5

40

20

‘ ‘ _ |—Anke | |
0 1 2 3 |= UBody 5
Step Number | =e=Total

Figure 8.9: Evolution of PCKh at 0.5 overlap as function of correction step number
on the MPII-human-pose validation set, using the finetuned googlenet network. The
model aligns more accurately to parts like the head and shoulders, which is natural,
because these parts are easier to discriminate from the background and have more
consistent appearance than limbs.

Comparison with State-of-the-Art. The standard evaluation procedure in the
MPII benchmark assumes ground truth scale information is known and images are
normalized using this scale information. The current state-of-the-art is the sliding-
window approach of Tompson et al [290] and IEF roughly matches this performance,
as shown in table 8.5. In the more realistic setting of unknown scale information,
the best previous result so far is from Tompson et al. [290] which was the first work
to experiment with this setting and obtained 66.0 PCKh. IEF significantly improves
upon this number to 81.3. Note however that the emphasis in Tompson et al’s
system was efficiency and they trained and tested their model using original image
scales — searching over a multiscale image pyramid or using our automatic rescaling
procedure should presumably improve their performance. See the MPII website for
more detailed results.

LSP — Experimental Details. In LSP, differently from MPII, images are usually
tight around the person whose pose is being estimated, are resized so people have a
fixed size, and have lower resolution. There is also no marking point on the torsos
so we initialized the 17th keypoints used in MPII to the center of the image. The
same set of keypoints is evaluated as in MPII and we trained a model using the
same hyper-parameters on the extended LSP training set. We use the standard



8.2. HUMAN POSE ESTIMATION 134

Head Shoulder Elbow Wrist Hip Knee Ankle UBody | FBody

Yang & Ramanan [288] | 73.2 56.2 413 321 36.2 332 345 432 44.5
Pischulin et al [296] | 74.2 49.0 40.8 341 36.5 344 35.1 41.3 44.0
Tompson et al. [290] | 96.1 91.9 839 778 80.9 723 64.8 84.5 82.0

IEF 95.7 91.6 81.5 724 827 731 664 82.0 81.3
Tompson et al. [290] | 83.4 7.5 67.5 59.8 64.6 55.6 46.1 68.3 66.0
IEF 95.5 91.6 815 724 827 731 66.9 81.9 81.3

Table 8.5: MPII test set PCKh-0.5 results for Iterative Error Feedback (IEF) and
previous approaches, when ground truth scale information at test time is provided
(top) and in the more automatic setting when it is not available (bottom). UBody
and FBody stand for upper body and full body, respectively.

Torso Upper Leg Lower Leg Upper Arm Forearm Head | Total

Pishchulin et al. [298] | 88.9 64.0 58.1 45.5 35.1 85.1 | 58.0
Tompson et al. [299] | 90.3 70.4 61.1 63.0 51.2 83.7 | 66.6
Fan et al. [300] 95.4 7.7 69.8 62.8 49.1 86.6 | 70.1
Chen and Yuille [297] | 96.0 77.2 72.2 69.7 58.1 85.6 | 73.6
IEF 95.3 81.8 73.3 66.7 51.0 84.4 | 72.5

Table 8.6: Person-centric PCP scores on the LSP dataset test set for IEF and
previous approaches.

LSP evaluation code supplied with the MPII dataset and report person-centric PCP
scores in table 8.6. Our results are competitive with the current state-of-the-art of
Chen and Yuille [297].

8.2.3 Analyzing IEF

In this section, we perform extensive ablation studies to validate four choices of
the IEF model: 1) proceeding iteratively instead of in a single shot, 2) predicting
bounded corrections instead of directly predicting the target outputs, 3) curriculum
learning of our bounded corrections, and 4) modeling the structure in the full output
space (all body joints in this case) over carrying out independent predictions for
each label.

Iterative v/s Direct Prediction. For evaluating the importance of progressing
towards solutions iteratively we trained models to directly predict corrections to
the keypoint locations in a single shot (i.e. direct prediction). Table 8.7 shows that
IEF that additively regresses to keypoint locations achieves PCKh-0.5 of 81.0 as



8.2. HUMAN POSE ESTIMATION 135

| Head Shoulder Elbow Wrist Hip Knee Ankle UBody | FBody
Iterative Error Feedback (IEF) | 95.2 91.8 80.8 715 823 737 664 814 81.0
Direct Prediction 92.9 89.4 741 617 793 64.0 53.3 751 74.8
Iterative Direct Prediction | 91.9 88.5 73.3  59.9 775 61.2 518 74.0 73.4

Table 8.7: PCKh-0.5 results on the MPII validation set for models finetuned from
googlenet using Iterative Error Feedback (IEF), direct regression to the keypoint
locations (direct prediction), and a model that was trained to iteratively predict
human pose by regressing to the ground truth keypoint locations (instead of bounded
corrections) in each iteration, starting from the pose in the previous iteration. The
results show that our proposed approach results in significantly better performance.

compared to PCKh of 74.8 achieved by directly regressing to the keypoints.

Iterative Error Feedback v/s Iterative Direct Prediction. Is iterative pre-
diction of the error important or iterative prediction of the target label directly
(as in e.g., [301,302]) performs comparably? In order to answer this question we
trained a model from the pretrained googlenet to iteratively predict the ground truth
keypoint locations (as opposed to predicting bounded corrections). For comparing
performance, we used the same number of iterations for this baseline model and IEF.
Table 8.7 shows that IEF achieves PCKh-0.5 of 81.0 as compared to PCKh of 73.4
by iterative direct prediction. This can be understood by the fact that the learning
problem in IEF is much easier. In IEF, for a given image, the model is trained
to predict constant corrections except for the last one which is a scaled version.
In iterative direct prediction, because each new pose estimate ends up somewhere
around the ground truth, the model must learn to adjust directions and magnitudes
in all correction steps.

Importance of Fixed Path Consolidation (FPC). The FPC method (see al-
gorithm 1) for training a IEF model makes N corrections is a curriculum learning
strategy where in the i"*(i < N) training stage the model is optimized for performing
only the first ¢ corrections. Is this curriculum learning strategy necessary or can all
the corrections be simultaneously trained? For addressing this question we trained
an alternative model that trains for all corrections in all epochs. We trained IEF
with and without FPC for the same number of SGD iterations and the performance
of both these models is illustrated in figure 8.10. The figure shows that without
FPC, the performance drops by almost 10 PCKh points on the validation set and
that there is significant drift when performing several correction steps.

Learning Structured Outputs. One of the major merits of IEF is supposedly
that it can jointly learn the structure in input images and target outputs. For human



8.2. HUMAN POSE ESTIMATION 136

80 r 1
o)
o
v 70 r
O
a
=== Nith FPC
=== \Nithout FPC
60 ]
: 2 3 4 5

Step Number

Figure 8.10: Validation PCKh-0.5 scores for different number of correction steps
taken, when finetuning a IEF model from a googlenet base model using stochastic
gradient descent with either Fixed Path Consolidation (With FPC'), or directly over
all training examples ( Without FPC), for the same amount of time. FPC leads
to significantly more accurate results, leading to models that can perform more
correction steps without drifting. It achieves this by consolidating the learning of
earlier steps and progressively increasing the difficulty of the training set by adding
additional correction steps.

pose estimation, IEF models the space of outputs by augmenting the image with
additional input channels having gaussian renderings centered around estimated
keypoint locations . If it is the case that IEF learns priors over the appropriate
relative locations of the various keypoints, then depriving the model of keypoints
other than the one being predicted should decrease performance.

In order to evaluate this hypothesis we trained three different IEF models and
tested how well each predicted the location of the “Left Knee" keypoint. The first
model had only one input channel corresponding to the left knee, the second model
had two channels corresponding to left knee and the left hip. The third model was
trained using all keypoints in the standard IEF way. The performance of these three
models is reported in table 8.8. As a baseline, regression gets 64.6, whereas the IEF
model with a single additional input channel for the left knee gets PCKh of 69.2



8.2. HUMAN POSE ESTIMATION 137

| Direct Prediction of All Joints | IEF Left Knee | IEF Left Knee  Left Hip [ IEF All Joints
Left Knee PCKh-0.5 | 64.6 \ 69.2 \ 72.8 \ 73.8

Table 8.8: MPII validation PCKh-0.5 results for left knee localization when using
IEF and both training and predicting different subsets of joints. We also show
the result obtained using a direct prediction variant similar to plain regression on
all joints (having the mean pose Gaussian maps in the input). Modeling global
body structure jointly with the image leads to best results by "IEF All Joints".
Interestingly, feedback seems to add value by itself and IEF on the left knee, in
isolation, significantly outperforms the direct prediction baseline.

This shows that feeding back the current estimate of the left knee keypoint allows
for more accurate localization by itself. Furthermore, the IEF model over both left
knee and left hip gets PCKh of 72.8. This suggests that the relationship between
neighboring outputs has much of the information, but modeling all joints together
with the image still wins, obtaining a PCKh of 73.8.

8.2.4 Related Work

There is a rich literature on structured output learning [303,304] (e.g. see
references in [305]) but it is a relatively modern topic in conjunction with feature
learning, for computer vision [290,306,307].

Here we proposed a feedback-based framework for structured-output learning.
Neuroscience models of the human brain suggest that feedforward connections act
as information carriers while numerous feedback connections act as modulators or
competitive inhibitors to aid feature grouping [308], figure-ground segregation [309|
and object recognition [310]. In computer vision, feedback has been primarily used
so far for learning selective attention [311]; in [311] attention is implemented by
estimating a bounding box in an image for the algorithm to process next, while
in [312] attention is formed by selecting some convolutional features over others (it
does not have a spatial dimension).

Stacked inference methods [301,302,313,314] are another related family of methods.
Differently, some of these methods consider each output in isolation [289], all use
different weights or learning models in each stage of inference [290] or they do not
optimize for correcting their current estimates but rather attempt to predict the
answer from scratch at each stage [302,315]. In concurrent work, Oberweger et
al [316] proposed a feedback loop for hand pose estimation from kinect data that is
closely related to our approach. The autocontext work of [302] is also related and
iteratively computes label heatmaps by concatenating the image with the heatmaps



8.2. HUMAN POSE ESTIMATION 138

previously predicted. IEF is inspired by this work and we show how this iterative
computation can be carried out effectively with deep Convnet architectures, and
with bounded error corrections, rather than aiming for the answer from scratch at
each iteration.

Another line of work aims to inject class-specific spatial priors using coarse-to-fine
processing, e.g. features arising from different layers of ConvNets were recently
used for instance segmentation and keypoint prediction [317]. For pose inference,
combining multiple scales [290,318] aids in capturing subtle long-range dependencies
(e.g. distinguishing the left and right sides of the body which depend on whether a
person is facing the camera). The system in our human pose estimation example
can be seen as closest to approaches employing “pose-indexed features” [319-321],
but leveraging hierarchical feature learning. Graphical models can also encode
dependencies between outputs and are still popular in many applications, including
human pose estimation [297|. Classic spatial alignment and warping computer vision
models, such as snakes, [322] and Active Appearance Models (AAMs) [323] have
similar goals as the proposed IEF, but are not learned end-to-end — or learned at
all — employ linear shape models and hand designed features and require slower
gradient computation which often takes many iterations before convergence. They
can get stuck in poor local minimas even for constrained variation (AAMs and
small out-of-plane face rotations). IEF, on the other hand, is able to minimize over
rich articulated human 3D pose variation, starting from a mean shape. Although
extensions that use learning to drive the optimization have been proposed [324],
typically these methods still require manually defined energy functions to measure
goodness of fit.

8.2.5 Discussion

While standard ConvNets offer hierarchical representations that can capture the
patterns of images at multiple levels of abstraction, the outputs are typically modeled
as flat image or pixel-level 1-of-K labels, or slightly more complicated hand-designed
representations. We aimed in this paper to mitigate this asymmetry by introducing
Iterative Error Feedback (IEF), which extends hierarchical representation learning
to output spaces, while leveraging at heart the same machinery. IEF works by, in
broad terms, moving the emphasis from the problem of predicting the state of the
external world to one of correcting the expectations about it, which is achieved by
introducing a simple feedback connection in standard models.

In our pose estimation working example we opted for feeding pose information only
into the first layer of the ConvNet for the sake of simplicity. This information may
also be helpful for mid-level layers, so as to modulate not only edge detection, but also



8.2. HUMAN POSE ESTIMATION 139

Mean shape

Figure 8.11: Example poses obtained using the proposed method IEF on the MPII
validation set. From left to right we show the sequence of corrections the method
makes —on the right is the ground truth pose, including annotated occluded keypoints,
which are not evaluated. Note that IEF is robust to left-right ambiguities and is
able to rotate the initial pose by up to 180° (first and fifth row), can align across
occlusions (second and third rows) and can handle scale variation (second, fourth
and fifth rows) and truncation (fifth row). The bottom two rows show failure cases.
In the first one, the predicted configuration captures the gist of the pose but is
misaligned and not scaled properly. The second case shows several people closely
interacting and the model aligns to the wrong person. The black borders show
padding. Best seen in color and with zoom.



8.2. HUMAN POSE ESTIMATION 140

processes such as junction detection or contour completion which advanced feature
extractors may need to compute. We also have only experimented so far feeding back
"images" made up of Gaussian distributions. There may be more powerful ways to
render top-down pose information using parametrized computational blocks (e.g.
deconvolution) that can then be learned jointly with the rest of the model parameters
using standard backpropagation. This is desirable in order to attack problems with
higher-dimensional output spaces such as 3D human pose estimation [325,326] or
segmentation.



141

Chapter 9

Can Deep Learning Inform
Neuroscience?

As discussed earlier in this thesis, in the recent years there have been many systems
making use of deep learning that have exceeded or matched human performance
at the game of GO [2], ATARI video games [3| and classifying images into one of
the thousand imagenet categories [14]. A question of great interest is whether these
super-human machine learning systems can inform how humans solve the same tasks.
In this chapter, I will present a study comparing the similarities between a deep
learning system for image classification and the human visual system [283].

9.1 What we know about the human visual system

Neuroscientists, psychologists and computer vision scientists have been fascinated
by how does the human brain transform visual information captured by the retina into
information useful for semantic tasks like object recognition and scene interpretation?
We know that this transformation is performed by a hierarchically organized system
of visual areas within the visual cortex. However, we do not know how the brain
computes this transformation. Past studies have found that visual regions of interests
(ROIs [327]) like V1, V2 located in posterior visual cortex appear to represent low-
level visual features such as oriented edges [328], gabors [329] and local motion-energy
features [330]. Visual ROIs like Fusiform Face Area (FFA [331,332]), Extrastriate
Body Area (EBA [333]) and Parahippocampal Place Area (PPA [334]) located in
anterior visual cortex appear to represent high-level semantically meaningful features
useful for detecting faces, bodies and understanding visual scenes. Further, it is
believed that visual ROIs like V4 located in intermediate visual cortex represent



9.2. FRAMEWORK FOR TESTING MODELS OF VISUAL
COMPUTATION IN THE HUMAN BRAIN 142

mid-level visual features that are useful grouping, figure-ground segmentation and
representing contours [335]. However, the visual representations and computations
performed in intermediate visual ROIs is poorly understood.

While we do understand to some extent the features represented by different
parts of the visual cortex, to date there is no cogent theory that explains how the
brain transforms retinal stimuli into high-level semantic information. The prominent
computational theory in neuroscience put forth by Barlow [336] argues that the goal
of the visual system is to reduce redundancy in information (i.e. compression). In his
view, the representations in the visual cortex arise out of compression. Computational
models based on this idea such as independent component analysis [39] and sparse
coding |38] accurately predict the computations performed in the area V1 of the
visual cortex. However, models based on the redundancy reduction hypothesis have

not been able to explain visual representations in mid and other higher visual areas
such as V4, PPA, FFA etc.

9.2 Framework for testing models of visual compu-
tation in the human brain

One way to address the question of understanding how the brain transforms
low-level visual representations into high-level visual representation is to build a
computational model that takes images/videos as inputs and outputs an accurate
prediction of brain activity across the visual cortex. An accurate prediction of brain
activity would imply that the constructed model and the brain represent visual
information using similar features. The similarity of features by itself would be
insufficient to make conclusions about the exact computations performed by the
brain. However, such a finding would suggest that the constructed model is a
plausible computational hypothesis for how the brain transforms low-level features
into high-level features. Further, such a model could also be used to investigate the
nature of visual representations in different parts of the visual cortex.

Given that brain is a complex non-linear processing system, it is unlikely that an
analytical solution to the problem of constructing such a model would exist. Past
studies have addressed this concern by breaking down the process of predicting brain
activity elicited in response to stimulus images into two steps. In the first step, a
feature space that provides a linearizing transformation between the stimulus images
and measured brain activity is constructed. In the second step, regularized linear
regression is used to find a set of weights that predict brain activity from the feature
representation of images. This framework for predicting brain activity has been called
the encoding model approach [329,337-341]. Past studies used manually constructed



9.2. FRAMEWORK FOR TESTING MODELS OF VISUAL
COMPUTATION IN THE HUMAN BRAIN 143

feature spaces for predicting brain activity. For instance, [329,330] predicted brain
activity in visual ROIs like V1, V2 using Gabor features. [339,340] used linguistically
constructed feature spaces that indicated the presence or absence of multiple object
categories in images. These studies were only only able to predict brain activity
in anterior visual cortex (i.e. ROIs like FFA, EBA, PPA). Moreover, these studies
were unsatisfying because they did not provide any explanation for how the brain
converts stimulus images into semantically meaningful information. To date, there
exists no model that can predict brain activity throughout the visual cortex starting
from image pixels.

Instead of manually defining features, an alternative is to use machine learning
techniques to learn features that are optimal for predicting brain activity. However,
it is unlikely that these techniques would work because non-linear machine learning
methods require large amounts of training data and brain activity recordings are
not available in plenty. This is because, collecting brain activity data is both a
tedious and a costly process. Another way to learn features is by training models
for performing the same tasks that the human visual system performs. After all, it
is reasonable to assume that visual processing and representations in the brain are
optimized for the visual tasks it must perform. Moreover, large amounts of data are
publically available for training models for performing tasks like object recognition
that are also performed by humans [25].

Recently in the field of computer vision, a class of computational models called
as Convolutional Neural Networks (ConvNets [281]) have been found to be very
successful on the task of object recognition [342|. ConvNet were inspired by the
organization of eurons in the visual cortex [328,343] and multiple considerations
suggest that the visual features of a ConvNet are a good candidate for studying visual
features represented by the brain. Firstly, the brain and the ConvNet are both adept
at the common task of object recognition. Secondly, the brain and the ConvNet both
represent visual information hierarchically. For instance, the ConvNet architecture
proposed by [342] represented images by a seven-layered hierarchy of visual features.
Lastly, some past studies have shown that the lower layers of the ConvNet feature
hierarchy represent visual features such as edges and corners whereas the higher layers
represent visual features that are more useful for object recognition [15,58]. These
three facts taken together suggest that low and high-level visual features represented
by the brain and the ConvNet are likely to be similar. If it is the case that low and
high-level features represented by the brain and the ConvNet are similar, it is likely
that mid-level features represented by the brain and the ConvNet are also similar.

In this chapter I will detail the experiment performed to test the above hypothesis.
We investigated the relationship between the hierarchies of visual representations
in the human brain and a ConvNet trained for the task of object recognition. The



9.3. METHOD 144

method and results of our investigation are presented in section 9.3 and section 9.4
respectively. A discussion of the implication of the results and a comparison with
related previous work in provided in section 9.5.

9.3 Method

For studying the relationship between the visual representations of the ConvNet
and the human brain we constructed computational models for predicting brain
activity from visual representations of the ConvNet (see figure 9.1). First, we trained
a seven layered ConvNet with the architecture proposed by [342] for the task of
classifying 1.2M million natural images into 1000 distinct object categories (ILSVRC-
2012 challenge [25]) using the publically available software [109]. In the remainder
of this paper, the term ConvNet refers to this particular ConvNet. This ConvNet
transformed input images into seven set of features (one from each of the seven
layers). These features were used to predict brain activity.

The brain activity data for this study were functional magnetic resonance imaging
(fMRI [344]) recordings of human brain activity (specifically, the blood-oxygenation-
level-dependent (BOLD) signal), recorded continuously while four subjects passively
viewed a series of static photos of color natural scenes. These subjects have been
referred to as S1, S2, S3 and S4 in the remainder of the paper. We used the fMRI
data that was previously used by [339]. This study measured brain activity elicited
by 1260 images shown twice each (train set of images), and another set of 126 images
shown 12 times each (test set of images). Activity was measured in approximately
100,000 voxels (i.e., volumetric pixels) located in the cerebral cortex of each subject.
We followed the same procedure for pre-processing the fMRI data as outlined in [339].

9.3.1 Constructing Models for Predicting Brain Activity

For every voxel, a separate model was constructed for predicting its BOLD
activity from the given feature representation of the image. Ridge regression was
used to find a set of weights that predicted voxel’s BOLD activity using the training
set of 1260 images. A single regularization parameter was chosen for all voxels,
using five-fold cross-validation [340]. The accuracy of each model for each voxel was
expressed as the correlation (r) between predicted and recorded voxel activity in
response to images in the test set. The explained variance in each voxel’s responses
was calculated as the square of correlation coefficient (r2) [337|. Prediction accuracy
was deemed statistically significant if the correlation had a p-value < 0.001 (see
supplementary materials for more details).



9.3. METHOD 145

(A) 7 layer ConvNet (called AlexNet) was trained for object recognition (B) AlexNet converted image into 7 sets of features

Images from Imagenet Is Elephant?
iﬂ % Is Sock?
- o B — .
I om -
4oly —
b ?
k I‘ S Beakel

(C) 7 separate models were constructed for predicting brain activity of every voxel using features from 7 AlexNet layers

Recorded E Predicted
Activity 1 Activity
' S
BOLD activity of 6l L
R voxels was : ! 22 For every voxel, Images were .
. recorded using ! a separate linear converted into .
fMRI while human . ! . model features using
subjects viewed ! for predicting asingle
e is | —>| natural images |—> ! < BOLD activity <€— | ConvNet layer [€— 4
o 0.1 1 |0.08 was estimated
. ( 1 using -
-] \ H Ridge regression |
= -0.1 |
e '
i

Correlation Coefficient (r)

(D) Asingle AlexNet layer was assigned to every voxel

Assingle ConvNet
layer was
assigned to every
voxel based on
the accuracy of
prediction

For every voxel, r,
prediction accuracy (r)
—é r4
of 7 models was

computed during the re
cross validation stage r;

Figure 9.1: Description of the method for predicting brain activity using ConvNet
features. First, a seven layered ConvNet was trained for the task of recognizing 1000
distinct object categories using a collection of 1.2M labelled images (panel A) [25,342].
This ConvNet extracted seven sets of features (from seven layers) for a given input
image (panel B). ConvNet features were used to predict brain activity (i.e. BOLD
activity measured using fMRI) of four human subjects while they passively viewed
a separate collection of natural images (panel C). For every voxel, seven separate
models for predicting BOLD activity were constructed using features extracted from
seven layers of the ConvNet. Based on the accuracy of prediction (measured as

correlation coefficient), an optimal ConvNet layer was assigned to every voxel (panel
D).

The modelling framework described above implicitly assumes that voxel responses
are stationary (i.e. the BOLD activity of a voxel is only a function of the input
image and will be the same every time the same image is presented as stimulus).



9.3. METHOD 146

However, the voxel responses can be non-stationary due to either the inherent non-
stationarity in firing of individual neurons that constitute the voxel or due to noise
in fMRI measurements. As our modelling framework is incapable of dealing with
non-stationarity, we only fit models to voxels that are approximately stationary. The
stationarity of a voxel can be estimated by calculating the repeatability in BOLD
activity of the voxel expressed as the Signal to Noise Ratio (SNR). The method for
computing the SNR is detailed in the supplementary materials. In this work, SNR
has been expressed in terms of p-values (psyr). Note that this pgyg is different
measure than the p-value of the prediction accuracy. In this work, we have only
considered voxels with pgyr < 0.001.

Convolutional Neural Network (ConvNet) Model

After the ConvNet was trained for object recognition, it was used to transform
all images used in the fMRI study into seven sets of features. The images used in
the fMRI study were seperate from images used for training the ConvNet. Each set
of feature corresponded to the feature representation of images produced by a single
layer of the ConvNet. The first five layers of the ConvNet performed convolutions
(denoted conv-1 through conv-5) and the last two layers were fully connected (fc-6,
fc-7) (see supplementary materials for more details). For every voxel, seven separate
sets of weights were estimated for predicting brain activity from these seven feature
spaces. An optimal ConvNet layer was determined for every voxel based on the
prediction accuracy of voxel activity measured during the cross-validation stage (see
figure 9.1).

Baseline Model

In order to compare the prediction accuracy of the ConvNet with previously
published models, a baseline model was constructed by combining the Gabor Wavelet
model (GW; [329]) and the 19-Category model (19-Cat; [338,339]). The GW and
19-Cat model have been shown to accurately predict brain activity in early (V1,
V2) and late (PPA, FFA, EBA, OPA) visual areas respectively. More details on
these two models has been provided in the supplementary materials. The Baseline
model was constructed in the following way: For every voxel two sets of weights
were independently estimated for predicting BOLD activity from GW and 19-Cat
features. Each voxel was then assigned either to the GW or the 19-Cat model. This
assignment was made based on the accuracy of the GW and the 19Cat models in
predicting BOLD activity of the voxel measured during the cross validation stage.
The model obtained after this assignment has been called the Baseline model.



9.4. RESULTS 147

3D Brain View

Brain Flatmap

Figure 9.2: Accuracy of the ConvNet model in predicting brain activity of subject
S1. The accuracy was measured as the correlation coefficient (Pearson’s r) between
the predicted and recorded brain activity in response to the test set of images. The
color of each voxel reflects the prediction accuracy of the ConvNet model. Hotter
colors reflect higher accuracy of prediction. The statistical significance of each voxel
was evaluated individually and the mean cutoff value of r for the voxels with p-value
< 0.001 was found to be 0.306 & 0.008. The voxels with low SNR (i.e. pgyg-value
> (0.001) have been shown in gray.

9.4 Results

9.4.1 ConvNet predicts brain activity across the visual cortex

Any hypothesized feature space provides useful insights into brain representations
only to the extent that it accurately predicts brain activity elicited under naturalistic
conditions. The prediction accuracy of the ConvNet model was evaluated using
the test set of 126 images and evoked BOLD activity (that were separate from set
of images used for fitting the model). Figure 9.2 shows prediction accuracy of the
ConvNet model fit to voxels distributed across visual cortex for subject S1. From
this figure it can be concluded that the ConvNet model transforms image pixels into
features that make significant predictions (i.e. p-value < 0.001) of BOLD activity
across the visual cortex.

If it is the case that ConvNet model can provide insights into visual representations
in the human brain beyond what is already known, then the ConvNet model must
predict brain activity with accuracy higher than previously published models. We
compared the accuracy of ConvNet model with the Baseline model across multiple
visual ROIs using the following two metrics: The percentage of significantly predicted



9.4. RESULTS 148

Table 9.1: Comparing the accuracy of the ConvNet with the Baseline model for
predicting brain activity across several visual ROIs. The accuracy was quantified
using two metrics - the percentage of significantly predicted voxels (% Significant)
and the mean explained variance (expressed as percentage, % Variance) in the BOLD
activity of each ROI. The table reports the mean 4+ standard deviation of these
metrics computed using 1000 bootstrap runs (see supplementary materials for details).
The ConvNet model is as good or better than the baseline model in almost all ROIs
and outperforms the baseline model in intermediate visual ROIs like V4, LLO and

OFA.

Measure Model ROI

V1 V2 V3 V4 LO OFA FFA EBA PPA
ConvNet | 32.8 £2.9 | 246 +£19 163+ 1.6 | 177+ 1.6 | 41.7 £ 2.2 | 67.3 £ 4.3 | 69.2 £ 3.1 | 60.1 £+ 3.4 | 47.7 + 2.0
Baseline | 32.6 £2.9 | 26.6 2.6 | 13.9+19|11.0+15|324+ 1.9 | 533 +3.6|65.0=£35]|57.6+33|47.7+2.6
ConvNet | 81 +06 | 64+04 | 45+£03 | 47+03 | 108+08|174+20|19.7+£22|155+1.6 | 148+ 1.3
Baseline | 7.5+0.6 | 64+£05 | 40+03 | 35+02 | 84+0.6 |13.8+13|178+1.7|146+ 14| 142+ 14

% Significant

% Variance

voxels in a ROI and the percentage explained variance in the BOLD response within
a ROL.

For making this comparison, voxels belonging to the same ROI were grouped
across all the subjects. The percentage of significantly predicted voxels was calculated
as the percentage of voxels within a ROI for which BOLD responses were predicted
with p-value < 0.001. The explained variance in BOLD response of each ROI was
calculated as the mean explained variance in BOLD responses of voxels assigned to
the ROI (see supplementary materials for more details). The results are reported in
table 9.1 indicate that ConvNet and the Baseline model make comparable predictions
in early and late visual areas. The ConvNet model outperforms the Baseline model
in intermediate visual areas. This suggests that the ConvNet model might provide
novel insights about visual features represented by the intermediate visual cortex.

9.4.2 The hierarchy of visual representations in the ConvNet
mimics the hierarchy of visual representations in the
human brain

Does the ConvNet model provide insights into how the brain transforms low-level
visual features into high-level visual features? If it is the case that the ConvNet
provides a plausible computational hypothesis for how the brain transforms low-level
visual features into high-level visual features then the low, mid and high-level features
represented in both the systems must match.

To investigate if this was the case, we plotted the ConvNet layer assigned to



9.4. RESULTS 149

3D Brain View Brain Flatmap Legend

= fc-7

mmm fC-6

conv-5
conv-4
conv-3
conv-2
conv-1

Figure 9.3: Relationship between the feature hierarchies of ConvNet and the human
brain. Voxels have been color coded to show the ConvNet layer that was found to be
optimal for predicting their activity. The voxels with pgyg-value > 0.001 are shown
in gray. The alpha channel of the voxel colors has been modulated to reflect the
accuracy of the ConvNet model in predicting the BOLD activity of voxels. The alpha
value for all voxels predicted with p-value < 0.001 has been set to 1. The alpha values
for the remaining voxels has been set in proportion to r on linear scale ranging from
0 to 1. The lower (conv-1, conv-2, conv-3), intermediate (conv-4, conv-5) and higher
(fc-6, fc-7) layer of the ConvNet were found to be optimal for voxels in posterior,
intermediate and anterior areas of the visual cortex respectively. This shows that
the hierarchy of visual representations in the ConvNet mimics the hierarchy of visual
representations in the human brain.

every voxel on a flatmap of the brain (figure 9.3). Each voxel in this figure has
been color-coded to reflect its corresponding ConvNet layer. The figure shows that
lower, middle and higher layers of the ConvNet were optimal for predicting BOLD
responses in posterior, intermediate and anterior parts of the visual cortex. This
implies that low, mid and high-level visual features represented by the ConvNet are
related to the low, mid and high-level visual features represented by the brain by a
linear transformation. From this it can be concluded that the hierarchy of visual
representations in the ConvNet mimics the hierarchy of visual representations in the
human brain.



9.4. RESULTS 150

Images predicted to increase brain activity Images predicted to decrease brain activity

Vi

Vi

V4

V4

FFA

FFA

PPA

PPA

Figure 9.4: Using the ConvNet model to probe the stimulus tuning of individual
voxels. Each row represents the tuning of a single voxel. The visual tuning of two
voxels from the visual areas V1, V4, FFA and PPA is shown. These voxels were
manually chosen from a set of voxels obtained after pooling voxels from all four
subjects. The ConvNet model fit to each voxel was used to filter a set of 280K natural
images. The six columns at left show the six images that the ConvNet model for each
voxel predicts will most increase BOLD activity, and the six columns at right show
the images that the model predicts will most decrease BOLD activity. The V1 voxels
are predicted to increase activity when images consist of high texture and to decrease
activity when images contain landscapes. The V4 voxels are predicted to increase
activity when images contain a circular shapes and to decrease activity when they
contain landscapes. The FFA voxels are predicted to increase activity when images
contain human and animal faces and to decrease activity when they contain scenes.
The PPA voxels are predicted to increase activity when images contain scenes and
trains and to decrease activity when they contain animate objects.

9.4.3 Investigating Visual Representations in the Human Brain

Insights into visual representations of the human brain can be developed by
visualizing the features represented by individual voxels. For this, we used the



9.4. RESULTS 151

ConvNet model to predict BOLD activity of individual voxels to a collection of more
than 280K natural images (see supplementary material for a detailed description of
this image collection). Then for every voxel independently, these images were rank-
ordered according to the predicted BOLD activity. The top and bottom images within
this ranking provide qualitative intuition about the features that are represented by
a particular voxel (see supplementary material for more details). Figure 9.4 shows
the top and bottom six images for two voxels in V1, V4, FFA and PPA. As there
were too many voxels to visualize, only two sample voxels from each ROI were chosen
in the following way: For each ROI, all voxels predicted with a p-value < 0.0001
were pooled across the four subjects. From this set, two voxels were manually chosen
to illustrate the range of visual representations in a ROI. A random sample of voxels
from V1, V4, FFA and PPA is shown in the supplementary materials.

The V1 voxels are predicted to increase activity when images consist of high
texture and to decrease activity when images contain landscapes. This result is not
surprising because V1 is known to contain neurons that respond to oriented edges
and images with high texture are likely to excite a large number of V1 neurons. This
in turn would cause the V1 voxels to elicit large responses to textured images. The
FFA voxels are predicted to increase activity when images contain human and animal
faces and to decrease activity when they contain scenes. These results are consistent
with previous accounts of FFA [331,332]. The PPA voxels are predicted to increase
activity when images contain scenes and trains and to decrease activity when they
contain animate objects. The geometric structure of trains is not very different from
that of buildings. This suggests PPA voxels encode specific geometric structures
useful for identifying scenes/places and are not likely to be selective for any object
categories. This interpretation of features represented in PPA is consistent with the
findings of [345] and previous accounts of PPA [334]. These results demonstrate that
using the ConvNet model, results of multiple previous fMRI studies that investigated
visual representations in individual ROIs [329,331,333,334] can be reproduced using
only a single fMRI study.

Despite several past studies, the understanding of visual representations in V4
is unsatisfactory [335,346,347]. Our analysis reveals that a subset of V4 voxels
are predicted to increase BOLD activity when images contain a circular shapes
and to decrease activity when they contain landscapes. This result is qualitatively
consistent with neurophysiological reports that area V4 is selective for curvature
and radial patterns [347] and shows that ConvNet can be used to investigate visual
representations in intermediate visual ROIs.



9.5. DISCUSSION 152

9.5 Discussion

Understanding how the brain transforms low-level visual features into high-
level visual features requires developing computational theories that make testable
predictions about visual representations in the brain. In the past, such theories have
either been based purely on the neurophysiological findings or have been inspired
by Barlow’s redundancy reduction hypothesis [336]. Hubel and Wiesel’s finding
of simple and complex cells [328| led to the computational hypothesis that the
hierarchy of visual features in the brain was constructed by consequent stages of
linear filtering, pooling and point-wise non-linearities. This idea was first championed
by the Neocognitron model [282] and later by the HMAX model [348]. In a different
line of work, past studies found that computational models based on Barlow’s idea
predicted what features were represented by neurons in V1 [38,39]. Since then,
several studies have attempted to use the redundancy reduction hypothesis for
building computational models that explain features represented in visual areas
beyond V1 [349,350]. However, these studies have met with limited success and no
prior study has been able to construct a computational model that provides plausible
predictions about features represented across the visual cortex.

With help of experiments presented above, we demonstrated that hierarchy of
visual representations in the ConvNet mimics the hierarchy of visual representations
in the human brain. In contrast to past studies that proposed a similar model of
computation [282,348], the key difference is that the ConvNet model was trained for
the task of object recognition. Models used in these previous studies were not opti-
mized for performing any particular task and this suggests that that computational
theories optimizing for end task performance such as image classification, might
provide a better account of how brain represents visual information as compared
to models capturing goal independent natural image statistics (i.e. unsupervised
learning [36, 38,39, 102]).

Some recent studies [351,352] have provided evidence that ConvNets can explain
visual representations in the Inferior Temporal (IT) cortex of macaques and humans.
However, these results are not surprising because I'T appears to represent semantically
meaningful features such as faces and places and the ConvNet was trained for object
recognition. What our results show is that the ConvNet mimics the hierarchy of
visual representations across the visual cortex. This implies that not only is the
ConvNet plausible model of visual processing but it can also be used to study visual
representations throughout the visual cortex. Such claims cannot be made based on
the results of any previous work.

One potential critique of our work is that unlike the brain, the ConvNet has
no feedback or recurrent connections. How is it then that the ConvNet is able



9.6. TAKEAWAYS 153

to predict brain activity across the visual cortex? Omne explanation is provided
by past studies that have shown that the brain can perform object recognition
using feed-forward computations only [353]. Moreover, although the ConvNet model
outperforms previously proposed models for predicting brain activity, there still is
substantial amount of variance in brain activity that is not explained by the ConvNet
model (see table 9.1).

Another potential critique of our work is that several architectural choices involved
in designing the ConvNet (such as the number of layers) were simply made as a result
of the fact that they led to good performance on the task of object recognition [342].
These choices may not be optimal for predicting brain activity and consequently
the ConvNet model we used is probably sub-optimal. Modifying the ConvNet
architecture to incorporate computational mechanisms like recurrence and feedback,
and optimally choosing parameters such as the number of layers, the number of units
in a layer, and the choice of specific non-linearity will lead to models that make
more accurate predictions of brain activity. Future work on developing such models
is likely to provide a more nuanced understanding of how the brain processes and
represents visual stimuli.

9.6 Takeaways

The main result of our work is that the hierarchy of visual representations in the
ConvNet mimics the hierarchy of visual representations in the human brain. This
observation was either concurrently or later replicated by multiple other groups [351,
354-357|. This suggests that understanding visual representations in the ConvNet can
help us understand the visual representations in the human brain. As evidence, we
have shown that the ConvNet model reveals visual features represented by individual
voxels. Our results also provide evidence that computational models optimized for
executing ecologically relevant tasks (like object recognition) as opposed to models
optimized solely for estimating natural image statistics can provide better hypothesis
about how brain transforms low-level visual representations into high-level visual
representations.

Similar to our results in the visual pathway, McDermott’s group reported that
hierarchy of auditory representations learned by deep networks optimized for speech
and music recognition [358] resembled the hierarchy of features in the auditory cortex.
Our and their findings taken together suggest that by optimizing for ecologically
relevant tasks, deep neural networks learn representations similar to the sensory
cortices in the human brain. This in turn means that we can understand the
representations in the brain by understanding the representations of sensory data in



9.6. TAKEAWAYS 154

neural network which can be more easily manipulated. Furthermore, based on these
results I also hypothesize that if we were to train neural networks that performed
complex sensorimotor tasks such arranging objects, using a tool to manipulate
another object, planning how to stack objects in a tower etc — these networks might
provide a tool for understanding sensorimotor representations in the human brain.
This is a very exciting avenue for future research.



155

Chapter 10

Conclusions

This dissertation is a work of a continually evolving agent that learned by experi-
menting. The only end is evolution. Check back with me and I will tell you how
curious my agents are! Maybe it will be me, or my agents answering you. Shall you
know? Think, what day that might be. On the path I walk, only a few words remain
true, others evolve. Remember,

“Imagination is more important than knowledge. For knowledge is limited, whereas
imagination embraces the entire world, stimulating progress, giving birth to evolution”

“I am enough of an artist to draw freely upon my imagination. Imagination is more
important than knowledge. For knowledge is limited, whereas imagination encircles
the world.”

— Albert Einstein

“Knowledge takes you from A to B, Imagination takes you everywhere”
— Controversial
and you will find the answers you seek. As for me,

“Little by little, cell by cell, the truth shall evolve”

“I am neither special nor ordinary,
I am evolution decoding evolution,
From simplicity emerges complexity,
Embodied I am, the rest is a myth!”

— Pulkit Agrawal



156

Bibliography

1]

2l

13l

4]

[5]

(6]

7]

8]

9]

F.-H. Hsu, Behind Deep Blue: Building the computer that defeated the world
chess champion. Princeton University Press, 2004.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,

“Mastering the game of go with deep neural networks and tree search,” nature,
vol. 529, no. 7587, p. 484, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, 2015.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in Computer
Vision (ICCV), 2017 IEEE International Conference on, pp. 2980-2988, IEEE,
2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in NIPS, 2012.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770-778, 2016.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neu-

ral networks,” in Advances in neural information processing systems, pp. 3104—
3112, 2014.

K. Miilling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and
generalize striking movements in robot table tennis,” The International Journal
of Robotics Research, vol. 32, no. 3, pp. 263-279, 2013.

J. G. C. Devol, “Programmed article transfer,” June 13 1961. US Patent
2,988,237.



BIBLIOGRAPHY 157

[10] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building
machines that learn and think like people,” Behavioral and Brain Sciences,
vol. 40, 2017.

[11] G. Tesauro, “Temporal difference learning and td-gammon,” Communications
of the ACM, vol. 38, no. 3, pp. 5868, 1995.

[12] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Miiller, R. Lake, P. Lu,
and S. Sutphen, “Checkers is solved,” science, vol. 317, no. 5844, pp. 1518-1522,
2007.

[13] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit poker:
Libratus beats top professionals,” Science, p. eaaol733, 2017.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge,” International Journal of Computer Vision, vol. 115,
no. 3, pp. 211-252, 2015.

[15] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Computer Vision-ECCV 2014, pp. 818-833, Springer, 2014.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1-9, 2015.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” ICLR, 2015.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 580587,
IEEE, 2014.

[19] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440-1448, 2015.

[20] T.-Y. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection.,” in C'VPR, 2017.

[21] B. Hariharan, P. Arbeléez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” ICCV, 2011.



BIBLIOGRAPHY 158

[22] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose
estimation using part affinity fields,” in CVPR, 2017.

[23] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose
machines,” in CVPR, 2016.

[24] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose estima-
tion with iterative error feedback,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4733-4742, 2016.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR, 2009.

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Furopean
conference on computer vision, pp. 740-755, Springer, 2014.

[27] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
“Decaf: A deep convolutional activation feature for generic visual recognition,”
ICML, 2014.

[28] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks
for one shot learning,” in Advances in Neural Information Processing Systems,
pp. 3630-3638, 2016.

[29] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,”
ICLR, 2017.

[30] B. Hariharan and R. Girshick, “Low-shot visual object recognition,” ICCYV,
2017.

[31] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum,
H. Larochelle, and R. S. Zemel, “Meta-learning for semi-supervised few-shot
classification,” arXiv preprint arXiv:1803.00676, 2018.

[32] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot learning of
simple visual concepts,” in Proceedings of the Annual Meeting of the Cognitive
Science Society, vol. 33, 2011.

[33] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman, “How to
grow a mind: Statistics, structure, and abstraction,” science, vol. 331, no. 6022,
pp. 1279-1285, 2011.



BIBLIOGRAPHY 159

[34] S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear Phenomena,
vol. 42, no. 1-3, pp. 335-346, 1990.

[35] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description length and
helmholtz free energy,” in Advances in neural information processing systems,
pp. 3-10, 1994.

[36] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 448-455, 2009.

[37] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” in
Artificial Neural Networks and Machine Learning-ICANN, pp. 44-51, Springer,
2011.

[38] B. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images,” Nature, 1996.

[39] A. J. Bell and T. J. Sejnowski, “The "independent components" of natural
scenes are edge filters.,” Vision research, vol. 37, pp. 3327-38, Dec. 1997.

[40] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” ICLR, 2014.

[41] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised learning
of invariances,” Neural computation, vol. 14, no. 4, pp. 715-770, 2002.

[42] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun, “Unsupervised
learning of spatiotemporally coherent metrics,” ICCV, 2015.

[43] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” ICML, 2008.

[44] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[45] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” tech. rep., Citeseer, 2009.

[46] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation
learning by context prediction,” in ICCV, 2015.

[47] M. Noroozi, H. Pirsiavash, and P. Favaro, “Representation learning by learning
to count,” arXw preprint arXiv:1708.06734, 2017.



BIBLIOGRAPHY 160

[48] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,” arXiv
preprint arXiv:1505.01596, 2015.

[49] D. Jayaraman and K. Grauman, “Learning image representations equivariant
to ego-motion,” arXiv preprint arXiw:1505.02206, 2015.

[50] X. Wang and A. Gupta, “Unsupervised learning of visual representations using
videos,” in ICCV, 2015.

[51] X. Wang, K. He, and A. Gupta, “Transitive invariance for selfsupervised visual
representation learning,” in Proc. of Int’l Conf. on Computer Vision (ICCV),
2017.

[52] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba, “Ambient
sound provides supervision for visual learning,” ECCV, 2016.

[53] D. Pathak, R. Girshick, P. Dollar, T. Darrell, and B. Hariharan, “Learning
features by watching objects move,” CVPR, 2017.

[54] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context
encoders: Feature learning by inpainting,” in CVPR, 2016.

[55] J. Donahue, P. Krdhenbiihl, and T. Darrell, “ Adversarial Feature Learning,”
ICLR, 2017.

[56] R. Zhang, P. Isola, and A. A. Efros, “Colorful Image Colorization,” FCCYV,
2016.

[57] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional
Networks,” arXiw:1311.2901, 2013.

[58] P. Agrawal, R. Girshick, and J. Malik, “Analyzing the performance of multilayer
neural networks for object recognition,” in Computer Vision-ECCV 2014,
pp. 329-344, Springer, 2014.

[59] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan, “In-
verse reward design,” in Advances in Neural Information Processing Systems,
pp. 67656774, 2017.

[60] S.J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia,
Pearson Education Limited,, 2016.

[61] D. Amodei and J. Clark, “Faulty reward functions in the wild, 2016,” URL
hitps://blog. openai. com/faulty-reward-functions, 2016.



BIBLIOGRAPHY 161

[62] D. A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural network,”
in NIPS, 1989.

[63] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and autonomous systems, 20009.

[64] S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends in
cognitive sciences, 1999.

[65] A.Y. Ngand S. J. Russell, “Algorithms for inverse reinforcement learning,” in
ICML, pp. 663-670, 2000.

[66] A. Bandura and R. H. Walters, Social learning theory, vol. 1. Prentice-hall
Englewood Cliffs, NJ, 1977.

[67] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Teaching by showing: Generating
robot programs by visual observation of human performance,” in International
Symposium on Industrial Robots, 1989.

[68] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching: Extracting
reusable task knowledge from visual observation of human performance,” IEFEE
transactions on robotics and automation, vol. 10, no. 6, pp. 799-822, 1994.

[69] K. Tkeuchi and T. Suehiro, “Toward an assembly plan from observation. i.
task recognition with polyhedral objects,” IEEE Transactions on Robotics and
Automation, 1994.

[70] C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends in
cognitive sciences, 2002.

[71] R. Dillmann, “Teaching and learning of robot tasks via observation of human
performance,” Robotics and Autonomous Systems, 2004.

[72] Y. Yang, Y. Li, C. Fermiiller, and Y. Aloimonos, “Robot learning manipulation
action plans by" watching" unconstrained videos from the world wide web.,”

in AAAIL pp. 3686-3693, 2015.

[73] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard, “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1309-1332, 2016.

[74] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.



BIBLIOGRAPHY 162

[75] D. G. Lowe, “Object recognition from local scale-invariant features,” in Com-
puter vision, 1999. The proceedings of the seventh IEEE international confer-
ence on, vol. 2, pp. 1150-1157, Teee, 1999.

[76] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 1, pp. 886—-893, IEEE, 2005.

[77] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural computation, 1989.

[78] R. A. Brooks, “Intelligence without representation,” Artificial intelligence,
vol. 47, no. 1-3, pp. 139-159, 1991.

[79] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning visual predictive
models of physics for playing billiards,” ICLR, 2016.

[80] A. Michotte, “The perception of causality,” 1963.
[81] M. McCloskey, “Intuitive physics,” Scientific american, 1983.

[82] L. Smith and M. Gasser, “The development of embodied cognition: Six lessons
from babies,” Artificial life, 2005.

[83] A. Gopnik, A. N. Meltzoff, and P. K. Kuhl, The scientist in the crib: Minds,

brains, and how children learn. 1999.

[84] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven explo-
ration by self-supervised prediction,” in International Conference on Machine
Learning (ICML), vol. 2017, 2017.

[85] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to poke by
poking: Experiential learning of intuitive physics,” NIPS, 2016.

[86] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine,
“Combining self-supervised learning and imitation for vision-based rope manip-
ulation,” ICRA, 2017.

[87] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shel-
hamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual imitation,” in
ICLR, 2018.



BIBLIOGRAPHY 163

[38]

[39]

[90]

[91]

[92]

(93]

[94]
[95]

[96]

[97]

98]

P. Felsen, P. Agrawal, and J. Malik, “What will happen next? forecasting
player moves in sports videos,” ICCV, Oct, vol. 1, p. 2, 2017.

K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos,” in Advances in Neural Information Processing Systems,
pp. 568-576, 2014.

Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature learning
and deep learning: A review and new perspectives,” CoRR, abs/1206.5538,
vol. 1, 2012.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations,” in

Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 609-616, ACM, 2009.

M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised learning
of invariant feature hierarchies with applications to object recognition,” in
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pp. 1-8, IEEE, 2007.

J. J. Gibson, The Ecological Approach to Visual Perception. Houghton Mifflin,
1979.

J. E. Cutting, Perception with an eye for motion, vol. 177.

S. Soatto, “Visual scene representations: Sufficiency, minimality, invariance
and approximations,” arXww preprint arXiw:1411.7676, 2014.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,
vol. 2, pp. 2169-2178, IEEE, 2006.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEFE, vol. 86, no. 11,
pp. 2278-2324, 1998.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” International Journal of Robotics Research (IJRR), 2013.



BIBLIOGRAPHY 164

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

D. M. Chen, G. Baatz, K. Koser, S. S. Tsai, R. Vedantham, T. Pylvanainen,
K. Roimela, X. Chen, J. Bach, M. Pollefeys, et al., “City-scale landmark

identification on mobile devices,” in Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pp. 737-744, IEEE, 2011.
J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database:

Large-scale scene recognition from abbey to zoo,” in Computer vision and
pattern recognition (CVPR), 2010 IEEE conference on, pp. 3485-3492, IEEE,
2010.

H. Mobahi, R. Collobert, and J. Weston, “Deep learning from temporal coher-
ence in video,” in Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 737-744, ACM, 2009.

H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and
singular value decomposition,” Biological cybernetics, vol. 59, no. 4-5, pp. 291—
294, 1988.

H. Barlow, “Unsupervised learning,” Neural computation, vol. 1, no. 3, pp. 295—
311, 1989.

M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra,
“Video (language) modeling: a baseline for generative models of natural videos,”
arXiv preprint arXiw:1412.6604, 2014.

P. Fischer, A. Dosovitskiy, and T. Brox, “Descriptor matching with convolu-
tional neural networks: a comparison to sift,” arXiv preprint arXiv:1405.5769,
2014.

R. Memisevic and G. E. Hinton, “Learning to represent spatial transformations
with factored higher-order boltzmann machines,” Neural Computation, vol. 22,
no. 6, pp. 1473-1492, 2010.

R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller, and
Y. LeCun, “Online learning for offroad robots: Using spatial label propagation
to learn long-range traversability,” in Proc. of Robotics: Science and Systems

(RSS), vol. 11, p. 32, 2007.

S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discrimina-
tively, with application to face verification,” in Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1,
pp. 539-546, IEEE, 2005.



BIBLIOGRAPHY 165

[109] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for Fast
Feature Embedding,” ACM Multimedia, 2014.

[110] A. Oliva and A. Torralba, “Building the gist of a scene: The role of global
image features in recognition,” Progress in brain research, vol. 155, pp. 23-36,
2006.

[111] L. Bourdev, S. Maji, T. Brox, and J. Malik, “Detecting people using mutually
consistent poselet activations,” in Computer Vision-ECCV 2010, pp. 168-181,
Springer, 2010.

[112]| S. Vicente, J. Carreira, L. Agapito, and J. Batista, “Reconstructing pascal voc,”
in Computer Vision and Pattern Recognition (CVPR), 201} IEEE Conference
on, pp. 41-48, IEEE, 2014.

[113] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no. 8, pp. 966—
1005, 1988.

[114] C. Vondrick, H. Pirsiavash, and A. Torralba, “Anticipating the future by
watching unlabeled video,” C'VPR, 2016.

[115] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” ICLR,
2016.

[116] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” JMLR, 2016.

[117] S. Lange, M. Riedmiller, and A. Voigtlander, “Autonomous reinforcement
learning on raw visual input data in a real world application,” in IJCNN, 2012.

[118] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep
spatial autoencoders for visuomotor learning,” ICRA, 2016.

[119] S. Lange and M. A. Riedmiller, “Deep learning of visual control policies.,” in
ESANN, 2010.

[120] T. C. Kietzmann and M. Riedmiller, “The neuro slot car racer: Reinforcement
learning in a real world setting,” in ICMLA, 2009.

[121] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours,” ICRA, 2016.



BIBLIOGRAPHY 166

[122] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with large-scale data collection,” in ISER,
2016.

[123] M. R. Dogar and S. S. Srinivasa, “A planning framework for non-prehensile
manipulation under clutter and uncertainty,” Autonomous Robots, 2012.

[124] D. Q. Mayne, “Model predictive control: Recent developments and future
promise,” Automatica, 2014.

[125] M. L. Jordan and D. E. Rumelhart, “Forward models: Supervised learning with
a distal teacher,” Cognitive science, 1992.

[126] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan, “An internal model for
sensorimotor integration,” Science-AAAS-Weekly Paper Edition, 1995.

[127] 1. Lenz, R. Knepper, and A. Saxena, “Deepmpec: Learning deep latent features
for model predictive control,” in RSS, 2015.

[128] N. Wahlstrom, T. B. Schon, and M. P. Deisenroth, “From pixels to torques:
Policy learning with deep dynamical models,” arXiv:1502.02251, 2015.

[129] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed to
control: A locally linear latent dynamics model for control from raw images,”
in NIPS, 2015.

[130] J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh, “Action-conditional video
prediction using deep networks in atari games,” NIPS, 2015.

[131] J. Wu, L. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo:
Perceiving physical object properties by integrating a physics engine with
deep learning,” in NIPS, 2015.

[132] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and A. Farhadi, “Newtonian
image understanding: Unfolding the dynamics of objects in static images,”

CVPR, 2016.

[133] A. Lerer, S. Gross, and R. Fergus, “Learning physical intuition of block towers
by example,” ICML, 2016.

[134] M. Kopicki, S. Zurek, R. Stolkin, T. Moérwald, and J. Wyatt, “Learning to
predict how rigid objects behave under simple manipulation,” in ICRA, 2011.



BIBLIOGRAPHY 167

[135] M. Lau, J. Mitani, and T. Igarashi, “Automatic learning of pushing strategy
for delivery of irregular-shaped objects,” in ICRA, 2011.

[136] T. Merigli, M. Veloso, and H. L. Akin, “Push-manipulation of complex passive
mobile objects using experimentally acquired motion models,” Autonomous
Robots, 2015.

[137] S. Kolev and E. Todorov, “Physically consistent state estimation and system
identification for contacts,” in International Conference on Humanoid Robots,
2015.

[138]| J. Hamrick, P. Battaglia, and J. B. Tenenbaum, “Internal physics models guide
probabilistic judgments about object dynamics,” in Cognitive Science Society,
2011.

[139] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and gen-
eralizing a task in a humanoid robot,” IFEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 286-298, 2007.

[140] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics through
apprenticeship learning,” The International Journal of Robotics Research,
vol. 29, no. 13, pp. 1608-1639, 2010.

[141] A. P. Shon, D. Verma, and R. P. Rao, “Active imitation learning,” in AAAI
pp. 756762, 2007.

[142] G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, “Premotor cortex and
the recognition of motor actions,” Cognitive brain research, vol. 3, no. 2,
pp. 131-141, 1996.

[143] G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu. Rev.
Neurosci., vol. 27, pp. 169-192, 2004.

[144]| G. Hickok, “Eight problems for the mirror neuron theory of action understanding
in monkeys and humans,” Journal of cognitive neuroscience, vol. 21, no. 7,
pp. 1229-1243, 20009.

[145] D. Foster and P. Dayan, “Structure in the space of value functions,” Machine
Learning, 2002.

[146] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function
approximators,” in ICML, 2015.



BIBLIOGRAPHY 168

[147] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine,
“Time-contrastive networks: Self-supervised learning from video,” in ICRA,
2018.

9

[148] H. Chui and A. Rangarajan, “A new algorithm for non-rigid point matching,’
in CVPR, 2000.

[149] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in ICML, 2004.

[150] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” in AAAI 2008.

[151] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in NIPS,
2016.

[152] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider, I. Sutskever,
P. Abbeel, and W. Zaremba, “One-shot imitation learning,” in NIPS, 2017.

[153] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual imitation
learning via meta-learning,” CoRL, 2017.

[154] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive
mapping and planning for visual navigation,” CVPR, 2017.

[155] P. Sermanet, K. Xu, and S. Levine, “Unsupervised perceptual rewards for
imitation learning,” in RSS, 2017.

[156] B. C. Stadie, P. Abbeel, and I. Sutskever, “Third-person imitation learning,”
in ICLR, 2017.

[157] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation:
Learning to imitate behaviors from raw video via context translation,” ICRA,
2018.

[158] H. Koichi and H. Tom, Visual servoing: real-time control of robot manipulators
based on wvisual sensory feedback, vol. 7. World scientific, 1993.

[159] B. H. Yoshimi and P. K. Allen, “Active, uncalibrated visual servoing,” in
Robotics and Automation, 1994. Proceedings., 199 IEEFE International Con-
ference on, pp. 156-161, IEEE, 1994.



BIBLIOGRAPHY 169

[160] W. J. Wilson, C. W. Hulls, and G. S. Bell, “Relative end-effector control using
cartesian position based visual servoing,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 5, pp. 684-696, 1996.

[161] G. Caron, E. Marchand, and E. M. Mouaddib, “Photometric visual servoing for
omnidirectional cameras,” Autonomous Robots, vol. 35, no. 2-3, pp. 177-193,
2013.

[162] T. Lampe and M. Riedmiller, “Acquiring visual servoing reaching and grasping
skills using neural reinforcement learning,” in Neural Networks (IJCNN), The
2013 International Joint Conference on, pp. 1-8, IEEE, 2013.

[163] A. X. Lee, S. Levine, and P. Abbeel, “Learning visual servoing with deep
features and fitted g-iteration,” arXiv preprint arXiv:1703.11000, 2017.

[164]| J. E. Hopcroft, J. K. Kearney, and D. B. Krafft, “A case study of flexible object
manipulation,” The International Journal of Robotics Research, vol. 10, no. 1,
pp. 41-50, 1991.

[165] H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, and J. Schmidhuber, “A
system for robotic heart surgery that learns to tie knots using recurrent neural
networks,” Advanced Robotics, vol. 22, no. 13-14, pp. 1521-1537, 2008.

[166] J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick, and P. Abbeel, “A
case study of trajectory transfer through non-rigid registration for a simplified
suturing scenario,” in IROS, 2013.

[167] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with application
to robotic towel folding,” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pp. 2308-2315, IEEE, 2010.

[168] M. Inaba and H. Inoue, “Hand eye coordination in rope handling,” Journal of
the Robotics Society of Japan, vol. 3, no. 6, pp. 538547, 1985.

[169] M. Saha and P. Isto, “Motion planning for robotic manipulation of deformable
linear objects,” in Proceedings 2006 IEEFE International Conference on Robotics
and Automation, 2006. ICRA 2006., pp. 2478-2484, IEEE, 2006.

[170] M. Bell, Flexible object manipulation. PhD thesis, Dartmouth College, Hanover,
New Hampshire, 2010.



BIBLIOGRAPHY 170

[171] Y. Yamakawa, A. Namiki, M. Ishikawa, and M. Shimojo, “One-handed knotting
of a flexible rope with a high-speed multifingered hand having tactile sensors,”
in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 703-708, IEEE, 2007.

[172] T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi, “Knot
planning from observation,” in Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, vol. 3, pp. 3887-3892, IEEE,
2003.

[173] R. H. Crowell and R. H. Fox, Introduction to knot theory, vol. 57. Springer
Science & Business Media, 2012.

[174] H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/unknotting manipulation of
deformable linear objects,” The International Journal of Robotics Research,
vol. 25, no. 4, pp. 371-395, 2006.

[175] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropaga-
tion and approximate inference in deep generative models,” arXiv preprint
arXiw:1401.4082, 2014.

[176] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven explo-
ration by self-supervised prediction,” in ICML, 2017.

[177) R. Mur-Artal and J. D. Tardos, “Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras,” IEEFE Transactions on Robotics, 2017.

[178] A.J. Davison and D. W. Murray, “Mobile robot localisation using active vision,”
in ECCV, 1998.

[179] Mapillary, “Open source structure from motion pipeline,” https: // github.
com/ mapillary/ OpenSfM, 2016.

[180] E. L. Ryan, Richard; Deci, “Intrinsic and extrinsic motivations: Classic defini-
tions and new directions,” Contemporary Educational Psychology, 2000.

[181] P. J. Silvia, “Curiosity and motivation,” in The Ozford Handbook of Human
Motivation, 2012.

[182] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos,
“Unifying count-based exploration and intrinsic motivation,” in NIPS, 2016.


https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM

BIBLIOGRAPHY 171

[183)

[184]

[185)

[186]

[187]

188

[189)

[190]

[191]

[192]

193]

194]

[195]

P. Poupart, N. Vlassis, J. Hoey, and K. Regan, “An analytic solution to discrete
bayesian reinforcement learning,” in /CML, 2006.

M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer, “Exploration in model-
based reinforcement learning by empirically estimating learning progress,” in

NIPS, 2012.

J. Schmidhuber, “A possibility for implementing curiosity and boredom in
model-building neural controllers,” in From animals to animats: Proceedings
of the first international conference on simulation of adaptive behavior, 1991.

J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motivation
(1990-2010),” IEEE Transactions on Autonomous Mental Development, 2010.

S. P. Singh, A. G. Barto, and N. Chentanez, “Intrinsically motivated reinforce-
ment learning.,” in NIPS, 2005.

S. Mohamed and D. J. Rezende, “Variational information maximisation for
intrinsically motivated reinforcement learning,” in NIPS, 2015.

B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforce-
ment learning with deep predictive models,” NIPS Workshop, 2015.

R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel,
“Vime: Variational information maximizing exploration,” in NIPS, 2016.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in ICML, 2016.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski, “Viz-
doom: A doom-based ai research platform for visual reinforcement learning,”
arXiv:1605.02097, 2016.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” arXiw:1606.01540, 2016.

A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” ICLR,
2016.

P. Paquette, “Super mario bros. in openai gym,” github:ppaquette/gym-super-
marto, 2016.



BIBLIOGRAPHY 172

[196] J. Fu, J. D. Co-Reyes, and S. Levine, “Ex2: Exploration with exemplar models
for deep reinforcement learning,” arXiv:1705.01260, 2017.

[197] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex
environments,” ICLR, 2017.

[198] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation systems for
autonomous mental development,” Evolutionary Computation, 2007.

[199] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a typology of
computational approaches,” Frontiers in neurorobotics, 2009.

[200] Y. Sun, F. Gomez, and J. Schmidhuber, “Planning to be surprised: Optimal
bayesian exploration in dynamic environments,” in AGI, 2011.

[201] M. Kearns and D. Koller, “Efficient reinforcement learning in factored mdps,”

in IJCAI 1999.

[202] R.I. Brafman and M. Tennenholtz, “R-max-a general polynomial time algorithm
for near-optimal reinforcement learning,” JMLR, 2002.

[203] A. S. Klyubin, D. Polani, and C. L. Nehaniv, “Empowerment: A universal
agent-centric measure of control,” in Fvolutionary Computation, 2005.

[204] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional video
prediction using deep networks in atari games,” in NIPS, 2015.

[205] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman,
F. De Turck, and P. Abbeel, “# exploration: A study of count-based exploration
for deep reinforcement learning,” arXww:1611.04717, 2016.

[206] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via
bootstrapped dqn,” in NIPS, 2016.

[207] S. Still and D. Precup, “An information-theoretic approach to curiosity-driven
reinforcement learning,” Theory in Biosciences, 2012.

[208] D. Y. Little and F. T. Sommer, “Learning and exploration in action-perception
loops,” Closing the Loop Around Neural Systems, 2014.

[209] J. Storck, S. Hochreiter, and J. Schmidhuber, “Reinforcement driven informa-
tion acquisition in non-deterministic environments,” in JCANN, 1995.



BIBLIOGRAPHY 173

[210]

[211]

[212]

[213]

214)

[215]

[216]

[217]

[218]

[219]

[220]

[221]

S. Sukhbaatar, I. Kostrikov, A. Szlam, and R. Fergus, “Intrinsic motivation
and automatic curricula via asymmetric self-play,” in ICLR, 2018.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,”
ICLR, 2017.

E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell, “Loss is its own
reward: Self-supervision for reinforcement learning,” arXiv:1612.07507, 2017.

K. Gregor, D. J. Rezende, and D. Wierstra, “Variational intrinsic control,”
ICLR Workshop, 2017.

R. Dubey, P. Agrawal, D. Pathak, T. L. Griffiths, and A. A. Efros, “Investigating
human priors for playing video games,” International Conference on Machine
Learning, 2018.

D. Pathak, Y. Shentu, D. Chen, P. Agrawal, T. Darrell, S. Levine, and J. Malik,
“Learning instance segmentation by interaction,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops, pp. 2042—
2045, 2018.

J. Oh, S. Singh, and H. Lee, “Value prediction network,” in NIPS, 2017.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep g-learning
with model-based acceleration,” in ICML, 2016.

J. J. Gibson, The ecological approach to visual perception: classic edition.
Psychology Press, 2014.

C. G. D. Wasser, An object-oriented representation for efficient reinforcement
learning. Rutgers The State University of New Jersey-New Brunswick, 2010.

F. Doshi-Velez and Z. Ghahramani, “A comparison of human and agent re-
inforcement learning in partially observable domains,” in Proceedings of the
Annual Meeting of the Cognitive Science Society, vol. 33, 2011.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building
machines that learn and think like people,” Behavioral and Brain Sciences,
pp. 1-101, 2016.



BIBLIOGRAPHY 174

[222] P. A. Tsividis, T. Pouncy, J. L. Xu, J. B. Tenenbaum, and S. J. Gershman,
“Human learning in atari.",” in The AAAI 2017 Spring Symposium on Science
of Intelligence: Computational Principles of Natural and Artificial Intelligence,

2017.

[223] E. S. Spelke and K. D. Kinzler, “Core knowledge,” Developmental science,
vol. 10, no. 1, pp. 89-96, 2007.

[224] S. Carey, The origin of concepts. Oxford University Press, 2009.

[225] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented representation
for efficient reinforcement learning,” in Proceedings of the 25th international
conference on Machine learning, pp. 240-247, ACM, 2008.

[226] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lazaro-Gredilla, X. Lou,
N. Dorfman, S. Sidor, S. Phoenix, and D. George, “Schema networks: Zero-shot
transfer with a generative causal model of intuitive physics,” in International
Conference on Machine Learning, pp. 1809-1818, 2017.

[227] K. Narasimhan, R. Barzilay, and T. Jaakkola, “Deep transfer in reinforcement
learning by language grounding,” arXiv preprint arXiv:1708.00133, 2017.

[228] S. J. Hespos, A. L. Ferry, and L. J. Rips, “Five-month-old infants have different
expectations for solids and liquids,” Psychological Science, vol. 20, no. 5,
pp. 603-611, 2009.

[229] R. Baillargeon, “Infants’ physical world,” Current directions in psychological
science, vol. 13, no. 3, pp. 89-94, 2004.

[230] R. Baillargeon, “How do infants learn about the physical world?,” Current
Directions in Psychological Science, vol. 3, no. 5, pp. 133-140, 1994.

[231] D. M. Wolpert and Z. Ghahramani, “Computational principles of movement
neuroscience,” Nature neuroscience, vol. 3, pp. 1212-1217, 2000.

[232] N. D. Daw, J. P. O'Doherty, P. Dayan, B. Seymour, and R. J. Dolan, “Cortical
substrates for exploratory decisions in humans,” Nature, vol. 441, no. 7095,
pp. 876-879, 2006.

[233] J. D. Cohen, S. M. McClure, and J. Y. Angela, “Should I stay or should T
go? How the human brain manages the trade-off between exploitation and
exploration,” Philosophical Transactions of the Royal Society B: Biological
Sciences, vol. 362, no. 1481, pp. 933-942, 2007.



BIBLIOGRAPHY 175

[234] W. B. Knox, A. R. Otto, P. Stone, and B. Love, “The nature of belief-directed
exploratory choice in human decision-making,” Frontiers in psychology, vol. 2,
p. 398, 2012.

[235] S. J. Gershman and Y. Niv, “Novelty and inductive generalization in human
reinforcement learning,” Topics in cognitive science, vol. 7, no. 3, pp. 391415,
2015.

[236] E. S. Spelke, “Principles of object perception,” Cognitive science, vol. 14, no. 1,
pp. 29-56, 1990.

[237] J. M. Mandler, “Representation,” in Cognition, perception, and language:
Handbook of child psychology, John Wiley & Sons Inc, 1998.

[238] D. Mareschal and P. C. Quinn, “Categorization in infancy,” Trends in cognitive
sciences, vol. 5, no. 10, pp. 443-450, 2001.

[239] A. F. Pereira and L. B. Smith, “Developmental changes in visual object recog-
nition between 18 and 24 months of age,” Developmental science, vol. 12, no. 1,
pp. 67-80, 2009.

[240] K. S. Kretch and K. E. Adolph, “Cliff or step? Posture-specific learning at the
edge of a drop-oft,” Child Development, vol. 84, no. 1, pp. 226240, 2013.

[241] K. Kitani, B. Ziebart, J. Bagnell, and M. Hebert, “Activity forecasting,” Com-
puter Vision-ECCYV 2012, pp. 201-214, 2012.

[242] C. Vondrick, H. Pirsiavash, and A. Torralba, “Anticipating the future by
watching unlabeled video,” arXiv preprint arXiw:1504.08023, 2015.

[243] A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Saxena, “Car that knows
before you do: Anticipating maneuvers via learning temporal driving models,”
in Proceedings of the IEEE International Conference on Computer Vision,
pp. 3182-3190, 2015.

[244] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction
beyond mean square error,” ICLR, 2016.

[245] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene
dynamics,” in Advances In Neural Information Processing Systems, pp. 613-621,
2016.



BIBLIOGRAPHY 176

[246] H. S. Koppula and A. Saxena, “Anticipating human activities using object
affordances for reactive robotic response,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 38, no. 1, pp. 14-29, 2016.

[247] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning visual predictive
models of physics for playing billiards,” arXww preprint arXiv:1511.07404, 2015.

[248] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis by
appearance flow,” in Furopean Conference on Computer Vision, pp. 286—-301,
Springer, 2016.

[249] J. Walker, A. Gupta, and M. Hebert, “Patch to the future: Unsupervised visual
prediction,” in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pp. 3302-3309, IEEE, 2014.

[250] J. Walker, C. Doersch, A. Gupta, and M. Hebert, “An uncertain future:
Forecasting from static images using variational autoencoders,” in Furopean
Conference on Computer Vision, pp. 835-851, Springer, 2016.

[251] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese,
“Social Istm: Human trajectory prediction in crowded spaces,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961
971, 2016.

[252] P. V. K. Borges, N. Conci, and A. Cavallaro, “Video-based human behavior
understanding: a survey,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 23, no. 11, pp. 1993-2008, 2013.

[253] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei,
“Every moment counts: Dense detailed labeling of actions in complex videos,”
arXiv preprint arXw:1507.05738, 2015.

[254] 1. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning realistic
human actions from movies,” in Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pp. 1-8, IEEE, 2008.

[255] K. Soomro, A. R. Zamir, and M. Shah, “Ucfl101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiw:1212.0402, 2012.

[256] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov models for
complex action recognition,” in Computer Vision and Pattern Recognition,
1997. Proceedings., 1997 IEEE Computer Society Conference on, pp. 994-999,
IEEE, 1997.



BIBLIOGRAPHY 177

257

[258]

[259]

[260]

[261]

262]

263

[264]

265

[266]

[267]

R. Urtasun, D. J. Fleet, and P. Fua, “3d people tracking with gaussian process
dynamical models,” in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, vol. 1, pp. 238-245, IEEE, 2006.

S.-K. Weng, C.-M. Kuo, and S.-K. Tu, “Video object tracking using adaptive
kalman filter,” Journal of Visual Communication and Image Representation,
vol. 17, no. 6, pp. 1190-1208, 2006.

A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm computing
surveys (CSUR), vol. 38, no. 4, p. 13, 2006.

J. F. P. Kooij, N. Schneider, F. Flohr, and D. M. Gavrila, “Context-based
pedestrian path prediction,” in Computer Vision-ECCYV 2014, pp. 618633,
Springer, 2014.

H. Kretzschmar, M. Kuderer, and W. Burgard, “Learning to predict trajectories
of cooperatively navigating agents,” in Robotics and Automation (ICRA), 201}
IEEFE International Conference on, pp. 4015-4020, IEEE, 2014.

V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto, “Intent-aware long-term
prediction of pedestrian motion,” in Robotics and Automation (ICRA), 2016
IEEFE International Conference on, pp. 2543-2549, IEEE, 2016.

E. Rehder and H. Kloeden, “Goal-directed pedestrian prediction,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops, pp. 50—
58, 2015.

Y. Zhou and T. L. Berg, “Temporal perception and prediction in ego-centric
video,” in Proceedings of the IEEE International Conference on Computer
Viston, pp. 4498-4506, 2015.

T. Lan, T.-C. Chen, and S. Savarese, “A hierarchical representation for future
action prediction,” in Computer Vision-ECCYV 2014, pp. 689-704, Springer,
2014.

D.-A. Huang and K. M. Kitani, “Action-reaction: Forecasting the dynamics of
human interaction,” in Computer Vision-ECCV 2014, pp. 489-504, Springer,
2014.

D. Fouhey and C. Zitnick, “Predicting object dynamics in scenes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2019—
2026, 2014.



BIBLIOGRAPHY 178

[268] M. Beetz, N. von Hoyningen-Huene, B. Kirchlechner, S. Gedikli, F. Siles,

M. Durus, and M. Lames, “Aspogamo: Automated sports game analysis
models,” International Journal of Computer Science in Sport, vol. 8, no. 1,
pp- 1-21, 2009.

[269] IEEE, Tracking multiple people under global appearance constraints, 2011.

[270] A. Maksai, X. Wang, and P. Fua, “What players do with the ball: A physically

constrained interaction modeling,” arXiv preprint arXiw:1511.06181, 2015.

[271] X. Wei, P. Lucey, S. Morgan, and S. Sridharan, “Predicting shot locations in

[272]

[273]

[274]

275]

1276]

277]
[278]

tennis using spatiotemporal data,” in Digital Image Computing: Techniques
and Applications (DICTA), 2013 International Conference on, pp. 1-8, IEEE,
2013.

A. Bialkowski, P. Lucey, P. Carr, Y. Yue, S. Sridharan, and I. Matthews,
“Large-scale analysis of soccer matches using spatiotemporal tracking data,” in
Data Mining (ICDM), 2014 IEEE International Conference on, pp. 725-730,
[EEE, 2014.

P. Lucey, A. Bialkowski, P. Carr, S. Morgan, I. Matthews, and Y. Sheikh,
“Representing and discovering adversarial team behaviors using player roles,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 27062713, 2013.

V. Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban, K. Murphy, and
L. Fei-Fei, “Detecting events and key actors in multi-person videos,” arXiv
preprint arXiw:1511.02917, 2015.

X. Wei, P. Lucey, S. Vidas, S. Morgan, and S. Sridharan, “Forecasting events
using an augmented hidden conditional random field,” in Computer Vision—
ACCV 2014, pp. 569-582, Springer, 2014.

C. Vondrick, D. Patterson, and D. Ramanan, “Efficiently scaling up crowd-
sourced video annotation,” International Journal of Computer Vision, vol. 101,
no. 1, pp. 184-204, 2013.

STATS, “https://www.stats.com /sportvu-basketball /,” 2015.

H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 8397, 1955.



BIBLIOGRAPHY 179

[279] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second ed., 2004.

[280] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3431-3440, 2015.

[281] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural computation, vol. 1, no. 4, 1989.

[282] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
cybernetics, vol. 36, no. 4, pp. 193-202, 1980.

[283] P. Agrawal, D. Stansbury, J. Malik, and J. L. Gallant, “Pixels to voxels: Model-
ing visual representation in the human brain,” arXiv preprint arXiv:1407.5104,
2014.

[284] D. J. Felleman and D. C. Van Essen, “Distributed Hierarchical Processing in
the Primate Cerebral Cortex,” Cerebral Cortex, vol. 1, pp. 1-47, Jan. 1991.

[285] D. J. Kravitz, K. S. Saleem, C. I. Baker, L. G. Ungerleider, and M. Mishkin,
“The ventral visual pathway: an expanded neural framework for the processing
of object quality,” Trends in cognitive sciences, vol. 17, no. 1, pp. 26-49, 2013.

[286] V. A. F. Lamme and P. R. Roelfaema, “the distinct modes of vision offered
by feedforward and recurrent processing.,” Trends in Neurosciences, vol. 23,
p. 571, 2000.

[287] E. Tulving and D. L. Schacter, “Priming and human memory systems,” Science,
vol. 247, no. 4940, pp. 301-306, 1990.

[288] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-
of-parts,” in CVPR, 2011.

[289] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural
networks,” in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pp. 1653-1660, IEEE, 2014.

[290] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient
object localization using convolutional networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 648-656, 2015.



BIBLIOGRAPHY 180

[291]

[202]

293

[204]

295

[296]

297]

298]

299

[300]

301]

T. Pfister, J. Charles, and A. Zisserman, “Flowing convnets for human pose
estimation in videos,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 1913-1921, 2015.

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose
estimation: New benchmark and state of the art analysis,” in Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 3686-3693,
IEEE, 2014.

S. Johnson and M. Everingham, “Clustered pose and nonlinear appearance
models for human pose estimation,” in Proceedings of the British Machine
Vision Conference, 2010. doi:10.5244/C.24.12.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil
in the details: Delving deep into convolutional nets,” in British Machine Vision
Conference, 2014.

A. Vedaldi and K. Lenc, “Matconvnet-convolutional neural networks for matlab,”
arXw preprint arXw:1412.4564, 2014.

L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele, “Poselet conditioned
pictorial structures,” in Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pp. 588-595, IEEE, 2013.

X. Chen and A. L. Yuille, “Articulated pose estimation by a graphical model
with image dependent pairwise relations,” in Advances in Neural Information
Processing Systems, pp. 1736-1744, 2014.

L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele, “Strong appearance
and expressive spatial models for human pose estimation,” in International
Conference on Computer Vision (ICCV), 2013 IEEE Conference on, pp. 3487
3494, TEEE, 2013.

J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convolu-
tional network and a graphical model for human pose estimation,” in Advances
in neural information processing systems, pp. 1799-1807, 2014.

X. Fan, K. Zheng, Y. Lin, and S. Wang, “Combining local appearance and
holistic view: Dual-source deep neural networks for human pose estimation,”
arXiv preprint arXw:1504.07159, 2015.

D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241—
259, 1992.



BIBLIOGRAPHY 181

302

303]

304]

[305]

[306]

307]

308

309]

310

[311]

[312]

7. Tu, “Auto-context and its application to high-level vision tasks,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1—
8, IEEE, 2008.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector
machine learning for interdependent and structured output spaces,” in Proceed-
ings of the twenty-first international conference on Machine learning, p. 104,

ACM, 2004.

H. Daumé III, J. Langford, and D. Marcu, “Search-based structured prediction,”
Machine learning, vol. 75, no. 3, pp. 297-325, 2009.

S. Nowozin and C. H. Lampert, “Structured learning and prediction in computer
vision,” Foundations and Trends®) in Computer Graphics and Vision, vol. 6,
no. 3-4, pp. 185-365, 2011.

L.-C. Chen, A. G. Schwing, A. L. Yuille, and R. Urtasun, “Learning deep
structured models,” arXiv preprint arXiv:1407.2538, 2014.

M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep structured
output learning for unconstrained text recognition,” ICLR 2015, 2014.

C. D. Gilbert and M. Sigman, “Brain states: Top-down influences in sensory
processing,” Neuron, vol. 54, no. 5, pp. 677 — 696, 2007.

J. M. Hupe, A. C. James, B. R. Payne, S. G. Lomber, P. Girard, and J. Bullier,
“Cortical feedback improves discrimination between figure and background by
V1, V2 and V3 neurons,” Nature, vol. 394, pp. 784-787, Aug. 1998.

D. Wyatte, T. Curran, and R. C. O’Reilly, “The limits of feedforward vision:
Recurrent processing promotes robust object recognition when objects are
degraded,” J. Cognitive Neuroscience, pp. 2248-2261, 2012.

V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of
visual attention,” in Advances in Neural Information Processing Systems 27
(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.),
pp. 2204-2212, Curran Associates, Inc., 2014.

M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber, “Deep networks
with internal selective attention through feedback connections,” in Advances
in Neural Information Processing Systems, pp. 3545-3553, 2014.



BIBLIOGRAPHY 182

[313] V. Ramakrishna, D. Munoz, M. Hebert, J. A. Bagnell, and Y. Sheikh, “Pose
machines: Articulated pose estimation via inference machines,” in Computer
Vision-ECCV 2014, pp. 33—47, Springer International Publishing, 2014.

[314] D. Weiss, B. Sapp, and B. Taskar, “Structured prediction cascades,” arXiv
preprint arXiv:1208.3279, 2012.

[315] Q. Li, J. Wang, Z. Tu, and D. P. Wipf, “Fixed-point model for structured
labeling,” in Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pp. 214-221, 2013.

[316] M. Oberweger, P. Wohlhart, and V. Lepetit, “Training a feedback loop for
hand pose estimation,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 3316-3324, 2015.

[317] B. Hariharan, P. Arbeldez, R. Girshick, and J. Malik, “Hypercolumns for object
segmentation and fine-grained localization,” arXiv preprint arXiv:1411.5752,
2014.

[318] X. Fan, K. Zheng, Y. Lin, and S. Wang, “Combining local appearance and
holistic view: Dual-source deep neural networks for human pose estimation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1347-1355, 2015.

[319] F. Fleuret and D. Geman, “Stationary features and cat detection,” Journal of
Machine Learning Research, vol. 9, no. Nov, pp. 2549-2578, 2008.

[320] P. Dollar, P. Welinder, and P. Perona, “Cascaded pose regression,” in CVPR,
2010.

[321] C. Tonescu, J. Carreira, and C. Sminchisescu, “Iterated second-order label
sensitive pooling for 3d human pose estimation,” in Computer Vision and

Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 1661-1668, IEEE,
2014.

[322] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,”
International journal of computer vision, vol. 1, no. 4, pp. 321-331, 1988.

[323] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models-
their training and application,” Computer vision and image understanding,
vol. 61, no. 1, pp. 38-59, 1995.



BIBLIOGRAPHY 183

[324]

[325]

[326]

327

328

329

[330]

331]

332

[333]

[334)

X. Xiong and F. De la Torre, “Supervised descent method and its applications
to face alignment,” in CVPR, 2013.

G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” in Computer Vision, 2003. Proceedings. Ninth
IEEFE International Conference on, pp. 750-757, IEEE, 2003.

L. Sigal, M. Isard, H. Haussecker, and M. J. Black, “Loose-limbed people: Es-
timating 3D human pose and motion using non-parametric belief propagation,”
International Journal of Computer Vision, vol. 98, pp. 15-48, May 2011.

M. Spiridon, B. Fischl, and N. Kanwisher, “Location and spatial profile of
category-specific regions in human extrastriate cortex,” Human Brain Mapping,
vol. 27, no. 1, pp. 77-89, 2006.

D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s
striate cortex,” The Journal of physiology, vol. 148, no. 3, pp. 574-591, 1959.

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying natural
images from human brain activity,” Nature, vol. 452, no. 7185, pp. 352-355,
2008.

S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J. L. Gal-
lant, “Reconstructing visual experiences from brain activity evoked by natural
movies,” Current Biology, vol. 21, no. 19, pp. 1641-1646, 2011.

N. Kanwisher, J. McDermott, and M. M. Chun, “The fusiform face area: a
module in human extrastriate cortex specialized for face perception,” The
Journal of Neuroscience: The Official Journal of the Society for Neuroscience,
vol. 17, no. 11, pp. 4302-4311, 1997.

T. Cukur, A. G. Huth, S. Nishimoto, and J. L. Gallant, “Functional subdomains
within human FFA.” The Journal of neuroscience : the official journal of the
Society for Neuroscience, vol. 33, pp. 16748-66, Oct. 2013.

I. Gauthier, M. J. Tarr, J. Moylan, P. Skudlarski, J. C. Gore, and A. W.
Anderson, “The fusiform "face area" is part of a network that processes faces
at the individual level,” Journal of Cognitive Neuroscience, vol. 12, no. 3,
pp. 495-504, 2000.

R. Epstein and N. Kanwisher, “A cortical representation of the local visual
environment,” Nature, vol. 392, no. 6676, pp. 598-601, 1998.



BIBLIOGRAPHY 184

[335] A. Pasupathy and C. E. Connor, “Responses to contour features in macaque
area v4,” Journal of Neurophysiology, vol. 82, no. 5, pp. 2490-2502, 1999.

[336] H. B. Barlow, “Possible principles underlying the transformations of sensory
messages,” 1961.

[337] S. V. David and J. L. Gallant, “Predicting neuronal responses during natural
vision,” Network, vol. 16, no. 2-3, pp. 239-260, 2005.

[338] T. Naselaris, K. N. Kay, S. Nishimoto, and J. L. Gallant, “Encoding and
decoding in fMRI,” NeuroImage, vol. 56, no. 2, pp. 400-410, 2011.

[339] D. Stansbury, T. Naselaris, and J. Gallant, “Natural scene statistics account

for the representation of scene categories in human visual cortex.,” Neuron,
vol. 79, pp. 1025-34, Sept. 2013.

[340] A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant, “A continuous semantic
space describes the representation of thousands of object and action categories
across the human brain.,” Neuron, vol. 76, pp. 1210-24, Dec. 2012.

[341] T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang, V. L. Malave,
R. A. Mason, and M. A. Just, “Predicting human brain activity associated
with the meanings of nouns,” science, vol. 320, no. 5880, pp. 1191-1195, 2008.

[342] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks.,” in NIPS, 2012.

[343] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of
monkey striate cortex,” The Journal of Physiology, vol. 195, no. 1, pp. 215-243,
1968.

[344] R. B. Buxton, Introduction to functional magnetic resonance imaging book
pack: Principles and techniques. Cambridge University Press, 2002.

[345] R. Rajimehr, K. J. Devaney, N. Y. Bilenko, J. C. Young, and R. B. Tootell,
“The “parahippocampal place area” responds preferentially to high spatial
frequencies in humans and monkeys,” PLoS biology, vol. 9, no. 4, p. e1000608,
2011.

[346] A. Pasupathy and C. E. Connor, “Population coding of shape in area v4,”
Nature neuroscience, vol. 5, no. 12, pp. 1332-1338, 2002.



BIBLIOGRAPHY 185

347

[348]

[349]

[350]

351

352

[353]

[354]

[355]

[356]

1357]

J. L. Gallant, C. E. Connor, S. Rakshit, J. W. Lewis, and D. C. Van Essen,
“Neural responses to polar, hyperbolic, and cartesian gratings in area v4 of the

macaque monkey,” Journal of neurophysiology, vol. 76, no. 4, pp. 2718-2739,
1996.

M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in
cortex,” Nature neuroscience, vol. 2, no. 11, pp. 1019-1025, 1999.

C. F. Cadieu and B. A. Olshausen, “Learning intermediate-level representations
of form and motion from natural movies,” Neural computation, vol. 24, no. 4,
pp- 827-866, 2012.

Y. Karklin and M. S. Lewicki, “Learning higher-order structures in natural
images,” Network: Computation in Neural Systems, vol. 14, no. 3, pp. 483-499,
2003.

S.-M. Khaligh-Razavi and N. Kriegeskorte, “Deep supervised, but not unsu-
pervised, models may explain it cortical representation,” PLoS computational
biology, vol. 10, no. 11, p. €1003915, 2014.

C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon,
N. J. Majaj, and J. J. DiCarlo, “Deep neural networks rival the representation
of primate it cortex for core visual object recognition,” PLoS computational
biology, vol. 10, no. 12, p. 1003963, 2014.

S. Thorpe, D. Fize, C. Marlot, et al., “Speed of processing in the human visual
system,” nature, vol. 381, no. 6582, pp. 520-522, 1996.

U. Giiglii and M. A. van Gerven, “Deep neural networks reveal a gradient in the
complexity of neural representations across the ventral stream,” The Journal
of Neuroscience, vol. 35, no. 27, pp. 10005-10014, 2015.

R. M. Cichy, A. Khosla, D. Pantazis, A. Torralba, and A. Oliva, “Comparison
of deep neural networks to spatio-temporal cortical dynamics of human visual

object recognition reveals hierarchical correspondence,” Scientific reports, vol. 6,
p. 27755, 2016.

D. L. Yamins and J. J. DiCarlo, “Using goal-driven deep learning models to
understand sensory cortex,” Nature neuroscience, vol. 19, no. 3, p. 356, 2016.

M. Eickenberg, A. Gramfort, G. Varoquaux, and B. Thirion, “Seeing it all:
Convolutional network layers map the function of the human visual system,”
Neurolmage, vol. 152, pp. 184-194, 2017.



BIBLIOGRAPHY 186

[358] A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, and J. H.
McDermott, “A task-optimized neural network replicates human auditory
behavior, predicts brain responses, and reveals a cortical processing hierarchy,”
Neuron, vol. 98, no. 3, pp. 630-644, 2018.



	Acknowledgments
	Introduction
	Today's Artificial Intelligence
	Problem Formulation
	Task Communication

	Learning Sensorimotor Behavior
	Reinforcement Learning (RL)
	Learning from Demonstration/Imitation Learning

	Classical Model Based Control
	System Identification
	State Estimation
	Is the engineering wisdom of modularization the way to go?

	Core problem of Artificial General Intelligence
	Summary of the Proposed Solution

	Learning to See by Moving
	Related Work
	A Simple Model of Motion-based Learning
	Two Stream Architecture
	Shorthand for CNN architectures
	Slow Feature Analysis (SFA) Baseline
	Proof of Concept using MNIST

	Learning Visual Features From Egomotion in Natural Environments
	KITTI Dataset
	SF Dataset
	Network Architecture

	Evaluating Motion-based Learning
	Scene Recognition
	Object Recognition
	Intra-Class Keypoint Matching
	Visual Odometry

	Discussion

	A Model for Intuitive Physics
	Data
	Method
	Model
	Evaluation Procedure
	Blob Model

	Results
	Forward model regularizes the inverse model

	Related Work
	Discussion

	Learning from Experts
	A Framework for Learning by Observation
	Learning a Model to Imitate

	Imitating Visual Demonstrations
	Goal Recognizer

	Evaluation Procedure
	Baseline

	Results
	Importance of Imitation
	Generalization to other ropes

	Expert Guided Exploration
	Related Work

	Revisting Forward and Inverse Models
	Forward Consistency Loss
	Experiments
	Ablations and Baselines
	3D Navigation in VizDoom

	Conclusions

	Exploration
	Curiosity-Driven Exploration
	Prediction error as curiosity reward
	Self-supervised prediction for exploration

	Experimental Setup
	Experiments
	Sparse Extrinsic Reward Setting
	No Reward Setting
	Generalization to Novel Scenarios

	Related Work
	Discussion

	Initial State
	Investigating Human Priors for Playing Games
	Method
	Quantifying the importance of object priors
	Semantics
	Objects as Sub-goals for Exploration
	Affordances
	Things that look similarly, behave similarly
	How to interact with objects

	Concealing all object priors
	Physics and motor control priors
	Gravity
	Muscle memory

	Controlling for change in complexity
	Discussion

	Intuitive Behavior
	Forecasting Player Moves in Sports Videos
	Related Work
	Team Sports Datasets
	Methods: From Images to Overhead View
	Forecasting Future Ball Position
	Basketball: Where will the ball go?
	Forecasting Events in Basketball
	Conclusion

	Human Pose Estimation
	Learning
	Results
	Analyzing IEF
	Related Work
	Discussion


	Can Deep Learning Inform Neuroscience?
	What we know about the human visual system
	Framework for testing models of visual computation in the human brain
	Method
	Constructing Models for Predicting Brain Activity

	Results
	ConvNet predicts brain activity across the visual cortex
	The hierarchy of visual representations in the ConvNet mimics the hierarchy of visual representations in the human brain
	Investigating Visual Representations in the Human Brain

	Discussion
	Takeaways

	Conclusions
	Bibliography

