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Abstract

Better, Faster, Stronger: Measuring and Transcending Your Physical Limits with Wearable
Robots

by

Robert Peter Matthew

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

Measure what is measurable. Make what is not measurable so.
-Galileo Galilei

This thesis introduces a kinematic and dynamic framework for creating a representative
model of an individual. Building on results from geometric robotics, a method for formulating
a geometric dynamic identi�cation model is derived. This method is validated on a robotic
arm, and tested on healthy subjects to determine the utility as a clinical tool.

The proposed framework was used to augment the �ve-times sit-to-stand test. This is a
clinical test designed to estimate an individual's stability by timing the total time to stand/sit
�ve times. Using the proposed framework, a representative kinematic and dynamic model
was obtained which outperformed conventional height/mass scaled models. This allows for
rapid, quantitative measurements of an individual, with minimal retraining required for
clinicians.

These tools are then used to develop a prescriptive model for developing assistive devices.
The recovered models can be used to formulate an optimisation to determine the actuator
types and parameters to provide augmentation.

This framework is then used to develop a novel system for human assistance. A prototype
device is developed and tested. The prototype is lightweight, uses minimal energy, and
can provide an augmentation of 82% for providing hammer curl assistance. The modelling
framework is used to analyse the e�ect this assistance has on compensatory actions of the
shoulder.
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Chapter 1

Introduction

Exoskeletons o�er a means to assist individuals in their daily life, and as a method of allowing
for rehabilitation in the home. The use of these devices is limited by their cost, and the lack
of metrics to show e�cacy. This has led to slow adoption of these devices due to scepticism
of e�cacy by clinicians and insurance providers who are reluctant to cover these costly,
unproven methods.

This thesis builds a framework for creating a representative model of an individual that
can be used for assessment of function and tracking of recovery. These modelling techniques
are used to create a prescription for a user, specifying the optimal mechanism/actuator
framework for assistance. This prescription is then used to guide the creation of a novel low-
power assistive exoskeleton- the APEX. By understanding the abilities of the individual, the
aim of this work is to individualise intervention selection, decrease clinician/patient burdens,
and improve patient outcomes.

1.1 Motivation

There are approximately 6.8 million stroke and 259,000 spinal cord injury survivors in Amer-
ica today[97][119]. The resulting e�ects on an individual's independence can be severe, with
increased rates of depression in both patients and their carers[135]. To improve quality of
life and reduce the burdens to patients and their support network, methods to assess, track,
and improve function are needed.

One of the complications seen in the assessment of individuals with neuromuscular func-
tion is the assessment of true improvement in motor function as opposed to functional recov-
ery due to the use of compensation strategies. The use of robotics is an attractive method for
providing intensive, repetitive movement therapy to patients, factors that have been shown
to maximise post injury improvement[71]. While some robotic therapeutic methods retrain
based on the movement of the hand alone, exoskeletons have the ability to guide the individ-
ual limb segments allowing for the recovery of joint synergies[15][58]. It has been noted that
while subjects appear to have improved motor function when provided with robot-assisted
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therapy, the Activity of Daily Living (ADL) scales typically used in assessment do not ade-
quately re�ect the recovery of an individual[70]. The lack of these assessment tools hampers
development of robot-assisted therapeutics, their adoption by clinicians, and coverage by
insurance providers[121].

While there has been work in the development of specialised tools for use in clinics
and specialist care facilities, one of the goals of exoskeleton therapy is to provide patients
with a device that can assist in daily living activities, while providing rehabilitative guidance.
There are a number of commercial devices aimed at allowing patients to regain independence
(Figure 1.1). These devices represent the current state-of-the-art aimed at use in the home.

Figure 1.1: Existing commercial exoskeletons. From left to right: HAL-5 lower limb, Re-
walk, eLegs, and Indego.

While the �eld of assistive exoskeletons is new, there appears to be a convergence in
design, with the majority of focus on devices for the lower limbs. By allowing patients to
ambulate, it o�ers individuals access to areas that may have otherwise been inaccessible
through wheelchairs. This focus on the lower limbs neglects the important problems faced
by individuals who su�er from upper limb conditions. Upper limb disabilities dramatically
reduce an individual's ability to live autonomously, requiring a carer for activities of daily
living. This leads to a �nancial burden of approximately $30k p/a, and a reduction of
independence[130].



1.1. MOTIVATION 3

1.1.1 Clinical Need

People are di�erent. These di�erences arise from a multitude of factors such as age, prior
injuries, race, activity level, sex, and genetic variation. The e�ect of these di�erences are
often ignored by clinical measures, with population measures such as Body Mass Index being
used to quantify an individual's health. This oversimpli�cation leads to standardised clinical
pathways where patients may spend signi�cant resources on interventions that show no
bene�t. The underlying cause of this perceived lack of change needs to be understood. Is
the intervention ine�ective, or is the quanti�cation of performance inappropriate for tracking
the changes in the patient's function?

1.1.2 Medical Metrics

The existing metrics used in clinics today are still limited by the translation of tools from the
biomechanics community to the broader population. The quantitative measures that are used
are crude, consisting of timed function tests such as �ve-times sit-to stand[134], point score
measures (such as the Berg Balance[12], Brooke[18], and Box and Block[23] scales). While
simple and fast to perform (with most tests taking under 5 minutes), these methods lack the
granularity for determining small scale changes in function at the joint level. Measures such
as the Fugl-Meyer[39][43] and Wolf Motor Function tests[137] have been shown to provide
a �ner resolution measure, but can be time consuming to perform with typical testing time
requiring approximately 30 minutes per test.

1.1.3 State-of-the-art

In contrast to the tools currently being used in clinics, there have been signi�cant advances
in a�ordable sensors that has led to a new generation of assessment tools. One of the most
prevalent approaches is the use of depth cameras such as the Kinect to track the limbs of
a patient. These methods have been used to estimate postural control and sway in quiet
standing[25][143], and the space an individual can reach[69]. The development of a�ordable
balance boards such as the Wii balance board has allowed for a�ordable measures of standing
and balance[24][145].

While these methods have shown promise, the major challenges behind the use of these
methods is the need for retraining clinicians to use and understand the results of these
tools. This is complicated by the lack of �nancial incentives from insurance providers to
use these technologies. Furthermore, these a�ordable systems are less accurate than the
high end devices frequently used in biomechanics laboratories. The provided skeletons can
return joint centres with signi�cant variation in joint position compared to high end motion
capture, and between samples[132].
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1.1.4 Assistive Devices

Table 1.1 compares currently available active exoskeletons, along with the APEX (Ac-
tive/Passive EXoskeleton), a novel assistive device presented in this thesis. From this table,
it is clear that operational life, and device cost are major obstacles in wide-scale adoption of
these technologies.

The choice of the implemented controller is important, with some forms of robotic as-
sistance negatively impacting an individual's rehabilitative progress[79]. Impedance con-
trol[51][52][142] allows for the shaping of the e�ective mass, inertias, visco-elasticities, and
sti�nesses of the human-robot system. These methods can be used to provide assistance,
while still allowing the individual to have complete control of their actions. This can re-
sult in an assistance-as-needed framework where the user is encouraged to utilise their own
strengths whenever possible[34].

The drawback of impedance control is the requirement for high �delity actuators and
sensors. Knowledge of the dynamic parameters of the composed human-robot system is
required to ensure the safety and e�cacy of these methods. This is typically estimated
through height mass scaling[27], a modelling choice that does not adequately capture the
variations within populations[31], especially those who may be recovering from disabilities.

Table 1.1: Comparison of current commercial exoskeletons and the proposed APEX exoskele-
ton. H&S refer to Hardware and Software respectively.

Criteria HAL-5[110] Re-Walk[118] eLegs[46] Indego[95] APEX
Weight (lbs) 51 51 45 27 7.5
Operation Time <3 hours 8 hours 6 hours 4 hours 1 day
Price (buy) - $69.5k $130k $80k $2k
Price (rent) $5k + $1.7k p/m - - - $500
Customisation S S S S H&S

1.2 Contributions

This thesis makes a number of contributions in the �elds of dynamical modelling, biomechan-
ics, and robotics. This section outlines the main contributions of this thesis, their location
in this text, and the corresponding publications by the author.

1.2.1 A Geometric Dynamic Recovery Method

A uni�ed form for geometric modelling is covered in Chapter 2. Due to di�erences in notation,
a number of key results have been omitted from a number of texts, in particular the dynamic
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recursion equations by Park[102]. These results have been translated, and the notation
clari�ed to present a clearer picture of the mathematics used in this work.

Building on these mathematical fundamentals a new method for performing kinematic
recovery is introduced in Chapter 3. This method allows for the generation of an individ-
ualised human model with few apriori assumptions made on the subject's abilities. The
number of limb segments, allocation of markers to these segments, location of the joints,
and length of the limbs are recovered automatically through a recursive algorithm. The
joint angles and their derivatives are found directly from the motion data. This recovers
a dynamically consistent state estimate directly from the observed motion capture points.
This dynamic consistency allows for recovery in the presence of markers disappearing or
appearing to move faster than possible. Furthermore, the joint angles and their derivatives
are �ltered in a manner that ensures that the laws of motion hold.

The existing geometric modelling literature is then extended in Chapter 4 with the devel-
opment of a Dynamic Identi�cation Model (DIM). A symbolic relationship is formed between
the contact forces and the kinematics of the system based on the dynamic modelling work
used in the Denavit-Hartenberg literature[65]. As a geometric approach is used, the com-
pound twists recovered from the kinematic modelling process can be directly translated in
to a dynamic model without simpli�cation. Modi�cations are made to ensure that the re-
covered parameters are physically realistic, i.e. the masses of segments are non-negative and
the inertial matrices are real, symmetric matrices. A minimal, physically consistent model
is formed using the work by Ayusawa[8] as an inspiration. The resulting geometric DIM
provides a linear relationship of the form Y φ = Γ where the dynamic parameters of the
system are elements in the φ vector. The formulation developed in this thesis provides a
well conditioned regressor Y , while allowing for physical consistency of the corresponding
dynamic parameters φ.

The use of these methods as an experimental tool are examined in Chapter 5 through the
study of a robotic system. The recovered kinematic and dynamic models are compared to
the current published models, with the recovered joint state compared to the measurements
taken directly from the robot encoders. The accuracy and precision of the recovered model
and state is investigated by varying the robotic actions. A dynamic model is then derived
from the recovered kinematic models. These models are validated symbolically by comparing
the form of the DIM against the Denavit-Hartenberg approach. The precision and accuracy
of the dynamic model is then examined through the error analysis of the recovered dynamic
parameters and torques. The e�ect of common experimental and sensor errors are then
simulated, providing guidelines on the application of these modelling techniques.

1.2.2 Methods for Individualised Human Modelling

Chapter 6 shows the application of these modelling methods on the �ve-times sit-to-stand
protocol, a commonly used clinical test to assess a patient's stability. The only alterations
to the clinical test were the additions of sensing equipment, with the protocol remaining the
same with the aim of minimising the clinical retraining burden and the simultaneous tracking
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of the existing metrics. The proposed framework was used to generate a representative human
model using under thirty seconds of standing data. In contrast to other methods, no machine
learning is used and no apriori assumptions were made on the subject's model based on their
age, sex, height, mass, race etc. This resulted in a non-prejudicial, structured model recovery
process.

One of the issues that can arise when using conventional modelling approaches is the
over/under-�tting of the model parameters depending on the number of system unknowns
and observations. In contrast, the presented framework o�ers a sequential recovery process,
recovering sets of parameters with physical meaning. This results in a well posed recovery
process, with the resulting model being a distillation of the system observables allowing for
automatic simpli�cation of the system.

1.2.3 Prescriptive Assistive Devices

These modelling methods are then used in generate a subject-speci�c assistive device. A
framework is introduced in Chapter 7 to determine the optimal assistance parameters from
a representative human model[82][85]. Two methods of implementing this framework are
discussed, with applications to a simulated shoulder joint. This highlights the utility of
these methods to reduce the amount of manual tuning required, and provides a prescriptive
method for system design and analysis.

The results of these studies are used in the development of a new method to assist an
individual. The achievable workspace for an individual can be altered by varying both the
active and passive responses at each joint. The abilities of a user can be altered through
the variation of these joint responses. Chapter 8 introduces the development of an upper
limb assistive exoskeleton that utilises these ideas[84]. The joint dynamics of a user's elbow
is altered using a pneumatic system. Passive assistance of the limb is therefore a�orded by
changing the dynamic response of the joint. As the assistive device does not require any
energy to maintain this dynamic state the total cost to provide assistance is substantially
lower than for active methods.

The combined e�ect of this coupled human-robot system is assessed using the biomechanic
methods introduced in this work[83]. The e�ect of di�erent controllers on the motions of the
shoulder and elbow are examined allowing for investigation into compensatory actions. The
analysis of the coupled system allows for the e�cacy of the intervention to be assessed and
guides the development of future devices.
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Chapter 2

Mathematical Preliminaries

This chapter outlines the background mathematics that will be used in this thesis. It acts
as a primer for the underlying knowledge behind this work. This chapter can be skipped
without loss of continuity, with sections being referred to in the later chapters.

2.1 Rotations and Rigid-Body Motion

In this thesis we will be relying on results from rigid-body mechanics. This treats systems as a
number of rigid segments connected by joints. This formulation allows for a number of results
from mathematics, physics, and robotics to be applied to complex arti�cial and biological
systems. This section is based on the treatment of rigid-body systems by Murray[94].

2.1.1 Coordinate Frames

A coordinate frame is a system for uniquely determining the position of a point in a space.
Given a coordinate frame, any point can be assigned coordinates in that frame. Consider
the simple system shown in Figure 2.1. When θ1 = 0 the two coordinate frames will overlap.
This means that the coordinates of point q will be the same in both frames.

When θ1 6= 0, the two coordinate frames do not overlap. This means that the correspond-
ing coordinates of point q will be di�erent. The coordinates of the point q in coordinate
frames A and B are denoted qA and qB respectively. Coordinates qA and qB are related by
a rigid-body transformation. A rigid-body transformation preserves the distance and angle
between vectors. The simplest form is a rotation about a point as shown in Figure 2.1.

2.1.2 Rotations

Consider the coordinates qA and qB of the same point q as viewed in the coordinate frames
A and B respectively. In this simple 2D example, the coordinates of point q can be written
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θ1

p

q

YA

XA

YB
XB

Figure 2.1: Two coordinate frames A and B with a common origin p. Frame B is attached
to the rigid body. The rotation about the point p is parametrised by the angle θ1. The point
q is attached rigidly to the rigid body.

in terms of their x and y component:

qA =

[
xA
yA

]
qB =

[
xB
yB

]
(2.1)

Given a yB coordinate, it is possible to write the following relationship to the A frame:[
xA
yA

]
=

[
−sin(θ1)
cos(θ1)

]
yB (2.2)

The xB coordinate can be written similarly as:[
xA
yA

]
=

[
cos(θ1)
sin(θ1)

]
xB (2.3)

These two expressions can be combined to give a transformation of points from the B frame
to the A frame:

qA =

[
xA
yA

]
=

[
cos(θ1)
sin(θ1)

]
xB +

[
−sin(θ1)
cos(θ1)

]
yB =

[
cos(θ1) −sin(θ1)
sin(θ1) cos(θ1)

] [
xB
yB

]
= RA,BqB (2.4)

The matrix RA,B ∈ R2×2 is the rotation matrix and gives a mapping of points from the B
frame to the A frame.

The mapping from the A frame to the B frame can be constructed in a similar manner:

qB =

[
xB
yB

]
=

[
cos(θ1)
−sin(θ1)

]
xA +

[
sin(θ1)
cos(θ1)

]
yA =

[
cos(θ1) sin(θ1)
−sin(θ1) cos(θ1)

] [
xA
yA

]
= RB,AqA (2.5)

This process can be extended into three dimensions forming the remapping matrixR ∈ R3×3.
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2.1.2.1 Properties of Rotation Matrices

From the construction of rotation matrices, the columns ci ∈ Rn×1 for i ∈ [1, n] of the rota-
tion matrix Rn×n are mutually orthonormal. This results in the matrix R being orthogonal
whereby the following property holds:

RTR = RRT = I (2.6)

This highlights a key property of all rotation matrices, the inverse of a rotation matrix is its
transpose.

From the above, the determinant of R will be ±1. If a right handed coordinate frame is
adopted, then c1 = c2 × c3. Therefore:

det(R) = cT1 (c2 × c3) = cT1 c1 = +1 (2.7)

2.1.3 Rotations and Translations

This can be extended to the case where the origins of the two coordinate frames are not
aligned. Consider the system shown in Figure 2.2. Frame B can now be represented by a
combination of a translation pA,B and a rotation RA,B. Using the results for pure rotations,
the B frame coordinates of point q can be written in the A frame via the expression:

qA = pA,B +RA,BqB (2.8)

θ1

p

q

YB
XB

A,BYA

XA
Figure 2.2: Two coordinate frames A and B. Frame B is attached to the rigid body. pA,B
are the coordinates of the origin of the B frame as viewed in the A coordinate frame. The
rotation about the point p is parametrised by the angle θ1. The point q is attached rigidly
to the rigid body.
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2.1.4 Homogeneous Coordinates

This expression for the rigid-body transformation for the point q can be rewritten in matrix
form gA,B as: [

qA
1

]
=

[
RA,B pA,B

0 1

] [
qB
1

]
= gA,B

[
qB
1

]
(2.9)

This gives rise to the homogeneous representation for rigid-body motion where points and
vectors are written as:

Points:
[
q
1

]
∈ R4×1 Vectors:

[
v
0

]
∈ R4×1



2.2. GEOMETRIC ROBOTICS- INTRODUCTION 11

2.2 Geometric Robotics- Introduction

The geometric approach to describing rigid-body motion is based on the structure of homoge-
neous matrices. All rigid body motions can be decomposed into a rotation and a translation
component. By studying the form of these constituent elements, it is possible to create
an alternative formulation for describing the motion of a rigid-body system. This is the
geometric formulation for rigid-body motion.

This thesis will adopt a more elaborated form of the west coast geometric robotics nota-
tion used by Murray[94]. This is in contrast to the east coast notation used by Park[102].
The elaboration is necessary due to common confusion between choices of frames of reference,
and the di�erences between the two notation styles. This section will outline key results,
but will avoid the full proofs shown in [94][102][112].

2.2.1 Rotations

It was shown in Section 2.1.2 that rotation matrices have special conditions on their deter-
minant and inverse. These conditions de�ne the special orthogonal group of matrices:

SO(n) =
{
R ∈ Rn×n : RRT = In, det(R) = +1

}
(2.10)

SO is a mathematical group, and satis�es the properties of:

Closure R1,R2 ∈ SO =⇒ (R1R2) ∈ SO

Identity ∃I ∈ SO s.t. IR = RI = R

Inverse For each R ∈ SO ∃!R−1 ∈ SO s.t.R−1R = RR−1 = I

Associativity R1,R2,R3 ∈ SO =⇒ (R1R2)R3 = R1(R2R3)

SO(n) is more speci�cally a Lie group and has the associated Lie algebra so(n) where
so(n) is a n× n skew-symmetric matrix. For rotations in 3D, so(3) can be parametrised by
a unit vector ω ∈ R3×1, a magnitude θ ∈ R, and the hat operator ·̂.

ω̂θ =

̂ω1

ω2

ω3

θ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 θ ∈ so(3) (2.11)

Given this parametrisation of a skew-symmetric matrix, the associated rotation matrix
is given by the matrix exponent:

eω̂θ ∈ SO(3) (2.12)
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The choice of this parametrisation becomes clear when the matrix exponent is performed.
Using the identity ω̂3 = −ω̂, the matrix exponential becomes:

(2.13)

eω̂θ = I+
θ

1!
ω̂ +

θ2

2!
ω̂2 +

θ3

3!
ω̂3 · · ·

= I+

(
θ

1!
− θ3

3!
+ . . .

)
ω̂ +

(
θ2

2!
− θ4

4!
+ . . .

)
ω̂2

= I+ ω̂sin(θ) + ω̂2 (1− cos(θ))

This is the Rodrigues' formula for rotations about the axis ω by angle θ.
The hat operator introduced in Equation 2.11 is the matrix form of the cross product.

For u,v ∈ R3×1:

u× v =

u1

u2

u3

×
v1

v2

v3

 =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

v1

v2

v3

 = ûv (2.14)

A useful property of the relation between the axis of rotation ω, the corresponding matrix
in so, and the rotation in SO is a matrix form for the remapping of an axis by a rotation R.

Rω̂RT = (̂Rω) = (Rω)∧ (2.15)

Equation 2.15 is Lemma 2.1 from Murray[94] and remaps elements of so by a rotation R.

2.2.2 Rigid-Body Motion

Given this relation between the Lie Group of Rotations, and the corresponding Lie Algebra,
it is possible to generate a similar relationship on the homogeneous matrices representing
rigid-body motion introduced in Section 2.1.4. Homogeneous matrices are expressed math-
ematically as the Special Euclidean group SE.

SE(n) = {(p,R) : p ∈ Rn,R ∈ SO(n)} = Rn × SO(n) (2.16)

In the three dimensional case this is simply a standard 3D rotation R ∈ SO(3) and a
translation vector p ∈ R3.

As a group, this space of homogeneous transforms SE(3) satis�es the properties of a
group:

Closure g1, g2 ∈ SO =⇒ (g1g2) ∈ SO

Identity ∃I ∈ SE s.t. Ig = gI = g ∈ SE

Inverse For each g ∈ SE ∃! g−1 ∈ SE s.t. g−1g = gg−1 = I

Associativity g1, g2, g3 ∈ SO =⇒ (g1g2)g3 = g1(g2g3)
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The inverse of a rigid-body transform g−1 is given by:

g =

[
R p
0 1

]
g−1 =

[
RT −RTp
0 1

]
(2.17)

The Special Euclidean Group has the Lie Algebra se of the form:

se(n) =
{

(v, ω̂) : v ∈ Rn×1, ω̂ ∈ so(n)
}

(2.18)

where elements of se(3) can be parametrised by the twist vector ξ ∈ R6×1 and the wedge
operator ·̂:

ξ̂ =

[̂
v
ω

]
=

[
ω̂ v
0 0

]
(2.19)

Elements of Lie Group and Lie Algebra are related via the matrix exponential:

g = eξ̂θ (2.20)

The exponential mapping acts as a link between the Lie Algebra and Lie Group for both
rotations and rigid-body motion.

2.2.3 Lie Groups and Algebras

Sections 2.2.1 and 2.2.2 introduced a number of Lie groups and Lie Algebras. This section
will introduce the notation and common operations we will be using in this thesis, and the
matrix form of common operations. Table 2.1 summarises the relationships between the
parametrisation of the Lie Algebra, the form of elements in the Lie Algebra, and the Lie
Group itself.

Table 2.1: A summary of the geometric notation used in this thesis

Element Rotations Rigid-body Motion

Parametrisation ω =

ω1

ω2

ω3

 ∈ R3 ξ =

[
v
ω

]
∈ R6

l ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ξ̂ =

[
ω̂ v
0 0

]
Lie Algebra ω̂ ∈ so(3) ξ̂ ∈ se(3)

l R = eω̂ g = eξ̂

Lie Group R ∈ SO(3) g ∈ SE(3)
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While it is possible to use the representations in Table 2.1 to describe rigid-body motions,
it is useful to convert this mathematical form into one that is more suited to the parametri-
sation of rigid-body systems. If we return to the simple rotation shown in Figure 2.1, the
velocity of the point q can be expressed as the cross-product between the angular velocity
ω and the vector from the origin to the point at that instance in time qA(t):

q̇A(t) = ωA × qA(t) (2.21)

The solution to this di�erential equation can be written as:

qA(t) = eω̂AtqA(0) (2.22)

where qA(0) are the coordinates of point q as viewed in the A frame at t = 0. This is known
as the initial con�guration of the point q.

If the vector representing the axis of rotation ω is a unit vector, the time for rotation t
can instead be represented by the amount of rotation, the angle θ. This gives the relation:

qA(θ) = eω̂AθqA(0) (2.23)

which is identical to the parametrisation shown in Equation 2.13. This gives an expression
for movement of a point from its initial con�guration to its new con�guration given a rotation
of θ radians about the axis of rotation ωA given in the A frame.

From the de�nition of SO in Equation 2.10, we have the relation: R−1(t)R(t) = I. By
di�erentiation, this expression gives the relation showing that RB,AṘA,B is skew-symmetric:

RB,ARA,B = I

ṘB,ARA,B +RB,AṘA,B = 0

RB,AṘA,B = −ṘB,ARA,B

RB,AṘA,B = −
(
RB,AṘA,B

)T (2.24)

The term RB,AṘA,B takes points from frame B, �nds the associated velocities, then
returns them back in frame B. This is known as the body angular velocity ωbA,B:

ω̂bA,B = RB,AṘA,B (2.25)

This process can be repeated usingR(t)R−1(t) = I to obtain an expression for the spatial
angular velocity which takes points from the A frame, converts them into the B frame, then
returns the associated velocities in the A frame:

ω̂sA,B = ṘA,BRB,A (2.26)

This then gives two expressions for the velocity of a point q depending on the frame of
the viewer:

q̇A(t) = ω̂AA,B(t)qA(t)
q̇B(t) = ω̂BA,B(t)qB(t)

(2.27)
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The coordinates of the point as given in the B frame is constant giving the relation
qB(t) = qB(0). This gives the expressions:

q̇A(θ) = ṘA,B(θ)RB,A(θ)qA(θ) = ṘA,B(θ)qB(0)
q̇B = ω̂BA,BqB(0)

(2.28)

The velocity relations for pure rotations can be extended to full rigid-body motion. Equa-
tion 2.23 can be extended, giving an expression for the homogeneous matrix gA,B(θ) from
an initial con�guration gA,B(0):

gA,B(θ) = eξ̂AθgA,B(0) (2.29)

Equations 2.25 and 2.26 can be extended to de�ne the body and spatial twists:

V̂ s
A,B = ġA,B(θ)g−1

A,B(θ) (2.30)

V̂ b
A,B = g−1

A,B(θ)ġA,B(θ) (2.31)

2.2.4 The Adjoint Map

Section 2.2.3 introduced two frames for viewing the velocities of a point: the static spatial
frame, and the moving body frame. These conversions are summarised in Table 2.2.

These conversions are highly useful to �nd expressions for ω and ξ due to a change in
coordinate frame. They are referred to as the Adjoints for so and se. Given a corresponding
element in SO or SE, the Adjoint is de�ned by:

AdRA,B
(
ω̂BA,B

)
= RA,Bω̂

B
A,BR

−1
A,B = ω̂AA,B

AdgA,B

(
ξ̂BA,B

)
= gA,Bξ̂

B
A,Bg

−1
A,B = ξ̂AA,B

(2.32)

Using Equations 2.15, the Adjoint can be written as the matrix Ad on the parametrised
form of the Lie Algebra:

ωAA,B = AdRA,Bω
B
A,B =

[
RA,B

]
ωBA,B

ξAA,B = AdgA,Bξ
B
A,B =

[
RA,B p̂A,BRA,B

0 RA,B

]
ξBA,B

(2.33)

Table 2.2: Conversions between the spatial and body frames for so and se

Frame Rotations Rigid-body Motion
Spatial ω̂AA,B = ṘA,BRB,A ξ̂AA,B = ġA,BgB,A

l ω̂AA,B = RA,Bω̂
B
A,BRB,A

ω̂BA,B = RB,Aω̂
A
A,BRA,B

ξ̂AA,B = gA,Bξ̂
B
A,BgB,A

ξ̂BA,B = gB,Aξ̂
A
A,BgA,B

Body ω̂BA,B = RB,AṘA,B ξ̂BA,B = gB,AġA,B
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Using Equations 2.6 and 2.17 (which give the inverse of elements of SO and SE), the inverse
of the Ad operator can be written:

ωBA,B = AdRTA,Bω
A
A,B =

[
RT
A,B

]
ωAA,B

ξBA,B = Adg−1
A,B
ξAA,B =

[
RT
A,B −RT

A,Bp̂A,B
0 RT

A,B

]
ξAA,B

(2.34)

A second adjoint can be de�ned on the Special Euclidean space. Following Park's nota-
tion[102], a second adjoint can be de�ned on the Lie Algebra se instead of the Lie Group as
in Equation 2.34 via the Lie Bracket:

adξ̂1(ξ̂2) =

[
ω̂1ω̂2ω̂

−1
1 ω̂1v2 − ω̂2v1

0 0

]
(2.35)

This can be rewritten to form the matrix form of the adjoint which acts on the parametrised
form of the Lie Algebra:

adξ̂1 ξ̂2 =

[
ω̂1 v̂1

0 ω̂1

]
ξ̂2 (2.36)

The Adjoint maps allow for the remapping of twists based on a transformation. This
results in a highly versatile method for determining the velocities of a rigid-body object over
time in both the spatial and body frames. This naturally extends to a method of expressing
the Kinematics of a system.
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2.3 Geometric Robotics- Kinematics

Kinematics is the study of the motions of a system. In the previous section, a number of key
results were found for a simple single rigid-body motion. This section extends these results
to multi-jointed serial chain structures. These structures can be the movements of a robotic
arm, or the rotations of the ankle, knee, and hip during standing.

2.3.1 Positions

The �rst stage of Kinematic analysis is obtaining an expression for the positions of points
on a rigid-body structure. Consider the system shown in Figure 2.3. This structure consists
of a series of n joints, with the world frame located at the base, and the tool frame at the
end of the chain. In this system, the positions of the prior joints will change the locations
of joints located distally to it. To determine the con�guration of the tool frame relative to
the world frame (gW,T (θ)), a representation of the intermediary segments is required.

W

T

n

i

i-1

1

Figure 2.3: The segments of a serial chain structure. The world and tool frames are shown
as W and T respectively. The frames of intermediary joints are shown, with the origin of
the frame at the centre of the joint.

As shown from Equation 2.29, it is possible to describe a single rigid-body motion as:

gA,B(θ1) = eξ̂
A
A,Bθ1gA,B(0)

This can be extended to a two joint system. Consider the two frames A and C which
span two joints. The combined action of the two joints can be written as:

(2.37)gA,C(θ1, θ2) = gA,B(θ1)gB,C(θ2)

= eξ̂
A
A,1θ1gA,B(0)eξ̂

B
B,2θ2gB,C(0)
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where the notation ξBB,2θ2 shows the second twist relative to frame B, as viewed in frame
B. These twists are written in the initial con�guration of the manipulator. Therefore ξBB,2θ2

can be rewritten to �nd the representation as viewed in frame A. This has the form:

(2.38)ξ̂AB,2 = AdgA,B(0)(ξ̂
B
B,2)

= gA,B(0)ξ̂BB,2g
−1
A,B(0)

This allows Equation 2.37 to be written as:

(2.39)gA,C(θ1, θ2) = eξ̂
A
A,1θ1gA,B(0)g−1

A,B(0)eξ̂
A
B,2θ2gA,B(0)gB,C(0)

= eξ̂
A
A,1θ1eξ̂

A
B,2θ2gA,C(0)

This can be generalised for a n-joint system resulting in the Product of Exponentials formula
written in terms of the spatial twists:

gW,T (θ) = eξ̂
W
W,1θ1eξ̂

W
1,2θ2 . . . eξ̂

W
n−1,nθngW,T (0) (2.40)

A similar expression for a serial chain system can be derived for based on the body twists.
A body frame alternative to Equation 2.29 can be written:

(2.41)
gA,B(θ1) = eξ̂

A
A,Bθ1gA,B(0)

= AdgA,B(0)

(
eξ̂

B
A,Bθ1

)
gA,B(0)

= gA,B(0)eξ̂
B
A,Bθ1

This results in the Product of Exponentials formula written in terms of the body twists[102][17]:

gW,T (θ) = gW,T (0)eξ̂
T
W,1θ1eξ̂

T
1,2θ2 . . . eξ̂

T
n−1,nθn (2.42)

Equations 2.40 and 2.42 give representations for the con�guration of any two frames in
a serial chain system. From these expressions, it is possible to obtain expressions for the
velocities of each of the rigid-bodies that comprise the system.

2.3.2 Velocities

Equations 2.30 and 2.31 introduced the spatial and body velocities of a single rigid-body.
Given a system of two rigid bodies, the spatial velocity can be written as:

(2.43)

V̂ A
A,C = ġA,Cg

−1
A,C

= (ġA,BgB,C + gA,BġB,C) g−1
B,Cg

−1
A,B

= ġA,Bg
−1
A,B + gA,BġB,Cg

−1
B,Cg

−1
A,B

= V̂ A
A,B + AdgA,B(θ1)

(
V̂ B
B,C

)
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and the body velocity as:

(2.44)

V̂ C
A,C = g−1

A,C ġA,C

= g−1
B,Cg

−1
A,B (ġA,BgB,C + gA,BġB,C)

= g−1
B,Cg

−1
A,BġA,BgB,C + g−1

B,C ġB,C

= Adg−1
B,C(θ2)

(
V̂ B
A,B

)
+ V̂ C

B,C

This provides two expressions for representing the body and spatial rigid-body velocities of
a system.

These equations can be used recursively to construct the spatial and body Jacobians
of the system. Starting from expressions for the parameterisations of twists written in the
spatial or body initial conditions (ξWi−1,i or ξ

T
i−1,i respectively), the re-mappings of these twists

in the non-initial con�guration are written as ξ
′W
i−1,i and ξ

′T
i−1,i where:

(2.45)ξ
′W
i−1,i = Ad(

e
ξ̂W
W,1

θ1e
ξ̂W1,2θ2 ...e

ξ̂W
i−2,i−1

θi−1

)ξWi−1,i

(2.46)ξ
′T
i−1,i = Ad(

e
ξ̂W
i−1,i

θie
ξ̂W
i,i+1

θi+1 ...e
ξ̂Wn−1,nθngW,T (0)

)−1ξWi−1,i

The resulting Jacobians are written:

JWW,T (θ) =
[
ξ
′W
W,1 ξ

′W
1,2 . . . ξ

′W
n−1,n

]
(2.47)

JTW,T (θ) =
[
ξ
′T
W,1 ξ

′T
1,2 . . . ξ

′T
n−1,n

]
(2.48)

2.3.3 Recursive Kinematic Formulation

Park[102] derives a recursive form for the body velocities and accelerations of a system. This
recursive relationship is developed below, correcting an error in the formulation.

The body form for rigid-body motion is shown in Equation 2.42, and relates the initial
con�guration of two frames gi−1,i(0), the body twist in local coordinates ξii−1,i. Di�erentiating
this relationship gives the expression:

ġi−1,i(θ) = gi−1,i(0)eξ̂
i
i−1,iθi ξ̂ii−1,iθ̇i

g−1
i−1,i(θ)ġi−1,i(θ) = ξ̂ii−1,iθ̇i

(2.49)

The generalised body velocity of link i relative to the world frame can be written as:

V̂ i
W,i = g−1

W,i(θ)ġW,i(θ) (2.50)
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This can be separated into a recursive step:

(2.51)V̂ i
W,i = (gW,i−1(θ)gi−1,i(θi))

−1 d

dt
(gW,i−1(θ)gi−1,i(θi))

= Adg−1
i−1,i(θi)

(V̂ i−1
W,i−1) + V̂ i

i−1,iθ̇i

This expression can be di�erentiated a second time to obtain an expression for the gen-

eralised acceleration ˆ̇V i
W,i:

ˆ̇V i
W,i =

d

dt

(
Adg−1

i−1,i(θi)
(V̂ i−1

W,i−1)
)

+ V̂ i
i−1,iθ̈i

=
(
ġ−1
i−1,i(θi)V̂

i−1
W,i−1gi−1,i(θi) + Adg−1

i−1,i(θi)
( ˆ̇V i−1

W,i−1) + g−1
i−1,i(θi)V̂

i−1
W,i−1ġi−1,i(θi)

)
+ V̂ i

i−1,iθ̈i

=
[
Adg−1

i−1,i(θi)
(V̂ i−1

W,i−1), ξ̂ii−1,iθ̇i

]
+ Adg−1

i−1,i(θi)
( ˆ̇V i−1

W,i−1) + V̂ i
i−1,iθ̈i

= adAd
g−1
i−1,i

(θi)
(V̂ i−1
W,i−1)

(
ξ̂ii−1,iθ̇i

)
+ Adg−1

i−1,i(θi)
( ˆ̇V i−1

W,i−1) + V̂ i
i−1,iθ̈i

(2.52)

Therefore, given the knowledge of the generalised body velocities and accelerations for
the previous links, the body velocity and acceleration for the current link can be expressed
by the parameterised matrix expressions:

V i
W,i = Adg−1

i−1,i(θi)
V i−1
W,i−1 + V i

i−1,iθ̇i

V̇ i
W,i = adAd

g−1
i−1,i

(θi)
V i−1
W,i−1

ξii−1,iθ̇i +Adg−1
i−1,i(θi)

(V̇ i−1
W,i−1) + V i

i−1,iθ̈i
(2.53)
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2.4 Geometric Robotics- Dynamics

Dynamics is the study of the relation between the forces acting on a system and the resulting
motion. The linear forces and rotational torques are linked to the linear and rotational
motions via the mass and inertia of the system[36].

2.4.1 Wrenches and Adjoints

The linear forces Fi and rotational torques τi acting on a rigid body can be combined into a
single vector Γi termed the wrench. While velocities in a system are related by the Adjoint,
wrenches are related by the transpose of the Adjoint:

Γi =

[
Fi
τi

]
= AdTgi+1,i(θi+1)Γi+1 = AdT

g−1
i,i+1(θi+1)

Γi+1 (2.54)

2.4.2 Recursive Dynamic Formulation

Given a rigid-body i with mass mi, located at the point with coordinates ri, and matrix of
inertia Ji about the centre of mass, the corresponding wrench exerted at the origin is given
by the expression[102]:

Γi = IiV̇
i
i − adTV̂iIiVi (2.55)

where:

Ii =

[
miI −mir̂i
mir̂i Ji −mir̂

2
i

]
(2.56)

Combining this relation with Equation 2.54 gives an expression for the wrench acting at
the origin of the joint i given in the i frame:

Γi = AdT
g−1
i,i+1(θi+1)

Γi+1 + IiV̇
i
i − adTV̂iIiVi + Γi,E (2.57)

where Γi,E is the external wrench acting on the rigid body. Equation 2.57 is the backwards
dynamics recursion. After determining the velocities and the accelerations of each link, and
measuring the external wrenches acting on the object, the wrench acting at the origin of
each frame can be computed from distal to proximal.



22 CHAPTER 2. MATHEMATICAL PRELIMINARIES



23

Part I

Human Modelling



24 CHAPTER 2. MATHEMATICAL PRELIMINARIES



25

Chapter 3

Kinematic Modelling

This chapter outlines methods for creating a representative kinematic model of an individ-
ual. Building on the mathematical framework introduced in Section 2, this chapter extends
these methods to the biomechanical modelling problem. Section 3.1 introduces the standard
state of the art for kinematic modelling. Section 3.2 develops a robust kinematic recovery
framework. These individualised kinematic models are then used in the development of an
individualised dynamic model in Chapter 4.

3.1 State of the Art

Biological motion has been formally studied over the course of centuries, with some of the
�rst work being developed by da Vinci. The connection between anatomical structure and
corresponding motions has been studied through a number of methods. This section outlines
the state of the art in Kinematic modelling[22][93][136][146]. Section 3.1.1 outlines the
methods that can be used to locate joints and track range of motion. A number of these
methods track points on the body that are then used to infer joint state and location (Sections
3.1.2, 3.1.3). The challenges faced by existing methods are outlined in Section 3.1.4, and the
improvements from the presented work shown in Section 3.1.5.

3.1.1 Methods

The methods used to quantify human motion will be separated into two categories: di-
rect and indirect. Direct methods attach a measurement device (such as a goniometer or
accelerometer) directly to the subject. In contrast, indirect methods typically use optical
methods to track an individual's motions potentially without any alterations made to the
individual.
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3.1.1.1 Direct Methods

One of the most common clinical methods for measuring an individual's range of motion
is through direct goniometry. Traditionally this is a purely mechanical device similar to a
protractor that is used to measure the angle between two limb segments. This measure is
one of the most frequently used clinical measures for quantifying range of motion due to
the low training burden and a�ordability. While being commonly used, goniometry is fre-
quently limited by the time required to take the measurements. These devices have been
instrumented with encoders to help expedite this process, however this does not reduce the
time required to correctly pose the subject. The variability and reliability of these methods
is questionable, with a number of papers suggesting that these methods are not suitable for
tracking a patient over time due to signi�cant inter- and intra- clinician variability in gonio-
metric measurements and variability with the type of goniometer used[14][45]. These e�ects
were found to be compounded during longitudinal studies, making their clinical reliability
as a quantitative measure questionable[86]. Furthermore, only the relative angles between
surface landmarks are tracked in a single plane, making the extension to more complicated
joint movements challenging[50].

X-rays, and X-ray �uoroscopy can also be used to �nd the location and rotation of a
joint[129]. By taking a number of X-rays in sequence, it is possible to directly track the
motion of the underlying skeleton[30]. These methods are extremely useful for measuring
the true position of the limb. The use of X-rays is an invasive procedure due to the use of
ionising radiation.

The accelerations and rotational velocities of a limb can also be measured directly through
the use of wearable Inertial Measurement Units (IMUs). While these sensors are relatively
easy to use and a�ordable, their use for estimation of joint angles and positions is limited
as these are estimated through integration of the acceleration and velocity measurements.
As a direct measure of acceleration, their use is limited due to their mass and the need for
accurate attachment. IMUs will measure the acceleration component of the device directly,
not the limb segment. The conversion from the IMU acceleration to the limb acceleration
requires knowledge of the rigid-body transform between the limb coordinate system and that
of the IMU axes. Any relative motion between the device and the bone due to a combination
of soft tissue motion (skin etc.) and attachment method will reduce the reliability of the
IMU tracking system[72].

3.1.1.2 Indirect Methods

While the use of IMUs as a direct sensor is limited, there are a number of methods for
extending them to act as an indirect measurement device for joint angles. Based on the
potential for noise in the sensor readings, there has been substantial work on developing
methods to fuse the accelerometer, gyroscope, and magnetometer data into a smoothed
estimate of joint state[89]. One of the frequently used methods is a non-linear Kalman
Filter in either the Extended (EKF)[16] or Unscented (UKF)[120] forms. These methods
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have been shown to provide improved estimates of joint angle compared to using the sensors
independently though gradient decent methods have also been shown to provide similar
improvements under less computational load[77].

Magnetometers can also be used to estimate the position of key points on the body using
a structured magnetic �eld. The subject wears a number of small sensors that estimate their
location by measuring the magnetic �ux. These devices have been shown to provide high
resolution measurements of position, but can su�er from errors near metallic or magnetic
objects.

There are a number of optical methods for motion capture, which can be separated into
markered and markerless categories. Markered motion capture requires the user to wear
a number of markers on their body. These markers can be active: emitting light at a
known frequency[104], or passive: retro-re�ecting light back to the camera[99]. While these
methods often present similar spatial accuracies, they are di�erentiated through the method
of sensing. Active markers are automatically labelled allowing the exact position of a speci�c
marker to be tracked over time. Passive markers are unlabelled and need to be manually
tracked in post. The bene�t of passive markers is the lightweight, non-powered nature of
the markers. In contrast, active markers need to be powered resulting in a larger, heavier
form factor.

There are a number of markerless methods that can be used to estimate pose. These
methods can build 2D/3D silhouettes using a standard camera, or by adding depth sensing
using a projected Infra-Red grid/through time of �ight. These silhouettes can then be used
to estimate pose through machine learning methods, comparing the observed silhouette to a
database, or by �tting a shape model to the system[93].

3.1.2 Recovering Joint State

While a number of these methods extract joint angles directly, the majority of motion cap-
ture methods return the 3D location of markers or rigid-body position and rotation for the
segment. In these cases it is necessary to convert these point and rigid-body measurements
into a set of representative angles.

Traditionally, this is done by assigning markers points to speci�c body landmarks, then
measuring the angles of these markers relative to the world frame. These marker locations
are subject to variation depending on lab and study protocol, making clari�cation of marker
location necessary.

A more mathematical approach is to assign sets of 3D points to lie on a rigid-body, then
determining the position and orientation for this rigid body at each instance in time. This
allows for the generation of a time series of homogeneous matrices gW,i(t) for each rigid-body
segment. The relative transformation between these two frames can then be computed for
that instant via g−1

W,igW,j. The resulting rotation matrix can then be decomposed into an
appropriate angle convention[89].

One problem that arises with these techniques is a marker dropping or swapping during
a trial. Marker drop can result from occlusion, resulting in a marker disappearing during
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a sample. Marker swap can occur in the case of passive motion capture when two passive
markers move close to each other. As passive markers are indistinguishable from each other,
it is impossible to determine if two markers are moving past each other, or making contact
then recoiling.

In these cases, the recovery of joint state may be complicated by an insu�cient number
of markers being viewable in a frame for estimation of the instantaneous rigid-body trans-
form. A common method for overcoming this issue is by �tting a smoothing spline to the
missing data. While this does allow for the recovery of a rigid-body transform, there may be
substantial error as the sections of motion capture that may be missing could occur during
sections of rapidly changing movement[37]. Marker position can be estimated using marker
prediction methods at the action[37], segment[54] and marker[141] levels. These methods
will be used as inspiration for the presented work.

3.1.2.1 State Derivatives

While the majority of methods recover a joint angle, the joint derivatives are often needed,
particularly in the case of dynamic modelling. Typically these are recovered through re-
peated low pass �ltering the data and numeric di�erentiation steps. While this method is
used extensively, there is relatively little investigation on the correct cut-o� frequency to
ensure validity of the angular derivatives, with analysis being performed by Pezzack[103]
and Sinclair[115]. From these studies it was found that �ltering-di�erentiation methods out
performed Chebyshev polynomial �tting, and �nite di�erencing alone. The choice of cut-o�
frequency was found to have a substantial e�ect on the recovered state derivatives.

Another challenge that is faced in the recovery of the state dynamics, is the requirement
that the state derivatives are dynamically consistent, i.e. that the state and the derivatives are
coupled dynamically. In the methods listed above, the dynamic consistency is not assured,
potentially leading to estimated joint states that are not representative of the system's
evolution.

The recovered joint state may also be infeasible, returning motions that are outside the
system's range of motion. These artefacts can arise through motion capture drop, motion
of markers on the skin, or through the unconstrained transform recovery. These errors can
be reduced through the use of a representative kinematic model. These kinematic models
can provide rigid-body constraints to the measurements, ensuring that the motions are kine-
matically consistent. The use of kinematic models to assist in the joint recovery process has
been shown to improve accuracy and repeatability during the recovery process[75][109][120].

3.1.3 Extracting Joint Location

The use of kinematic models to aid the kinematic recovery process is limited by the accuracy
of the model parameters such as joint locations. The length of the limbs and the locations
of each joint can vary with the individual, particularly in the case of patient interventions.
Therefore a method is required to estimate the locations of the joint centres.
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There are a number of methods to estimate the kinematic parameters of an individual.
The most direct method is to use imaging based methods such as X-ray �uoroscopy (as
mentioned in Section 3.1.1.1), however this method is limited by the invasiveness of the
procedure. The alternatives to these methods can be divided into allometric scaling and
functional methods.

3.1.3.1 Allometric Scaling

Allometric scaling is heavily used in the biomechanics community. By measuring the lo-
cations of easily located anatomical landmarks, statements are made about the underlying
anatomy of the subject. These methods extended from general principles where joint centres
are estimated from surface landmarks[26][38][63][126][139][140] or from the overall height of
the subject[136]. These methods have been shown to provide joint location accuracies of
approximately 1-2cm for the hip[10][66][96].

While these methods are widely used, there are known issues with locating certain joints
(such as the hip), and signi�cant variations due to sex and ethnicity. To overcome these
limitations, the functional centre of the joint can be estimated by observing the motions of
the individual.

3.1.3.2 Functional Methods

Building on the kinematic modelling and state recovery methods, joint centres can be esti-
mated by examining the motions of the limb[33].

The computation of the matrix g−1
W,igW,j can be used to determine the instantaneous

centre between two rigid body frames which have been de�ned apriori[89][111]. There are a
number of di�erent formulations for determining the joint centre using this approach. These
methods are often separated into one and two sided methods depending on whether one
or both segments are moving at that instant[53][111][116][138]. These methods have shown
accuracies of approximately 2mm for the joint centre, and are robust to noise in cases where
the joint is su�ciently moved through its range of motion[33][105].

In addition to these methods are a number of sphere �tting methods that attempt to
�nd the best �t sphere given markers on the limb[19][28][42][41][48][80][98]. While there are
a number of variations in these methods, they are typically one sided which can present
a problem in practice. These functional methods have been shown to be accurate for
the test cases, but variations can occur based on the formulation chosen, and the actions
used[10][73][105][114].

3.1.4 Challenges

From this prior work, it is clear that there are a number of techniques that o�er the ability
to create a representative kinematic model for an individual which can surpass the methods
currently being used clinically. The biggest challenge is developing a framework that allows
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for the translation of these techniques in a manner that does not result in a retraining
burden for the healthcare provider, and a cost/time burden on the patient/clinician team.
The existing state of the art from the biomechanics community requires precise marker
placement, manual post-processing, and adherence to exact protocols to generate a reliable
human model and state estimate. These high requirements limit the clinical deployment of
the existing state of the art.

3.1.5 Novelty

This chapter will introduce a method for developing a kinematic model for an individual that
is aimed at clinical deployment. The method adopts a physics-based approach, extracting
model features in a structured manner. This allows for the recovery of parameters that
are physically meaningful allowing for tracking over time and estimation of recovery and
intervention e�cacy.

The presented method generates a best �t serial chain model from the provided mo-
tion capture data without making assumptions on the location of joints, the length of limb
segments, or abilities of the individual. This data-driven approach allows for recovery of a
model that represents the individual's actions, reducing the e�ect of investigator biases, and
variation.

The actions being analysed are selected based on simplicity and on standardised clinical
tests such as the �ve-times sit-to-stand test. This reduces the training burden on clinicians
and is expected to improve protocol adherence during out-of-clinic deployment.

Setup time is minimised, with conventional motion-capture calibrations such as T-pose
and sequential joint excitation being avoided. This reduces patient and clinician burden by
reducing the amount of time required to calibrate the experimental setup.

Markers are automatically assigned to segments based on their observed trajectories,
allowing for errors in marker placement. Furthermore markers are not constrained to lie at
speci�c points on the individual enabling �exibility in the protocol setup.

The framework is robust to marker drop �lling gaps in missing markers data, including
cases where less than three markers are known for a segment. This is achieved through a
dynamic �ltering method which also ensures dynamic consistency in the angular state and
its derivatives.
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3.2 Kinematic Recovery Framework

This section outlines the mathematics behind the proposed skeletonisation process. An
overview of the mathematical intuition is provided in Section 3.2.1 with more details provided
in Sections 3.2.3 to 3.2.6. The applications of this algorithm to robotic and human modelling
are shown in Chapters 5 and 6 respectively.

This algorithm simpli�es the Kinematic recovery process to the recovery of planar, serial
chain motions. This simpli�cation allows for the development and testing of the complete
kinematic and dynamic recovery process on a structured system, allowing for analysis of the
recovered model. The extension to full 3D structures is relatively straightforward, only re-
quiring the circle �tting algorithm (Section 3.2.4) to be changed to a sphere �tting algorithm.
However the resulting dynamic model will dramatically increase in complexity. Therefore
this work focuses on the planar case.

3.2.1 Overview

Returning to the preliminaries on rigid-body motion, the relative motion between two adja-
cent links in a serial chain structure can be described by the equation:[

qj−1

1

]
= gj−1,j(θj)

[
qj
1

]
=

[
Rj−1,j(θj) pj−1,j

0 1

] [
qj
1

]
(3.1)

where gj−1,j is a rotation parametrised by Rj−1,j(θj) at the point with the local coordinates
pj−1,j.

In a serial chain structure, the motions of points on the jth link will depend on the angles
{θ1 . . . θj} [

qW,j(t)
1

]
= [gW,1(θ1(t)), . . . , gj−1,j(θj(t))]

[
qj
1

]
= gW,j(θ1,...,j(t))

[
qj
1

]
(3.2)

where the local coordinates of point qj do not vary with time. Motion capture systems
return marker trajectories in the world frame qW,j(t) which may appear as elaborate arcs in
space. However the motions represented by Equation 3.1 are that of a point moving about
a sphere. Therefore Equation 3.2 can be separated to:[

qW,j(t)
1

]
= gW,j−1(θ1,...,j−1(t))gj−1,j(θj(t))

[
qj
1

]
(3.3)

g−1
W,j−1(θ1,...,j−1(t))

[
qW,j(t)

1

]
= gj−1,j(θj(t))

[
qj
1

]
(3.4)

[
qj−1,j(t)

1

]
= gj−1,j(θj(t))

[
qj
1

]
(3.5)
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where Equation 3.5 is of the same form as Equation 3.1. This equation shows that in the rel-
ative coordinate system, the motions of markers will be reduced into motion about a sphere.
Therefore if the rigid-body motions of the prior j − 1 joints are known (gW,j−1(θ1,...,j−1(t))),
then the centre of rotation (pj−1,j), local coordinates of the markers on segment j (qj) and
the relative rotation matrix (Rj−1,j(θj(t))) can be found from the world trajectories (qW,j)
via:

g−1
W,j−1(θ1,...,j−1(t))

[
qW,j(t)

1

]
=

[
Rj−1,j(θj(t)) pj−1,j

0 1

] [
qj
1

]
(3.6)

Equation 3.6 therefore de�nes a recursive algorithm. Starting at a base link W , motions
of the next link 1 can be identi�ed as simple rotations. Therefore by �nding points that move
in a sphere relative to link W , the markers on segment 1, the relative position of the centre
of rotation pW,1 to the origin of the previous frame, and the local coordinates of the points
on frame 1 (q1) can be determined. After this identi�cation, inverse kinematics can be used
to recover the corresponding joint trajectory θ1(t). This de�nes the time-series gW,1(t). This
process is then repeated, identifying the markers on subsequent segments.

This process of circle �tting, parameter identi�cation, and state recovery is outlined in
Sections 3.2.3 to 3.2.6.

3.2.2 Assumptions

The following assumptions will be made in order to simplify the kinematic recovery process.

A1 The system and actions to be recovered can be reduced to motion on a plane.

A2 The system can be represented as a rigid-body serial chain.

A3 Marker swap does not occur.

A4 The observed actions are su�ciently kinematically exciting.

Assumption A1 simpli�es the kinematic and dynamic recovery process, while A2 allows for
the use of the outlined rigid-body recovery method. Assumption A3 allows for circle �tting
to take place over full trajectories, making use of active motion capture or similar unique
marker methods. Assumption A4 states that the joints in the system are moved su�ciently
in their range of motion to allow for recovery.

3.2.3 Planarisation

Under assumption A1 the trajectories of markers in 3D (q̃(t)) need to be �attened onto a
representative plane (q(t)). In this work, the plane of action is assumed to be perpendicular
to the ground. This best-�t plane can therefore be found by projecting all of the trajectories
onto the ground plane, then �nding the line of action.



3.2. KINEMATIC RECOVERY FRAMEWORK 33

Consider the 3D trajectories q̃(t). These trajectories can be �attened onto the ground
(X,Y) plane, and centred to the origin via the transformation:

q̆i(t) =

[
q̆x,i(t)
q̆y,i(t)

]
=

[
1 0 0
0 1 0

]q̃x,i(t)q̃y,i(t)
q̃z,i(t)

− [q̄x,i
q̄y,i

]
(3.7)

where q̄x,i and q̄y,i are the mean positions of marker i. Given the n marker trajectories q̆i(t)
for i ∈ [1, n], the angle between the laboratory frame and the plane of movement can be
computed through the arctan of the x, y components. This de�nes the angle that the data
needs to be rotated about to �atten the motion onto a plane. These �attened trajectories
in the laboratory world frame are denoted qW,i(t).

3.2.4 Circle Fitting

The circle �tting process is the �rst step of the recursive kinematic recovery process. It is
initialised with a set of marker trajectories Q that have been �attened onto a plane. Each
marker trajectory qW,i(t) ∈ Q is known to track a single marker over time as there is no
marker-swap (assumption A3). Therefore markers can be allocated to a rigid-body segment
by �nding circles in the non-assigned marker trajectories.

Consider set Q of all n markers, and QA ⊂ Q the subset of markers that have already
been allocated to a segment. This leaves set QC , the set of candidate markers that will be
used for the circle �tting process for this iteration.

The circle �tting process requires knowledge of the prior rigid-body transformations for
the prior links. For iteration i, it is assumed that gW,i−1(θ1,...,i−1) are known. In the special
case of the �rst iteration, this is the matrix gW,W : the 4× 4 identity matrix.

Given the set of candidate markers QC , and the rigid-body transforms gW,i−1(θ1,...,i−1)
the centre pj and radius rj can be found for each candidate marker trajectory qj(t) via the
optimisation problem:

min
pj ,rj

∥∥‖qi−1,j(t)− pj‖2
2 − rj1

∥∥2

2
(3.8)

where 1 is a vector of ones, and qi−1,j(t) is the trajectory of candidate marker j after being
transformed from the world frame coordinates qW,j to the i − 1th frame coordinates qW,i−1

via:
qi−1,j(t) = g−1

W,i−1(θ1,...,i−1)qW,j(t) (3.9)

The residuals of this minimisation acts as an indicator of how circular the trajectories of
a marker j in the candidate marker set QC are for the observed actions. Markers with
low residuals are kept in the set QC , while markers that do not appear to move in a circle
are removed. Markers remaining in QC have been found to be move along circular paths,
allowing for a common centre to be recovered.
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3.2.5 Parameter Identi�cation

Given the set of candidate markers QC , which have been found to rotate through circular
paths when viewed in i − 1 frame, the next step is to determine the common centre of
rotation, and the local coordinates of the marker.

Consider the k candidate markers in set QC . At a single sample s, these markers have
the planar coordinates:

qi−1(s) =
[
qi−1,1(s) . . . qi−1,j(s) . . . qi−1,k(s)

]
∈ R2×k (3.10)

The �xed local coordinates of marker j can be written in polar coordinates as a radius rj
and an angle φj:

qj =

[
qx,j
qy,j

]
=

[
−rjsin(φj)
rjcos(φj)

]
(3.11)

These local coordinates can be concatenated into the homogeneous matrix:

qi =

[[
q1

1

]
. . .

[
qj
1

]
. . .

[
qk
1

]]
∈ R3×k (3.12)

The expected coordinates of the candidate markers at sample s as seen in the i−1 frame
are therefore related via the expression:

qi−1(s) =
[
Ri−1,i(θ(s)) pi−1,i

]
qi (3.13)

This expression can be extended for the entire data set. As the local marker coordinates qi
do not change, and the coordinates of the markers in the i− 1 frame are parametrised only
by the angle θi, the expected coordinates of the markers for m samples can be written:

qi−1(1)
...

qi−1(s)
...

qi−1(m)

 =



[
Ri−1,i(θ(1)) pi−1,i

]
...[

Ri−1,i(θ(s)) pi−1,i

]
...[

Ri−1,i(θ(m)) pi−1,i

]

 qi = Gi−1,i(θi,pi−1,i)qi (3.14)

By computing the error between the expected marker positions Gi−1,i(θi,pi−1,i)qi and
the transformed measurements Qi,j, it is possible to determine the local marker positions
qi. The rotation component is ill-posed however as both φj and θ(s) are unknown. To make
this problem tractable, the angles φ are also minimised, e�ectively aligning the Y-axis of the
ith frame to lie midway between the observed markers.

In cases where markers are known to be located near joints, the error between these
auxiliary markers pA and the recovered joint position can also be minimised. Forming a
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matrix of these markers allows the error in the joint position to be written:

εA =


pA(1)
...

pA(s)
...

pA(m)

−


[
I2

]
...[
I2

]
...[
I2

]

pi−1,i (3.15)

This forms the optimisation problem:

min
θi,pi−1,iqi

∥∥‖Qi,j −Gi−1,i(θi,pi−1,i)qi‖2
2 + λφ ‖φ‖2

2 + λA ‖εA‖2
2

∥∥2

2
(3.16)

where λφ and λA are weighting terms for the optimisation. Examining the columns of the
�rst term allows for the detection of markers that, while moving along a circular path, are
not on the same rigid body as the rest. These markers can be removed from the candidate
marker set. Solving this optimisation problem recovers the joint centre pi−1,i, the local
marker coordinates qi, and a set of joint angles θi.

3.2.6 State Recovery

While the parameter identi�cation step will return estimates of the joint state θi, these joint
angles are not ideal representations of joint state. The parameter identi�cation step does
not consider the dynamics of the system, and may result in joint angles that suddenly jump
between samples. The parameter identi�cation step also requires all the markers to be visible
during the optimisation, a constraint that may not hold true in experiments.

This section introduces a method for obtaining a dynamically consistent estimate for
the angular position and its derivatives. The method is a robust rigid-body method that
is tolerant of marker drop. By using a template dynamic model, the joint states can be
coupled together ensuring dynamic coherency. As the exact dynamic model of the system
is not known a priori, the system is modelled as a random walk process with noise entering
in the snap term. By modelling the perturbation in the high order derivative, the recovered
state up to the acceleration term will be smoothed. The discrete time form of this dynamic
system can be written:

θ

θ̇

θ̈...
θ


k+1

=


1 δt

1!
(δt)2

2!
(δt)3

3!

0 1 (δt)
1!

(δt)2

2!

0 0 1 (δt)
1!

0 0 0 1



θ

θ̇

θ̈...
θ


k

+


(δt)4

4!
(δt)3

3!
(δt)2

2!
(δt)
1!

vk (3.17)

where δt is the incremental time step, and vk is the process noise.
While the exact form of the process model is not know, the observation model that links

the system state to the observed sensor values is known. This is the forward kinematic map
fFK and can be formed from the kinematic model that has been recovered for the i segments.
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From the parameter identi�cation process, the rigid body transform representing the
joints 1 to i have been recovered, as have the local marker coordinates for each link q1, . . . , qi.
This gives expressions for expected coordinates of all assigned markers in the world frame
as a function of the joint state θ:qW,1...

qW,i

 =

 gW,1(θ1)q1 + n
...

gW,i(θ1 . . . θi)qi + n

 (3.18)

where n is the associated noise in the measurements. Equation 3.18 is the observation
equation for the system and gives the mapping from the state space to the observations.

Given models for both the process and observation of the system (Equations 3.17 and
3.18), an Unscented Kalman Filter (UKF) can be used to rectify potential mismatches be-
tween the observations and the expected state[62][131].

The UKF is supplemented by a marker prediction step. In the event a marker is missing
from a particular sample, the marker position is estimated from the previous state estimate
using Equation 3.18. This uses the state at step s − 1 (θs−1) to predict where the markers
should be at sample s. These marker estimates are used to �ll in the gaps in the missing
state vector at sample s. As these are estimates, not true measurements, the corresponding
marker noise term n is increased for the markers with estimated locations. This ensures that
the UKF can run at each step, while capturing the uncertainty in the estimation process.

The UKF is run both forwards and backwards in time. This reduces the e�ect of phase
distortion, and allows for the state to be recovered for the entire time series. This recovers
the angular state and its derivatives for all samples for joints 1 to i. This fully recovers
the kinematic model and the states for the �rst i joints. The recovery process can now be
repeated for the i+ 1 link. The full kinematic recovery process is summarised in Figure 3.1.
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Figure 3.1: Overview of the Kinematic recovery framework. Left: Flowchart of algorithm.
Right: Corresponding cartoons of steps in the algorithm. I. Markers remapped to the i− 1
frame, II. Markers moving along circular paths, III. Markers moving about a common centre
pi−1,i with local coordinates (φ, r), IV. Inverse Kinematics to recover joint state θ, θ̇, θ̈,

...
θ .
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Chapter 4

Dynamic Modelling

The kinematic models introduced in Chapter 3 give a representation of the geometry and
motions of an individual. This chapter builds on these kinematic models, by linking the
motions of the individual to the forces they exert on their surroundings. This allows for
estimation of the dynamic model of an individual. This model includes estimates of an
individual's dynamic parameters, the set of their limb masses and inertias.

Section 4.1 reviews the existing literature on system dynamic modelling methods used
in robotics and biological systems. Building on the geometric tools introduced in Chapter
2 and the kinematic models from Chapter 3, a geometric method for dynamic parameter
recovery is introduced in Section 4.2. The applications of these dynamic recovery methods
are applied to robots in Chapter 5 and to clinical tests in Chapter 6.

4.1 State of the Art

The dynamics of a system can be written in the form:

I(θ)θ̈ +C(θ, θ̇) = τ (4.1)

where I is the matrix of generalised inertias of the system and C is a generalised bias
force[36]. Applications of dynamic models are typically separated into forward and inverse
dynamics. Forward dynamics studies the evolution of the system state θ(t) given knowledge
of the applied forces and torques τ . Inverse dynamics investigates the inverse of this problem,
determining the torques required to perform a desired trajectory.

This work focuses on the estimation of the matrices I and C for a given system, allowing
for application of the forward and inverse problems. The development and estimation of
dynamic models is introduced in the application to robotic systems in Section 4.1.1. Section
4.1.2 shows the current state of the art for human modelling, covering conventional techniques
for estimation of an individual's dynamic parameters, and the prior work on extending the
robotics framework to biological systems.
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4.1.1 Robotics

There is a natural application of dynamic modelling to the �eld of robotics and control.
This has led to a signi�cant amount of prior work focusing on the development of dynamic
models.

A common method for performing this identi�cation is via Closed Loop Output Error
methods (CLOE)[47][57][61][67]. These methods compare the responses of a simulated and
true system when given an input torque, and updates the model parameters until the error
between the two systems is negligible. While these methods are useful in robotic applications
they depend on direct measurement of the joint torques, which are challenging to observe
directly in a non-invasive manner in biological systems. Instead the Dynamic Identi�ca-
tion Modelling (DIM) approach will be explored based on the prior application in human
modelling[7][59][127].

4.1.1.1 Dynamic Identi�cation Modelling

While there is a geometric formulation for the model of a dynamic system (Section 2.4), a
more common approach to the kinematic and dynamic modelling process is through the use
of the Denavit-Hartenberg notation[36][65]. This is a framework for constructing kinematic
and dynamic models of a system. Under this formulation, it is possible to develop a Dynamic
Identi�cation Model (DIM)[60][65] that allows for estimation of the system dynamics.

The dynamics of a system can be written in the form:

[
I1,1 I1,2

I2,1 I2,2

] [
q̈0

θ̈

]
+

[
c1

c2

]
=

[
0
τ

]
+

Nc∑
k=1

[
Kk,1

Kk,2

]
Fk (4.2)

where Fk are the external forces acting on the system.

Equation 4.2 can be rewritten to obtain a linear expression of the dynamic parameters
of the system[65]:

[
Y1

Y2

]
φF =

[
0
τ

]
+

Nc∑
k=1

[
Kk,1

Kk,2

]
Fk (4.3)

where Y is the regressor of the kinematic state. The regressor is a matrix constructed from
the kinematic model of the system, and the observed state trajectories. The vector φF
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contains the full dynamic parameters for the n links in the system and can be written as:

φF =


φF,1
...
φF,i
...

φF,n

 =



...

mi

mrxi
mryi
mrzi
Ixxi
Iyyi
Izzi
Ixyi
Ixzi
Iyzi


...



∈ R10n×1 (4.4)

The generation of the full regressor Y is explored in Khalil[65], and an open source
Python script for DIM generation from modi�ed Denavit-Hartenburg parameters provided
through Open SyMoRo[64].

Given knowledge of the kinematics of the system and the contact forces, Equation 4.3
becomes a simple matrix equation of the form:

YFφF = Γ (4.5)

where φF is to be determined. Equation 4.5 can be used to estimate the dynamic parameters
from the observations through the optimisation cost function:

f(φF ) = ‖YFφF − Γ‖2
2 + λφ ‖φF‖2

2 (4.6)

where the λφ term weights and minimises the total size of the recovered dynamic parameters.
This process requires YF to be well conditioned. The condition number of YF is dependent

on both the kinematic model of the system and the excitation of the observed action. In
many cases Equation 4.5 will not be well conditioned leading to an ill-posed recovery process.

To overcome this limitation, the well conditioned components of Equation 4.5 can be
used in recovery. This results in a DIM that recovers the well-conditioned subset of φF .
These recoverable dynamic parameters are termed the base parameters.

4.1.1.2 Base Parameters

There are a number of conditions that can result in a poorly conditioned regressor. Some
dynamic parameters may not be observable in the system, due to coupling with other pa-
rameters or not being excited. These parameters can be regrouped or removed from the
regressor. The vector of these regrouped dynamic parameters are the base parameters φb
and form the minimal DIM:

Ybφb = Γ (4.7)
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The minimal regressor Yb can be constructed through application of the QR decomposi-
tion[65]. Each column of the regressor Y corresponds to a single dynamic parameter in φ.
If a column is found to be entirely zeros, then the corresponding dynamic parameter is not
excited and is removed from the regressor. These parameters can be found by identifying
the zero elements on the diagonal of the matrix Y T

F YF . Removing these zero columns results
in a reduced regressor Yr.

The R matrix from the QR decomposition of Yr can be used determine the linearly
independent parameters. The numerical zero for the dataset containing r samples can be
de�ned as:

0N = rεmax |Ri,i| (4.8)

This numerical zero can be used to split the reduced regressor Yr into a linearly independent
part Yr1 where |Ri,i|≥ 0N , and a linearly dependent component Yr2. The linearly dependent
columns can be written as a combination of the linearly independent terms via:

Yr2 = Yr1β (4.9)

Therefore, parameters can be regrouped based on the structure of β. The regressor of the
regrouped parameters is termed the minimal regressor and is denoted Yb with the corre-
sponding base parameters φb. The cost function for the minimal regressor is therefore:

f(φb) = ‖Ybφb − Γ‖2
2 + λφ ‖φb‖2

2 (4.10)

4.1.1.3 Physical Consistency

While the estimation of base parameters via the minimal regressor is better conditioned
than from the full regressor, the recovered parameters are not guaranteed to be physically
achievable. This may result in negative masses, non-positive-semi-de�nite matrices of inertia,
and infeasible combinations of zero, �rst, and second mass moments of inertia[81][144].

When performing dynamic recovery, the most common method for avoiding physical
inconsistency is to minimise the error between the recovered parameters and a reference
model[8]. This reference model can be taken from literature or a CAD model, leading to the
cost function:

f(φF ) = ‖YFφF − Γ‖2
2 + λref ‖φF − φref‖2

2 + λφ ‖φF‖2
2 (4.11)

While this method anchors the parameters to lie near their expected values, there is
still no guarantee that the parameters themselves are physically consistent. Constraints on
the positive-semi-de�niteness of the inertia matrix may not be possible if the corresponding
elements are not in the set of linearly independent parameters. This presents a challenge for
the estimation of a set of physically consistent dynamic parameters.

A method to ensure physical consistency was introduced by Ayusawa[8]. A �nite grid of
mass points is used to represent the rigid-body object (Figure 4.1). While the locations of
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ρ

Figure 4.1: Cartoons showing the Ayusawa method for a single pendulum system. Left:
Dynamic system for a single pendulum. The joint location is denoted p1, with the angle
of rotation parametrised by θ1. The frame of the �xed link and moving link are labelled
as frames one and two respectively. The dynamic parameters for each link are contained in
the parameter vectors ψ1 and ψ2. Right: Cartoon of the point mass grid for the physically
consistent recovery. A grid of points of unknown mass distribution ρ1 and ρ2 are used to
represent the true dynamic parameters.

these mass points are known apriori, their weightings can be found through an optimisation
process via the equation:

φF =



...
mi

mrxi
mryi
...


...


=



. . . 0 0

0


1 . . . 1

rxi,1 . . . rxi,p
ryi,1 . . . ryi,p
...

...

 0

0 0
. . .





... ρi,1...
ρ1,pi


...

 = Pρ (4.12)

This relation matrix P can then be used to form the cost function:

f(ρ) = ‖YFPρ− Γ‖2
2 + λref ‖Pρ− φref‖2

2 + λρ ‖ρ‖2
2 (4.13)
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4.1.2 Human Modelling

While there are a number of methods for estimating the dynamic parameters in robotic
systems, the lack of a non-invasive method to estimate joint torques makes the conventional
approaches to DIM challenging. To overcome this challenge, it is possible to develop a
DIM that only requires knowledge of the contact forces of a system, without the true joint
torques being known. While this may result in a reduction in the number of recoverable base
parameters, it allows for a direct extension from robotics to biological systems.

4.1.2.1 Contact Modelling

The full dynamics of a system were expressed in Equation 4.2. The top portion of these
equations do not have a dependence on the system torques, only the contact forces. This
allows for the dynamic equations for the base link to be written as:

[
I1,1 I1,2

] [q̈0

θ̈

]
+ b1 =

Nc∑
k=1

Kk,1Fk (4.14)

Equation 4.14 can be converted into regressor form, allowing for estimation of the full
and base parameters as before. This method has been used in the estimation of humanoid
systems through the measurement of the ground contact forces and aerial motions[6][7]. An
online formulation of the contact based modelling method has been developed to allow for
feedback of the condition number of di�erent limbs, assisting in the recovery process[5][128].
This has led to the extension to a�ordable sensors such as the Wii balance board and Kinect
[13][44][145].

4.1.3 Challenges

While there have been a number of signi�cant advances in the development of dynamic human
models through contact modelling, the tools are still in their infancy. One of the largest
limitations in the existing work is the separate treatment of the kinematic and dynamic
modelling processes. It has been shown that variation in the kinematic model parameters
can have a substantial e�ect on dynamic analysis[108]. Despite this, the majority of the prior
work treats the dynamic recovery process in isolation, making comparison between studies
challenging. Error due to the kinematic recovery method used, and the sensitivity of the
recovered parameters to noise in the dynamic parameters has not been studied. The e�ect of
temporal misalignment between the motion capture and contact force streams has not been
studied.

There are limitations in the methods used to experimentally validate these techniques.
The error in the contact wrench is typically taken to be the measure of model perfor-
mance[78]. However as the same error is used as the optimisation cost function, these
methods are doomed to succeed.
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With the use of reference models, it is challenging to determine the correct weightings
between matching the observed contact wrench and remaining close to the expected dynamic
parameters. Due to the signi�cant variation between individuals and the lack of a uni�ed
modelling approach, there is a clear need for a link between the kinematic and dynamic
modelling approaches.
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4.2 Dynamic Recovery Framework

This section outlines the original work performed on dynamic identi�cation modelling. Build-
ing on the kinematic results of Chapter 3, a geometric form of the regressor is constructed.
A modi�cation of the minimal modelling process is introduced, allowing for a linear relation
to be formed between the full and base parameters. This allows for the development of a
method that is both physically consistent while only operating on the base parameters.

4.2.1 Geometric DIM

The recursive formulation for deriving the dynamics of a system under the geometric notation
was introduced in Section 2.4. Recalling the matrix form of backward recursive dynamics
equation (Equation 2.57), the dynamic parameters can be rewritten in terms of combinations
of IV and IV̇ . These terms have the similar form of the inertial matrix post multiplied by
a velocity or acceleration twist. To generate the dynamic model, these terms are rewritten
in terms of the full dynamic parameter vector φF :

(4.15)

IV =

[
miI −mir̂i
mir̂i Ji −mir̂

2
i

] [
vi
ωi

]

=


vi ω̂i 0 0

0 −v̂i diag(ωi)

ω2 ω3 0
ω1 0 ω3

0 ω1 ω2


φF,i

= Yi,V φF,i

IV̇ =


v̇i ˆ̇ωi 0 0

0 −ˆ̇vi diag(ω̇i)

ω̇2 ω̇3 0
ω̇1 0 ω̇3

0 ω̇1 ω̇2


φF,i = Yi,V̇ φF,i (4.16)

This allows the recursive dynamic equations to be rewritten in the form:

Γi = AdT
g−1
i,i+1(θi+1)

Γi+1 + Yi,V̇ φF,i − ad
T
V̂i
Yi,V φF,i + Γi,E (4.17)

Exploiting the matrix form of adjoint, the recursive DIM element Yi can be de�ned:

(4.18)

Γi = AdT
g−1
i,i+1(θi+1)

Γi+1 +
[
Yi,V̇ − ad

T
V̂i
Yi,V

]
φF,i + Γi,E

= AdT
g−1
i,i+1(θi+1)

Γi+1 + YiφF,i + Γi,E
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The recursion shown in Equation 4.18 can be used to �nd the relation between the ground
contact wrench Γ0 and the systems dynamic parameters:

(4.19)

Γ0 = Y0φF,0 + Γ0,E + AdT
g−1
0,1(θ1)

Γ1

= Y0φF,0 + Γ0,E + AdT
g−1
0,1(θ1)

(
Y1φF,1 + Γ1,E + AdT

g−1
1,2(θ2)

Γ2

)
=
(
Y0φF,0 + AdT

g−1
0,1(θ1)

Y1φF,1

)
+
(
Γ0,E + AdT

g−1
0,1(θ1)

Γ1,E

)
+ AdT

g−1
0,2(θ2)

Γ2

This results in the recursive geometric dynamic identi�cation model:

ΓW = Y φF + ΓC (4.20)

where ΓW is the contact wrench at the base frame, Y is the regressor:

Y =
[
Y0 AdT

g−1
0,1(θ1)

Y1 . . . AdT
g−1
0,n(θn)

Yn
]

(4.21)

φF is the vector of the full dynamic parameters:

φF =


φF,0
φF,1
...

φF,n

 (4.22)

and ΓC is the net contact wrench acting on the base frame:

ΓC = Γ0,E + AdT
g−1
0,1(θ1)

Γ1,E + · · ·+ AdT
g−1
0,n(θn)

Γn,E (4.23)
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4.2.2 Physically Consistent Minimal Modelling

From the prior work, there are a number of variations on the cost functions investigators
can use in their research. This work introduces a minimal modelling adaptation of the
physically consistent modelling approach introduced by Ayusawa[8]. The Ayusawa approach
is chosen over other methods for physical consistency[81][117][144] as it has an intuitive
physical meaning and a convenient matrix expression to move from the point masses to the
full segment parameters.

Section 4.1.1.2 showed the conventional method for obtaining the base regressor and
parameters. During this conversion process, a relation is obtained between the linearly
independent and dependent columns (Equation 4.9). These relations can be instead used
to build a regrouping matrix M that represents how the full dynamic parameters should be
regrouped to form the base parameters:

φb = MφF (4.24)

This regrouping allows for direct application of the Ayusawa method, providing a rela-
tionship between the base parameters and the discretised point mesh ρ:

φb = MPρ (4.25)

(where P is the matrix relation between the grid of point masses and the full dynamic
parameters). This leads directly to the cost function:

f(ρ) = ‖YbMPρ− Γ‖2
2 + λφ ‖ρ‖2

2 (4.26)

This cost function allows for a guarantee of physical consistency, while operating on the
minimal regressor, resulting in a better posed optimisation problem.
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Chapter 5

Robotic Validation

This chapter tests the kinematic and dynamic modelling methods introduced in Chapters
3 and 4 on a simple robotic manipulator. The robot has a kinematic and dynamic model
that can be used for validation of the techniques, as well as internal encoding of joint state.
This allows for validation of each step of the recovery process, and the development of an
experimental validation methodology for interpreting the results of DIM recovery.

5.1 UR5 Robot

The UR5 is a six degree-of-freedom robot that can be controlled over an Ethernet connec-
tion[125]. The UR5 robot is capable of publishing the joint angles, angular velocities, and
torques at 125Hz allowing for comparisons in the state and torque estimates. The UR5 mod-
ern driver [123] was used to control the robot through Robotic Operating System (ROS)[106].

A kinematic and dynamic model is provided from the ROS controller[88], and an improved
dynamic model has been developed by Ku�eta[67]. In their thesis, Ku�eta developed and
evaluated a number of uniform and varying density models for the UR5 robot based on
the inner components of the robot. These models were evaluated based on their ability to
estimate the end-e�ector accelerations for given inputs.

5.2 Method

The UR5 robot was attached to an AMTI OPT 464508 [1] force platform using a custom
tool steel bracket. The steel bracket used was 12mm thick and a total mass (including
�ttings and fasteners) of 7.817kg. A Phasespace Impulse X2 [104] motion capture system
was used to track eighteen active markers on the robot, and seven active markers on the
base (Figure 5.1). These two systems were synchronised using Meinburg NTP [87] with a
temporal accuracy of ≤ 2ms.

The vertical position was used as the robot's resting state, with the shoulder, elbow, and
wrist joints all rotating in the same plane. Each joint was moved individually in a sinusoid
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WRIST

ELBOW

SHOULDER

Figure 5.1: Cartoon of the UR5 robot. The four segments of the robot that were excited are
shown in di�erent colours. The joint centres are marked with dotted lines. The location of
motion capture markers on the UR5 robot are shown as red crosses.

of magnitude π
4
radians for a total of 5 reps. This was repeated at two frequencies, a fast

motion at 0.5Hz and a slow motion at 0.25Hz.
This protocol was performed on the shoulder, elbow, and wrist in the vertical con�gura-

tion, and again with the robot rotated π
4
radians about the vertical axis. Each experiment of

5 repetitions of a single joint were processed as a single trial. This allows for a comparison
between joints, orientations, and speeds. The fast speed was not attempted on the shoulder
axis due to the risk of tipping the robot.



5.3. KINEMATIC RECOVERY 51

5.3 Kinematic Recovery

The kinematic recovery method introduced in Chapter 3 was used to recover the kinematic
parameters for the robot. Section 5.3.1 outlines the results of this process, which are then
interpreted in Section 5.3.2

5.3.1 Results

The results for this recovery process are shown in Table 5.1. Plots showing the result of each
step of the kinematic recovery process are shown in Figures 5.2 and 5.3. The results of these
experiments are discussed in Section 5.3.2, and used in the dynamic recovery of the UR5
manipulator (Section 5.4).

Table 5.1: Kinematic parameters and associated errors in marker positions, angles and
angular velocities for the single axis experiments. Mean values shown with standard deviation
in parenthesis.

Joint Orientation Speed l1 (mm) εM (mm) εθ (deg.) εθ̇ (deg./s)

Sho.
0 deg Slow 100.7 (0.5) 1.3 (0.8) 0.0 (0.1) 0.0 (1.4)
45 deg Slow 101.7 (0.5) 0.8 (0.5) 0.0 (0.3) 0.0 (1.5)

Elb.
0 deg

Slow 528.9 (0.7) 0.7 (0.4) 0.0 (0.1) 0.0 (1.2)
Fast 529.6 (0.4) 0.6 (0.4) 0.0 (0.3) 0.1 (3.7)

45 deg
Slow 525.6 (0.0) 0.6 (0.3) 0.0 (0.3) 0.0 (1.1)
Fast 525.0 (0.0) 0.6 (0.3) 0.0 (0.4) 0.0 (3.5)

Wri.
0 deg

Slow 917.4 (0.4) 1.8 (0.9) 0.0 (2.6) 0.0 (4.6)
Fast 917.2 (1.2) 1.4 (0.8) 0.0 (2.6) 0.0 (9.3)

45 deg
Slow 914.2 (3.2) 2.4 (1.2) 0.0 (3.0) 0.0 (4.9)
Fast 915.5 (4.3) 1.6 (0.9) 0.0 (3.6) 0.3 (10.8)

5.3.2 Discussion

Table 5.1 summarises the key results for the kinematic recovery process of the UR5 robot.
From this table it is possible to estimate the accuracy and precision of the recovery method.

The lengths shown in Table 5.1 show high precision, with a standard deviation of under
1 mm for the shoulder and elbow. The precision decreases in the wrist case for the 45 degree
orientation experiments. Using the published segment lengths as a reference, the expected
lengths for the segments are 101, 526, 918 mm respectively for the shoulder, elbow, and wrist
positions from the base frame[88][125]. This indicates that the accuracy of the proposed
method is high, with mean length errors of under 2 mm. The mean errors in the lengths
appear to correlate with the orientation of the experiment instead of the speed of the motion.
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This is potentially due to variation in camera viewpoint, with the elbow being more visible
in the 45 degree orientation, and the wrist in the 0 degree orientation.

The marker re-projection errors εM indicate how well the kinematic recovery method
matched the observed motion capture data. The re-projection appears to be low, with the
major variations being on at the segment level, instead of varying with speed or orientation.
This suggests that the number and locations of the markers may be a signi�cant factor for
the kinematic recovery process.

This appears to be con�rmed by the errors in the recovered state trajectories. The
angular position appears to be well recovered for the shoulder and elbow, with low mean
and standard deviations. This angular position error increases for the wrist. Combined with
the increased error in marker re-projection, it is possible that the relatively poor recovery
of the wrist is due to the low Cartesian movement of the markers compared to the shoulder
and elbow experiments.

The standard deviations of recovered angular velocities are higher, with faster motions
having a larger associated error in angular velocity. This increases signi�cantly for the wrist
due to the relatively poor angular position recovery. While the standard deviations in the
angular velocity trajectories are higher than for the positions, their overall value is still small.

Figures 5.2 and 5.3 show the recovery process for two representative trials. The raw
markers, �t kinematic model, and recovered joint state are shown.
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Figure 5.2: Plots showing the kinematic recovery process for the slow rotation of the shoulder joint. I. Separation into
moving, and stationary markers (black circles and blue crosses respectively). II. Circle �tting. Individual marker traces
(colour arcs), and corresponding circle centres (green crosses). III. Parameter identi�cation. Local marker coordinates
(annotations), and centre of rigid body (green circle) shown. IV. Kinematic recovery. Recovered angular position,
velocity, and acceleration data. Units are in radians. Blue trajectory is recovered via the proposed fourth order UKF.
The red trajectory is the result of di�erentiating and �ltering the recovered position trajectory. [67].
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Figure 5.3: Plots showing the kinematic recovery process for the fast rotation of the elbow joint. I. Separation into
moving, and stationary markers (black circles and blue crosses respectively). II. Circle �tting. Individual marker traces
(colour arcs), and corresponding circle centres (green crosses). III. Parameter identi�cation. Local marker coordinates
(annotations), and centre of rigid body (green circle) shown. IV. Kinematic recovery. Recovered angular position,
velocity, and acceleration data. Units are in radians. Blue trajectory is recovered via the proposed fourth order UKF.
The red trajectory is the result of di�erentiating and �ltering the recovered position trajectory. [67].
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5.4 Dynamic Recovery

The dynamic recovery process introduced in Chapter 4 was used to recover the dynamic
parameters for the UR5 robot. The joint locations recovered in Section 5.3 were used to
compute the joint twists in the world frame using the equation:

ξWW,1 =

[
−ω̂pJ
ω

]
(5.1)

where pJ is the recovered joint location, and ω is the joint axis. As this is a planar system,
ω can be set as the axis normal to the plane.

These twists are then used to build a regressor using the recovered kinematic parameters
from Section 5.3. The symbolic regressor was then compared to the regressor generated
from OpenSyMoRo, a DH based toolbox for generating robotic dynamics[64]. The regressor
recovered through the presented geometric framework (Equation 4.20) gave an identical
result when compared to the DH model.

This regressor was then used in the minimal, physically consistent DIM outlined in Equa-
tion 4.26. The results of this DIM are shown in Section 5.4.1, and discussed in Section 5.4.2.

5.4.1 Results

The dynamic parameters recovered using the proposed DIM are shown in Table 5.2. The
parameters are computed using both the robot's internal joint state (R) comprising of posi-
tion and velocity measurements, and the recovered kinematic trajectories from the proposed
framework (P). The error in the joint torque for each model is also shown, with the associated
r2 �t. The reference model used is the improved dynamic model from Ku�eta[67].

The associated error in the joint state is shown in Table 5.3. The ground truths for the
kinematic state were the directly encoded positions and velocities. The ground truth accel-
eration was obtained by �ltering and di�erentiating the velocity data using a third order low
pass Butterworth �lter with a cuto� frequency of 20Hz. The robot joint state R was obtained
by fusing the robot position and velocity state through a third order unscented Kalman �lter.
Table 5.4 shows the associated errors in the contact wrench for these experiments.

The �ve reps for a single trial were synchronised and overlaid to examine the inherent
variation in each of the methods. Figures 5.4 and 5.5 show these averaged wrench trajectories
and the errors for the fast elbow motion.

5.4.2 Discussion

The recovered dynamic parameters for the system are shown in Table 5.2. The condition
number for these trials was found to be low, approximately 25 for the slow actions, and 5
for the fast actions. This suggests that the minimal regressors used in the recovery process
were suitable for dynamic parameter recovery[128].
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Table 5.2: Results of the dynamic model recovery process for three joints at two speeds. Mean values shown with
standard deviation in parenthesis. Reference model from [67]. An observation of R is based on the robot's internal
measurements of position and velocity, P refers to recovery via the proposed kinematic framework.

m1+m2
mx1 +
Txm2

mx2 my2 IZZ2 ετ

Joint Speed Obs Cond kg kg ·m kg ·m kg ·m kg ·m2 N ·m r2

Sho.

Ref. R - 26.633 0.000 0.000 5.540 3.760 0.039 (2.960) 0.988 (0.000)

Slow.
R

24.329
(0.419)

27.341
(0.005)

0.080
(0.006)

-0.061
(0.009)

5.915
(0.028)

3.307
(0.110)

-0.500 (1.924) 0.995 (0.000)

P
22.615
(0.410)

27.327
(0.005)

0.078
(0.008)

-0.059
(0.010)

5.837
(0.029)

3.413
(0.112)

-0.485 (1.967) 0.994 (0.000)

Elb.

Ref. R - 26.633 0.000 0.000 1.760 0.700 -0.046 (1.637) 0.972 (0.002)

Fast
R

4.718
(0.107)

27.332
(0.005)

0.036
(0.003)

-0.001
(0.003)

1.756
(0.011)

0.767
(0.005)

-0.059 (1.441) 0.978 (0.002)

P
5.056
(0.106)

27.315
(0.005)

0.034
(0.007)

0.005
(0.010)

1.675
(0.016)

0.766
(0.010)

-0.033 (1.572) 0.974 (0.008)

Slow
R

27.584
(0.678)

27.352
(0.002)

0.028
(0.002)

0.003
(0.003)

1.874
(0.010)

0.493
(0.038)

-0.047 (1.231) 0.983 (0.000)

P
25.293
(0.675)

27.347
(0.002)

0.029
(0.003)

0.002
(0.004)

1.850
(0.011)

0.516
(0.059)

-0.013 (1.063) 0.983 (0.001)

Wri.

Ref. R - 26.633 0.000 0.000 0.110 0.010 0.033 (0.385) 0.569 (0.003)

Fast
R

5.424
(0.116)

27.348
(0.002)

0.036
(0.001)

0.000
(0.001)

0.139
(0.000)

0.035
(0.000)

0.047 (0.412) 0.503 (0.001)

P
5.056
(0.106)

27.346
(0.002)

0.036
(0.001)

0.000
(0.000)

0.134
(0.000)

0.034
(0.000)

0.045 (0.399) 0.535 (0.001)

Slow
R

28.130
(1.180)

27.347
(0.004)

0.031
(0.001)

0.003
(0.002)

0.147
(0.000)

0.038
(0.000)

0.049 (0.318) 0.635 (0.014)

P
25.943
(1.094)

27.346
(0.004)

0.032
(0.001)

0.003
(0.002)

0.145
(0.000)

0.037
(0.000)

0.045 (0.311) 0.651 (0.014)
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Table 5.3: Errors and r2 values for the residuals of the dynamic model recovery process for three joints at two speeds.
Mean values shown with standard deviation in parenthesis. Reference model from [67]. An observation of R is based on
the robot's internal measurements of position and velocity, P refers to recovery via the proposed kinematic framework.

εθ εθ̇ εθ̈
Joint Speed Obs. rad r2 rad/s r2 rad/s2 r2

Sho. Slow
R

0.000
(0.001)

1.000
(0.000)

0.000
(0.005)

1.000
(0.000)

0.000
(0.229)

0.952
(0.002)

P
0.000
(0.001)

1.000
(0.000)

0.000
(0.011)

1.000
(0.000)

0.000
(0.132)

0.983
(0.000)

Elb.

Fast
R

0.000
(0.003)

1.000
(0.000)

0.000
(0.015)

1.000
(0.000)

-0.003
(0.563)

0.979
(0.001)

P
0.000
(0.002)

1.000
(0.000)

-0.001
(0.043)

0.999
(0.000)

0.003
(0.487)

0.985
(0.013)

Slow
R

0.000
(0.001)

1.000
(0.000)

0.000
(0.004)

1.000
(0.000)

0.001
(0.178)

0.972
(0.000)

P
0.000
(0.001)

1.000
(0.000)

0.000
(0.011)

1.000
(0.000)

-0.001
(0.135)

0.983
(0.009)

Wri.

Fast
R

0.000
(0.003)

1.000
(0.000)

0.000
(0.040)

1.000
(0.000)

-0.001
(0.590)

0.976
(0.001)

P
0.000
(0.003)

1.000
(0.000)

0.000
(0.040)

0.999
(0.000)

0.001
(0.329)

0.993
(0.000)

Slow
R

0.000
(0.001)

1.000
(0.000)

0.000
(0.005)

1.000
(0.000)

-0.001
(0.206)

0.961
(0.001)

P
0.000
(0.001)

1.000
(0.000)

0.000
(0.013)

1.000
(0.000)

0.001
(0.172)

0.972
(0.013)
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Table 5.4: Errors and r2 values for the residuals of the dynamic model recovery process for three joints at two speeds.
Mean values shown with standard deviation in parenthesis. Reference model from [67]. An observation of R is based on
the robot's internal measurements of position and velocity, P refers to recovery via the proposed kinematic framework.

εΓX εΓY εΓτ
Joint Speed Obs. N r2 N r2 N ·m r2

Sho.
Ref. R 0.142 (1.003) 0.975 (0.002) -6.947 (0.810) -0.814 (0.099) -0.241 (2.148) 0.995 (0.001)

Slow
R 0.146 (0.908) 0.980 (0.002) 0.000 (0.747) 0.979 (0.003) 0.000 (1.702) 0.997 (0.001)
P 0.154 (0.865) 0.981 (0.001) 0.000 (0.873) 0.974 (0.002) 0.000 (1.812) 0.997 (0.000)

Elb.

Ref. R 0.053 (1.737) 0.950 (0.015) -6.859 (1.065) -0.373 (0.086) -0.337 (1.813) 0.985 (0.003)

Fast
R 0.053 (1.737) 0.950 (0.015) 0.000 (1.060) 0.968 (0.008) 0.000 (1.791) 0.986 (0.003)
P 0.078 (1.932) 0.938 (0.024) 0.000 (1.283) 0.953 (0.013) 0.000 (2.047) 0.982 (0.006)

Slow
R 0.031 (0.429) 0.975 (0.002) 0.000 (0.276) 0.974 (0.001) 0.000 (0.639) 0.996 (0.000)
P 0.029 (0.477) 0.947 (0.019) 0.000 (0.319) 0.966 (0.005) 0.000 (0.709) 0.995 (0.001)

Wri.

Ref. R -0.003 (0.278) 0.828 (0.011) -7.014 (0.170) -186.1 (12.03) -0.366 (0.391) 0.828 (0.002)

Fast
R -0.004 (0.230) 0.882 (0.012) 0.000 (0.128) 0.939 (0.010) 0.000 (0.213) 0.973 (0.003)
P -0.004 (0.232) 0.880 (0.011) 0.000 (0.144) 0.922 (0.012) 0.000 (0.222) 0.970 (0.003)

Slow
R -0.028 (0.187) 0.429 (0.043) 0.000 (0.096) 0.645 (0.139) 0.000 (0.149) 0.971 (0.004)
P -0.028 (0.187) 0.430 (0.045) 0.000 (0.097) 0.636 (0.148) 0.000 (0.151) 0.970 (0.004)
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Figure 5.4: Graphs comparing the measured and recovered wrenches for fast elbow motions. All �fteen repetitions were
time aligned and the mean and standard deviations found. The mean is plotted as a line, with the standard deviation
as a shaded region about this line. The measured wrench is shown in black, and the recovered wrench using the Ku�eta
model shown in red. The wrench recovered using the robot measurements of position and velocity are shown as green
circles. The wrench recovered using motion capture is shown in blue.
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Figure 5.5: Graphs comparing the errors in the measured and recovered wrenches for fast elbow motions. All �fteen
repetitions were time aligned and the mean and standard deviations found. The mean is plotted as a line, with the
standard deviation as a shaded region about this line. The measured wrench is shown in black, and the recovered
wrench using the Ku�eta model shown in red. The wrench recovered using the robot measurements of position and
velocity are shown as green circles. The wrench recovered using motion capture is shown in blue.
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The recovered dynamic parameters were found to closely match those from the Ku�eta
model for the shoulder and elbow. This suggests that these links were suitable for dynamic
parameter recovery using the proposed DIM framework. The repeatability of these results
seem high, with small standard deviations.

The good match in the dynamic parameters led to low recovered torque error, with r2

values exceeding 97%. It was found that the torque error from the proposed framework
outperformed the Ku�eta model.

There is an interesting tradeo� between the my2 and IZZ2 terms for the fast and slow
motions of the elbow. This may be due to changes in the excitation of the �rst and second
mass moments, resulting in improved recovery in the fast actions. This is supported by
the lower condition number in the faster actions. At lower speeds, the accelerations and
velocities are less exciting, reducing the recoverability.

The performance on the wrist link was found to be lower, with poor torque recovery, and
proportionally higher variations in the recovered parameters. This decrease in performance
was found with both the internal measurements of joint state and the joint state recovered
through the kinematic recovery process. This suggests that this is a function of the dynamics
of these actions instead of resulting from a kinematic error. These errors could arise from
the relatively low mass and inertia of the wrist link, resulting in a poor signal to noise ratio
and therefore poor recovery.

A comparison of the full kinematic state using the robotic state measurements and motion
capture are shown in Table 5.3 compared to the conventional �lter/di�erentiate method.
From this table, it was found that there was good agreement between the recovered state
derivatives.

The residuals of the contact wrench are shown in Table 5.4. These residual values were
found to be low for the shoulder, elbow, and the fast wrist experiments. The slow wrist
experiments were found to be signi�cantly di�erent in the X and Y directions. This poor
�t agrees with the poor dynamic �t for the slow wrist actions. The seemingly good �t for
the fast wrist case is problematic, as there is no indication that the associated dynamic
parameters are inaccurate.

The Ku�eta model was found to closely match the observed wrench, with the exception
of the Y force. This o�set is likely caused by an incorrect mass of the stationary base link
which was not included in their analysis.

Figures 5.4 and 5.5 show the recovered contact wrench for the fast elbow experiments.
These �gures show the accuracy and repeatability of the dynamic recovery method. The
recovery from the motion capture appears to have the largest standard deviation, but closely
tracks the mean trajectory of the other algorithms. The Y o�set of the Ku�eta can be clearly
seen, with the trajectory being o�set by approximately 5N.
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5.5 Guidelines for Dynamic Modelling

When performing dynamic analysis, an investigator has relatively few observables to de-
termine the performance of the recovery process. The results for the wrist joint shown in
Section 5.4.2 showed that while there can be small errors in the joint state and contact
wrench, the recovered dynamic parameters can be inaccurate. The experimental data from
the UR5 robot experiments were altered in post to investigate the e�ect common errors in
experimental procedure have on the DIM process, and to allow for understanding of the
residuals and r2 values from the DIM process.

Three state recovery methods were examined, the proposed UKF method, the common
di�erentiation/�ltering method, and �tting then di�erentiating a spline. The e�ects these
methods have on the condition number and recovered dynamic parameters was examined
(Tables 5.5 and 5.6).

Additive noise was added to the joint states and wrench components to determine the
e�ect that these errors have on the recovered dynamic parameters. The e�ect of a time o�set
between the kinematic and dynamic dataset was also simulated to determine the e�ect on
the recovered parameters.

5.5.1 Results

The di�erences between the proposed UKF method and the di�erentiation/�ltering method,
and the spline �t method are shown in Tables 5.5 and 5.6, with the accelerations for a
representative trial shown in Figure 5.6.
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Figure 5.6: Graph comparing the estimated angular acceleration for a single trial of a fast
rotation about the elbow joint. The UKF estimate from the observed angular position and
velocity is shown as a solid blue line. The estimate recovered by �ltering, di�erentiating,
and �ltering the measured angular velocity is shown as a dotted red line.
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Table 5.5: Results of the dynamic model recovery process for three joints at two speeds using di�erent methods for
recovering the kinematic state. Mean values shown with standard deviation in parenthesis. Reference model from [67].

m1 +m2
mx1 +
Txm2

mx2 my2 IZZ2 ετ

Joint Speed Obs Cond kg kg ·m kg ·m kg ·m kg ·m2 N ·m r2

Sho. Slow.

UKF
22.615
(0.410)

27.327
(0.005)

0.078
(0.008)

-0.059
(0.010)

5.837
(0.029)

3.413
(0.112)

-0.485
(1.967)

0.994
(0.000)

Di�.
25.331
(0.476)

27.334
(0.006)

0.068
(0.014)

-0.047
(0.017)

5.844
(0.034)

3.544
(0.148)

-0.382
(2.097)

0.994
(0.000)

Spline
51.267
(3.362)

27.336
(0.005)

0.112
(0.062)

-0.095
(0.086)

6.773
(0.014)

1.748
(0.054)

-0.828
(2.479)

0.991
(0.001)

Elb.

Fast

UKF
5.056
(0.106)

27.315
(0.005)

0.034
(0.007)

0.005
(0.010)

1.675
(0.016)

0.766
(0.010)

-0.033
(1.572)

0.974
(0.008)

Di�.
4.982
(0.104)

27.342
(0.003)

0.031
(0.002)

0.005
(0.003)

1.792
(0.012)

0.799
(0.002)

-0.004
(1.492)

0.977
(0.004)

Spline
47.653
(20.157)

27.347
(0.012)

-0.025
(0.019)

0.002
(0.023)

3.460
(0.054)

0.869
(0.013)

0.483
(3.600)

0.862
(0.013)

Slow

UKF
25.293
(0.675)

27.347
(0.002)

0.029
(0.003)

0.002
(0.004)

1.850
(0.011)

0.516
(0.059)

-0.013
(1.063)

0.983
(0.001)

Di�.
28.708
(0.876)

27.349
(0.002)

0.025
(0.004)

0.007
(0.004)

1.849
(0.010)

0.578
(0.042)

-0.013
(1.063)

0.983
(0.001)

Spline
46.954
(21.347)

27.351
(0.005)

0.065
(0.034)

-0.044
(0.040)

2.176
(0.019)

0.555
(0.013)

-0.369
(1.096)

0.980
(0.003)
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Table 5.6: Results of the dynamic model recovery process for three joints at two speeds using di�erent methods for
recovering the kinematic state. Mean values shown with standard deviation in parenthesis. Reference model from [67].

m1 +m2
mx1 +
Txm2

mx2 my2 IZZ2 ετ

Joint Speed Obs Cond kg kg ·m kg ·m kg ·m kg ·m2 N ·m r2

Wri.

Fast

UKF
5.056
(0.106)

27.346
(0.002)

0.036
(0.001)

0.000
(0.000)

0.134
(0.000)

0.034
(0.000)

0.045
(0.399)

0.535
(0.001)

Di�.
5.742
(0.120)

27.349
(0.002)

0.036
(0.001)

0.000
(0.000)

0.142
(0.000)

0.036
(0.000)

0.048
(0.414)

0.498
(0.002)

Spline
54.089
(2.475)

27.348
(0.002)

0.024
(0.004)

0.008
(0.005)

0.292
(0.000)

0.075
(0.001)

0.045
(0.399)

0.535
(0.001)

Slow

UKF
25.943
(1.094)

27.346
(0.004)

0.032
(0.001)

0.003
(0.002)

0.145
(0.000)

0.037
(0.000)

0.045
(0.311)

0.651
(0.014)

Di�.
29.128
(1.522)

27.347
(0.004)

0.031
(0.001)

0.003
(0.002)

0.146
(0.000)

0.037
(0.001)

0.049
(0.314)

0.644
(0.015)

Spline
29.140
(2.947)

27.347
(0.004)

0.032
(0.002)

0.002
(0.003)

0.178
(0.002)

0.045
(0.001)

0.040
(0.372)

0.507
(0.014)
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5.5.2 Discussion

Figure 5.6 shows an important di�erence between the artefacts that arise from the UKF
and di�erentiation/�ltering methods. As the UKF method adheres to the dynamics of the
system, there is a lead/lag e�ect. As each successive state is sampled, the �lter balances the
potential change in the state value to the potential errors in the observations. The di�er-
entiation/�ltering method in comparison can result in undershoot during sudden changes in
state. This is seen in the peaks of the di�erentiation method always being smaller than that
of the UKF method.

The di�erences between the proposed UKFmethod and the di�erentiation/�ltering method,
and the spline �t method are shown in Tables 5.5 and 5.6. Comparable performances were
found between the UKF and di�erentiation/�ltering methods, with a slight improvement in
performance in the wrist experiments. This suggests that there is good agreement between
these methods and that the e�ects seen in Figure 5.6 were negligible. It is important to
note, that while the derivatives were found via di�erentiation/�ltering in the Di� trials, the
initial angular positions were found through the proposed UKF method. If this method was
not chosen, an alternative method for converting motion capture markers to joint positions
would have been used, which may have resulted in inferior performance, a source of error
explored in Section 5.5.2.2.

Changes were also made to the UKF model parameters, the recovered position and wrench
measurements, and the temporal alignment between the kinematic and dynamic data.

5.5.2.1 UKF Parameters

The UKF used in the proposed framework used a process and observation noise of 1 ×
102rad/s4 and 1×10−3m respectively and were based on estimates from di�erentiation/�ltering
and the published accuracy of the motion capture system. These values were swept through
a range of magnitudes to determine the sensitivity of these parameters on the system, with
the process model noise varying from 1× 101 to 1× 104, and the observation noise varying
from 1× 10−4 to 1× 10−1. These perturbations were not found to vary the kinematic state
signi�cantly, with changes in r2 values of under 1%. The most signi�cant variation occurred
when the UKF process model over-constrained (1× 101) and the observations error set high
(1 × 10−1). This led to a decrease in acceleration accuracy of 8.7% for fast elbow motion
(3% in other cases). This is likely caused by the introduction of signi�cant lag in the system
which became more pronounced in the fast elbow experiments.

5.5.2.2 Angular Noise

The recovered joint angles were injected with Gaussian noise with means of 0.01 to 0.1
radians, and standard deviations of 0.001 to 0.01 radians. The e�ect of a mean o�set in the
angles, was a counter rotation in the dynamic parameters, with the mx2 and my2 values
shifting to compensate for this change. The addition of noise to the angular measurements
substantially a�ected the recovered kinematic state, and dynamic parameters. This could
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be compensated through tuning of the UKF model, however there is a trade-o� between the
lag in the �lter, and the accuracy of the recovered states.

5.5.2.3 Temporal O�set

Simulated lead/lags between the kinematic states and contact wrench of 0.001 to 0.1 seconds
were introduced. It was found that a temporal misalignment of under 0.01 seconds had a
negligible variation on the recovered dynamic parameters (under 0.5%). This increased to
approximately 10% for a lead/lag of 0.1 seconds.

5.5.2.4 Contact Wrench Noise

Gaussian noise was also arti�cially added to the contact wrench with means of 0.1 to 10 and
standard deviations of 0.01 to 1 for both the linear forces (N) and torques (Nm).

The addition of linear noise in the X direction was found to be rejected by the recovery
process, with little change to the recovered dynamic parameters. This is likely due to the
system dynamics closely coupling the X force to the other observable components of the
contact wrench, reducing the e�ect of this error.

Addition of noise to the Y direction had two di�erent e�ects on the recovered dynamic
parameters. A mean o�set resulted in a change in the �rst dynamic parameter, the grouped
total mass m1 +m2 of the system. As a mean o�set is indistinguishable from the base mass
m1, this is absorbed into this �rst parameter, making its e�ect undetectable. While this is
problematic for recovering the full model, only the �rst parameter is a�ected, resulting in
negligible change in the excited link. Noise of up to 1N in the linear direction had a negligible
change to the recovered dynamic parameters.

The addition of a mean torque error had a similar e�ect as the linear Y case, with the
second dynamic parametermx1+Txm2 absorbing the o�set. Noise with a standard deviation
of up to 1 Nm was found to have a negligible change to the recovered dynamic parameters.

5.6 Conclusion

These robotic tests show the potential of these methods to recover the dynamic parameters
of a system. In this simple system, the dynamic parameters were found accurately and
precisely for the shoulder and elbow without the use of a reference model when performing
the DIM optimisation. The model was found to closely match the Ku�eta model, with the
r2 values for the recovered contact wrench and internal torques reporting a better �t when
using the recovered models. This suggests that the proposed kinematic/dynamic recovery
framework has potential for the study of biological systems.

The kinematic recovery process was found to have a sub-millimetre accuracy, and a
precision of approximately 2 mm for the robotic system. The most signi�cant variations were
found based on the visibility of the markers and the magnitude of Cartesian displacement in
their movements.
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While the dynamic recovery process was successful in the majority of cases, there are a
number of important lessons from these robot experiments. The recovery process requires
su�cient excitation for a recovery of the dynamic parameters. This is not simply a function
of the kinematic actions (which result in a low condition number), but also the relative
magnitudes of the dynamic parameters. The wrist of the UR5 was found to have insu�cient
mass/inertia to allow for recovery.

There were also two interactions seen in the recovery of the dynamic parameters. Dif-
ferences in the recovered kinematic models were found to result in o�sets in the dynamic
parameters. An angular o�set was found to cause the relative weightings of the �rst mass
moment terms to rebalance. This results in the norm of the �rst mass moment to be the
same, but the direction to be o�set by the angular displacement.

A dynamic interplay was also found between the �rst and second mass moments. Based
on the speed of the observed motion, a bias towards the �rst or second mass moment could
be seen. To minimise this e�ect, constant velocity actions and exciting actions should be
performed to decouple these parameters.
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Chapter 6

Clinical Applications

The methods outlined in Chapters 3, 4, and 5 were extended to the �ve-times sit-to-stand
protocol, an assessment measure used clinically to evaluate balance and stability. This Chap-
ter attempts to augment an existing clinical test, keeping the same experimental protocol,
but attempting to recover additional metrics on an individual's performance. Emphasis is
placed on developing a rapid system that could be deployed in a clinical setting, prioritising
reductions in the setup and protocol time, and robustness to experimenter error.

Section 6.1 outlines the background of the sit-to-stand protocol and its uses in clinics. The
experimental protocols used to collect data are explored in Section 6.2, with the kinematic
and dynamic analysis explored further in Sections 6.3 and 6.4. The feasibility of these
methods to augment existing clinical measures is then explored in Section 6.5.

6.1 Sit-to-Stand

The sit-to-stand action was chosen for investigation due to the need for an improved method
of modelling an individuals stability, the expected kinematic and dynamic excitation of
the action, and the relatively simple serial chain structure of the action. The Centers for
Disease Control and Prevention in the United States reports an incidence of fall-related
hospitalisations of 700,000 per year[21]. These falls are the most common cause of traumatic
brain injury in the US, and have an associated direct medical cost of approximately $34
billion annually.

There a number of methods that have been used to evaluate an individual's mobility and
stability. The most commonly used methods are timed action methods such as the �ve-times
sit-to-stand[134] and point-score methods such as the Berg balance score[12]. These methods
estimate an individual's abilities based on the time taken to complete a given action, or via
similar thresholding based methods.

There are a number of model based approaches that can be used, that simplify the body
to a single, telescoping single, or double pendulæ[40][100][101]. While these methods look at
the dynamics of the system, the conversion of motion capture data taken from a sit-to-stand
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action to the motions of a pendulum may not be readily apparent. Similarly, the dynamics of
the situation requires knowledge of the dynamic parameters of the individual to determine an
individual's stability. These challenges have led to poor success in translating these methods
into a discriminator between stable and unstable individuals[4][113][122].

6.2 Method

Ten healthy subjects aged 26.3 ± 4.1 years old, mass 66.6 ± 7.7kg, and 1.71 ± 0.09m were
recruited under UCB IRB 2015-07-7767. The height and mass of every subject was recorded
and used to calculate an estimate of the segment lengths, masses, and inertias using the
allometric scaling relationships based on sex and ethnicity[136]. In cases where individuals
did not �t into the categorisation, the results from all applicable categories were taken and
averaged.

An ultrasound device[147] was used to determine the locations of the lateral and medial
malleolus, apex of the �bula and medial condyles. These bone landmarks were then used to
estimate four functional segment lengths for the individual's shank and thigh[29].

Figure 6.1 shows the experimental setup. A motion capture suit was worn by the subject,
with forty-three active markers placed on the subject's limb segments (Figure 6.4). Seven
motion capture markers were placed on the base of the force platform to allow for calibration
between the force platform and motion capture coordinate frames. An adjustable stool was
provided for subjects to sit on. The height of the stool was set so that the subject's thighs
were parallel to the ground.

Figure 6.1: Subject in the seated and standing phases. Subject is wearing a motion capture
suit with active markers placed on limb segments. Force platform is visible underneath the
subject. Adjustable stool is shown. Mattresses are placed around the subject in case of falls.
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Subjects were asked to stand �ve times in a row with their arms crossed in front of
them using three di�erent strategies[3][9][55]. The �rst strategy was their normal standing
action. Subjects were told to stand �ve times in a row with no additional prompts. The
second strategy was a dynamic standing action. Subjects were shown a video demonstrating
a momentum transfer strategy for standing- swinging the torso rapidly to move o� the chair.
The third strategy was a stable standing, where subjects were asked to stand such that they
could stop at any point during the standing action.

Motion capture was recorded at 480Hz, and force platform data at 2.4kHz. The order of
experiments was not randomised to avoid the normal action being primed by the other two
standing methods.

6.3 Kinematic Recovery

The observed motion capture data was processed using the proposed kinematic framework.
The two markers at the ankles were used to assist in the recovery of the ankle position due to
the small rotation about the ankle during the sit-to-stand action. The results of the recovery
process are shown in Section 6.3.1, and are discussed in Section 6.3.2.

6.3.1 Results

The results of the kinematic recovery process are shown in Figure 6.2 for a representative
subject and trial. Each of the intermediary steps in the kinematic recovery process are
shown in Figure 6.3. The marker transformation, circle �tting, and state recovery processes
are shown for the recovery of the shank, thigh, and torso segments. Figure 6.5 compares
the recovered skeleton and joint states between the proposed framework and the commercial
recovery process.

Table 6.1 compares the recovered limb lengths using the anatomical landmark method,
the proposed framework, and allometric scaling of an individual's stature. The landmark
method is used as the ground truth. Table 6.2 compares the recovered skeletal lengths under
the three di�erent standing strategies.

Table 6.1: Errors in recovered kinematic parameters and marker re-projection for healthy sit-
to-stand actions. The percentage di�erence between the means of each method and landmark
method are shown. The standard deviation of each method is shown in parenthesis.

Method Landmark Framework Stature
εlshank (%) - ± 4.8 -0.4±2.8 -6.0±2.9
εlthigh (%) - ± 4.5 3.2±5.3 -6.5±3.0
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Table 6.2: Errors in recovered kinematic parameters and marker re-projection for the three
di�erent sit-to-stand strategies for healthy subjects. Mean values shown with standard de-
viation in parenthesis.

Action Dynamic Normal Stable
εlshank (%) -0.2 (4.2) 1.0 (3.7) 0.3 (4.0)
εlthigh (%) -3.9 (5.4) -4.3 (5.7) -1.3 (3.6)
εM (mm) 4.3 (2.4) 5.2 (4.1) 3.8 (2.8)

Figure 6.2: Results of the kinematic recovery process. Left: Recovered kinematic skeleton
as seen in the sagittal plane. Blue true marker locations at a particular frame. Red �lled
circles model joint centres. Red empty circles estimated marker locations based on recovered
kinematic model and states. Right: Recovered joint state trajectories. Ankle, knee, and hip
joints are shown in blue, red, and yellow respectively.
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Figure 6.3: Stages in the kinematic recovery process for the sit-to-stand actions for a repre-
sentative subject. Rows: Top to bottom: recovery of the second, third, and fourth kinematic
segments. Columns: Recovery stages. Left: Motion capture markers remapped to local co-
ordinate frame. Markers with valid circle centres shown as green crosses. Centre: Segment
kinematic parametrisation. Localised markers are shown along with recovered joint centre.
Right: Recovered state trajectories. Units are rad, rad/s, and rad/s2.
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Figure 6.4: Cartoon of the active motion capture marker locations. Three markers are located on the top, left and
right sides of the head. A single marker is located at the top of the left shoulder, with two markers on the upper and
lower arms. Three markers are locates on the back of each hand. Four markers are placed on the clavicle, solar-plexus,
and at the base of the ribcage. A marker are placed on either side of the hi pat the anterior superior iliac spine. Two
markers are placed on the thigh and shank. A single marker is placed on the lateral malleous. Two markers are then
placed on the foot near the proximal phalanges of the little and big toe.
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Figure 6.5: Comparison of proposed kinematic recovery framework (blue), and commercial motion capture system
(red). Five sit to stand actions are averaged, with the mean shown as the solid line, and the standard deviation shown
as the shaded region. Left: Skeleton showing joint positions and limb segments. Arc shows the variation in joint angle
for that phase of the sit-to-stand. Right: State Trajectories for joint angles
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6.3.2 Discussion

Table 6.1 compares the performance of the proposed recovery method to the height scaling
and landmark methods. The height scaling method was chosen as it is frequently used to
obtain limb length estimates in subjects with minimal additional measures being taken. The
landmark method was chosen due to the accuracy of the recovered joint positions. These two
methods were compared to the models recovered from the proposed framework, operating
on approximately 30 seconds of experimental data per subject per standing strategy.

Table 6.1 shows good agreement between the proposed framework and the landmark
method, and o�ers improved precision over the stature based scaling. The accuracy of
proposed framework was found comparable to the other methods. The short duration of
the experiment and the simplicity to perform makes this method a potential augmentation
of the existing sit-to-stand action, providing an additional measurement of the limb lengths
without requiring additional actions to be performed.

Table 6.2 compares the recovered skeletal parameters under the di�erent standing strate-
gies. The shank length was found consistently regardless of action, suggesting that the
action is su�ciently kinematically exciting for recovery. The thigh length was found to be
more variable, with the faster mean error for the dynamic and normal actions being smaller
than expected. This reduction in functional thigh length could be due to the motion of the
torso being a combination of spine and hip motion. This variation may also explain the
corresponding increase in marker error for the dynamic and normal actions.

A comparison between the commercially recovered skeleton and states and the proposed
recovery framework is shown in Figure 6.5. These �gures show that the commercial skele-
tonisation shows signi�cant chattering in the recovery process, resulting in sudden jumps in
the mean trajectory, and a signi�cant spread in the standard deviation. This irregularity is
likely due to markers on the body becoming occluded in the initial part of the sit to stand
action. In the commercial recovery process, the subject stands in a T-pose, and rotates each
joint in sequence. The local coordinates of the joint are then assigned based on the motion
of the markers. When the individual performs the sit to stand action, the motion capture
suit shifts on the skin, changing the local coordinates. During the rapid movement in the sit
to stand action, the motion capture markers on the torso and arms may be occluded by the
�exion of the torso. As the commercial skeleton is for the full body, this leads to an ill-posed
recovery process, leading to signi�cant joint errors. This can be seen in the improbable spine
angle, and the chattering in the states process suggesting instability in the inverse kinematic
problem.

While these di�erences were seen between the dynamic and normal strategies when com-
pared to the stable strategy, the absolute length di�erence between the actions was under
2mm. This suggests that the proposed framework is suitable for recovery of the kinematic
states and parameters for a system.
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6.4 Dynamic Recovery

The dynamic recovery process was then applied to the recovered kinematic skeleton. Only
the FY and τZ components of the wrench were used in this recovery process. These two
components were chosen as they are the only two contact dynamic forces required for esti-
mation of the Centre of Pressure (CoP), one of the clinically relevant measures for assessing
stability.

Due to the contact forces when the subject was seated, the DIM process was performed
on data where the knee angle rose above −0.8 radians. This threshold was used to ensure
that the subject was no longer in contact with the chair, but was still in a dynamically
exciting part of the standing action.

In contrast to the robot experiments, a reference model was used in the recovery process.
This model was based on an allometric model[136] and was scaled to each individual using
their mass and height measurements.

The dynamic model used for the DIM recovery process is shown in Figure 6.6. Of the
full vector of sixteen dynamic parameters, eleven regrouped parameters were found. The
symbolic form of these base parameters φb are shown in Equation 6.1. It can be seen that
the base parameters are dependent on the local coordinates of the joints p2,p3,p4.

φb =



m1 +m2 +m3 +m4

mx1 + p2,x (m2 +m3 +m4)
mx2 + p3,x (m3 +m4)
my2 + p3,y (m3 +m4)

I2 + (p2
3,x + p2

3,y) (m3 +m4)
mx3 + p4,xm4

my3 + p4,ym4

I3 + (p2
4,x + p2

4,y)m4

mx4

my4

I4


(6.1)

The recovered DIM and torque models were found to contain di�erent subsets of dynamic
parameters. While this would ordinarily result in a problem for torque recovery, the recovered
point mass grid was used to recover an estimate of the full dynamic parameters φF . The
full parameter vector was then used to recover the joint torques.



78 CHAPTER 6. CLINICAL APPLICATIONS

Figure 6.6: Labelling convention for the DIM recovery process. Coordinate frames are
de�ned by the kinematic recovery process. The four limb segments are shown, each with the
notation for their zeroth, �rst, and second mass moments of inertia.

6.4.1 Results

Figure 6.7 shows a comparison in the expected contact wrench between the models recovered
under the di�erent strategies, and the allometric scaled model. The correspondence between
the contact wrench components and the CoP is also shown.

The variation between the recovered dynamic models for each standing strategy is shown
in Figure 6.8. The base parameters are shown on the left with a modi�ed set shown on the
right. The modi�ed set reduces the e�ect of changes in the system coordinate frames by
modelling the mxi myi components as a single inertial parameter mri. This decreases the
sensitivity to small variations in mxi values which are relatively small.

A heat-map of the recovered point mass grid is shown in Figure 6.9. The weightings of
each node is shown with more massive points resulting in a brighter coloured face.
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A summary of the recovered models is shown in Table 6.3 comparing the recovered
wrench, COP for each model and action. The variation in the corresponding joint torques
compared to the torques recovered via the model recovered via that trial is also shown.

6.4.2 Discussion

Figure 6.7 shows the estimation of the contact wrench under the proposed framework process
as compared to the Winter model. From this Figure it is clear that the Winter model provides
a good estimate of the FY forces, but fails to provide a good estimate of the reaction torques
for the action. As the CoP is calculated from the FY and τZ values, this error in the
torque leads to a poor estimate of the COP. By comparison, the recovered models under the
dynamic and normal standing strategies provide a better torque estimate. This results in a
corresponding improvement in the recovery of the CoP.

A clear di�erence between the estimated and measured contact forces is the e�ect of
the contact with the chair. There is a clear transition near sample 860 in the ability of
these models to �t the provided data. This is due to a transition in the contact dynamics
between the individual and the chair. After sample 860, modelling the individual as a triple
pendulum appears to be valid with low errors in the contact wrench. Prior to sample 860,
this assumption breaks down, suggesting that the individual is still interacting with the
chair. This transition aligns with the instant where the measured FY crosses rises past 72%
of the steady state value. This agrees with the sit-to-stand model presented by Etnyre[35],
suggesting that the modelling method is able to provide a dynamic basis for the transition
between the seated and standing states.

A graphical description of the dynamic model parameters are shown in Figure 6.8. The
left �gure shows the coe�cient of variation (COV) for the base parameters. Due to the small
expected size of parameters ρ6 and ρ9, the COV for these parameters is large. It is likely
that this is due to small changes in the coordinate frames between trials, a factor seen in the
robotic experiments. To reduce this e�ect, the base parameters for the �rst mass moment can
be regrouped to be acting at a single radius ri. The COV for these modi�ed base parameters
are shown on the right. The dynamic parameters for the recovered models appear to be more
self-consistent than the corresponding Winter models, with lower mean and deviation in the
COV. The largest variation in COV for both the recovered and Winter models appears to be
in the base parameter φ2. Base parameter φ2 consists of two parameters- the ankle location
px,2 and the �rst mass moment of the foot mx1. While the ankle position is measured and
tracked between trials, the dynamic parameters of the foot are taken to be relative to the
force platform, with the ankle and more distal segments �oating about the force platform.
This variation in the COV of φ2 could be an indicator that the subject is standing on a
di�erent part of the force platform, resulting in an increased COV. The kinematic position
of the ankle was also challenging to recover due to the limited rotation of the joint. These
two factors may have compounded resulting in the higher COV for φ2.

Figure 6.9 shows the point mass grid for a representative subject for normal standing.
This �gure shows the di�erences in how each segment is modelled, with the foot, shank,
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Figure 6.7: Comparison of recovered dynamic models, Winter model, and observed contact
forces on the normal standing action. Sample 860 is marked by a vertical black line. Black:
Observed wrench; magenta: Winter model; red, green, and blue: models recovered from the
dynamic, normal, and stable datasets. Left: Comparison of contact wrench components.
Right: Comparison of corresponding Centre of Pressure.

Figure 6.8: Comparison of recovered dynamic recovery framework, and expected Winter
dynamic parameters (red). The mean and standard deviations of the mean recovered model
is shown in blue. The variation between the recovered model and the expected Winter models
are shown in red. Left: Base parameters. Right: Modi�ed base parameters to account for
rotations of segments frames.
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Figure 6.9: Recovered point mass grid for a representative subject. Heat map showing
magnitude of masses at each point where blue to yellow shows increasing mass. Top left:
Foot, top right: shank, bottom left: thigh, bottom right: torso.
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Table 6.3: Comparison of recovered wrench, COP, and Torques using the di�erent models on di�erent recovery strategies.
Action Cond Model Wrench Error CoP Error Torque Error

FY (N) τZ (Nm) (cm) τ1 (Nm) τ2 (Nm) τ3 (Nm)

Dynamic 83± 30

Winter −13.4± 99.4 25.6± 21.5 3.8± 4.1 14.2± 4.3 16.4± 3.9 5.3± 3.6
Dynamic −16.4± 86.7 7.0± 19.5 1.2± 5.9 - - -
Normal −12.8± 91.5 32.4± 19.4 3.8± 2.7 3.0± 2.2 6.3± 2.2 1.3± 2.5
Stable −19.3± 99.1 33.4± 23.3 3.9± 4.2 6.7± 4.3 9.5± 4.6 4.9± 4.8

Normal 113± 57

Winter −8.5± 48.2 19.9± 15.0 3.3± 1.8 11.3± 3.5 10.3± 2.7 4.4± 1.7
Dynamic −11.5± 42.1 −20.3± 15.5 −2.4± 2.0 −2.9± 1.6 −6.5± 1.8 −1.2± 1.6
Normal −6.9± 42.4 5.4± 13.8 0.9± 1.7 - - -
Stable −14.6± 49.7 5.8± 17.4 1.5± 2.2 3.9± 3.0 3.4± 2.9 3.8± 2.2

Stable 101± 44

Winter 8.2± 15.6 16.8± 9.2 2.4± 1.4 7.5± 2.0 7.4± 2.5 0.8± 1.8
Dynamic 1.1± 15.3 −20.7± 9.5 −3.2± 1.6 −6.5± 2.9 −10.4±4.5 −4.1± 3.2
Normal 6.4± 15.3 5.0± 9.8 0.6± 3.6 −3.7± 2.6 −3.5± 3.5 −3.3± 2.2
Stable 1.4± 14.7 5.5± 10.2 0.8± 2.6 - - -
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and thigh being recovered as concentrated point masses. The torso in contrast has a wider
distribution of mass points, suggesting that the inertial e�ects of the torso are signi�cant.
This agrees with the expected model where the inertial parameters of the torso are likely to
be more signi�cant, with the other limb segments acting closer to point masses.

Table 6.3 summarises the performance of the recovered dynamic models on the recovery of
the contact wrench and CoP. The condition numbers for the three sit-to-stand strategies were
found to be similar, with the dynamic standing having a slightly lower condition number.
This is likely due to the larger variations in speed and acceleration during the dynamic
standing action.

A threshold of -0.8 rad on the knee was used to signify the transition between sitting
and standing for the analysed data. This apriori estimate was based on the prior methods
of seato� [35]. This threshold resulted in the wrench errors listed in Table 6.3.

The FY error in the dynamic case was substantial across all models, with a large standard
deviation. This is likely due a combination of recoil on the force platform, and the threshold
capturing part of the seated state. This results in the large errors in the FY state. The
errors in the FY term seem consistent across all models, suggesting that the bene�ts of
individualisation on the FY wrench estimation are negligible.

There are di�erences in the torque components, with the normal and stable models out-
performing the dynamic and Winter models when cross-validated against stable and normal
standing. The dynamic models were found to be good for the dynamic action speci�cally,
with poor performance for the other standing strategies. The Winter model was found to
give poor estimates of joint torque in all cases.

As the CoP is a combination of the vertical force and the torque, the decreased perfor-
mance of the estimated torques of the Winter model led to less precise estimates of the CoP
when compared to the normal and stable models. This suggests that individualisation is
important for estimation of CoP. The poor performance of the dynamic model for the other
CoP estimates may be due to the dynamic standing action causing excitation of a di�erent
subset of inertial parameters. While this leads to improved performance in dynamic actions,
the model is not valid for less intense standing actions.

An interesting result of this analysis is the low variations in the estimated joint torques
when using the proposed dynamic recovery framework. While the models have similar per-
formance in recovering the hip torque τ3, the performance on the ankle and knee torques are
di�erent. The cause for this dissimilarity is unclear. The proposed recovery method may be
providing an improved torque estimate when compared to the Winter model. The improved
contact torque adds credibility to this hypothesis as the torque transmitted to the base is a
function of the other torques operating in the system, and the accuracy and precision of the
torque recovery in the robot case.

The counterpoint to this would be the manner the recovered torques were generated. The
torque recovery process required knowledge of the full dynamic parameter vector φF , while
only the base parameters φb have an e�ect on the regressor. While the physical consistency
step provides an estimator of the full parameters φF , this method has not been validated
separately. The similarity in the recovered joint torques could be the result of a null-space
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arising in the optimisation process. There also may be poor recovery of the thigh and shank
parameters due to dynamic domination by the torso. Further investigation on these e�ects
needs to be performed to determine this discrepancy in the recovered torques.

6.5 Conclusion

This chapter has demonstrated the application of the proposed individualised modelling
framework to an individual performing a sit-to-stand action. The standard sit-to-stand
action was performed under three di�erent standing strategies, with each trial lasting on the
order of 30 seconds.

An important issue is raised during the creation of these individualised models. The
individualisation process directly models and assesses an individual's abilities without mak-
ing any apriori assumptions based on age/race/sex. This is in contrast to current allometric
techniques where these factors are used for cohort allocation. By allowing for non-prejudicial
measurements of performance, the proposed framework allows for cohort allocation based
on abilities. This also removes the current clinical problem of attempting to categorise
individuals who do not �t into clear categories of race/sex.

From this data a representative kinematic skeleton was recovered with functional limb
lengths that closely matched those recovered through direct measurement. The recovered
skeletonisation was robust to marker error, variations in marker placement, and marker drop:
automatically identifying the number of segments, the local coordinates of the markers and
recovering a dynamically consistent joint state. This joint state was found to be consistent
between trials, and did not su�er from the artefacts that were present in the commercial
recovery process.

This kinematic model was then used to develop a individualised dynamic model. The
dynamic model recovered through normal standing was found to a be an improvement over an
allometrically scaled model at the estimation of the contact wrench and CoP under di�erent
standing strategies. The recovered dynamic model was then used to determine when the
seat-o� action occurred, signi�ed by measured and expected wrench coinciding. This seat-
o� event matched the criterion proposed by Etnyre[35], giving a dynamic validation for this
seat-o� criterion.

Based on the recovered COP trajectories, an individualised model could be used to get
an approximation of the COP during standing. However, given the variation in the mea-
surements of a few centimetres, compared to the millimetre accuracy and precision from an
a�ordable Wii Balance board[24][145], the proposed method is not recommended if the goal
is exclusively COP estimation.

The recovery method does appear to provide consistent individualised models that pro-
duce better estimators of the contact forces than allometric models. The accuracy and
repeatability of these joint torques needs to be further investigated to determine the cause
of the discrepancies in the joint torques between the Winter and recovered models.
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After performing this analysis on the sit-to-stand action, it was found that while it is
possible to recover a dynamic model from the sit-to-stand action, this may not be su�ciently
dynamically exciting for full individualisation of a model. This can be seen in the variation
in the model parameters depending on standing strategy. While the dynamic standing strat-
egy was more dynamically exciting (as seen by the lower condition number), the recovered
dynamic model actually performed worse than the models obtained through normal and
stable standing. The cause of this e�ect and the guidelines for su�ciently exciting actions
therefore needs to be investigated.
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Part II

Prescriptive Assistive Devices
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Chapter 7

Prescriptive Robotics

Part I of this thesis outlined a method for creating a kinematic and dynamic model of
an individual. This chapter will outline how these models can be used in the design and
development of assistive devices.

Section 7.1 outlines a brief background on the use of assistive devices in rehabilitation,
and the existing methods for customisation. This work extends the state of the art by
posing the customisation as an optimisation problem (Section 7.3). This method is applied
to determine the spring sti�ness for a passive shoulder device in Section 7.4.

7.1 Motivation

Current robotic assistive devices are limited by a�ordability, accessibility and weight. There
have been substantial advances in wearable robotics, resulting in a number of commercialised
devices that o�er the individuals the ability to move. Despite these advances, the majority
of work has been performed on the lower limbs, in part due to the simplicity of the potential
actions. Subjects are likely to want to stand, sit, or walk in a cyclic gait pattern. Given this
�nite set of actions, a user can select the desired state which can then be a�orded by the
device.

In contrast, the control and assistance of an upper limb device has a potentially in�nite
set of states. Individuals can pick, push and move freely within their range of motion.
Estimating the intent of the user is an open research problem, one that has been attempted
via eye tracking and brain-machine interfaces. The use of these devices is far from ideal,
with high associated cost, and a potential requirement for brain surgery[frisoli2012new].
This restricts their use to individuals with profound disabilities.

The actuation strategies typically used are also sub optimal. Actively driven systems
that use electric motors require an associated gear-train in order to provide the substantial
torques required for daily function. The mass of the motor and gear-train lead to signi�cant
cost and weight for the device, especially if the assistance is non-targeted, with actuators
placed at each joint regardless of patient functionality.
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Instead of adopting this approach, a prescriptive based approach is adopted. Using the
human model, it is possible to create a metric on the space an individual can reach. A
method to obtain this metric is introduced in Section 7.2.

This metric can be used as the cost function in an optimisation process. By searching over
the space of device parameters, it is possible to determing the actuator type and speci�cation
capable of best assisting that individual or patient cohort. An initial formulation of this
problem is shown in Section 7.3, with an application to the speci�cation of a passive shoulder
orthosis in Section 7.4.

7.2 Metrics

Through the kinematic modelling methods shown in Section 3.2 it is possible to get an
estimate of the kinematic structure of an individual, and estimates of the kinematic states
for a given action. From these measurements, we develop a method for estimating the
workspace of an individual. The workspace is a term used in robotics to describe the space
an end-e�ector of a manipulator is able to operate in.

This problem looks at the mappings between two spaces. The con�guration space is the
space of all the feasible joint angles in the system. The output space is the space the serial
chain moves in. This is likely to be either SE(3) or SE(2) for 3D and 2D applications.

Given constraints on the con�guration space based on actuator limits, the aim is to �nd
the corresponding limits in the output space. This subset of the output space is termed the
workspace W of the manipulator[94]:

W = {gW,T (θ) : θ ∈ Q} ⊂ SE(n) (7.1)

7.2.1 Clinical Metrics and Challenges

As mentioned in Section 1.1 there are a lack of clinical metrics that are able to track functional
changes of an individual's reach in a quantitative manner. One of the methods that has
shown success is that of the Reachable Workspace[68]. This method tracks and projects the
movements of the shoulder, onto a 3D spherical shell. By examining the sections of this shell
that are within the user's reach, a quantitative measurement of the reachable surface area is
returned. This metric has been shown to correlate with existing upper limb measures such
as Brooke and Fugl-Meyer scales.

One of the limitations of this method is its projection onto a plane instead of a full 3D
volume. This is due to the lack of a dense sampling of the workspace of the individual. Due
to experimental limitations, it is impractical for individuals to sweep out every point they
can reach. Therefore an alternative approach must be adopted.
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7.2.2 Formulation

To overcome the challenge of obtaining a dense sampling of points, it is possible to exploit
the results from Chapters 2 and 3. The kinematic model allows for the conversion of ob-
served motions of the limb into joint trajectories. By determining the kinematic limits of
these trajectories, the workspace that corresponds to the projections of these limits can be
estimated.

Consider the two link planar system shown in Figure 7.1. The motions of two points on
this system are known: the elbow in green and the wrist in red. During a simple trajectory
the green and red motion capture points are observed. Using the kinematic recovery method
from Chapter 3, it is possible to recover both the joint centres and the joint state θ(t) for
the observed trajectory.

The upper and lower bounds for this joint trajectory can be found, and are denoted θ̄
and θ.

Three assumptions will be made:

A1 The upper and lower bounds are representative of the kinematic limits of the individual.

A2 Joints act independently of each other.

A3 The kinematic limits of the individual are su�cient to describe an individual's weak-
nesses.

Under these three assumptions, it is possible to generate a dense sampling of the workspace.

Figure 7.1: An overview of the reachable workspace volume method. Left: Motion capture
of the two link system returns two trajectories of the system elbow and wrist (green and red).
Middle: The upper and lower bounds of these trajectories are then used to create a random
sampling of the joint space. These joint space points are then projected into the output-space
using the kinematic map (red). Right: The best �t non-convex hull is then generated for
these points. This gives an estimate of the workspace (red). The true workspace is shown
in blue.
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The joint limits [θ, θ̄] de�ne the con�guration space of the manipulator. A matrix of S
samples of feasible con�gurations of the manipulator can be generated. Given a con�guration
θ(s), it is possible to �nd the corresponding point in the output space using the forward
kinematic map. This gives a set of tool con�gurations gW,T (s) for each sample. A collection
of these tool positions are shown in Figure 7.1 Middle.

This sampling allows for a denser sampling of the workspace based on the single trajec-
tory used for kinematic recovery. These points can be used to generate a non-convex hull
corresponding to the system's workspace using alpha-shapes[32]. This gives an estimate of
the workspace of the system.

7.2.3 Method

This method was tested on a number of healthy subjects, and patients with Facioscapu-
lohumeral muscular dystrophy (FSHD). Subjects were recruited under IRB and informed
consent. FSHD patients were diagnosed based on genetic analysis[49].

Subjects were asked to follow a video showing a set of upper limb tasks. This included
touching the sides of their hips, shoulders, mouth and the top of their head. Their movements
were captured using a Kinect skeleton. These actions were chosen as they covered key
locations that are required for self care tasks. Each patient was also given a Brooke score by
a clinical evaluator.

The Kinect data was converted into a rigidised skeleton using a Kinematic modelling
method similar to that shown in Chapter 3. The angles at the shoulder were decomposed to
match the joint convention recommended by the ISB[140]. This resulted in the upper limb
model shown in Figure 7.2. The recovered kinematic model was then used to generate 10,000
sample points of the workspace. The alpha-shapes for these samples were then computed
using the AlphaShapes library in MATLAB[76], returning the geometry and volume of the
reachable workspace volume.

7.2.4 Results

The results of these tests are shown in Table 7.1 and the visualisations of the reachable
workspace volume are shown in Figures 7.3 and 7.4.
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Figure 7.2: Left: International Society of Biomechanics (ISB) recommendations on de�ni-
tions of joint coordinates and rotational axes[140]. Skeletal model generated using Biodigital
Human[56]. Right: Kinematic model used for the upper limbs. YGh is parallel to YT , while
Y YGh runs parallel to the humerus. Location of the rotational centre of the XGh joint is given
in Thorax (T ) coordinates. Rotational pose of the humerus is based on a Y-X-Y rotational
sequence about YGH-XGH-Y YGH . Rotation about the Hu joint is about the HuZ axis.

Table 7.1: Comparison of computed reachable volume and Brooke Score

Subject
Reachable Volume

(m3)
Brooke Score
(unitless)

Healthy 1 3.74× 10−1 -
Healthy 2 3.28× 10−1 -
Healthy 3 2.34× 10−1 -
Patient 1 3.58× 10−1 1
Patient 2 2.70× 10−1 2
Patient 3 1.78× 10−1 3
Patient 4 1.48× 10−3 5
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Figure 7.3: Left: Reachable workspace for a healthy subject. Upper extremities are shown in wire-frame with the
reachable workspace shown in blue. Plane projected views are shown on the left. Right: Reachable workspace for
Patient 1 with mild FSHD (Brooke 1).



7
.2
.
M
E
T
R
IC
S

95

Figure 7.4: Left: Reachable workspace for Patient 3 with moderate FSHD (Brooke 3). Right: Reachable workspace for
patient 4 with severe FSHD (Brooke 5).
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7.2.5 Discussion

Table 7.1 shows a correlation between the Brooke score and the reachable volume. Patients
with lower levels of disability were found to have similar reachable workspace volumes to
healthy individuals.

The workspaces shown in Figures 7.3 and 7.4 show a number of interesting features. The
shape and size of the workspace changes dramatically with the Brook score value. Changes
were most clearly seen in the vertical direction, with patients with sevee disability losing
the ability to reach above their shoulders. This could act as a predictor or measure of a
patient's level of independence. While the population size used for these initial experiments
is small, these initial results show the potential in extending the kinematic models to the
development of human performance metrics.
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7.3 Prescriptive Robotics

An important result from this reachable volume work is the use of the reachable workspace
volume as an optimisation cost function. Using the workspace volume in this manner allows
for an optimisation over the kinematic and dynamic model parameters. By creating a model
of the human assisted system, the aim is to determine the optimal assistive parameters to
assist the individual.

7.3.1 Formulation

To build this formulation, a model of the human assisted system is made. Using the form
for the dynamics from Equation 4.1, the human dynamic model can be written as:

IH(θ)θ̈ +CH(θ, θ̇) = τH (7.2)

where IH and CH are the human inertial and bias matrix, and τH is the human torque.
The human assistive system can therefore be written as:

IH+A(θ)θ̈ +CH+A(θ, θ̇) = τH + τA (7.3)

where IH+A and CH+A are the inertial and bias matrices for the human-assistive system,
and τA is the assistive torque.

A passive device can be written in the form:

τP = fP (ψ,θ, θ̇) (7.4)

where ψ are the parameters of the device (sti�nesses, damping factor etc.).
This results in the system dynamics:

IH+A(θ)θ̈ +CH+A(θ, θ̇) = τH + fP (ψ,θ, θ̇) + τA (7.5)

The optimisation problem is therefore to maximise the functional workspace for the
human-assistive system. The functional workspace is de�ned by the points that are achiev-
able through a combination of human and active assistance, that obey the system dynamics
and joint angles lie within their permissible limits. This leads to a de�nition of the functional
workspace (FW) of the system:

FW = {p|p ∈ fFK(θ(t))}
s.t. IH+A(θ)θ̈ +CH+A(θ, θ̇) = τH + fP (ψ,θ, θ̇) + τA

where θ ∈ [θ, θ̄], τH ∈ [τH , τ̄H ], τA ∈ [τA, τ̄A]
(7.6)
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7.4 Passive Shoulder Orthosis

This de�nition of a functional workspace de�nition can be used to formulate an optimisation
problem to determine the optimal assistance for an individual with shoulder weakness. The
arm is modelled as a pendulum, with the weakness simulated as decreased maximum and
minimum shoulder torque (Figure 7.5). This weakness will be compensated through the use
of a single spring at the shoulder, an idea inspired by the WREX exoskeleton[107]. The
WREX is a passive elastic exoskeleton that assists an individual using a passive spring. By
manually tuning the sping characteristics, gravity compensation of the limb can be achieved.

Figure 7.5: An illustration of the simpli�ed arm model used in simulation. The arm is
modelled as an inertial load I at a distance l from the origin.

The dynamics of this system can be written as:

(I +ml2)θ̈ = −mgsin(θ)− k1(θ − θ0) + τH (7.7)

where k and θ0 are the sti�ness and equilibrium point of the spring. Note that the additive
torque is only that of the human τH as the assistive torque is purely that of the torsional
spring.

7.4.1 Direct Optimization

The functional workspace of this system can be estimated by examining the points that the
individual can remain in statically. This reduces the system into the equation:

mglsin(θ) + k1(θ − θ0) = τH (7.8)

The dynamics in Equation 7.7 can then be simpli�ed into the study of three key angles,
the maximum and minimum of the spring extension (θu,θl) and the maximum torque static
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torque of the system (θm). This maximum static torque can be found by di�erentiating
Equation 7.8.

θm = acos

(
−mgl
k1

)
(7.9)

These three points de�ne the torque curve for the spring. The optimisation problem then
simpli�es to:

maxθl,θu,k1,θ0(θu − θl − δk1)
st. τH ≤ mglsin(θu) + k1(θu − θ0) ≤ τ̄H

τH ≤ mglsin(θm) + k1(θm − θ0) ≤ τ̄H
τH ≤ mglsin(θl) + k1(θl − θ0) ≤ τ̄H

−2π ≤ θ0 ≤ 2π
0 ≤ k

θH ≤ θl, θm, θu ≤ θ̄H

(7.10)

where the constraints ensure that the torques corresponding to the key points are within the
feasible human torque and position range. The weighting term δ is used to minimise the
sti�ness of the spring (a value of 1× 10−4 was used in these studies).

The optimisation problem shown in Equation 7.10 can be easily adapted to include certain
points are in the workspace. If an angle θR is required to lie within the workspace, then the
following constraints can be added:

τH ≤ mglsin(θR) + k1(θR − θ0) ≤ τ̄H (7.11)

Pathologies were simulated as percentages of the minimum torque required to statically
hold the arm parallel to the ground. The optimisation shown in Equation 7.10 was imple-
mented using YALMIP library[74] and MATLAB for a number of simulated disabilities.

7.4.1.1 Results

The results of these simulations on a healthy individual is shown in Figure 7.6. Individuals
with a simulated shoulder weaknesses are shown in Figures 7.7 and 7.8.

7.4.1.2 Discussion

From these initial experiments it appears that a single spring at the shoulder is capable of
dramatically increasing an individual's ability to move. In the healthy example, the addition
of a spring is determined to be pointless, and a spring sti�ness of 0Nn/deg is returned. This
shows that the recovery method is capable of actuator selection. Given an appropriate cost
function, the actuators can be added to the system or removed based on negligible returns.

For subjects with symmetric weakness (Figure 7.7), the addition of a spring is capable
of dramatically increasing the size of the workspace, and its location. The workspace now
includes regions that are more useful for daily function, potentially improving independence.
The torque response curves show the e�ect of the addition of the spring. Ordinarily a patient
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Figure 7.6: Optimisation for a healthy individual. Left: Saggital plane plot of range of
motion. Blue: healthy, Red: subject pre-intervention, Green: subject post intervention.
Spring sti�ness and o�set is shown underneath. Right: Torque response plot. Red dashed
lines are the limits of the individual's ability. Curves indicate the torque response for each
case.

with weakness is unable to overcome the highest torque point in their range of motion. This
limits their abilities as they are unable to move past this point. By adding a spring, the arm
is rebalanced so that this point lies within their abilities, allowing them to move past this
limiting point, increasing their total range of motion.

The proposed optimisation method also shows potential bene�ts to individuals with
asymmetric weakness as shown in Figure 7.8. From these �gures, the change between �exion
and extension strength simply shifts the set equilibrium point of the spring.
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Figure 7.7: Left: An individual with symmetric 50% strength. Right: An individual with
symmetric 20% strength.

Figure 7.8: Left: An individual with 50% strength in �exion. Right: An individual with
50% strength in extension.
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7.4.2 Level-Set Methods

An alternative approach to this problem is through the use of level-set methods [91]. These
methods allow for simulation of the dynamics of a system to determine the set of potential
states that are reachable over a time horizon. As the system dynamics evolve over time, this
reachable boundary extends. Given a level set function χ(x), the corresponding reachable
set has the form:

{x ∈ Rd|χ(x) = 0} (7.12)

This problem can be solved by �nding the solutions to an initial value partial di�erential
equation:

Dtχ(x, t) + min[0, H(x,Dxχ(x, t))] = 0 (7.13)

where Dt and Dx are the partial derivatives of χ and the associated Hamiltonian H is written
as:

H(x, p) = max
a∈A,b∈B

pTf(x, a, b) (7.14)

where f are the dynamics of the system and pi = ∇χ(x, t). This can be solved by numerically
approximating the Hamiltonian using the level-set toolbox [90]:

Ĥ(c, p+, p−) = H

(
x,
p+ + p−

2

)
− αT (x)

(
x,
p+ + p−

2

)
(7.15)

where p− and p+ are the left and right numeric approximations of the gradient. The scaling
α(x) term is dependent of the partial derivative of the Hamiltonian with respect to the
gradient p:

αi(x) = max
p

∣∣∣∣ ∂∂piH(x, p)

∣∣∣∣ (7.16)

The dynamics of the system can be written with the state X = [θ, θ̇]T :[
1 0
0 IT

]
Ẋ =

[
θ̇

−mlgsin(θ)− k1(θ + θe − θ0)

]
+

[
0
1

]
τ (7.17)

To write the Hamiltonian, an optimal controller is required that takes into account the
limits of the individual's strength. Assuming a symmetric torque bound, the optimal con-
troller to maximise the reachable space is:

(7.18)τ ∗H =

{
τ ifp2 ≤ 0
τ̄ otherwise

= |τ̄H |sgn(p2)

This optimal controller can be used to generate the Hamiltonian:

(7.19)H(x, p) = x2p1 + |τ̄H |sgn(p2)− I−1
T (mlgsin(x1 + θe) + k1(x1 + θe − θ0)) + |τ̄H |
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and bounds on the scaling terms:

α1 ≤ |x2|
α2 ≤ |I−1

T mlgsin(x1 + θe) + I−1
T k1(x1 + θe − θ0)|+|τ̄H |

(7.20)

The reachable set for this system was generated using the level-set toolbox for an in-
dividual with a symmetric weakness of 20%. A grid of k ∈ [0.005 : 0.005 : 0.1] and
θ0 ∈ [180 : 10 : 360] and a time horizon of two seconds was used.

7.4.2.1 Results

The search space of spring parameters is shown in Figure 7.9 along with the level set for an
optimal combination of parameters.

Figure 7.9: Left: Heatmap showing the change in workspace with spring parameters using
the level-set method. The top right blue region shows infeasible points where the system
equilibrium is outside of the individual's range of motion. Blue to red transition shows pro-
gressively larger workspaces. Right: Reachable set for a single simulation (k1 = 75mNm/deg
and θ0 = 210deg). The static equilibrium point is located at the cross in the centre of the
Figure. Blue to red colours show the increasing time taken to move from the equilibrium
point to other points in the reachable set. The positions that the individual is able to reach
and hold were computed and are indicated as vertical black lines.

7.4.2.2 Discussion

The utility of the level-set method can be seen in the di�erence between the full level set
and the angles that were found to be statically achievable. The level-set contains the set of



104 CHAPTER 7. PRESCRIPTIVE ROBOTICS

points that are achievable, even if the individual cannot remain there statically. This makes
the level-set useful for determining transitions for hybrid controllers and safety analysis[124].

The front of potential candidate solutions (shown by the sudden curve from orange to
blue) makes the design choice problematic, as there is no clear optimal spring to use. This
could be improved by creating a �ner resolution mesh in this region, or parametrising the
front and performing an optimisation over this space.

7.4.3 Conclusion

Table 7.2 compares the direct and reachable set methods for determining actuator param-
eters. Both methods were implemented on a dual core computer with a 1.6GHz processor
and 16Gb RAM.

Table 7.2: Comparison between the direct optimisation and the level-set method for di�erent
time horizons. Recovered upper and lower bounds for workspace are shown, along with the
associated computation time.

Direct
Level-set Timespan

1 2 3 4
Lowerbound θl (deg) 63 64.8 64.8 64.8 64.8
Upperbound θu (deg) 179 84.4 122.4 172.8 176.4
Computation Time (s) 0.75 18 37 55 81

The recovered range of motions and optimal values appear to align between the two
methods, on the condition that the time horizon is adequately set. The location of the
equilibrium point and the lower bound align for relatively low time horizons. However the
upper bound requires a larger time horizon due to the upper bound only being reachable
after more elapsed time.

The reachable set method is an under approximation of the workspace of the system. This
can be seen in under estimation of the workspace bounds. The spring parameter estimation
is also limited by the meshing of the search parameters. This can lead to signi�cant burdens
if the number of system parameters is larger than two.

The time for computation shows a signi�cant di�erence between the two methods. It
is important to note that the computation time for the level-set method is per dynamic
parameter iteration. To obtain the optimal dynamic parameters the entire search process
took 0.75 seconds using the direct approach, compared to 12 hours for the level-set method.
Even for a simple system, the level-set method is computationally intensive. This leads to
the curse of dimensionality where systems of 4 or more states are rendered intractable by
these searches[2][92]. This is highly limiting in the application to human assistive systems
as this limits the system to two degrees of freedom.
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The direct optimisation method is a rapid method to perform this analysis. The extension
of the reachable workspace volume methods to this optimisation scheme is a promising
direction for prescriptive assistive devices.
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Chapter 8

Active Passive Exoskeleton

Building on the concepts introduced in Chapter 7, this chapter introduces the Active Passive
EXoskeleton (APEX). The APEX is an upper limb assistive device designed to assist indi-
viduals with elbow and shoulder weakness. This work was completed with the substantial
e�ort of Eric J. Mica, Joel A. Loeza, Waiman Meinhold, and Elizabeth Barley.

8.1 APEX

The APEX is designed to utilise the results covered in this thesis. Instead of developing a
single device for use in industry and healthcare, tasks and individuals can be scanned using
the human modelling methodology (Chapters 3-6) to generate a prescription for the optimal
assistive device (Chapter 7).

As patient abilities can be measured and tracked over time, it allows for the development
of new types of human-centric control, and the use of exotic actuation methods. The APEX
uses a novel pneumatic actuation framework to provide assistance to the user, which is
lighter, more a�ordable, and uses less energy than conventional DC motor setups.

8.1.1 APEX Framework

The WREX exoskeleton shows that it is possible to enhance an individual's function by
using a passive elastic system that compensates for the mass of a limb[107]. Using this idea
as inspiration, APEX examines the use of Variable Dynamic Actuators (VDAs) to see how
the changes to the perceived dynamic parameters can a�ect the abilities of the individual.
An interpretation of this idea is attempting to perform hardware based impedance control,
modifying the system's overall dynamic parameters to achieve the desired response.

One implementation of a variable dynamic actuator is a pneumatic cylinder (Figure 8.1).
By varying the pressures on either side of a cylinder (Pflex, Pextend), it is possible to change
both the sti�ness and equilibrium point of the cylinder rod.



108 CHAPTER 8. ACTIVE PASSIVE EXOSKELETON

Figure 8.1: Schematic of the pneumatic spring used in the APEX. Three valves allow for the
pressurisation and venting of the extension and �exion (Pflex, Pextend) sides of the pneumatic
cylinders. The system is driven by a pressurised supply line, and vents directly to the
atmosphere.

The proposed control is based on the workspaces that can be found from the prescrip-
tive robotics approach. Instead of attempting to determine the desired Cartesian location
of the individual's arm through eye-tracking/brain-machine-interfaces, APEX changes the
workspace of the individual. By using the prescriptive methods introduces in Chapter 7, the
workspace can be set to contain the points required to complete a set of actions (such as self
feeding/self care tasks). In this manner, a �nite set of discrete workspaces can be generated,
each with a speci�c VDA parameter set. The control is therefore heavily simpli�ed, only
detecting a desire to change workspace, then changing the VDA parameters accordingly.

When providing these changes to the system dynamics, the individual is still required
to actively move their limb to perform their desired activity allowing for an assistance as
needed approach[34] to rehabilitation. By quantifying their abilities, this can be tuned to
the individual and adapted over time to ensure that the patient is able to act independently,
without overcompensating for their weaknesses.

This approach to assistance also uses signi�cantly less energy than through an active
drive. The pressures in the cylinders only need to be changed when a new workspace is
required. This results in zero expended gas while an individual performs a subset of tasks, a
stark contrast to electric motors which use energy even if the arm is held statically against
gravity. As such, only a small reservoir of compressed gas is required to assist in daily
function.
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8.2 Design

A prototype device was developed to test the e�ect of the APEX framework on the elbow
�exion/extension. The elbow was chosen due to the importance of elbow motion in daily
living tasks, the simplicity of the joint, and the ample space in the upper and forearm
for attachment braces. Figure 8.2 shows a CAD rendering of the baseplate containing the
pneumatic cylinders and the elbow brace, with the completed prototype shown in Figure
8.3. By separating the device into two sections, the load on the elbow was substantially
minimised, reducing the load on shoulder. The elbow brace was found to weigh 0.39kg, with
a total system mass of 2.54kg (not including pneumatic supply).

8.3 Initial Trials

The prototype shown in Section 8.2 was tested on a cohort of six healthy individuals aged
23±1.7 years old, mass 73.8±4.4kg, and 1.77±0.28m under UCB IRB: 2012-12-4872. Sub-
jects were out�tted with active motion capture markers which were tracked at 480Hz[104].
Subjects performed three trials of hammer curls with their right arm at 0.5Hz while holding
a dumbbell weighing 3.59kg and using a preacher curl bench (Figure 8.4). The pace was set
by an audible metronome. The end of the trial was speci�ed by either the subject stopping,
a break in tempo, or when the subject's actions moved out of the sagittal plane. Each trial
was separated by a 5 minute break allowing the subject to rest.

The motion capture data was used to recover the joint angles and their derivatives of the
shoulder and elbow, using the joint notation recommended by the ISB[140]. The number of
curls were counted by an investigator, and cross-checked against the motion capture, and
recovered kinematic state trajectories.

These experiments were performed under six di�erent conditions, separated by a two day
rest period. The six conditions tested were:

C Control: The subject is wearing a motion capture suit but no exoskeleton.

AC APEX Control: The subject is wearing both the motion capture suit and the exoskele-
ton. The �exion and extension sides are open to the atmosphere.

2 As AC, but with the extension and �exion chambers initially pressurised to 50 psi and
atmospheric pressure, then sealed.

3 As AC, but with both the extension and �exion chambers initially pressurised to atmo-
spheric pressure, then sealed.

4 As AC, but with both the extension and �exion chambers initially pressurised to 50 psi,
then sealed.

5 As AC, but with the extension and �exion chambers initially pressurised to atmospheric
and 50 psi, then sealed.
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Figure 8.2: The two components of the APEX-β prototype. Left: Backplate showing two
pneumatic cylinders and Bowden cable. The Bowden cables connect rigidly to the rod end
of the cylinders. The cable wraps around a pulley on the left side of the plate and passes
through a cable guide on the right. Right: The two ends of the Bowden pass through a cable
guide and wrap around a pulley. Both sides of the pulley are attached to upper-arm and
forearm cu�s[11].

Figure 8.3: APEX prototype β shown mounted on an individual. Backplate and elbow
mounts are shown. The two pneumatic cylinders on the backplate are visible with associated
pneumatic lines. The blue cable guide at the top of the back plate routes the linear action
of the cylinder along the white Bowden cables to the elbow.
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The APEX device was con�gured for each test condition with the forearm in the fully
�exed position. After the device was con�gured it was completely disconnected from the
pneumatic supply to test the passive dynamic response. The results of these trials are shown
in Section 8.3.1.

8.3.1 Results

Figure 8.5 shows the raw and normalised rep count for the six di�erent modes. The nor-
malised values were calculated for each subject and trial combination, using the respective
results from their AC mode experiment.

Figures 8.6 to 8.9 show the reconstructed joint trajectories during the experiments for
a representative subject. These joint states were recovered using an adapted kinematic
recovery formulation, similar to that shown in Chapter 3.

Figure 8.4: Experimental setup for the hammer curl experiments. Subject wearing motion
capture suit with active motion capture markers (red lights). The backplate is mounted
on the subject with Bowden cables connecting to the elbow mount. The 3.59 kg barbell is
shown.

8.3.2 Discussion

Figure 8.5 summarises the e�ect of the APEX prototype. The normalised count was used to
compare the e�ect each mode had between subjects.
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Figure 8.5: Summary of APEX results. Top: Raw rep count for the six subjects, for the three
trials, across all six APEX modes. Each individual is represented by a a di�erent colour line.
First trial in a series is shown on the left, with the third on the right. Middle: Normalised
reps. Each individual was normalised by their AC trial for the �rst, second, and third reps
separately. The means and standard deviations are shown on box and whisker plot, with
the extrema shown as the whiskers. Bottom: Cartoon of the APEX modes. Forearm shown
in the sagittal plane holding a weight. Exoskeleton is shown as a disk on the elbow. The
extension side of the cylinder is shown on top, with the �exion side underneath. A sealed
chamber at 50 psi is shown in red, while a chamber sealed at atmospheric pressure initially
is shown in green. A chamber that is open to the atmosphere is shown in light blue.
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Figure 8.6: Phase portraits of angular acceleration (rad/s2) against elbow angle (rad) for
Elbow �exion/extension in a representative subject. All three trials are shown, with red,
green, and blue representing �rst, second, and third trials. Dotted lines are used for reference.
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Figure 8.7: Phase portraits of angular acceleration (rad/s2) against elbow angle (rad) for
GH elevation/depression (Y1) in a representative subject. All three trials are shown, with
red, green, and blue representing �rst, second, and third trials. Dotted lines are used for
reference.
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Figure 8.8: Phase portraits of angular acceleration (rad/s2) against elbow angle (rad) for GH
plane rotation (Z1) in a representative subject. All three trials are shown, with red, green,
and blue representing �rst, second, and third trials. Dotted lines are used for reference.
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Figure 8.9: Phase portraits of angular acceleration (rad/s2) against elbow angle (rad) for GH
axial rotation (Z2) in a representative subject. All three trials are shown, with red, green,
and blue representing �rst, second, and third trials. Dotted lines are used for reference.
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A mean increase in the normalised rep count of 82% was found in mode 5 compared to
the AC mode. This suggests that mode 5 is able to provide signi�cant augmentation to an
individual's ability to perform hammer curls. The pressure di�erential in mode 5 appears
to be acting as an assistive spring, compensating for the mass of the barbell, allowing the
subject to perform signi�cantly more repetitions. The converse of this can be seen in mode
2. Subjects were impeded by this mode, with a mean reduction in repetitions of 23%.

Modes 3, 4 were designed to examine the e�ect of a pure sti�ness change instead of a
sti�ness and o�set change (modes 2, 5). A subject's performance in these modes was found to
be similar to when they did not wear the device for both the atmospheric and 50 psi settings.
This could be due to assistance in the �exion phase being counteracted by di�culty during
the extension mode.

The decrease in ability when wearing APEX (AC) when compared to the person not
wearing the device (C) indicates the strong e�ect of the form and �t of the device. Though
the device was designed to minimise any impediments to a user's range of motion, the
attachment cu�s were found to limit an individual's ability to move. These reductions were
compensated by the assistance provided in modes 3, 4, 5, but show the importance of �t and
ergonomic design.

Figures 8.6 to 8.7 show the phase plots for these modes. By examining these plots,
changes in compensatory actions can be seen.

In the elbow plots, a diagonal line is used to separate the �exion and extension movements,
with �exion below and extension above the line. From these plots, hyper-extension can be
seen in modes AC, 3, and 4 compared to the control C. This could be due to the individual
having to compensate for the resistances in the device due to friction and the e�ect of the
pneumatic cylinder. Mode 5 appears to have a symmetric appearance between the �exion
and extension motions. This suggests that the motions are more even in Mode 5, even when
compared to the control mode C.

The XGh shoulder rotations highlight the di�erences in compensation strategy between
the di�erent action. In control case C, there is negligible movement in the XGh direction
suggesting that the action is not being compensated by the muscles acting about the XGh

axis. This is contrasted with modes AC, 3, and 5 which appear to show compensation in
the θ ≥= 0 part of the curl action. Modes 2 and 4 show signi�cant XGh compensation for
the full curl action. This suggests that both the �exion and extension actions are challenging
in these two modes.

The shoulder YGh and Y YGh actions show compensations subjects could perform to move
out of the plane to use alternative muscle groups. From these plots, modes C, AC, and 5
all appear to have minimal compensatory rotations.
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8.4 Conclusion

These initial trials show the potential in the proposed APEX framework for actuation and
control. An 82% increase in barbell curls can be provided across all subjects, for a single
change of the system pressures. Observing the phase trajectories of the shoulder complex,
the assistance provided appears to be natural, reducing the need for compensatory actions.

It was found that ergonomic �t was a substantial factor in the experimental procedure,
signi�cantly reducing an individual's abilities to perform hammer curls. While the assistance
provided was able to overcome these restrictions, improving the �t of the device is expected
to improve comfort and e�ectiveness.

Despite the reduction in performance due to ergonomic �t, the proposed APEX assistance
framework was found to be capable of delivering substantial assistance to the wearer. This
assistance is provided though a few grams of compressed gas foe each sti�ness change. The
success of these tests gives credibility to an active/passive framework for control.

Based on these experiments, a new prototype was developed (Figure 8.10). APEX-γ
has improved ergonomics and o�ers assistance at the shoulder. This device is scheduled for
healthy and clinical subject testing by the end of 2016.

Figure 8.10: APEX-γ. Left: Side view showing the re�ned backplate, and shoulder harness.
Right: Front view showing the elbow mechanism and arm brace.
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Chapter 9

Future Work

This thesis has outlined a number of preliminary ideas in human modelling and assistive
device design. While a number of initial results have been developed, there are a number
of immediate tasks that need to be completed in the near future. These tasks have been
organised in the same order as the thesis with the extension to a high-level multi state hybrid
controller being proposed for the next APEX controller.

9.1 Modelling Framework

The presented modelling framework shows promise but is lacking in a number of key areas.
There is a decrease in accuracy of the joint recovery process for small de�ections (Section
6.3). As the arc of the motion about the ankle was small, it was di�cult to recover the exact
location of the joint. A standard method to arti�cially increase the arc travelled is to put the
marker on a beam that is rigidly attached to the joint[136]. While this is likely to improve the
accuracy of the ankle recovery without the requirement of ankle placement, it does require the
addition of a specialist device which could prove problematic in clinical implementation. As
an alternative, patients could be asked to sit with their ankles raised above the ground, then
perform a plantar �exion/dorsi�exion about the ankle while extending their leg. This action
would simultaneously locate the ankle and the knee, potentially improving the kinematic
recovery process.

As noted in the robotic and human experiments, the estimation of the full kinematic
state is hampered by only having observations of the motion capture markers (Sections 5.3.2
and 6.3.2). The addition of Inertial Measurement Units (IMUs) on the limb segments allows
for a direct measurement of the body accelerations. These sensors can be added directly
to the UKF, allowing for an improved estimate of the state derivatives. The e�ect of these
additions have on the kinematic and dynamic recovery process needs to be evaluated.

The analysis presented in this thesis was simpli�ed to a plane. While the kinematic and
dynamic recovery methods presented are suitable for 3D recovery, their e�cacy needs to
be determined. This can be performed by studying the compound actions of the UR5 and
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human shoulder joints. Through the analysis of these systems, factors that may not arise in
2D systems can be found.

As this work concentrated on the feasibility of these methods for use in clinics, gold
standard sensors were used in the analysis. The deployment of these sensors is unlikely due
to the inherent cost and expertise. Therefore the application of these methods to a�ordable
sensing modalities such as the Kinect and Wii Balance board needs to be performed.

9.2 Robotic Validation

A robotic system was used to evaluate the e�cacy of the proposed modelling framework.
As the joint states and representative model were known apriori, it was possible to directly
compare the recovered model and states with a ground truth value.

The robotic validation explored in this thesis focused on the recovery from the motions
about a single joint. This allowed for guidelines to be established on the recovery process.
The extension to multiple joints, both moving in the plane as well as in full 3D will allow for
a deeper understanding on the precision, accuracy and failure modes of this recovery process.

There was a mismatch between the robotic and human systems used in this thesis. While
the sit-to-stand action has substantial size, mass and inertia at the distal link, this was not
true of the UR5 manipulator, resulting in poor recovery of kinematic and dynamic parameters
in the robotic experiments. The addition of an inertial body to the UR5 end e�ector would
result in a better representation of the sit-to-stand case.

9.3 Human Modelling

While an individualised human model is recovered in this work, the validation to a ground
truth value for that subject was not performed. The use of MRI, DEXA, and �uoroscopy to
estimate the anatomical masses, inertias and joint locations would allow for a gold-standard
of that subject's model.

The augmentation of other clinical tests needs to be determined. While the �ve-times
sit-to-stand test was easy to investigate, the application of these methods to more elaborate
tests such as the Fugl-Meyer would allow for richer modelling.

The sit-to-stand action was chosen due to the substantial mass and inertia at the distal
link allowing for a tractable test of the modelling process. In the analysis of the limbs, the
mass of the limbs decreases for each successively distal link. As seen in the UR5 experiments,
this limits the precision and accuracy of the proposed model recovery method. The poor
performance due to small motions may be reducible by placing markers on lightweight rigid
rods, arti�cially increasing the arc of action. Poor performance due to insu�cient mass at
the extremity may be compensated through the addition of a second force sensor at the
hand. As the contact forces at the proximal and distal ends are known, this may improve
the signal-to-noise ratio seen in the UR5 experiments.
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9.4 Prescriptive Robotics

The experimental validation of the prescriptive framework introduced in Chapter 7 was not
performed due to the lack of sti�ness control in the existing iteration of the APEX. Compar-
ing the optimal assistive parameters found experimentally and using the prescriptive frame-
work will allow for validation of these methods. This experimentation could be performed
using physically distinct hardware (e.g. swapping springs), through impedance control, or
through variable dynamic actuators. Each of these options have their own strengths and
weaknesses, with the ease of implementation, granularity in the change in joint dynamics,
and potential for feedback varying with each method.

To facilitate rapid testing of di�erent controllers and devices, an active exoskeleton test-
bed similar to the one used by Caputo and Collins[20] would allow for the emulation of
di�erent devices. By cable driving the exoskeleton from a bench, there is a physical separation
between the worn device and the actuation system. This allows for rapid changes in control
strategies without requiring the redevelopment of hardware which can take substantial time.
The use of these test-bed systems allows for the e�ect of di�erent control strategies to be
explored without changing additional parameters.

9.5 APEX

Chapter 8 introduced the current iteration of the APEX and the feasibility of active/passive
pneumatic assistance. While these experiments showed the potential in these methods, the
low level control was extremely crude consisting of binary pressure control. The low-level
control of the pressures in the system would allow for improved granularity in the potential
dynamic responses.

Direct sti�ness control needs to be performed. As the joint sti�ness and equilibrium point
will vary with the pressures on the �exion and extension sides of the cylinder, it should be
possible to create a low-level sti�ness controller. This allows for direct implementation of
the spring characteristics found from the prescriptive framework.

Variation of the dynamics at a joint could be attained though the use of magneto-
rheostatic materials or through a throttled hydraulic system. The viscosity of a �uidic
cylinder can be modulated by throttling either a varying magnetic �eld or the aperture size.
This variation can be used to bleed the energy in a system, reducing the e�ect of sudden
shock loads, or fully locking the limb allowing for passive holding.

An interesting control problem is the addition of an active element to a variable dynamic
actuator. Active power assistance can be delivered by connecting a conventional electric
actuator to the backplate pulley shown in Figure 8.2. The system can therefore be balanced
between the bulk assistance being provided by the active/passive system, while the active
motor provides precision assistance. As the majority of the assistance is a�orded by the
active/passive system the speci�cations on the active motor are far lower than for an actively
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driven system. The active motor can also deliver faster feedback, potentially compensating
for tremor.

9.6 High-level APEX control

It is possible to separate a known set of tasks into groups based on the sub-sections of the
individual's workspace. These sub-workspaces can be joined to form a connected graph,
with each node representing a particular sub-workspace, and edges representing overlap-
ping connected areas between two sub-workspace. Commonly coupled actions (such as self
feeding and drinking) can be grouped together to reduce the number of changes between
sub-workspaces during the activities being analysed.

A user's ability to move within each sub-workspace can be assessed though either ex-
periment or though the proposed modelling framework. When a user is found to be unable
to move fully within the sub-workspace, the minimal assistance required to restore function
can be found. This assigns a set of passive dynamic parameters for each node on the graph.

When a user moves their arms, their actions will lie within a node on the graph. If the
state of a user is found to lie near the boundary between two sub-workspaces, the dynamic
parameters can be adjusted at this boundary allowing the user to perform the next task. In
this manner a hybrid controller can be constructed, allowing for the analysis of stability of
switching between sub-workspaces.
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Figure 9.1: Summary of results in this thesis[133].
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