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Abstract

Neural Dust: Ultrasonic Biological Interface

by

Dongjin Seo

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michel M. Maharbiz, Chair

A seamless, high density, chronic interface to the nervous system is essential to enable
clinically relevant applications such as electroceuticals or brain-machine interfaces (BMI).
Currently, a major hurdle in neurotechnology is the lack of an implantable neural interface
system that remains viable for a patient’s lifetime due to the development of biological
response near the implant. Recently, mm-scale implantable electromagnetics (EM) based
wireless neural interfaces have been demonstrated in an effort to extend system longevity, but
the implant size scaling (and therefore density) is ultimately limited by the power available
to the implant.

In this thesis, we propose neural dust, an entirely new method of wireless power and data
telemetry using ultrasound, which can address fundamental issues associated with using EM
to interrogate miniaturized implants. Key concepts and fundamental system design trade-
offs and ultimate size, power, and bandwidth scaling limits of such system are analyzed
from first principles. We demonstrate both theoretically and experimentally that neural
dust scales extremely well, down to 100’s, if not 10’s of µm. We highlight first wireless
recordings from nerve and muscle in an animal model using neural dust prototype. The
thesis concludes with strategies for multi-neural dust interrogation and future directions of
neural dust beyond neuromodulation.
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Chapter 1

Introduction

As long as our brain is a
mystery, the universe, the
reflection of the structure of the
brain will also be a mystery.

Santiago Ramón y Cajal

Half a century of scientific and engineering effort has yielded a vast body of knowledge
about the human nervous system as well as a set of tools for stimulating and recording
from neurons. Recently proposed roadmaps for the field of neuromodulation [1, 29] highlight
the need for neural interface technologies that can record appropriate physiological markers
across multiple biological targets and be used to update stimulation parameters in real-time.

Key features of such closed-loop technologies include high-density, stable recordings of
many neurons, wireless and implantable modules to enable characterization of functionally
specific neural signals, and scalable device platform that can interface with small nerves or
single cortical neurons of 100 µm of diameter or less. Such closed-loop system that can both
decipher and precisely modulate physiological activity in the body can have immediate ben-
efits. For clinically relevant applications, such as bioelectronic medicine (or electroceuticals)
[29] and brain-machine interfaces (BMI) [17], such system can offer immediate therapeu-
tic effects for patient groups suffering from neurodegenerative diseases such as epilepsy,
tetraplegia, amyotropic lateral sclerosis (ALS), cerebral palsy, peripheral neuropathy, and
many more. Beyond specific patient groups, seamless interface to the nervous system can
enable high bandwidth analog input and output interface to our electronic devices, bypassing
limits imposed by especially our low bandwidth digital outputs (i.e., speech, typing, etc.).

This thesis presents the analysis, design, and experimental verification of one promising
biological interface technology called neural dust that can enable significant scaling in the
number of neural recordings from the nervous system while providing a path towards a truly
chronic neural recording solution.
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1.1 Interface to the nervous system

Currently, there are numerous modalities with which one can extract information from the
nervous system. Advances in imaging technologies such as functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), positron emission tomography (PET), and
magnetoencephalography (MEG) have provided a wealth of information about collective
behaviors of groups of neurons [12]. Numerous efforts are focusing on intra- [110] and
extra-cellular [26] electrophysiological recording and stimulation, molecular recording [114],
optical recording [115], and hybrid techniques such as opto-genetic stimulation [15] and
photo-acoustic [30] methods to perturb and record the individual activity of neurons in large
ensembles.

1.1.1 In-vivo demonstrations

By far the most popular method for recording from the nerve is the direct electrical measure-
ment of potential changes near relevant neurons during depolarization events called action
potentials (AP) using multi-electrode technology. Various neural probes (or microelectrode
arrays) exist1, which are typically at least 1 mm long and less than 50 µm wide at the tip.
The spacing between the probes is on the order of a few 100’s of µm and recording sites are
located either along the shaft or at the tip of each electrode. Variants of microelectrode ar-
rays are used both in non-human primates and in humans to demonstrate control of robotic
prosthetic arms [16, 21, 40, 73, 75], control of wheelchair [85], restoring movement impaired
by spinal cord injury [14], and sensation [32].

One of the biggest issues with microelectrode arrays or any penetrating electrode tech-
nology, however, is the immunoresponse of the brain tissue upon insertion at the implant
site. Once the probes are inserted, scar tissue forms around the probes and can cover the
recording site of the array, degrading the signal-to-noise (SNR) of the recorded signals over
time [81]. Improvements in the surgical procedures (i.e., reducing the mechanical mismatch
between electrode arrays and soft tissue), materials and shapes of electrodes, and miniatur-
ization of electrodes with novel microfabrication processes have been studied but longevity
of recordings with multi-electrodes are still one of the biggest hurdles to overcome.

1.1.2 Trends and scaling of wired neural interfaces

Since the introduction of multi-electrode recording technology in the 1950s to record from
the brain [2], the number of recording channels and therefore the number of neurons simul-
taneously recorded have witnessed a tremendous growth. Examination of studies published
over the past few decades has resulted in “Stevenson’s law” which observed that the num-
ber of simultaneously recorded neurons have doubled approximately every 7 years especially

1Examples include Utah array [63], Michigan probes [109], Duke array [72].
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Figure 1.1: Stevenson’s law observed from the past 5 decades of research that there is
doubling in the number of simultaneously recorded neurons (or recording channels) approx-
imately every 7 years. This law predicts that it will be ∼100 years until we can record from
one million neurons simultaneously.

since the 1950s [99]. This is akin to the famous Moore’s law which predicted doubling of
device density2 every 2 years.

Although rapid advances have been observed in neurotechnology over the years, Steven-
son’s law predicts that, at the current rate of growth, it would take 15 years until we can
record from approximately 1,000 neurons, 60 years until we reach 100,000 neurons, and in
∼100 years, physiologists should be able to record from 1,000,000 (one million) neurons.
Note that this is also rather optimistic in that it assumes unperturbed, continuous scaling
of multi-electrode technology, which is certainly fraught with its set of limitations, such as
interconnect density limit, micro-fabrication challenges, tissue scarring, and many more.

The trend indicates that new technological breakthroughs are necessary in order to ac-
celerate growth, similar to the disruption of Moore’s law with the introduction of CMOS
technology. Several groups are investigating novel technologies, such as advanced imaging
technologies utilizing two-photon microscopy [20, 28], wireless implantable devices [10, 68,
98, 102], molecular-level recording [35, 53, 114], and hybrid techniques such as opto-genetics
[15, 24, 80] and photo-acoustic methods [30, 108]. All modalities, of course, have some
fundamental tradeoffs and are usually limited in temporal or spatial resolution, portability,
power, invasiveness, etc. A comprehensive review of tradeoffs focused on recording from all

2There are variants of Moore’s law: doubling of (number of transistors, component cost, etc.) every 2
years.
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Figure 1.2: Neural dust system can be configured to record from the neocortex (left) or from
afferent or efferent nerves in the peripheral nervous system (right). Note that for interfacing
with the central nervous system (left), ultrasonic transceiver is implanted sub-cranially and
powered by an external transceiver via EM. For peripheral nervous system (right), such
tiered approach is not necessary as highly attenuative (to ultrasound) bone is not directly
in the path of ultrasound waves.

neurons in a mouse brain can be found in [62].

1.1.3 Wireless neural interfaces

Recently, wireless devices to enable untethered recording in rodents [59, 102] and nonhuman
primates [33, 94, 113], as well as mm-scale integrated circuits for neurosensing application
[10, 25, 71] have been developed. However, most wireless systems use electromagnetic (EM)
energy coupling and communication, which becomes extremely inefficient in systems smaller
than ∼5 mm due to the inefficiency of coupling radio waves at these scales within tissue [84,
96]. Detailed analysis of this will be covered in Chapter 2 and Chapter 3.

1.2 Thesis Contribution

We introduce neural dust, which is an ultra-miniature as well as extremely compliant bio-
logical interface shown in Figure 1.2, for both interfacing with the central nervous system
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(CNS) and the peripheral nervous system (PNS). The system is designed in light of a need
for radical improvements in scalability. In this thesis, we primarily focus on the analysis,
design, and experimental verification of neural dust that can enable significant scaling in the
number of neural recordings from the nervous system while providing a path towards a truly
chronic neural recording solution.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2: In this chapter, we provide an overview of available wireless power trans-
fer (WPT) techniques to power implantable systems. We examine tradeoffs among
different methods qualitatively and compare the performance of previously published
work. In particular, we study how commonly used electromagnetics (EM) based WPT
performs at the millimeter and sub-millimeter scale necessary for the proposed high-
density neural interfaces. We conclude with simulations that due to the non-linear
interplay of form factor, speed of light, and frequency spectra of tissue absorption,
EM-based power transmission is not an appropriate energy modality for powering sub-
mm sized implants.

• Chapter 3: In this chapter3, we show ultrasound as a viable alternative method
to power sub-mm implantable systems. We introduce a novel neural interface system,
called neural dust, which uses ultrasound to couple power to small implantable “motes”
and wirelessly communicate recorded signals via backscattering. We provide theory,
system design tradeoffs, scaling limits, and simulations of neural dust as a platform to
record from the neocortex. We verify experimentally that our model correctly predicts
power transfer efficiency and backscatter sensitivity down to 100 µm scales.

• Chapter 4: In this chapter4, we demonstrate wireless recordings from nerve and
muscle in a rodent model using neural dust. We show hardware implementation of the
transceiver and a mm-sized neural dust mote prototype fabricated on a commercially
available polyimide backplane. We benchmark the performance of neural dust in a
water tank setup and verified that the performance did not degrade much in a rodent
model. As the first in-vivo electrophysiological recordings with neural dust, this work
highlights the potential for an ultrasound-based neural interface system for advancing
future bioelectronics-based therapies.

3A part of this chapter was published in arXiv [96] and Journal of Neuroscience Methods [95].
4This chapter is done in collaboration with Ryan M. Neely and Dr. Hao-Yen Tang. A part of this

chapter was presented in IEEE Engineering in Medicine and Biology Conference [97] and published in IEEE
Transaction on Biomedical Circuits and Systems [105] and Neuron [98].
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• Chapter 5: In this chapter5, we explore more in-depth analysis of cooperative transmit
(TX) and receive (RX) beamforming approaches with multiple transceivers to enable
multi-mote interrogation. We discuss the mathematical formalization of the problem
and simulate the model to compare the performance of different beamforming tech-
niques. We show that linearly constrained minimum variance (LCMV) beamforming
technique performs the best and that cooperation among transceivers is necessary to
suppress interference from neighboring motes and achievable sufficient signal-to-noise
ratio. We examine spatial multiplexing scheme to increase the overall throughput and
hierarchical processing flow to reduce the processing and communication burden.

• Chapter 6: we conclude the thesis with the summary of the results and important
future research directions.

5This chapter is done in collaboration with Dr. Alexander Bertrand. A part of this chapter was presented
in IEEE Engineering in Medicine and Biology Conference [8].
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Chapter 2

Powering Implantable Systems

If you want to find the secrets
of the universe, think in terms
of energy, frequency and
vibration

Nikola Tesla

In this chapter, we provide an overview of options available to power an implantable
device, which requires a long term, safe, and reliable source of energy for operation. Since
the introduction of the first cardiac pacemakers in 1958 [3], batteries have been the tra-
ditional method of supplying power to implants. Although batteries are a convenient and
reliable source of energy with relatively high energy density, and despite rapid advances
in electrochemical energy storage, their limited lifetime and leakage of harmful chemicals
require subsequent replacements and limits their usage. This is especially problematic for
powering miniature implants. Additionally, to eliminate the risk of infection associated with
the transcutaneous/trans-cranial wires required for power, such tethers should be avoided as
much as possible; a wireless hub is therefore essential to relay the information recorded by
the device through the skull or the skin. As a result, we explore several different methods
for powering implants wirelessly1.

2.1 Wireless powering options

The requirements for any implantable device employing microelectrodes to acquire useful
neural signals are fairly stringent. The two primary constraints on the implanted device are
size and power. On the one hand, in order to reduce the biological response near the implant

1There are alternative methods that look to harvest energy from the environment, such as kinetic,
thermal, solar, chemical, etc. that are not discussed here. For detailed treatment, refer to [91].
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site2, it is highly desirable to minimize the volume of the implant. However, reducing the
size of the implant not only reduces the amount of power smaller devices can collect, but
reduces the distance between recording points, which decreases the absolute magnitude of the
measured potentials. This decreased amplitude exacerbates the constraints on the electronics
as it needs to reduce its noise and cram similar functionality in a smaller footprint. With
this tradeoff in mind, we will examine several wireless powering modalities.

2.1.1 Electromagnetic (EM) power transfer

Electromagnetic (EM) means of wireless power transfer are the most commonly used method.
Generally, an EM field source (e.g., point, dipole, antenna, or coil) produces EM waves in
the surrounding media, which then interacts with the media to generate non-radiative and
radiative components of the EM waves. As the EM waves propagate away from the source,
its wave properties change and the characteristics of the wave can be divided into near-field
(i.e., closer to the source) and far-field; Rayleigh distance is the distance at which the field
characteristics transition from near-field to far-field 3.

There are several variants of the EM power transfer but all methods can be broadly
classified under the following two categories: non-radiative (or near-field) and radiative (or
far-field). Non-radiative methods refer to either electric (i.e., capacitive) or magnetic (i.e., in-
ductive) field based power transfer that occurs in the near-field of the transmitter. Radiative
methods, on the other hand, refer to power transfer by beams of electromagnetic radiation.
The beam consists of both electric and magnetic field components and the field generally
decays with 1/r2. The mode of EM power transfer is largely determined by the operation
frequency (fres), wavelength in the propagation medium (λ), aperture of the transmitter
(D), and propagation distance (d).

Inductive powering

Inductive powering is the most widely used non-radiative technique to transfer energy across
tissue. An external coil (primary) generates time-varying fields, which are primarily magnetic
in nature (i.e., quasi-magnetostatic), and couple energy to an implant with a separate coil
(secondary) via magnetic induction. The efficiency of inductive powering largely depends on
the self-inductance and the mutual coupling between the two coils. These parameters are
directly related to the size of the coils and inversely proportional to the distance between
the coils, which limit the achievable range and efficiency. The range is usually limited to
distance on the order of the diameter of the secondary coil.

There have been several techniques, such as resonance and adaptive tuning [93], quality
factor enhancement [86], and multi-coil configuration [50] to improve inductive powering.

2In addition to disrupting normal biological behaviors, formation of scar tissue around the implant can
significantly degrade its performance.

3This is a crude approximation of the intricate physics involved in wave propagation. For detailed
treatment, refer to [5, 82].
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Efficiency of over 82% have been demonstrated [86]. However, due to the exponential decay
of the evanescent near-field, the mutual coupling between the coils drops dramatically and
significantly degrades the transfer efficiency and increases the sensitivity to misalignment.
Therefore, in order to achieve sufficient link robustness and transfer efficiency, coils are
usually in the cm range for implants.

Mid-field powering

Sandwiched between the near-field and far-field of the transmitter is mid-field. Mid-field
wireless powering relies on the focusing of radiation and is shown to address the downfalls
of the efficiency degradation when the implant is much smaller than its distance from the
source [38, 39]. By combining inductive and radiatve mode, high efficiency can be achieved
in the low-GHz range and mid-field enables efficient powering of miniature implant (or the
case when the dimension is comparable to the distance from its source).

Mid-field powering, however, requires proper engineering of source current and phase dis-
tribution in the antenna, which depends on the knowledge of the channel a priori; the ability
to focus energy at a desirable depth is sensitive to uncertainty in the channel properties.
However, this method offers more efficient means of powering mm-sized implants compared
to non-radiative methods as shown in Table 2.1.

Radiative powering

In order to couple energy efficiently to the implant, its wavelength, regardless of the modality
of the incoming wave must match the dimensions of the implant aperture. The aperture
mismatch between the transmitter (large) and the receiver (small) that is usually apparent
in the case of biomedical implants (i.e., less size constraints on the TX placed outside the
tissue) affects efficiency primarily due to low achievable radiation resistance in the RX. In
the case of small mm-sized implant, operation in far-field and increasing the frequency to the
mm-wave (> 10 GHz) regime can be shown to be the optimal frequency of operation [103].
Detailed analysis can also be found in [5]. Although increase in the operation frequency
can enable high efficiency power transfer and allow on-chip integration of antennas to reduce
overall footprint, designing high-performance circuitry at 10’s of GHz with increasing passive
losses is not trivial.

Also, note that with all types of EM methods, the necessity of in-vivo coils or antennas in
such implants make them inherently MRI-incompatible, presenting a major hurdle for some
applications.

2.1.2 Optical power transfer

Power transfer at higher frequencies, in the near infrared, infrared, and optical regime can
also be used. Optical charging methods typically rely on a photovoltaic cell on the implant,
which receives power from an external source (e.g., laser diodes, LEDs, etc.).
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Photovoltaic cell is usually composed of a p-n junction of a large band-gap semiconductor,
which generates electron-hole pairs from incident photons. The size of the photovoltaic cell is
determined by the operation frequency of the optical powering method. Two loss mechanisms
determine the optimal frequency of operation. On the one hand, as light propagates through
the medium, wavelength dependent scattering from many different types of particles in the
tissue. On the other hand, due to the multi-layer structure of the human tissue, reflections
at multiple interfaces of the layer causes additional degradation in the transfer efficiency.
Taking these loss mechanisms into account, studies have shown [4, 70] that near-infrared
region (NIR) region (also known as “therapeutic window”) in the optical spectrum has
minimal overall loss and can therefore achieve maximal efficiency.

These methods, unfortunately, suffer from similar limitations of solar-power harvesting,
such as inherent low efficiency in the photon-conversion and short penetration depth due to
light attenuation in tissue.

2.1.3 Ultrasonic power transfer

Acoustic waves can transmit energy between two piezoelectric transducers. Acoustic en-
ergy transmission has been used for various military applications, such as underwater and
through-wall communication [44, 78]. Unlike electromagnetics, using ultrasound as an energy
transmission modality never entered into widespread consumer application, and was often
overlooked because the efficiency of electromagnetics for short distances and large apertures
is superior.

However, ultrasound offers an attractive alternative for wirelessly powering mm-sized
or sub-mm implantable devices [18, 56, 64, 78, 96, 98]. Ultrasound has two advantages.
First, the speed of sound is 105× lower than the speed of light in water, leading to much
smaller wavelengths at similar frequencies; this yields excellent spatial resolution at these
lower frequencies as compared to EM waves. Second, ultrasonic energy attenuates far less in
tissue than EM radiation; this results not only in much higher penetration depths for a given
power, but also significantly decreases the amount of unwanted power introduced into tissue
due to scattering or absorption. In fact, for most frequencies and power levels, ultrasound
is safe in the human body. These limits are well-defined and ultrasound technologies have
long been used for diagnostic and therapeutic purposes. As a rough guide, about 72× more
power is allowable into the human body when using ultrasound as compared to radio waves4

[46, 47].

2.1.4 Survey

The performances of previously published work using various wireless powering options dis-
cussed in this section are listed in Table 2.1. The table is not meant to be used as a

4Time-averaged acceptable intensity for ultrasound for cephalic applications, as regulated by the FDA,
which is approximately 9× (94 mW/cm2) for general-purpose devices and 72× (720 mW/cm2) for devices
conforming to output display standards (ODS) compared to EM which is limited to 10 mW/cm2 [46, 47].
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Method Dimensions Freq Efficiency Ref
EM (Inductive) TX coil: 64 mm 700 kHz 82% (Air, 20 mm) [86]

RX coil: 22 mm 72% (Air, 32 mm)
EM (Inductive) TX coil: 43.7 mm 13.56 MHz 75% (Air, 10 mm) [111]

RX coil: 17.8 mm 58.2% (Tissue, 10 mm)
0.44% (Air, 50 mm)
0.16% (Tissue, 50 mm)

EM (Inductive) TX coil: 28 mm 13.56 MHz 13.5% (Air, 20 mm) [58]
RX coil: 34 mm

EM (Mid-field) TX coil: 210 mm 1.5 GHz 0.075% (Air, 15 mm) [39]
RX coil: 2 mm

EM (Far-field) TX coil: N/A 24 GHz 8.9e-4% (Air, 280 mm) [103]
RX coil: 2.4 mm 2.8e-4% (Air, 500 mm)

EM (Capacitive) Plates: 22 mm 402 MHz 68.3% (Gel, 3 mm) [48]
67% (Gel, 5 mm)

Ultrasonic TX: 15 mm 650 kHz 39.1% (Tissue, 5 mm) [79]
RX: 15 mm 17.6% (Tissue, 40 mm)

Ultrasonic TX: 13 mm 1 MHz > 50% (Oil, 30 mm) [18]
RX: 1.1 mm

Ultrasonic TX: 6.3 mm 1.8 MHz 25% (Gel, 9 mm) [98]
RX: 0.85 mm

Table 2.1: The performance of various wireless powering options discussed in this section are

summarized. Dimensions are listed in terms of its effective diameter, defined as
√

4A
π

where

A is the area of the coil.

comprehensive list but to illustrate appropriate use case for various powering modalities.

2.2 Benchmark

Despite significant progress in wireless power transfer, most work, as outlined in Table 2.1
focuses on cm-size or mm-size implants. In this section, we are interested in how the efficiency
of traditional wireless powering methods scale for transferring power to sub-mm devices. In
particular, we will illustrate the limitation of EM methods by considering the problem of
transmitting EM power to a very small implant (sub-mm) embedded a very short distance (2
mm) in tissue (or in the neocortex), with mm-sized transmitter. Efficacies of other methods
discussed above are not treated here but similar calculations can be performed to show their
limitations.

In our calculations and simulations, we will focus specifically on whether EM wireless
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powering can address the following objectives:

• What is the achievable power transfer efficiency?

• What is the absolute maximum power we can harvest safely at the implant?

• Does this approach scale to allow high density neural recording?

2.2.1 Simulation framework

Regardless of the specific implementation, any EM powered implant will contain a resonant
component that couples to the EM waves; such a system can be modeled as a series/parallel
RLC5. Assuming that the primary (TX) and secondary (RX) coils are perfectly aligned and
that an implant can accommodate capacitance density6 of approximately 10 fF/µm2 and a
planar square loop inductor is used, where the inductance is given by

L =
1.27µ0n

2davg
2

[ln(
2.07

φ
) + 0.18φ+ 0.13φ2] (2.1)

where n is the number of turns, do and di are the outer and inner diameter of the coil,
respectively, davg = di+do

2
and φ is a parameter known as a fill factor, defined as do−di

do+di
[69]. In order to compute the expression for the efficiency of the EM link, it can be shown
mathematically that the efficiency η (derivations can be found in [49]) is

η =
k2QTXQL

1 + k2QTXQL

· QL

QRX +QL

(2.2)

where k is the coil coupling coefficient defined as M
LTX+LRX

, M is the coil mutual inductance
which depends on coil geometry and distance, LTX and LRX are the inductances of TX and
RX, respectively, QTX and QRX are the unloaded quality factor of the TX and RX coil,
respectively, and QL is the loaded quality factor of the RX coil.

2.2.2 EM channel model

The attenuation of the EM signal as it propagates through brain tissue due to tissue absorp-
tion is well documented [46] and the parameters can be extracted to model the transmission
channel. Figure 2.1 plots the modeled channel (2 mm of tissue) loss as a function of frequency
and includes loss from tissue absorption as well as path loss (or beam spreading) based on
the Friis equation (20·log(λ/(4πr)). We observe that there is an exponential relationship
between the channel loss and the frequency, and at 10 GHz – the total combined loss for
one-way transmission is approximately 20 dB.

5For the purposes of this exercise, one may presume that a suitable method exists for modulating the
quality factor or mutual coupling of the RLC as a function of neural activity

6Optimistic assumption given that the typical capacitor density for 65 nm technology node is between 2
– 3 fF/µm2
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Figure 2.1: Total channel loss in 2 mm tissue, due to both tissue and propagation loss,
increases exponentially with frequency, resulting in a 20 dB of loss at 10 GHz.

Moreover, at these very small footprints (compared to the wavelength, which is in mil-
limeter range), the receive antenna efficiency becomes quite small, thereby easily adding
roughly 20 dB of additional loss, resulting in a total gain of at most -40 dB. The tissue
absorption loss penalty incurred by operating at a high frequency can be reduced by increas-
ing the capacitance density using 3D inter-digitized capacitor layouts, for instance, but even
then, eventual increase in the resonant frequency of the link causes an exponential increase
in the tissue absorption loss and the overall channel loss.

2.2.3 Simulation result

An iterative solver that optimizes η in this channel model was written in MATLAB. Given
this, the performance of electromagnetic power transfer suffers from two fundamental issues.
First, the extreme constraint on the size of the node limits the maximum achievable values of
the passives. Assuming a planar square loop inductor with 3-turn ratio, calculations predict
the resonant frequency of a 100 µm neural dust would be ∼10 GHz as shown in Figure 2.2.

To make matters worse, the mutual coupling between the transmitter and receiver coils
drops dramatically and significantly degrades the transfer efficiency and increases the sensi-
tivity to misalignments [34, 92]. As shown in Figure 2.2, EM transmission with a 100 µm
neural dust embedded 2 mm into the cortex results in 64 dB of transmission loss. Given a
1 mm2 transmitter aperture outputting 100 µW of power – limited by the need to satisfy
safety regulations on output power density7 of 10 mW/cm2 [46] – the resulting received
power at the neural dust is ∼40 pW. This is orders of magnitude smaller than the power
consumption imposed by noise requirements on the front-end amplification circuitry (refer

7Roughly, the upper limit for EM power density transiting through tissue is set by the minimum required
to heat a model sample of human tissue by 1◦C.
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Figure 2.2: The mutual coupling, and therefore link efficiency, also reduces dramatically with
the scaling of the implant dimensions.

to later sections for further discussion). As a result, prior work by [10], which features the
most energy-efficient and smallest wirelessly EM powered neural recording system to date,
at 2.5 µW/channel and 250 µm × 450 µm, is limited in terms of further dimensional scaling
and increasing the range (the effective range within brain tissue for this work was 0.6 mm).

We conclude that due to the non-linear interplay of form factor, speed of light, and
frequency spectra of tissue absorption, EM power transmission is not an appropriate energy
modality for the powering of 10’s of µm sized neural dust implants.

2.3 Conclusion

In this chapter, we examined a number of wireless powering techniques to couple energy to
sub-mm sized implants. In particular, we evaluated scaling of commonly used electromga-
netics (EM) based approaches, but due to the inherent mismatch in the wavelength and the
size of the implant, along with limited output power due to safety, EM-based WPT cannot
provide sufficient power to sub-mm sized implants. According to Table 2.1, ultrasound ap-
pears to be a promising alternative that scales more favorably than EM. We will introduce a
novel neural interface system based on ultrasonic power transfer and communication in the
next chapter.
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Chapter 3

Neural Dust: Distributed, Ultrasonic
Backscattering System

In this chapter, we present a neural recording platform built from low-power electronics
coupled with ultrasonic power delivery and backscatter communication. The system, called
neural dust is an ultra-miniature, compliant, and distributed system that can enable sig-
nificant scaling in the number of neural recordings from the nervous system. This can be
achieved via two fundamental technology innovations: (1) 10 – 100 µm scale, free-floating,
independent sensors (or neural dust motes) that detect and report local extracellular elec-
trophysiological data, and (2) a transceiver1 that establishes power and communication links
with the neural dust mote. We examine both the theoretical foundation and fundamental
system design trade-offs of neural dust and experimental verification of the predicted scaling
effects.

3.1 Ultrasonic power link model

The design of neural dust is heavily constrained in both size and available power to the
implant. As a result, it is imperative to accurately model the transmission channel to
maximize the power efficiency.

3.1.1 Piezoelectric materials

Piezoelectricity refers to the phenomenon present in certain solid (usually crystalline) ma-
terials where there is an interaction between the mechanical and electrical states. For a
crystal to exhibit the piezoelectric effect, its structure should have no center of symmetry,
i.e., anisotropic, such that a stress (tensile or compressive) applied to such a crystal will

1In the context of recording from the central nervous system (CNS), it will be placed beneath the skull,
i.e., sub-cranially, in order to avoid strong attenuation of ultrasound by bone and powered by an external
reader via EM power transfer.
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alter the separation between the positive and negative charge sites in each elementary cell,
leading to a net polarization at the crystal surface. The effect is practically linear in linear
elastic solids and governed by

T = cS + hE (3.1)

D = εrR + hS (3.2)

where h is the piezoelectric coupling coefficient, strain (S) and stress (T ) are related by the
elastic stiffness (c) and the electric displacement (D) is related to the electric field (E) by
the permittivity (εr) of the material.

Piezoelectric materials can transduce electrical energy into mechanical energy and vice
versa by changing lattice structure, and this state change is accessible via either electrical
stimulation or mechanical deformation. There is a wide range of piezoelectric materials, each
suitable for different applications. Several parameters, such as piezoelectric strain constant
(d-coefficient), piezoelectric voltage constant (g-coefficient), mechanical quality factor (Q),
electromechanical coupling factor (k), etc. can be used to compare different piezoelectric ma-
terials while selecting for a specific application. In particular, k is the measure of conversion
efficiency between mechanical and electrical energy and often higher k is desired.

As an example of choosing appropriate material, piezoelectric polymer compounds such
as polyvinylidene (di)fluoride (PVDF) are primarily used to construct broadband, high-
sensitive hydrophones due to their low quality factor and high piezoelectric voltage constant
(g-coefficient). On the other hand, ceramic compound known as lead zirconate titanate
(PZT) is a popular choice for high-power, high-performance, narrowband diagnostic ultra-
sonic imaging due to its greater sensitivity, higher operational temperature, and exceptional
electromechanical coupling coefficient (k). When used in-body, however, the lead content
of PZT makes it difficult to introduce into human tissue in chronic applications. A num-
ber of alternative, implantable piezoelectric materials, such as barium titanate (BaTiO3),
aluminum nitride (AlN) and zinc oxide(ZnO) [83], exist with material properties slightly
inferior to PZT. As a result, initial study of the link efficiency assumes the use of BaTiO3.
Given the relative ease of obtaining PZT crystals with varying geometry and encapsulating
it in biocompatible encapsulant2, experiments were carried out with PZT.

3.1.2 Piezoelectric transducer model

Due to the importance of piezoelectric transducers in various applications, there are a number
of equivalent circuit models to describe the electromechanical operation of a 1D piezoelectric
crystal.

The KLM model by Krimholtz, Leedom, and Matthaei is arguably the most common
equivalent circuit and is a useful starting point to construct a full link model with the intent

2PDMS silicone or UV-curable medical-grade epoxy is used to enable short-term implantation of PZT-
based implant. Its effects are further discussed in subsequent sections.
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Figure 3.1: KLM model of a neural dust piezoelectric transducer, showing one electrical
port and two mechanical ports. Coupling between the domains is modeled with an ideal
electromechanical transformer.

Figure 3.2: Transducer model can be simplified to a 1D series circuit model around the
fundamental resonance.

of examining scaling and system constraints [54]. The basic model, shown in Figure 3.1,
includes a piezoelectric transducer with electrodes deposited in parallel to the poling direction
of the transducer. Across a wide range of frequencies, the entire transducer is modeled as
a frequency-dependent three-port network, consisting of one electrical port (where electric
power is applied or collected) and two acoustical ports (where mechanical waves are produced
or sensed from the front and back faces of the transducer).

The parallel-plate capacitance due to the electrodes and the frequency-dependent acoustic
capacitance are modeled as C and Xi, respectively, and the transduction between electrical
and mechanical domains is modeled as an ideal electromechanical transformer with a turn
ratio of Φ, connected to the middle of a transmission line of length λ/2, as shown in Figure 3.1.
Assuming an infinite 2D plate piezoelectric transducer of thickness t, the resonant frequency
is set by t = λ/2; at the resonant frequency, the ultrasound wave impinging on either the
front or back face of the transducer will undergo a 180◦ phase shift to reach the other side,
causing the largest displacement between the two faces. This observation implies that phase
inversion only exists at the odd harmonics of the fundamental mode in a given geometry.
Near the resonant frequency of a piezoelectric transducer, KLM model can be simplified to



CHAPTER 3. NEURAL DUST: DISTRIBUTED, ULTRASONIC BACKSCATTERING
SYSTEM 18

Figure 3.3: COMSOL simulation exhibits a resonant shift and spurious tones present in the
frequency spectra of a cubic transducer.

the resonance model3 as shown in Figure 3.2.
However, both models are derived under the assumption of pure one-dimensional thick-

ness vibration, and therefore can only provide a valid representation for a piezoelectric trans-
ducer with an aspect ratio (w/t) greater than 104 that mainly resonates in the thickness mode
where w and t are width and thickness of piezoelectric material, respectively [89]. Given the
extreme miniaturization target for the neural dust, a cube dimension (aspect ratio of 1:1:1)
is a better approximation of the geometry than a plate (aspect ratio > 10:10:1). Due to 2D
effects, such as Poisson’s ratio and the associated mode coupling between resonant modes
along each of the three axes of the cube, changing aspect ratio alters the resonant frequen-
cies among other parameters [41]. The piezoelectric transducers for both the transceiver
and the neural dust mote must be designed to resonate at the same frequency to maximize
the link efficiency. In the model below, we assume the neural dust motes are cubic and the
transceiver is approximately planar (i.e., 2D).

In order to obtain an accurate estimate of KLM parameters for the piezoelectric trans-
ducer in the neural dust mote, we simulated a cube transducer using a 3D finite element
package (COMSOL Multiphysics, Acoustic Module) to model anisotropies, resonant fre-
quency shift, and mode coupling between several resonant modes. The resonant frequency
of a 100 µm thick BaTiO3 is shown in Figure 3.3. The effect of decrease in resonance by
a factor of 1.7 is included in the modified KLM model by extracting the effective acoustic
impedance of the neural dust mote from COMSOL. To match the resonant frequency of the
transceiver and the neural dust mote, the thickness of the transceiver is varied to match the

3Since the model has both series and parallel resonances, there are both series resonance (short-circuit
resonance or simply resonance) and parallel resonance (open-circuit resonance or anti-resonance). This will
be evident in piezoelectric transducer measurement in subsequent sections and the separation between the
two peaks will determine the Q of the resonator.

4Alternatively, where w/t is less than 1/10.
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fundamental thickness mode of the neural dust. Approximately 66 % of the total output
energy is contained in the main thickness resonance; this is modeled as a loss term. For
BaTiO3, coupling to other modes can be reduced by stretching it in the [110] direction be-
cause BaTiO3 is both anisotropic and partially auxetic, exhibiting negative Poisson’s ratio
and therefore providing gain when stretched [6].

3.1.3 Mote placement

As the pressure field generated by a uniform continuous-wave excited piezoelectric transducer
propagates through the tissue medium, the characteristics of the pressure field change with
distance from the source. The varying field is typically divided into two segments, near field
and far field. In the near field, the shape of the pressure field is cylindrical and the envelope
of the field oscillates. At some point distal to the transducer, however, the beam begins to
diverge and the pressure field becomes a spherically spreading wave, which decays inversely
with distance. The transition between the near and far field is where the pressure field
converges to a natural focus, and the distance at which this occurs is called the Rayleigh
distance, defined as,

L =
(D2 − λ2)

4λ
≈ D2

4λ
,D2 � λ2 (3.3)

where D is the aperture width of the transmitter (or transceiver) and λ is the wavelength
of ultrasound in the propagation medium. In order to maximize the received power, it
is preferable to place the receiver at one Rayleigh distance where the beam spreading is
at a minimum. Therefore, with 2 mm of transmission distance assumed in the context of
interrogating an implant in the cortex and a resonant frequency of 15 MHz (λ = 100 µm),
the maximum dimension of the transceiver should be ∼1 mm.

3.1.4 Complete link efficiency parameters

A good model of the ultrasonic channel is crucial in order to assess the tradeoffs in optimiz-
ing systems for energy transfer through lossy brain tissue. The complete energy link model
is shown in Figure 3.4 and can be divided into three parts: (1) the ultrasonic transceiver or
transmitter, (2) tissue, and (3) the neural dust mote or receiver. A signal generator and am-
plifying stages produce power for the ultrasonic transmitter through an impedance matching
circuit that provides conjugate matching at the input. The ultrasonic wave launched by the
transceiver penetrates tissue, modeled as a lossy transmission line, and a fraction of that
energy is harvested by the ultrasonic receiver, or neural dust mote. We evaluate embedding
the receiver up to 2 mm into the tissue, which generates an AC voltage at the electrical port
of the piezoelectric transducer in response to the incoming ultrasonic energy.

In order to compute the link energy transfer efficiency, the model can be decomposed
to a set of linear and time-invariant two-port parameters, representing a linear relationship
between the input and output voltage. Here, we choose to represent the input-to-output
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Figure 3.4: Complete single interrogator, single neural dust power and communication
through link models.

relationship using ABCD parameters, which simplify analysis of cascades of two-port net-
works through simple matrix multiplication [82]. By representing the link model with the
two-port network, we can come to conclusions concerning optimal power transfer efficiency
(or “gain”).

We can define power gain in many forms: transducer gain (Gt), power gain (Gp), avail-
able gain (Ga), and maximum gain (Gmax). The distinction among these figures of merit
results from the designers’ ability to vary either input (transceiver) or output (neural dust)
impedance or both. In a two-port network, the maximum power gain, denoted Gmax, is
achieved when a designer can conjugate match both the input and output impedances to
source and load impedances, respectively. In the scenario that a designer can only adjust
load impedance, source impedance, or neither, Ga, Gp, and Gt, respectively, are appropriate
figure of merits. Note that Gmax ≥ Gp, Ga ≥ Gt.

However, with a 100 µm neural dust mote, the output impedance level is such that in
order to electrically match, it would require ∼100 µH of inductance to perfectly conjugate
match the output of the two port link network. Given the compact form factor of the
neural dust, it is completely infeasible to obtain such inductance with electrical means, and
therefore Gmax is an unachievable figure of merit. It may be possible to approach Gmax by
mechanical means such as the addition of material layers that perform an acoustic impedance
transformation, or similarly, by electromechanical means such as utilizing micromachined
acoustic resonators, but these add significant complexities in integration and packaging.
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Figure 3.5: Link efficiency with and without a λ/4 mechanical matching layer as a function
of the neural dust side dimension shows that a significant amount of energy can be harvested
by the mote, even at 10’s of µm’s of dimensions. At the resonant frequency, ultrasonic link
efficiency is > 107 more than EM transmission with 100 µm mote dimension.

Therefore, for comparison and scaling analysis, we assume we only have impedance control
at the input, or the transceiver side, and therefore, power gain (Gp) is the suitable figure-of-
merit.

3.1.5 Simulated link efficiency

The complete link model in Figure 3.4 with BaTiO3 is implemented in MATLAB with the
limitation of the KLM model (as outlined in previous subsection) corrected via COMSOL
simulations. Given a 1 mm2 transceiver, Figure 3.5 plots both the efficiency of the link and
the received power at the neural dust mote as the size of the mote scales and the thickness
of the transducers in the transceiver is adjusted to match the resonant frequency of the dust
and the tissue, i.e., transmission line resonator. We note that the maximum efficiency of
the KLM-adapted link model, where the transceiver is fully immersed in the tissue medium,
is limited to 50% because both the back and front side of the interrogator are loaded by
the tissue layer. We can direct the majority of the acoustic energy towards the front side
(i.e., side facing the tissue), by loading the back side with either much lower or a much
higher acoustic impedance compared to that of the tissue. Backing is generally done using
a material with high attenuation and high density or air, which exhibits acoustic impedance
(∼400 Rayls) which is several orders of magnitude smaller than that of soft tissues (∼1.5
MRayls) and BaTiO3 (∼30 MRayls). Using air as the backing material simplifies packaging
[18].

Additionally, in order to maximize the link efficiency, proper impedance matching at the
front side of the transceiver is needed to avoid significant reflection due to large impedance
match between BaTiO3 and soft tissue. Depending on the thickness of the neural dust mote
and the resonant frequency of the network, ultrasonic wave launched by the transceiver
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undergo varying phase changes through the lossy tissue. Thus, the efficiency of a system
with smaller dust motes can be improved if the total propagation distance happens to be
a multiple of a wavelength of the ultrasound. As a result, for dust motes greater than
100 µm, we note that the efficiency does not monotonically increase with the dimension.
On the other hand, for a dust mote that is less than 100 µm in dimension, because the
wavelength associated with the network’s resonant frequency is much smaller than its tissue
propagation distance, the link efficiency depends more heavily on the cross-sectional area
of the dust. Therefore, we note that the efficiency will drop at least quadratically with the
reduction of dust dimension. The efficiency of the link can be improved with a λ/4 matching
layer for impedance transformation, but the improvement is limited due to the loss from the
material (e.g., attenuation of graphite epoxy is ∼16 dB/(cm·MHz) [67] compared to that in
brain tissue which is 0.5 dB/(cm·MHz) [43]) as shown in Figure 3.5. Note that for the case
with this matching layer, the efficiency is worse for dust motes that are > 500 µm since the
loss of the matching layer outweighs that of the tissue.

More specifically, simulation of the complete link indicates that for a 100 µm mote em-
bedded 2 mm into the brain, ultrasonic power transmission can enable 7% efficiency power
transmission (-11.6 dB). At the resonant frequency, we can receive up to ∼500 µW at the
neural dust mote (resulting in nano-meters of total displacement) with a 1 mm2 interrogator,
which is > 107 more than EM transmission at the same size scale (see Chapter 2). Further-
more, scaling of neural dust also indicates that approximately 3.5 µW can be recovered by
a dust mote as small as 20 µm through ultrasonic transmission, which is still in the realm
of feasibility to operate a state-of-the-art CMOS neural front-end.

3.1.6 Scaling Limit

Free-floating extracellular recording at untethered, ultra-small dust motes, however, poses a
major challenge in scaling. Unlike the needle-like microelectrode shanks that can measure
time-domain electrical potential at each recording site in relation to a common electrode,
placed relatively far away, both the recording and the common electrode must be placed
within the same (very small) footprint. Although the two are interchangeable, the separation
and therefore, the maximum differential signal between the electrodes are inherently limited
by the neural dust footprint, and follow the dipole-dipole voltage characteristic that decreases
quadratically5 with increasing separation distance. Since the power available to the implant
has a fixed upper bound, the reduction of extracellular potential amplitude as the neural dust
dimensions are scaled down in the presence of biological, thermal, electronic, and mechanical
noise (which do not scale), causes the signal-to-noise (SNR) ratio to degrade significantly.
This places heavy constraints on the CMOS front-ends for processing and extracting the
signal from extremely noisy measurements. Therefore, if we consider sufficient SNR at the

5Unless very near a cell body, in which case it appears to scale exponentially; see [36] for a more thorough
review
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Figure 3.6: As we scale down the neural dust size, more power is needed to keep the noise
floor down to maintain SNR while less power is captured. The intersection of these two
trends is the smallest mote that will still operate. Scaling with an SNR of 3 shows operation
down to 50 µm. The analysis assumes the use of BaTiO3 and two different FDA-approved
ultrasonic energy transfer protocols, and does not include the use of matching layers.

input of the neural front-ends as one of the design variables, the scaling of neural dust as
depicted in Figure 3.5 must be revisited.

Focusing specifically on the scaling of a cubic neural dust, we run into the inherent limita-
tion in the maximum achievable differential signal discussed above. At a separation distance
of 100 µm between recording electrodes, we expect a 10 µV action potential (AP) amplitude6

with the amplitude further reducing quadratically as the separation is reduced. Since the
power available to the neural dust is limited, the design goal of a front-end architecture is
to minimize the input-referred noise within this power budget. The power efficiency factor
(NEF2 ·Vdd) quantifies the tradeoff between power and noise [71] and extrapolating from the
measurement result of a previous CMOS neural front-end design (NEF2 · Vdd of 9.42 [10]),
we can estimate the relationship between the input-referred noise level and the DC power
consumption of an optimally designed front-end architecture as we scale. The fundamental
limit to the NEF2 · Vdd occurs at a supply voltage of at least ∼4 kBT/q or 100 mV, in order
to reliably operate the FET, and by definition, the NEF of 1 for a single BJT amplifier [100].
In principle, one could push the supply voltage down to ∼2 kBT/q, but in practice 100 mV
is already extremely aggressive.

6Data is derived from [27]
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Fixing the input SNR to 3, which should be sufficient for extracting neural signals, we
can evaluate the scaling capability of neural dust as shown in Figure 3.6. We assumed the
use of BaTiO3 in the model described in the section above and do not include the use of
matching layers. We also assumed that the transceiver’s output power is constrained by
the two different FDA-approved ultrasonic energy transfer protocols. We note that there
exists an inherent tradeoff between the power available to the implant and the exponential
increase in the power required to achieve an SNR of 3 with the reduction of spacing between
the electrodes. The point of intersection in Figure 3.6 denotes the minimum size of neural
dust that enables the operation of the complete link. For the stated assumptions, this occurs
at 50 µm, which is greater than the dimension at which the thermal noise from the electrode
(R = 20 kΩ and BW = 10 kHz) limits further scaling. This effectively means that, staying
within FDA-approved ultrasound power limits, assuming an SNR of 3 is required, neural dust
motes smaller than 50 µm cannot receive enough power to distinguish neural activity from
noise. Note that the cross-over assumes 100 % efficiency in the rectifier and zero overhead
cost in the remaining circuitry, both of which will not be true in practice (i.e., the actual
size limit will be larger than this).

3.2 Ultrasonic backscatter communication

Given the stringent requirements on both the size and power, broadcasting neural recording
data from the dust motes to the transceiver by building a fully active transmitter onto the
tiny mote is infeasible from both power and size standpoint. Therefore, we adopt a com-
munication method called backscattering, commonly used in radio frequency identification
(RFID) technologies [31]. In RFID, passive and semi-passive sensor tags transmit the data
by modulating the incoming RF energy (from which it harvests sufficient energy to operate
the electronics) and re-radiating the modulated RF energy back to the reader. This modula-
tion of the backscattered RF energy can be achieved by varying the load impedance, which
changes the coefficient of reflectivity7. Backscatter communication is a more attractive choice
than building a fully active transmitter on the implant because it does not need batteries
or significant capacitive energy storage, thus extending lifetimes, eliminating the risk of bat-
tery leakage, and removing the significant impediment to size scaling that would be created
by the dramatically reduced capacitance available on a small mote. Since this scheme can
be applied to any link, regardless of the transmission channel modality, we investigate this
strategy in the context of neural dust.

3.2.1 System consideration

Generally, the CMOS component of an active neural dust mote consist of at least a full-
wave bridge rectifier to convert the harvested piezoelectric AC signal to a DC level and
regulators to generate a stable and appropriate DC supply voltage for the rest of the CMOS

7Modulation can be encoded in amplitude, frequency, and/or phase of the impinging wave.
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circuitry. The basic architecture of the CMOS front-ends will depend on the application. For
the acquisition of the entire neural signal trace, we must capture both the LFP and action
potentials. Given the relative amplitude, DC offset, and frequency range of these signals, the
circuit must operate at a full bandwidth of 0 to 10 kHz with > 70 dB of input dynamic range
[71]. Researchers have demonstrated a mixed-signal data acquisition architecture solution
to extract LFP and action potentials, originally proposed in [71], which cancels the DC
offset in the analog domain to alleviate the dynamic range constraints and to eliminate
bulky passive components used in [112]. Therefore, the CMOS front-ends include rectifiers,
voltage regulators, low-noise amplifiers, DC-coupled analog-to-digital converters (ADC) and
modulators to communicate the decoded information back to the transceiver.

Co-integration and packaging challenges and – most importantly – the footprint of cur-
rent CMOS neural front-ends present major roadblocks to the active implant approach. The
smallest CMOS neural front-end system published to date, not including rectifiers and mod-
ulators, occupies approximately 100 µm of silicon real estate [71], and packing the same
functionality onto a smaller footprint may not be plausible. Thinned, multi-substrate inte-
gration to meet the volume requirements while keeping the overall CMOS area constant may
resolve this issue, but requires substantial further technology development to represent a vi-
able solution. Scaling the active electronics to appropriate dimensions is clearly a bottleneck,
but presents an enticing opportunity for further innovation to address the issue.

Ideally, the simplest neural dust mote would consist of a piezoelectric transducer with a
set of surface electrodes that can record the occurrence of a neural spike, and the extracted
measurement can be reported back to the transceiver by somehow encoding the information
on top of the incoming ultrasound wave. The design methodology we adopt here is that of
elimination: starting with current neural front-end architectures that consist of, but are not
limited to, rectifiers, high-resolution ADC, amplifiers, regulators and modulators, we start
eliminating each component to truly understand its impact on overall system performance,
and therefore assess its necessity for inclusion on the dust mote itself. Rectifiers and voltage
regulators are essential to provide a stable DC power supply for the transistors in the system.
In order to prevent variations in the electrical response of the circuits with the variation of
its power supply, it is important to have sufficient amount of capacitance to curb any supply
ripple and filter out high frequency electrical noise. As a result, these two components tend
to occupy the largest amount of space in the CMOS die footprint.

3.2.2 Simplified circuit implementation

Here, let us re-examine the need for a DC supply as we entertain the idea of completely
eliminating both the rectifiers and the voltage regulators. In this scenario, the piezoelectric
transducer harvests the incoming ultrasonic wave and directly converts it to an AC electrical
voltage. At this point, the design goal essentially boils down to devising ways of encoding
neural data on top of this incoming ultrasound wave, to be reported back to the transceiver
via modulation.
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Figure 3.7: A process of elimination leads to a simple architecture (right) where we utilize a
FET to vary the electrical load impedance, changing the ultrasonic wave reflectivity at the
dust and modifying the backscattered wave.

We propose an implementation shown in Figure 3.7, where the drain (D) and source
(S) of a single field-effect transistor (FET) sensor are connected to the two terminals of a
piezoelectric transducer while the FET modulates the current IDS as a function of a gate
(G) to source voltage, VGS. In this scheme, given that the supplied VDS of the FET is
an AC voltage that swings both positive and negative, the body (B) of the FET must be
biased carefully. Normally, for a n-channel FET, the body is connected to the source voltage
to prevent the diode at the B-S and B-D junctions from turning on. However, keep in
mind that since a FET is a symmetric device, the source and drain are defined only by
which terminal is at a lower potential. Therefore, the electrical source/drain terminals, or
left/right for disambiguation (from a cross section of a FET), swap physical sides every half
cycle of the harvested AC waveform. As a result, simply shorting the body to either physical
terminal of the FET causes the diode formed at the B-S and B-D junctions to be forward-
biased, so care must be taken to avoid neural signal from modulating the incoming sinusoid
only half of the cycle.

As a result, we propose an alternative biasing scheme for the FET to modulate the entire
sinusoid as shown in Figure 3.7. The resistors Rb act to cause the neural potential to appear
between the gate and both of the left/right terminals of the transistors while superimposing
the AC waveform from the ultrasonic transducer across these same two terminals. In this
manner, even though the electrical source/drain terminals swap every half cycle, during both
halves of the cycle the VGS of the FET is modulated by the neural signal.

The circuit achieves this superposition by relying on the fact that the neural signals
occupy a much lower frequency band than the ultrasound, and that the ultrasound transducer
itself has a capacitive output impedance (Cpiezo). Thus, Rb should be chosen so that 1/(Rb ·
Cpiezo) is placed well above the bandwidth of Vneural (> 10 kHz) but well below the ultrasound
frequency (∼10 MHz). Rb along with the transistor width must also be chosen carefully to
achieve the best reflectivity, as will be described shortly.

Since modulation of IDS in turn modulates the impedance seen across the two piezoelec-
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tric drive terminals, the FET effectively modulates the backscattered signal seen by a distant
transmitter. The change in the nominal level of IDS is a function of VGS, which can be up
to 10 µV (Vneural) for a 100 µm dust mote near an active neuron. The sensitivity, S, to the
action potential, then, is defined as the change in IDS with respect to VGS normalized by the
nominal IDS (in addition to the current through Rb) and Vneural,

S =
Vneural

IDS + VDS/2Rb

· ∂IDS
∂VGS

= Vneural ·
gm

IDS + VDS/2Rb

(3.4)

Since gm (transconductance of a FET) is directly proportional to IDS, in order to max-
imize gm/IDS (i.e., achieves the largest gm for a given IDS), we would like to operate the
FET in its steepest region – specifically, deep sub-threshold where it looks like a bipolar
junction transistor (BJT). Therefore, the nominal VGS bias can be 0 V, which simplifies
the bias circuitry. The modulation of the current is equivalent to a change in the effective
impedance of the FET, or the electrical load to the piezoelectric transducer. This variation
in the load impedance affects the ultrasonic wave reflectivity at the neural dust and modifies
the wave that is backscattered. Note that in order to maximize the sensitivity (i.e., oper-
ating the transistor in deep sub-threshold), the system should be constrained such that the
piezoelectric voltage is never too large compared to the threshold voltage.

A SPICE simulation of a typical low-threshold voltage n-channel FET in a standard 65
nm CMOS technology was used in order to assess the nominal current level and the change in
the effective impedance of the electrical load with Vneural. We assumed that we can implement
suitably large Rb in sufficiently small area of the neural dust motes. As previously mentioned,
in deep sub-threshold, the FET behaves as a BJT, where the physical limit on the achievable
gm/IDS = q/kBT , determined by the Boltzmann distribution of carriers. As a result, we can
obtain S = 400 ppm for Vneural = 10 µV with a perfect BJT. Given the non-ideality factors
associated with FETs, the sensitivity is reduced by a factor of 1.5 – 2, to roughly 250 ppm,
which is confirmed by the simulation.

The implication of the modification in the electrical properties of the n-channel FET
(output load of the piezoelectric transducer) on the change in the acoustic signal and the
corresponding design specifications for the transceiver is discussed in detail below.

3.2.3 Transceiver receive sensitivity

A different set of challenges exist in implementing circuitry to generate, collect and process
neural data. Namely, innovative approaches are essential to (1) ensure that the transceiver/sensor
combination has sufficient sensitivity to meet the necessary data resolution and (2) allow for
combination of various multi-mote interrogation strategies to distinguish among different
neural dust motes. Techniques for multi-mote interrogation are detailed in Chapter 5.

We assume that the power and size constraints of the neural dust, and not the transceiver,
are the major bottlenecks in the scaling of ultrasound-mediated neural dust system. In order
to verify the validity of this assumption, we can examine, to the zeroth order, the power
required by the transceiver to achieve certain receiver sensitivity for a passive implementation
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Figure 3.8: Change in the input power level (i.e., power at the transceiver) as a function of
transistors width for a 65 nm CMOS process and with (a) 100 µm and (b) 20 µm neural
dust motes.

of the neural dust mote. From the complete link model shown in Figure 3.4, we note that the
change in the electrical impedance of the n-channel FET load induces a change in the input
admittance (or the input power) of the two-port network. The transceiver (as a receiver)
must be able to detect this change in the input power level in order to resolve the occurrence
of a neural spiking event. Therefore, we need to determine the size of the FET sensor on the
dust mote that maximizes this change in the input power level of the two-port network, or,

∆Pin ∝
∣∣∣∣Yin,spike − Yin,nomYin,nom

∣∣∣∣ (3.5)

where Yin,spike and Yin,nom denote input admittance of the two-port network with and without
a neural spike, respectively. Figure 3.8 shows the result of the optimization problem with a
standard 65 nm CMOS technology. For 100 µm and 20 µm dust motes, 75 µm and 16 µm
width FET maximize ∆Pin, respectively. Note that since the optimum transistor width (i.e.,
nominal impedance) for achieving the largest reflection is pretty flat, passive neural dust
system is insensitive to the effects of threshold variability in the transistors and DC offsets
in the neural electrodes.
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The FET sensor design variable (transistor width), however, is constrained due to the
thermal noise of the FET (which sets the lower limit) and the maximum available power at
the mote and the neural dust form factor (which set the upper limits). Clearly, the small
footprint of the neural dust restricts the maximum effective width of the FET sensor that we
can pack on the dust, and we term this the area limit. More importantly, we need to ensure
that the thermal voltage noise of the FET does not overwhelm the AP voltage. As a result,
for a fixed bandwidth, in order to lower this voltage noise floor of the FET, it is necessary
to increase the bias current, and hence the power consumption given a fixed output voltage.
Given a simple single-ended transistor amplifier with a single dominant pole, a bias current
of IDS, and a transconductance of gm, the minimum bias current required can be derived as

IDS =
π

4
· 4kBT

v2n
· kBT

q
·BW (3.6)

where v2n is the input-referred voltage noise. As a result, the FET must be large enough to be
able to sustain this minimum bias current. Therefore, for a BW = 10 kHz and voltage SNR
at the input of the FET of 3 (which sets v2n based on Vneural), we can compute the minimum
allowable size of the FET, restricted by the noise limit. Finally, in order to reliably operate
the FET, the drain-source voltage of the FET must be at least ∼4 kBT/q or 100 mV. As a
result, neural dust must capture enough power from the transceiver to sustain both 100 mV
and the minimum current required to ensure that the thermal noise does not dominate the
AP voltage. This is defined as the power limit.

With such restrictions, Figure 3.8 shows that for a 100 µm dust mote, we can design a
FET sensor to generate a 16.6 ppm change in the input power with a measured Vneural. This
results in ∼120 nW (-39 dBm) of backscattered power at the input given a 1 mm2 transceiver
aperture outputting 7.2 mW of power to satisfy safety regulations on output power density
of 720 mW/cm2. With such power levels, given a thermal noise spectral density of -174
dBm/Hz of input noise power, 10 kHz of BW, 10 dB of noise figure, and 10 dB of SNR, a
traditional CMOS receiver should be sensitive enough to detect at minimum -114 dBm of
input power. A number of highly-sensitivity receivers with < mW of DC power consumption
have been demonstrated (e.g., [76]).

For a 20 µm dust, however, Figure 3.8 shows that the upper limit on the FET size
imposed by the power limit is lower than the lower limit set by the noise limit, indicating
that the passive implementation of neural dust system scales roughly to 20 µm.

3.2.4 Re-design of neural dust mote

The scaling of neural dust mote is limited by the noise requirement of the front-end archi-
tectures, which is determined by the achievable differential signals between the electrodes.
Decoupling the inherent tradeoff between the size of individual implants and the achievable
SNR can improve the scaling of these implementations.

Since the trade-off derives directly not from the neural dust dimension, but from electrode
separation, one approach may be to add very small footprint (∼1 – 5 µm wide) “tails” which
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Figure 3.9: Neural dust with an ultra-compliant flexible polyimide “tail”, populated with
recording sites, can be envisioned to bypass the limits of the achievable differential signal
between two electrodes placed on a neural dust footprint.

position a single (or multiple) electrode relatively far (> 50 – 100 µm) from the base of the
neural dust implant. This would result in the design shown in Figure 3.9, where instead
of placing a single differential surface electrode on neural dust, the neural dust can consist
of a short strand of flexible and ultra-compliant substrate populated with recording sites.
Assuming that the achievable electrode separation in the tail of a 20 µm mote is 100 µm,
this implies that the noise limit, as shown in Figure 3.8, will set the lower bound to 0.4 µm
of transistor width and allow the design of a FET sensor on the dust mote that achieves the
optimal sensitivity, at 5.7e-2 ppm. This corresponds to 410 pW (-63.9 dBm) of backscattered
power at the input, which is still in the realm of feasibility with a traditional CMOS receiver
[76]. Therefore, this approach can address one of the major pitfalls with only a minor
adjustment to the original idea as this neural dust still operates under the same principle as
before, but has higher achievable SNR.

Note that the exact technology used for the previous analysis is not critical to the con-
clusion we drew. Although the absolute value of the impedance level is important since it
determines the reflection coefficient, and therefore, the efficacy of the backscatter, as shown
in Figure 3.8, the analysis above indicates that the optimal transistor width for the maximal
sensitivity is small compared to the available neural dust footprint. Therefore, although the
threshold voltage (hence the nominal impedance level per transistor width) may vary among
different technology nodes, achieving the optimal impedance level within the footprint may
not be an issue.
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Figure 3.10: (a) Assembly prototype schematic (b) a picture of the complete prototype with
a white light micrograph of PZT crystal mounted on board.

3.3 Experimental result

3.3.1 Sample preparation

The assembly prototype, shown in Figure 3.10, was realized on a 31 mil thick two-layer FR-4
board while metalized PZT coupons of various thicknesses (PSI-5A4E, Piezo Systems and
PZT 841, APC International) were bonded to pre-soldered bumped electrodes on one side
of the board using solder paste. The discrete FET (RV1C002UN, Rohm Semiconductor)
and bias resistors for ultrasonic communication were assembled onto the side opposite to
where the PZTs were mounted prior to bonding. The PZTs were then wafer saw diced, with
non-bonded areas dropping off and leaving an array of small PZT crystals bonded to the
PCB. Next, a single wirebond made the connection between the top plate of the PZT and
an electrode on the PCB, completing the circuit. Finally, the entire assembly was coated in
PDMS to protect the wirebond and provide insulation. The pitch between the unit cell is
limited by the size of the discrete components and is roughly 2.3 mm× 2 mm.

3.3.2 Electrical characterization

Electrical properties of the PZT crystals on the assembled prototype were measured us-
ing a vector network analyzer (VNA). The device under test (DUT) was calibrated using
open/short/load structures fabricated on the same board to de-embed the board and fixture
parasitics. Figure 3.12(b) shows a representative impedance plot of a (250 µm)3 PZT crystal
compared to simulation. We note that the mechanical loading of the circuit board itself
(FR-4), PDMS encapsulant, and water heavily dampened the electro-mechanical resonances
as compared to the unloaded condition (air backing). The mechanical quality factor Qm can
be calculated from

Qm =
f 2
a

2πfrZrCp(f 2
a − f 2

r )
(3.7)
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Figure 3.11: Acoustic characterization setup with a calibrated ultrasonic transducer for (a)
power delivery and (b) backscatter communication verification.

where fa and fr represent anti-resonant (where impedance is maximized) and resonant fre-
quency (where impedance is minimized), respectively, Zr represents an impedance at res-
onance, and Cp is the low-frequency capacitance. The calculated quality factor from the
measurement is roughly 4.2 compared to 5.1 in simulation. According to the datasheet, the
unloaded Qm of the PZT is ∼500, indicating that FR-4 backing and wirebonds are causing
significant degradation in Qm. Despite this drastic reduction in Qm of the PZT crystals,
experiments showed that the backscattered signal level only decreased by roughly ∼19%
between the mechanically unloaded and loaded conditions.

3.3.3 Ultrasonic characterization

Ultrasonic power transfer and communication were performed using a home-built setup
shown in Figure 3.11. A commercially available 5 MHz or 10 MHz single-element trans-
ducer with ∼30 mm focal distance was mounted on a computer-controlled 2D translating
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stage. The transducer’s output was calibrated using a hydrophone. Assembly prototypes
were placed in a water8 container such that transducers could be immersed in the water at a
distance of approximately 30 mm directly above the prototype. A programmable pulse gen-
erator and radio frequency amplifier were used to drive transducers at specified frequencies
with sinusoidal pulse trains of 10-cycles and a pulse repetition frequency (PRF) of 1 kHz.
The received signals were amplified with a preamplifier and a low-noise amplifier chain and
displayed on the scope. For communication measurement, in order to eliminate feedthrough
between transmit and receive stages and reflections from the board, separate transmit and
receive transducers were used.

3.3.4 Measurement result

The total integrated acoustic output power of the transducer at various frequencies over
the 6 dB bandwidth of the beam was measured using a calibrated hydrophone. Nominally,
spatial-peak temporal-average (or ISPTA) was kept at 29.2 µW/cm2, resulting in a total
output power of ∼1 µW at the focal spot, with a peak rarefaction pressure of 25 kPa and
a mechanical index of 0.005. Both the de-rated ISPTA and MI were far below the FDA
regulation limit of 720 mW/cm2 and 1.9, respectively [47].

Power link efficiency

Figure 3.12(a) shows the measured power delivery efficiency of the fully assembled prototype
with cable loss calibrated out for various mote sizes as compared to analytical predictions
made for this same setup. Measured results matched the simulated model behavior very
closely across all mote sizes, with the exception of a few smaller mote dimensions, likely
due to the sensitivity to transducer position and the ultrasound beamwidth. The measured
efficiency of the link for the smallest PZT crystal (127 µm)3 was 2.064 × 10−5, which resulted
in 20.64 pW received at the dust mote nominally. A maximum of 0.51 µW can be recovered at
720 mW/cm2. Such low power level harvested by the PZT compared to what was predicted
in the previous section is due to the extreme efficiency of broadband transducers and the
beam-spreading at the interrogation distance of 30 mm for the transducer used for the
experiment.

Backscatter sensitivity

The backscatter simulation framework was verified by measuring the difference in the backscat-
tered voltage level and computing the ppm change, i.e., sensitivity, when the PZT crystal
was electrically open versus shorted9. Backscatter measurement in Figure 3.13 matched the
analytical model behavior very closely and the sensitivity of (127 µm)3 dust mote was ∼5000

8Mineral oil can be used in place of water in order to eliminate conductance through the media.
9The maximal change in the backscatter should occur when the mote is conjugate matched (ZL = Z∗

PZT )
to either open or short.
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Figure 3.12: (a) Measured power transfer efficiency at various mote sizes matches simulated
behavior. For each mote dimension, both (b) the impedance spectroscopy and (c) frequency
response of harvested power on the PZT reinforce the reliability of the simulation framework.

ppm. The measurement of backscatter sensitivity was limited by heat-induced drift noise of
the instruments and the inaccurate model of the broadband transducer. Therefore, properly
tuned measurement system is required to measure much lower backscatter signals generated
when a more realistic action potential voltage appears at the VGS of the FET to modulate the
impedance by less than 0.1%. Figure 3.13 also shows that the achievable simulated backscat-
ter sensitivity substantially increase under a low-drift setup with a dedicated custom-made
transducer that achieves optimal focal distance and electrical input impedance at each mote
dimension10.

3.4 Conclusion

In this chapter, we propose neural dust, which uses ultrasound to power and communicate
with miniature sensors implanted inside the body. We analyzed fundamental system design
trade-offs and ultimate size, power, and bandwidth scaling limits of such system from first

10Input of the two-port network is conjugate matched to extract Gp ≥ Gt.
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Figure 3.13: Simulated and measured backscatter sensitivity scaling plot for various
impedance levels match for open vs. short modulation. Simulations indicate that for re-
alistic neural spiking voltage, highly sensitive receiver (detecting 1e-8 ppm or less) would be
needed.

principles and experimentally verified the model down to, at least, ∼100 µm scales (and
likely lower). We also verified that our model can correctly capture the effects of changing
the load impedance of a piezoelectric transducer on the backscatter signals at such scales.

While the analysis shown in this chapter pre-supposes a system for recording from the
central nervous system (more specifically the neocortex), neural dust may also find utility
in the peripheral nervous system, as discussed in the next chapter (Chapter 4).
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Chapter 4

In-vivo Recordings with Neural Dust

The emerging field of bioelectronic medicine seeks methods for deciphering and modulating
electrophysiological activity in the body to attain therapeutic effects at target site. As a
result, there has been growing interest in the use of neural recording technologies to improve
neurostimulation-based treatments as well as to develop new closed-loop neuromodulation
therapies for disorders in both the central [55] and peripheral [29] nervous systems.

In particular, recent technological advances and fundamental discoveries have renewed
interest in implantable system for interfacing with the peripheral nervous system. Early clin-
ical successes with the peripheral neurostimulation devices, such as those used to treat sleep
apnea [101] or control bladder function in paraplegics [22] have led clinicians and researchers
to propose new disease targets ranging from diabetes to rheumatoid arthritis [29]. Because
nerves carry both afferent and efferent signals to a variety of target organs, effective recording
technologies will need high spatiotemporal resolution to record from multiple discrete sites
within a single nerve. Current approaches to interfacing with peripheral nerves and muscles,
however, rely heavily on wires, creating problems for chronic use, while emerging wireless
approaches lack the size scalability necessary to interrogate small-diameter nerves.

In this chapter, we demonstrate wireless recordings from nerve (electroneurogram or
ENG) and muscle (electromyogram or EMG) in a rodent model using neural dust.

4.1 Neural dust system

4.1.1 Assembly of neural dust implant

Figure 4.1 shows the assembly process for a neural dust implant mote integrated on a 50 µm
thick polyimide flexible printed circuit board (PCB) where both the piezocrystal (0.75 mm
× 0.75 mm × 0.75 mm) and the custom transistor (0.5 mm × 0.45 mm) are attached to the
topside of the board with a conductive silver paste.

Electrical connections between the components are made using aluminum wirebonds and
conductive gold traces. Exposed gold recording pads on the bottom of the board (0.2 mm ×
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Figure 4.1: Robust, high-yield fabrication steps for the mote, which is encapsulated with
medical grade, UV-curable epoxy.

Figure 4.2: Close-up of neural dust mote on flexible PCB with testing leads to measure
electrophysiological signals (ground truth) and voltages harvested on the piezoelectric trans-
ducer. During the in-vivo experiments, testing leads are removed.

0.2 mm) are separated by 1.8 mm and make contact on the nerve or muscle to record elec-
trophysiological signals as shown in Figure 4.2. Recorded signals are sent to the transistor’s
input through micro-vias. Additionally, some implants were equipped with 0.35 mm wide,
25 mm long, flexible, compliant leads shown in Figure 4.2 with test points for simultaneous
measurement of both the voltage across the piezocrystal and direct wired measurement of
the extracellular potential across the electrode pair used by the mote (we refer to this di-
rect, wired recording of extracellular potential as the ground truth measurement, which is
used as a control for the ultrasonically reconstructed data). The entire implant is encapsu-
lated in a medical grade UV-curable epoxy to protect wirebonds and provide insulation. A
single neural dust mote implant measures roughly 0.8 mm × 3 mm × 1 mm. The size of
the implants presented here is limited only by our use of commercial polyimide backplane
technology, which is commercially accessible to anyone; relying on more aggressive assembly
techniques with in-house polymer patterning would produce implants not much larger than
the piezocrystal dimensions (yielding a < 1 mm3 implant).
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Figure 4.3: The transceiver board consists of Opal Kelly FPGA board, ASIC (see [105]),
and the transducer connector board.

4.1.2 Ultrasonic transceiver module

An external, ultrasonic transceiver board shown in Figure 4.3 interfaces with neural dust
motes by both supplying power (transmit (TX) mode) and receiving reflected signals (receive
(RX) mode). This system is a low-power, programmable, and portable transceiver board
that drives a commercially available external ultrasonic transducer (V323-SU, Olympus,
Waltham, MA).

The transceiver board consisted of a custom ASIC in a QFN-64 package that achieved
an on-chip 1.8 to 32 V charge pump efficiency of 33% and system latency of 20 ns, while
consuming 16.5 µJ per each transmit cycle [104, 105]. In addition, the ASIC has 7 identical
channels, each with 6 bits of delay control with 5 ns resolution for transmit beamforming.
During the receive mode, the high voltage switch was closed, and the signal was amplified
by 28 dB; both operations were performed on chip. The output signal from the chip was
digitized by an off-chip 10-bit, 100 MHz analog-to-digital converter (ADC). The outputs
of the ADC were fed back into the field-programmable gate array (FPGA) and USB 3.0
integration module (XEM6310-LX45, Opal Kelly) and transferred to the laptop. The FPGA-
USB module was also used to serially program the ASIC.

4.1.3 Sequence of signal flow

The neural dust mote was placed one Rayleigh distance (tRayleigh) from the transducer (at
∼8.9 mm), which corresponded to 5.9 µs of transit time, assuming an acoustic velocity of
∼1500 m/s in water.

During operation, the external transducer alternates between (1) emitting a series of six
540 ns pulses with peak voltage of 5 V every 100 µs (or pulse repetition frequency (PRF) of
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Figure 4.4: (Left) Schematic flow of information; (Right) representative time traces of signals
at each step. The sequence is for reconstruction at one time point. (a) The FPGA generates
a trigger signal to initiate recording. (b) An extracellular, electrophysiological potential is
presented to the recording electrodes on a neural dust mote. (c) Upon receiving the trigger
from the FPGA, the transceiver board generates a series of transmit pulses. At the end of
the transmit cycle, the switch on the ASIC disconnects the transmit module and connects
the receive module. (d) Zoomed-in transmit pulse sequence, showing 6 pulses at 1.85 MHz.
(e) Backscatter from the neural dust mote reaches the transducer approximately 2tRayleigh.
(f) Zoomed-in backscatter waveforms, aligned in time with (e). Note the large, saturating
signal which overlaps with the transmit pulses is electrical feedthrough and is ignored. The
returning, backscattered pulses can be seen subsequent to the transmission window (green
box). A close up of the backscatter pulses is shown in Figure 4.10 and discussed in the
text. (g) These backscattered pulses are filtered and rectified, and the area under the curve
is computed in order to produce reconstructed waveforms. (h) Reconstructed waveform is
sampled at 10 kHz. Each point of the reconstructed waveform is computed by calculating
the area under the curve of the appropriate reflected pulses, received every 100 µs.

10 kHz)1 and (2) listening for any reflected pulses. The entire sequence of transmit, receive,
and reconstruction events are detailed in Figure 4.4; this sequence (steps A - H) is repeated
every 100 µs during operation. Briefly, pulses of ultrasonic energy emitted by the external
transducer impinge on the piezocrystal and are, in part, reflected back toward the external
transducer. In addition, some of the ultrasonic energy causes the piezocrystal to vibrate;
as this occurs, the piezocrystal converts the mechanical power of the ultrasound wave into
electrical power, which is supplied to the transistor. Any extracellular voltage change across

1Given that the first reflection back to the transducer (e.g., backscatter) occurred at approximately 11.8
µs (twice the transit time) and persisted until for 3.3 µs, the maximum PRF (e.g., in this context, the
sampling rate) was ∼66 kHz. Given that a typical bulk peripheral nerve responses occur below 1 kHz [66],
a PRF of 10 kHz was chosen to sufficiently capture the dynamics.
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the two recording electrodes modulates the transistor’s gate, changing the amount of current
flowing between the terminals of the crystal. These changes in current, in turn, alter the
vibration of the crystal and the intensity of the reflected ultrasonic energy. Thus, the shape
of the reflected ultrasonic pulses encodes the electrophysiological voltage signal seen by the
implanted electrodes and this electrophysiological signal can be reconstructed externally.

4.1.4 Received data processing

In order to sample the backscatter waveform at 1.85 MHz without losing signal fidelity, the
off-chip ADC on the transceiver board was heavily oversampled at 50 MHz. This resulted in
∼8 Mbits of data in a 20 ms neural recording, which was stored in a 128 MByte, 16-bit wide,
synchronous DDR2 DRAM (MT47H64M16HR-3, Micron Technology). The raw waveforms
were transferred to the laptop via the USB interface post-recording. The raw waveforms
were simultaneously recorded using an 8-bit digitizer (USB-5133, National Instruments) for
comparison.

Raw backscatter waveforms from each experiment were sliced and time aligned to be
averaged over eight samples. The averaged signals were band-pass filtered with a symmetric
fourth order Butterworth filter from 10 Hz to 1 kHz. The distinct characteristics of the
backscatter waveform, as shown in Figure 4.10, were used as a template to locate the region
of interest. The signals were then rectified, and the integral of the region was computed to es-
timate the input voltage signal, which exhibited a linear response as shown in Figure 4.12(a).
Multiplication factor for the signal was extracted from the ground truth measurement.

4.2 Neural dust characterization

4.2.1 Piezoelectric impedance measurement

To characterize the piezocrystal prior to assembly, an impedance plot was obtained with an
impedance analyzer (4285A, Agilent) using two-terminal measurements with open/short/load
calibration scheme.

Simulated impedance spectrums using various models of the piezocrystal, such as the
KLM, resonance, and COMSOL models described in Chapter 3, matched the measured
resonant frequency at 1.85 MHz with the impedance magnitude of ∼100 Ω as shown in
Figure 4.5. Given the aspect ratio of 1, the measurement of 0.75 mm × 0.75 mm × 0.75
mm piezocrystal used in the prototype showed a splitting of the anti-resonant peak due to
mode coupling, at 2.25 MHz and 2.6 MHz, which was captured by the COMSOL model.
Both KLM and the resonance model, however, did not capture this effect. Although the
COMSOL model of the piezocrystal was more accurate, in order to reduce the computational
complexity, KLM model was used to simulate the link behavior near the operation frequency
of 1.85 MHz.
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Figure 4.5: Measured impedance spectrum of a 0.75 mm × 0.75 mm × 0.75 mm PZT crystal
matched impedance estimated by the resonance, KLM, and COMSOL models.

Figure 4.6: Impedance spectroscopy of the gold electrodes on a flexible PCB and the fit
using Randles Cell model.

4.2.2 Recording electrode modeling

A recording electrode pair was made of immersion gold by a flexible PCB vendor (Altaflex,
Santa Clara, CA) and measured 0.2 mm× 0.2 mm. We characterized the electrical properties
of the surface electrode by measuring the recording site impedances in Phosphate Buffered
Solution (PBS 1×) with an electrochemical impedance spectroscope (nanoZ, White-Matter
LLC, Mercer Island, WA). The device formed the active electrode and a silver wire formed
the reference electrode. The electrode/electrolyte interface can be fitted to a Randles Cell
model [87] to extract the line resistance (Rs = 9.73 kΩ), charge transfer resistance (Rp = 25.6
MΩ), and the parameters of the constant phase element (CPE: n = 0.94, P = 5.1 nF·sn);
the MATLAB package Zfit was used to fit these parameters as shown in Figure 4.6.
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Figure 4.7: (a) A de-rated, normalized peak pressure as a function of distance from the
surface of the transducer showed a de-rated focus at ∼8.9 mm at 1.85 MHz. (b) The XY
cross-sectional beampatterns and the corresponding 1D voltage plot at y = 0 at near-field,
Rayleigh distance, and far-field showed beam focusing at the Rayleigh distance. (c) The
transducer’s output pressure was a linear function of input voltage (up to 32 V peak-to-
peak).

4.2.3 Ultrasonic measurement setup

Ultrasonic characterization of the transducer was performed in a custom-built water tank,
similar to the one described in Chapter 3. A capsule hydrophone (HGL-0400, Onda) with 20
dB preamplification (AH-2020, Onda) was mounted on a computer-controlled 2D translating
stage (XSlide, VelMex) and was used to calibrate the output pressure and characterize
beam patterns of a 2.25 MHz single-element transducer (V323-SU, Olympus). Verification
of ultrasonic power transfer and communication sensitivity was performed in a smaller water
tank with the transducer mounted on manual translational and rotational stages (Thorlabs).
The outline of the neural dust mote was patterned on an extruded acrylic piece with UV
laser, and the mote was clamped to the acrylic stage with nylon screws. The position
and angle of the transducer with relative to the mote were manually adjusted until the
maximum voltage was measured across the piezocrystal. Cable capacitances and parasitics
were carefully calibrated by adjusting the series capacitance in the high-impedance probes
(N2863B, Agilent).

For initial calibration of the system, a current source (2400-LV, Keithley, Cleveland, OH)
was used to mimic extracellular signals by forcing electrical current at varying current densi-
ties through 0.127 mm thick platinum wires (773000, A-M Systems, Sequim, WA) immersed
in the tank. The neural dust mote was submerged in the current path between the electrodes.
As current was applied between the wires, a potential difference arose across the implant
electrodes. This potential difference was used to mimic extracellular electrophysiological
signals during tank testing.
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Figure 4.8: (a) 7 groups of 2 × 1 elements formed an array. (b) 2D and (c) 1D beam patterns
of unfocused and focused beam at the Rayleigh distance. (d) Applied time delay to each
element.

4.2.4 Transceiver characterization

The transceiver board exhibited a de-rated focus at ∼8.9 mm as shown in Figure 4.7(a). The
XY cross-sectional beam-pattern clearly demonstrated the transition from the near-field to
far-field propagation of the beam, with the narrowest beam at the Rayleigh distance as
shown in Figure 4.7(b). The transducer was driven with a 5 V peak-to-peak voltage signal
at 1.85 MHz. The measured de-rated peak rarefaction pressure was 14 kPa, resulting in
a mechanical index (MI) of 0.01. De-rated spatial pulse peak average (ISPPA) and spatial
peak time average (ISPTA) of 6.37 mW/cm2 and 0.21 mW/cm2 at 10 kHz pulse repetition
were 0.0034% and 0.03% of the FDA regulatory limit, respectively [47]. The transceiver
board was capable of outputting up to 32 V peak-to-peak and the output pressure increased
linearly with the input voltage as shown in Figure 4.7(c).

Beamforming measurement

In order to verify the beamforming capabilities of the transceiver module, 7 groups of 2 ×
1 PZT elements, with the pitch of ∼5/2λ = 2.3 mm were formed as an array as shown in
Figure 4.8(a). The array measured approximately 14 mm × 3 mm and the resulting focal
depth of the array was 50 mm.

The transducer array’s 2D beam pattern and output were calibrated using a capsule
hydrophone (HGL-0400, Onda, Sunnyvale, CA). The measured XY cross-sectional beam
pattern with the overlay of the array and the applied delay are shown in Figure 4.8. The -6
dB beamwidth at the focal point is 3.2 mm ∼ 3λ. The flexibility of the ASIC allowed for
both wide and granular programming of the delays. The peak pressure level of the array at
50 mm before and after beamforming was ∼6 kPa and ∼20 kPa, respectively. The 3× in the
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Figure 4.9: (a) Demonstration of beam steering. (b) Applied time delay for each direction.
(c) 1D beam pattern in X-axis.

transmitted output pressure wave after beamforming matched the simulation.
Additionally, in order to verify the capability to interrogate multiple neural dust motes,

we verified the beam steering capability of the array as shown in Figure 4.9. The 1D beam
steering matched very closely with the simulation2.

4.2.5 Backscatter signal property

The emitted pulses from the transceiver reflect off the neural dust mote and produce backscat-
ter pulses. Reflected backscatter pulses are recorded by the same transceiver board. The
signal flow is detailed in Figure 4.4.

The received backscatter waveform exhibits four regions of interest; these are pulses
reflecting from four distinct interfaces as shown in Figure 4.10: (1) the water-polymer en-
capsulation boundary, (2) the top surface of the piezoelectric crystal, (3) the piezo-PCB
boundary, and (4) the back of the PCB. As expected, the backscatter amplitude of the sig-
nals reflected from the piezoelectric crystal (second region) changed as a function of changes
in potential at the recording electrodes. Reflected pulses from other interfaces did not re-
spond to changes in potential at the recording electrodes. Importantly, pulses from the other
non-responsive regions were used as a signal level reference, making the system robust to
motion or heat-induced artifacts (since pulses reflected from all interfaces change with phys-

2The beam steering range was limited to ±4 mm due to the mechanical construct of the array, rather
than the electronic capability.
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Figure 4.10: (a) Cross-section of the neural dust mote. (b) Example backscatter waveform
showing different regions of backscatter. The backscatter waveform is found flanked (in
time) by regions which correspond to reflections arising from non-responsive regions; these
correspond to reflected pulses from other device components shown in (a). The measurement
from the non-responsive regions, which do not encode biological data, can be used as a
reference. As a result of taking this differential measurement, any movements of the entire
structure relative to the external transducer during the experiment can be subtracted out.

Figure 4.11: Calibration curve of neural dust showed that the overall dynamic range of the
system was greater than >500 mV, which was substantially larger than the input range of
neural signature.

ical or thermal disturbances of the neural dust mote but only pulses from the second region
change as a function of electrophysiological signals).

4.2.6 Noise floor and effects of misalignment

In a water tank, the system showed a linear response to changes in recording electrode
potential and a noise floor of ∼0.18 mVrms as shown in Figure 4.12(a). The overall dynamic
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Figure 4.12: (a) Calibration curve obtained in the custom water tank setup showed the noise
floor of 0.18 mVrms. (b) The effect of noise floor as a function of lateral misalignment followed
the beampattern power fall-off. (c) Plot of drop in the effective noise floor as a function of
angular misalignment. Angular misalignment resulted in a skewed beam pattern: ellipsoidal
as opposed to circular. This increased the radius of focal spot (spreading energy out over a
larger area); the distortion of the focal spot relaxed the constraint on misalignment.

range of the system was limited by the input range of the transistor and was greater than
> 500 mV as shown in Figure 4.11(i.e., there was only an incremental change in the current
once the transistor was fully on (input exceeded its threshold voltage) or fully off). The
noise floor increased with the measured power drop-off of the beam; 0.7 mm of misalignment
degraded it by a factor of two (N = 5 devices) as shown in Figure 4.12(b). This lateral
misalignment-induced increase in the noise floor constituted the most significant challenge
to neural recordings without a beam-steering system (that is, without the use of an external
transducer array that can keep the ultrasonic beam focused on the implanted dust mote and,
thus, on-axis). On axis, the neural dust mote converted incident acoustic power to electrical
power across the load resistance of the piezo with ∼25% efficiency. Figure 4.12(c) plots the
change in effective noise floor as a function of angular misalignment.

4.3 In-vivo measurement

4.3.1 Surgical procedures

All animal procedures were performed in accordance with University of California Berkeley
Animal Care and Use Committee regulations. Adult male Long-Evans rats were used for
all experiments. Prior to the start of surgery, animals were anesthetized with a mixture of
ketamine (50 mg/kg) and xylazine (5 mg/kg) intraperitoneally (i.p.). The fur surrounding
the surgical site was shaved and cleaned. For EMG recordings, a patch of gastrocnemius
muscle roughly 10× 5 mm in size was exposed by removing the overlying skin and fascia. The
neural dust mote was then placed on the exposed muscle, the skin and fascia were replaced,
and the wound was closed with 5/0 surgical suture. For ENG recordings, the sciatic nerve
was exposed by making an incision from the sciatic notch to the knee, and separating the
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Figure 4.13: (a) Recorded time-domain ENG responses. (b) Peak-to-peak ENG with varying
electrode spacing.

hamstring muscles. The mote was then placed in contact with the epineurium of the main
branch of the sciatic nerve bundle and sutured to the nerve using 10/0 microsurgical suture.
Animals were euthanized at the conclusion of the experiments.

4.3.2 Wired measurement

Constant-current stimulation was delivered using an isolated pulse stimulator (2100, A-M
Systems). Single biphasic pulses with a 2 ms pulse width were used to deliver stimulation
at various current amplitudes. For each experiment, electrophysiological responses from ten
stimulations (i.e., samples) were recorded. The FPGA-USB module generated a trigger for
the stimulator every 6 s. For EMG experiments, bipolar Ag-AgCl hook electrodes placed
around the trunk of the sciatic nerve were used for stimulation. To evoke ENG activity, 28G
stainless steel needle electrodes were placed in the foot with an inter-electrode distance of
approximately 5 mm.

The wired signals were amplified (100×) by a battery-powered differential amplifier with
a built-in band-pass filter (DAM50, WPI) set at 10 Hz to 1 kHz. The ground reference
for the amplifier was a 28G stainless steel needle electrode placed in the contralateral foot
relative to the recording setup. The output of the amplifier was connected to a multi-channel
digitizer, sampled at 100 kHz, and recorded on computer.

In order to verify the recording setup, recording electrodes with various spacing were
fabricated on a 50 µm thick polyimide flexible printed circuit board (PCB) and used for
ENG recordings. There were a total of 5 electrodes, each measuring 0.2 mm × 0.2 mm, and
one of them was used as the reference electrode. Other electrodes were spaced 0.3 mm, 0.8
mm, 1.3 mm, and 1.8 mm, respectively, apart from the reference electrode.

The spacing board was placed in contact with the epineurium of the main branch of the
sciatic nerve bundle (distal) and sutured to the nerve. Bipolar Ag-AgCl hook electrodes
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Figure 4.14: (a) Frequency response of the transducer. (b) Ultrasonic attenuation in 8.9 mm
of tissue.

placed around the trunk of the sciatic nerve (proximal) were used for stimulation. Constant-
current simulation of a single biphasic pulse with a duration of 0.5 ms every 1 second was
delivered using an isolated pulse stimulator.

As expected, the peak-to-peak voltage recorded on the electrode increased with the spac-
ing at least quadratically as shown in Figure 4.13. The amplitude saturated after the spacing
of 1.3 mm, confirming that the electrode spacing of 1.8 mm on the recording sensor was suf-
ficient to capture the maximum, saturated ENG response.

4.3.3 Wireless measurement

In-vivo ultrasonic transmission

A 2.25 MHz single element transducer (V323-SU, Olympus NDT, Waltham, MA) was used
to generate 6 pulses at 1.85 MHz. The transducer had a measured half-power bandwidth
(HPBW) of more than 2.5 MHz as shown in Figure 4.14(a). In order to measure the trans-
mission loss through the tissue, various thicknesses of skin found near the gastrocnemius
muscle of a male Long-Evans rat was placed in between the transducer and the neural dust
prototype. The harvested voltage on the piezocrystal with and without tissue was obtained
and the 8.9 mm of tissue resulted in 10 dB of tissue attenuation as shown in Figure 4.14(b).

EMG recordings

We recorded evoked EMG responses from the gastrocnemius muscle of adult Long-Evans
rats under anesthesia using the neural dust system. The mote was placed on the exposed
muscle surface, the skin and surrounding connective tissue were then replaced, and the wound
was closed with surgical suture as shown in Figure 4.15(a). The ultrasonic transducer was
positioned 8.9 mm away from the implant (one Rayleigh distance of the external transducer)
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Figure 4.15: Tether-less neural dust rodent EMG. (a) In-vivo experimental setup for EMG
recording from gastrocnemius muscle in rats; the neural dust mote was placed on the exposed
muscle surface and the wound was closed with surgical suture. The external transducer
couples ultrasound to the mote and the wireless data is recorded and displayed on the laptop.
(b) Comparison between ground truth measurement and the reconstructed EMG signals over
a number of trials. 20 ms samples were recorded and the inter-stimulus interval was 6 sec.
(c) Power spectral density (PSD) of the recorded EMG signal showed 4.29e4 µV2/Hz and
3.11e4 µV2/Hz at 107 Hz for ground truth and the reconstructed dust data, respectively, and
several harmonics due to edges in the waveform. (d) The wireless backscatter data recorded
at t = 0 min and t = 30 min matched with R = 0.901.
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and commercial ultrasound gel (Aquasonic 100, Parker Labs, Fairfield, NJ) was used to
enhance coupling. The system was aligned using a manual manipulator by maximizing the
harvested voltage on the piezocrystal measured from the flexible leads. Ag/AgCl wire hook
electrodes were placed approximately 2 cm distally on the trunk of the sciatic nerve for the
bulk stimulation of muscle fiber responses. Stimulation pulses of 200 µs duration were applied
every 6 seconds and data was recorded for 20 ms around the stimulation window as shown
in Figure 4.15(b). The power spectral density (PSD) of the reconstructed data with several
harmonics due to edges in the waveform is shown in Figure 4.15(c). This process could be
continued indefinitely, within the limit of the anesthesia protocol. Figure 4.15(d) shows a
comparison of data taken after 30 minutes of continuous recording showed no appreciable
degradation in recording quality.

We obtained EMG recruitment curves with both ground truth and wireless dust backscat-
ter by varying stimulation amplitude as shown in Figure 4.16(a) and (b). Reconstruction of
the EMG signal from the wireless backscatter data was sampled at 10 kHz, while the wired,
ground truth measurement was sampled at 100 kHz with a noise floor of 0.02 mV. The two
signals at response-saturating stimulation amplitude (100%) matched with R = 0.795 as
shown in Figure 4.16(c). Figure 4.16(d) shows that the difference between the wireless and
wired data was within 0.4 mV. The salient feature of the neural dust mote EMG response
was approximately 1 ms narrower than the ground truth, which caused the largest error in
the difference plot, shown in Figure 4.16(c) and (d). The responses from skeletal muscle
fibers occurred 5 ms post-stimulation and persisted for 5 ms. The peak-to-peak voltage of
the EMG shows a sigmoidal response as a function of stimulation intensity, shown in Fig-
ure 4.16(e), as expected [37]. The error bars indicate the measurement uncertainties from
two rats and 10 samples each per stimulation amplitude. The minimum signal detected by
the neural dust mote is approximately 0.25 mV, which is in good agreement with the noise
floor measurement made in a water tank.

ENG recordings

A similar setup was prepared to measure the electroneurogram (ENG) response from the
main branch of the sciatic nerve in anesthetized rats. The sciatic nerve was exposed by
separating the hamstring muscles and the neural dust mote was placed and sutured to the
nerve, with the recording electrodes making contact with the epineurium. We measured
a similar graded response on both ground truth and wireless dust backscatter by varying
stimulation current amplitude delivered to bipolar stainless steel electrodes placed in the
foot as shown in Figure 4.17(a) and (b). The two signals at response-saturating stimulation
amplitude (100%) matched with R = 0.886, shown in Figure 4.17(c); the average error was
within ±0.2 mV as shown in Figure 4.17(d). The peak-to-peak ENG voltage showed a
sigmoidal response with the error bars indicating uncertainties from two rats and 10 samples
each per stimulation amplitude. The minimum signal detected by the neural dust mote was
again at 0.25 mV as shown in Figure 4.17(e).
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Figure 4.16: Tether-less neural dust rodent graded EMG. (a) Different intensities of EMG
signals were recorded in-vivo with the electrodes on the PCB with varying stimulation
intensities. (b) Similar gradient EMG responses were recorded wirelessly with the mote.
(c) Ground truth and reconstruction of EMG signal from the wireless backscatter data at
response-saturating stimulation amplitude (100%) matched with R = 0.795 (R = 0.60, 0.64,
0.67, 0.92 for 54%, 69%, 77%, 89%, respectively). (d) Quantitative comparison showed <
0.4 mV match of the salient feature (shaded regions). (e) EMG peak-to-peak voltage showed
an expected sigmoidal relationship with the stimulation intensity.
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Figure 4.17: Tether-less neural dust rodent graded ENG. (a) Different intensities of ENG
signals were recorded in-vivo with the electrodes on the PCB with varying stimulation intensi-
ties. (b) Similar gradient ENG responses were recorded wirelessly with the mote. (c) Ground
truth and reconstruction of ENG signal from the wireless backscatter data at response-
saturating stimulation amplitude (100%) matched with R = 0.886 (R = 0.822, 0.821, 0.69,
0.918, 0.87 for 44%, 61%, 72%, 83%, 89%, respectively). (d) Quantitative comparison showed
< 0.2 mV match of the salient feature (shaded regions). (e) ENG peak-to-peak voltage
showed an expected sigmoidal relationship with the stimulation intensity.
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4.4 Conclusion

We designed, built, and implanted a wireless, ultrasonic neural sensor and communication
system that enables neural recordings in the peripheral nervous system. In-vivo, acute
recordings in a stationary, anesthetized rodent model was used to collect compound action
potentials from the main branch of the sciatic nerve as well as evoked EMG from the gastroc-
nemius muscle. The performance of the neural dust system was equivalent to conventional
electrophysiological recordings employing microelectrodes and cabled electronics.

One of the principal strengths of the demonstrated technology is that, unlike conven-
tional radio frequency technology, ultrasound-based systems appear scalable down to < 100
µm sizes (see Chapter 3), opening the door to a new technological path in implantable elec-
tronics. However, a number of technical challenges remain open. The power levels used in
this in-vivo study were limited by the specifications of commercially-available transducers;
custom transducers will reduce the overall external device footprint, lower the noise floor
(by producing higher power densities at the focal spot), and allow for selection of the focal
depth to suit specific applications. For example, a flat, low-profile piezo-transducer with
proper impedance matching would enable a wearable neural dust transceiver board small
enough for awake, behaving rodent neurophysiology. Additionally, the development of wear-
able, battery-powered multi-element arrays would allow for beam-steering of the ultrasonic
beam to enable multi-mote interrogation and the next chapter delves into the theoretical
treatment of design tradeoffs in such beamforming systems.
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Chapter 5

Interrogating Multiple Neural Dust
Motes

In the previous chapters, we discussed the hardware implementation of neural dust (ND) sys-
tem focused primarily on single-transceiver and single-neural dust mote (NDM) and demon-
strated the capabilities of the transceiver module to perform beamforming to interrogate mul-
tiple neural dust motes in time-domain multiplexing (TDM) fashion. This chapter explores
more in-depth analysis of cooperative beamforming approaches with multiple transceivers
to enable multi-mote interrogation. We discuss the mathematical channel model of the ND
system and perform simulations in MATLAB to compare the performance of two particu-
lar beamforming (BF) techniques: delay-and-sum (DAS) and linearly constrained minimum
variance (LCMV) BF. We investigate whether the interference from other NDMs can be suf-
ficiently mitigated to successfully identify neural signatures from each NDM. Furthermore,
we examine spatial multiplexing to increase the overall throughput and consider a hierarchi-
cal processing flow to reduce the processing and communication burden for future hardware
implementation of proposed BF systems.

5.1 Mathematical framework

Our model [8] simplifies the ND system to a 1D-grid as shown in Figure 5.1. A linear array of
transceivers (assumed to be 1 mm in size), each containing multiple ultrasound transducers
(TDs) to ensure far-field operation, transmits ultrasound waves to a grid of 100 µm neural
dust motes (NDMs) at a depth of 2 mm in the neocortex (i.e., as motivated in Chapter 3).
The spacing between transceivers is assumed to be 0.1 mm (i.e., equivalent to ∼ 0.66λ at
the resonant frequency of 10 MHz) in order to maximize spatial coverage and to facilitate
implantation.

We assume that the ultrasound signal Skq(t) received at the k-th NDM sent by the q-th
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Figure 5.1: 1D simplification of the scaled neural dust system envisioned in Chapter 3, with
transceivers consisting of a total of Q transducers interrogating K NDMs, where Q < K.

TD is modeled as

Skq(t) = Hkq ·Xq(t) (5.1)

where

Hkq = θ(k, q) · g(dkq) · e−j
2πdkq
λ (5.2)

and where

• dkq is the distance between NDM k and TD q.

• g(dkq) is a real-valued attenuation over the distance dkq, based on the path loss constant
α in brain tissue. The path loss of ultrasound in brain tissue is relatively small, and is
typically in the range 0.3 – 1.2 dB/(cm·MHz) [96].

• θ(k, q) is a real-valued directivity gain factor, which depends on the shape and size
of the TD. For a given transducer shape, the actual value of θ(k, q) varies with the
angle between the frontal (maximum gain) direction of the TD, and the straight line
between the k-th NDM and the q-th TD. The directivity gain function is assumed to
be normalized such that θ = 1 in the frontal direction.

• λ is the wavelength of the ultrasound carrier wave.
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• Xq(t) is the ultrasound signal transmitted by TD q in time-domain. We assume that
Xq(t) is a narrowband signal with a carrier frequency of f , e.g., Xq(t) = cos (2πft).

Let Sk(t) denote the signal that is picked up by the k-th NDM, containing the contribution
from each transmitting TD, i.e.,

Sk(t) =

Q∑
q=1

Hkq ·Xq(t) = hTk x(t) (5.3)

where Q is the total number of TDs (over all transceivers), the superscript T denotes the
transpose operator, x(t) is a Q-dimensional vector where the q-th entry is defined as Xq(t),
and where hk is a Q-dimensional vector where the q-th entry is defined as Hkq. Let s(t)
denote the K-dimensional vector where the k-th entry is defined as Sk(t), and where K is
the total number of NDMs. We can then write the complete transmission model in a single
matrix equation as

s(t) = H · x(t) (5.4)

where H is a K × Q matrix where the k-th row is equal to hTk . If TD q is silent at time t,
we set the q-th entry in x(t) to zero.

The signal Sk(t) are modulated by the measured neural signal Vk(t) at the k-th NDM
and the modulated signal Vk(t) · Sk(t) is backscattered with an omnidirectional reflection
pattern.

Let V(t) = Diag{V1(t), . . . , VK(t)} be a K × K diagonal matrix containing the neural
signals of the different NDMs on its diagonal entries, where K is the total number of NDMs.
Let Rq(t) denote the signal that TD q observes when all the NDMs reflect their respective
signal Vk(t) · Sk(t), ∀ k ∈ {1, . . . , K}, and define r(t) as the Q-dimensional vector where the
q-th entry is defined as Rq(t), where Q is the total number of TDs (over all transceivers).
By reciprocity, the complete transmit-receive model can then be written as

r(t) = HT ·V(t) ·H · x(t) + n(t) (5.5)

where the (k, q)th element of H in (5.5) is given by (5.2) and where n(t) represents added
channel and receiver noise.

We are interested in extracting each diagonal element of V(t), i.e., all the neural signals
of the individual NDMs. However, due to the double mixing process with the matrix H, each
TD signal in r(t) will consist of a mixture of the signals in V(t). To obtain a good estimate
of the neural signals, we will apply beamforming techniques to reduce the interference from
other NDMs.

In order to reduce the complexity of the problem, let us first assume that each NDM is
excited with the same amount of ultrasound energy, i.e., H · x(t) = 1, where 1 denotes the
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all-ones vector. In this case, and assuming that the receiver noise power in n(t) is negligible,
(5.5) reduces to

r(t) = HT · v(t) (5.6)

where v(t) is a K-dimensional vector where the k-th entry is defined as Vk(t). The goal is
to obtain the source signals in v(t) by applying a linear transformation on the observations
in r(t). This corresponds to a linear demixing problem as commonly encountered in multi-
channel or sensor array signal processing literature.

In general, the demixing problem can only be exactly solved if Q ≥ K (i.e., HT is a
tall matrix), and if it is not rank deficient (i.e., it has K non-zero singular values). In
this case, a demixing matrix D should be chosen as the (pseudo-)inverse of HT such that

D · r(t) =
(
HT
)−1 ·HT · v(t) = v(t). If the entries of H are not known, the problem is often

referred to as a blind source separation (BSS) problem. The BSS problem can be solved if the
signals in v(t) satisfy certain conditions, such as independency, non-negativity, sparseness,
etc. For example, the well-known independent component analysis (ICA) algorithm is able
to find the signals in v(t) under the condition that they are statistically independent [45].

However, in the case of neural dust, the total number of transducers is typically smaller
than the number of neural dust motes (NDMs) (i.e., Q < K), and therefore the mixing
process cannot be inverted1. In this case, we have to settle for approximate solutions that
aim to extract a particular signal from v(t) while minimizing the interference from the other
NDMs (as well as from the noise in n(t) if this noise contribution is significant). One way
to achieve this, is by using spatial filtering or beamforming (BF) approaches.

5.1.1 Tensor-based model

In the ultrasonic power and communication link, impedance mismatch at the input and
output terminals of the channel can have a significant effect on the link efficiency. This loss
factor strongly depends on the distance between the transceiver and the NDM, and therefore
includes an extra directional dependency in the model. In order to compute this directional
dependency, we calculate the transducer’s power sensitivity in the receive (RX) mode (in
ppm) for different TD-to-NDM distances. We incorporate the ppm value as a function of
the distance as an extra real-valued gain factor shown in Figure 5.2.

However, unlike the KLM-based link model proposed in Chapter 3, which is a coupled one-
to-one link between a single-TD and a single-NDM, the model in (5.5) explicitly decouples
the transmit (TX) and receive (RX) signal path, where the TX TD and the RX TD can be

1By increasing the number of TDs per transceiver, the problem typically becomes more tractable since
Q gets closer to K. However, there is still a fundamental limit which may hamper the design of an exact
demixing process, even when Q ≈ K. Indeed, if the spatial separation between the TDs is small, their signals
will also become more similar. Although mathematically this may yield a mixing matrix H with K non-zero
singular values, it will probably be numerically ill-conditioned (i.e., the number of singular values that are
significantly larger than zero is still � Q). Due to unavoidable noise influences, this may again result in an
underdetermined mixing problem.
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Figure 5.2: Change in the TD input power level during a spiking event (in ppm) as a function
of the distance between the NDM and the TD [96] can be used to estimate directional
dependency in the model.

different (they may even belong to different transceiver). As a result, losses due to impedance
mismatch cannot be directly included in this model.

In order to adapt to the one-to-one link model, we compute the average effective distance
d = d1+d2

2
where d1 is the distance between the TX TD and the NDM and d2 is the distance

between the NDM and the RX TD. This distance is then used in the coupled one-to-one
link model from described in Chapter 3, and we assume that the corresponding loss factor
is representable for the decoupled link.

It is therefore necessary to build a 3-way tensor H ∈ CK×Q×Q, where the entry Hk,q1,q2

represents the (normalized) channel response for the signal Vk(t) when TD q1 is receiving
and TD q2 is transmitting. The entry Hk,q1,q2 is then defined as (compare with (5.2))

Hk,q1,q2 =
√

∆P (d) · θ(k, q1) · θ(k, q2) · e−j
2π(dkq1

+dkq2
)

λc (5.7)

where

d =
dkq1 + dkq2

2
(5.8)

and where ∆P (d) denotes the change in the TD input power level during a spiking event for
the effective distance of d after normalizing it to unity gain in the frontal direction (i.e., it is
equal to 1 at an effective distance of 2 mm). Note that the energy link model that generates
the ppm curve depicted in Figure 5.2 includes a worst-case path loss of 1.2 dB/(cm·MHz),
and therefore a distance-dependent path loss, g(dkq) is not explicitly added in (5.7).

In the subsequent sections, unless stated otherwise, all simulation results are obtained
using the more accurate tensor-based model in (5.7). However, for the sake of simplicity, we
will usually refer to the explicit model in (5.2) to describe various beamforming approaches.
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5.2 Beamforming approaches

Beamforming is a widely used sensor array processing technique that exploits spatial co-
herence between multiple sensor or transducer signals to suppress interference [107]. The
transceiver of the ND system can apply beamforming in transmit as well as receive mode.

Transmit (TX) beamforming

To apply transmit beamforming, the transmitting TDs will transmit the same carrier wave
X(t), but each with a different complex scaling factor. By carefully choosing these scaling
factors (or beamforming coefficients), we can focus the transmission energy towards a target
NDM, such that the other (interfering) NDMs have less influence in (5.5). To this end, we
rewrite (5.5) as

r(t) = HT ·V(t) ·H ·w∗
TX ·X(t) . (5.9)

where the superscript ∗ denotes the complex conjugate2, wTX is a complex-valued vector
containing the beamforming gains for each TD transmission signal, and where X(t) is a
common carrier wave, which is the same in all TDs, e.g.,

X(t) = cos (2πfct) . (5.10)

In the sequel, we will always work on the demodulated signals, and therefore, we will set
X(t) = 1 to simplify the equations.

Ideally, if we want to read out the signal Vk(t) from the k-th NDM, we aim for

H ·w∗
TX ≈ ek (5.11)

where ek is an all-zero vector, except for its k-th entry, which is 1. This would mean that
only the k-th diagonal element in V(t) is excited such that there is no interfering reflection
from any other ND node. Note that (5.11) is an overdetermined system of equations (in the
unknown variables in wTX), hence it has no exact solution.

Receive (RX) beamforming

When the TDs are in receive mode, each of them observes the superimposed reflections from
the different NDMs. By linearly combining the different TD signals in r(t) with carefully
chosen complex weights, we can perform spatial filtering to extract the signal(s) coming from
a pre-defined direction. Assume we want to extract the signal Vk(t) from the k-th NDM,
then we should apply a beamformer wRX such that

wH
RXHT ≈ ek (5.12)

2It is noted that, by definition, we use the complex conjugate of the vector w as the actual beamformer,
rather than the vector w itself.
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where the superscript H denotes the conjugate transpose operator. Note that, by reciprocity,
the RX and TX beamformers are essentially targetting the same objective (compare (5.11)
and (5.12)), and can therefore be chosen equal. However, RX beamforming has an additional
advantage that it can first observe the received signals and based on the RX signal statistics,
determine the optimal beamformer to extract the target source. This allows for more ad-
vanced approaches, such as the linearly constrained minimum variance (LCMV) beamformer,
which can optimize its BF coefficients to the interference pattern (see Subsection 5.2.2). On
the other hand, TX beamformers typically have to be designed a priori (offline).

5.2.1 Delay-and-sum (DAS) beamforming

DAS BF is the easiest form of beamforming, and it can be applied for both TX BF and RX
BF. It applies a delay or phase shift to each signal in the transceiver to create constructive
interference in the target direction [107], i.e.,

w =

 ejφ1
...

ejφQ

 (5.13)

where the φq’s are well-chosen phase shifts.
This approach relies on the assumption that the amplitude of the target signal is ap-

proximately the same3 in all sensors (far-field assumption). Note that trade-offs between
beamwidth and sidelobe levels are possible by also scaling each individual signal with a
real-valued coefficient.

When applying DAS BF in the RX BF mode to the received TD signals in r(t) in order
to interrogate the k-th NDM, we compute the BF output signal

z(t) = Re{wH
RXr(t)} (5.14)

where
wRX = Φ{hk} (5.15)

with hk denoting the k-th column of HT , Re{z} denoting the real component of a complex
number z, and where the operator Φ{z} replaces each complex entry in z by the closest
complex number on the unit circle, i.e., Φ{z(n)} = z(n)/|z(n)|. Note that the conjugation
of wRX in (5.14) basically inverts the phase shift applied by HT such that the inner product
wH

RXhk results in a real number, i.e., in-phase addition. By reciprocity, the DAS TX BF is
chosen equal to (5.15).

The main advantage of DAS BF is the fact that it is computationally cheap, and that
it is less sensitive to modeling errors in hk compared to optimal beamformers (see, e.g.,
Subsection 5.2.2). However, DAS beamformers are determined a-priori, i.e., they cannot

3DAS BAF may still work if this assumption is violated, but performance generally drops compared to
the case where all signals have a similar signal-to-noise ratio (SNR).
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adapt to the actual interference pattern. As a result, in the worst-case, the main and
sidelobes may capture a significant amount of interference and unable to achieve sufficiently
high SNR.

5.2.2 Linearly constrained minimum variance (LCMV)
beamforming

LCMV BF is a beamformer that adapts its beam shape to the interference pattern, by
using knowledge of the second-order statistics of the signals at the receiver [107]. It can
therefore only be applied in RX BF. Consider a general sensor array where the different
sensor signals y1(t), . . ., yQ(t) are stacked in the vector y(t), then the goal is to optimize the
BF coefficients such that the variance of the BF output signal is minimized, subject to a set
of linear constraint(s). These linear constraints are used, e.g., to obtain a unity gain in a
target direction, or to steer a null towards interfering sources. The single-constraint LCMV
BF is defined as (assuming zero-mean signals)

wRX = arg min
w

(
E{|wHy(t)|2}, s.t. wHh = 1

)
(5.16)

where E{·} denotes the expected value operator (taken over the full signal length), and where
h contains the channel responses from the target source to the Q sensors. The closed-form
solution of expression (5.16) is

wRX =
R−1
yy h

hHR−1
yy h

(5.17)

where Ryy = E{y(t) · y(t)H} is the sensor signal covariance matrix.
In the ND system, we will set y(t) = r(t). To interrogate the k-th NDM, we should set

h = hk, where hk is the k-th column of HT in (5.2), such that the BF response wH
RXhk = 1.

The LCMV beamformer output is then given by

z(t) = Re{wH
RXr(t)} . (5.18)

LCMV beamforming is optimal in the sense that it automatically adapts to the scenario
and removes as much interference energy as possible, without removing the target signal
(due to the unity-response constraint). It also automatically takes circuit or biological noise
into account.

However, the interference cancellation by the LCMV BF makes it also very susceptible to
errors in the steering vector h. Indeed, errors in h would mean that the LCMV beamformer is
steered off-target, and it may then consider the actual target signal as an interferer and hence
try to remove it. A good estimate of h is therefore crucial, as errors in the channel model may
result in significant performance degradation. Note that obtaining a good estimate of h may
be non-trivial in the neural dust system (due to heterogeneity of the brain tissue medium,
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Figure 5.3: Different cooperative beamforming modes exist for TX and RX for TX and RX
(a) single-TX and single-RX (single-to-single) (b) multiple-TX and single-RX (all-to-single)
(c) single-TX and multiple-RX (single-to-all) (d) multiple-TX and multiple-RX (all-to-all).

blood vessels, micromotions, etc.). A good channel estimation procedure (preferably on-line)
will therefore be an important ingredient when using LCMV BF.

Fortunately, there exists several methods to reduce its sensitivity to such errors in the
steering vector h (e.g., overview of different techniques in [61]). The simplest approach is to
apply a regularization term to Ryy, i.e.,

Ryy = E{y(t) · y(t)H}+ σI (5.19)

where I denotes the identity matrix, and where σ is a small non-negative number. σ will
then introduce a trade-off between steering vector sensitivity and interference cancellation.
Note that, if σ →∞, we find from (5.17) that wRX → γh (with γ a real-valued scalar), such
that (5.18) becomes equivalent to applying a DAS BF (except for the fact that DAS uses
Φ{h}, i.e., it does not take the signal attenuation into account, whereas h does). It can also
be viewed as a spatial matched filter.

Note that the choice of σ in (5.19) will strongly depend on the signal power in y(t).
Therefore, we will use a slight modification to make the choice of σ less signal-dependent:

Ryy = E{y(t) · y(t)H}+ σ · γy · I (5.20)

where γy is the sum of the variance of all the signals in y(t), divided by the number of signals
in y(t). By including this ‘averaged signal variance’ γy, the amount of regularization will
scale with the signal power, without having to increase σ.

5.2.3 Different beamforming configurations

As shown in Figure 5.3, we can define four cooperative BF configurations:

• A single transceiver creates the TX beam in transmit mode, and the same transceiver
also creates the RX beam in receive mode (single-to-single, see Figure 5.3(a)).
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• All transceivers jointly create the TX beam in transmit mode, and only one transceiver
creates the RX beam in receive mode (all-to-single, see Figure 5.3(b)).

• A single transceiver creates the TX beam in transmit mode, and all transceivers jointly
create the RX beam in receive mode (single-to-all, see Figure 5.3(c)).

• All transceivers jointly create the TX beam in transmit mode, and all transceivers
jointly create the RX beam in receive mode (all-to-all, see Figure 5.3(d)).

5.3 Performance measures

For the simulations in the subsequent sections, the signals Vk(t) consist of (uncorrelated)
artificial spike signals with a signal-to-noise ratio (SNR) of 0 dB, as shown in Figure 5.4.
We scale this signal to 10 µV amplitude recorded on the NDM and resulting 16 ppm change
in the received power at the 1 mm transceiver (as detailed in Chapter 3). If the full array
of TDs in a transceiver transmits a nominal power of 7.2 mW (100% FDA limit), then each
individual TD observes a difference in RMS signal voltage of

VRX =

√
R

0.0072

N
16 · 10−6 (5.21)

where R is the impedance of an individual transducer, and where N is the number of trans-
ducers on a 1 mm transceiver.

Based on these signals, we compare the performance of the beamformer to remove inter-
ference from neighboring NDMs based on three different performance metrics: signal-to-error
ratio (SER), spike misdetection rate (MDR) and false discovery rate (FDR). In the sequel,
we will mostly use the SER to assess the performance of the BFs, because it is less depen-
dent on the signal content, and directly measures the amount of interference. The MDR and
FPR are both indirect measures in the actual beamforming context, but they are of direct
importance in a brain-machine-interface context as discussed below.

5.3.1 Signal-to-error ratio (SER)

The SER quantifies the total amount of noise or interference that is added by the ultrasound
interrogation process, i.e., how much the BF output signal zk(t) differs from the actual signal
Vk(t) that is recorded at a specific k-th NDM. Assuming zk(t) and Vk(t) are zero-mean signals
(no DC component), then the SER is defined as

SERk = 10 · log10

E{Vk(t)2}
E{(Vk(t)− zk(t))2}

(5.22)

where zk(t) is scaled such that its signal component from the k-th NDM has the same
amplitude as Vk(t), i.e., the BF coefficients are normalized such that they observe Vk(t) with
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Figure 5.4: BF output signal zk(t) compared to the original neural signal Vk(t). Dashed
boxes indicate actual spikes.

unity gain. The SER can be viewed as an SNR measure where the noise component is defined
as the difference between the target signal Vk(t) and the BF output. It therefore accounts
for interference due to other NDMs, as well as circuit noise at the receiver. However, it does
not capture noise statistics in the neuronal spike signal, i.e., it only measures noise added
after recording Vk(t) at the NDM.

5.3.2 Spike misdetection rate (MDR) and false discovery rate
(FDR)

The interference from neighboring NDMs degrades the quality of the observed neural signals
at the transceiver, which may influence the performance of post-processing algorithms such
as spike detection or spike sorting. As a first attempt to quantify this effect, we have
implemented a spike detection algorithm, based on a simple thresholding4, combined with a
removal of detected spikes that violate a certain minimum refractory period of 1.5 ms [74].
The threshold is optimally chosen using prior knowledge of the spike positions, such that the
FDR is minimized, while guaranteeing that both the FDR and MDR5 are below a value of
30%. This threshold is computed on the original Vk(t) signals as well as on the BF output
at the transceiver. Any increase in MDR or FDR is then due to the additional interference
during the transmission from the NDM to the transceiver.

Note that the resulting MDR and FDR performance measures should be viewed as a
relative measure, rather than absolute number, merely metrics to investigate performance
degradation compared to the case where we would have direct access to the recorded signals
Vk(t) at the NDM itself.

4A good overview of more sophisticated spike detection and sorting algorithms can be found in [88]
5MDR=FN/(TP+FN) and FDR=FP/(TP+FP) where FN, FP, and TP denote the number of false

negatives, false positives and true positives, respectively.
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Figure 5.5: Directional gain for square planar transducers of different sizes shows that larger
TDs have a more narrow response.

5.4 Sequential interrogation

5.4.1 Effect of transducer size

We assume each transducer in the transceiver to be square of varying sizes, for which the di-
rectivity pattern can be computed using numerical simulation software [42]. The normalized
directional gain θ, as used in (5.2) is shown in Figure 5.5 for TDs with a surface of 1 mm2,
0.33 mm2, 0.2 mm2, and 0.1 mm2, as a function of the vertical offset between the NDM and
the TD with the fixed transmission distance of 2 mm as shown in Figure 5.1. We note that
the directional sensitivity decreases if the TD size decreases (large TDs have a more narrow
response).

Decreasing the TD size has several implications. First, more TDs fit within a 1 mm
transceiver, and hence we have more degrees of freedom for beamforming (the dimension of
wTX and wRX increases in (5.9) and (5.12). However, the increase in the density of TDs
require a substantially larger processing power as the LCMV processing power increases
quadratically with the number of input channels. Second, the wider response of each indi-
vidual TD allows us to steer the beam in a larger angle with respect to the frontal direction.
As a result, larger spatial coverage can be achieved with smaller TDs. The increased spa-
tial coverage, however, implies that each TDs captures more interference from neighboring
NDMs due to their wider accepting angles. Substantial decrease in SER can therefore result
in the inability to extract signals from the desired NDM.

As another illustration of the influence of TD size, Figure 5.6 shows the spatial covariance
or correlation matrix between the signals received at the different TDs in a single-to-all BF
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Figure 5.6: Spatial covariance/correlation matrix between the received signals at (a) 0.33
mm2 and (b) 0.1 mm2 TDs in a single-to-all BF configuration.

configuration, i.e., the absolute value of the coefficients of the entries in Ryy in (5.17) (the
transceiver in the middle alone transmits the TX beam). The submatrices indicated by the
red boxes correspond to the local covariance or correlation at each particular transceiver6.
This demonstrates that, in the case of 0.1 mm2 TDs, there is more cross-correlation between
the different transceivers compared to the case of 0.33 mm2 TDs.

Given the tradeoffs described above, unless stated otherwise, we assume 0.33 mm2 TDs
for simulation results.

5.4.2 Comparison of DAS vs. LCMV in the four beamforming
configurations

Figure 5.7(a) and Figure 5.7(b) demonstrate the benefit of using LCMV BF over DAS BF
when single-to-all BF configuration with 0.33 mm2 TDs are used. The BF response of LCMV
is much sharper since it optimizes its BF coefficients to minimize the amount of interference
energy captured by its main beam and/or its side lobes. The DAS BF cannot adapt its
beam shape to the scenario, and therefore the reflections from interfering NDMs are less
attenuated, in particular those that also fall within the main beam. Note that the LCMV
BF can only be applied in receive mode, i.e., both cases use DAS BF in transmit mode.

We show the performance of LCMV and DAS in different beamforming configurations
in Figure 5.8. In both cases, we observe that the single-to-single configuration cannot suf-
ficiently suppress the interference and result in a significant decrease in spike detection
performance. This means that cooperation between transceivers is crucial for the RX beam.
Interestingly, we observe that single-to-all configuration works better than all-to-all. This is
because the interrogators are separated by more than λ/2 (i.e., sub-sampling) and 0.33 mm2

TDs are very directional, which makes it difficult for a neighboring transceivers to steer a

6Note that the single-to-single BF configuration only exploits the covariance or correlation in one of these
boxes.
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Figure 5.7: Beam pattern of the (a) DAS - SER=6.06 dB, MDR=27.2%, FDR = 45.8% (b)
LCMV - SER=10.34 dB, MDR = 27.2%, FDR = 32.9%.
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Figure 5.8: Comparison between LCMV, DAS, and TX/RX BF config for 0.33 mm-size TDs.
Different points correspond to signals from different NDMs.

sidewards TX beam towards a NDM that is not in the frontal direction. This will only create
more interfering backscatter from other NDMs. Although this effect diminishes and eventu-
ally vanishes for sufficiently small TDs, the single-to-all configuration is never significantly
outperformed by the all-to-all configuration.

The time-domain trace of the DAS and LCMV BF output in Figure 5.4 compared to the
original signal Vk(t) (in blue) show some false detections as reflected in the MDR/FDR plot
of Figure 5.8
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5.4.3 Sensitivity to receiver noise

The results shown in the previous sections assume the RMS value of the thermal noise in
each transducer signal to be

VT =
√

4 · 4 · 10−21 ·R · 10000. (5.23)

where 10000 denotes an operating bandwidth of 10kHz and R is the impedance of an in-
dividual transducer. Figure 5.9 shows the effect of receiver noise for different SNR levels,
where SNR level is defined as the RMS voltage ratio between the received signal from a single
NDM at 2 mm distance from the TD, and the temporally white noise added at the RX TD.
We observe that unless the power of the receiver noise is significantly increased, it hardly
influences the BF performance. This is because the amount of interference due to reflections
of nearby NDMs is much larger than the circuit noise at the receiving transducers.

For the LCMV beamformer, receiver noise noise is implicitly included in Ryy. Figure 5.10
shows the effect of the LCMV beamformer coefficients in wRX for different SNR levels. It can
be shown that, if SNR→ −∞, the LCMV beamformer coefficients will converge to wRX → h,
i.e., the LCMV beamformer will become equal to the steering vector. This is because the
receiver noise is assumed to be spatially uncorrelated, such that an increase of the receiver
noise floor can be modeled as the addition of a scaled identity matrix to Ryy. Therefore,
receiver noise has a regularization effect, similar to (5.20). As explained in Subsection 5.2.2,
the steering vector h is then obtained in the limit case. However, this effect will probably
hardly be noticable with realistic noise floors.

5.4.4 Sensitivity to model parameters

As mentioned earlier, one of the most important drawbacks of LCMV beamforming is its
high sensitivity to steering errors, i.e., errors in the steering vector h. If the LCMV BF is not
exactly on-target, it may treat the target source as an interfering source and try to remove
it, which may have a substantial effect on the performance.

We introduce mismatch in the channel model parameters to assess its impact on the
performance of the LCMV BF. Specifically, we investigate the influence of errors on two
model parameters: the speed of sound c and the path loss constant α. It is noted that the
simulations in this subsection do not incorporate the effect of impedance mismatch, i.e., we
use the simple model (5.2), rather than the semi-black box model described in (5.7) since α
is incorporated in the semi-black box model and cannot be modified.

We assume the nominal values of c and α to be c = 1540 m/s and α = 0.5 dB/(cm·MHz).
We observe that the uncertainty in the model parameters has two adverse effects on the
LCMV BF. First, there is an error in the LCMV steering vector h in (5.16), since h is set to
h = hk where hk is constructed based on a wrong model. Second, uncertainty in c can result
in phase mismatch at the target NDM (i.e., wH

TXhk is not a real number) and significantly
degrade the performance of LCMV BF.
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Figure 5.9: SER of BF output for different SNR levels of receiver noise (0.1 mm2 TDs,
single-to-all LCMV).
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Figure 5.11: Influence of uncertainty in the path loss constant α on the performance of
LCMV beamforming.

Figure 5.12: Influence of uncertainty in the speed of sound c on the performance of LCMV
beamforming.
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Figure 5.13: Sensitivity to model mismatch of DAS and (regularized) LCMV BF for 0.1
mm-size TDs.

Figure 5.11 shows the influence of errors in the path loss constant α in a single-to-all BF
configurations with 0.1 mm2 TDs. We observe that the model mismatch in the path loss
α significantly reduces the performance of the LCMV BF, whereas the DAS BF is almost
unaffected. Note that these effects are somewhat exaggerated since errors of 80% of the
nominal value of α are applied here. However, model mismatch with respect to c has a more
dramatic effect, as demonstrated in Figure 5.12. In this case, even a slight error of less than
5% of the nominal value of c results in a useless LCMV BF output signal, whereas the DAS
BF is only marginally affected.

Fortunately, as explained in Subsection 5.2.2, the LCMV BF can be robustified against
steering errors by applying regularization (or other techniques outlined in the subsection).
Figure 5.13 shows the improvement in the performance of the LCMV BF after applying
relaxation for c. Intuitively, regularization shifts the LCMV BF coefficients closer to the
DAS BF coefficients, which is less sensitive to the uncertainty in the model parameters.

5.5 Simultaneous interrogation

In the previous simulations, we looked into the case where all transceivers dedicate their
resources to the interrogation of one particular NDM. Multiple NDMs can then be inter-
rogated by time-multiplexing, where in each time slot, the transceivers focus on a different
NDM as previously discussed. The minimum amount of time needed to collect one sample
of Vk(t), i.e., the neural signal recorded by the k-th NDM, will depend on the transit time
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Figure 5.14: Spatial multiplexing with (a) per-transceiver TX BF (only one NDM per
transceiver is interrogated simultaneously), and 1-hop RX beamforming and (b) without
TX beamforming (all NDMs are interrogated simultaneously), and 1-hop RX beamforming.

of the transmitted ultrasound wave. As a concrete example, let us assume a single-to-all BF
configuration, where all the transceivers within a 2 mm radius7 of the TX transceiver are
used to form the RX beam. Given the speed of sound in water, the worst-case transit time
of the ultrasound wave is approximately 6 µs, which represents the length of one time slot
when interrogating multiple NDMs using time-division multiplexing (TDM). Assuming that
each recorded neural signal Vk(t) has to be sampled at 20 kHz, then we will need 20,000
time slots per NDM per second, or 0.12 seconds per NDM. This means that the subset of
interrogators can continuously read out the data of 8 NDMs. This roughly corresponds to
8 NDMs per 10 interrogators (assuming a 2D-grid with 1 mm2 interrogators), which is not
much, considering the fact that 100 µm2 ND nodes and 1 mm2 interrogators yields a ratio
of roughly 10 ND nodes per interrogator in a 1D-grid, or 100 ND nodes per interrogator in
a 2D-grid.

5.5.1 Spatial multiplexing in a 1D-grid

In this section, we explore the use of spatial multiplexing, where each transceiver simultane-
ously transmits a TX beam to a different NDM and allows it to interrogate multiple NDMs
within the same time slot. Note that for the RX BF, each transceiver can use the data from

7This approximately covers all transceivers that are direct neighbors of the transmitting transceiver.
This number is based on Figure 5.6.
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neighboring transceivers to extract the NDM signal. We only investigate the single-to-all
LCMV BF, where the number of transceivers used to construct the RX BF is expressed
in hops, where a single hop means that 3 transceivers (or 1 nearby neighbor) are used to
construct the RX BF, i.e., two hops would correspond to the usage of 5 transceivers (trans-
mitting transceiver plus the two neighbors on each side). In this context, we can define two
extreme cases of spatial multiplexing8:

• Case 1: Each transceiver steers a focused TX beam to one NDM in its close neighbor-
hood (see Figure 5.14(a)). In this case, we can interrogate one NDM per transceiver
per time slot, or 8 NDMs per transceiver in total when sampled at 20 kHz. In each
time slot, the spacing between different target NDMs of the different transceivers is
maximized.

• Case 2: All NDMs are interrogated without a dedicated TX BF, i.e., we set wTX = 1
(see Figure 5.14(b)). In this case, time-multiplexing can be fully omitted, since each
transceiver simultaneously reads out the data from the set of NDMs that are assigned
to it (roughly 10 NDMs per transceiver in a 1D-grid).

Figure 5.15 shows the results for Case 1, for the 10 target NDMs associated with the
most central transceiver in the scenario, for different TD sizes. It is observed that 0.33
mm2 TDs do not provide sufficient signal separation, and result in a very weak performance
in terms of spike detection. If 0.2 mm2 TDs are used, the performance is better, but still
much poorer compared to the original neural signals recorded at the NDMs. When using
0.1 mm2 TDs, the performance is almost as good as in the previous sections when there was
no spatial multiplexing. Note that a 1-hop neighborhood is generally sufficient to have a
good performance. This is not surprising, considering Figure 5.6, showing that most of the
correlation can be captured in such a 1-hop neighborhood.

Figure 5.16 shows the results for Case 2, where the TX BF is omitted, i.e., wTX =
1, and compares the performance with the best solutions in Case 1. It is observed that,
although Case 2 is much more efficient and requires no TDM, it substantially degrades the
performance. This suggests that an in-between solution (between Case 1 and Case 2) may
be the best alternative.

5.6 Conclusion

In this chapter, we propose a general framework to analyze system design tradeoffs in the
neural dust system in a simplified 1D-grid. Our analysis demonstrates that cooperation
between different transceivers is unavoidable to achieve sufficient interference suppression.
The choice for hardware implementations of such BF systems is determined by the available

8Note that even though we confined outselves to the above two cases, there are many intermediate
possible configurations, where the number of slots can be varied both in the time-dimension (number of time
slots per second) and in the spatial-dimension (number of simultaneously interrogated NDM per transceiver.)
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Figure 5.15: Comparison of BF configurations in spatial multiplexing scenario with TX BF.
Note that a 1-hop neighborhood is generally sufficient to have a good performance.

Figure 5.16: Comparison of spatial multiplexing scenario with and without TX BF suggests
that in-between solution may be the best alternative.
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communication bandwidth and the processing power. In order to reduce the processing
and communication burden, we can consider a hierarchical processing flow where a BF is
computed in two stages, i.e., each transceiver locally computes a BF signal, which is then
combined with the BF signals of other transceivers by a global 2nd stage BF. In general, such
an approach removes many degrees of freedom, and therefore the level of hierarchy should
be carefully optimized. However, there also exist distributed realizations of the LCMV BF,
which can be shown to be equivalent to a centralized realization, at the cost of a slower
tracking.

Furthermore, as opposed to the current time-multiplexing method, which limits the rate
of NDM interrogation, one could explore spatial multiplexing where multiple NDMs are
interrogated simultaneously by the same TX beam(s). However, it is important to consider
the additional interference caused by simultaneously interrogating the NDMs.

Finally, all simulations in this paper were applied to a 1D-grid of NDMs and transceivers,
but the model can be extended to 2D and 3D-grids. Furthermore, the degree of realism in the
model can be improved by adding uncertainty in the orientation of the NDMs (i.e., random
directional reflectivity patterns) and adding time-variations in the signal statistics due to
micro-motion of the cortex, changes in position or orientation of the NDMs, etc. We believe
that these variations are sufficiently slow to track with adaptive algorithms. However, all
this remains an open challenge.
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Chapter 6

Conclusion and Future Research
Directions

6.1 Conclusion

In this thesis, we present a wireless, ultrasonic neural sensor and communication system
called neural dust that enables neural recordings in the central and peripheral nervous sys-
tem. We analyzed the fundamental system design tradeoffs and ultimate size, power, and
bandwidth scaling limits of neural dust. In brief, physics limits how small a good electro-
magnetics (or radio frequency) based receiver can be due to the long wavelengths of the
wave-front (millimeters to centimeters) and the high degree of absorption of radio frequency
energy into tissue (which heats up the tissue and limits the total power that can be sent to
an implant). Ultrasonic systems fare much better in both areas, allowing for the design of
extremely small receiver devices. In addition, the extreme miniaturization of lower power
electronics and communication module based on backscattering allow for useful recording
electronics to be incorporated into such small packages.

In order to verify the functionality of neural dust, we designed, built, and implanted
neural dust in a stationary, anesthetized rodent model to collect compound action potentials
from the main branch of the sciatic nerve as well as evoked electromyogram from the gastroc-
nemius muscle. We show that ultrasound is effective at delivering power to mm-scale devices
in tissue; likewise, passive, batteryless communication using backscatter enables high-fidelity
transmission of peripheral nerve signatures. The performance of the neural dust system was
equivalent to conventional electrophysiological recording employing microelectrodes and ca-
bled electronics.

Additionally, we discussed both theory and hardware implementation of a wearable,
battery-powered, multi-element transceiver module that allows for beam steering of the ul-
trasonic beam. Several advantages of the platform include: (1) neural dust motes can be
maintained on axis even in the face of relative motion between mote and external transducer;
(2) multiple motes can potentially be interrogated by sweeping the focused beam electron-
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ically; (3) post-surgical identification of mote location would be made easier. Our analysis
of the scaled neural dust system with multiple transceivers and multiple neural dust motes
implanted in the neocortex demonstrate that cooperation among transceivers is unavoidable
to achieve sufficient interference suppression.

6.2 Future research directions

A number of technical challenges remain open in the realization of miniature, chronic, high-
density, ultrasound-based neural recording systems. Current and future research efforts are
described below.

Reduction of noise floor

Current neural dust prototype described in Chapter 4 achieves a noise floor of ∼180 µVrms

(averaged over 8 samples) and a dynamic range of > 500 mV. On the other hand, extracellu-
larly recorded signals from neurons in the neocortex and in the peripheral nerves range from
10’s of µV to ∼10 mV. As a result, the current system cannot achieve sufficient signal-to-
noise (SNR) ratio to reliably resolve neural spikes or compound action potentials. Given that
our current setup operates at 0.03% of the FDA regulatory limit, increasing the power levels
can improve the overall SNR. Alternatively, since the current neural front-end (i.e., single-
transistor passive backscatter circuit) under-utilizes the available dynamic range, low-noise
amplifier can be added to the front-end to increase the input range.

As a result, we1 taped-out ultrasonically-powered neural front-end circuit in TSMC 65
nm low-power (LP) process. The design is largely adopted from [10] and [71] and achieves a
simulated input referred noise of < 6 µVrms, variable gain up to 46 dB, 20 kHz of bandwidth
with 10 bits of resolution, and digital downlink and miller-modulated uplink backscatter
communication, all under ∼5 µW of power consumption. Low-noise, low-power front-end
significantly reduces the noise floor of the system and digital communication alleviates issues
that arise from misalignment.

Microassembly of motes

The calculated scaling predictions in Chapter 3 suggest that 100 µm scale motes are able to
capture sufficient power and backscatter sensitivity. In order to build sub-mm motes, a num-
ber of material and microfabrication challenges exist, including the use of microfabricated
backplanes, solder microbumping assembly of components (instead of the conventional wire-
bonding approach used previously), and a robust, wafer-scale processing flow. Furthermore,
the fabrication of a “tail” discussed in Chapter 3, which can break the inherent tradeoff be-
tween the size of individual motes and the achievable SNR, presents an additional fabrication
challenge.

1In collaboration with Kyoungtae Lee.
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Chronic encapsulation

Mechanically, the total displacement of the piezoelectric transducer when actuated is in
the nanometer regime, which means that thin film encapsulation is suitable for packaging
the system (keeping in mind, of course, the caveats presented by thin film encapsulation,
including biocompatibility, water penetration, inertness, etc.). Common thin films used for
chronic implantation of this kind include parylene, medical grade polyimide, and increasingly,
more groups are investigating the use of silicon carbide [7, 52, 60]. In addition, independent
of the thin film encapsulant used, biocompatible alternatives to PZT, such as BaTiO3, can
be used for chronic implantation.

Delivery

The most direct approach would be to implant neural dust motes at the tips of fine-wire
arrays similar to those already used for neural recording. In this scenario, neural dust motes
would be fabricated or post-fab assembled on the tips of array shanks, held there by surface
tension or resorbable layers and inserted into the cortex. Once inserted and free, the array
shank would be withdrawn, allowing the tissue to heal.

Kinetic delivery might also be an option, but there is no existing data to evaluate what
effect such a method would have on brain tissue or the device themselves. Additionally, as
demonstrated in [77], motes can potentially be delivered via the vasculature, where motes
would be post-fabricated on commercially available stents and record from the vessel wall.
Alternatively, motes can be inserted in the cisterna magna which can allow ready access
to the cerebral spinal fluid (CSF), which has a generally well-mapped path circulating the
cortex [11]. Finally, macrophages can engulf foreign structures up to at least 20 µm in
diameter [13] and can be used as potential delivery vehicles to deliver tiny motes across the
barriers.

Beamforming transceiver

Hardware implementation of sophisticated beamforming algorithms that are making use of
techniques such as beam steering, multi-input, multi-output (MIMO) system theory, and
deep learning is underway. As discussed in Chapter 5, when employing multiple embedded
dust motes, interrogating and identifying the signals from an individual neural dust mote
are challenging due to interference from surrounding motes. This necessitates a transceiver
with multiple, independently addressable transducer elements acting in an array.

Furthermore, implementation can take the form of a hierarchical or distributed processing
flow, where multiple signals are fused into a smaller set of signals before transmission to the
next processing stage. As an example, for a beamformer (BF) to be computed in two
stages, each transceiver locally computes a BF signal then combined with the BF signals of
other transceivers by a global 2nd stage BF. Optimization at both algorithm and hardware
implementation levels must be fully explored to achieve sufficient interference suppression to
resolve simultaneous signals from different motes via spatial or time multiplexing.
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Stimulation

The design and fabrication of ultrasound-powered neural stimulation systems is in progress.
Stimulation can either be done electrically based on charge release through electrodes on
the dust motes [9, 56, 90], chemically by precisely controlling drug release [19, 23, 57], ul-
trasonically by enhancing the transport of molecules into or through biological tissue [51,
65, 106], or with hybrid techniques such as opto-genetic [15] and photo-acoustic [30] stimu-
lation. Combination of recording and stimulating dust motes can enable chronic, real-time
closed-loop neuromodulation.

Non-neural applications

Beyond interfacing with the nervous system, miniature, ultrasound-based implantable de-
vices can enable a number of non-neural applications. One of the principal strengths of
neural dust is that ultrasound is significantly more efficient at powering miniature sensors
embedded deep within the body compared to conventional radio frequency technology.

As this platform presents a generalized power delivery and communication module, sen-
sors (i.e., electrodes) as well as the front-end can be modified to detect non-electrical, yet
viable biological signatures such as oxygen, temperature, glucose, or hormone levels. A suite
of these sensors can be implanted anywhere in the body to monitor and precisely deliver
necessary therapy at the desired target site.

All remains an open yet exciting opportunity.
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