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Abstract

Neural Dust: Ultrasonic Biological Interface
by
Dongjin Seo
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Michel M. Maharbiz, Chair

A seamless, high density, chronic interface to the nervous system is essential to enable
clinically relevant applications such as electroceuticals or brain-machine interfaces (BMI).
Currently, a major hurdle in neurotechnology is the lack of an implantable neural interface
system that remains viable for a patient’s lifetime due to the development of biological
response near the implant. Recently, mm-scale implantable electromagnetics (EM) based
wireless neural interfaces have been demonstrated in an effort to extend system longevity, but
the implant size scaling (and therefore density) is ultimately limited by the power available
to the implant.

In this thesis, we propose neural dust, an entirely new method of wireless power and data
telemetry using ultrasound, which can address fundamental issues associated with using EM
to interrogate miniaturized implants. Key concepts and fundamental system design trade-
offs and ultimate size, power, and bandwidth scaling limits of such system are analyzed
from first principles. We demonstrate both theoretically and experimentally that neural
dust scales extremely well, down to 100’s, if not 10’s of um. We highlight first wireless
recordings from nerve and muscle in an animal model using neural dust prototype. The
thesis concludes with strategies for multi-neural dust interrogation and future directions of
neural dust beyond neuromodulation.
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Chapter 1

Introduction

As long as our brain is a
mystery, the universe, the
reflection of the structure of the
brain will also be a mystery.

Santiago Ramon y Cajal

Half a century of scientific and engineering effort has yielded a vast body of knowledge
about the human nervous system as well as a set of tools for stimulating and recording
from neurons. Recently proposed roadmaps for the field of neuromodulation |1, 29] highlight
the need for neural interface technologies that can record appropriate physiological markers
across multiple biological targets and be used to update stimulation parameters in real-time.

Key features of such closed-loop technologies include high-density, stable recordings of
many neurons, wireless and implantable modules to enable characterization of functionally
specific neural signals, and scalable device platform that can interface with small nerves or
single cortical neurons of 100 pum of diameter or less. Such closed-loop system that can both
decipher and precisely modulate physiological activity in the body can have immediate ben-
efits. For clinically relevant applications, such as bioelectronic medicine (or electroceuticals)
[29] and brain-machine interfaces (BMI) [17], such system can offer immediate therapeu-
tic effects for patient groups suffering from neurodegenerative diseases such as epilepsy,
tetraplegia, amyotropic lateral sclerosis (ALS), cerebral palsy, peripheral neuropathy, and
many more. Beyond specific patient groups, seamless interface to the nervous system can
enable high bandwidth analog input and output interface to our electronic devices, bypassing
limits imposed by especially our low bandwidth digital outputs (i.e., speech, typing, etc.).

This thesis presents the analysis, design, and experimental verification of one promising
biological interface technology called neural dust that can enable significant scaling in the
number of neural recordings from the nervous system while providing a path towards a truly
chronic neural recording solution.
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1.1 Interface to the nervous system

Currently, there are numerous modalities with which one can extract information from the
nervous system. Advances in imaging technologies such as functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), positron emission tomography (PET), and
magnetoencephalography (MEG) have provided a wealth of information about collective
behaviors of groups of neurons [12]. Numerous efforts are focusing on intra- [110] and
extra-cellular |26] electrophysiological recording and stimulation, molecular recording [114],
optical recording |115], and hybrid techniques such as opto-genetic stimulation [15] and
photo-acoustic [30] methods to perturb and record the individual activity of neurons in large
ensembles.

1.1.1 In-vivo demonstrations

By far the most popular method for recording from the nerve is the direct electrical measure-
ment of potential changes near relevant neurons during depolarization events called action
potentials (AP) using multi-electrode technology. Various neural probes (or microelectrode
arrays) exisﬂ, which are typically at least 1 mm long and less than 50 pm wide at the tip.
The spacing between the probes is on the order of a few 100’s of ym and recording sites are
located either along the shaft or at the tip of each electrode. Variants of microelectrode ar-
rays are used both in non-human primates and in humans to demonstrate control of robotic
prosthetic arms [16, [21} 40, (73} |75], control of wheelchair [85], restoring movement impaired
by spinal cord injury [14], and sensation [32].

One of the biggest issues with microelectrode arrays or any penetrating electrode tech-
nology, however, is the immunoresponse of the brain tissue upon insertion at the implant
site. Once the probes are inserted, scar tissue forms around the probes and can cover the
recording site of the array, degrading the signal-to-noise (SNR) of the recorded signals over
time [81]. Improvements in the surgical procedures (i.e., reducing the mechanical mismatch
between electrode arrays and soft tissue), materials and shapes of electrodes, and miniatur-
ization of electrodes with novel microfabrication processes have been studied but longevity
of recordings with multi-electrodes are still one of the biggest hurdles to overcome.

1.1.2 Trends and scaling of wired neural interfaces

Since the introduction of multi-electrode recording technology in the 1950s to record from
the brain [2], the number of recording channels and therefore the number of neurons simul-
taneously recorded have witnessed a tremendous growth. Examination of studies published
over the past few decades has resulted in “Stevenson’s law” which observed that the num-
ber of simultaneously recorded neurons have doubled approximately every 7 years especially

'Examples include Utah array [63], Michigan probes [109], Duke array [72].
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Figure 1.1: Stevenson’s law observed from the past 5 decades of research that there is
doubling in the number of simultaneously recorded neurons (or recording channels) approx-
imately every 7 years. This law predicts that it will be ~100 years until we can record from
one million neurons simultaneously.

since the 1950s [99]. This is akin to the famous Moore’s law which predicted doubling of
device densityﬂ every 2 years.

Although rapid advances have been observed in neurotechnology over the years, Steven-
son’s law predicts that, at the current rate of growth, it would take 15 years until we can
record from approximately 1,000 neurons, 60 years until we reach 100,000 neurons, and in
~100 years, physiologists should be able to record from 1,000,000 (one million) neurons.
Note that this is also rather optimistic in that it assumes unperturbed, continuous scaling
of multi-electrode technology, which is certainly fraught with its set of limitations, such as
interconnect density limit, micro-fabrication challenges, tissue scarring, and many more.

The trend indicates that new technological breakthroughs are necessary in order to ac-
celerate growth, similar to the disruption of Moore’s law with the introduction of CMOS
technology. Several groups are investigating novel technologies, such as advanced imaging
technologies utilizing two-photon microscopy , wireless implantable devices , ,
98}, [102], molecular-level recording 53, [114], and hybrid techniques such as opto-genetics

[15] [24] and photo-acoustic methods [30, [108]. All modalities, of course, have some
fundamental tradeoffs and are usually limited in temporal or spatial resolution, portability,

power, invasiveness, etc. A comprehensive review of tradeoffs focused on recording from all

2There are variants of Moore’s law: doubling of (number of transistors, component cost, etc.) every 2
years.
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Figure 1.2: Neural dust system can be configured to record from the neocortex (left) or from
afferent or efferent nerves in the peripheral nervous system (right). Note that for interfacing
with the central nervous system (left), ultrasonic transceiver is implanted sub-cranially and
powered by an external transceiver via EM. For peripheral nervous system (right), such
tiered approach is not necessary as highly attenuative (to ultrasound) bone is not directly
in the path of ultrasound waves.

!

neurons in a mouse brain can be found in [62].

1.1.3 Wireless neural interfaces

Recently, wireless devices to enable untethered recording in rodents and nonhuman
primates , 7 , as well as mm-scale integrated circuits for neurosensing application
[10], have been developed. However, most wireless systems use electromagnetic (EM)
energy coupling and communication, which becomes extremely inefficient in systems smaller
than ~5 mm due to the inefficiency of coupling radio waves at these scales within tissue ,

. Detailed analysis of this will be covered in Chapter [2| and Chapter .

1.2 Thesis Contribution

We introduce neural dust, which is an ultra-miniature as well as extremely compliant bio-
logical interface shown in Figure for both interfacing with the central nervous system
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(CNS) and the peripheral nervous system (PNS). The system is designed in light of a need
for radical improvements in scalability. In this thesis, we primarily focus on the analysis,
design, and experimental verification of neural dust that can enable significant scaling in the
number of neural recordings from the nervous system while providing a path towards a truly
chronic neural recording solution.

1.3 Thesis Organization
The rest of this thesis is organized as follows:

e Chapter [2} In this chapter, we provide an overview of available wireless power trans-
fer (WPT) techniques to power implantable systems. We examine tradeoffs among
different methods qualitatively and compare the performance of previously published
work. In particular, we study how commonly used electromagnetics (EM) based WPT
performs at the millimeter and sub-millimeter scale necessary for the proposed high-
density neural interfaces. We conclude with simulations that due to the non-linear
interplay of form factor, speed of light, and frequency spectra of tissue absorption,
EM-based power transmission is not an appropriate energy modality for powering sub-
mm sized implants.

e Chapter In this chapterf] we show ultrasound as a viable alternative method
to power sub-mm implantable systems. We introduce a novel neural interface system,
called neural dust, which uses ultrasound to couple power to small implantable “motes”
and wirelessly communicate recorded signals via backscattering. We provide theory,
system design tradeoffs, scaling limits, and simulations of neural dust as a platform to
record from the neocortex. We verify experimentally that our model correctly predicts
power transfer efficiency and backscatter sensitivity down to 100 pum scales.

e Chapter [4: In this chaptef] we demonstrate wireless recordings from nerve and
muscle in a rodent model using neural dust. We show hardware implementation of the
transceiver and a mm-sized neural dust mote prototype fabricated on a commercially
available polyimide backplane. We benchmark the performance of neural dust in a
water tank setup and verified that the performance did not degrade much in a rodent
model. As the first in-vivo electrophysiological recordings with neural dust, this work
highlights the potential for an ultrasound-based neural interface system for advancing
future bioelectronics-based therapies.

3A part of this chapter was published in arXiv [96] and Journal of Neuroscience Methods [95].

4This chapter is done in collaboration with Ryan M. Neely and Dr. Hao-Yen Tang. A part of this
chapter was presented in IEEE Engineering in Medicine and Biology Conference [97] and published in IEEE
Transaction on Biomedical Circuits and Systems [105] and Neuron [9§].
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e Chapter : In this chaptelﬂ7 we explore more in-depth analysis of cooperative transmit
(TX) and receive (RX) beamforming approaches with multiple transceivers to enable
multi-mote interrogation. We discuss the mathematical formalization of the problem
and simulate the model to compare the performance of different beamforming tech-
niques. We show that linearly constrained minimum variance (LCMV) beamforming
technique performs the best and that cooperation among transceivers is necessary to
suppress interference from neighboring motes and achievable sufficient signal-to-noise
ratio. We examine spatial multiplexing scheme to increase the overall throughput and
hierarchical processing flow to reduce the processing and communication burden.

e Chapter [6} we conclude the thesis with the summary of the results and important
future research directions.

5This chapter is done in collaboration with Dr. Alexander Bertrand. A part of this chapter was presented
in IEEE Engineering in Medicine and Biology Conference [§].



Chapter 2

Powering Implantable Systems

If you want to find the secrets
of the universe, think in terms
of energy, frequency and
vibration

Nikola Tesla

In this chapter, we provide an overview of options available to power an implantable
device, which requires a long term, safe, and reliable source of energy for operation. Since
the introduction of the first cardiac pacemakers in 1958 [3], batteries have been the tra-
ditional method of supplying power to implants. Although batteries are a convenient and
reliable source of energy with relatively high energy density, and despite rapid advances
in electrochemical energy storage, their limited lifetime and leakage of harmful chemicals
require subsequent replacements and limits their usage. This is especially problematic for
powering miniature implants. Additionally, to eliminate the risk of infection associated with
the transcutaneous/trans-cranial wires required for power, such tethers should be avoided as
much as possible; a wireless hub is therefore essential to relay the information recorded by
the device through the skull or the skin. As a result, we explore several different methods
for powering implants wirelessly[}

2.1 Wireless powering options

The requirements for any implantable device employing microelectrodes to acquire useful
neural signals are fairly stringent. The two primary constraints on the implanted device are
size and power. On the one hand, in order to reduce the biological response near the implant

!There are alternative methods that look to harvest energy from the environment, such as kinetic,
thermal, solar, chemical, etc. that are not discussed here. For detailed treatment, refer to [91].
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sitd?] it is highly desirable to minimize the volume of the implant. However, reducing the
size of the implant not only reduces the amount of power smaller devices can collect, but
reduces the distance between recording points, which decreases the absolute magnitude of the
measured potentials. This decreased amplitude exacerbates the constraints on the electronics
as it needs to reduce its noise and cram similar functionality in a smaller footprint. With
this tradeoff in mind, we will examine several wireless powering modalities.

2.1.1 Electromagnetic (EM) power transfer

Electromagnetic (EM) means of wireless power transfer are the most commonly used method.
Generally, an EM field source (e.g., point, dipole, antenna, or coil) produces EM waves in
the surrounding media, which then interacts with the media to generate non-radiative and
radiative components of the EM waves. As the EM waves propagate away from the source,
its wave properties change and the characteristics of the wave can be divided into near-field
(i.e., closer to the source) and far-field; Rayleigh distance is the distance at which the field
characteristics transition from near-field to far-field Pl

There are several variants of the EM power transfer but all methods can be broadly
classified under the following two categories: non-radiative (or near-field) and radiative (or
far-field). Non-radiative methods refer to either electric (i.e., capacitive) or magnetic (i.e., in-
ductive) field based power transfer that occurs in the near-field of the transmitter. Radiative
methods, on the other hand, refer to power transfer by beams of electromagnetic radiation.
The beam consists of both electric and magnetic field components and the field generally
decays with 1/r2. The mode of EM power transfer is largely determined by the operation
frequency (fres), wavelength in the propagation medium (), aperture of the transmitter
(D), and propagation distance (d).

Inductive powering

Inductive powering is the most widely used non-radiative technique to transfer energy across
tissue. An external coil (primary) generates time-varying fields, which are primarily magnetic
in nature (i.e., quasi-magnetostatic), and couple energy to an implant with a separate coil
(secondary) via magnetic induction. The efficiency of inductive powering largely depends on
the self-inductance and the mutual coupling between the two coils. These parameters are
directly related to the size of the coils and inversely proportional to the distance between
the coils, which limit the achievable range and efficiency. The range is usually limited to
distance on the order of the diameter of the secondary coil.

There have been several techniques, such as resonance and adaptive tuning [93], quality
factor enhancement [86], and multi-coil configuration [50] to improve inductive powering.

2In addition to disrupting normal biological behaviors, formation of scar tissue around the implant can
significantly degrade its performance.

3This is a crude approximation of the intricate physics involved in wave propagation. For detailed
treatment, refer to [5] 32].
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Efficiency of over 82% have been demonstrated [86]. However, due to the exponential decay
of the evanescent near-field, the mutual coupling between the coils drops dramatically and
significantly degrades the transfer efficiency and increases the sensitivity to misalignment.
Therefore, in order to achieve sufficient link robustness and transfer efficiency, coils are
usually in the cm range for implants.

Mid-field powering

Sandwiched between the near-field and far-field of the transmitter is mid-field. Mid-field
wireless powering relies on the focusing of radiation and is shown to address the downfalls
of the efficiency degradation when the implant is much smaller than its distance from the
source [38,39]. By combining inductive and radiatve mode, high efficiency can be achieved
in the low-GHz range and mid-field enables efficient powering of miniature implant (or the
case when the dimension is comparable to the distance from its source).

Mid-field powering, however, requires proper engineering of source current and phase dis-
tribution in the antenna, which depends on the knowledge of the channel a priori; the ability
to focus energy at a desirable depth is sensitive to uncertainty in the channel properties.
However, this method offers more efficient means of powering mm-sized implants compared
to non-radiative methods as shown in Table .11

Radiative powering

In order to couple energy efficiently to the implant, its wavelength, regardless of the modality
of the incoming wave must match the dimensions of the implant aperture. The aperture
mismatch between the transmitter (large) and the receiver (small) that is usually apparent
in the case of biomedical implants (i.e., less size constraints on the TX placed outside the
tissue) affects efficiency primarily due to low achievable radiation resistance in the RX. In
the case of small mm-sized implant, operation in far-field and increasing the frequency to the
mm-wave (> 10 GHz) regime can be shown to be the optimal frequency of operation [103].
Detailed analysis can also be found in [5]. Although increase in the operation frequency
can enable high efficiency power transfer and allow on-chip integration of antennas to reduce
overall footprint, designing high-performance circuitry at 10’s of GHz with increasing passive
losses is not trivial.

Also, note that with all types of EM methods, the necessity of in-vivo coils or antennas in
such implants make them inherently MRI-incompatible, presenting a major hurdle for some
applications.

2.1.2 Optical power transfer

Power transfer at higher frequencies, in the near infrared, infrared, and optical regime can
also be used. Optical charging methods typically rely on a photovoltaic cell on the implant,
which receives power from an external source (e.g., laser diodes, LEDs, etc.).
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Photovoltaic cell is usually composed of a p-n junction of a large band-gap semiconductor,
which generates electron-hole pairs from incident photons. The size of the photovoltaic cell is
determined by the operation frequency of the optical powering method. Two loss mechanisms
determine the optimal frequency of operation. On the one hand, as light propagates through
the medium, wavelength dependent scattering from many different types of particles in the
tissue. On the other hand, due to the multi-layer structure of the human tissue, reflections
at multiple interfaces of the layer causes additional degradation in the transfer efficiency.
Taking these loss mechanisms into account, studies have shown [4, [70] that near-infrared
region (NIR) region (also known as “therapeutic window”) in the optical spectrum has
minimal overall loss and can therefore achieve maximal efficiency.

These methods, unfortunately, suffer from similar limitations of solar-power harvesting,
such as inherent low efficiency in the photon-conversion and short penetration depth due to
light attenuation in tissue.

2.1.3 Ultrasonic power transfer

Acoustic waves can transmit energy between two piezoelectric transducers. Acoustic en-
ergy transmission has been used for various military applications, such as underwater and
through-wall communication |44} 78]. Unlike electromagnetics, using ultrasound as an energy
transmission modality never entered into widespread consumer application, and was often
overlooked because the efficiency of electromagnetics for short distances and large apertures
is superior.

However, ultrasound offers an attractive alternative for wirelessly powering mm-sized
or sub-mm implantable devices [18, 56| (64} 78, |96 98]. Ultrasound has two advantages.
First, the speed of sound is 10°x lower than the speed of light in water, leading to much
smaller wavelengths at similar frequencies; this yields excellent spatial resolution at these
lower frequencies as compared to EM waves. Second, ultrasonic energy attenuates far less in
tissue than EM radiation; this results not only in much higher penetration depths for a given
power, but also significantly decreases the amount of unwanted power introduced into tissue
due to scattering or absorption. In fact, for most frequencies and power levels, ultrasound
is safe in the human body. These limits are well-defined and ultrasound technologies have
long been used for diagnostic and therapeutic purposes. As a rough guide, about 72x more
power is allowable into the human body when using ultrasound as compared to radio waved|

(46, [47).
2.1.4 Swurvey

The performances of previously published work using various wireless powering options dis-
cussed in this section are listed in Table .11 The table is not meant to be used as a

4Time-averaged acceptable intensity for ultrasound for cephalic applications, as regulated by the FDA,
which is approximately 9x (94 mW /cm?) for general-purpose devices and 72x (720 mW /cm?) for devices
conforming to output display standards (ODS) compared to EM which is limited to 10 mW /em? |46, |47].
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Method Dimensions Freq Efficiency Ref

EM (Inductive) | TX coil: 64 mm 700 kHz 82% (Air, 20 mm) [86]
RX coil: 22 mm 72% (Air, 32 mm)

EM (Inductive) | TX coil: 43.7 mm | 13.56 MHz | 75% (Air, 10 mm) [111] |
RX coil: 17.8 mm 58.2% (Tissue, 10 mm)

0.44% (Air, 50 mm)
0.16% (Tissue, 50 mm)

EM (Inductive) | TX coil: 28 mm 13.56 MHz | 13.5% (Air, 20 mm) [58]
RX coil: 34 mm
EM (Mid-field) | TX coil: 210 mm 1.5 GHz 0.075% (Air, 15 mm) [39]

RX coil: 2 mm

EM (Far-field) TX coil: N/A 24 GHz 8.9e-4% (Air, 280 mm) | [103]
RX coil: 2.4 mm 2.8e-4% (Air, 500 mm)

EM (Capacitive) | Plates: 22 mm 402 MHz | 68.3% (Gel, 3 mm) [48]

67% (Gel, 5 mm)

Ultrasonic TX: 15 mm 650 kHz 39.1% (Tissue, 5 mm) | [79]
RX: 15 mm 17.6% (Tissue, 40 mm)

Ultrasonic TX: 13 mm 1 MHz > 50% (Oil, 30 mm) (18]
RX: 1.1 mm

Ultrasonic TX: 6.3 mm 1.8 MHz 25% (Gel, 9 mm) [98]
RX: 0.85 mm

Table 2.1: The performance of various wireless powering options discussed in this section are

summarized. Dimensions are listed in terms of its effective diameter, defined as ,/% where
A is the area of the coil.

comprehensive list but to illustrate appropriate use case for various powering modalities.

2.2 Benchmark

Despite significant progress in wireless power transfer, most work, as outlined in Table
focuses on cm-size or mm-size implants. In this section, we are interested in how the efficiency
of traditional wireless powering methods scale for transferring power to sub-mm devices. In
particular, we will illustrate the limitation of EM methods by considering the problem of
transmitting EM power to a very small implant (sub-mm) embedded a very short distance (2
mm) in tissue (or in the neocortex), with mm-sized transmitter. Efficacies of other methods
discussed above are not treated here but similar calculations can be performed to show their
limitations.

In our calculations and simulations, we will focus specifically on whether EM wireless
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powering can address the following objectives:
e What is the achievable power transfer efficiency?
e What is the absolute maximum power we can harvest safely at the implant?

e Does this approach scale to allow high density neural recording?

2.2.1 Simulation framework

Regardless of the specific implementation, any EM powered implant will contain a resonant
component that couples to the EM waves; such a system can be modeled as a series/parallel
RL(f| Assuming that the primary (TX) and secondary (RX) coils are perfectly aligned and
that an implant can accommodate capacitance densityﬂ of approximately 10 fF/um? and a
planar square loop inductor is used, where the inductance is given by

1.2 2y 2.
_ Tion“dgyg n 07
2 ¢

where n is the number of turns, d, and d; are the outer and inner diameter of the coil,
respectively, dg,g = % and ¢ is a parameter known as a fill factor, defined as g‘o’—;gz
[69]. In order to compute the expression for the efficiency of the EM link, it can be shown
mathematically that the efficiency n (derivations can be found in [49)) is

QrxQr QL

L ) +0.18¢ + 0.13¢7] (2.1)

= . 2.2
Ty k*QrxQr Qrx +Qr (2.2)
where k is the coil coupling coefficient defined as ﬁ, M is the coil mutual inductance

which depends on coil geometry and distance, Lrx and Lgx are the inductances of TX and
RX, respectively, Qrx and QQrx are the unloaded quality factor of the TX and RX coil,
respectively, and (), is the loaded quality factor of the RX coil.

2.2.2 EM channel model

The attenuation of the EM signal as it propagates through brain tissue due to tissue absorp-
tion is well documented [46] and the parameters can be extracted to model the transmission
channel. Figure[2.1|plots the modeled channel (2 mm of tissue) loss as a function of frequency
and includes loss from tissue absorption as well as path loss (or beam spreading) based on
the Friis equation (20-log(A/(4nr)). We observe that there is an exponential relationship
between the channel loss and the frequency, and at 10 GHz — the total combined loss for
one-way transmission is approximately 20 dB.

5For the purposes of this exercise, one may presume that a suitable method exists for modulating the
quality factor or mutual coupling of the RLC as a function of neural activity

6Optimistic assumption given that the typical capacitor density for 65 nm technology node is between 2
— 3 fF/pum?
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Figure 2.1: Total channel loss in 2 mm tissue, due to both tissue and propagation loss,
increases exponentially with frequency, resulting in a 20 dB of loss at 10 GHz.

Moreover, at these very small footprints (compared to the wavelength, which is in mil-
limeter range), the receive antenna efficiency becomes quite small, thereby easily adding
roughly 20 dB of additional loss, resulting in a total gain of at most -40 dB. The tissue
absorption loss penalty incurred by operating at a high frequency can be reduced by increas-
ing the capacitance density using 3D inter-digitized capacitor layouts, for instance, but even
then, eventual increase in the resonant frequency of the link causes an exponential increase
in the tissue absorption loss and the overall channel loss.

2.2.3 Simulation result

An iterative solver that optimizes 7 in this channel model was written in MATLAB. Given
this, the performance of electromagnetic power transfer suffers from two fundamental issues.
First, the extreme constraint on the size of the node limits the maximum achievable values of
the passives. Assuming a planar square loop inductor with 3-turn ratio, calculations predict
the resonant frequency of a 100 pum neural dust would be ~10 GHz as shown in Figure [2.2]

To make matters worse, the mutual coupling between the transmitter and receiver coils
drops dramatically and significantly degrades the transfer efficiency and increases the sensi-
tivity to misalignments [34, |92]. As shown in Figure EM transmission with a 100 pym
neural dust embedded 2 mm into the cortex results in 64 dB of transmission loss. Given a
1 mm? transmitter aperture outputting 100 uW of power — limited by the need to satisfy
safety regulations on output power density| of 10 mW/cm? [46] — the resulting received
power at the neural dust is ~40 pW. This is orders of magnitude smaller than the power
consumption imposed by noise requirements on the front-end amplification circuitry (refer

"Roughly, the upper limit for EM power density transiting through tissue is set by the minimum required
to heat a model sample of human tissue by 1°C.
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Figure 2.2: The mutual coupling, and therefore link efficiency, also reduces dramatically with
the scaling of the implant dimensions.

to later sections for further discussion). As a result, prior work by [10], which features the
most energy-efficient and smallest wirelessly EM powered neural recording system to date,
at 2.5 pW /channel and 250 pm x 450 pm, is limited in terms of further dimensional scaling
and increasing the range (the effective range within brain tissue for this work was 0.6 mm).

We conclude that due to the non-linear interplay of form factor, speed of light, and
frequency spectra of tissue absorption, EM power transmission is not an appropriate energy
modality for the powering of 10’s of pum sized neural dust implants.

2.3 Conclusion

In this chapter, we examined a number of wireless powering techniques to couple energy to
sub-mm sized implants. In particular, we evaluated scaling of commonly used electromga-
netics (EM) based approaches, but due to the inherent mismatch in the wavelength and the
size of the implant, along with limited output power due to safety, EM-based WPT cannot
provide sufficient power to sub-mm sized implants. According to Table [2.1], ultrasound ap-
pears to be a promising alternative that scales more favorably than EM. We will introduce a
novel neural interface system based on ultrasonic power transfer and communication in the
next chapter.
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Chapter 3

Neural Dust: Distributed, Ultrasonic
Backscattering System

In this chapter, we present a neural recording platform built from low-power electronics
coupled with ultrasonic power delivery and backscatter communication. The system, called
neural dust is an ultra-miniature, compliant, and distributed system that can enable sig-
nificant scaling in the number of neural recordings from the nervous system. This can be
achieved via two fundamental technology innovations: (1) 10 — 100 pm scale, free-floating,
independent sensors (or neural dust motes) that detect and report local extracellular elec-
trophysiological data, and (2) a transceiverﬂ that establishes power and communication links
with the neural dust mote. We examine both the theoretical foundation and fundamental
system design trade-offs of neural dust and experimental verification of the predicted scaling
effects.

3.1 Ultrasonic power link model

The design of neural dust is heavily constrained in both size and available power to the
implant. As a result, it is imperative to accurately model the transmission channel to
maximize the power efficiency.

3.1.1 Piezoelectric materials

Piezoelectricity refers to the phenomenon present in certain solid (usually crystalline) ma-
terials where there is an interaction between the mechanical and electrical states. For a
crystal to exhibit the piezoelectric effect, its structure should have no center of symmetry,
i.e., anisotropic, such that a stress (tensile or compressive) applied to such a crystal will

In the context of recording from the central nervous system (CNS), it will be placed beneath the skull,
i.e., sub-cranially, in order to avoid strong attenuation of ultrasound by bone and powered by an external
reader via EM power transfer.
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alter the separation between the positive and negative charge sites in each elementary cell,
leading to a net polarization at the crystal surface. The effect is practically linear in linear
elastic solids and governed by

T =cS+hE (3.1)

D =¢e¢R+AS (3.2)

where h is the piezoelectric coupling coefficient, strain (S) and stress (7)) are related by the
elastic stiffness (c¢) and the electric displacement (D) is related to the electric field (E) by
the permittivity (e,) of the material.

Piezoelectric materials can transduce electrical energy into mechanical energy and vice
versa by changing lattice structure, and this state change is accessible via either electrical
stimulation or mechanical deformation. There is a wide range of piezoelectric materials, each
suitable for different applications. Several parameters, such as piezoelectric strain constant
(d-coefficient), piezoelectric voltage constant (g-coefficient), mechanical quality factor (Q),
electromechanical coupling factor (k), etc. can be used to compare different piezoelectric ma-
terials while selecting for a specific application. In particular, k is the measure of conversion
efficiency between mechanical and electrical energy and often higher k is desired.

As an example of choosing appropriate material, piezoelectric polymer compounds such
as polyvinylidene (di)fluoride (PVDF) are primarily used to construct broadband, high-
sensitive hydrophones due to their low quality factor and high piezoelectric voltage constant
(g-coefficient). On the other hand, ceramic compound known as lead zirconate titanate
(PZT) is a popular choice for high-power, high-performance, narrowband diagnostic ultra-
sonic imaging due to its greater sensitivity, higher operational temperature, and exceptional
electromechanical coupling coefficient (k). When used in-body, however, the lead content
of PZT makes it difficult to introduce into human tissue in chronic applications. A num-
ber of alternative, implantable piezoelectric materials, such as barium titanate (BaTiOs3),
aluminum nitride (AIN) and zinc oxide(ZnO) [83], exist with material properties slightly
inferior to PZT. As a result, initial study of the link efficiency assumes the use of BaTiOs.
Given the relative ease of obtaining PZT crystals with varying geometry and encapsulating
it in biocompatible encapsulantﬂ experiments were carried out with PZT.

3.1.2 Piezoelectric transducer model

Due to the importance of piezoelectric transducers in various applications, there are a number
of equivalent circuit models to describe the electromechanical operation of a 1D piezoelectric
crystal.

The KLM model by Krimholtz, Leedom, and Matthaei is arguably the most common
equivalent circuit and is a useful starting point to construct a full link model with the intent

2PDMS silicone or UV-curable medical-grade epoxy is used to enable short-term implantation of PZT-
based implant. Its effects are further discussed in subsequent sections.
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Figure 3.1: KLM model of a neural dust piezoele