
Curriculum Distillation to Teach Playing Atari

Chen Tang
John F. Canny

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-161
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-161.html

December 1, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would first like to thank my advisor Professor John Canny for guiding and
mentoring me through research. His patience and insightful ideas created an
incredible research experience for me. I am incredibly grateful for the
opportunity to work with him.

Thank you to all my friends who have helped me during my past five years at
Berkeley. I am very grateful for all the memories we shared. Finally, I would
like to thank my family for their continual support throughout my years at
Berkeley.

Abstract

Curriculum Distillation to Teach Playing Atari

by

Chen Tang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor John F. Canny, Chair

We propose a framework of curriculum distillation in the setting of deep reinforcement
learning. By selecting samples in its training history, a machine teacher sends those
samples to a learner to improve its learning progress. In this paper, we investigate the
idea on how to select these samples to maximize learner’s progress. One key idea is to
apply the Zone of Proximal Development principle to guide the learner with samples
slightly in advance of its current performance level. Another idea is to use the samples
where teacher itself makes the biggest progress in its parameter space. To foster robust
teaching and learning, we adapt such framework to distill curriculum from multiple
teachers. We test such framework on a few Atari games. We show that those samples
selected are both interpretable for humans, and are able to help machine learners
converge faster in the training process.

i

Contents

1 Introduction 1

2 Background 3
2.1 Reinforcement Learning . 3
2.2 Deep Q-Learning . 4
2.3 Atari 2600 . 6
2.4 Zone of Proximal Development . 7

3 Related Work 8
3.1 Reinforcement Learning with Imitation 8
3.2 Interpretable Machine Learning . 9
3.3 Machine Teaching . 9
3.4 Curriculum Learning and Knowledge Distillation 10

4 Approach 11
4.1 Single-Teacher Curriculum Distillation 11
4.2 Progress Scores for Better Sampling . 13
4.3 Computing Progress Scores . 15
4.4 Multiple-Teacher Curriculum Distillation 18

5 Experiments 21
5.1 Setup . 21
5.2 ZPD Experiments . 23
5.3 Progress Scores . 23
5.4 Samples with Extreme Progress Scores 25
5.5 Learning Based on Progress Scores . 27

6 Discussions 28

References 29

ii

Chapter 1

Introduction

Deep reinforcement learning has shown its great capacity in learning how to act in
complex environments. We have seen successes in various domains, such as playing
Atari Games [27] and AlphaGo Zero [37] beating human Go players. Reinforcement
learning is a type of machine learning where agents learn from the data and experience.

In addition to learning, machine is also able to teach. Machine teaching is the
inverse problem of machine learning [44]. It is the process that trained agents use their
“knowledge” to help the next generations of learners. The goal is to make teacher more
productive at helping learners learn [38]. The goal of machine teaching is not to train
another models, but to generate the most effective examples that can easily transfer the
knowledge to learners.

Learners can be either human learners or machine learners. There’s a great amount
of applications in machine teaching. When the learners are human learners, it is an
application of personalized education. Having assumptions of learners’ cognitive models,
the machine teacher is able to optimize finding examples for each individual learner
to master the knowledge with various backgrounds [18, 32]. When the learners are
machine learners, it can be a case of distilling knowledge from multiple machine teachers
[17]. Other applications include data poisoning attacks, which can also be modeled as
machine teaching [24].

In the setting of reinforcement learning, those samples from teachers must be
sequential. One research direction is curriculum learning [5] where teachers design a
curriculum for the learner based on learner’s recent states. Similar to human learning,
teachers usually start from simple examples and gradually move to harder ones. If
teacher knows the knowledge of student’s full learning algorithms and parameters, it is
model-based teaching process [45].

In this paper, we propose a framework of curriculum learning with partial knowledge
of the learner. In this framework, we have well-trained agents, called teacher {T1, . . . , TN},

1

who as a whole send selected samples to a learner L throughout learner’s training process.
Teachers are only aware of the learning algorithm, or more specifically the loss function
of the learner. The learner, at the same time, is aware of the teaching sending samples
and needs to incorporate those samples in its training. Instead of using optimization
techniques to find those samples, we distill such curriculum directly from teachers’ own
training histories. We rely on the intuition that samples which help teachers move
closer to the optimal parameters also help the learner. Our method is also based on the
human teaching methodology and cognitive models, the principle of Zone of Proximal
Development (ZPD) [22]. ZPD principle says that learner makes the most learning
progress if the teachers give examples slightly beyond the learner’s current level. By
applying such framework to teach playing Atari game, we use those selected samples to
interpret the training process of deep reinforcement learning. In addition, we also show
that the curriculum consisted of those samples can expedite learner’s training progress.

In Chapter 2, we review background in reinforcement learning and cognitive models
used in teaching. In Chapter 3, we present related work in machine teaching and
deep reinforcement learning. In Chapter 4, we illustrate the framework of curriculum
distillation under ZPD principle, and propose methods to find the most optimal samples
for a teacher to send to a learner. In Chapter 5, we visualize those pedagogical samples
and show the training curve under such curriculum generation framework in Atari games.
Finally in Chapter 6, we discuss the potential future research problems.

2

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning is a popular way to solve a Markov Decision Process (MDP)
[40]. A MDP is usually defined as a tuple 〈S,A,R, T, γ〉 where S is the state space, A is
the action space, R(s, a) is the reward function, T (s, a, s′) is the transition probability,
and γ is the reward discount. When the agent takes an action a ∈ A in the state s ∈ S,
the environment generates a reward R(s, a) and goes to the next state s′ ∈ S with
probability T (s, a, s′) = P (s′|s, a). Reinforcement learning is to find a policy π : S 7→ A,
a function mapping a state to an action. Here, we consider the action space A is
discrete and a stochastic policy π(a|s), where π maps to a probability distribution of A
conditioning on s.

Consider under the policy π, agent has the trajectory {(s1, a1, r1, s′1), . . . , (sT , aT , rT , s′T)}
where each tuple represents a transition in the trajectory. Agent receives a reward rt at
time-stamp t. It is common to assume that future rewards are discounted by a factor
of γ per time-stamp. Therefore, the goal for reinforcement learning is to find the best
policy π∗ such that it maximizes the expected discounted future rewards throughout
agent’s lifetime:

π∗ = arg max
π

E

[
T∑
t=1

γt−1rt

∣∣∣∣π
]
.

The function Q : (S,A) 7→ R maps a state-action pair to a real value called Q-value.
Qπ(s, a) denotes the expected discounted future reward received by an agent who takes
action at0 in state st0 and continues to act according to policy π. The optimal Q-function
is found to maximize such reward over policy π:

Q∗(st0 , at0) = max
π

E

[
T∑
t=t0

γt−t0rt

∣∣∣∣st0 , at0 , π
]
.

3

The optimal Q-function satisfies Bellman equation where

Q∗(s, a) = Es′∼P(s′|s,a)
[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
. (1)

Intuitively, it says that if the optimal Q-values are known one step ahead, the optimal
policy is simply maximizing over Q-values with one step discount R(s, a) + γQ∗(s′, a′).
One classic way to solve such problem is to use value iteration [4], which uses iterative
updates and dynamic programming to solve for Equation 1. Those methods make
Q-function converge to the optimal as the number of iterations goes to infinity.

2.2 Deep Q-Learning

A common way to model those mapping functions is to use function approximators.
Q-function can be parameterized into a function Qθ(s, a). Then it can be estimated
using any parametric model such as least squares or neural networks. The problem
becomes an optimization problem over the parameter space θ ∈ Rd. Deep Q-Network
(DQN) [27] is using a neural network to optimize Q-values based on Bellman equation
in Equation 1.

Given a state s, it uses Qθ(s, a) to select the best action a. The environment gives
a reward r and transits to the next state s′. Such process yields a sample transition
〈s, a, r, s′〉. The loss function for one sample transition 〈s, a, r, s′〉 is

Lθ(s, a, r, s
′) =

 Qθ(s, a)︸ ︷︷ ︸
Estimated Q-value

−
(
r + γmax

a′
Qθ−(s′, a′)

)
︸ ︷︷ ︸

Target Q-value


2

. (2)

Different from supervised learning using deep neural networks, the target value in
reinforcement learning is also affected by θ. Therefore in order to make stable update to
the network, we use a target network θ− to compute the target Q-values in Equation 2.
θ− is a snapshot of θ, held fix for a period of time when computing the target Q-values,
and synchronized with θ every Tsync steps.

Another key idea in DQN is that it uses a replay buffer D to store all such transitions.
The buffer is essentially a queue that follows First-In-First-Out (FIFO) principle. During
the training time, the algorithm samples uniformly from the replay buffer to form a
minibatch, and uses backpropagation algorithm [13] to minimize the loss of the minibatch
according to Equation 2.

Algorithm 1 shows the complete algorithm. The original paper [27] shows huge success
in applying deep Q-learning to play Atari games, reaching or exceeding human-level

4

performance on 29 of the 46 games.

Algorithm 1 Deep Q-Learning
initialize a replay buffer D, environment state s, and network parameter θ, θ− where
θ− = θ
foreach steps t = 1, 2, . . . do

Compute Qθ(st, a) of the current state st and all actions a ∈ A.
Select the best action at = arg maxaQθ(st, a).
With probability ε, replace action at with a random action. . ε-greedy
Execute at in the environment which generates a reward rt and next state st+1.
Add the sample transition 〈st, at, rt, st+1〉 in the replay buffer D.
if the current episode is complete then

Reset the environment to st+1.
end if
if t mod Tplay = 0 and |D| ≥ Dstart then

Sample a minibatch B uniformly from the replay buffer D.
Compute target Qθ− values yi, for each sample 〈si, ai, ri, s′i〉 in the minibatch:

yi =

{
ri s′i is a terminal state
ri + γmaxa′ Qθ−(s′i, a

′) s′i is a non-terminal state
.

Compute the average loss for the minibatch L = 1
n

∑
B (yi −Qθ(si, ai))

2.
Perform a gradient descent step on θ.

end if
if t mod Tsync = 0 then

Update θ− = θ.
end if

end for

Following DQN, a series of follow-up papers [36, 31, 41, 42, 11, 2] algorithmically
improve the training convergence speed. THe original DQN suffers from overestimation
bias from the max operator in Equation 2. Double DQN (DDQN) [41] is the extension
to overcome such issue. It decouples max selector and action selector and ends up with
the new loss:

LDDQNθ (s, a, r, s′) =

Qθ(s, a)−

r + γ Qθ−

s′, action selector using θ︷ ︸︸ ︷
arg max

a′
Qθ(s

′, a′)


︸ ︷︷ ︸

Q-value evaluation using θ−




2

. (3)

The paper [41] shows improvement in performance in most of the Atari games.

5

2.3 Atari 2600

The training and testing environment of this paper is the Arcade Learning Environment
(ALE) [3] which can be used to play all Atari 2600 games. OpenAI provides a wrapper
gym [6] on top of ALE. In order to make DQN perform the best, it is necessary to make
the following necessary preprocessings [27] to the input frames:

• Image Down-sampling. The raw frame from Atari environment is a 210 × 160

colored pixel image, and we down-sample it to 84× 84 gray-scale image.

• Reward Clipping. In order to have the same learning rate across all games, we clip
all positive rewards to be 1 and all negative rewards to be −1.

• Episodic Life. In order to help faster convergence in value estimation, we set the
end of each life in the game as the end of an episode. However, the game is only
reset when an episode is truly over.

• Frame Stacking. We stack k = 4 last frames in the history together to generate
input states.

• Frame Skip. In order to save computation, we repeat every selected action for
k = 4 consecutive frames and only return the last frame to the agent.

• Random Initialization. When resetting the environment, we initialize the environ-
ment by taking n ∈ {0, . . . , 30} random actions in the environment.

After preprocessings, the state space has dimension 4× 84× 84. In this paper, we
will look closely at one Atari game, Pong, shown in Figure 1. Pong is usually the easiest
game to play as the key to winning is very simple.

(a) Pong

Figure 1: Sample frames from an Atari game - Pong.

Pong is a “contact-seeking” game where the player needs to catch the “ball” (white
dot) with the “paddle” (the green bar on the right of the screen). The left red “paddle”
is controlled by the opponent and the player controls the green one. The player gets

6

1 point when the opponent misses a “ball” and -1 point when itself loses a “ball”. The
episode ends when either player catches 11 points. The total reward for each episode is
between -21 and 21.

2.4 Zone of Proximal Development

The concept of Zone of Prxomial Development is a psychology concept built on human
cognitive model, first proposed by Lev Vygotsky [22]. It states that when a child is
following an adult’s examples, it is able to gradually develop the skills without assistance.
Those examples need to be in the Zone of Proximal Development (ZOP), which is the
distance between a child’s development level under self-learning and under education
from adult’s examples [8]. In other words, if teaching is within ZOP, it is beneficial for
students to advance in their learning progress.

Vygotsky’s ZOD principle inspired another theory called scaffolding, first proposed
by Jerome Bruner [30]. It says that when the teacher guides student’s learning, it should
gives examples only as necessary and tapers off such guidance over the time. Although
such frameworks were originally developed for children learning, they have been shown
applicable in general human learning. Overall speaking, under such principles, teachers
educate students with examples slightly beyond their current development level, and
reduces such guidance throughout the education process.

7

Chapter 3

Related Work

3.1 Reinforcement Learning with Imitation

Under our curriculum learning framework, the learner takes samples from teachers
during training. Thus one area of related work is imitation learning where the agent
learns from demonstration data. The setup is similar to supervised learning, imposing a
classification loss between the predicted action distribution and the true action in the
demonstration data. However, one of the common problem is that the distribution of
the demonstration data can be different from the distribution of the states that agents
face. DAGGER [34] is one method to use data aggregation to mitigate such issue.

There are a few related work on integrating imitation learning with reinforcement
learning. A paper from DeepMind [16] introduces using expert’s demonstration data in
Deep Q-learning training process. In addition to the Double DQN loss in Equation 3,
it also introduces three auxiliary loss: an n-step loss, a regularization loss, and a
classification margin loss for experts’ samples. The authors argue that imposing such
supervised loss pushes the Q-values of the actions picked by the expert above those of
other actions.

In addition to such classification margin loss, there are a few other supervised loss
in the literatures. Cross entropy loss in policy gradients methods is a very common one
[29, 9]. Similarly in soft Q learning, a loss on the entropy of the action distribution
can be used [12]. The authors claim that such method is able to learn from imperfect
demonstration data.

Our paper builds on top of these existing work, incorporating imitation learning into
reinforcement learning. We treat samples from teachers as demonstration data, and
introduce similar auxiliary supervised loss function for the learner such that learner is
able to learn from teachers’ samples.

8

3.2 Interpretable Machine Learning

When the reinforcement learning agents are trained using a deep neural network, it
becomes hard to interpret what agent has learned. For self-driving agents, visual
attention can be used to interpret trained agents [19]. In the domain of Atari games,
saliency maps are popular to understand why the agent makes certain decisions [15].
Another attempt is to use Semi-Aggregated Markov Decision Processes (SAMDP) to
visualize clusters of the policy using t-SNE [23] on the neural network activations [43]. In
the domain of machine teaching, there are some related work on generating interpretable
teaching strategies, effective at teaching humans [25].

Our paper interprets machine learning from a slight different perspective. We find
samples that directly help minimize the loss function. We use a gradient-based method,
but instead of finding attentions in those samples, we are finding a set of samples that
boosts learning.

3.3 Machine Teaching

In machine teaching, teacher can either select examples from its training history, or
generate synthetic data. There are many papers use optimization to find a subset
of samples for teaching purposes [28, 39]. However, those methods are commonly
computational inefficient. There are some attempts to adopt a greedy approach to
achieve similar theoretical guarantees [7]. Communication protocols [10] is another way
to communicate between agents but requires training a recurrent deep Q-network and
full exposure of all learners’ models and gradients. Such communication protocols might
not be interpretable.

Iterative machine teaching [21] is the closest work. It finds samples that balances
the usefulness and difficulties of samples according to stochastic gradient descent (SGD)
methods. The way the authors define the usefulness of the samples is similar to the
progress scores we will define in Section 4.2. In their framework, the teacher must know
learner’s weight parameters, and learner’s optimization method needs to be stochastic
gradient descent. Nevertheless, the paper provides a strong theoretical foundation for the
teaching dimension. Their follow-up paper [20] extends the earlier framework, disabling
teacher to access student’s model parameters. They introduce active learning framework
to test student’s performance. Our paper extends their original paper such that under
multiple teacher framework and ZPD principles, the usefulness of the samples can be
well approximated without knowing learner’s weight parameters.

There are also some related papers incorporating machine teaching with reinforcement
learning. A partially observable Markov decision process planning problem can be

9

modeled as the teaching problem [33]. There is also some work on building models to
estimate animal’s learning model using policy gradients for adaptive optimal training
[1], similar to our progress scores in Section 4.2.

3.4 Curriculum Learning and Knowledge Distillation

Curriculum learning [5] specifies that when training a model, it is beneficial to start
with a easy subtask and gradually increase the difficulty level of the following tasks.
The paper shows that such learning process is a guided optimization for learners as it
guides learners converging to a better minima in the model parameter space. From
human experiment studies, curriculum learning is more consistent with human learning
compared to teaching dimension models [18]. There are some related work on building
a intrinsically motivated model to generate automated curriculum for neural network
trainings [14].

Another related domain is knowledge distillation [17]. Distillation refers to the
process of first training a model for many tasks {T1, . . . , Tn} and then use it to learn
task Tn+1 quickly. However, knowledge distillation usually relies heavily on knowing the
model parameters. In our framework, we do not have model assumptions or access to
the trained model. Samples are the only communication protocol.

In summary, our paper has three major contributions:

1. We propose a framework of curriculum distillation such that teachers use their own
histories to approximate learner’s current state, send examples slightly in advance
of learner’s current level (ZPD), and generate a set of teaching samples according
to how much they have helped teachers’ training. The framework doesn’t require
joint optimization.

2. We present and visualize results from a machine-machine teaching process, in
playing Atari games using deep neural networks.

10

Chapter 4

Approach

4.1 Single-Teacher Curriculum Distillation

Following the principle of Zone of Proximal Development in Section 2.4, teacher (machine)
needs to (1) find out learner’s current performance level and (2) generate samples in the
Zone of Proximal Development.

Setup

When the teacher is trained, no matter using DQN, A3C [26] or Evolution strategies [35],
we take snapshots of its neural network parameter θt every Tsnapshot steps. At the end
of the training process, we have the history of how the parameter evolves throughout
training: {θ1, . . . , θN}. We denote the last snapshot of parameters as θ∗ ≈ θN since it is
approximately close to the optimal parameters. In the meantime, teacher’s trajectories
of each episode are also saved.

Matching

Once we have the whole history of the teacher, we can match the learner’s current
performance level to one of the teacher’s snapshots. One simplest way is to match
according to the average episode reward. Episode rewards tend to be very noisy especially
during the training time, in order to detect significant reward improvement, we average
episode rewards in a sliding window of 100 episodes. Suppose learner’s current average
episode reward is R, we match it to one of the teacher’s snapshots θi such that the
average episode reward Ri ≈ R. We make the assumption here that similar average
episode rewards correspond to the similar performance level. By matching the average
episode rewards, teacher is able to find where the current learner locates in teacher’s
training history.

11

Finding Samples

To generate samples in ZPD, teacher needs to educate using examples slightly beyond
learner’s current level. After matching learner’s current performance to teacher’s snapshot
θi, we use samples around teacher’s snapshot min(N, i + Tlead). In other words, we
look ahead Tlead snapshots to give such a slight advancement “into the future”. Teacher
loads Tepisodes episodes before and after snapshot min(N, i+ Tlead) and samples them as
educating examples for the learner.

Hybrid Minibatch

When learner is trained, the minibatch not only contains samples from its own replay
buffer, but also has samples from the teacher. Let δ be the ratio of teacher’s samples in
learner’s minibatch. By the principle of scaffolding, δ should decay throughout the time,
denoted as δ(t). Similar to [16], we apply a margin loss for teacher’s sample transition
〈s, a, r, s′〉:

Lmarginθ (s, a, r, s′) = max
a′∈A

[Qθ(s, a
′) + l(a, a′)]−Qθ(s, a),

where l(a, a′) is the same margin function defined in [16]. Along with the standard
Double DQN loss, we define the loss for each minimatch as

Lθ(B) =
1

|B|
∑
B

LDDQNθ (s, a, r, s′) + λ
1

|T |
∑
T

Lmarginθ (s, a, r, s′)

where the margin loss is only applied to teacher’s samples T in the minibatch.
The algorithm for the teacher is in Algorithm 2 and an illustration of the procedure

is in Figure 2.

Algorithm 2 Single-Teacher Curriculum Distillation
prepare snapshots of teacher’s model parameters throughout training: {θ1, . . . , θN}
initialize a replay buffer D
while learner asks for samples at steps t do

if t mod Tupdate = 0 steps or D is empty then:
R← Learner’s current average episode rewards
Find a snapshot θi such that its average episode rewards Ri ≈ R.
Load the snapshot θmin(N,i+Tlead) and find the episode number Ei of the snapshot.
Load all sample transitions from episode Ei − Tepisodes to Ei + Tepisodes into D.

end if
Sample |B| · δ(t) transitions from D.

end while

12

Teacher

Learner
Current rewards: -21

Episodes (Teacher Trajectories)

Episode Number 1 2 3 50 51 52
Smoothed Rewards -21 -21 -20.5 -18.9 -18.7 -18.5

Teacher sends its experience
from “future”

…

Matching Zone of Proximal
Development (ZPD)

Teacher matches learner with
one of its history snapshots

with similar rewards Sampled transitions!

Figure 2: A diagram of the single-teacher curriculum distillation. When the machine
teacher is trained, we take snapshots of its model and transitions in its
trajectories. When a learner comes and asks for samples, the teacher matches
learner’s current rewards to one of its snapshot and send samples from a
later snapshot following the ZPD principle.

4.2 Progress Scores for Better Sampling

Algorithm 2 uses a uniform distribution to sample from teacher’s replay buffer D. A
natural followup question is: Are we able to sample more effectively from teacher’s
history so that it performs better than a uniform distribution. In this section, we propose
a measure called progress scores.

Intuitively, the progress score for a specific sample measures how helpful it is to make
the network parameters converge to the optimal. Suppose teacher has a sequence of
snapshots {θ1, θ2, . . . , θN} with a total of N snapshots. If the model is properly trained
and converges, we can assume that the last snapshot is closer to the optimal parameter
vector θN ≈ θ∗. Therefore the vector θ∗ − θi measure the optimal direction in the
parameter space at snapshot θi. To measure how helpful a specific sample is during
its training process, we can measure the inner product between the sample’s gradient
direction at snapshot θi and the optimal parameter direction θ∗− θi. The progress score

13

for a sample s at snapshot θi can be written as

Γ(s) =
(θ∗ − θi)T (−∇θiLθi(s))

‖θ∗ − θi‖2
=

(θi − θ∗)T∇θiLθi(s)

‖θ∗ − θi‖2
(4)

where ∇θiLθi(s) is the gradient vector of the loss for sample s at snapshot θi. Geo-
metrically, progress score is the length of the gradient vector projected on the optimal
parameter direction. If the score is positive, it means the projected gradient direction
is the same as the optimal direction. If negative, it implies a reverse direction to the
optimal one. Figure 3 illustrates such idea in a simple diagram.

Network weights
at snapshot i

Network weights
at snapshot j

Projection of the current sample
gradient direction to the optimal

direction between two weight vectors

−η∇ θ i
L(s) θ i

θ i+1

θ j

θ j
−θ

i

Γ s() = (θ i −θ j)
T∇θi

L(s)

θ i −θ j 2

Sample:
Loss function:
Learning rate:

s
L(⋅)
η

Figure 3: An illustration of progress scores in the parameter space. Consider two
snapshots of parameters θi, θj where j > i. A sample s with loss L(s) is
evaluated at snapshot θi, which has gradient direction of −∇θiL(s). We
define Gamma(s) as the projection of −∇θiL(s) onto θj − θi. Intuitively,
it represents how much the gradient direction of current sample s under
parameter θi aligns with the snapshot gradient direction θj − θi. In our
definition of progress scores, we set θj = θ∗ which θ∗ − θi represents the
global parameter direction.

Driven by the nature of first-order optimization methods, we propose to sample
teacher’s selected examples according to progress scores. Consider for each sample in
teacher’s replay D, we can compute the progress scores in terms of the current snapshot
parameter θi, denoting Γi(s) as a vector of the progress scores. Note that Γi(s) can be
either positive or negative. To convert all Γi(s) into a distribution for sampling, we
propose two methods:

14

1. Set negative Γi(s) to be ε. It essentially only considers samples with gradients in
the direction of the global parameter direction.

2. Signal learner to negate gradient direction for samples with negative Γi(s). To
consider all samples, teacher needs to send additional flags, stating whether Γi(s)

is positive or not. For samples with negative Γi(s), learner needs to apply the
weight -1 when doing the optimization. Sampling is then based on |Γi(s)|.

Both methods should perform well. In our implementation, we use the first method.
The most important reason is that by negating some sample’s gradient direction, it needs
additional tuning on learning rate schedules. Once all progress scores are converted to
positive, we can make them into a probability distribution similar to the implementation
in prioritized replay [36]:

pi(s) =
Γi(s)

α∑
j Γj(s)α

where α is used to control how much prioritization to use. Moreover, since we sample
according to progress scores, we can correct the sampling bias by using importance-
sampling (IS) weights. When learner is trained, it applies an additional correction weight
for each sample from teacher:

wi(s) = (|D| · pi(s))−β

where |D| is the size of the teacher’s replay and β is controlling how much correction to
use.

4.3 Computing Progress Scores

One critical observation is that computing the numerator in the progress score equation
is not easy. It requires per-sample gradients. A naive approach is to forward pass one
sample at a time so the backward gradients can be used for that specific sample. However,
such approach is very computational expensive as it needs to perform backpropagation
for each sample. We propose a faster way to compute the numerator using minibatches
instead of individual samples.

Use a very simple linear layer, without bias, as an example. Suppose two snapshots
of the parameter are θi and θj where j > i. Let the input to the layer be x and output
be y. For snapshot θi, we have

y = xθi.

15

Once we have the loss L(x; θi), the goal is to compute

(θi − θj)T
∂L(x; θi)

∂θi
(5)

Chain rules gives

∂L

∂x
=
∂L

∂y

∂y

∂x
= θTi

∂L

∂y
,

∂L

∂θi
=
∂L

∂y

∂y

∂θi
= xT

∂L

∂y
.

We observe that to make the form of Equation 5, we need a dummy tensor x0 = 0. By
adding x0θj with xθi, we preserve the same y and L(x) value and is able to accumulate
the gradient for θj:

y = xθi = xθi + x0θj,

∂L

∂x0
=
∂L

∂y

∂y

∂x0
= θTj

∂L

∂y
,

∂L

∂x
− ∂L

∂x0
= (θi − θj)T

∂L

∂y

Therefore, we can compute the goal in Equation 5:

(θi − θj)T
∂L(x)

∂θi
= x

[
∂L(x)

∂x
− ∂L(x)

∂x0

]
(6)

The diagram in Figure 4 illustrates the gradient backpropagation for this simple
linear layer.

We can observe that values needed to compute Equation 5 never get aggregated for
the minibatch. Therefore, for a minibatch X, our target values can be simply rewritten
as

(θi − θj)T
∂L(X)

∂θi
= diag

(
X

[
∂L

∂X
− ∂L

∂X0

])
. (7)

In addition, such computation can be easily generalized to linear layers with bias and
convolution layers.

We design a network that can be easily adapted to compute Equation 7. We can
flatten the parameter vector θ for each layer individually. The network is split into upper
network and lower network. Upper network is parametrized by θi and lower network
is parametrized by θj. For each layer, the upper network does the regular forward
computation using X. The lower network is only used to accumulate gradients for θj,
therefore, only X0 = 0 feeds into the lower network. After the computation for each
layer, we sum the output together from two networks. Based on this design, the sum
should be exactly the same as solely forwarding X in the network θi. For each layer k
after backpropagation, we only need ∂L

∂X(k) ,
∂L

∂X
(k)
0

, X(k) to compute Equation 7. A design

16

⊕
∂L
∂x

= ∂L
∂y

∂y
∂x

= θ i
T ∂L
∂y

∂L
∂x

− ∂L
∂x0

= θ i −θ j()T ∂L∂y

θ i

y = xθ i + x0θ j = xθ i

∂L
∂y

∂L
∂y

x

x0 = 0

∂L
∂x0

= ∂L
∂y

∂y
∂x0

= θ j
T ∂L
∂y

∂L
∂θ i

= xT ∂L
∂y

θ i −θ j()T ∂L∂θ i = x
T ∂L

∂x
− ∂L
∂x0

⎡

⎣
⎢

⎤

⎦
⎥

θ j
∂L
∂y

x0 zero tensor

forward direction
gradient direction

⊕ sum of two tensors

x input tensor

equation derivation

Figure 4: An illustration of how progress scores can be computed in a linear layer.

of such network is illustrates in Figure 5.

θ i
(1)

x … y

x0
(⋅) zero tensor

θ i
(2) ⊕

forward direction
gradient direction

θ j
(2)

θ i
(k) ⊕

θ j
(k)

x(1) x(k−1)

⊕ sum of two tensors

∂L
∂y

x0
(1)x0

(0)

∂L
∂x0

(k−1)

∂L
∂x(k−1)

∂L
∂θ i

(k)

∂L
∂x(k)

∂L
∂x(2)

∂L
∂x(1)

∂L
∂θ i

(2)

∂L
∂θ i

(1)

⊕ x(2)

x0
(k−1)

x(k)

θ j
(1)

∂L
∂x0

(1)

∂L
∂x0

(0)

∂L
∂x

x input tensor
x(⋅) intermediate tensor

Figure 5: Network to compute progress scores. The upper layer is parameterized by
θi and fed the real data X while the lower layer is parameterized by θj and
fed the dummy zero tensor X0 = 0. X(k) is an intermediate variable in the
forward pass, the sum of output from upper layer and lower layer.

17

4.4 Multiple-Teacher Curriculum Distillation

Section 4.1 discusses curriculum distillation following one single teacher. The framework
can be generalized to distillation from a pool of teachers. One teacher framework
tends to be a bit noisy when the teacher approximates learner’s performance level.
When multiple teachers participate, their approximation of learner’s performance can
be averaged hence reduces variance. In addition, averaging the progress scores among
multiple teachers also reduces variance.

Such framework extends the framework in Section 4.1 by having a set of teachers
{τ1, . . . , τp}. Each teacher τj performs matching based on learner’s average episode
reward, and contributes sample transitions based on ZDP principles to a shared replay
buffer D∗. After each teacher has put samples in the buffer, it also needs to compute the
progress scores for all samples that other teacher contributes. The final progress scores
are the average over all teachers’ computation. Figure 6 and Algorithm 3 illustrates
such process.

Learner
Current rewards: -21

Matching Matching

Contributing samples by ZPD Contributing samples by ZPD

Scoring other teachers’ samples Scoring other teachers’ sa
mples

Sample according to the
teachers’ average scores

Teacher 1 Teacher2

Figure 6: A diagram of multiple-teacher curriculum distillation. Individual teacher
does the matching, contributes samples by ZPD, and scores all other teachers’
samples. The final progress scores are the average over all teachers’ scores.

We also argue the stability of such method. We slightly modify the framework above
by allowing each teacher to simulate those sampled transitions. Suppose teacher j
matches learner to its snapshot θ(j)i . We can use snapshot θ(j)i as a surrogate to simulate
learner’s performance with some samples. Suppose we sample a minibatch according

18

Algorithm 3 Multiple-Teacher Curriculum Distillation
initialize a shared replay buffer D∗
while learner asks for samples at steps t do

if t mod Tupdate = 0 steps or D∗ is empty then:
R← Learner’s current average episode rewards
foreach teacher τj do

Find a snapshot θ(j)i such that its average episode rewards R(j)
i ≈ R.

Load snapshot θ(j)min(N,i+Tlead)
and find its episode number E(j)

i .
Load all transitions from episode E(j)

i − Tepisodes to E
(j)
i + Tepisodes into D∗.

end for
foreach teacher τj do

Compute progress scores (Equation 4) for samples from all other teachers.
end for
Average progress scores from all teachers.

end if
Sample |B| · δ(t) transitions from D∗ according to progress scores.

end while

to the averaged progress scores to simulate learner. For each teacher, it uses the same
loss function as learner and performs gradient updates on snapshot θ(j)i to ˆ

θ
(j)
i . Then,

we can recompute progress scores using the simulated parameter ˆ
θ
(j)
i and repeat this

process multiple iterations.
The whole idea of this simulation process is that we want to make samples selected by

teachers more independent. Figure 7 illustrates this deduplicate process. Comparing the
probability distribution from averaged progress scores before and after the deduplicate
process, we see minimal changes in the perplexity of the distribution. It shows the
stability of the progress score measures.

19

Contributing samples by ZPD Contributing samples by ZPD

Scoring other teachers’ samples Scoring other teachers’ samples
Sample according to the
teachers’ average scores

Get a batch

Simulate the batch on

teacher’s matched snapshots
Simulat

e th
e b

atc
h o

n

tea
che

r’s
 matc

hed
 sn

aps
hot

s

Matching Matching

Teacher 1 Teacher2

Learner
Current rewards: -21

Figure 7: Multiple teacher framework with deduplicate process. After scoring all
samples, each teacher sample a minibatch accordingly and update the effect
on its matched parameter. Each teacher then rescores the samples using the
updated parameter. The process continues for a few iterations.

20

Chapter 5

Experiments

5.1 Setup

For reproducibility purposes, we list all the hyperparameters we used in game Pong in
Table 1. Figure 8 shows the training curve for a standard Double-Q agent with 18.0
points as the target score. During the training process, we take snapshots of the network
weights every 40k training steps.

0.0M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M
Steps in the Environtment

20

10

0

10

20

Ep
iso

de
 R

ew
ar

ds

Training Rewards (Pong)
DDQN

Figure 8: A sample training reward curve for Pong. The curve is smoothed across the
most 100 training episodes with the error band denoting the standard errors
of the rewards. Throughout this trajectory, it has 358 episodes in total along
with 18 snapshots marked in the figure.

21

Symbol Description Values
Stopping
rule

Stopping criteria during training Either the last 100 episodes
achieve an average rewards above
18.0 or it hits a total of 1,000,000
training steps

Tplay Number of steps to step in the
training environment in between
training steps Q-network

4

Tsync Number of training steps to up-
date target Q-network

1,000

|B| Training minibatch size 128
|T | Number of teacher’s samples in

the training minibatch size
Depend on minibatch blending
rule

|D| Replay buffer size 100,000
Dstart Minimum size of the samples in

the replay buffer for training
10,000

ε Controlling the probability of se-
lecting a random action

Anneal from 1 to 0.2 in the first
100,000 frames and then to 0.02
until the end

η Learning rate for Adam Anneal from 2.5e-4 to 1e-4 in the
first 100,000 frames and then stay
at 1e-4 until the end

Tsnapshot Number of steps to take a snap-
shot of the model parameters dur-
ing training teacher models

40,000

Minibatch
blending
rule

The composition of teacher’s sam-
ples in the learner’s training mini-
batch

Anneal from 0.5 to 0.2 in the first
100,000 frames and then to 0.02
until the end

α Softmax exponents to convert
progress scores into probability

1

β Exponents to correct importance
sampling

Anneal from 0 to 1

λ Scaling factor controling the su-
pervised loss

5e-2

l(a, a′) Margin function in the classifica-
tion loss

0.8 for a 6= a′

Tlead Number of snapshots to lead in
advance of the matching snapshot

{1, 2, 4, 8}

Tepisodes Number of episodes to read
around the selected snapshots

5

Tupdate Number of training steps to up-
date snapshot matching process

10,000

|τ | Number of teachers 5

Table 1: Hyperparameters for Atari game Pong

22

5.2 ZPD Experiments

The first experiment is to examine the ZPD principles. We repeat the same single-teacher
curriculum distillation procedure with various Tlead in Algorithm 2. In Figure 9, we
show its effect on accelerating learner’s training. All experiments are averaged over
12 different random seeds. We can see that the optimal number of leading snapshots
is around 2, which is around 80k steps or 40 episodes ahead. With fewer or more
snapshots, the guidance produces more variance, resulting in some of the experiment
getting extremely low scores.

0.2M 0.4M 0.6M 0.8M 1.0M
Steps in the Environtment

20

15

10

5

0

5

10

15

20

Ep
iso

de
 R

ew
ar

ds

Pong Training Rewards v.s. ZPD
 (Averaged over 12 seeds)

1 Snapshots Ahead
2 Snapshots Ahead
4 Snapshots Ahead
8 Snapshots Ahead
Learner without Teacher

Figure 9: Pong’s training rewards with different degrees of leading snapshots. 2
snapshots seem to be in the Zone of Proximal Development.

5.3 Progress Scores

In this section, we visualize the progress scores defined in Chapter 4.2. In Figure 10,
we compare the histogram of the progress scores at two snapshots, one with averaged
rewards around -20 and the other around -10. The average progress score is a very small
positive number around zero as globally samples make progress towards the optimal
parameters. The most important thing to notice between two histograms is that the
more progress scores are getting closer to 0 when learning progresses. Intuitively, in
the later stage of learning, fewer and fewer samples can actually help the agent achieve
higher rewards.

Another way to visualize such progress scores is to color the progress scores on a
t-SNE projection of states. Similar to [43], we use the teacher’s final snapshot model to

23

0.003 0.002 0.001 0.000 0.001 0.002 0.003 0.0040

500

1000

1500

2000

Progress Score Distribution Around Reward -20: mean 0.00, std 0.00

(a) Rewards: -20

0.001 0.000 0.001 0.002 0.0030

500

1000

1500

2000

2500

Progress Score Distribution Around Reward 10: mean 0.00, std 0.00

(b) Rewards: 1-

Figure 10: Histograms of the progress scores at snapshot with averaged rewards -20
and 10.

get the activations for each state. Then we use PCA to reduce the dimension to 50, and
project them to 2 dimension using t-SNE. We also color each sample using the progress
scores computed at their corresponding snapshots. In Figure 11, we showed the t-SNE
plot with progress scores at snapshots with rewards -20 and 10. It can be seen that
states with positive progress scores have their clusters. Similarly for those states with
negative progress scores. The clustering effect becomes a bit weaker in the later stage,
likely due to progress scores are skewed to 0. But in both cases, we can see that those
states with around 0 progress scores usually have their own unique clusters.

60 40 20 0 20 40 60

60

40

20

0

20

40

60

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

(a) Rewards: -20

60 40 20 0 20 40 60
60

40

20

0

20

40

60

0.02

0.00

0.02

0.04

0.06

0.08

0.10

(b) Rewards: 10

Figure 11: t-SNE projection of state activations colored by progress scores at snapshots
with averaged rewards -20 and 10.

24

5.4 Samples with Extreme Progress Scores

In Figure 12, we demonstrate a few samples selected by such framework at snapshots
with rewards around -20, -10 and 10. The idea of DQN is to make the neural network
prediction satisfy Bellman equation. Then by dynamic programming, it propagates
Q-values to earlier states. Therefore, useful samples should be those critical to correct
the loss in predicting the Q-values.

From the figures, we can see that states that help agent learn are the states with
non-zero rewards. For snapshot with averaged rewards around -20, states with most
positive scores are those getting one point, and those with most negative scores are
those losing one point. The panel on the left is generated by one teacher and the one
on the right is averaged over 5 different teachers. The samples are more consistently
interpretable compared to those generated by only one sample.

25

Top #1 (score 0.04) Top #2 (score 0.04) Top #3 (score 0.04) Top #4 (score 0.04)

Bottom #1 (score -0.04) Bottom #2 (score -0.04) Bottom #3 (score -0.04) Bottom #4 (score -0.03)

Sample Transitions Matching Rewards -20

Top #1 (score 0.09) Top #2 (score 0.09) Top #3 (score 0.08) Top #4 (score 0.07)

Bottom #1 (score -0.04) Bottom #2 (score -0.02) Bottom #3 (score -0.02) Bottom #4 (score -0.02)

Sample Transitions Matching Rewards -10

Top #1 (score 0.12) Top #2 (score 0.11) Top #3 (score 0.10) Top #4 (score 0.10)

Bottom #1 (score -0.04) Bottom #2 (score -0.03) Bottom #3 (score -0.02) Bottom #4 (score -0.02)

Sample Transitions Matching Rewards 10

(a) Scored by one random teacher

Top #1 (score 0.05) Top #2 (score 0.04) Top #3 (score 0.04) Top #4 (score 0.04)

Bottom #1 (score -0.03) Bottom #2 (score -0.03) Bottom #3 (score -0.03) Bottom #4 (score -0.03)

Sample Transitions Matching Rewards -20

Top #1 (score 0.06) Top #2 (score 0.05) Top #3 (score 0.05) Top #4 (score 0.05)

Bottom #1 (score -0.04) Bottom #2 (score -0.03) Bottom #3 (score -0.03) Bottom #4 (score -0.02)

Sample Transitions Matching Rewards -10

Top #1 (score 0.08) Top #2 (score 0.07) Top #3 (score 0.06) Top #4 (score 0.06)

Bottom #1 (score -0.06) Bottom #2 (score -0.03) Bottom #3 (score -0.02) Bottom #4 (score -0.02)

Sample Transitions Matching Rewards 10

(b) Scored by 5 random teachers

Figure 12: Sampled transitions sampled according to progress scores for snapshot with
rewards around -20, -10 and 10. The left panel shows the most extreme
samples scored by one teacher. The right panel shows ones rated by 5
teachers.

26

5.5 Learning Based on Progress Scores

Finally, we demonstrate the performance of sampling according to the averaged progress
scores across multiple teachers. In Figure 13, we use ZPD-based machine teaching
framework with 1 snapshot look ahead. We compare sampling with a uniform distribution
with sampling according to the averaged progress scores rated by 5 teachers. For each
experiment, all five teachers are randomly selected. We run 12 different random seeds
and average the result together. It can be seen that such sampling accelerates learner’s
training even further.

0.2M 0.4M 0.6M 0.8M 1.0M
Steps in the Environtment

20

15

10

5

0

5

10

15

20

Ep
iso

de
 R

ew
ar

ds

Pong Training Rewards v.s. Progress Scores
 (Averaged over 12 seeds)

Without Progress Scores
With Progress Scores
Learner without Teacher

Figure 13: Pong’s training rewards with ZPD-based machine teaching. The experiment
uses 1 snapshot ahead of current learner’s performance and compares
the performance between uniform distribution and sampling according to
progress scores by 5 teachers. It can be seen that using multiple teachers’
averaged progress score accelerates the learning.

27

Chapter 6

Discussions

In this paper, we discuss a framework to distill curriculum from well-trained DQN agents.
By following ZPD principle, we demonstrate that good samples in the curriculum must
be slight beyond learner’s current performance level. In addition, good samples should
be the ones that help teachers themselves the most during the training. Therefore, in the
setting of machine teaching and curriculum learning, we are able to approximately find
the best samples for a learner, based on the learner’s averaged rewards. There are some
uncertainty and noise for individual teacher so that we propose the methods to average
across multiple teachers for robustness. In the end, we visualize those samples selected
at different stages when training an agent playing Pong. When a new machine agent is
trained using such curriculum, we see great improvement in its training convergence
time.

There are a few very interesting ideas to follow this work. The primary one is to
generalize this framework to other learning settings. For example, distill knowledge
when training a image classifier or a generative model. In the setting of reinforcement
learning, it will be helpful to use the interpretability of such framework to understand
other training algorithms such as policy gradients method and evolution strategies.

Another idea is to find the connection between the curriculum generated under such
framework and flash card algorithm. We can observe from those samples with extreme
progress scores in Pong that some of them are very similar across different snapshots. It
will be interesting to model those as a recalling process.

Hierarchical reinforcement learning is to divide learning tasks into individual tasks.
It will be interesting as well to generate subtask curriculum or a Semi Markov Decision
Process based on the distilled curriculum we proposed.

28

References

[1] Ji Hyun Bak, Jung Yoon Choi, Athena Akrami, Ilana Witten, and Jonathan W
Pillow. Adaptive optimal training of animal behavior. In D D Lee, M Sugiyama,
U V Luxburg, I Guyon, and R Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 1947–1955. Curran Associates, Inc., 2016.

[2] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on
reinforcement learning. arXiv preprint arXiv:1707.06887, 2017.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[4] Richard Bellman. A markovian decision process. Journal of Mathematics and
Mechanics, pages 679–684, 1957.

[5] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48. ACM, 2009.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[7] Yuxin Chen, Oisin Mac Aodha, Shihan Su, Pietro Perona, and Yisong Yue. Near-
optimal machine teaching via explanatory teaching sets. In International Conference
on Artificial Intelligence and Statistics, pages 1970–1978, 2018.

[8] Edwin S Ellis and Lou Anne Worthington. Research synthesis on effective teaching
principles and the design of quality tools for educators. technical report no. 5. 1994.

[9] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
arXiv preprint arXiv:1802.01561, 2018.

29

[10] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson.
Learning to Communicate with Deep Multi-Agent Reinforcement Learning. In D D
Lee, M Sugiyama, U V Luxburg, I Guyon, and R Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 2137–2145. Curran Associates,
Inc., 2016.

[11] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian
Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
et al. Noisy networks for exploration. arXiv preprint arXiv:1706.10295, 2017.

[12] Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Darrell, et al. Reinforcement
learning from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[14] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. Automated curriculum learning for neural networks. arXiv preprint
arXiv:1704.03003, 2017.

[15] Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and
understanding atari agents. arXiv preprint arXiv:1711.00138, 2017.

[16] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, et al.
Deep q-learning from demonstrations. arXiv preprint arXiv:1704.03732, 2017.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[18] Faisal Khan, Bilge Mutlu, and Xiaojin Zhu. How do humans teach: On curriculum
learning and teaching dimension. In Advances in Neural Information Processing
Systems, pages 1449–1457, 2011.

[19] Jinkyu Kim and John Canny. Interpretable learning for self-driving cars by visual-
izing causal attention. arXiv preprint arXiv:1703.10631, 2017.

[20] Weiyang Liu, Bo Dai, Xingguo Li, James M Rehg, and Le Song. Towards black-box
iterative machine teaching. arXiv preprint arXiv:1710.07742, 2017.

[21] Weiyang Liu, Bo Dai, James M Rehg, and Le Song. Iterative machine teaching.
arXiv preprint arXiv:1705.10470, 2017.

30

[22] P. Lloyd and C. Fernyhough. Lev Vygotsky: Critical Assessments. Number v. 3 in
Critical Assessments. Routledge, 1999.

[23] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579–2605, 2008.

[24] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set
attacks on machine learners. 2015.

[25] Smitha Milli, Pieter Abbeel, and Igor Mordatch. Interpretable and pedagogical
examples. arXiv preprint arXiv:1711.00694, 2017.

[26] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937, 2016.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[28] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language
in multi-agent populations. arXiv preprint arXiv:1703.04908, 2017.

[29] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Overcoming exploration in reinforcement learning with demonstrations.
arXiv preprint arXiv:1709.10089, 2017.

[30] David R Olson. Jerome Bruner: The cognitive revolution in educational theory.
Bloomsbury Publishing, 2014.

[31] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
exploration via bootstrapped dqn. In Advances in neural information processing
systems, pages 4026–4034, 2016.

[32] Kaustubh R Patil, Xiaojin Zhu, Łukasz Kopeć, and Bradley C Love. Optimal
teaching for limited-capacity human learners. In Advances in neural information
processing systems, pages 2465–2473, 2014.

[33] Anna N Rafferty, Emma Brunskill, Thomas L Griffiths, and Patrick Shafto. Faster
teaching via pomdp planning. Cognitive science, 40(6):1290–1332, 2016.

31

[34] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings of
the fourteenth international conference on artificial intelligence and statistics, pages
627–635, 2011.

[35] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolu-
tion strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864, 2017.

[36] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952, 2015.

[37] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[38] Patrice Y Simard, Saleema Amershi, David M Chickering, Alicia Edelman Pelton,
Soroush Ghorashi, Christopher Meek, Gonzalo Ramos, Jina Suh, Johan Verwey,
Mo Wang, et al. Machine teaching: A new paradigm for building machine learning
systems. arXiv preprint arXiv:1707.06742, 2017.

[39] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with
backpropagation. In Advances in Neural Information Processing Systems, pages
2244–2252, 2016.

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
2011.

[41] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In AAAI, volume 16, pages 2094–2100, 2016.

[42] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

[43] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Under-
standing dqns. In International Conference on Machine Learning, pages 1899–1908,
2016.

[44] Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an
approach toward optimal education. In AAAI, pages 4083–4087, 2015.

32

[45] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N Rafferty. An overview of
machine teaching. arXiv preprint arXiv:1801.05927, 2018.

33

	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Deep Q-Learning
	2.3 Atari 2600
	2.4 Zone of Proximal Development

	3 Related Work
	3.1 Reinforcement Learning with Imitation
	3.2 Interpretable Machine Learning
	3.3 Machine Teaching
	3.4 Curriculum Learning and Knowledge Distillation

	4 Approach
	4.1 Single-Teacher Curriculum Distillation
	4.2 Progress Scores for Better Sampling
	4.3 Computing Progress Scores
	4.4 Multiple-Teacher Curriculum Distillation

	5 Experiments
	5.1 Setup
	5.2 ZPD Experiments
	5.3 Progress Scores
	5.4 Samples with Extreme Progress Scores
	5.5 Learning Based on Progress Scores

	6 Discussions
	References

