
Quantifying the Development Value of Code Contributions

Hezheng Yin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-174
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-174.html

December 14, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This is a joint work with my colleagues Jinglei Ren, Qingda Hu, Alex Stennet,
Wojciech Koszek and my advisor Armando Fox. I'd like to thank Jinglei for his
invaluable contribution in overall algorithm and experiment design, and
coining the term DevRank; Qingda for training the commit message
classifier; Alex for providing Javascript support for DevRank; Wojciech for
insightful feedback and many fruitful discussions; Armando for his support
and guidance both in research and life throughout my graduate career.

Quantifying the Development Value of Code

Contributions

Hezheng Yin

UC Berkeley
hezheng.yin@berkeley.edu

Counting the amount of source code that a developer contributes to a project

does not reflect the value of the code contributions. Quantifying the value of

code contributions, instead of only the amount, makes a useful tool for instruc-

tors grading students in massive online courses, managers reviewing employees’

performance, developers collaborating in open source projects, and researchers

measuring development activities. In this paper, we define the concept of de-

velopment value and design a framework to quantify such value of code con-

tributions. The framework consists of structural analysis and non-structural

analysis. In structural analysis, we parse the code structure and construct a

new PageRank-type algorithm; for non-structural analysis, we classify the im-

pact of code changes, and take advantage of the natural-language artifacts in

repositories to train machine learning models to automate the process. Our em-

pirical study in a software engineering course with 10 group projects, a survey

of 35 open source developers with 772 responses, and massive analysis of 250k

commit messages demonstrate the e↵ectiveness of our solution.

�antifying the Development Value of Code Contributions
Hezheng Yin
UC Berkeley

hezheng.yin@berkeley.edu

ABSTRACT
Counting the amount of source code that a developer contributes
to a project does not re�ect the value of the code contributions.
Quantifying the value of code contributions, instead of only the
amount, makes a useful tool for instructors grading students in mas-
sive online courses, managers reviewing employees’ performance,
developers collaborating in open source projects, and researchers
measuring development activities. In this paper, we de�ne the con-
cept of development value and design a framework to quantify such
value of code contributions. The framework consists of structural
analysis and non-structural analysis. In structural analysis, we parse
the code structure and construct a new PageRank-type algorithm;
for non-structural analysis, we classify the impact of code changes,
and take advantage of the natural-language artifacts in repositories
to train machine learning models to automate the process. Our
empirical study in a software engineering course with 10 group
projects, a survey of 35 open source developers with 772 responses,
and massive analysis of 250k commit messages demonstrate the
e�ectiveness of our solution.

1 INTRODUCTION
Developers contribute code to software project repositories. Those
code contributions are currently characterized by simple statistical
metrics, such as the number of commits (NOC) or lines of code
(LOC). For example, GitHub reports NOC as a measure of devel-
opers’ contributions in a project [22]. Expertise Browser [50], a
classic tool for identifying developers who have required expertise,
uses the number of changed LOCs as an indicator of developers’
expertise.

Such metrics measure the amount of code contributed, rather
than its value. For example, a function at the core of the applica-
tion logic is more valuable than an auxiliary script. In the above
examples and many other scenarios, developers who make more
valuable contributions should be ranked higher or regarded as hav-
ing stronger expertise.

Many measurements of value are possible; for example, tradi-
tional value-based software engineering [8, 10, 17, 49] prioritize
resource allocation and scheduling tomaximize business value. How-
ever, business value may not be the most relevant metric in many
real world settings. One example is in software engineering educa-
tion, instructors need a tool to evaluate individual students’ code
contributions to group projects (besides non-code contributions).
Another example is free and open-source (FOSS) software projects,
where the concept of business value is not applicable but the value
of code contributions may in�uence collaboration and credits of
contributors.

2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Our focus is therefore to quantify the value of code contributions
in internal software development activities, that is, the impact on other
developers of contributed code. For example, code that addresses a
time consuming development task has higher impact than code that
addresses an easier task; code that saves other developers e�ort has
higher impact than code that doesn’t. We de�ne development value
as a quanti�cation of the development e�ort embodied in a code
contribution and the development e�ort that the code contribution
saves other developers.

We factor the development value into structural and non-structural
components. The structural value re�ects the impact of the code
structure on development activities: A function that is called by
many callers “reduces the workload” on those callers and thus tends
to be of high value. Based on this observation, we propose structural
analysis that derives development value from the code structure.
In particular, we analyze the function call graph using DevRank, an
algorithm we designed that is a variant of PageRank, to calculate
structural development value.

On the other hand, not all development value is re�ected in code
structure. For example, simply abstracting a common function and
enabling it to be reused may be not as valuable as coding the com-
plex logic of the function itself. Through an extensive developer
survey, we �nd that developers judge the value by classifying the im-
pact of commits. We manually examine developers’ responses and
develop an impact coding scheme to characterize the non-structural
value. We also explore the possibility to automate the commit clas-
si�cation process. We take advantage of the commit messages that
usually describe what impact the code makes, and apply natural
language processing (NLP) and machine learning (ML) techniques.

Structural and non-structural analysis results are combined to
generate a score of development value for the code contribution.We
train a learning-to-rank model to �nd the best combination of the
structural and non-structural value in evaluating code contributions,
which attempts to match pairwise value comparisons sampled by
human developers.

It is worth pointing out that there are valuable non-code contri-
butions in softwar projects, such as triaging issues, writing docu-
mentation, and etc. As a �rst step towards quantiy�ng contributions
in software projects, we’ll focus on code contributions and reserve
non-code contributions for future work.

Research questions. To empirically understand the de�ned
concepts and show performance of the proposed algorithms in
practice, we carry out a series of developer surveys and analyze
open source repositories and databases. Our empirical study ad-
dresses two high-level research questions.

RQ1. How do developers evaluate the impact of code contributions
when the in�uence of social factors and personal interests is removed?
In an initial survey of software engineering students, we observed
that peer reviews and mutual assessment of contributions are sub-
jective and in�uenced by social and personal factors, leading to

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Hezheng Yin

18.36% bias in the code evaluations. Thus, we surveyed developers
who compare their own commits in FreeBSD and Linux and found
that their judgments naturally center on classi�cation.

RQ2. Can quantitative analyses of code contributions do as well
or better than developers’ evaluations? We �nd that our proposed
methods of structural and non-structural analysis both outperform
simple metrics such as LOC-counting in matching developers’ judg-
ments of the value of code contributions, and that a combination of
structural and non-structural analysis outperforms either method
individually. Speci�cally, the combination of DevRank and the im-
pact coding scheme outperforms the simple statistical metric by
37.4% in terms of prediction accuracy. The error rate of our auto-
mated solution is 26.9%, comparable to the human error rate 23.9%
in the peer review.

Contributions. In summary, this paper makes the following
contributions:
• We establish the importance of quantifying the value of code

contributions, and de�ne the concept of development value. We
make a case study in a software engineering course, and show
the necessity of an algorithmic code evaluation method.

• We performed a survey of 35 open source developers making
772 commit value comparisons, and make observations on how
human developers evaluate code contributions. Besides, we con-
tribute an impact coding scheme for non-structural analysis,
based on manual grounded-theory analysis.

• We present a new PageRank-inspired algorithm for structural
analysis, DevRank. We demonstrate the e�ectiveness of DevRank
through the open source developers survey.

• We propose using a learning-to-rank algorithm to combine struc-
tural analysis and non-structural analysis. The combination achieves
the best performance in predicting commit comparison results
in the open source developers survey.

• We apply NLP and ML techniques to software project artifacts
for non-structural analysis. We are among the �rst to perform
a massive exploration of NLP/ML models for context learning
(with 250k+ commit messages from Apache projects).
The rest of the paper motivates our work in Section 2, and de-

scribes the algorithms for structural and non-structural analysis
in Section 3. The empirical study to evaluate them is described
in Section 4. We discuss the automated commit classi�cation in
Section 5, future work in Section 6 and related work in Section 7.

2 MOTIVATION
Quanti�cation of development value has strong potential appli-
cations in various areas in which individuals’ contributions are
typically evaluated using imprecise or subjective measurements.

Education. Team-based projects are widely used in software
engineering courses [54], but it can be challenging to fairly assess
individual students’ contributions. Simply counting NOC or LOCs
hardly re�ects the actual value of students’ contributions and is eas-
ily gamed. Unfair evaluation frustrates high performers and allows
low performers to “free-ride” on the e�orts of colleagues. Currently,
instructors typically rely on student peer review or manual check
to do the evaluation. This approach is subjective and not scalable
with the course size, especially for increasingly popular massive
online courses (MOOCs).

Software company. Similarly, evaluating the contributions of
di�erent developers who specialize in di�erent parts of a project
can be challenging even for managers who have a deep technical
understanding of the project (and not all do). As a result, developers’
performance may be judged by reporting or personal communi-
cation, which is subjective and is well-known to be prone to bias
based on personality and social relationships [33]. Unfortunately,
this may lead to negative outcomes. According to a recent survey of
2,000 employees [51], two widely-reported reasons employees vol-
untarily left their jobs were “lack of recognition or reward” (45.24%)
and “boss didn’t honor commitments” (43.49%).

Distributed open-source development. Large open source
software (OSS) projects runs in a geo-distributed manner, which
largely limits in-person social contact among developers. Instead,
developers rely on computer-mediated and usually publicly-available
information to facilitate development [56, 67]. For example, visi-
bility of development history a�ects developers’ receptiveness to
others’ code contributions [42, 59, 63]. Our work can provide de-
velopers with a more in-depth view of history contributions.

Although open-source projects are not �nancially motivated,
many receive donations, raising the fundamental problem [53] of
how to allocate them among developers. Indeed, the leading author
of the popular framework Vue.js1 recently raised exactly this issue.
Our work can pave the path to fair assignment of monetary rewards,
and thus has the potential to evolve the current rewarding and
�nancial support mechanisms for open source projects.

Even in open-source projects in which allocating reward is not
a problem, the contribution pro�le is useful for project organiza-
tion and management. Some open source projects practice role
promotion [28, 61], a voting scheme [18] or some implicit form of
coordination and con�ict resolution [57]. Being able to quantify the
value of di�erent contributors’ code would provide a solid founda-
tion for those processes. Such information can even be used for job
advertisements [24].

Research. Beyond the above concrete applications, our work
makes a new quantitative tool to observe development activities.
Prior research, which is limited by lack of such a tool, can be ex-
tended to answer many interesting questions: What is the rela-
tionship between the value of developers’ code contributions and
the system or community structure [4, 15, 37]? How developers’
code contributions in�uence con�ict resolution, leadership and
organization [18, 57, 62]? To what extend can development value
quanti�cation in�uence or help project management and mainte-
nance [5, 7, 47]?

In this work, we aim to advance the understanding of the value
of code contributions in development activities. To that end, we
parse the development value from two perspectives, structural
(§3.1) and non-structural (§3.2). They are complementary factors
that constitute the concept of development value.

3 COMPUTING DEVELOPMENT VALUE
We postulate that a code contribution carries two kinds of value.
The structural value re�ects its role in the structure of the program,
and can be derived by considering both the e�ort that went into
creating the code and the e�ort the code saves other developers.

1https://changelog.com/rfc/12

https://changelog.com/rfc/12

�antifying the Development Value of Code Contributions

Section 3.1 presents our algorithm (based on Google PageRank) for
computing structural value.

A contribution’s nonstructural value re�ects the contribution’s
impact to the project in a way that code structure alone cannot: for
example, a critical bug �x, while simple, might be as important as a
complex new feature. Section 3.2 describes how we manually code
developers’ judgments about the relative importance of di�erent
commits as a way of capturing nonstructural value; in Section 5.2,
we discuss how the manual coding used in this paper could be
automated.

The overall value of a contribution is obtained by combining its
structural and nonstructural value. Section 3.3 describes how we
use a Learning-to-Rank (L2R) model to do so. In Section 4, we show
how well this computation works on a set of open-source projects.

3.1 Structural Value: DevRank
In most imperative programming languages, a function (procedure,
method) is a basic unit of program structure. Functions both provide
a way to divide a complex task into subtasks and enable reuse of
code that is called from multiple sites. Therefore, the development
value of a function is based not only on the e�ort spent creating
the function, but also the development e�ort saved when other
parts of the code call the function. Our graph-based algorithm for
ranking development value,DevRank, is an extension of the original
PageRank algorithm.

3.1.1 Background. PageRank [11] is the basis for Google Web
Search, and �nds applications in various domains [23]. The algo-
rithm runs over a directed graph of web pages. It hypothesizes a
web surfer with assumed visiting behavior, and iteratively calculates
the probability that the surfer visits each page. The meaning of the
calculated probabilities depend on the behavior of the surfer. In the
original PageRank, the surfer does two random actions: (1) upon
arriving at a page, the surfer randomly selects a link on that page
to follow, and visits the linked page; (2) at random times, instead of
following a link on the current page the surfer stops teleports to a
random page and continues. Based on the behavior, the resulting
probability re�ects how likely a page is visited according to the link
structure of pages. Intuitively, what is re�ected is the popularity or
importance of a page on the web.

More precisely, let P denote a stochastic matrix, where Pi, j is the
probability of visiting page i from page j. The surfer follows a link
with probability � and teleports to another page with probability
(1 � �). The stochastic column vector p stores probabilities of the
surfer teleporting to all pages, respectively. We also need e, an
auxiliary row vector of all ones. Then PageRank is a Markov chain
with the stationary distribution v, a column vector that satis�es

(�P + (1 � �)pe)v = v.

To calculate v, we perform the iteration

v(k+1) = �Pv(k) + (1 � �)p,
where k 2 N and v(0) = p.

3.1.2 DevRank. To compute each function’s development value,
we analyze the code repository’s function call-commit graph that
contains function calls and history commits. Of course, during pro-
gram execution, control �ow never randomly jumps to an irrelevant

function as in PageRank. However, we �nd that the PageRank-over-
call-graph model is a surprisingly convenient tool to characterize
program development. To do this, we make two important changes
to PageRank. First, we interpret random teleportation as navigating
the development activity of the code, rather than runtime activity.
Second, we consider not only the instantaneous state of the func-
tion call graph, but its development history as revealed by a set of
revisions in a revision-control system over time.

In DevRank, PageRank’s hypothetical “surfer” becomes a De-
vRank development sni�er, whose task is to detect development
e�ort. To construct the behavior of the sni�er, we assume that the
number of LOCs of the function indicates the development e�ort
spent on the function in general (this de�nition can be extended
as discussed later). Based on this assumption, the sni�er performs
one of two random actions. (1) Upon arriving at a function, it visits
one of the called functions with probabilities proportional to the
sizes of those functions. That means the more development e�ort
associated with a called function, the more likely it is visited. As
we regard calling a function as a way to save development e�ort
on the caller, this behavior re�ects how much development e�ort
is saved by coding a call to each function. (2) At random times, the
sni�er teleports to any function with a probability proportional
to the size of the function. Such teleportation can be explained
as the sni�er’s search for development e�ort. Overall, we can see
that the resulting probability of the sni�er showing up on each
function re�ects the development e�ort spent on the function and
that function’s potential to save other developers’ e�ort. Therefore,
it re�ects the development value of a function.

The call-commit graph is formally de�ned as G = (V , S,E,W).
Each vertex in V represents a function’s code, and a directed edge
in E from �1 to �2 means that �1 calls �2 (dynamic binding is
approximated by establishing an edge from the abstract function
to every possible binding); S is vertex the set of commits;W are
directed edges across functions and commits, representing changes
that commits made to functions. An edge (s,�) 2 W means that
commit s modi�es function � . We associate a weight w to each
edge inW to record the number of modi�ed code lines. Both code
additions and reductions are counted in the weight, as they are all
valuable development e�orts.

The mathematical nature of DevRank is identical to PageRank.
We only need to reset P and p. We use | f | for the size of a function.
Suppose function j calls a set of functions, Fj . According to the
sni�er’s �rst behavior, we set

Pi, j =

8>><
>>:

|fi |Õ
f 2Fj |f |

if fi 2 Fj ,

0 otherwise.

Furthermore, the universal set of functions in the call graph is U .
According to the second behavior, we have

pi =
| fi |Õ

f 2U | f | .

The development e�ort associated with a function is not neces-
sarily entirely revealed by examining the call graph at an instant
of time. Since we have the full history of software revision in a
repository, we can more precisely quantify the development e�ort
associated with code. The development e�ort for a function is not

Hezheng Yin

only the latest code in the function, but also a history of updates
that result in the code. In Git2, a commit is a group of changes made
atomically to a subset of �les in the repository that takes the repos-
itory between two observable states. Without loss of generality
we will use the term commit in this way; other source/con�gura-
tion management systems have a similar mechanism even if they
use a di�erent term. We de�ne the total number of code lines of
all changes to a function denotes the development e�ort spent on
the function. For example, a developer replaces n1 code lines of a
function with n2 new code lines. Then we count (n1 + n2) as the
development e�ort contributed to the function.

Therefore, we run the above de�nition of DevRank on a view of
the call-commit graph, G 0 = (V ,E), but de�ne the function size | f |
as below:

| f | =
’

(s,f)2W
w(s, f).

Finally, the call-commit graph o�ers a way to distribute devel-
opment value of functions to commits, and further to developers.
DevRank computes a number for each function, which represents
the development value. Our default policy is to allocate the value of
a function to all commits that change the function, proportionally
to their weights. After every commit has collected the value from
all functions it modi�es, we assign the value of commits to their
corresponding authors. In this way, developers receive credits for
their contributions to the development value.

3.2 Non-Structural Value: Impact Coding
Not all development value is embodied in the code structure. A
code contribution also has a non-structural impact on the whole
project, e.g., �xing a bug, making an improvement, creating a new
feature, or maintaining a document. Our surveys of open source
developers con�rm the importance of such impact in assessing the
overall value of contributions. Therefore, we introduce another
method, impact coding, to capture such non-structural value.

Di�erent types of impacts that commits bring to a project can
be manually labelled by developers in a similar way to the use of
JIRA, where each issue is associated with a type and a priority.

Concept Category Description
Text adjustment Cleanup Trivial textual or

stylistic changesCode style adjustment
Document update Documentation Descriptions of the code

including commentsDocument addition
Data structure Maintenance Structural changes for

better software engineeringCode structure
Logic bug Fix Correction of mistakesDesign bug

Better logic Improvement Changes for better
quality or performanceBetter design

New use Feature New internal or
external functionalityNew design

Table 1: The impact coding scheme, developed from devel-
oper surveys by the grounded theory methodology, for non-
structural analysis.

2https://git-scm.com

In this work, we de�ne a coding scheme for commit classi�ca-
tion in terms of non-structural value. Previous work [39] de�nes
related categories of development activities and is re�ected in stan-
dards [27], but they are not proven to be suitable for representing
non-structural value. Instead of providing any prede�ned categories
or even assuming developers ever do classi�cation at all, we let
developers freely express their reasons for value comparisons, and
analyze their responses o�ine. Our current survey is sent out to
top FreeBSD and Linux developers. In total, we manually review
848 commit descriptions written by 26 developers. We follow the
grounded theory approach to derive the scheme. The process is in
several stages: we �rst gather concepts from developer’s answers
and then group them into categories. In that sense, concepts can
be regarded as subcategories. We actually went through several
iterations to make concepts and categories coherent, after merging
and splitting some of them. Table 1 lists our result.

In the survey, we see that developers use vague terms in their
natural-language descriptions. For example, the word “cleanup”
may refer to a super�cial text tweak as in Figure 1(a), but may also
refer to a code structure change as in Figure 1(b), which brings a
di�erent and larger impact than the text tweak. Besides, some terms
in developers’ responses are inconsistent. For example, the commit
message of Figure 1(c) sounds like a bug �x, but it is in fact a perfor-
mance improvement, according to the developer’s explanation of
its value. We looked into this commit and it solves a performance
degration due to packet loss. Although in a broad sense it can be
regarded as a “performance bug”, the commit does not impact the
correctness of the program. To avoid any confusion, we classify it
as an improvement.

Therefore, it is a necessity and a critical job for us to unify the
de�nitions of the terms in our impact coding scheme.
• Cleanup is source code hygiene that is not expected to impact
the compilation or interpretation output. We observe two typ-
ical activities in this category, text adjustment and code style
adjustment. The former is to re�ne the text in the source code,
such as �xing a typo or using a more readable variable name.
The latter is formatting the code to follow the proper code style.
Figure 1(a) shows an example of small stylistic cleanup, which
only increases a single-line indentation.

• Documentation refers to a change that impacts documents as
well as comments. We distinguish two types of documentation
activities. One is to draft a new content, and the other is to revise
the existing content.

• Maintenance is a general term, but here it only means enhance-
ment on the software engineering practice that does not impact
the program behavior. Figure 1(b) shows an example of mainte-
nance that removes an unnecessary parameter. A more extensive
refactoring can also fall into this category. Another example is
putting a constant modi�er before a data structure to avoid any
careless modi�cation. We refer to the type of the former exam-
ple as a code structure maintenance, and the type of the latter
example a data structure maintenance.

• A �x deals with a bug that incurs a wrong logic or design of
the program. Here the logic refers to a relative small local �ow.
A logic bug can be, for example, a null pointer deference or a

�antifying the Development Value of Code Contributions

memory leak3. Meanwhile, a �x on the program design impacts
multiple collaborating components of the program (e.g., a con-
current bug4).

• An improvement makes the program of higher quality in terms
of security, reliability, performant, or other metrics. The concepts
of logic and design are the same to those under the �x category.
Figure 1(c) shows an example of a logic improvement, which relo-
cates one line but does not involve high-level program behavior
redesign.

• A feature impacts the program by adding internal or external
functionality to it. A feature typically changes the design instead
of tweaking local logic, so there is not a “logic” feature concept
(the survey result con�rms this). But a feature can be internal
to the program without visibility to end users (e.g., creating a
utility function5). The usage concept of this category covers the
cases where the feature is not realized by a new design but by
a new way to use existing building blocks. Figure 1(d) is such a
case. That commit adds a new device node, in a similar way to
the existing code (note the surrounding code).

3.3 Combining DevRank and Impact Coding
Using L2R

As structural and non-structural analyses capture two fundamental
aspects of development value, we combine the two to calculate
overall development value. Suppose a commit has structural value
d and non-structural value t. Our goal is to �nd a function that
combines them: � = �(d, t). In our solution, d is the DevRank score,
and t is a one-hot vector encoding the commit category, given by
the impact coding scheme or the context learning algorithm.

If we had reliable ground truth—that is, a large set of commits
with the known overall development value of each commit—we
could pose the task as an optimization problem: from the data set,
determine the weight vector w in:

�(d, t) = wT

d
t

�
,

so that the average error between the true value and �(d, t) of every
commit is minimized.

Unfortunately, developers �nd it very hard to directly score code
values, e.g., giving one commit 0.17 and another 0.06, so we lack
reliable ground truth for the values. Instead, we ask developers to
compare many pairs of commits and identify which in each pair
is more valuable. Based on this “pairwise ground truth,” we use a
learning to rank (L2R) algorithm to determine�. L2R is a supervised
learning model originally proposed to rank documents for informa-
tion retrieval. Our task can be formulated as a pairwise case of the
L2R framework. There are several established training algorithms
for training the model, including Ranking SVM [25], IR SVM [12]
and RankBoost [19]. To control for the model expressiveness and
focus on the performance of di�erent feature combinations, we
choose Ranking SVM (RankSVM) as the learning model in this
paper.

3https://github.com/torvalds/linux/commit/0147ebc
4https://github.com/torvalds/linux/commit/1dbb670
5https://github.com/torvalds/linux/commit/11afbde

/drivers/pci/host/pcie-rockchip.c

@@ -973,4 +973,4 @@

if (region_no == 0) {

if (AXI_REGION_0_SIZE < (2ULL << num_pass_bits))

- return -EINVAL;

+ return -EINVAL;

}

Commit message: “PCI: rockchip: Indent "if" statement body”
Developer description: “code cleanup”

(a) Cleanup (code style)

/fs/btrfs/extent_io.h

@@ -301,7 +301,7 @@

static inline int set_extent_defrag(...,

- u64 end, struct extent_state **cached_state, gfp_t mask)

+ u64 end, struct extent_state **cached_state)

{

return set_extent_bit(tree, start, end,

EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,

- NULL, cached_state, mask);

+ NULL, cached_state, GFP_NOFS);

}

...

Commit message: “btrfs: sink gfp parameter to set_extent_defrag”
Developer description: “cleanup, preparatory work”

(b) Maintenance (code structure)

/drivers/net/virtio_net.c

@@ -892,18 +892,17 @@

- ctx = (void *)(unsigned long)len;

...

sg_init_one(rq->sg, buf, len);

+ ctx = (void *)(unsigned long)len;

err = virtqueue_add_inbuf_ctx(rq->vq, rq->sg, 1, buf, ctx,

gfp);

Commit message: “virtio_net: �x truesize for mergeable bu�ers”
Developer description: “performance improvement”

(c) Improvement (logic)

/arch/arm/boot/dts/sun5i.dtsi

@@ -585,7 +585,19 @@

lradc: lradc@01c22800 {

...

reg = <0x01c22800 0x100>;

interrupts = <31>;

...

};

+ codec: codec@01c22c00 {

+ ...

+ reg = <0x01c22c00 0x40>;

+ interrupts = <30>;

+ ...

+ };

Commit message: “ARM: sun5i: Add the Audio codec DT node”
Developer description: “enables audio support on a board”

(d) Feature (usage)

Figure 1: Examples commits and developer descriptions of
some impact types.

For pairwise L2R, given a pair of commits, the target is to �gure
out which commit hasmore development value, i.e., a binary classi�-
cation. A data set ofm instances is provided as {((c(1)i , c

(2)
i),�i)}, i =

https://github.com/torvalds/linux/commit/0147ebc
https://github.com/torvalds/linux/commit/1dbb670
https://github.com/torvalds/linux/commit/11afbde

Hezheng Yin

1, 2, ...,m, where each instance consists of two commits to compare,
(c(1)i , c

(2)
i), and a label, �i 2 {+1,�1}, denoting which commit is

more valuable. We collect labels {�i }, i = 1, 2, ...,m by surveying
experienced developers in successful open source projects. Then
we train a Ranking SVM to match human developers’ judgments.

To be precise, the training work�ow is as follows. Given k fea-
tures that characterize a commit, the two commits of each pair
(c(1)i , c

(2)
i) are characterized by two feature vectors,x (1)i = [x (1)i,1,x

(1)
i,2, ...,x

(1)
i,k]

and x (2)i = [x (2)i,1,x
(2)
i,2, ...,x

(2)
i,k], respectively. Then the di�erence be-

tween the two feature vectors, x (1)i � x (2)i , is fed into the learning
model, together with the corresponding label �i .

The trained SVM can not only be used to rank the commits, but
also results in the weight vectorw to be used in �. To getw, we use
the DevRank score d and the one-hot encoded commit category t as
the input features to RankSVM. After training, we take the weight
vector of the SVM as w in �(d, t), allowing us to combine the struc-
tural and nonstructural value scores for each commit to determine
its overall development value score. Moreover, to connect commits
to developers, we can modify the �nal step of DevRank: instead
of “crediting” the commit’s author with the structural value of the
commit, we credit the author with the overall value �(d, t) of the
commit. After the adjustment, outputs of DevRank are proportion-
ally uni�ed so that all scores still sum up to 1.

4 EMPIRICAL FINDINGS
The way a human developer assesses the value of code should be
the basis of an algorithmic solution. RQ1 asks how developers
evaluate the impact of code contributions when the in�uence of
social factors and personal interests is removed. We hypothesize
that they do so by considering what they believe to be the impact
of a commit on the overall codebase or on other developers:

H��������� 1. Human developers judge the value of commits
mainly by classifying impacts of the commits.

As we show, however, developers’ subjective evaluations of such
impact are subject to measurement bias, so we ask developers to
compare and rank randomly-selected pairs of their own commits to
mitigate this e�ect and provide a data set for evaluating H1.

We then turn to RQ2—whether quantitative analyses of code
contributions can do as well or better than developers’ evaluations.
As a baseline, we compare our algorithms to LOC counting, as the
number of changed lines of code, including both additions and
deletions, is a widely used measurement of code contributions [22,
31, 50]. We evaluate our structural analysis, non-structural analysis,
and combination of the two, as follows:

H��������� 2. DevRank, our algorithm for structural analysis,
outperforms LOC counting in predicting developers’ comparisons of
commits.

H��������� 3. Impact coding, our algorithm for non-structural
analysis, outperforms the LOC counting method in predicting devel-
opers’ comparisons of commits.

H��������� 4. The combination of DevRank and the impact cod-
ing scheme outperforms either analysis method alone in predicting
developers’ comparisons of commits, and shows an error rate compa-
rable to that of human assessment.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

%
sh
ar
e

Student ID

Received code share
Self-assigned code share

Figure 2: Mean shares for each student. Students are sorted
by the mean code share.

To address the research questions, we assemble two data sets:
(1) course surveys of students required to assess teammates’ contri-
butions in a software engineering course; (2) value comparisons of
commits and explanations collected from open source developers;

4.1 Developers Judge Their Own Commits by
Impact Classi�cation

Developers may assess code value through their understanding
of the code, and their experience with and impressions of other
developers. Typically, human-generated results are regarded as
the ground truth in an empirical study, as when human labels on
images provide ground truth in the ImageNet data set for visual
object recognition [16]. However, judging the development value of
code contributions is not as simple as identifying a cat in an image.
Moreover, humans may be biased by social factors and personal
interests. At the same time, any algorithmic solution should be
consistent with how a “reasonable” developer would assess the
value of code contributions.

To better understand the limitations and the validity of human
assessment, we surveyed 10 teams of students (58 students total) in
an undergraduate software engineering course of a major research
university. All team projects involved working on “real” applica-
tions with partner organizations. The 8-week-long project is divided
into four agile development iterations, each 2 weeks long. After
each iteration, individual students complete the following survey
evaluating their teammates’ contributions during that iteration:

“Suppose your team forms a company. Assign
team members (including yourself) shares in
the company, normalized to 100% total, based
on their code contributions for this iteration,
where the contribution captures your view of
both the quantity and impact of code contributed.”

Figure 2 shows statistics of each student’s self-assigned share
and shares received from teammates. We calculate the mean and
standard deviation of the received shares. All shares that a student

�antifying the Development Value of Code Contributions

Classi�cation Sample explanations Percentage

Explicit

“[add a new feature to support �ame-graph more e�ciently] is more valuable than [improve user experience]”

83.3%

“[performance boost] is more valuable than [�x a bug which is not super important]”
“[cleans up code] is more valuable than [is trivial textal �x]”
“[�xes a bug] is more valuable than [is a fairly minor performance & code clarity optimisation]”
“[a �x for memory leak] is more valuable than [a �x for documentation]”

Implicit

“[improve user experience] is more valuable than [just a trivial change to export necessary functions for future use]”
“[protect structure contents] is more valuable than [optimizes non critical path]”
“[just shrinks kernel size] is more valuable than [just a cosmetic spelling �x]”
“[spec compliance] is more valuable than [tool for static code checking]”
“[Make sure that RESET name for dts is accurate] is more valuable than [cleanup]”

None

“[commit body] is more valuable than [no commit body]”

16.7%
“[this null dereference doesn’t a�ect normal users] is more valuable than [tiny impact, doesn’t a�ect normal users at all]”
“[networking stu� is important] is more valuable than [code cleanup]”
“[is required for newer >= r6 MIPS CPUs to work] is more valuable than [is trivial contact information]”
“[show aggregated stat and task info when CPU is idle] is more valuable than [show raw value of �elds in a trace record]”

Table 2: Statistics of the classi�cation methodology adopted by developers in commit comparisons.

assigns to the whole team are normalized to 100%. We see that team-
mates give very di�erent amounts of shares to the same student,
showing the subjectivity in human value assessment. The deviation
of code shares received by a student ranges from 0.10% to 36.95%.

We also examined the average correlation between students’ rat-
ings. For each possible pair of students in a team, we computed the
Pearson’s r coe�cient between their ratings. By averaging across
teams and across pairs, we found the overall average of Pearson’s
r to be 0.54/0.52 for general/code contribution respectively, only
indicating moderate level of agreement among students.

Moreover, students’ self-assigned shares are 18.36% more than
their peer-assigned shares, suggesting that their self-assessment is
subjectively more optimistic than their peer assessment. TA com-
munications with students (which we cannot reveal due to privacy
considerations) also suggested gaming/collusion among team mem-
bers as well as personal biases.

Methodologically, therefore, in our larger survey we ask develop-
ers to compare pairs of their own commits, to mitigate this bias. We
tested Hypothesis 1 by examining the methodologies developers
used for comparing commits. We developed a survey system and
invited FreeBSD and Linux developers to compare random pairs of
their own commits and explain the reasons for their choices. The
commits are randomly selected from among the 100K FreeBSD
commits since commit e0562690 and the 160K Linux commits
prior to v4.4. We count commits in the master branch as well as
other branches, but exclude merge commits, which serve to fuse
changes from di�erent branches but do not generally contribute
code changes themselves. We invited the 100 developers who made
the largest numbers of commits selected from the above scope
to complete our survey; of these, 35 developers contributed 772
comparisons to our survey. We asked developers to phrase their
reasoning for ranking a given pair of commits as follows:

“Commit A does/is/has—, andCommit B does/is/has
—. Thus, Commit A is more valuable than Com-
mit B.”

We manually examined developers’ explanations for commit
comparisons, and labeled whether each explanation implies a form
of classi�cation, either explicit or implicit. The labels, example

explanations and their corresponding proportions in all explana-
tions are shown in Table 2. We �nd support for H1 as the "through
classi�cation of commits" is the most frequently used method and
accounts for 83.3% of all explanations. In the table, the “explicit”
label means that the explanation contains clear key words for clas-
si�cation, such as “add a new feature...”, and “performance boost”.
The “implicit” label means that, although the explanation does not
directly point to classi�cation, we can easily derive a category from
it. For example, “protect structure contents” is a maintenance of
the data structure; “tool for static code checking” should involve a
new feature. In contrast, explanations without doing classi�cation
take only 16.7%. They mention various very speci�c reasons. For
example, “networking stu� is important” indicates the component
of the commit; “show raw value of �elds in a trace record” is a detail
in functionality. We believe those speci�c reasons are hard to gen-
eralize (or at least our current scale of developer surveys, though it
is already extensive, still do not support such generalization).

4.2 DevRank and Impact Coding Outperform
LOC Counting for Predicting Developers’
Commit Comparisons

To test Hypothesis 2, we compared DevRank and LOC’s perfor-
mance in predicting developers’ comparisons of commits. The com-
mit that has higher DevRank or LOC value is predicted as more
valuable. As Table 3 shows, contrary to the traditional intuition that
LOC correlates well with the amount of contribution, LOC-counting
only achieved an accuracy of 53.2%, slightly higher than by purely
chance at 50%. By incorporating the structural information in the
codebase, DevRank achieved an accuracy of 59.0%, showing support
for Hypothesis 2.

To test Hypothesis 3, we manually labeled all commits in the sur-
vey with categories according to the impact coding scheme. Then
we one-hot encoded the commit categories into feature vectors and
�tted a ranking SVM to our data. We used 10-fold cross validation
and the average accuracy of the ranking SVM was 69.1%, signi�-
cantly higher than the 53.2% of LOC counting method, indicating
support for H3.

Hezheng Yin

0

0.5

1

1.5

2

0 50 100 150 200 250 300

Ra
tio

of
D
ev
Ra

nk
/L
O
C
sc
or
es

Developers in descending order of LOC
0.8 0.4

(a) Flink

0

0.5

1

1.5

2

0 20 40 60 80 100120140160180200

Ra
tio

of
D
ev
Ra

nk
/L
O
C
sc
or
es

Developers in descending order of LOC
0.8 0.4

(b) Kafka

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

Ra
tio

of
D
ev
Ra

nk
/L
O
C
sc
or
es

Developers in descending order of LOC
0.8 0.4

(c) SystemML

Figure 3: Developers’ relative changes between scores calculated by LOC counting and DevRank. � = 1 means both scores for
a developer are identical. Legend keys, i.e., 0.4, 0.8, are the values of � in DevRank.

Feature Model Accuracy
LOC - 53.2%
DevRank - 59.0%
Coding Ranking SVM 69.1%
Coding + LOC Ranking SVM 70.2%
DevRank + Coding Ranking SVM 73.1%

Table 3: Performance of individual analyses and combina-
tions in predicting developers’ commit comparisons.

4.3 The DevRank + Impact Coding
Combination Achieves the Best
Performance

We tested Hypothesis 4 by comparing the performance of using
the combination of DevRank and impact coding with either anal-
ysis method alone. We also explore how other combinations of
our analysis methods and LOC counting may perform. A ranking
SVM is trained in a similar way described in §4.2, except that the
feature vectors include both DevRank scores and commit categories
this time. 10-fold cross validation was employed and the average
accuracy was 73.1%. This is our highest accuracy among all analysis
methods and feature combinations.

We assess human error rate by asking two senior CS graduate
students without Linux kernel development experience to compare
100 pairs of commits randomly sampled from our Linux survey data
set. Their answers were graded against the ground truth provided
by the authors of those commits and they achieved an accuracy of
69.0% and 84.0% respectively. The gap between their performance
re�ects both human developer’s ability di�erence and subjectivity
issue. Note that our best model’s performance (73.1%) is in between
the two human accuracies, which supports Hypothesis 4 that the

combination of DevRank and impact coding shows an error rate
comparable to that of human assessment.

In our current empirical study, we regard developers’ commit
comparisons as the ground truth, for all structural analysis, non-
structural analysis and their combination. The assumption here is
that developers take into account both structural value and non-
structural value when they compare commits. Our results in Table 3
supports such an assumption in that both structural analysis and
non-structural analysis add to the accuracy of predicting develop-
ers’ comparisons. However, this commit-oriented approach is more
suitable for surveying non-structural value than structural value,
because developers only see individual commits and thus tend to
lose sight of the structure of related code. We found that quantita-
tively only 10.6% of all explanations mentioned concepts related
to code structure and structural value. This may explain why our
results show that non-structural analysis increases the accuracy
more than structural analysis does. We believe the e�ectiveness of
structural analysis is underestimated in our study.

To better observe the e�ects of DevRank, we perform another
experiment on three Apache projects to calculate developers’ scores
of development value. We select Flink, Kafka and SystemML for this
experiment as they are representative of di�erent ranges of the num-
ber of project developers: Flink has 283 developers; Kafka has 191
developers; SystemML has 40 developers. Figure 3 depicts how De-
vRank extensively changes individual developers’ scores, compared
to LOC counting. The change rate is from �90.0%/�73.3%/�59.7%
to 24.3⇥/16.7⇥/2.65⇥ for Flink/Kafka/SystemML. DevRank largely
changes developers’ scores, compared to LOC counting, due to its
inherent capability of structural analysis.

Another phenomenon in Figure 3 is that, as � increases, devel-
opers with less contributions tend to see more reduction of scores.
That means DevRank shares tend to more intensively gather around

�antifying the Development Value of Code Contributions

major contributors as � becomes larger. � can largely in�uence the
share distribution of DevRank.

5 DISCUSSION
We discuss two factors of the threads to validity in our research, and
the potential of applying context learning to our work in practice.

5.1 Threats to Validity
Non-code contributions. This paper focuses on the code contri-
bution, though writing code is only one part of the work that leads
to a successful project. Other non-code contributions include user
interview, requirements de�nition, planning, coordination, man-
agement, and so on. One one hand, those types of contributions
are conceptually di�erent from the code contribution, so our re-
sults should not be generalized to them. On the other hand, it is
possible that the code contribution is an indicator of more general
contributions in practice. We experience many cases where the
developers who contribute most code naturally take more roles
in other aspects of project development. To preliminarily test this,
we put another question in the course survey that asks students
about their general contributions instead of the code contribution.
It turns out that the general-contribution shares students received
are close to their code-contribution shares. Both types of shares
are highly correlated, with a correlation coe�cient of 0.93. One
reason for the correlation is that developers of those small projects
are not very specialized. Therefore, at least for a small project, the
developers who make most code contributions tend to make most
general contributions as well.

Gaming and attacks. Our empirical study is ex post analysis,
so neither gaming behavior of developers nor attacks against our
solution are assumed. But in order to generalize our work to ac-
tual use, we have to consider them. Developers may deliberately
increase the number of LOCs or commits if they know in advance
that contributions are judged by such metrics. Meanwhile, there are
constraints against adverse behavior in reality. Code commits are
typically reviewed by peer developers before being merged to the
repository. It is relatively easy for a developer to split one commit
to multiple ones or write lengthy code without being noticed in
code review. But it costs more thoughts to in�ate DevRank, which
involves logic or structure changes. Also, simply making one func-
tion call into multiple nested ones barely adds to the DevRank score
(a property of PageRank-style algorithm). Overall, our solution is
robust to developers’ potential gaming behavior or even attacks.

5.2 Automated Commit Classi�cation
In this study we relied on manual classi�cation of commits into
di�erent types, but it is burdensome for developers to label every
commit. Therefore, we are investigating automating this task. We
expect to at least provide an assistance tool to prevent/monitor
human mistakes or gaming behaviors. As the �rst step in this di-
rection, we take advantage of NLP and ML techniques to classify
commits according to commit messages.

A favorable fact about software development is that many com-
munications among developers are computer-mediated [56, 67].
As a result, each code commit is associated with a context devel-
opers implicitly build in development activities. Particularly, the

context is recorded as a natural-language description of the commit
in bug/issue tracking systems or pull requests [14, 64]. They pro-
vide an adequate corpus for constructing a machine learning model
to inference the impact of a commit. We refer to our approach as
context learning.

Since the developer survey and our manually labelled commits
are of a limited scale for machine learning, we leverage the JIRA is-
sue database6 used by many Apache Software Foundation projects.
In the database, developers label issues with prede�ned types (in
contrast to, e.g., GitHub Issues, which does not enforce such a con-
straint), and many projects also follow the convention that the
JIRA issue ID (e.g., “SPARK-16742”) appears in commit messages for
commits addressing that issue, making it possible to link commits
to their corresponding issue types (feature, improvement, bug �x,
maintenance). We have experimented with training NLP and ML
models on 267,446 issues and their associated commit messages
from 139 Apache projects (projects with top most issues are se-
lected), but have not yet reached su�ciently high accuracies to rely
on this classi�cation in place of manual coding.

We explore threemainNLP +MLmodels, bag-of-words (BoW) [32],
a convolutional neural network (CNN) [34], and a recurrent neural
network (RNN). For each model, we experiment with two types of
inputs, the commit message title and the complete message. We
adopt ConceptNet Numberbatch (CN) word embeddings [60]. For
all issue types, we show F1 scores in Table 4. We can see that CNN
and RNN have comparable performance, but signi�cantly outper-
form the bag-of-words model. The best average F1 score that our
CNN model achieves among all classes is 0.60, using full commit
messages; similarly, the best average F1 score of our RNN model
is 0.59, using commit titles. In contrast, the best F1 score of the
bag-of-words model is only 0.55, using commit titles.

The models show di�erent levels of performance among classes
of commits. The best F1 score for bug is 0.87with precision 0.88 and
recall 0.87 (by the RNN model using commit messages), while the
best F1 score for maintenance is only 0.46 with precision 0.58 and
recall 0.38 (by the CNN model using commit messages). Such di�er-
ent learning results should be attributed to the number of commits
of a class in the data set. Bug �xes are dominant and numerous
so that training for them is e�ective. Overall, identi�cation of bug
�xes and improvements can be regarded as usable for DevRank,
but that of minor classes is too low to be used in practice.

Maint. Feature Improv. Bug
commits 329 1517 14136 28818
BoW-title 0.28 0.34 0.63 0.85

BoW-message 0.2 0.33 0.62 0.85
CNN-title 0.37 0.39 0.65 0.86

CNN-message 0.46 0.39 0.64 0.87
RNN-title 0.4 0.35 0.67 0.86

RNN-message 0.33 0.36 0.68 0.87
Table 4: Performance (F1 score) of three NLP + ML models
for context learning.

6https://issues.apache.org/

https://issues.apache.org/

Hezheng Yin

6 FUTUREWORK
This work can be extended in several ways. We have the follow
plans to improve the accuracy of development value quanti�cation
and further advance our knowledge on this topic.

First, collect and impact-code more commit comparison data as
the ground truth for analysis and training. This can be done by a
larger-scale survey of developers and crowdsourcing for manual
labeling. Such a data set will provide a basis for the following plans.

Second, experiment with more advanced machine learning mod-
els. In Section 5.2, we already show that the current context learning
model performs best for commit types that have a large number of
data points. Meanwhile, we currently use a linear SVM for L2R, but
this choice is made mainly due to the limited amount of training
data. Both context learning and L2R see room for optimization as
long as there is enough data input.

Third, support more programming languages. Our current imple-
mentation cannot apply to dynamically-typed languages because
our program analysis component is based on SrcML [41] to parse
code structures, which supports C/C++ and Java, but not (for exam-
ple) Ruby. To support a dynamic language like Ruby, we will have
to implement static typing [1, 2].

Fourth, explore program analysis and comprehension techniques
to do impact assessment. Currently, we rely on either costly hu-
man reasoning or context learning over natural-language commit
messages. It may help if our solution can directly understand the
change that a commit makes. Such understandingmay lead to better
commit classi�cation.

7 RELATEDWORK
PageRank has been applied to many areas [23]. In the software
engineering area, one use case is to run PageRank on the func-
tion call graph to estimate bug severity and maintenance e�ort [5].
Besides, graph topology or characteristics (e.g., degree centrality)
are studied to capture software properties [6, 55, 65] and predict
defects [26, 69]. This technique is also applied to portray develop-
ers [20, 30, 45]. Besides, social factors are also exploited for various
purposes of analysis [9, 40, 44, 52]. In contrast, our DevRank is a
variant of PageRank adapted to re�ect the development value.

E�ort-aware models [43, 48] show the e�ects of considering the
development e�ort in software engineering, and di�erent e�ort
estimation schemes [31, 58, 66] have been proposed. They share
similarity with our development value assessment, but a key di�er-
ence is that we additionally count the e�ort to be saved, instead of
merely the e�ort that is spent. Also, we combine development e�ort
with non-structural impact analysis in development value assess-
ment. Finally, DevRank can be extended to use a more advanced
e�ort estimation scheme (e.g., complexity, churn) to calculate the
“size” of a function node (Section 3.1), while the overall framework
and core methodologies of our work are orthogonal and remain
applicable.

There are di�erent standards to classify development activities.
For example, ISO/IEC 14764 [27, 39] speci�es four types of mainte-
nance: corrective, preventive, adoptive and perfective. We are the
�rst to examine what should be the classi�cation standard for as-
sessing development value, and propose the impact coding scheme.
Furthermore, Li et al. [38] conducted a developer survey to grade

the in�uence of di�erent types of software changes (e.g., checking
“very in�uential” for “�x pervasive bugs”). In contrast, we use L2R to
learn the weights of each category from a large data set of concrete
commit evaluations. (Since we use di�erent category de�nitions,
the resulting weights are hardly directly compared to their grades.)

Machine learning has found its way to software engineering
work. For example, it is used for bug prediction [21, 29], bug triage [13,
68] and bug assignment [3]. Particularly, Menzies et al. [46] and
Lamkan� et al. [35, 36] used text classi�cation to predict the severity
of a bug from the text of its bug report. Their models under evalua-
tion include Bayes, SVM and rule learning. Our context learning
follows a similar approach, but it is among the �rst massive evalua-
tions of CNN and RNN models for commit classi�cation. We regard
it as future work to design more e�cient NLP and ML models for
our task.

8 CONCLUSION
There are commercial, pedagogical, and stewardship reasons to
evaluate the impact of individual code contributions to a large code-
base. This task is di�cult for developers to do manually, not only
because of the subjectivity inherent in the task but also because
few developers have a wide enough view of the entire project to
do it e�ectively and in a manner well-calibrated to their fellow
developers. To make the process both objective and amenable to
automation, we postulated that a given code contribution has both
structural and nonstructural value, and presented a combination of a
PageRank-inspired algorithm and a machine learning model trained
from developer’s holistic rankings of their own contribution that
captures and combines these two kinds of value. We also identi�ed
a promising future direction in automatically classifying commits,
to further automate the process of computing nonstructural value.
We hope our approach will enable and support an even stronger
ecosystem of contribution-based projects with a “very long tail” of
contributors as well as giving developers and project leaders better
insights on the relative strengths of their own contributors and code.

Acknowledgment This is a joint work with my colleagues Jin-
glei Ren, Qingda Hu, Alex Stennet, Wojciech Koszek and my advisor
Armando Fox. I’d like to thank Jinglei for his invaluable contribu-
tion in overall algorithm and experiment design, and coining the
term DevRank; Qingda for training the commit message classi�er;
Alex for providing Javascript support for DevRank; Wojciech for
insightful feedback and many fruitful discussions; Armando for
his support and guidance both in research and life throughout my
graduate career.

REFERENCES
[1] Jong-hoon An, Avik Chaudhuri, and Je�rey S. Foster. 2009. Static Typing for

Ruby on Rails. In Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering (ASE ’09). IEEE Computer Society, 590–594.
https://doi.org/10.1109/ASE.2009.80

[2] Jong-hoon (David) An, Avik Chaudhuri, Je�rey S. Foster, and Michael Hicks. 2011.
Dynamic Inference of Static Types for Ruby. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). 459–472. https://doi.org/10.1145/1926385.1926437

[3] John Anvik. 2006. Automating Bug Report Assignment. In Proceedings of the
28th International Conference on Software Engineering (ICSE ’06). ACM, 937–940.
https://doi.org/10.1145/1134285.1134457

[4] Carliss Baldwin, Alan MacCormack, and John Rusnak. 2014. Hidden structure:
Using network methods to map system architecture. Research Policy 43, 8 (2014),

https://doi.org/10.1109/ASE.2009.80
https://doi.org/10.1145/1926385.1926437
https://doi.org/10.1145/1134285.1134457

�antifying the Development Value of Code Contributions

1381 – 1397. https://doi.org/10.1016/j.respol.2014.05.004
[5] Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis Faloutsos.

2012. Graph-based Analysis and Prediction for Software Evolution. In Proceedings
of the 34th International Conference on Software Engineering (ICSE ’12). IEEE, 419–
429. http://dl.acm.org/citation.cfm?id=2337223.2337273

[6] Marco Biazzini, Martin Monperrus, and Benoit Baudry. 2014. On Analyzing
the Topology of Commit Histories in Decentralized Version Control Systems. In
Proceedings of the 2014 IEEE International Conference on Software Maintenance
and Evolution (ICSME ’14). 261–270. https://doi.org/10.1109/ICSME.2014.48

[7] Stamatia Bibi, Apostolos Ampatzoglou, and Ioannis Stamelos. 2016. A Bayesian
Belief Network for Modeling Open Source Software Maintenance Productivity. In
Proceedings of The 12th International Conference on Open Source Systems (OSS ’16).
32–44.

[8] Stefan Bi�, Aybuke Aurum, Barry Boehm, Hakan Erdogmus, and Paul Grün-
bacher (Eds.). 2009. Value-Based Software Engineering. Springer.

[9] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and
Premkumar Devanbu. 2009. Putting It All Together: Using Socio-technical
Networks to Predict Failures. In Proceedings of the 20th International Sym-
posium on Software Reliability Engineering (ISSRE ’09). IEEE, 109–119. https:
//doi.org/10.1109/ISSRE.2009.17

[10] B. Boehm and Li GuoHuang. 2003. Value-based software engineering: a case study.
IEEE Software 36, 3 (Mar 2003), 33–41. https://doi.org/10.1109/MC.2003.1185215

[11] Sergey Brin and Lawrence Page. 1998. TheAnatomy of a Large-scale Hypertextual
Web Search Engine. In Proceedings of the Seventh International Conference onWorld
Wide Web 7 (WWW-7). 107–117. http://dl.acm.org/citation.cfm?id=297805.297827

[12] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon.
2006. Adapting Ranking SVM to Document Retrieval. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’06). ACM, New York, NY, USA, 186–193. https:
//doi.org/10.1145/1148170.1148205

[13] Davor Cubranic and Gail C. Murphy. 2004. Automatic bug triage using text
categorization. In Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering (SEKE ’04).

[14] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository. In
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work
(CSCW ’12). 1277–1286. https://doi.org/10.1145/2145204.2145396

[15] Cleidson de Souza, Jon Froehlich, and Paul Dourish. 2005. Seeking the Source:
Software Source Code As a Social and Technical Artifact. In Proceedings of the 2005
International ACM SIGGROUP Conference on Supporting Group Work (GROUP ’05).
197–206. https://doi.org/10.1145/1099203.1099239

[16] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

[17] M. Denne and J. Cleland-Huang. 2004. The incremental funding method: data-
driven software development. IEEE Software 21, 3 (May 2004), 39–47. https:
//doi.org/10.1109/MS.2004.1293071

[18] Roy T. Fielding. 1999. Shared Leadership in the Apache Project. Commun. ACM
42, 4 (April 1999), 42–43. https://doi.org/10.1145/299157.299167

[19] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. 2003. An E�cient
Boosting Algorithm for Combining Preferences. J. Mach. Learn. Res. 4 (Dec. 2003),
933–969. http://dl.acm.org/citation.cfm?id=945365.964285

[20] Thomas Fritz, Gail C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily
Hill. 2014. Degree-of-knowledge: Modeling a Developer’s Knowledge of Code.
ACM Trans. Softw. Eng. Methodol. 23, 2, Article 14 (April 2014), 42 pages. https:
//doi.org/10.1145/2512207

[21] Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2011. Comparing Fine-grained
Source Code Changes and Code Churn for Bug Prediction. In Proceedings of the
8th Working Conference on Mining Software Repositories (MSR ’11). ACM, 83–92.
https://doi.org/10.1145/1985441.1985456

[22] GitHub. 2017. Viewing contribution activity in a repository. https://help.github.
com/articles/viewing-contribution-activity-in-a-repository/. (2017).

[23] David F. Gleich. 2015. PageRank Beyond the Web. SIAM Rev. 57, 3 (Aug. 2015),
321âĂŞ363.

[24] Claudia Hau� and Georgios Gousios. 2015. Matching GitHub Developer Pro�les
to Job Advertisements. In Proceedings of the 12th Working Conference on Mining
Software Repositories (MSR ’15). IEEE Press, 362–366. http://dl.acm.org/citation.
cfm?id=2820518.2820563

[25] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. 2000. Large margin rank
boundaries for ordinal regression. 88 (01 2000).

[26] Wei Hu and Kenny Wong. 2013. Using Citation In�uence to Predict Software
Defects. In Proceedings of the 10th Working Conference on Mining Software Reposi-
tories (MSR ’13). 419–428. http://dl.acm.org/citation.cfm?id=2487085.2487162

[27] ISO/IEC. 2006. ISO/IEC 14764:2006 Software Engineering – Software Life Cycle
Processes – Maintenance. https://www.iso.org/standard/39064.html. (Sept. 2006).

[28] Chris Jensen and Walt Scacchi. 2007. Role Migration and Advancement Processes
in OSSD Projects: A Comparative Case Study. In Proceedings of the 29th Inter-
national Conference on Software Engineering (ICSE ’07). IEEE Computer Society,
364–374. https://doi.org/10.1109/ICSE.2007.74

[29] Xiao-Yuan Jing, Shi Ying, Zhi-Wu Zhang, Shan-Shan Wu, and Jin Liu. 2014.
Dictionary Learning Based Software Defect Prediction. In Proceedings of the
36th International Conference on Software Engineering (ICSE ’14). ACM, 414–423.
https://doi.org/10.1145/2568225.2568320

[30] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From Developer Networks to Veri�ed Communities: A Fine-grained Ap-
proach. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1 (ICSE ’15). IEEE Press, 563–573. http://dl.acm.org/citation.cfm?id=
2818754.2818824

[31] M. Jorgensen, B. Boehm, and S. Rifkin. 2009. Software Development E�ort
Estimation: Formal Models or Expert Judgment? IEEE Software 26, 2 (March
2009), 14–19. https://doi.org/10.1109/MS.2009.47

[32] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of Tricks for E�cient Text Classi�cation. CoRR abs/1607.01759 (2016). http:
//arxiv.org/abs/1607.01759

[33] Dishan Kamdar and Linn Van Dyne. 2007. The joint e�ects of personality and
workplace social exchange relationships in predicting task performance and
citizenship performance. Journal of Applied Psychology 92, 5 (2007), 1286–1298.

[34] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classi�cation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP ’14). Association for Computational Linguistics (ACL), Doha,
Qatar, 1746âĂŞ–1751.

[35] A. Lamkan�, S. Demeyer, E. Giger, and B. Goethals. 2010. Predicting the severity
of a reported bug. In Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories (MSR ’10). 1–10. https://doi.org/10.1109/MSR.2010.5463284

[36] Ahmed Lamkan�, Serge Demeyer, Quinten David Soetens, and Tim Verdonck.
2011. Comparing Mining Algorithms for Predicting the Severity of a Reported
Bug. In Proceedings of the 15th European Conference on Software Maintenance and
Reengineering (CSMR ’11). 249–258. https://doi.org/10.1109/CSMR.2011.31

[37] Philip Levis. 2012. Experiences from a Decade of TinyOS Development. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’12). 207–220. http://dl.acm.org/citation.cfm?id=2387880.
2387901

[38] Daoyuan Li, Li Li, Dongsun Kim, Tegawendé F. Bissyandé, David Lo, and Yves Le
Traon. 2016. Watch out for This Commit! A Study of In�uential Software Changes.
CoRR abs/1606.03266 (2016). http://arxiv.org/abs/1606.03266

[39] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. 1978. Characteristics of Ap-
plication Software Maintenance. Commun. ACM 21, 6 (June 1978), 466–471.
https://doi.org/10.1145/359511.359522

[40] Luis Lopez-Fernandez, Gregorio Robles, and Jesus M Gonzalez-Barahona. 2004.
Applying social network analysis to the information in CVS repositories. In
Proceedings of the 1st International Workshop on Mining Software Repositories
(MSR ’04). 101–105.

[41] Jonathan I. Maletic and Michael L. Collard. 2015. Exploration, Analysis, and
Manipulation of Source Code Using srcML. In Proceedings of the 37th International
Conference on Software Engineering - Volume 2 (ICSE ’15). IEEE Press, 951–952.
http://dl.acm.org/citation.cfm?id=2819009.2819225

[42] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression Formation
in Online Peer Production: Activity Traces and Personal Pro�les in Github. In
Proceedings of the 2013 Conference on Computer Supported Cooperative Work
(CSCW ’13). ACM, 117–128. https://doi.org/10.1145/2441776.2441792

[43] Thilo Mende and Rainer Koschke. 2010. E�ort-Aware Defect Prediction Models.
In Proceedings of the 2010 14th European Conference on Software Maintenance
and Reengineering (CSMR ’10). IEEE Computer Society, Washington, DC, USA,
107–116. https://doi.org/10.1109/CSMR.2010.18

[44] Andrew Meneely, Laurie Williams, Will Snipes, and Jason Osborne. 2008. Predict-
ing Failures with Developer Networks and Social Network Analysis. In Proceed-
ings of the 16th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (SIGSOFT ’08/FSE-16). 13–23. https://doi.org/10.1145/1453101.
1453106

[45] Xiaozhu Meng, Barton P. Miller, William R. Williams, and Andrew R. Bernat.
2013. Mining Software Repositories for Accurate Authorship. In Proceedings
of the 2013 IEEE International Conference on Software Maintenance (ICSM ’13).
250–259. https://doi.org/10.1109/ICSM.2013.36

[46] T. Menzies and A. Marcus. 2008. Automated severity assessment of software
defect reports. In 2008 IEEE International Conference on Software Maintenance
(ICSM ’08). 346–355. https://doi.org/10.1109/ICSM.2008.4658083

[47] Martin Michlmayr. 2004. Managing Volunteer Activity in Free Software Projects.
In Proceedings of the 2004 USENIX Annual Technical Conference (USENIX ATC ’04).
39–39. http://dl.acm.org/citation.cfm?id=1247415.1247454

[48] Ayse Tosun Misirli, Emad Shihab, and Yasukata Kamei. 2016. Studying high
impact �x-inducing changes. Empirical Software Engineering 21, 2 (01 Apr 2016),
605–641. https://doi.org/10.1007/s10664-015-9370-z

https://doi.org/10.1016/j.respol.2014.05.004
http://dl.acm.org/citation.cfm?id=2337223.2337273
https://doi.org/10.1109/ICSME.2014.48
https://doi.org/10.1109/ISSRE.2009.17
https://doi.org/10.1109/ISSRE.2009.17
https://doi.org/10.1109/MC.2003.1185215
http://dl.acm.org/citation.cfm?id=297805.297827
https://doi.org/10.1145/1148170.1148205
https://doi.org/10.1145/1148170.1148205
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/1099203.1099239
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/MS.2004.1293071
https://doi.org/10.1109/MS.2004.1293071
https://doi.org/10.1145/299157.299167
http://dl.acm.org/citation.cfm?id=945365.964285
https://doi.org/10.1145/2512207
https://doi.org/10.1145/2512207
https://doi.org/10.1145/1985441.1985456
https://help.github.com/articles/viewing-contribution-activity-in-a-repository/
https://help.github.com/articles/viewing-contribution-activity-in-a-repository/
http://dl.acm.org/citation.cfm?id=2820518.2820563
http://dl.acm.org/citation.cfm?id=2820518.2820563
http://dl.acm.org/citation.cfm?id=2487085.2487162
https://www.iso.org/standard/39064.html
https://doi.org/10.1109/ICSE.2007.74
https://doi.org/10.1145/2568225.2568320
http://dl.acm.org/citation.cfm?id=2818754.2818824
http://dl.acm.org/citation.cfm?id=2818754.2818824
https://doi.org/10.1109/MS.2009.47
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759
https://doi.org/10.1109/MSR.2010.5463284
https://doi.org/10.1109/CSMR.2011.31
http://dl.acm.org/citation.cfm?id=2387880.2387901
http://dl.acm.org/citation.cfm?id=2387880.2387901
http://arxiv.org/abs/1606.03266
https://doi.org/10.1145/359511.359522
http://dl.acm.org/citation.cfm?id=2819009.2819225
https://doi.org/10.1145/2441776.2441792
https://doi.org/10.1109/CSMR.2010.18
https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1109/ICSM.2013.36
https://doi.org/10.1109/ICSM.2008.4658083
http://dl.acm.org/citation.cfm?id=1247415.1247454
https://doi.org/10.1007/s10664-015-9370-z

Hezheng Yin

[49] Ivan Mistrik, Rami Bahsoon, Rick Kazman, and Yuanyuan Zhang (Eds.). 2014.
Economics-Driven Software Architecture. Morgan Kaufmann.

[50] Audris Mockus and James D. Herbsleb. 2002. Expertise Browser: A Quanti-
tative Approach to Identifying Expertise. In Proceedings of the 24th Interna-
tional Conference on Software Engineering (ICSE ’02). ACM, 503–512. https:
//doi.org/10.1145/581339.581401

[51] Paychex. 2016. Employee Retention: What Makes Employees Stay
or Leave. https://www.paychex.com/articles/human-resources/
employee-retention-what-makes-employees-stay-leave. (Aug. 2016).

[52] Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. 2008. Can
Developer-module Networks Predict Failures?. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (SIG-
SOFT ’08/FSE-16). 2–12. https://doi.org/10.1145/1453101.1453105

[53] Eric S. Raymond. 2001. The Cathedral & the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly Media.

[54] Debbie Richards. 2009. Designing project-based courses with a focus on group
formation and assessment. ACM Transactions on Computing Education (TOCE) 9,
1 (2009), 2.

[55] Martin P. Robillard and Gail C. Murphy. 2002. Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies. In Proceedings
of the 24th International Conference on Software Engineering (ICSE ’02). ACM,
406–416. https://doi.org/10.1145/581339.581390

[56] W. Scacchi. 2002. Understanding the requirements for developing open source
software systems. IEE Proceedings - Software 149, 1 (Feb 2002), 24–39. https:
//doi.org/10.1049/ip-sen:20020202

[57] Walt Scacchi. 2007. Free/Open Source Software Development: Recent Research
Results and Emerging Opportunities. In The 6th Joint Meeting on European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering: Companion Papers (ESEC-FSE companion ’07). 459–468.
https://doi.org/10.1145/1295014.1295019

[58] Emad Shihab, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2013. Is Lines
of Code a Good Measure of E�ort in E�ort-aware Models? Inf. Softw. Technol. 55,
11 (Nov. 2013), 1981–1993. https://doi.org/10.1016/j.infsof.2013.06.002

[59] Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph Treude, Margaret-
Anne Storey, and Kurt Schneider. 2013. Mutual Assessment in the Social Program-
mer Ecosystem: An Empirical Investigation of Developer Pro�le Aggregators.
In Proceedings of the 2013 Conference on Computer Supported Cooperative Work
(CSCW ’13). ACM, 103–116. https://doi.org/10.1145/2441776.2441791

[60] Robert Speer and Joanna Lowry-Duda. 2017. ConceptNet at SemEval-2017 Task
2: Extending Word Embeddings with Multilingual Relational Knowledge. In
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-
2017). Association for Computational Linguistics (ACL), Vancouver, Canada,
85âĂŞ–89.

[61] Megan Squire. 2013. Project Roles in the Apache Software Foundation: A Dataset.
In Proceedings of the 10thWorking Conference onMining Software Repositories (MSR
’13). IEEE Press, 301–304. http://dl.acm.org/citation.cfm?id=2487085.2487142

[62] Damian A. Tamburri, Patricia Lago, and Hans van Vliet. 2013. Organizational
Social Structures for Software Engineering. ACM Comput. Surv. 46, 1, Article 3
(July 2013), 35 pages. https://doi.org/10.1145/2522968.2522971

[63] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. In�uence of Social and
Technical Factors for Evaluating Contribution in GitHub. In Proceedings of the
36th International Conference on Software Engineering (ICSE ’14). ACM, 356–366.
https://doi.org/10.1145/2568225.2568315

[64] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s Talk About It: Evalu-
ating Contributions Through Discussion in GitHub. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE ’14). 144–154. https://doi.org/10.1145/2635868.2635882

[65] L. Wang, Z. Wang, C. Yang, L. Zhang, and Q. Ye. 2009. Linux kernels as complex
networks: A novel method to study evolution. In 2009 IEEE International Confer-
ence on Software Maintenance (ICSM ’09). 41–50. https://doi.org/10.1109/ICSM.
2009.5306348

[66] H. Wu, L. Shi, C. Chen, Q. Wang, and B. Boehm. 2016. Maintenance E�ort
Estimation for Open Source Software: A Systematic Literature Review. In 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME).
32–43. https://doi.org/10.1109/ICSME.2016.87

[67] Yutaka Yamauchi, Makoto Yokozawa, Takeshi Shinohara, and Toru Ishida. 2000.
Collaboration with Lean Media: How Open-source Software Succeeds. In Pro-
ceedings of the 2000 ACM Conference on Computer Supported Cooperative Work
(CSCW ’00). 329–338. https://doi.org/10.1145/358916.359004

[68] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer. 2013. Categorizing bugs
with social networks: A case study on four open source software communities. In
Proceedings of the 35th International Conference on Software Engineering (ICSE ’13).
1032–1041. https://doi.org/10.1109/ICSE.2013.6606653

[69] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting Defects
Using Network Analysis on Dependency Graphs. In Proceedings of the 30th
International Conference on Software Engineering (ICSE ’08). 531–540. https:
//doi.org/10.1145/1368088.1368161

https://doi.org/10.1145/581339.581401
https://doi.org/10.1145/581339.581401
https://www.paychex.com/articles/human-resources/employee-retention-what-makes-employees-stay-leave
https://www.paychex.com/articles/human-resources/employee-retention-what-makes-employees-stay-leave
https://doi.org/10.1145/1453101.1453105
https://doi.org/10.1145/581339.581390
https://doi.org/10.1049/ip-sen:20020202
https://doi.org/10.1049/ip-sen:20020202
https://doi.org/10.1145/1295014.1295019
https://doi.org/10.1016/j.infsof.2013.06.002
https://doi.org/10.1145/2441776.2441791
http://dl.acm.org/citation.cfm?id=2487085.2487142
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2635868.2635882
https://doi.org/10.1109/ICSM.2009.5306348
https://doi.org/10.1109/ICSM.2009.5306348
https://doi.org/10.1109/ICSME.2016.87
https://doi.org/10.1145/358916.359004
https://doi.org/10.1109/ICSE.2013.6606653
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1145/1368088.1368161

	Abstract
	1 Introduction
	2 Motivation
	3 Computing Development Value
	3.1 Structural Value: DevRank
	3.2 Non-Structural Value: Impact Coding
	3.3 Combining DevRank and Impact Coding Using L2R

	4 Empirical Findings
	4.1 Developers Judge Their Own Commits by Impact Classification
	4.2 DevRank and Impact Coding Outperform LOC Counting for Predicting Developers' Commit Comparisons
	4.3 The DevRank + Impact Coding Combination Achieves the Best Performance

	5 Discussion
	5.1 Threats to Validity
	5.2 Automated Commit Classification

	6 Future Work
	7 Related Work
	8 Conclusion
	References

