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Abstract

Acquiring Diverse Robot Skills
via Maximum Entropy Deep Reinforcement Learning

by

Tuomas Haarnoja

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Sergey Levine, Chair
Professor Pieter Abbeel, Chair

In this thesis, we study how maximum entropy framework can provide efficient deep rein-
forcement learning (deep RL) algorithms that solve tasks consistently and sample efficiently.
This framework has several intriguing properties. First, the optimal policies are stochastic,
improving exploration and preventing convergence to local optima, particularly when the
objective is multimodal. Second, the entropy term provides regularization, resulting in more
consistent and robust learning when compared to deterministic methods. Third, maximum
entropy policies are composable, that is, two or more policies can be combined, and the
resulting policy can be shown to be approximately optimal for the sum of the constituent
task rewards. And fourth, the view of maximum entropy RL as probabilistic inference pro-
vides a foundation for building hierarchical policies that can solve complex and sparse reward
tasks. In the first part, we will devise new algorithms based on this framework, starting from
soft Q-learning that learns expressive energy-based policies, to soft actor-critic that provides
simplicity and convenience of actor-critic methods, and ending with automatic temperature
adjustment scheme that practically eliminates the need for hyperparameter tuning, which
is a crucial feature for real-world applications where tuning of hyperparameters can be pro-
hibitively expensive. In the second part, we will discuss extensions enabled by the inherent
stochasticity of maximum entropy polices, including compositionality and hierarchical learn-
ing. We will demonstrate the effectiveness of the proposed algorithms on both simulated
and real-world robotic manipulation and locomotion tasks.
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Chapter 1

Introduction

1.1 Deep Reinforcement Learning for Robotics

Deep reinforcement learning (deep RL) has emerged as a promising direction for autonomous
acquisition of complex behaviors (Mnih et al., 2015; Silver et al., 2016), due to its ability
to process complex sensory input (Jaderberg et al., 2017) and to acquire elaborate behav-
ior skills using general-purpose neural network representations (Levine et al., 2016). These
properties make deep RL particularly appealing in the domain of robotic manipulation and
locomotion, where manual controller design can be difficult and highly task and robot spe-
cific. If we can learn to solve the tasks from scratch directly in the real world, we can in
principle acquire controllers that are ideally adapted to each robot and environment, poten-
tially achieving better performance, energy efficiency, and robustness. Deep reinforcement
learning has been used extensively to learn locomotion policies in simulation (Heess et al.,
2017; Xie et al., 2018; Peng et al., 2016; Berseth et al., 2018) and even transfer them to real-
world robots (Tan et al., 2018), but this inevitably incurs some loss of performance due to
discrepancies in the simulation, and requires extensive manual modeling. Attempts to apply
deep reinforcement learning directly in the real world has proven challenging and has been
limited to simple manipulation tasks (Gu et al., 2016; Večeŕık et al., 2017; Mahmood et al.,
2018), locomotion tasks with inherently stable robots (Ha et al., 2018), low-dimensional
parameterizations (Kohl & Stone, 2004; Calandra et al., 2016; Rai et al., 2017), or both
(Tedrake et al., 2005).

Applying end-to-end deep reinforcement learning with general-purpose function approxi-
mators is complicated by two major challenges. The first is the large sample requirements of
many deep reinforcement learning algorithms, which might require tens of thousands of trials
in the real world, and the second, more subtle challenge is the severe sensitivity many of
these methods have to hyperparameters settings (Henderson et al., 2018). In simulation, hy-
perparameters can be tuned in parallel, but in the real world, this requires multiple distinct
training runs, further exacerbating the already severe sample complexity challenges. Many
robotic systems, especially legged robots that can fall and damage themselves, and manipu-
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lators with mechanical gears, simply cannot survive so many repeated trials, especially under
the control of a suboptimal and partially trained policy.

One cause for the poor sample efficiency of deep RL methods is on-policy learning: some
of the most commonly used deep RL algorithms, such as TRPO (Schulman et al., 2015a),
PPO (Schulman et al., 2017b) or A3C (Mnih et al., 2016), require new samples to be collected
for each gradient step. This quickly becomes extravagantly expensive, as the number of gra-
dient steps and samples per step needed to learn an effective policy increases with task com-
plexity. Off-policy algorithms aim to reuse past experience. This is not directly feasible with
conventional policy gradient formulations, but is relatively straightforward for Q-learning
based methods (Mnih et al., 2015). Unfortunately, the combination of off-policy learning
and high-dimensional, nonlinear function approximation with neural networks presents a
major challenge for stability and convergence (Bhatnagar et al., 2009). This challenge is
further exacerbated in continuous state and action spaces, where a separate actor network
is often used to perform the maximization in Q-learning. A commonly used algorithm in
such settings, deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015), provides
for sample-efficient learning but can be challenging to use due to its brittleness and hyper-
parameter sensitivity (Duan et al., 2016; Henderson et al., 2018). In this thesis, we study
how maximum entropy deep RL can help mitigate these problems by enabling algorithms
that are robust against noise in the learning process and variations in the hyperparameters,
and lead to practical extensions that promote reusability of already learned skills.

1.2 Reinforcement Learning with Stochastic Policies

Deep reinforcement learning methods can be used to optimize deterministic (Lillicrap et al.,
2015) and stochastic (Schulman et al., 2015a; Mnih et al., 2016) policies. However, most
deep RL methods operate on the conventional deterministic notion of optimality, where the
optimal solution, at least under full observability, is always a deterministic policy (Sutton
& Barto, 1998). Even though often times we prefer a deterministic policy at convergence, a
stochastic policy is desirable for exploration. This exploration is typically attained heuristi-
cally, for example, by injecting noise (Silver et al., 2014; Lillicrap et al., 2015; Mnih et al.,
2015) or initializing a stochastic policy with high entropy (Kakade, 2002; Schulman et al.,
2015a; Mnih et al., 2016) as opposed to optimizing as part of the objective function and
learning algorithm. In some cases, we might actually prefer to learn stochastic behaviors.
Learning a stochastic policy can lead to structured exploration and can be easily adapted to
new situations (as we discuss in Chapter 3), can help derive better algorithms that exhibit
stable and consistent learning (Chapter 4 and Chapter 5), are composable (Chapter 6), and
provide a foundation for hierarchical reinforcement learning (Chapter 7). However, in order
to learn stochastic policies, we must define an objective that promotes stochasticity.

In which cases is a stochastic policy actually the optimal solution? As discussed in prior
work, a stochastic policy emerges as the optimal answer when we consider the connection be-
tween optimal control and probabilistic inference (Todorov, 2008). While there are multiple
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instantiations of this framework (Kappen, 2005; Todorov, 2007; Ziebart et al., 2008; Neu-
mann, 2011; Rawlik et al., 2012; Fox et al., 2016), they typically include the cost or reward
function as an additional factor in a probabilistic graphical model and infer the conditional
distribution over actions conditioned on states and optimality. The solution can be shown
to optimize an entropy-augmented reinforcement learning objective or to correspond to the
solution to a maximum entropy learning problem (Levine, 2018). Intuitively, framing control
as inference produces policies that aim to capture not only the single deterministic behavior
that has the lowest cost, but the entire range of low-cost behaviors, explicitly maximizing
the entropy of the corresponding policy. Instead of learning the best way to perform the
task, the resulting policies try to learn all of the ways of performing the task. In this the-
sis, we propose sample efficient and robust reinforcement learning algorithms based on this
framework. Our ultimate goal is to devise algorithms that are sufficiently sample efficient
and robust to be applicable to real-world robotic tasks.

1.3 Problem Setting

We address learning of maximum entropy policies in continuous action spaces. Our reinforce-
ment learning problem can be defined as a policy search in an a Markov decision process
(MDP), defined by a tuple (S,A, p, r), where S is the state space and A is the action space;
the state transition probability p : S × S × A → [0, ∞) represents the probability den-
sity of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A; and
r : S ×A → [rmin, rmax] represents the reward function. We use ρπ(τ) to denote the density
over trajectories τ = (s0, a0, s1, ...) induced by a policy π(at|st), and we overload the notation
and use ρπ(st) and ρπ(st, at) to denote the state and state-action marginals, respectively.

Our goal is to learn a policy π(at|st). We can define the standard reinforcement learning
objective in terms of the above quantities as the expected return

∑
t E(st,at)∼ρπ [r(st, at)].

The maximum entropy objective (see e.g. (Ziebart, 2010)) is more general, and it augments
the standard objective with an entropy term, such that the optimal policy aims to maximize
its entropy at each visited state:

π∗ = arg max
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π( · |st))] , (1.1)

where α is the temperature parameter that determines the relative importance of the entropy
term against the reward, and thus controls the stochasticity of the optimal policy. The policy
is incentivized to explore more widely, while giving up on clearly unpromising avenues, and
can capture multiple modes of near-optimal behavior: in problem settings where multiple
actions seem equally attractive, the policy will commit equal probability mass to those
actions. The maximum entropy objective differs from the standard maximum expected
reward objective used in conventional reinforcement learning, but the conventional objective
can be recovered in the limit as α → 0. If we wish to extend either the conventional or
the maximum entropy RL objective to infinite horizon problems, it is convenient to also
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introduce a discount factor γ to ensure that the sum of expected rewards (and entropies)
is finite, but writing down the precise objective that is optimized when using the discount
factor is non-trivial (Thomas, 2014). We defer the definition of the discounted objective to
Appendix A, but we will consider the discounted objective in the following chapters.

1.4 Overview and Contributions

This thesis concludes the research contributions of five previously published papers. The
organization does not strictly follow the order in which the works were published, but instead
some of the material has been rearranged to give the thesis a more coherent structure and
to improve readability. We have split the thesis in two parts. In Part I, we introduce
new algorithms for learning maximum entropy policies, yielding state-of-the-art performance
without the need for exhaustive hyperparameter tuning. In Part II, we discuss extensions
to the maximum entropy framework that can further improve sample complexity by reuse
of skills. Specifically, the main contributions are the following:

Part I

• In Chapter 3, we show how we can extend soft Q-learning, a reinforcement algorithm
that optimizes the maximum entropy objective, to continuous actions. The prior
work (Todorov, 2007; Toussaint, 2009; Rawlik et al., 2012) has considered only dis-
crete action spaces. The optimal policy has an energy-based form, and thus sampling
from it becomes intractable in continuous and large action spaces. Our solution uses
approximate inference based on Stein variational gradient descent (Wang & Liu, 2016)
and can learn expressive behaviors, resulting in multimodal exploration and policies
that can be easily adapted to new environments. We show that soft Q-learning can
successfully acquire real-world manipulation skills for tasks that prior methods fail to
solve. We also present a proof equating soft Q-learning and policy gradients with en-
tropy regularization (concurrently with Schulman et al. (2017a)). The soft Q-learning
algorithm for continuous actions was previously published in (Haarnoja et al., 2017)
and the real-world training results in (Haarnoja et al., 2018b).

• In Chapter 4, we propose a new algorithm, soft actor-critic, for learning maximum
entropy policies restricted to parameterized families of tractable policy distributions.
The main challenge with soft Q-learning is it makes an implicit assumption that the
policy can represent any distribution, and consequently, the optimal policy is energy
based. Use of a tractable policy, for example, Gaussian, would prevent soft Q-learning
from converging to the optimal solution. Soft actor-critic can handle additional opti-
mization constraints while provably converges to the optimal solution from any given
family of distributions. The algorithm yields state-of-the-art performance in simulated
locomotion tasks. This work was presented in (Haarnoja et al., 2018c).
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• In Chapter 5, we propose an automatic temperature adjustment scheme for maxi-
mum entropy RL algorithms. One of the major challenges of maximum entropy RL
is the choice of the right temperature parameter, which is used to balance between
exploration and exploitation. Our approach is to recast the problem as a maximiza-
tion of the expected return subject to a constraint on the expected entropy. We can
show that the dual of the constrained optimization problem is equivalent to learning
a maximum entropy policy with an temperature corresponding to the dual variable.
In comparison to the standard approach, which uses a fixed entropy and anneals it
towards zero in the course of training, our approach constraints the expected entropy
over the visited states, and the learning algorithm can optimally distribute the en-
tropy budget across the visited states. The experimental validation indicates that the
automatic tuning scheme yields results that are on a par with manually tuned, fixed
temperature, and hence effectively eliminates the need for manual tuning. We demon-
strate the effectiveness of the method by learning locomotion policies on a real-world
quadrupedal platform from scratch. This work was conducted at Google Brain in
Mountain View, California as an internship project and a publication is currently in
preparation (Haarnoja et al., 2019).

Part II

• In Chapter 6, we show that maximum entropy policies for a set of tasks can be combined
to form a new policy that is approximately optimal with respect to the constituent
tasks. We derive a bound for the suboptimality of such policies, and demonstrate
compositionality in both simulated and real-world manipulation tasks. Prior work has
considered the “or” compositionality (Todorov, 2009), where the optimal strategy is to
choose the action based on the most rewarding task (i.e. solve only the easiest task).
On the contrary, we consider the “and” compositionality, where the solution is to act
optimally with respect to both tasks at the same time. This kind of compositionality is
common in robotics, where the end goal can typically be expressed as a sum of multiple
rewards, corresponding to, for example, avoidance of an obstacle and reaching a target
object. This work was previously published in (Haarnoja et al., 2018b).

• In Chapter 7, we extend the probablistic view of maximum entropy reinforcement
learning to hierarchical policies. Specifically, maximum entropy policy can be viewed
as an action distribution conditioned on a state and optimality variables. We addi-
tionally condition the policy on a latent variable. If we augment the graphical model
with a learned policy, we can view the latent as a new input to the system, and infer
the optimal latent analogously to the actions. This procedure can be repeated arbi-
trarily many times, leading to a sequence of latents, which—if viewed as intermediate
actions—correspond to a hierarchical multi-level policy. We represent the latent space
policies using normalizing flows (Dinh et al., 2016), which have been previously used
for generative modeling of images. We demonstrate hierarchical learning on a sim-
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ulated sparse navigation task, and the results indicate substantial improvement over
prior methods in terms of sample complexity. This work was previously presented in
(Haarnoja et al., 2018a).

Finally, in Chapter 8, we conclude and discuss potential avenues for the future research.
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Chapter 2

Related Work

2.1 Maximum Entropy Reinforcement Learning

Maximum entropy policies emerge as the solution when we cast optimal control as proba-
bilistic inference. In the case of linear-quadratic systems, the mean of the maximum entropy
policy is exactly the optimal deterministic policy (Todorov, 2008), which has been exploited
to construct practical path planning methods based on iterative linearization and probabilis-
tic inference techniques (Toussaint, 2009). In discrete state spaces, the maximum entropy
policy can be obtained exactly. This has been explored in the context of linearly solvable
MDPs (Todorov, 2007) and, in the case of inverse reinforcement learning (MaxEnt IRL)
(Ziebart et al., 2008). In continuous systems and continuous time, path integral control
studies maximum entropy policies and maximum entropy planning (Kappen, 2005) and re-
cently proposed path consistency learning learns a Gaussian policy by minimizing the soft
Bellman consistency (Nachum et al., 2017, 2018). In contrast to these prior methods, this the-
sis focuses on extending the maximum entropy policy search framework to high-dimensional
continuous spaces and highly multimodal objectives.

A number of related methods have also used maximum entropy policy optimization as an
intermediate step for optimizing policies under a standard expected reward objective (Peters
et al., 2010; Neumann, 2011; Rawlik et al., 2012; Fox et al., 2016). Among these, the work
of Rawlik et al. (2012) resembles ours in that it also makes use of a temporal difference
style update to a soft Q-function. However, unlike this prior work, soft Q-learning (SQL)
uses general-purpose energy functions and approximate sampling, rather than analytically
normalizable distributions. A recent work (Liu et al., 2017) also considers an entropy regu-
larized objective, though the entropy is on policy parameters, not on sampled actions. Thus
the resulting policy may not represent an arbitrarily complex multimodal distribution with
a single parameter. The form of our sampler resembles the stochastic networks proposed in
recent work on hierarchical learning (Florensa et al., 2017). However this prior work uses a
task-specific reward bonus system to encourage stochastic behavior, while our approach is
derived from optimizing a general maximum entropy objective.
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A closely related concept to maximum entropy policies is Boltzmann exploration, which
uses the exponential of the standard Q-function as the probability of an action (Kaelbling
et al., 1996). A number of prior works have also explored representing policies as energy-
based models, with the Q-value obtained from an energy model such as a restricted Boltz-
mann machine (RBM) (Sallans & Hinton, 2004; Elfwing et al., 2010; Otsuka et al., 2010;
Heess et al., 2013). Although these methods are closely related, they have not, to our knowl-
edge, been extended to the case of deep network models, have not made extensive use of
approximate inference techniques, and have not been demonstrated on the complex contin-
uous tasks. More recently, O’Donoghue et al. (2016) drew a connection between Boltzmann
exploration and entropy-regularized policy gradient, though in a theoretical framework that
differs from maximum entropy policy search: unlike the full maximum entropy framework,
the approach of O’Donoghue et al. (2016) only optimizes for maximizing entropy at the cur-
rent time step, rather than planning for visiting future states where entropy will be further
maximized.

2.2 Actor Critic Methods

Our soft actor-critic (SAC) algorithm incorporates three key ingredients: an actor-critic ar-
chitecture with separate policy and Q-value networks, an off-policy formulation that enables
reuse of previously collected data for efficiency, and entropy maximization to enable stability
and exploration. Actor-critic algorithms are typically derived starting from policy iteration,
which alternates between policy evaluation—computing the value function for a policy—
and policy improvement—using the value function to obtain a better policy (Barto et al.,
1983; Sutton & Barto, 1998). In large-scale reinforcement learning problems, it is typically
impractical to run either of these steps to convergence, and instead the value function and
policy are optimized jointly. In this case, the policy is referred to as the actor, and the value
function as the critic. Many actor-critic algorithms build on the standard, on-policy policy
gradient formulation to update the actor (Peters & Schaal, 2008), and many of them also
consider the entropy of the policy, but instead of maximizing the entropy, they use it as an
regularizer (Schulman et al., 2017b, 2015a; Mnih et al., 2016; Gruslys et al., 2017). On-policy
training tends to improve stability but results in poor sample complexity.

There have been efforts to increase the sample efficiency while retaining robustness
by incorporating off-policy samples and by using higher order variance reduction tech-
niques (O’Donoghue et al., 2016; Gu et al., 2017). However, fully off-policy algorithms
still attain better efficiency. A particularly popular off-policy actor-critic method, deep de-
terministic policy gradient (DDPG) (Lillicrap et al., 2015), which is a deep variant of the
deterministic policy gradient (Silver et al., 2014) algorithm, uses a Q-function estimator to
enable off-policy learning, and a deterministic actor that maximizes this Q-function. As such,
this method can be viewed both as a deterministic actor-critic algorithm and an approximate
Q-learning algorithm. Unfortunately, the interplay between the deterministic actor network
and the Q-function typically makes DDPG difficult to stabilize and brittle to hyperparam-
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eter settings (Duan et al., 2016; Henderson et al., 2018). As a consequence, it is difficult to
extend DDPG to complex, high-dimensional tasks, and on-policy policy gradient methods
still tend to produce the best results in such settings (Gu et al., 2017). Soft actor-critic
instead combines off-policy actor-critic training with a stochastic actor, and further aims to
maximize the entropy of this actor with an entropy maximization objective. We find that
this actually results in a considerably more stable and scalable algorithm that, in practice,
exceeds both the efficiency and final performance of DDPG. A similar method can be derived
as a zero-step special case of stochastic value gradients (SVG(0)) (Heess et al., 2015). How-
ever, SVG(0) differs from our method in that it optimizes the standard maximum expected
return objective.

Recently, several papers have noted the connection between Q-learning and policy gra-
dient methods in the framework of maximum entropy learning (O’Donoghue et al., 2016;
Haarnoja et al., 2017; Nachum et al., 2017; Schulman et al., 2017a). While most of the
prior model-free works assume a discrete action space, Nachum et al. (2018) approximate
the maximum entropy distribution with a Gaussian and soft Q-learning (Chapter 3) with
a sampling network trained to draw samples from the optimal policy. Although soft Q-
learning has a Q-function and an actor network, it is not a true actor-critic algorithm: the
Q-function is estimating the optimal soft Q-function, and the actor does not directly affect
the soft Q-function except through the data distribution. Hence, the actor is motivated as
an approximate sampler, rather than the actor in an actor-critic algorithm. Crucially, the
convergence of this method hinges on how well this sampler approximates the true posterior.
In contrast, we prove that soft actor-critic converges to the optimal policy from a given policy
class, regardless of the policy parameterization. Furthermore, these prior maximum entropy
methods generally do not exceed the performance of state-of-the-art off-policy algorithms,
such as DDPG, when learning from scratch, though they may have other benefits, such as
improved exploration and ease of fine-tuning as we show in Chapter 3. In our experiments,
we demonstrate that our soft actor-critic algorithm does in fact exceed the performance of
prior state-of-the-art off-policy deep RL methods.

2.3 Reinforcement Learning in the Real-World

One of the crucial choices in applying RL for robotic manipulation is the choice of rep-
resentation. Policies based on dynamic movement primitives and other trajectory-centric
representations, such as splines, have been particularly popular, due to the ease of incor-
porating demonstrations, stability, and relatively low dimensionality (Ijspeert et al., 2003,
2013; Peters & Schaal, 2006, 2008). However, trajectory-centric policies are limited in their
expressive power, particularly when it comes to integrating rich sensory information and
reacting continuously to the environment. For this reason, recent works have sought to ex-
plore more expressive representations, including deep neural networks, at the cost of higher
sample complexity.

A number of prior works have sought to address the increased sample complexity by
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employing model-based methods. For example, guided policy search (Levine et al., 2016)
learns a model-based teacher that supervises the training of a deep policy network. Other
works leverage simulation: Ghadirzadeh et al. (2017) considers vision-based manipulation by
training perception and behavior networks in simulation and learns only a low-dimensional
intermediate layer with real-world interaction. Some works learn vision-based policies com-
pletely in simulation and then transfers them into real world (Zhang et al., 2015; Sadeghi &
Levine, 2017; Tobin et al., 2017; Andrychowicz et al., 2017). For this approach to work, the
simulator needs to model the system accurately and there needs to be significant variation
in the appearance of the synthetic images in order to handle the unavoidable domain-shift
between the simulation and the real-world (Sadeghi & Levine, 2017; Tobin et al., 2017; James
et al., 2017; Bateux et al., 2017). Another common approach to make reinforcement learn-
ing algorithms more sample efficient is to learn from demonstrations (Guenter et al., 2007;
Pastor et al., 2009; Theodorou et al., 2010; Večeŕık et al., 2017), but this comes at the cost
of additional instrumentation and human supervision.

Perhaps the most closely related recent work that aims to apply model-free deep RL
algorithms to real-world robotic manipulation include the work by Gu et al. (2016) who used
normalized advantage functions (NAF) to learn door opening and reaching by parallelizing
across multiple real-world robots, and Večeŕık et al. (2017) who extended DDPG to real-
world robotic manipulation by including example demonstrations. Our experiments show
that soft Q-learning (SQL) can learn real-world manipulation more proficiently and with
fewer samples than methods such as DDPG and NAF, without requiring demonstrations,
simulated experience, or additional supervision.

2.4 Composable Reinforcement Learning

Prior works (Todorov, 2007, 2008) have studied composition in the context of soft optimality,
but typically in a different framework: instead of considering composition where the reward
functions of constituent skills are added (i.e., do X and Y), they considered settings where
a soft maximum (“log-sum-exp”) over the reward functions is used as the reward for the
composite skill (i.e., do X or Y). We argue that the former is substantially more useful than
the latter for robotic skills, since it allows us to decompose a task into multiple objectives
that all need to be satisfied.

2.5 Hierarchical Reinforcement Learning

A number of prior works have explored how reinforcement learning can be cast in the frame-
work of probabilistic inference (Kappen, 2005; Todorov, 2007; Ziebart et al., 2008; Toussaint,
2009; Peters et al., 2010; Neumann, 2011). The approach we take in Chapter 7 is based on a
formulation of reinforcement learning as inference in a graphical model (Ziebart et al., 2008;
Toussaint, 2009; Levine, 2014). Building on this graphical model interpretation of reinforce-
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ment learning also makes it natural for us to augment the policy with latent variables. While
several prior works have sought to combine maximum entropy policies with learning of latent
spaces (Haarnoja et al., 2017; Hausman et al., 2018) and even with learning hierarchies in
small state spaces (Saxe et al., 2017), to our knowledge, our method is the first to extend
this mechanism to the setting of learning hierarchical policies with deep RL in continuous
domains.

Prior frameworks for hierarchical learning are often based on either options or contextual
policies. The options framework (Sutton et al., 1999) combines low-level option policies
with a top-level policy that invokes individual options, whereas contextual policies (Kupcsik
et al., 2013; Schaul et al., 2015; Heess et al., 2016) generalize options to continuous goals.
One of the open questions in both options and contextual policy frameworks is how the
base policies should be acquired. In some situations, a reasonable solution is to resort to
domain knowledge and design a span of subgoals manually (Heess et al., 2016; Kulkarni
et al., 2016; MacAlpine & Stone, 2018). Another option is to train the entire hierarchy end-
to-end (Bacon et al., 2017; Vezhnevets et al., 2017; Daniel et al., 2012). While the end-to-end
training scheme provides generality and flexibility, it is prone to learning degenerate policies
that exclusively use a single option, losing much of the benefit of the hierarchical structure
(Bacon et al., 2017). To that end, the option-critic (Bacon et al., 2017) adopts a standard
entropy regularization scheme ubiquitous in policy gradient methods (Mnih et al., 2016;
Schulman et al., 2015a), Florensa et al. propose maximizing the mutual information of the
top-level actions and the state distribution, and Daniel et al. bound the mutual information
of the actions and top-level actions. Our method also uses entropy maximization to obtain
diverse base policies, but in contrast to prior methods, our sub-policies are invertible and
parameterized by continuous latent variables. The higher levels can thus undo any lower
level transformation, and the lower layers can learn independently, allowing us to train the
hierarchies in bottom-up layerwise fashion. Unlike prior methods, which use structurally
distinct higher and lower layers, all layers in our hierarchies are structurally generic, and are
trained with exactly the same procedure.
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Part I

Algorithms
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Chapter 3

Soft Q-Learning

In this chapter, we first describe a value-based approach to maximum entropy RL. We then
propose a method for learning expressive energy-based policies for continuous states and
actions, resulting into a new soft Q-learning (SQL) algorithm that expresses the optimal
policy via a Boltzmann distribution. We use the recently proposed amortized Stein varia-
tional gradient descent to learn a stochastic sampling network that approximates samples
from this distribution. The benefits of the proposed algorithm include improved exploration
and better transferability of skills between tasks, which we confirm in simulated experiments
with swimming and walking robots. We also demonstrate how soft Q-learning can solve
real-world robotic tasks from scratch more efficiently than the prior methods and that the
resulting policies are surprisingly robust to perturbations.

3.1 Overview

Solving maximum entropy stochastic policy learning problems in the general case is chal-
lenging. A number of methods have been proposed, including Z-learning (Todorov, 2007),
maximum entropy inverse RL (Ziebart et al., 2008), approximate inference using message
passing (Toussaint, 2009), Ψ-learning (Rawlik et al., 2012), and G-learning (Fox et al., 2016),
as well as more recent proposals in deep RL such as PGQ (O’Donoghue et al., 2016) and
path consistency learning (Nachum et al., 2017), but these generally operate either on sim-
ple tabular representations, which are difficult to apply to continuous or high-dimensional
domains, or employ a simple parametric representation of the policy distribution, such as
a conditional Gaussian. Therefore, although the policy is optimized to perform the desired
skill in many different ways, the resulting distribution is typically very limited in terms of
its representational power, even if the parameters of that distribution are represented by an
expressive function approximator, such as a neural network. In our method, we formulate
a stochastic policy as a (conditional) energy-based model (EBM), with the energy function
corresponding to the “soft” Q-function obtained when optimizing the maximum entropy ob-
jective. In high-dimensional continuous spaces, sampling from this policy, just as with any
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Figure 3.1: We trained a Sawyer robot to stack Lego blocks
together using maximum entropy reinforcement learning
algorithm called soft Q-learning. Training a policy from
scratch takes less than two hours, and the learned policy is
extremely robust against perturbations.

general EBM, becomes intractable. To that end, we borrow from the recent literature on
EBMs to devise an approximate sampling procedure based on training a separate sampling
network, which is optimized to produce unbiased samples from the policy EBM.

The principal contribution of this chapter is a tractable, efficient algorithm for optimiz-
ing arbitrary multimodal stochastic policies represented by energy-based models. In our
experimental evaluation, we explore three potential applications of our approach. First, we
demonstrate improved exploration performance in tasks with multimodal objectives, where
conventional deterministic or unimodal methods are at high risk of falling into suboptimal
local optima. Second, we explore how our method can be used to transfer skill from underde-
fined tasks to more specific tasks by showing that stochastic energy-based policies can serve
as a much better initialization for learning new skills than either random policies or poli-
cies pretrained with conventional maximum reward objectives. Third, we demonstrate that
soft Q-learning can be used to acquire real-world robot skills more efficiently than the prior
methods, and that the resulting policies are extremely robust to perturbations (Figure 3.1).

3.2 Soft Value Functions and Energy Based-Models

In this section, we present a few useful identities that we will build on in our algorithm.
Optimizing the maximum entropy objective in Equation 1.1 (more precisely, the discounted
infinite horizon objective in Equation A.1) provides us with a framework for training stochas-
tic policies, but we must still choose a representation for these policies. The choices in prior
work include discrete multinomial distributions (O’Donoghue et al., 2016) and Gaussian
distributions (Rawlik et al., 2012). However, if we want to use a very general class of dis-
tributions that can represent complex, multimodal behaviors, we can instead opt for using
general energy-based policies of the form

π(at|st) ∝ exp (−E(st, at)) , (3.1)

where E is an energy function that could be represented, for example, by a deep neural
network. If we use a universal function approximator for E , we can represent any distribution



CHAPTER 3. SOFT Q-LEARNING 15

π(at|st). There is a close connection between such energy-based models and soft versions of
value functions and Q-functions, where we set E(st, at) = − 1

α
Q(st, at) and use the following

lemma:

Lemma 1. Let the soft Q-function be defined by

Q∗(st, at) = r(st, at) + Eτ∼ρπ∗

[
∞∑
l=1

γl (r(st+1, at+1)− α log (π∗(at+l|st+l)))
∣∣∣∣st, at

]
, (3.2)

and the soft value function by

V ∗(st) = α log

∫
A

exp

(
1

α
Q∗(st, a

′)

)
da′. (3.3)

Then the optimal infinite horizon, maximum entropy policy is given by

π∗(at|st) = exp

(
1

α
(Q∗(st, at)− V ∗(st))

)
. (3.4)

Proof. See Appendix B.1 as well as (Ziebart, 2010).

Lemma 1 connects the maximum entropy objective in and energy-based models, where
1
α
Q(st, at) acts as the negative energy, and 1

α
V (st) serves as the log-partition function. As

with the standard Q-function and value function, we can relate the soft Q-function to the
soft value function at a future state via the soft Bellman equation:

Lemma 2. The soft Q-function in Equation 3.2 satisfies the soft Bellman equation

Q∗(st, at) = r(st, at) + γ Est+1∼p [V ∗(st+1)] , (3.5)

where the soft value function V ∗ is given by Equation 3.3.

Proof. See Appendix B.1, as well as (Ziebart, 2010).

The soft Bellman equation is a generalization of the conventional (hard) equation, and
we can recover the more standard equation as α→ 0, which causes Equation 3.3 to approach
the hard maximum over the actions. In the next section, we discuss how we can use these
identities to derive a Q-learning style algorithm for learning maximum entropy policies,
and how we can make this practical for arbitrary soft Q-function representations via an
approximate inference procedure.
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3.3 Training Expressive Energy-Based Models via

Soft Q-Learning

In this section, we present our proposed reinforcement learning algorithm, which is based
on the soft Q-function described in the previous section, but can be implemented via a
tractable stochastic gradient descent procedure with approximate sampling. We first describe
the general case of soft Q-learning, and then present the inference procedure that makes it
tractable to use with deep neural network representations in high-dimensional continuous
state and action spaces.

Soft Q-Iteration

We can obtain a solution to Equation 3.5 by iteratively updating estimates of V ∗ and Q∗.
This leads to a fixed-point iteration that resembles Q-iteration:

Theorem 1. Soft Q-iteration. Let Q and V be bounded and
∫
A exp( 1

α
Q(st, a

′))da′ <∞, ∀st ∈
S, and assume that Q∗ <∞ exists. Then the fixed-point iteration

Q(st, at)← r(st, at) + γ Est+1∼p [V (st+1)] , ∀st, at (3.6)

V (st)← α log

(∫
A

exp

(
1

α
Q(st, a

′)

)
da′
)
, ∀st (3.7)

converges to Q∗ and V ∗, respectively.

Proof. See Appendix B.1 as well as (Fox et al., 2016).

We refer to the updates in Equation 3.6 and Equation 3.7 as the soft Bellman backup
operation that acts on the soft value function, and denote it by T . The maximum entropy
policy in Equation 3.4 can be recovered by iteratively applying this operator until conver-
gence. However, there are several practicalities that need to be considered in order to make
use of the algorithm. First, the soft Bellman backup cannot be performed exactly in contin-
uous or large state and action spaces, and second, sampling from the energy-based model in
Equation 3.4 is intractable in general. We address these challenges next.

Soft Q-Learning

This section discusses how the soft Bellman backup in Theorem 1 can be implemented in
a practical algorithm that uses a finite set of samples from the environment, resulting in a
method similar to Q-learning. We can show that the soft Bellman backup is a contraction
(see Appendix B.1), and thus the optimal value function is the fixed point of the soft Bellman
backup, and we can find it by optimizing for a soft Q-function for which the soft Bellman
error |T Q−Q| is minimized at all states and actions. While this procedure is still intractable
due to the integral in Equation 3.7 and the infinite set of all states and actions, we can express
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it as a stochastic optimization problem, which leads to a stochastic gradient descent update
procedure. We model the soft Q-function with a function approximator with parameters θ
and denote it as Qθ(st, at).

To convert Theorem 1 into a stochastic optimization problem, we first express the soft
value function in terms of an expectation via importance sampling:

Vθ(st) = α logEqa′

[
exp

(
1
α
Qθ(st, a

′)
)

qa′(a′)

]
, (3.8)

where qa′ is an arbitrary, non-zero distribution over the action space. Second, by noting
the identity g1(x) = g2(x) ∀x ∈ X ⇔ Ex∼q [(g1(x)− g2(x))2] = 0, where q is any strictly
positive density function on X, we can express soft Q-iteration in an equivalent form of the
minimization of

JQ(θ) = Est∼qs,at∼qa

[
1

2

(
Qθ(st, at)−

(
r(st, at) + γ Est+1∼p [Vθ̄(st+1)]

))2
]
, (3.9)

where qs, qa are positive densities over S and A, respectively, and Vθ̄(st+1) is a target value
function given by Equation 3.8 and θ being replaced by the target parameters θ̄. This
stochastic optimization problem can be solved approximately using stochastic gradient de-
scent and tuples (st, at, st+1) sampled from a pool of observed transitions. An ideal choice
for For qa′ would be the current policy, which would produce an unbiased estimate of the
soft value as can be confirmed by substitution. However, our approach is to use an implicit
density model for the policy, which does not allow computing the action probabilities re-
quired in Equation 3.8, and thus we choose to use uniform samples instead. Even though
uniform sampling does not scale well to higher dimensional spaces, actions are typically rel-
atively low-dimensional, and we found uniform sampling work well in practice. This overall
procedure yields an iterative approach that optimizes over the Q-values. We also need a
way to sample from the policy π(at|st) ∝ exp

(
1
α
Qθ(st, at)

)
. Since the form of the policy is

so general, sampling from it is intractable. We will therefore use an approximate sampling
procedure, as discussed in the following section.

Approximate Sampling and Stein Variational Gradient Descent

Existing approaches that sample from energy-based distributions generally fall into one of two
categories: methods that use Markov chain Monte Carlo (MCMC) based sampling (Sallans
& Hinton, 2004), and methods that learn a stochastic sampling network trained to output
approximate samples from the target distribution (Zhao et al., 2016; Kim & Bengio, 2016).
Since sampling via MCMC is not tractable when the inference must be performed online
(e.g. when executing a policy), we will use a sampling network based on Stein variational
gradient descent (SVGD) (Liu & Wang, 2016) and amortized SVGD (Wang & Liu, 2016).
Amortized SVGD provides us with a stochastic sampling network that we can query for fast
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sample generation, and it can be shown to converge to an accurate estimate of the posterior
distribution of an EBM.

Formally, we want to learn a state-conditioned stochastic neural network at = fφ(ξ; st),
parameterized by φ, that maps noise samples ξ drawn from a spherical Gaussian, or other
arbitrary distribution, into unbiased action samples from the target EBM corresponding to
Qθ. We denote the induced distribution of the actions as πφ(at|st), and we want to find
parameters φ so that the induced distribution approximates the energy-based distribution
in terms of the KL divergence

Jπ(φ; st) = DKL

(
πφ( · |st)

∥∥∥∥ exp

(
1

α
(Qθ(st, · )− Vθ(st))

))
. (3.10)

Suppose we have a set of independent, state conditioned action samples {a(i)
t = fφ(ξ(i); st)},

given by the sampling network, and we “perturb” them in some directions ∆fφ(ξ(i); st), then
the KL divergence induced by the samples can be reduced. Stein variational gradient descent
(Liu & Wang, 2016) provides the most greedy directions as a functional

∆fφ( · ; st) = Eat∼πφ

[
κ(at, fφ( · ; st))∇a′Qθ(st, a

′)
∣∣
a′=at

+ α ∇a′κ(a′, fφ( · ; st))
∣∣
a′=at

]
, (3.11)

where κ is a kernel function (typically a Gaussian, see details in Appendix C.1). To be
precise, ∆fφ is the optimal direction in the reproducing kernel Hilbert space of κ, and is
thus not strictly speaking the gradient of Equation 3.10, but it turns out that we can set
∂Jπ
∂at
∝ ∆fφ as explained in (Wang & Liu, 2016). With this assumption, we can use the chain

rule and backpropagate the Stein variational gradient into the policy network according to

∂Jπ(φ; st)

∂φ
∝ Eξ

[
∆fφ(ξ; st)

∂fφ(ξ; st)

∂φ

]
, (3.12)

and use any gradient-based optimization method to learn the optimal sampling network
parameters.

Algorithm Summary

To summarize, we propose the soft Q-learning algorithm for learning maximum entropy
policies in continuous domains (Algorithm 1). The algorithm proceeds by alternating be-
tween collecting new experience from the environment and updating the soft Q-function
and sampling network parameters. The experience is stored in a replay memory buffer D
as standard in deep Q-learning (Mnih et al., 2013), and the parameters are updated using
random minibatches from this memory. The soft Q-function updates use a delayed version
of the target values (Mnih et al., 2015). For optimization, we use the ADAM (Kingma & Ba,
2015) optimizer and empirical estimates of the gradients, which we denote by ∇̂. We have
additionally included an exact formula for the empirical gradient of the policy parameters
and other implementation details in Appendix C.1.
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Algorithm 1 Soft Q-learning

Input: θ, φ . Initial parameters
θ̄ ← θ, φ̄← φ . Assign target parameters
D ← ∅ . Initialize empty replay buffer
for each epoch do

for each t do
Collect experience
at ← fφ(ξ; st) where ξ ∼ N (0, I) . Sample an action for st using fφ

st+1 ∼ p(st+1|st, at) . Sample next state from the environment
D ← D ∪ {(st, at, r(st, at), st+1)} . Save the transition in the replay memory

Update soft Q-function parameters
{(s(i)

t , a
(i)
t , r

(i)
t , s

(i)
t+1)}Ni=0 ∼ D . Sample a minibatch from the replay memory

{a(i,j)}Mj=0 ∼ qa′ . Sample M uniform actions for each s
(i)
t+1

v(i) ← V̂θ̄(s
(i)
t+1) . Compute empirical soft values with Equation 3.8

g
(i)
θ ← ∇̂θJQ . Compute empirical gradient of Equation 3.9

θ ← ADAM(θ,g
(i)
θ ) . Update θ using ADAM and stochastic gradients

Update policy
{ξ(i,j)}Mj=0 ∼ N (0, I) . Sample M latents for each state

a
(i,j)
t ← fφ(ξ(i,j), s

(i)
t ) . Evaluate actions

δa
(i,j)
t ← ∆fφ . Evaluate empirical Stein variational gradient using Equation 3.11

g
(i)
φ ← ∇̂φJπ . Compute empirical estimate of Equation 3.12

φ← ADAM(φ,g
(i)
φ ) . Update policy parameters using ADAM

end for
if epoch mod update interval = 0 then

θ̄ ← θ, φ̄← φ . Update target parameters
end if

end for
Output: θ, φ . Optimized parameters

3.4 Experiments

Our experiments aim to answer the following questions: (1) Does our soft Q-learning al-
gorithm accurately capture a multimodal policy distribution? (2) Can soft Q-learning with
energy-based policies aid exploration for complex tasks that require tracking multiple modes?
(3) Can a maximum entropy policy serve as a good initialization for fine-tuning on differ-
ent tasks, when compared to pretraining with a standard deterministic objective? (4) Can
soft Q-learning be used to learn policies on real-world robotic platforms. We compare our
algorithm to DDPG (Lillicrap et al., 2015), which has been shown to achieve better sample
efficiency on the continuous control problems than other recent techniques such as REIN-
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Figure 3.2: Illustration of the 2D multi-goal
environment. Left: trajectories from a policy
learned with our method (solid blue lines).
The x and y axes correspond to 2D positions
(states). The agent is initialized at the ori-
gin. The goals are depicted as red dots, and
the level curves show the reward. Right: Q-
values at three selected states, depicted by
level curves (red: high values, blue: low val-
ues). The x and y axes correspond to 2D
velocity (actions), which is bounded between
±1. Actions sampled from the policy are
shown as blue stars. Note that, in regions
(e.g. (2.5, 2.5)) between the goals, the method
chooses multimodal actions.

FORCE (Williams, 1992), TRPO (Schulman et al., 2015a), and A3C (Mnih et al., 2016),
which are policy gradient methods and cannot thus make use of off-policy data. The detailed
experimental setup can be found in Appendix C.1. Videos of the simulated experiments1,
real-world experiments2, and example source code3 are available online.

Didactic Example: Multi-Goal Environment

In order to verify that amortized SVGD can correctly draw samples from energy-based
policies of the form exp (Qθ(st, at)), and that our complete algorithm can successful learn
to represent multimodal behavior, we designed a simple “multi-goal” environment, in which
the agent is a 2D point trying to reach one of four symmetrically placed goals. The reward
is defined as a mixture of Gaussians, with means placed at the goal positions. An optimal
strategy is to go to an arbitrary goal, and the optimal maximum entropy policy should be
able to choose each of the four goals at random. The final policy obtained with our method is
illustrated in Figure 3.2. The soft Q-function (the small figures on the right) is a non-trivial
function of the state and action, being unimodal at s = (−2, 0), convex at s = (0, 0), and
bimodal at s = (2.5, 2.5). The stochastic policy samples actions closely following the energy
landscape, hence representing diverse trajectories that lead to all four goals. In comparison,
a policy trained with DDPG randomly commits to a single goal.

1https://sites.google.com/view/softqlearning/home/
2https://sites.google.com/view/composing-real-world-policies/
3https://github.com/haarnoja/softqlearning/

https://sites.google.com/view/softqlearning/home
https://sites.google.com/view/composing-real-world-policies/
https://github.com/haarnoja/softqlearning


CHAPTER 3. SOFT Q-LEARNING 21

(a) Swimming snake (b) Quadrupedal robot

Figure 3.3: Simulated robots used in our experiments.

Learning Multimodal Policies for Exploration

Though not all environments have a clear multimodal reward landscape as in the multi-
goal example, multimodality is prevalent in a variety of tasks. For example, a chess player
might try various strategies before settling on one that seems most effective, and an agent
navigating a maze may need to try various paths before finding the exit. During the learning
process, it is often best to keep trying multiple available options until the agent is confident
that one of them is the best (similar to a bandit problem (Lai & Robbins, 1985)). However,
deep RL algorithms for continuous control typically use unimodal action distributions, which
are not well suited to capture such multimodality. As a consequence, such algorithms may
prematurely commit to one mode and converge to suboptimal behavior.

To evaluate how maximum entropy policies might aid exploration, we constructed simu-
lated continuous control environments where tracking multiple modes is important for suc-
cess. The first experiment uses a simulated swimming snake shown in Figure 3.3a, which
receives a reward equal to its speed along the x-axis, either forward or backward. However,
once the swimmer swims far enough forward, it crosses a “finish line” and receives a larger
reward. Therefore, the best learning strategy is to explore in both directions until the bonus
reward is discovered, and then commit to swimming forward. As illustrated in Figure 3.4 and
Figure 3.5a, our method is able to recover this strategy, keeping track of both modes until
the finish line is discovered. All stochastic policies eventually commit to swimming forward.
On the other hand, DDPG commits to an arbitrary mode prematurely, with only 80% of the
policies converging on a forward motion and 20% choosing the suboptimal backward mode.

The second experiment studies a more complex task with a continuous range of equally
good options prior to discovery of a sparse reward goal. In this task, a quadrupedal 3D robot
(adapted from Schulman et al. (2015b)) needs to find a path through a maze to a target
position (Figure 3.3). The reward function is a Gaussian centered at the target. The agent
may choose either the upper or lower passage, which appear identical at first, but the upper
passage is blocked by a barrier. Similarly to the swimmer experiment, the optimal strategy
requires exploring both directions and choosing the better one. Figure 3.5b compares the
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(a) DDPG (b) Soft Q-Learning

Figure 3.4: Forward swimming distance achieved by each policy. Each row is a policy with
a unique random seed. Horizontal axis corresponds to the training iteration, and vertical
axis to the x-coordinate of the agent’s center of mass. When the agent passes the “finish
line” shown in red, it receives a large positive reward. The blue shaded region shows the
maximum and minimum distance travelled of the evaluation rollouts, and they are all equal
for DDPG policy, which is deterministic, and different for soft Q-learning policy, which is
stochastic. Our method is able to explore both directions before the policy commits to the
better one.

performance of DDPG and our method. The curves show the minimum distance to the target
achieved so far and the threshold equals the minimum possible distance if the robot chooses
the upper passage. Therefore, successful exploration means reaching below the threshold.
All policies trained with our method manage to succeed, while only 60% policies trained
with DDPG converge to choosing the lower passage.

Accelerating Training on Complex Tasks with Pretrained
Maximum Entropy Policies

A standard way to accelerate deep neural network training is task-specific initialization
(Goodfellow et al., 2016), where a network trained for one task is used as initialization for
another task. The first task might be something highly general, such as classifying a large
image dataset, while the second task might be more specific, such as fine-grained classification
with a small dataset. Pretraining has also been explored in the context of RL (Shelhamer
et al., 2016). However in RL, optimal policies are often deterministic, which makes them
poor initializers for new tasks. In this section, we explore how our energy-based policies
can be trained with fairly broad objectives to produce a good initializer for learning more
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SQL

(a) Swimmer (higher is better)

SQL

(b) Quadruped (lower is better)

Figure 3.5: Comparison of soft Q-learning (SQL) and DDPG on the swimmer snake task
and the quadrupedal robot maze task. (a) Shows the maximum traveled forward distance
since the beginning of training for several runs of each algorithm; there is a large reward
after crossing the finish line. (b) Shows our method was able to reach a low distance to the
goal faster and more consistently. The different lines show the minimum distance to the goal
since the beginning of training. For both domains, all runs of our method cross the threshold
line, acquiring the more optimal strategy, while some runs of DDPG do not.

specific tasks.
We demonstrate this on a variant of the quadrupedal robot task. The pretraining phase

involves learning to locomote in an arbitrary direction, with a reward that simply equals
the speed of the center of mass. The resulting policy moves the agent quickly to an random
direction as shown in Figure 3.6. This pretraining is similar in some ways to recent work on
modulated controllers (Heess et al., 2016) and hierarchical models (Florensa et al., 2017).
However, in contrast to these prior works, we do not require any task-specific high-level
goal generator or reward. Figure 3.7 shows a variety of test environments that we used to
fine-tune the pretrained policy for a specific task. In the hallway environments, the reward
function is the same as in the pretraining phase, but the walls block sideways motion, so
the optimal solution is to run in a particular direction. Narrow hallways require choosing
a more specific direction, but also allow the agent to use the walls to funnel itself forward.
The U-shaped maze requires the agent to learn a curved trajectory in order to arrive at the
target, with the reward given by a Gaussian bump at the target location.

The pretrained policy explores the space extensively and in all directions. This gives a
good initialization for the policy, allowing it to learn the behaviors in the test environments
more quickly than training a policy with DDPG from a random initialization, as shown in
Figure 3.8. We also evaluated an alternative pretraining method based on deterministic
policies learned with DDPG. However, deterministic pretraining chooses an arbitrary but
consistent direction in the training environment, providing a poor initialization for fine-
tuning to a specific task.



CHAPTER 3. SOFT Q-LEARNING 24

Figure 3.6: The figure shows rollouts of a policy that is
pretrained to maximize the speed of a quadrupedal robot.
Each path corresponds to one trajectory from the single
stochastic policy trained with soft Q-learning. Figure D.1
in Appendix D.1 shows more examples of policies trained
with varying temperature coefficients α.

(a) (b) (c) (d)

Figure 3.7: Quadrupedal robot (a) was trained to walk in random directions in an empty
pretraining environment and then fine-tuned on a variety of tasks, including a wide (b),
narrow (c), and U-shaped hallway (d).

Figure 3.8: Performance in the downstream task with fine-tuning (MaxEnt) or training from
scratch (DDPG). The x-axis corresponds to the training iteration and the y-axis to the
average discounted return. Solid lines show the average values over 10 random seeds, and
the shaded regions correspond to one standard deviation of the return over the seeds.



CHAPTER 3. SOFT Q-LEARNING 25

Soft Q-Learning in the Real-World

We also trained policies on a real-world robotic manipulator, and our results indicate soft
Q-learning can acquire skills quickly and reliably and yields better sample complexity over
existing model-free deep RL methods.4 We evaluate our method on Cartesian reaching and
Lego block stacking on a real-world Sawyer robot with 7 degrees of freedom. The actions are
the torque commands at each joint, and the observations are the joint angles and angular
velocities as well as the end-effector position. For the Lego stacking task, we also include
downward force estimated from the actuator currents as observations.

We compare soft Q-learning to deep deterministic policy gradients, and normalized ad-
vantage functions (NAF) in terms of sample complexity and final error, and a comparison is
shown in Figure 3.9. Each experiment was repeated three times to analyze the variability of
the methods. Since SQL does not rely on external exploration, we simply show training per-
formance, whereas for DDPG and NAF, we show test performance at regular intervals, with
the exploration noise switched off to provide a fair comparison. Soft Q-learning (blue curve)
solves the task in about 10 minutes, whereas DDPG (green) and NAF (red) are substantially
slower and exhibit large variation between training runs. We also trained a policy with SQL
to reach randomly selected points (orange) that are provided as input to the policy, with
a different target point selected for each episode. Learning this policy was almost as fast
as training for a fixed target, but because some targets are easier to reach than others, the
policy exhibited larger variation in terms of the final error of the end-effector position.

In the final experiment, we used SQL to train a policy for stacking Lego blocks to test
its ability to exercise precise control in the presence of contact dynamics (Figure 3.10). The
goal is to position the end effector, which holds a Lego block, into a position and orientation
that successfully stacks it on top of another block. To reduce variance in the end-effectors
pose, we augmented the reward function with an additional negative log-distance term that

4This experiment was originally presented in (Haarnoja et al., 2018b).

Figure 3.9: The learning curve of DDPG
(green), NAF (red), and SQL (blue) on the
Sawyer robot when trained to move its end ef-
fector to a specific location. Soft Q-learning
converged much faster than the other meth-
ods. We also trained SQL to reach randomly
sampled end-effector locations by concatenat-
ing the desired location to the observation
vector (orange). Soft Q-learning solves this
task just as quickly. Soft Q-learning curves
show the moving average over 10 training
episodes.
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Figure 3.10: A Lego stacking policy can be learned in less than two hours. The learned policy
is remarkably robust against perturbations: the robot is able to recover and successfully stack
the Lego blocks together after being pushed into a state that is substantially different from
typical trajectories.

incentivizes higher accuracy when the block is nearly inserted, and we also included a reward
for downward force to overcome the friction forces. After half an hour of training, the robot
was able to successfully insert the Lego block for the first time, and in two hours, the policy
was fully converged. We evaluated the task visually by inspecting if all of the four studs
were in contact and observed a success rate of 100 % on 20 trials of the final policy. The
resulting policy does not only solve the task consistently, but it is also surprisingly robust to
disturbances. To test robustness, we forced the arm into configurations that are far from the
states that it encounters during normal execution, and the policy was able to recover every
time and eventually solve the task as we illustrate in Figure 3.10. We believe the robustness
can be attributed to the effective and diverse exploration that is natural to maximum entropy
policies, and, to our knowledge, no other prior deep RL work has shown similar results.

3.5 Conclusion

We presented a method for learning stochastic energy-based policies with approximate infer-
ence via Stein variational gradient descent (SVGD). Our approach can be viewed as a type
of soft Q-learning method, with the additional contribution of using approximate inference
to obtain complex multimodal policies. Our experimental results show that our method
can effectively capture complex multimodal behavior on problems ranging from toy point
tasks to complex torque control of simulated walking and swimming robots, and can learn
real-world robotic manipulation substantially faster than prior methods, NAF and DDPG.
The applications of training such stochastic policies include improved exploration in the case
of multimodal objectives and transfer learning, which involves pretraining general-purpose
stochastic policies and efficiently fine-tuning the for a more specific task.
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Chapter 4

Soft Actor-Critic

In the previous chapter, we proposed a reinforcement learning algorithm based on soft Q-
learning that solves directly for the optimal soft Q-function, from which the optimal policy
can be recovered. In this chapter, we will discuss how we can devise a soft actor-critic
algorithm through a soft policy iteration formulation, where we instead evaluate the soft
Q-function of the current policy and update the policy through an off-policy gradient up-
date. Though such algorithms have previously been proposed for conventional reinforcement
learning, our method is, to our knowledge, the first off-policy actor-critic method in the
maximum entropy reinforcement learning framework. The method achieves state-of-the-art
performance on a range of continuous control benchmark tasks, outperforming prior on-policy
and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy
algorithms, our approach is very stable, achieving very similar performance across different
random seeds.

4.1 Overview

Maximum entropy formulation can provide a substantial improvement in exploration and
robustness, yields policies that are robust in the face of model and estimation errors (Ziebart,
2010), and as we demonstrated in the previous chapter, improves exploration by acquiring
diverse behaviors. Prior work has proposed model-free deep RL algorithms that perform
on-policy learning with entropy maximization (O’Donoghue et al., 2016), as well as off-
policy methods based on soft Q-learning and its variants (Schulman et al., 2017a; Nachum
et al., 2017; Haarnoja et al., 2017). However, the on-policy variants suffer from poor sample
complexity (Section 1.1), while the off-policy variants require complex approximate inference
procedures in continuous action spaces (Chapter 3).

In this chapter, we demonstrate that we can devise a simple off-policy maximum en-
tropy actor-critic algorithm, which we call soft actor-critic (SAC), which provides for both
sample-efficient learning and stability. This algorithm extends readily to very complex,
high-dimensional tasks, such as the Humanoid benchmark (Duan et al., 2016) with 21 ac-
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tion dimensions, where off-policy methods such as DDPG typically struggle to obtain good
results (Gu et al., 2017). Soft actor-critic also avoids the complexity and potential instabil-
ity associated with approximate inference in prior off-policy maximum entropy algorithms
based on soft Q-learning. We present a convergence proof for policy iteration in the max-
imum entropy framework, and then introduce a new algorithm based on an approximation
to this procedure that can be practically implemented with deep neural networks, which we
call soft actor-critic. We present empirical results that show that soft actor-critic attains
a substantial improvement in both performance and sample efficiency over both off-policy
and on-policy prior methods. We also compare to twin delayed deep deterministic (TD3)
policy gradient algorithm (Fujimoto et al., 2018), which is a recent method that proposes a
deterministic algorithm that substantially improves on DDPG.

4.2 From Soft Policy Iteration to Soft Actor-Critic

Our off-policy soft actor-critic algorithm can be derived starting from a maximum entropy
variant of the policy iteration method. We first present this derivation, verify that the
corresponding algorithm converges to the optimal policy from its density class, and then
present a practical deep reinforcement learning algorithm based on this theory.

Soft Policy Iteration

We begin by deriving soft policy iteration, a general algorithm for learning optimal maximum
entropy policies that alternates between soft policy evaluation and soft policy improvement
in the maximum entropy framework. Our derivation is based on a tabular setting, to enable
theoretical analysis and convergence guarantees, and we extend this method into the general
continuous setting later. We show that soft policy iteration converges to the optimal policy
within a set of policies which might correspond, for instance, to a set of parameterized
Gaussian distributions.

In the soft policy evaluation step, we wish to compute the value of a policy π according
to the maximum entropy objective. For a fixed policy, the soft Q-value can be computed
iteratively, starting from any function Q : S × A → R and repeatedly applying a modified
Bellman backup operator T π given by

T πQ(st, at) , r(st, at) + γ Est+1∼p [V (st+1)] , (4.1)

where

V (st) = Eat∼π [Q(st, at)− α log π(at|st)] (4.2)

is the soft state value function. We can obtain the soft value function for any policy π by
repeatedly applying T π as formalized below.
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Lemma 3 (Soft Policy Evaluation). Consider the soft Bellman backup operator T π in Equa-
tion 4.1 and a mapping Q0 : S ×A → R with |A| <∞, and define Qk+1 = T πQk. Then the
sequence Qk will converge to the soft Q-function of π as k →∞.

Proof. See Appendix B.3.

In the policy improvement step, we update the policy towards the exponential of the new
soft Q-function. This particular choice of update can be guaranteed to result in an improved
policy in terms of its soft value. Since in practice, we prefer policies that are tractable, we will
additionally restrict the policy to some set of policies Π, which can correspond, for example,
to a parameterized family of distributions such as Gaussians. To account for the constraint
π ∈ Π, we project the improved policy into the desired set of policies. While in principle
we could choose any projection, it will turn out to be convenient to use the information
projection defined in terms of the Kullback-Leibler divergence. In the other words, in the
policy improvement step, for each state, we update the policy according to

πnew = arg min
π′∈Π

DKL

(
π′( · |st)

∥∥∥∥∥ exp
(

1
α
Qπold(st, · )

)
Zπold(st)

)
. (4.3)

The partition function Zπold(st) normalizes the distribution, and while it is intractable in
general, it does not contribute to the gradient with respect to the new policy and can thus
be ignored, as we note in the next section. For this projection, we can show that the new,
projected policy has a higher value than the old policy with respect to the maximum entropy
objective. We formalize this result in Lemma 4.

Lemma 4 (Soft Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of the
minimization problem defined in Equation 4.3. Then Qπnew(st, at) ≥ Qπold(st, at) for all
(st, at) ∈ S ×A with |A| <∞.

Proof. See Appendix B.3.

The complete soft policy iteration algorithm alternates between soft policy evaluation
and soft policy improvement, and it will provably converge to the optimal maximum entropy
policy among the policies in Π (Theorem 2). Although this algorithm will provably find the
optimal solution, we can perform it in its exact form only in the tabular case. Therefore,
we will next approximate the algorithm for continuous domains, where we need to rely on
a function approximator to represent the soft Q-values, and running the two steps until
convergence would be computationally too expensive. The approximation gives rise to a
new practical algorithm, called soft actor-critic.

Theorem 2 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft
policy improvement from any π ∈ Π converges to a policy π∗ such that Qπ∗(st, at) ≥ Qπ(st, at)
for all π ∈ Π and (st, at) ∈ S ×A, assuming |A| <∞.

Proof. See Appendix B.3.
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Soft Actor-Critic

As discussed above, large continuous domains require us to derive a practical approximation
to soft policy iteration. To that end, we use function approximators for both the soft Q-
function and the policy, and instead of running evaluation and improvement to convergence,
alternate between optimizing both networks with stochastic gradient descent. We consider
a parameterized Q-function Qθ(st, at) and a tractable policy πφ(at|st). The parameters of
these networks are θ and φ. For example, the Q-function can be modeled as expressive neural
networks, and the policy as a Gaussian with mean and covariance given by neural networks.
We will next derive update rules for these parameter vectors.

The Q-function parameters can be trained to minimize the soft Bellman residual

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)−

(
r(st, at) + γ Est+1∼p [Vθ̄(st+1)]

))2
]
, (4.4)

where the value function is implicitly parameterized through the Q-function parameters via
Equation 4.2,1 and it can be optimized with stochastic gradients

∇̂θJQ(θ) = ∇θQθ(at, st) (Qθ(st, at)− (r(st, at) + γ (Qθ̄(st+1, at+1)− α log (πφ(at+1|st+1)))) .
(4.5)

The update makes use of a target Q-function with parameters θ̄ that are obtained as an
exponentially moving average of the Q-function weights, which has been shown to stabilize
training (Mnih et al., 2015). Alternatively, we can update the target weights to match the
target function weights periodically (see Section D.2). Finally, the policy parameters can be
learned by directly minimizing the expected KL-divergence in Equation 4.3:

Jπ(φ) = Est∼D

[
DKL

(
πφ( · |st)

∥∥∥∥∥ exp
(

1
α
Qθ(st, · )

)
Zθ(st)

)]
. (4.6)

There are two options for minimizing Jπ. A typical solution for policy gradient methods
is to use the likelihood ratio gradient estimator (Williams, 1992), which does not require
backpropagating the gradient through the policy and the target density networks. However,
in our case, the target density is the soft Q-function, which is represented by a neural
network an can be differentiated, and it is thus convenient to apply the reparameterization
trick instead, resulting in a lower variance estimator. To that end, we reparameterize the
policy using a neural network transformation

at = fφ(εt; st), (4.7)

where εt is an input noise vector, sampled from some fixed distribution, such as a spherical
Gaussian. We can now rewrite the objective in Equation 4.6 as

Jπ(φ) = Est∼D,εt∼N [α log πφ(fφ(εt; st)|st)−Qθ(st, fφ(εt; st))] , (4.8)

1In (Haarnoja et al., 2018c) we introduced an additional function approximator for the value function,
but later found it to be unnecessary.
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Algorithm 2 Soft Actor-Critic

Input: θ1, θ2, φ . Initial parameters
θ̄1 ← θ1, θ̄2 ← θ2 . Initialize target network weights
D ← ∅ . Initialize an empty replay pool
for each iteration do

for each environment step do
at ∼ πφ(at|st) . Sample action from the policy
st+1 ∼ p(st+1|st, at) . Sample transition from the environment
D ← D ∪ {(st, at, r(st, at), st+1)} . Store the transition in the replay pool

end for
for each gradient step do

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2} . Update the soft Q-function parameters

φ← φ− λπ∇̂φJπ(φ) . Update policy weights
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} . Update target network weights

end for
end for

Output: θ1, θ2, φ . Optimized parameters

where πφ is defined implicitly in terms of fφ, and we have noted that the partition function is
independent of φ and can thus be omitted. We can approximate the gradient of Equation 4.8
with

∇̂φJπ(φ) = ∇φα log (πφ(at|st)) + (∇atα log (πφ(at|st))−∇atQ(st, at))∇φfφ(εt; st), (4.9)

where at is evaluated at fφ(εt; st). This unbiased gradient estimator extends the DDPG style
policy gradients (Lillicrap et al., 2015) to any tractable stochastic policy.

Our algorithm also makes use of two Q-functions to mitigate positive bias in the policy
improvement step that is known to degrade performance of value based methods (Hasselt,
2010; Fujimoto et al., 2018). In particular, we parameterize two Q-functions, with parameters
θi, and train them independently to optimize JQ(θi). We then use the minimum of the Q-
functions for the stochastic gradient in Equation 4.5 and policy gradient in Equation 4.9,
as proposed by Fujimoto et al. (2018). Although our algorithm can learn challenging tasks,
including a 21-dimensional Humanoid, using just a single Q-function, we found two Q-
functions significantly speed up training, especially on harder tasks. The complete algorithm
is described in Algorithm 2. The method alternates between collecting experience from the
environment with the current policy and updating the function approximators using the
stochastic gradients from batches sampled from a replay buffer. Using off-policy data from a
replay buffer is feasible because both value estimators and the policy can be trained entirely
on off-policy data. The algorithm is agnostic to the parameterization of the policy, as long
as it can be evaluated for any arbitrary state-action tuple.
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4.3 Experiments

The goal of our experimental evaluation is to understand how the sample complexity and
stability of our method compares with prior off-policy and on-policy deep reinforcement
learning algorithms. We compare our method to prior techniques on a range of challenging
continuous control tasks from the OpenAI gym benchmark suite (Brockman et al., 2016)
and also on the rllab implementation of the Humanoid task (Duan et al., 2016). Although
the easier tasks can be solved by a wide range of different algorithms, the more complex
benchmarks, such as the 21-dimensional Humanoid (rllab), are exceptionally difficult to
solve with off-policy algorithms (Duan et al., 2016). The stability of the algorithm also plays
a large role in performance: easier tasks make it more practical to tune hyperparameters to
achieve good results, while the already narrow basins of effective hyperparameters become
prohibitively small for the more sensitive algorithms on the hardest benchmarks, leading to
poor performance (Gu et al., 2017).

We compare our method to deep deterministic policy gradient (DDPG) (Lillicrap et al.,
2015), proximal policy optimization (PPO) (Schulman et al., 2017b), and soft Q-learning
(SQL), which also optimizes the maximum entropy objective. We additionally compare to
twin delayed deep deterministic policy gradient algorithm (TD3) (Fujimoto et al., 2018),
using the author-provided implementation. This is a recent extension to DDPG that first
applied the double Q-learning trick to continuous control along with other improvements. We
have included a comparison to trust region path consistency learning (Trust-PCL) (Nachum
et al., 2018) and two other variants of SAC in Section D.2. We turned off the exploration
noise for evaluation for DDPG and PPO. For maximum entropy algorithms, which do not
explicitly inject exploration noise, we either evaluated with the exploration noise (SQL) or
use the mean action (SAC). The source code of our SAC implementation2 and videos3 are
available online.

Comparative Evaluation

Figure 4.1 shows the total average return of evaluation rollouts during training for SAC,
DDPG, PPO, SQL, and TD3. We train five different instances of each algorithm with
different random seeds, with each performing one evaluation rollout every 1000 environment
steps (with the exception of SQL, for which we show the training performance). The solid
curves correspond to the mean and the shaded region to the minimum and maximum returns
over the five trials. The results show that, overall, SAC performs comparably to the baseline
methods on the easier tasks and outperforms them on the harder tasks with a large margin,
both in terms of learning speed and the final performance. For example, DDPG fails to make
any progress on Ant-v1, Humanoid-v1, and Humanoid (rllab), a result that is corroborated
by prior work (Gu et al., 2017; Duan et al., 2016). Soft actor-critic also learns considerably
faster than PPO as a consequence of the large batch sizes PPO needs to learn stably on more

2github.com/haarnoja/sac/
3sites.google.com/view/soft-actor-critic/

http://github.com/haarnoja/sac/
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Figure 4.1: Training curves on continuous control benchmarks. Soft actor-critic (orange) per-
forms consistently across all tasks and outperforming both on-policy and off-policy methods
in the most challenging tasks.

high-dimensional and complex tasks. Soft Q-learning can also learn all tasks, but it is slower
than SAC and has worse asymptotic performance. The quantitative results attained by SAC
in our experiments also compare very favorably to results reported by other methods in prior
work (Duan et al., 2016; Gu et al., 2017; Henderson et al., 2018), indicating that both the
sample efficiency and final performance of SAC on these benchmark tasks exceeds the state
of the art. All hyperparameters used in this experiment for SAC are listed in Appendix C.2.

Ablation Study

The results in the previous section suggest that algorithms based on the maximum entropy
principle can outperform conventional RL methods on challenging tasks such as the humanoid
tasks. In this section, we examine which particular components of SAC are important for
good performance, and how sensitive SAC is to some of the most important hyperparameters,
namely reward scaling and target value smoothing constant.

Stochastic vs. deterministic policy. Soft actor-critic learns stochastic policies via a
maximum entropy objective. The entropy appears in both the policy and soft Q-function.
In the policy, it prevents premature convergence of the policy variance. In the Q-function,
it encourages exploration by increasing the value of regions of state space that lead to high-
entropy behavior. To compare how the stochasticity of the policy and entropy maximiza-



CHAPTER 4. SOFT ACTOR-CRITIC 34

0 2 4 6 8 10
million steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Humanoid (rllab)

stochastic policy

deterministic policy

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant-v1

deterministic evaluation

stochastic evaluation

(b)

Figure 4.2: (a) Comparison of SAC (blue) and a deterministic variant of SAC (red) in
terms of the stability of individual random seeds on the Humanoid (rllab) benchmark. The
comparison indicates that stochasticity can stabilize training as the variability between the
seeds becomes much higher with a deterministic policy. (b) Evaluating the policy using the
mean action generally results in a higher return. Note that the policy is trained to maximize
also the entropy, and the mean action does not, in general, correspond the optimal action
for the maximum return objective.

tion affects the performance, we compare to a deterministic variant of SAC that does not
maximize the entropy and that closely resembles DDPG, with the exception of having two
Q-functions, using hard target updates, not having a separate target actor, and using fixed
rather than learned exploration noise. Figure 4.2a compares five individual runs with both
variants, initialized with different random seeds. Soft actor-critic performs much more con-
sistently, while the deterministic variant exhibits very high variability across seeds, indicating
substantially worse stability. As evident from the figure, learning a stochastic policy with
entropy maximization can drastically stabilize training. This becomes especially important
with harder tasks, where tuning hyperparameters is challenging. In this comparison, we
updated the target value network weights with hard updates, by periodically overwriting
the target network parameters to match the current value network (see Section D.2 for a
comparison of average performance on all benchmark tasks).

Policy evaluation. Since SAC converges to stochastic policies, it is often beneficial to
make the final policy deterministic at the end for best performance. For evaluation, we ap-
proximate the maximum a posteriori action by choosing the mean of the policy distribution.
Figure 4.2b compares training returns to evaluation returns obtained with this strategy in-
dicating that deterministic evaluation can yield better performance. It should be noted that
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Figure 4.3: Sensitivity of soft actor-critic to selected hyperparameters on Ant-v1 task. (a)
Soft actor-critic is sensitive to reward scaling since it is related to the temperature of the
optimal policy. The optimal reward scale varies between environments, and should be tuned
for each task separately. (b) Target value smoothing coefficient τ is used to stabilize training.
Fast moving target (large τ) can result in instabilities (red), whereas slow moving target
(small τ) makes training slower (blue).

all of the training curves depict the sum of rewards, which is different from the objective op-
timized by SAC and other maximum entropy RL algorithms, including SQL and Trust-PCL,
which maximize also the entropy of the policy.

Reward scale. Soft actor-critic is particularly sensitive to the scaling of the reward signal,
because it directly affects the temperature of the energy-based optimal policy and thus con-
trols its stochasticity. Larger reward magnitudes correspond to lower entropies. Figure 4.3a
shows how learning performance changes when the reward scale is varied: For small reward
magnitudes, the policy becomes nearly uniform, and consequently fails to exploit the reward
signal, resulting in substantial degradation of performance. For large reward magnitudes,
the model learns quickly at first, but the policy then becomes nearly deterministic, leading
to poor local minima due to lack of adequate exploration. With the right reward scal-
ing, the model balances exploration and exploitation, leading to faster learning and better
asymptotic performance. In practice, we found reward scale to be the only hyperparameter
that requires tuning, and its natural interpretation as the inverse of the temperature in the
maximum entropy framework provides good intuition for how to adjust this parameter. In
the next chapter, we propose an automated adjustment scheme for the temperature, which
eliminates the sensitivity to the reward scale.
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Target network update. It is common to use a separate target Q-value network that
slowly tracks the actual Q-function to improve stability. We use an exponentially moving
average, with a smoothing constant τ , to update the target Q-value network weights as com-
mon in the prior work (Lillicrap et al., 2015; Mnih et al., 2015). A value of one corresponds
to a hard update where the weights are copied directly at every iteration and zero to not
updating the target at all. In Figure 4.3b, we compare the performance of SAC when τ
varies. Large τ can lead to instabilities while small τ can make training slower. However,
we found the range of suitable values of τ to be relatively wide and we used the same value
(0.005) across all of the tasks.

4.4 Conclusion

In this chapter, we presented soft actor-critic, an off-policy maximum entropy deep reinforce-
ment learning algorithm that provides sample-efficient learning while retaining the benefits
of entropy maximization and stability. Our theoretical results derive soft policy iteration,
which we show to converge to the optimal policy. From this result, we can formulate a soft
actor-critic algorithm, and we empirically show that it outperforms state-of-the-art model-
free deep RL methods, including the off-policy DDPG algorithm and the on-policy PPO
algorithm. In fact, the sample efficiency of this approach actually exceeds that of DDPG by
a substantial margin. Our results suggest that stochastic, entropy maximizing reinforcement
learning algorithms can provide a promising avenue for improved robustness and stability.
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Chapter 5

Deep Reinforcement Learning with an
Entropy Constraint

Even though maximum entropy RL algorithms, such as soft actor-critic, can improve sample
efficiency of model-free RL, it introduces an additional temperature parameter that needs to
be tuned for each task separately. This is particularly challenging in real-world application,
since while hyperparameter tuning can be performed in parallel in simulated domains, it is
usually impractical to tune hyperparameters directly on real-world platforms, especially for
platforms that can easily damage themselves through extensive trial-and-error learning, such
as legged robots. In this chapter, we develop an improvement to the soft actor-critic deep
reinforcement learning algorithm that requires minimal hyperparameter tuning, while also
requiring only a modest number of trials to learn multilayer neural network policies. This
algorithm automatically trades off exploration against exploitation by dynamically and auto-
matically tuning a temperature parameter that determines the stochasticity of the policy, and
yet, can match the state-of-the-art performance on four standard benchmark environments.
We then demonstrate that the algorithm can be used to learn quadrupedal locomotion gaits
on a real-world Minitaur quadrupedal robot, learning directly in the real world in two hours.

5.1 Overview

One of the central challenges with the maximum entropy objective is that the trade-off be-
tween maximizing the return, or exploitation, versus the entropy, or exploration, is directly
affected by the scale of the reward function. Unlike in conventional reinforcement learn-
ing, where the optimal policy is independent of scaling of the reward function, in maximum
entropy reinforcement learning the scaling factor has to be compensated by the choice of
a suitable temperature, and a sub-optimal temperature can drastically degrade the perfor-
mance (Section 4.3). In this chapter, we propose a simple and automatic gradient-based
temperature tuning method that adjusts the expected entropy over the visited states to
match a target value. In contrast to standard reinforcement learning, our method only con-
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trols the expected entropy over states, while the per-state entropy can still vary—a desirable
property that allows the policy to automatically reduce entropy for states where acting de-
terministically is preferred, while still acting stochastically in other states. Although this
modification is simple, we find that in practice it virtually eliminates the need for per-task hy-
perparameter tuning, making it practical for us to apply this algorithm to learn quadrupedal
locomotion gaits directly on a real-world robotic system.

The principal contributions of this chapter are an automatic temperature adjustment
algorithm for maximum entropy reinforcement learning algorithms, such as soft actor-critic,
and an empirical evaluation of this algorithm on both simulated benchmark tasks and on
learning real-world quadrupedal locomotion on the Minitaur robot (Figure 5.6). In real-
world experiments, our algorithm can enable the Minitaur to learn to walk using 160,000
environment steps in two hours without any hyperparameter adjustment. We also describe
the details of our real-world reinforcement learning experimental setup. Furthermore, in
evaluations on standard RL benchmark tasks, our method achieves state-of-the-art perfor-
mance and, unlike prior state-of-the-art methods based on maximum entropy RL, can use
exactly the same hyperparameters for all tasks. In the next section, we first derive a theoret-
ical algorithm for finite horizon case, and then suggest a practical algorithm for discounted,
infinite horizon case based on the theory.

5.2 Automating Entropy Adjustment for Maximum

Entropy RL

In the previous chapter, we derived the soft actor-critic algorithm for learning maximum
entropy policies of a given temperature. Unfortunately, choosing the optimal temperature
is non-trivial, and the temperature needs to be tuned for each task. Instead of requiring
the user to set the temperature manually, we can automate this process by formulating a
different maximum entropy reinforcement learning objective, where the entropy is treated
as a constraint. The magnitude of the reward differs not only across tasks, but it also
depends on the policy, which improves over time during training. Since the optimal entropy
depends on this magnitude, this makes the temperature adjustment particularly difficult:
the entropy can vary unpredictably both across tasks and during training as the policy
becomes better. Simply forcing the entropy to a fixed value is a poor solution, since the
policy should be free to explore more in regions where the optimal action is uncertain, but
remain more deterministic in states with a clear distinction between good and bad actions.
Instead, we formulate a constrained optimization problem where the average entropy of the
policy is constrained, while the entropy at different states can vary. Similar approach was
taken in (Abdolmaleki et al., 2018), where the policy was constrained to remain close to
the previous policy. We show that the dual to this constrained optimization leads to the
soft actor-critic updates, along with an additional update for the dual variable, which plays
the role of the temperature. Our formulation also makes it possible to learn the entropy
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with more expressive policies that can model multi-modal distributions, such as policies
based on normalizing flows (Chapter 7) for which no closed form expression for the entropy
exists. We derive the update for finite horizon case, and then derive an approximation for
stationary policies by dropping the time dependencies from the policy, soft Q-function, and
the temperature.

Constrained Entropy Objective

Our aim is to find a stochastic policy with maximal expected return that satisfies a mini-
mum expected entropy constraint. Formally, we want to solve the constrained optimization
problem

max
π0:T

Eρπ

[
T∑
t=0

r(st, at)

]
s.t. E(st,at)∼ρπ [− log(πt(st|st))] ≥ H̄ ∀t (5.1)

where H is a desired minimum expected entropy. Note that, for fully observed MDPs, the
policy that optimizes the expected return is deterministic, so we expect this constraint to
usually be tight and do not need to impose an upper bound on the entropy.

Since the policy at time t can only affect the future objective value, we can employ an
(approximate) dynamic programming approach, solving for the policy backward through
time. We rewrite the objective as an iterated maximization

max
π0

(
E [r(s0, a0)] + max

π1

(
E [. . .] + max

πT
E [r(sT , aT )]

))
, (5.2)

subject to the constraint on entropy. Starting from the last time step, we change the con-
strained maximization to the dual problem. Subject to E(sT ,aT )∼ρπ [− log(πT (sT |sT ))] ≥ H,

max
πT

E(st,at)∼ρπ [r(sT , aT )] = min
αT≥0

max
πT

E [r(sT , aT )− αT log π(aT |sT )]− αT H̄, (5.3)

where αT is the dual variable. We have also used strong duality, which holds since the
objective is linear and the constraint (entropy) is convex function in πT . This dual objective is
closely related to the maximum entropy objective with respect to the policy, and the optimal
policy is the maximum entropy policy corresponding to temperature αT : π∗T (aT |sT ;αT ). We
can solve for the optimal dual variable α∗T as

arg min
αT

Est,at∼π∗t [−αT log π∗T (aT |sT ;αT )− αTH] . (5.4)

To simplify notation, we make use of the recursive definition of the soft Q-function

Q∗t (st, at; π
∗
t+1:T , α

∗
t+1:T ) = E [r(st, at)] + Eρπ

[
Q∗t+1(st+1, at+1)− α∗t+1 log π∗t+1(at+1|st+1)

]
,

(5.5)
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with Q∗T (sT , aT ) = E [r(sT , aT )]. Now, subject to the entropy constraints and again using
the dual problem, we have

max
πT−1

(
E [r(sT−1, aT−1)] + max

πT
E [r(sT , aT )]

)
(5.6)

= max
πT−1

(
Q∗T−1(sT−1, aT−1)− αT H̄

)
= min

αT−1≥0
max
πT−1

(
E
[
Q∗T−1(sT−1, aT−1)

]
− E [αT−1 log π(aT−1|sT−1)]− αT−1H̄

)
+ α∗T H̄.

In this way, we can proceed backwards in time and recursively optimize Equation 5.1. Note
that the optimal policy at time t is a function of the dual variable αt. Similarly, we can solve
the optimal dual variable α∗t after solving for Q∗t and π∗t :

α∗t = arg min
αt

Eat∼π∗t

[
−αt log π∗t (at|st;αt)− αtH̄

]
. (5.7)

The solution in Equation 5.7 along with the policy and soft Q-function updates described
in Chapter 4 constitute the core of our algorithm, and in theory, exactly solving them
recursively optimize the optimal entropy-constrained maximum expected return objective
in Equation 5.1, but in practice, we will need to resort to function approximators and
stochastic gradient descent.

Practical Algorithm

In principle, we can learn the soft Q-function and the policy using any maximum entropy
reinforcement learning algorithm, and in practice we chose to use soft actor-critic as the
base algorithm due to its good empirical performance and simplicity. In addition to the soft
Q-function and the policy, we also learn α by minimizing the dual objective in Equation 5.7.
This can be done by approximating dual gradient descent (Boyd & Vandenberghe, 2004).
Dual gradient descent alternates between optimizing the Lagrangian with respect to the
primal variables to convergence, and then taking a gradient step on the dual variables. While
optimizing with respect to the primal variables fully is impractical, a truncated version that
performs incomplete optimization (even for a single gradient step) can be shown to converge
under convexity assumptions (Boyd & Vandenberghe, 2004). While such assumptions do
not apply to the case of nonlinear function approximators such as neural networks, we found
this approach to still work in practice. Thus, we compute gradients for α with the following
objective:

J(α) = Eat∼πt
[
−α log πt(at|st)− αH̄

]
. (5.8)

The proposed algorithm is listed in Algorithm 3, and it is otherwise identical to soft actor-
critic, but it also includes an additional step for learning the temperature.
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Algorithm 3 Soft Actor-Critic with Automatic Temperature Adjustment

Input: θ1, θ2, φ . Initial parameters
θ̄1 ← θ1, θ̄2 ← θ2 . Initialize target network weights
D ← ∅ . Initialize an empty replay pool
for each iteration do

for each environment step do
at ∼ πφ(at|st) . Sample action from the policy
st+1 ∼ p(st+1|st, at) . Sample transition from the environment
D ← D ∪ {(st, at, r(st, at), st+1)} . Store the transition in the replay pool

end for
for each gradient step do

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2} . Update the Q-function parameters

φ← φ− λπ∇̂φJπ(φ) . Update policy weights

α← α− λ∇̂αJ(α) . Adjust temperature
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} . Update target network weights

end for
end for

Output: θ1, θ2, φ . Optimized parameters

5.3 Comparative Experiments in Simulation

The aim of our simulated evaluation is to evaluate whether our algorithm can achieve state-of-
the-art performance across a range of different domains without tuning of hyperparameters.
To that end, we evaluate our algorithm on four continuous locomotion tasks from the Gym
benchmark suite (Brockman et al., 2016), ranging from HalfCheetah-v1 with six action di-
mensions to Humanoid-v1 with 17-dimensional actions. We use SAC as the base algorithm
and compare our automatic temperature adjustment scheme to a fixed temperature that is
tuned for each environment separately using grid search. For our method, we simply set the
target entropy to be -1 per action dimension (i.e. HalfCheetah-v1 has target entropy of -6,
Humanoid-v1 uses -17). We also compare to deep deterministic policy gradient (DDPG) (Lil-
licrap et al., 2015). Our method, as well as our version of DDPG, employ the modification
suggested in (Fujimoto et al., 2018), namely learning two independent Q-functions and using
the point-wise minimum as the target value for the critic and the policy updates, which has
been shown to make learning substantially faster. All of the algorithms use the same net-
work architecture: all of the function approximators (value function, policy, and Q-function
for SAC) are parameterized with a two-layer neural network with 512 hidden units on each
layer, and we use ADAM (Kingma & Ba, 2015) to learn the weights.
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Figure 5.1: (a) – (d) Standard benchmark training results. Our method (green) is able to
match the state-of-the-art baseline (orange) without environment specific tuning. DDPG
(blue) performs well in lower-dimensional tasks, but fails on Humanoid-v1, which has 17
action dimensions.

Comparative Evaluation

Figure 5.1(a) – (d) shows a comparison of the algorithms. The solid line denotes the average
performance over 10 random seeds, and the shaded region corresponds to the best and worst
performing seeds. The results indicate that our method (green) achieves practically identical
performance compared to SAC with a fixed temperature, which is tuned per environment
for all environments (orange). We also compare to DDPG (blue), which does not require
environment specific tuning. On the easiest three tasks, DDPG also achieves similar perfor-
mance, but on a harder Humanoid-v1 task, DDPG fails to learn, which is consistent with
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Figure 5.2: (a) Learning curves for the Minitaur environment. For our method (green),
we used exactly the same hyperparameters as we used for the benchmarks whereas for the
baseline (orange), we needed to tune the reward scale. (b) Illustration of the Minitaur
environment.

the previously reported results (Henderson et al., 2018; Haarnoja et al., 2018c).
We also applied our method to a simulated Minitaur environment (Figure 5.2). Note

that the purpose of testing in the simulated Minitaur environment is to demonstrate the
insensitivity of hyperparameters of our algorithm. We do not use the policy learned in
simulation in our real-world experiments. This Minitaur environment is more realistic than
the benchmark environments, as it has been carefully system identified to match a real
robotic platform: The learned controller in simulation can be transferred on the real Minitaur
robot (Tan et al., 2018). Thus it is more representative of an actual use case of model-free
reinforcement learning to robotics. Figure 5.2(a) compares the learning curve of our method
(green), with exactly the same parameters used in the benchmarks, to SAC with fixed
temperature (orange). Note that in order to obtain the baseline comparison, we had to
collect approximately an order of magnitude more samples from the environment to tune
the hyperparameter, which is not shown in the figure.

Sensitivity Analysis

In this section, we study the sensitivity of our method to reward scale and the value of
the target entropy. Both maximum entropy RL algorithms (Chapter 4) and standard RL
algorithms (Henderson et al., 2018) can be very sensitive to the scale of the reward function.
In the case of maximum entropy RL, this scale directly affects the trade-off between reward
maximization and entropy maximization (Haarnoja et al., 2018c). We evaluate sensitivity on
the HalfCheetah-v1, Ant-v1, and Walker-v1 tasks, as well as the simulated Minitaur robot.
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Figure 5.3: Average normalized performance over the last 100k samples on a range of environ-
ments. (a) Performance of standard SAC as a function of reward scale, and (b) performance
of the proposed method as a function of target entropy. Our method is substantially less
sensitive to the choice of the hyperparameter controlling the stochasticity of the policy.

Figure 5.3a shows the normalized return for a range of reward scale values. All benchmark
environments achieve good performance for about the same range of values, between 1 to
10. On the other hand, the simulated Minitaur requires roughly two orders of magnitude
larger reward scale to work properly. This result indicates that, while standard benchmarks
offer high variability in terms of task dimensionality, they are homogeneous in terms of other
characteristics, and testing only on the benchmarks might not generalize well to seemingly
similar tasks designed for different purposes. This suggests that the good performance of our
method, with the same hyperparameters, on both the benchmark tasks and the Minitaur task
accurately reflects its generality and robustness. Figure 5.3b compares the sensitivity of our
method to the target entropy value on the same set of tasks. In this case, the range of good
target entropy values is essentially the same for all environments, making hyperparameter
tuning substantially less laborious. It is also worth noting that this range is very large,
suggesting that our algorithm is relatively insensitive to the choice of this hyperparameter.

Next, we compared how the entropy and temperature evolve during training. Figure 5.4a
compares the entropy (estimated as an expected negative log probability over a minibatch)
on HalfCheetah-v1 for SAC with fixed temperature (orange) and our method (green). For
our method, we used a target entropy of -13. The figure clearly indicates that our algorithm
is able to match the target entropy in a relatively small number of steps. On the other hand,
for SAC with a fixed temperature, the entropy slowly decreases as the Q-function increases.
Figure 5.4b compares the temperature parameter of the two methods: Our method (green)
actively adjust the temperature, and particularly in the beginning of training, when the
Q-values are small and the entropy term thus dominates in the objective, temperature is
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quickly pulled down to match the target entropy.

Quadrupedal Locomotion in the Real World

In this section, we describe an application of our method to learn walking gaits directly in
the real world. We use the Minitaur robot, a small-scale quadruped with eight direct-drive
actuators (Kenneally et al., 2016). Each leg is controlled by two actuators that allow it to
move in the sagittal plane. The Minitaur is equipped with motor encoders that measure
the motor angles and an IMU that measures orientation and angular velocity of Minitaur’s
base. The action space are the swing angle and the extension of each leg, which are then
mapped to desired motor positions and tracked with a PD controller (Tan et al., 2018). The
observations include the motor angles as well as roll and pitch angles and angular velocities
of the base. We exclude yaw since it is unreliable due to drift and irrelevant for the walking
task. Note that latencies and contacts in the system make the dynamics non-Markovian,
which can significantly degrade learning performance. We therefore construct the state out
of the current and past five observations and actions. The reward function rewards large
forward velocity, which is estimated using a motion capture system, and penalizes large
angular accelerations, computed via finite differentiation from the last three actions. We
also found it necessary to penalize for large pitch angles and for extending the front legs
under the robot, which we found to be the most common failure cases that would require
manual reset. We parameterize the policy and the value functions with feed-forward neural
networks with two hidden-layers and 256 neurons per layer.

We developed a semi-automatic robot training pipeline (Figure 5.5) that consists of two
parallel jobs: training and data collection. These jobs run asynchronously on two different
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Figure 5.4: Comparison our method and SAC with fixed temperature in terms of entropy
and temperature on HalfCheetah-v1. The target entropy for our method is -13 in this case.
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Figure 5.5: The training pipeline runs the training and data collection asynchronously across
multiple machines.

computers. The training process runs on a workstation, which updates the neural networks
and periodically downloads the latest data from the robot and uploads the latest policy to
the robot. On the robot, the on-board Nvidia Jetson TX2 runs the data collection job, which
executes the policy, collects the trajectory and uploads these data to the workstation through
Ethernet. Once the training is started, minimal human intervention is needed, except for
the need to reset the robot state if it falls or drifts far from the initial state.

This learning task presents substantially challenges for real-world reinforcement learning.
The robot is underactuated, and must therefore delicately balance contact forces on the legs
to make forward progress. An untrained policy can lose balance and fall, and too many falls
will eventually damage the robot, making sample-efficient learning essentially. Our method
successfully learns to walk from 160k environment steps, or approximately 400 episodes with
maximum length of 500 steps, which amount to approximately 2 hours of real-world training
time.

However, in the real world, the utility of a locomotion policy hinges critically on its abil-
ity to generalize to different terrains and obstacles. Although we trained our policy only on
flat terrain, as illustrated in Figure 5.6 (first row), we then tested it on varied terrains and
obstacles (other rows). Because soft actor-critic learns robust policies, due to entropy max-
imization at training time, the policy can readily generalize to these perturbations without
any additional learning. The robot is able to walk up and down a slope (first row), ram
through an obstacle made of wooden blocks (second row), and step down stairs (third row)
without difficulty, despite not being trained in these settings. To our knowledge, this experi-
ment is the first example of a deep reinforcement learning algorithm learning underactuated
quadrupedal locomotion directly in the real world without any simulation or pretraining.
We have included videos of the the training process and evaluation on our project website1.

1https://sites.google.com/view/sac-and-applications/

https://sites.google.com/view/sac-and-applications/
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Figure 5.6: We trained the Minitaur robot to walk on flat terrain (first row) and tested how
the learned gait generalizes to unseen situations (other rows)

5.4 Conclusion

We presented automatic entropy adjustment scheme for maximum entropy reinforcement
learning, and implemented it with soft actor-critic. The resulting model-free reinforcement
learning algorithm is sample-efficient and stable with respect to hyperparameter settings,
which makes it well-suited for learning quadrupedal locomotion gaits end-to-end directly on
a real-world Minitaur robot. Our method is based on a dual formulation of an entropy-
constrained reinforcement learning objective, which builds on the framework of maximum
entropy RL but introduces an explicit trade-off between exploration and exploitation that
is invariant to reward magnitude and much easier to set in practice. The same entropy
constraint value works well across all of the benchmark tasks we tested. Our method achieves
state-of-the-art efficiency in simulated benchmarks, and can acquired a locomotion skill on
real robot without any modification or tuning.
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Part II

Extensions
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Chapter 6

Compositionality of Maximum
Entropy Policies

In this chapter, we show that policies learned with soft Q-learning can be composed to create
new policies, and that the optimality of the resulting policy can be bounded in terms of the
divergence between the policies at are combined. This compositionality provides a valuable
tool for real-world manipulation, where constructing new policies by composing existing
skills can provide a large gain in efficiency over training from scratch. Our experimental
evaluation demonstrates that compositionality can be performed in both simulation and the
real world.

6.1 Overview

The maximum entropy principle can yield an effective framework for practical, real-world
deep reinforcement learning due to multiple reasons. In particular, as we saw in Chapter 3,
maximum entropy policies provide an inherent, informed exploration strategy by express-
ing a stochastic policy via the Boltzmann distribution, with the energy corresponding to
the reward-to-go or soft Q-function. This distribution assigns a non-zero probability to all
actions, but actions with higher expected rewards are more likely to be sampled. As a con-
sequence, the policy will automatically direct exploration into regions of higher expected
return. This property, which can be thought of as a soft combination of exploration and ex-
ploitation, can be highly beneficial in real-world applications, since it provides considerably
more structure than ε-greedy exploration and can thus improve sample complexity. In this
section, we will focus on a closely related property, namely that independently trained max-
imum entropy policies can be composed together by adding their soft Q-functions, yielding
a new policy for the combined reward function that is provably close to the corresponding
optimal policy. Composability of controllers, which is not typically possible in standard
reinforcement learning, is especially important for real-world applications, where reuse of
past experience can greatly improve sample efficiency for tasks that can naturally be de-
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composed into simpler sub-problems. For instance, a policy for a pick-and-place task can be
decomposed into (1) reaching specific x-coordinates, (2) reaching specific y-coordinates, and
(3) avoiding certain obstacles. Such decomposable policies can therefore be learned in three
stages, each yielding a sub-policy, which can later be combined offline without the need to
interact with the environment.

The primary contribution of this chapter is a framework, based on soft Q-learning, for
learning robotic manipulation skills with expressive neural network policies. We propose an
extension of the SQL algorithm that enables composition of previously learned skills. We
present a novel theoretical bound on the difference between the policy obtained through
composition and the optimal policy for the composed reward function, which applies to
SQL and other reinforcement learning methods based on maximum entropy objective. In
our experiments, we leverage the compositionality of maximum entropy policies in both
simulated and physical domains.

6.2 Compositionality of maximum entropy policies

Compositionality means that multiple policies can be combined to create a new policy that
simultaneously solves all of the tasks given to the constituent policies. A related idea has
been discussed by Todorov (2009), who considers combining the independent rewards via
soft maximization. However, this type of composition corresponds to solving only one of
the constituent tasks at a time—a kind of disjunction (e.g., move to the target or avoid
the obstacle). In contrast, our approach to composition corresponds to a conjunction of the
tasks, which is typically more useful (e.g., move to the target and avoid the obstacle). While
simply adding soft Q-functions does not generally give the soft Q-function for the combined
task, we show in this section that the regret from using the policy obtained by adding the
constituent soft Q-functions together is upper bounded by the difference between the two
policies that are being composed. Intuitively, if two composed policies agree on an action, or
if they are indifferent towards each other’s actions, then the composed policy will be closer
to the optimal one.

Learning with Multiple Objectives

Compositionality makes learning far more efficient in multi-objective settings, which nat-
urally emerge in robotic tasks. For example, when training a robot to move objects, one
objective may be to move these objects quickly, and another objective may be to avoid
collisions with a wall or a person. More generally, assume there are K tasks, defined by
reward functions ri for i = 0, ..., K − 1, and that we are interested in solving any subset
C ⊆ {0, ..., K − 1} of those tasks simultaneously. A compound task can be expressed in
terms of the sum of the individual rewards:

rC(s, a) =
1

|C|
∑
i∈C

ri(s, a). (6.1)
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The conventional approach is to solve the compound tasks by directly optimizing this com-
pound reward rC for every possible combination C. Unfortunately, there are exponentially
many combinations. Compositionality makes this learning process much faster by instead
training an optimal policy π∗i for each reward ri and later combining them.

How should we combine the policies π∗i ? A simple approach is to approximate the optimal
soft Q-function of the composed task Q∗C with the mean of the individual soft Q-functions:

Q∗C(s, a) ≈ QΣ(s, a) =
1

|C|
∑
i∈C

Q∗i (s, a), (6.2)

where QΣ represents an approximation to the true optimal soft Q-function of the composed
task Q∗C. One can then extract a policy πΣ from this approximate soft Q-function using
any policy-extraction algorithm. In conventional reinforcement learning without entropy
regularization, we cannot make any guarantees about how close QΣ is to Q∗C. However, we
show in the next section that, if the constituent policies represent optimal maximum entropy
policies, then we can bound the difference between the value of the approximate policy QπΣ

C
and the optimal value Q∗C for the combined task.

Bounding the Sub-Optimality of Composed Policies

To understand what we can expect from the performance of the composed policy πΣ that
is induced by QΣ, we analyze how the value of πΣ relates to the unknown optimal soft
Q-function Q∗C corresponding to the composed reward rC. For simplicity, we consider the
special case where α = 1 and we compose just two optimal policies, given by π∗i , with soft
Q-functions Q∗i and reward functions ri. Extending the proof to more than two policies and
other values of α is straightforward. We start by introducing a lower bound for the optimal
combined soft Q-function in terms of Q∗i and π∗i .

Lemma 5. Let Q∗1 and Q∗2 be the soft Q-functions of the optimal policies corresponding to
reward functions r1 and r2, and define QΣ , 1

2
(Q∗1 +Q∗2). Then the optimal soft Q-function

of the combined reward rC , 1
2

(r1 + r2) satisfies

QΣ(s, a) ≥ Q∗C(s, a) ≥ QΣ(s, a)− C∗(s, a), ∀s ∈ S,∀a ∈ A, (6.3)

where C∗ is the fixed point of

C(s, a)← γ Es′∼p(s′|s,a)

[
D 1

2
(π∗1( · |s′) ‖ π∗2( · |s′)) + max

a′∈A
C(s′, a′)

]
, (6.4)

and D 1
2

( · ‖ · ) is the Rényi divergence of order 1/2.

Proof. See Appendix A.
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This lower bound tells us that the simple additive composition of soft Q-functions never
overestimates Q∗C by more than the divergence of the constituent policies. Interestingly, the
constant C∗ can be obtained as the fixed point of the conventional Bellman equation, where
the divergence of the constituent policies acts as the “reward function.” Thus, C∗ is the
“value” of an adversarial policy that seeks to maximize the divergence. So far, we bounded
Q∗C in terms of the constituent soft Q-functions, which does not necessarily mean that the
composed policy πΣ will have a high value. To that end, we use soft policy evaluation
(Section 4.2) to bound the value of the composed policy QπΣ

C :

Theorem 3. With the definitions in Lemma 5, the value of πΣ satisfies

QπΣ
C (s, a) ≥ Q∗C(s, a)−D∗(s, a), (6.5)

where D∗(s, a) is the fixed point of

D(s, a)← γ Es′∼p(s′|s,a)

[
Ea′∼πΣ(a′|s′) [C∗(s′, a′) +D(s′, a′)]

]
. (6.6)

Proof. See Appendix B.

Analogously to the discussion of C∗ in Lemma 5, D∗ can be viewed as the fixed point of
a Bellman equation, where now γC∗(s, a) has the role of the “reward function.” Intuitively,
this means that the bound becomes tight if the two policies agree in states that are visited
by the composed policy. This result show that we can bound the regret from using the
policy formed by composing optimal policies for the constituent rewards. While this bound
is likely quite loose, it does indicate that the regret decreases as the divergence between the
constituent policies decreases. This has a few interesting implications. First, deterministic
policies always have infinite divergence, unless they are identical, which suggests that they
are poorly suited for composition. Highly stochastic policies, such as those produced with
maximum entropy algorithms like soft Q-learning, have much lower divergences. Intuitively,
each policy has a wider distribution, and therefore the policies have more “overlap,” thus
reducing the regret from composition. Inversely, uniform policies always agree, and can
thus be combined exactly. As a consequence, we expect maximum entropy RL methods to
produce much more composable policies than standard RL methods.

6.3 Experiments

In this section, we show how compositionality of maximum entropy policies provides a prac-
tical tool for composing new compound skills out of previously trained components. We
evaluate our method on a pushing task in simulation as well combined stacking while avoid-
ing tasks on a real-world Sawyer robot. Videos of all experiments can be found on our
website1 and the code is available on GitHub2.

1sites.google.com/view/composing-real-world-policies/
2github.com/haarnoja/softqlearning/

sites.google.com/view/composing-real-world-policies/
github.com/haarnoja/softqlearning/
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Experimental Setup

For the simulated tasks, we used the MuJoCo physics engine (Todorov et al., 2012), and for
the real-world experiments we used the 7-DoF Sawyer robotic manipulator. The actions are
the torque commands at each joint, and the observations are the joint angles and angular
velocities, as well as the end-effector position. For the simulated pushing tasks, we also
include all the relevant object coordinates, and for the experiments on Sawyer, we include
the end-effector position and forces estimated from the actuator currents as observations.
We parameterize the soft Q-function and the policies with a 2-layer neural network with 100
or 200 units in each layer and rectifier linear activations. We compare our method to deep
deterministic policy gradients (DDPG) and normalized advangage functions (NAF).

Composing Policies for Pushing in Simulation

Does composing soft Q-functions from individual constituent policies allow us to quickly learn
compound policies? To answer that question, we study the compositionality of policies in a
simulated domain, where the task is to move a cylinder to a target location. This simulated
evaluation allows us to provide a detailed comparison against prior methods, evaluating
both their base performance and their performance under additive composition. We start by
learning the soft Q-functions for the constituent tasks and then combining them by adding
together the soft Q-functions to get QΣ. To extract a policy from QΣ, soft Q-learning requires
training a policy to produce samples from exp (QΣ), and DDPG requires training a network
that maximizes QΣ. In NAF, the optimal action for QΣ has a closed-form expression, since
the constituent Q-functions are quadratic in the actions. We train the combined DDPG and
SQL policies by reusing the data collected during the training of the constituent policies,
thus imposing no additional sample cost.

The constituent tasks in our simulated evaluation require a planar arm to push a cylinder
to specific positions along one of the two axes. A policy trained to push the disk to a specific
x position can choose any arbitrary y position, and vice versa. A maximum entropy policy,
in this case, would attempt to randomly cover all y positions, while a deterministic one would
pick one arbitrarily. The composed policy is formed by combining a policy trained to push
a cylinder to a specific x position and a policy trained to push the cylinder to a specific y
location, thus solving a combined objective for moving the disk to a particular 2D location
on the table. An illustration of this task is depicted in Figure 6.1, which shows a compound
policy formed by combining a soft Q-function for pushing the disk the blue line (x = −1)
and the orange line (y = −1). The final disk locations for 100 episodes of the final SQL
policies are shown with dots of respective colors. The green dots illustrate the disk positions
for the combined policy. Note that even though the orange policy never moves the disk to
any point close to the intersection, the combined policy interpolates to the intended target
correctly.

We trained four policies to push the cylinder to one of the following goals: left (x = −1),
middle (x = 0), right (x = 1), and bottom (y = −1) using all three algorithm (SQL,
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Figure 6.1: Two independent policies are trained to
push the cylinder to the orange line and blue line,
respectively. The colored dots show samples of the
final location of the cylinder for the respective poli-
cies. When the policies are combined, the resulting
policy pushes the cylinder to the lower intersection
of the lines (green dots). No additional samples are
used to train the combined policy. The combined pol-
icy learns to satisfy both original goals, rather than
simply averaging the final cylinder location.

Table 6.1: Simulated Pushing Task: distance from cylinder to goal

Task SQL DDPG NAF

push left 0.13 ± 0.06 0.20 ± 0.01 0.06 ± 0.01

push middle 0.07 ± 0.08 0.05 ± 0.03 0.02 ± 0.00

push right 0.10 ± 0.08 0.10 ± 0.07 0.09 ± 0.06

push bottom 0.08 ± 0.07 0.04 ± 0.02 0.17 ± 0.08

push bottom-left 0.11 ± 0.11 0.24 ± 0.01 0.17 ± 0.01

merge bottom-left 0.11 ± 0.05 0.19 ± 0.10 0.16 ± 0.00

push bottom-middle 0.12 ± 0.09 0.14 ± 0.03 0.34 ± 0.08

merge bottom-middle 0.09 ± 0.09 0.12 ± 0.02 0.02 ± 0.01

push bottom-right 0.18 ± 0.17 0.14 ± 0.06 0.15 ± 0.06

merge bottom-right 0.15 ± 0.14 0.09 ± 0.10 0.43 ± 0.21

DDPG, NAF). These goals gives three natural compositional objectives: bottom-left (x =
−1, y = −1), bottom-middle (x = 0, y = −1), and bottom-right (x = 1, y = −1). Table 6.1
summarizes the error distance of each constituent policy (first four rows), policies trained to
optimize the combined objective directly (e.g. , ”push bottom-left”), and composed policies
(e.g. , “merge bottom-left”). We see that SQL and DDPG perform well across all combined
tasks, whereas NAF is able to combine some policies better (bottom-middle) but fails on
others (bottom-right). Note that NAF policies are unimodal Gaussian, which are not well
suited for compositions.

We also compared the different methods of learning a composed task in terms of training
time. Example training curves for one of the targets are shown in Figure 6.2. Training a
policy from a given QΣ (red, green) takes virtually no time for any of the algorithms when
compared to training a Q-function and policy from scratch (blue). In fact, the combination of
NAF policies has a closed form, and it is thus not included in the graph. For comparison, we
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Figure 6.2: Comparison of the number of iterations needed to extract a policy from a Q-
function (red and green) and training a policy using off-policy (orange) or on-policy data
(blue). Note that the x-axis is on a log scale. Our proposed method (green and red)
extracts a policy from an additively composed Q-function, QΣ, almost instantly in an offline
fashion from off-policy data that were collected for training the constituent Q-functions. In
contrast, training a policy from scratch with online SQL (blue) takes orders of magnitude
more gradient steps and requires collecting new experience from the environment. Lastly,
training a policy on the composed task using offline SQL with pre-collected data fails to
converge in a reasonable amount of time (orange).

also trained a Q-function with SQL from scratch on the combined task in an offline fashion
(orange), meaning that we only use samples collected by the policies trained on individual
tasks. However, offline SQL fails to converge in reasonable time.

Our analysis indicates that, both with SQL and DDPG, compound policies can be ob-
tained quickly and efficiently simply by adding together the soft Q-functions of the indi-
vidual constituent policies. We can bound the suboptimality of such policies for SQL Sec-
tion 6.2, but for DDPG our analysis does not apply since DDPG is the limiting case α = 0.
Nonetheless, on simple practical problems like the one in our experiments, even the DDPG
Q-functions can be composed reasonably. This suggests that composition is a powerful tool
that can allow us to efficiently build new skills out of old ones. Next, we will see that con-
stituent policies trained with SQL can be reused to form compound skills also in the real
world.

Composing Real-World Policies

To test the viability of compositionality in the real-world, we evaluated the compositionality
of soft policies by combining a policy trained to stack Legos (Figure 6.3, first row) with a
policy that avoids an obstacle (Figure 6.3, second row) with the Sawyer robot. The avoidance
policy was rewarded for avoiding the obstacle and moving towards the target block without
the shaping term that is required to successfully stack the two blocks. We then evaluated 1)
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the avoidance policy, 2) the stacking policy, and 3) the combined policy on the insertion task
in the presence of the obstacle by executing each policy 10 times and counting the number
of successful insertions. The avoidance policy was able to bring the Lego block close to the
target block, but never successfully stacked the two blocks together. The stacking policy
collided with the obstacle every time (Figure 6.3, third row), but was still able to solve
the task 30 % of the time, and the combined policy (Figure 6.3, bottom row) successfully
avoided the obstacle and stacked the blocks 100 % of the time. This experiment illustrates
that policy compositionality is an effective tool that can be successfully employed also to
real-world tasks.

6.4 Conclusion

We discussed how expressive maximum entropy policies trained with soft Q-learning can be
composed to form new policies that are approximately optimal for the combined task, defined
by the sum of the constituent reward functions. Soft Q-learning achieves substantially better
performance than NAF on a simulated reaching task, where multiple policies are composed
to reach to new locations. The ability to compose Q-functions obtained via soft Q-learning
can make it particularly useful in real-world robotic scenarios, where retraining new policies
for each new combination of reward factors is time-consuming and expensive.
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Figure 6.3: To illustrate compositionality on physical hardware, we trained the Sawyer
manipulator to stack Lego blocks together (first row) and to avoid an obstacle (second
row). The stacking policy fails if it is executed in the presence of the obstacle (third row).
However, by combining the two policies, we get a new combined skills that solves both tasks
simultaneously and is able to stack the blocks while avoiding the obstacle.
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Chapter 7

Hierarchical Maximum Entropy
Reinforcement Learning

In this chapter, we address the problem of learning hierarchical deep neural network policies
for reinforcement learning. In contrast to methods that explicitly restrict or cripple lower
layers of a hierarchy to force them to use higher-level modulating signals, each layer in our
framework is trained to directly solve the task, but acquires a range of diverse strategies via
a maximum entropy reinforcement learning objective. Each layer is also augmented with
latent random variables, which are sampled from a prior distribution during the training of
that layer. The maximum entropy objective causes these latent variables to be incorporated
into the layer’s policy, and the higher level layer can directly control the behavior of the
lower layer through this latent space. Furthermore, by constraining the mapping from latent
variables to actions to be invertible, higher layers retain full expressivity: neither the higher
layers nor the lower layers are constrained in their behavior. Our experimental evaluation
demonstrates that we can improve on the performance of single-layer policies on standard
benchmark tasks simply by adding additional layers, and that our method can solve more
complex sparse-reward tasks by learning higher-level policies on top of high-entropy skills
optimized for simple low-level objectives.

7.1 Overview

Part of the promise of incorporating deep representations into RL is the potential for the
emergence of hierarchies, which can enable reasoning and decision making at different levels
of abstraction. A hierarchical RL algorithm could, in principle, efficiently discover solutions
to complex problems and reuse representations between related tasks. While hierarchical
structures have been observed to emerge in deep networks applied to perception tasks, such
as computer vision (LeCun et al., 2015), it remains an open question how suitable hierarchical
representations can be induced in a reinforcement learning setting. A central challenge
with these methods is the automation of the hierarchy construction process: hand-specified



CHAPTER 7. HIERARCHICAL MAXIMUM ENTROPY REINFORCEMENT
LEARNING 59

hierarchies require considerable expertise and insight to design and limit the generality of the
approach (Sutton et al., 1999; Kulkarni et al., 2016; Tessler et al., 2017), while automated
methods must contend with severe challenges, such as the collapse of all primitives into
just one useful skill (Bacon et al., 2017) or the need to hand-engineer primitive discovery
objectives or intermediate goals (Heess et al., 2016).

When learning hierarchies automatically, we must answer a critical question: What ob-
jective can we use to ensure that lower layers in a hierarchy are useful to the higher layers?
Prior work has proposed a number of heuristic approaches, such as hiding some parts of
the observation from the lower layers (Heess et al., 2016), hand-designing state features
and training the lower layer behaviors to maximize mutual information against these fea-
tures (Florensa et al., 2017), or constructing diversity-seeking priors that cause lower-layer
primitives to take on different roles (Daniel et al., 2012; Eysenbach et al., 2018). Oftentimes,
these heuristics intentionally cripple the lower layers of the hierarchy, for example, by with-
holding information, so as to force a hierarchy to emerge, or else limit the higher levels of
the hierarchy to selecting from among a discrete set of skills (Bacon et al., 2017). In both
cases, the hierarchy is forced to emerge because neither higher nor lower layers can solve
the problem alone. However, constraining the layers in this way can involve artificial and
task-specific restrictions (Heess et al., 2016) or else diminish overall performance.

Instead of crippling or limiting the different levels of the hierarchy, we can imagine a
hierarchical framework in which each layer directly attempts to solve the task and, if it is
not fully successful, makes the job easier for the layer above it. In this paper, we explore a
solution to the hierarchical reinforcement learning problem based on this principle. In our
framework, each layer of the hierarchy corresponds to a policy with internal latent variables.
These latent variables determine how the policy maps states into actions, and the latent
variables of the lower-level policy act as the action space for the higher level. Crucially, each
layer is unconstrained, both in its ability to sense and affect the environment: each layer
receives the full state as the observation, and each layer is, by construction, fully invertible, so
that higher layers in the hierarchy can undo any transformation of the action space imposed
on the layers below.

In order to train policies with latent variables, we cast the problem of reinforcement
learning into the framework of probabilistic graphical models. To that end, we build on
maximum entropy reinforcement learning (Todorov, 2007; Ziebart et al., 2008), where the
RL objective is modified to optimize for stochastic policies that maximize both reward and
entropy. It can be shown that, in this framework, the RL problem becomes equivalent to an
inference problem in a particular type of probabilistic graphical model (Toussaint, 2009). By
augmenting this model with latent variables, we can derive a method that simultaneously
produces a policy that attempts to solve the task, and a latent space that can be used by a
higher-level controller to steer the policy’s behavior.

The particular latent variable model representation that we use is based on normalizing
flows (Dinh et al., 2016) that transform samples from a spherical Gaussian prior latent vari-
able distribution into a posterior distribution, which in the case of our policies corresponds
to a distribution over actions. When this transformation is described by a general-purpose
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neural network, the model can represent any distribution over the observed variable when
the network is large enough. By conditioning the entire generation process on the state, we
obtain a policy that can represent any conditional distribution over actions. When combined
with maximum entropy reinforcement learning algorithms, this leads to a RL method that
is expressive, powerful, and surprisingly stable. In fact, our experimental evaluation shows
that this approach can attain state-of-the-art results on a number of continuous control
benchmark tasks by itself, independently of its applicability to hierarchical RL.

The contributions of this chapter consist of a stable and scalable algorithm for training
maximum entropy policies with latent variables as well as a framework for constructing
hierarchies out of these latent variable policies. Hierarchies are constructed in layerwise
fashion, by training one latent variable policy at a time, with each policy using the latent
space of the policy below it as an action space, as illustrated in Figure 7.2. Each layer can
be trained either on the true reward for the task, without any modification, or on a lower-
level shaping reward. For example, for learning a complex navigation task, lower layers
might receive a reward that promotes locomotion, regardless of direction, while higher layers
aim to reach a particular location. When the shaping terms are not available, the same
reward function can be used for each layer, and we still observe significant improvements
from hierarchy. Our experimental evaluation illustrates that our method produces state-of-
the-art results in terms of sample complexity on a variety of benchmark tasks, including a
humanoid robot with 21 actuators, even when training a single layer of the hierarchy, and can
further improve performance when additional layers are added. Furthermore, we illustrate
that more challenging tasks with sparse reward signals can be solved effectively by providing
shaping rewards to lower layers.

7.2 Control as Inference

In this section, we derive the maximum entropy objective by transforming the optimal control
problem into an inference problem. Our proposed hierarchical framework will later build off
of this probabilistic view of optimal control (Section 7.3).

Probabilistic Graphical Model for Control

Our derivation is based on the probabilistic graphical model in Figure 7.1a. This model is
composed of factors for the dynamics p(st+1|st, at) and for an action prior p(at), which is
typically taken to be a uniform distribution but, as we will discuss later, will be convenient
to set to a Gaussian distribution in the hierarchical case. Because we are interested in
inferring the optimal trajectory distribution under a given reward function, we attach to
each state and action a binary random variable Ot, or optimality variable, denoting whether
the time step was “optimal.” To solve the optimal control problem, we can now infer the
posterior action distribution π∗(at|st) = p(at|st,Ot:T = true), which simply states that an
optimal action is such that the optimality variable is active for the current state and for all
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(a) (b) (c)

Figure 7.1: (a) The optimal control problem can be cast as an inference problem by consid-
ering a graphical model that consist of transition probabilities, action priors, and optimality
variables. We can infer the optimal actions by conditioning on the optimality variables. (b)
We can then train a latent variable policy to approximate the optimal actions, augment
the graphical model with the policy’s action distribution, and condition on a new set of
optimality variables P0:T . Dashed line denotes a deterministic (invertible) edge. (c) By
marginalizing out the actions at, we are left with a new model that is structurally identical
to the one in (a), where ht has taken the role of the original actions.

of the future states. For the remainder of this paper, we will refrain, for conciseness, from
explicitly writing Ot = true, and instead write Ot to denote the state-action tuple for the
corresponding time was optimal.

A convenient way to incorporate reward function into this framework is to assume that
r(st, at) < 0, without loss of generality, and choose p(Ot|st, at) = exp( 1

α
r(st, at)). We can

now write the distribution over optimal trajectories as

p(τ |O0:T ) ∝ p(s0)
T∏
t=0

p(at)p(st+1|st, at) exp

(
1

α
r(st, at)

)
, (7.1)

and use it to make queries, such as p(at|st,Ot:T ). As we will discuss in the next section, using
variational inference to determine p(at|st,Ot:T ) reduces to the familiar maximum entropy
reinforcement learning objective.

Reinforcement Learning via Variational Inference

The optimal action distribution inferred from Equation 7.1 cannot be directly used as a
policy for two reasons. First, it would lead to an overly optimistic policy that assumes that
the stochastic state transitions can also be modified to prefer optimal behavior, even though
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in practice, the agent has no control over the dynamics. Second, in continuous domains, the
optimal policy is intractable and has to be approximated, for example by using a Gaussian
distribution. We can correct both issues by using structured variational inference, where we
approximate the posterior with a probabilistic model that constrains the dynamics and the
policy. We constrain the dynamics in this distribution to be equal to the true dynamics, which
we do not need to actually know in practice but can simply sample in model-free fashion,
and constrain the policy to some parameterized distribution. This defines the variational
distribution q(τ) as

q(τ) = p(s0)
T∏
t=0

π(at|st)p(st+1|st, at), (7.2)

where p(s0) and p(st+1|st, at) are the true initial state distribution and dynamics, and π(at|st)
is the parameterized policy that we wish to learn. We can fit this distribution by maximizing
the evidence lower bound (ELBO):

log p(O0:T ) ≥ −DKL (q(τ) ‖ p(O0:T , τ)) . (7.3)

Since the dynamics and initial state distributions in q and p match, it’s straightforward to
check that the right hand side can be optimized by maximizing

J(π) = Eτ∼ρπ(τ)

[
T∑
t=0

r(st, at) + αDKL (π( · |st) ‖ p( · ))
]
, (7.4)

which, if we choose a uniform action prior, is exactly the maximum entropy objective up to
a constant, and it can be optimized with any off-the-shelf entropy maximizing reinforcement
learning algorithms (e.g., (Nachum et al., 2017; Schulman et al., 2017a; Haarnoja et al.,
2017, 2018c)). Although the variational inference framework is not the only way to motivate
the maximum entropy RL objective, it provides a convenient starting point for our method,
which will augment the graphical model in Figure 7.1a with latent variables that can then
be used to produce a hierarchy of policies, as discussed in the following section.

7.3 Learning Latent Space Policies

In this section, we discuss how the probabilistic view of RL can be employed in the construc-
tion of hierarchical policies, by augmenting the graphical model in Figure 7.1a with latent
variables. We will also propose a particular way to parameterize the distribution over actions
conditioned on these latent variables that is based on bijective transformations, which will
provide us with a model amenable to stable and tractable training and the ability for higher
levels in the hierarchy to fully invert the behavior of the lower layers, as we will discuss in this
section. We will derive the method for two-layer hierarchies to simplify notation, but it can
be easily generalized to arbitrarily deep hierarchies. In this work, we consider the bottom-up
approach, where we first train a low-level policy, and then use it to provide a higher-level
action space for a higher level policy that ideally can now solve an easier problem.
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Latent Variable Policies for Hierarchical RL

We start constructing a hierarchy by defining a stochastic base policy as a latent variable
model. In other words, we require the base policy to consist of two factors: a conditional
action distribution π(at|st,ht), where ht is a latent random variable, and a prior p(ht).
Actions can be sampled from this policy by first sampling ht from the prior and then sampling
an action conditioned on ht. Adding the latent variables ht results in a new graphical model,
which can now be conditioned on some new optimality variables Pt that can represent either
the same task, or a different higher-level task, as shown in Figure 7.1b. In this new graphical
model, the base policy is integrated into the transition structure of the MDP, which now
exposes a new, higher-level set of actions ht. Insofar as the base policy succeeds in solving
the task, partially or completely, learning a related task with ht as the action should be
substantially easier.

This “policy-augmented” graphical model has a semantically identical interpretation
as the original graphical model in Figure 7.1a, where the combination of the transition
model and the action conditional serves as a new (and likely easier) dynamical system. We
can derive the dynamics model for the combined system by marginalizing out the actions:
p(st+1|st,ht) =

∫
A p(st+1|st, at)π(at|st,ht)dat, where ht is a new, higher-level action and

p(ht) is its prior, as illustrated in Figure 7.1c. In other words, the base policy shapes the
underlying dynamics of the system, ideally making it more easily controllable by a higher
level policy. We can now learn a higher level policy for the latents by conditioning on new
optimality variables. We can repeat this process multiple times by integrating each new
policy level into the dynamics and learning a new higher-level policy on top of the previous
policy’s latent space, thus constructing an arbitrarily deep hierarchical policy representation.
We will refer to these policy layers as sub-policies in the following sections. Similar layerwise
training has been studied in the context of generative modeling with deep believe networks
and was shown to improve optimization of deep architectures (Hinton & Salakhutdinov,
2006).

Practical Training of Latent Variable Policies

An essential choice in our method is the representation of sub-policies which, ideally, should
be characterized by three properties. First, each sub-policy should be tractable. This
is required, since we need to maximize the log-likelihood of good actions, which requires
marginalizing out all latent variables. Second, the sub-policies should be expressive, so that
they don’t suppress the information flow from the higher levels to the lower levels. For
example, a mixture of Gaussians as a sub-policy can only provide a limited number of be-
haviors for the higher levels, corresponding to the mixture elements, potentially crippling
the ability of the higher layers to solve the task. Third, the conditional factor of each sub-
policy should be deterministic, since the higher levels view it as a part of the environment,
and additional implicit noise in the system can degrade their performance. Our approach
to model the conditionals is based on bijective transformations of the latent variables into
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actions, which provides all of the aforementioned properties: the sub-policies are tractable,
since marginalization reduces to single-point evaluation; they are expressive if represented
via neural networks; and they are deterministic due to the bijective transformation. Specif-
ically, we borrow from the recent advances in unsupervised learning based on real-valued
non-volume preserving (real NVP) neural network transformations (Dinh et al., 2016). Our
network differs from the original real NVP architecture in that we also condition the trans-
formations on the current state or observation. Note that, even though the transformation
from the latent to the action is bijective, it can depend on the observation in arbitrarily
complex non-invertible ways, as we discuss in Section 7.4, providing our sub-policies with
the requisite expressive power.

We can learn the parameters of these networks by utilizing the change of variables formula
as discussed by Dinh et al. (2016), and summarized here for completeness. Let at = fφ(ht; st)
be a bijective transformation, parameterized by φ, and let ht ∈ Rdim(A) be a random variable
and p(ht) its prior density. It is possible to express the density of at in terms of the prior
and the Jacobian of the transformation by employing the change of variable formula as

πφ(at|st) = p(ht)

∣∣∣∣det

(
dfφ(ht; st)

dht

)∣∣∣∣−1

. (7.5)

Dinh et al. (2016) propose a particular kind of bijective transformation, which has a trian-
gular Jacobian, simplifying the computation of the determinant to a product of its diagonal
elements. The exact structure of these transformations is outside of the scope of this work,
and we refer the reader to (Dinh et al., 2016) for a more detailed description. We can easily
chain these transformations to form multi-level policies, and we can train them end-to-end
as a single policy or layerwise as a hierarchical policy. As a consequence, the policy repre-
sentation is agnostic to whether or not it was trained as a single expressive latent-variable
policy or as a hierarchical policy consisting of several sub-policies, allowing us to choose the
training method that best suits the problem at hand without the need to redesign the policy
topology each time from scratch.

Reward Functions for Policy Hierarchies

The simplest way to construct a hierarchy out of latent variable policies is to train each
layer in turn, then freeze its weights, and train a new layer that uses the lower layer’s
latent variables as an action space. In this procedure, each layer is trained on the same
maximum entropy objective, and each layer simplifies the task for the layer above it. As we
will show in Section 7.4, this procedure can provide substantial benefit on challenging and
high-dimensional benchmark tasks.

However, for tasks that are more challenging, we can also naturally incorporate weak prior
information into the training process by using underdefined heuristic reward functions for
training the lower layers. In this approach, lower layers of the hierarchy are trained on reward
functions that include shaping terms that elicit more desirable behaviors. For example, if we
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wish to learn a complex navigation task for a walking robot, the lower-layer objective might
provide a reward for moving in any direction, while the higher layer is trained only on the
primary objective of the task. Because our method uses bijective transformations, the higher
layer can always undo any behavior in the lower layer if it is detrimental to task success,
while lower layer objectives that correlate with task success can greatly simplify learning.
Furthermore, since each layer still aims to maximize entropy, even a weak objective, such as
a reward for motion in any direction (e.g., the norm of the velocity), will produce motion
in many different directions that is controllable by the lower layer’s latent variables. In our
experiments, we will demonstrate how this approach can be used to solve a goal navigation
task for a simulated, quadrupedal robot.

Algorithm Summary

We summarize the proposed algorithm in Algorithm 4. The algorithm begins by operating
on the low-level actions in the environment according to the unknown system dynamics
p(st+1|st, at), where we use h

(0)
t = at to denote the lowest-layer actions. The algorithm is

also provided with an ordered set of K reward functions ri, which can all represent the
same task or different tasks, depending on the skill we want to learn: skills that naturally
divide into primitive skills can benefit from specifying a different low-level objective, but
for simpler tasks, such as locomotion, which do not naturally divide into primitives, we
can train each sub-policy to optimize the same objective. In both cases, the last reward
function rK−1 should correspond to the actual task we want to solve. The algorithm then
chooses each ri sequentially and learns a maximum entropy policy πφi , represented by an

invertible transformation fφi : S ×A → A and a prior p(h
(i)
t ), to optimize the corresponding

variational inference objective in Equation 7.4. We use soft actor-critic (Chapter 4) to
optimize the policy due to its robustness and good sample-efficiency, although other entropy
maximizing RL algorithms can also be used. After each iteration, we embed the newly
learned transformation fi into the environment, which produces a new system dynamics
p(st+1|st,h(i+1)

t ) that can be used by the next layer. As before, we do not need an analytic
form of these dynamics, only the ability to sample from them, which allows our algorithm
to operate in the fully model-free setting.

7.4 Experiments

Our experiments were conducted on several continuous control benchmark tasks from the
OpenAI Gym benchmark suite (Brockman et al., 2016). The aim of our experiments was to
answer the following questions: (1) How well does our latent space policy learning method
compare to prior reinforcement learning algorithms? (2) Can we attain improved perfor-
mance from adding additional latent variable policy layers to a hierarchy, especially on
challenging, high-dimensional tasks? (3) Can we solve more complex tasks by providing
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Algorithm 4 Latent Space Policy Learning

Input: {r0, r1, ..., rK−1} . Set of reward functions
Input: {φ0, φ1, ..., φK−1} . Initial policy parameters

for i = 0 to K − 1 do

φ∗i ← arg maxφi
∑

t E(st,h
(i)
t )∼ρπφi

[
ri(st,h

(i)
t )− α log

(
πφi(h

(i)
t |st)

)]
. Soft actor-critic

where
st+1 ∼ p(st+1|st, at) . Environment dynamics

at = (fφ0 ◦ fφ1 ◦ · · · ◦ fφi−1
)(h

(i)
t ) . Lower level policies

h
(i)
t = fφi(h

(i+1)
t ) . Current policy

h
(i+1)
t ∼ p(h

(i+1)
t ) . Latent prior (spherical Gaussian)

end for
Output: f ∗ = fφ∗0 ◦ fφ∗1 ◦ · · · ◦ fφ∗K−1

. Optimal hierarchical policy

simple heuristic shaping to lower layers of the hierarchy, while the higher layers optimize the
original task reward? Videos of our experiments are available online1.

Policy Architecture

In our experiments, we used both single-level policies and hierarchical policies composed
of two sub-policies as shown on the right in Figure 7.2. Each sub-policy has an identical
structure, as depicted on the left in Figure 7.2. A sub-policy is constructed from two coupling
layers that are connected using the alternating pattern described in (Dinh et al., 2016). Our
implementation differs from (Dinh et al., 2016) only in that we condition the coupling layers
on the observations, via an embedding performed by a two-layer fully-connected network.
In practice, we concatenate the embedding vector with the latent input to each coupling
layer. Note that our method requires only the path from the input latent to the output to
be invertible, and the output can depend on the observation in arbitrarily complex ways.
We have released our code for reproducibility.2

Benchmark Tasks with Single-Level Policies

We compare our method (SAC-LSP) to proximal policy optimization (PPO) (Schulman et al.,
2017b) and deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015). We also in-
clude two algorithm that learn maximum entropy policies: soft Q-learning (SQL) (Haarnoja
et al., 2017), which also learns a sampling network as part of the model, represented by an
implicit density model, and soft actor-critic, using a Gaussian mixture model policy (SAC-

1https://sites.google.com/view/latent-space-deep-rl/
2https://github.com/haarnoja/sac/

https://sites.google.com/view/latent-space-deep-rl/
https://github.com/haarnoja/sac/
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Figure 7.2: Our hierarchical policy consist of two levels (right diagram) that take in the
observation and a latent vector from the previous level and outputs a latent vector to the
next level. Diagram on the left shows the internal structure of each of the policy levels. The
latent vector that is passed from the higher level is fed through two invertible coupling layers
(green) (Dinh et al., 2016), which we condition on an observation embedding (yellow). Note
that the path from the observation to the output does not need to be bijective, and therefore
the observation embeddings can be represented with an arbitrary neural network, which in
our case consists of two fully connected layers.

GMM)3. Note that the benchmark tasks compare the total expected return, but the entropy
maximizing algorithms optimize a slightly different objective, so this comparison slightly fa-
vors PPO and DDPG, which optimize the benchmark objective directly. Another difference
between the two classes of algorithms is that the maximum entropy policies are stochastic
at test time, while DDPG is deterministic and PPO typically converges to nearly deter-
ministic policies. For SAC-GMM, we execute an approximate maximum a posteriori action
by choosing the mean of the mixture component that has the highest soft Q-value at test
time, but for SQL and SAC-LSP, which both can represent an arbitrarily complex posterior
distribution, we simply sample from the stochastic policy.

Our results on the benchmark tasks show that latent space policies based on normalizing
flows generally performs on a par or better than all of the tested other methods, both in
terms of efficiency and final return (Figure 7.3), especially on the more challenging and
high-dimensional tasks, such as Humanoid (rllab). These results indicate that our policy
representation can accelerate learning, particularly in challenging environments with high-
dimensional actions and observations.

Multi-Level Policies

In this section, we evaluate the performance of our approach when we compose multiple
latent variable policies into a hierarchy. In the first experiment, we train a single-level base
policy on the most challenging standard benchmarks, Ant and Humanoid. We then freeze

3SAC-GMM is an early version of soft actor-critic that does not incorporate two Q-functions and uses
REINFORCE gradients to estimate the gradient of the policy loss, and therefore performance is slightly
worse than what we showed in Chapter 4 and Chapter 5.
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Figure 7.3: Training curves for continuous control benchmarks. Thick lines correspond to
mean performance, and shaded regions show standard deviations of five random seeds. Our
method (SAC-LSP) attains state-of-the-art performance across all tasks.

the weights of the base policy, and learn another policy level that uses the latent variables
of the first policy as its action space. Intuitively, each layer in such a hierarchy attempts
to solve the task to the best of its ability, providing an easier problem for the layer above.
In Figure 7.4a and Figure 7.4b, we show the training curves for Ant and Humanoid, where
the blue curve corresponds to the base policy and orange curves show the performance after
we freeze the base policy weights and optimize a second-level policy. The different orange
curves correspond to the addition of the second layer after a different numbers of training
steps. In each case, the two-level policy can outperform a single level policy by a large
margin. The performance boost is more prominent if we train the base policy longer. Note
that the base policy corresponds to a single-level policy in Figure 7.3, and already learns
more efficiently than prior methods. We also compare to a single, more expressive policy
(green) that consists of four invertible layers, which has a similar number of parameters
to a stacked two-level policy, but trained end-to-end as oppose to stagewise. This single
four-layer policy performs comparably (Ant) or worse (Humanoid) than a single, two-layer
policy (blue), indicating that the benefit of the two-level hierarchy is not just in the increased
expressivity of the policy, but that the stagewise training procedure plays an important role
in improving performance.

In our second experiment, we study how our method can be used to build hierarchical
policies for complex tasks that require compound skills. The particular task we consider
requires Ant to navigate through a simple maze (Figure 7.5a) with a sparse, binary reward
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(a) Ant (rllab) (b) Humanoid (rllab)

Figure 7.4: (a, b) We trained two-level policies for the most challenging benchmark tasks,
Ant and Humanoid, by first training a single level policy (blue) and then freezing it and
adding a second policy level. We repeated this procedure by starting training of the top-
level policy at multiple points in time (orange). We also trained a single policy with four
invertible layers end-to-end (green) for comparison. In each case, stagewise training of two
levels yields the best performance.

for reaching the goals (shown in green). To solve this task, we can construct a hierarchy,
where the lower layer is trained to acquire a general locomotion skill simply by providing
a reward for maximizing velocity, regardless of direction. This pretraining phase can be
conducted in a simpler, open environment where the agent can move freely. This provides
a small amount of domain knowledge, but this type of domain knowledge is much easier to
specify than true intermediate goals or modulation (Heess et al., 2016; Kulkarni et al., 2016),
and the entropy maximization term in the objective automatically causes the low-level policy
to learn a range of locomotion skills for various directions. The higher-level policy is then
provided the standard task reward. Because the lower-level policy is invertible, the higher-
level policy can still solve the task however it needs to, potentially even by fully undoing the
behavior of the lower-level policy. However, the results suggest that the lower-level policy
does indeed substantially simplify the problem, resulting in both rapid learning and good
final performance.

In Figure 7.5b, we compare our approach (blue) to four single-level baselines that either
learn a policy from scratch or fine-tune a pretrained policy. The pretraining phase (4 million
steps) is not included in the learning curves, since the same base policies were reused across
multiple tasks, corresponding to the three difference goal locations shown in Figure 7.5a.
With task reward only, training a policy from scratch (red) failed to solve the task due to
lack of structured exploration, whereas fine-tuning a pretrained policy (brown) that already
knows how to move around and could occasionally find the way to the goal was able to
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(a) Ant maze (b) Ant maze results

Figure 7.5: (a) We trained Ant to navigate through a simple maze to three different goal location
shown in green. (b) We first trained a low-level policy with a motion reward in a pretraining
environment not including the walls, then fixed the policy and trained another policy level with a
target reward (blue). We compare our method to learning a single policy from scratch or fine-tuning
the pretrained policy using only the task reward or a combination of task and motion rewards. We
also applied our method to soft Q-learning.

slowly learn this task. We also tried improving exploration by augmenting the objective
with a motion reward, provided as a shaping term for the entire policy. In this case, a
policy trained from scratch (purple) learned slowly, as it first needed to acquire a locomotion
skill, but was able to eventually solve the task, while fine-tuning a pretrained policy resulted
in much faster learning (pink). However, in both cases, adding motion as a shaping term
prevents the policy from converging on an optimal solution, since the shaping alters the task.
This manifests as residual error at convergence. On the other hand, our method (blue) can
make use of the pretrained locomotion skills while optimizing for the task reward directly,
resulting in faster learning and better final performance. Note that our method converges
to a solution where the final distance to the goal is more than four times smaller than for
the next best method, which finetunes with a shaped reward. We also applied our method
to soft Q-learning (orange), which also trains latent space policies, but we found it to learn
substantially slower than SAC-LSP.

7.5 Conclusion

We presented a method for training policies with latent variables. Our reinforcement learning
algorithm not only compares favorably to state-of-the-art algorithms on standard benchmark
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tasks, but also provides an appealing avenue for constructing hierarchical policies: higher
levels in the hierarchy can directly make use of the latent space of the lower levels as their
action space, which allows us to train the entire hierarchy in a layerwise fashion. This
approach to hierarchical reinforcement learning has a number of conceptual and practical
benefits. First, each layer in the hierarchy can be trained with exactly the same algorithm.
Second, by using an invertible mapping from latent variables to actions, each layer becomes
invertible, which means that the higher layer can always perfectly invert any behavior of the
lower layer. This makes it possible to train lower layers on heuristic shaping rewards, while
higher layers can still optimize task-specific rewards with good asymptotic performance.
Our method has a natural interpretation as an iterative procedure for constructing graphical
models that gradually simplify the task dynamics.
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Chapter 8

Discussion and Future Work

We presented deep RL methods based on the maximum entropy framework. We showed
that policies learned under this framework can be composed to form new approximately
optimal policies for the combination of the tasks, and we discussed how we can use it to
build hierarchical policies. We also demonstrated that algorithms based on this framework,
namely soft Q-learning and soft actor-critic, are sample efficient, provide consistent training
performance, and are robust to variations hyperparameters—making them a strong candi-
date solution for real-world robotic tasks. However, several challenging to make deep RL a
practical solution in the real world remain. Sample complexity is typically considered as the
biggest, but given the recent advances of deep RL algorithms, we are getting to the point
where we can solve simple tasks in the real world that do not require long term reasoning.
Even though more can definitely be done on that front, there are a few other important
aspects that have drawn less attention: reward specification and safe exploration.

Regarding the reward function, most advances in deep RL has focused on simulated
systems or rule-based games, where specifying a reward signal is relatively straightforward.
However, most real-world robotic applications require additional instrumentation, such as a
motion capture system, adding substantial overhead to deployment of the algorithms and
limiting their use to laboratories with access to the required instruments. On other hand,
most real-world tasks are subjectively defined, and thus, a reasonable alternative to exten-
sive instrumentation would be to design and implement improved ways to infer tasks directly
from operators. For example, learning from human instructions (Tung et al., 2018), prefer-
ences (Christiano et al., 2017), or demonstrations (Abbeel & Ng, 2004) are all interesting
and promising research directions. Regarding safety, maximum entropy RL can provide an
elegant solution for safer exploration: Instead of maximizing entropy, that is, learning a
posterior policy with a uniform prior, we can use a more informative prior distribution (Fox
et al., 2016). An informative prior can be obtained via pretraining in simulation or from do-
main knowledge. A good prior equips the learning algorithm with an inductive bias for safer
and better exploration, and the optimal policy can be eventually recovered by annealing the
prior towards uniform.

Hierarchical reinforcement learning holds the promise of extending deep RL to tasks
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requiring longer term abstract reasoning. Policy hierarchies based on the maximum entropy
framework and invertible policies yield a competitive performance and has an compelling
probabilistic interpretation. The results we presented in Section 7.4 are limited to a single
time scale1, but in principle the framework could be extended to multiple time scales by
imposing a slowness prior to the high-level policies. Another interesting research direction
would be to study sim-to-real transfer with hierarchies: we could learn a base policy in
simulation and a high-level policy in the real world. The high-level policy can be made less
expressive to reduce the amount of required real-world samples, and since these policies are
invertible, it can, in principle, learn to invert any undesirable behaviors learned by the base
policy due to imperfect simulation model.

1To be precise, we used twice as long time steps for the high-level policy as for the base policy, but
ideally the ratio should not be fixed a priori.
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Appendix A

Discounted Infinite Horizon
Maximum Entropy Objective

The exact definition of the discounted maximum entropy objective is complicated by the fact
that, when using a discount factor for policy gradient methods, we typically do not discount
the state distribution, only the rewards. In that sense, discounted policy gradients typically
do not optimize the true discounted objective. Instead, they optimize average reward, with
the discount serving to reduce variance, as discussed by Thomas (2014). However, we can
define the objective that is optimized under a discount factor as

J(π) =
∞∑
t=0

E(st,at)∼ρπ

[
∞∑
l=t

γl−t Esl∼p,al∼π [r(st, at) + αH(π( · |st))|st, at]
]
. (A.1)

This objective corresponds to maximizing the discounted expected reward and entropy for
future states originating from every state-action tuple (st, at) weighted by its probability ρπ
under the current policy.
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Appendix B

Proofs

B.1 Soft Q-Learning

The Maximum Entropy Policy

We start with the definition of the soft Q-value Qπ for any policy π as the expectation under
π of the discounted sum of rewards and entropy:

Qπ(s, a) , r(s0, a0) + Eτ∼π,s0=s,a0=a

[
∞∑
t=1

γt(r(st, at) +H(π( · |st)))
]
. (B.1)

Here, τ = (s0, a0, s1, a1, . . .) denotes the trajectory originating from (s, a). We have set
α = 1 for simplicity, but the theory can be easily adapted to other temperatures by dividing
rewards by α. The discounted maximum entropy policy objective in Equation A.1 can now
be defined as

J(π) ,
∞∑
t=0

E(st,at)∼ρπ [Qπ(st, at) + αH(π( · |st))] . (B.2)

If the objective function is the expected discounted sum of rewards, the policy improvement
theorem (Sutton & Barto, 1998) describes how policies can be improved monotonically.
There is a similar theorem we can derive for the maximum entropy objective:

Theorem 4. (Policy improvement theorem) Given a policy π, define a new policy π̃ as

π̃( · |s) ∝ exp (Qπ(s, · )) , ∀s. (B.3)

Assume that throughout our computation, Q is bounded and
∫

exp(Q(s, a)) da is bounded for
any s (for both π and π̃). Then Qπ̃(s, a) ≥ Qπ(s, a) ∀s, a.

The proof relies on the following observation: if one greedily maximize the sum of entropy
and value with one-step look-ahead, then one obtains π̃ from π:

H(π( · |s)) + Ea∼π [Qπ(s, a)] ≤ H(π̃( · |s)) + Ea∼π̃ [Qπ(s, a)] . (B.4)
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The proof is straight-forward by noticing that

H(π( · |s)) + Ea∼π [Qπ(s, a)] = −DKL (π( · |s) ‖ π̃( · |s)) + log

∫
exp (Qπ(s, a)) da (B.5)

Then we can show that

Qπ(s, a) = Es1 [r0 + γ(H(π( · |s1)) + Ea1∼π [Qπ(s1, a1)])]

≤ Es1 [r0 + γ(H(π̃( · |s1)) + Ea1∼π̃ [Qπ(s1, a1)])]

= Es1 [r0 + γ(H(π̃( · |s1)) + r1)] + γ2 Es2 [H(π( · |s2)) + Ea2∼π [Qπ(s2, a2)]]

≤ Es1 [r0 + γ(H(π̃( · |s1)) + r1] + γ2 Es2 [H(π̃( · |s2)) + Ea2∼π̃ [Qπ(s2, a2)]]

= Es1 a2∼π̃,s2

[
r0 + γ(H(π̃( · |s1)) + r1) + γ2(H(π̃( · |s2)) + r2)

]
+ γ3 Es3 [H(π̃( · |s3)) + Ea3∼π̃ [Qπ(s3, a3)]]

...

≤ Eτ∼π̃

[
r0 +

∞∑
t=1

γt(H(π̃( · |st)) + rt)

]
= Qπ̃(s, a). (B.6)

With Theorem 4, we start from an arbitrary policy π0 and define the policy iteration as

πi+1( · |s) ∝ exp (Qπi(s, · )) . (B.7)

Then Qπi(s, a) improves monotonically. Under certain regularity conditions, πi converges to
π∞. Obviously, we have π∞(a|s) ∝a exp (Qπ∞(s, a)). Since any non-optimal policy can be
improved this way, the optimal policy must satisfy this energy-based form. Therefore we
have proven Lemma 1.

Soft Bellman Equation and Soft Value Iteration

Recall the definition of the soft value function:

V π(s) , log

∫
exp (Qπ(s, a)) da. (B.8)

Suppose π(a|s) = exp (Qπ(s, a)− V π(s)). Then we can show that

Qπ(s, a) = r(s, a) + γ Es′∼p
[
H(π( · |s′)) + Ea′∼π( · |s′) [Qπ(s′, a′)]

]
= r(s, a) + γ Es′∼p [V π(s′)] . (B.9)

This completes the proof of Lemma 2.
Finally, we show that the soft value iteration operator T , defined as

T Q(s, a) , r(s, a) + γ Es′∼p

[
log

∫
expQ(s′, a′) da′

]
, (B.10)
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is a contraction. Then Theorem 1 follows immediately. The following proof has also been
presented by Fox et al. (2016). Define a norm on Q-values as ‖Q1−Q2‖ , maxs,a |Q1(s, a)−
Q2(s, a)|. Suppose ε = ‖Q1 −Q2‖. Then

log

∫
exp(Q1(s′, a′)) da′ ≤ log

∫
exp(Q2(s′, a′) + ε) da′

= log

(
exp(ε)

∫
expQ2(s′, a′) da′

)
= ε+ log

∫
expQ2(a′, a′) da′. (B.11)

Similarly, log
∫

expQ1(s′, a′) da′ ≥ −ε+ log
∫

expQ2(s′, a′) da′. Therefore ‖T Q1 − T Q2‖ ≤
γε = γ‖Q1 − Q2‖. So T is a contraction. As a consequence, only one Q-value satisfies the
soft Bellman equation, and thus the optimal policy presented in Lemma 1 is unique.

B.2 Connection between Policy Gradient and

Q-Learning

We show that entropy-regularized policy gradient can be viewed as performing soft Q-
learning on the maximum-entropy objective. First, suppose that we parametrize a stochastic
policy as

πφ(at|st) , exp
(
Eφ(st, at)− Ēφ(st)

)
, (B.12)

where Eφ(st, at) is an energy function with parameters φ, and Ēφ(st) = log
∫
A exp Eφ(st, at)dat

is the corresponding partition function. This is the most general class of policies, as we can
trivially transform any given distribution p into exponential form by defining the energy as
log p. We can write an entropy-regularized policy gradient as follows:

∇φJPG(φ) = E(st,at)∼ρπφ

[
∇φ log πφ(at|st)

(
Q̂πφ(st, at) + bφ(st)

)]
+∇φ Est∼ρπφ

[
H(πφ( · |st))

]
,

(B.13)

where ρπφ(st, at) is the distribution induced by the policy, Q̂πφ(st, at) is an empirical estimate
of the Q-value of the policy, and bφ(st) is a state-dependent baseline that we get to choose.
The gradient of the entropy term is given by

∇φH(πφ) =−∇φ Est∼ρπφ
[
Eat∼πφ(at|st)

[
log πφ(at|st)

]]
=− E(st,at)∼ρπφ

[
∇φ log πφ(at|st) log πφ(at|st) +∇φ log πφ(at|st)

]
=− E(st,at)∼ρπφ

[
∇φ log πφ(at|st)

(
1 + log πφ(at|st)

)]
, (B.14)
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and after substituting this back into Equation B.13, noting Equation B.12, and choosing
bφ(st) = Ēφ(st) + 1, we arrive at a simple form for the policy gradient:

= E(st,at)∼ρπφ

[(
∇φEφ(st, at)−∇φĒφ(st)

) (
Q̂πφ(st, at)− Eφ(st, at)

)]
. (B.15)

To show that Equation B.15 indeed corresponds to soft Q-learning update, we consider
the Bellman error

JQ(θ) = Est∼qst ,at∼qat

[
1

2

(
Q̂θ(st, at)−Qθ(st, at)

)2
]
, (B.16)

where Q̂θ is an empirical estimate of the soft Q-function. There are several valid alternatives
for this estimate, but in order to show a connection to policy gradient, we choose a specific
form

Q̂θ(st, at) = Âθ̄(st, at) + V θ(st), (B.17)

where Âθ̄ is an empirical soft advantage function that is assumed not to contribute the
gradient computation. With this choice, the gradient of the Bellman error becomes

∇θJQ(θ) = Est∼qst ,at∼qat

[
(∇θQθ(st, at)−∇θVθ(st))

(
Âθ̄(st, at) + V θ(st, at)−Qθ(st, at)

)]
= Est∼qst ,at∼qat

[
(∇θQθ(st, at)−∇θVθ(st))

(
Q̂θ(st, at)−Qθ(st, at)

)]
. (B.18)

Now, if we choose Eφ(st, at) , Qθ(st, at) and qst(st)qat(at) , ρπφ(st, at), we recover the policy
gradient in Equation B.15. Note that the choice of using an empirical estimate of the soft
advantage rather than soft Q-value makes the target independent of the soft value, and at
convergence, Qθ approximates the soft Q-value up to an additive constant. The resulting
policy is still correct, since the Boltzmann distribution in Equation B.12 is independent of
constant shift in the energy function.

B.3 Soft Actor-Critic

Lemma 3 (Soft Policy Evaluation). Consider the soft Bellman backup operator T π in
Equation 4.1 and a mapping Q0 : S × A → R with |A| < ∞, and define Qk+1 = T πQk.
Then the sequence Qk will converge to the soft Q-value of π as k →∞.

Proof. Define the entropy augmented reward as rπ(st, at) , r(st, at)+Est+1∼p [H (π( · |st+1))]
and rewrite the update rule as

Q(st, at)← rπ(st, at) + γ Est+1∼p,at+1∼π [Q(st+1, at+1)] (B.19)

and apply the standard convergence results for policy evaluation (Sutton & Barto, 1998).
The assumption |A| < ∞ is required to guarantee that the entropy augmented reward is
bounded.
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Lemma 4 (Soft Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of
the minimization problem defined in Equation 4.3. Then Qπnew(st, at) ≥ Qπold(st, at) for all
(st, at) ∈ S ×A with |A| <∞.

Proof. Let πold ∈ Π and let Qπold and V πold be the corresponding soft state-action value and
soft state value, and let πnew be defined as

πnew( · |st) = arg min
π′∈Π

DKL (π′( · |st) ‖ exp (Qπold(st, · )− logZπold(st)))

= arg min
π′∈Π

Jπold
(π′( · |st)). (B.20)

It must be the case that Jπold
(πnew( · |st)) ≤ Jπold

(πold( · |st)), since we can always choose
πnew = πold ∈ Π. Hence

Eat∼πnew [log πnew(at|st)−Qπold(st, at) + logZπold(st)]

≤ Eat∼πold
[log πold(at|st)−Qπold(st, at) + logZπold(st)] , (B.21)

and since partition function Zπold depends only on the state, the inequality reduces to

Eat∼πnew [Qπold(st, at)− log πnew(at|st)] ≥ V πold(st). (B.22)

Next, consider the soft Bellman equation:

Qπold(st, at) = r(st, at) + γ Est+1∼p [V πold(st+1)]

≤ r(st, at) + γ Est+1∼p
[
Eat+1∼πnew [Qπold(st+1, at+1)− log πnew(at+1|st+1)]

]
...

≤ Qπnew(st, at), (B.23)

where we have repeatedly expanded Qπold on the RHS by applying the soft Bellman equation
and the bound in Equation B.22. Convergence to Qπnew follows from Lemma 3.

Theorem 2 (Soft Policy Iteration). Repeated application of soft policy evaluation and
soft policy improvement to any π ∈ Π converges to a policy π∗ such that Qπ∗(st, at) ≥
Qπ(st, at) for all π ∈ Π and (st, at) ∈ S ×A, assuming |A| <∞.

Proof. Let πi be the policy at iteration i. By Lemma 4, the sequence Qπi is monotonically
increasing. Since Qπ is bounded above for π ∈ Π (both the reward and entropy are bounded),
the sequence converges to some π∗. We will still need to show that π∗ is indeed optimal. At
convergence, it must be case that Jπ∗(π

∗( · |st)) < Jπ∗(π( · |st)) for all π ∈ Π, π 6= π∗. Using
the same iterative argument as in the proof of Lemma 4, we get Qπ∗(st, at) > Qπ(st, at) for
all (st, at) ∈ S ×A, that is, the soft value of any other policy in Π is lower than that of the
converged policy. Hence π∗ is optimal in Π.
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B.4 Policy Composition Proofs

Lemma 5: Let Q∗1 and Q∗2 be the soft Q-function of the optimal policies corresponding to
reward functions r1 and r2, and define QΣ , 1

2
(Q∗1 +Q∗2). Then the optimal soft Q-function

of the combined reward rC , 1
2

(r1 + r2) satisfies

QΣ(s, a) ≥ Q∗C(s, a) ≥ QΣ(s, a)− C∗(s, a), ∀s ∈ S,∀a ∈ A, (B.24)

where C∗ is the fixed point of

C(s, a)← γ Es′∼p(s′|s,a)

[
D 1

2
(π∗1( · |s′) ‖ π∗2( · |s′)) + max

a′∈A
C(s′, a′)

]
, (B.25)

and D 1
2

( · ‖ · ) is the Rényi divergence of order 1/2.

Proof. We will first prove the lower bound using induction. Let us define functionsQ(0)(s, a) ,
QΣ(s, a) and C(0)(s, a) , 0, and assume Q(k) ≥ QΣ − C(k) for some k. Note that this in-
equality is trivially satisfied when k = 0. Next, let us apply the soft Bellman backup at step
k:

Q(k+1)(s, a)

= rC(s, a) + γ Es′∼p(s′|s,a)

[
log

∫
A

expQ(k)(s′, a′)da′
]

≥ rC(s, a) + γ Es′∼p(s′|s,a)

[
log

∫
A

exp

(
1

2
(Q∗1(s′, a′) +Q∗2(s′, a′))− C(k)(s′, a′)

)
da′
]

≥ rC(s, a) + γ Es′∼p(s′|s,a)

[
log

∫
A

exp
1

2
(Q∗1(s′, a′) +Q∗2(s′, a′)) da′ −max

a′
C(k)(s′, a′)

]
= rC(s, a)+γ Es′∼p(s′|s,a)

[
1

2
(V ∗1 (s′) + V ∗2 (s′)) + log

∫
A

√
π∗1(a′|s′)π∗2(a′|s′)da′ −max

a′
C(k)(s′, a′)

]
=

1

2
(Q∗1(s, a) +Q∗2(s, a)) + γ Es′∼p(s′|s,a)

[
log

∫
A

√
π∗1(a′|s′)π∗2(a′|s′)da′ −max

a′
C(k)(s′, a′)

]
= QΣ(s, a)− γ Es′∼p(s′|s,a)

[
1

2
D 1

2
(π∗1( · |s′) ‖ π∗2( · |s′)) + max

a′
C(k)(s′, a′)

]
= QΣ(s, a)− C(k+1)(s, a). (B.26)

The last form shows that the induction hypothesis is true for k + 1. Since soft Bellman
iteration converges to the optimal soft Q-function from any bounded Q(0), at the limit, we
will have

Q∗C(s, a) ≥ QΣ(s, a)− C∗(s, a), (B.27)
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where the value of C∗ is the fixed point of the following recursion:

C(k+1) = γ Es′∼p(s′|s,a)

[
1

2
D 1

2
(π∗1( · |s′) ‖ π∗2( · |s′)) + max

a′
C(k)(s′, a′)

]
. (B.28)

The upper bound follows analogously by assuming Q(k) ≤ QΣ, defining Q(0) = QΣ and noting
that the Rényi divergence is always positive.

Corollary 1. As a corollary of Lemma 5, we have

VΣ(s) ≥ V ∗C (s) ≥ VΣ(s)−max
a

C∗(s, a), ∀s ∈ S, (B.29)

where VΣ(s) = log
∫
A exp(Q(s, a))da

Proof. Take the “log-sum-exp” of (B.24).

Proof of Theorem 3

Theorem 3: With the definitions in Lemma 5, the value of πΣ satisfies

QπΣ
C (s, a) ≥ Q∗C(s, a)−D∗(s, a), (B.30)

where D∗(s, a) is the fixed point of

D(s, a)← γ Es′∼p(s′|s,a)

[
Ea′∼πΣ(a′|s′) [C∗(s′, a′) +D(s′, a′)]

]
. (B.31)

Proof. Let us define functions Q(0)(s, a) , Q∗C(s, a) and D(0)(s, a) , 0, and assume that
Q(k)(s, a) ≥ Q∗C(s, a)−D(k)(s, a), which is trivially satisfied for k = 0. We will use induction
to show the inequality holds for any k by applying “soft policy evaluation” (see (Haarnoja
et al., 2017)):

Q(k+1)(s, a)

= rC(s, a) + γ Es′∼p(s′|s,a)

[
Ea′∼πΣ(a′|s′)

[
Q(k)(s′, a′)− log πΣ(a′|s′)

]]
≥ rC(s, a) + γ Es′∼p(s′|s,a)

[
Ea′∼πΣ(a′|s′)

[
Q∗C(s

′, a′)−D(k)(s′, a′)−QΣ(s′, a′) + VΣ(s′)
]]

≥ rC(s, a) + γ Es′∼p(s′|s,a)

[
Ea′∼πΣ(a′|s′)

[
Q∗C(s

′, a′)−D(k)(s′, a′)−Q∗C(s′, a′)−C∗(s′, a′)+V ∗C (s′)
]]

≥ rC(s, a) + γ Es′∼p(s′|s,a)

[
V ∗C (s′)− Ea′∼πΣ(a′|s′)

[
C∗(s′, a′) +D(k)(s′, a′)

]]
= Q∗C(s, a)− γ Es′∼p(s′|s,a)

[
Ea′∼πΣ(a′|s′)

[
C∗(s′, a′) +D(k)(s′, a′)

]]
= Q∗C(s, a)−D(k+1)(s, a). (B.32)

The second inequality follows from Lemma 5 and Corollary 1. In the limit as k → ∞, we
have QπΣ

C (s, a) ≥ Q∗C(s, a)−D∗(s, a).
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Appendix C

Implementation

C.1 Soft Q-Learning

Computing Soft Q-Learning Policy Update

Here we explain in full detail how the policy update direction ∇̂φJπ in Algorithm 1 is com-
puted. We reuse the indices i, j in this section with a different meaning than in the body of
the paper for the sake of providing a cleaner presentation.

Expectations appear in amortized SVGD in two places. First, SVGD approximates the
optimal descent direction φ( · ) in Equation (3.11) with an empirical average over the samples

a
(i)
t = fφ(ξ(i)). Similarly, SVGD approximates the expectation in Equation (3.12) with

samples ã
(j)
t = fφ(ξ̃(j)), which can be the same or different from a

(i)
t . Substituting (3.11)

into (3.12) and taking the gradient gives the empirical estimate

∇̂φJπ(φ; st) =
1

KM

K∑
j=1

M∑
i=1

(
κ(a

(i)
t , ã

(j)
t )∇a′Q(st, a

′)
∣∣
a′=a

(i)
t

+∇a′κ(a′, ã
(j)
t )
∣∣
a′=a

(i)
t

)
∇φf

φ(ξ̃(j); st).

Finally, the update direction ∇̂φJπ is the average of ∇̂φJπ(φ; st), where st is drawn from a
mini-batch.

Hyperparameters

Throughout all experiments, we use the following parameters for both DDPG and soft Q-
learning. The Q-values are updated using ADAM with learning rate 0.001. The DDPG
policy and soft Q-learning sampling network use ADAM with a learning rate of 0.0001. The
algorithm uses a replay pool of size one million. Training does not start until the replay pool
has at least 10,000 samples. Every mini-batch has size 64. Each training iteration consists of
10000 time steps, and both the Q-values and policy / sampling network are trained at every
time step. All experiments are run for 500 epochs, except that the multi-goal task uses 100
epochs and the fine-tuning tasks are trained for 200 epochs. Both the Q-value and policy
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/ sampling network are neural networks comprised of two hidden layers, with 200 hidden
units at each layer and ReLU nonlinearity. Both DDPG and soft Q-learning use additional
OU Noise (Uhlenbeck & Ornstein, 1930; Lillicrap et al., 2015) to improve exploration. The
parameters are θ = 0.15 and σ = 0.3. In addition, we found that updating the target
parameters too frequently can destabilize training. Therefore we freeze target parameters
for every 1000 time steps (except for the swimming snake experiment, which freezes for
5000 epochs), and then copy the current network parameters to the target networks directly
(τ = 1).

Soft Q-learning uses K = M = 32 action samples (see Appendix C.1) to compute the
policy update, except that the multi-goal experiment uses K = M = 100. The number of
additional action samples to compute the soft value is KV = 50. The kernel κ is a radial
basis function, written as κ(a, a′) = exp(− 1

h
‖a− a′‖2

2), where h = d
2 log(M+1)

, with d equal to

the median of pairwise distance of sampled actions a
(i)
t . Note that the step size h changes

dynamically depending on the state s, as suggested in (Liu & Wang, 2016).
The entropy coefficient α is 10 for multi-goal environment, and 0.1 for the swimming

snake, maze, hallway (pretraining) and U-shaped maze (pretraining) experiments.
All fine-tuning tasks anneal the entropy coefficient α quickly in order to improve per-

formance, since the goal during fine-tuning is to recover a near-deterministic policy on the
fine-tuning task. In particular, α is annealed log-linearly to 0.001 within 20 epochs of fine-

tuning. Moreover, the samples ξ are fixed to a set {ξi}Kξi=1 and Kξ is reduced linearly to 1
within 20 epochs.

Task description

All tasks have a horizon of T = 500, except the multi-goal task, which uses T = 20. We
add an additional termination condition to the quadrupedal 3D robot to discourage it from
flipping over.

C.2 Soft Actor-Critic

Table C.1 lists the common SAC parameters used in the comparative evaluation in Fig-
ure 4.1 and Figure D.2. Table C.2 lists the reward scale parameter that was tuned for each
environment.
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Table C.1: SAC Hyperparameters

Parameter Value

Shared

optimizer Adam (Kingma & Ba, 2015)

learning rate 3 · 10−4

discount (γ) 0.99

replay buffer size 106

number of hidden layers (all networks) 2

number of hidden units per layer 256

number of samples per minibatch 256

nonlinearity ReLU

SAC

target smoothing coefficient (τ) 0.005

target update interval 1

gradient steps 1

SAC (hard target update)

target smoothing coefficient (τ) 1

target update interval 1000

gradient steps (except humanoids) 4

gradient steps (humanoids) 1

Table C.2: SAC Environment Specific Parameters

Environment Action Dimensions Reward Scale

Hopper-v1 3 5

Walker2d-v1 6 5

HalfCheetah-v1 6 5

Ant-v1 8 5

Humanoid-v1 17 20

Humanoid (rllab) 21 10
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C.3 Enforcing Action Bounds

In order to use a Gaussian policy, the actions needs to be bounded to a finite interval. To
that end, we apply an invertible squashing function (tanh) to the Gaussian samples, and
employ the change of variables formula to compute the likelihoods of the bounded actions.
In the other words, let u ∈ Rdim(A) be a random variable and µ(u|s) the corresponding
density with infinite support. Then a = tanh(u), where tanh is applied element-wise, is a
random variable with support in (−1, 1) with a density given by

π(a|s) = µ(u|s)

∣∣∣∣det

(
da

du

)∣∣∣∣−1

. (C.1)

Since the Jacobian da/du = diag(1 − tanh2(u)) is diagonal, the log-likelihood has a simple
form

log π(a|s) = log µ(u|s)−
dim(A)∑
i=1

log
(
1− tanh2(ui)

)
, (C.2)

where ui is the ith element of u.

C.4 Latent Space Policies

Common Parameters

We use the following parameters for LSP policies throughout the experiments. The algo-
rithm uses a replay pool of one million samples, and the training is delayed until at least
1000 samples have been collected to the pool. Each training iteration consists of 1000 en-
vironments time steps, and all the networks (value functions, policy scale/translation, and
observation embedding network) are trained at every time step. Every training batch has a
size of 128. The value function networks and the embedding network are all neural networks
comprised of two hidden layers, with 128 ReLU units at each hidden layer. The dimension
of the observation embedding is equal to two times the number of action dimensions. The
scale and translation neural networks used in the real NVP bijector both have one hidden
layer consisting of number of ReLU units equal to the number of action dimensions. All the
network parameters are updated using Adam optimizer with learning rate 3 · 10−4.

Table C.3 lists the common parameters used for the LSP-policy, and Table C.4 lists the
parameters that varied across the environments.

High-Level Policies

All the low-level policies in hierarchical cases (Figures 7.5b, 7.4a, 7.4b) are trained using
the same parameters used for the corresponding benchmark environment. All the high-level
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Table C.3: Shared parameters for benchmark tasks

Parameter Value

learning rate 3 · 10−4

batch size 128
discount 0.99
target smoothing coefficient 10−2

maximum path length 103

replay pool size 106

hidden layers (Q, V, embedding) 2
hidden units per layer (Q, V, embedding) 128
policy coupling layers 2

Table C.4: Environment specific parameters for benchmark tasks

Parameter

S
w

im
m

er
(r

ll
ab

)

H
op

p
er

-v
1

W
al

ke
r2

d
-v

1

H
al

fC
h
ee

ta
h
-v

1

A
n
t

(r
ll
ab

)

H
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d
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ll
ab

)
action dimensions 2 3 6 6 8 21
reward scale 100 1 3 1 3 3
observation embedding dimension 4 6 12 12 16 42
scale/translation hidden units 2 3 6 6 8 21

policies use Gaussian action prior. For the Ant maze task, the latent sample of the high-level
policy is sampled once in the beginning of the rollout and kept fixed until the next one. The
same high-level action is kept fixed over three environment steps. Otherwise, all the policy
parameters for the high-level policies are equal to the benchmark parameters.

The environments used for training the low-level policies are otherwise equal to the
benchmark environments, except for their reward function, which is modified to yield velocity
based reward in any direction on the xy-plane, in contrast to just positive x-direction in the
benchmark tasks. In the Ant maze environment, the agent receives a reward of 1000 upon
reaching the goal and 0 otherwise. In particular, no velocity reward nor any control costs
are awarded to the agent. The environment terminates after the agent reaches the goal.
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Appendix D

Additional Results
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D.1 Soft Q-Learning
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Figure D.1: The plot shows trajectories of the quadrupedal robot during maximum entropy
pretraining. The robot has diverse behavior and explores multiple directions. The four
columns correspond to entropy coefficients α = 10, 1, 0.1, 0.01 respectively. Different rows
correspond to policies trained with different random seeds. The x and y axes show the x and
y coordinates of the center-of-mass. As α decreases, the training process focuses more on
high rewards, therefore exploring the training ground more extensively. However, low α also
tends to produce less diverse behavior. Therefore the trajectories are more concentrated in
the fourth column.
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D.2 Soft Actor-Critic

Figure D.2 compares SAC to Trust-PCL (Nachum et al., 2018), which learns slower than SAC
but can eventually solve the tasks if ran longer. The figure also includes two variants of SAC:
a variant that periodically copies the target value network weights directly instead of using
exponentially moving average, and a deterministic ablation which assumes a deterministic
policy in the value update and the policy update (Equation 4.9), and thus strongly resembles
DDPG with the exception of having two Q-functions, using hard target updates, not having
a separate target actor, and using fixed exploration noise rather than learned. Both of these
methods can learn all of the tasks and they perform comparably to SAC on all but Humanoid
(rllab) task, on which SAC is the fastest.
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Figure D.2: Training curves for additional baseline (Trust-PCL) and for two SAC variants. Soft
actor-critic with hard target update (blue) differs from standard SAC in that it copies the value
function network weights directly every 1000 iterations, instead of using exponentially smoothed
average of the weights. The deterministic ablation (red) uses a deterministic policy with fixed
Gaussian exploration noise, does not use a value function, drops the entropy terms in the actor and
critic function updates, and uses hard target updates for the target Q-functions. It is equivalent to
DDPG that uses two Q-functions, hard target updates, and removes the target actor.
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