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Abstract

An Integrative Approach to Data-Driven Monitoring and Control
of Electric Distribution Networks

by

Roel Ignatius Jacobus Dobbe

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire J. Tomlin, Chair

The commodification of computing, sensors, actuators, data storage and algorithms has
unleashed a new wave of automation throughout society. Motivated by the promise of
new capabilities, quality improvements, or efficiency gains, data-driven technologies have
captured the attention and imagination of the public and many domain experts. Though
opportunities are ample, the rapid introduction of data-driven functionality also triggers
well-founded concerns about safeguarding critical values, such as safety, privacy and justice.
In the context of operating electric distribution networks, the need for data-driven monitoring
and control is explained by the irreversible transition from fossil to renewable generation and
the accompanied electrification of our economy in areas like transportation and heating. The
traditional fit-and-forget paradigm of designing networks conservatively for the projected peak
loads assumed unidirectional power flow, predictable future demand and monotonic voltage
drops, and allowed for operating at near-100% reliability with minimal requirement for sensing
and actuation. The intermittent nature of Distributed Generation (DG), its ability to feed
power back to the grid and cause bidirectional power flow, and the diversifying and nonlinear
behavior of electric loads are all eating away at the robustness of this approach, causing
Distribution System Operators (DSOs) to put caps on the allowable DG and revisit their design
and operating practice. Rather than making traditional expensive network reinforcements
in often aging physical infrastructures, DSOs are trying to increase the observability and
controllability of their networks by leveraging new sensing and actuation technologies and
exploring the ability to use data-driven algorithms to help with the integration of more DG
in a more distributed (in space and time) and cost-effective way. This dissertation works
towards this vision by formulating a systematic control-theoretic approach for integrating
data-driven monitoring and control in the operation of electric distribution networks. Firstly,
a Bayesian approach to state estimation overcomes the constraint of limited available real-time
sensors by integrating voltage forecasting. A second class of tools discussed is the use of
machine learning to decentralize Optimal Power Flow (OPF) methods, by utilizing inverter-
interfaced Distributed Energy Resources (DERs). The Decentralized OPF method lets each
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DER learn a policy that contributes to network objectives from its local historical data
and measurements alone. This approach is formulated as a compression and reconstruction
problem through an information-theoretic lens, providing fundamental limits of reconstruction
and a strategy for optimal communication to improve learning-based reconstruction of optimal
policies throughout a network. Lastly, the ambition to control networks in a distributed
fashion triggers concerns about privacy-sensitive information that may be inferred from an
agent’s shared data. For a general class of algorithms, a new notion of local differential
privacy is integrated that allows each agent to customize the protection of local information
captured in constraints and objective functions. The ultimate goal of the work presented in
this dissertation is to contribute to a framework for the integral and value-sensitive design
and implementation of data-driven methodologies in critical infrastructure. To address the
inherent cross-disciplinary nature of this larger goal, the final chapter explains how each
automated decision-making tool reflects and affects values important to its stakeholders. The
chapter argues that in order to enable beneficial integration of such tools, practitioners need
to reflect on their epistemology and situate the design of automated decision-making in its
inherently dynamic and human context.
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Chapter 1

Introduction

“Our fear of technology is really
a fear of empowerment. We now
have the ability to design the
reality we live in, and we have to
step up to the occasion.”

- Douglas Rushkoff

The dissertation starts with a discussion of the broader rise of data-driven technologies,
covering its promises in Section 1.1, and its accompanied societal concerns in Section 1.2.
Section 1.3 then introduces the central motivating question for this dissertation and a high-
level organization of the following chapters. For a more thorough overview of the chapters
and research questions covered in this dissertation, forward to Section 2.3.

1.1 A Revolution in Automation
Ubiquitous computing, algorithms, better devices, connectivity, and the ability to collect,
store and probe large amounts of data are all becoming new commodities; commodities
that are the key ingredients to enabling new forms of automation and innovation. In recent
years, the general public is becoming accustomed to various data-driven functionalities. Most
notably in online experience, where companies providing search, social network platforms,
news, retail, education, entertainment and other personal services are gathering data about
us to predict our preferences and determine how to best serve our needs, triggering a
behavioral revolution [132]. We are rapidly adopting automation to assist us in navigation
and transportation, to minimize the time, cost and hurdles of commuting and to facilitate
a revolution towards vehicle autonomy, sharing and electrification [194]. The access to
information about health and wellness combined with the ability to track our daily habits in
terms of work, sleep, workout, social life and diet is revolutionizing healthcare to be more
predictive, preventive, personalized and participatory [79]. And in our energy use, we are
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able to control the use of our appliances and central heating from our browser or mobile app,
to gather insights into our daily use and where to save energy, to let our heating system learn
by itself how to operate and minimize energy use, to track the health of our appliances and
when to maintain or replace them, and to incentivize ourselves towards more energy efficient
behavior [168]. We adopt solar installations, shift to driving electric vehicles, and install
battery storage to further reduce our dependency on the grid or even help the grid balance
through providing ancillary services [170].

In professional domains, the commoditization of ingredients for automation has led to
companies and institutions seeing tremendous value in data-driven technology, leading to
ubiquitous experimentation and commercialization. In the context of operating critical
infrastructure, such as traffic, electricity or cyber networks, challenges to make efficiency
gains, to improve the efficacy of the infrastructure, or to integrate new technologies may be
helped by leveraging the access to historical and real-time data, new sensing and actuation
functions, and the increasing power of computation and algorithms. In traffic, the ability
to monitor and communicate with large fleets of vehicles can be used to prevent congestion
and alter traffic (either in space or time) in times of high demand. At the micro-level,
semi-autonomous and fully autonomous driving holds a promise to significantly reduce the
number of accidents and fatalities in traffic. In the context of energy systems, the automation
of switching operations by letting distributed energy resources adjust their power injection in
real-time may significantly reduce the expenses of reconfiguration procedures [178]. And the
use of people’s energy resources, such as battery storage, electric vehicles or solar installations,
are now used to help balance the grid in real-time [170]. Such efforts in turn facilitate
higher penetration levels of renewable generation helping the energy transition towards an
infrastructure without fossil fuel generation.

The rise of new data-driven technologies is challenging the existing engineering disciplines
to provide sufficient design principles for guaranteeing the safety, reliability and beneficial
outcomes of a system. As recently argued by Professor Michael Jordan, “While the building
blocks have begun to emerge, the principles for putting these blocks together have not yet
emerged, and so the blocks are currently being put together in ad-hoc ways” [113]. This
dissertation aims to work towards such principles, hoping to contribute to more comprehen-
sive methodologies to for analyze, design and integrate data-driven technologies in critical
infrastructures and human contexts, in ways cognizant of important values and the various
interests of directly and indirectly affected stakeholders.

1.2 Emerging Values and Concerns
Despite its many promises and positive impacts, the integration of data-driven methodologies
also brings new risks and concerns [55], and “many of our early societal-scale inference-and-
decision-making systems are already exposing serious conceptual flaws” [113]. It is becoming
increasingly clear that the speed at which new systems are changed or replaced is challenging
our abilities to anticipate and mitigate serious side-effects. Here we discuss concerns in the
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context of operating and using critical infrastructure.
A first area of risks and concerns in need of consideration is those faced primarily by an

infrastructure’s operator(s). First and foremost, the technology needs to be integrated in a
legacy system. As such, data-driven techniques that consider a rethinking of many aspects
of the infrastructure may be too costly, or those that forget to make the right assumptions
may not be practically implementable. Secondly, the introduction of new functionality
brings new types of vulnerability and failure modes. One example is the increasing worry of
cybersecurity risks which increase once more sensors and devices are deployed throughout a
system, providing more opportunities for hacking and manipulation by adversaries. We will
see more automated and increasingly sophisticated social engineering attacks [224]. Another
example is the increasing sophistication of algorithms used for control, which may make
the behavior of such machines either inscrutable or non-intuitive [181], which can make it
harder or impossible to characterize and reason about behaviors that are undesirable. The
recent fatal incidents with self-driving vehicles [217] underline the critical importance to
understand and characterize these failure modes and to report and communicate about them
as new technology is integrated in vital infrastructure. Lastly, the replacement of human
control or expertise by algorithmic efforts may make systems more efficient but can also lead
to a lack of accountability. If new methods are embraced too quickly and extensively, the
expertise needed to understand the system, when failures occur or an intervention is needed,
may become harder to come by. And in the event of harm or fatality, it becomes harder to
determine who is responsible, especially if different companies and entities were involved in
convoluted ways to design and build the system that caused the accident.

A second area of risks and concerns are those faced by the citizens making use of the
infrastructure. The most widely discussed concerns fall in the category of privacy, here
broadly defined as the state or condition of being free from being observed or disturbed by
other people. However, no single definition of privacy exists, and the nature of privacy is
rather fragmented in how it is interpreted in policies and from culture to culture. Nissenbaum
suggests that in the age of information it is more useful to see privacy as contextual integrity,
which demands that the gathering and dissemination of data be appropriate to the norms of
specific context [153]. While data sets are often small in particular contexts and have proven
to be useful to determine personalized services to individuals or beneficial to the operation of
a broader system or network, there is a growing public awareness that sharing too much may
be risky, as these may reveal more information once combined with alternative sources of
side information. Interpreting data collected in infrastructure, such as GPS location data or
energy usage data from advanced metering infrastructure may reveal a lot about the person,
such as where someone is at any given point in time, when someone is not home or what
kind of appliances someone is using, especially once combined with other information about a
person’s social or professional life. This risk motivated the formulation of differential privacy,
which aims to protect private information in data sets regardless of side information, typically
necessitating a randomized mechanism to handle the data [66]. Another concern shared by
the public is that of cyber security. With more and more sensors and actuators built in in
our homes and close to our bodies connected to the internet, it becomes increasingly more
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possible to hack and cause harm. The so-called Internet of Things (IoT) revolution is posing
many new security challenges among which many might impact the lives of individual people .
A third category of concerns is that of fairness and accessibility. Once services are increasingly
digitized and personalized, it becomes easier for companies and operators to segment and
distinguish between different users, increasing the opportunities for discrimination, unfair
treatment or lack of access for certain citizens. In addition, the collection of data from users
may yield all kinds of biases that, given the purpose towards the data is used, may lead to
unfair outcomes [230]. Lastly, the increasing collection and storage of data, and the trend
to trade and combine data sets about individuals are enabling ever improving predications
about sometimes very personal and sensitive information about individual human beings.
With the recent revelations about Cambridge Analytica’s use of such extensive user profiles
to design extensive influence campaigns to steer voting behavior in various elections [29], the
public is starting to grow wary of being on online platforms and sharing information, as the
concerns start to shift from mere privacy to protection of human dignity and democracy.
With online platforms being designed to maximize our time online, using persuasion and free
features to breed addiction [130], and used to spread violence [203], public unrest is likely to
grow and demand revisiting the design of these systems.

It remains to be seen what regulatory actions are taken to protect citizens and how
this will affect the use of data in the design and operation of critical infrastructure. The
European Union is launching its General Data Protection Regulation on May 25, 2018,
which will enact a wide set of rules to guide further digitization and address different
privacy concerns [171, 71]. Apart from regulation, in recent years, various new research
communities have sprung to understand how values can be incorporated in the design of
systems. Examples are the Fairness, Accountability and Transparency community [41, 73],
Value-Sensitive Design and Responsible Innovation [82, 103], and various groups around
Safety and Artificial Intelligence [4, 108, 38]. It is clear that these concerns should be center
stage in using data-driven technologies to maintain, update and extend the functionality of
our critical infrastructures. As such, the context for this thesis goes beyond the technical and
aims to situate the integration of data-driven methodologies in its appropriate socio-technical
context.

1.3 Central Question and Organization
With the many promises and potential risks of data-driven automation in mind, the central
question of this dissertation reads:

How can we integrate data-driven techniques to improve and extend
the capabilities of existing critical infrastructure,

while safeguarding important values such as safety, privacy and social justice?

While it is the author’s intention is to provide a comprehensive and integral answer
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to this question, its full scope is beyond the focus of this PhD dissertation. Anticipating
that general knowledge may be attained, in this dissertation, the modernization of electric
distribution networks to deal with higher levels of renewable generation and electrification
will form the area of motivating applications. The energy transition in itself provides ample
research problems relevant to the above question. Where possible, techniques developed for
the electric grid are generalized to serve problems in other domains.

The word “integrate” refers to various forms of integration that are key in the applied
research approach:

1. Integrating new technology into (possibly aging) legacy infrastructure

2. Integrating data-driven solutions with model-based approaches

3. Integrating various concepts and methods: system modeling, control, machine learning,
optimization, information theory, differential privacy

4. Integrating the perspectives, interests and values of important stakeholders, such as
domain experts and practitioners, citizens, users and other beneficiaries and affected
groups or individuals

Chapter 2 introduces the context of electrical distribution systems and relevant challenges
in their operations arising from the energy transition. Section 2.3 outlines the scope and
concrete research questions for this dissertation in the context of electrical power, covering
Chapters 4-7. The final Chapter 8 then takes a bird’s eye view on the practice of automated
decision-making addressing the need to think about bias and error from a broader perspective,
to reflect on the field’s epistemology, and to take into account the inherent feedback dynamics
that occur once decision-making systems are employed in the world. Chapter 9 concludes
with directions and questions for future work.
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Chapter 2

Electricity Distribution

“A system that works in practice,
but not in theory.”

- Alexandra von Meier

This chapter introduces the context of electricity distribution. Section 2.1 provides a brief
short history and describes the role of the system operator. Section 2.2 describes the trends
and challenges that distribution operation is faced with due to the rapid transition to
renewable energy generation. This sets the context for Section 2.3 defining the scope and
research questions addressed in this dissertation.

2.1 Traditional Power Distribution
The consumption of electric power has become second nature to most people living in
developed societies, and is increasingly becoming a reality in many areas where energy access
has historically lagged behind. When we charge our phones or turn on the laundry machine,
and we think about what happens at that moment, most of us do not think much further
than electrons running through our appliance to make it do what it is supposed to. However,
the energy that these electrons are charged with has traveled a long way through a vast
infrastructure, which can be called the largest physically connected engineered machine ever
built by mankind.

We have to go back to the late 19th century to trace back the origins of our current power
system. After a long War of the Currents between leading entrepreneurs, inventors and
tinkerers working on two different paradigms for power transmission, namely direct current
(DC) and alternating current (AC), George Westinghouse and his fellow businessmen pushing
for AC drew the longer straw. AC systems were generally less costly due to a smaller need
for copper wiring and the ability to effectively scale AC power systems. Early power systems
were built to power small communities and neighborhoods. As the AC technology developed,
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it became possible to centralize and scale up power generation and connect these generators
to existing local power systems.

This is what led to what we now call the traditional power system, in which power is
generated centrally by large generators, transmitted at high voltage to substations across
society, where the voltage is stepped down and the power is distributed to end customers. A
central market is set up to match demand and supply at various time scales, from planning
energy contracts with suppliers over multi-year periods to week-ahead and day-ahead markets
planning the actual production of energy based on shorter-term load forecasts, to a real-time
market in which the deviation between forecasted and actual demand is compensated and
the stability of the system is managed through various levels of coordination and real-time
control of power generators.

The focus of this dissertation is on the distribution of electric power, which is the
responsibility of Distribution System Operators (DSOs). In the context of traditional power
distribution, the DSO is not concerned with matching supply and demand within a distribution
system, but primarily responsible for maintaining the quality of the voltage signal at customer
level and ensuring the continuity of supply to each individual customer. To operationalize
this responsibility, the DSO can build and control medium and low voltage networks. In
many jurisdictions, a DSO is merely able to control the configuration of the network, and
is not allowed to trade in energy in order to manage power flow through its networks. In
the European context, DSOs with such restrictions are referred to as Distribution Network
Operators (DNOs). However, recent legal and political debates are determining whether
DNOs should get the right to trade in energy in order to allow for modern forms of network
operation in which Distributed Energy Resources (DERs) aid the regulation of power flow
and voltage by adjusting their power consumption or generation.

Traditionally, distribution networks are designed and updated in a conservative fashion,
through expensive oversizing of all network and control components based on peak load
scenarios expected for long time horizons, typically 40+ years. This robust design, established
for unidirectional power flow from substation to end customer, allowed for a simple real-time
operation and control paradigm. As such, most networks needed little sensing and few control
actions by load tap changers, voltage transformers or capacitor banks to operate at very high
levels of reliability.

2.2 Trends and Challenges
Most of today’s power systems operated in the developed world provide a near 100% reliability,
high efficiency, and a very low blackout percentage. With the so-called Renewables Portfolio
Standard (RPS), California has enacted rules that require investor-owned utilities (IOUs),
publicly owned utilities, electric service providers, and community choice aggregators to
increase procurement from eligible renewable energy resources to 33% of total procurement by
2020 and 50% by 2030 [183]. Incentivized by the high price of imported oil, Hawai’i has been
California’s reference point, at the forefront of high levels of penetration of renewables. Today,
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33% of its electricity comes from rooftop solar, 60% of its power comes from renewables
on peak days, and it hopes to reach 100% renewables by 2045 [77]. To reach this goal,
Hawai’i has had to go through struggles to learn how to cope with the impact on its grid
operations [195, 36]. More recently, Scotland has set records in European territory, sourcing
68% of its electricity used in 2017 from green sources, up from 54% in 2016 [49], aiming for
100% by 2020.

The transition towards a power system without fossil fuel [204] and the accompanied
electrification of our economy [68, 213] bring about new challenges. The effects of these
changes on the reliability, security and stability of the electric power supply are numerous in
form. Moreover, these effects are intricately related, and it is often not clear upfront what
the technical or economic impact of a grid update will be. As a result, the transmission side
of the grid has caught interest in revisiting criteria for power system stability, because of its
inherent safety critical operating conditions and economic relevance to many stakeholders [208].
Distribution networks traditionally allow for more variability and comparatively less strict
regulation on deviation from prescribed operating conditions. Electricity lines and components
are typically over-dimensioned to allow for unforeseen deviations in the absence of monitoring.
Furthermore, there is inherently less economic interest in the infrastructure as the number of
reliant customers per component decreases. Nevertheless, the evolution of the distribution grid
with more distributed generation (roof-top photovoltaic (PV) and wind), more sophisticated
load dynamics, progressively more sensitive equipment (computers, servers, etc), and the
necessary interfacing power electronics (e.g. inverters, transformers) do lead to new dynamic
phenomena in the distribution network that both challenge reliable operation and provide
new means of preventing or mitigating stability issues, both for the transmission grid and the
distribution network itself [182]. We discuss the necessary impacts on distribution operation
here, a more detailed reviewed can be found in Appendix A.

The traditional operation of distribution networks is typified by slowly changing and pre-
dictable power flow and simple but robust legacy control schemes using switches, transformers
and capacitor banks [215]. This paradigm is challenged by two recent trends. Firstly, the
rapid electrification and adoption distributed generation (DG) from wind and photovoltaics
(PV) yields high spatio-temporal dynamic variability, at the order of seconds - contrasting
a traditionally much more steady steady power flow. The occurrence of bidirectional and
intermittent power flow due DG can cause rapid voltage fluctuations that can lead to un-
intended outages. These are increasingly harder to predict, and can result in protection
issues, such as desensitization and unintended islanding or tripping [119]. This can lead to
accelerated structural damage and potentially cascading failures, and yields economic burden
due to accelerated wear, which decreases the lifetime of legacy equipment [182]. Especially if
DG is connected to more sensitive feeders without proper monitoring functionality to assess
its effect, cost of integration can easily multiply by a factor 3 to 4 [205, 72]. Secondly, the
electrification and automation of many of our systems, such as driving and heating, diversifies
load behavior, which is harder to model and predict, and which can lead to new overload
scenarios and cascading failures. The rapid adoption of electric vehicles (EVs) will further
aggravate this situation [93], especially if charging is optimized for electricity prices [212]. In
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addition to challenges in operation, the inability to assess the impact of DG and EVs on the
physical network causes utilities to impose conservative caps on the allowable PV capacity
and number of EVs, hindering the transition to renewable energy sources.

For transmission grid stability, demand response via controllable loads [33], distributed
generation (DG) or distributed energy resources (DERs) is starting to play a significant
role in providing frequency regulation (or ancillary services) [155]; a service traditionally
provided by fast gas-fueled power plants. Front-running economies like Denmark, which
pledge a full transition to renewables and a fully distributed energy supply, understand the
dependence on distribution side flexibility for stabilizing frequency (and more often voltage)
as the alternative to traditional centralized generating sources [21]. As a result, one also
needs to deal with the inherent variability of such distribution networks, which poses new
stability problems for the transmission network.

Concerning stability of the distribution grid itself, there are many open problems when
considering future scenarios. As distributed renewable generation keeps increasing, it is not
unthinkable to assume that eventually most of our generation will be distributed [52] (as a
matter of fact, Denmark is not far from such a scenario [21]). Apart from trying to update
our current infrastructure and control systems to facilitate high levels of DG, such scenarios
also trigger the question whether it is possible for local networks to disconnect or island
and operate by themselves without the support from the transmission grid. As we know
from operating (islanded) microgrids for remote operations or electrification of rural and
developing communities, there are many new challenges in reliably (and cost-effectively)
operating a distribution network without the supply and stabilizing inertia of transmission
network. In such scenarios, a microgrid needs to manage the notions of stability on its own,
as discussed in Appendix A.

2.3 Dissertation Scope and Research Questions
While the context of the full transition to renewable sources is a source for many relevant
research questions, both applied and more theoretical, the scope of this dissertation is how
to facilitate the more immediate and pressing needs that DSOs are facing in modernizing
the planning and operation of their distribution networks. The major challenges to deal
with the increased complexity due to the intermittency and variability of DG as well as the
diversification of loads due to electrification and digitization have proved to provide plenty
of problems, with both relevance in the application as well as yielding interesting system
theoretic insights. Following the preamble of this chapter, the questions asked and answered
in this dissertation aim to understand how emerging commodity ingredients for automation,
as discussed in Chapter 1, can be utilized to address pressing issues of renewable integration,
electrification and their effect on power system stability.

We can formulate the overall challenges in terms of the lack of two core competencies
needed for safe and beneficial automation. Firstly, there is a lack of observability. The DSO
has little visibility of what happens in the network and cannot act timely and appropriately.
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The lack of sensors employed also makes it hard to assess the impact of new technologies
on the grid. The conservative approach over over-dimensioning remains a robust approach
to ensure near-100% reliability. However, a lack of understanding of power flow dynamics
and how these evolve over time forces DSOs to make even more conservative and costly
investments. As such, an investment in observability is an investment in allowing more
advanced control strategies as well as smarter investment strategies.

Secondly, traditional distribution networks required little controllability. The diversifica-
tion of dynamics in power flow and voltage occur at shorter timescale and at finer spatial
resolutions, that most legacy control devices are not built for. In addition, bidirectional
power flow breaks down the monotonicity of voltage profiles. A natural direction to pursue is
seeing how controllable inverter-interfaced devices that are appearing across networks can
be used to provide controllability at higher spatial and temporal resolutions. With the use
of more devices throughout the network comes the necessity to compute and communicate
solutions to optimization and control problems in real-time. As it is unlikely that robust
communication infrastructures will be installed in many distribution networks, an important
consideration is to see what can be done with local measurement. As the grid itself, and the
problems of coordination that a DSO is tasked with are all intimately connected, studying
ways to decentralize or distribute control or optimization problems over networks is a critical
step towards practical implementation.

Lastly, many distribution networks have access to growing data repositories describing
system parameters and historical state information, for instance via advanced metering
infrastructure (AMI) and supervisory control and data acquisition (SCADA) systems. With
the advent of machine learning techniques being increasingly able to find and represent high-
dimensional patterns in low-dimensional models, an important area of problems is to see how
learning can aid in monitoring and control. Machine learning is already being implemented
in various aspects of operations to forecast loads, weather and renewable generation. In this
dissertation, we study how such functionality can help make monitoring and control problems
more efficient, more accurate, more data-driven and hence easier implement by overcoming
excessive tuning of more ad-hoc control strategies.

With the collection of historical data, including customers’ private consumption and
generation, DSOs are facing increasing scrutiny and regulation from authorities governing
what data may be used in what circumstances, and how it should be stored and managed.
Conversations with DSOs in an early stage of this dissertation research made it evident
that a lack of access to such data may be an important constraint on the solution space for
monitoring and control problem. Therefore, we add two aims. Firstly, we see what can be
done with purely historical data, without access to customers personal data in real-time. The
aim to think about distributed or fully decentralized control strategies also contributes this
aim. Secondly, we actively study how privacy may be defined technically and integrated in
the very design of distributed optimization problems.
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Research questions

Given the scope defined above, and the considerations drawn in Chapter 1, this dissertation
addresses the following research questions in the context of Electricity Distribution:

• Overarching: How can data, modeling and algorithms be best combined to improve
the spatial and temporal resolution of monitoring and control of voltage and power flow
in distribution networks?

• Chapter 4: How may data-driven learning methods aid the design of state estimation
methods with access to limited number of real-time sensors?

• Chapter 6: To what extent can local measurement reconstruct the information of a
control policy that is optimal to a central optimization problem?

• Chapter 5: How may data-driven learning methods aid the design of decentralized
control methods for voltage and power flow regulation that incorporate safety constraints
and minimize the need of private information in real-time?

• Chapter 7: What information useful in optimal power flow may be sensitive in the
sense of privacy? And how may be incorporate privacy in the design of distributed
optimization problems?

The final Chapter 8 then takes a bird’s eye view on the practice of automated decision-making
addressing the need to think about bias and error from a broader perspective, to reflect on
the field’s epistemology, and to take into account the inherent feedback dynamics that occur
once decision-making systems are employed in the world. Chapter 9 concludes with directions
and questions for future work.
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Chapter 3

Modeling and Optimal Power Flow

“As far as the laws of
mathematics refer to reality,
they are not certain; and as far
as they are certain, they do not
refer to reality.”

- Albert Einstein

This chapter provides a comprehensive overview of the control, modeling and optimization
principles needed to set up the rest of the dissertation. It serves as a resource with more detail,
aiming to keep the following chapters concise. Section 3.1 formulates a control-theoretic
perspective to describe voltage and power flow regulation in quasi-steady state power systems.
Section 3.2 goes into first principles for modeling power flow. Sections 3.3 and 3.6 then
discuss power flow modeling in respectively single-phase and three-phase settings. Section 3.4
provides a rigorous overview of the literature on optimal power flow and provides some general
optimization formulations. In Section 3.5, we then cover a simplified version of optimal power
flow that does not take into account voltage as a state. Lastly, Section 3.7 covers a few
formulations of optimal power flow using the modeling formulations from Section 3.6.

3.1 A Control-Theoretic Perspective
Here, we adopt and extend the formulations initially proposed in [219] for treating optimization
algorithms from a control-theoretic perspective, which were further interpreted for power
systems in [101]. This lens will help us interpret the plethora of monitoring and control
methods proposed in the literature for electric distribution systems, and it will naturally trigger
relevant questions around the analysis, development and integration of various solutions.
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The State-Space Representation

In control theory, the state-space representation of a dynamical system can be thought of
as described by a set of variables including input, state and output variables [81], related
by a set of differential and/or algebraic equations. The input variables are also called
exogenous as these typically enter the system from outside boundary, and can be split up
in controllable input variables u (in short, “inputs”) and uncontrollable input variables d (in
short, “disturbances”). The state variables x (or “states”) are all the variables necessary to
mathematically describe the system’s full dynamics. The states may contain certain inputs,
and as such the remaining states that are not inputs but needed to describe the system
dynamics are called endogenous. Endogenous variables have values that are determined
by other exogenous variables in the system, and are sometimes called dependent variables
in econometrics [94]. The output variables z (or “outputs”) are all the variables that are
measured in some real-time capacity, potentially at various sampling-rates.

The purpose of control is to analyze the system’s dynamical behavior and design a controller
to reshape the dynamical behavior according to a set of specifications. We distinguish between
open-loop, feedforward and feedback or closed-loop control.

System Sensors

d

uol x z

Figure 3.1: Open-loop control.

In open-loop control control, the input uol to the system is determined independently of
the states or output, which are the variables that are being controlled. Open-loop control
does not use feedback to determine if the output z has achieved a desired goal or reference set
point rz (similarly for the state). Some do include feedforward control to be open-loop as it
does not use feedback, but for distinction we treat these as separate categories in this thesis,
which means open-loop control in our definition also doesn’t depend on disturbances d. An
example in power systems is scheduling the settings of a capacitor bank or load tap changer
based on the time-of-day (note that time is not a state or output variable). Another example
is a human operator deciding to turn on an extra generator.

In feedback control, the output z is used in real-time to inform the input u of the system,
typically by comparing z to some defined reference signal or set point rz. This form in which
the output, i.e. measured variables, are used is called output feedback control. An example is
the use of voltage measurements across a distribution network to automatically adjust the
feeder voltage through controlling the load tap changer. Another example in which output
feedback is less direct but arguably present, is when a human operator decides to reset control
equipment based on observations of measurements on the system. In this case, the human
control actions tend to not be permanent (unless the operator is constantly monitoring, such
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Figure 3.2: Feedback control.

System

Output
Feedback
Controller

Sensors

d

u x z

−
rz

ufbz

Figure 3.3: Feedback control.

as in air traffic control around airports), which makes it the overall behavior more open-loop.
A second class of feedback control is when the the full state vector x is fed back to design the
input u, usually called state feedback control. In this context, the state vector x may not be
fully measured in the output z, and an state estimator or observer is needed to estimate the
full state x̂ from the output.

Feedforward control is traditionally known as a simple and powerful technique to com-
plement feedback control. It can be used both to improve the response to reference signals
and to reduce the effect of measurable disturbances [10]. As such, there are broadly two
forms of feedforward control. Firstly, a reference (either on output rz or state rx) can be
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Figure 3.4: Feedforward control.

used to determine an input uffr that anticipates the system’s dynamical response, typically
by feeding rz through an inverse model of the system. Secondly, information about the
disturbances d, either through real-time measurement or a prediction, may be used to design
an input uffd that tries to compensate for its harmful effects by attenuating it directly or,
again, anticipating the system’s dynamical response.

By combining feedforward and feedback control in the right way, one has two degrees of
freedom to split the control design problem into two parts. The feedback controller can be
designed to give good robustness and effective disturbance attenuation, and the feedforward
part can be designed independently to give the desired response to command signals or
objectives [10].
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Figure 3.5: Combined feedback and feedforward control.

Note that traditionally, these notions of control are considered for systems with temporal
dynamics described by first-order ordinary differential equations (ODEs). In electric dis-
tribution, temporal dynamics of voltage and power flow are present, but not captured in
(ODEs). Rather, we consider the system to be in a quasi steady-state described by algebraic
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equations following the first principles described in Chapter 3.2. Hence, we will adjust the
control-theoretic framework in the next section.
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Figure 3.6: Combined feedback and feedforward control.

A State-Space Representation for Electric Distribution Systems

As argued above, the temporal dynamics in electric distribution systems with alternating
current (AC) power are typically not described with ODEs, as the system’s dynamics are
assumed to be in a steady-state. This assumption rests on the condition that the distribution
network is connected to the transmission grid through a substation, which can be modeled as
an infinite bus, meaning that the transmission grid admits or compensates any changes in
power across the distribution network to enable a fixed voltage phasor (hence the substation
admittance is infinite or, equivalently, its impedance is zero).

With this assumption, voltage and power flow across a network can be determined through
solving a set of algebraic equations describing fundamental first principles in electric power.
Consider a network modeled by a graph G = (N , E) with N a set of nodes representing
all buses with cardinality ν := |N | and E a set of edges representing all branches with
cardinality η := |E|. At each bus, we have 4 variables; voltage magnitude Vn, voltage angle δn,
and nodal real and reactive power pn and qn, for all n ∈ N . Vectorized for all buses, we
have V, δ, p, q ∈ Rν and we define the state of the system as

x :=




V
δ
p
q


 ∈ R4ν . (3.1)

As suggested in Section 3.1, we partition the state x into controllable inputs u, uncontrol-
lable inputs or disturbances d and endogenous variables xend. This partitioning is done per
bus, based on the bus type, as suggested in [101] and summarized in Table 5.1.
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Exogenous Endogenous

Controllable - u Uncontrollable - d x\{u,d}

PQ generation pn, qn Vn, δn
PQ load pn, qn Vn, δn
PV generation pn, Vn qn, δn
slack bus V0 δ0 p0, q0

Table 3.1: Partitioning of nodal variables for all bus types.

Note that the exogenous inputs are also treated as state variables: {u, d} ⊂ x. In
principle, the classic state-representation allows for states to be inputs in an ODE although
this is less common (e.g. ẋ = u, which will cause the state trajectory to be the initial
condition plus the integral of the input over a time interval). In our setting, the state x is
the solution to either a set of algebraic equations or an optimization problem. In the former
case, we have to solve the power flow equations F (x) = 0 to find x,

x ∈ {ξ ∈ R4ν : F (ξ) = 0} =:M . (3.2)

We now derive the power flow equations F (·) : R4ν → R2ν and discuss what is needed to
find x. M denotes the set of all power system states that satisfy F (x) = 0, and is named the
power flow manifold, as defined in [25].

3.2 First Principles
We consider modeling the flow, consumption and generation of alternating current (AC)
power in electric distribution networks with a radial topology, as well as the corresponding
spatial voltage dynamics. We model these phenomena as steady state power flow, assuming
the frequency of all wave forms to be constant, which allows us to describe power, voltage
and current as phasors. We start by introducing key quantities and fundamental laws that
govern electric power flow and voltage dynamics.

Let T = (N , E) denote a graph representing a radial distribution feeder, as depicted in
Figure 3.8 on the left, where N is the set of buses or nodes of the feeder and E is the set
of line segments. Zooming in on one branch connecting two buses, as shown in Figure 3.8
on the right. Nodes are indexed by m and n, with m, n ∈ N . Let N , {∞, 0, 1, . . . |N |},
where node 0 denotes the substation (feeder head). Immediately upstream of node 0 is an
additional node used to represent the transmission system, indexed by ∞. We treat node ∞
as an infinite bus, decoupling interactions in the downstream distribution system from the
rest of the grid.

The complex voltage is Vn = Vn∠δn, with Vn the voltage magnitude and δn the voltage
angle at a node n ∈ N . The voltage captures the energy per unit of charge and has the unit
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volt or joule per coulomb. The complex current is defined as In = In∠φn, with In the current
magnitude and φn the current angle. The current measures the flow of electric charge across
a surface (in our case the cross section of the conductive part of an electric wire or bus) and
has the unit ampere or coulomb per second. The angle of both phasors are measured against
a reference point or slack bus in the network. The complex power phasor for power flowing
on a branch out of bus m towards bus n ∈ N is Smn , Vm(Imn)∗ = Pmn + jQmn, measured
in volt ampere, where Pmn is the real power flow corresponding to energy consumption and
generation, as measured in watt, and Qmn is the reactive power flow corresponding to the
exchange of energy between inductive and capacitive elements in the system, as measured in
volt ampere reactive [215]. For modeling purposes, we also introduce the power flowing into
a node n ∈ N (rather than out of node m) as Sn , Vn(Imn)∗ = Pn + jQn (i.e. we drop a
subscript), with Smn = Sn + ZmnI

2
mn being different due to the line loss. See Figure 3.8 for a

pictorial explanation.

V1 V2

V3 V4

V1 V2
Z12

Z12 = r12 + jx12

I12i1

i2
i3

i4

nX

k=1

ik = 0

nX

k=1

Vk = 0 V2 � V1 = Z12I12 =
I12
Y12

Vk = Vk\�k

Figure 3.7: From left to right: Depiction of Kirchhoff’s Current Law, Kirchhoff’s Voltage
Law and Ohm’s Law.

Figure 3.7 introduces the first principles, both pictorially and mathematically. Kirchhoff’s
Current Law (KCL) describes the conservation of charge around a bus or node with multiple
branches with current flowing in or out. Kirchhoff’s Voltage Law (KVL) describes the
conservation of energy around any circuit or any loop in a circuit. Ohm’s Law theorizes that
the current through a conductor between two points is directly proportional to the voltage
across the two points. Here, Zmn = rmn + jxmn is the impedance value of the branch between
nodes m and n, with rmn the resistance and xmn the reactance. The inverse of the impedance
is the admittance Ymn = gmn + jbmn.

For radial networks, we can simplify the notation slightly, as every branch can be uniquely
assigned to a bus. Whenever we choose this notation, we can drop one of the indices on
variables related to a branch: impedance, current and power flow.
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Figure 3.8: Left - An example radial feeder circuit based on the IEEE 37 Bus Test Feeder [107].
Right - Depiction of branch flow and bus injection over across two buses in a radial electric
network.

3.3 Single-Phase Power Flow
Real and reactive power flowing on all branches in a radial network is dominated by the
conservation of energy (KCL) and can be formulated as

Pmn = rmn`mn + pcn − pgn +
∑

(n,k)∈E,k 6=m

Pnk , ∀n ∈ N , (3.3a)

Qmn = xmn`mn + qcn − qgn +
∑

(n,k)∈E,k 6=m

Qnk , ∀n ∈ N , (3.3b)

where `mn := I2
mn denotes the squared current magnitude and rmn`mn , xmn`mn the real and

reactive power loss on branch (m,n).
The local voltage relation between two adjacent nodes in a radial network connected by

an impedance, can be described as a function of the branch power flow by rewriting Ohm’s
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Law,
Vm = Vn + ZmnImn . (3.4)

We now take different variants of this simple expression to derive linear approximations for
voltage angle and magnitude differences in a network.

Voltage angle differences

Multiplying both sides of Equation (3.4) by the complex conjugate voltage V∗n yields, for the
LHS and RHS respectively,

V∗nVm = Vn (cos δn − j sin δn)Vm (cos δm + j sin δm)
= VnVm {(cos δn cos δm + sin δn sin δm) + j (cos δn sin δm − sin δn cos δm)}
= VnVm (cos(δn − δm) + j sin(δm − δn)) ,

V∗n (Vn + ZmnImn) = V 2
n + ZmnS∗n

= V 2
n + (rmn + jxmn) (Pn − jQn)

= V 2
n + (rmnPn + xmnQn) + j (xmnPn − rmnQn) ,

where Sn, Pn, Qn denote power flowing into node n (instead of the convention with subscript
(·)mn which refers to the power flowing out of node m), see Figure 3.8. This yields the
equation

VnVm (cos(δn − δm) + j sin(δm − δn)) = V 2
n + (rmnPn + xmnQn) + j (xmnPn − rmnQn) ,

where by convention Pn, Qn are the real and reactive power flowing into node n. We now
consider the imaginary part of this equation separately, which yields the fundamental power
equation

VnVm sin(δm − δn) = xmnPn − rmnQn . (3.5)

We now consider small angle differences, i.e. sin(δm − δn) ≈ δm − δn. This approximation
gives errors smaller than 1% for angle differences smaller than 0.244 radians (or 14 °) [190].

δm − δn ≈
xmnPn − rmnQn

VnVm
. (3.6)

In the context of high-voltage transmission networks, these equation are often further
simplified. Since voltage levels are typically stable one can assume Vn = 1 pu. Furthermore,
as r � x, the term rmnQn is dropped, and the voltage angle difference is a robust indicator
for the real power flow between two adjacent nodes: δm − δn ≈ xmnPn. This approximation
explains the use of measuring synchronous voltage phase angles in transmission systems
(through synchrophasor technology) to determine real power flow and balance. In distribution
systems, however, these extra assumptions are not universally valid. Distribution circuits can
contain line segments in which resistances and reactances are of the same order of magnitude.
In addition, one cannot assume that voltage magnitudes are static and stable with respect
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to changing power flows, which is an especially poor expectation towards the end of radial
distributions feeders where power flow is small and rapidly changing in a relative sense leading
to more volatile voltage fluctuation.

Voltage magnitude differences

We now consider Equation (3.4), and multiply both sides by their complex conjugates, which
yields

V∗mVm = (Vn + ZmnIn)∗(Vn + ZmnIn)
V 2
m = V 2

n + ZmnV∗nIn + Z∗mnVnI∗n + Z2
mnI

2
n

= V 2
n + ZmnS∗n + Z∗mnSn + |Zmn|2

S2
n

V 2
n

= V 2
n + (rmn + jxmn)(Pn − jQn) + (rmn − jxmn)(Pn + jQn) + (r2

mn + x2
mn)

P 2
n +Q2

n

V 2
n

= V 2
n + 2(rmnPn + xmnQn) + (r2

mn + x2
mn)

P 2
n +Q2

n

V 2
n

.

This yields a relation for the difference in squared voltage magnitude between two adjacent
nodes in the network and the power flow on the intermediate branch,

V 2
m − V 2

n = 2(rmnPn + xmnQn) + (r2
mn + x2

mn)
P 2
n +Q2

n

V 2
n

. (3.7)

We can assume that the term (r2
mn + x2

mn)
P 2
n +Q2

n

V 2
n

associated to losses is relatively small,

motivating the approximation

V 2
m − V 2

n ≈ 2(rmnPn + xmnQn) . (3.8)

Note that one can further simplify this approximation by assuming Vn ≈ 1 p.u., which
yields V 2

m − V 2
n ≈ 2(Vm − Vn) =⇒ Vm − Vn ≈ rmnPn + xmnQn.

A Linear Model For Single-Phase Power Flow

In a radial network setting, where we know the power consumption/generation, and assume
that the losses are negligible, we can retrieve δn and Vn in a closed form solution. First we
compute the power flow through all the lines, by starting at the final nodes of all branches
and adding/substracting the absorbed/injected power bottom-up towards the feeder (thus
ignoring losses).

Pn ≈ pn +
∑

k∈Cn

Pk ≈
∑

k∈Dm

pk ,

Qn ≈ qn +
∑

k∈Cn

Qk ≈
∑

k∈Dm

pk ,
(3.9)
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where (Pn, Qn) is the power flowing into node n, (pn, qn) is the power consumed/produced
at node n, Cn is the set of child nodes of node n, and Dm is the set of nodes downstream
of m. Together with Equation (3.8), these equations were termed the Linear Distribution
Flow equations, in short LinDistFlow, which were introduced in [17] for optimal capacitor
bank placement and have recently gained much attention due to work on convex methods for
optimal power flow [136] and voltage regulation [74].

With (Pn, Qn) for all lines in the network, we can now compute δn and Vn, starting at the
feeder and working top-down towards the ends of all branches, using the derived equations:

δm − δn ≈
xmnPn − rmnQn

VnVm
,

V 2
m − V 2

n ≈ 2(rmnPn + xmnQn) .
(3.10)

For ease of reference, we give these equations the name CompDistFlow equations, inspired by
the fact that with the voltage angle, we now analyze the full voltage phasor V in the complex
plane.

Analysis of CompDistFlow Equations

Remember that we are in the load convention, and hence a positive power flow on branch
(m,n) ∈ E into node n, i.e. Pn, Qn > 0 means that there is a surplus of consumption in
the area downstream of node m. A first aspect that jumps out when analyzing Equations
(3.10) is that the magnitude difference is a positively weighted sum of the terms Pn, Qn,
whereas the angle difference is computed by taking the difference of weighted terms. As
voltage magnitudes Vn ≥ 0, the angle difference hence yields an interesting complement to the
typically used magnitude difference. For ease of analysis, we start with setting rmn = xmn = 1
and inspect the following equations:

∆δmn ≈
Pn −Qn

VnVm
,

∆V 2
mn ≈ 2(Pn +Qn) .

(3.11)

Imagine four different scenarios, in which either P or Q is very positive/negative, and the other
part is relatively small. Inspecting Equations (3.11), it is straightforward to see that these
relate to ∆δ and ∆V as depicted in Figure 3.9. This leads to addressing the research question
of how this approximation can help us build intuition about how real and reactive power flow
direction and magnitude relate to changes in the voltage phasor. As the determination of
real and reactive power flow is critical for voltage and power regulation, this can then help us
build analysis and control techniques that are more sophisticated, then those used in practice
(which mainly rely on using voltage magnitude and imposing transmission style assumptions
on the distribution system).

We now evaluate a set of 9 different scenarios of power flow, i.e. {P > 0, P ≈ 0, P <
0} × {Q > 0, Q ≈ 0, Q < 0}, and inspect the resulting magnitude and angle differences. The
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Figure 3.9: Four simple flow scenarios and their relation to voltage magnitude and angle
differences

scenarios are depicted in Figure 3.10. The main take away from analyzing the left diagram
is that for a specific value of ∆V there are multiple possible flow scenarios. For instance,
observing a small voltage drop ∆V ≈ 0, may be because both the real and reactive power
flowing between the nodes is low, i.e. P,Q ≈ 0, or it may be that the voltage rise due to
reverse real power flow P < 0 is canceled by reactive power consumption Q > 0. A similar
ambiguity arises for ∆V > 0. A certain value can be induced by either positive real or reactive
power flow, or a combination thereof. An important observation is that the voltage angle
difference ∆δ allows us to distinguish between the different cases for which ∆V is similar.

The right diagram in Figure 3.10 provides some further intuition. First, it shows how ∆V
and ∆δ change in the P,Q-plane. This suggests a monotonic relation. Second, the dashed
lines in the diagram indicate what happens to the relationships as the R/X-ratio decreases
(remember that we did the initial analysis with r = x = 1). Note that as the r/x → 0,
i.e. for reactance dominant circuits, the lines end up as a cross with voltage magnitude
explaining reactive power flow (horizontal) and voltage angle explaining real power flow. This
is the equivalent of the decoupled power flow equations, ubiquitously used in transmission
systems [80, Section 6]. In mathematical terms, we can write

[
∆δmn
∆V 2

mn

]
=

[
xmn −rmn
2rmn 2xmn

] [
Pn
Qn

]
, (3.12)

where we simplified the angle difference equation by omitting the division by the voltage
magnitude product. Observing the determinant of the 2 × 2 matrix, we see that

det

[
xmn −rmn
2rmn 2xmn

]
= 2x2

mn + 2r2
mn = 2|Zmn| > 0 ,∀rmn, xmn 6= 0 , (3.13)

indicating that the Equation (3.12) is invertible for any impedance Zmn. Hence, we can also
write the inversion as [

Pn
Qn

]
=

1

2x2
mn + 2r2

mn

[
2xmn rmn
−2rmn xmn

] [
∆δmn
∆V 2

mn

]
. (3.14)

As such, the Equations (3.10) provide a bijection that can be used to infer the power flow on
a branch based on knowledge of the voltage phasor difference, regardless of the impedance
value.
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Figure 3.10: Left - Nine flow scenarios and their relation to voltage magnitude and angle
differences, the colors indicate scenarios with similar magnitude differences. Right - The solid
lines indicate scenarios for which either magnitude or angle differences are zero, the arrows
show how the other variable changes along the line, the dashed lines indicate how the lines
rotate as the R/X-ratio decreases.

3.4 Optimal Power Flow
Optimal Power Flow (OPF) refers to solving an optimization problem that minimizes some
economic or operational objective subject to power flow constraints (and other relevant con-
straints). Traditionally, OPF is developed for planning and coordinating overall transmission
grids as an extension of economic dispatch [80] meant to ensure that the dispatch of generators
minimizes economic cost and results into a power flow scenario that is physically feasible
and satisfying relevant operating and safety constraints. As such, solving the OPF problem
requires a model of the electric grid describing both topology and impedances, as described
in Equations (3.9)-(3.10) for single-phase and Equations (3.60)-(3.63) for three-phase power.

OPF can be used offline as a design tool for network upgrades to size and place equip-
ment, as proposed for capacitor planning in [17, 15], or as a planning tool to schedule the
dispatch of generators and control equipment [80]. With the advent of real-time sensing, the
implementation of OPF in an online setting has been a popular research area in recent years.
Historically, the non-convex nature of the OPF problem has limited its online integration
due to the lack of convergence guarantees [148]. Due to the nonlinear nature of power
flow equations, many OPFs are formulated as quadratically constrained quadratic programs
(QCQPs) (see [26] for general background). QCQPs are generally non-convex and NP-hard,
unless certain strict conditions hold. Progress in optimization theory has since enabled
solutions to the OPF problem through a convex formulation [12, 128] that exploits Semi
Definite Programming (SDP) relaxations of QCQPs (see [136] for a holistic introduction in
the context of OPF). SDP-based OPF problems can be solved for a broad range of practical
conditions in single-phase networks under certain assumptions on the system’s structure
and operating conditions [192, 136, 137]. For single-phase networks, theoretical results have
been derived for both radial [88] and meshed [140] networks, as well as for both the branch
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flow model [75] and the bus injection model [128] ([136] discusses the equivalence of these
results across the two models). Limitations of the SDP relaxations for single-phase networks
have been reported in [129, 146, 147], with negative locational marginal prices [14] and
nondegeneracy and inexactness of semidefinite relaxations [135] forming relevant obstacles
for broad reliable integration.

Practically, implementing OPF in real-time settings for distribution networks is still
hampered by various challenges. Firstly, the power flow dynamics in distribution networks
are three-phase and unbalanced, requiring additional modeling efforts [122] and rendering
most of the above-listed theory on convex relaxations insufficient or not relevant. A popular
method for analyzing such OPFs is relaxation via semidefinite programming (SDP) [45, 46].
It is well documented that relaxation of OPF problems via SDP often fails to achieve a
rank-one solution. As an example, in the work of [135] too many binding constraints will
preclude convergence to a rank-one solution. The authors of [140] explored the extension of
SDP to weakly meshed networks. Their technique was able to achieve a rank-one solution
only after incorporating significant penalties on reactive power dispatch, effectively limiting
the feasible region of control. Finally, in [46], the authors faced difficulty in obtaining a
rank-one solution for certain network configurations. As the inability of relaxations via SDPs
to achieve a rank one solution limits the practicality of these approaches, it is necessary
to consider alternative approaches for solving OPF problems. One such alternative is the
creation of linear approximations for power flow that are sufficiently accurate for control
purposes, and that can be incorporated into convex OPF formulations, as proposed in [87,
178].

Secondly, implementing OPF relies on an extensive and robust communication infrastruc-
ture and a high-fidelity network model. As most distribution networks consist of far more
nodes with a limited communication infrastructure, it is more challenging to use OPF ap-
proaches to govern control equipment and Distributed Energy Resources (DERs), as proposed
in [48].

Power Flow Constraints and Convex Relaxation

The full nonlinear power flow model for single-phase networks reads

Pmn = rmn`mn + pcn − pgn +
∑

(n,k)∈E,k 6=m

Pnk , ∀n ∈ N , (3.15a)

Qmn = xmn`mn + qcn − qgn +
∑

(n,k)∈E,k 6=m

Qnk , ∀n ∈ N , (3.15b)

ym − yn = 2 (rmnPmn + xmnQmn)−
(
r2
mn + x2

mn

)
`mn , ∀(m,n) ∈ E , (3.15c)

`mn =
P 2
mn +Q2

mn

ym
, ∀(m,n) ∈ E , (3.16)

where yn , V 2
m, and where we have assumed the nodal injections to be constant power and

not sensitive to voltage or current fluctuations. Under fairly general conditions, it can be
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shown that the nonlinear equality constraint (3.16) can be relaxed in an optimization setting
to the second order cone inequality constraint [136]:

ym`mn ≥ P 2
mn +Q2

mn (3.17)

This equation can be rewritten as:

4ym`mn ≥ 4P 2
mn + 4Q2

mn

2ym`mn ≥ 4P 2
mn + 4Q2

mn − 2ym`mn
2ym`mn + `2

mn + y2
m ≥ 4P 2

mn + 4Q2
mn − 2ym`mn + `2

mn + y2
m

(3.18)

This yields the second order cone:
∥∥∥∥∥∥

2Pmn
2Qmn

`mn − ym

∥∥∥∥∥∥
2

≤ `mn + ym (3.19)

We also consider an approximated model in which the power losses are assumed to be
small, that is rmn`mn, xmn`ij ≈ 0. This yields:

Pmn = pcn − pgn +
∑

(n,k)∈E,k 6=m

Pnk , ∀n ∈ N , (3.20a)

Qmn = qcn − qgn +
∑

(n,k)∈E,k 6=m

Qnk , ∀n ∈ N , (3.20b)

ym − yn = 2 (rmnPmn + xmnQij) , ∀(m,n) ∈ E , (3.20c)

Operational Objectives and Constraints

In the case studies of this thesis, we aim to optimize various objectives relevant in distribution
grid operations. Firstly, we will minimize voltage deviation from a reference voltage or
general voltage variability due to the intermittent nature of generation and consumption.
This objective can help to keep the voltage in a safely operable regime. Secondly, we will
address efficiency and systems losses by minimizing power flow over branches throughout the
network. Through this objective, we implicitly try to minimize the power delivered from the
transmission grid, injected at the top of a radial network, and maximize the use of distributed
energy resources to provide loads nearby. Lastly, in the case that we rely on the convex
relaxation in Equation (3.19), the objective requires a convex objective of the square current
magnitude `mn, acting as a force to ensure the inequality constraint ends up on the feasibility
boundary, yielding the satisfaction of the original equality constraint (3.16). These goals
are formulated with the objective function, with α, β, γ denoting trade-off parameters (these
could take on the form of a financial price), and yref the reference voltage throughout the
network.

fo :=
∑

n∈N

α (yn − yref)2 + β
∑

(m,n)∈E

(
P 2
mn +Q2

mn

)
+ γ

∑

(m,n)∈E

rmn`mn . (3.21)
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Two constraints are included to account for inverter capacity and voltage goals. Assume
we are given a subset C ⊂ N of buses that are equipped with a controllable source or load.
Each controller i ∈ C is ultimately limited by a local capacity on total apparent power
capacity s̄i. We consider a different controller architectures that can deliver both real and
reactive power. A first version considers that real and reactive power capacity are decoupled
and assumed to have been assigned their own capacity

p
i
(t) ≤ upi (t) ≤ pi(t) , qi(t) ≤ uqi (t) ≤ qi(t) (3.22)

A second version considers a four-quadrant configuration, which yields the disk constraint in
the complex plane

(upi )
2(t) + (uqi )

2(t) ≤ s̄2
i (t) (3.23)

Lastly, we consider inverters that also interface a system with local photovoltaic (PV)
installation, an electric vehicle (EV) charging system, smart loads or a combination thereof.
Due to the nature of these subsystems having some hierarchy of priority, it can happen that
the capacity available for the OPF problem is dependent on the scheduling and activity
of these other systems. For instance, it is possible the inverter can only deliver/consume
reactive power based on the remaining capacity after injecting surplus energy from the PV
installation into the grid. In this case, the reactive power capacity q̄i[t] at time t of an inverter
is limited by the total apparent power capacity s̄ (constant) minus the real power pgi [t]. As a
result, the demand of reactive power does not interfere with real power generation. Therefore,
the reactive power capacity can be formulated as

|uqi [t]| ≤ q̄i[t] =
√
s̄2
i − (pgi [t])

2 . (3.24)

In this scenario, we will assume that each inverter has some overcapacity with respect to
the maximum real power output, e.g. s̄ = 1.05p̄. Another concrete is example is when a
household or business owning the inverter has a schedule for charging EVs or serving other
loads, yielding a similar constraint formulation, possibly for both real and reactive power,

(upi + pprioi )2(t) + (uqi + qprioi )2(t) ≤ s̄2
i (t) ,∀i ∈ C . (3.25)

The responsibility of American utilities to maintain service voltage within ±5% of 120V
as specified by ANSI Standard C84.1 is expressed as a constraint in the optimization problem

y ≤ yn ≤ y ,∀n ∈ N . (3.26)

Economic Objective

We consider a scenario in which the utility negotiates different prices for different capacities,
potentially at different points in time, with different third party DER owners. The resulting
business exchange can be formulated as

fe :=
∑

i∈C

λi((u
p
i )

2 + (uqi )
2) + µi(u

p
i + uqi ) . (3.27)
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Here, ui refers to real or reactive power used for the optimal power flow scheme from agent i,
and λi, µi denote the price levels for procuring a kVAr or kWatt from agent i.

Optimization Problem

The goal of optimal power flow is to determine the control setpoints that minimize the global
operational and economic objectives subject to the operational constraints. The linear OPF
problem reads

min
z

fo + fe (3.28)

s.t. (3.3), (3.22), (3.26)
z = (yn, Pmn, Qmn, u

p
i , u

q
i ) ∀n ∈ N , ∀(m,n) ∈ E , ∀i ∈ C .

3.5 A Simpler Optimal Power Flow Problem

Operational Constraints

In this case study, we solely aim to prevent overload of real power flow over certain critical
branches in an electric network, and we do not model the voltage levels. We assume a radial
network topology and that line losses are negligible, which allows us to model the branch
flow on branch (m,n) ∈ E as the nodal power of all nodes downstream of m, denoted by Dm,
as formulated in Equation (3.9). This aim is formulated through constraints

∑

k∈Dm

{pck − pgk + upk} − Pmn ≤ 0 ,

Pmn −
∑

k∈Dm

{pck − pgk + upk} ≤ 0 ,∀(m,n) ∈ Esafe ,
(3.29)

with Esafe ⊂ E a subset of branches for which power flow limitations are defined, Pmn, Pmn
denoting the upper and lower power flow bounds on branch (m,n) ∈ Esafe. Constraints are
included to account for inverter capacity. Each node i is ultimately limited by the local
capacity on total apparent power capacity s̄i. We consider a simple controller architectures
that can deliver real power, which we assume are both given their own capacity

ui ≤ upi ≤ ui ,∀i ∈ C . (3.30)

Economic Objective

We consider a scenario in which the utility negotiates different prices for different capacities,
potentially at different points in time, with different third party DER owners. The resulting
business exchange can be formulated as:

fe :=
∑

i∈C

λi(u
p
i )

2 (3.31)
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Here, upi refers to real power used for the optimization scheme from agent i, and λi denotes
the price for procuring a kWatt from agent i.

Optimization Problem

The goal of optimal power flow is to determine the control setpoints that minimize the global
operational and economic objectives subject to the operational constraints. The linear OPF
problem reads

min
z

∑

i∈C

λi(u
p
i )

2 (3.32)

s.t. (3.29), (7.28) ,
z = (upi ) ∀i ∈ C .

3.6 Three-Phase Power Flow
In this section, which is adopted from joint work [178] and included for sake of completeness,
we derive a linear model for three-phase unbalanced power flow. Power flow linearizations
have been studied more broadly recently in [24, 25]

Preliminaries

Let T = (N , E) denote a graph representing an unbalanced distribution feeder, where N
is the set of nodes of the feeder and E is the set of line segments. Nodes are indexed by
m and n, with m, n ∈ N . Let N , {∞, 0, 1, . . . , N}, where node 0 denotes the substation
(feeder head). Immediately upstream of node 0 is an additional node used to represent
the transmission system, indexed by ∞. We treat node ∞ as an infinite bus, decoupling
interactions in the downstream distribution system from the rest of the grid. While the
substation voltage may evolve over time, we assume this evolution takes place independently
of DER control actions in T .

Each node and line segment in T can have up to three phases, labeled a, b, and c. Phases
are referred to by φ ∈ {a, b, c} and ψ ∈ {a, b, c}. We define Pm and Pn as the set of phases
at nodes m and n, respectively, and Pmn as set of phases of line segment (m,n). If phase φ
is present at node m, then at least one line connected to m must contain phase φ. If line
(m,n) exists, its phases are a subset of the phases present at both node m and node n, such
that (m,n) ∈ E ⇒ Pmn ⊆ Pm ∩ Pn.

The current/voltage relationship for a three phase line (m,n) between adjacent nodes m
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and n is captured by Kirchhoff’s Voltage Law (KVL) in its full (3.33), and vector form (3.34):


Va
m

Vb
m

Vc
m


 =



Va
n

Vb
n

Vc
n


+



Zaa
mn Zab

mn Zac
mn

Zba
mn Zbb

mn Zbc
mn

Zca
mn Zcb

mn Zcc
mn





Iamn
Ibmn
Icmn


 , (3.33)

Vm = Vn + ZmnImn . (3.34)

Here, Zφψ
mn = rφψmn + jxφψmn denotes the complex impedance of line (m,n) across phases φ and

ψ. We have presented (3.33) and (3.34) where Pmn = {a, b, c}. For lines with fewer than
three phases (|Pmn| ≤ 2) (3.34) becomes:

[Vm = Vn + ZmnImn]Pmn , (3.35)

by indexing by the set of line phases Pmn, where the rows associated with phases ψ /∈ Pmn
of (3.34) are removed, as are the appropriate columns of Zmn. To give two examples, if
Pmn = {a}, then (3.35) is [Vm]{a} ≡ Va

m = Va
n + Zaa

mnIamn, and if Pmn = {a, c} then (3.35) is:

[Vm]{a,c} ≡
[
Va
m

Vc
m

]
=

[
Va
n

Vc
n

]
+

[
Zaa
mn Zac

mn

Zca
mn Zcc

mn

] [
Iamn
Icmn

]
.

Kirchoff’s Current law at node m is given in its full (3.36) and vector (3.37) forms:

∑

l:(l,m)∈E



Ialm
Iblm
Iclm


 =



iam
ibm
icm


+

∑

n:(m,n)∈E



Iamn
Ibmn
Icmn


 , (3.36)

∑

l:(l,m)∈E

Ilm = im +
∑

n:(m,n)∈E

Imn . (3.37)

We assume a complex load, sφn ∀φ ∈ Pn, ∀n ∈ N \∞, is served on all existing phases at each
node except the transmission line, defined as:

sφn
(
V φ
n

)
=
(
βφS,n + βφZ,n

(
V φ
n

)2
)
dφn + uφn − jcφn , (3.38)

where dφn is the complex demand, with constant power and impedance terms βφS,n + βφZ,n = 1,
with uφn = up,φn + juq,φn represents complex power available for control (e.g. DER), and cφn
denotes capacitance, all for φ ∈ Pn. Note, if φ /∈ Pn (i.e. phase φ does not exist at node n),
we define V φ

n = iφn = sφn = dφn = uφn = cφn = 0. If φ /∈ Pmn (i.e. phase φ does not exist on line
segment (m,n)), we define Iφmn = 0.

Throughout this work, we use the symbol ◦ to represent the Hadamard Product (HP) of
two matrices of the same dimension, also known as the element-wise product, which can be
written as:

C = A ◦B = B ◦ A⇒ Cij = AijBij = BijAij .
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Power and Losses

We now derive complex power and loss terms at a node m ∈ N . This analysis, and the
derivation of 3.6, we do not claim as novel contributions (see [87, 173]). Full derivation of
these results are necessary to support one of the main contributions of this work, which is
presented in 3.6. To start, we take the Hadamard Product of Vm and the complex conjugate
(non-transposed) of (3.37):

∑

l:(l,m)∈E

Vm ◦ I∗lm = Vm ◦ i∗m +
∑

n:(m,n)∈E

Vm ◦ I∗mn . (3.39)

The Vm term inside the summation on the RHS is substituted using (3.34):
∑

l:(l,m)∈E

Vm ◦ I∗lm = Vm ◦ i∗m + . . .

∑

n:(m,n)∈E

Vn ◦ I∗mn + (ZmnImn) ◦ I∗mn .
(3.40)

Here, we define the complex power phasor on phase φ entering node n on line (m,n) as
Sφmn = Vφ

n

(
Iφmn
)∗, and the 3 × 1 vector of complex power phasors entering node n on line

(m,n) as Smn =
[
Samn, Sbmn, Scmn

]T
= Vn ◦ I∗mn. The complex load at node m on phase φ

is defined as sφm = Vφ
m

(
iφm
)∗, and the 3 × 1 vector of complex load phasors at node m is

sm =
[
sam, s

b
m, s

c
m

]T
= Vm ◦ i∗m. We now rewrite (3.40):

∑

l:(l,m)∈E

Slm = sm +
∑

n:(m,n)∈E

Smn + Lmn . (3.41)

The term Lmn ∈ C3×1 represents nonlinear losses on the line. As in [87, 173, 17], we
assume that losses are negligible compared to line flows, so that

∣∣Lφmn
∣∣�

∣∣Sφmn
∣∣ ∀(m,n) ∈ E .

Thus, we neglect line losses, linearizing (3.41) into:
∑

l:(l,m)∈E

Slm ≈ sm +
∑

n:(m,n)∈E

Smn . (3.42)

Voltage Magnitude Equations

In this section, we derive a relation between squared voltage magnitudes and complex
multiphase power for unbalanced systems. The reader should note that here we present the
derivation for a line with three phases, where Pmn = {a, b, c}. For lines with less than three
phases (|Pmn| ≤ 2), (3.43) - (3.54) should be indexed by Pmn as (3.35) is.

To start, we consider a line (m,n) ∈ E , and take the Hadamard Product of (3.34) and its
(non-transposed) complex conjugate:

Vm ◦V∗m = (Vn + ZmnImn) ◦ (Vn + ZmnImn)∗ . (3.43)
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This can be rewritten by distributing the terms on the RHS:

Vm ◦V∗m = Vn ◦V∗n + Vn ◦ (ZmnImn)∗ + . . .

(ZmnImn) ◦V∗n + (ZmnImn) ◦ (ZmnImn)∗ .
(3.44)

Here we define the real scalar yφn =
∣∣Vφ

n

∣∣2 = Vφ
n(Vφ

n)∗, the 3×1 real vector yn =
[
yan, y

b
n, y

c
n

]T
=

Vn ◦V∗n, and the 3×1 real vector Hmn = (ZmnImn)◦ (ZmnImn)∗ = (Vm −Vn)◦ (Vm −Vn)∗.
With these definitions, we also take advantage of the commutative property of the HP and
group the second and third terms of the RHS of (3.44) inside the real operator:

ym = yn + 2Re {(ZmnImn)∗ ◦Vn}+ Hmn . (3.45)

At this point, we focus on the terms inside the real operator for clarity of presentation,
and rewrite them as:

(ZmnImn)∗ ◦Vn = . . .


Va
n

(
Zaa
mnIamn + Zab

mnIbmn + Zac
mnIcmn

)∗
Vb
n

(
Zba
mnIamn + Zbb

mnIbmn + Zbc
mnI

c
mn

)∗
Vc
n

(
Zca
mnIamn + Zcb

mnIbmn + Zcc
mnIcmn

)∗


 .

(3.46)

With the definition of complex current on a line, Iφmn =
(
Sφmn/Vφ

n

)∗, and defining the voltage
ratio as γφψn = Vφ

n/Vψ
n , we rewrite (3.46):

(ZmnImn)∗ ◦Vn = . . .


(Zaa
mn)∗Samn + γabn (Zab

mn)∗Sbmn + γacn (Zac
mn)∗Scmn

γban (Zba
mn)∗Samn + (Zbb

mn)∗Sbmn + γbcn (Zbc
mn)∗Scmn

γcan (Zca
mn)∗Samn + γcbn (Zcb

mn)∗Sbmn + (Zcc
mn)∗Scmn


 .

(3.47)

The 3× 1 vector on the RHS of (3.47) can be separated into a 3× 3 matrix multiplying the
3× 1 vector Smn:

(ZmnImn)∗ ◦Vn = . . .


(Zaa
mn)∗ γabn (Zab

mn)∗ γacn (Zac
mn)∗

γban (Zba
mn)∗ (Zbb

mn)∗ γbcn (Zbc
mn)∗

γcan (Zca
mn)∗ γcbn (Zcb

mn)∗ (Zcc
mn)∗





Samn
Sbmn
Scmn


 .

(3.48)

We use the definition of the HP to factor the 3× 3 matrix into two 3× 3 matrices as in (3.49),
where Γn is the 3 × 3 matrix to the left of the Hadamard Product symbol (◦) within the
parentheses on the RHS:

(ZmnImn)∗ ◦Vn = (Γn ◦ Z∗mn)Smn = . . .





1 γabn γacn
γban 1 γbcn
γcan γcbn 1


 ◦



Zaa
mn Zab

mn Zac
mn

Zba
mn Zbb

mn Zbc
mn

Zca
mn Zcb

mn Zcc
mn



∗



Samn
Sbmn
Scmn


 .

(3.49)
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Placing (3.49) back into (3.45) gives:

ym = yn + 2Re {(Γn ◦ Z∗mn)Smn}+ Hmn . (3.50)

Finally, we separate the complex power vector into its active and reactive components,
Smn = Pmn + jQmn, and apply the real operator on the RHS to obtain

ym = yn + 2MmnPmn − 2NmnQmn + Hmn

Mmn = Re {Γn ◦ Z∗mn} , Nmn = Im {Γn ◦ Z∗mn} .
(3.51)

We have derived equations that govern the relationship between squared voltage magni-
tudes and complex power flow across line (m,n). This nonlinear and nonconvex system is
difficult to directly incorporate into an OPF formulation without the use of convex relaxations.
Following the analysis in [87], we apply two approximations. The first is that the higher
order term Hmn, which is the change in voltage associated with losses, is negligible, such that
Hmn ≈ [0, 0, 0]T ∀(m,n) ∈ E . The second assumes that node voltages are “nearly balanced”
(i.e. approximately equal in magnitude and 120◦ apart). This is only applied to Γn in the
RHS of (3.51), such that γabn = γbcn = γcan ≈ α, and γacn = γban = γcbn ≈ α2 for all n ∈ N . Under
these assumptions, Γn becomes:

Γn ≈ A =




1 α α2

α2 1 α
α α2 1


 ∀n ∈ N , (3.52)

where α = 1∠120◦ = 1
2
(−1 + j

√
3) and α2 = α−1 = α∗ = 1∠240◦ = 1

2
(−1− j

√
3). Note that

we make the “nearly balanced” assumption in the process of the formal derivation, but that
does not imply that the voltages need to actually be balanced for the linearizion to be valid.

Applying these approximations for Hmn and Γn to (3.51), we arrive at a linear system of
equations:

ym ≈ yn + 2MmnPmn − 2NmnQmn , (3.53)

Mmn = Re {AZ∗mn} , Nmn = Im {AZ∗mn} . (3.54)

The matricesMmn andNmn are modified impedance matrices, where the off-diagonal elements
are rotated by ±120◦ (see (3.52)). The diagonal entries of Mmn are rφφmn. Off-diagonal
entries of Mmn are 1

2

(
−rφψmn +

√
3xφψmn

)
for (φ, ψ) ∈ {ab, bc, ca}, and 1

2

(
−rφψmn −

√
3xφψmn

)
for

(φ, ψ) ∈ {ac, ba, cb}. Diagonal entries of Nmn are −xφφmn. Off-diagonal entries of Nmn are
1
2

(
xφψmn +

√
3rφψmn

)
for (φ, ψ) ∈ {ab, bc, ca}, and 1

2

(
xφψmn −

√
3rφψmn

)
for (φ, ψ) ∈ {ac, ba, cb}.

Motivating Intermezzo

Now that we have set up the necessary equations, it is possible to further demonstrate the
need of controlling phase angle for switching operations. Consider the following illustrative
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example, where we assume a single phase line and therefore omit superscripts denoting phase.
For two nodes m and n that are not connected by a line, no current flows between the
nodes. However should a switch between the two nodes be closed, the power at node n is
Smn = Vn (Vm − Vn)∗ Y ∗mn, where Ymn = gmn + jbmn is the admittance of the line. Assuming
the voltage magnitudes at nodes m and n are equal, the line power at node n can be written
as:

Smn = |Vn|2 (gmn(cos(θmn)− 1)− bmn sin(θmn)) . . .

+ j |Vn|2 (bmn(1− cos(θmn))− gmn sin(θmn)) ,

where θmn = θm − θn. It is clear that even with equal voltage magnitudes at nodes m
and n, larger voltage angles differences will cause increased real and reactive power flows.
This highlights the importance of the ability to control voltage angle, which present OPF
formulations lack.

Voltage Phase Angle Equations

We now derive an extension of the power and voltage magnitude system that relates differences
in voltage angles between adjacent nodes to complex power flows. This derivation builds
heavily upon the analysis of Section 3.6.

The derivation presented here represents a three phase line, Pmn = {a, b, c}. For lines
with less than three phases (|Pmn| ≤ 2), all equations should be indexed by Pmn as (3.35) is.

We begin with the Hadamard Product of Vn and the complex conjugate of (3.34):

V∗m ◦Vn = V∗n ◦Vn + (ZmnImn)∗ ◦Vn . (3.55)

From the analysis in Section 3.6, we substitute both terms on the RHS, and expand the LHS
with the polar representations of voltage phasors:



|Va

m| |Va
n|∠ (−θam + θan)∣∣Vb

m

∣∣ ∣∣Vb
n

∣∣∠
(
−θbm + θbn

)

|Vc
m| |Vc

n|∠ (−θcm + θcn)


 = yn + (Γn ◦ Z∗mn)Smn . (3.56)

We negate (3.56) and take the imaginary component of both sides:


|Va

m| |Va
n| sin (θam − θan)∣∣Vb

m

∣∣ ∣∣Vb
n

∣∣ sin
(
θbm − θbn

)

|Vc
m| |Vc

n| sin (θcm − θcn)


 = − Im {(Γn ◦ Z∗mn)Smn}

. . . = −NmnPmn −MmnQmn .

(3.57)

where Mmn and Nmn are defined as in (3.51).
Inspection of the voltage angle equation reveals some interesting similarities compared

to the voltage magnitude equations (3.51). The RHS of (3.51) and (3.57) are the real and
imaginary parts of the same argument (except for a scaling factor of one-half).



CHAPTER 3. MODELING AND OPTIMAL POWER FLOW 35

To simplify (3.57), we apply the same assumptions as considered for the magnitude
equations. As in the previous section, we assume voltages are “nearly balanced”, with Γn ≈ A
as in (3.52). Second we assume that θφm − θφn is sufficiently small such that the small angle
approximation holds, so that sin

(
θφm − θφn

)
≈ θφm − θφn ∀φ ∈ Pmn, ∀(m,n) ∈ E . Lastly, we

fix all voltage magnitudes on the LHS of (3.57) to unity, so that
∣∣Vφ

m

∣∣ =
∣∣Vφ

n

∣∣ = 1 ∀φ ∈
Pmn, ∀(m,n) ∈ E . With these three assumptions applied to (3.57), we arrive at:

Θm ≈ Θn −NmnPmn −MmnQmn , (3.58)

with Θm =
[
θam, θ

b
m, θ

c
m

]T , and Mmn and Nmn defined by (3.54). Note that we make the
“nearly balanced” and unity voltage magnitude assumptions in the process of formal derivation,
but that does not imply that voltages actually be perfectly balanced or have a magnitude of
exactly 1 in practice. The accuracy of these approximations in modeling system power flows
and voltages will are explored in [178].

Linearized Unbalanced Power Flow Model

We now present the full set of equations that comprise a linearized model for unbalanced
power flow. We named these the LinDist3Flow equations [178]. Equations for lines (m,n) ∈ E ,
(3.61) - (3.63), should be indexed by line phases Pmn as in (3.35), as defined in Section 3.6.

Per phase node complex load:

sφm
(
yφm
)

=
(
βφS,m + βφZ,my

φ
m

)
dφm + uφm − jcφm ,∀φ ∈ Pm, ∀m ∈ N (3.59)

Branch power flow:
∑

l:(l,m)∈E

Slm ≈ sm +
∑

n:(m,n)∈E

Smn ,∀m ∈ N (3.60)

Magnitude and angle equations:
[ym ≈ yn + 2MmnPmn − 2NmnQmn]Pmn ,∀(m,n) ∈ E , (3.61)
[Θm ≈ Θn −NmnPmn −MmnQmn]Pmn ,∀(m,n) ∈ E , (3.62)
with [Mmn = Re {AZ∗mn} , Nmn = Im {AZ∗mn}]Pmn (3.63)

The accuracy of the approximations in the power and voltage magnitude equations has
been investigated in [87] and [173]. In [178], we perform a Monte Carlo analysis to explore
the level of error introduced by the voltage angle equation assumptions.

3.7 Optimal Power Flow in Unbalanced Networks
In addition to single-phase experiments, we will also consider some experiments on three-phase
unbalanced networks.
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Voltage Balancing

Although the LinDist3Flow equations allow for a flexible OPF framework comparable to the
one presented for single-phase networks above, here we focus on one instance to demonstrate
the generalization of decentralized OPF to three-phase unbalanced systems. We present an
instance first presented in [177] that demonstrated OPF for balancing voltage magnitudes
on an unbalanced radial distribution feeder. Voltage balancing is an important objective
as many three phase loads (induction motors for instance) are sensitive to high levels of
imbalance. Furthermore, many 3-phase voltage regulation equipment actuates based solely
on single phase measurements. Therefore, significant levels of imbalance can lead to improper
operation of these devices. This simulation incorporated both constant power and constant
impedance loads as defined in [107] for the 13 node case. The problem was defined as

min
yφn,P

φ
mn,Q

φ
mn,u

p,φ
n ,uq,φn

∑

n∈N

[∑

φ 6=ψ

(yφn − yψn )2 + ρ
∑

φ

∣∣uφn
∣∣2
]

subject to (3.59)− (3.63), (3.64)
y ≤ yφn ≤ y ,∣∣uφn
∣∣ ≤ u, ∀φ ∈ Pn, ∀n ∈ N . (3.65)

where φ, ψ ∈ {a, b, c}. The parameter ρ was chosen as 0.01 and is a penalty on control action.
[177] showed the effectiveness of the LinDist3Flow model in drastically reducing voltage
imbalance across phases.

Network Reconfiguration

We adapt the OPF formulation from [178]. In this paper, the objective was to close a
switch in order to connect two networks on line. To minimize large instantaneous power
transfers across the switch upon closing, one needs to match the voltage phasors at the ends
of the open switch. To this end, [178] proposed the following OPF to minimize the voltage
phasor difference between one or more nodes and the respective reference at each node, while
providing feeder voltage support:

min
yφn,θ

φ
n,P

φ
n ,Q

φ
n,u

p,φ
n ,uq,φn

ρyCy + ρθCθ + ρuCu

subject to (3.59)− (3.63) ,
y ≤ yφn ≤ y , ∀φ ∈ Pn, ∀n ∈ N ,∣∣uφn
∣∣ ≤ uφn , ∀φ ∈ Pn, ∀n ∈ N ,

y∞ = [1, 1, 1]T ,

Θ∞ = [0, −2π/3, 2π/3]T .

(3.66)
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Cy =
∑

φ∈P1680,2680

(
yφ1680 − yφ2680

)2

, (3.67)

Cθ =
∑

φ∈P1680,2680

(
θφ1680 − θφ2680

)2

, (3.68)

Cu =
∑

n∈N

∑

φ∈Pn

∣∣uφn
∣∣2 . (3.69)

The OPF objective function is a weighted sum of three terms: Cy is the sum of squared
voltage magnitude differences squared, Cθ is the sum of voltage angle differences squared, and
Cu is the sum of the squared magnitudes of all DER dispatch, to avoid applying excessive
amounts of control. Constraints of lower and upper voltage magnitude bounds were imposed
as 0.95 ≤

∣∣V φ
n

∣∣ ≤ 1.05 ∀φ ∈ Pn,∀n ∈ N such that y = 0.9025 and y = 1.1025. Additionally,
DER dispatch is constrained by its apparent power capacity, uφn.
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Chapter 4

Forecasting-Based State Estimation in
Single- and Three-Phase Distribution
Systems

“Under Bayes’ theorem, no
theory is perfect. Rather, it is a
work in progress, always subject
to further refinement and
testing.”

- Nate Silver

Submitted to the IEEE Transactions on Power Systems [58]. Earlier work presented at the
7th International Conference on Cyber-Physical Systems (ICCPS) in Vienna, Austria, April

2016 [59].

State Estimation is an essential technique to provide observability in power systems. Tradi-
tionally developed for high-voltage transmission networks, state estimation requires equipping
networks with many real-time sensors, which remains a challenge at the scale of distribution
networks. This chapter proposes a method to complement a limited set of real-time measure-
ments with voltage predictions from forecast models. The method differs from the classical
weighted least-squares approach, and instead relies on Bayesian estimation formulated as
a linear least squares estimation problem. We integrate recently developed linear models
for unbalanced 3-phase power flow to construct voltage predictions as a linear mapping
of load predictions. The estimation step is a linear computation allowing high resolution
state estimate updates, for instance by exploiting a small set of phasor measurement units.
Uncertainties can be determined a priori and smoothed a posteriori making the method
useful for both planning, operation and post hoc analysis. The method is applied to an IEEE
benchmark and on a real network testbed at the Dutch utility Alliander. An observability
analysis suggests strategies for optimal sensor placement.
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4.1 Introduction

Motivation

The operation of electric distribution networks is faced with new challenges due to the
rapid adoption of distributed generation (DG) and electrification of our society, such as in
driving and heating. The inherent intermittency of renewable generation combined with the
diversification of demand make power flow more variable and harder to predict, leading to
new protection issues, such as unintended islanding or tripping [119], and economic burden
due to accelerated wear [182]. When DG is connected to feeders without proper monitoring
functionality to assess its effect, cost of integration can easily multiply by a factor 3 to 4 [205,
72], and the rapid adoption of EVs will further aggravate this problem [93]. Traditional
operating paradigms with little sensing make it hard to measure and track the impact on the
physical network, causing utilities to impose conservative caps on the allowable DG capacity
and number of electric vehicles (EVs), hindering the transition to more renewable energy
sources.

To understand and mitigate these risks, many Distribution System Operators (DSOs) are
building a stronger information layer on top of their physical infrastructure that exploits
recent advances in sensing and communication to enable forecasting and real-time state
estimation. Power system state estimation (SE) is the process of leveraging measurement
from a subset of states in an electric network to estimate states that are not measured in
real-time. In transmission systems, the need for system reliability and economies of scale have
long motivated the development of state estimation methods [2, 89]. In the traditional setting,
a state estimator relies on an overdetermined formulation for the unknown/unmeasured
variables to be observable. This means that the number of available measurements must be
greater than or equal to the number of unknowns (to be estimated). Most methods then rely
on weighted least-squares or least absolute value approaches [2].

DSOs are experimenting with two capabilities to improve observability. Firstly, by applying
traditional SE methods to distribution systems. This is conceptually similar, but technically
and economically a more challenging task. Ensuring observability requires DSOs to equip
most buses in a network with real-time sensors and communication infrastructure, leading
to steep investments that are hard to scale across all territories. Secondly, by gathering
historical data from SCADA and AMI systems to enable forecasting of demand, flow and
voltage information. Unfortunately, the increasing variability of power yields probability
distributions with long tails, which cause forecasting methods to do poorly in situations when
observability is most needed; when extreme and potentially dangerous events happen.

To overcome issues of scalability and prediction error, we combine forecasting based
on historical load information with estimation using a limited number of real-time sensors.
Our method focuses on estimating the voltage phasor at all buses with no sensor. Voltage
forecasting will be done over a slower timescale using load data collected historically and
modeling three-phase power flow with novel approximations [178]. We then use Bayesian
estimation to update the forecasts in real-time using a small number of sensors with high
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temporal resolution. This is motivated by the recent introduction of synchrophasors for
distribution systems, which allow the real-time assessment of dynamics [222, 142]. The
updated forecasts will then constitute estimated voltage quantities at nodes without sensors
at the same high temporal resolution. The method provides DSOs with a critical functionality
to correct forecasted values when the system is deviating from the expected scenario, allowing
detection and mitigation of risky scenarios.

Previous Work

In conventional state estimation, the measurements z ∈ RNm are expressed as a function of
the quantities that are estimated x ∈ RNn , by using power flow modeling:

z = h(x) . (4.1)

The state estimation problem is then solved using a weighted least squares (WLS) problem:

x∗ = arg min
x

(z − h(x))>W (z − h(x)) . (4.2)

For the WLS problem to yield a meaningful result, Equation (4.1) needs to be overdetermined,
which means that the number of measured variables needs to be greater than the number
of estimated variables; Nm > Nn. A key challenge in distribution grids is to estimate an
Nn-dimensional state vector in scenarios where only a limited set of sensors is available, i.e.
Nm < Nn, which does not satisfy the requirements for conventional state estimation. As
a result, the standard estimation problem is underdetermined and hence ill-posed from a
computational point of view. In practice, this means that the state vector x is not observable.
To overcome this inherent challenge, pseudo-measurements are typically used to augment
real-time measurements in a weighted least squares (WLS) estimation algorithm. Pseudo-
measurements are often calculated using load forecasts or historical data that tend to be
less accurate than real-time measurements. Initial efforts considered augmenting an already
fully observed measurement vector with extra load forecasts [175, 22]. Later efforts tried to
use a more limited number of real-time measurements with forecasts from Gaussian Mixture
Models [189] or Artificial Neural Networks [141]. There have been made many contributions
made to enable Distribution System State Estimation based on traditional WLS, and we
refer the reader to [162] for a rigorous overview.

Unfortunately, the WLS method requires extensive tuning and is rather sensitive to errors
and bad data [90]. Göl and Abur address this challenge through combining WLS with a least
absolute value method that is more robust to error, yielding a hybrid estimator that combines
a limited number of phasor measurement units (PMUs) with a high refresh rate (at the order
of 30 Hz), and a fully observed (M ≥ n) set of SCADA measurements at slower refresh rate
(order of 5 to 15 min). The weighted least absolute value method used helps to robustify the
the estimate between each SCADA update, but does not address a scenario where a limited
set of measurements is available. Furthermore, the estimator is designed for transmission
systems that can rely on robust communication networks. SCADA in distribution systems
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often lack a reliable communication infrastructure, which can lead to packet failure and
unreliable state estimates. Other work by Schenato [179] and Weng [221] study the use of
Bayesian estimation for SE, using load statistics to determine a prior probabilistic forecast x̂
of state variables, which can be updated based on a limited set of real-time measurements.
These papers shows their accuracy is comparable to that of conventional WLS estimators,
and estimation error confidence intervals can be computed off-line, allowing for engineering
trade-offs between number of sensors and estimation accuracy.

Contributions

This work forms a bridge between forecasting and full state estimation in three-phase
distribution systems by embracing a Bayesian approach. Inspired by the development of
linear approximations for unbalanced three-phase power flow [178], we derive a closed-form
analytic state estimator that takes as its inputs load forecasting information, a network
model and real-time measurements from a limited set of sensors. Our method estimates
voltage phasor differences rather than on the absolute phasor. This reduces modeling and
forecast errors and solves the issue of having to stop a numerical algorithm to solve power
flow equations as done in [179]. This also circumvents the need for a reference voltage
(typically the feeder head as in [179]) and allows the algorithm to be implemented in a
distributed fashion for different parts of the network. In addition, the estimator in [179]
models the voltage and current phasor in rectangular form, i.e. the complex voltage at node
i is formulated as Vi = Re(V) + jIm(V), where j :=

√
−1. Since available synchrophasors

typically report in polar form, i.e. Vi = Vi∠δi, a nonlinear transformation is needed to adjust
sensor readings before feeding these to the estimator: Re(V) = Vi cos δi and Im(V) = Vi sin δi.
This can lead to undesirable magnification of measurement errors in the voltage angle δi,
which can be problematic for applications where angle estimates are used, for instance to
close switches [178]. Our method formulates the problem in polar form, bypassing this source
of error. Applied and assessed on a specific IEEE test feeder, we show that the method
reduces average the error of forecasts by an average 60%, with more dramatic improvements
for specific buses where forecasts are not able to perform appropriately. Lastly, we implement
the full method on a utility testbed showcasing its applicability in real world circumstances.

Notation

We use ‖ · ‖ to denote the `2-norm, (·)∗ to denote an optimal value, and > stands for the
transpose operator. N(µ, σ2) denotes a normal distribution with mean µ and variance σ2.
Throughout this work, we use the symbol ◦ to represent the Hadamard Product of two
matrices (or vectors) of the same dimension, also known of the element-wise product, such
that:

C = A ◦B = B ◦ A⇒ Cij = AijBij = BijAij

where i indicates the row and j indicates the column of the vector or matrix.
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4.2 Methodology
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Figure 4.1: Overview of the forecasting and state estimation methodology.

This paper proposes a data-driven approach to do state estimation, that relies on minimum
mean squares estimation (MMSE) [218]. MMSE is related to weighted least squares, but
grounded in Bayesian principles and does not require an overdetermined measurement equation.
Instead, our method relies on linear power flow models that enable us to express voltage
differences (both magnitude and angle) throughout a network as a function of nodal load and
generation. By expressing both the measured differences and the estimated differences as a
function of the load, we are able to set up a linear least squares estimation (LLSE) problem,
the linear version of MMSE. The LLSE has an analytical solution that can update the forecast
of non-measured voltage differences by comparing the measured voltage differences against
their forecasted values. As such, the method reminds of the Kalman Filter [115], which is a
repeated execution of LLSE problems taking into account the dynamic evolution of the state
variables. The approach comes with a trade-off, as the quality of the updates depends on the
number of sensors and their placement in the network. This is discussed in Section 4.6.

The MMSE approach enables an end-to-end pipeline from historical load and network
data to voltage forecasting to updating these forecasts in real-time using a limited set of
sensors. The methodology is depicted in Figure 4.1. The three main steps of forecasting,
modeling and real-time estimation are developed in Section 4.3, Chapter 3 and Section 4.4
respectively. Before we dissect these steps we first cover the sources of uncertainty in state
estimation and we introduce MMSE.

Sources of information and uncertainty for state estimation

The practical reality of DSOs is that they face many sources of uncertainty in trying to
construct a state estimator, outlined in Figure 4.2. Following the proposed construction of
the state estimator as depicted in Figure 4.1, the overall accuracy of the available information
for state estimation depends on three sources of uncertainty: accuracy of the forecasted
quantities, of the modeling procedure and of the quantities measured in real-time.

The forecast may be based on a DSO’s historical data, which can include SCADA data of
network variables, advanced metering infrastructure (AMI) readings of household consumption
(or an anonymized/aggregated version of these), data of distributed generation and storage,
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Figure 4.2: Sources of uncertainty affecting the accuracy of the state estimator

public weather data (temperature, humidity, solar irradiance). These data sources typically
do not form a perfect representation to forecast all the necessary quantities in the network.
Certain nodes may not be recorded, the recordings may be noisy or miss certain data points,
and the sampling rate of the recordings may be lower than the anticipated rate for updating
the state estimator. In the modeling step, inaccuracy arises from parameter data that is
outdated or measured with noise or the use of approximations (such as linear power flow) to
enable efficient computation. Lastly, for the actual estimation, we rely on a limited number of
sensors, which may be subject to measurement noise and could have various sampling rates.

Introduction to Minimum Mean Square Estimation

Consider the context of having a set of voltage phasor measurements Z ∈ RNm and an
unobserved random variable X ∈ RNn , representing all non-measured voltage phasors. We
aim to determine an estimate of X based on Z that is close to X in some sense. Assume
we are given a joint distribution of (X,Z). We want to find an estimator X̂ = g(Z) that
minimizes the mean square error E[‖X − X̂‖2]. One can show that the minimum mean
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squares estimate (MMSE) of X given Z is equivalent to the conditional expectation, i.e.
X̂ = E[X|Z] [218].

We consider the case in which both the estimator and the measurements are linear in a
shared set of variables for which distributions are available, in our case in the form of load
statistics. Let (X,Z) be vectors of random variables on some probability space. It turns out
that the estimator minimizing the mean square error is also linear in the measurements, i.e.
the linear least squares estimator (LLSE) denoted L[X|Z] = a+BZ is a linear function of
Z, with a ∈ CNn and B ∈ CNn×Nm attained by the following optimization problem:

min
a,B

E
[
‖X − a−BZ‖2

]
. (4.3)

Following [218], it can be shown that

a∗ = E[X]− ΣX,ZΣ−1
Z E[Z] , B∗ = ΣX,ZΣ−1

Z , (4.4)

where ΣX,Z ∈ RNn×Nm and ΣZ ∈ RNm×Nm denote the cross-covariance matrix of X and Z
and covariance matrix of Z. Hence, if ΣZ is nonsingular, the LLSE is given by

L[X|Z] = E[X] + ΣX,ZΣ−1
Z (Z − E[Z]) . (4.5)

Lastly, if ΣZ is singular, then Σ−1
Z can be replaced by the left pseudo-inverse Σ†Z . Interpreting

(4.5), (Z −E[Z]) represents a deviation of the actual measurement Z from its expected value
E[Z], which is called an innovation. This innovation triggers the Bayesian estimator L[X|Z]
to propose an update of the forecast E[X] by a linear scaling through the covariance matrices.
Alternatively, L[X|Z] = g(Z) can be interpreted as a projection of X onto the set of affine
functions of Z.

The LLSE has a number of important benefits. Firstly, it has an analytical closed-
form solution that can be used to neatly integrate real-time measurements Z and forecast
information (as we will see in Section 4.3). Secondly, it is not necessary to explicitly calculate
the Bayesian posterior probability density function over X, because L[X|Z] only depends on
the first two moments of X and Z. Thirdly, it works for many distributions (X,Z) ∼ D, as
long asD has well defined first and second moments [218]. Lastly, the number of measurements
Nm does not need to be larger than the number of to-be-estimated states Nn, which is the
most significant difference with other ubiquitous estimation schemes such as weighted least
squares and Gauss-Markov estimation that do not work for Nm < Nn. The main challenge of
any MMSE approach is understanding what information is lost in the projection that happens
in Equation (4.5) through the mapping ΣX,ZΣ−1

Z . For our state estimation method this
requires revisiting the notion of network observability, typically defined for situations where
Nm > Nn, which we will do in Section 4.6, based on the full formulation of the estimator.

4.3 Forecasting
We consider the design of a machine learning model to forecast the mean µs and covariance
matrix Σs of the load sss, which are then used to forecast the mean and covariance of the
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voltage magnitude and phase. In practical contexts, DSOs may not have access to voltage or
load readings from AMI in real-time, but it is possible that historical readings are used, in
combination with other predictive covariates, to predict load values for a future time.

Machine learning models have been used in a variety of ways to predict load values [143].
Two relevant examples are autoregressive moving average (ARMA) models for short term
load forecasting and data-driven modeling of physical systems that utilizes regression trees to
predict loads, with notable benefits to both. An ARMA model is able to capture trends in
previous datapoints [105]. ARMA models are often not practical in distribution operation,
since the AMI data is mostly not available in real-time, preventing the use of recent load
values. A regression tree model is able to cluster data based on certain characteristics, such
as day of the week, temperature, and humidity [19]. Its interpretability makes it useful in
contexts where operators need to make decisions based on a model’s predictions.

In our setting, the MMSE estimator defined in Section 4.2 necessitates the input of a
point estimate of the load and its covariance matrix. This requirement motivates the use of
Gaussian Processes (GPs), which offer both mean and variance information [167]. A GP is
are also flexible in that they can have continuous ARMA features as well as dicrete features
as its inputs. GPs have previously been used in similar applications for short term load
forecasting to predict maximum daily loads [150]. Using GPs does introduce some bias, as
load distributions tend to be non-Gaussian, though typically near-unimodal. In our setting,
this bias can be compensated by the estimation step. Using a more sophisticated method to
retrieve first and second moment information from historical data is left as future work.

Let N denote a set of buses indexed by n = 0, 1, . . . , N − 1, where N is the order (number
of buses) of the distribution feeder, and bus 0 denotes the feeder head (or substation). For each
node n ∈ N , we start with a data set of historical readings of inputs Xn = {xn[t] ∈ Xn}Tt=1

and load values Sn = {sssn[t] ∈ Yn}Tt=1. The inputs consist of real-valued and discrete-valued
features. We consider the following real-valued features at time t:

[
ln[t− 1] · · · ln[t− k] dn[t− 1] · · · dn[t− k + 1] θ[t] η[t]

]
, (4.6)

where ln[t] denotes the load value for bus n at time t, dn[t] the difference in load between
time t − 1 and t, and θt and ηt are the temperature and humidity at time t. Note that a
typical distribution feeder SCADA system often does not have access to load measurement,
and hence the features l and d may only be available historically or in real-time for only a
subset of the buses. Hence, we also consider discrete-valued features representing date and
time: [

DST MOY BD DOW HOD MOH
]
, (4.7)

which respectively denote an indicator for daylight saving time, month of year, an indicator
for business day, day of week, hour of day and minute of hour.

We now want to train a function fn : Xn → Yn with data that best predicts sssn[t] at
some time t based on an input with accessible inputs xn[t]. A GP defined on an input space
Xn can be formulated as

fn(x) = φφφn(xn)>βn + gn(x) , (4.8)
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Figure 4.3: Forecast of an aggregate load using a Gaussian Process model with only discrete-
valued time features. Only 10% of the loads in the aggregate were recorded in historical
data. The other 90% of loads were imputed with the average load profile. Poor forecast
performance, such as on March 21st, motivates the use of Bayesian estimation.

where gn(x) is a zero-mean GP represented as GP(0, kn(xn, xn)), with kernel kn(xn, xn)
modeling the covariance across the input space Xn. φφφn(xn)>βn determines the translation of
the GP from the origin, with φφφn(xn) a feature basis for the output given the input vector
xn, βn are learned coefficients or weights for the basis features [167, Section 2.2]. Given this
framework, we can model the distribution of an output at a certain input x∗n:

f(x∗n) | x∗n, Xn, Sn ∼ N(φφφn(x∗n)>βn + gn(x∗n), σ2) , (4.9)

The primary assumption under a GP is that it models a collection of random variables, any
finite number of which have a joint Gaussian distribution. Notice that there are two different
variances in the system – kn(xn, xn) and σ2. The first variance, kn(xn, xn) is the variance
on the estimate induced by the covariance of the input features as defined by a covariance
function. σ2 is the noise variance of the data as a whole. To challenge the method, in
Section 4.5, we consider a GP model that is based on a poor historical data set and no access
to real-valued features. Figure 4.3 exemplifies the resulting forecast accuracy, motivating the
use of Bayesian estimation to account for forecast errors such as those experienced on March
21st.

4.4 Real-time Estimation
In this Section, we construct the state estimator based on linear least squares estimation.
This method takes in a prior distribution on measured and unmeasured voltage variables,
and updates this in real-time with a limited set of measurements. To do so, we require the
prior statistics of the voltage based on load forecasts (Section 4.3) and power flow modeling
(Chapter 3). We first express measured and unmeasured voltage variables as a linear function
of the net load. We can then construct the necessary matrices to express the voltage forecast
as function of load statistics.
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Voltage as a Function of Net Load

Consider the vector with all the differences in squared voltage magnitude stacked with the
differences in voltage angles over all the branches (i.e. for every set of adjacent nodes) in the
network,

∆YYY ,




Y0 −Y1
...

YN−1 −YN


 ∈ R3N . (4.10)

With Equation (3.61), we can build a model for all the voltage differences over wires throughout
the network

∆YYY = 2 [blkdiag(Mij) blkdiag(Nij)]


 vec(Pij)

vec(Qij)


 = ZZZbSSS , (4.11)

where SSS ∈ R6N is the vector with real and reactive branch flows stacked vertically, and
ZZZb ∈ R3N×6N is a horizontal stack of two block diagonal matrices with the corresponding
3-by-3 matrices from (3.63). With Equation (3.60), we can express the branch flows SSS in
terms of the nodal net loads, which yields SSS = Pbsss, with sss ∈ R6N a vector with the nodal net
loads, real and reactive power pn, qn , n ∈ N stacked vertically, and Pb ∈ R6N×6N a binary
matrix in which a row represents a branch with 1s selecting the nodes downstream of the
branch. We have now expressed the differences in voltage magnitude over all N lines in terms
of the nodal load vector,

∆YYY = ZZZbPbsss , ZZZnsss , (4.12)

where ZZZn , ZZZbPb ∈ R3N×6N .

Measured quantities

In our actual setting, we do not directly measure voltage differences over all individual wires.
Instead, we place the sensors over a distance spanning multiple branches and buses. The
voltage difference over the path can be rewritten as the sum of the individual differences of
the branches lying on the path. For example, for a later network with 3 buses, the squared
voltage magnitude difference over the path from bus 0 through bus 1 to bus 2 can be expressed
as

Y0 −Y2 = (Y0 −Y1) + (Y1 −Y2)
= 2(M01P1 + N01Q1) + 2(M12P2 + N12Q2)
= 2M01p1 + 2N01q1 + 2(M01+
M12)p2 + 2(N01 + N12)q2

Notice that we can form this equation by doing a row operation on Equation (4.12), i.e.
adding up rows 1 and 2 of Zn. Imagine that we have a set of differences that refer to the
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placement of our sensors,

∆YYY m ,




Ym2 −Ym1

...
YmM −YmM−1


 ∈ R3(M−1) , (4.13)

with m1, . . . ,mM ∈M. We can now formulate the equations, by adding up the differences of
all individual lines in between the sensors. I.e., we can formulate a permutation matrix such
that ∆YYY m = Pm∆YYY , and hence

∆YYY m = PmZZZnsss = ZZZmsss , (4.14)

where ZZZm , PmZZZn = PmZZZbPb ∈ R3(M−1)×6N . This gives us an expression for the measured
quantities as a function of the nodal load vector.

Non-measured quantities - Voltage Estimation

We are interested to estimate voltage magnitude and angle at all the N −M buses in the
network that are not equipped with a sensor. We aim to do this given a measurement of the
voltage phasor at a limited number of M buses in the network, and forecast statistics on the
nodal load vector sss. We consider the differences in voltage between a location we want to
estimate and a nearby sensor location. These differences are collected in a vector ∆YYY e to be
estimated as a function of the load vector sss, similar to the construction of the measurement
equation:

∆YYY e = ZZZesss ∈ R3(N+1−M) , (4.15)

where ZZZe , PmZZZn = PeZZZbPb ∈ R3(N+1−M)×6N is constructed in the same way as ZZZm in
(4.14). In order to retrieve an estimate of the absolute voltage value, we can simply take the
nearest sensor reading and add/subtract the estimated difference between the location and
that sensor location.

Voltage Forecast Statistics

We now have that our measurements are voltage phasor differences, i.e. z = ∆YYY m and the
estimation quantities are other voltage phasor difference, i.e. x = ∆YYY e. Given the linear
relationships with the load vector sss, we can now derive the statistics on z. The mean of z is

µz(t) = E(∆YYY m) ,
= E(ZZZmsss) ,
= ZZZmE(sss) ,
= ZZZmµs(t) .

(4.16)
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Similarly, we have that µx(t) = E(∆YYY e) = Zeµs(t). The covariance of z is

Σz(t) = E((z − µz)(z − µz)>) ,
= E((ZZZmsss−ZZZmµs(t))(ZZZmsss−ZZZmµs(t))

>) ,
= ZZZmE((sss− µs(t))(sss− µs)>)ZZZ>m ,
= ZZZmΣs(t)ZZZ

>
m .

(4.17)

Similarly, we have that the cross-covariance of x and z is Σx,z(t) = ZZZeΣs(t)ZZZ
>
m. This yields

all the statistics we need to construct the distribution grid state estimator.

Constructing the State Estimator

We can now analytically derive the LLSE of YYY e given measurements YYY m, as a specific form
of Equation (4.5) presented in Section 4.2. For our voltage estimation setting this yields

L[∆YYY e|∆YYY m] = E(∆YYY e) + . . .
Σ∆YYY e,∆YYYmΣ−1

∆YYYm
(∆YYY m − E(∆YYY m)) ,

= ZZZeµs + . . .

ZZZeΣsZZZ
>
m

(
ZZZmΣsZZZ

>
m

)−1
(∆YYY m −ZZZmµs) ,

(4.18)

where we dropped the time index for brevity. With L[∆YYY e|∆YYY m], the voltage estimates can
be retrieved as

V̂VV e =
√
YYY near + L[∆YYY e|∆YYY m] , (4.19)

where VVV e denotes a stacked vector with voltages for all buses without measurement, and
YYY near are the squared voltages at the nearest measured bus for each estimated bus.

Notice that (4.18) is written in the form ∆ŶYY e = f(∆YYY m), as all of the other information
needed to evaluate the estimator are forecast statistics, which are known a priori. As such,
(4.18) uses the statistical information of the net loads sss, in combination with the topology
and impedance information of the network, to present a closed-form analytical estimator of
voltage differences throughout the network. This function is linear in the measurements and
efficiently computed in real-time.

4.5 Results

Synthetic experiments

Earlier work implemented the distribution grid state estimator on a single-phase radial
network [59]. To validate the estimator on a three-phase network, we used a modified version
of the IEEE 37 bus distribution feeder model [107], depicted in Figure 4.4. The feeder
voltage and power ratings were left unchanged (4.8 kV and 2.5 MVA), as were line segment
configuration assignments. We ignored the transformer at node 775 and the voltage regulator
at the feeder head. We assumed all loads were constant power. The data used in this
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experiment are from datasets provided by Pecan Street for educational use [50]. The raw
data contained 15-minute-interval data sampled from July 1, 2013 to September 26, 2016.
We aggregated different household time series from the Pecan Street data set such that the
aggregated time series data had a spot load marginally less than the 3-phase real and reactive
spot loads defined by the IEEE feeder model [107]. The aggregated time series were then
used to build a Gaussian Process forecast model for real and reactive power at each bus, as
outlined in Section 4.3. Voltage sensors were placed at nine different buses, indicated by red
hexagons in Figure 4.4. Figure 4.5 shows the result for one time instance. To assess the
overall performance, we compute the Average Root Mean Square Error (ARMSE) on the
voltages VVV e that are not measured,

ARMSE({V̂VV e[t]}Tt=1) =

√√√√ 1

T

T∑

t=1

‖V̂VV e[t]− VVV e[t]‖2 . (4.20)

Figure 4.6 shows the ARMSE metric for all buses. It is bounded by 0.2 p.u. for the forecasted
values and 0.02 p.u. for the estimated values. Notice that buses with higher forecast errors
benefit significantly from the estimation procedure. Buses that already have a proper accuracy
on forecasted values of the order < 0.01 p.u. do not necessarily gain much from estimation.
This can be attributed to the fact that these errors are in the same order as the modeling
errors due to linear approximation, which are carefully studied in a separate paper [178].

Validation experiment on a utility testbed

Here, we apply the method to a network in the territory of Alliander, the largest Distribution
Network Operator (DNO) of the Netherlands serving over three million customers. Alliander
is experimenting with community electricity storage in Rijsenhout a suburban village close
to Amsterdam, the Netherlands. The project is called “BuurtBatterij” which translates to
“Neighborhood or Community Battery”. Figure 4.7 depicts the Rijsenhout feeder that houses
the battery project. One of the goals of the community battery experiments is to assess and
improve the accuracy of the available network simulation models. As a part of the community
battery experiments, the local low voltage power grid is modeled and measurement data is
gathered.

We apply the state estimation procedure to the network, relying on a feeder model and
real load and voltage measurements. The feeder contains 142 buses, of which 34 are regular
household customers, one is the distribution transformer and one is the community battery.
The other buses are network cable joints. The source of the network data is the Alliander GIS
database, which contains the exact location and properties of the electricity cables. However,
the GIS database does not contain on which phase each customer is connected, therefore
the estimator is constructed using a balanced single phase model, using the formulation
in Section 3.3. The distribution transformer is located at the top of the feeder, and the
Neighborhood Battery is installed at the end of the feeder. Both the transformer and battery
contain SCADA equipment for measuring power and voltage at a 1-second rate. Of the 34
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Figure 4.4: IEEE 37 node test feeder model, voltage sensors are indicated with red circles.

Figure 4.5: Example voltage profile with forecast and estimation update at all the buses,
numbered as in Figure 4.4.
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Figure 4.6: ARMSE in p.u. for each non-measured bus across all phases. Buses with higher
forecast errors benefit significantly from the estimation procedure. Buses that already have
good accuracy on forecasted values of the order < 0.01 p.u. do not necessarily gain much
from estimation. This can be attributed to the fact that these errors are in the same order as
the modeling errors due to the estimator’s linear approximation.

households connected to this feeder, 12 customers share their power consumption data with
Alliander as part of the community battery project. All measurements have been collected
with a 1-minute resolution. Customers with no direct measurement were assigned the residual
power load, which was defined as the total transformer load minus the sum of all measured
loads. Each unmeasured customer was assigned an equal proportional share of the residual
load. Note that this introduces some error in the forecast procedure.

Figure 4.8 shows the results of applying SE and comparing the predicted and estimated
voltage drop at a particular bus with real voltage measurements. Observe that the estimated
values provide a significant improvement over the forecasted values, showing agreement with
the actual values. The improvements are particularly strong for larger voltage deviations,
providing critical information for safety procedures. At certain times the estimation does
not improve accuracy, which has two explanations. Firstly, for smaller voltage deviations,
modeling errors due to linearization of power flow are more dominant, as mentioned above.
Secondly, the effect of limited real-time voltage sensors (in this case only 2 out of 140 buses)
provides significant but limited improvement due to limited observability of all load flow
scenarios in the network. This challenge requires revisiting the notion of network observability,
which is discussed in Section 4.6. Similar to the IEEE synthetic experiment, SE significantly
reduces the ARMSE across all buses in the network, on average by 60%. Given the difficulty
of predicting the power consumption of individual househoulds due to their variability, this
result is useful for DSOs in improving the fidelity of their forecasting data with limited sensing
capabilities, which is a likely context in most networks for the foreseeable future. As such,
Alliander is implementing SE algorithms in their critical calculations, and aim to use the
data for optimal sensor placement, cable health monitoring, real time overload predictions,
and control of voltage and power flow.
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Figure 4.7: GIS view of Alliander’s low voltage network of Rijsenhout. The outlined modeled
network is the network that is considered for the DGSE model. The modeled part of the
network consists of 34 customers. The unmodeled cables are not physically connected to the
modeled network. At the distribution transformer and the community battery both power
and voltage are measured. At 12 households, the power was measured. For privacy reasons,
their exact location could not be displayed, but they are almost uniformly distributed along
the cable.



CHAPTER 4. FORECASTING-BASED STATE ESTIMATION IN SINGLE- AND
THREE-PHASE DISTRIBUTION SYSTEMS 54

02/05/15-13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

-15

-10

-5

0

5

10

Figure 4.8: Comparison of predicted and estimated voltage with real voltage measurement at
the Neighborhood Battery bus.

4.6 Suggestions for Observability Analysis and Sensor
Placement

Network observability characterization for state estimation using the weighted least squares
(WLS) approach (as in (4.2)) was derived by Monticelli and Wu for settings that assume
the DC approximation [149]. Gómez Expósito and Abur proposed an approach for general
nonlinear measurement equations, which involves taking the first order Taylor approximation
and can be used to include current magnitude measurements [92].

In contrast to the conventional methods, our state estimator does not require solving a
WLS problem. Instead of using the Taylor approximation for a fully nonlinear power flow
model, we have expressed both our measurements ∆YYY m and our estimation variables ∆YYY e as
a linear function of the load vector sss. Assuming we have access to a load forecast µs for all
nodes in the network, we can argue that the voltage forecast ZZZeµs itself is well-defined and
provides full prior observability ; given statistical information for all loads, the mapping from
load forecast to voltage forecast is well-posed.

As covered in Section 4.2, our estimator is a LLSE which is equivalent to projecting the
estimation variable ∆YYY e onto the set of linear functions of the measurement ∆YYY m, which can
be interpreted as the best linear unbiased estimator, assuming the linear power flow model is
unbiased. The projection is a result of the assumption that the estimation step considers a
limited number of sensors M < N , which in the context of network theory means this step
will never be able to capture all changes in the estimation variables. That said, it is possible
to determine a sensor placement that allows the measurements ∆YYY m to capture a maximum
amount of information about the estimation variables ∆YYY e.

Definition 4.6.1. A load profile sss ∈ RN is observable if sss ∈ R
(
ZZZ>m
)
(row space of the

measurement matrix). For any sss = ssso + sssu, with ZZZmsssu = 0 and ssso ∈ R
(
ZZZ>m
)
, such that
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ZZZmsss = ZZZmssso, we say that ssso, sssu are the observable and unobservable parts of the load profile.

Our aim now is to design an estimator that minimizes

∆YYY e − L[∆YYY e|∆YYY m] ≈ ZZZesss−
(
ZZZeµs +ZZZe(sss

m
o − µms,o)

)

= ZZZe(sss− sssmo ) +ZZZe(µ
m
s,o − µs)

= ZZZe(sss
m
u − µms,u) ,

(4.21)

with respect to some metric over all relevant load scenarios. Here, sssmo and sssmu are the observable
and unobservable parts of the load profile sss, with respect to the mapping ΣsZZZ

>
m

(
ZZZmΣsZZZ

>
m

)−1
ZZZm.

Notice that as Σs and
(
ZZZmΣsZZZ

>
m

)−1 are both full rank square matrices, the null space of
the mapping is fully characterized by the null space N (ZZZm). A desired property is for
the unobservable part of the load profile to be insignificant or, ideally, also unobservable
with respect to estimation matrix ZZZe. This means that whatever information is lost by the
projection by measurement matrix ZZZm does not contribute to changes in the actual values
of the estimation variables ∆YYY e. In mathematical terms, this means that we want the null
spaces of ZZZm and ZZZe to intersect as much as possible. This can be formulated as the following
optimization problem:

min
ZZZe,ZZZm

dimN
([

ZZZe

ZZZm

])
− dimN (ZZZm) . (4.22)

Note that ZZZe,ZZZm are both determined by the sensor placement. Alternatively, given a data
set Ξ of historical load profiles, we can formulate a data-driven sensor placement approach
which minimizes

min
ZZZe,ZZZm

∑

ξ∈Ξ

‖ZZZe(I − PZZZm)ξ‖2 , (4.23)

where PZZZm = ZZZ>m(ZZZmZZZ
>
m)−1ZZZm is a projection matrix. Equation (4.23) should be read

as trying to minimize the extent to which the parts of all historical load profiles that are
unobservable with respect to ZZZm affect the value of YYY e. This approach allows the DSO to
prioritize important load flow scenarios that are more safety-critical, by weighting these
differently, yielding

min
ZZZe,ZZZm

‖ZZZe(I − PZZZm)ΞW‖2
F , (4.24)

where W is a diagonal weight matrix. The above sensor placement strategies are here
presented as suggestions. We implement and assess these in a separate paper.

4.7 Conclusions
This chapter addressed the challenge of formulating a distribution grid state estimator, for
scenarios where fully observed sensor arrangements are not yet feasible, and load forecasts
are subject to large uncertainties due to lack of access to data. We derived an algorithm that
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exploits the information in load forecasting and feeder models to construct prior statistics
of relevant voltage variables. We then used a Bayesian approach, in the form of the linear
least squares estimator, to update prior voltage statistics in real-time based on measured
deviations at a limited set of voltage sensors. We applied the method to a benchmark IEEE
network and on a real testbed in the Netherlands and showed its ability to provide accurate
voltages estimates using limited historical data and real-time sensors. We then discussed
suggestions for assessing the methodology in terms of its implications for observability and
sensor placement. As such, the method is highly applicable in the typical distribution network
setting in which data and sensing will remain limited for the foreseeable future.
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Chapter 5

Decentralized Optimal Power Flow

“But in either the technical or
political sphere (or both) any
significant move to decentralize
would amount to retro-fitting our
whole society, since centralized
institutions have become the
norm.”

- Langdon Winner

Submitted to IEEE Transactions on Smart Grid [57]. Earlier work presented at the IEEE
Power & Energy Society General Meeting in Boston, USA, July 2016 [193].

The rapid integration of new technologies in electric networks, such as solar generation,
electric vehicles and battery storage, is both challenging traditional paradigms and providing
new opportunities to operate the grid. A large body of work has addressed the abilities of
inverter-interfaced Distributed Energy Resources (DERs) to aid the regulation of voltage
and power flow, either through providing decentralized control schemes based on local
information or optimization-based approaches using system-wide information or distributed
implementations. These methods suffer, either from suboptimal and unstable behavior and
extensive tuning or from the need for an extensive communication infrastructure. In this
paper, we consider a data-driven approach to determine control policies for a system with
multiple DERs that collectively reconstruct the solution of an optimal power flow (OPF)
problem by using solely local information. We frame the problem by integrating the learning
problem with control-theoretic and information-theoretic tools. A partitioning of control
variables guides the selection of variables that can be used safely and adequately for our
learning problem, and a rate distortion framework facilitates the analysis of how well the
resulting fully decentralized control policies are able to reconstruct the optimal solution.
Our methodology also provides a natural extension to decide what nodes an agent should
communicate with to improve the performance of its individual policy.
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5.1 Introduction
Historically, low and medium voltage distribution networks facilitated uni-directional, pre-
dictable power flow from substations to end customers. By conservatively oversizing cables
and control equipment, Distribution System Operators (DSOs) could deal with peak and
contingency scenarios safely, while requiring limited sensing and control actions. Gradual
changes in the network were typically dealt with by a fit-and-forget approach, making larger
capital intensive network reinforcements that could satisfy the needs for decades to come.

This paradigm was first challenged by the rapid advent of Distributed Generation (DG),
mostly through photovoltaic (PV) systems, leading to new risks of over-voltage, reverse
flow, and thermal overloads, especially at times of high DG and low consumption [195].
The subsequent adoption of electric vehicles (EVs), battery storage and other Distributed
Energy Resources (DERs), increasingly interfaced by controllable electronic power inverters,
has shaped a new reality with more challenging quickly diversifying power flow and voltage
dynamics requiring a new control paradigm.

Many Distribution System Operators (DSOs) are testing ways to prevent expensive
network updates by exploiting DERs and their sensing and actuation capabilities to provide
distributed energy services (DES) to enable active distribution networks. In DES, DERs
are embraced (1) to compensate for the negative effects of DG and EVs thereby allowing
higher levels of penetration, and (2) to distribute and diversify capital investments on the
grid both in space and time, to align closer with actual changes that occur organically. The
latter benefit can dramatically decrease the capital costs, as larger updates tend to be more
conservative due to longer and more uncertain planning horizons [127].

The mounting interest in this problem has led to a plethora of methods that can broadly
be categorized in two categories: decentralized control based on local information versus
optimization-based control based on system-wide information. The decentralized methods
have shown promise in their ability to reduce voltage variability, but require extensive tuning
which is impractical and costly for larger networks with many inverters. In addition, these
methods yield suboptimal control signals and cannot guarantee the satisfaction of critical
system constraints. The optimization-based approaches yield globally optimal power injections
and incorporate constraints on voltage and reactive power capacity. A critical assumption
is the availability of a communication network to collect measurements from throughout
the network and send resulting inverter control signals, which is far from practical for most
present day distribution networks. Although distributed implementations try to address this
issue, these still require extensive communication between most buses in a network.

The contribution of this work lies in combining the “best of both worlds” by integrating
optimal power flow and machine learning as a means to learn a controller for each agent that
locally mimics or reconstructs the actions from a system-wide OPF controller determined
in simulation. As such, the method provides a data-driven approach to tuning controllers
that is fully automatic, relying on historical load and generation data and a model of the
network. This learning-based optimization approach was first proposed for reactive power
control in [193], further formalized with information theory in [54], and recently applied to
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design voltage-reactive power droop-curves in [20].

Relevant Advances in Active Distribution Networks

Earlier efforts to address voltage and power flow problems related to higher penetrations
of DERs aimed at developing decentralized control based on local information [216, 37, 120,
191, 207, 117]. These use heuristics to adjust reactive power output at each inverter based
on the local voltage. These methods have shown promise in their ability to reduce voltage
variability, but suffer from extensive tuning which is impractical for larger networks with
many inverters. In addition, these methods yield suboptimal control signals and cannot
guarantee the satisfaction of critical system constraints. A step further, we find methods that
consider a control theoretic formulation emulating proportional [131] or integral control [227]
(the latter to address the steady-state errors inherent to proportional methods). Another
body of work considers the use of sensitivities between controllable variables and relevant
quantities in the network such as voltage levels or branch flows [16, 174, 172, 32]. Lastly, [227]
proposes a simple localized optimization framework aiming to track a local voltage reference,
and provides necessary conditions that show that localized control does not converge and
may not be stable for longer and more heavily loaded networks.

The emerging need for active distribution grids also motivated the use of Optimal Power
Flow (OPF) for Distribution Operation to enable optimization-based control based on system-
wide information [76]. OPF refers to solving an optimization problem that minimizes some
economic or operational objective subject to power flow and other relevant system constraints.
Traditionally, OPF is used offline as a design tool for network upgrades to size and place
equipment, as proposed for capacitor planning in [17, 15], or as a planning tool to schedule
the dispatch of generators and control equipment. As an extension of economic dispatch, [80]
meant to ensure that the dispatch of generators minimizes economic cost and results into a
power flow scenario that is physically feasible and satisfying relevant operating and safety
constraints. With the advent of real-time sensing, the implementation of OPF in an online
setting has been a popular research area in recent years. Historically, the non-convex
nature of the OPF problem has limited its online integration due to the lack of convergence
guarantees [148], but theoretical advances in optimization led to a breakthrough in solving
the OPF problem through convex relaxations [12, 128]. The inherent lack of communication
infrastructure in distribution networks subsequently motivated various efforts to implement
OPF in a distributed fashion, relying on agent-to-agent communication, such as via consensus
algorithms [228] or dual decomposition [23, 46, 197, 48]. Recent work in extremum-seeking
showed that model-free optimization is possible [7] with provable guarantees for convergence
and convexity for a variety of distribution feeder objective functions over a broad range of
power flows [8].

Despite the elegance of distributed solutions, the necessary communication infrastructure
is still a steep investment at the scale of transforming distribution networks. It remains
a challenge to understand what can be done with minimal investments in assets and com-
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munication infrastructure by fully exploiting existing infrastructure and the capabilities of
naturally arising DERs.

Approach and Contributions

We propose a machine learning-based method to decentralize the implementation of optimal
power flow (OPF) to regulate voltage and power flow in distribution grids without the need
for communication. The approach consists of four steps. First, for a specific network with
a set of controllable DERs, we retrieve data points for loads and generators for K different
scenarios, collected over an extended period of time, typically collected by advanced metering
infrastructure (AMI). Second, for all scenarios, we run a centralized optimal power flow
computation to understand how a group of inverters could have best minimized a collective
objective by adjusting their real and/or reactive power injections, given a certain available
capacity. Third, for each individual DER, we use regression to determine a function that
relates its local measurements to its optimal power injections, as determined by OPF. Last,
we validate these functions as controllers on simulations to determine the power injections
based on a new local measurement.

Given the fact that an optimal control action as determined by an OPF solver is a function
of states throughout the network, our problem is to perform a reconstruction, and its efficacy
reduces to the following question; to what extent can local state measurements inform the
reconstruction of a control action that is optimal for the entire network? We treat the
reconstruction of each inverter’s control actions as a compression problem formulazed with
rate distortion theory, as first proposed in [54]. This framework provides a theoretical lower
bound on the minimum distortion; the best reconstruction possible given local information.
Our formulation naturally extends to consider which nodes in the network a DER should
communicate with in order to improve its reconstruction (by further minimizing its distortion).

We show that our method yields close-to-optimal results for various OPF objectives,
for both single-phase and unbalanced three-phase networks. As such, the method respects
constraints on voltage, equipment specifications and reactive power capacity. The implemen-
tation of decentralized OPF is data-driven and needs little or no real-time communication,
avoiding expensive investments in infrastructure, controller tuning and maintenance. Our
method has the ability to operate in congruence with the existing legacy control equipment,
such as load tap changers and capacitor banks, making the method relevant in contexts where
operators or other autonomous systems make real-time control decisions. Analyzing the
structure of the controllers in terms of what local measurements are selected by the machine
learning algorithm and which nodes are optimal to communicate with in order to improve
the reconstruction provides new insights in the complexity of operating distribution networks
with optimal power flow methods.
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5.2 A Control-Theoretic Lens for OPF
The dynamics considered in OPF for electric distribution systems with alternating current
(AC) are typically not described with differential equations, as these are assumed to be in a
quasi steady-state. This assumption rests on the condition that the distribution network is
connected to the transmission grid through a substation, which can be modeled as an infinite
bus, meaning that the transmission grid admits or compensates any changes in power across
the distribution network to enable a fixed voltage phasor. With this assumption, voltage and
power flow across a network can be determined through solving a set of algebraic equations
describing fundamental first principles in electric power.

However, when we consider decentralized control solutions, the spatial coupling and the
updating nature of local controllers requires a dynamical analysis. We adopt and extend a
control-theoretic perspective to optimal power flow (OPF), as initially proposed in [219] for
general optimization algorithms and interpreted for power systems in [101]. This lens will
help us interpret the challenge of decentralizing OPF with machine learning and it naturally
triggers relevant questions around the analysis, development and integration of our solution.

In control theory, the state-space representation a dynamical system can be thought of as
described by a set of variables including input, state and output variables [81], related by a
set of differential and/or algebraic equations. The input variables are also called exogenous
as these typically enter from outside the system boundary, and can be split up in controllable
input variables u ∈ U (in short, “inputs”) and uncontrollable input variables d ∈ D (in short,
“disturbances”). The state variables x ∈ X (or “states”) are all the variables necessary to
mathematically describe the system’s full dynamics. The states may contain certain inputs
or disturbances. The remaining states, those that are not inputs or disturbances, but that
are needed to describe the system dynamics are endogenous variables. Endogenous variables
have values that are determined by other exogenous variables in the system, and are often
called dependent variables, such as in econometrics [94]. The output variables z ∈ Z (or
“outputs”) are all the variables that are measured in some real-time capacity, potentially at
various sampling-rates.

Consider a network modeled by a graph G = (N , E) with N a set of nodes representing
all buses with cardinality ν := |N | and E a set of edges representing all branches with
cardinality η := |E|. At each bus, we have 4 variables; voltage magnitude Vn, voltage angle δn,
and nodal real and reactive power pn and qn, for all n ∈ N . Vectorized for all buses, we
have V, δ, p, q ∈ Rν and we define the state of the system as

x :=




V
δ
p
q


 ∈ R4ν . (5.1)

As suggested above, we partition the state x into controllable inputs u, uncontrollable
inputs or disturbances d and endogenous variables xend. This partitioning is done per bus,
based on the bus type, as suggested in [101] and summarized in Table 5.1.
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Exogenous Endogenous

Controllable - u Uncontrollable - d xend := x\{u,d}

PQ generation pn, qn Vn, δn
PQ load pn, qn Vn, δn
PV generation pn, Vn qn, δn
slack bus V0 δ0 p0, q0

Table 5.1: Partitioning of nodal variables for all bus types.

Note that the exogenous inputs are also treated as state variables: {u, d} ⊂ x. In our
setting, the state x is the solution to either a set of algebraic equations or an optimization
problem. In the former case, we have to solve the power flow equations F (x) = 0 to find x,

x ∈ {ξ ∈ R4ν : F (ξ) = 0} =:M . (5.2)

Here,M is the power flow manifold, as defined in [25], representing power flow physics and
operating constraints as discussed in Chapter 3.

Feedforward
Controller

System

Feedback
Controller

Sensors

State
Estimator

d

uff u xend zrx

x̂end−
ufb

rx

Figure 5.1: Dynamical system representation with feedback and feedforward control.

Figure 5.1 shows a block diagram of a general dynamical system, depicting with both
feedback and feedforward control. In feedback control, the output z is used in real-time to
inform the input u of the system, typically by comparing z to some defined reference signal
or set point r. An example is the use of voltage measurements across a distribution network
to automatically adjust the feeder voltage through controlling the load tap changer. In this
context, the state vector x may not be fully measured in the output z, and an state estimator
or observer is needed to estimate the full state x̂ from the output. Feedforward control is
traditionally known as a simple and powerful technique to complement feedback control. It
can be used both to improve the response to reference signals and to reduce the effect of
measurable disturbances [10]. As such, there are broadly two forms of feedforward control.
Firstly, a reference (either on output rz or state rx) can be used to determine an input uffr
that anticipates the system’s dynamical response, typically by feeding rz through an inverse
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model of the system. Secondly, information about the disturbances d, either through real-time
measurement or a prediction, may be used to design an input uffd that tries to compensate for
its harmful effects by attenuating it directly or, again, anticipating the system’s dynamical
response.

By combining feedforward and feedback control in the right way, one has two degrees
of freedoms to split the control design problem into two parts. The feedback controller can
be designed to give robustness and effective disturbance attenuation, and the feedforward
part can be designed independently to give the desired response to command signals or
objectives [10].

In this work, we direct our focus on using machine learning to design a decentralized
feedforward controller ûi := π̂i(di) ∀i ∈ C that locally reconstructs the optimal actions of an
OPF problem u∗i from measurable disturbances di, as given in Table 5.1 for different bus
types. For a general dynamical system, the method can be interpreted as learning-based
feedforward optimization. For this paper, we do not consider using machine learning to learn
a feedback controller; a policy ûi := π̂i(x

end
i ) that is a function of endogenous dynamic state

variables, as proposed in [20]. The main challenge with using these variables is that the
historical data of xendi will be different than the measured state xendi = f(ui, di), which is a
function of the input. This requires understanding existence and stability of the fixed point
solution (x+,end

i , û+
i ) such that x+,end

i = f(u+
i , di) and û+

i = π̂i(x
+,end
i ). If the historical data

was affected by control actions, careful analysis is necessary to deal with potential issues
related to closed-loop identification [209].

5.3 Learning Decentralized Feedforward Controllers
The goal of the machine learning procedure is to find a model for each DER i ∈ C that
closely reconstructs the optimal power injection u∗i based solely on local measurements xi
available at node i. We first construct a central training set consisting of power flow scenarios
that are representative of future behavior on the grid. This data set can contain historical
measurements taken from advanced metering infrastructure (AMI) in the grid, augmented
with proxy data for variables that were not measured or for scenarios that did not occur in
the past but are anticipated to occur in the future. For example, a load not metered by AMI,
may be approximated with an average load profile. Examples of anticipated future behaviors
not captured in historical measurements are connections of new electric vehicles or solar
installations. These can be simulated and added to the training data set used for machine
learning. Together, the central training set contains T power flow scenarios augmented with
the optimal control set points u∗i [t] ∀i ∈ C, t = 1, . . . , T , which were computed in a centralized
OPF problem as defined in Sections 3.4-3.7.

Regression is now performed for each individual inverter, by selecting a local data set from
the central data set, with only those variables xi that are measured at node i. The variables
contained in xi may differ from node to node based on the local sensing infrastructure. These
can be complemented by other predictive variables that are available locally such as time or
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weather information. For illustration, we use a running example of a node that can measure
only the local load pci , the local PV generation pgi , and the present capacity si. This yields
the local training set with base variables Xi and labels Yi,

[di[1] · · · di[T ]] , [u∗i [1] · · ·u∗i [T ]] . (5.3)

The next step is to select a machine learning model that is expressive enough to reconstruct
valid patterns in the optimal control actions that can be found in the local data, and that is
simple enough to generalize well to new scenarios. We compared various model structures in
our earlier work [193] and selected a multiple stepwise linear regression algorithm that selects
a subset of available nonlinear features [86]. This model is linear in the parameters, but
allows for nonlinear transformations of the base variables in ϕ(di), concretely quadratic and
interaction terms. For instance, if di contains 3 base variables as in our example, ϕ(di) would
yield 3 linear features; ϕ(i)

1 := pci , ϕ
(i)
2 := pgi and ϕ

(i)
3 := si, and 6 more nonlinear features, of

which 3 interaction terms (ϕ(i)
4 := ϕ

(i)
1 ϕ

(i)
2 etc.) and 3 quadratic action terms (ϕ(i)

7 := (ϕ
(i)
1 )2

etc.). In general, for Bi base variables, we construct Fi = 2Bi +
(
Bi
2

)
features as inputs to the

regression problem. The Fi input variables of the tth sample are denoted as φφφ(i)[t] ∈ RFi . All
Fi features across all T data points can be organized as

Φ(i) =



φφφ(i)>[1]

...
φφφ(i)>[T ]


 =



ϕ

(i)
1 [1] . . . ϕ

(i)
Fi

[1]
... . . . ...

ϕ
(i)
1 [T ] . . . ϕ

(i)
Fi

[T ]


 (5.4)

We use a multiple linear model to relate output Yi to input matrix Φ(i),

ûi(di) := π̂i(β
(i),φφφ(i)[t]) = β

(i)
0 + β

(i)
1 ϕ

(i)
1 [t] + . . .+ β

(i)
Fi
ϕ

(i)
Fi

[t] . (5.5)

A least squares approach determines the coefficients β(i) =
[
β

(i)
0 , ..., β

(i)
F

]
that minimize the

residuals sum of squares (5.6) given T samples,

RSS(β(i)) =
T∑

t=1

(
u∗i [t]− π̂

(
β(i),φφφ(i)[t]

))2
(5.6)

The algorithm is initialized with a multiple linear model of the basic variables in Xi only.
At each iteration, the new feature that improves the Bayesian Information Criterion (BIC)
[180] the most and sufficiently is added to the model. Subsequently, the variable with the
lowest, and sufficiently small contribution is removed. These two steps are iterated until
no variables meet the entrance or exit threshold of the algorithm. The goal of the stepwise
selection algorithm is to select the subset of features that most accurately predicts the optimal
power injection of a DER.
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5.4 Reconstruction and Communication

Rate Distortion Framework

As proposed in [54], we approach the problem of how well the decentralized policies π̂i can
perform in theory from the perspective of rate distortion. Rate distortion theory is a sub-field
of information theory, which provides a framework for understanding and computing the
minimal distortion incurred by any given compression scheme. For a detailed overview,
see [43, Chapter 10]. In a rate distortion context, we can interpret the fact that the output
of each individual policy π̂i depends only on the local state xi as a compression of the full
state x. Note that, in contrast to (5.1), here we consider ui separately from state xi, which
includes disturbances di. We formulate the following variant of the classical rate distortion
problem

D∗ = min
p(û|u∗)

E [ddd(û, u∗)] , (5.7)

s.t. I(ûi;u
∗
j) ≤ I(xi;u

∗
j) , γij ,

I(ûi; ûj) ≤ I(xi;xj) , δij,∀i, j ∈ C ,

where I(·, ·) denotes mutual information and ddd(·, ·) an arbitrary non-negative distortion
measure. As usual, the minimum distortion between random variable u∗ and its reconstruction
û may be found by minimizing over conditional distributions p(û|u∗).

The novelty in (6.2) lies in the structure of the constraints. Typically, D∗ is written
as a function D(R), where R is the maximum rate or mutual information I(ûi;u

∗
i ). From

Figure 6.1b however, we know that pairs of reconstructed and optimal actions cannot share
more information than is contained in the intermediate nodes in the graphical model; ûc1
and u∗c1 cannot share more information than xc1 and u∗c1 . This is a simple consequence of the
data processing inequality [43, Thm. 2.8.1]. Similarly, the reconstructed optimal actions at
two different nodes cannot be more closely related than the measurements xi’s from which
they are computed. The resulting constraints are fixed by the joint distribution of the state
x and the optimal actions u∗. That is, they are fully determined by the structure of the
optimization problem that we wish to solve.

We emphasize that we have made virtually no assumptions about the distortion function.
For the remainder of this paper, we will measure distortion as the mean square error (MSE)
deviation between ûi and u∗i , which is a common loss function in supervised learning. However,
we could also define it to be the suboptimality gap fo(x, û)− fo(x, u∗), which may be much
more complicated to compute. This definition could also allow us to reason explicitly about the
cost of decentralization, answering how much distortion is minimally incurred. Alternatively,
we could assign more weight to certain scenarios to measure the cost of distortion in specific
parts of the operating regime, for instance for scenarios where safety criteria are more stringent
such as for contingencies or constraint violations.
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Allowing Restricted Communication

Suppose that a decentralized policy π̂i suffers from insufficient mutual information between
its local measurement xi and the optimal action u∗i . In this case, we would like to quantify
the potential benefits of communicating with other nodes j 6= i in order to reduce the
distortion limit D∗ from (6.2) and improve its ability to reconstruct u∗i . Here, we build the
information-theoretic solution to the problem of how to choose optimally which other data to
observe, as proposed in [54]. We assume that in addition to observing its own local state xi,
each π̂i is allowed to depend on at most k other xj 6=i.

Lemma 5.4.1. (Restricted Communication [54])
If Si is the set of k nodes j 6= i ∈ N which ûi is allowed to observe in addition to xi, then

setting

Si = arg max
S

I(u∗i ;xi, {xj : j ∈ S}) : |S| = k , (5.8)

minimizes the best-case expectation of any distortion measure. That is, this choice of Si yields
the smallest lower bound D∗ from (6.2) of any possible choice of S.

Lemma 6.4.1 provides a means of choosing a subset of the state {xj : j 6= i} to communicate
to each decentralized policy π̂i that minimizes the corresponding best expected distortion D∗.
Practically speaking, this result may be interpreted as formalizing the following intuition:
“the best thing to do is to transmit the most information.” In this case, “transmitting the
most information” corresponds to allowing π̂i to observe the set S of nodes {xj : j 6= i} which
contains the most information about u∗i . Likewise, by “best” we mean that Si minimizes
the best-case expected distortion D∗, for any distortion metric d. Without making some
assumption about the structure of the distribution of x and u∗, we cannot guarantee that any
particular regressor π̂i will attain D∗. Nevertheless, in a practical situation where sufficient
data {x[t], u∗[t]}Tt=1 is available, we can solve (6.8) by estimating mutual information [111].

5.5 Results for Single-Phase Optimal Power Flow
We evaluate the proposed method on a realistic testbed that is constructed from two
independent sources: we construct a 129 node feeder model based on a real distribution feeder
from Arizona, Figure 5.2, and populate this with demand measurements [50]. Pecan Street
power consumption and PV generation data with a resolution of 15 minutes is obtained from
individual residences in Austin, Texas for a period of 330 days. Individual household load and
PV time series are selected randomly from the Pecan Street data set [50] and aggregated to
match the spot load for each bus as specified in the experiment. We demonstrate Decentralized
OPF through two experiments, both adopting the OPF problem defined in Section 3.4. The
first experiment assumes controllable DER and loads spread randomly across a network. In
this experiment, only reactive power is controlled with the objective to minimize voltage
variations throughout the network. The second experiment considers a group of controllable
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Figure 5.2: Distribution feeder for scenario 1. Substation is located on the far left, locations
of loads with PV inverters (squares), and without PV inverters (circles) are included.

DER concentrated in one area, and a group of large loads concentrated in another area. In
this experiment, both real and reactive power are controlled and the objective is to produce
power locally as much as possible.

Case 1: Minimize Voltage Variations

For scenario 1, 50% of the 53 nodes with loads are randomly selected and equipped with PV
installations with peak generation 80% of the peak real power load. For inverter B, Figure 5.3
shows the real power consumption and PV generation profiles for July 4th 2014. 2500 instances
of OPF are solved with sampled load and PV generation data to retrieve the optimal reactive
power output of all inverters {u∗[t]}Tt=1, with the objective set with α = 1, β = 2 · 10−4, γ = 0.
The data is separated into training and validation data, and the obtained decentralized OPF
controllers are simulated on test data that the learning step did not see. For illustration,
here we show the results for July 4th 2014. The proposed control approach is simulated and
compared to two other approaches: a situation where inverter reactive power capacities are
not utilized, and the approach described in [191] where inverters are operated at a constant,
non-unity, power factor. In our context, we chose to tune the inverters to operate at lagging
(generating) power factor of 0.9 to reduce losses. In addition to the comparison, we extend
our method to show it is capable of collaboration with a load tap changer (LTC). We design
a scheme in which the inverters operate with controllers to flatten the voltage throughout
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Figure 5.3: Sample real power consumption and PV data at the node of Inverter B on July 4th
2014 from Pecan Street data. The profile is obtained by aggregating data from six individual
residences.

the feeder, and then adjust the turn ratio of the LTC at the substation, to safely lower the
voltages throughout the feeder. Hence, we consider four approaches:

a: no reactive power support

b: constant power factor inverter operation

c: decentralized OPF (reactive power)

d: collaboration decentralized OPF and substation LTC

Figure 5.4 presents voltages at all nodes in the network for all four approaches, indicated
with colored surfaces. For approach a, the voltage drop in the system is smallest between
10:00–16:00, when most real power demand is supplied by PV systems, see Figure 5.3. During
these hours, the combination of real power injection of PV systems and reactive power
generation of approach b prompts a voltage rise in the distribution feeder. Approach c
achieves system voltages that are close to the nominal value of 1 p.u., and simultaneously
reduces losses as implied by a lower objective function value, depicted Figure 5.5. The
transition from peak PV generation to peak consumption between 12.00 and 20.00 causes the
system voltage to change significantly without control. For approaches a and b, the lower
bound of the ANSI standard is violated in the evening if traditional voltage regulators are
not operated. The effect of approach c is obvious at these times: reactive power generated
by inverters reduce voltage drop in the system and reduces losses, as depicted in Figure 5.4
and 5.5. Approach d exploits the reduced voltage variability achieved with approach c, and
allows the substation to lower the overall voltage, for instance through adjusting a load tap
changer. Finally, the voltages in approach a and b show a significant change at 14:00. This
is caused by a temporary and sudden reduction of PV generation of approximately 60% at
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Figure 5.4: All network voltages for approaches a, b, c, and d. Colored planes represent
the range between the maximum and minimum voltages at any node in the network. Lower
voltage bound is indicated with red dashed line, an additional indicator is included as a black
dashed line at 0.98 p.u..

14:00, that is best seen in the generation of Figure 5.3. The decentalized OPF controllers c
act appropriately to this sudden change, damping it significantly.

Figure 5.5 compares the objective function values (3.21) for approaches a, b, and c.
Compared to the situation of approach a, both approach b and c have beneficial effect on
the objective function. However, approach c achieves the best performance at all times.
Approach b generates reactive power proportional to the real power output of a PV system.
This is reflected in a lack of control during hours when PV power is not available. Between
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Figure 5.5: Upper figure - Objective function values of a, b. Lower figure - Difference in
objective value for test date between Decentralized OPF control c and centralized OPF. The
maximum difference is two orders of magnitude smaller than the optimal objective function,
amounting to a suboptimality gap of 1.6%.

12.00 and 20.00 the objective function value of approach a increases rapidly, which is caused
by the transition from peak real power generation to peak real consumption, as can be seen
in Figure 5.3. The objective function value of approach c also increases, but significantly less.

The lower figure of Figure 5.5 shows the difference in cost between the centralized OPF
problem and the Decentralized OPF problem implemented on test data. The maximum
difference is 1.6% of the optimal function value, whereas the average difference is 0.15% of
the objective function value. Hence, approach c achieves near-optimal performance.

Case 2: Localize Power Generation

Scenario 2 aims to show that the method also works for different power dynamics and
objectives. We now assign 20 nodes in the lower subradial with controllable DERs, see
Figure 5.6. In addition, the spot loads of 12 nodes in the left upper subradial are increased
by a factor 3. By setting parameter γ in the objective function sufficiently high, this OPF
problem tries minimize power procurement from the transmission grid by matching supply
and demand locally, letting power flow from the area with controllable DER to the area with
concentrated loads. The total real power capacity of the controllable DERs is assumed to
be constant; future work will introduce time-varying capacity profiles based on charging,
generation and consumption patterns. We assign 4 kWatt capacity to 20 inverters, totalling
to 80 kWatt generation/consumption capacity across the feeder, as indicated by the dotted
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Figure 5.6: Total net load delivered by the substation, in the case of: no control, OPF and
Decentralized OPF.

red line in Figure 5.6. Figure 5.6 shows how the decentralized OPF controllers elegantly
mimic the centralized OPF solutions across the test data set. Notice how the power delivered
by the substation is 0 for all times where the network’s net load is smaller than the combined
power capacity of 80 kWatt.

5.6 Results for Three-Phase Optimal Power Flow
We also show the efficacy of Decentralized OPF for three-phase unbalanced networks, by
learning and reconstructing the solutions up,φn , uq,φn , with φ ∈ {a, b, c}, of the centralized OPF
problem for balancing voltage magnitudes across 3 phases, as formulated in (3.65), Section 3.7.
The feeder model used here is the IEEE 13 node test feeder [107]. Figure 5.7 shows the
results of applying Decentralized OPF to balance voltage magnitudes across phases for a
scenario with a significant gap between phase b and phase c of ≈ 0.1p.u.. We see that the
voltage magnitudes are tightly balanced across the network. Notice that in order to balance
the large gap in the lower half of the feeder (nodes 671, 692, 675, 680, 684), a small increase
in gap is incurred in the left upper radial (nodes 645, 646).

5.7 Discussion
Apart from the general performance of Decentralized OPF, we use the scenarios for answering
specific questions:

• For scenario 1, how does the structure of different DER i, j ∈ C differ across the
network, as reflected by parameters β(i), β(j) in (5.5), and what does this tell us about
the network and OPF problem?
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Figure 5.7: Voltage magnitude balancing. In grey, voltage magnitudes across three phases
without control. In black, voltage magnitudes across three phases applying decentralized
OPF.

• Between scenario 1 and 2, how does the optimal communication strategy differ, as
determined via Lemma 6.4.1 and (6.8)?

Interpreting the Machine Learning Models

In our case study, we determined regression models for 27 different inverters. Table 5.2 shows
regression results for inverters A and B (both indicated in Figure 5.2). The first two columns
present the features selected by the stepwise regression and the values for the β-coefficients in
(5.5). The third column shows the standard error of the estimate, and the fourth lists p-values,
which here means the probability that coefficient is zero. A p-value of 0.1 implies a 10%
chance that the corresponding coefficient is zero. Note how the stepwise regression approach
results in two clearly different models. The reactive power output of inverter A depends
predominantly on the local reactive power consumption ϕ(A)

2 , while the output of inverter
B is strongly related to the reactive power capacity ϕ(B)

3 and ϕ(B)
2 is less relevant. Inverter

A’s structure can be explained by the fact it is located at the end of the feeder. As a result,
the aggregate power flow at A is relatively low and correlated with A’s own consumption.
As the objective is to minimize losses and voltage deviations, A tries to produce a signal
that looks like providing the neighboring demand for reactive power, thereby minimizing
current locally and upstream. Inverter B’s structure can be explained by its location close
to the feeder head. In this area, the aggregate power flow is much larger, and the output
of inverter B is needed more as a “bulk” product to lower the flow on branches elsewhere in
the network. This causes inverter B to operate at its maximum capacity most of the time,
causing correlation with the output. As the maximum capacity varies with the local real
power generation at B (a constraint formulated in (3.24)), the learning algorithm tries to
“listen closely” to the present maximum capacity.

This example illustrates that optimal reactive power output of two inverters can have
a completely different structure. Therefore, effective design of controllers based on local
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Table 5.2: Normalized regression coefficients for inverter A and B, as depicted in Figure 5.2.

A Est. SE p-value B Est. SE p-value

offset 0.02 0.01 0.01 offset 0.02 0.00 8.2e−4

ϕ1 0.37 0.01 0 ϕ1 0.04 0.00 3.2e−22

ϕ2 0.77 0.01 0 ϕ3 0.96 0.01 0
ϕ3 -0.21 0.02 8.0e−24 ϕ1ϕ3 0.06 0.01 1.2e−12

ϕ1ϕ2 0.17 0.01 0 ϕ2
1 -0.03 0.00 3.9e−14

ϕ2
1 -0.06 0.01 1.4e−12 ϕ2

3 -0.03 0.01 6.1e−9
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Figure 5.8: Comparison of OPF communication strategies [54].

measurements is challenging, and can clearly benefit from a data driven approach.

The Effect of Communication

In [54], we applied Lemma 6.4.1 to the OPF problem for a smaller network [107], in order
to determine the optimal communication strategy to minimize a squared error distortion
measure. Fig. 6.4b shows the mean squared error (MSE) distortion measure for an increasing
number of observed nodes k and shows how the optimal strategy outperforms an average
over random strategies. For the stepwise regression model with interaction and quadratic
terms, as formulated in (5.5), the MSE of reconstructing the optimal action ui for one agent
decreases asymptotically to ∼ 40%, with a 29% decrease for adding one additional observation.
We compare the quadratic model with a linear model in which only the base variables (in
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our setting di) are used as features. We see that the linear model class has an asymptotic
distortion that is ∼ 40% higher than the quadratic model class. A next step could be to
further enrich the machine learning model, for instance by using time and weather features
and using a more expressive function approximator (such as deep neural networks).

In this paper, we also studied the emerging communication topology that arises from
maximizing the mutual information between the optimal actions and the combined available
measured variables. For case 1, where we minimize voltage deviations and losses across the
network with DERs spread randomly across all buses, we see no particular patterns in the
optimal communication infrastructure. Some DERs closer to the end of the network tend to
communicate with loads nearby, which is explained by the emerging effect in OPF supply
tends to match demand nearby to minimize losses higher upstream in the radial network. For
case 2, where we are localizing the production of power by minimizing the power delivered
from the substation, and interesting pattern arises from the fact that the loads and DER
are concentrated in different areas. As a result, if we allow DERs to observe one extra node
anywhere in the network, all select a node in the area with concentrated loads. This makes
intuitive sense as the optimal control actions are largely responding to the high demand in
the other area. In addition, across all 20 DERs the selected nodes are all in a set of only 3
nodes, suggesting an efficient implementation for a sensor network.

Designing Across Planning and Operation

An important practical consideration of implementing control schemes for active distribution
networks is the impact on the planning and operation processes. Recent work has considered
the co-optimization of planning and operation by considering both traditional expansion
measures (such upgrading transformers or cables) as well as real-time control through DES,
utilizing a decision-making process that builds on an iterative AC optimal power flow
method [116, 117].

When using supervised learning, some immediate concerns arise around the quality of the
training set and the historical data used to construct it. Firstly, a designer wants to have
certainty that the historical data reflect the “normal” system behavior expected in future
operation. If certain scenarios are not measured historically, the controllers may not learn
how to respond in an optimal or desired way. If future scenarios are not measured, but can
be anticipated, is may be possible to instead simulate these and and augment these to the
historical data. Secondly, a designer might want to know what happens when something
changes in the system, such as a new street block connecting to a feeder or the installation of
new electric vehicles or other DERs. This concern is valid for any controller. In our future
work, we are assessing different learning-based controllers for OPF on their performance
across a spectrum of system changes. Again, if some of these changes are anticipated by
a planning process, it may be possible to simulate these changes. By adding these to the
training set, controllers may learn to anticipate these. Otherwise, for smaller changes, a
periodic retraining procedure can be used to update the control parameters incrementally by
adding new historical measurements.
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5.8 Conclusions
In this chapter, we present an integrative approach for decentralizing optimal power flow
based on machine learning. A control-theoretic perspective helps formulate the problem
as an instance of feedforward control based on measurable disturbances. A rate distortion
framework allows us to interpret the decentralized learning approach as a compression and
reconstruction problem, providing a theoretical lower bound on the distortion that can be
achieved with local information and a procedure to improve controllers by communicating
with a node that maximizes the mutual information between the optimal control and the
available variables. Experiments on both single- and three-phase unbalanced systems illustrate
the relevancy of Decentralized OPF for a broad range of systems and objectives. We discuss
some insightful by-products of the approach to understand complex power networks and the
behavior of inverters in OPF implementations, and point at some open problems toward
practical integration in the planning and operation of distribution grids.
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Chapter 6

Fully Decentralized Policies for Learning
in Multi-Agent Systems: An
Information-Theoretic Approach

“Thus we may have knowledge of
the past but cannot control it; we
may control the future but have
no knowledge of it.”

- Claude E. Shannon

Presented at the 31st Conference on Neural Information Processing Systems in Long Beach,
USA, December 2017 [54].

Learning cooperative policies for multi-agent systems is often challenged by partial observ-
ability and a lack of coordination. In some settings, the structure of a problem allows a
distributed solution with limited communication. Here, we consider a scenario where no
communication is available, and instead we learn local policies for all agents that collectively
mimic the solution to a centralized multi-agent static optimization problem. Our main
contribution is an information theoretic framework based on rate distortion theory which
facilitates analysis of how well the resulting fully decentralized policies are able to reconstruct
the optimal solution. Moreover, this framework provides a natural extension that addresses
which nodes an agent should communicate with to improve the performance of its individual
policy.

6.1 Introduction
Finding optimal decentralized policies for multiple agents is often a hard problem hampered by
partial observability and a lack of coordination between agents. The distributed multi-agent



CHAPTER 6. FULLY DECENTRALIZED POLICIES FOR LEARNING IN
MULTI-AGENT SYSTEMS: AN INFORMATION-THEORETIC APPROACH 77

problem has been approached from a variety of angles, including distributed optimization
[27], game theory [11] and decentralized or networked partially observable Markov decision
processes (POMDPs) [157, 91, 151]. In this chapter, we analyze a different approach consisting
of a simple learning scheme to design fully decentralized policies for all agents that collectively
mimic the solution to a common optimization problem, while having no access to a global
reward signal and either no or restricted access to other agents’ local state. This algorithm
is a generalization of that proposed in our prior work [193] related to decentralized optimal
power flow (OPF). Indeed, the success of regression-based decentralization in the OPF
domain motivated us to understand when and how well the method works in a more general
decentralized optimal control setting.

The key contribution of this work is to view decentralization as a compression problem,
and then apply classical results from information theory to analyze performance limits.
More specifically, we treat the ith agent’s optimal action in the centralized problem as a
random variable u∗i , and model its conditional dependence on the global state variables
x = (x1, . . . , xn), i.e. p(u∗i |x), which we assume to be stationary in time. We now restrict each
agent i to observe only the ith state variable xi. Rather than solving this decentralized problem
directly, we train each agent to replicate what it would have done with full information in
the centralized case. That is, the vector of state variables x is compressed, and the ith agent
must decompress xi to compute some estimate ûi ≈ u∗i . In our approach, each agent learns a
parameterized Markov control policy ûi = π̂i(xi) via regression. The π̂i are learned from a
data set containing local states xi taken from historical measurements of system state x and
corresponding optimal actions u∗i computed by solving an offline centralized optimization
problem for each x.

In this context, we analyze the fundamental limits of compression. In particular, we are
interested in unraveling the relationship between the dependence structure of u∗i and x and
the corresponding ability of an agent with partial information to approximate the optimal
solution, i.e. the difference – or distortion – between decentralized action ûi = π̂i(xi) and
u∗i . This type of relationship is well studied within the information theory literature as an
instance of rate distortion theory [43, Chapter 13]. Classical results in this field provide
a means of finding a lower bound on the expected distortion as a function of the mutual
information – or rate of communication – between u∗i and xi. This lower bound is valid
for each specified distortion metric, and for any arbitrary strategy of computing ûi from
available data xi. Moreover, we are able to leverage a similar result to provide a conceptually
simple algorithm for choosing a communication structure – letting the regressor π̂i depend
on some other local states xj 6=i – in such a way that the lower bound on expected distortion
is minimized. As such, our method generalizes [193] and provides a novel approach for the
design and analysis of regression-based decentralized optimal policies for general multi-agent
systems. We demonstrate these results on synthetic examples, and on a real example drawn
from solving OPF in electrical distribution grids.
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6.2 Related Work
Decentralized control has long been studied within the system theory literature, e.g. [138,
186]. Recently, various decomposition based techniques have been proposed for distributed
optimization based on primal or dual decomposition methods, which all require iterative
computation and some form of communication with either a central node [27] or neighbor-to-
neighbor on a connected graph [163, 165, 198]. Distributed model predictive control (MPC)
optimizes a networked system composed of subsystems over a time horizon, which can be
decentralized (no communication) if the dynamic interconnections between subsystems are
weak in order to achieve closed-loop stability as well as performance [39]. The work of
[226] extended this to systems with strong coupling by employing time-varying distributed
terminal set constraints, which requires neighbor-to-neighbor communication. Another
class of methods model problems in which agents try to cooperate on a common objective
without full state information as a decentralized partially observable Markov decision process
(Dec-POMDP) [157]. [151] introduce networked distributed POMDPs, a variant of the
Dec-POMDP inspired in part by the pairwise interaction paradigm of distributed constraint
optimization problems (DCOPs).

Although the specific algorithms in these works differ significantly from the regression-
based decentralization scheme we consider here, a larger difference is in problem formulation.
As described in Sec. 6.3, we study a static optimization problem repeatedly solved at each
time step. Much prior work, especially in optimal control (e.g. MPC) and reinforcement
learning (e.g. Dec-POMDPs), poses the problem in a dynamic setting where the goal is to
minimize cost over some time horizon. In the context of reinforcement learning (RL), the
time horizon can be very long, leading to the well known tradeoff between exploration and
exploitation; this does not appear in the static case. Additionally, many existing methods for
the dynamic setting require an ongoing communication strategy between agents – though
not all, e.g. [161]. Even one-shot static problems such as DCOPs tend to require complex
communication strategies, e.g. [145].

Although the mathematical formulation of our approach is rather different from prior
work, the policies we compute are similar in spirit to other learning and robotic techniques
that have been proposed, such as behavioral cloning [176] and apprenticeship learning [1],
which aim to let an agent learn from examples. In addition, we see a parallel with recent work
on information-theoretic bounded rationality [158] which seeks to formalize decision-making
with limited resources such as the time, energy, memory, and computational effort allocated
for arriving at a decision. Our work is also related to swarm robotics [28], as it learns simple
rules aimed to design robust, scalable and flexible collective behaviors for coordinating a
large number of agents or robots.
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6.3 General Problem Formulation
Consider a distributed multi-agent problem defined by a graph G = (N , E), with N denoting
the nodes in the network with cardinality |N | = N , and E representing the set of edges
between nodes. Figure 6.1a shows a prototypical graph of this sort. Each node has a
real-valued state vector xi ∈ Rαi , i ∈ N . A subset of nodes C ⊂ N , with cardinality
|C| = C, are controllable and hence are termed “agents.” Each of these agents has an action
variable ui ∈ Rβi , i ∈ C. Let x = (xi, . . . , xN )> ∈ R

∑
i∈N αi = X denote the full network state

vector and u ∈ R
∑
i∈C βi = U the stacked network optimization variable. Physical constraints

such as spatial coupling are captured through equality constraints g(x, u) = 0. In addition,
the system is subject to inequality constraints h(x, u) ≤ 0 that incorporate limits due to
capacity, safety, robustness, etc. We are interested in minimizing a convex scalar function
fo(x, u) that encodes objectives that are to be pursued cooperatively by all agents in the
network, i.e. we want to find

u∗ = arg min
u

fo(x, u) ,

s.t. g(x, u) = 0, h(x, u) ≤ 0.
(6.1)

Note that (6.1) is static in the sense that it does not consider the future evolution of
the state x or the corresponding future values of cost fo. We apply this static problem
to sequential control tasks by repeatedly solving (6.1) at each time step. Note that this
simplification from an explicitly dynamic problem formulation (i.e. one in which the objective
function incorporates future costs) is purely for ease of exposition and for consistency with
the OPF literature as in [193]. We could also consider the optimal policy which solves a
dynamic optimal control or RL problem and the decentralized learning step in Sec. 6.3 would
remain the same.

Since (6.1) is static, applying the learned decentralized policies repeatedly over time may
lead to dynamical instability. Identifying when this will and will not occur is a key challenge
in verifying the regression-based decentralization method, however it is beyond the scope of
this work.

Decentralized Learning

We interpret the process of solving (6.1) as applying a well-defined function or stationary
Markov policy π∗ : X → U that maps an input collective state x to the optimal collective
control or action u∗. We presume that this solution exists and can be computed offline.
Our objective is to learn C decentralized policies ûi = π̂i(xi), one for each agent i ∈ C,
based on T historical measurements of the states {x[t]}Tt=1 and the offline computation of
the corresponding optimal actions {u∗[t]}Tt=1. Although each policy π̂i individually aims to
approximate u∗i based on local state xi, we are able to reason about how well their collective
action can approximate π∗. Figure 6.2 summarizes the decentralized learning setup.

More formally, we describe the dependency structure of the individual policies π̂i : Rαi →
Rβi with a Markov Random Field (MRF) graphical model, as shown in Figure 6.1b. The ûi
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Figure 6.1: (a) Distributed multi-agent problem. The circles denote the local state xi of an
agent (a subset of (5.1)), the dashed arrow denotes its inputs ui (red) and disturbances di
(blue), and the double arrows denote physical coupling between the state variables of different
agents, (b) Markov Random Field (MRF) graphical model of the dependency structure of
all variables in the decentralized learning problem. Note that the state variables xi and the
optimal actions u∗i form a fully connected undirected network, and the local policy ûi only
depends on the local state xi.

are only allowed to depend on local state xi while the u∗i may depend on the full state x. With
this model, we can determine how information is distributed among different variables and
what information-theoretic constraints the policies {π̂i}i∈C are subject to when collectively
trying to reconstruct the centralized policy π∗. Note that although we may refer to π∗ as
globally optimal, this is not actually required for us to reason about how closely the π̂i
approximate π∗. That is, our analysis holds even if (6.1) is solved using approximate methods.
In a dynamical reformulation of (6.1), for example, π∗ could be generated using techniques
from deep RL.

A Rate-Distortion Framework

We approach the problem of how well the decentralized policies π̂i can perform in theory
from the perspective of rate distortion. Rate distortion theory is a sub-field of information
theory which provides a framework for understanding and computing the minimal distortion
incurred by any given compression scheme. In a rate distortion context, we can interpret
the fact that the output of each individual policy π̂i depends only on the local state xi as a
compression of the full state x. For a detailed overview, see [43, Chapter 10]. We formulate
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Figure 6.2: A flow diagram explaining the key steps of the decentralized regression method,
depicted for the example system in Figure 6.1a. We first collect data from a multi-agent
system, and then solve the centralized optimization problem using all the data. The data is
then split into smaller training and test sets for all agents to develop individual decentralized
policies π̂i(xi) (or π̂i(di) as proposed in the context of OPF) that approximate the optimal
solution of the centralized problem. These policies are then implemented in the multi-agent
system to collectively achieve a common global behavior.

the following variant of the the classical rate distortion problem

D∗ = min
p(û|u∗)

E [ddd(û, u∗)] , (6.2)

s.t. I(ûi;u
∗
j) ≤ I(xi;u

∗
j) , γij ,

I(ûi; ûj) ≤ I(xi;xj) , δij,∀i, j ∈ C ,

where I(·, ·) denotes mutual information and ddd(·, ·) an arbitrary non-negative distortion
measure. As usual, the minimum distortion between random variable u∗ and its reconstruction
û may be found by minimizing over conditional distributions p(û|u∗).

The novelty in (6.2) lies in the structure of the constraints. Typically, D∗ is written as a
function D(R), where R is the maximum rate or mutual information I(û;u∗). From Figure
6.1b however, we know that pairs of reconstructed and optimal actions cannot share more
information than is contained in the intermediate nodes in the graphical model, e.g. û1 and
u∗1 cannot share more information than x1 and u∗1. This is a simple consequence of the data
processing inequality [43, Thm. 2.8.1]. Similarly, the reconstructed optimal actions at two
different nodes cannot be more closely related than the measurements xi’s from which they
are computed. The resulting constraints are fixed by the joint distribution of the state x and
the optimal actions u∗. That is, they are fully determined by the structure of the optimization
problem (6.1) that we wish to solve.

We emphasize that we have made virtually no assumptions about the distortion function.
For the remainder of this chapter, we will measure distortion as the deviation between ûi
and u∗i . However, we could also define it to be the suboptimality gap fo(x, û) − fo(x, u∗),
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which may be much more complicated to compute. This definition could allow us to reason
explicitly about the cost of decentralization, and it could address the valid concern that the
optimal decentralized policy may bear no resemblance to π∗. We leave further investigation
for future work.

Example: Squared Error, Jointly Gaussian

To provide more intuition into the rate distortion framework, we consider an idealized example
in which the xi, ui ∈ R1. Let ddd(û, u∗) = ‖û−u∗‖2

2 be the squared error distortion measure, and
assume the state x and optimal actions u∗ to be jointly Gaussian. These assumptions allow
us to derive an explicit formula for the optimal distortion D∗ and corresponding regression
policies π̂i. We begin by stating an identity for two jointly Gaussian X, Y ∈ R with correlation
ρ: I(X;Y ) ≤ γ ⇐⇒ ρ2 ≤ 1 − e−2γ , which follows immediately from the definition of
mutual information and the formula for the entropy of a Gaussian random variable. Taking
ρûi,u∗i to be the correlation between ûi and u∗i , σ2

ûi
and σ2

u∗i
to be the variances of ûi and u∗i

respectively, and assuming that u∗i and ûi are of equal mean (unbiased policies π̂i), we can
show that the minimum distortion attainable is

D∗ = min
p(û|u∗)

E
[
‖u∗ − û‖2

2

]
: ρ2

ûi,u∗i
≤ 1− e−2γii = ρ2

u∗i ,xi
,∀i ∈ C , (6.3)

= min
{ρûi,u∗i },{σûi}

∑

i

(
σ2
u∗i

+ σ2
ûi
− 2ρûi,u∗i σu∗i σûi

)
: ρ2

ûi,u∗i
≤ ρ2

u∗i ,xi
, (6.4)

= min
{σûi}

∑

i

(
σ2
u∗i

+ σ2
ûi
− 2ρu∗i ,xiσu∗i σûi

)
, (6.5)

=
∑

i

σ2
u∗i

(1− ρ2
u∗i ,xi

) . (6.6)

In (6.4), we have solved for the optimal correlations ρûi,u∗i . Unsurprisingly, the optimal value
turns out to be the maximum allowed by the mutual information constraint, i.e. ûi should be
as correlated to u∗i as possible, and in particular as much as u∗i is correlated to xi. Similarly,
in (6.5) we solve for the optimal σûi , with the result that at optimum, σûi = ρu∗i ,xiσu∗i . This
means that as the correlation between the local state xi and the optimal action u∗i decreases,
the variance of the estimated action ûi decreases as well. As a result, the learned policy will
increasingly “bet on the mean” or “listen less” to its local measurement to approximate the
optimal action.

Moreover, we may also provide a closed form expression for the regressor which achieves
the minimum distortion D∗. Since we have assumed that each u∗i and the state x are jointly
Gaussian, we may write any u∗i as an affine function of xi plus independent Gaussian noise.
Thus, the minimum mean squared estimator is given by the conditional expectation

ûi = π̂i(xi) = E [u∗i |xi] = E [u∗i ] +
ρu∗i xiσu∗i
σxi

(xi − E [xi]) . (6.7)
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Thus, we have found a closed form expression for the best regressor π̂i to predict u∗i from
only xi in the joint Gaussian case with squared error distortion. This result comes as a direct
consequence of knowing the true parameterization of the joint distribution p(u∗, x) (in this
case, as a Gaussian).

Determining Minimum Distortion in Practice

Often in practice, we do not know the parameterization p(u∗|x) and hence it may be intractable
to determine D∗ and the corresponding decentralized policies π̂i. However, if one can assume
that p(u∗|x) belongs to a family of parameterized functions (for instance universal function
approximators such as deep neural networks), then it is theoretically possible to attain or at
least approach minimum distortion for arbitrary non-negative distortion measures.

Practically, one can compute the mutual information constraint I(u∗i , xi) from (6.2) to
understand how much information a regressor π̂i(xi) has available to reconstruct u∗i . In the
Gaussian case, we were able to compute this mutual information in closed form. For data
from general distributions however, there is often no way to compute mutual information
analytically. Instead, we rely on access to sufficient data {x[t], u∗[t]}Tt=1, in order to estimate
mutual informations numerically. In such situations (e.g. Section 6.5), we discretize the data
and then compute mutual information with a minimax risk estimator, as proposed by [111].

6.4 Allowing Restricted Communication
Suppose that a decentralized policy π̂i suffers from insufficient mutual information between
its local measurement xi and the optimal action u∗i . In this case, we would like to quantify the
potential benefits of communicating with other nodes j 6= i in order to reduce the distortion
limit D∗ from (6.2) and improve its ability to reconstruct u∗i . In this section, we present an
information-theoretic solution to the problem of how to choose optimally which other data to
observe, and we provide a lower bound-achieving solution for the idealized Gaussian case
introduced in Section 6.3. We assume that in addition to observing its own local state xi,
each π̂i is allowed to depend on at most k other xj 6=i.

Theorem 6.4.1. (Restricted Communication)
If Si is the set of k nodes j 6= i ∈ N which ûi is allowed to observe in addition to xi, then

setting

Si = arg max
S

I(u∗i ;xi, {xj : j ∈ S}) : |S| = k , (6.8)

minimizes the best-case expectation of any distortion measure. That is, this choice of Si yields
the smallest lower bound D∗ from (6.2) of any possible choice of S.

Proof. By assumption, Si maximizes the mutual information between the observed local
states {xi, xj : j ∈ Si} and the optimal action u∗i . This mutual information is equivalent
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to the notion of rate R in the classical rate distortion theorem [43]. It is well-known that the
distortion rate function D(R) is convex and monotone decreasing in R. Thus, by maximizing
mutual information R we are guaranteed to minimize distortion D(R), and hence D∗.

Theorem 6.4.1 provides a means of choosing a subset of the state {xj : j 6= i} to
communicate to each decentralized policy π̂i that minimizes the corresponding best expected
distortion D∗. Practically speaking, this result may be interpreted as formalizing the following
intuition: “the best thing to do is to transmit the most information.” In this case, “transmitting
the most information” corresponds to allowing π̂i to observe the set S of nodes {xj : j 6= i}
which contains the most information about u∗i . Likewise, by “best” we mean that Si minimizes
the best-case expected distortion D∗, for any distortion metric d. As in Section 6.3, without
making some assumption about the structure of the distribution of x and u∗, we cannot
guarantee that any particular regressor π̂i will attain D∗. Nevertheless, in a practical situation
where sufficient data {x[t], u∗[t]}Tt=1 is available, we can solve (6.8) by estimating mutual
information [111].

Example: Joint Gaussian, Squared Error with Communication

Here, we reexamine the joint Gaussian-distributed, mean squared error distortion case
from Section 6.3, and apply Thm. 6.4.1. We will take u∗ ∈ R1, x ∈ R10 and u∗, x jointly
Gaussian with zero mean and arbitrary covariance. The specific covariance matrix Σ of the
joint distribution p(u∗, x) is visualized in Figure 6.3a. For simplicity, we show the squared
correlation coefficients of Σ which lie in [0, 1]. The boxed cells in Σ in Figure 6.3a indicate
that x9 solves (6.8), i.e. j = 9 maximizes I(u∗;x1, xj) the mutual information between the
observed data and regression target u∗. Intuitively, this choice of j is best because x9 is
highly correlated to u∗ and weakly correlated to x1, which is already observed by û; that is,
it conveys a significant amount of information about u∗ that is not already conveyed by x1.

Figure 6.3b shows empirical results. Along the horizontal axis we increase the value of k,
the number of additional variables xj which regressor π̂i observes. The vertical axis shows
the resulting average distortion. We show results for a linear regressor of the form of (6.7)
where we have chosen Si optimally according to (6.8), as well as uniformly at random from
all possible sets of unique indices. Note that the optimal choice of Si yields the lowest average
distortion D∗ for all choices of k. Moreover, the linear regressor of (6.7) achieves D∗ for all k,
since we have assumed a Gaussian joint distribution.

6.5 Application to Optimal Power Flow
In this case study, we aim to minimize the voltage variability in an electric grid caused by
intermittent renewable energy sources and the increasing load caused by electric vehicle
charging. We do so by controlling the reactive power output of distributed energy resources
(DERs), while adhering to the physics of power flow and constraints due to energy capacity
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Figure 6.3: Results for optimal communication strategies on a synthetic Gaussian example.
(a) shows squared correlation coefficients between of u∗ and all xi’s. The boxed entries
correspond to x9, which was found to be optimal for k = 1. (b) shows that the optimal
communication strategy of Thm. 6.4.1 achieves the lowest average distortion and outperforms
the average over random strategies.

and safety. Recently, various approaches have been proposed, such as [74] or [228]. In these
methods, DERs tend to rely on an extensive communication infrastructure, either with a
central master node [223] or between agents leveraging local computation [47]. We study
regression-based decentralization as outlined in Section 6.3 and Figure 6.2 to the optimal
power flow (OPF) problem [136], as initially proposed by [193]. We apply Thm. 6.4.1 to
determine the communication strategy that minimizes optimal distortion to further improve
the reconstruction of the optimal actions u∗i .

Solving OPF requires a model of the electricity grid describing both topology and
impedances; this is represented as a graph G = (N , E). For clarity of exposition and without
loss of generality, we introduce the linearized power flow equations over radial networks, also
known as the LinDistFlow equations [17] (described in detail in Chapter 3):

Pij =
∑

(j,k)∈E,k 6=i

Pjk + pcj − pgj , (6.9a)

Qij =
∑

(j,k)∈E,k 6=i

Qjk + qcj − qgj , (6.9b)

yj = yi − 2 (rijPij + ξijQij) (6.9c)

In this model, capitals Pij and Qij represent real and reactive power flow on a branch from
node i to node j for all branches (i, j) ∈ E , lower case pci and qci are the real and reactive power
consumption at node i, and pgi and q

g
i are its real and reactive power generation. Complex

line impedances rij +
√
−1ξij have the same indexing as the power flows. The LinDistFlow
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equations use the squared voltage magnitude yi, defined and indexed at all nodes i ∈ N .
These equations are included as constraints in the optimization problem to enforce that the
solution adheres to laws of physics.

To formulate our decentralized learning problem, we will treat xi , (pci , q
c
i , p

g
i ) to be the

local state variable, and, for all controllable nodes, i.e. agents i ∈ C, we have ui , qgi , i.e.
the reactive power generation can be controlled (yi, Pij, Qij are treated as dummy variables).
We assume that for all nodes i ∈ N , consumption pci , q

c
i and real power generation pgi

are predetermined respectively by the demand and the power generated by a potential
photovoltaic (PV) system. The action space is constrained by the reactive power capacity
|ui| = |qgi | ≤ q̄i. In addition, voltages are maintained within ±5% of 120V , which is expressed
as the constraint y ≤ yi ≤ y . The OPF problem now reads

u∗ = arg min
qgi , ∀i∈C

∑

i∈N

|yi − yref| , (6.10)

s.t. (6.9) , |qgi | ≤ q̄i , y ≤ yi ≤ y .

Following Figure 6.2, we employ models of real electrical distribution grids (including the
IEEE Test Feeders [107]), which we equip with with T historical readings {x[t]}Tt=1 of load
and PV data, which is composed with real smart meter measurements sourced from [50].
We solve (6.10) for all data, yielding a set of minimizers {u∗[t]}Tt=1. We then separate the
overall data set into C smaller data sets {xi[t], u∗i [t]}Tt=1 , ∀i ∈ C and train linear policies
with feature kernels ϕi(·) and parameters θi of the form π̂i(xi) = θ>i ϕi(xi). Practically, the
challenge is to select the best feature kernel ϕi(·). We extend earlier work which showed
that decentralized learning for OPF can be done satisfactorily via a hybrid forward- and
backward-stepwise selection algorithm [86, Chapter 3] that uses a quadratic feature kernels.

Figure 6.4a shows the result for an electric distribution grid model based on a real network
from Arizona. This network has 129 nodes and, in simulation, 53 nodes were equipped with
a controllable DER (i.e. N = 129, C = 53). In Figure 6.4a we show the voltage deviation
from a normalized setpoint on a simulated network with data not used during training. The
improvement over the no-control baseline is striking, and performance is nearly identical to
the optimum achieved by the centralized solution. Concretely, we observed: (i) no constraint
violations, and (ii) a suboptimality deviation of 0.15% on average, with a maximum deviation
of 1.6%, as compared to the optimal policy π∗.

In addition, we applied Thm. 6.4.1 to the OPF problem for a smaller network [107], in
order to determine the optimal communication strategy to minimize a squared error distortion
measure. Figure 6.4b shows the mean squared error distortion measure for an increasing
number of observed nodes k and shows how the optimal strategy outperforms an average
over random strategies.
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Figure 6.4: Results for decentralized learning on an OPF problem. (a) shows an example
result of decentralized learning - the shaded region represents the range of all voltages in a
network over a full day. As compared to no control, the fully decentralized regression-based
control reduces voltage variation and prevents constraint violation (dashed line). (b) shows
that the optimal communication strategy Si outperforms the average for random strategies on
the mean squared error distortion metric. The regressors used are stepwise linear policies π̂i
with linear or quadratic features.

6.6 Conclusions and Future Work
This chapter generalizes the approach developed in Chapter 5 to solve multi-agent static
optimal control problems with decentralized policies that are learned offline from historical
data. Our rate distortion framework facilitates a principled analysis of the performance of
such decentralized policies and the design of optimal communication strategies to improve
individual policies. These techniques work well on a model of a sophisticated real-world OPF
example.

There are still many open questions about regression-based decentralization. It is well
known that strong interactions between different subsystems may lead to instability and
suboptimality in decentralized control problems [51]. There are natural extensions of our
work to address dynamic control problems more explicitly, and stability analysis is a topic of
ongoing work. Also, analysis of the suboptimality of regression-based decentralization should
be possible within our rate distortion framework. Finally, it is worth investigating the use of
deep neural networks to parameterize both the distribution p(u∗|x) and local policies π̂i in
more complicated decentralized control problems with arbitrary distortion measures.
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Chapter 7

Customized Differential Privacy for
Distributed Optimization in Multi-Agent
Systems

“I never said, ‘I want to be
alone.’ I only said ‘I want to be
let alone!’ There is all the
difference.”

- Greta Garbo

Submitted to the IEEE Transactions on Control of Network Systems [56].

Real-time data-driven optimization and control problems over networks may require sensitive
information of participating users to calculate solutions and decision variables, such as in
traffic or energy systems. Adversaries with access to coordination signals may potentially
decode information on individual users and put user privacy at risk. Work in differential
privacy for distributed optimization so far has considered focusing on specific instances,
protecting either a cost function or constraint parameters, and imposing a uniform privacy
level for all agents involved in the mechanism. We develop local differential privacy, which
is a strong notion that guarantees user privacy regardless of any auxiliary information an
adversary may have, for a large family of convex distributed optimization problems. The
nature of the privacy result allows each agent to customize its own level of local differential
privacy based on local needs and parameter sensitivities. We propose a general sampling
based approach for determining sensitivity and derive analytical bounds for specific quadratic
problems. We derive a general sub-optimality bound as a function of the cumulative variance
of the noise injected by all agents. We analyze inherent trade-offs between privacy and
sub-optimality as a function of noise variance and the number of iterations in optimizing.
Our algorithm is implemented for distributed optimization in electric grids, and distributed
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model-predictive control in building energy management. We propose various allocation
schemes to divide the maximum allowable noise, a privacy budget, among all participating
agents, either through proportional sharing or well studied pricing mechanisms.

7.1 Introduction

Motivation

The electric grid is rapidly changing due to the advent of renewable generation and the
electrification of transportation, heating and other vital systems. These changes lead to
an unprecedented level of variability, uncertainty and increased risk of overload and power
imbalance, and motivate the use of flexibility to mitigate these risks in real-time.

In distribution systems, which traditionally had very limited diagnostic and control
capabilities, the slow response time of legacy control infrastructure, such as capacitor banks
and voltage transformers, prohibits distribution system operators (DSOs) to mitigate these
new dynamics, giving way to accelerated wear and failure of network components that can
cause cascading blackouts, as is being increasingly experienced in areas with high solar
adoption rates [195]. As a result, distributed energy services are considered to help regulate
power flow and voltages by using inverter-interfaced distributed energy resources (DERs),
such as batteries, electric vehicles, solar installations or smart capacitors. Inverters can
respond fast and help stabilize voltage and power flow by adjusting their intake or outtake
of power, thereby mitigating effects of variability and overload locally, faster and closer to
the source. Orchestrating such mitigation in a network with multiple inverters is often cast
as an optimal power flow problem (OPF) with power flow and capacity constraints and an
objective that minimizes network losses, voltage deviations or real power consumption [80].
In transmission systems, demand response schemes are rapidly adopted to mitigate power
imbalances resulting from inadequate forecasting and increased variability, by coordinating
energy consumers to quickly adjust the consumption of specific devices or DERs.

In both settings, an optimization and control problem is formulated to determine the
optimal actions to be computed, communicated and implemented in real-time throughout
a network. Often the scale of such a problem desires a distributed implementation that
can be solved quickly enough to allow for high frequency control actions. To enable this, a
network may be split up into sub-networks governed by different agents, who exchange their
local optimization variables with neighbors and/or a central operator to iteratively solve the
optimization problem. Exchanging optimization variables between agents and the changes
therein may reveal private information, such as whether someone is home and what kind of
appliances someone is using [100]. In addition, there is growing understanding that secondary
information may be inferred from the communicated variables, including the parameters used
in the local objective and constraints, which may reveal sensitive information such as prices
and capacity [97].

To make matters more challenging, different DER owners or energy customers may be
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competing with each another to serve the utility company with their flexibility. Knowing the
capacity and prices negotiated by other players can help in negotiating with the DSO and
can lead to strategic behavior that includes untruthful communication in the bidding process
for flexibility, thereby harming the quality and adequacy of the distributed optimization or
control problem. As such, both personal privacy and commercial privacy needs require the
development of agent-to-agent distributed optimization algorithms that can mask sensitive
information in objectives and constraints.

In recent years, various privacy-preserving algorithms have been proposed for distributed
optimization and control problems, using various privacy metrics. The differential privacy
framework [67] has gained the most attention, and is particularly lauded for its robustness
to auxiliary side information that an adversary might have to complement information
gained from a particular algorithm, providing stronger privacy guarantees than other existing
metrics (see [61] for an overview). A recent textbook on differential privacy provides detailed
information and various applications [66].

The framework assumes a setting in which sensitive information is stored in a database
by a trustworthy curator, which can provide answers to external queries. A system is
made differentially private by randomizing its answers in such a way that the distribution
over published outputs is not too sensitive to changes in the stored data. Perturbation
can be designed to make it provably difficult for an adversary to make inferences about
individual records from the published outputs. In the setting of d-OPF, each DER owner
is its own curator managing its own locally private information and communication of its
optimization variables to neighboring DER owners. In order to preserve differential privacy,
each curator has to ensure that the output of queries, that is the communicated variables,
remain approximately unchanged if local parameters relating to its objective or constraints
are modified.

Related Work

This work complements an existing and rapidly growing body of literature on incorporating
differential privacy into resource allocation and, most relevant here, in distributed optimiza-
tion, control and networked systems. Earlier work by Hsu et al. [104] develops differential
privacy-preserving algorithms for convex optimization problems that are solved in a central
fashion, considering general linear programs (LPs) with either private objectives or constraint.
Dong et al. [62] consider privacy in a game theoretic environment, motivated by traffic routing
in which the origins and destinations of drivers are considered private. Jia et al. [110] consider
occupancy-based HVAC control and treat the control objective and the location traces of
individual occupants as private variables, using an information-theoretic privacy metric. A
recent tutorial paper by Cortés et al. [42] covers differential privacy for distributed opti-
mization, and distinguishes between objective-perturbing and message-perturbing strategies
for distributed optimization. In the first category, the objective function of each agent is
perturbed with noise in a differentially private manner, which guarantees differential privacy
at the functional level and is preferred for systems with asymptotically stable dynamics [154].
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In the second category, coordination messages are perturbed with noise before sent, either to
neighbors or a central node, depending on the specific algorithm. Huang et al. [106] propose
a technique for disguising private information in the local objective function for distributed
optimization problems with strongly convex separable objective functions and convex con-
straints. Han et al. [97] consider problems where the private information is encoded in the
individual constraints, the objective functions need to be convex and Lipschitz continuously
differentiable, and the constraints have to be convex and separable. Other related works are
Mo and Murray [144] who aim to preserve privacy of agents’ initial states in average consensus
and Katewa et al. [118] who explore an alternative trade-off between privacy and the value of
cooperation (rather than performance) in distributed optimization. In [185], a privacy-aware
optimization algorithm is analyzed using the cryptography notion of zero knowledge proofs.
More recently, [229] considers differentially private algorithms over time-varying directed
networks.

The above works are restrictive in two ways. Firstly, these consider privacy-preserving
mechanisms for constraints, objectives or initial states only. An exception is the work Hsu
et al. [104] on linear programs, which can handle both private objectives and constraints.
Secondly, the existing work considers uniform privacy levels for agents across a network,
not facilitating potential variation in actual privacy needs. As such, this chapter provides a
more general set of tools by proposing a mechanism that preserves private objectives and
constraints for optimization problems with strongly convex objectives and convex constraints,
and allowing for customized local differential privacy across a network of agents.

Contributions

Motivated by personal and commercial privacy concerns in distributed OPF, we investigate
the problem of preserving differential privacy of local objectives and constraints in distributed
constrained optimization with agent-to-agent communication. Compared to previous works
on privacy-aware distributed optimization (e. g. [97], [106]), we consider the notion of local
differential privacy, which is a refined (and more stringent) version of differential privacy
considered in other related works (see, for example, [65]). It allows each agent in a network
to customize its own privacy level, based on individual preferences and characteristics.
Furthermore, most previous work considers privacy protection for either individual objective
function ([106]) or the individual constraint ([97]), our more general formulation enables us to
provide privacy guarantees on both local objective function parameters and local constraint
parameters. Specifically, the proposed algorithm solves a general class of convex optimization
problems where each agent has a local objective function and a local constraint, and agents
communicate with neighbors/adjacent agents with no need for a central authority.

We show that the private optimization algorithm can be formulated as an instance of
the Inexact Alternating Minimization Algorithm (IAMA) for Distributed Optimization [163].
This algorithm allows provable convergence under computation and communication errors.
This property is exploited to provide privacy by injecting noise large enough to hide sensitive
information, while small enough to exploit the convergence properties of the IAMA. We derive
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the trade-off between the privacy level and sub-optimality of the algorithm. The trade-off
between sub-optimality and differential privacy allows us to determine a privacy budget that
captures the allowable cumulative variance of noise injected throughout the network that
achieves a desired level of (sub-)optimality. We propose two pricing schemes to ensure fair
and efficient allocation of the privacy budget over all participating/bidding DER owners.,

7.2 Preliminaries and Problem Statement

Distributed optimization problem

In this section, we consider a distributed optimization problem on a network ofM sub-systems
(nodes). The sub-systems communicate according to a fixed undirected graph G = (V , E). The
vertex set V = {1, 2, · · · ,M} represents the sub-systems and the edge set E ⊆ V ×V specifies
pairs of sub-systems that can communicate. If (i, j) ∈ E , we say that sub-systems i and j
are neighbors, and we denote by Ni = {j|(i, j) ∈ E} the set of the neighbors of sub-system i.
Note that Ni includes i. The cardinality of Ni is denoted by |Ni|. We use a vector [v]i to
denote the local variable of subsystem i and [v]i can be of different dimensions for different
i. The collection of these local variables is denoted as v = [vT1 , · · · , vTM ]T . Furthermore, the
concatenation of the local variable [v]i of sub-system i and the variables of its neighbors
[v]j, j ∈ Ni is denoted by zi. With appropriate selection matrices Ei and Fji, the variables
have the following relationship: zi = Eiv and [v]i = Fjizj, j ∈ Ni, which implies the relation
between the local variable [v]i and the global variable v, i.e. [v]i = FjiEjv, j ∈ Ni. We
consider the following distributed optimization problem:

Problem 7.2.1 (Distributed Optimization).

min
z,v

M∑

i=1

fi(zi) (7.1)

s.t. zi ∈ Ci, zi = Eiv, i = 1, 2, · · · ,M , (7.2)

where fi is the local cost function for node i which is assumed to be strongly convex with
a convexity modulus ρfi > 0, and to have a Lipschitz continuous gradient with a Lipschitz
constant L(∇fi) > 0. The constraint Ci is assumed to be a convex set which represents a
convex local constraint on zi, i.e. the concatenation of the variables of sub-system i and the
variables of its neighbors.

The above problem formulation is fairly general and can represent a large class of problems
in practice. In particular it includes the following quadratic programming problem, which we
study as a particular instance in our applications.
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Problem 7.2.2 (Distributed Quadratic Problem).

min
z,v

M∑

i=1

zTi Hizi + hTi zi (7.3)

s.t. Cizi ≤ ci, zi = Eiv, i = 1, 2, · · · ,M ,

where Hi � 0. In particular, we will assume that the smallest eigenvalue of Hi satisfies
λmin(Hi) := λ

(i)
min > 0.

Local Differential Privacy

In this section, we will present definitions and properties for differential privacy. Let P ,P ′ be
two databases with private parameters in some space X containing information relevant in
executing an algorithm. Let d : X ×X 7→ [0,∞) denote a metric defined on X . A mechanism
or algorithm A is a mapping from X to some set denoting its output space.

Definition 7.2.1 (Differential Privacy). A randomized algorithm A is ε-differential private
if for all S ⊆ range(A) and for all database P ,P ′ satisfying d(P ,P ′) ≤ 1, it holds that

Pr[A(P) ∈ S] ≤ eε · Pr[A(P ′) ∈ S] , (7.4)

where the probability space is over the mechanism A.

This definition of differential privacy is suitable for cases where one uniform level of privacy
needs to across all elements in the databases. We now consider a distributed algorithm
A(P1, . . . ,PM ) in a network with M agents for solving an optimization problem in a collabo-
rative way, where Pi denotes the private parameters of agent i. The outputs of the mechanism
are the message exchanged between nodes in the network over the time horizon of iterations.
This mechanism induces M local mechanisms A1(P1, . . . ,PM), . . . ,AM(P1, . . . ,PM), each
executed by one agent. The output of one local mechanism Ai is the message sent out by node
i, i.e. range(Ai) ⊆ range(A). It is important to realize that although one local mechanism,
say Ai, does not necessarily have direct access to the input/database Pj, j 6= i of other nodes,
the output of Ai could still be affected by Pj, j 6= i because of the interactions among different
nodes. For this reason, we explicitly write P1, . . . ,PM as input to all local mechanism.

We now let each agent i specify its own level of privacy εi. To formalize this specification,
we require a definition of local differential privacy :

Definition 7.2.2 (Local Differential Privacy). Consider a (global) mechanism A for a
network with M nodes, and M local mechanisms Ai, i = 1, . . . ,M induced by A. We say that
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the mechanism A is εi-differentially locally private for node i, if for any Si ∈ range(Ai) it
satisfies that

P {Ai(P1, . . . ,Pi, . . . ,PM) ∈ Si}
P {Ai(P1, . . . ,P ′i, . . . ,PM) ∈ Si}

≤ eεi , (7.5)

where d(Pi,P ′i) ≤ 1. Moreover, we say that the mechanism A is (ε1, . . . , εM)-differentially
private, if A is εi-differentially locally private for all nodes, where i = 1, . . . ,M .

Figure 7.1 presents the concept of local differential privacy pictorially, showing the various
considerations that can be taken when designing for local/customized privacy. Firstly, one
may desire to include a central node 0 that communicates with all subsystems or implement
a fully distributed problem between the subsystems that does not rely on any central
node. The former will lead to better convergence properties as information spreads more
easily throughout the network, the latter will benefit privacy by making it harder to collect
information from across the network. Regardless, the method allows for the privacy to
be purely local, strengthening the notion developed in [97], which implements differential
privacy in distributed optimization through a trusted central node, assuming a star-shaped
communication structure with no agent-to-agent communication. Secondly, subsystems
may have varying levels of privacy. In Figure 7.1, subsystem 1 and 3 have a local privacy
specification, while subsystems 0 and 2 do not. The systems with local differential privacy
have outgoing messages perturbed by noise as indicated by the dashed arrows. As such,
the method is flexible to various forms of distributed optimization or control problems with
heterogeneous privacy and control properties across its nodes/agents, extending the work in
[106], which considers a similar fully distributed algorithm but specifies a uniform privacy
level.

7.3 Main Results

Differentially Private Distributed Optimization

In this section, we describe a distributed optimization algorithm (Algorithm 1) for solving
Problem 7.2.1 with local differential privacy guarantees, based on the results in [163]. To
solve the optimization problem in a distributed way, we split the overall problem into small
local problems according to the physical couplings of the sub-systems. This approach gives
the resulting algorithm the desired feature that each node only needs to communicate with
its neighbors and the computations can be performed in parallel for every subsystem. To
guarantee local differential privacy, a noise term is added to the message at each time, before
it is sent out to other nodes.

We start with defining the private parameters of agent i to be the collection of parameters
for its local objective function and constraints in Problem 7.2.1, Pi := (fi,Ci). Algorithm
1 can be seen as a global mechanism A which takes input data P1, . . . ,PM and produces
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x3

x0

x2x1

Figure 7.1: A system with 4 subsystems. Arrows denote message directions in distributed
optimization. Here, node 0 denotes a central node that communicates with all other nodes.
Note that Problems 7.2.1 and 7.2.2 can be fully distributed, and hence a central node is not
necessary. The other 3 nodes represent subsystems. Nodes that have a privacy specification
are patterned with dots and send out messaged perturbed by noise, as indicated by dashed
arrows.

Algorithm 1 Differentially private distributed algorithm

Require: Initialize µ0
i = 0 ∈ Rzi , τ 0 = min1≤i≤M{ρfi} and τ k = 1

τ0k

for k = 1, 2, · · · do
1: zki = argminzi∈Ci{fi(zi) + 〈µk−1

i ,−zi〉}+ δki
2: Send zki to all the neighbors of agent i.
3: [vk]i = 1

|Ni|
∑

j∈Ni [z
k
j ]i.

4: Send [vk]i to all the neighbors of agent i.
5: µki = µk−1

i + τ k(Eiv
k − zki )

end for

output zkj , [vk]j for all j = 1, . . . ,M and k = 1, 2, . . .. In particular, the output of A up to
iteration K is given by

AK(P1, . . . ,PM) := (z1, . . . ,zK , [v]1, . . . , [v]K) , (7.6)

where we use the bold letter zk to denote the collection of (zk1 , . . . , z
k
M) at time k and [v]k

to denote the collection of ([v]k1 . . . , [v]kM) at time k. Recall that we are mainly concerned
with local privacy at different nodes, we use Ai to denote the local mechanism induced by A
at node i, which takes input data P1, . . . ,PM and produces output zki , [vk]i for k = 1, 2 . . .,
namely

AKi (P1, . . . ,PM) := (z1
i , . . . , z

K
i , [v]1i , . . . , [v]Ki ). (7.7)

Equipped with the definition of local differential privacy in Definition 7.2.2, we can give
the formal definition of locally differentially private distributed algorithms.
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Definition 7.3.1 (Locally Differentially Private Distributed Algorithms). Consider the
(global) mechanism A given in Algorithm 1 and the M local mechanisms Aj, j = 1, . . . ,M
induced by A. We say that the mechanism A is locally ε-differentially private for node i
after K iterations, if the induced local mechanism Ai is ε-differentially private according to
Definition 7.2.1, i.e., for any S ∈ range(Ai) it satisfies that

P
{
AKi (P1, . . . ,Pi, . . . ,PM) ∈ S

}

P {AKi (P1, . . . ,P ′i, . . . ,PM) ∈ S} ≤ eε , (7.8)

where Pi and P ′i are two different local problems at node i with distance adj(Pi,P ′i) ≤ 1.
Moreover, we say that the mechanism A is (ε1, . . . , εM)-differentially private, if A is locally
εi-differentially private for all nodes i = 1, . . . ,M .

The definition of the distance adj(Pi,P ′i) between to two problems Pi and P ′i depends
on specific applications. For the quadratic problem in (7.3), the local objective fi and local
constraint Ci are parametrized by the matrix and vectors Hi, hi, Ci, ci. One possible definition
of the distance for this special case is given by weighted sum of matrix/vector norms

adj(Pi,P ′i) = a1‖Hi −H ′i‖+ a2‖hi − h′i‖
+ a3‖Ci − C ′i‖+ a4‖ci − c′i‖ , (7.9)

for some weights a1, a2, a3, a4. The choice of the weights will put more emphasis sensitivity on
a specific matrix or vector and its corresponding parameters. These can be used to define the
“region of adjacency”, meaning the parameter differences that are considered to be meaningful
for protecting with a differential privacy mechanism. The choice of the norm can also change
the behavior, for instance by treating all parameters equal (such as for the `1-norm or the
Frobenius norm) or only worrying about the maximum distance (such as for the `∞-norm).
For some applications, only certain entries of the matrices and vectors represent private
information. In this case, the distance should be defined only with respect to these “private
entries”.

In the original setup of differential privacy where the database representation is considered,
there is a natural definition of adjacency: namely two databases are adjacent if they differ by
only one element. When extending the adjacency definition to the space of functions, there
does not exist a natural candidate for adjacency. We point out that this is a common situation
encountered in similar problem setups such as [97, 106]. However, resolving this issue would
require an explicit connection between the privacy level ε and a concrete specification supplied
by the application (such as in [42, Section B]), which is out of the scope for this chapter.

Privacy analysis

In this section, we derive the differential privacy level with Algorithm 1. To state the main
result, we first define

g(Pj, µ) := arg min
z∈Cj
{fj(z) + 〈µ,−z〉} , (7.10)
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where Pj encapsulates the local objective function fj and constraints Cj. The main result is
given in the following theorem.

Theorem 7.3.1 (Local Differential Privacy). Consider Algorithm 1 for solving Problem
7.2.1. Assume that each element of the noise vector δki in Algorithm 1 is independently
chosen according the Laplace distribution with the density function p(δki ) = 1

2σki
exp(−‖δki ‖/σki )

for i = 1, . . . ,M and k = 1, . . . , K. Then for all i = 1, . . . ,M , this algorithm is locally
εi-differentially private for node i where

εi = Θi

K∑

k=1

1

σki
, (7.11)

and

Θi := max
adj(Pi,P ′i)≤1,µ

‖g(Pi, µ)− g(P ′i, µ)‖ (7.12)

is called the sensitivity of the optimization problem.

Proof: The proof is given in Appendix B

Sensitivity Calculation

In order to evaluate the privacy level εi provided in Theorem 7.3.1, we need to calculate the
sensitivity Θi. This calculation is itself an optimization problem which can be written as
follows.

max Θi := ‖z∗ − z′∗‖ , (7.13)
s.t. z∗ = arg min

z∈Ci
fi(z) + 〈µ,−z〉 ,

z′∗ = arg min
z∈C′i

f ′i(z) + 〈µ,−z〉 ,

adj(Pi(fi,Ci),P ′i(f ′i ,C′i)) ≤ 1 ,

with variables (z∗, z′∗, fi, f
′
i ,Ci,C′i, µ) .

This problem belongs to the class of bi-level optimization problems, for which there is in
general no efficient algorithm to find the global optimal solution. In the rest of this section,
we will specialize our problem to the the class of quadratic problems in (7.3) and provide
some refined analysis. In this case, we represent the optimality condition of z∗, z′∗ in terms
of the KKT condition of the optimization problem minz∈Ci fi(z) + 〈µ,−z〉, the optimization
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problem (7.13) can be rewritten explicitly

max Θi := ‖z∗ − z′∗‖ , (7.14)
s.t. z∗ ∈ KKT(Hi, hi, Ci, ci, wi, µ) , (7.15)

z′∗ ∈ KKT(H ′i, h
′
i, C

′
i, c
′
i, w

′
i, µ) , (7.16)

a1‖Hi −H ′i‖+ a2‖hi − h′i‖
+ a3‖Ci − C ′i‖+ a4‖ci − c′i‖ ≤ 1 , (7.17)

with variables (z∗, z
′∗, Hi, H

′
i, hi, h

′
i,

Ci, C
′
i, ci, c

′
i, wi, w

′
i, µ) ,

where the set KKT(Hi, hi, Ci, ci, wi, µ) is defined as

KKT(Hi, hi, Ci, ci, wi, µ) := {z|Hiz + hi − µ+ CT
i wi = 0 ,

Cizi ≤ ci ,

wi ≥ 0 ,

wi,j(Ciz − ci)j = 0 for all j} ,

where wi represents Lagrangian multipliers for the optimization problem (7.13). Notice that
we used the distance adj(Pi,P ′i) as defined for the quadratic problem in (7.9).

We state our first observation regarding the sensitivity of quadratic problems as formulated
in Problem 7.2.2.

Lemma 7.3.1 (Sensitivity for Problem 7.2.2). If we restrict Problem 7.2.1 to be of quadratic
form, as defined in Problem 7.2.2, with the adjacency relation adj(Pi,P ′i) defined in (7.9),
then the sensitivity Θi can be simplified as

Θi := max
adj(Pi,P ′i)≤1

‖g(Pi, µ = 0)− g(P ′i, µ = 0)‖ , (7.18)

that is we lose the explicit dependency on lagrange variable µ.

Furthermore, if additional assumptions are made on the problem statement, an upper bound
on Θi can be given in closed-form expressions.

Lemma 7.3.2 (Special Case - Protecting Hi in Problem 7.2.2). Assume fi(zi) := 1
2
zTi Hix+

hTi zi and the distance between two problems is defined as adj(Pi,P ′i) = ‖Hi − H ′i‖2. That
is, the privacy requirement only concerns about the matrix Hi. Also assume that the local
variable zi is bounded as ‖zki ‖ ≤ Gi, then

Θi ≤
Gi

λ
(i)
min

, (7.19)

where λ(i)
min is the lower bound on the eigenvalues defined in Problem 7.2.2.
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Lemma 7.3.3 (Special Case - Protecting hi in Problem 7.2.2). Assume fi(zi) := 1
2
zTi Hix+

hTi zi and the distance between two problems is defined as adj(Pi,P ′i) = ‖hi − h′i‖2. That is,
the privacy requirement only concerns about the vector hi. Then

Θi ≤
1

λ
(i)
min

,

where λ(i)
min is the lower bound on the eigenvalues defined in Problem 7.2.2.

Proofs of the lemmas are given in Appendix B. These lemmas give closed-form expressions of
the upper bounds on Θi for two special cases, and they will be useful for our applications in
Section 7.4. Notice however that the upperbounds do not serve as a straighforward design
principle for scaling eigenvalues to lower sensitivity. As a result of scaling the eigenvalues,
the distance metric adj(·, ·) will also change; higher eigenvalues generally result in smaller
sensitivity but also a narrower and less meaningful “region of adjacency”, as discussed in
Section 7.3, Equation (7.9).

In the rest of this section, we discuss how to estimate the sensitivity for generic quadratic
problems using a sample-based method. We point out that a more general discussion of this
approach can be found in [30]. For the sake of notation, we write Θi in (7.14) as Θi(P) where
P denotes the collection of all variables (z∗, z′∗, Hi, H

′
i, h̃i, h̃

′
i, Ci, C

′
i, ci, c

′
i, wi, w

′
i). Furthermore

we use CΘ to denote the polynomial constraints given by (7.15), (7.16) and (7.17). With
these notations, the optimization problem in (7.14) can be rewritten as

min γ , (7.20)
s.t. Θ(P)− γ ≤ 0, ∀P ∈ CΘ .

The idea of sample-based approach is to randomly draw many instances of P from the set CΘ,
and find the maximum Θ(P) using these samples. Namely, we solve the following problem

γN := min γ , (7.21)
s.t. Θ(Ps)− γ ≤ 0, ∀Ps, s = 1, . . . , N ,

where P1, . . . ,PN are N randomly drawn samples from CΘ. More specifically for our problem,
we randomly sample the parameters Hi, H

′
i, h̃i, h̃

′
i, Ci, C

′
i, ci, c

′
i, wi, w

′
i from their sets. For each

sampled set of parameters, we solve the original optimization problem (7.3) to obtain z∗ and
z′∗, hence obtain one estimate Θ(Ps) := ‖z∗ − z′∗‖. After N samples, the maximal Θ(Ps) is
set to be γN , which gives a lower bound on the sensitivity. To quantify the quality of this
approximation, the following definition is introduced.

Definition 7.3.2 (Random Sampling, Definition 1, 2 in [31]). Let γ∗ denote the optimal
solution to problem (7.20) and γN be a candidate solution retrieved through solving (7.21).
We say γN is an α-level robustly feasible solution, if V (γN) ≤ α, where V (γN) is defined as

V (γN) := P{P ∈ CΘ : γN ≤ γ∗} . (7.22)
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In other words, V (γN) is the portion of P in CΘ that was not explored after N samples,
which, if explored, would yield a higher function value than γN and thereby a tighter lower
bound on sensitivity Θ(P). The following result relates the number of samples N to the
quality of the approximation.

Lemma 7.3.4 (Sampling Rule, Corollary 1 in [31]). For a given α ∈ [0, 1] and β ∈ [0, 1] and
let N ≥ 1

αβ
− 1. Then with probability no smaller than 1− β, the solution γN given by (7.21)

is a solution with α-level robust feasibility for Problem (7.20).

This result gives the minimum number of samples, with which the sample-based approach
will with high probability (larger than 1− β) find an approximate optimal solution to our
problem.

Convergence properties of the distributed optimization algorithm

Privacy comes with a price. The noise term in Algorithm 1 makes the convergence rate slower
than the case without noise. However, it is possible to prove that even with random noise,
the algorithm converges in expectation. To show this, we first write out the dual problem of
Problem 7.2.1 as follows.

Problem 7.3.2 (Dual Problem of Problem 7.2.1).

min −D(w) =
M∑

i=1

f ?i (wi)

︸ ︷︷ ︸
φ(w)

+ I{ETw=0}(w)
︸ ︷︷ ︸

ψ(w)

,

with the matrix E := [ET
1 , E

T
2 , · · · , ET

M ]T and dual variable w := [wT1 , . . . , w
T
M ]T . We use f ∗i

to denote the conjugate function of fi : Ci → R, defined as f ?i (w) = supz∈Ci(w
T z− f(z)) and

IS denotes the indicator function on a set S

IS(x) =

{
0 if x ∈ S
∞ if x /∈ S

.

The stochastic proximal-gradient method (stochastic PGM), as given in Algorithm 2, is a
method to solve the dual problem above. The proximity operator [160] in Algorithm 2 is
defined as

proxτψ(v) := argminx
(
ψ(x) + (1/2τ‖x− v‖2)

)

This algorithm has been studied extensively, see for instance [166, 184]. It addresses optimiza-
tion problems of the form given in Problem 7.3.3 and with assumptions in Assumption 7.3.4.

Problem 7.3.3 (Dual Problem Form).

min
w∈W

Φ(w) = φ(w) + ψ(w) .
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Assumption 7.3.4 (Assumptions for Problem 7.3.3).

• φ is a strongly convex function with a convexity modulus ρφ > 0, and has a Lipschitz
continuous gradient with a Lipschitz constant L(∇φ) > 0.

• ψ is a lower semi-continuous convex function, not necessarily smooth.

• The norm of the gradient of the function φ is bounded, i.e., ‖∇φ(w)‖2 ≤ B2 for all
w ∈W.

• The variance of the noise ek is equal to σ2, i.e., E[‖ek‖2] ≤ σ2 for all k.

Algorithm 2 Stochastic Proximal-Gradient Method

Require: Require w0 ∈W and step size τ k < 1
ρφk

for k = 1, 2, · · · do
1: wk = proxτkψ(wk−1 − τ k(∇φ(wk−1) + ek))

end for

The key observation in our proof of convergence is the following lemma, showing that
executing Algorithm 1 on the original problem 7.2.1 is equivalent to executing Algorithm 2
on the dual problem 7.3.2.

Lemma 7.3.5 (Equivalence of the Primal and Dual Problems). Consider using Agorithm 1
on the primal problem, Problem 7.2.1, and using Algorithm 2 on the dual problem, Problem
7.3.2. Further assume that Algorithm 1 is initialized with the sequence µ0

j , z
0
j , for j = 1, . . . ,M ,

and Algorithm 2 is initialized with the sequence w0
j where w0

j = µ0
j for j = 1, . . . ,M . Then

wkj = µkj for all k = 1, 2 . . . and all j = 1, . . . ,M , and the error terms in Algorithm 1 and
Algorithm 2 have the relationship ek = δk = [δkT1 , δkT2 , · · · , δkTM ]T .

Proof sketch: This proof is an extension of the proof for Lemma 3.4 in [164]. We first
Problem 7.2.1 in the form of the splitting problem in Problem 3.1 in [164], by defining the
two objectives as f(z) =

∑M
i=1 fi(zi) subject to zi ∈ Ci for all i = 1, · · · ,M and g = 0 with

the optimization variables for the two objectives z = [zT1 , z
T
2 , · · · , zTM ]T and v, respectively.

The coupling matrices are set to A = I, B = −E = −[ET
1 , E

T
2 , · · · , ET

M ]T and c = 0. Under
the assumption that the first objective f(z) consists of a strongly convex function on z and
convex constraints. The convex constraints can be considered as indicator functions, which
are convex functions. Due to the fact that the sum of a strongly convex and a convex function
is strongly convex, the objective f(z) is a strongly convex function. The second objective g
is a convex function. Then, by using the results in Lemma 3.4 in [163], we can prove that
Algorithm 1 is equivalent to Algorithm 2, executed on Problem 7.3.2, the dual problem of
Problem 7.2.1.

Based on the equivalence shown in Lemma 7.3.5, we are ready to provide the following
theorem showing the convergence properties of Algorithm 1.
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Theorem 7.3.5 (Suboptimality). Consider Algorithm 1. Assume that the local variables
zki are bounded as ‖zki ‖2 ≤ G2

i for all k ≥ 0 and for all i = 1, · · · ,M . We have that for any
k > 1,

Sk := E[|D(wk)−D(w?)|] ≤ 4
∑M

i=1(G2
i + σ2

i )

ρ2
φk

. (7.23)

Proof: Consider applying Algorithm 2 on Problem 7.3.3 with Assumption 7.3.4, we
can first show that

E[‖wk − w?‖] ≤ 4(B2 + σ2)

ρ2
φk

. (7.24)

The proof of this claim follows the same flow as the proof of Theorem 1 in [166] by noticing
the following two facts: if the function f is convex, closed and proper, then

‖proxf (x)− proxf (y)‖ ≤ ‖x− y‖ , (7.25)

and the variance of the gradient of φ is bounded by E[‖∇φ(wk−1) + ek‖2] ≤ B2 + σ2 for all
k > 1.

We then apply this result to our Problem 7.3.2. The gradient of the first objective is
equal to:

∇wφ(wk) = ∇w

M∑

i=1

f ?i (wki ) = [zk
T

1 , · · · , zkTM ]T

with wk = [wk
T

1 , · · · , wkTM ]T . With our assumption in the theorem, the dual gradient is
bounded as:

‖∇φ(wk)‖2 ≤
M∑

i=1

‖zki ‖2 ≤
M∑

i=1

G2
i .

Finally the claim follows because of the equivalence result in Lemma 7.3.5.
Theorem 7.23 shows that the sub-optimality gap for Algorithm 1 is bounded above by a

function that is linear in the number of agents M and linear in the noise variances σi , i =

1, . . . ,M . The convergence rate is of order O
(

1

k

)
, which is a satisfying result, as compared

to current results reported in literature (the motivating work by Han et. al achieved a

convergence rate of O
(

1√
k

)
[97]).

Remark 7.3.6. It is observed in [154] that a general class of differentially private distributed
optimization algorithms cannot be asymptotically stable, if the noise is added to the inter-agent
messages. This result is also applicable to the algorithm studied in this paper. However, in
this work we do not focus on the asymptotic behavior of the algorithm, but characterize the
fundamental quantities of interests for finite k as in (7.11) and (7.23). This is the most
interesting for practical implementations, where the algorithm is always executed for a finite
number of iterations.
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7.4 Application: Simplified Distributed Optimal Power
Flow

This section presents a simplified optimal power flow (OPF) problem that inspires the
proposed control approach. We consider the setting of a radial distribution feeder, and
consider the flow of real power on its branches. We formulate the power flow model and
the OPF objectives and develop the distributed OPF problem according to the quadratic
problem, as defined in (7.3). We then discuss the parameters that are subject to privacy
requirements and interpret the trade-offs developed in Section 7.3.

Simplified Optimal Power Flow

Solving the simplified OPF problem requires a model of the electric grid describing both
topology and impedances. This information is represented as a graph G = (V, E), with V
denoting the set of all buses (nodes) in the network, and E the set of all branches (edges). For
ease of presentation and without loss of generality, here we introduce part of the linearized
power flow equations over radial networks, also known as the LinDistFlow equations [17].
In such a network topology, each bus j has one upstream parent bus {i | (i, j) ∈ E} and
potentially multiple downstream child buses {k | (j, k) ∈ E}. By Dj we denote the set of all
buses downstream of branch (i, j). We assume losses in the network to be negligible and
model the power flowing on a branch as the sum of the downstream net load:

Pij ≈
∑

k∈Dj

{pck − pgk + uk} (7.26)

In this model, capital Pij represents real power flow on a branch from node i to node j for all
branches (i, j) ∈ E , lower case pci is the real power consumption at node i, and pgi is its real
power generation. This nodal consumption and generation is assumed to be uncontrollable. In
addition, we consider controllable nodal injection ui, available at a subset of nodes i ∈ C ⊂ V.
In this case study, we aim to prevent overload of real power flow over certain critical branches
in an electric network. This aim is formulated through constraints

∑

k∈Dj

{pck − pgk + uk} − Pij ≤ 0 ,

Pij −
∑

k∈Dj

{pck − pgk + uk} ≤ 0 ,∀(i, j) ∈ Esafe ,
(7.27)

Esafe ⊂ E denotes a subset of branches for which power flow limitations are defined, Pij, Pij
denoting the upper and lower power flow bounds on branch (i, j) ∈ Esafe. Constraints are
included to account for inverter capacity. Each node i is ultimately limited by the local
capacity on total apparent power capacity s̄i. We consider a simple controller architectures
that can deliver real power, which we assume are both given their own capacity

ui ≤ ui ≤ ui , ∀i ∈ C . (7.28)



CHAPTER 7. CUSTOMIZED DIFFERENTIAL PRIVACY FOR DISTRIBUTED
OPTIMIZATION IN MULTI-AGENT SYSTEMS 104

We consider a scenario in which the utility negotiates different prices for different capacities,
potentially at different points in time, with different third party DER owners. Let ui refer to
the real power used for the optimization scheme from agent i, and πi denotes the price for
procuring a kWatt from agent i. The optimal power flow determines the control setpoints
that minimizes an economic objective subject to operational constraints.

min
ui ,i∈C

∑

i∈C

πi(ui)
2 , (7.29)

s.t. (7.27) , (7.28) .

The OPF problem (7.29) can be recast as an instance of the quadratic distributed optimization
problem (7.3). First, note that the objective is quadratic in the optimization variables ui, and
separable per node. Second, for all nodes i ∈ V, the capacity box constraints (7.28) are linear
and fully local. The safety constraints (7.27) require communication to and computation by
a central trusted node. To ensure strong convexity of the local problems, the economic cost
objectives are shared between each agent i and the central trusted node. Hence, ∀i ∈ V\{0},
the objective reads

fi(ui) =
πi
2

(ui)
2 , (7.30)

with capacity constraint (7.28). The central node 0 has objective function

f0(z0) =
∑

i∈C

πi
2

(ui)
2 , (7.31)

with safety constraints 7.27. As such, this distributed problem assumes a star-shaped
communication structure, in which the a centrally trusted node receives all ui, pci , p

g
i from

the agents. The agents retrieve iterates of upi from the central node and compute a simple
problem with only economic cost and a local capacity constraint.

Private Information in Distributed OPF

In the context of d-OPF, we consider assigning privacy requirements to two sets of parameters;
the prices πi that the DSO charges to different agents in the network, and the capacities
ui, ui available to all agents i ∈ C. Together, these parameters provide important strategic
insight into the commercial position of each agent. A DSO may charge different prices for
different levels of commitment or for the varying value that the DSO gets from the actions of
a specific agent at specific time periods or places in the network. In a natural commercial
context, the DSO may have an interest to hide the prices to other agents. In addition, in a
negotiation setting, a strategic agent may want to find out the capacity available by other
agents in the network to adjust its bid to the DSO, so as to be the first or only agent to be
considered, which could lead to asymmetric and potentially unfair bidding situations. As
such, in order to give all agents with capacity a fair chance to participate in d-OPF, there is
value in hiding the capacity (and price) parameters.
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To formulate this in the language of local differential privacy, we need to define the
distance metrics for all considered parameters. In the case of both prices and capacity, this is
achieved by considering the maximum range in which these parameters can lie. The distance
metric proposed is the `1-norm. Given this metric, we need to define a proper adjacency
relation, which determines the maximum change in a single parameter that we aim to hide
with the differentially private algorithm.

Definition 7.4.1. (Adjacency Relation for Distributed OPF): For any databases D =
{fi(πi),Ci(ui, ui)} and D′ = {f ′i(λ′i),C′i(u′i, u′i)}, we have adj(D,D′) if and only if there exists
i ∈ [M ] such that

|πi − π′i| ≤ δπ , |ui − u′i| ≤ δu , |ui − u′i| ≤ δu , (7.32)

and πj = π′j, uj = u′j, uj = u′j for all j 6= i.

By setting δπ, δu and δu respectively as the maximum price offered per unit of energy
(i.e. π̄ if πi ∈ [0, π̄]) and the maximum capacity in the network (i.e. arg maxi∈C ui), we ensure
that all parameters in the network are properly covered by the definition.

Interpreting Trade-offs

We analyze and interpret the theoretical results that illuminate an inherent trade-off between
privacy level and suboptimality. Assuming a fixed noise variance across all iterations,
Equations 7.11 and 7.23, we have the following trade-off:

εi = Θi
K

σi
, SK ≤

4
∑M

i=1(G2
i + σ2

i )

ρ2
φK

(7.33)

Remember that better privacy relates to a lower privacy level εi and a more optimal solution
relates to lower suboptimality. Unsurprisingly, an increasing number of iterations leads to
worse privacy and better suboptimality. Conversely, a higher noise variance leads better
privacy and worse suboptimality. Figure 7.2 shows the region of attainable (ε,S) values for
the simplified OPF problem. The left figure shows that, for a fixed reasonable level of privacy
(ε ≤ 100), the sub-optimality will decrease for a larger number of iterations K. The right
figure shows that for a fixed level of privacy, the sub-optimality bound tightens for higher
variance levels. For a fixed level of sub-optimality, a higher noise variance σ achieves a lower
(and hence better) privacy level. Ideally, parameters ({σi}i∈C, K) are chosen along the Pareto
front of this graph. As a result, a system designer may want to define specifications,

εi ≤ ε , S ≤ S . (7.34)

Based on the specifications, we then want to determine feasible values for the number of
iterations K and noise variance σ1. For the sake of analysis, we let all upper bounds be
the same in the second equation, Gi = G, ∀i ∈ C. In addition, we consider the normalized
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Figure 7.2: Achievable tradeoffs between privacy level ε and suboptimality S, with Pareto
front. (left) indicates increasing number of iterations and (right) increasing noise variance.
We assume σi = σ,Gi = G,∀i ∈ C.

noise-to-signal ratio νi := σi
G
, which is more intuitive as a tunable parameter. With these

steps, we can write
K

νi
≤ εGi

Θi

,
1 + ν2

i

K
≤
Sρ2

φ

4MG2
(7.35)

We now make these relationships concrete for the case proposed in Lemma 7.3.2. Using (7.19),
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Figure 7.3: Feasible parameter sets (ν,K) for varying levels of ε (left) and S (right), assuming
σi = σ,Gi = G,∀i ∈ C.

we can write
Θi
K

νi
≤ GK

λ
(i)
minν

. (7.36)

By enforcing the upper-bound specifications, we get

K

νi
≤ λ

(i)
minε ,

1 + ν2
i

K
≤
Sρ2

φ

4MG2
(7.37)

These equations tell us two things. Firstly, we see that the smallest eigenvalue of Hi may have
a tightening or alleviating effect on the privacy tradeoff equation. Second, the suboptimality
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is mostly governed by K, as typically 0 ≤ ν2
i � 1 (in other words, we need σi to be on

the order of G or larger to affect suboptimality). These equations provide a specific test to
determine feasible parameters (ν,K) that satisfy a set of specifications (ε,S,M,G, ρφ). Note
that this set may be empty if the specification are too stringent. Figure 7.3 shows the feasible
set for varying levels of specifications (ε,S).

We now further specify the tradeoff relations in (7.37) for the simplified OPF problem,
maintaining the assumption that Gi = G, ∀i ∈ C. Note that ρφ = maxi πi := πmax, and
G = max(|ui|, |ui|) := umax. This yields

K

νi
≤ πi

2
εi ,

1 + ν2
i

K
≤ Sπ2

max

4Mu2
max

(7.38)

The first equation shows that the ratio of the number of iterations to the normalized noise
needs to be sufficiently small, capped by the specified privacy level εi and the agent’s price πi.
The latter equation shows that with increasing number of agents M injecting noise, we need
more iterations or less noise per agent to achieve the same suboptimality. Similarly, if the
maximum capacity umax of the agents, and hence the upper bound G of the optimization
variables increases or the maximum price πmax decreases, we require more iterations or lower
noise variance to maintain the same level of suboptimality.

7.5 Sharing or Pricing the Privacy Budget?
Theorem 7.3.5 provides a relationship between sub-optimality and the cumulative variance
of the Laplacian noise inserted by all subsystems. In real scenarios, a system designer or
operator may specify a desired level of (sub-)optimality SK achieved after K iterations, that
is E[D(λK) − D(λ?)] ≤ SK . Rewriting Equation (7.23), we can compute a bound on the
amount of cumulative Laplacian noise allowed at run-time

M∑

i=1

σ2
i ≤

1

4
ρ2
φKSK −

M∑

i=1

G2
i , Σbudget . (7.39)

Hence, once SK is specified, a cumulative privacy budget Σbudget is set. Remember that each
individual agent may define a different distance metric, or different weights, which may lead
to different sensitivities and hence different noise levels required by the various agents. Since
the privacy budget is limited, a fair and transparent allocation procedure is required to divide
the allowable noise over all agents. Here, we propose two approaches for going about such
allocation.

The first approach, would entail a proportional allocation. This could be done in two ways.
The first way involves splitting the noise variance budget by the number of agents: σ2

i =
1
M

Σbudget ,∀i = 1, . . . ,M . In this case, the allowed noise variance σ2
i determines the maximum

level of local differential privacy εi that can be maintained, given a set sensitivity Θi (or vice
versa), as outlined in (7.11)), which will differ from agent to agent. The second way involves
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setting all local differential privacy levels εi equal, and, given set sensitivities Θi, splitting
the noise among all agents. This is equivalent to equating Equation (7.11) for all agents
i = 1, . . . ,M , leading to M equations for σ1, . . . , σM :

Θ1

σ1

=
Θ2

σ2

= · · · = ΘM

σM
,

M∑

i=1

σ2
i = Σbudget , (7.40)

where we assume that the noise variances are constant for all time steps k = 1, . . . , K.
The second approach we anticipate is a pricing scheme, in which the value of privacy

is left to a market or negotiation. In the context of d-OPF, it is natural to assume that
different DER owners with varying privacy levels will have varying degrees of willingness to
pay or incur a deduction on their revenue for preserving privacy of their local parameters.
Here, we propose two scenarios to perform allocation via the so-called Kelly mechanism [121].
We assume a one-directional bid wi done by all agents after seeing a price πσi given by the
network operator to the agent. With the bid, the operator constructs a surrogate utility
function wi log σ2

i . The operator then determines the allocation and payment by maximizing
the sum of surrogate utility functions as:

σ2
Kelly(w) = arg max

ΣMi=1σ
2
i≤Σbudget

M∑

i=1

wi log σ2
i . (7.41)

The authors of [225] show that this mechanism works neatly if one assumes that buyers are
price-takers. In the case buyers are strategic, realizing that the eventual price is influenced
by all bids, i.e. πσi (w), the Kelly mechanism may not yield an efficient Nash equilibrium.
To account for such behavior, the same authors combined the Kelly mechanism with the
celebrated Vickrey-Clark-Groves (VCG) mechanism [214, 40, 95], proposing the VCG-Kelly
mechanism. The VCG mechanism is lauded because it incentivizes all participating buyers to
report truthfully about the value they assign to the goods sold. It has an intuitive payment
scheme, which says that each player i should pay the difference in utility of the other players
j 6= i between the scenarios that player i does and does not participate, which leads to each
player caring about both its own utility and that of others, leading to truthful reporting. The
VCG-Kelly mechanism extends the VCG mechanism to problems with divisible goods [225].
It considers a more general class of surrogate utility functions Vi(wi, σ2

i ) = wifi(σ
2
i ), with

fi’s strictly increasing, strictly concave, and twice differentiable. The allocation rule is then
similar in form:

σ2
VCGK(w) = arg max∑M

i=1 σ
2
i≤Σbudget

n∑

i=1

Vi(wi, σ
2
i ) , (7.42)

and the payment scheme reads:

mi,VCGK(w) =

(
max∑M

i=1 σ
2
i≤Σbudget,σ

2
i=0

ΣM
j=1,j 6=iVj(wj, σ

2
j )

)

−
M∑

j=1,j 6=i

Vi(wi, σ
2
i,VCGK) .

(7.43)
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The actual form of the utility functions in the context of our application is left as an open
problem, which requires further investigation. Readers interested in further details and
examples of the VCG-Kelly mechanism are directed to [225].

We propose these allocation schemes to trigger a discussion about what a fair and workable
division of the allowable noise variance in our privacy-preserving looks like. This may vary
based on the application. Given that privacy in engineered systems is a value of increasing
importance, it may be wise to consider the impact of pricing privacy for participants with
varying socioeconomic background. In situations where certain agents have significantly less
resources but privacy is equally important, a proportional scheme may be the more ethical
approach to take. If pricing is still used and it is anticipated that some participants outbid
others, one may think about allowing each participant to have a minimum amount of privacy,
which can be translated into an extra linear constraint in the Kelly mechanisms.

7.6 Conclusions and Future Work
In this chapter, we developed local ε-differential privacy for distributed optimization, building
on recent advances in inexact alternating minimization algorithm (IAMA). By exploiting
the IAMA’s convergence properties under the existence of errors in communication and
computation, we are able to add noise to agent-to-agent communication in a way that
preserves privacy in the specifications of user objectives and constraints while still guaranteeing

convergence. We achieve a convergence rate of order O(
1

k
), which compares favorably to state-

of-the art algorithms. In addition, our method allows the protection of private parameters in
both constraints and objective functions, and facilitates specifying customized privacy levels.
We analyzed the trade-offs between privacy and suboptimality for various levels of noise and
number of iterations, and gave a method to determine feasible values of noise variance and
number of iterations given specifications on privacy and suboptimality. We propose different
alternatives to allocate the allowable noise variance across participating agents, either via
proportional sharing or market mechanisms that incentivize for truthful reporting and allow
efficient Nash equilibria, which can be used to implement the algorithm in fair and efficient
ways.
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Chapter 8

The Epistemology and Dynamics of
Automated Decision-Making

“Everything that we see is a
shadow cast by that which we do
not see.”

- Martin Luther King, Jr.

Submitted to the International Conference on Machine Learning [60].

Machine learning (ML) is increasingly deployed in real world contexts, supplying “actionable
insights” and forming the basis of automated decision-making systems. These systems can be
affected by pre-existing bias in training data, but also technical and emerging biases which
arise as context-specific artifacts of system implementation. For the data-driven methodologies
presented in this dissertation, we analyzed and pointed out different ways in which bias and
error may affect their performance and lead to violation of relevant values such as privacy
breaches or new safety risks. In this chapter, we take a more general view at the role of
bias in automated decision-making. We reframe technical bias as an epistemological problem
and emerging bias as a dynamical feedback phenomenon, call for changing machine learning
practice, and encourage reflection on how our positionality shapes our epistemology.

8.1 Introduction
Data-driven decision-making has emerged in high-stakes social domains such as medical clinics,
criminal justice, and public transportation. Motivated by the promise of new capabilities,
quality improvements, or efficiency gains, learning-based technologies have captured the
attention and imagination of many domain experts. At the same time, dilemmas have
emerged surrounding the bias that creeps into machine learning systems, leading to erroneous
decision-making, disparate treatment or outcomes [18], and representational harm [44].



CHAPTER 8. THE EPISTEMOLOGY AND DYNAMICS OF AUTOMATED
DECISION-MAKING 111

While many technical tools are being proposed to mitigate these issues [99, 109], there is
insufficient understanding of how the machine learning design and deployment process, and
its practitioners can safeguard critical human values such as safety, fairness, and freedom of
expression. The recently launched AI Now Institute stresses that no single technical tool will
cleanly solve these problems and identifies “a deep need for interdisciplinary, socially aware
work that integrates the long history of bias research from the social sciences and humanities
into the field of AI research” [35].

But how can ML practitioners, who lack a consistent language beyond technical descrip-
tions and solution spaces for well-defined problems, start to grapple with these challenges?
And how can we do so in a way that embraces constructive dialogue rather than dismissive
critique? Until the machine learning field embraces a dynamic perspective of ML-based
decision-making and reflects on the discipline’s epistemology, we will not be able to contend
effectively with issues such as fairness, accountability, and transparency.

8.2 A Broader View On Bias
While often championed as a way to overcome human biases in decision-making, there are
many ways that machine learning systems can fail to achieve this goal, potentially causing
systematic and unfair discrimination against certain individuals or groups of individuals.
Most literature addressing issues of fairness has focused on the ways in which ML models
can inherit pre-existing biases in its training data. Limiting ourselves to these biases is
problematic in two ways.

Firstly, it narrows us to look at how these biases lead to allocative harm; a primarily
economic view of how systems allocate or withhold an opportunity or resource, such as being
granted a loan or sent back to prison. In her NIPS 2017 keynote, Kate Crawford made the
case that at the root of all forms of allocative harm are biases that cause representational
harm. This perspective requires us to move beyond biases in the data set and “think about
the role of ML in harmful representations of human identity,” and how these biases “reinforce
the subordination of groups along the lines of identity” and “affect how groups or individuals
are understood socially,” thereby also contributing to harmful attitudes and cultural beliefs
in the longer term [44]. It is fair to say that representation issues have been largely neglected
by the ML community, mainly because they are hard to formalize and track. Responsible
representation requires analyses beyond scrutinizing a training set, for instance by questioning
how sensitive attributes might be represented by different features and classes of models.

Secondly, while ML systems are increasingly implemented to provide “actionable insights”
and guide decisions in the real world, the core methods still fail to effectively address the
inherent dynamic nature of interactions between the automated decision making process and
the environment or individuals that are acted upon, especially in contexts where observations
or human responses (such as clicks and likes) are fed back along the way to update the
algorithm’s parameters, allowing biases to be further reinforced and amplified.
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The tendency of ML-based decision-making systems to formalize and reinforce socially
sensitive phenomena necessitates a broader taxonomy of biases that includes risks beyond
those pre-existing in the data. As argued in 1996 by Friedman and Nissenbaum, two other
sources of bias are equally likely to occur when designing and employing any computer
systems that are used to mediate decisions, namely technical bias and emerging bias [82, 84].

While understanding pre-existing bias has lent itself reasonably well to statistical ap-
proaches for understanding a given data set, technical and emerging bias require engaging
with the domain of application and the ways in which the algorithm is used and integrated.
For automated decision-making tools to be responsibly integrated in any context, it is critical
that designers (1) assess technical bias by reflecting on their epistemology and that of users
and stakeholders to consider how a new tool may affect the ways critical responsibilities are
carried out, and (2) assess emerging bias by studying the feedback mechanisms that create
intimate coupling between evolving algorithms and the environment they act upon.

In what follows, we further reflect on these challenges. We aim to spark a constructive and
informed debate about how ethics may enter the process of machine learning design and work
towards what constitutes a value-sensitive design approach for data-driven decision-making.

8.3 Technical Bias Is About Epistemology
Friedman describes a source of technical bias as “the attempt to make human constructs
amenable to computers - when, for example, we quantify the qualitative, make discrete the
continuous, or formalize the nonformal” [82]. This is where the capacity of machine learning to
make predictions (often better than human beings can) based on patterns in high-dimensional
data clashes with the complex reality of many sociotechnical systems. On the one hand,
machine learning provides a window to phenomena that we would otherwise not be able to
perceive, let alone experiment with. On the other hand, the black-box nature of complex
machine learning models, with its reliance on reduction and its tendency to encode correlation
rather than cause-effect relationships, may violate common knowledge or produce unethical
or catastrophic errors if interpreted incorrectly. While technical bias is domain-specific, to
facilitate a broad discussion, we discuss four general categories as they relate to the more
general process of modeling.

Firstly, existing or collected data X is at some point measured and transformed into a
computer readable scale. Depending on the objects measured, each variable may have a
different scale, such as nominal, ordinal, interval or ratio. Consider for example Netflix’s
decision to let viewers rate movies with “likes” instead of a 1-5 star rating. As such, movie
rating moved from an ordinal scale (a number score in which order matters, but the interval
between scores does not) to a nominal scale (mutually exclusive labels: you like a movie
or you don’t). Arguably, the nominal scale makes it easier for viewers to rate and provide
data to find preference patterns across the customer base. However, note that it also affects
how viewers are represented and what content gets recommended by the ML system. As
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such, measurement matters and can produce measurement bias, so careful consideration is
necessary to understand how this may affect a system’s outcomes [98].

Secondly, based on the data gathered X and available domain knowledge, we may
engineer features and select model classes. Features ϕ(X) can be the available data attributes,
transformations thereof based on knowledge and hypotheses, or generated/discovered in an
automated fashion. A feature may also be a proxy representing a relevant phenomenon that
cannot be measured directly. Since each feature can be regarded as a model of the system
or population under study, it is relevant to ask how representative it is and why it may be
predictive of the outcome. A model class f(·; θ), with parameters θ, should be selected mostly
based on how complex the phenomenon that we are representing or trying to predict is, and
on the amount and quality of the available data. Is the individual or object that is subject to
the decision easily reduced to numbers or equations to begin with? What information in the
data x is inherently lost by virtue of the mapping f(ϕ(x); θ) having a limited complexity,
regardless of the best fit θ∗? In other words, ML can be seen as a compression problem
in which a complex phenomenon is stored as a pattern in a finite-dimensional parameter
space, meaning part of the information about the modeled phenomenon is inherently lost.
The process of representation, abstraction and compression can be collectively described
as inducing modeling bias. The challenges described here can be seen as a more complete
cross-disciplinary version of the technical bias-variance trade-off [86]. From an information
theoretic perspective, modeling bias influences the extent to which distortion can be minimized
when reconstructing a phenomenon from a compressed or sampled version of the original [43,
54].

Thirdly, label data Y is used to represent the output of the model. Training labels may
be the actual outcome for historical cases or some discretized or proxy version in cases where
the actual outcomes cannot be measured or exactly quantified. Consider for example the use
of records of arrest to predict crime rather than the facts of whether the crime was actually
committed, which is often not possible to know with full certainty. How representative are
such records of real crime across all subpopulations? What core information do they miss for
representing the intended classes? And what bias lies hidden in them? We propose to refer
to such issues as label or output bias.

Lastly, given a certain parameterization (ϕ(·), f(·, θ)) and training data (X, Y ), a model
is trained and tuned to optimize certain objectives. At this stage, various metrics may inform
the model builder on where to tweak the model. Do we minimize the number of false positives
or false negatives? In recidivism prediction, a false positive may be someone who gets sent
to jail with no need, a false negative a dangerous person let free. It was shown recently
that there are inherent trade-offs between prioritizing for equal prediction accuracy across
groups versus for an equal likelihood of false positives and negatives across groups [123].
In addressing fairness, the many different metrics have motivated many definitions [152],
illuminating the inherent ambiguity and context-dependence of such issues. This yields the
question of what the right balance is for a given context, and who gets to decide. We coin
the effects of striking such trade-offs optimization bias.

The many questions posed above are meant to illuminate the range of places in the
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machine learning design process where issues of epistemology arise. These questions seek
justification and often require value judgment. How do we represent phenomena in ways that
are deemed correct? What evidence is needed in order to justify an action or decision? What
are legitimate outcomes of an intervention? And how do we deal with inherent trade-offs
of fairness? These challenges are deeply context-specific, often ethical, and challenge us to
understand our epistemology and that of the domain we are working in.

The detrimental effects of overlooking these questions in practice are obvious in high-stakes
domains, such as predictive policing and sentencing, where the decision to treat crime as a
prediction problem reduces the perceived autonomy of individuals, fated to either commit or
not commit a crime. This problem was convincingly laid out by Barabas et al., who argue that
rather than prediction, “machine learning models should be used to surface covariates that are
fed into a causal model for understanding the social, structural and psychological drivers of
crime” [13]. It is a strong message with many challenges, but it points in the right direction:
in these contexts, the domain expert should really be in the driver seat, with the machine
learning work forming a constitutive rather than replacing role in hypothesizing and testing
data-driven models that reflect rigorous causal relationships. It forces ML practitioners to be
humble and reflect on how our skills and tools may benefit or hurt an existing decision-making
process.

8.4 Emerging Bias Is About Dynamics
Recently, convincing examples of emerging bias have surfaced in technologies that we use
in our daily lives. Consider, for instance, the way in which divisive filter bubbles or echo
chambers on social media emerge from algorithms trained on users’ clicking behaviors, or
how recommended content on Youtube has a tendency to turn towards the extreme and
radical [206]. Rightfully so, in situations where a “machine learning system is unleashed
in feedback with humans, that system is a reinforcement learning system, not a machine
learning system” [169]. And reinforcement learning to determine decisions or actions is a
feedback control problem, for which the effect of feedback can affect the stability of the overall
system as bias accrues over time. In the context of predictive policing, where discovered
crime data (e.g., arrest records) are used to predict the location of new crimes and determine
police deployment, runaway feedback loops may cause increasing surveillance of particular
neighborhoods regardless of the true crime rate [70], and has led to over-policing of “high-risk”
individuals [196].

To acknowledge emerging bias, we adopt a conceptual dynamical model describing the
feedback between a machine learning based decision system and the environment it is acting
on (Figure 1). From the environment, the decision maker will consider observations, historical
data, measurements, and responses. The machine learning system acts on the environment
through decisions, control actions, or interventions. For example, in the case of predictive
policing, “the environment” describes a city, and “the decision maker” is the police department,
which determines where to send police patrols or invest in social interventions.



CHAPTER 8. THE EPISTEMOLOGY AND DYNAMICS OF AUTOMATED
DECISION-MAKING 115

Environment

Decision 
Maker

Observations
Historical data
Measurements
Responses

Decisions
Control action
Interventions

Figure 8.1: A Simple Feedback Model

The dynamical perspective offered by the conception of a feedback model allows for a
focus on interactions, which can add clarity to debates over key issues like fairness and
interpretability. Without a dynamic view of biases, it can be difficult to judge the fairness of
the resulting decisions. To provide a convincing example, Hardt et al. showed how static
observational metrics (properties of the joint distribution of input, model and output) are not
able to distinguish between two scenarios with identical joint distributions but completely
different interpretations for fairness [99]. This finding further motivates the case for causal
reasoning, and also proves the necessity of analyzing the dynamics of bias and fairness in their
particular context. For instance, a one-step feedback model, incorporating temporal indicators
of well-being for individuals affected by decisions, offers a way of comparing competing
definitions of fairness [133]. Similarly, calls for “interpretability” and proposed solutions
often omit key operative words – Interpretable to whom? And for what purpose? [124].
The dynamic viewpoint adds clarity to these questions by focusing on causes and effects of
decision making systems, and situating interpretability in the appropriate context.

Beyond providing a more realistic and workable frame of thinking about bias and related
issues, the feedback system perspective may also allow inspiration to be drawn from areas
of Systems Theory that have traditionally studied feedback and dynamics. For instance,
from the field of System Identification, which uses statistical methods to build mathematical
models of dynamical systems from measured data [134], often to be employed to control
safety-critical dynamical systems such as airplanes or electric power generators with strict
safety requirements [10]. Inspiration may be drawn from the rich literature on closed-
loop identification, which considers the identification of models with data gathered from
experiments in which the same model is continuously used to safeguard a system [209].
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8.5 Our Positionality Shapes Our Epistemology
As ML experts, we are wired to analyze challenges in ways that abstract, formalize and
reduce complexity. In our daily practice, we are concerned with model selection, over- and
under-fitting, exploration/excitation trade-offs, and parameter estimation. The proliferation
of biases in the systems we design understandably triggers us to think rigorously about its
technical roots and what techno-fixes may be able to prevent negative impact. However, it is
of crucial importance to acknowledge that reduction, formalization, and sources of feedback
are themselves inherent sources of bias. These epistemological challenges differ tremendously
from application to application and ultimately shape the way a user or decision-maker justifies
decisions and affects individuals. Our technology intimately touches and embodies values
deemed critical in employing the intended decision-making system. As such, we need to
go beyond our formal tools and analyses to engage with others and reflect on our own
epistemology in order to determine responsible ways in which technology can help put values
into practice, and what its fundamental limits are.

With a plethora of issues surfacing, it is easy to either criticize ML all together, or
otherwise dismiss requests to fundamentally revisit its role in enabling data-driven decision-
making in sensitive environments [13]. Instead of either extreme, we propose three principles
to nourish debate on the middle ground:

1. Do fairness forensics [44], by keeping track of biases in an open and transparent way
and engaging in constructive dialogue with domain experts, to understand proven ways
of formalizing complex phenomena and to breed awareness about how bias works and
when/where users should be cautious.

2. Determine what values are relevant in building a decision-making system and how they
might be embodied or challenged in the design of a system by engaging with users and
beneficiaries [210, 85].

3. Acknowledge that your positionality shapes your epistemology [201]. Our personal
backgrounds, the training we received, the people we represent or interact with all have
an impact on how we look at problems. As ML practitioners, we should set aside some
time and energy for critical self-reflection and harbor communication with the groups
affected by the systems we design.

As Takacs describes it, the benefits of self-reflection go well beyond arriving at the “best
solution” to a complex problem [201, 202]. “This means learning to listen with open minds
and hearts, learning to respect different ways of knowing the world borne of different identities
and experiences, and learning to examine and re-examine one’s own worldviews. [...] When
we constantly engage to understand how our positionality biases our epistemology, we greet
the world with respect, interact with others to explore and cherish their differences, and live
life with a fuller sense of self as part of a web of community.” Martin Heidegger argued in his
essay “The Question Concerning Technology” that all tools simultaneously reveal new insights
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about ourselves and the world while also concealing old traditions and potential futures [102].
As machine learning systems rapidly change our own worldviews in ways we cannot fully
anticipate, self-reflection and awareness of our epistemology may become ever-more important
for machine learning practitioners.
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Chapter 9

Conclusions

“Imagination is more important
than knowledge. For knowledge
is limited, whereas imagination
embraces the entire world,
stimulating progress, giving birth
to evolution.”

- Albert Einstein

We are working towards a world in which we have an increasingly better handle on how
data-driven technologies can be integrated in existing and new critical infrastructures while
safeguarding and representing important values such as safety, privacy and social justice. We
have the technical rigor to understand and mitigate new technical vulnerabilities, and the
vocabulary to situate our technological development in its societal and human context, to
reason about the ways in which values are affected and can be embodied. In the context of
electricity distribution, we have figured out how to leverage the availability of new sources of
sensing, data and actuation to enable high levels of penetration of renewable energy sources
in distribution networks, while ensuring the safety, security, stability and reliability of the
network, and affordable access and privacy for the citizens relying on it.

This dissertation has been a first step towards addressing the general ambition for doing
science and engineering as well as helping the energy transition in electricity distribution.
Taking distribution system operation as our motivating domain of problems and research
questions, this dissertation primarily tried to utilize new forms of sensing, data collection
and actuation to provide higher resolution observability and controllability, both in space
and time, for distribution system operators (DSOs), needed to enable the safe and reliable
integration of distributed generation and electrification. In Chapter 4, we challenged the
inherent limitations of traditional state estimation by developing an estimation technique that
relies on a limited set of real-time sensors by leveraging the predictive power of historical load
information. This technique can be seen as a critical tool in the transition towards higher
resolution state estimation schemes which are economically unfeasible for the foreseeable
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future. Our estimation method tries to do the best with the information available, and can
help DSOs to better understand what is going on in their networks, and form a critical
step towards more active control strategies for power flow and voltage regulation. Its
implementation on a real network in The Netherlands suggests its immediate relevance to
DSOs. Chapters 5 and 6 presented a novel methodology for enabling sophisticated safety-
aware decentralized control of distributed energy resources (DERs) for voltage and power flow
regulation. We studied the ability of machine learning algorithms to mimic the execution
of centralized optimal power flow (OPF) problems based on solely local information. This
method will enable DSOs to do automated data-driven construction of DER controllers for
such complex control tasks, avoiding intensive and expensive manual tuning and maintenance.
It also circumvents the need for the capital intensive communication infrastructure needed to
implement more sophisticated control schemes such as OPF, thereby providing a tool that
can be implemented by many DSOs today. The theory developed to design fully decentralized
policies that mimic network optimization problems is novel and may inform other engineering
problems where decisions are decentralized using machine learning, or where compression is
otherwise occurring naturally in the machine learning design process, providing fundamental
limits on reconstruction and a strategy for communication or feature selection to improve
reconstruction. Chapter 7 completes the work on electricity distribution by considering the
impact of distributed optimization schemes for OPF on the privacy of participating DER
owners. Though much more work needs to be done to properly define workable notions of
privacy in this context, the concept of local differential privacy for distributed optimization
provides a fairly general toolkit for studying and designing technical privacy mechanisms in
contexts where distributed optimization is implemented.

With the dramatic rise of automated decision-making applications leveraging the commod-
ification of data storage, computing, sensing, actuation, and algorithms, many opportunities
and aspirations for making lives better around the world are accompanied by relevant concerns
around the safe, beneficial and just integration of such technology. Though most contributions
in this dissertation are of a technical nature, the author has spend time understanding the
social implications of automated decision-making [55], and organizing changes on the Berkeley
campus to stimulate more cross-disciplinary debate and scholarship around this topic [53].
Chapter 8 attempts to draw connections between the technical ways in which biases occur in
the design and deployment of automated decision-making systems, and the inherent social
and political realities that these intervene in. Arguments were made for more reflection on our
practices, tools and ways of knowing and engagement with the domain experts, beneficiaries
and other relevant stakeholders, as a way to complement the technical rigor of our work,
together working towards a world in which automated decision-making is integrated and
adopted to genuinely improve lives and prevent harmful outcomes.
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9.1 Future Research Directions
The main research areas of improving observability and controllability in distribution net-
works through data-driven monitoring and control still have relevant follow up questions
to be pursued, both theoretically and in terms of practical implementation. As the grid is
transitioning, new issues arise requiring further attention from system and control theorists.
In addition, the multi-disciplinary nature of this dissertation has helped to start addressing
the question of beneficial integration of data-driven monitoring and control methods in a
more comprehensive way. However, the focus of this dissertation has been on a limited set
of questions, leaving space for future work. Lastly, some of the methodologies developed
for distribution system operation may be generalized and find application in other domains.
Here, we list a set of research directions that is by no means exhaustive, but reflects the main
interests of the author at this point in time.

Operationalizing Learning-based Monitoring and Control Systems

The implementation of data-driven methods, such as decentralized optimal power flow
(Chapter 5) or forecast-based state estimation (Chapter 4), rely on either supervised or
reinforcement learning techniques. In the former case, a critical challenge is constructing
a data set that sufficiently represents the phenomena that will be encountered during
implementation, and to train a machine learning model that generalizes well. In Chapter 5,
we point at various challenges that may show up in operationalizing a data-driven system,
including a limited ability to collect data before system design or encountering system changes.
The context in which a system is implemented will dictate the extent to which inherent
errors and biases can be accepted or mitigated. It is relevant to study how our work may
be complemented by a safety controllers that kick in when the learning-based controller
behaves in unexpected ways. Recent advances in safe learning for dynamical systems may be
applicable to understand whether the learning process, which we have considered as offline,
can be moved online by employing safety controllers, thereby allowing the learning-based
controllers to be determined and updated as new data becomes available [3, 78].

Studying Further Decentralization and Grid-Forming Control in
Power Systems

The inevitable transition to power systems fueled by solely renewable energy sources is
only getting started. If higher levels of penetration of distributed generation are pursued,
distribution systems run into inherent limitations [204]. When most of the energy is generated
locally, the source of stability from large-scale centralized generation will deplete, and local
networks will have to organize the control of a stable voltage signal by themselves, necessitating
grid-forming rather than grid-following inverter and DER control architectures [159, 112, 114].
Motivated by the exciting idea that local networks will have to become more self-sufficient,
this transition may contribute to more equitable access and control over electric energy.
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However, much work remains to develop well-understood, scalable and affordable grid-forming
control techniques; a challenge that necessitates an integral approach, designing the hardware
and control strategies in unison. It is relevant to understand how data-driven methodologies,
such as those developed in this dissertation, can facilitate this design challenge. Since the
dynamics in situations of low voltage and low inertia with inverter-interfaced generation
are inherently different from the quasi-steady state power flow dynamics considered in this
dissertation, characterizing these dynamics is a first necessity before data-driven monitoring
and control methods can be considered.

Develop a More General Information-Theoretic Framework for
Data-Driven Controllers

The rate distortion framework developed in Chapter 6 provides a more general perspective for
analyzing machine learning models with access to limited information. The framing of such
problems as compression and reconstruction is useful and complements the standard machine
learning practice of training, testing and validation. It provides fundamental limits on how
well a model can ever do given limited information, which may help as a guideline for model
class selection, feature selection and communication/sensing. It is relevant to further explore
the information theory literature, to understand how this analysis may contribute to other
critical controller specifications, such as (closed-loop) stability, robustness and algorithmic
convergence and optimality.

Studying Dynamics of Automated Decision-Making

As discussed in Chapter 8, many automated decision-making systems applied in societal
contexts such as credit lending, medical practices or traffic allocation are often designed from
a static point of view, not taking into account the dynamic effects that arise as the system is
implemented. Dynamic coupling between the decision-making system and its environment
may indicate bias in a training set that was gathered without decision-making occurring;
an issue requiring an online learning, reinforcement learning or adaptive control approach.
But even if a system learns online, the dynamics of the directions in which the system
learns may be unstable, leading to new emerging biases that may be harmful or otherwise
undesirable. The importance of such dynamics seems to be largely overlooked among most
practitioners and users of automated decision-making and more literature search needs to
done to understand gaps in the literature. An effective analysis of dynamics seems to be
context-specific, as often the environment acted upon are human beings or other complex
processes that require cross-disciplinary analyses to model dynamics and inform the iterative
design of automated decision-making systems.
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Developing a Value-Sensitive Design Approach for Automated
Decision-Making

The rapid adoption of computer systems in the 1980s and 1990s forms an important source
of inspiration for understanding how we may deal with the rapid integration of algorithms
to automate decision-making. In those days, the societal implications of computers and the
needs of users were a motivation to develop value-sensitive design (VSD) approaches. VSD
is a theoretically grounded approach to the design of technology that accounts for human
values in a principled and comprehensive manner by actively engaging with the ethical values
of direct and indirect stakeholders of the technology [82]. This theory and methodology has
analyzed the sources of bias in computer systems [84], it has been adopted in the context
of information systems [210, 85] and it has found its way into other domains of engineering
and science [83], also influencing relevant European science and research policy narritives
around responsible innovation [200, 211]. In Chapter 8, we are making connections between
the VSD perspective and the implications of automated decision-making. These connections
form the first steps towards a comprehensive approach to help practitioners and stakeholders
reason about how values may be affected by automated decision-making systems, and provide
principles to integrate values and track the expression of values throughout the design and
deployment process.
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Appendix A

Power System Stability

This chapter formed the basis for motivating much of the research in this dissertation, earlier
on in the PhD process. As such, it is still relevant as a reference to provide more insight into
the trends affecting electricity distribution, as covered more concisely in Chapter 2. It frames
the overall notions used to describe efficacy of power systems in Section A.1. It then provides
a classification of power systems stability for distribution networks in Section A.2. It ends
with a description of how trends in energy systems are impacting power system stability in
Section A.3.

A.1 Classic Notions of Efficacy in Power Systems
Throughout the literature on power systems, different concepts and words with varying
definitions are used to describe the efficacy of operation of power systems and power quality.
Hence, we define the different criteria considered in the power systems and control communities.
Here, we adopt and extend some definitions from [126] and [9]. These studies themselves have
tried to formally define the different notions and provide the field with advise for terminology.
At the highest level of power systems operations, we make a distinction between the terms
reliability, security, stability and resilience, as proposed in [126]:

• Reliability - refers to the probability of its satisfactory operation over the long run. It
denotes the ability to supply adequate electric service on a nearly continuous basis,
with few interruptions over an extended time period.

• Security - refers to the degree of risk in its ability to survive imminent disturbances
(contingencies) without interruption of customer service. It relates to robustness of
the system to imminent disturbances, and hence, depends on the system operating
condition as well as the contingent probability of disturbances.

• Stability - refers to the continuance of intact operation following a disturbance. It
depends on the operating condition and the nature of the physical disturbance. Notice
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that this is different from the notion of stability in the dynamical systems and control
literature [10]. Whenever we refer to stability, we will provide further clarity if the
context does not provide sufficient clarification.

• Resilience - refers to the capacity to withstand extreme situations (e.g. extreme weather
conditions), to prevent the spread of outages, and to recover quickly when outages
occur.

Reliability is the overall objective in power system design and operation. To be reliable, the
system must be secure. To be secure, the system must be stable, but in addition, it must
also be secure against other contingencies that would not be classified as stability problems,
such as damage to equipment due to explosive failure of a cable. Security and stability
can be further distinguished in terms of resulting consequences. For example, two systems
may both be stable with equal margins, but one may be more secure because consequences
of instability are less severe. Stability is hence an integral component of a power system
security and reliability assessment. Grid resilience is an objective of increasing importance,
as severe weather is the leading cause of power outages in the United States. Between 2003
and 2012, an estimated 679 widespread power outages occurred due to severe weather, with
an estimated annual cost average of $18-33 billion [69]. As a result of climate change and
the frequency of severe weather events increasing, the study of resilience has been getting
more attention. See [220] for a review of research on resilience in power systems, and [6] for a
discussion on definitions.

A.2 Power System Stability in Distribution Networks
Many major blackouts caused by power system instability have illustrated the importance of
this phenomenon. Historically, in transmission networks transient instability has been the
main focus of the industry’s attention concerning system stability. With the evolution of
power systems through continuing growth in interconnections, use of new technologies and
controls, and the increased operation in highly stressed conditions, different forms of system
instability have emerged.

The overarching definition as proposed in [126] is: Power system stability is the ability of
an electric power system, for a given initial operating condition, to regain a state of operating
equilibrium after being subjected to a physical disturbance, with most system variables bounded
so that practically the entire system remains intact. This definition applies to an interconnected
power system as a whole. Power system stability is similar to the stability of any dynamical
system, and therefore has fundamental mathematical underpinnings. Stability of an electric
power system is a property of the system motion around an equilibrium set, that is the initial
operating condition.

Power systems are subjected to a wide range of disturbances, small and large. Small
disturbances in the form of load changes occur continually. They must also be able to ride
through numerous severe disturbances, such as the tripping of a generator or short circuit on
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a transmission line. A large disturbance may lead to structural changes due to isolation of
faulted elements, and may cause damage to many vital pieces of equipment. For example, in
a cascading event, a fault on a critical element can lead to protective relaying, which causes
variations in power flows, bus voltages, and rotor speeds. Voltage variations can then trigger
voltage regulators and switch off other equipment. Loads can either switch off or be severely
damaged, depending on their individual characteristics. An unstable system condition could
lead to cascading outages and a shutdown of a major portion of the power system.

In contrast to transmission networks, there is not yet a clear all-encompassing definition
of stability for the distribution grid. Common practice is to use transmission level definitions.
However, structural differences between transmission and distribution, varying characteristics
of (aggregated) loads in distribution networks, typically lower inertia of distributed generation,
intermittency of distributed renewable energy resources, and presence of power electronic
inverters all give rise to new forms of dynamic phenomena and hence new equilibria between
supply and demand in distribution networks [188]. Therefore, it is essential to assess stability
of distribution network stability in dynamic and transient conditions and clearly classify
when stability is met.

Power system stability is essentially a single problem. However, because of high dimension-
ality and complexity of stability problems, it helps to make simplifying assumptions to analyze
specific types of problems using an appropriate degree of detail of system representation
and appropriate analytical techniques. We revisit the power system stability as defined for
transmission networks in [126], and define its distribution network equivalent. We distinguish
between four different notions of stability:

1. Frequency Stability - the ability of a power system to maintain steady frequency following
a severe system upset resulting in a significant imbalance between generation and load.
It depends on the ability to maintain/restore equilibrium between system generation
and load, with minimum unintentional loss of load. Instability that may result occurs
in the form of sustained frequency swings leading to tripping of generating units and/or
loads.

2. Voltage Stability - the ability of a power system to maintain steady voltages at all buses
in the system after being subjected to a disturbance from a given initial operating
condition. It depends on the ability to maintain/restore equilibrium between load
demand and load supply from the power system. Instability that may result occurs in
the form of a progressive fall or rise of voltages of some buses.

3. Synchronization - the ability of synchronous machines of an interconnected power
system to remain in synchronism after being subjected to a disturbance. For Distributed
Generation and the interfacing inverters, it depends on the ability to track the right
operating point to maintain/restore equilibrium between the input energy of the
generator and the desired output frequency and angle of the network. Instability that
may result occurs in the form of increasing angular swings of some generators leading
to their loss of synchronism with other generators. There are five conditions that
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must be met before the synchronization process takes place. The source (generator or
sub-network) must have equal line voltage, frequency, phase sequence (for three phases),
phase angle, and waveform to that of the system to which it is being synchronized. As
such, some frame synchronization often to be an overarching problem, as it indirectly
addresses frequency and voltage stability [63, 187].

4. Waveform Stability - the ability of a power system to operate at a near-perfect waveform
at its fundamental frequency and to maintain this waveform after being subjected to
a harmonic disturbance. Instability that may result occurs in the form of imperfect
sine waves that can cause serious damage and progressive tripping of various electric
components in the network [9, 96].

A.3 Impact of Trends on Power System Stability
In this section we discuss critical challenges that arise with the trends mentioned in the
Introduction. We explain the impact on the different notions of power system stability.

High penetration of distributed generation

In order for California to reach its 2020 goals to have 33% of its loads served by renewable
energy sources, it will heavily rely on the installation of distributed PV and wind turbine
installations connected to mid- and low-voltage distribution networks. The CAISO estimates
that by 2020 12000 MW, which is roughly 20% of today’s average consumption, is generated
by distributed PV sources.

• Intermittency - The short term stochastic intermittency effects of PV generation
due to clouds or of wind due to wind intermittency can create imbalances leading to
unstable frequency trajectories, that can have its impact on the larger network. [34]
shows that in order to balance the intermittency effects of distributed PV generation
on local frequency stability one needs over 80% balancing capacity (with respect to
installed PV capacity) versus 8% for state level balancing. California has already put in
place regulation to enforce the installation of balancing capacity with the installation
of new PV panels. Under- or over-generation of distributed generators can cause
voltage restrictions to be violated in congested or underserved areas of the network.
Distributed generators need to resynchronize to the network in order to inject power
around intermittency.

• Forecast errors - Large deviations from the forecasted distributed generation are a big
concern for transmission networks, as slower spinning generation is scheduled based
on forecasts. Deviations lead to imbalance, which if not compensated for can lead to
over/under-generation and voltage instability. For islanded microgrids such phenomena
can easily lead to outage because of the inherently lower inertia in such systems.
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• Ramping - For California estimates are that the high penetration of PV will lead to
dramatic ramping phenomena in the net load (consumption minus local generation)
of the overall system. For 2020 a projected 13 GW ramp up of net load in just 3 hrs
around sunset is expected. As for now, there is a big shortage of fast regulating sources
that can supply this ramp (as solar power diminishes) and prevent major potential
outages.

• Lack of inertia - AC power systems robustness to uncertainty and disturbances relies
on sufficient inertia, which for transmission networks is provided by large spinning
generators. As distributed generation takes over the role of large fuel-powered spinning
generation the grid’s inertia is inherently lowered. As a result, the system is more
sensitive to perturbations, and deviations from operating equilibria are more likely to
lead to cascading events and outages.

These phenomena highlight the tremendous impact that DG will have on the local power
system stability. With penetration currently increasing at a fast rate, we will likely face
new phenomena that motivate the careful study of and design for stability in distribution
networks.

Electrification and diversified dynamic behavior of loads

Increasingly more aspects of our economy are electrifying. Transportation will transition
to electrified vehicles that charge on the power grid. Smart applications with embedded
computation integrate sophisticated electronics that diversify the impact on the grid. Demand
response programs use flexibility of demand and control the dynamics of loads in novel ways
(directly or indirectly) to regulate frequency for the transmission network. As more critical
processes rely on electronic interfaces the vulnerability of the grid is increased, sometimes
leading to stricter requirements on reliability, and thus on stability and power quality.

• Nonlinear loads - some loads cause the current to vary disproportionately with the
voltage during each cyclic period. These are classified as nonlinear loads, and the current
taken by them has a non-sinusoidal waveform. When there is significant impedance in
the path from the power source to a nonlinear load, these current distortions will also
produce distortions in the voltage waveform at the load.

• Intermittency - It is inherently impossible to know when all loads will be on or off. If
large loads (as related to the inflowing power of a (sub)network) switch on or off this
can create local imbalances and potentially cascade to voltage sag/sweep and destabilize
and desynchronize the system.

• Forecast error - Large deviations from the forecasted load consumption are a big
concern for transmission networks, as slower spinning generation is scheduled based
on forecasts. Deviations lead to imbalance, which if not compensated for can lead to



APPENDIX A. POWER SYSTEM STABILITY 144

over/under-generation and voltage instability. For islanded microgrids such phenomena
can easily lead to outage because of the inherently lower inertia is such grids.

• Electric Vehicles - Plug-in electric vehicles create new load peaks by connecting around
similar time slots [5]. Having a high penetration of controlled (vs uncontrolled) EVs
could have detrimental effects to local frequency (imbalance) and voltage (congestion)
[155].

• Demand Response - By exploiting the flexibility of demand from buildings, ancillary
services are now provided to the grid for regulating frequency. Examples of loads
involved are HVAC systems (using fast fans [139] , using slower heating systems [156]),
thermostatically controlled loads and batteries with stored energy. These services are
now used for transmission frequency regulation, but could as well be used for local
balancing. Applicability depends on the available control actuation bandwidth, which
varies greatly from seconds to minutes depending on the available actuation and control
infrastructure and load dynamics. It is yet to be understood what the effect of demand
response schemes is on local stability (especially if many neighboring resources are
triggered in parallel).

• Critical loads - Critical loads such as hospitals and data centers rely on increasingly
stricter power supply standards to run critical processes and electronic equipment.
Apart from their new and possibly unreliable effect on the grid, new equipment also
brings more vulnerability, and as such potentially stricter stability requirements on
distribution networks.

Availability of novel measurement and control actuation devices

There is not yet alarming attention for dealing with stability in distribution networks. But
as measurement and actuation devices are installed and model accuracy improves, we form a
better idea of the phenomena and impact on stability and components in the distribution
system as it occurs in practice. This can help setting thresholds for what phenomena or
scenarios are worth preventing or stabilizing, and how actuation can help doing so in the
most effective and efficient way. Apart from the potential benefits, exploiting sensors and
control actuation can also lead to new stability problems.

• Advanced Metering Infrastructure - The rapid deployment of “smart meters” allows
utilities to gain more understanding of electricity demand. Such data gathered histor-
ically can reveal patterns that can help shape plan the dimensioning and operation
of the grid more effectively and less conservatively. It can also serve as a source of
information to design data-driven demand response programs to actively adjust demand
to avoid network contingencies and optimize network objectives. With the measuring
of household demand come new concerns of privacy, demanding engineering tradeoffs
between utility of data for network operation and the protection of sensitive information.
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• Synchrophasors - Phasor Measurement Units are able to measure and compare volt-
age and current phasors at high temporal resolution, and have made their way into
the standard practice in the operation of transmission systems, acting as a means
of assessing real-time stability and understanding transient dynamics. In the last
decade, synchrophasors have been developed for distribution networks, providing new
options for actively managing distribution systems with diverse resources and growing
complexity [142]. As this technology is currently experimented with, the applications
are still becoming more apparent, including using it for predictive maintenance, fault
and event detection, state estimation and power flow and voltage regulation.

• Power electronic inverters - To interface increasingly sophisticated loads and distributed
generators, power electronic devices are implemented. The potential impact of these
devices on local frequency stability, voltage stability and synchronization of microgrids
has not studied well until recently [187, 64, 63]. Inverters have shown to have very diverse
impacts on the harmonic waveform as introduced in different ways (series, parallel),
and can also impact the voltage stability [199]. Apart from their disturbing effects,
inverters also provide controllability. They can regulate the injected/absorbed real
and reactive power through droop control, and modulate voltage magnitude, frequency
and phase angle for synchronization [125]. Moreover, with its circuitry one can adjust
the overall impedance to compensate for the nonlinear effect on the current/voltage
waveform coming from the load/generator.

• Modeling errors - Planning of the distribution grid uses numerous types of models
for transient, dynamic and steady state configurations. Most models are parametrized
based on equipment data originating from a Geographic Information System (GIS)
database. Errors in these databases can lead to large simulation errors, which may
not be caught during existing validation schemes. As penetration of renewables and
other stochastic sources increase, these small errors may become more pertinent and
mask integration and future planning issues. Incorrect parameter estimation is another
source of risk that can lead to modeling errors.

• Control actuation errors - Fast local compensation by power electronic equipment to
respond to voltage variations might lead to overcompensation, causing voltage drops for
the noncompensated parts of the network. Widespread use of compensation equipment
may even become a voltage stability issue, if not designed and implemented carefully [9].
Unaccounted delays in control architecture or communication might yield dissatisfactory
operating results for control strategies. Unforeseen interaction of different timescales or
control loops in the dynamics might also impede on the effectiveness of control schemes
[64].

• Measurement errors - Wear and fraud in measurement devices can be fed back to
a control loop and cause tremendous actuation errors leading to various dynamic
phenomena, that can affect the voltage stability and harmonic wave form. Misplaced or
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mis-integrated sensors could provide a monitoring system or control loop with inadequate
information. Packet losses could harm the feasibility of a computation needed for safe
control and operation. All such scenarios can be detrimental depending on the safety-
criticality of the equipment and control strategies that rely on the information gathered
by measurements.

Aging infrastructure

In many countries, the energy market and infrastructure have been heavily deregulated over
the last few decades. Depending on the pricing models of a market, utility companies are
facing economic challenges to meet the technical investments needed for upgrading the grid for
future reliability, given the scenarios for increased distributed generation and electrification
of the economy. For transmission networks the safety criteria and shared reliance on the
infrastructure have thus far often guaranteed the necessary political and economic buy-in to
innovate. For distribution networks, the investment responsibility is often more complicated
and depending on the area. An area with relatively little economic income is less likely
to find the resources to upgrade its distribution network. Nonetheless, the users of such
networks most often have a free hand to connect new loads and generators that affect and
likely increase the impact on the network. Decreasing reliability could likely increase the
investment of users in their network. Also, the possible effects of one controlled area on
others might yield debate between users and stimulate a system wide solution [9]. For
a given distribution network, one should carefully consider the practical issues related to
economic perspective, load and generation impact on the network, and the necessary political
involvement/agreement to realize the necessary upgrade for reliable and stable operation. As
such, the aging infrastructure is an overarching trend that influences all the other challenges
listed.
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Appendix B

Proofs for Theorems and Lemmas Local
Differential Privacy

Proof of Theorem 7.3.1

Proof: To show that the proposed mechanism A in Algorithm 1 has the promised
privacy guarantee, we first show that Ai is locally εi-differentially private for node i. To this
end, we study the quantity of interest

P
{
AKi (P1, . . . ,Pi, . . . ,PM) ∈ Z

}

P {AKi (P1, . . . ,P ′i, . . . ,PM) ∈ Z} (B.1)

of node i. In the proof we use random variables Zk
i , V

k
i , for k = 1, . . . , K, to denote the

output of the local mechanism Ai (c.f. Eq. (7.7)) with input (P1, . . . ,Pi, . . . ,PM), and
use Z ′ki , V

′k
i , for k = 1, . . . , K, to denote the output of the local mechanism Ai with input

(P1, . . . ,P ′i, . . . ,PM) where the two local problems Pi and P ′i have distance d(Pi,P ′i) ≤ 1.
With these notations, we can rewrite the above expressions as

P
{
Z1
i = z1

i , V
1
i = v1

i , . . . , Z
K
i = zKi , V

K
i = vKi

}

P
{
Z
′1
i = z1

i , V
′1
i = v1

i , . . . , Z
′K
i = zKi , V

′K
i = vKi

}

for some realizations zki , vki , k = 1, . . . K.
It is straightforward to show that if Zk

i = Z
′k
i , V

k
i = V

′k
i for all k = 1, . . . , K, then we have

Zk
j = Z

′k
j , V

k
j = V

′k
j for all j 6= i and for all k = 1, . . . , K. For the simplicity of notation, we

use Zk and V k to denote the tuple (Zk
1 , . . . , Z

k
M ) and (V k

1 , . . . , V
k
M ), respectively. Furthermore

notice that V k is a deterministic function of Zk, as shown in the step 3 of Algorithm 1. Hence



APPENDIX B. PROOFS FOR THEOREMS AND LEMMAS LOCAL DIFFERENTIAL
PRIVACY 148

we have

P
{
Z1
i = z1

i , V
1
i = v1

i , . . . , Z
K
i = zKi , V

K
i = vKi

}

P
{
Z
′1
i = z1

i , V
′1
i = v1

i , . . . , Z
′K
i = zKi , V

′K
i = vKi

}

=
P
{
Z1 = z1, V 1 = v1, . . . , ZK = zK , V K = vK

}

P {Z ′1 = z1, V ′1 = v1, . . . , Z ′K = zK , V ′K = vK}

=
P
{
Z1 = z1, . . . , ZK = zK

}

P {Z ′1 = z1 . . . , Z ′K = zK}

=
K∏

k=1

P
{
Zk = zk|Zt = zt, t < k

}

P {Z ′k = zk|Z ′t = zt, t < k}

where zk, vk, k = 1, . . . , K are realizations of the random variables. Now we analyze the term

P
{
Zk = zk|Zt = zt, t < k

}

P {Z ′k = zk|Z ′t = zt, t < k}

for each k = 1, . . . , K.
According to Step 1 of Algorithm 1, zki is determined by µk−1

i and δki , in other words
Zk −mk−1 − (Z0, . . . , Z

k−1) forms a Markov chain where the random vector mk denotes the
Lagrangian (µk1, . . . , µ

k
M) in the algorithm. Consequently, it holds that

P
{
Zk = zk|Zt = zt, t < k

}

P {Z ′k = zk|Z ′t = zt, t < k} =
P
{
Zk = zk|mk−1 = µk−1

}

P {Z ′k = zk|m′k−1 = µ′k−1}

where mk and m
′k denote the random Lagrangians with inputs (P1, . . . ,Pi, . . . ,PM) and

(P1, . . . ,P ′i, . . . ,PM ), respectively. Furthermore, it can be checked easily that mk−1 and m′k−1

are completely determined by Zt, Z
′t for t < k. Since we have Zt = Z

′t = zt for all t < k, we
also have µk−1 = µ

′k−1.
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With the above observation, we can continue our derivation

P
{
Zk = zk|Zt = zt, t < k

}

P {Z ′k = zk|Z ′t = zt, t < k} =
P
{
Zk = zk|mk−1 = µk−1

}

P {Z ′k = zk|m′k−1 = µ′k−1}

=
P
{
Zk = zk|mk−1 = µk−1

}

P {Z ′k = zk|m′k−1 = µk−1}

=
M∏

j=1

P
{
Zk
j = zkj |mk−1

j = µk−1
j

}

P
{
Z
′k
j = zkj |m

′k−1
j = µk−1

j

}

=
M∏

j=1

P
{
g(Pj, µk−1

i ) + δkj = zkj
}

P
{
g(P ′j, µk−1

i ) + δkj = zkj
}

=
M∏

j=1

exp
(
−‖zkj − g(Pj, µk−1

j )‖/σkj
)

exp
(
−‖zkj − g(P ′j, µk−1

j )‖/σkj
)

≤
M∏

j=1

exp
(
‖g(Pj, µk−1

j )− g(P ′j, µk−1
j ))‖/σkj

)

= exp
(
‖g(Pi, µk−1

i )− g(P ′i, µk−1
i ))‖/σki

)

≤ exp(Θi/σ
k
i )

with Θi defined in (7.12). Finally, we obtain

P
{
AKi (P1, . . . ,Pi, . . . ,PM) ∈ Z

}

P {AKi (P1, . . . ,P ′i, . . . ,PM) ∈ Z}

=
K∏

k=1

P
{
Zk = zk|Zt = zt, t < k

}

P {Z ′k = zk|Z ′t = zt, t < k}

≤
K∏

k=1

exp(Θi/σ
k
i )

= exp

(
K∑

k=1

Θi/σ
k
i

)

This proves the privacy guarantee in (7.11).

Proof of Lemmas

Proof of Lemma 7.3.1: We show that for the quadratic problem, the optimization
problem in (7.14) is in fact independent of the value of µ. To see this, we define h̃i := hi − µ
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and h̃′i := h′i − µ. The optimization problem (7.14) can be rewritten as

maximize Θi := ‖z∗ − z′∗‖ (B.2)

s. t. z∗ ∈ KKT(Hi, h̃i, Ci, ci, wi, 0)

z′∗ ∈ KKT(H ′i, h̃
′
i, C

′
i, c
′
i, w

′
i, 0)

a1‖Hi −H ′i‖+ a2‖h̃i − h̃′i‖
+ a3‖Ci − C ′i‖+ a4‖ci − c′i‖ ≤ 1

with variables z∗, z′∗, Hi, H
′
i, h̃i, h̃

′
i,

Ci, C
′
i, ci, c

′
i, wi, w

′
i

where we used the fact h̃i − h̃′i = hi − h′i. It can be seen that the above problem formulation
is independent of µ, which proves the claim.

Proof of Lemma 7.3.2: Using Lemma 7.3.1, we consider the case with g(Pi, µ = 0) =
argminz∈C

1
2
zTHz + hT z (we omit the index i for simplicity). Define

z∗ := argminz∈C
1

2
zTHz + hT z

and

z′∗ := argminz∈C
1

2
zTH ′z + hT z

where H,H ′ satisfies ‖H −H ′‖2 ≤ 1.
The optimality of z∗ and feasibility of z′∗ implies

〈Hz∗ + h, z′∗ − z∗〉 ≥ 0,

and the optimality of z′∗ and the feasibility of z∗ implies that

〈H ′z′∗ + h, z∗ − z′∗〉 ≥ 0.

Manipulations of the above two inequalities yield

〈H ′z′∗ −Hz∗, z∗ − z′∗〉 ≥ 0

which can be rewritten as

〈H ′∆ + (H −H ′)z∗,∆〉 ≤ 0

where ∆ := z∗ − z′∗. This implies that

∆TH ′∆ ≤ ∆T (H ′ −H)z∗
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Using the fact that ∆TH ′∆ ≥ λmin(H ′)‖∆‖2 and ∆T (H ′ −H)z∗ ≤ ‖∆‖‖z∗‖|λmax(H ′ −H)|,
we conclude that

‖z∗ − z′∗‖ ≤ |λmax(H
′ −H)|

λmin(H ′)
· ‖z∗‖

≤ 1

λ
(i)
min

Gi

where the last inequality uses the assumption that |λmax(H ′ − H)| = ‖H − H ′‖2 ≤ 1,
‖z∗‖ ≥ Gi, and the minimum eigenvalue of H ′ is lower bounded by λ(i)

min

Proof of Lemma 7.3.3: Using Lemma 7.3.1, we consider the case with g(Pi, λ = 0) =
argminz∈C

1
2
zTHz + hT z (we omit the index i for simplicity). Define

z∗ := argminz∈C
1

2
zTHz + hT z

and

z′∗ := argminz∈C
1

2
zTHz + h′T z

where h, h′ satisfies ‖h− h′‖2 ≤ 1.
Since H � 0, we define H = D ·DT with D invertible and rewrite the above expression as

z∗ = argminz∈C
1

2
zTHz + hT z

= argminz∈C
1

2
‖DT z +D−1h‖2

Let v = DT z. The optimization problem above becomes

v∗ = argminv∈C̄
1

2
‖v +D−1h‖2 ,

where we define C̄ := {DT z | z ∈ C}. Similarly we have

v′∗ = argminv∈C̄
1

2
‖v +D−1h′‖2 .

Hence v∗ (res. v′∗) can be seen as the projection of the point −D−1h (res. −D0−1h′) onto
the set C̄. Since C is convex, we know that C̄ is also convex, and it holds that

‖v∗ − v′∗‖ ≤ ‖D−1(h− h′)‖ .
Using z = (DT )−1v, we obtain

‖z∗ − z′∗‖2 ≤ ‖D−1‖2 · ‖D−1 · (h− h′)‖2

≤ ‖D−1‖2
2 · ‖h− h′‖2

≤ 1

λmin(H)
· ‖h− h′‖2

≤ 1

λ
(i)
min
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where the last inequality uses the assumption that ‖h− h′‖ ≤ 1 and minimum eigenvalue of
H is lower bounded by λ(i)

min.
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