
Program Synthesis for Systems Biology

Ali Sinan Koksal

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-49
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-49.html

May 11, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Program Synthesis for Systems Biology

by

Ali Sinan Köksal

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Rastislav Bodík, Co-chair
Professor Nir Yosef, Co-chair

Professor Ellen Robey
Professor Stuart Russell

Spring 2018

Program Synthesis for Systems Biology

Copyright 2018
by

Ali Sinan Köksal

1

Abstract

Program Synthesis for Systems Biology

by

Ali Sinan Köksal

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bodík, Co-chair

Professor Nir Yosef, Co-chair

Cell signaling controls basic cellular activities and coordinates cell actions, such as cell
differentiation, division and growth. Consequently, errors in cellular signaling are responsible
for diseases such as cancer, autoimmunity, and diabetes.

Executable biology describesmechanisticmodels of biological processes in a formal language
that is dynamic and executable by a computer. Models in executable biology are able to capture
complex behaviors of biological systems, such as time and concurrency. In addition, discrete
modeling enables efficient algorithms to exhaustively explore spaces of models.

This thesis introduces tools to automatically infer executable models at different levels of
abstraction from varied types of experimental data. In each case, we investigate identifiability
of models when the provided experimental evidence and prior knowledge are varied. We make
the following individual contributions:

• TPS: A framework for the automated inference of signed directed graphsmodeling protein
signaling networks, using time series data.

• SBL: A modeling language embedded in Scala for the automated synthesis of concurrent
programs modeling cell fate decision using mutation experiments.

• Karme: A framework for investigating identifiability of asynchronous Boolean network
models from single-cell gene expression data.

To evaluate our work, we apply our tools to in vivo, in vitro, and in silico data sets on cellular
differentiation and protein signaling. We show that, through explicit characterization of ambi-
guities in input specifications, our approaches make unambiguous predictions supported by
experimental evidence, and suggest new experiments that help disambiguate alternative expla-
nations. Applied to epidermal growth factor signaling response data, TPS exhaustively explores
all models that are consistent with the input, and makes predictions that are unambiguous

2

across the model space. These predictions are supported by further experimental validation.
Using SBL, we synthesize valid models of cell fate decision in C. elegans vulval precursor cells,
fixing a bug in previous modeling. We show the existence of internally different models that are
behaviorally equivalent under all mutation experiments. One of the inferred models expresses
a previously unknown biological hypothesis. Finally, we use Karme to synthesize models
of myeloid cell differentiation from simulated noisy single-cell data, and demonstrate that
experimental design can reveal key genes in the system.

i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Background . 1
1.2 Existing Tools for Modeling Biological Systems as Boolean Networks 4
1.3 Overview . 5
1.4 Collaborators and Publications . 12

2 Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data 13
2.1 Introduction . 13
2.2 Overview . 16
2.3 Pathway Synthesis . 20
2.4 Results . 28
2.5 Discussion . 34

3 Synthesis of Biological Models fromMutation Experiments 39
3.1 Introduction . 40
3.2 Overview . 42
3.3 Language . 52
3.4 Translating Programs into Formulas . 55
3.5 Synthesis and Querying Spaces of Models . 58
3.6 Case Study: C. elegans vulval development . 63
3.7 Performance evaluation . 66
3.8 Related Work . 68
3.9 Conclusion . 69

4 Investigating the Identifiability of Boolean Network Models from Single-Cell Data 70
4.1 Introduction . 70
4.2 Overview . 72

ii

4.3 Reference Model . 76
4.4 Generating in silico single-cell observations . 79
4.5 State Graph Construction . 80
4.6 Best-Fit Synthesis from State Graphs . 81
4.7 Evaluating Model Inference from Imperfect Data 84
4.8 Experimental Design with User-Defined Objectives 94
4.9 Conclusion . 95

5 Conclusion 98

Bibliography 99

iii

List of Figures

1.1 TPS workflow . 9
1.2 SBLSynth workflow . 10
1.3 Karme workflow . 11

2.1 TPS workflow . 15
2.2 Temporal Pathway Visualizer . 17
2.3 TPS input example . 19
2.4 TPS summary graphs . 21
2.5 TPS summary graph expansion . 27
2.6 Details of EGFR pathway model inferred by TPS . 29
2.7 TPS network predictions for combinations of constraints 33
2.8 TPS scalability results . 34

3.1 Informal diagram of cell fate specification . 44
3.2 Hierarchical organization of programs in SBL . 46
3.3 Distributed protocol example . 47
3.4 Specification for the distributed protocol example 49
3.5 Update query functions generated under ambiguous specification 53
3.6 Small-step semantics for program execution . 54
3.7 Translation rules for symbolic execution of programs. 56
3.8 Synthesizer diagram . 61
3.9 VPC model template and specification . 64
3.10 Synthesized update functions for the VPC model . 66
3.11 SBL synthesizer performance results . 67

4.1 Karme workflow overview . 73
4.2 Subgraph of the state graph illustrating superfluous transitions 78
4.3 Trimmed state graph in which the undesired intermediate state behavior has been

eliminated. 78

iv

4.4 F1 scores for Boolean states as they appear in the input data, compared to F1 scores
for Boolean states that appear in the constructed state graphs. We observe that state
graph construction is able to recover states in S that do not appear in the input, for
the cases where the input data contains false positive states but no false negative states. 85

4.5 Precision scores for Boolean states as they appear in the input data, compared to
precision scores for Boolean states that appear in the constructed state graphs. . . . 86

4.6 Recall scores for Boolean states as they appear in the input data, compared to recall
scores for Boolean states that appear in the constructed state graphs. 86

4.7 F1 scores for stable state recovery by inferred models in the wild-type (unperturbed)
case and knockout (perturbed) cases. 87

4.8 F1 scores for reachable state recovery by inferred models in the wild-type (unper-
turbed) case and knockout (perturbed) cases. 88

4.9 Precision and recall scores for reachable state recovery by inferred models in the
wild-type (unperturbed) case. 88

4.10 Similarity of inferred functions with the reference model. 90
4.11 F1 scores for Boolean states recovered by state graph construction, for partially

hidden stable state knowledge. 91
4.12 F1 scores for stable state behavior recovery in the wild-type and knockout cases, for

partially hidden stable state knowledge. 92
4.13 Precision and recall scores for stable state behavior recovery in the wild-type case,

for partially hidden stable state knowledge. 92
4.14 I/O pair similarity of inferred functions with the reference model, for partially

hidden stable state knowledge. 93
4.15 Maximum difference results for each knockout experiment, based on the difference

between set of reachable states. The analysis identifies the mutation of Gata2, an
early hematopoietic factor, as the most distinguishing experiment in 42 cases. 96

4.16 Maximum difference results for each knockout experiment, based on the difference
between set of stable states. 96

v

List of Tables

2.1 Example of signaling events inferred by TPS . 20
2.2 Number of edge predictions per constraint type . 31
2.3 Added and conflicting predictions for combinations of constraints 32

vi

Acknowledgments

I would like to expressmy gratitude tomy advisors Ras Bodík andNir Yosef, whose guidance
and optimism helped me greatly throughout my graduate studies. I had the chance to start
working with Ras in 2010 as a visiting student, and it has been a great pleasure to learn from him
and to be inspired by his encouraging optimism throughout all these years. I am also grateful
to Nir for his guidance in the final years of my graduate studies, and I benefited deeply from
his insight into biology. Thank you both for your constant support throughout this journey.

I would like to thank my other collaborators, in particular Saurabh Srivastava and Anthony
Gitter. Saurabh paved the way for our work on modeling biology by initiating our first collabo-
ration on the subject. Working closely with Saurabh and Anthony throughout these years has
been an enriching experience. I would also like to thank all my other collaborators: Kirsten Beck,
Nathan D. Camp, Dylan R. Cronin, Jasmin Fisher, Ernest Fraenkel, Matthew E. MacGilvray,
Aaron McKenna, Nir Piterman, Yewen Pu, Aditya V. Thakur, and Alejandro Wolf-Yadlin. I
thoroughly enjoyed collaborating with you.

I would also like to thank members of my dissertation committee, Ellen Robey and Stuart
Russell, for their valuable feedback.

It has been great working alongside other members of Ras’ lab, Nir’s lab, and the PLSE lab
at the University of Washington. Thanks for all the fun conversations we have had.

Finally, I’d like to thank my parents, Aykut and Dilek, my friends, and Keahilani, for their
support and encouragement.

1

Chapter 1

Introduction

Biological systems are extremely complex, and are a combination of tightly-coupled systems
at various levels of magnitude. At the molecular level, we have DNA, RNA, proteins, and
metabolites. These molecules are parts of a cell, which in turn is a part of a tissue. Different
tissues constitute the organs of an organism. Many organisms together form the ecosystem. At all
these levels of details, the relationship between the elements are of great interest. The goal of this
dissertation is to develop tools and techniques for automatically inferring models of biological
processes at the levels of gene regulation as well as protein signaling, and, consequently, raise
the level of automation in computational biology.

1.1 Background
Cellular control. In this dissertation, we focus onmechanisms for cell signaling. Cell signaling
controls basic cellular activities and coordinates cell actions, such as cell division and growth,
and controls cell differentiation. Therefore, errors in cellular signaling are responsible for
diseases such as cancer, autoimmunity, and diabetes. We focus our attention on the interactions
of proteins and genes, because proteins control and mediate the vast majority of biological
processes in a living cell.

There are at least two practical reasons for studying cellular control networks:

• Drug design: Interactions between specific proteins are essential to all stages of develop-
ment and homeostasis. Not surprisingly, many human diseases can be traced to aberrant
protein-protein interactions, either through the loss of an essential interaction or through
the formation of a protein complex at an inappropriate time or location [127]. Hence, a po-
tential therapeutic strategy for treating a disease involves the drug-induced manipulation
of protein-protein interactions whose malfunctioning contributes to that disease [158].

A recent example of how controlling cell development can lead to a therapeutic cure for a
disease is found in the work by Solt et al. [142]. Solt et al. discovered a way to significantly

CHAPTER 1. INTRODUCTION 2

reduce diabetes in mice. Type I diabetes is a chronic autoimmune disease that occurs
when the body’s immune system destroys insulin producing pancreatic β cells, resulting
in insulin deficiency and hyperglycemia. Current treatments for type I diabetes focus on
controlling blood sugar with insulin therapy and must continue throughout a person’s
life. The method discovered by Solt et al. prevents the illness from developing rather
than treating its symptoms. Their research built on the observation that TH17 cells have
been linked to the autoimmune process that destroys β cells. Solt et al. [142] discovered
two nuclear receptor transcription factors (RORα and RORγ) that play a critical role in
the development of TH17 cells. Blocking these ROR receptors using SR1001 (a selective
agonist developed by Solt et al.) significantly reduced diabetes in mice that were treated
with it. As a result, the use of drugs that target the ROR receptors of the TH17 cells may
offer a new treatment for the illness.

• Induced pluripotency: Pluripotency is a property of stem cells that refers to the potential to
differentiate into any of the multiple possible germ layers. During mammalian develop-
ment, cells gradually lose potential and become progressively differentiated to fulfill the
specialized functions of somatic tissues. Induced pluripotency [144] artificially derives a
pluripotent stem cell from a non-pluripotent cell by overexpressing a small set of proteins.
Such induced pluripotent stem cells (iPSCs) can then be redifferentiated into various cell
types. Thus, iPSCs find uses in cell and tissue transplants without the risk of rejection
that is commonly encountered. iPSCs also enable producing custom-tailored cells for the
study and treatment of numerous human diseases, and replacing unsuitable animal and
in-vitro models used previously [110, 160].

Mechanistic models. A mechanistic model is one where the basic elements of the model
have a direct correspondence to the underlying mechanisms in the system being modeled.
In contrast, empirical models are solely based on direct observation and measurement, with
no understanding of the underlying system. Consequently, mechanistic models have greater
predictive power.

One of the simplest and most widely-used example of a mechanistic model used in compu-
tational biology is protein-protein interaction (PPI) networks. A PPI network identifies which
proteins interact with each other. PPI can be visualized as an undirected or directed graph
in which nodes represent proteins and an edge represents whether two proteins interact [161,
125]. The topology of such a graph abstraction can provide insights into the importance of a
particular protein [72].

A signaling pathway model may represent each protein type as a single node, where the
state of the node is the discretized concentration of the protein, and represent interactions
between proteins as edges. Gene regulatory networks (GRNs) are represented similarly, where
each node represents one protein, and an edge from one protein to another means that the first
protein (a transcription factor) binds the DNA that encodes the second protein.

CHAPTER 1. INTRODUCTION 3

Mechanistic models are especially useful in understanding cell signaling, as illustrated
below:

• Drug design: A purely empirical approach to identifying which genes and proteins are
involved in a disease is to look for genes whose expression differs significantly in the
healthy and diseased cell. Having narrowed down such differentially expressed genes, we
can try out different mechanisms to activate or inhibit corresponding proteins. However,
such an empirical approach does not lead to a proper understanding of the side effects
of the treatment. To be able to forecast such side effects, it is critical to understand the
system-wide effect of activating or inhibiting a particular protein-protein interaction [66, 11].
For instance, questions about the other tissue-specific effects of ROR inhibition in TH17
cells remain in the work by Solt et al. [142]. Thus, identifying new therapeutic methods
and understanding their side effects requires synthesizing a mechanistic model of cellular
control.

• Induced pluripotency: The main observation behind induced pluripotency was that tran-
scription factors are key determinants of cell fate. Thus, by forcing the expression of
certain transcription factors we can reprogram adult cells into pluripotent cells. Recently,
Dunn et al. [41] synthesized a mechanistic model that explains observed mouse embry-
onic stem (ES) cell behavior. Their model revealed the essential program controlling cell
pluripotency. This model also accurately predicted responses to genetic perturbation,
which illustrates the extrapolatory power of mechanistic models. Furthermore, more
general forms of cellular reprogramming is also possible that converts one cell type into
another directly, without the need to first revert the cell to an undifferentiated pluripotent
state. For instance, researchers have identified sets of transcription factors that induce
the conversion of pancreatic acinar cells into insulin-producing β cells [175]. Identifying
the mechanism for such cellular reprogramming entails building a mechanistic model of
cellular control.

Executable biology. Executable biology describes mechanistic models of biological processes
in a formal language that is dynamic and executable by a computer [44]. Thus, using such
models biologists can simulate the underlying biological process on different input conditions.
Furthermore, models in executable biology are able to capture complex behaviors of biological
systems, such as time and concurrency. Such capabilities are required if we wish to capture
the temporal and contextual signals underlying the protein interactions [117]. Apart from
their explanatory and predictive uses, models for executable biology can be formally verified
to ensure that they satisfy properties such as bi-stability, which implies that they are faithful
models [20, 34, 32]. The simplest model for executable biology that models protein interactions
is a directed graph in which each node n represent protein p, and an edge directed from node
ni to nj indicates that change in the activity of protein pi affects the activity of protein pj. Thus,

CHAPTER 1. INTRODUCTION 4

while the (undirected) PPI network merely represents a physical binding relationship between
proteins, the directed-graph model expresses a causation relationship. The work by Dunn et
al. [41] described earlier is one recent instance illustrating the advantage of synthesizing models
for executable biology. Dunn et al. synthesized a directed-graph model to explain observed
mouse ES cell behavior. Though the gene regulatory circuit controlling whether ES cells self-
renew or differentiate appears vast, the simplest model synthesized by Dunn et al., which
explains observed behavior, consists of only 16 interactions, 12 components, and three inputs.
In our work on modeling the epidermal growth factor receptor signaling mechanism, we use
signed directed graphs to model protein interactions (Chapter 2).

Models in executable biology, however, go beyond simple signed directed networks. For
instance, concurrent finite state machines capture the synchronization or the more complex
logical relation among proteins. Various other types of models for executable biology exist,
which capture different characteristics of the interaction between the nodes [78, 171, 36, 136, 131,
155, 134, 33]. For instance, in our work, we used an asynchronous Boolean network to model
the developmental progress of vulval precursor cells in C. elegans (Chapter 3).

Challenges in Executable Biology. It is tempting to equate inferring executable models of
biological processes to reverse engineering a high-level program from machine code [149,
121]. This analogy breaks down for the following reasons [29]. First, the granularity and
precision of the data available when trying to reverse engineer a program is significantly
better than for a biological system. It would be every biologist’s dream to insert a break-point
into a cell and non-destructively analyze the state of the system! In contrast, biologists have
access to sparse information of multiple types. Hence, to infer an executable model we have
to rely on indirect inference and collate multiple sources of data. Even then some level of
ambiguity must be accepted. Second, biological systems tend to be very noisy with multiple
side conditions and experimental anomalies. Biologists often develop intuitions to weed out
unimportant phenomena. These biological intuitions and assumptions need to be incorporated
when inferring an executable model.

1.2 Existing Tools for Modeling Biological Systems as
Boolean Networks

We now briefly describe other tools available to biologists who are studying cell signaling
networks, focusing on the modeling of systems as Boolean networks. We categorize such tools
into three types as follows:

• Visualization tools: Tools such as Cytoscape [132], PathVisio [69], BioSPICE [54], and
Pathway Studio [106] are platforms for visualizing biological networks. Cytoscape, for
instance, allows networks to be integrated with annotations, gene expression profiles and

CHAPTER 1. INTRODUCTION 5

other data. Limited forms of network analysis, such as identifying motifs, is possible in
Cytoscape via the use of plug-ins. However, none of these tools are capable of synthesizing
the network model from experimental data. BioTapestry [92] is a tool for visualization
and simulation gene regulatory networks (GRNs).

• Analysis tools: BoolNet [104] is an R package that computes attractors for synchronous
and asynchronous Boolean networks. Antelope [6] is a model checker for analyzing
asynchronous Boolean networks that describe GRNs. BioModel Analyzer (BMA) [19]
allows the user to create a model of the biological network using a graphical interface.
The tool then translates this graphical model into a Quantitative Network [131] to prove
stabilization of the model [34]. Z34Bio [168, 167] is an SMT-based analysis tool for gene
regulatory and chemical reaction networks. It encodes the verification problem into a
formula in bit-vector logic, and uses bounded model checking to verify properties of
biological networks.

• Synthesis tools: Recently, the Z34Bio tool has been extended to perform synthesis of GRNs
using gene expression data [109]. This work uses a synchronous execution model based
on semantics proposed in prior work [116]. CellNOptR [148] derives a Boolean logic
model from a prior knowledge network (PKN, i.e., a network obtained from literature or
expert knowledge) and trains it against perturbation data.

GenePath [177] derives a signed directed graph representing a GRN using gene expression
data. Thus, this tool does not support synthesizing richer logical relations between genes.

1.3 Overview
The work presented in this dissertation tackles the following challenges in synthesis of models
for executable biology:

• Choosing the level of modeling abstraction: The type of model depends on the nature
of the experimental data available and the eventual use of the model. As more data and
constraints are added, we may wish to increase the level of detail of the model. On the
other hand, decreasing the level of detail may help summarize alternative models in the
(common) case when data are ambiguous.

• Incorporating prior knowledge and assumptions: We allow biologists to specify prior
knowledge or assumptions in the form of partial models (or sketches) and constraints.

• Joint inference from diverse experimental evidence. Models are synthesized using
different types of experimental data such as mutation experiments, time series data, or
single-cell gene expression profile. Our methods are designed to handle measurement
errors and sparsity in experimental data.

CHAPTER 1. INTRODUCTION 6

• Summarizing ambiguity: It is possible that even with the data and assumptions, the
model is underdetermined. Thus, it is imperative in some cases that we succinctly sum-
marize all possible valid models.

• Suggesting disambiguating experiments: When multiple possible models exist, our
approaches suggest experiments whose outcomes would reduce ambiguity.

We develop computational program synthesis techniques [94, 141] to produce established
models of cell signaling, such as gene regulatory networks (GRNs) and signaling pathways [78,
27, 36, 42, 59, 129, 173, 130]. These models operate at the level of concentrations of entities (such
as proteins and RNA), rather than at the level of individual molecules. These models are a good
match for data-driven inference because experimental methods often capture concentrations
of components (e.g., RNA sequencing reveals the presence of RNA; and mass spectrometry
reveals protein abundance).

Our methods synthesize models from experimental data, which we view as execution traces
of the program that models the system. Experiments are abstract traces, in that the measurement
does not capture the concentration of all proteins at all times points of the execution:

1. Mutation experiments can be viewed as input–output examples, where the mutation of
genes provide an initial configuration as the system input, and the observed phenotype
after the experiment is performed is the output computed in terms of the input [85].

2. Time series data obtained by phosphoproteomics mass spectrometry analyses can be ab-
stracted into timing events corresponding to significant changes in the phosphorylation
levels of proteins. These timing events can then be used as a partial order onwhen proteins
are activated, leading to inference of how they interact with each other over time [86].

3. Single-cell gene expression profiles can be viewed as the states of a program, where each
profile is a vector of binary (or richer) values indicating whether individual genes are
expressed or not. These vectors can be viewed as the state space of the execution of a pro-
gram; a model is a program that explains the transitions made between the experimentally
observed states [152].

We describe our models as Boolean networks, which appear sufficiently powerful to describe
these abstract traces. A Boolean network with binary state values can be defined by a finite
set of variable states x ∈ {0, 1}n, a global activation function F : {0, 1}n → {0, 1}n, where
F(x) = (f1(x), . . . fn(x)), and an update schedule s. The update schedule specifies in which
order the local activation functions fi are applied in each iteration of the evaluation [5].

Boolean networks constitute a flexible basis for a range of biological models. Using the same
update schedule at each iteration of the evaluation leads to a deterministic execution of the BN,
while non-deterministic execution can be modeled by allowing different update schedules at
each iteration. The degree of non-determinism can range from full asynchrony, where the local

CHAPTER 1. INTRODUCTION 7

functions can be applied in any arbitrary order throughout execution, to a fully synchronous
system where each state is updated simultaneously and atomically. Other execution semantics
exist in between, where nodes are partitioned into blocks that update synchronously, but blocks
can be scheduled in arbitrary order. The number of states of each node can also show variation,
in that the states can be binary or multi-valued. Finally, there can also be syntactic restrictions
on the shape of the Boolean functions: They can range from finite state machines, to functions
with 1-arity that appear in tree-shaped graph models.

Next, we give an overview of our main contributions in Boolean modeling of biological
systems. For each contribution, we review a case study that motivates the choice of modeling
language, in terms of the challenges posed by existing experimental data and prior knowledge.
In each context, we discuss how model spaces are summarized, and how our approaches help
suggest experiments to reduce ambiguity in the model space.

Chapter 2: Synthesizing Signaling Pathways from Temporal
Phosphoproteomic Data

Epidermal growth factor receptor (EGFR) signaling is a well-studied mechanism, and mal-
function of the EGFR pathway is linked to many forms of human cancer [172]. Emerging
experimental methods provide novel insight into the EGFR mechanism in the context of differ-
ent organisms or environmental conditions. New data comes in the form of high-throughput,
temporal phosphorylation experiments, measuring protein phosphorylation at given discrete
time points after stimulating the receptor. Phosphorylation is used as a proxy of protein activity,
and is therefore used to infer how proteins behave as a response to the stimulus. Our goal is
to reconstruct pathway models from experimental data and produce novel protein interaction
predictions that are candidates for experimental validation.

Experimental data. We tackle this network inference problem using multiple experimental
data sources. First, a large database of protein-protein interactions (the PPI network) in the form
of a weighted undirected graph gives insight into the likelihood of physical, pairwise protein
interactions. Second, temporal phosphoproteomics data is used to identify proteins relevant to
the system being studied, and to impose a partial order on the dynamic behavior of proteins.
Finally, a database of kinase-substrate interactions describes the interaction direction for some
of the edges in the PPI network (Figure 2.1).

Prior knowledge and assumptions Our approach obtains a partial model for the synthesis
task by applying a graph-theoretic algorithm to prune down the PPI network into a smaller,
undirected network that reveals undirected interactions that are relevant to the modeled sys-
tem [67]. In addition, we make the (biologist-supplied) assumption of a single, monotonic
change in the phosphorylation level of a protein when interpreting the time series data. Further

CHAPTER 1. INTRODUCTION 8

assumptions can be made on the network structure, such as favoring shorter path lengths, and
prioritizing paths that contain certain proteins.

Modeling language. As described in Chapter 2, we infer partial orders of activity between
proteins from the time series data. Partial orders, joined with the assumption that a single state
change during the observation occurs per protein, imply that the semantics of signed directed
graphs is a sufficient language for expressing models of protein-protein interaction. In other
words, more accurate models (such as general BNs where functions show how proteins depend
on each other) cannot be inferred from the experimental data and the assumption-induced
constraints. These graphs are a restricted form of Boolean networks, where each node in the
network (except for the stimulated source nodes) has one predecessor. The binary state of a
node changes after its predecessor shows activity, in terms of the sign of the directed edge
between them. The execution is deterministic, and nodes are updated in topological order.

Summarization. Due to the data being underconstrained, the network inference task typi-
cally admits a considerable number of network models, making exhaustive enumeration of
solutions intractable. The solution space is summarized into the union of all signed directed
trees that agree with the experimental data and the assumptions. The resulting aggregate
structure shows which edges have an unambiguous direction or sign across all valid models.
These high-confidence predictions are candidates for experimental validation through more
specific methods that target individual interactions. We have built a tool, the Temporal Pathway
Synthesizer (TPS), and applied to EGFR Flp-In HEK-293 cells stimulated with and EGF ligand,
inferring a summary network of 413 edges, in which 202 edges are assigned a unique direction,
and 38 edges are assigned a unique direction and sign. The directed interactions predicted in the
EGFR model are supported by prior literature, and interactions that are not present in literature
are supported by experimental validation through the inhibition of upstream nodes [86].

Disambiguating experiments. TPS’s ability to show that an edge has the same orientation
and sign in all validmodels provides ameans to focus on predictions that are strongly supported
by experimental data. In our work, we focused on validation of high-confidence predictions for
which only one of the two proteins appeared in EGF reference pathways.

Chapter 3: Synthesis of Biological Models fromMutation Experiments

The C. elegans vulval precursor cells (VPC) system provides an important paradigm for study-
ing animal development, and its malfunction is linked with cancer [49, 146]. The biological
problem is to understand how VPCs coordinate to determine their fate. Specifically, we want to
understand which pairwise protein interactions are involved in cell fate decision, and how the
same fate decision can robustly be made in a time-sensitive manner between the cells.

CHAPTER 1. INTRODUCTION 9

Figure 1.1. TPS takes as input multiple datasets, in the form of time series data, topological information,
and additional prior knowledge about the system in the form of edge orientations. It produces all Boolean
networks that satisfy all constraints imposed by input components, in the form of a summary graph.

Experimental data. Over many decades, multiple mutation experiments have been performed
by many labs to help uncover the signaling mechanism in the VPC system. These experiments
are performed by systematically mutating combinations of genes, known to transcribe specific
proteins, and then observing the fate decision made by all VPC cells. While the mutation-free,
wild-type scenario always leads to the same fate decision pattern, some mutations introduce
non-deterministic outcomes by leading the system to produce multiple cell fate patterns in
different runs of the same initial configuration.

Prior knowledge. Some of the cell signaling events between proteins are well-established,
and are part of existing literature. Meanwhile, some other proteins exhibit complex behavior,
responding to the abundance of other proteins in a time-sensitive manner. Prior knowledge
about the system can be modeled in terms of syntactic restrictions on the functions (e.g. which
protein may influence another), as well as semantic ones (when one protein is known to activate
or inhibit another). In our work, we integrate both kinds of prior knowledge.

Modeling language. The formalism for modeling the VPC system needs to be expressive
enough for reproducing the non-deterministic output of the system and its time-sensitive
behavior. Protein abundance is discretized into multiple levels, and each protein is represented
as a finite-state machine. Activation or inhibition of a protein by another one is modeled by
allowing the finite state machine to read the state of other finite state machines. Each cell is
modeled as a network of proteins, which are updated synchronously. To model different rates of
progress for the cells, which leads to non-deterministic outcomes, cells are scheduled to update
asynchronously by a non-deterministic scheduler. We have designed SBL, a domain-specific
language for expressing such models, and built SBLSynth, a tool for synthesizing models in
this language from mutation experiment data and the prior knowledge given as a partial model
(Figure 1.2).

CHAPTER 1. INTRODUCTION 10

Summarization. Synthesis enables a succinct characterization of spaces of valid VPC models
in terms of the outcome they produce. In our work, we designed queries built on top of our
synthesis approach to find out whether a given biological hypothesis (given as prior knowledge
about the network topology) is consistent with current experimental knowledge (i.e. whether
there exists a valid model that is a completion of the program sketch describing the hypothesis).
We used SBLSynth to explore spaces of models that correspond to different biological hypothe-
ses, and found distinct hypotheses that are consistent with existing experimental knowledge.
In addition, we developed a specification minimization query to identify a minimal set of
experiments that are nonredundant with respect to existing knowledge about the system. If
one wants to validate experiments about the system, it is sufficient to perform the minimal set
of experiments because it defines an unambiguous specification.

Disambiguating experiments. In SBLSynth, we extended model synthesis to answer addi-
tional queries to help guide the experimental procedure. Our tool searches the space of models
to find alternative explanations that agree on all known experiments, but differ on a future
experiment. The tool also computes disambiguating experiments, which, when performed, can
help rule out alternative models (Figure 1.2).

Figure 1.2. SBLSynth takes a partial model and experimental data as input. It produces a completion of
the partial model in the form of finite state machines. In case there are multiple models that satisfy the
specification, SBLSynth can suggest a novel experiment that will distinguish between the two models.

CHAPTER 1. INTRODUCTION 11

Chapter 4: Investigating the Identifiability of Boolean Network Models
from Single-Cell Data

Gene regulatory networks (GRNs) are principal mechanisms governing stem cell behavior,
controlling self-renewal and differentiation of cells. They also play a crucial role in embryo
development. Understanding GRNs is important for manipulating them, to generate specific
cell types in the context of regenerative medicine, and also for developing targeted therapies
against cancer. Single-cell gene expressionmeasurements, coupledwith algorithms to infer their
temporal order, offer a high-resolution view of the temporal behavior of GRNs. We aim to use
single-cell data to infer Boolean network models that capture the combinatorial relationships
between genes in regulatory networks.

Figure 1.3. Karme takes single-cell gene expression profiles as input. It produces a state transition graph
that is then used to synthesize Boolean network models of gene regulatory networks. The state transition
graph and Boolean network model shown in this figure were introduced in [88].

Experimental data. There exists a wealth of single-cell experimental data sets for studying
GRNs during cellular differentiation, sampling different developmental stages [169, 152, 51].
Single-cell assays profile hundreds to thousands of cells, and provides gene expression levels
of individual cells, revealing heterogeneous cell subpopulations. In our work, we use in silico
single-cell measurements obtained by the simulation of a well-established model of myeloid
differentiation [88] (Figure 1.3).

Prior knowledge and assumptions. Motivated by prior examples of GRN models, Boolean
functions can be restricted to a specific syntactic form. Additionally, assumptions are made
on the developmental trajectories of cells through the state space: A vast array of methods
from recent literature aim to reveal cell lineages by ordering individual cells along inferred
trajectories [150, 145]. When viewing the single-cell measurements as a discrete state space

CHAPTER 1. INTRODUCTION 12

graph where adjacency is defined by having a Hamming distance of 1, shortest paths leading to
the desired final states may be preferred execution traces [159].

Modeling language. GRNs are modeled as asynchronous Boolean networks, where each
single-cell measurement is viewed as one state of the network. The network is executed by
non-deterministically choosing one gene update function and applying it to the current state.
Each state differs from the previous one by the expression level of exactly one gene. This
formalism allows capturing branching non-deterministic executions from the same initial stem
cell state to distinct final stable attractor states.

Summarization. The space of all valid GRN models can be explored to find gene update
functions that can only take a unique value given the experimental data and observations.
Update functions that can be unambiguously inferred are high-confidence predictions that are
prioritized for validation.

Disambiguating experiments. In our work, we developed an experimental design approach
that identifies perturbation experiments that lead to the greatest difference between alternative
models [9]. Our approach allows the customization of the spaces of candidate experiments
and of the metric used to differentiate models. We demonstrate that the particular choice
of the model difference metric affects the ability to identify genes that play a key role in the
differentiation of myeloid cells.

1.4 Collaborators and Publications
Work described in this thesis was introduced in prior publications [85, 86], and is joint work with
the following collaborators: Kirsten Beck, Rastislav Bodík, Nathan D. Camp, Dylan R. Cronin,
Jasmin Fisher, Ernest Fraenkel, Anthony Gitter, Matthew E. MacGilvray, Aaron McKenna, Nir
Piterman, Yewen Pu, Saurabh Srivastava, Aditya V. Thakur, Alejandro Wolf-Yadlin, Nir Yosef.

13

Chapter 2

Synthesizing Signaling Pathways from
Temporal Phosphoproteomic Data

Advances in proteomics reveal that pathway databases fail to capture the majority of cellular
signaling activity. Our mass spectrometry study of the dynamic epidermal growth factor (EGF)
response demonstrates that over 89% of significantly (de)phosphorylated proteins are excluded
from individual EGF signaling maps, and 63% are absent from all annotated pathways. We
present a computational method, the Temporal Pathway Synthesizer (TPS), to discover missing
pathway elements by modeling temporal phosphoproteomic data. TPS uses constraint solving
to exhaustively explore all possible structures for a signaling pathway, eliminating structures
that are inconsistent with protein-protein interactions or the observed phosphorylation event
timing. Applied to our EGF response data, TPS connects 83% of the responding proteins to
receptors and signaling proteins in EGF pathway maps. Inhibiting predicted active kinases
supports the TPS pathway model. The TPS algorithm is broadly applicable and also recovers
an accurate model of the yeast osmotic stress response.

2.1 Introduction
High-throughput proteomic assays have illuminated the amazing breadth and complexity of
the signal transduction pathways that cells employ to respond to extracellular cues. In addition
to quantifying protein abundance, these technologies are now routinely used to quantify protein
post-translational modifications (PTMs). Mass spectrometry, in particular, offers a broad view of
PTMs, quantifying various modifications such as phosphorylation, ubiquitination, acetylation,
and methylation [28]. In contrast to microwestern arrays [30], reverse phase protein arrays [114],
mass cytometry [17], and other high-throughput antibody-based assays, mass spectrometry is
not restricted to a predefined list of proteins and can detect tens of thousands of phosphopeptides
[135]. Here we show how to discover new facets of signaling cascades from complex proteomic
data by integrating observed PTMs with existing knowledge of protein interactions.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 14

Many gaps persist in our understanding of phosphorylation signaling cascades. For ex-
ample, our mass spectrometry experiments show that nearly all proteins that are significantly
(de)phosphorylated when the epidermal growth factor receptor (EGFR) is stimulated are absent
from EGFR pathway maps. The low overlap is consistent with previous temporal phosphopro-
teomic studies of mammalian signaling [22, 40, 68]. Discordance between mass spectrometry
studies and pathway databases is partly caused by extensive crosstalk among pathways [16]
and context-specific interactions [63]. In addition, protein abundance varies greatly among
human cells and tissues [81], and interactions from a pathway database are irrelevant when the
proteins involved are not expressed. Moreover, perturbations and disease can rewire signaling
pathways [115].

Network inference algorithms can explain the phosphorylation events that lie outside of
canonical pathways and complement existing manually curated pathway maps. Specialized
algorithms model time series data, which contain information about the ordering of phospho-
rylation changes and can support causal instead of correlative modeling [12]. Temporal protein
signaling information can be used to reconstruct more accurate and complete networks than a
single static snapshot of the phosphoproteome.

A complementary challenge to interpreting off-pathway phosphorylation is that the cellular
stimulus response includes mechanisms that are not captured in phosphoproteomic datasets.
There is an interplay between phosphorylation changes and other integral parts of signaling
cascades because phosphorylation can affect protein stability, subcellular localization, and
recognition of interaction partners [105]. Ubiquitination and other PTMs are not measured in
phosphoproteomic studies, and not all phosphorylated proteins are detected by mass spectrom-
etry. Additional information is required to infer comprehensive signaling cascades that include
non-differentially phosphorylated proteins.

Protein-protein interaction (PPI) networks can be used for this purpose by identifying the
chain of interactions that connect observed phosphorylation events. For example, MAP2K1
phosphorylation is not detected in our EGF response data, but our approach uses PPI to correctly
determine that it is the kinase that controls MAPK1 and MAPK3 phosphorylation.

We present the Temporal Pathway Synthesizer, a method to assemble temporal phospho-
proteomic data into signaling pathways that extend far beyond existing canonical maps. "Syn-
thesizer" refers to our application of computational program synthesis techniques [94, 141] to
produce pathway models from experimental data [47], not synthetic biology [18]. TPS over-
comes both of the aforementioned challenges in interpreting phosphoproteomic data: modeling
signaling events that are not captured by pathway databases and including non-phosphorylated
proteins in the predicted pathway structures. The TPS workflow consists of multiple steps
(Figure 2.1).

In the first step, TPS transforms a PPI graph into a condition-specific network by using mass
spectrometry data to filter out irrelevant interactions. We adopt the prize-collecting Steiner
forest (PCSF) [151] network algorithm to connect differentially phosphorylated proteins through
high-confidence paths that may include non-phosphorylated proteins. Like nearly all existing

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 15

Figure 2.1. TPS workflow: First, the PPI graph is combined with the phosphorylation data to obtain a
condition-specific network (Step 1.1). Algorithms used in this step do notmodel the temporal information.
Separately, the time series data are converted into discrete timed signaling events (Step 1.2). TPS
then defines a space of models that agree with the data by transforming the timed events, undirected
network topology, and prior knowledge (kinase-substrate interaction directions in this study) into a set of
constraints (Step 2). Our system summarizes a huge solution space by computing the union of all signed
directed graph models that satisfy the given constraints (Step 3). The final pathway model predicts how a
subset of generic physical protein interactions coordinate to respond to a specific stimulus in a particular
cellular context.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 16

network algorithms, PCSF cannot use temporal information.
In the second step, TPS finds the orientation and sign of edges in the condition-specific

interaction graph based on the order of the phosphorylation events. Phosphorylation timing is
modeled separately for each observed phosphorylation site on a protein. TPS systematically
explores all possible pathwaymodels, where eachmodel is a signed, directed graph that explains
how signaling messages propagate from the stimulated source protein. In the final step, TPS
summarizes the valid models into a single aggregate network that explicitly tracks ambiguous
predictions. Summarization gives insight into which edges must always take a unique sign and
direction across the whole solution space and enables analysis of the large number of candidate
models. We created an interactive visualization tool, the Temporal Pathway Visualizer (TPV),
to display the summary network alongside the temporal phosphoproteomic data (Figure 2.2).

We use EGFR-mediated signaling as our primary model system for temporal phosphopro-
teomic and TPS analysis. TPS recovers a network that explains how EGF-responsive proteins
are activated or inhibited via chains of physical interactions stemming from the EGF receptor.
The highest-confidence TPS predictions are well-supported by prior knowledge and consistent
with follow-up kinase inhibitions. In addition, we model the yeast osmotic stress response,
recovering many of the core pathway components and predicting kinase targets that are sup-
ported by independent perturbation data. These insights into well-characterized human and
yeast pathways exemplify the ability of TPS to produce condition-specific pathway maps.

2.2 Overview
As illustrated in Figure 2.1, our algorithm receives three types of input: a time series mass
spectrometry phosphoproteomic analysis of a stimulus response, an undirected graph obtained
by filtering a large PPI network to identify interactions that are relevant to the differentially phos-
phorylated proteins, and optional prior knowledge about interaction directions (for example,
kinase-substrate relationships).

The undirected input graph is obtained through a static analysis in which the significantly
changing proteins are overlaid on a network of physical protein interactions. A network algo-
rithm recovers connections among the affected proteins, simultaneously removing interactions
that do not form critical connections between these proteins and nominating hidden proteins
that do, even if they are not themselves phosphorylated. The specific criteria used to select
proteins and interactions vary based on the network algorithm. Here we use PCSF [151], but
we have also successfully applied ResponseNet [164], MEO [56], and TimeXNet [113, 112] for
this step.

Our method combines the input data to recover pathways embedded in the network that
agree with the temporal data. TPS transforms the input into logical constraints that deter-
mine which pathway models can explain the observed phosphoproteomic data. Topological
constraints stem from the filtered PPI network and require that phosphorylated proteins are

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 17

Figure 2.2. The Temporal Pathway Visualizer supports exploring a network and time series data interac-
tively. Users can select network nodes to filter the time series view or select time series data to highlight
the corresponding network nodes.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 18

connected to the source of stimulation, such as EGF, by a cascade of signaling events. These
signaling events propagate along the edges of the filtered PPI network. Temporal constraints
ensure that the order of the signaling events is consistent with the timing of the phosphorylation
changes. If protein B is downstream of protein A on the pathway, B cannot be activated or
inhibited before A. Lastly, prior knowledge constraints guarantee that if the direction or sign of
an interaction is known in advance, the pathway may not contain the edge with the opposite
direction or sign. Typically, many possible pathways meet all constraints, so TPS summarizes
the entire collection of valid pathways and identifies interactions that are used with the same
direction or sign across all models. A symbolic solver reasons with these logical constraints and
produces the pathway summary without explicitly enumerating all possible pathway models.

To illustrate this process, consider a hypothetical signaling pathway that contains a receptor
node A and six other downstream proteins that respond when A is stimulated (Figure 2.3 A).
We cannot directly observe the pathway structure but seek to infer it from the types of data
shown in Figure 2.3 B - D. The first input is time series mass spectrometry data measuring
the response to stimulating the receptor (node A), which detects phosphorylation activity for
six proteins. Node B is absent from the phosphorylation data because it is ubiquitinated, not
phosphorylated, by A. The second input is an undirected graph, which reveals high-confidence
protein-protein interactions. These are detected independently of the stimulation condition
but filtered based on their presumed relevance to the responding proteins with an algorithm
such as PCSF. By combining phosphorylation data with the PPI subnetwork, this topology can
recover "hidden" components of the pathway that are not phosphorylated (node B). Finally,
our method accepts prior knowledge of directed kinase-substrate or phosphatase-substrate
interactions, such as the edge C->D. Each of these inputs can be used individually to restrict the
space of plausible pathway models. However, reasoning about them jointly produces a greater
number of unambiguous predictions than considering each resource separately.

TPS exhaustively explores all signed, directed tree-structured pathway models, which are
obtained by assigning signs and directions to edges of the undirected graph while restricting
this space of networks through declarative constraints. These constraints are derived from the
input. We next describe the constraints and how they restrict the space of models.

To formulate temporal constraints, we transform the time series data into a set of discrete
signaling events (activation or inhibition) for each node, taking an event-based view of the
signaling process (Table 2.1). We determine time points for each node that correspond to
statistically significant phosphorylation changes. These discrete events are then used to rule
out network models that contain signed, directed paths that violate the temporal ordering of
these events no matter which event is chosen for each node. For example, there can be no edge
from E to D in any model because D is activated strictly earlier than E regardless of whether E is
activated at 1-2 min or 2-5 min. Because the time series data measures the response to a specific
stimulus, we also devise topological constraints that ensure all signaling activity originates
from this source. In our example, this asserts that all edges in a solution network must be on
a directed path that starts at node A. Finally, our third input, the set of directed interactions,

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 19

Figure 2.3. An artificial example illustrating the inputs to TPS. A) The signaling pathway that responds
to stimulation of node A. The colored boxes on each node show the time at which the protein is activated
or inhibited and begins influencing its downstream neighbor, with the leftmost position indicating the
earlier time point. Red boxes are increases in activity, blue boxes are decreases, and white boxes are
inactive time points. The left position indicates the activity at 0 to 1 min, the center position at 1 to 2 min,
and the right position at 2 to 5 min. B) The first input is time series phosphorylation data of the response
to stimulating node A. C) The second input is an undirected graph of high-confidence interactions that
can recover hidden components that do not appear in the temporal data, such as node B. D) The last input
is prior knowledge of the pathway or the protein-protein interactions, expressed as (unsigned) directed
edges. We represent unsigned edges with a circular arrowhead. Here, we have one such interaction,
which is from C to D.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 20

Node Plausible temporal signaling events
A Activated 0-1 min
B Activated or inhibited at any time
C Inhibited 0-1 min or 2-5 min
D Activated 0-1 min
E Activated 1-2 min or 2-5 min
F Activated 0-1 min
G Activated 0-1 min or 1-2 min

Table 2.1. Plausible signaling events inferred for each node through a statistical analysis of the time
series phosphorylation data. Although B is ubiquitinated in the 0-1 min interval, this is not observed in
the phosphoproteomic input data.

requires that no model violates this prior knowledge by including an edge from D to C.
We show in Figure 2.4 the pathway models that can be learned using each type of constraint

alone and by asserting them jointly. When we enforce only temporal constraints, which corre-
sponds to reasoning locally with phosphorylation data for pairs of nodes to see if one signaling
event strictly precedes another, we obtain a single precise (signed and directed) prediction from
D to E (Figure 2.4 A). The topological constraints by themselves are sufficient to orient edges
from the source A and from node D because D forms a bottleneck (Figure 2.4 B). The prior
knowledge constrains the direction of the edge from C to D, but its sign remains unknown
(Figure 2.4 C). Jointly enforcing all of these constraints has a nontrivial impact on the solution
space (Figure 2.4 D). For instance, we can infer that F must activate G. If the edge direction were
reversed, F would be downstream of E, but the data show that activation of F precedes activation
of E. The final model that includes all available data closely resembles the true pathway structure
(Figure 2.3 A). The edges incident to node B are ambiguous, and the interaction between E and
G cannot be uniquely oriented, but all other interactions are recovered.

The summary for the combination of all constraints produces precise predictions that cannot
be obtained by intersecting the summaries for the individual types of constraints. For instance,
TPS infers that the relationship between F and G must be an activation from F to G because the
sole way G can reach F in a tree rooted at A is through E, but F’s activation precedes E’s. This
inference cannot be made by combining the models in panels A, B, and C. The simple example
also highlights the differences in how the TPS constraint-based approach improves upon related
methods based on correlation or the time point of maximum phosphorylation change.

2.3 Pathway Synthesis
TPS takes the undirected network of interactions produced by the PCSF algorithm and trans-
forms it into a collection of signed, directed graphs that provide an explanation of dynamic
signaling events.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 21

Figure 2.4. Summary graphs obtained by aggregating (via graph union) all possible signed, directed
tree models for different constraints obtained from: A) time series data, B) graph topology, C) prior
knowledge (in this example, kinase-substrate interaction directions), and D) all three types of input at
the same time. If an edge has a unique sign and direction in a summary graph (colored green and red
for activations and inhibitions, respectively), this means there are no valid models that assign a different
orientation or sign to that edge. Edges that can have any combination of sign and direction in different
models are gray without an arrowhead.

Discretization of Time Series Data

To find pathway models that agree with the phosphorylation dynamics, TPS first performs a
discretization step that determines time intervals in which each protein may be differentially
phosphorylated. The discrete set of activation and inhibition state changes is then used to rule
out networks that violate the observed temporal behavior.

The transformation consists of finding time points for each profile where phosphorylation
significantly differs from either the baseline (pre-stimulation) or the previous time point. In the
baseline comparison, this time point is accepted only if it is not preceded by an earlier, larger
change with respect to the baseline. If there is a hypothetical phosphorylation level at which
the protein is activated and acts upon its downstream targets, a signaling event occurs only at
the first time this threshold value is reached. This criterion does not apply when comparing to
the phosphorylation level at the previous time point. In our EGF study, we use Tukey’s HSD
test to find significant differential phosphorylation. If comparing a time point to the baseline or

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 22

the previous measurement produces a p-value below a user-defined threshold, the time point is
marked as a possible activation or inhibition event depending on whether the phosphorylation
level increased or decreased relative to the earlier time point to which it was compared.

As an example, when we consider the profile for node E in Figure 2.3 B, we find that both
two and five minutes are time points where phosphorylation increases significantly relative
to the previous time point (Table 2.1). As a result, both time points mark possible activation
intervals. Even though the last measurement for node G significantly differs from the baseline,
it does not constitute a possible activation because it is preceded by a larger value at 2 minutes.
The hidden nodes for which there is no phosphorylation data (e.g., node B) are temporally
unconstrained. They permit both activation and inhibition as possible state changes at all time
intervals.

Modeling Assumptions

Characteristics of the time series data directly influence our modeling assumptions. We assume
at most one signaling event happens for every node across time points. Our logical solver
can explore all possible activation and inhibition events for every node, but our experience
shows that the data are too ambiguous to extend our interpretation beyond one event per
node when modeling a single type of stimulation (such as EGF response). We also observe
that, in the absence of perturbation experiments that test the pathway behavior under different
initial conditions, it is impossible to distinguish between different Boolean logic functions
governing the behavior of each node (AND/OR semantics) and whether a node exhibits activity
in response to one or multiple predecessors. We therefore opt for signed, directed trees as
our formalism for representing pathway models because they provide a sufficient basis for
explaining the dynamic system behavior under these assumptions.

Translating Input into Constraints

TPS transforms each input into a set of constraints that declaratively specify valid signed,
directed tree models that agree with the data. These constraints are expressed as Boolean
formulas with linear integer arithmetic, ranging over symbolic variables that represent choices
on edge signs and orientations as well as how the temporal data are interpreted. The constraints
can then be solved by a Satisfiability Modulo Theories (SMT) solver to find a network model
that satisfies all constraints along with dynamic timing annotations for each interaction in the
network.

Using constraints, we restrict the possible orientation and sign assignments to signed,
directed tree networks rooted at the source node (e.g., EGF). Furthermore, constraints express
how every tree model must agree with the time series data by establishing a correspondence
between the order of nodes on tree paths and their temporal order of activity according to the
time series data. Finally, we declaratively rule out models that contradict the prior knowledge

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 23

of kinase-substrate interaction directions. In the following, we detail how such constraints are
derived from the input.

A symbolic signed, directed graph that assigns a sign and direction to each edge in (a
subgraph of) the undirected input graph can be represented by maintaining four Boolean
variables per edge, one for each sign-orientation combination. The truth value of a variable
denotes whether there is an edge with the corresponding sign and orientation in the solution
network. To find a tree networkmodel rooted at the stimulated source node, we need to constrain
these truth values. First, we assert that at most one of these four variables can be true. The case
where all four variables are false corresponds to the undirected edge being excluded from the
solution network. Then, we assert that there are no cycles in the solution graph. To implement
the acyclicity constraint, we maintain one integer-valued variable per node and assert that the
integer values along all directed paths must monotonically increase. Finally, we assert that if a
non-source node has an outgoing edge, it must have an incoming edge as well. This prevents
modeling spurious phosphorylation changes that are not caused by the source’s stimulation.
These constraints together guarantee that we obtain a tree network model in which all edges
are on a directed path originating at the source node.

Example 2.1 The edge (A, B) in the undirected graph shown in Figure 2.3 C, like all other edges
in the network, is translated into four Boolean variables, activationA,B, inhibitionA,B, activationB,A,
inhibitionB,A. We ensure at most one variable is true by asserting that if one of the variables is true, the
rest must be false. For instance, we assert:

activationA,B =⇒ ¬inhibitionA,B ∧ ¬activationB,A ∧ ¬inhibitionB,A

This means that if activationA,B is true, the remaining variables must all be false. Both A and B
have an associated integer variable, indexA and indexB, and we state that if there is an edge from A to
B, B must be assigned a greater value than A:

activationA,B ∨ inhibitionA,B =⇒ indexA < indexB

A similar constraint is asserted for the opposite direction. Finally, we create a constraint that requires
B to have an incoming edge if it has an outgoing edge, based on its neighbors in the undirected graph:

activationB,A ∨ inhibitionB,AactivationB,D ∨ inhibitionB,D =⇒
activationA,B ∨ inhibitionA,B ∨ activationD,B ∨ inhibitionD,B

These constraints together guarantee that a valid solution must be a tree network rooted at A.

While the above constraints will ensure that solutions satisfy topological properties, they
don’t constrain models with respect to the temporal data. Using the temporal events computed
from the time series data, TPS requires that the sequence of nodes in each signed, directed

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 24

path of a tree model must be supported by a corresponding temporally ordered sequence of
phosphorylation events. In the example from Figure 2.3, there can be no models that include
an edge from E to D, because it is impossible for E to precede D in a directed path due to all
possible activations of E being later than the possible activation of D (Table 2.1). The same
example shows that the temporal ordering along paths can also have an effect beyond pairwise
interactions. The sequence of nodes E, G, F cannot appear on a directed path, even though
both pairwise interactions are locally consistent because E can only be activated strictly after F.
Concretely, this constraint is enforced by keeping an integer-valued variable for each node, which
corresponds to the choice of activation time for that node. The same is done for representing
inhibitions, and we assert that at most one of the two events can occur. We restrict the values
that the activation variable can take to the time points computed in the discretization step.
Finally, we state that if there is an edge from A to B in the signed, directed tree, there must be
corresponding choices of time points for A and B that support the interaction. An activation
edge from A to B must be supported by the activation (respectively, inhibition) of A, succeeded
by the activation (respectively, inhibition) of B; similarly, an inhibition from A to B requires
finding an activation (respectively, inhibition) of A, succeeded by the inhibition (respectively,
activation) of B.

Example 2.2 Consider the nodes D and E in Figure 2.3. We constrain activation choices for D to be 0
(no activation) or 1 (the first time interval):

activationD = 0∨ activationD = 1

Similarly, E is either not activated or is active in intervals 2 or 3:

activationE = 0∨ activationE = 2∨ activationE = 3

Finally, we assert that if there is an activation from D to E, both nodes must be activated or inhibited,
in that order:

activationD,E =⇒ activationD 6= 0∧ activationE 6= 0∧ activationD ≤ activationE

We only show constraints for the activation of E by D through their successive activation events, the
other cases are similar.

The last type of constraint that TPS enforces follows simply from the prior knowledge
information. For all known kinase-substrate interactions (given as directed, unsigned edges), no
pathway model can include an edge directed in the opposite orientation. This is implemented
by ruling out certain values for the edge variables if data is available for a given edge. TPS
currently represents kinase-substrate interactions as unsigned but could be trivially extended
to treat kinase-substrate interactions as positive edges and phosphatase-substrate interactions
as negative edges.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 25

Example 2.3 In the example from Figure 2.3, we are given the kinase-substrate interaction C → D.
As a result, we rule out the opposite direction:

¬activationD,C ∧ ¬inhibitionD,C

Together, these constraints typically define a very large space of candidate networks that
agree with the data. TPS summarizes this space without explicitly enumerating all models.

Pathway Summaries

The space of all valid pathway models with timing annotations defined by the constraints we
specified is typically very large, and enumerating all models is not computationally feasible.
Given an undirected network G with V nodes and E edges, along with T time points, there are
5E ways of assigning a sign and orientation to edges of G and (T · 2 + 1)V ways of assigning
timing annotations to its nodes. Even for a network with 200 edges, the number of possible
sign and orientation assignments is 6 · 10139. TPS can reason with even larger state spaces by
producing summaries of all valid pathways instead of explicitly enumerating them.

We define a summary network as the graph union of all signed, directed tree networks
that satisfy the stated constraints. Timing annotations are summarized by computing the set
of possible annotations for each node over all solutions. Figure 2.4 shows an example of a
pathway summary obtained by computing the union of all valid models in the solution space.
In this union, we observe that some edges have a unique direction and sign combination, which
signifies that this was the only observed signed, directed edge between two given edges across
the solution space. However, this does not guarantee that the edge between the interacting
proteins must be present in all valid pathway models. Meanwhile, when there are multiple
direction and sign combinations between two nodes (e.g. between B and D), we know that
multiple models have a different direction or sign assignment for the pair of nodes. The fourth
summary graph indicates that at least two models contain an edge between B and D in opposite
directions.

We compute the summary graph by performing a linear number of SMT solver queries in
terms of the size of the input graph. Each query asks whether at least one signed, directed
model contains a specific signed, directed edge. These individual queries are relatively computa-
tionally cheap in practice, and we can therefore have a view of the entire solution space without
enumerating all models, which is typically intractable. The summary graph over-approximates
the solution space. It is not possible to recover the exact set of valid models from the summary,
but only a superset of the models. This tradeoff must be made in order to analyze such a large
state space.

The example summary in Figure 2.4 and the summary expansion in Figure 2.5 illustrate
how this summary can contain a superset of the valid pathway models. There exists no valid
model that contains an activation from A to B and an inhibition from B to D. The existence

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 26

of the first edge dictates that B is activated, which implies an inhibition from B to D would
decrease D’s activity, contrary to what is observed in D’s temporal activity profile. However,
the knowledge that the edges A− B and B− D must have the same sign is lost through the
summarization process.

For visualization and analysis purposes, pathway summaries are depicted as interactions
among proteins even though the temporal consistency constraints operate at the level of indi-
vidual peptides when peptide-level data are available. The protein-level summaries collapse
the expanded PPI network, which can introduce ambiguities if there are interactions that are
unambiguous at the peptide-level that conflict in terms of direction or sign at the protein-level.
TPS is able to detect and report this loss of precision when transitioning to the protein-level
network.

A final summarization observation relates to the distinguishability problem between trees
and directed acyclic graphs (DAGs) that we discussed in the context of our modeling assump-
tions. We note that summarizing the space of all tree models as a union graph leads to the same
result as summarizing the space of DAGs satisfying the same properties. This stems from the
fact that for each DAG model, there exists a set of tree models whose union is the DAG. As a
result, the union of all tree models corresponds to the union of all DAGs.

Using Solvers for Synthesis

TPS uses the Z3 theorem prover [37] via the ScalaZ3 interface [83] to solve the constraints it
generates. It additionally provides a custom solver implemented specifically for computing
pathway summaries based on data-flow analysis. The custom solver and the symbolic solver
produce identical pathway summaries. However, the custom solver is much more scalable
because it is specifically designed to address our synthesis task, and can handle networks
containing more than a hundred thousand edges and phosphosites (Section 2.4).

To produce pathway summaries in a highly efficient manner, we devised the task of finding
the union network as a data-flow algorithm that achieves 3 to 6 orders of magnitude speedup
over the symbolic approach. The algorithm consists of incrementally computing the summary
graph for increasing sizes of signed directed tree networks, computing a fixed point that
corresponds to the summarization of the whole solution space.

Specifically, the data-flow algorithm maintains the knowledge of when a node can exhibit
activity, and updates in each iterative step the time-sensitive ways of reaching a node in terms of
its neighbors’ activity. It starts the exploration of models at the stimulated source, and initially
assumes no activity. The algorithm ends when all temporal activity information has been
propagated through the graph, and all edge sign and direction assignments have been collected
as a result.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 27

Figure 2.5. An illustration of how the pathway summary graph (Figure 2.4 D) is a generalization of the
individual pathway models and can also include invalid models. Not all combinations of direction and
sign assignments to the ambiguous edges yield pathways that satisfy all constraints. Here we depict only
edges among nodes A, B, C, and D. For simplicity we ignore the models in which one of these edges
are absent, even though these models are also included in the summarization. In some cases, B has no
valid temporal activity, which we denote with the ambiguous temporal annotation (gray). A) Pathway
models in which the signs of edges A− B and B− D are consistent with the constraint that A and D are
both activated. B) Pathway models in which these edges have opposing signs and are included in the
summary even though they violate a constraint.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 28

2.4 Results

Reconstructing the EGFR pathway with TPS explains temporal
phosphorylation changes

We applied TPS to model the dynamic signaling response to EGFR stimulation in EGFR Flp-In
HEK-293 cells. Our workflow consists of three major steps: (1) preprocessing the protein-protein
interaction network and temporal phosphorylation data; (2) transforming temporal information,
subnetwork structure, and prior knowledge into logical constraints; and (3) summarizing all
valid signaling pathway models to discover interactions with unambiguous directions and/or
signs (Figure 2.1).

We first discretized the time series phosphoproteomic data, using Tukey’s Honest Significant
Difference (HSD) test [162] to determine whether a peptide exhibits a significant increase,
significant decrease, or no change in phosphorylation at each post-stimulation time point.
Significant phosphorylation changes can be relative to either the pre-stimulation baseline level
or the previous time point. 263 peptides, corresponding to 203 proteins, significantly change at
one or more time points. Second, we used PCSF to link the phosphorylated proteins to EGF, the
source of stimulation, weighting proteins based on their HSD test significance. PCSF identifies
a PPI subnetwork of 316 nodes and 422 edges. This subnetwork comprises the interactions
through which signaling messages are most likely to propagate. Third, TPS combined the
discretized temporal activities of the 263 significantly changing peptides, the PCSF network,
and prior knowledge (the orientation of kinase-substrate interactions) to generate a summary
of all feasible pathway models. Each type of input was translated into logical constraints, which
were used to rule out pathway models that are not supported by the data.

In contrast to the reference EGFR pathway diagrams, which capture at most 11% of the
differentially phosphorylated proteins, the predicted network from TPS (Figure 2.6) contains
83% of the responding proteins in its 311 nodes. Each of these proteins can be linked to the
EGF stimulation with high-confidence PPI and has timing that is consistent with the temporal
phosphorylation changes of all other proteins in the pathway. In addition to the phosphorylated
proteins, 38 other proteins are included in the signaling pathway as hidden intermediate nodes
that propagate signals via different mechanisms. Some of the differentially phosphorylated
proteins may not be functional, but the TPS network provides a framework to study their role in
the EGF response. The TPS pathway model includes 41 kinases and 5 phosphatases as well as
adaptors and other types of proteins that coordinate with the direct phosphorylation regulators.

Like reference pathway maps, the TPS network traces the physical protein interactions used
to transmit messages from EGF to the phosphorylated proteins, including PTMs and other types
of interactions. These interactions are depicted as directed, signed edges in a graph, where the
sign reflects that the proteins have the same (activation) or opposite (inhibition) activity changes.
The timing of the phosphorylation changes supports many possible valid interpretations, and
the TPS summary tracks which edges are used in different manners in different models. Of the

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 29

Figure 2.6. Zoomed regions of the full TPS pathway model. A) The EGFR subnetwork (EGFR, GRB2,
CBL, and all their direct neighbors) depicts the proteins that first react to EGF stimulation. A substantial
portion of the EGFR subnetwork (18 of 38 proteins) is known to be associated with EGFR signaling.
Green and red edges depict activation and inhibition, respectively. Gray edges that terminate in a circle
indicate that the interaction is used in the same direction in all possible pathway models, but the sign is
ambiguous. Thin, undirected edges are used in different directions in different valid pathway models.
Thick, rounded borders showwhich proteins are present in one or more reference EGFR pathways. Node
annotations are detailed in panel B. B) Line graphs on each protein node show the temporal peptide
phosphorylation changes relative to the pre-stimulation level on a log2 scale. Multiple lines indicate
multiple observed phosphopeptides for that protein, where black lines denote statistically significant
phosphorylation changes and gray lines indicate insignificant changes. Proteins without line graphs
are connective Steiner nodes inferred by PCSF. Colored boxes summarize the TPS inferred activity state
across peptides at each time point. Red indicates activation, blue inhibition, gray ambiguity, and white
inactivity. C) The subnetwork surrounding MAPK1 and MAPK3. TPS uses the PPI network to correctly
determine that MAP2K1 is the kinase that controls both MAPK1 and MAPK3 even though it is not
observed in the mass spectrometry data.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 30

413 edges in the network, 202 (49%) have a consistent direction in all of the valid pathway models,
a very strong assertion about the confidence in these edge directions.

Thirty-eight of these directed edges have a consistent sign as well. The PPI connections,
phosphorylation timing, and prior knowledge of kinase-substrate interaction direction all play
distinct, important roles in reducing the number of valid pathway models. The timing of
protein activation and inactivation in the TPS pathway reveals a rapid spread of signaling
post-stimulation.

Further downstream, MAP2K1 is one of several canonical EGFR pathway members that
are not phosphorylated in our mass spectrometry data but are included in the pathway. Such
proteins emphasize the necessity of including PPI in the analysis of the temporal phosphoryla-
tion changes because these unobserved proteins could not be recovered by any algorithm that
reconstructs the pathway from the mass spectrometry data alone. MAP2K1 is correctly recog-
nized as the direct kinase of EGFR pathway members MAPK1 (after adding new experimental
constraints described below) and MAPK3 (Figure 2.6 C). MAPK1 and MAPK3 phosphorylation
levels are highly correlated and would likely be directly linked by an approach based on corre-
lation or mutual information, but TPS correctly predicts that MAPK1 and MAPK3 correlation
is due to the common upstream regulator (MAP2K1) instead. Immediately downstream of
these proteins, MKL1 phosphorylation is not as strongly correlated as the two MAPKs, but TPS
combines the topological constraints with the temporal information to correctly recover MAPK1
→MKL1 and MAPK3→MKL1 [103].

Iterative experimental and computational modeling further reduces
pathway ambiguity

An important feature of TPS is its flexibility to integrate different types of constraints on pathway
structure. This makes it ideal for iterative modeling because computational hypotheses that are
experimentally confirmed or refuted can be fed back into TPS. Based on the results from the
Western blots, we added a new constraint: MAPK1 inhibits ATP1A1. We then ran TPS again,
requiring pathways to be consistent with the new constraint and all previous constraints. After
restricting the pathway structure, TPS correctly infers that MAP2K1 is directly upstream of
MAPK1 yielding a more precise and accurate pathway. Without the Western blot-derived con-
straint, the direction of the MAP2K1-MAPK1 interaction was ambiguous due to the possibility
that ATP1A1, rather than MAP2K1, controls MAPK1 phosphorylation changes (Figure 2.6 C).
Other types of experimental corroboration can be similarly applied to iteratively improve the
predictive power of TPS.

Combining multiple constraints reduces pathway ambiguity

We performed a comparative analysis of networks inferred using different subsets of constraints
in order to: (1) quantify the individual contribution of different kinds of constraints in our joint

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 31

Constraints used Directed edges Signed, directed edges
Topo. 119 0
Temp. 27 21
PK 78 0
Topo. + Temp. 148 32
Topo. + PK 182 0
Temp. + PK 99 28
Topo. + Temp. + PK 202 38

Table 2.2. The number of edges that can be assigned: (1) a unique direction (Directed edges), and (2) a
unique direction and sign (Signed, directed edges) across all valid pathway models for each combination
of constraint type. In this study, "prior knowledge" refers to directed kinase-substrate interactions. The
abbreviations “Topo. ”, “Temp. ”, and “PK ” correspond to topological, temporal, and prior knowledge
constraints, respectively.

inference procedure, (2) show that more predictions can be made as we combine different types
of data and constraints, and (3) rule out predictions that are supported by a single type of data
but in conflict with other types.

Each type of constraint restricts the space of valid models in different ways and leads to
different (but possibly overlapping) sets of inferred pathway edges. We compare constraint
types and their combinations in terms of the set of interactions that can be assigned a unique
direction (and sign) across all models. For each combination of constraints, we calculate how
many interactions can be uniquely directed or uniquely signed and directed (Table 2.2). This
analysis reveals the impact of different constraint types on valid pathway models. For instance,
the topological constraints imposed by the input graph structure greatly contribute to the ability
of TPS to infer directed edges. Meanwhile, temporal constraints are required to recover signed,
directed edges. We also observe that asmore constraints are added, the number of unambiguous
directed (or signed, directed) interactions we recover increases. For many edges, using only
one or two constraint types produces a collection of valid pathway models that conflict with
respect to the direction or sign of the edge, but adding another constraint class lets TPS eliminate
some of those models and make a definitive prediction. To better explain the interplay among
combinations of constraints, we perform an additional analysis to identify edge predictions that
can be made only if constraints are used together and conflicts that can be detected through
joint reasoning (Table 2.3).

To illustrate how the combined topological and temporal constraints can exert nontrivial,
non-local effects on the space of valid signed, directed networks, consider the following example.
The path between YWHAG and MLLT4 cannot be oriented using any of the three constraint
types alone. By joining temporal and topological properties, TPS discovers that the only way to
reach YWHAG fromMLLT4 goes through DBN1, which is activated later (32-128 minutes) than
MLLT4 (0-4 minutes). Therefore, no network contains an edge from MLLT4 to YWHAG, and

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 32

Constraints used Added directed edges Added signed, directed edges Conflicts
Topo. + Temp. 8 12 9
Topo. + PK 2 0 0
Temp. + PK 0 7 8
Topo. + Temp. + PK 7 18 9

Table 2.3. For each constraint type combination, we show: (1) "Added directed edges," or the number of
edges that are uniquely directed when concurrently using all of the constraints listed in the row but not
using any single constraint type, (2) "Added signed, directed edges," or the equivalent number for edges
that are uniquely signed and directed, and (3) "Conflicts," or the number of edges allowed by at least one
constraint type that conflict with another constraint type when the properties are concurrently asserted.
Conflict edges are excluded from the final network.

the interaction can be uniquely oriented from YWHAG to MLLT4 (Figure 2.7 A).
A complex case of non-local temporal effects is observed around ABI2 (Figure 2.7 B). With

either topological or temporal constraints, it is not possible to orient the two edges incident
to ABI2 that link it to CCDC53 and to TRAF3IP1. Reasoning using both types of constraints,
TPS narrows down the possible orientations to CCDC53→ ABI2→ TRAF3IP1. Making this
inference requires looking at the temporal data for ABI2, TRAF3IP1, and TRAF3IP1’s neighbor
ACTB. ABI2 can be active at 0-2 or 4-8 minutes, TRAF3IP1 can be active at 0-2 or 64-128 minutes,
and ACTB can be active at 4-16 or 32-64 minutes. As a result, having an edge ACTB→ TRAF3IP1
implies that TRAF3IP1 is active late, and it cannot precede the activity of ABI2. There is therefore
no tree network that has an edge from TRAF3IP1 to ABI2 or an edge from ABI2 to CCDC53.

The direction prediction from PTK2 to ATP2B4 (Figure 2.7 C) is inferred in two independent
ways. This direction is given in the curated kinase-substrate interactions, but is also a logical
consequence of combining the tree topology with time series data. The latter inference is
obtained by reasoning on multiple alternative paths at once. ATP2B4 cannot precede PTK2,
because all paths from the source to ATP2B4 that do not go through PTK2must go through either
SPECC1L or ARHGEF7. Both of these proteins are active strictly later than PTK2, therefore they
cannot precede PTK2 in any valid model.

The same phenomenon, namely a direction prediction through two independent mech-
anisms, is manifested in the MAPK1 to RUNX1 interaction (Figure 2.7 D). This interaction
direction is given by the kinase-substrate interactions, but the direction is independently in-
ferred by looking at the time series data in a non-local fashion. Even though RUNX1 does not
have any phosphorylation data, it cannot precede MAPK1 in any tree model because its other
neighbors, ELF2 and CBFB, succeed MAPK1 in their activation.

TPS scales to large data sets

We assessed the scalability of TPS by running it on randomly generated time course data and
graphs and found that TPS can scale to graphs with more than 100,000 edges and 100,000

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 33

Figure 2.7. A) The subnetwork proximal to DBN1, MLLT4, and ZC3H4 shows how temporal constraints
can propagate through the network to influence the direction of edges in other parts of the pathway. B)
The ABI2 subnetwork (ABI2, TRAF3IP1, and their neighbors) shows how temporal constraints on one
edge (TRAF3IP1-ACTB) can influence the orientation of different edges (the two directed edges involving
ABI2) when performing global inference in the pathway model. C) The PTK2 subnetwork (encompassing
all proteins on the path from ATP2B4 to SCRIB and their neighbors) demonstrates that SPECC1L and
ARHGEF7 serve as temporal bottlenecks for paths from the source to PTK2 (these paths not shown).
These proteins are activated later than PTK2, which implies that ATP2B4 cannot inhibit PTK2 at 4 min,
the time it first responds to stimulation. D) RUNX1 is not observed in the phosphorylation data, but the
timing of its neighbors’ phosphorylation reveals that RUNX1 must be downstream of MAPK1.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 34

Figure 2.8. The median running time of TPS over three replicate runs against the number of input graph
edges in log-log scale.

phosphosites. TPS performs similarly on our EGF case study data and randomly generated data
of comparable size (graphs with 750 edges) in terms of runtime. Figure 2.8 shows the median
TPS running time (in seconds) in terms of the number of input graph edges in log-log scale for
three run replicates per input size. We observe that TPS takes approximately 13 hours to run on
an input graph with 128,000 edges and 108,711 phosphosites.

2.5 Discussion
The pathway structure illuminated by the phosphorylated proteins in our EGFR Flp-In cells dif-
fers considerably from the simple representations in pathway databases. Interpreting signaling
data requires the reconstruction of models specific to the cells, stimuli, and environment being
studied. TPS combines condition-specific information, time series phosphoproteomic data and
the source of stimulation, with generic PPI networks and optional prior knowledge to produce
custom pathway representations. The predicted EGFR signaling network highlights alternative
connections to classic EGFR pathway kinases and extends the pathway with interactions that
are supported by prior knowledge in other contexts or kinase inhibition. Combining different
constraints on pathway structure from PPI network topology and temporal information is
computationally challenging, and we identify predictions that can be obtained only through
joint reasoning with all available data.

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 35

Tradeoffs between ambiguity, expressiveness, and correctness

The modeling assumptions made when interpreting and translating biological data into logical
constraints have complex effects on the degree of ambiguity, expressiveness, and accuracy of
the resulting pathway summary. Even with temporal information, many pathway structures
can explain the ordered signaling events. This motivates the reduction of ambiguity with
hard logical constraints, where each constraint is fully trusted, instead of with probabilistic
constraints [65, 77], where a constraint can potentially be violated.

In the PPI network, we allow paths only through chains of experimentally detected PPI.
In settings where the PPI network is less complete, we could include edges among highly
correlated phosphorylated proteins or predicted interactions based on protein sequence, protein
structure, pathway connectivity, or literature mining [89, 101]. The pre-processing step that
filters the PPI network operates on a weighted network. These additional edges could be
assigned lower weights so that PCSF includes them in the TPS input network only if they are
critical for connecting significantly phosphorylated proteins. This would reduce the impact of
missing interactions on TPS pathways at the cost of potentially increasing ambiguity because
there would be more possible paths through which signal can flow.

Likewise, we observe that some proteins, such as RAS and RAF family members, are
not included in the TPS pathway because our mass spectrometry data do not detect their
phosphorylation. To increase robustness to potential false negatives in the mass spectrometry,
the input PPI network could be modified to include edges from relevant reference pathways
with high weights (similar to [113]) so that PCSF prefers to include these interactions instead of
other high-confidence connections in the PPI network. The weight of these prior knowledge
edges would control the tradeoff between condition-specific de novo pathway discovery and
conformance with prior knowledge.

Unlike single-cell mass cytometry data, where the peak activity times of a small number of
phosphoproteins can be resolved precisely [87], phosphorylation timing in cell population-level
mass spectrometry data is inherently ambiguous. Therefore, instead of rigidly determining
a protein’s time of activity by selecting the time point at which the greatest phosphorylation
change is observed, TPS takes a more general approach. It allows a protein to be activated or
inhibited whenever the phosphorylation significantly differs from the level before stimulation
or at the immediately preceding time point as long as it is the first time at which that phospho-
rylation level has been observed. We focus on the initial pulse of signaling activity following
stimulation, sampling more early time points in our EGF response study because we are more
confident that these changes in phosphorylation intensity are due to PTMs instead of changes
in protein abundance. Feedback loops cannot be detected when learning a single activation or
inhibition time per peptide, a modeling decision we made in our three case studies. However,
the TPS framework makes it possible to allow multiple activity changes per peptide in future
applications. Statistical tests of the temporal phosphorylation profiles could determine the
number of significant activity changes for each peptide. Then, TPS could search for pathway

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 36

structures with feedback loops that explain the multiple activation or inhibition events per
peptide.

Lastly, we recognize that different phosphopeptides on the same protein can have different
phosphorylation changes over time, and we allow each peptide to have its own activation times
instead of forcing a single time per protein. This decision can lead to ambiguous edge direction
predictions at the protein-level even when the directions are consistent at the peptide level. For
example, DOCK1 interacts only with BCAR1, yet the direction and sign of the interaction are
ambiguous. The uncertainty arises because BCAR1 is phosphorylated on both Y249 and Y387.
TPS correctly concludes that the sign cannot be determined because one site could activate
DOCK1 and then feed back and affect the other BCAR1 site.

Contrasting TPS with related computational approaches

TPS provides a new way to integrate information from PPI networks, time series phosphopro-
teomic data, and prior knowledge by introducing a powerful constraint-based approach to build
on concepts previously explored by related algorithms. Approaches for building networks from
gene expression data alone (reviewed in [38]) can be applied to phosphoproteomic data as well.
Extensions of these methods for temporal data introduce time lags and search for dependencies
between genes’ expression levels over time [176]. Methods based on Granger causality [96]
identify proteins whose phosphorylation predicts behavior at later time points and provide one
type of causal model. However, all methods that rely on the phosphorylation data alone [62] will
miss critical signaling pathway interactions because not all pathway members have observed
phosphorylation changes.

Algorithms based on gene and protein perturbations provide an alternative approach toward
causal models. Transcriptional regulatory networks have been inferred from expression changes
induced by gene knockouts and knockdowns [4, 95, 156, 163]. Likewise, signaling networks
have been reconstructed by stimulating a pathway and perturbing signaling nodes with kinase
inhibitors or RNA interference. Protein activities are observed with antibody-based assays, and
pathways are recovered de novo [31, 52, 80, 99] or by adapting prior pathway knowledge [100].
The PHONEMeS method is unique for its ability to handle large-scale phosphoproteomic
perturbation data [147].

The HPN-DREAM network inference challenge [64] spawned several new approaches for
analyzing time series phosphoproteomic data in multiple biological contexts. Participants
predicted signaling pathways from in silico time series data and temporal reverse phase protein
array data for approximately 45 phosphoproteins in four breast cancer cell lines under various
stimuli and inhibitor treatments. In contrast, TPS focuses on reconstructing signed, directed
signaling networks from large-scale phosphoproteomic data. The TPS networks rely on physical
protein-protein interactions and include proteins that are not observed in the mass spectrometry.
PropheticGranger [23], the top performer in the HPN-DREAM experimental task, demonstrated
the importance of prior knowledge in network inference and modified the standard Granger

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 37

causality approach to assess dependencies between observed proteins. Meanwhile, TPS uses
time series information to globally reason about temporally consistent networkmodels, ensuring
that all paths in a network agree with time series data and considering the temporal activities
of nodes that are not direct neighbors in a path.

In our EGFR study, the TPS PPI subnetwork input is provided by PCSF, but other network
algorithms can also connect phosphorylated proteins using PPI. A related algorithm interpolates
between globally optimal (Steiner tree) and locally optimal (shortest path) connections to
different proteins [170], and this method has been applied to link functional signaling proteins
derived from phosphoproteomics data [126]. Many other approaches connect source and target
proteins in a PPI network to identify pathways. ResponseNet [164] does so with a maximum
flow formulation; SHORTEST [137] and PathLinker [122] use shortest paths; Maximum Edge
Orientation (MEO) [56] orients the undirected edges to produce short, directed paths. Integer
programs can express complex optimization preferences with multi-stage objective functions
when predicting source-target connections [26, 93]. The predicted networks from any of these
methods can be used as input for temporal analysis with TPS.

Among methods that integrate dynamic data and PPI networks, TPS is unique in its ability
to assess and summarize all possible pathway structures that are consistent with the input
network and the temporal constraints. TPS also considers all possible temporal activations for
each peptide instead of mapping proteins to temporal bins in advance like TimeXNet [113, 112].
Similarly, Budak et al. use time point-specific PCSF networks to map proteins to times [21], and
TimePath assigns genes to transcriptional phases based on gene expression timing [70], and
Khodaverdian et al. explore theoretical properties of temporal Steiner trees [79]. The Signaling
and Dynamic Regulatory Events Miner (SDREM) models temporal gene expression to infer
the timing of transcription factor activity, but the pathway discovery phase does not use any
temporal information [55, 57]. Vinayagam et al. used temporal phosphorylation to evaluate their
predicted PPI directions but did not consider dynamicswhenmaking the predictions [154]. Time
series data and interaction networks have also been combined for inferring protein complex
dynamics [111], pathway enrichment [73], and related problems reviewed in Przytycka et
al. [118].

The key difference between our work and other declarative computational approaches is
that TPS operates on networks that are several orders of magnitude larger and summarizes very
large solution spaces defined by sparser and less precise experimental data. Model checking
and symbolic reasoning have been used to verify properties of manually constructed biological
models [46], complete partially specified pathways using perturbation data [84], and synthesize
gene regulatory networks directly from data [41, 98] (reviewed in [47]). In addition, other
types of declarative approaches, such as integer programming [21, 26, 70, 108, 133, 137] and
answer set programming [60], have been applied to biological pathway analysis. The TPS
model summarization strategy, which makes it applicable to comprehensive signaling networks
containing more than a hundred thousand edges and phosphosites, sets it apart from these
related methods (Figure 2.8).

CHAPTER 2. SYNTHESIZING SIGNALING PATHWAYS FROM TEMPORAL
PHOSPHOPROTEOMIC DATA 38

Future directions in pathway synthesis

TPS offers a powerful framework for combining multiple types of declarative constraints to
generate condition-specific signaling pathways. The constraint-based approach can be extended
to include many additional types of data. New types of constraints could be derived from high-
level properties that proteins, interactions, or pathways must satisfy. Future versions of TPS
could incorporate perturbation data that links kinase inhibition or deletion to phosphorylation
changes that are far downstream from the kinase. For instance, both temporal [76] and kinase
perturbation [93, 124] phosphoproteomic data are available for the yeast osmotic stress response.
Modeling multiple related conditions (e.g., different ligand stimuli and inhibitor perturbations)
could allow TPS to learn not only the signs of interactions but also the logic employed when
multiple incoming signals influence a protein. Finally, TPS could accommodate user-defined
assumptions or heuristics about pathway properties, such as restrictions on pathway length.
Such complex constraints cannot be readily included in existing optimization-based approaches
like dynamic Bayesian networks or TimeXNet.

As proteomic technologies continue to improve in terms of depth of coverage [135, 174] and
temporal resolution [68, 76, 119], the need to systematically interpret these data will likewise
grow. TPS enables reasoning with temporal phosphorylation changes and physical protein
interactions to define what drives the vast protein modifications that are not represented by
existing knowledge in pathway databases.

39

Chapter 3

Synthesis of Biological Models from
Mutation Experiments

Executable biology presents new challenges to formal methods. This chapter addresses two
problems that cell biologists face when developing formally analyzable models.

First, we show how to automatically synthesize a concurrent in-silico model for cell de-
velopment given in-vivo experiments of how particular mutations influence the experiment
outcome. The problem of synthesis under mutations is unique because mutations may produce
non-deterministic outcomes (presumably by introducing races between competing signaling
pathways in the cells) and the synthesized model must be able to replay all these outcomes in
order to faithfully describe the modeled cellular processes. In contrast, a “regular” concurrent
program is correct if it picks any outcome allowed by the non-deterministic specification. We
developed synthesis algorithms and synthesized a model of cell fate determination of the
earthworm C. elegans. A version of this model previously took systems biologists months to
develop.

Second, we address the problem of under-constrained specifications that arise due to in-
complete sets of mutation experiments. Under-constrained specifications give rise to distinct
models, each explaining the same phenomenon differently. Addressing the ambiguity of speci-
fications corresponds to analyzing the space of plausible models. We develop algorithms for
detecting ambiguity in specifications, i.e., whether there exist alternative models that would
produce different fates on some unperformed experiment, and for removing redundancy from
specifications, i.e., computing minimal non-ambiguous specifications.

Additionally, we develop amodeling language and embed it into Scala. We describe how this
language design and embedding allows us to build an efficient synthesizer. For our C. elegans
case study, we infer two observationally equivalent models expressing different biological
hypotheses through different protein interactions. One of these hypotheses was previously
unknown to biologists.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS40

3.1 Introduction
Diseases can be caused by perturbed gene and protein regulatory networks. For example,
disease X may be related to the levels of proteins P and R, and P may negatively regulate R.
Once the level of P is decreased, high levels of R may cause disease X. To avoid the disease, we
may want to increase the level of P. One way to infer protein regulatory networks is to carry out
mutation experiments, in which cells are genetically modified to suppress or enhance the activity
of a certain protein, leading the cell to exhibit abnormal behavior such as uncontrolled cell
divisions. If, by suppressing the activity of protein P, the resulting phenotype can be attributed
to, say, an increased activity of a known protein R, we can infer from this mutation experiment
that P negatively regulates R. From many such inferences, experimental biologists deduce
regulatory networks that describe the causal events leading to specific cell fates and other
behaviors.

Experimental biologists are concerned about the correctness of their models that give a
dynamic explanation of how the observed outcomes are produced. Executable biology [45]
addresses this concern by building executable models that can be verified against performed
experiments. Treating cells as concurrent agents models the fact that cells do not evolve at
synchronous rates [74, 75]. Verification ensures that a concurrent model is correct for all
variations of cell growth rates, by exploring all possible executions of the model [48].

Unfortunately, turning informalmaps of regulatory networks common in biological literature
into executable models is laborious because it involves explicitly defining timing delay and
strength of how multiple proteins regulate each other. In our previous work, some of us
developed a model of vulval cell fate specification (i.e. how vulval cells make the decision to
develop into a particular cell type) in the C. elegans worm [50]. This model correctly predicted
an unknown protein-protein interaction, however it took several months to tweak the details of
the model before it was verified against the experimental data. Whenever new experiments are
added, or when the model is extended with new components, similar tweaks are required.

This chapter develops techniques for synthesizing executable models from experimental
observations and prior biological knowledge. Two challenges make this synthesis problem
interesting. First, the outcomes of some cellular systems, such as fates of stem cells, are non-
deterministic. For example, in the C. elegans system that we study, some mutations cause the
six observed vulval precursor cells (VPCs) to acquire one of two alternative fates, presumably
due to races in the communication among cells. The desired executable model must be able
to reproduce all the observed behavior in order to be correct. We synthesize concurrent cell
models such that, for each observable outcome, there exists a schedule that leads the model
to produce the outcome. This requirement makes our synthesis task a new problem, which is
more complex than what has been previously addressed.

Second, the incomplete set of mutation experiments forms only a partial specification.
Because only certain genes are mutated from the total combinatorial set of possible mutations,
we cannot be certain that an executable model that verifies against these mutations, whether it is

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS41

synthesized or manually constructed, is the sole explanation of the cellular regulatory process.
This is because there could exist an alternative model that is observationally identical on the
current specification but observationally distinct on an additional mutation. Finding such an
additional mutation would uncover ambiguity in the current specification.

To confirm that we have synthesized a unique model, we go beyond synthesis and develop
methods for the analysis of the space of plausible models, i.e., models that agree with the
specification. If observationally distinct models exist, we suggest a new mutation that differen-
tiates them. If no alternative models exist, we determine the smallest set of experiments that
is sufficient to arrive at the unique model. Finding such a minimal set is interesting because,
should biologists decide to redo the experiments for validation, they only need to perform the
experiments that suffice to synthesize a unique model. Finally, it is interesting to ask whether
there are observationally identical but internally different models. Such models present regula-
tory networks where the network function is “implemented” via different protein interactions.
These models cannot be distinguished by observing phenotypes; we must, say, instrument
proteins with fluorescent markers (similar to tracing the program) and observe the cell during
its development. This is a harder experiment, but the cost of instrumentation is reducedwith the
help of formal methods, as we can identify which genes to mark given the internal differences
between the observationally identical models.

We have built an efficient verifier, synthesizer and specification ambiguity analyzer that
implements algorithms for the analyses described above. Our synthesizer takes as input the
mutations, the results observed under mutations and a template structure of the cells, and
from them it generates a verified model. The template of the cell defines the cell components,
and a superset of their interconnections (inhibition, activation), allowing biologists to formally
state existing knowledge on the system being modeled. Additionally, the granularity of the
discretized concentration levels for each component is set a priori. What we synthesize is the
internal logic and timing of the components, i.e., how their concentration changes in terms
of their incoming signals, and we therefore off-load the most difficult task of systems biology
modeling to a computation search engine.

This chapter makes the following contributions:

1. We designed SBL, a domain-specific language for expressing our models using an execu-
tion model with restricted asynchrony called bounded asynchrony [48]. We embed SBL
into the Scala programming language [107] and build a lightweight synthesizer, which is
publicly available [1]. We describe how to translate SBL programs into formulas in order
to solve synthesis and specification analysis problems (Sections 3.3 and 3.4).

2. We formulate the verification problem (Section 3.5) and the program synthesis problem
(Section 3.5). We observe that unlike previous synthesis tasks, e.g., concurrent synthe-
sis [138] or synthesis from examples [58] or invariants [143], which are expressed as
formulas with two levels of quantification (2QBF), this problem is expressed as a formula

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS42

with three levels of quantification (3QBF), which makes it a new kind of problem. We
develop efficient algorithms for solving this problem that reduce to three communicating
SAT solvers.

3. We develop methods for analyzing the specifications and the space of plausible models
(Section 3.5): We describe algorithms for determining whether internally or externally
distinguishable models exist, and for finding minimal non-ambiguous specifications.
These algorithms build on our 3QBF synthesis procedure, and can potentially guide new
wet-lab experiments by computing mutation experiments that disambiguate alternative
models.

4. We evaluate our framework by describing that it efficiently (1) generates valid models for
the C. elegans VPCs. The model fixes a bug in previous modeling, an incorrect modeling
of a component’s behavior when it is mutated; (2) shows that no behaviorally distinct
models exist (even after extending the experiment space to consider mutations for each
component in the VPCs), but two internally different models were synthesized, one
of which expresses a previously unknown biological hypothesis; and (3) prunes the
specification from forty-eight mutation experiments to a minimal set of four experiments
(Section 3.6).

3.2 Overview
This section presents an overview of the program synthesis and specification analysis methods
we have developed for modeling biological systems. We describe how scientists typically
conduct mutation experiments to infer informal genetic regulatory networks, discuss how these
models can be formalized, present our programming language for expressing, verifying and
synthesizing formal biological models, and outline our synthesis and specification analysis
algorithms for programs in this language.

Background on Mutation Experiments.

Here we give a brief background on mutation experiments, in the context of developmental
systems biology. The role of these experiments is to understand cellular genetic regulatory
networks, in particular those that control stem cell differentiation. These regulatory networks
are of interest in part because their failure may trigger disease:

Cancer is fundamentally a disease of failure of regulation of tissue growth. In order
for a normal cell to transform into a cancer cell, the genes which regulate cell growth
and differentiation must be altered. (Wikipedia)

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS43

Hence, to understand cancer, one needs to understand cell differentiation. There are two
common mechanisms for cell differentiation: (1) a single cell divides into cells of different types
based on the asymmetric accumulation of substances inside the cell; and (2) multiple identical
cells differentiate by mutually communicating with the goal of arriving at coordinated fates [43].
We focus on the second mechanism, and aim to mechanistically explain cell differentiation by
modeling intercellular communication.

The specific goal of developmental biologists is to infer the program that stem cells “execute”
to agree on their fates. This program executes within one cell division cycle during which a
pluripotent cell decides its fate, potentially by communicating with other cells.

One method for inferring this program is to mutate a set of genes in the cell and observe
the resulting changes in the cell development. These experiments are particularly attractive
because phenotype changes resulting from the cell taking a different fate are visually observable,
avoiding the need for the more expensive tracing of temporal protein levels by the means of
tagging cell proteins with fluorescent genes.

From gene mutation experiments, biologists infer protein interactions, namely which pro-
teins are activated or inhibited by the mutated protein. For example, Yoo et al. [165] infers:

In this assay, depletion of [genes] lst-2, lst-3, lst-4, or dpy-23, aswell as ark-1, caused [a
phenotype change, namely] ectopic vulval induction, suggesting that they function
as negative regulators of the EGFR-MAPK [protein] pathway [due to the phenotype
change being linked to inhibition of the pathway].

Biologists unify such piecemeal information to create informalmodels of cellular programs, such
as the one in Figure 3.1 from [50]. This model shows how five cells—an anchor cell (AC), three
vulval precursor cells (VPC), as well as the hyp7 cell—communicate to determine the fate of the
VPCs. Each VPC contains the same set of components, which is composed of receptors (let-23
and lin12) and proteins (lst, sem-5, let-60 and mpk-1). The edges between these components
show the activation (→) vs. inhibition (a) relationships between them.

While these informal models may capture all known interactions among cell components,
they do not describe the dynamics of the cell, such as what race conditions permit the cells to
take non-deterministic fates that have been observed under some mutations. Due to this lack of
dynamic information, one cannot be certain that these diagrams accurately describe the cell
fate specification mechanism.

Executable Biology

The goal of executable biology [45] is to create executable models that allow the observation of
the dynamic behavior of biological systems. Furthermore, these models are verified against
experimental observations. For concurrent discrete models, verification, say, with model check-
ing, ensures that all executions of the model agree with the observed outcomes. By verifying

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS44

Figure 3.1. An informal diagram of cell fate specification in a system of three VPC cells [50]. These cells
react to the inductive signal (IS) from the anchor cell and communicate among themselves using the
lateral signal (LS) to decide one of three fates.

the program under the non-deterministic interleaving of cell steps, we ensure that a program is
a faithful model of a cell system where cells may progress at varying rates1 [75, 48].

It is challenging to create verifiable, concurrent models of communication between cells.
To transform the informal model in Figure 3.1 into an executable model, the designer must
model (1) protein levels; (2) timing delay or rates at which proteins react with other components;
and (3) how a protein behaves when both an activator and an inhibitor of the protein are
active. We have previously developed a verified model of C. elegans VPC cells; that model took
several months to develop [50]. This chapter develops methods for automatically synthesizing
executable models of concurrent cellular systems.

1 Another way to model varying cell rates is to use stochasticity. In stochastic models [7, 97], this non-
determinism takes the form of protein models making probabilistic transitions, accounting for variability of protein
level change rates in nature. However, moving non-determinism from protein modeling into the scheduler allows
protein models to be deterministic, which in turn enables discrete verification techniques.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS45

Non-deterministic experiment outcomes. A mutation experiment may produce different
outcomes when run repeatedly. A correct model must reproduce all non-deterministic out-
comes of a given mutation experiment. We synthesize concurrent cell models that satisfy this
requirement by ensuring that each outcome that must be observed is reproduced by the model
under some interleaving of cell steps.

For biological reasons, we use a restricted model of concurrency, bounded asynchrony [48].
Because neighboring cells always advance at relatively similar rates, rather than at arbitrary
speeds, fully asynchronous models are too unconstrainted to reproduce the observation in
certain mutation experiments. One-bounded asynchrony is one way to achieve restricted
asynchrony, ensuring that between two execution steps of a cell, no other cell can take more
than two steps.

Because of the requirement to reproduce all possible outcomes, model synthesis in this
setting is a more complex synthesis task than what has been previously addressed. In this
chapter, we advance the state-of-the-art in solving this new synthesis problem.

Modeling Language

We have developed a high-level programmingmodel, SBL, inspired by biological diagrams such
as the one in Figure 3.1. SBL introduces programming abstractions for cells, cell components,
and interaction between components.

Programs in SBL (Figure 3.2) are composed of cells, which execute according to a schedule
s that adheres to the 1-bounded-asynchrony constraint. The schedule is of bounded length; the
number of steps in the schedule corresponds to the desired discretization of the cell division cycle.
Multiple cells can take simultaneous steps. Cells are composed of components, which model
proteins or cell receptors. Components communicate with other components in the same cell or
in other cells; communicating components are connectedwith directed edges, which correspond
either to activation or inhibition relationships. Components of a cell execute synchronously; all
take one step when the cell is scheduled. Components have state—a discretized concentration—
usually modeled at 2-5 levels. When the component executes, it updates its next state based
on its current state and the states of its activators or inhibitors. Each component is modeled
with an update function (L, Lk)→ L, where L are levels and k is the number of components
activators and inhibitors, combined.

Thanks to these abstractions, SBL programs are syntactically smaller compared to models
expressed in the Reactive Modules language [3], which was the modeling language used in
earlier work [50]. As a result, we are able to develop efficient synthesis algorithms for programs
in SBL.

Example 3.1 To illustrate, we consider the problem of designing a simple distributed protocol. Muta-
tions in this setting correspond to environment effects on the system being designed, and the specification
consists of input-output pairs defining the desired behavior for given environments.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS46

Bounded Asynchrony Synchronous Sequential

Components have Update FnsCells has ComponentsSystem has Cells

Execution Model

Structure

Figure 3.2. Hierarchical organization of programs in SBL. The system is composed of cells, which in
turn are composed of components. At each time step, components update their discrete state using an
update function, in terms of their previous state and incoming signals from other components. Edges
between components denote which components can communicate between them. Cells group together
components that always move synchronously, and they adhere to a restricted form of concurrency.

The goal is to design a weak consensus protocol for a three-node system. (In a biological system, these
nodes would be cells, and node components would be proteins in the cells.) Two nodes (called sensors
N1 and N2) are listening to a signal from a master node (a base station BS). When the base station sends
a signal, at least one of the sensors must make a decision to take a measurement. When a sensor takes
a measurement, it sends a release message to the other sensor permitting the other sensor not to take a
measurement in order to save its power. The decision to make a measurement is made on the basis of
(1) the strength from the base station; in normal conditions, the sensor that received the stronger signal
should take measurement as it is closer to the base station; and (2) receiving the release message from
the other signal. The environment may cause the communication between the two sensors to be down,
sensors must take a measurement if no signal was received from their peer. Similar to a system of cells
progressing at similar rates, we assume that sensors have bounded skew, i.e. they run under bounded
asynchronous schedules.

An implementation of this protocol is presented in Figure 3.3. Figure 3.3(a) presents a hierarchical
view of how cell communication is organized, and which components each cell contains. On the left is
the top-most level with three nodes; the base station node (BS) contains one component, the base node,

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS47

N1 N2

BS

H L

Environment may prevent
inter-node communication

High or
Low trigger
signal from

BS

Base
Receiver

Decision

Delay

Lateral
Receiver

Base

Lateral
Emit

(a)

S0 / 0 S1 / 0

Base ∈ {L, H} ⋀ Lateral Rcvr = 1
⋁

Base = L

Base = O
Base = H ⋀ Lateral Rcvr = 1

S2 / 1
Base ∈ {L, H} S0 / 0 S1 / 1

Base Rcvr = 0
Base Rcvr = 1

Lateral Emit = 0 ⋀ Base Rcvr = 1
Lateral Emit = 1 ⋀ Base Rcvr = 0

S0 / 0 S1 / 1

Base Rcvr = 1 ⋀ Lateral Rcvr = 0

Base Rcvr = 0 ⋀ Lateral Rcvr = 0
⋁

Lateral Rcvr = 1
Lateral Rcvr = 1

Lateral Rcvr = 0

(b) Base receiver (c) Lateral receiver (d) Delay

Figure 3.3. (a) Hierarchical view of node connections, and of their components. The top node is the base
station, and the bottom nodes are distributed sensors which may not communicate with each other due
to environment effects. (b), (c), (d) Graphical representation of update functions for base receiver, lateral
receiver and delay components in the distributed sensors. Each state is labeled with its name and the
output value that the state maps to.

which emits a constant high (H) or low (L) signal to nodes N1 and N2. These nodes decide to commit or
to delegate by communicating with each other. Figure 3.3(b), (c) and (d) show a graphical representation
of update functions for three components in nodes N1 and N2 (the remaining simpler update functions
have been omitted from the figure).

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS48

Language Extensions for Verification

To make programs in our language amenable to verification, we now introduce component
mutations, formalize specifications, and define a correctness condition for programs.

We model cell mutation with an adversary who perturbs the cell program such that a set
of adversary-selected cell components receive adversary-supplied semantics. Typically, a cell
component is mutated either to be suppressed or to stay at a high concentration level throughout
the execution of the program, although we also support other mutation types.

The set of mutation experiments performed in the lab serve as our correctness specification.
Let F be the set of possible outcomes of a mutation experiment. For example, if a cell can take
one of three fates, the outcomes of an experiment with six cells is a six-tuple from F = {1, 2, 3}6.
Let M be the set of possible mutations that one can apply on a cell; typically, all cells involved
in an experiment are mutated identically. The set of experiments Exp is a subset of M × F,
where (m, f) ∈ Exp if the fate f has been observed on the mutation m. With n cell components
and three possible mutations per component (e.g., no mutation; suppressed; high level), M is
exponential in the number of components of the cell. As a result, biologists do not carry out all
mutations.

Having an incomplete set of experiments implies that we have to accommodate partial
specifications. While the set of experiments Exp is a subset of M× F, we assume that once a
mutation has been carried out, the lab has observed all possible outcomes for this mutation
by repeating the experiment a sufficient number of times. This is a reasonable assumption for
systems that have been reliably studied bymany independent labs, such as our case study, vulval
fate specification in C. elegans (Section 3.6). Without this assumption, we would have no upper
bound on the specification, as any (m, f) pair could potentially be observed in experiments
that have not been performed so far. The assumption allows us to synthesize with both positive
examples (outcomes that must be produced by the model for an experiment) and negative ones
(outcomes that must never be observed for an experiment). To model such full knowledge for a
single mutation, our specification is a (partial) map E : M→ 2F. The domain of E is the set of
performed mutations. If m ∈ dom(E) ∧ f 6∈ E(m), we assume that mutation m cannot result
in fate f ; the pair (m, f) is a negative example. We say that a program P : M→ F is a correct
model of E if, for each m ∈ dom(E), the execution P(m) may produce each element of E(m) by
controlling some aspect of the execution of P, namely the schedule that controls the concurrent
execution of cells in the program.

Correctness Condition. To define a correctness condition, we view an SBL program as a
function P : (M, S)→ F, where M and F are domains of mutations (input configurations) and
fates, while S is the set of schedules adhering to bounded asynchrony. The explicit schedule
allows us to formulate a correctness condition correct(P, E) of a program P on a specification
E : M→ 2F, which has two parts:

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS49

Base station trigger Inter-node comm. N1 N2
N1=H, N2=H Y C D

D C
C C

N1=L, N2=L Y C D
D C
C C

N1=H, N2=L Y C D
N1=L, N2=H Y D C
N1=H, N2=H N C C
N1=L, N2=L N C C
N1=H, N2=L N C C
N1=L, N2=H N C C

Figure 3.4. The specification for the distributed protocol example, giving required outcomes for nodes
N1 and N2 under a range of scenarios of base station trigger signals and cases of whether the two nodes
can communicate between themselves (Y) or not (N). C = Commit, D = Delegate.

1. demonic scheduling: A demonic scheduler cannot make the model produce a fate that is
outside the specification, i.e. demonic(P) = ∀m ∈ dom(E).∀s ∈ S : P(m, s) ∈ E(m).

2. angelic scheduling: An angelic scheduler must be able to produce each fate in the specifica-
tion, i.e. angelic(P) = ∀m ∈ dom(E).∀ f ∈ E(m).∃s ∈ S : P(m, s) = f .

The demonic requirement asks that the model is an underapproximation of the specification,
while the angelic requirement asks that it is an overapproximation. Angelic scheduling adds a
layer of difficulty that is handled through the construction of a novel verifier (Section 3.5).

Example 3.2 The specification for Example 3.1, expressed as a set of experiments, is shown in Fig-
ure 3.4. The left column shows the mutations (environment effects) M, while the right column shows
the desired outcomes F. It is interesting to note that we are using the mutations as the environment
adversary; the mutations describe situations under which the nodes N1 and N2 must operate according
to the expected outcomes. For example, the last row describes the situation in which the signal arriving
at N1 is high, while the signal arriving at N2 is low, and the communication between nodes is down. We
can think of this mutation as the adversary lowering the signal to N2 and preventing the communication
between the two sensor nodes. The outcome C means that a node has committed to taking a measurement
while D means that the measurement was delegated to the peer node.

Language Extensions for Synthesis

In order to allow synthesis of update functions in our programs, we extend our language such
that these can be left unspecified. We describe partial programs in SBL and we define the

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS50

synthesis problem.
The input to the synthesizer is the specification E and a partial program P? to be completed

by the synthesizer, if feasible, into a program Ph such that the predicate correct(Ph, E) holds. A
partial program is a program template in which certain fragments are parameterized and need
to be supplied by the synthesizer. Our language allows parameterization of (1) cell component
behavior; and (2) how components communicate. Because update functions model timing delay
and change rates of proteins, we found them to be the hardest part of the model to produce
manually. By parameterizing update functions, we can indirectly leave unspecified also the
connections between components: for example, if a biologist is unsure whether a protein P is
inhibited by a protein Q or a protein R, both Q and R can be connected to P; if Q turns out not
to influence P, the synthesizer is able to produce an update function for P that disregards the
state of Q. The parameterized update functions are constrained to agree with the activation
and inhibition semantics specified in the partial program by restricting their structure. This
is achieved by stating monotonicity invariants on how a protein’s input concentrations can
influence its concentration; these invariants are described in Section 3.4.

From the user standpoint, the partial program P? encodes biological assumptions; it defines
the components in the cells as well as a superset of connections between them. It thus (1) conveys
the desire to model particular proteins and (2) states the knowledge of which (superset of) pairs
of proteins communicate. Partial programs encoding biological assumptions form the basis for
the ambiguity analysis described in Section 3.2.

Our synthesis problem is to find update functions h that yield a correct model:

Definition 3.1 (Synthesis problem) For a partial program P? to be completed with hole values h into
Ph, the synthesis problem is to find the update functions h that yield a correct model:

S(h) := ∃h : demonic(Ph) ∧ angelic(Ph)

A correct model must reproduce all observed experiments, and this is captured in the angelic(P)
correctness condition, which is a formula with two levels of quantification (2QBF). This makes
the synthesis problem a 3QBF problem, while typical synthesis problems are 2QBF (of the form
∃ hole ∀ input : φ).

Formulas with more than one level of quantification cannot be handed off directly to an SMT
solver, because the performance of SMT solvers is only reliable for existential (one quantifier)
formulas. One way to tackle 2QBF problems is to develop a counterexample-guided induc-
tive synthesis (CEGIS) algorithm. In the classical CEGIS algorithm, an inductive synthesizer
produces a program that is correct on a small sample of inputs; a verifier then checks this
candidate program on remaining inputs [140]. To handle the 3QBF synthesis problem S(h),
we develop a novel two-part CEGIS algorithm, where an inductive synthesizer communicates
with two verifiers, one for each of the two correctness conditions, and collects two kinds of
counterexamples, one from each verifier (Section 3.5).

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS51

Example 3.3 The update functions for Example 3.1, presented in Figures 3.3(b), (c) and (d) are pro-
duced by our synthesizer. These update functions control how these components react to signals from the
base station and the peer sensor. The synthesizer takes four seconds to generate these update functions.
Intuitively, a sensor’s protocol is simple: if you receive a weak signal, wait a little while and wait for the
release signal from the other sensor. If it does not arrive, take a measurement. Still, even for this simple
protocol, designing the update functions manually is not trivial.

Ambiguity Analysis

Assume that a biologist produces an executable model that verifies against all performed
experiments. Now imagine that after he publishes his conclusions from this model, another
biologist performs a new mutation experiment whose outcome invalidates the model as well as
the conclusions drawn from it. (Given a new mutation experiment mn+1, a model P becomes
invalid if it cannot reproduce an outcome observed for mn+1, or if it produces an outcome that
has never been observed after performing mn+1 sufficiently many times.)

Naturally, we are interested in the question of whether one can ascertain the validity of a
model in the absence of complete experiments. In particular, under what assumptions can a
model be considered the sole explanation of biological phenomena?

We view this question as analysis of ambiguity in the specification E, and define an alternative
model query that answers the question. We first introduce aggregate outcomes and specification
ambiguity.

Definition 3.2 (Aggregate outcome) Let P be a model and m a mutation. The aggregate outcome
of P on m, denoted P[m], is the set of outcomes produced by P mutated with m over the set S of all
schedules: P[m] := {P(m, s) ‖ ∀s ∈ S}

A specification E is ambiguous for a partial program P? (that expresses a set of biological
assumptions) if we can find two completions Ph1 and Ph2 that disagree on some new experiment.
Of course, one of these models would become invalid given the new experiment.

Definition 3.3 (Specification ambiguity) Given a partial program P?, a specification E is ambigu-
ous, denoted Amb(E, P?), if ∃m ∈ M ∃h1, h2. correct(Ph1 , E) ∧ correct(Ph2 , E) ∧ Ph1 [m] 6=
Ph2 [m].

Note that m must be a new experiment, i.e. m ∈ M \ dom(E), because the two models must
agree with the specification E on all mutations in dom(E).

In Section 3.6, we show that the specification for our case study is unambiguous given
provided biological assumptions (i.e., there is no need for more experiments at the desired
level of modeling). We also show that removing some historically important experiments
indeed makes the specification ambiguous, permitting alternative explanations for coordination
between cells.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS52

Definition 3.4 (Alternative model query) Given a partial program P? stating biological assump-
tions and an existing (perhaps previously synthesized) model P (that need not be an instantiation of P?),
the alternative model query finds a mutation m and a new model Ph such that P[m] 6= Ph[m], or
shows that no such h and m exist.

We develop an algorithm to solve this query in Section 3.5.

Example 3.4 We now ask whether we can find alternative models for Example 3.1 using the alternative
model query. Suppose we relaxed the specification and do not care about the outcome on the case N1 = L,
N2 = L. We ask our synthesizer to generate models under this relaxed specification such that they differ
from the model in Example 3.1. Our synthesizer generates an alternative model that has much simpler
behavior (as it need not be non-deterministic under the row that we ignored). The update functions are
shown in Figure 3.5. When we ask for a mutation that distinguishes among the models, the synthesizer
produces the omitted row. (Note that this last query is a special case of the alternative model query, such
that both input programs are fully specified.)

Now consider an experimental scenario where one wants to validate a set of experiments
performed in the literature by performing them again. Is it possible to identify the smallest set
of experiments whose replication is sufficient to yield a non-ambiguous specification?

To answer this question, we define a minimization query that computes such a minimal set.

Definition 3.5 (Minimization query) Given a non-ambiguous specification E, the minimization
query computes a minimal non-ambiguous specification Em from E, i.e.¬Amb(Em, P?)∧¬∃E′, E′ ⊂
Em ∧ ¬Amb(E′, P?).

An algorithm that solves the minimization query is presented in Section 3.5.
In our case study, we show that, under our assumptions P?, one needs to replicate about

10% of experiments. This result suggests that computing which experiments to perform might
reduce unnecessary laboratory work.

Example 3.5 We explored the minimization query for Example 3.1. Our synthesizer prunes E down to
the first three rows of Figure 3.4 as a minimally unambiguous specification. This is somewhat surprising
but it gives substantial insight into the problem, as the user can now understand that the specification
of the four cases with lost communication was redundant, while the user may have presumed that it was
necessary.

3.3 Language
In this section, we present the formal semantics of our language, by first defining the language
constructs, and then giving operational semantics rules for execution.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS53

S0 / 0 S1 / 1

Base ∈ {O, L}
⋁

Lateral Rcvr = 1

Base = H ⋀ Lateral Rcvr = 0
Lateral Rcvr = 1

Base = H ⋀ Lateral Rcvr = 0

(a) Base receiver

S0 / 0 S1 / 1

Lateral Emit = 1
Lateral Emit = 0

(b) Lateral receiver

S0 / 0 S1 / 1

Base Rcvr = 0 ⋀ Lateral Rcvr = 1

Lateral Rcvr = 1
Lateral Rcvr = 0

Base Rcvr = 1
⋁

Lateral Rcvr = 0

(c) Delay

Figure 3.5. Update functions generated using the alternative query model to differentiate from the
model in Example 3.1 under ambiguous specification, obtained by removing row 2 of Figure 3.4.

The basic construct in SBL is a component. We denote the set of all components in a program
by Comp. Components are connected via a set of directed edges, defined by the relation
Edges ⊆ Comp× Comp. Edges model channels of communication between cell components.
For each component c, we say a component c′ is an input component of c if there is an edge
(c′, c) ∈ Edges. For each c, we define the set of input components Inputc as {c′ : (c′, c) ∈ Edges}.
A component c has a state σc that takes values from a finite domain Lc. Each component c is
also associated with an update function, denoted fc, that updates its state σc, given the current
value of its input components. The function fc has domain Lc ×Πc′∈Inputc

Lc′ and range Lc. The
update function for a component is chosen from a sequence of functions Fc := [fc,1, . . . , fc,k]
that describe possible alternative behaviors of that component under different mutations, i.e.,
the natural and altered behaviors of the component.

A cell is a set of components. Within a cell, we have a synchronous execution model, i.e. all
components of a cell update their state simultaneously. The state of a cell σ̄ is defined as the set
of states of the components that the cell contains. We denote the set of all cells in a program by
Cells. Cells forms a partition on all the components in the program. A pair of cells (cell1, cell2)
are said to be communicating if there exists a pair of components (comp1, comp2) connected by
an edge in the respective cells.

The pair (Cells, Edges) constitutes a program. The program state ¯̄σ is the set of all cell states
in the program. The input to a program is a configuration (i.e. a mutation). A configuration is a
function from components to integers, that expresses for each component c the index of the
function in Fc that should be used as the update function fc. The output of a program is defined
as the state of user-designated components in the final state reached in an execution.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS54

Run-Program
S = s :: ss ¯̄σinit

s,Cells,Edges−−−−−−→ ¯̄σ′ 〈 ¯̄σ′, ss〉 Cells,Edges−−−−−→ 〈 ¯̄σf inal, []〉

〈 ¯̄σinit, S〉 Cells,Edges−−−−−→ 〈 ¯̄σf inal, []〉

Run-Program-Base
〈 ¯̄σ, []〉 Cells,Edges−−−−−→ 〈 ¯̄σ, []〉

Advance-Cells
∀cell ∈ Cells σ̄cell

¯̄σ,cell,Edges,s(cell)−−−−−−−−−→ σ̄′cell ¯̄σ′ = ∪cell∈Cells{σ̄′cell}
¯̄σ

s,Cells,Edges−−−−−−→ ¯̄σ′′

Cell-Enabled
∀σc ∈ σ̄ σc

c, ¯̄σ,Edges−−−−→ σ′c σ̄′ = ∪c∈cell{σ′c}
σ̄

¯̄σ,cell,Edges,1−−−−−−→ σ̄′
Cell-Disabled

σ̄
¯̄σ,cell,Edges,0−−−−−−→ σ̄

Advance-Component
Σ = {σc′ : (c′, c) ∈ Edges} fc(Σ, σ) = σ′

σ
c, ¯̄σ,Edges−−−−→ σ′

Figure 3.6. Small-step semantics for program execution. Run-Program runs a schedule by advancing the
cells according to each micro-step in the schedule, with Run-Program-Base as the base case. Advance-
Cells rule updates the states of cells, depending on the current micro-step s. If a cell is enabled, it is
advanced by applying the Cell-Enabled rule. Conversely, if a cell is disabled, the Cell-Disabled rule
keeps its state unchanged. Advance-Node rule updates the state of a component by invoking the update
function on the states of all input component states and its own state

Partial Programs. The sequence Fc of functions associated with component c need not be
specified concretely. When at least one component function is not concretely specified, we
say the program is partial. Typically, users will only concretely specify the behaviors under
well-understood mutations that would not make sense to redefine. For example, a typical
example in the biological case is the knock-out mutation which subdues the function of the
component and fixes it to the OFF state.

Operational semantics Figure 3.6 shows the small-step semantic rules for program execution.
Here, we assume that the program starts in the initial state ¯̄σinit, and that it has already been
preprocessed by fixing a particular update function for each component according to the input
configuration. The semantics are defined recursing down the program structure. The Run-
Program rule executes the program by moving all cells in accordance with a schedule S. The
Advance-Cells rule captures the intuition that each schedule step s partitions the cells into the
sets enabled (for which s(cell) = 1) and disabled (for which s(cell) = 0). Rules Cell-Enabled and

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS55

Cell-Disabled describe how cell states are updated for enabled and disabled cells, respectively.
For the disabled cells, the state remains unchanged. Enabled cells are advanced by applying the
Advance-Component rule for each component, which corresponds to updating the component
state by reading the state of connected neighbors and using the component’s update function.

Bounded Asynchrony. The concurrency notion that our execution model admits is bounded
asynchrony. This model faithfully represents biological systems where complete synchrony is
too strict, and complete asynchrony does not accurately model cells that progress at similar but
not identical rates.

Fisher et al. [48] define bounded asynchrony with schedules consisting of micro- and macro-
steps. Each micro-step consists of a subset of the components stepping synchronously. This is
what we have been calling a schedule up to this point. Next we block micro-steps together into
a macro-step. Each k-bounded macro-step consists of all components taking k steps split across
multiple micro-steps. For example, let us consider three nodes and the schedule 110 (micro-step)
indicates the first two take a step while the third waits. Suppose the second schedule is the
micro-step 001. Then the two micro-steps together make a macro-step in which all nodes take
one step and which is therefore 1-bounded.

Schedules over micro-steps are much more expensive to enumerate than schedules over
macro-steps, especially 1-bounded macro-steps. Schedules over 1-bounded macro-steps (where
each node necessarily moves once), can be succinctly encoded without loss of information as
pairwise happens-before between connected nodes. That is, a 1-bounded macro-schedule is an
assignment of <, >, or = to each edge in the node topology2. The following lemma holds:

Lemma 1 (Fisher et al. [48]) A micro-schedule exists if and only if a realizable macro-schedule exists
over the node topology.

Here a realizablemacro-schedule is one that does not cause an inconsistent ordering of nodes in a
cycle. We use this result critically to efficiently encode partial programs as formulas (Section 3.4),
and restrict schedules to be 1-bounded.

Using macro-steps allows us to define a compact symbolic encoding of our programs into
formulas, which would have not been possible with micro-steps.

3.4 Translating Programs into Formulas
We now describe how to translate execution of SBL programs to SMT formulas, enabling
verification and synthesis. We first give rewrite rules that construct a formula corresponding
to the symbolic execution of a program. We then describe additional constraints that encode
biological domain knowledge to be used in synthesis of programs.

2Technically, for micro-steps it is the sequence of ordered bell numbers or Fubini numbers [2], while for
1-bounded macro-steps it is 3num edges.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS56

TRunJCells, EdgesK :=
∧

t∈{1,...,k}

∧

cell∈Cells

∧

c∈cell

TReadJt, c, EdgesK∧ TUpdateJt, c, EdgesK

TReadJt, c, EdgesK :=
∧

(c′,c)∈Edges
c′∈cell′
c∈cell




((channelt,cell′ ,cell=“<”)⇒(σread,t,c,c′=σt−1,c′))

∧
((channelt,cell′ ,cell=“=”)⇒(σread,t,c,c′=σt−1,c′))

∧
((channelt,cell′ ,cell=“>”)⇒(σread,t,c,c′=σt,c′))




TUpdateJt, c, EdgesK :=
∧

fi∈Fc

mc = i⇒

 ∧

(vc,vc1 ,...,vcn)∈dom(fi)

(σt−1,c,σread,t,c1,c,...,σread,t,cn ,c)=(vc,vc1 ,...,vcn)

⇒
σt,c=tablevc ,vc1 ,...,vcn




Figure 3.7. Translation rules for symbolic execution of programs.

Translation of Program Execution

The translation of program execution is parameterized by the following symbolic variables:

• For each time step t and each pair of connected cells (c1, c2), we define a channel con-
figuration variable channelt,c1,c2 that must hold exactly one of the three values “<”, “>”
and “=”. These variables encode the symbolic schedule for program execution. Variables
channelt,c1,c2 and channelt,c2,c1 are asserted to be consistent in the following way:

channelt,c1,c2 = “>”⇔ channelt,c2,c1 = “<”
∧

channelt,c1,c2 = “<”⇔ channelt,c2,c1 = “>”
∧

channelt,c1,c2 = “=”⇔ channelt,c2,c1 = “=”

• For each component c, we represent each function fi ∈ Fc as a lookup table with symbolic
values for each value in its domain Lc ×Πc′∈Inputc Lc′ . Entries of the lookup table are
represented by the variables tablevc,vc1 ,...,vcn that take values in Lc.

• For each component c, we represent its mutation symbolically as a variable mc, that
encodes the index of the function to use among Fc. If mc has value i, then the function fc,i
will be used as the update function of component c.

• For each component c at each execution step, we create a variable σt,c that takes values in
the domain of Lc. These variables represent the component state symbolically over the
execution of the program.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS57

Translation rules for compiling program execution to an SMT formula are shown in Fig-
ure 3.7.

TRun is the top-level rule for translating the execution of a program, unrolling the execution
for k steps. TRead uses the symbolic macro-schedule values to assert the input states that should
be read by each component at a given macro-step. If a cell cell runs before or at the same time
as another cell cell′ (i.e. the macro-step variable between the two cells at a time step has value
“<”, or “=”), the components in cell reads their input states from cell′ at the previous time
step. On the other hand, if cell runs after cell′, it reads its input states from the current time
step. Finally, TUpdate asserts that the state of a component is updated in terms of its symbolic
mutation, input state, own state, and update function. The outermost conjunction enumerates
over possible update functions. For each mutation, the inner conjunction enumerates possible
input value tuples of the update function. The symbolic state is updated given symbolic lookup
variables for the chosen mutation.

This translation does not impose any constraints on the parameterized update functions,
and therefore encodes a very large space of possible update functions. To help with the program
synthesis task, we need to restrict this space. This is achieved in Section 3.4 by asserting
biologically motivated constraints on the structure of the parameterized update functions.

Domain-Specific Constraints on Update Functions

The translation in Section 3.4 does not impose restrictions on the structure of the update func-
tions that are left unspecified by the user. When modeling biological systems, formulating a
hypothesis typically involves stating high-level invariants about whether a component acti-
vates or inhibits another one. In this section, we describe how the space of update functions is
restricted using this high-level knowledge.

We first formalize how the high-level biological invariants are stated by defining a partial
labeling of edges with activation and inhibition semantics.

Definition 3.6 (Edge labeling) Given a partial program P?, the partial function label : Edges →
{activating, inhibiting} annotates edges in P? as either activating or inhibiting.

As a component’s state expresses its activation level, we assume the existence of a total order
on its possible states. This will allow us to state the properties that restrict the space of update
functions.

Definition 3.7 (State ordering) Let c be a component, and Lc the set of possible state values for c.
The state ordering ≤c is a total order on Lc.

Using the edge labeling and the state ordering for each component, we now define a partial
order on the combined input values for a component.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS58

Definition 3.8 (Input ordering) Given a component c with update function fc : Lc × Lc1 × . . .×
Lcn → Lc, the partial order �c on elements of Lc1 × . . .× Lcn is defined as:

(v1, . . . , vn) �c (u1, . . . , un)
:= ∀i ∈ {1, . . . , n}.

(label((ci, c)) = activating∧ vi ≤ci ui) ∨
(label((ci, c)) = inhibiting∧ vi ≥ci ui)

Intuitively, � is a partial order on the strength of the input values to a component, based on the
activation and inhibition annotations. We now describe two kinds of invariants that restrict the
space of possible update functions.

Input monotonicity Our first property is motivated by the following observation: If there is
an activating edge from component c1 to component c2, then an increase in σc1 should not have
by itself the effect of decreasing σc2 . Conversely, if c1 and c2 are connected through an inhibiting
edge, then a decrease in the value of σc1 should not result by itself in the decrease of σc2 :

∀i1, i2 ∈ Lc1 × . . .× Lcn . ∀v ∈ Lc.
i1 �c i2 ⇒ fc(v, i1) ≤c fc(v, i2)

State monotonicity The second property that we assert imposes a monotonicity constraint on
fc in terms of the value of σc. This property expresses that, for the same input value, a greater
the activation level of the component cannot be updated to a smaller value:

∀i ∈ Lc1 × . . .× Lcn . ∀v1, v2 ∈ Lc.
v1 ≤c v2 ⇒ fc(v1, i) ≤c fc(v2, i)

We found that asserting constraints that encode these two invariants based on user annota-
tions on component connections is crucial for ensuring that the structure of update functions
agree with existing biological knowledge.

3.5 Synthesis and Querying Spaces of Models
In section 3.4, we described how we translate program execution to formulas. In this section,
we present algorithms that leverage this translation for verification and synthesis, as well as
specification ambiguity analysis.

The formula that encodes program execution parameterizes (1) update functions (which
are the holes in partial programs); (2) schedules; and (3) input configurations (i.e. mutations).
The space for update functions and the space for schedules are typically very large. However,
specifications are typically wet-lab experiments which are sparse and inherently small (of order

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS59

102 experiments). Based on this observation, we develop algorithms that unroll quantifications
for input configurations only.

In the following, we refer to the symbolic output parameter of translating the execution of P
with input m and schedule s as P(m, s), and we denote by E the specification (given as a partial
function from M to 2F).

Verifying Programs

The correctness condition presented in Section 3.2 is defined as:

correct(P) := demonic(P) ∧ angelic(P)

The properties demonic(P) and angelic(P) are in 1QBF and 2QBF respectively. As a result, the
correctness condition correct(P) is in 2QBF.

We verify correctness conditions demonic(P) and angelic(P) separately, using a verifier Vd
that searches for demonic schedules that lead to the violation of the specification, and a verifier
Va that checks whether all non-deterministic outcomes for a given mutation can be reached for
some angelic schedule.

Verifying for demonic schedules. The formula demonic(P) states that the set E(m) is an
upper bound for all observed outcomes of P with input m:

demonic(P) := ∀m ∈ dom(E). ∀s ∈ S. P(m, s) ∈ E(m)

To check this property, we attempt to disprove it by searching for a demonic schedule that
produces an unobserved outcome for an input in dom(E), the domain of E. Given the observa-
tion that there is a small set of input values in dom(E), we solve this formula by unrolling the
existential quantification over this set, and by querying symbolically for a demonic schedule.
The condition P(m, s) 6∈ E(m) is expressed by unrolling over values in E(m), which is also a
small set. We thus solve the 1QBF formula:

∨

m∈dom(E)

∃s.
∧

f∈E(m)

P(m, s) 6= f

If this formula is satisfiable, P does not satisfy demonic, andwe obtain a concrete counterexample
(m, s) such that running P on input m and schedule s leads to an unobserved fate. If it is
unsatisfiable, then P is correct with respect to demonic.

Verifying for angelic schedules. The angelic condition states that all outcomes in the set that
m maps to must be observable, i.e. appear in some execution of P on m:

angelic(P) := ∀m ∈ dom(E), f ∈ E(m). ∃s. P(m, s) = f

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS60

This amounts to searching for an angelic schedule for each f ∈ E(m). We reduce the 2QBF
correctness property to an efficiently solvable 1QBF problem by unrolling values of the domain
dom(E), again based on the assumption that this is a small domain. To unroll angelic(P), we
construct the following query for each m ∈ dom(E) and for each f ∈ E(m):

∃s. P(m, s) = f

If the above formula is unsatisfiable for some m and f , then no angelic schedule can be found
for reaching that outcome when running P, and (m, f) is a counterexample input/output pair
witnessing that angelic(P) does not hold. If the formula is satisfiable for each m ∈ dom(E) and
for each f ∈ E(m), then verification for angelic schedules succeeds.

A program verifies against the specification E if it verifies against both Vd and Va.

Synthesizing Programs

In our language, it is possible to define a partial program P? that admits freedom in the update
functions of its components. We now present a synthesis algorithm for finding update functions
in P? such that the completed program Ph is correct with respect to the correctness condition
correct(P). Our procedure leverages the two verifiers Vd and Va to check correctness properties
demonic and angelic respectively, in order to solve the following synthesis problem:

S(h) := ∃h. demonic(Ph) ∧ angelic(Ph)

This formula is in 3QBF, due to the quantifier alternation ∃∀∃ resulting from angelic(Ph) being
nested within the quantification over h.

We solve S(h) by developing a counterexample-guided inductive synthesis (CEGIS) algo-
rithm, which decomposes the 3QBF problem into two 1QBF solvers (an inductive synthesizer
and the demonic verifier Vd) and one 2QBF solver (the angelic verifier Va). The inductive
synthesizer produces a candidate model that is correct on all counterexamples and sends this
model to both verifiers. If both approve the model, the synthesis successfully terminates. If
either fails, counterexamples are produced, refining the correctness constraints placed on the
inductive synthesizer, making it eventually produce a correct model (or conclude that no model
exists in the model space described by P?). The solver architecture is shown in Figure 3.8.

Precisely, the synthesizer maintains two sets of counterexamples, CE1 ⊆ dom(E)× S and
CE2 ⊆ dom(E)× F. The first set contains pairs of inputs and schedules, and is computed with
counterexamples given by the verifier for demonic schedules. The second one is a subset of
the input/output specifications, and is in turn computed with counterexamples found by the
verifier for angelic schedules. Starting with initial sets CE1 and CE2, the synthesizer solves at

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS61

demonic verifier angelic verifier

counterexample
m�

i, fi

counterexample
mi, si

(m1, P (m1, s1)) ∈ E (∃s.P (m′
1, s) = f1)

∃h. ∧ · · · ∧ ∧ ∧ · · · ∧
(ml, P (ml, sl)) ∈ E (∃s.P (m′

k, s) = fk)

Figure 3.8. The synthesizer consists of three communicating solvers. The two verifiers generate two
kinds of counterexamples, and the synthesizer generates models that satisfy the constraints for all
counterexamples.

each step the following formula to find a candidate model:

∃h.


 ∧

(m,s)∈CE1

Ph(m, s) ∈ E(m)




∧

 ∧

(m, f)∈CE2

∃s. Ph(m, s) = f




If the above formula is unsatisfiable, the partial program cannot be completed, i.e. synthesis
fails. Otherwise, the valuation of h defines a candidate model that we attempt to verify using
verifiers Vd and Va. If at least one of the verifiers returns with a counterexample, the synthesizer
attempts to find a new candidate after updating the sets CE1 and CE2 with the counterexamples
returned by either verifier. If a candidate model is validated by both verifiers, we obtain the
completed program Ph that is correct with respect to the specification E.

Querying for Ambiguity Analysis

Given the above procedure for synthesizing programs, we are now interested in querying spaces
of possible models. In particular, we analyze ambiguity of specifications. If a specification

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS62

is underspecified, we aim to reduce ambiguity by expanding it. If, on the other hand, it is
overspecified, our goal is to reduce the specification size without introducing ambiguity.

Computing Aggregate Outcome We first give an iterative algorithm to find aggregate out-
come set for a given program p and a given input m. The aggregate outcome set P[m] is the set
of outcomes of P on m over all schedules. We approach the task by first computing the outcome
of P on m under an initial schedule s. We then enlarge the set of observed outcomes Obs by
searching for a schedule leading the program to produce a previously unseen outcome. To find
such an outcome, we build a formula that states that the new outcome must differ from each
value in the Obs set inferred so far. Each step of the algorithm thus attempts to extend Obs by
solving the following formula:

∃s.
∧

f∈Obs

P(m, s) 6= f

If this formula is satisfiable, we obtain an outcome that we add to the set Obs, and then attempt
to solve the formula with the updated set. If it is unsatisfiable, we have obtained all outcomes
that can be produced by P on input m.

Alternative Models

To ascertain that a given hypothesis is the sole explanation to a biological phenomenon, a
biologist would like to learn whether there exists another hypothesis that differs from the
first on its observable outcome on an unperformed experiment, but is correct on the known
experiments. Given a program P1 that expresses the first hypothesis, and a partial program P?

2
that expresses a space of alternatives for the second, we can state this query formally as:

∃m.∃h.correct(Ph
2) ∧ Ph

2 [m] 6= P1[m]

If this query is satisfiable, then there is an alternative program Ph
2 and a new experiment m such

that performing the experiment m will invalidate at least one of P1 and Ph
2 . We now describe an

algorithm to solve this query.
Given the hypothesis that the space of mutation experiments M is small, we approach this

task by unrolling the existential quantification over m. The problem then reduces to synthesizing
Ph

2 for a given mutation m, such that Ph
2 [m] 6= P1[m].

Ph
2 [m] can differ from P1[m] in two distinct ways: (1) It can either contain an output value

not in P1[m]; or (2) it can be a strict subset of P1[m]. We give one algorithm for each case.

Case 1. A program Ph
2 that produces an outcome not seen in P1[m] can be found by augment-

ing the synthesis query described in Section 3.5 with a constraint asserting that there exists a
schedule that leads Ph

2 to produce an outcome not in P1[m], i.e. Ph
2 [m] \ P1[m] 6= ∅. We solve

the following formula to answer this query:

∃h. correct(Ph
2) ∧ ∃s.Ph

2 (m, s) 6∈ P[m]

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS63

This formula is satisfiable if and only if there exists a completion of program Ph
2 that produces

an outcome not in P[m]. It is 3QBF, and is handled using the mechanism of a synthesizer
communicating with two verifiers to perform inductive synthesis described in Section 3.5.

Case 2. Alternatively, Ph
2 may be found by attempting to synthesize a model that always

produces outcomes in a strict subset of P1[m]. This is achieved by discarding elements of P1[m]
one at a time, to see if such a model can be found. We do not need consider all subsets of P1[m],
as we only state that P1[m] \ { f } is only an upper bound of the possible outcomes for input m.

∃h. correct(Ph
2) ∧(∨

f∈P1[m] ∀s. Ph
2 (i, s) ∈ P1[m] \ { f }

)

This formula is satisfiable if and only if there exists a completion of program Ph
2 such that its

observable outcome set is a strict subset of observable outcomes of P1 on input m. Similarly to
Case 1, we use the scheme of cooperating solvers described in Section 3.5 to solve this formula.

Minimization

In a context where performing experiments is an expensive process, a researcher may want to
obtain a minimal non-ambiguous specification that sufficiently constrains the space of models to
validate a hypothesis. Given a partial program P? that expresses a hypothesis, and a specification
E that is non-ambiguous with respect to P?, the task of finding a minimal non-ambiguous
specification Em is stated as:

¬Amb(Em, P?) ∧ ¬∃E′, E′ ⊂ Em ∧ ¬Amb(E′, P?)

We compute a minimal specification Em by iteratively restricting the domain of E for the partial
program P?. This can be done by invoking the alternative model query once for each mutation in
dom(E).

At each step, we check whether program P? can be completed to a program Ph that decides
a set of outputs Ph[m] distinct from E(m), considering as specification the set of currently
non-redundant input values. This check is performed using the alternative model query described
in Section 3.5. If synthesis fails, m is marked as redundant. Otherwise, removing m from the
specification leads to ambiguity, and as a result m should be kept in the final set of pruned
inputs. Upon considering all inputs in the domain of E, a minimal specification is obtained by
removing from the domain of E those inputs that are marked as redundant.

3.6 Case Study: C. elegans vulval development
We attempt to synthesize a model for the vulval precursor cells (VPCs) that start off identical but
through coordination among themselves and with the Anchor Cell (AC) agree on specific fates.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS64

??

??
AC

M LHMLL

lin-3lin-15

let23

sem5

let60

mpk1

lin12

lstLS

fate0

fate12fate23

3' 2' 1' ??
lin12

lst

let23

VPC?

Exp# Mutations Fate pattern
AC lin12 lin15 Vul lst P3.p P4.p P5.p P6.p P7.p P8.p

1 Formed wt wt wt wt 3 3 2 1 2 3
5 Formed wt ko wt wt 1/2 1/2 2 1 2 1/2
7 Formed wt ko ko wt 3 3 3 3 3 3
13 Formed ko ko wt wt 1 1 1 1 1 1

Figure 3.9. (a) The template VPC? we use for our experiments, which is derived as simply the union of
connections known to biologists [50] as informally shown by Figure 3.1. The “fate” nodes are instrumen-
tation nodes to help read out the outcome. (b) A small fraction of the specification E (4 rows out of 48),
obtained from literature in biology [50]. A fate pattern of 1/2 indicates that both 1 and 2 are outcomes
observed in experiments.

From informal descriptions of protein interactions found in biological literature, we develop
our template VPC?. The template is shown in Figure 3.9(a) (derived from Figure 3.1.)

From the template, we observed that there are nodes with extremely simplistic on-off
behavior. These are LS, the downstream nodes of the cascade (sem5, let60, and mpk1) and the
fate nodes. While we can introduce holes in them (with expected performance degradation,
yet not being intractable), biologists have a very clear understanding of these nodes, and so
expect to see a simple and known behavior in them. Additionally, introducing holes in these
nodes leaves too much freedom to the synthesizer, such that generated models do not have a
biological interpretation.

Therefore we run our tool with unknown update functions for lin12, let23, and lst. The
generated update functions satisfy the specification and template structure of the program.
On the other hand, lin12, which has a very well understood behavior, colludes with the other
components to give models that are hard to explain to the biologists. Therefore, we additionally
allow the user to specify the behavior of lin12 concretely and synthesize let23 and lst. Let23 and
lst are indeed the most complex functions in their timing delays (and have the most complex
interconnection dependences). Indeed, in our attempts prior to synthesis (when designing the
verifier) to write the model by hand, we actually failed. Additionally, the models previously
written did not maintain the requisite lin12 behavior. Therefore, our synthesizer was solving a
problem that had been impossible to solve manually, even after considerable effort.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS65

The specification consists of forty-eight experimental observations of the fate outcomes of
six VPC cells in sequence. Some of these observation have non-deterministic outcome fates. A
fragment of the specification is shown in Figure 3.9(b).

From the template and these experiments, our synthesizer generated update function solu-
tions to let23 and lst that were confirmed by the biologists to be plausible behaviors. The output
from the synthesizer is shown in Figure 3.10(a).

It is important to note that this is a very significant achievement. Previously, when we had
written down a model for VPCs in RM [50] it had the following flaws: (1) The previous model
did not satisfy a biological invariant required on the lin12 component, and all efforts to fix
the model failed, (2) RM is too expressive and therefore there were cases where the model
“read the future” which was hard to interpret biologically, (3) the model lacked readability
prohibiting debugging, extension, and biological interpretation. Our synthesized alternative
model solves all these. Our first biologically relevant result is therefore that through synthesis
we have revalidated the (experimentally-confirmed) prediction from previous work, without the
vagaries of human modeling.

Specification ambiguity for C. elegans VPC models

Next, we analyzed the ambiguity in the specification. The important biological unknown is the
specific node within the cascade let23-sem5-let60-mpk1 that sends out the inhibitory signal
to lin12 and lst. We attempted experimenting with all four options under our definition of
understanding the specification ambiguity:

Alternativemodels for particular input configuration 44 of the 48 experimental observations
are deterministic. Wewanted to know howmanymodels exist if only the deterministic outcomes
are asserted. We found that under this relaxed specification, all four options of inhibition coming
from any node of the cascade work.

Then using the alternative model query from Section 3.5, we asked for a model including
any one of the four remaining outcomes. The synthesizer eliminates two that have inhibition
emanating from let60 and mpk1. This was significant since it formally confirmed the biologist’s
intuition that the inhibition comes from higher up in the cascade. Additionally, it showed that
sem5 (in addition to let23, which was conjectured earlier) was a valid possibility for the inhibitor.

Input configuration for disambiguating models Next, we attempted to observationally dis-
tinguish these two remaining valid models. Our 48 observations mutate the entire cascade
(all nodes let23 to mpk1) together. We wanted to infer if a finer-grained mutation exists that
distinguishes these two remaining mechanistic hypotheses. We expanded the experimental set
by enumerating all possibilities of the cascade nodes (24 possibilities of expansion for each of
the 48 rows) leading to 384 experiments. Our synthesizer shows that no other mutations exist that
would observationally distinguish these two hypotheses. This saves the biologist significant

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS66

S0 / 0 S1 / 0

ac = 3

S2 / 1

ac ∈ [2,3] ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

ac = 0 ⋁
(ac ∈ [0,1] ⋀ hyp = 0)

(ac = 2 ⋀ hyp = 0) ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

(ac = 1 ⋀ hyp = 1) ⋁
ac ∈ [2,3]

S1 / 0

S0 / 0

ls = 0

S2 / 1

(lin12 = 0 ⋀ ls = 1) ⋁
(lin12 ∈ [1,3] ⋀ ls = 0 ⋀ let23 = 0)

(ls = 1 ⋀ let23 = 1) ⋁
(lin12 = 0 ⋀ ls = 1)

lin12 = 0 ⋀ ls = 1

(lin12 = 0 ⋀ ls = 0 ⋀ let23 = 0) ⋁
(ls = 0 ⋀ let23 = 1)

lin12 ∈ [1,3] ⋀ ls = 1 ⋀ let23 = 0

lin12 ∈ [1,3] ⋀ ls = 1

lin12 = 3 ⋁
(lin12 ∈ [1,2] ⋀ ls = 1)

(a)

S0 / 0 S1 / 0

ac = 3

S2 / 1

ac ∈ [2,3] ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

ac = 0 ⋁
(ac ∈ [0,1] ⋀ hyp = 0)

(ac = 2 ⋀ hyp = 0) ⋁
(ac ∈ [1,2] ⋀ hyp = 1)

(ac = 1 ⋀ hyp = 1) ⋁
ac ∈ [2,3]

S0 / 0 S1 / 1

(lin12 = 0 ⋀ ls = 1 ⋀ sem5 = 0) ⋁
(lin12 ∈ [1,3] ⋀ ls = 1)

lin12 = 0 ⋀ sem5 = 1

lin12 ∈ [1,3] ⋀ ls = 1

lin12 = 0 ⋀ ls = 0

(b)

Figure 3.10. Synthesized update functions given two different connection topologies, for let23, and lst.
(a) The topology with lst and lin12 inhibited by let23. The template allows for three let23 states and three
lst states. (b) The topology with lst and lin12 inhibited by sem5. The template allows for three let23 states
and two lst states.

effort (336 experiments, each of which are expensive and time-consuming) as they now know
that mutation experiments will not suffice to distinguish these explanations and out-of-band
experiments need to be performed.

Inferring the minimal specification We run our minimization query from Section 3.5 for
each of the VPC queries, with significant results. We infer that, for the space we are searching
over, only four experimental observations suffice to yield a unique model. This set contains all
non-deterministic outcomes, and additionally others that together constrain the system enough
to yield the unique model that is explained by the 48 experiments.

Wet-lab predictions Our exploration demonstrated that (1) let23 is not the only possibility for
inhibition, but sem5 is as well; (2) let60 andmpk1 cannot play that role; and (3) the models using
let23 and sem5 cannot be distinguished observationally. These suggest a possible inhibition
from sem5, that cannot be distinguished through mutation experiments on the components
included in our model, therefore other types of experiments would need to be done.

3.7 Performance evaluation
We implemented our language as an embedded DSL in Scala. Our synthesis and analysis
framework, also implemented in Scala, uses the Z3 theorem prover [102] as its underlying
constraint solver. We interface with Z3 through the ScalaZ3 library [82]. Our framework consists
of 5K lines of code.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS67

example time mem. # calls time
calls holes search space

VPC1 96.64 2.34 282 0.09 (3, 3) 2.25 · 1034

VPC2 87.77 2.33 285 0.08 (3, 2) 1.21 · 1021

VPC3 48.29 0.77 139 0.10 (4, 3) 1.47 · 1042

VPC4 49.18 1.26 133 0.09 (5, 3) 7.25 · 1050

Sensors 4.30 2.40 51 0.01 (3, 2, 2) 2.53 · 1013

(a)

example time mem. # calls time
calls

pruned
total

VPC1 2964.82 2.20 3805 0.54 4/48
VPC2 1845.94 1.69 3544 0.31 3/48
VPC3 273.77 1.31 491 0.29 4/44
VPC4 316.32 1.35 482 0.37 4/44
Sensors 14.46 0.71 167 0.04 3/8

(b)

Figure 3.11. All times are in seconds, and memory usage is in gigabytes. (a) Evaluation results for
synthesis. The number of levels (i.e. states) for each synthesized update function is shown in the holes
column. (b) Evaluation results for specification pruning. We report for each example the size of the
pruned specification domain and the size of the original specification domain.

We show performance results for the evaluation of our synthesis procedure in Figure 3.11(a).
For each example, we present total execution time, maximummemory usage, number of calls to
the underlying SMT solver Z3, average call time, the structure of holes in the partial programs,
as well as the search space for synthesizing update functions. VPC1, VPC2, VPC3 and VPC4
are models of the fate decision in C. elegans vulval precursor cell development that express each
different biological hypotheses about the cells through their topology. VPC1 and VPC2 are
synthesized using a specification E with domain size 48, while VPC3 and VPC4 are synthesized
using a specification E′ whose domain is restricted to 44 elements. Sensors is the example
introduced in Section 3.2. For each example, we report the total running time for synthesis,
the maximum memory usage, number of calls to the underlying SMT solver Z3, the average
time Z3 takes to solve these queries, a description of holes in the partial program as a sequence
of number of states for each unspecified update function, and the size of the search space for
synthesizing these functions.

In all cases, we find that even for a complicated synthesis problem such as the VPCs, our
synthesizer is efficient.

In Figure 3.11(b), we present performance results for the pruning procedure described in
Section 3.5. We report the domain size for the result of the procedure and the initial domain
size in the pruned/total column.

As expected, the time for pruning is significantly higher than for only synthesis. This is
because multiple synthesis and verification queries are solved in the process of minimization.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS68

However, compared to the amount of time this could potentially save the biologists, i.e. months
or even years of work in doing redundant experiments, our inference times are insignificant.

3.8 Related Work
Inference of biological models While model checking of (manually written) logical biological
models has been an active area of research, we are not aware of work that synthesizes these
models. In contrast, a growing body of literature exists on inference of non-logical models. The
first class of such models uses ordinary differential equations (ODEs). An example of ODE
model inference from temporal and spatial data is the work by Aswani et al., who reduce the
amount of prior knowledge needed to infer an accurate model [8]. Rizk et al. find parameters
for ODE models by optimizing a notion of continuous degree of satisfaction of temporal logic
formulas [123]. Because ODE models are continuous, these techniques do not appear directly
applicable for inference of logical models based on concurrent systems.

Machine learning has also been used to infer biological models. Barker et al. use time
series data of protein levels to infer whether a protein is an activator or a suppressor of another
protein [13]. Time series data of concentrations is not available in our setting, so these approaches
do not apply to the inference of our models.

Stochastic modeling An alternative to modeling biological systems using non-deterministic
concurrency is to use stochasticity [7, 97, 61]. If we were interested in making predictions on
the system’s output behavior, i.e. the most likely the behavior of the cell for a given mutation, we
might select a model that predicts concentrations of proteins under varying initial parameters,
including those not yet measured in the lab. Such predictive models are often stochastic.

In contrast, we care to only discover a mechanistic explanation for the cellular system (i.e.
how proteins communicate to agree on a particular cell fate). It is appropriate here to rely on
a discrete model because the modeling problem is to find a program that reproduces each
observed outcome on at least one execution — as opposed to some ratio of all executions. The
existence of such a schedule is sufficient to determine the need to have the crucial protein-protein
interaction.

Synthesis algorithms for concurrent systems. Our synthesis algorithm extends the synthesis
algorithm for concurrent data structures [138]. That work showed how to extend the CEGIS
algorithm [139] from the sequential setting into the semantics of concurrent programs. The
resulting algorithm however did not handle the richer specification used in this work (i.e. the
angelic correctness). Indeed, new algorithms had to be developed for the specifications of this
work. The Paraglider project developed synthesizers for concurrent data structures by deriving
them from high-level specifications [153]. It is not clear how these derivation algorithms can be
adapted to synthesis of concurrent systems under input-output examples such as ours.

CHAPTER 3. SYNTHESIS OF BIOLOGICAL MODELS FROMMUTATION EXPERIMENTS69

Model checking [61, 14, 39, 15, 24] and abstract interpretation [35] have been applied to
analyze various biological systems. All such efforts to manually construct and validate models
have severely demonstrated the need for a synthesis system.

Various other paradigms have been used to model biological systems, including Petri
nets [25], boolean networks [90], and process algebras [120]. While our techniques are not
directly applicable, our success in synthesis for a model previously expressed in the expressive
RM formalism demonstrates potential for synthesis in these other formalisms as well.

3.9 Conclusion
We present a language and develop algorithms for synthesizing concurrent models from exper-
iments that perform mutations on biological cells and observe the results of the mutation on
developed cells. We synthesize models that reproduce all non-deterministic outcomes of exper-
iments. This variant of synthesis requires a 3QBF algorithm, which we design by allowing three
solvers to communicate counterexamples. We also develop algorithms for analyzing specifica-
tion ambiguity, ascertaining that a model is the sole biological explanation whenever possible
under given biological assumptions, and computing minimal non-ambiguous specifications.
We carried out a significant case study, synthesizing a model of vulval cell fate specification in
the C. elegans earthworm that expresses a previously unknown biological hypothesis.

70

Chapter 4

Investigating the Identifiability of Boolean
Network Models from Single-Cell Data

Single-cell data offer a high-resolution view of dynamic cellular processes that can be used to
uncover the underlying mechanisms from a single “run”. It has been demostrated that symbolic
reasoning enables an efficient search that can exhaustively explore the space of Boolean models
that agree with such data. However, data imperfections such as measurement errors and sparse
sampling make it challenging to infer such executable models. We present Karme, a framework
we developed to infer Boolean network models of gene regulation from single-cell data and
cell trajectories, and a workflow to evaluate the identifiability of Boolean network models in
face of varying degrees of measurement errors, sample sparsity, and prior knowledge. This
workflow consists of applying Karme on in silico observations of myeloid differentiation, and
evaluating its performance in predicting behavior under unseen perturbations. We further
propose an experimental design approach to distinguish inferred Boolean network models
using user-defined metrics, and demonstrate its ability to identify perturbation experiments
that target genes that have a central role in the modeled system.

4.1 Introduction
A fundamental goal in biology is to reveal the mechanisms controlling the expression of genes in
dynamic cellular processes, such as the differentiation of a progenitor cell type into multiple cell
types. Gene regulatory networks (GRNs) regulate gene expression in the cell, and discovering
their structure is useful to understand cellular development. Traditional transcriptomics assays
show gene expression levels averaged over a population of cells, hiding heterogeneity between
distinct cell types that have different gene expression patterns. With recent technological ad-
vances, it is possible to perform single-cell transcriptomics assays, which offer a high-resolution
view of heterogeneous cell populations, by measuring gene expression in individual cells. How-

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 71

ever, measuring an individual cell destroys it, and it is therefore impossible to trace a single
cell’s evolution through a cellular process.

The first challenge in modeling GRNs from single-cell transcriptomics data is to recover
the temporal expressions of genes from snapshots of individual cells. A multitude of methods
aiming to identify cell lineage trees and order cells across each lineage “trajectory” have been de-
veloped in recent years [10, 128]. Popular trajectory inference approaches include Monocle [150],
which builds a minimum spanning tree (MST) on cells after a dimensionality reduction step,
and Slingshot [145], which builds a MST on cell clusters.

Once cell trajectories have been identified, it is desirable to produce models of the GRNs that
control the observed dynamic processes. Computational modeling allows to give a mechanistic
explanation for cellular processes observed through single-cell transcriptomics data. One way
to model GRNs is to use continuous representations of entities, using differential equations
or probabilistic models to explain the interactions within networks. Jang et al. [71] propose a
probabilistic model of gene regulatory networks to explain a lineage tree of discrete cell states
inferred through a Bayesian framework [53], and explore a sample of models that fit the data.
Weinreb et al. [157] use differential equations tomodel GRNs from single-cell data, and explicitly
address ambiguity in the model space through a choice of assumptions.

An alternative to continuous modeling of GRNs is the use of discrete models. Discrete
modeling has the benefit of allowing exhaustive exploration spaces of models, and enables
model inference methods that use symbolic reasoning to perform this exploration in a highly
efficient manner. Woodhouse et al. [159] introduce the idea of viewing discretized single-cell
gene expression data as states that a model must visit, and use symbolic reasoning to infer
Boolean models from the data. The method makes the assumption that sufficiently many states
have been observed in the input data to obtain a state graph that is connected by edges that
change only one gene’s value at a time, and does not handle the case of missing states in the
input. Lim et al. [91] approach the same problem using a local optimization procedure that
uses a hill climbing strategy to modify an initial network. Unlike the work by Woodhouse et
al. [159], this approach avoids the necessity to observe a connected state graph. However, as it
is a local search procedure, it relies on the existence of a good initial network as a starting point
for the search.

In this work, we investigate the identifiability of Boolean network models from single-cell
data. We assess the robustness of model identifiability in presence of data imperfections, such
as measurement errors and sparse data sampling, through an in silico empirical analysis that
uses a realistic model of myeloid cell differentiation [88]. For this purpose, we use a collection
of high-level and low-level model behavior metrics.

As part of our work, we developed Karme, a method to infer Boolean network models
from single-cell data and cell trajectories. Karme leverages cell trajectories to construct a state
transition graph on cells, and does not require all intermediary states to be observed in the
single-cell data. Karme exhaustively explores the space of gene regulatory network models
that satisfy a customizable set of optimality criteria and that maximally fit a set of weighted

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 72

constraints derived from the inferred state transition graphs.
We evaluate Karme’s performance using metrics that quantify state graph construction

success, and similarity between the behavior and structure of inferred models and the reference
model. In our analysis, we make the following observations:

1. We find that model inference is especially robust against false positives in the input data
when it is equipped with the knowledge of candidate stable states.

2. We observe that inferred models are able to generalize from input data on a wild-type
execution to behavior under unobserved perturbations.

3. We investigate the impact of stable state knowledge on state graph construction andmodel
synthesis by holding out stable state knowledge partially. We find that while state graph
construction is not particularly hindered by the lack of data, the structural and behavioral
quality of inferred models is affected when prior knowledge about stable states is partially
missing.

We further characterize models enumerated by Karme by their distinguishability under
previously unseen experimental conditions, and propose an experimental design approach that
can suggest the next experiment to perform for user-defined model distinguishability metrics.
We perform an experimental design analysis using two model difference metrics, comparing
state reachability behavior and stable state behavior of inferred models. We identify Gata2,
which is an early hematopoietic factor in myelod differentiation, as the gene whose perturbation
leads to the maximum difference among inferred models. Our approach extends existing
experimental design approaches through the joint handling of novel model difference metrics
and model semantics allowing cyclic functional dependencies [9].

4.2 Overview
In this work, we are interested in the identifiability of Boolean network models of gene regu-
latory networks (GRNs) from single-cell data. We define identifiability as the ability to infer
a semantically unique model given experimental data. Specifically, we build a workflow to
generate in silico single-cell data from a simulation of a reference Boolean network model, ex-
haustively explore the space of Boolean models that agree with the generated observations,
and compare inferred models to the hidden reference model through several behavioral and
structural criteria. An overview of our approach is presented in Figure 4.1.

In Boolean modeling of GRNs, each modeled gene is either in an “off” or an “on” state.
Together, the Boolean gene values constitute the state of a cell. Boolean networks capture
combinatorial relationships between genes in a regulatory network, by modeling each gene as a
Boolean function (Section 1.3).

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 73

Reference model Mr : {0, 1}n → {0, 1}n

Initial states Sinit ⊆ {0, 1}n

Non-deterministic simulation to generate in silico input data (Section 4.3)

Simulated states S ⊆ {0, 1}n

Stable states Sstable ⊆ S
Simulation timestamps TS : S→N

Introducing data imperfections to model measurement error, sparse sampling, and partial
stable state knowledge (Section 4.4)

Noisy single-cell observations O
Over-approximated (partial) stable states S′stable ⊆ {0, 1}n

Cell trajectories T = {T1, · · · , Tk} where Ti : Oi → R, Oi ⊆ O

Building a graph of discrete state transitions (Section 4.5)

Directed state graph G = (V, E)
State weights W : V → R>0

Synthesis of Boolean networks (Section 4.6)

All optimal modelsM

Evaluation (Section 4.7)

Recovery of simulated
states S by the state graph
construction, similarity be-
tween models M and the
reference Mr under pertur-
bations

Experimental design to
find knockout studies max-
imally distinguishing mod-
els (Section 4.8)

Knockout experiments E
maximizing the difference
between models M

Figure 4.1. Workflow overview.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 74

The cell differentiation mechanism can typically be modeled as a system that transitions
from an initial progenitor state to multiple stable attractor states describing Boolean gene
expression levels in mature cell types. Using the formalism of Boolean networks, modeling
the differentiation mechanism requires an asynchronous schedule policy in order to achieve
non-deterministic behavior, as the network must reach different stable attractor states when
executed from the same initial state. The asynchronous Boolean network formalism has been
used in previous work for modeling cell differentiation [88, 159, 91] (Section 1.1).

In the first stage of the workflow, an asynchronous Boolean network Mr is used as a reference
model to generate in silico input data. The model is executed from the set of initial states Si
using an asynchronous update schedule, until all reachable states have been explored. The
outcome of this execution is the set of reachable states S, and state timestamps TS that maps
each state in S to an integer value corresponding to the execution iteration in which that state
was reached for the first time. The reachable states S correspond to a Boolean representation of
single-cell gene expression measurements, while the timestamps TS approximate the output of
a cell trajectory algorithm applied to S. We define the set of stable attractor states Sstable as the
subset of reachable states that are mapped to themselves by each local activation function in
the reference model Mr. In Section 4.3, we describe a modification to the execution model in
order to more realistically model the system’s intermediary behavior between the initial and
final states.

The simulation of the asynchronous Boolean network gives an idealized viewof experimental
data, lacking measurement errors, and representing all states that the model went through
during execution. In practice, experimental data sets can have measurement errors, leading
to false positive states in the input data, and can be subject to sparse sampling, leading to
false negatives in the observed state space. In order to model such data imperfections, we
sample noisy observations O from S, given target type I and type II error rates. Each sample
corresponds to an individual cell. Using the state timestamps TS that map each Boolean state to
a timestamp, we generate a single cell trajectory that maps sampled observations to pseudotime
values, establishing an order over observations. Generally, there might exist multiple cell
trajectories T = {T1, · · · , Tk}, corresponding to distinct cell lineages appearing in the data.
Each cell trajectory Ti : Oi → R defines a total order over a subset of observations Oi ⊆ O.
Furthermore, knowledge of the stable states Sstable that the system must reach may be partial,
such that the value of some genes are unknown in the stable states. We over-approximate
these partial states to capture all possible valuations of the unknown gene values. Section 4.4
describes these data transformations in detail.

After we obtain the in silico data set that captures imperfections in the input data, we perform
model inference to obtain the setM of all models that agree with the data. Karme decomposes
the model inference task into two sequential steps:

1. Building a state transition graph that represents a progression of cell states over time
(Section 4.5). The output of this step is a directed graph G = (V, E) where each vertex in

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 75

V corresponds to a distinct Boolean state in {0, 1}n, and W : V → R>0, a mapping from
vertices to weights, corresponding to the number of observations that map to each given
state.

2. Synthesizing the set of modelsM that capture the state transitions observed in the graph
G. M contains all models that satisfy optimality criteria regarding fit to data and syntactic
properties (Section 4.6).

Performing model synthesis using a state transition graph has two added benefits compared
to synthesizing models using only initial and final states [85]. First, the state transition graph
gives us more information for inference of functions, because it rules out certain transition
orders. The observed transition orders induce particular dependencies between variables. Such
dependencies are not necessarily visible when we only observe initial and final states, and
inference from state graphs can produce models that generalize to unobserved experimental
conditions from a single “run” of the system. Second, using a state graph for synthesis paves the
way for an efficient model inference method, where the problem of synthesizing the Boolean
network can be decomposed into the inference of each Boolean function independently from
the other functions. In contrast, without the knowledge of intermediary states, functions must
be jointly inferred through a symbolic encoding of the system’s execution.

We evaluate the output of both stages of model inference against the reference model Mr
and its noise-free simulation.

• To evaluate state graph construction, we compare the set of states captured by G against
the simulated states S.

• To evaluate the set of inferredmodelsM, wemeasure the similarity of the inferred Boolean
functions to the reference, and compare the behavior of inferred models to the reference
under unseen perturbations.

• Additionally, we evaluate the impact of prior knowledge about expected stable states by
performing hold-out experiments (Section 4.7).

Finally, we characterize the model spaceM by searching for previously unobserved network
perturbations under which inferred models exhibit different behavior. We identify perturbation
experiments that lead to the maximum difference in the behavior of pairs of models, similarly to
previous approaches to experimental design [9]. Adopting an enumerative approach to explore
experiments, we demonstrate the value of using custom model difference metrics to highlight
different key genes in modeled systems (Section 4.8).

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 76

4.3 Reference Model
We base our analysis on a well-established Boolean gene regulatory network model of myeloid
progenitor cell differentiation [88]. Working with a synthetic model allows us to evaluate
our two core algorithmic tasks: We can quantify the success of state graph reconstruction by
comparing it to the state graph generated during simulation of the reference model, and we can
evaluate model synthesis by comparing inferred models to the hidden reference model used to
generate the data. Using simulated data also gives us the flexibility to vary noise and sampling
characteristics of the data (Section 4.4), and evaluate their impact on our methods (Section 4.7).

This Boolean model aims to explain how the common myeloid progenitor (CMP) cell type
is differentiated into four myeloid cell types: erythrocytes, megakaryocytes, monocytes, and
granulocytes. Krumsiek et al. [88] identify and model 11 genes, which are transcription factors
known to guide differentiation in this context. The model consists of one Boolean function for
each gene, and is manually curated, based on a comprehensive literature survey ([88], Table 1).

The CMP cell type corresponds to what the authors call an “early, unstable undifferentiated
state”. The work focuses on executions of the model from this state only. States upstream
of the initial state are considered “physiologically irrelevant”, justifying the starting point of
the modeled system. The four final cell types are stable attractors with respect to the Boolean
model, i.e., all Boolean functions in the model map each final cell type state to itself. The
correspondence between the expected cell types and Boolean states has been established by
analyzing two independent microarray studies that give the expression profiles of the cell types.

Reaching all four cell types from the single initial state requires non-deterministic execution,
since otherwise the model could reach at most one stable attractor state. As a result, the authors
use asynchronous state updates for execution semantics (Section 1.3). Under this execution
model, the Boolean model simulated from the initial state reaches four stable attractor states,
which correspond to the four expected myeloid cell types.

The authors perform individual in silico knockouts (i.e. perturbation experiments) of each
of the 11 modeled genes, and observe the set of reachable stable attractors for each knockout.
Experimental data is available for 8 of the knockouts, confirming the model’s behavior in
reaching the correct set of stable attractor states for each knockout ([88], Figure 5.B). The effects
of gene overexpression experiments is also discussed, and compared to observations from
literature ([88], Supporting Information S4).

This Boolean model has been used as an in silico benchmark in further research: Woodhouse
et al. [159] use the model for benchmarking the performance of an inference method based
on single-cell data, treating each state reached in the unperturbed execution of the model
from the CMP state as a single cell observation. The Boolean function for one gene (C/EBPα)
is semantically modified from the original model, due to syntactic limitations on Boolean
expressions in [159]. The model has also been used as a benchmark in Lim et al. [91], where the
authors take the model as a starting point and propose modifications to it through the use of
additional single-cell qPCR and single-cell RNA-Seq data, via genetic programming. Yordanov

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 77

et al. [166] also use the model as a case study, proposing modifications to the original model to
better match the expressed value of Gata2 in the megakaryocyte stable state. The authors use a
symbolic synthesis approach, similar to [85], using the wild-type stable attractor reachability
constraints. However, the behavior of the model under knockout or overexpression studies is
not discussed.

Adjusting the Execution Semantics

We begin our analysis with a study of the state space produced by the myeloid differentiation
model under asynchronous Boolean network semantics. While Krumsiek et al. [88] mainly
focuses on the stable states that the Boolean network converges to, we are interested in the
biological plausibility of the intermediate states that the model visits. As we will see below,
the simulation leads to superfluous execution paths that do not appear to faithfully model the
intermediate states that the system goes through. We propose a modification to the execution
semantics to help prevent problematic execution paths, and use the modified semantics to
produce input data for our evaluation.

Executing the asynchronous Boolean network model produces a state graph with 160 nodes
that correspond to unique Boolean states, and 477 edges that correspond to state transitions
that occur during model execution. We note that this differs from the 232 nodes and 789 edges
reported by Krumsiek et al. [88], while it matches the state graphs produced by Woodhouse et
al. [159]. In this state graph, we observe paths corresponding to the (up or down) regulation of
one gene, followed by the regulation of another, immediately followed by the opposite regulation
of the first gene. An example can be seen in the subgraph shown in Figure 4.2. In this example,
we observe that Pu_1 is downregulated from state s1 to s2. Meanwhile, there is an alternative
path from s1 to s2 that goes through two intermediary states s3 and s4. Along this path, EgrNab,
which is a factor that represents an integration of Egr-1, Egr-2 and Nab-2, is first upregulated,
and is then downregulated. If we use the execution steps in which a state is reached as a proxy
for the time of observations, the above kind of behavior leads to unexpected relative temporal
orderings of states. For example, if state s1 is reachable at time t, then s2 can be reached at time
t + 1 through downregulation of Pu_1. Meanwhile, as the alternative path shows, s3 and s4
are reached at times t + 1 and t + 2, respectively. At the same time, s2 is reachable from s4 at
time t + 3. As a result, neither the minimum, nor the average time value for state s2 allows us
to properly orient the edge between s2 and s4.

To address this intermediary behavior issue, we propose two modifications to the execution
semantics, resulting in a simpler state graph:

1. We allow distinct execution paths reaching the same state if their lengths from the initial
node are equal. We only allow a unique, earliest time point for reaching each state. This
condition prevents execution paths of the type described above, where an execution path
leads to a state reachable through a shorter path.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 78

s1

s2

s3

s4

Pu_1 -

EgrNab + Pu_1 -

EgrNab -

Figure 4.2. Subgraph of the state graph illustrating superfluous transitions. The state graph admits a
path s1 → s3 → s4 → s2 along which EgrNab is first upregulated, then downregulated.

Figure 4.3. Trimmed state graph in which the undesired intermediate state behavior has been eliminated.

2. We rule out states that cannot reach any of the stable attractor states that were reachable
from initial states under the original execution semantics. This results in the removal of
additional states without outgoing edges introduced due to the first rule.

We call this modified execution model the trimmed execution semantics. The state graph
produced by the trimmed execution semantics can be seen in Figure 4.3. This state graph is
a subgraph of the state graph produced using the original execution semantics, and contains
fewer non-deterministic interleavings of function applications. It contains 33 nodes and 58
edges, as opposed to 160 nodes and 477 edges for the former state graph.

In Section 4.4, we use trimmed execution semantics to generate synthetic single-cell data in

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 79

our evaluation of the impact of sources of approximation on model synthesis. In Section 4.7, we
use a hidden reference model that reproduces the trimmed state graph when it is executed with
non-trimmed execution semantics. This new hidden reference model is obtained by running
our synthesis procedure (Section 4.6) with the trimmed state graph as input.

4.4 Generating in silico single-cell observations
Our goal in this section is to generate input data that models measurement errors, sparse
sampling, and partial prior knowledge about the stable attractor states that the system may
reach.

The execution of the reference model Mr from the initial states Sinit, as described in Sec-
tion 4.3, produces the set of states S ⊆ {0, 1}n that are reached during execution, and a function
T : S → R that maps each reached state to the first execution step in which it was observed.
T represents a cell trajectory obtained through existing trajectory inference methods. We also
define the stable attractor states of the execution as Sstable = {s ∈ S | ∀ fi ∈ Mr. fi(s) = s}, i.e.
the reachable states which are mapped to themselves by all local activation functions in the
reference model Mr.

We transform the set of states S to amultisetO, representingmultiple single-cell observations.
Distinct observations may map to the same Boolean state, corresponding to cells in which the
same genes are expressed according to a Boolean view of gene expression. To generate O, we
first sample k instances of each state in S. We then remove observations from O via random
sampling until a target type II error rate is reached. Finally, we add noisy observations to O,
obtained by introducing bit flips to states randomly sampled from S, until a target type I error
rate is achieved. This gives us an input data set of single-cell observations with controlled
amounts of measurement error and sparse sampling. We exclude the initial and stable state
sets from our random sampling of states during this transformation, with the assumption that
sparse sampling cannot lead to missing these key states abundant at the beginning and the end
of execution, respectively.

The cell trajectory T : S→ R is transformed into T′ : O→ R by preserving the mapping
of existing states, and defining the value for a noisy observation based on the state that was
altered to obtain the observation.

During input data generation, we also optionally hide knowledge about the value of certain
genes in the stable states. Precisely, to hide the value of gene a in the stable state knowledge, we
duplicate the states in Sstable to include both values of a:

S′stable =
⋃

s∈Sstable

{s[a 7→ 0], s[a 7→ 1]}

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 80

4.5 State Graph Construction
In this section, we describe how Karme builds a directed graph G = (V, E) in which V is the
set of discrete states that correspond to the observed single-cell measurements, and E is the set
of state transitions that the system goes through. This state graph is built in presence of errors
in the observed state space, i.e., missing observations and measurement errors.

Our goal is to obtain a state graph that uses edges with least Hamming distance to connect
initial states with remaining states. This rules out using a simple approach where each state
is linked with their immediate successors with respect to the cell trajectory information, since
such an approach might lead to adding edges with large Hamming distance to noisy states.
Instead, we design an iterative graph construction algorithm that prioritizes edges with least
Hamming distance to ensure reachability, using the knowledge of both cell trajectories and the
Hamming distance between discrete states.

The input components to the state graph construction are:

1. Single-cell observations O: A multiset of Boolean states, in which each element corre-
sponds to one cell. Multiple cells may map to the same discrete state.

2. Cell trajectories T = {T1, · · · , Tk}: A set of partial functions that map observations to
pseudotime values. Each trajectory Ti is a total order over a subset of measurements.
Multiple trajectories represent branching lineages. Such cell trajectories are inferred by
cell reordering algorithms.

3. Optionally, a candidate set of stable states Sstable. If provided, all states without outgoing
transitions in the constructed state graph must appear in Sstable.

Cell trajectories as strict partial orders. In order to build state graphs in which edge orienta-
tions are consistent with cell trajectories, we transform the cell trajectories into a strict partial
order ≺ over discrete cell states. Conceptually, to relate Boolean states x and y, we compare
pseudotemporal values for all observations corresponding to each state on common cell trajec-
tories. We say that x ≺ y if and only if the pseudotemporal sample for y is not less than those
for x for any trajectory, and there exists at least one trajectory for which the pseudotemporal
values for x are less than those for y.

Precisely, given cell trajectories Ti : Oi → R, where each trajectory assigns pseudotemporal
values to a subset Oi of all observations O, we define the order ≺ as:

x ≺ y .
= ∀ Ti ∈ T. (x ∈ Oi ∧ y ∈ Oi) =⇒ pTi(y < x) > threshold
∧ ∃ Ti ∈ T. x ∈ Oi ∧ y ∈ Oi ∧ pTi(x < y) ≤ threshold

In the above, pTi is the probability of x < y given all the pseudotemporal values that corre-
spond to states x and y in trajectory Ti. This probability is computed by a sample comparison
method, such as rank-sum or Kolmogorov-Smirnov.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 81

Finding initial states. Given a definition of a strict partial order over discrete states, the initial
states are defined as minimal elements with respect to the partial order, i.e. there exists no state
that is less than any initial state according to the order ≺:

I = {s : 6 ∃u. u ≺ s}

Iterative graph construction. State graph construction is an iterative procedure that aims to
connect initial states to the remaining states by minimal Hamming distance:

1. Start with partial-order-minimal states as the initial vertex set.

2. Repeat until no more edges can be added:

a) Saturation step: Add all d-Hamming edges from already reachable nodes to any
node, where d is the least Hamming distance between a reachable node and any
other node.

b) Extension step: Add all d′-Hamming edges from already reachable nodes to cur-
rently unreachable nodes, where d′ is the least Hamming distance between currently
reachable and unreachable nodes. This step allows the graph construction algorithm
to extend graph connectivity by considering multi-Hamming edges that cannot be
added in the saturation step.

3. If a candidate set of stable states Sstable is provided, remove all graph nodes that do not
have a path to any stable state in Sstable.

This iterative approach allows us to build state graphs that connect states using edges that
have as small Hamming distance as possible. Edges of a given Hamming distance d are only
added to make it possible to reach states that could not be reached via edges with Hamming
distance less than d. We note that, due to the strict partial order≺ being transitive, the resulting
state graphs may not contain any cycles. Our approach is akin to minimum spanning tree
approaches to build cell lineage graphs [128], but differs from them in its handling of cells as
discrete states.

In Section 4.7, we evaluate the performance of the state graph reconstruction algorithm by
measuring its ability to recover the Boolean states S that appear in the original simulation.

4.6 Best-Fit Synthesis from State Graphs
In this section, we describe a synthesis procedure to infer mechanistic models that explain the
progression of discrete cell states in a system over time. The input to the synthesis procedure is a
directed state graph G = (V, E)with nodeweights W. Our goal is to infer a set of asynchronous
Boolean network modelsM that can reproduce G when it is executed from its initial states.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 82

Fisher et al. [159] introduced the idea of viewing discretized single-cell data as a state space
from which a Boolean network can be reconstructed. In this work, we generalize this approach
to handle state graphs in which edges might connect pairs of states that are separated by a
Hamming distance greater than 1. Additionally, while previous work relies on finding shortest
paths from initial to final states to orient the state graph, we aim to maximally fit state transitions
induced by G, whose edges have been oriented with the help of pseudotemporal information
during state graph construction (Section 4.5).

The state graph G = (V, E) induces a (partial) truth table for every modeled variable. For
each state vi ∈ V, if there is an outgoing edge from vi to vj along which the k-th gene changes its
value, then this edge constitutes an input-output constraint for the activation function fk in the
form of fk(vi) = vj. If, on the other hand, vi does not have an outgoing edge along which gene
k changes its value, then we have a constraint of the form fk(vi) = vi. A model in which each
local update function satisfies all of its induced constraints is guaranteed to perfectly reproduce
G if it is executed from the initial states of G.

Meanwhile, it may be infeasible to represent the induced truth tables as Boolean update
functions in presence of syntactic limitations on models, such as a bound on the depth of
function expression trees. Imposing a limit on function complexity is both important from
a scalability perspective, and can act a means of regularization to avoid overfitting to state
graphs inducing inconsistent state transitions due to data noise. When such inconsistencies
occur, our strategy is to bias satisfying state transitions between frequently observed states. We
therefore derive constraint weights from the node weights W, and infer models that satisfy sets
of constraints with maximal weight sum. The weight of the constraint induced by the edge
(vi, vj) is defined as the product of node weights W(vi) ·W(vj).

A key strategy for the scalable synthesis of Boolean networks is the decomposition of the
model synthesis task into the inference of individual local update functions. If each local
activation function satisfies all of its input-output constraints induced by the state graph G,
then they jointly form a Boolean network model that can perfectly reproduce G when executed
from its initial states.

In the remainder, we describe our approach to constraint satisfaction and resolving inconsis-
tencies in the data, and we characterize the properties of the modelsM that we enumerate.

Transforming Multi-Hamming Edges for Synthesis

The directed graph built using the state graph construction procedure described in Section 4.5
may contain edges between states that are separated by a Hamming distance greater than 1. We
interpret these multi-Hamming-distance edges as independent transitions of multiple variables.

In order to achieve compatibility between multi-Hamming transitions and the asynchronous
Boolean network execution model that schedules one local update function application at a time,
we transform each multi-Hamming edge into a set of 1-Hamming-distance edges expressing
an arbitrary interleaving of function applications. This transformation favors the inference of

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 83

models that do not potentially get stuck in an intermediary state, depending on the order of
function application.

Specifically, for each n-Hamming distance edge (vi, vj, we model all n! paths by introducing
an n-dimensional hypercube whose nodes correspond to variable flips from vi to vj, and whose
edges are oriented from vi to vj. If a Boolean network model perfectly reproduces the state
transitions along the hypercube, then its nondeterministic execution from the state vi will reach
vj irrespective of the order in which local activation functions are applied.

Viewing the State Graph as Hard and Soft Constraints

The state graph G induces two types of constraints for each variable k. For each vertex v ∈ V, G
induces a switching constraint for k if v has an outgoing edge along which k switches its value,
and a looping constraint if there exists no such edge. In this work, we treat switching constraints
as hard constraints that must be satisfied by inferred models, and looping constraints as soft
constraints that are maximally satisfied. This strategy prioritizes the reachability of states in G
(through the satisfaction of switching constraints), and provides a best-effort approach to avoid
the production of states that are not in G (through the satisfaction of looping constraints).

We define the weight of each constraint as the product of the weights of its endpoints. As a
result, looping constraints induced by more frequently observed states are assigned a larger
weight, and are prioritized in the synthesis process.

Synthesis with Maximally Satisfied Soft Constraints

Oncewe haveweighted hard and soft constraints induced by G, we search formodels that satisfy
all hard constraints, and soft constraints with a maximal sum of weights. If the hard constraints
for a variable are not consistent, we partition the set of hard constraints intomaximally consistent
subsets of constraints, and perform the synthesis procedure on each subset individually. The
partitioning is a greedy procedure that expands the current subset of constraints with the
constraint with the next largest weight, until all constraints have been considered.

For each hard constraint subset, we find a maximal set of soft constraints that are consistent
with the hard constraints given the syntactic bounds on the model search space, i.e., the size
of inferred Boolean functions. For finding a maximal set of soft constraints, we again adopt a
greedy approach, considering each soft constraint by decreasing weight.

Once a maximally satisfiable set of constraints is obtained, we enumerate all minimal models
that satisfy them. Model minimality is defined as each update function having (1) minimum
expression tree height, and (2) the minimum number of variables in function expressions.
Therefore, we obtain a set of modelsM that is the union of all minimal models for eeach hard
constraint subset and its associated soft constraint subset with maximal sum of weights.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 84

4.7 Evaluating Model Inference from Imperfect Data
In this section, we evaluate the performance of model inference from single-cell data in presence
of data imperfections. As described in Section 4.4, wemodel data imperfections as false positives
and false negatives in the input data, as well as uncertainty about the potential stable states that
the system being modeled is expected to reach.

As we work with in silico data obtained by simulating a reference model, we are able to
precisely quantify the success of both state graph construction and model synthesis steps. To
evaluate state graph construction, we compare the inferred state graph G = (V, E) to reference
model simulation data before introducing data imperfections. To evaluate model synthesis,
we compare the inferred modelsM to the reference model Mr both according to the similarity
of inferred Boolean functions, and according to model behavior under previously unseen
perturbations. As this section will present, this evaluation strategy allows us to observe that
increased performance in state graph construction leads to better generalizability in model
behavior.

Evaluating State Graph Construction

Evaluating state graph construction consists precisely in comparing the set of states recovered
as the vertex set V to the set of simulated states S before introducing type I and type II errors to
the input data. For each combination of type I and type II error ratios, we run five replicates
of the workflow with different seeds for random number generation. We measure Boolean
state recovery by computing the F1 score (the harmonic mean of precision and recall) where we
compare V against the ground truth S. We present results as heatmaps showing the median
value over all replicates for each pair of type I and type II error ratios.

Figure 4.4a shows the F1 scores for Boolean states observed in the noisy input. As expected,
input data without any type I or type II errors (upper left corner of the graph) achieves a
perfect F1 score of 1. and the F1 score decreases as we increase the type I or type II error ratio.
Figure 4.4b shows the F1 scores for Boolean states that appear in the state graph G.

We observe that state graph construction is particularly resilient against false positives in
the input Boolean states, in the absence of false negatives. Upon closer examination, we observe
that the last state graph construction step that filters out vertices that do not have a path to any
stable state substantially removes false positive states introduced into the data.

We also observe an amelioration of the median F1 score for high type I and type II error
ratios in the reconstructed state graphs compared to input data (lower right quadrant). The
breakdown of the F1 score into the precision and recall components is shown in Figure 4.5b and
Figure 4.6b. As this breakdown shows, both precision and recall scores are improved in the
reconstructed state graphs compared to input data characteristics. We attribute the improvement
in precision to the ability to exclude false positive Boolean states in state graph construction,
and the improvement in recall, to the recovery of false negative states influenced by the higher

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 85

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(a) F1 scores for input data

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(b) F1 scores for state graphs

Figure 4.4. F1 scores for Boolean states as they appear in the input data, compared to F1 scores for
Boolean states that appear in the constructed state graphs. We observe that state graph construction is
able to recover states in S that do not appear in the input, for the cases where the input data contains
false positive states but no false negative states.

amount of Boolean states observed (by addition of hypercubes of states to the state graph), even
though some of the observed states are false positives.

Evaluating Model Synthesis

Next, we investigate model synthesis performance under the type I and type II error condi-
tions explored above for evaluating state graph construction. In each setting, we compare the
collection of inferred modelsM to the reference model Mr based on their dynamic behavior
under the unperturbed and previously unseen, perturbed contexts. In addition, we compare
the inferred Boolean expressions to their reference counterpart according to how similarly they
behave on the same input, by comparing their truth tables. For our analyses, we approximate
the set of inferred models by a random sample of 10 models from the enumerated solution
space. In 301 runs out of 405 runs, there exist strictly fewer than 10 enumerated models; in 151
runs, a unique model is inferred.

We first measure the ability of inferred models to reproduce the stable state behavior of the
reference model. For each inferred model, we compare the stable states reached by the model
to those reached by the reference, and compute F1 scores to quantify success. We perform
this comparison for both the wild-type setting and the eight genetic knockout perturbations
for which we have experimental evidence ([88], Figure 5b). Figure 4.7 shows the results in

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 86

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(a) Precision scores for input data

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(b) Precision scores for state graphs

Figure 4.5. Precision scores for Boolean states as they appear in the input data, compared to precision
scores for Boolean states that appear in the constructed state graphs.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(a) Recall scores for input data

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(b) Recall scores for state graphs

Figure 4.6. Recall scores for Boolean states as they appear in the input data, compared to recall scores for
Boolean states that appear in the constructed state graphs.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 87

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(a)Wild-type stable state recovery

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(b) Knockout stable state recovery

Figure 4.7. F1 scores for stable state recovery by inferred models in the wild-type (unperturbed) case
and knockout (perturbed) cases.

both settings. The F1 scores shown in Figure 4.7a are median values across all models in five
replicates in wild-type, and the scores shown in Figure 4.7b are median values across all models
and all perturbations in five replicates.

For stable state recovery in the wild-type case, we observe a pattern of success similar to the
state graph construction success. We note that with the knowledge of desired stable states, it
is possible to filter the reconstructed state graph to only include those specific states as nodes
without outgoing edges, and the synthesis procedure is able to find models that can reach
the stable states and avoid making transitions from them. For the case of previously unseen
perturbations, we note that synthesis is able to generalize to accurately predict stable state
behavior under knockout experiments. For large values of the type II error ratio, we observe an
improvement in predicting stable states in the perturbed settings compared to the wild-type
setting. We attribute this to the smaller set of stable states reached by the reference model in
perturbed settings, making it easier for inferred models to capture the expected stable states.

We then extend this analysis to the recovery of all reachable states via model execution.
Figure 4.8 shows the F1 score for the Boolean states reached by executing inferredmodels against
the reference reachable states. We observe that synthesized models are able to generalize from
the wild-type case to the previously unseen perturbations. We also observe better reachable
state reproducibility for higher ratios of type II errors, compared to higher ratios of type I errors.
To get more insight into this pattern, we break down the F1 scores into precision and recall
scores in Figure 4.9. This breakdown shows that while the models can achieve good recall for
high amounts of false positives, the precision score greatly reduces the F1 score in this setting.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 88

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(a) Wild-type reachable state recovery

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(b) Knockout reachable state recovery

Figure 4.8. F1 scores for reachable state recovery by inferred models in the wild-type (unperturbed) case
and knockout (perturbed) cases.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(a)Wild-type reachable state precision

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(b)Wild-type reachable state recall

Figure 4.9. Precision and recall scores for reachable state recovery by inferred models in the wild-type
(unperturbed) case.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 89

We further evaluate the inferred modelsM by comparing the inferred Boolean activation
functions to the reference functions in Mr. We define two function similarity metrics. The
first metric, similarityb, measures the similarity between each inferred Boolean function and
its reference counterpart according to the number of input states for which the two functions
produce the same output value. We perform this comparison on the set S of states that are
reached by the reference model Mr. Precisely, the similarity between the Boolean functions fi
and and f ′i is defined as:

similarityb(fi, f ′i) =
|Smatch|
|S|

where:
Smatch = {s ∈ S : fi(s) = f ′i (s)}

The second similarity metric we compute, similarityI/O, abstracts over the structure of Boolean
functions and compares an inferred model M to the reference model Mr based on the set of
input-output dependencies that appear in the local activation functions. To do this, we aggregate
all input-output pairs over the local activation functions of a model, define the input-output
pair similarity between two models as the Jaccard index (intersection over union) of the two
input-output pair sets.

Figure 4.10 shows the median function similarity results over all inferred models in all
replicates for every combination of type I and type II error ratio parameters. The function
behavior similarity metric similarityb, which evaluates inferred functions according to their
behavior on the set of simulated states S (in contrast with the full state space), shows a high
degree of correspondence between the inferred models and the reference for low levels of
false negative states (Figure 4.10a). Behavior similarity is lowest for the highest amounts of
type II errors in the input data. This corresponds to cases where we see also the worst state
graph reconstruction performance, due to the reconstructed state graph G missing the largest
amount of simulated states (Figure 4.6b). We observe that the similarityI/O metric is lower in
absolute terms, since it evaluates inferred models based on functional dependencies that are
not necessariy observed in the input (wild-type) execution of the system.

Impact of Stable State Knowledge

Since we observed a high impact of the knowledge of candidate stable states on the recovery
from high amounts of false positive states, we extended our analysis to evaluating the effect of
partially hiding the stable state knowledge in the input. The set Sstable is a set of Boolean states
that correspond to gene expression values observed in mature cell types. This knowledge can
be obtained by measuring mRNA expression levels in each mature cell type ([88], Figure 4).
Our methodology for removing partial stable state knowledge is to make the input stable states
partial, making individual genes’ value unknown in the set of stable states Sstable (Section 4.4).

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 90

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(a) Function behavior similarity

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Type II Errors

Ty
pe

 I
E

rr
or

s

0 0.2 0.4 0.6 0.8 1

Value

Color Key

(b) Function I/O pair similarity

Figure 4.10. Similarity of inferred functions with the reference model.

We hid each variable’s value individually in the stable states, and in each case, we aggregated
evaluation metrics over a range of type I and type II error ratios. We limited this range to type
II error ratios of 0 and 0.1, focusing on the cases where the input data may have a high amount
of false positive states, but always has a low amount of false negative states.

Figure 4.11 shows the F1 scores for Boolean state recovery in reconstructed state graphs.
This analysis does not show a significant difference in graph construction performance when
values of individual genes are held out from the input stable state knowledge. However, as
we expand our analysis to evaluating the behavior of inferred models, we notice decreased
performancewhen knowledge about certain genes are held out. Recovery of stable state behavior
is worse in most cases where we hold out a single gene’s stable state values, with the exception
of EKLF. (Figure 4.12). We note that the value of EKLF only changes on execution paths that
lead to a single stable state in the original model execution, which may explain why holding
out knowledge about its stable state behavior does not affect algorithm performace. For the
rest of the genes, decreased performance is due to changes in both the precision and recall of
recovered stable states (Figure 4.13).

Finally, we analyze input-output pair similarity between inferred models and the reference
model when stable state knowledge about individual genes is held out. Similarly to our analysis
of stable state recovery, we observe a decrease in performance when an individual gene’s value
is hidden in the stable state knowledge, for all genes except EKLF. Our analysis reveals the
importance of stable state knowledge in recovering the structure and the end-to-end behavior
of inferred models.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 91

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.4

0.6

0.8

1.0

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Hidden variable

F
1

S
co

re

Data quality
●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.11. F1 scores for Boolean states recovered by state graph construction, for partially hidden stable
state knowledge.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 92

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

0.6

0.9

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Hidden variable

F
1

S
co

re

Data quality
●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)Wild-type stable state recovery

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

0.6

0.9

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Hidden variable

F
1

S
co

re

Data quality
●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Knockout stable state recovery

Figure 4.12. F1 scores for stable state behavior recovery in the wild-type and knockout cases, for partially
hidden stable state knowledge.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.0

0.4

0.8

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Hidden variable

P
re

ci
si

on

Data quality
●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Wild-type stable state precision

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.4

0.8

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Hidden variable

R
ec

al
l

Data quality
●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)Wild-type stable state recall

Figure 4.13. Precision and recall scores for stable state behavior recovery in the wild-type case, for
partially hidden stable state knowledge.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 93

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.4

0.8

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Hidden variable

S
im

ila
rit

y

Data quality
●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.14. I/O pair similarity of inferred functions with the reference model, for partially hidden stable
state knowledge.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 94

4.8 Experimental Design with User-Defined Objectives
In this section, we investigate the ability to distinguish between inferred models through
perturbation experiments. Our goal is to design in silico methods to guide the experimental
process, and reduce the ambiguity in the model space as a result.

In order to design an experimental design approach, we need to define a space of experi-
ments that can be performed on models, and a metric to measure the difference between models
under a given experimental condition. The language of experiments can typically be defined as
all combinations of gene mutations [85, 9]. An example distinguishing factor between models
is the difference between stable state behavior of models for a given mutation. With the help
of symbolic solvers, one can efficiently find mutation experiments for which there exists non-
deterministic executions of distinct models leading to different stable state outcomes, without
explicitly enumerating all models [85]. Furthermore, if the modeling formalism is restricted
to non-cyclic models that are executed deterministically, one can formulate an integer linear
programming task that symbolically searches for the experiment that leads to the maximum
stable state difference between any two models in the solution space [9].

In this work, we propose an experimental design approach for distinguishing asynchronous
Boolean networks with cyclic dependencies. Our approach allows for user-defined model
difference metrics. As we show below, considering alternative model difference metrics can
reveal key entities in inferred models, which may not be identified by solely observing the stable
state behavior of models. Similarly to [9], we identify experiments that enable observing the
maximum difference between pairs of models among all inferred ones; unlike [9], our approach
can handle cyclic, asynchronous Boolean network models.

We tackle the challenge of identifying maximum difference experiments for user-defined
model difference metrics for asynchronous, cyclic Boolean network models, using an approach
that performs an enumerative exploration of mutation experiments on an explicitly enumerated
set of inferredmodels. We note that symbolically searching formaximumdifference experiments
without explicitly enumerating experiments and models would pose a substantial challenge,
since it would require a symbolic encoding of end-to-end model behavior, and a symbolic
characterization of model difference metrics. The scalability of our synthesis approach relies on
the decomposition of the model synthesis task into the synthesis of individual local activation
functions, without a symbolic representation of whole execution traces.

For our analysis, we define the space of experiments as single-gene knockout studies, where
the knockout experiment for gene a consists in overriding the Boolean function fa with the
Boolean constant function false, and executing the model from the set of initial states in which
a’s value has been set to false as well. We define two criteria for distinguishing a pair of models
under the same experimental condition. The first metric compares the set of stable states reached
by each model, and the second one compares the set of all states reached during execution. For
two sets of states S1 and S2, we define the distance metric to be 1− d(S1, S2), where d measures
the Jaccard index between two sets. The distance between two models is 0 when the set of

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 95

predicted states are identical, and it is 1 when the sets are disjoint.
We limited the maximum size of inferred Boolean functions to expression trees of height 3,

and computed the maximum model difference among synthesized models across the range
of type I and type II error ratios explored in Section 4.7. For each error ratio combination, we
ran five replicate runs. In each setting, we analyzed the space of models for the two model
distinguishability metrics. Figure 4.15 shows model distinguishability results according to the
dissimilarity between reachable states, and Figure 4.16 shows the results for the dissimilarity
between stable states.

We observe that in the absence of noise in input data, the six inferred models are indistin-
guishable from each other through single-gene knockout experiments, because they produce
the same set of states when simulated under each perturbation. To distinguish among these
models, it is necessary to exercise different execution paths through a perturbation to the initial
states, or to perform multiple-gene knockout experiments.

For each run replicate with noisy data, we choose the knockout experiment that achieves
the maximum difference between pairs of models among all inferred models. If there exists no
such experiment for a replicate, we omit the results. We observe that using the reachable states
difference metric identifies Gata2 as a key gene: The Gata2 mutation is the most distinguishing
experiment in most cases (Figure 4.15a), and the maximum model difference it achieves ranks
higher than most other single-gene mutation experiments (Figure 4.15b). This observation
is consistent with the fact that Gata2 is an early hematopoietic factor in the differentiation of
myeloid progenitors, and plays an active role in the differentiation of the common myeloid
progenitor cell type into all four myeloid cell types 4.3.

When we perform the same analysis with the stable state model difference metric, we do not
observe any genes that has a comparable impact in distinguishing inferred models (Figure 4.16).
We note that this metric compares state sets of relatively smaller size than the reachable states
difference metric, and as a result produces fewer distinct model difference values.

This analysis illustrates the significance of the ability to explore user-definedmodel difference
metrics, as different metrics may differ in their ability to identify key genes for experimental
design.

4.9 Conclusion
Discrete modeling of biological systems enables efficient model synthesis approaches that can
exhaustively explore spaces of models that are consistent with experimental data. We presented
an investigation of Boolean network synthesis from single-cell measurements, focusing on the
impact of data quality and prior knowledge on the performance ofmodel inference. Additionally,
we desribed an experimental design appraoch that explores a space of perturbation experiments
for user-defined model difference metrics.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 96

Gene Nb. most dist. exp.
Gata2 43
Gata1 18
Fog1 18
Scl 17
Pu_1 16
Gfi1 15
Cebpa 15
Fli1 10
EKLF 8
cJun 7
EgrNab 3

(a)Number ofmost distinguishing experiments

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.4

0.8

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Knockout variable

D
is

tin
gu

is
hi

ng
 fa

ct
or

Data quality
●

●

●

●

●

●

●

●

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Maximum model distances for most distin-
guishing experiments

Figure 4.15. Maximum difference results for each knockout experiment, based on the difference between
set of reachable states. The analysis identifies the mutation of Gata2, an early hematopoietic factor, as the
most distinguishing experiment in 42 cases.

Gene Nb. most dist. exp.
Pu_1 31
Gata1 25
cJun 24
Gata2 24
Fog1 21
Cebpa 19
EKLF 14
Scl 13
Gfi1 12
Fli1 10
EgrNab 7

(a)Number ofmost distinguishing experiments

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

0.6

0.9

Cebpa cJun EgrNab EKLF Fli1 Fog1 Gata1 Gata2 Gfi1 Pu_1 Scl

Knockout variable

D
is

tin
gu

is
hi

ng
 fa

ct
or

Data quality
●

●

●

●

●

●

●

●

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)Maximum distinguishing experiments

Figure 4.16. Maximum difference results for each knockout experiment, based on the difference between
set of stable states.

CHAPTER 4. INVESTIGATING THE IDENTIFIABILITY OF BOOLEAN NETWORK MODELS
FROM SINGLE-CELL DATA 97

Our empirical study on an in silicomodel of myeloid differentiation showed that knowledge
of stable states of a system can boost synthesis performance in situations where there is a high
degree of false positive observations in the input data. Furthermore, our analysis showed the
value of customizability of model difference metrics, revealing key players in modeled systems
when novel distinguishability metrics are used.

98

Chapter 5

Conclusion

This thesis explored program synthesis approaches to model biological systems from various
types of experimental data, prior knowledge, and domain-specific assumptions. We presented
three systems for the automated inference of Boolean network models. Using symbolic rea-
soning, our methods exhaustively explore spaces of models, and help guide the experimental
process for refining the computational models that express the current biological knowledge
about the modeled systems.

We expect improvements in the quality of experimental data (e.g. a decrease in data noise,
and an increase in data resolution) to have a positive impact on the performance of automated
model inference methods. Furthermore, as we showed throughout this dissertation, the declara-
tive nature of specifications in program synthesis approaches makes them amenable to asserting
an increasing amount of prior knowledge, coming from increasingly varied sources of data.

99

Bibliography

[1] http://www.cs.berkeley.edu/~koksal/.

[2] https://oeis.org/A000670.

[3] Rajeev Alur and Thomas A. Henzinger. “ReactiveModules”. In: FormalMethods in System
Design 15.1 (1999), pp. 7–48.

[4] Benedict Anchang et al. “Modeling the Temporal Interplay of Molecular Signaling and
Gene Expression byUsingDynamicNested EffectsModels”. In:Proceedings of theNational
Academy of Sciences 106.16 (Apr. 2009), pp. 6447–6452. issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.0809822106.

[5] Julio Aracena et al. “On the robustness of update schedules in Boolean networks”. In:
Biosystems 97.1 (2009), pp. 1–8. doi: 10.1016/j.biosystems.2009.03.006. url:
http://dx.doi.org/10.1016/j.biosystems.2009.03.006.

[6] Gustavo Arellano et al. “Antelope: a hybrid-logic model checker for branching-time
Boolean GRN analysis.” In: BMC bioinformatics 12.1 (2011). http://turing.iimas.
unam.mx:8080/AntelopeWEB/content/about.jsp, p. 490.

[7] A. Arkin, J. Ross, and H. H. McAdams. “Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected Escherichia coli cells”. In: Genetics 149.4
(Aug. 1998), pp. 1633–1648.

[8] Anil Aswani et al. “Nonparametric identification of regulatory interactions from spatial
and temporal gene expression data”. In: BMC Bioinformatics 11 (2010), p. 413.

[9] Nir Atias et al. “Experimental design schemes for learning Boolean network models”.
In: Bioinformatics 30.17 (2014), pp. i445–i452.

[10] Rhonda Bacher and Christina Kendziorski. “Design and computational analysis of
single-cell RNA-sequencing experiments”. In: Genome biology 17.1 (2016), p. 63.

[11] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. “Network medicine:
a network-based approach to human disease”. In: Nature Reviews Genetics 12.1 (2011),
pp. 56–68.

http://www.cs.berkeley.edu/~koksal/
https://doi.org/10.1073/pnas.0809822106
https://doi.org/10.1016/j.biosystems.2009.03.006
http://dx.doi.org/10.1016/j.biosystems.2009.03.006
http://turing.iimas.unam.mx:8080/AntelopeWEB/content/about.jsp
http://turing.iimas.unam.mx:8080/AntelopeWEB/content/about.jsp

BIBLIOGRAPHY 100

[12] Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon. “Studying and modelling dynamic
biological processes using time-series gene expression data”. In: Nature Reviews Genetics
13.8 (Aug. 2012), pp. 552–564. issn: 1471-0056. doi: 10.1038/nrg3244.

[13] NathanA. Barker, Chris J.Myers, andHiroyuki Kuwahara. “LearningGenetic Regulatory
Network Connectivity from Time Series Data”. In: IEEE/ACM Trans. Comput. Biology
Bioinform. 8.1 (2011), pp. 152–165.

[14] Grégory Batt, Calin Belta, and Ron Weiss. “Temporal Logic Analysis of Gene Networks
under Parameter Uncertainty”. In: IEEE Transactions of Automatic Control (), p. 2008.

[15] Grégory Batt et al. “Analysis andVerification ofQualitativeModels of Genetic Regulatory
Networks: A Model-Checking Approach”. In: IJCAI. 2005.

[16] Anna Bauer-Mehren, Laura I. Furlong, and Ferran Sanz. “Pathway databases and tools
for their exploitation: benefits, current limitations and challenges”. In:Molecular Systems
Biology 5.1 (Jan. 2009). PMID: 19638971, p. 290. issn: 1744-4292, 1744-4292. doi:10.1038/
msb.2009.47.

[17] Sean C. Bendall et al. “Single-Cell Mass Cytometry of Differential Immune and Drug
Responses Across a Human Hematopoietic Continuum”. In: Science 332.6030 (May 2011).
PMID: 21551058, pp. 687–696. issn: 0036-8075, 1095-9203. doi: 10.1126/science.
1198704.

[18] Steven A. Benner and A. Michael Sismour. “Synthetic biology”. In: Nature Reviews Ge-
netics 6.7 (July 2005), pp. 533–543. issn: 1471-0056. doi: 10.1038/nrg1637.

[19] David Benque et al. “BMA: Visual tool for modeling and analyzing biological net-
works”. In: Computer Aided Verification. http://biomodelanalyzer.research.
microsoft.com/. Springer. 2012, pp. 686–692.

[20] Gilles Bernot et al. “Application of formal methods to biological regulatory networks:
extending Thomas’ asynchronous logical approach with temporal logic”. In: Journal of
theoretical biology 229.3 (2004), pp. 339–347.

[21] Gungor Budak et al. “Reconstruction of the temporal signaling network in Salmonella-
infected human cells”. In: Frontiers in Microbiology 6 (2015), p. 730. doi: 10.3389/
fmicb.2015.00730.

[22] Lulu Cao et al. “Quantitative Phosphoproteomics Reveals SLP-76 Dependent Regulation
of PAG and Src Family Kinases in T Cells”. In: PLoS ONE 7.10 (Oct. 2012), e46725. doi:
10.1371/journal.pone.0046725.

[23] Daniel E. Carlin. “Computational evaluation and derivation of biological networks
in cancer and stem cells”. PhD thesis. University of California, Santa Cruz, 2014. url:
http://gradworks.umi.com/36/88/3688771.html.

https://doi.org/10.1038/nrg3244
https://doi.org/10.1038/msb.2009.47
https://doi.org/10.1038/msb.2009.47
https://doi.org/10.1126/science.1198704
https://doi.org/10.1126/science.1198704
https://doi.org/10.1038/nrg1637
http://biomodelanalyzer.research.microsoft.com/
http://biomodelanalyzer.research.microsoft.com/
https://doi.org/10.3389/fmicb.2015.00730
https://doi.org/10.3389/fmicb.2015.00730
https://doi.org/10.1371/journal.pone.0046725
http://gradworks.umi.com/36/88/3688771.html

BIBLIOGRAPHY 101

[24] Nathalie Chabrier and François Fages. “Symbolic Model Checking of Biochemical Net-
works”. In: CMSB ’03. 2003.

[25] C. Chaouiya. “Petri net modelling of biological networks”. In: Brief. Bioinformatics 8.4
(July 2007), pp. 210–219.

[26] Deborah Chasman et al. “Pathway connectivity and signaling coordination in the yeast
stress-activated signaling network”. In: Molecular Systems Biology 10.11 (Nov. 2014).
PMID: 25411400, p. 759. issn: 1744-4292, 1744-4292. doi: 10.15252/msb.20145120.

[27] Madalena Chaves, Reka Albert, and Eduardo D Sontag. “Robustness and fragility of
Boolean models for genetic regulatory networks”. In: Journal of theoretical biology 235.3
(2005), pp. 431–449.

[28] Chunaram Choudhary and Matthias Mann. “Decoding signalling networks by mass
spectrometry-based proteomics”. In: Nature Reviews Molecular Cell Biology 11.6 (June
2010), pp. 427–439. issn: 1471-0072. doi: 10.1038/nrm2900.

[29] L. Church, K. Apagyi, and J. Fisher. “Languages for Biological Models: Importance,
Implications and Challenges - A Work In Progress”. In: Proceedings of the Psychology of
Programming Interest Group. Jan. 2008. url: http://research.microsoft.com/
apps/pubs/default.aspx?id=68096.

[30] Mark F. Ciaccio et al. “Systems analysis of EGF receptor signaling dynamics with mi-
crowestern arrays”. In: Nature Methods 7.2 (Feb. 2010), pp. 148–155. issn: 1548-7091. doi:
10.1038/nmeth.1418.

[31] Mark F. Ciaccio et al. “The DIONESUS algorithm provides scalable and accurate re-
construction of dynamic phosphoproteomic networks to reveal new drug targets”.
In: Integrative Biology 7.7 (July 2015), pp. 776–791. issn: 1757-9708. doi: 10.1039/
C5IB00065C.

[32] Koen Claessen et al. “Model-checking signal transduction networks through decreasing
reachability sets”. In: Computer Aided Verification. Springer. 2013, pp. 85–100.

[33] Byron Cook et al. “Finding Instability in Biological Models”. In: Computer Aided Verifica-
tion. 2014, pp. 358–372.

[34] Byron Cook et al. “Proving stabilization of biological systems”. In: Verification, Model
Checking, and Abstract Interpretation. Springer. 2011, pp. 134–149.

[35] Vincent Danos et al. “Abstract interpretation of cellular signalling networks”. In: VM-
CAI’08, pp. 83–97.

[36] Hidde De Jong. “Modeling and simulation of genetic regulatory systems: a literature
review”. In: Journal of computational biology 9.1 (2002), pp. 67–103.

https://doi.org/10.15252/msb.20145120
https://doi.org/10.1038/nrm2900
http://research.microsoft.com/apps/pubs/default.aspx?id=68096
http://research.microsoft.com/apps/pubs/default.aspx?id=68096
https://doi.org/10.1038/nmeth.1418
https://doi.org/10.1039/C5IB00065C
https://doi.org/10.1039/C5IB00065C

BIBLIOGRAPHY 102

[37] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. TACAS’08/ETAPS’08. Springer-Verlag, 2008,
pp. 337–340. isbn: 3-540-78799-2. url: http://dl.acm.org/citation.cfm?id=
1792734.1792766.

[38] Riet De Smet and Kathleen Marchal. “Advantages and limitations of current network
inference methods”. In: Nature Reviews Microbiology 8.10 (Oct. 2010), pp. 717–729. issn:
1740-1526. doi: 10.1038/nrmicro2419.

[39] David L. Dill. “Model Checking Cell Biology”. In: CAV. 2012, p. 2.

[40] Rochelle C. J. D’Souza et al. “Time-resolved dissection of early phosphoproteome and
ensuing proteome changes in response to TGF-beta”. In: Science Signaling 7.335 (July
2014). PMID: 25056879, rs5. issn: 1945-0877, 1937-9145. doi: 10.1126/scisignal.
2004856.

[41] S. J. Dunn et al. “Defining an essential transcription factor program for naïve pluripo-
tency”. In: Science 344.6188 (June 2014), pp. 1156–1160. issn: 1095-9203. doi: 10.1126/
science.1248882. url: http://dx.doi.org/10.1126/science.1248882.

[42] Adrien Fauré et al. “Dynamical analysis of a generic Boolean model for the control of
the mammalian cell cycle”. In: Bioinformatics 22.14 (2006), e124–e131.

[43] Jasmin Fisher, David Harel, and Thomas A. Henzinger. “Biology as reactivity”. In:
Commun. ACM 54.10 (2011), pp. 72–82.

[44] Jasmin Fisher and Thomas A Henzinger. “Executable cell biology”. In: Nature biotechnol-
ogy 25.11 (2007), pp. 1239–1249.

[45] Jasmin Fisher and Thomas A. Henzinger. “Executable cell biology”. In: Nature Biotech-
nology 25.11 (Nov. 2007), pp. 1239–1249. issn: 1087-0156.

[46] Jasmin Fisher and Nir Piterman. “Model Checking in Biology”. In: A Systems Theoretic
Approach to Systems and Synthetic Biology I: Models and System Characterizations. Ed. by
Vishwesh V. Kulkarni, Guy-Bart Stan, and KarthikEditors Raman. Springer Netherlands,
2014, pp. 255–279. isbn: 978-94-017-9040-6. url: http://link.springer.com/
chapter/10.1007/978-94-017-9041-3_10.

[47] Jasmin Fisher, Nir Piterman, and Rastislav Bodik. “Toward synthesizing executable
models in biology”. In: Frontiers in Bioengineering and Biotechnology 2 (2014). PMID:
25566538PMCID: PMC4271700, p. 75. issn: 2296-4185. doi: 10.3389/fbioe.2014.
00075.

[48] Jasmin Fisher et al. “Bounded Asynchrony: Concurrency for Modeling Cell-Cell Interac-
tions”. In: FMSB. 2008, pp. 17–32.

http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1038/nrmicro2419
https://doi.org/10.1126/scisignal.2004856
https://doi.org/10.1126/scisignal.2004856
https://doi.org/10.1126/science.1248882
https://doi.org/10.1126/science.1248882
http://dx.doi.org/10.1126/science.1248882
http://link.springer.com/chapter/10.1007/978-94-017-9041-3_10
http://link.springer.com/chapter/10.1007/978-94-017-9041-3_10
https://doi.org/10.3389/fbioe.2014.00075
https://doi.org/10.3389/fbioe.2014.00075

BIBLIOGRAPHY 103

[49] Jasmin Fisher et al. “Predictive Modeling of Signaling Crosstalk during C. elegans Vulval
Development”. In: PLoS Computational Biology 3.5 (2007). doi: 10.1371/journal.
pcbi.0030092. url: http://dx.doi.org/10.1371/journal.pcbi.
0030092.

[50] J. Fisher et al. “Predictive modeling of signaling crosstalk during C. elegans vulval
development”. In: PLoS Comput. Biol. 3.5 (May 2007), e92.

[51] Russell B Fletcher et al. “Deconstructing olfactory stem cell trajectories at single-cell
resolution”. In: Cell stem cell 20.6 (2017), pp. 817–830.

[52] Holger Fröhlich et al. “Deterministic Effects Propagation Networks for reconstructing
protein signaling networks frommultiple interventions”. In:BMCBioinformatics 10.1 (Oct.
2009). PMID: 19814779, p. 322. issn: 1471-2105. doi: 10.1186/1471-2105-10-322.

[53] Leon A Furchtgott et al. “Discovering sparse transcription factor codes for cell states and
state transitions during development”. In: eLife 6 (2017), e20488.

[54] Thomas D Garvey et al. “BioSPICE: access to the most current computational tools for
biologists”. In: OMICS A Journal of Integrative Biology 7.4 (2003), pp. 411–420.

[55] Anthony Gitter and Ziv Bar-Joseph. “Identifying proteins controlling key disease signal-
ing pathways”. In: Bioinformatics 29.13 (July 2013). PMID: 23812988, pp. i227–i236. issn:
1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btt241.

[56] AnthonyGitter et al. “Discovering pathways by orienting edges in protein interaction net-
works”. In: Nucleic Acids Research 39.4 (Mar. 2011), e22. doi: 10.1093/nar/gkq1207.

[57] Anthony Gitter et al. “Linking the signaling cascades and dynamic regulatory networks
controlling stress responses”. In: Genome Research 23.2 (Feb. 2013), pp. 365–376. issn:
1088-9051, 1549-5469. doi: 10.1101/gr.138628.112.

[58] Sumit Gulwani. “Automating string processing in spreadsheets using input-output exam-
ples”. In: Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. POPL ’11. Austin, Texas, USA: ACM, pp. 317–330.

[59] Simone Gupta et al. “Boolean network analysis of a neurotransmitter signaling pathway”.
In: Journal of theoretical biology 244.3 (2007), pp. 463–469.

[60] Carito Guziolowski et al. “Exhaustively characterizing feasible logic models of a signal-
ing network using Answer Set Programming”. In: Bioinformatics 29.18 (Sept. 2013). PMID:
23853063, pp. 2320–2326. issn: 1367-4803, 1460-2059.doi:10.1093/bioinformatics/
btt393.

[61] J. Heath et al. “Probabilistic model checking of complex biological pathways”. In: Theo-
retical Computer Science 319.3 (2008), pp. 239–257.

https://doi.org/10.1371/journal.pcbi.0030092
https://doi.org/10.1371/journal.pcbi.0030092
http://dx.doi.org/10.1371/journal.pcbi.0030092
http://dx.doi.org/10.1371/journal.pcbi.0030092
https://doi.org/10.1186/1471-2105-10-322
https://doi.org/10.1093/bioinformatics/btt241
https://doi.org/10.1093/nar/gkq1207
https://doi.org/10.1101/gr.138628.112
https://doi.org/10.1093/bioinformatics/btt393
https://doi.org/10.1093/bioinformatics/btt393

BIBLIOGRAPHY 104

[62] David Henriques et al. “Data-driven reverse engineering of signaling pathways using
ensembles of dynamicmodels”. In:PLOSComputational Biology 13.2 (Feb. 2017), e1005379.
issn: 1553-7358. doi: 10.1371/journal.pcbi.1005379.

[63] Steven M. Hill et al. “Context Specificity in Causal Signaling Networks Revealed by
Phosphoprotein Profiling”. In: Cell Systems 4.1 (Jan. 2017). PMID: 28017544, 73–83.e10.
issn: 2405-4712. doi: 10.1016/j.cels.2016.11.013.

[64] Steven M. Hill et al. “Inferring causal molecular networks: empirical assessment through
a community-based effort”. In: Nature Methods 13.4 (Apr. 2016), pp. 310–318. issn: 1548-
7091. doi: 10.1038/nmeth.3773.

[65] Andrew Hinton et al. “PRISM: A Tool for Automatic Verification of Probabilistic Sys-
tems”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Holger
Hermanns and JensEditors Palsberg. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2006, pp. 441–444. isbn: 978-3-540-33056-1. url: http://link.
springer.com/chapter/10.1007/11691372_29.

[66] Andrew L Hopkins. “Network pharmacology: the next paradigm in drug discovery”. In:
Nature chemical biology 4.11 (2008), pp. 682–690.

[67] Shao-shan Carol Huang and Ernest Fraenkel. “Integrating proteomic, transcriptional,
and interactome data reveals hidden components of signaling and regulatory networks”.
In: Science signaling 2.81 (2009), ra40–ra40.

[68] Sean J. Humphrey, S. Babak Azimifar, and Matthias Mann. “High-throughput phos-
phoproteomics reveals in vivo insulin signaling dynamics”. In: Nature Biotechnology 33.9
(Sept. 2015), pp. 990–995. issn: 1087-0156. doi: 10.1038/nbt.3327.

[69] Martijn P van Iersel et al. “Presenting and exploring biological pathways with PathVisio”.
In: BMC bioinformatics 9.1 (2008), p. 399.

[70] Siddhartha Jain et al. “Reconstructing the temporal progression of HIV-1 immune re-
sponse pathways”. In: Bioinformatics 32.12 (June 2016). PMID: 27307624, pp. i253–i261.
issn: 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btw254.

[71] Sumin Jang et al. “Dynamics of embryonic stem cell differentiation inferred from single-
cell transcriptomics show a series of transitions through discrete cell states”. In: eLife 6
(2017), e20487.

[72] Hawoong Jeong et al. “Lethality and centrality in protein networks”. In: Nature 411.6833
(2001), pp. 41–42.

[73] Kyuri Jo et al. “Influence maximization in time bounded network identifies transcrip-
tion factors regulating perturbed pathways”. In: Bioinformatics 32.12 (June 2016). PMID:
27307609, pp. i128–i136. issn: 1367-4803, 1460-2059. doi:10.1093/bioinformatics/
btw275.

https://doi.org/10.1371/journal.pcbi.1005379
https://doi.org/10.1016/j.cels.2016.11.013
https://doi.org/10.1038/nmeth.3773
http://link.springer.com/chapter/10.1007/11691372_29
http://link.springer.com/chapter/10.1007/11691372_29
https://doi.org/10.1038/nbt.3327
https://doi.org/10.1093/bioinformatics/btw254
https://doi.org/10.1093/bioinformatics/btw275
https://doi.org/10.1093/bioinformatics/btw275

BIBLIOGRAPHY 105

[74] Na’aman Kam, Irun R. Cohen, and David Harel. “The Immune System as a Reactive
System: Modeling T Cell Activation With Statecharts”. In: HCC. 2001, pp. 15–22.

[75] Na’aman Kam et al. “Formal Modeling of C. elegans Development: A Scenario-Based
Approach”. In: CMSB. 2003, pp. 4–20.

[76] Evgeny Kanshin et al. “A Cell-Signaling Network Temporally Resolves Specific versus
Promiscuous Phosphorylation”. In: Cell Reports 10.7 (Feb. 2015), pp. 1202–1214. issn:
2211-1247. doi: 10.1016/j.celrep.2015.01.052.

[77] Joost-Pieter Katoen, Maneesh Khattri, and Ivan S Zapreev. “A Markov reward model
checker”. In: Second International Conference on theQuantitative Evaluation of Systems. IEEE,
Sept. 2005, pp. 243–244. doi: 10.1109/QEST.2005.2.

[78] Stuart A Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic
nets”. In: Journal of theoretical biology 22.3 (1969), pp. 437–467.

[79] AlexKhodaverdian et al. “SteinerNetwork Problems onTemporalGraphs”. In: arXiv:1609.04918
[cs] (Sept. 2016). arXiv: 1609.04918. url: http://arxiv.org/abs/1609.04918.

[80] Narsis A. Kiani and Lars Kaderali. “Dynamic probabilistic threshold networks to infer
signaling pathways from time-course perturbation data”. In: BMC Bioinformatics 15.1
(July 2014). PMID: 25047753, p. 250. issn: 1471-2105. doi: 10.1186/1471-2105-15-
250.

[81] Min-Sik Kim et al. “A draft map of the human proteome”. In: Nature 509.7502 (May
2014), pp. 575–581. issn: 0028-0836. doi: 10.1038/nature13302.

[82] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. “Scala to the Power of Z3: Integrat-
ing SMT and Programming”. In: CADE. 2011, pp. 400–406.

[83] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. “Scala to the Power of Z3: Integrat-
ing SMT and Programming”. In: Automated Deduction – CADE-23. Ed. by Nikolaj Bjørner
and VioricaEditors Sofronie-Stokkermans. Vol. 6803. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2011, pp. 400–406. isbn: 978-3-642-22437-9. url: http:
//link.springer.com/chapter/10.1007/978-3-642-22438-6_30.

[84] Ali Sinan Köksal et al. “Synthesis of Biological Models from Mutation Experiments”.
In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’13. ACM, 2013, pp. 469–482. isbn: 978-1-4503-1832-7.
doi: 10.1145/2429069.2429125. url: http://doi.acm.org/10.1145/
2429069.2429125.

[85] Ali Sinan Köksal et al. “Synthesis of biological models from mutation experiments”.
In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. 2013, pp. 469–482. doi: 10.
1145/2429069.2429125. url: http://doi.acm.org/10.1145/2429069.
2429125.

https://doi.org/10.1016/j.celrep.2015.01.052
https://doi.org/10.1109/QEST.2005.2
http://arxiv.org/abs/1609.04918
https://doi.org/10.1186/1471-2105-15-250
https://doi.org/10.1186/1471-2105-15-250
https://doi.org/10.1038/nature13302
http://link.springer.com/chapter/10.1007/978-3-642-22438-6_30
http://link.springer.com/chapter/10.1007/978-3-642-22438-6_30
https://doi.org/10.1145/2429069.2429125
http://doi.acm.org/10.1145/2429069.2429125
http://doi.acm.org/10.1145/2429069.2429125
https://doi.org/10.1145/2429069.2429125
https://doi.org/10.1145/2429069.2429125
http://doi.acm.org/10.1145/2429069.2429125
http://doi.acm.org/10.1145/2429069.2429125

BIBLIOGRAPHY 106

[86] Ali Sinan Köksal et al. “Synthesizing Signaling Pathways from Temporal Phosphopro-
teomic Data”. In: bioRxiv (2017). doi: 10.1101/209676. eprint: https://www.
biorxiv.org/content/early/2017/10/26/209676.full.pdf. url:
https://www.biorxiv.org/content/early/2017/10/26/209676.

[87] Smita Krishnaswamy et al. “Conditional density-based analysis of T cell signaling in
single-cell data”. In: Science 346.6213 (Nov. 2014). PMID: 25342659, p. 1250689. issn:
0036-8075, 1095-9203. doi: 10.1126/science.1250689.

[88] Jan Krumsiek et al. “Hierarchical differentiation of myeloid progenitors is encoded in
the transcription factor network”. In: PloS one 6.8 (2011), e22649.

[89] J. G. Lees et al. “Systematic computational prediction of protein interaction networks”.
In: Physical Biology 8.3 (June 2011), p. 035008. issn: 1478-3975. doi: 10.1088/1478-
3975/8/3/035008.

[90] S. Li, S. M. Assmann, and R. Albert. “Predicting essential components of signal trans-
duction networks: a dynamic model of guard cell abscisic acid signaling”. In: PLoS Biol.
4.10 (Oct. 2006), e312.

[91] Chee Yee Lim et al. “BTR: training asynchronous Boolean models using single-cell
expression data”. In: BMC bioinformatics 17.1 (2016), p. 355.

[92] William JR Longabaugh. “BioTapestry: a tool to visualize the dynamic properties of gene
regulatory networks”. In: Gene Regulatory Networks. http://www.biotapestry.
org/. Springer, 2012, pp. 359–394.

[93] Matthew E. MacGilvray et al. “Network inference reveals novel connections in path-
ways regulating growth and defense in the yeast salt response”. In: bioRxiv (Aug. 2017),
p. 176230. doi: 10.1101/176230.

[94] Zohar Manna and Richard Waldinger. “A Deductive Approach to Program Synthesis”.
In: ACM Transactions on Programming Languages and Systems 2.1 (Jan. 1980), pp. 90–121.
issn: 0164-0925. doi: 10.1145/357084.357090.

[95] Florian Markowetz et al. “Nested Effects Models for High-Dimensional Phenotyping
Screens”. In: Bioinformatics 23.13 (July 2007), pp. i305–i312. issn: 1367-4803, 1460-2059.
doi: 10.1093/bioinformatics/btm178.

[96] M.Masnadi-Shirazi,M.R.Maurya, and S. Subramaniam. “Time-VaryingCausal Inference
From Phosphoproteomic Measurements in Macrophage Cells”. In: IEEE Transactions on
Biomedical Circuits and Systems 8.1 (Feb. 2014), pp. 74–86. issn: 1932-4545. doi: 10.1109/
TBCAS.2013.2288035.

[97] H. H. McAdams and A. Arkin. “Stochastic mechanisms in gene expression”. In: Proc.
Natl. Acad. Sci. U.S.A. 94.3 (Feb. 1997), pp. 814–819.

https://doi.org/10.1101/209676
https://www.biorxiv.org/content/early/2017/10/26/209676.full.pdf
https://www.biorxiv.org/content/early/2017/10/26/209676.full.pdf
https://www.biorxiv.org/content/early/2017/10/26/209676
https://doi.org/10.1126/science.1250689
https://doi.org/10.1088/1478-3975/8/3/035008
https://doi.org/10.1088/1478-3975/8/3/035008
http://www.biotapestry.org/
http://www.biotapestry.org/
https://doi.org/10.1101/176230
https://doi.org/10.1145/357084.357090
https://doi.org/10.1093/bioinformatics/btm178
https://doi.org/10.1109/TBCAS.2013.2288035
https://doi.org/10.1109/TBCAS.2013.2288035

BIBLIOGRAPHY 107

[98] Victoria Moignard et al. “Decoding the regulatory network of early blood development
from single-cell gene expression measurements”. In: Nature Biotechnology 33.3 (Mar.
2015), pp. 269–276. issn: 1087-0156. doi: 10.1038/nbt.3154.

[99] Evan J. Molinelli et al. “Perturbation Biology: Inferring Signaling Networks in Cellular
Systems”. In: PLoS Comput Biol 9.12 (Dec. 2013), e1003290. doi: 10.1371/journal.
pcbi.1003290.

[100] Melody K. Morris et al. “Training Signaling Pathway Maps to Biochemical Data with
Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory
Stimuli”. In: PLoS Computational Biology 7.3 (Mar. 2011), e1001099. doi: 10.1371/
journal.pcbi.1001099.

[101] Roberto Mosca et al. “Towards a detailed atlas of protein–protein interactions”. In: Cur-
rent Opinion in Structural Biology. Catalysis and regulation / Protein-protein interactions
23.6 (Dec. 2013), pp. 929–940. issn: 0959-440X. doi: 10.1016/j.sbi.2013.07.005.

[102] Leonardo de Moura and Nikolaj Bjørner. “Z3: Efficient SMT Solver”. In: TACAS’08: Tools
and Algorithms for the Construction and Analysis of Systems. Vol. 4963/2008. Lecture Notes
in Computer Science. 2008, pp. 337–340.

[103] Susanne Muehlich et al. “Serum-Induced Phosphorylation of the Serum Response Factor
Coactivator MKL1 by the Extracellular Signal-Regulated Kinase 1/2 Pathway Inhibits
Its Nuclear Localization”. In: Molecular and Cellular Biology 28.20 (Oct. 2008). PMID:
18694962, pp. 6302–6313. issn: 0270-7306, 1098-5549. doi: 10.1128/MCB.00427-08.

[104] Christoph Müssel, Martin Hopfensitz, and Hans A Kestler. “BoolNet—an R package for
generation, reconstruction and analysis of Boolean networks”. In: Bioinformatics 26.10
(2010). http://sysbio.uni-ulm.de/?Software:BoolNet, pp. 1378–1380.

[105] Robert H. Newman, Jin Zhang, and Heng Zhu. “Toward a systems-level view of dynamic
phosphorylation networks”. In: Frontiers in Genetics 5 (Aug. 2014), p. 263. doi: 10.3389/
fgene.2014.00263.

[106] Alexander Nikitin et al. “Pathway studio—the analysis and navigation of molecular
networks”. In: Bioinformatics 19.16 (2003), pp. 2155–2157.

[107] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: a comprehensive
step-by-step guide. Artima Press, 2008.

[108] Oved Ourfali et al. “SPINE: a framework for signaling-regulatory pathway inference
from cause-effect experiments”. In: Bioinformatics 23.13 (July 2007), pp. i359–i366. doi:
10.1093/bioinformatics/btm170.

[109] Nicola Paoletti et al. “Analyzing and Synthesizing Genomic Logic Functions”. In: Com-
puter Aided Verification (CAV). Springer. 2014, pp. 343–357.

https://doi.org/10.1038/nbt.3154
https://doi.org/10.1371/journal.pcbi.1003290
https://doi.org/10.1371/journal.pcbi.1003290
https://doi.org/10.1371/journal.pcbi.1001099
https://doi.org/10.1371/journal.pcbi.1001099
https://doi.org/10.1016/j.sbi.2013.07.005
https://doi.org/10.1128/MCB.00427-08
http://sysbio.uni-ulm.de/?Software:BoolNet
https://doi.org/10.3389/fgene.2014.00263
https://doi.org/10.3389/fgene.2014.00263
https://doi.org/10.1093/bioinformatics/btm170

BIBLIOGRAPHY 108

[110] In-Hyun Park et al. “Disease-specific induced pluripotent stem cells”. In: cell 134.5 (2008),
pp. 877–886.

[111] Yongjin Park and Joel S. Bader. “How networks change with time”. In: Bioinformatics
28.12 (June 2012). PMID: 22689777, pp. i40–i48. issn: 1367-4803, 1460-2059. doi: 10.
1093/bioinformatics/bts211.

[112] Ashwini Patil and Kenta Nakai. “TimeXNet: Identifying active gene sub-networks using
time-course gene expression profiles”. In: BMC Systems Biology 8.Suppl 4 (Dec. 2014).
PMID: 25522063, S2. issn: 1752-0509. doi: 10.1186/1752-0509-8-S4-S2.

[113] Ashwini Patil et al. “Linking Transcriptional Changes over Time in Stimulated Den-
dritic Cells to Identify Gene Networks Activated during the Innate Immune Response”.
In: PLoS Comput Biol 9.11 (Nov. 2013), e1003323. doi: 10.1371/journal.pcbi.
1003323.

[114] C. P. Paweletz et al. “Reverse phase protein microarrays which capture disease progres-
sion show activation of pro-survival pathways at the cancer invasion front”. In:Oncogene
20.16 (Apr. 2001). PMID: 11360182, pp. 1981–1989. issn: 0950-9232. doi: 10.1038/sj.
onc.1204265.

[115] T. Pawson and N. Warner. “Oncogenic re-wiring of cellular signaling pathways”. In:
Oncogene 26.9 (2007), pp. 1268–1275. issn: 0950-9232.doi:10.1038/sj.onc.1210255.

[116] Isabelle S Peter, Emmanuel Faure, and Eric H Davidson. “Predictive computation of
genomic logic processing functions in embryonic development”. In: Proceedings of the
National Academy of Sciences 109.41 (2012), pp. 16434–16442.

[117] Teresa M Przytycka, Mona Singh, and Donna K Slonim. “Toward the dynamic interac-
tome: it’s about time”. In: Briefings in bioinformatics (2010), bbp057.

[118] Teresa M. Przytycka, Mona Singh, and Donna K. Slonim. “Toward the dynamic inter-
actome: it’s about time”. In: Briefings in Bioinformatics 11.1 (Jan. 2010). PMID: 20061351,
pp. 15–29. issn: 1467-5463, 1477-4054. doi: 10.1093/bib/bbp057.

[119] Raven J. Reddy et al. “Early signaling dynamics of the epidermal growth factor receptor”.
In: Proceedings of the National Academy of Sciences 113.11 (Mar. 2016). PMID: 26929352,
pp. 3114–3119. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.1521288113.

[120] Aviv Regev and Ehud Shapiro. “The pi-calculus as an abstraction for biomolecular
systems”. In: (2004).

[121] Thomas W. Reps et al. “There’s Plenty of Room at the Bottom: Analyzing and Verifying
Machine Code”. In: Computer Aided Verification (CAV). 2010, pp. 41–56.

[122] Anna Ritz et al. “Pathways on demand: automated reconstruction of human signaling
networks”. In: npj Systems Biology and Applications 2 (Mar. 2016), p. 16002. issn: 2056-7189.
doi: 10.1038/npjsba.2016.2.

https://doi.org/10.1093/bioinformatics/bts211
https://doi.org/10.1093/bioinformatics/bts211
https://doi.org/10.1186/1752-0509-8-S4-S2
https://doi.org/10.1371/journal.pcbi.1003323
https://doi.org/10.1371/journal.pcbi.1003323
https://doi.org/10.1038/sj.onc.1204265
https://doi.org/10.1038/sj.onc.1204265
https://doi.org/10.1038/sj.onc.1210255
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1073/pnas.1521288113
https://doi.org/10.1038/npjsba.2016.2

BIBLIOGRAPHY 109

[123] Aurélien Rizk et al. “Continuous valuations of temporal logic specifications with ap-
plications to parameter optimization and robustness measures”. In: Theor. Comput. Sci.
412.26 (2011), pp. 2827–2839.

[124] Natalie Romanov et al. “Identifying protein kinase–specific effectors of the osmostress
response in yeast”. In: Science Signaling 10.469 (Mar. 2017). PMID: 28270554, eaag2435.
issn: 1945-0877, 1937-9145. doi: 10.1126/scisignal.aag2435.

[125] Jean-Francois Rual et al. “Towards a proteome-scale map of the human protein–protein
interaction network”. In: Nature 437.7062 (2005), pp. 1173–1178.

[126] Jan Daniel Rudolph et al. “Elucidation of Signaling Pathways from Large-Scale Phos-
phoproteomic Data Using Protein Interaction Networks”. In: Cell Systems 3.6 (Dec. 2016).
PMID: 28009266, 585–593.e3. issn: 2405-4712. doi: 10.1016/j.cels.2016.11.005.

[127] Daniel P Ryan and Jacqueline M Matthews. “Protein–protein interactions in human
disease”. In: Current opinion in structural biology 15.4 (2005), pp. 441–446.

[128] Wouter Saelens et al. “A comparison of single-cell trajectory inference methods: towards
more accurate and robust tools”. In: bioRxiv (2018), p. 276907.

[129] Julio Saez-Rodriguez et al. “A logical model provides insights into T cell receptor signal-
ing”. In: PLoS Computational Biology 3.8 (2007), e163.

[130] Julio Saez-Rodriguez et al. “Discrete logic modelling as a means to link protein signalling
networks with functional analysis of mammalian signal transduction”. In: Molecular
systems biology 5.1 (2009).

[131] Marc A Schaub, Thomas A Henzinger, and Jasmin Fisher. “Qualitative networks: a
symbolic approach to analyze biological signaling networks”. In: BMC systems biology
1.1 (2007), p. 4.

[132] Paul Shannon et al. “Cytoscape: a software environment for integrated models of
biomolecular interaction networks”. In: Genome research 13.11 (2003), pp. 2498–2504.

[133] Roded Sharan and Richard M. Karp. “Reconstructing Boolean Models of Signaling”.
In: Journal of Computational Biology 20.3 (Jan. 2013), pp. 249–257. issn: 1066-5277. doi:
10.1089/cmb.2012.0241.

[134] Roded Sharan and Richard M Karp. “Reconstructing Boolean models of signaling”. In:
Journal of Computational Biology 20.3 (2013), pp. 249–257.

[135] Kirti Sharma et al. “Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory
Nature of Tyr and Ser/Thr-Based Signaling”. In: Cell Reports 8.5 (Sept. 2014), pp. 1583–
1594. issn: 2211-1247. doi: 10.1016/j.celrep.2014.07.036.

[136] Ilya Shmulevich et al. “Probabilistic Boolean networks: a rule-based uncertainty model
for gene regulatory networks”. In: Bioinformatics 18.2 (2002), pp. 261–274.

https://doi.org/10.1126/scisignal.aag2435
https://doi.org/10.1016/j.cels.2016.11.005
https://doi.org/10.1089/cmb.2012.0241
https://doi.org/10.1016/j.celrep.2014.07.036

BIBLIOGRAPHY 110

[137] Dana Silverbush and Roded Sharan. “Network orientation via shortest paths”. In: Bioin-
formatics 30.10 (May 2014). PMID: 24470573, pp. 1449–1455. issn: 1367-4803, 1460-2059.
doi: 10.1093/bioinformatics/btu043.

[138] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. “Sketching
concurrent data structures”. In: Proceedings of the 2008 ACM SIGPLAN conference on Pro-
gramming language design and implementation. PLDI ’08. Tucson, AZ, USA: ACM, pp. 136–
148.

[139] Armando Solar-Lezama et al. “Combinatorial Sketching for Finite Programs”. In: ASP-
LOS. Oct. 2006.

[140] Armando Solar-Lezama et al. “Combinatorial sketching for finite programs”. In:ASPLOS-
XII. San Jose, California, USA: ACM, 2006, pp. 404–415. isbn: 1-59593-451-0.

[141] Armando Solar-Lezama et al. “Programming by Sketching for Bit-streaming Programs”.
In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’05. ACM, 2005, pp. 281–294. isbn: 978-1-59593-056-9. doi: 10.
1145/1065010.1065045. url: http://doi.acm.org/10.1145/1065010.
1065045.

[142] Laura A Solt et al. “ROR Inverse Agonist Suppresses Insulitis and Prevents Hyper-
glycemia in a Mouse Model of Type 1 Diabetes”. In: Endocrinology (2015).

[143] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. “From Program Verification to
Program Synthesis”. In: POPL. 2010.

[144] Matthias Stadtfeld and Konrad Hochedlinger. “Induced pluripotency: history, mecha-
nisms, and applications”. In: Genes & development 24.20 (2010), pp. 2239–2263.

[145] Kelly Street et al. “Slingshot: Cell lineage and pseudotime inference for single-cell tran-
scriptomics”. In: bioRxiv (2017), p. 128843.

[146] Meera V Sundaram. “The love–hate relationship between Ras and Notch”. In: Genes &
development 19.16 (2005), pp. 1825–1839.

[147] Camille D. A. Terfve et al. “Large-scale models of signal propagation in human cells
derived fromdiscovery phosphoproteomic data”. In:Nature Communications 6.8033 (Sept.
2015). doi: 10.1038/ncomms9033. url: http://www.nature.com/ncomms/
2015/150910/ncomms9033/full/ncomms9033.html.

[148] Camille Terfve et al. “CellNOptR: a flexible toolkit to train protein signaling networks
to data using multiple logic formalisms”. In: BMC systems biology 6.1 (2012). http:
//www.cellnopt.org/, p. 133.

[149] Aditya V. Thakur et al. “Directed Proof Generation for Machine Code”. In: Computer
Aided Verification (CAV). 2010, pp. 288–305.

https://doi.org/10.1093/bioinformatics/btu043
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
http://doi.acm.org/10.1145/1065010.1065045
http://doi.acm.org/10.1145/1065010.1065045
https://doi.org/10.1038/ncomms9033
http://www.nature.com/ncomms/2015/150910/ncomms9033/full/ncomms9033.html
http://www.nature.com/ncomms/2015/150910/ncomms9033/full/ncomms9033.html
http://www.cellnopt.org/
http://www.cellnopt.org/

BIBLIOGRAPHY 111

[150] Cole Trapnell et al. “The dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells”. In: Nature biotechnology 32.4 (2014), pp. 381–
386.

[151] Nurcan Tuncbag et al. “Simultaneous Reconstruction of Multiple Signaling Pathways
via the Prize-Collecting Steiner Forest Problem”. In: Journal of Computational Biology 20.2
(Feb. 2013), pp. 124–136. issn: 1066-5277, 1557-8666. doi: 10.1089/cmb.2012.0092.

[152] Moignard V. et al. “Decoding the Transcriptional Program for Blood Development from
Whole Tissue Single Cell Gene Expression Measurements”. In: Nature Biotechnology,
in press (Jan. 2015). url: http://research.microsoft.com/apps/pubs/
default.aspx?id=217707.

[153] Martin Vechev and Eran Yahav. “Deriving linearizable fine-grained concurrent ob-
jects”. In: SIGPLAN Not. 43.6 (June 2008), pp. 125–135. issn: 0362-1340. doi: 10.1145/
1379022.1375598.url:http://doi.acm.org/10.1145/1379022.1375598.

[154] ArunachalamVinayagam et al. “ADirected Protein InteractionNetwork for Investigating
Intracellular Signal Transduction”. In: Science Signaling 4.189 (Sept. 2011), rs8. doi: 10.
1126/scisignal.2001699.

[155] Rui-Sheng Wang, Assieh Saadatpour, and Réka Albert. “Boolean modeling in systems
biology: an overview of methodology and applications”. In: Physical biology 9.5 (2012),
p. 055001.

[156] Xin Wang et al. “Reconstructing evolving signalling networks by hidden Markov nested
effects models”. In: The Annals of Applied Statistics 8.1 (Mar. 2014). Zbl: 06302243, pp. 448–
480. issn: 1932-6157, 1941-7330. doi: 10.1214/13-AOAS696.

[157] Caleb Weinreb et al. “Fundamental limits on dynamic inference from single-cell snap-
shots”. In: Proceedings of the National Academy of Sciences (2018), p. 201714723.

[158] Andrew J Wilson. “Inhibition of protein–protein interactions using designed molecules”.
In: Chemical Society Reviews 38.12 (2009), pp. 3289–3300.

[159] Steven Woodhouse et al. “Synthesising Executable Gene Regulatory Networks from
Single-Cell Gene Expression Data”. In: Computer Aided Verification. 2015.

[160] SeanMWu and Konrad Hochedlinger. “Harnessing the potential of induced pluripotent
stem cells for regenerative medicine”. In: Nature cell biology 13.5 (2011), pp. 497–505.

[161] Ioannis Xenarios et al. “DIP, the Database of Interacting Proteins: a research tool for
studying cellular networks of protein interactions”. In: Nucleic acids research 30.1 (2002),
pp. 303–305.

[162] Brian S. Yandell. Practical Data Analysis for Designed Experiments. Chapman & Hall/CRC
Texts in Statistical Science. Chapman & Hall, Jan. 1997. isbn: 978-0-412-06341-1.

https://doi.org/10.1089/cmb.2012.0092
http://research.microsoft.com/apps/pubs/default.aspx?id=217707
http://research.microsoft.com/apps/pubs/default.aspx?id=217707
https://doi.org/10.1145/1379022.1375598
https://doi.org/10.1145/1379022.1375598
http://doi.acm.org/10.1145/1379022.1375598
https://doi.org/10.1126/scisignal.2001699
https://doi.org/10.1126/scisignal.2001699
https://doi.org/10.1214/13-AOAS696

BIBLIOGRAPHY 112

[163] Chen-Hsiang Yeang, Trey Ideker, and Tommi Jaakkola. “Physical Network Models”. In:
Journal of Computational Biology 11.2–3 (2004), pp. 243–262.doi:10.1089/1066527041410382.

[164] Esti Yeger-Lotem et al. “Bridging high-throughput genetic and transcriptional data
reveals cellular responses to alpha-synuclein toxicity”. In: Nature Genetics 41.3 (Mar.
2009), pp. 316–323. issn: 1061-4036. doi: 10.1038/ng.337.

[165] A. S. Yoo, C. Bais, and I. Greenwald. “Crosstalk between the EGFR and LIN-12/Notch
pathways in C. elegans vulval development”. In: Science 303.5658 (Jan. 2004), pp. 663–666.

[166] Boyan Yordanov et al. “A method to identify and analyze biological programs through
automated reasoning”. In: NPJ systems biology and applications 2 (2016), p. 16010.

[167] Boyan Yordanov et al. “SMT-Based Analysis of Biological Computation.” In: NASA
Formal Methods 7871 (2013), pp. 78–92.

[168] Boyan Yordanov et al. “Z34Bio: An SMT-based Framework for Analyzing Biological
Computation”. In: SMT Workshop 2013 11th International Workshop on Satisfiability Mod-
ulo Theories. http://research.microsoft.com/en-us/projects/z3-
4biology/. 2013.

[169] Nir Yosef et al. “Dynamic regulatory network controlling T H 17 cell differentiation”. In:
Nature 496.7446 (2013), p. 461.

[170] Nir Yosef et al. “Toward accurate reconstruction of functional protein networks”. In:
Molecular Systems Biology 5.248 (Mar. 2009). doi: 10.1038/msb.2009.3. url: http:
//dx.doi.org/10.1038/msb.2009.3.

[171] Chiou-Hwa Yuh, Hamid Bolouri, and Eric H Davidson. “Cis-regulatory logic in the
endo16 gene: switching from a specification to a differentiation mode of control”. In:
Development 128.5 (2001), pp. 617–629.

[172] Hongtao Zhang et al. “ErbB receptors: from oncogenes to targeted cancer therapies”. In:
The Journal of clinical investigation 117.8 (2007), pp. 2051–2058.

[173] Ranran Zhang et al. “Network model of survival signaling in large granular lymphocyte
leukemia”. In: Proceedings of the National Academy of Sciences 105.42 (2008), pp. 16308–
16313.

[174] Feng Zhou et al. “Genome-scale proteome quantification by DEEP SEQ mass spectrome-
try”. In: Nature Communications 4 (July 2013), p. 2171. doi: 10.1038/ncomms3171.

[175] Qiao Zhou et al. “In vivo reprogramming of adult pancreatic exocrine cells to &bgr;-cells”.
In: nature 455.7213 (2008), pp. 627–632.

[176] Pietro Zoppoli, Sandro Morganella, and Michele Ceccarelli. “TimeDelay-ARACNE:
Reverse engineering of gene networks from time-course data by an information the-
oretic approach”. In: BMC Bioinformatics 11 (Mar. 2010), p. 154. issn: 1471-2105. doi:
10.1186/1471-2105-11-154.

https://doi.org/10.1089/1066527041410382
https://doi.org/10.1038/ng.337
http://research.microsoft.com/en-us/projects/z3-4biology/
http://research.microsoft.com/en-us/projects/z3-4biology/
https://doi.org/10.1038/msb.2009.3
http://dx.doi.org/10.1038/msb.2009.3
http://dx.doi.org/10.1038/msb.2009.3
https://doi.org/10.1038/ncomms3171
https://doi.org/10.1186/1471-2105-11-154

BIBLIOGRAPHY 113

[177] Blaz Zupan et al. “GenePath: a system for automated construction of genetic networks
from mutant data”. In: Bioinformatics 19.3 (2003). http://genepath.org/, pp. 383–
389.

http://genepath.org/

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Existing Tools for Modeling Biological Systems as Boolean Networks
	1.3 Overview
	1.4 Collaborators and Publications

	2 Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data
	2.1 Introduction
	2.2 Overview
	2.3 Pathway Synthesis
	2.4 Results
	2.5 Discussion

	3 Synthesis of Biological Models from Mutation Experiments
	3.1 Introduction
	3.2 Overview
	3.3 Language
	3.4 Translating Programs into Formulas
	3.5 Synthesis and Querying Spaces of Models
	3.6 Case Study: C. elegans vulval development
	3.7 Performance evaluation
	3.8 Related Work
	3.9 Conclusion

	4 Investigating the Identifiability of Boolean Network Models from Single-Cell Data
	4.1 Introduction
	4.2 Overview
	4.3 Reference Model
	4.4 Generating in silico single-cell observations
	4.5 State Graph Construction
	4.6 Best-Fit Synthesis from State Graphs
	4.7 Evaluating Model Inference from Imperfect Data
	4.8 Experimental Design with User-Defined Objectives
	4.9 Conclusion

	5 Conclusion
	Bibliography

