
Scenic: Language-Based Scene Generation

Daniel Fremont
Xiangyu Yue
Tommaso Dreossi
Shromona Ghosh
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-8
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html

April 18, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Scenic: Language-Based Scene Generation
Daniel J. Fremont

Logic and the Methodology of Science
University of California, Berkeley

dfremont@berkeley.edu

Xiangyu Yue
Electrical Engineering and Computer

Sciences
University of California, Berkeley

xyyue@berkeley.edu

Tommaso Dreossi
Electrical Engineering and Computer

Sciences
University of California, Berkeley
tommasodreossi@berkeley.edu

Shromona Ghosh
Electrical Engineering and Computer

Sciences
University of California, Berkeley
shromona.ghosh@berkeley.edu

Alberto
Sangiovanni-Vincentelli

Electrical Engineering and Computer
Sciences

University of California, Berkeley
alberto@berkeley.edu

Sanjit A. Seshia
Electrical Engineering and Computer

Sciences & Logic and the
Methodology of Science

University of California, Berkeley
sseshia@berkeley.edu

Figure 1: Three scenes generated from a single Scenic scenario representing bumper-to-bumper traffic.

ABSTRACT

Synthetic data has proved increasingly useful in both training and
testing machine learning models such as neural networks. The ma-
jor problem in synthetic data generation is producing meaningful
data that is not simply random but reflects properties of real-world
data or covers particular cases of interest. In this paper, we show
how a probabilistic programming language can be used to guide data
synthesis by encoding domain knowledge about what data is useful.
Specifically, we focus on data sets arising from scenes, configura-
tions of physical objects: for example, images of cars on a road. We
design a domain-specific language, Scenic, for describing scenarios
that are distributions over scenes. The syntax of Scenic makes it
easy to specify complex relationships between the positions and
orientations of objects. As a probabilistic programming language,
Scenic allows assigning distributions to features of the scene, as
well as declaratively imposing hard and soft constraints over the
scene. A Scenic scenario thereby implicitly defines a distribution
over scenes, and we formulate the problem of sampling from this
distribution as scene improvisation. We implement an improviser for
Scenic scenarios and apply it in a case study generating synthetic
data sets for a convolutional neural network designed to detect cars
in road images. Our experiments demonstrate the usefulness of our
approach by using Scenic to analyze and improve the performance
of the network in various scenarios.

UC Berkeley EECS Technical Report, April 18, 2018
2018.

KEYWORDS

scenario description language, synthetic data, deep learning, proba-
bilistic programming, automatic test generation, fuzz testing

1 INTRODUCTION

Machine learning (ML) is increasingly used in safety-critical ap-
plications, thereby creating an acute need for techniques to gain
higher assurance in ML systems [1, 34, 35]. The traditional ML
approach to this problem is to test the learned model1 in its en-
vironment, gathering more data, and retraining if performance is
inadequate. However, collecting real-world data can be slow and
expensive, as it must be preprocessed and correctly labeled before
use. Furthermore, it can be hard to observe and reproduce corner
cases that are rare but nonetheless necessary to test against (for
example, a car accident). As a result, recent work has investigated
training and testing models with synthetically generated data, which
can be produced in bulk with correct labels and giving the designer
full control over the distribution of the data [17, 19, 39].

Generating meaningful synthetic data can be a nontrivial task
since the input space of ML models is often large and unstructured.
This is certainly true of the domain we consider in this paper: scenes
comprising configurations of objects in space. Suppose we wanted a
data set consisting of images of cars on a road. If we simply sampled
uniformly at random from all possible configurations of, say, 12
cars, we would get data that was at best unrealistic, with cars facing
sideways or backward, and at worst physically impossible, with
cars intersecting each other. Instead, we want scenes like those
1The term “model” is commonly used in machine learning to refer to the learned
classifier/predictor, e.g., a neural network.

1

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

in Fig. 1, where the cars are laid out in a consistent and realistic
way. Furthermore, we may want scenes that are not only realistic
but represent particular scenarios of interest, e.g., parked cars, cars
passing across the field of view, or bumper-to-bumper traffic as in
Fig. 1. In general, we need a way to guide data generation toward
scenes that make sense for our application.

In this paper, we take a programming languages approach, de-
signing a domain-specific scenario description language, Scenic. A
scenario is a distribution over scenes. Scenic is thus a probabilis-
tic programming language, allowing the user to programmatically
specify a scenario of interest. Furthermore, it allows the user to
both construct objects in a straightforward imperative style and
impose hard and soft constraints declaratively. Scenic also provides
readable, concise syntax for common geometric relationships that
would otherwise require complex nonlinear expressions and con-
straints. In addition, Scenic provides a notion of classes allowing
properties of objects to be given default values depending on other
properties: for example, we can define a Car so that by default it
faces in the direction of the road at its position. Finally, Scenic pro-
vides an easy way to generalize a concrete scene by automatically
adding noise.

The variety of constructs in Scenic makes it possible to write
scenarios anywhere on a spectrum from concrete scenes (i.e. indi-
vidual test cases) to extremely broad classes of abstract scenes (see
Fig. 2). A scenario can be reached by moving along the spectrum
from either end: the top-down approach is to progressively con-
strain a very general scenario, while the bottom-up approach is to
generalize from a concrete example (such as a known failure case),
for example by adding random noise.

Concrete example
(“a car at 1.2 m × 4 m”)

Example + noise
(“a car near 1.2 m × 4 m”)

Structured scenario
(“a badly parked car”)

Generic scenario
(“a car on the road”)

Figure 2: Spectrum of scenarios

from general to specific.

Probablymost usefully,
one can write a scenario
in the middle which is far
more general than simply
adding noise to a single
scene but has much more
structure than a com-
pletely random scene: for
example, the traffic sce-
nario depicted in Fig. 1.
Wewill illustrate all three
ways of developing a sce-
nario in this paper.

Generating concrete
scenes from a Scenic sce-
nario requires sampling
from the probability dis-
tribution it implicitly defines. This problem, while closely related
to the general probabilistic programming inference problem [16], is
theoretically interesting in its own right. We call it scene improvisa-
tion, as it can be viewed as a variant of control improvisation [10, 11],
a class of problems involving the random generation of sequences
subject to hard and soft constraints as well as distribution require-
ments.

Finally, we demonstrate the usefulness of Scenic with a case
study testing and improving the reliability of a convolutional neural
network designed to perform object detection in autonomous cars.
We implemented an improviser for Scenic scenarios and used it
to generate scenes which were rendered into images by Grand

Theft Auto V (GTAV2), a high fidelity graphics videogame. Our
experiments illustrate several ways Scenic can be used:

• generating specialized test sets to assess the accuracy of the
ML system under particular conditions (e.g. in rain);

• generating instances of hard cases for the system so that they
can be emphasized when retraining, improving accuracy in
the hard case without impacting the typical case;

• generalizing a known failure case in many directions, ex-
ploring the sensitivity of the system to different features and
developing a more general scenario for retraining.

These experiments show that Scenic is a very useful tool for un-
derstanding and improving the performance of an ML system.

In summary, the main contributions of this work are:
• Scenic, a domain-specific probabilistic programming lan-
guage for describing scenarios that are distributions over
configurations of physical objects;

• scene improvisation, an approach to generating a diverse
set of concrete scenes from a Scenic scenario that draws
inspiration from control improvisation [11];

• an implementation of an improviser for Scenic scenarios,
with an interface to GTAV for producing realistic images;

• a case study showing how Scenic can be used in practice to
analyze and improve the accuracy of SqueezeDet, a practical
deep neural network for autonomous driving [42].

The paper is structured as follows: we begin by discussing related
work in Sec. 2. Section 3 gives examples highlighting the major
features of Scenic and motivating various choices in its design.
In Sec. 4 we describe Scenic’s syntax and semantics in detail, and
in Sec. 5 we discuss the scene improvisation problem. Section 6
describes the experimental setup and results of our car detection
case study. Finally, we conclude in Sec. 7 with a summary and
directions for future work.

2 RELATEDWORK

Data Generation and Testing for ML. There has been a large
amount of work on generating artificial data sets for specific applica-
tions, including text recognition [19], text localization [17], robotic
object grasping [39], and autonomous driving [8, 20]. Closely re-
lated is work on domain adaptation, which attempts to correct differ-
ences between synthetic and real-world input distributions. Domain
adaptation has enabled synthetic data to successfully train models
for several other applications including 3D object detection [23, 36],
pedestrian detection [40], and semantic image segmentation [33].
Such work provides important context for our paper, showing that
models trained exclusively on synthetic data sets (possibly domain-
adapted) can achieve acceptable performance on real-world inputs.
The major difference in our work is that we do not focus on any
specific application but provide, through Scenic, a general way to
specialize data generation for any application whose data derives
from scenes.

Some works have also explored the idea of using adversarial
examples (i.e. misclassified examples) to retrain and improve mod-
els [41, 43]. Some of these methods generate misclassifying exam-
ples by looking at the model gradient and by finding minimal input
perturbations that lead to a misclassification [14, 26, 29, 38]. Other
techniques assume the model to be gray/black-boxes and focus on

2GTAV: https://www.rockstargames.com/

2

https://www.rockstargames.com/

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

input modifications or high-level properties of the model [5, 18,
21, 31]. Finally, Generative Adversarial Networks (GANs) [13], a
particular kind of neural network able to generate synthetic data,
have been used to augment training sets [22, 24]. The difference
with Scenic is that GANs require an initial training set or pre-
trained model, while Scenic produces synthetic data involving
only simulators.

Model-Based Test Generation. Techniques to guide generation
towards useful outputs have been proposed in both automated
testing and procedural generation [3]. A popular approach is to
provide example outputs, as in mutational fuzz testing [37] and
example-based scene synthesis [9]. While these methods are easy
to use, they do not provide fine-grained control over the generated
data. Another approach is to give rules or a grammar specifying
how the data can be generated, as in generative fuzz testing [37] and
procedural generation from shape grammars [27]. While grammars
provide much greater control, they are hard to read and write and
do not easily allow enforcing global properties. Readability and
ease of use can be improved by instead providing a program in a
domain-specific language with nondeterminism [7]. Conversely,
directly writing constraints as in constrained-random verification
[28] allows global properties but is even more difficult than writing
a grammar. Scenic improves on these methods by simultaneously
providing fine-grained control, enforcement of global properties,
specification of probability distributions, and the ease of use of an
imperative programming language.

Probabilistic Programming Languages. The semantics (and to
some extent, the syntax) of Scenic are similar to other probabilis-
tic programming languages such as Prob [16], Church [15], and
BLOG [25]. In probabilistic programming the focus is usually on
inference rather than generation, and in particular to our knowledge
probabilistic programming languages have not previously been
used for test generation. However, the most popular inference tech-
niques are based on sampling and so could be directly applied to
the scene improvisation problem, as we discuss in Sec. 5.

3 OVERVIEW

We use several Scenic scenarios from our autonomous car case
study to motivate and illustrate the main features of the language.
Appendix A shows images rendered from the scenarios described
in this section, as well as more complex scenarios such as that in
Fig. 1, with complete Scenic code.

Basics: Objects, Regions, Vector Fields, Distributions, Defaults. To
start, suppose we want scenes of one car viewed from another on
the road. We can simply write:
1 import carLib
2 ego = Car
3 Car

First, we import a library containing everything specific to our
case study: the definition of Car as a type of object, as well as
information about locations and directions of roads (from now on
we suppress this line). Scenic itself contains only general geometric
operations and predicates that we will see below.

The second line creates a Car and assigns it to the special variable
ego specifying the ego object which is the reference point for the
scenario. In particular, rendered images from the scenario are from
the perspective of the ego object.

Figure 3: A scene generated from a simple scenario.

Finally, the third line creates an additional Car. Notice that we
have not specified anything about where the cars are or how they
are oriented; despite this, the scenario will always yield reasonable
scenes: an example is shown in Fig. 3. This is because Scenic en-
forces several default requirements: all objects must be contained in
the workspace, must not intersect each other, and must be visible
from the ego object. Furthermore, Scenic allows defining default
values for all object properties. The definition of Car in carLib
begins as follows (slightly simplified):
1 class Car:
2 position: Point on road
3 heading: roadDirection at self.position

Here road is a region, one of Scenic’s primitive types, defined in
carLib to specify which points in the workspace are on a road.
Similarly, roadDirection is a vector field specifying the prevailing
traffic direction at such points. The operator F at X simply gets
the direction of the field F at point X , so the default value for a
car’s heading is the road direction at its position. The default
position, in turn, is a Point on road (we will explain this syntax
shortly), which means a uniformly random point on the road.

So our scenario, despite being so brief, will yield images where
the cars are positioned realistically. In fact, the rest of the definition
of Car in carLib specifies reasonable default distributions for car
model and color, so these aspects of the cars will also be plausible.

On the other hand, our scenario is still extremely general (“one
car, anywhere on the road”), and we might want to specify the cars’
positions more precisely. To create a car that is 20–40 m ahead of
the camera, for example, we could write:
1 Car offset by (-10, 10) @ (20, 40)

The interval notation (X, Y) creates a uniform distribution on
the interval, and X @ Y creates a vector from xy coordinates (as in
Smalltalk [12]). This vector is then used as an offset to position the
Car, and since no reference point is explicitly given the ego object is
used. So the car is placed randomly up to 10 m left or right of the ego
object and 20–40 m ahead (again, automatically conditioned on the
fact that the car does not intersect buildings, etc.). This illustrates
another general principle in Scenic, that relative positions, headings,
and distances are with respect to the ego object by default. This makes
it possible to write compact code by assigning an object to ego and
building a local part of the scenario around it (possibly reassigning
ego to construct another part, eventually leaving it assigned to the
desired camera location).

3

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

Using offset by as above overrides the default position of the
Car, but leaves the default orientation (“face along the direction of
the road”) unchanged. Suppose for greater realism we don’t want to
require the car to be exactly aligned with the road, but to be within
say 5◦ of it. We could try:
1 Car offset by (-10, 10) @ (20, 40), \
2 facing (-5, 5) deg

but this is not quite what we want, since this sets the orientation
of the Car in global coordinates (i.e. within 5◦ of North). Instead
we can use Scenic’s general operator X relative to Y , which
can interpret vectors and headings as being in a variety of local
coordinate systems:
1 Car offset by (-10, 10) @ (20, 40), \
2 facing (-5, 5) deg relative to roadDirection

Note that roadDirection is a vector field and so defines a different
coordinate system at each point in space: here Scenic automati-
cally uses the position of the Car being defined. If we wanted the
heading to be up to 5◦ off of the ego car’s orientation instead, we
could simply write (-5, 5) deg relative to ego.

Readable Constructors. So far we have seen offset by X as a
way of specifying relative positions, and facing Y for specifying
orientations, but the syntax for these may seem unusual compared
to typical constructors in object-oriented languages. There are two
reasons why Scenic uses this kind of syntax: first, readability. The
second reason is more subtle and based on the fact that in natural
language there aremanyways to specify positions, orientations, and
other properties, some of which interact with each other. Consider
the following ways one might describe the location of an object:

(1) “is at position X” (absolute position);
(2) “is just left of position X” (position based on orientation);
(3) “is 3 m left of the taxi” (a local coordinate system);
(4) “is one lane left of the taxi” (another local coordinate system);
(5) “appears to be 10 m behind the taxi” (relative to line of sight);

These are all fundamentally different from each other (e.g. (3) and (4)
differ if the taxi is not exactly parallel to the lane), and in different
situations can each be the most natural way to define a position.

Furthermore, these specifications combine other properties of the
object in different ways: to place the object “just left of” a position,
we must first know the object’s heading; whereas if we wanted to
face the object “towards” a location, we must first know the object’s
position. There can be chains of such dependencies: for example,
“the car is 0.5 m left of the curb” means that the right edge of the
car is 0.5 m away from the curb, not the car’s position, which is
its center. So computing the position requires knowing the car’s
width, which in turn depends on the car’s model. In a typical object-
oriented language, this might be handled by computing values for
position and other properties and passing them to a constructor.
For “a car is 0.5 m left of the curb” we might write:
1 m = Car.defaultModelDistribution.sample()
2 pos = curb.offsetLeft(0.5 + m.width / 2)
3 Car(pos, model=m)

Notice how m must be used twice, because m determines both the
model of the car and (indirectly) its position. This is inelegant and
breaks encapsulation because the default model distribution is used
outside of the Car constructor. The latter problem could be fixed
by having a specialized constructor,
1 CarLeftOfBy(curb, 0.5)

but these would proliferate since we would need to handle all
possible combinations of ways to specify different properties (e.g.
do wewant to require a specific model? Are we overriding the width
provided by the model for this specific car?). Instead of having such
monolithic constructors, Scenic factors the definition of objects
into potentially-interacting but syntactically-independent parts:
1 spot = curb offset by -0.5 @ 0
2 Car left of spot, with model BUS

Here left of X and with model M are specifiers which do not
have an order, but which together specify the properties of the
car. Scenic works out the dependencies between properties (here,
position is provided by left of, which depends on width, whose
default value depends on model) and evaluates them in the correct
order. To use the default model distribution we would simply leave
off with model BUS; keeping it affects the position appropriately
without having to specify BUS more than once.

Specifying Multiple Properties Together. Recall that we defined
the default position for a Car to be a Point on road: this is an
example of another specifier, on region, which specifies position
to be a uniformly random point in the given region. This specifier
illustrates another feature of Scenic, namely that more complex
specifiers can specify multiple properties at a time. Consider the
following scenario, which creates a parked car given a region curb
defined in carLib:
1 spot = OrientedPoint on visible curb
2 Car left of (spot offset by -0.25 @ 0)

The function visible region returns the part of the region that
is visible from the ego object. The specifier on visible curb
will then set position to be a uniformly random visible point on
the curb. We create spot as an OrientedPoint, which is a built-
in class that defines a local coordinate system by having both a
position and a heading. The on region specifier can also specify
heading if the region has a preferred orientation (a vector field)
associated with it, as in our example, where curb is oriented by
roadDirection, the nominal traffic direction. So spot is, in fact,
a uniformly random visible point on the curb, oriented along the
road. Then spot offset by -0.25 @ 0 shifts spot 0.25 m left in
its own local coordinate system, i.e. away from the curb, and finally
we place the car to the left of the resulting position. So as desired
we get a car parked on the side of the road at a random place, with
a 0.25 m gap between it and the curb regardless of the type of car.

In fact, Scenic makes it easy to elaborate the scenario without
needing to alter the code above. Most simply, we could specify a
particular model or non-default distribution over models by just
adding with model M to the definition of the Car. More interest-
ingly, we could produce a scenario for badly parked cars by adding
two lines:
1 spot = OrientedPoint on visible curb
2 badAngle = Uniform(1.0, -1.0) * (10, 20) deg
3 Car left of (spot offset by -0.5 @ 0), \
4 facing badAngle relative to roadDirection

This will yield cars parked 10-20◦ off from the direction of the curb.
An example is shown in Fig. 4.

Declarative Specification of Hard and Soft Constraints. Scenic
also allows the user to define additional requirements on generated
scenes beyond the default requirements avoiding object overlap
and so forth. These requirements can check arbitrary conditions

4

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

Figure 4: A scene of a badly parked car.

built from various geometric predicates. For example, the following
scenario produces a car that is 20–40 m ahead and headed roughly
towards us, while still facing the nominal road direction:
1 car2 = Car offset by (-10, 10) @ (20, 40), \
2 with viewAngle 30 deg
3 require car2 can see ego

Here we have used the X can see Y predicate, which in this
case is checking that the ego car is inside the 30◦ view cone of the
second car. If we only need this constraint to hold part of the time,
we can use a soft requirement specifying the minimum probability
with which the constraint must hold:
1 require[0.5] car2 can see ego

Such hard and soft requirements make it possible to easily generate
scenes with properties that are difficult to ensure when constructing
explicit distributions in a purely imperative fashion.

Mutations. Finally, Scenic provides an easy-to-use mutation sys-
tem that adds variety to a scenario without changing its code. This is
useful, for example, if we have a scenario encoding a single concrete
scene obtained from real-world data and want to quickly generate
variations on it. For instance:
1 taxi = Car at 120 @ 300, facing 37 deg, ...
2 ...
3 mutate taxi

This will add Gaussian noise to the position and heading of taxi,
while still enforcing all built-in and custom requirements. The
standard deviation of the noise can be scaled bywriting, for example,
mutate taxi by 2 (which adds twice as much noise as above), and
we will see later that it can be controlled separately for position
and heading. Themutation system is quite simplistic, and obviously
gives far less control than writing a detailed scenario specifying
how every property of every object can vary, but it allows quick
exploration of the neighborhood around a scenario of interest.

4 THE SCENIC LANGUAGE

Scenic is a simple imperative probabilistic programming language,
with no conditional control flow constructs or general data struc-
tures. Its syntax is largely devoted to expressing geometric relation-
ships between objects in a concise yet readable manner. Figure 5
and its associated tables give a formal grammar for Scenic, which
we now describe in detail.

Scenic provides several primitive data types:

scenario := (import file)∗ (statement)∗
boolean := True | False | booleanOperator
scalar := number | distribution | scalarOperator

distribution := baseDist | resample(distribution)
vector := scalar @ scalar | Point | vectorOperator

heading := scalar | OrientedPoint | headingOperator
direction := heading | vectorField

value := boolean | scalar | vector | direction
| region | instance | instance.property

classDefn := class class[(superclass)]:
(property: defaultValue)∗

instance := class specifier, . . .
specifier := with property value | posSpec | headSpec

Figure 5: Simplified Scenic grammar. Point and Oriented-
Point are instances of the corresponding classes. See Tab. 5

for statements, Fig. 7 for operators, Tab. 1 for baseDist, and
Tables 3 and 4 for posSpec and headSpec respectively.

Table 1: Distributions. All parameters scalar except value.

Syntax Distribution

(low, high) uniform on interval of R
Uniform(value, . . .) uniform over given values
Discrete({value: wt, . . .}) discrete with given weights
Normal(mean, stdDev) normal with given µ, σ

Booleans expressing truth values of requirements to satisfy.
Scalars floating-point numbers, which can be sampled from

various distributions (see Table 1).
Vectors representing positions and offsets in space, constructed

from coordinates with the Smalltalk [12] syntax X @ Y.
Headings representing orientations in space. Conveniently, in

2D these are a single angle (in radians, anticlockwise from
North). We use the convention that the heading of a local
coordinate system is the heading of itsy-axis, so, for example,
-2 @ 3 means 2 meters left and 3 ahead.

Vector Fields associating an orientation to each point in space.
For example, the shortest paths to a destination or (in our
case study) the nominal traffic direction.

Regions representing sets of points in space. These can have a
vector field associated with them so that points in the region
have preferred orientations (e.g. the surface of an object
could have normal vectors, so that objects placed randomly
on the surface face outward by default).

In addition, Scenic provides a lightweight notion of objects,
mainly used to represent the physical objects present in a scene.
Objects are simply immutable maps from properties to values; for
example, each object has a position property whose value is a
vector storing the object’s position. Objects are instances of classes,
which specify a set of properties their instances must have, together
with corresponding default values (see Fig. 5). The classes form a
single-inheritance hierarchy, where subclasses may provide new
default values for properties defined in superclasses.

Default value expressions are evaluated each time an object is
created. Thus in a class definition if we write weight: (1, 5) then
each instance of this class will have a weight drawn independently

5

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

Table 2: Properties of Point, OrientedPoint, and Object.

Property Default Meaning

position (0, 0) position in global coordinates
viewDistance 50 distance for can see predicate
positionStdDev 1 mutation σ for position

heading 0 heading in global coordinates
viewAngle 360◦ angle for can see predicate
headingStdDev 5◦ mutation σ for heading

width 1 width of bounding box
height 1 height of bounding box
allowCollisions false collisions with objects allowed
requireVisible true must be visible from ego

from (1, 5). Furthermore, default values may use the special
syntax self.property to refer to one of the other properties of the
object, which is then a dependency of this default value. In our case
study, for example, the width and height of a Car are by default
derived from its model.

Physical objects in a scene are instances of Object, which is the
default superclass when none is specified. Object descends from
the two other built-in classes: its superclass is OrientedPoint,
which in turn subclasses Point. Point and OrientedPoint repre-
sent locations in space, without andwith an orientation respectively,
and so provide the fundamental properties position and heading.
Object extends this by defining a bounding box with the properties
width and height. Table 2 lists all the properties of the built-in
classes and their default values.

To allow cleaner notation, Point and OrientedPoint are au-
tomatically interpreted as vectors or headings in contexts expect-
ing these (as shown in Fig. 5). For example, we can write taxi
offset by 1 @ 2 and 30 deg relative to taxi instead of
taxi.position offset by 1 @ 2 and 30 deg relative to
taxi.heading. Ambiguous cases (e.g. taxi relative to limo)
are illegal and the more verbose syntax must be used instead.

The most interesting aspect of objects is that they are defined
using the system of flexible specifiers illustrated above: as shown
in Fig. 5, an object is created by writing the class name followed
by a (possibly empty) comma-separated list of specifiers. Arbitrary
properties (including user-defined properties with no meaning in
Scenic) can be specified with the generic specifier with property
value. There are many more specifiers for the built-in properties
position and heading, shown in Tables 3 and 4 respectively. Note
that some position specifiers can also specify heading, but op-
tionally, meaning other specifiers will override them: for example,
if road is a region with a preferred orientation as in our case study,
Object on road will create an object at a position uniformly ran-
dom in road and with the preferred orientation there, but to set the
orientation ourselves we can for example write Object on road,
facing 20 deg (whereas Object on road, at 3 @ 4 would be
illegal because position is specified twice).

In general, the semantics of object creation is as follows. Let P be
the set of properties defined in the object’s class and superclasses,
together with any properties specified with the with property
value specifier. The object will have exactly these properties, and
the value of each p ∈ P is determined as follows. If p is specified

Table 3: Specifiers for position. Those in the second group

also optionally specify heading.

Specifier Dependencies

at vec —
offset by vec —
offset along direction by vec —
(left | right) of vec heading, width
(ahead of | behind) vec heading, height
beyond vec by vec [from vec] —
visible [from (Point | OrientedPoint)] —

(in | on) region —
(left | right) of OrientedPoint width
(ahead of | behind) OrientedPoint height
following vecField [from vec] for scalar —

Table 4: Specifiers for heading.

Specifier Dependencies

facing heading —
facing vectorField position
facing (toward | away from) vector position
apparently facing heading [from vector] position

non-optionally by multiple specifiers the scenario is ill-formed.
If p is only specified optionally, and by multiple specifiers, this
is ambiguous and we also declare the scenario ill-formed. Other-
wise, the value of p will be determined by its unique non-optional
specifier, unique optional specifier, or the most-derived default
value, in that order: call this specifier/default sp . Construct a di-
rected graph with vertices P and edges to p from each of the de-
pendencies of sp (if a dependency is not in P , then a specifier or
default value references a nonexistent property and the scenario
is ill-formed). If this graph has a cycle, there are cyclic dependen-
cies and the scenario is ill-formed (e.g. Car left of 0 @ 0,
facing roadDirection: the heading must be known to evaluate
left of vector , but facing vectorField needs position to deter-
mine heading). Otherwise, topologically sorting the graph yields
an evaluation order for the specifiers and default values so that
all dependencies are available when needed. The properties of the
object are determined by evaluating the specifiers in this order.

As the semantics of the specifiers in Tables 3 and 4 are mostly
evident from their syntax, we defer exact definitions to Appendix B.
We briefly discuss some of the more complex specifiers, referring
to the examples in Fig. 6:

• behind vector means the object is placed with the mid-
point of its front edge at the given vector, and similarly for
ahead/left/right of vector .

• beyond A by O from B means the position obtained by
treating O as an offset in the local coordinate system at A
oriented along the line of sight from B. In this and other
specifiers, if the from B is omitted, the ego object is used by
default. So for example beyond taxi by 0 @ 3 means 3 m
directly behind the taxi as viewed by the camera (see Fig. 6
for another example).

6

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

ego

left of ego

back right of ego

1

2

Point offset by 1 @ 2
or

1 @ 2 relative to ego

P

P offset by 0 @ -2

2

2
1

Point beyond P by -2 @ 1

Object behind
P offset by 0 @ -2

apparent heading of P

Figure 6: Various Scenic operators and specifiers applied

to the ego object and an OrientedPoint P. Instances of

OrientedPoint are shown as bold arrows.

• in region, yielding a uniformly random position in the
region as seen above, optionally specifies heading if the
region has a preferred orientation.

• The heading optionally specified by left of OrientedPoint,
etc. is that of the OrientedPoint (thus in Fig. 6, we see that
P offset by 0 @ -2 yields an OrientedPoint facing the
same way as P). Similarly, the heading optionally specified
by following vectorField is that of the vector field at the
specified position.

• apparently facing H from V means the object has head-
ing H with respect to the line of sight from V (as above,
the ego object if V is omitted). For example, apparently
facing 90 deg would orient the object so that the camera
views its left side head-on.

Next, we describe Scenic’s operators, shown in Fig. 7. Again,
many are self-explanatory and we defer exact definitions to Appen-
dix B. Several are illustrated in Fig. 6. Various points to note:

• X can see Y uses a simple visibility model where a Point
can see out to a certain radius, and an OrientedPoint re-
stricts this to the circular sector along its heading with a
certain angle (see Table 2 for the relevant properties). An
Object is visible if part of its bounding box is.

• X relative to Y interprets X as an offset in a local co-
ordinate system defined by Y . Thus -3 @ 0 relative to
Y yields 3 m left of Y if Y is an OrientedPoint, and 3 m
West of Y if Y is a vector. If defining a heading inside a
specifier, either X or Y can be a vector field: it is interpreted
as a heading by evaluating it at the position of the object
being specified. So we can write for example Car at 120 @
70, facing 30 deg relative to roadDirection.

• visible region yields the part of the region visible from
the ego object, so we can write Car on visible road. The
operator region visible from X does the same, but viewed
from X .

scalarOperator := max(scalar, . . .) | min(scalar, . . .)
| -scalar | abs(scalar) | scalar (+ | *) scalar
| relative heading of heading [from heading]
| apparent heading of OrientedPoint [from vector]
| distance [from vector] to vector

booleanOperator := not boolean
| boolean (and | or) boolean
| scalar (== | != | < | > | <= | >=) scalar
| (Point | OrientedPoint) can see (vector | Object)
| vector is in region

headingOperator := scalar deg
| vectorField at vector
| direction relative to direction

vectorOperator := vector relative to vector
| vector offset by vector
| vector offset along direction by vector

regionOperator := visible region
| region visible from (Point | OrientedPoint)

orientedPointOperator :=
vector relative to orientedPoint
| orientedPoint offset by vector
| follow vectorField [from vector] for scalar
| (front | back | left | right) of Object
| (front | back) (left | right) of Object

Figure 7: Operators by result type.

Table 5: Statements.

Syntax Meaning

identifier = value variable assignment
ego = Object ego object assignment
param identifier = value, . . . parameter assignment
classDefn class definition
instance object definition
require boolean hard requirement
require[number] boolean soft requirement
mutate instance, . . . [by number] enable mutation

• front of Object, front left of Object, etc. yield the
corresponding points on the bounding box of the object,
oriented along the object’s heading.

Finally, we discuss Scenic’s statements, listed in Table 5. The
semantics of class and object definitions, and the role of the ego
object have been discussed above. Variable assignment is as in a
typical imperative probabilistic programming language: when the
value is a distribution, the value assigned is a sample from the
distribution. So for example
1 x = (0, 1)
2 y = x @ x

does not produce a uniform distribution over the unit box, but
rather over its diagonal. For convenience in producing multiple
samples from a (potentially complex) distribution, Scenic provides
a resample function which returns an independent sample from
the same distribution as the given value.

7

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

The statement param identifier = value assigns values to global
parameters of the scenario. These parameters have no semantics
in Scenic but provide a general-purpose way to encode arbitrary
scene-wide information. For example, in our case study we used
parameters time and weather to put distributions on the time of
day and the weather conditions during the scene.

The require boolean statement requires that the given condi-
tion hold in all instantiations of the scenario (equivalently to observe
statements in other probabilistic programming languages [16]). As
mentioned above, Scenic automatically includes implicit require-
ments that Objects cannot intersect and must be visible from the
ego object (these can be disabled on a per-object basis: see Table 2).
The variant statement require[p] boolean adds a soft requirement
that need only hold with some probability p (which must be a con-
stant). We will discuss the precise semantics of soft requirements
in the next section.

Lastly, Scenic provides an easy way to add variety to a sce-
nario (possibly encoding a single concrete scene obtained from
real-world data) with the mutate instance, . . . by number state-
ment. This causes the listed objects (or every Object, if no list
is given) to have Gaussian noise added to their position and
heading properties. The standard deviation of this noise is the
positionStdDev/headingStdDev property (see Table 2) of the ob-
ject multiplied by the number (if given) in the mutate statement.
So for example mutate taxi by 2 would add twice as much noise
as mutate taxi, and we could keep the heading of the taxi fixed
by adding with headingStdDev 0 when defining it.

5 SEMANTICS AND SCENE GENERATION

Each time one runs a Scenic program, its output is a scene consisting
of an assignment to all the properties of each Object defined in
the scenario, plus any global parameters defined with param. Since
Scenic allows sampling from distributions, the imperative part of
a scenario actually induces a distribution over scenes, following the
semantics described in the previous section. The declarative part
of a scenario, consisting of its require statements, modifies this
distribution. As mentioned above, hard requirements are equivalent
to “observations” in other probabilistic programming languages (e.g.
[16, 25]), conditioning the distribution on the requirement being
satisfied.

The semantics of soft requirements is less clear-cut. We choose
the natural definition that require[p] C is equivalent to a hard
requirement require C that is only enforced with probability
p. More precisely, if D is the distribution induced by a Scenic
scenario S , then the distribution induced by the scenario S ′ defined
as S ; require[p] C isp ·(D |C)+(1−p)·D. This ensures in particular
that scenes generated from S ′ will satisfyC with probability at least
p, as desired.

This reduction of soft to hard requirements makes the problem of
sampling scenes from the distribution defined by a Scenic scenario
essentially a special case of the sampling problem for imperative
probabilistic programming languages with observations. While
as we discuss below we could apply general techniques for such
problems, there are several features that make the special case of
Scenic interesting in its own right: soft requirements, lack of con-
ditional control flow (except for that implicit in soft requirements),
and complex hard requirements (even simple geometric relations
can involve trigonometric functions, for example). Therefore we

propose scene improvisation, the task of generating scenes from a
Scenic scenario, be studied as a new theoretical problem.

We note that scene improvisation is related to control improvisa-
tion, an abstract framework capturing various problems requiring
synthesis under hard, soft, and randomness constraints (and which
inspired the term scene improvisation) [10, 11]. Scene improvisation
can be viewed as an extension with a more detailed randomness
constraint given by the imperative part of the scenario.

Algorithms to solve control improvisation problems based on
counting and sampling solutions to constraints with SAT and SMT
solvers have been proposed, and it would be interesting to see
whether these could be adapted to scene improvisation. However,
sampling from the highly nonlinear geometric constraints of Scenic
has not yet been studied. A more promising approach would be
to adapt the Markov Chain Monte Carlo (MCMC) methods that
have been successfully used in probabilistic programming (see, e.g.,
[25, 30]).

In our implementation we use a rejection sampling approach
where scenes are generated from the imperative part of the scenario
until all requirements are satisfied. While this samples from exactly
the desired distribution, it has the drawback that a huge number of
samples may be required to yield a single valid scene (in the worst
case, when the requirements have probability zero of being satis-
fied, the algorithm will not even terminate). However, we found
in our experiments that all reasonable scenarios we tried required
only several hundred iterations at most, yielding a sample within
a few seconds. Although not needed for rejection sampling, our
implementation does maintain symbolic representations of all dis-
tributions so that more intelligent heuristics and sampling methods
could easily be added in the future.

6 EXPERIMENTS

Weperformed experiments illustrating three different uses of Scenic:
assessing the accuracy of an ML system under particular condi-
tions, retraining the system to improve accuracy in hard cases, and
exploring the system’s behavior around a known failure case. We
begin by describing the general experimental setup.

6.1 Experimental Setup

We generated scenes in the virtual world of the video game Grand
Theft Auto V (GTAV)1. We wrote a Scenic library defining Regions
representing the roads and curbs in (part of) this world, as well as
a type of object Car providing two additional properties:

• model, representing the type of car. Over 300 models are
supported by GTAV; we used a set of 13 diverse models, with
the default distribution over these being uniform.

• color, representing the car color. The default distribution
was based on car color statistics for North America [6].

In addition, we implemented two global scene parameters:
• time, representing the time of day. The default distribution
was uniform over all 24 hours.

• weather, representing theweather as one of 14 discrete types
supported by GTAV (e.g. “clear” or “snow”). The default dis-
tribution gave all types positive probability, biased towards
less extreme weather.

1The publisher of GTA allows non-commercial use of footage of gameplay [32].

8

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

Unfortunately, GTAV does not provide an explicit representation
of its map. We obtained an approximate map by processing a bird’s-
eye schematic view of the game world3. To identify points on a
road, we converted the image to black and white, effectively turning
roads white and everything else black. We then applied the Sobel
filter to detect edges, identifying points on the curb. Finally, we
computed the nominal traffic direction by finding for each curb
point X the nearest curb point Y on the other side of the road,
and assuming traffic flows perpendicular to the segment XY , in
opposite directions on either side of its midpoint (this was more
robust than using the directions of the edges in the image). Since the
resulting road information was imperfect, some generated scenes
placed cars in undesired places such as sidewalks or medians. We
had to manually filter the generated images to remove these. With
a more open simulator this would not be necessary.

Our implementation’s interface to GTAV is based on DeepGTAV2.
To render a scene, we use a series of API calls to create the cars and
set the time of day and weather.

Our experiments were done using squeezeDet [42], a convolu-
tional neural network real-time object detector for autonomous
driving. We used a batch size of 20 and trained all models for 10,000
iterations. Images captured from GTAV with resolution 1920× 1200
were resized to 1248×384, that is the resolution used by squeezeDet.
All models were trained and evaluated on NVIDIA TITAN Xp GPUs.

We now define the metrics used to measure the performance of
our models. Let ŷ = f (x) be the prediction of the model f for input
x. In usual object detection tasks, ŷ encodes bounding boxes, scores,
and categories predicted by f for the image x. Let Bдt be a ground
truth box (i.e. a bounding box from the label of a training sample that
indicates the position of a particular object) and Bŷ be a prediction
box (i.e. the box returned by the model). The Intersection over Union
(IoU) is defined as IoU (Bдt ,Bŷ) = ABдt ∩ABŷ/ABдt ∪ABŷ , where
AB is the area of a box B. IoU is a common evaluation metric used
to measure how well predicted bounding boxes match ground truth
boxes. We adopt the common practice of considering Bŷ a detection
for Bдt if IoU (Bдt ,Bŷ) > 0.5.

Precision and recall are metrics used to measure the accuracy
of a prediction on a particular image. Intuitively, precision is the
fraction of predicted boxes that are correct, while recall is the
fraction of objects actually detected. Formally, precision is defined
as tp/(tp + f p) and recall as tp/(tp + f n), where true positives tp is
the number of correct detections, false positives f p is the number of
predicted boxes that do not match any ground truth box, and false
negatives is the number of ground truth boxes that are not detected.
We use average precision and recall to evaluate the performance of
a model on a collection of images constituting a test set.

6.2 Generating Specialized Test Sets

When testing a model, one might be interested in a particular ap-
plication domain. For instance, in the case of autonomous cars, a
manufacturer might be more interested in certain road conditions
than others (e.g. desert or forest roads) depending on where its cars
will be mainly used. Scenic provides a systematic way to describe
different scenarios of interest and construct corresponding test sets.

To demonstrate this, we first wrote very general scenarios de-
scribing scenes of 1–4 cars (not counting the camera), specifying

3https://www.gtafivemap.com/
2https://github.com/aitorzip/DeepGTAV

only that the cars face within 10◦ of the road direction. We gen-
erated 1,000 images from each scenario, yielding a training set of
4,000 images, and used these to train a modelMgeneric as described
in Sec. 6.1. We also generated an additional 50 images from each
scenario to obtain a generic test set Tgeneric of 200 images.

Next, we specialized the general scenarios in opposite direc-
tions: scenarios for good/bad road conditions fixing the time to
noon/midnight and the weather to sunny/rainy respectively. We
used these to generate specialized test sets Tgood and Tbad.

Evaluating Mgeneric on the three test sets Tgeneric, Tgood, and
Tbad, we obtained average precisions of 86.13%, 88.48%, and 78.93%,
respectively, and average recalls of 94.46%, 96.08%, and 95.00%.
These results show that, as might be expected, the model tends to
perform better on bright days than on rainy nights. This illustrates
how specialized test sets can highlight theweaknesses and strengths
of a particular model.

6.3 Retraining to Improve Performance on

Hard Cases

In the synthetic data setting, we are limited not by data availability
but by the cost of training. The natural question is then how to
generate a synthetic data set that as effective as possible given a
fixed size. In this section we show that over-representing a type of
input that may occur rarely but is difficult for themodel can improve
performance on the hard case without compromising performance
in the typical case. Scenic makes this possible by allowing the user
to write a scenario capturing the hard case specifically.

For our car detection task, an obvious hard case is when one
car substantially occludes another. We wrote a scenario generating
such scenes by placing one car behind the other as viewed from
the camera, offset left or right so that it is at least partially visible.
Generating 1,000 images from this scenario yielded a training set
Xoverlap. We also generated 1,000 images from the generic two-car
scenario above, obtaining a training set Xtwocar.

Note that Xtwocar did contain images of overlapping cars, since
the generic two-car scenario does not constrain the cars’ locations.
However, the average overlap was much lower than that ofXoverlap,
as seen in Fig. 8 (note the log scale): thus the overlapping car images
are highly “untypical” of generic two-car images. We would like
to ensure the network performs well on these difficult images by
emphasizing them in the training set. Therefore we constructed
various mixtures of the two training sets, fixing the total number
of images but using different ratios of images from Xtwocar and
Xoverlap. We trained the network on each of these mixtures and
evaluated their performance on 400-image test sets Ttwocar and
Toverlap from the two-car and overlapping scenarios respectively.

To reduce the effect of randomness in training, we used the
maximum precision and recall obtained when training for 4,000
through 5,000 steps in increments of 250 steps (in training, it is
common to save different model weights and keep the best ones
with respect to desired metrics [2], in our case average precision
and recall). Additionally, we repeated each training 8 times, using
a random mixture each time: for example, for the 90/10 mixture of
Xtwocar and Xoverlap, each training used an independent random
choice of which 90% of Xtwocar to use and which 10% of Xoverlap.

As the results in Tab. 6 show, the model trained purely on generic
two-car images has high precision and recall on Ttwocar but has
drastically worse recall on Toverlap; essentially, the network has

9

https://www.gtafivemap.com/
https://github.com/aitorzip/DeepGTAV

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

1

2

3

IOU

lo
g(
nu

m
be
ro

fi
m
ag
es
)

Xtwocar Xoverlap

Figure 8: Intersection Over Union (IOU) distribution for two-

car and overlapping training sets (log scale).

Table 6: Performance of models trained on mixtures of

Ttwocar and Toverlap and tested on both, averaged over 8 train-

ing runs. 90/10 indicates a 9:1 mixture of Ttwocar/Toverlap.

Ttwocar Toverlap
Mixture Precision Recall Precision Recall

100/0 96.5 ± 1.0 95.7 ± 0.5 94.6 ± 1.1 82.1 ± 1.4
90/10 95.3 ± 2.1 96.2 ± 0.5 93.9 ± 2.5 86.9 ± 1.7
80/20 96.5 ± 0.7 96.0 ± 0.6 96.2 ± 0.5 89.7 ± 1.4
70/30 96.5 ± 0.9 96.5 ± 0.6 96.0 ± 1.6 90.1 ± 1.8

difficulty detecting the partially-occluded car. However, devoting
20% of the training set to overlapping cars gives a large 8% improve-
ment to recall on Toverlap while leaving performance on Ttwocar
essentially the same. This demonstrates that we can improve the
performance of a network on difficult corner cases by using Scenic
to increase the representation of such cases in the training set.

6.4 Generalizing from a Known Failure Case

In our final experiment, we show how Scenic can be used to gener-
alize a single input on which a model behaves badly. Scenic makes
it easy to explore the neighborhood of a given scene in a variety of
different directions, giving insight into which features of the scene
are responsible for the undesired behavior. The original misclassifi-
cation can then be generalized to a broader scenario describing a
class of inputs on which the model misbehaves, and this scenario
can be used for retraining.

We selected one scene from our first experiment, consisting of a
single car viewed from behind at a slight angle, on whichMgeneric
had only 33.3% precision (and 100% recall). We wrote several sce-
narios which left most of the features of the scene fixed but allowed
others to vary. Specifically, scenario (1) varied the model and color
of the car, (2) left the position and orientation of the car relative
to the camera fixed but varied the absolute position, effectively
changing the background of the scene, and (3) used the mutation
feature of Scenic to add a small amount of noise to the car’s posi-
tion, heading, and color. For each scenario we generated 150 images
and evaluated the performance of Mgeneric on them. As seen in
Tab. 7, changing the model and color improved performance the
most, suggesting they were most relevant to the misclassification,

Table 7: Performance of Mgeneric on different scenarios rep-

resenting variations of a single misclassified image.

Scenario Precision Recall

(1) varying model and color 88.4 100
(2) varying background 63.7 100
(3) varying local position and orientation 74.2 100

(4) varying position but staying close 68.8 99.3
(5) any position, same apparent angle 74.3 98.6
(6) any position and angle 81.2 100
(7) varying background, model, and color 74.4 100

(8) staying close, same apparent angle 64.1 100
(9) staying close, varying model 71.7 100

while local position and orientation were less important and global
position (i.e. the background) was least important.

To investigate these possibilities further, we wrote a second
round of variant scenarios, also shown in Tab. 7. The results con-
firmed the importance of model and color (compare (2) to (7)), as
well as angle (compare (5) to (6)), but also suggested that being close
to the camera could be the relevant aspect of the car’s local position.
We confirmed this with a final round of scenarios (compare (5) and
(8)), which also showed that the effect of car model is small among
scenes where the car is close to the camera (compare (4) and (9)).

Having established that car model, closeness to the camera, and
view angle all contribute to poor performance of the network, we
proceeded to capture these features in broader scenarios. To avoid
overfitting, and since our experiments indicated car model was not
critical to misclassification when the car is close to the camera, we
decided not to fix the car model. Instead, we specialized the generic
one-car scenario from our first experiment to produce only cars
close to the camera. We also created a second scenario specializing
this further by requiring that the car be viewed at a shallow angle.

Finally, we used these scenarios to retrain Mgeneric, hoping to
improve performance on its original test set Tgeneric (to better dis-
tinguish small differences in performance, we increased the test set
size to 400 images). To keep the size of the training set fixed as in
the previous experiment, we replaced 400 one-car images inTgeneric
(10% of the whole training set) with images generated from our
scenarios. We also used images produced with classical image aug-
mentation techniques implemented in imgaug1, a Python library for
image augmentation. Specifically, we modified the original misclas-
sified image by randomly cropping 10%–20% on each side, flipping
horizontally with probability 50%, and applying Gaussian blur with
σ ∈ [0.0, 3.0].

The results of retrainingMgeneric on the resulting data sets are
shown in Tab. 8. Interestingly, classical augmentation actually hurt
performance, indicating that such techniques may not make sense
in the plentiful-data regime where training set size is fixed. On the
other hand, replacing part of the data set with specialized images
of cars close to the camera significantly improved performance (the
improvement for the “shallow angle” scenario was less, perhaps
due to overfitting to the restricted angle range). This demonstrates
how Scenic can be used to improve performance by generalizing
individual misclassifications into scenarios that capture the essence

1imgaug: https://github.com/aleju/imgaug

10

https://github.com/aleju/imgaug

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

Table 8: Performance of Mgeneric after retraining, replacing
10% of Tgeneric with different data.

Replacement Data Precision Recall

Original (no replacement) 85.9 94.8
Classical augmentation 82.6 94.4

Close car 89.8 94.0
Close car at shallow angle 87.6 94.8

of the problem but are broad enough to prevent overfitting during
retraining.

7 CONCLUSION

In this paper, we introduced Scenic, a probabilistic programming
language for specifying distributions over configurations of physi-
cal objects. We showed how Scenic can be used to generate syn-
thetic data sets useful for deep learning tasks. Specifically, we used
Scenic to generate specialized test sets, improve the effectiveness
of training sets by emphasizing difficult cases, and generalize from
individual failure cases to broader scenarios suitable for retraining.

In future work we intend to interface Scenic with other simula-
tors such as CARLA [4], an open-source simulator for autonomous
driving. We also plan to extend Scenic in several directions: al-
lowing user-defined specifiers, describing 3D scenes, and encoding
dynamics to enable generation of videos instead of static scenes.

ACKNOWLEDGMENTS

The authors would like to thank Ankush Desai and Jonathan Ragan-
Kelley for helpful discussions. This work is supported in part by the
National Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE-1106400, NSF grants CNS-1646208 and
CNS-1739816, DARPA under agreement number FA8750-16-C0043,
the DARPA Assured Autonomy program, and TerraSwarm, one
of six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

REFERENCES

[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman,
and Dan Mané. 2016. Concrete Problems in AI Safety. CoRR abs/1606.06565
(2016). arXiv:1606.06565 http://arxiv.org/abs/1606.06565

[2] Sylvain Arlot and Alain Celisse. 2010. A survey of cross-validation procedures for
model selection. Statist. Surv. 4 (2010), 40–79. https://doi.org/10.1214/09-SS054

[3] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner. 2005. Model-Based Testing of Reactive Systems: Advanced Lectures
(Lecture Notes in Computer Science). Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

[4] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Conference on Robot
Learning, CoRL. 1–16.

[5] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. 2017. Composi-
tional Falsification of Cyber-Physical Systems with Machine Learning Com-
ponents. In NASA Formal Methods, NFM. 357–372. https://doi.org/10.1007/
978-3-319-57288-8_26

[6] DuPont. 2012. Global Automotive Color Popularity Report. (2012). https:
//web.archive.org/web/20130818022236/http://www2.dupont.com/Media_
Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf

[7] Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013. CONCUR-
RIT: a domain specific language for reproducing concurrency bugs. In ACM
SIGPLAN Notices, Vol. 48. ACM, 153–164.

[8] Artur Filipowicz, Jeremiah Liu, and Alain Kornhauser. 2017. Learning to recognize
distance to stop signs using the virtual world of Grand Theft Auto 5. Technical
Report. Princeton University.

[9] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat
Hanrahan. 2012. Example-based Synthesis of 3D Object Arrangements. In ACM
SIGGRAPH 2012 (SIGGRAPH Asia ’12).

[10] Daniel J. Fremont, Alexandre Donzé, and Sanjit A. Seshia. 2017. Control Improvi-
sation. arXiv preprint. (2017). arXiv:1704.06319

[11] Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel. 2015.
Control Improvisation. In 35th IARCS Annual Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS) (LIPIcs), Vol. 45. 463–474.

[12] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, Massachusetts.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
Harnessing Adversarial Examples. CoRR abs/1412.6572 (2014). arXiv:1412.6572
http://arxiv.org/abs/1412.6572

[15] NoahGoodman, Vikash K.Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. 2008. Church: A universal language for generative models. In
Uncertainty in Artificial Intelligence 24 (UAI). 220–229.

[16] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani.
2014. Probabilistic programming. In FOSE 2014. ACM, 167–181.

[17] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. 2016. Synthetic Data for
Text Localisation in Natural Images. In Computer Vision and Pattern Recognition,
CVPR. 2315–2324. https://doi.org/10.1109/CVPR.2016.254

[18] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
Verification of Deep Neural Networks. In Computer Aided Verification, CAV. 3–29.
https://doi.org/10.1007/978-3-319-63387-9_1

[19] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition.
CoRR abs/1406.2227 (2014). arXiv:1406.2227 http://arxiv.org/abs/1406.2227

[20] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Srid-
har, Karl Rosaen, and Ram Vasudevan. 2017. Driving in the Matrix: Can vir-
tual worlds replace human-generated annotations for real world tasks?. In
International Conference on Robotics and Automation, ICRA. 746–753. https:
//doi.org/10.1109/ICRA.2017.7989092

[21] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I. 97–117. https://doi.org/10.1007/
978-3-319-63387-9_5

[22] Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P Xing. 2017.
Recurrent Topic-Transition GAN for Visual Paragraph Generation. arXiv preprint
arXiv:1703.07022 (2017).

[23] Joerg Liebelt and Cordelia Schmid. 2010. Multi-view object class detection with
a 3D geometric model. In Computer Vision and Pattern Recognition, CVPR. 1688–
1695. https://doi.org/10.1109/CVPR.2010.5539836

[24] Marco Marchesi. 2017. Megapixel Size Image Creation using Generative Adver-
sarial Networks. arXiv preprint arXiv:1706.00082 (2017).

[25] Brian Milch, Bhaskara Marthi, and Stuart Russell. 2004. BLOG: Relational model-
ing with unknown objects. In ICML 2004 workshop on statistical relational learning
and its connections to other fields. 67–73.

[26] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
Computer Vision and Pattern Recognition, CVPR. 2574–2582. https://doi.org/10.
1109/CVPR.2016.282

[27] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
2006. Procedural modeling of buildings. In ACM Transactions On Graphics, Vol. 25.
ACM, 614–623.

[28] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan Marcus,
and Gil Shurek. 2006. Constraint-Based Random Stimuli Generation for Hardware
Verification. In Proc. of AAAI. 1720–1727.

[29] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable images. In
Computer Vision and Pattern Recognition, CVPR. 427–436. https://doi.org/10.1109/
CVPR.2015.7298640

[30] Aditya V Nori, Chung-Kil Hur, Sriram K Rajamani, and Selva Samuel. 2014. R2:
An Efficient MCMC Sampler for Probabilistic Programs.. In AAAI. 2476–2482.

[31] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Symposium on Operating
Systems Principles, SOSP. 1–18. https://doi.org/10.1145/3132747.3132785

[32] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. 2016. Playing
for data: Ground truth from computer games. In European Conference on Computer
Vision. 102–118.

[33] Germán Ros, Laura Sellart, Joanna Materzynska, David Vázquez, and Antonio M.
López. 2016. The SYNTHIA Dataset: A Large Collection of Synthetic Images
for Semantic Segmentation of Urban Scenes. In Computer Vision and Pattern
Recognition, CVPR. 3234–3243. https://doi.org/10.1109/CVPR.2016.352

[34] Stuart Russell, Tom Dietterich, Eric Horvitz, Bart Selman, Francesca Rossi, Demis
Hassabis, Shane Legg, Mustafa Suleyman, Dileep George, and Scott Phoenix.
2015. Letter to the Editor: Research Priorities for Robust and Beneficial Artificial
Intelligence: An Open Letter. AI Magazine 36, 4 (2015).

11

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://doi.org/10.1214/09-SS054
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
http://arxiv.org/abs/1704.06319
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/CVPR.2016.254
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1406.2227
http://arxiv.org/abs/1406.2227
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1109/CVPR.2010.5539836
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1109/CVPR.2016.352

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

[35] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. 2016. Towards Verified
Artificial Intelligence. CoRR abs/1606.08514 (2016). http://arxiv.org/abs/1606.
08514

[36] Michael Stark, Michael Goesele, and Bernt Schiele. 2010. Back to the Future:
Learning Shape Models from 3D CAD Data. In British Machine Vision Conference,
BMVC. 1–11. https://doi.org/10.5244/C.24.106

[37] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley.

[38] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
CoRR abs/1312.6199 (2013). arXiv:1312.6199 http://arxiv.org/abs/1312.6199

[39] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. 2017. Domain randomization for transferring deep neural networks from
simulation to the real world. In International Conference on Intelligent Robots and
Systems, IROS. 23–30. https://doi.org/10.1109/IROS.2017.8202133

[40] David Vazquez, Antonio M Lopez, Javier Marin, Daniel Ponsa, and David Geron-
imo. 2014. Virtual and real world adaptation for pedestrian detection. IEEE
transactions on pattern analysis and machine intelligence 36, 4 (2014), 797–809.

[41] Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDonnell.
2016. Understanding data augmentation for classification: when to warp?. In
Digital Image Computing: Techniques and Applications (DICTA), 2016 International
Conference on. IEEE, 1–6.

[42] Bichen Wu, Forrest N. Iandola, Peter H. Jin, and Kurt Keutzer. 2017. SqueezeDet:
Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time
Object Detection for Autonomous Driving. In Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops. 446–454. https://doi.org/10.
1109/CVPRW.2017.60

[43] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. 2016.
Improved relation classification by deep recurrent neural networks with data
augmentation. arXiv preprint arXiv:1601.03651 (2016).

12

http://arxiv.org/abs/1606.08514
http://arxiv.org/abs/1606.08514
https://doi.org/10.5244/C.24.106
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.1109/CVPRW.2017.60

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

A GALLERY OF SCENARIOS

This section presents Scenic code for a variety of scenarios, along
with images rendered from them. The scenarios range from simple
examples used above to illustrate different aspects of the language,
to those representing interesting road configurations like platoons
and lanes of traffic.

CONTENTS

A.1 The carLib Module 13
A.2 The Simplest Possible Scenario 14
A.3 A Single Car 15
A.4 A Badly-Parked Car 16
A.5 An Oncoming Car 17
A.6 Adding Noise to a Scene 18
A.7 Two Cars 19
A.8 Two Overlapping Cars 20
A.9 Four Cars, in Poor Driving Conditions 21
A.10 A Platoon, in Daytime 22
A.11 Bumper-to-Bumper Traffic 23

A.1 The carLib Module

All the scenarios below begin with a line (not shown here) im-
porting the carLib module, which as explained above contains all
definitions specific to our autonomous car case study. These include
the definitions of the regions road and curb, as well as the vector
field roadDirection giving the prevailing traffic direction at each
point on the road. Most importantly, it also defines Car as a type of
object:
1 class Car:
2 position: Point on road
3 heading: (roadDirection at self.position) \
4 + self.roadDeviation
5 roadDeviation: 0
6 width: self.model.width
7 height: self.model.height
8 viewAngle: 80 deg
9 visibleDistance: 30
10 model: CarModel.defaultModel()
11 color: CarColor.defaultColor()

Most of the properties are inherited from Object or are self-
explanatory. The property roadDeviation, representing the head-
ing of the car with respect to the local direction of the road, is purely
a syntactic convenience; the following two lines are equivalent:
1 Car facing 10 deg relative to roadDirection
2 Car with roadDeviation 10 deg

The carLib library also defines a few convenience subclasses of
Carwith different default properties. For example, EgoCar overrides
model with the fixed car model we used for the ego car in our
interface to GTA V.

13

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

A.2 The Simplest Possible Scenario

This scenario, creating a single car with no specified properties,
was used as an example in Sec. 3.

1 ego = Car
2 Car

Figure 9: Scenes generated from a Scenic scenario representing a single car (with reasonable default properties).

14

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

A.3 A Single Car

This scenario is slightly more general than the previous, allowing
the car (and the ego car) to deviate from the road direction by up
to 10◦. It also specifies that the car must be visible, which is in fact
redundant since this constraint is built into Scenic, but helps guide
the sampling procedure. This scenario was also used as an example
in Sec. 3.

1 wiggle = (-10 deg, 10 deg)
2 ego = EgoCar with roadDeviation wiggle
3 Car visible, with roadDeviation resample(wiggle)

Figure 10: Scenes generated from a Scenic scenario representing a single car facing roughly the road direction.

15

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

A.4 A Badly-Parked Car

This scenario, creating a single car parked near the curb but not
quite parallel to it, was used as an example in Sec. 3.

1 ego = Car
2 spot = OrientedPoint on visible curb
3 badAngle = Uniform(1.0, -1.0) * (10, 20) deg
4 Car left of (spot offset by -0.5 @ 0), \
5 facing badAngle relative to roadDirection

Figure 11: Scenes generated from a Scenic scenario representing a badly-parked car.

16

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

A.5 An Oncoming Car

This scenario, creating a car 20–40 m ahead and roughly facing
towards the camera, was used as an example in Sec. 3. Note that
since we do not specify the orientation of the car when creating it,
the default heading is used and so it will face the road direction.
The require statement then requires that this orientation is also
within 15◦ of facing the camera (as the view cone is 30◦ wide).

1 ego = Car
2 car2 = Car offset by (-10, 10) @ (20, 40), \
3 with viewAngle 30 deg
4 require car2 can see ego

Figure 12: Scenes generated from a Scenic scenario representing a car facing roughly towards the camera.

17

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

A.6 Adding Noise to a Scene

This scenario, using Scenic’s mutation feature to automatically add
noise to an otherwise completely-specified scenario, was used in
the experiment in Sec. 6.4 (it is Scenario (3) in Table 7). The original
scene, which is exactly reproduced by this scenario if the mutate
statement is removed, is shown in Fig. 14.

1 param time = 12 * 60 # noon
2 param weather = 'EXTRASUNNY'
3
4 ego = EgoCar at -628.7878 @ -540.6067, \
5 facing -359.1691 deg
6
7 Car at -625.4444 @ -530.7654, \
8 facing 8.2872 deg, \
9 with model CarModel.models['DOMINATOR'], \
10 with color CarColor.byteToReal([187, 162, 157])
11
12 mutate

Figure 14: The original misclassified image in Sec. 6.4.

Figure 13: Scenes generated from a Scenic scenario adding noise to the scene in Fig. 14.

18

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

A.7 Two Cars

This is the generic two-car scenario used in the experiments in
Secs. 6.2 and 6.3.

1 wiggle = (-10 deg, 10 deg)
2 ego = EgoCar with roadDeviation wiggle
3 Car visible, with roadDeviation resample(wiggle)
4 Car visible, with roadDeviation resample(wiggle)

Figure 15: Scenes generated from a Scenic scenario representing two cars, facing close to the direction of the road.

19

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

A.8 Two Overlapping Cars

This is the scenario used to produce images of two partially-overlapping
cars for the experiment in Sec. 6.3.

1 wiggle = (-10 deg, 10 deg)
2 ego = EgoCar with roadDeviation wiggle
3
4 c = Car visible, with roadDeviation resample(wiggle)
5
6 leftRight = Uniform(1.0, -1.0) * (1.25, 2.75)
7 Car beyond c by leftRight @ (4, 10), \
8 with roadDeviation resample(wiggle)

Figure 16: Scenes generated from a Scenic scenario representing two cars, one partially occluding the other.

20

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

A.9 Four Cars, in Poor Driving Conditions

This is the scenario used to produce images of four cars in poor
driving conditions for the experiment in Sec. 6.2. Without the first
two lines, it is the generic four-car scenario used in that experiment.

1 param weather = 'RAIN'
2 param time = 0 * 60 # midnight
3
4 wiggle = (-10 deg, 10 deg)
5 ego = EgoCar with roadDeviation wiggle
6 Car visible, with roadDeviation resample(wiggle)
7 Car visible, with roadDeviation resample(wiggle)
8 Car visible, with roadDeviation resample(wiggle)
9 Car visible, with roadDeviation resample(wiggle)

Figure 17: Scenes generated from a Scenic scenario representing four cars in poor driving conditions.

21

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

A.10 A Platoon, in Daytime

This scenario illustrates how Scenic can construct structured ob-
ject configurations, in this case a platoon of cars. It uses a helper
function provided by carLib for creating platoons starting from a
given car, which is shown in Fig. 18. If no argument model is pro-
vided to createPlatoonAt, as in this case, all cars in the platoon
have the same model as the starting car; otherwise, the given model
distribution is sampled independently for each car. The syntax for
functions and loops supported by our Scenic implementation is
inherited from Python.

1 param time = (8, 20) * 60 # 8 am to 8 pm
2
3 ego = Car with visibleDistance 60
4 c2 = Car visible
5 platoon = createPlatoonAt(c2, 5, dist=(2, 8))

1 def createPlatoonAt(car, numCars, model=None, dist=(2, 8), shift=(-0.5, 0.5), wiggle=0):
2 lastCar = car
3 for i in range(numCars-1):
4 center = follow roadDirection from (front of lastCar) for resample(dist)
5 pos = OrientedPoint at (center offset by shift @ 0), facing resample(wiggle) relative to roadDirection
6 lastCar = Car ahead of pos, with model (car.model if model is None else resample(model))

Figure 18: Helper function for creating a platoon starting from a given car.

Figure 19: Scenes generated from a Scenic scenario representing a platoon of cars during daytime.

22

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

A.11 Bumper-to-Bumper Traffic

This scenario creates an even more complex type of object structure,
namely three lanes of traffic. It uses the helper function createPlatoonAt
discussed above, plus another function for placing a car ahead of a
given car with a specified gap in between, shown in Fig. 20.

1 depth = 4
2 laneGap = 3.5
3 carGap = (1, 3)
4 laneShift = (-2, 2)
5 wiggle = (-5 deg, 5 deg)
6
7 def createLaneAt(car):
8 createPlatoonAt(car, depth, dist=carGap, \
9 wiggle=wiggle, model=modelDist)
10
11 ego = Car with visibleDistance 60
12 modelDist = CarModel.defaultModel()

13 leftCar = carAheadOfCar(ego, laneShift + carGap, \
14 offsetX=-laneGap, wiggle=wiggle)
15 createLaneAt(leftCar)
16
17 midCar = carAheadOfCar(ego, resample(carGap), \
18 wiggle=wiggle)
19 createLaneAt(midCar)
20
21 rightCar = carAheadOfCar(ego, \
22 resample(laneShift) + resample(carGap),
23 offsetX=laneGap, wiggle=wiggle)
24 createLaneAt(rightCar)

1 def carAheadOfCar(car, gap, offsetX=0, wiggle=0):
2 pos = OrientedPoint at (front of car) offset by (offsetX @ gap), \
3 facing resample(wiggle) relative to roadDirection
4 return Car ahead of pos

Figure 20: Helper function for placing a car ahead of a car, with a specified gap in between.

Figure 21: Scenes generated from a Scenic scenario representing bumper-to-bumper traffic.

23

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

B DETAILED SEMANTICS OF SPECIFIERS

AND OPERATORS

This section provides precise semantics for Scenic’s specifiers and
operators, which were informally defined above. In the following
figures, S indicates a scalar ,V a vector , H a heading, F a vectorField,
R a region, P a Point, andOP an OrientedPoint. Figure 22 defines
notation used in the rest of the semantics. In forwardEuler, N is
an implementation-defined parameter specifying how many steps
should be used for the forward Euler approximation when following
a vector field (we used a fixed N = 4).

Figure 23 gives the semantics of the position specifiers. The
figure writes the semantics as a vector value; the semantics of the
specifier itself is to assign the position property of the object being
specified to that value. Several of the specifiers refer to properties
of self: as explained in Sec. 4, this refers to the object being con-
structed, and the semantics of object construction are such that
specifiers depending on other properties are only evaluated after
those properties have been specified (or an error is raised, if there
are cyclic dependencies).

Figure 24 gives the semantics of the position specifiers that
can also optionally specify heading. The figure writes the seman-
tics as an OrientedPoint value; if this is OP , the semantics of the
specifier is to assign the position property of the object being con-
structed to OP.position, and the heading property of the object
to OP.heading if heading is not otherwise specified (see Sec. 4 for
a discussion of optional specifiers). If the heading of OP is given
as ⊥, then heading is not optionally specified.

Figure 25 gives the semantics of the heading specifiers. As for
the position specifiers above, the figure indicates the heading
value assigned by each specifier.

Finally, Figures 26–31 give the semantics for Scenic’s operators,
broken down by the type of value they return.

⟨x ,y⟩ = point with the given XY coordinates
rotate (⟨x ,y⟩ ,θ) = ⟨x cosθ − y sinθ ,x sinθ + y cosθ⟩
arctan (v1 −v2) = arctangent of v1 −v2 in the correct quadrant, i.e. the heading from v2 to v1

Disc (c, r) = set of points in the disc centered at c and with radius r
Sector (c, r ,h,a) = set of points in the sector of Disc (c, r) centered along h and with angle a
boundingBox (O) = set of points in the bounding box of object O

visibleSet (X) =

{
Sector (JX.positionK, JX.viewDistanceK, JX.headingK, JX.viewAngleK) X ∈ OrientedPoint

Disc (JX.positionK, JX.viewDistanceK) X ∈ Point

uniformPointIn (X) = uniformly random point in the set of points X
orientation (R) = preferred orientation of the region R if any; otherwise ⊥

forwardEuler (x ,d, F) = result of iterating the map y 7→ y + rotate (⟨0,d/N ⟩ , JFK(y)) a total of N times on x

OrientedPoint (V ,H) = an OrientedPoint with the given position and heading

Figure 22: Notation used to define the semantics.

Jat V K = JV K
Joffset by V K = JV relative to ego.positionK

Joffset along H by V K = Jego.position offset along H by V K

Jleft of V K = JV K + rotate (
〈
−Jself.widthK/2, 0

〉
, Jself.headingK)

Jright of V K = JV K + rotate (
〈
Jself.widthK/2, 0

〉
, Jself.headingK)

Jahead of V K = JV K + rotate (
〈
0, Jself.heightK/2

〉
, Jself.headingK)

Jbehind V K = JV K + rotate (
〈
0,−Jself.heightK/2

〉
, Jself.headingK)

Jbeyond V1 by V2K = Jbeyond V1 by V2 from ego.positionK
Jbeyond V1 by V2 from V3K = JV1K + rotate (JV2K, arctan (JV1K − JV3K))

JvisibleK = Jvisible from egoK
Jvisible from PK = uniformPointIn (visibleSet (P))

Figure 23: Semantics of position specifiers.

24

Scenic: Language-Based Scene Generation UC Berkeley EECS Technical Report, April 18, 2018

Jin RK = Jon RK =

{
OrientedPoint (x , Jorientation (R)K(x)) orientation (R) , ⊥

OrientedPoint (x ,⊥) otherwise
with x = uniformPointIn (JRK)

Jleft of OPK = OrientedPoint (JOP.positionK + rotate (
〈
−Jself.widthK/2, 0

〉
, JOP.headingK), JOP.headingK)

Jright of OPK = OrientedPoint (JOP.positionK + rotate (
〈
Jself.widthK/2, 0

〉
, JOP.headingK), JOP.headingK)

Jahead of OPK = OrientedPoint (JOP.positionK + rotate (
〈
0, Jself.heightK/2

〉
, JOP.headingK), JOP.headingK)

Jbehind OPK = OrientedPoint (JOP.positionK + rotate (
〈
0,−Jself.heightK/2

〉
, JOP.headingK), JOP.headingK)

Jfollowing F for SK = Jfollowing F from ego.position for SK
Jfollowing F from V for SK = Jfollow F from V for SK

Figure 24: Semantics of position specifiers that optionally specify heading.

Jfacing HK = JHK
Jfacing FK = JFK(Jself.positionK)

Jfacing toward V K = arctan (JV K − Jself.positionK)
Jfacing away from V K = arctan (Jself.positionK − JV K)

Japparently facing HK = Japparently facing H from ego.positionK
Japparently facing H from V K = JHK + arctan (Jself.positionK − JV K)

Figure 25: Semantics of heading specifiers.

Jrelative heading of HK = Jrelative heading of H from ego.headingK
Jrelative heading of H1 from H2K = JH1K − JH2K

Japparent heading of OPK = Japparent heading of OP from ego.positionK
Japparent heading of OP from V K = JOP.headingK − arctan (JOP.positionK − JV K))

Jdistance to V K = Jdistance from ego.position to V K
Jdistance from V1 to V2K = |JV2K − JV1K|

Figure 26: Scalar operators.

JP can see OK = visibleSet (JPK) ∩ boundingBox (JOK) , ∅

JV is in RK = JV K ∈ JRK

Figure 27: Boolean operators.

JF at V K = JFK(JV K)
JF1 relative to F2K = JF1K(Jself.positionK) + JF2K(Jself.positionK)
JH relative to FK = JHK + JFK(Jself.positionK)
JF relative to HK = JHK + JFK(Jself.positionK)

JH1 relative to H2K = JH1K + JH2K

Figure 28: Heading operators.

25

UC Berkeley EECS Technical Report, April 18, 2018 Fremont et al.

JV1 offset by V2K = JV1K + JV2K
JV1 offset along H by V2K = JV1K + rotate (JV2K, JHK)
JV1 offset along F by V2K = JV1K + rotate (JV2K, JFK(JV1K))

Figure 29: Vector operators.

Jvisible RK = JR visible from egoK
JR visible from PK = JRK ∩ visibleSet (JPK)

Figure 30: Region operators.

JOP offset by V K = JV relative to OPK
JV relative to OPK = OrientedPoint (JOP.positionK + rotate (JV K, JOP.headingK), JOP.headingK)

Jfollow F for SK = Jfollow F from ego.position for SK
Jfollow F from V for SK = OrientedPoint (y, JFK(y)) where y = forwardEuler (JV K, JSK, JFK)

Jfront of OK = J
〈
0, JO.heightK/2

〉
relative to OK

Jback of OK = J
〈
0,−JO.heightK/2

〉
relative to OK

Jleft of OK = J
〈
−JO.widthK/2, 0

〉
relative to OK

Jright of OK = J
〈
JO.widthK/2, 0

〉
relative to OK

Jfront left of OK = J
〈
−JO.widthK/2, JO.heightK/2

〉
relative to OK

Jback left of OK = J
〈
−JO.widthK/2,−JO.heightK/2

〉
relative to OK

Jfront right of OK = J
〈
JO.widthK/2, JO.heightK/2

〉
relative to OK

Jback right of OK = J
〈
JO.widthK/2,−JO.heightK/2

〉
relative to OK

Figure 31: OrientedPoint operators.

26

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 The Scenic Language
	5 Semantics and Scene Generation
	6 Experiments
	6.1 Experimental Setup
	6.2 Generating Specialized Test Sets
	6.3 Retraining to Improve Performance on Hard Cases
	6.4 Generalizing from a Known Failure Case

	7 Conclusion
	Acknowledgments
	References
	A Gallery of Scenarios
	A.1 The carLib Module
	A.2 The Simplest Possible Scenario
	A.3 A Single Car
	A.4 A Badly-Parked Car
	A.5 An Oncoming Car
	A.6 Adding Noise to a Scene
	A.7 Two Cars
	A.8 Two Overlapping Cars
	A.9 Four Cars, in Poor Driving Conditions
	A.10 A Platoon, in Daytime
	A.11 Bumper-to-Bumper Traffic

	B Detailed Semantics of Specifiers and Operators

