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Abstract

Real-World Robotic Perception and Control Using Synthetic Data
by
Joshua P Tobin
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Pieter Abbeel, Chair

Modern deep learning techniques are data-hungry, which presents a problem in robotics
because real-world robotic data is difficult to collect. Simulated data is cheap and scalable,
but jumping the “reality gap” to use simulated data for real-world tasks is challenging.
In this thesis, we discuss using synthetic data to learn visual models that allow robots to
perform manipulation tasks in the real world. We begin by discussing domain randomization,
a technique for bridging the reality gap by massively randomizing the visual properties of the
simulator. We demonstrate that, using domain randomization, synthetic data alone can be
used to train a deep neural network to localize objects accurately enough for a robot to grasp
them in the real world. The remainder of the thesis discusses extensions of this approach to a
broader range of objects and scenes. First, we introduce a data generation pipeline inspired
by the success of domain randomization for visual data that creates millions of unrealistic
procedurally generated random objects, removing the assumption that 3D models of the
objects are present at training time. Second, we reformulate the problem from pose prediction
to grasp prediction and introduce a generative model architecture that learns a distribution
over grasps, allowing our models to handle pose ambiguity and grasp a wide range of objects
with a single neural network. Third, we introduce an attention mechanism for 3-dimensional
data. We demonstrate that this attention mechanism can be used to perform higher fidelity
neural rendering, and that models learned this way can be fine-tuned to perform accurate
pose estimation when the camera intrinsics are unknown at training time. We conclude by
surveying recent applications and extensions of domain randomization in the literature and
suggesting several promising directions for research in sim-to-real transfer for robotics.
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Chapter 1

Introduction

1.1 Deep learning for robotics

Deep learning

Machine learning is the science of recognizing patterns and regularities in data without
explicit programming. Traditional machine learning is a two-stage process that encodes
human intuition and empirical knowledge into features and then uses those features to find
a solution to the pattern recognition task. Deep learning is a class of machine learning
techniques that formulates the task as a prediction problem, chooses a loss function, and
optimizes the parameters of a powerful function approximator (a deep neural network) using
stochastic gradient descent.

Although deep learning has been studied since the 1970s [100, 164, 218], it has seen a
resurgence since 2012 [93, 101] and now enables state-of-the-art results in object recognition
[93], speech recognition [29], translation [223], game playing [16, 124, 181, 182], and many
other fields. One of the core insights underlying the broad success of these techniques is that,
with enough data and compute and an expressive enough model, features learned directly
from raw data can perform better than those engineered by domain experts.

We refer the reader to [53] for a more complete overview of the field.

Applications in robotics

The early successes of deep learning in computer vision and language inspired a number of
applications in robotic perception and control. The most straightforward application of deep
learning-based object recognition and detection models is to learn perception primitives that
provide an input to a downstream robotic control system [43].

Another application is learning deep neural networks to perform decision making and
control directly. The most prevalent approach is deep reinforcement learning. Reinforcement
learning (RL) formulates the robot’s interactions with the world as a sequential decision
making problem. At each timestep, the robotic agent uses observations of the world to choose
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actions that allow it to interact with its environment and receive rewards. An RL algorithm
attempts to maximize the agent’s rewards by repeated trial-and-error interaction with the
environment [191]. Deep RL employs deep neural networks as function approximators within
the RL context [124].

A fundamental challenge of applying deep supervised learning and deep reinforcement
learning to robotics is data availability. State-of-the-art deep supervised learning techniques
use between millions and tens of millions of labeled examples [30, 223], and deep RL tech-
niques often use hundreds of millions [124] or more [16]. However, obtaining labeled data for
robotics is challenging because robots are expensive, 3-dimensional robotic data can be par-
ticularly difficult to label [242], and collecting data with robotic systems can be dangerous
48].

As a result, a fundamental research direction in deep learning for robotics is developing
techniques to overcome with the high data requirement.

Overcoming the data availability problem in robotics

One way to collect datasets with enough scale to perform deep learning is to create robotic
systems that autonomously collect and label large amounts of data [5, 108, 145]. These
systems require mechanisms that provide their own labels and automatically reset the en-
vironment, and have been used to collect hundreds or thousands of hours of interaction
data.

Another approach is to reduce the data requirement of the learning algorithms. In su-
pervised learning, using deep neural networks pre-trained on broad datasets like ImageNet
[30] can significantly reduce the amount of task-specific data required [51, 112]. In deep RL
there are several active research areas that reduce the need for data. Instead of learning
behaviors entirely through trial-and-error, model-based RL involves building or learning a
model of the environment [13, 106]. Rather than solving a single task in a single environ-
ment, meta-RL algorithms learn how to solve a distribution of tasks in many environments,
with the hope of being able to rapidly solve new tasks from that distribution [33, 42]. In
learning from demonstrations (LfD), the agent is provided with richer supervision in the
form of demonstrations of successful task execution from a human or another agent [31, 232,
241]. Self-supervised learning algorithms use data collected from trial-and-error interaction
to solve other, related learning problems like achieving different goals [6] or solving surrogate
tasks like observation reconstruction [179].

Rather than building large-scale data collection systems or making learning more efficient,
this thesis focuses on taking advantage of low-cost synthetic data from physics simulators,
game engines, and graphics engines.
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1.2 Simulated data for robotics

Performing robotic learning in a simulator instead of the real world could accelerate the
impact of machine learning in robotics by making data collection cheaper, faster, and more
scalable. Since the state of the world is known in the simulator, researchers can also retrieve
perfectly accurate labels programatically without the need for human labelers.

However, using simulated data for real-world problems is challenging due to the reality gap
[74]. Unmodeled physical effects and the inability of simulated sensors to accurate reproduce
the richness and noise of their real-world counterparts cause models trained in simulation to
generalize poorly to real data.

The rest of this section describes some approaches to overcoming the reality gap.

Improving simulators

If the underlying cause of the reality gap is that simulators are not a faithful representation
of the real world, a natural approach to overcoming it is to make simulators better match
reality.

Simulators like DART [103], Gazebo [88], MuJoCo [201], and Open Dynamics Engine
[186] aim to provide robotics-focused physics simulation that is fast enough to run in at least
real time and models robot kinematics, dynamics, and rigid-body contacts in a physically
realistic way.

Most robotics simulators model only a subset of the interactions possible in the real
world. Another direction in simulation development is to build simulators that can model a
wider range of physical phenomenon like nonrigid bodies (e.g., cloth) [47].

A given simulator can model a wide variety of different physical systems, so closely
matching the parameters of the simulator to the real system is also important. System
identification techniques [2, 92, 133, 219] aim to solve this problem.

Lastly, better physics must be matched with more accurate sensor simulation in order to
faithfully model the real world. In the context of machine learning for robotics, much of this
work has gone into building high-quality rendered image datasets in domains like self-driving
cars [157], human pose estimation [211], and indoor scene representation [170].

Better simulators may help with sim-to-real transfer, but so far better simulators alone
have not been sufficient to train models that work well in the real world. Another approach
combines simulated data with real world data to achieve better performance than either data
source alone.

Domain adaptation

Domain adaptation methods use data from a source domain to improve performance of a
learned model on a different target domain where data is less available. In the context of
sim-to-real transfer, the source domain is the simulator and the target is the real-world data
distribution.
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If labels or rewards are available in the target domain, supervised domain adaptation can
be applied. The simplest form of supervised domain adaptation is fine-tuning, where the
weights of a network trained in the source domain are used as initialization for a network
trained in the target domain. Fine-tuning can be more efficient than learning from scratch
in the real world [8, 82]. Alternatives to naive fine-tuning in supervised domain adaptation
for robotics include using adaptation-focused model architectures like progressive networks
[166], learning a specific part of the control system (instead of the full model) using real
data [50, 128], explicitly treating the model learned in simulation as a Bayesian prior for
the real-world model [27], and using real data to search over a low-dimensional subspace of
models learned in a range of simulations [89].

Instead of training the network once in each domain, iterative learning control alternates
between training in simulation, deploying the model in the real world, and using the data
from the real world to improve the simulation [3, 28, 63, 210].

If labels or rewards are not available in the real world, they can be estimated from the
model trained in simulation (weakly-supervised domain adaptation) [184, 207]. Unsupervised
domain adaptation techniques work directly with unlabeled data from the target domain to
match the distribution of inputs or features between the domains [69, 15, 225, 240].

Domain randomization

Domain randomization is the idea that, instead of carefully modeling all aspects of the real
world, instead the simulation should be highly randomized. The intuition is that if the model
sees enough variability in the simulator, the real world may look to the model like the next
simulation. Choosing to randomize an aspect of the simulator like lighting conditions forces
the model not to rely on it to make its predictions.

The core idea of domain randomization in robotics has been explored since the 1990s [74].
The phenomenon that highly randomized data can be used to learn deep neural networks that
generalize to real data was first discovered in [109], and the use of randomized simulations
to learn deep neural networks that generalize to real robots was first explored in [168].

1.3 Overview and contributions

In this thesis, we study learning perception models using simulated data that are useful for
downstream robotics tasks. Though end-to-end visuomotor control policies are a promising
direction for robotics, we choose to focus on models that estimate a representation of the
state of the world and can be used as input to a separate control module.

Separating perception and control provides two advantages. First, it is easier to disam-
biguate which errors come from perception, which makes studying sim-to-real transfer of
perception models easier to study. Second, whereas task-oriented end-to-end policies are
often difficult to reuse [197], perception primitives need not be.

The main contributions of this thesis are the following:
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e In Chapter 2, we explore a limited form of state estimation: learning a model that es-
timates the position of a single object of interest. We propose a domain randomization
approach that allows our models to estimate the position of objects to 1.5cm, which
is accurate enough to perform grasping in a cluttered real-world environment. To our
knowledge, this is the first successful transfer of a deep neural network trained only on
simulated RGB images (without pre-training on real images) to the real world for the
purpose of robotic manipulation. This work was previously published as [200].

e In Chapter 3, we explore training a single model to estimate the state of many objects
in the context of robotic grasping. We formulate the grasping task as a generative
modeling problem and propose a neural network architecture that allows us to learn
a distribution from which to efficiently sample grasps. To avoid the need to create
realistic meshes for every object the model must grasp, we propose applying the idea
of domain randomization to object synthesis. We procedurally generate low-fidelity,
random objects and show that, by training on a wide array of such objects, models are
able to generalize to realistic objects and grasp them in the real world. This work was
previously published as [199].

e In Chapter 4, we explore a more general form of state estimation: building an implicit
3D model of the world by learning to render a scene from arbitrary viewpoints. Implicit
3D representations can model the state of any scene, and in principle scale with the size
of the input images, not the complexity of the scene. We extend the Generative Query
Networks (GQN) [39] model architecture with a novel attention mechanism based on
the epipolar geometry of the scene. We show our model architecture E-GQN is able
to produce high-fidelity renderings of more complex, higher resolution scenes than
is possible with GQN alone. We demonstrate that fine-tuning these representations
allows learning pose estimation models even when the camera intrinsics are unknown
at training time. A publication of this work is currently in preparation [198].

e Finally, in Chapter 5, we discuss the implications of our work, including recent ap-
plications and extensions of domain randomization since our work was released. We
conclude by discussing possible future research directions in sim-to-real transfer for
robotic perception and control.



Chapter 2

Domain Randomization

2.1 Introduction

Robotic learning in a physics simulator could accelerate the impact of machine learning on
robotics by allowing faster, more scalable, and lower-cost data collection than is possible
with physical robots. Learning in simulation is especially promising for building on recent
results using deep reinforcement learning to achieve human-level performance on tasks like
Atari [123] and robotic control [106, 175]. Deep reinforcement learning employs random
exploration, which can be dangerous on physical hardware. It often requires hundreds of
thousands or millions of samples [123], which could take thousands of hours to collect, making
it impractical for many applications. Ideally, we could learn policies that encode complex
behaviors entirely in simulation and successfully run those policies on physical robots with
minimal additional training.

Unfortunately, discrepancies between physics simulators and the real world make trans-
ferring behaviors from simulation challenging. System identification, the process of tuning
the parameters of the simulation to match the behavior of the physical system, is time-
consuming and error-prone. Even with strong system identification, the real world has un-
modeled physical effects like nonrigidity, gear backlash, wear-and-tear, and fluid dynamics
that are not captured by current physics simulators (though learning techniques may help
bridge this gap [136]). Furthermore, low-fidelity simulated sensors like image renderers are
often unable to reproduce the richness and noise produced by their real-world counterparts.
These differences, known collectively as the reality gap, form the barrier to using simulated
data on real robots.

This chapter explores domain randomization, a simple but promising method for ad-
dressing the reality gap. Instead of training a model on a single simulated environment, we
randomize the simulator to expose the model to a wide range of environments at training
time. The purpose of this work is to test the following hypothesis: if the variability in sim-
ulation is significant enough, models trained in simulation will generalize to the real world
with no additional training.
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Figure 2.1: Mlustration of our approach. An object detector is trained on hundreds of
thousands of low-fidelity rendered images with random camera positions, lighting conditions,
object positions, and non-realistic textures. At test time, the same detector is used in the
real world with no additional training.

Though in principle domain randomization could be applied to any component of the
reality gap, we focus on the challenge of transferring from low-fidelity simulated camera
images. Robotic control from camera pixels is attractive due to the low cost of cameras and
the rich data they provide, but challenging because it involves processing high-dimensional
input data. Recent work has shown that supervised learning with deep neural networks is a
powerful tool for learning generalizable representations from high-dimensional inputs [101],
but deep learning relies on a large amount of labeled data. Labeled data is difficult to obtain
in the real world for precise robotic manipulation behaviors, but it is easy to generate in a
physics simulator.

We focus on the task of training a neural network to detect the location of an object.
Object localization from pixels is a well-studied problem in robotics, and state-of-the-art
methods employ complex, hand-engineered image processing pipelines (e.g., [24], [23], [195]).
This work is a first step toward the goal of using deep learning to improve the accuracy of
object detection pipelines. Moreover, we see sim-to-real transfer for object localization as a
stepping stone to transferring general-purpose manipulation behaviors.

We find that for a range of geometric objects, we are able to train a detector that is
accurate to around 1.5 cm in the real world using only simulated data rendered with simple,
algorithmically generated textures. Although previous work demonstrated the ability to
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perform robotic control using a neural network pretrained on ImageNet and fine-tuned on
randomized rendered pixels [168], this chapter provides the first demonstration that domain
randomization can be useful for robotic tasks requiring precision. We also provide an ablation
study of the impact of different choices of randomization and training method on the success
of transfer. We find that with a sufficient number of textures, pre-training the object detector
using real images is unnecessary. To our knowledge, this is the first successful transfer of a
deep neural network trained only on simulated RGB images to the real world for the purpose
of robotic control.

2.2 Related Work

Object detection and pose estimation for robotics

Object detection and pose estimation for robotics is a well-studied problem in the literature
(see, e.g., [25], [23], [24], [38], [195], [226]). Recent approaches typically involve offline
construction or learning of a 3D model of objects in the scene (e.g., a full 3D mesh model [195]
or a 3D metric feature representation [23]). At test time, features from the test data (e.g.,
Scale-Invariant Feature Transform [SIFT] features [56] or color co-occurrence histograms
[38]) are matched with the 3D models (or features from the 3D models). For example, a
black-box nonlinear optimization algorithm can be used to minimize the re-projection error
of the SIFT points from the object model and the 2D points in the test image [25]. Most
successful approaches rely on using multiple camera frames [24] or depth information [195].
There has also been some success with only monocular camera images [25]. Neural network-
based perception has also been explored [104], but collecting a large enough training set can
be challenging.

Compared to our method, traditional approaches require less extensive training and take
advantage of richer sensory data, allowing them to detect the full 3D pose of objects (posi-
tion and orientation) without any assumptions about the location or size of the surface on
which the objects are placed. However, our approach avoids the challenging problem of 3D
reconstruction, and employs a simple, easy to implement deep learning-based pipeline that
may scale better to more challenging problems.

Domain adaptation

The computer vision community has devoted significant study to the problem of adapting
vision-based models trained in a source domain to a previously unseen target domain (see,
e.g., [32], [71], [70], [94]). Approaches include re-training the model in the target domain
(e.g., [231]), adapting the weights of the model based on the statistics of the source and target
domains (e.g., [110]), learning invariant features between domains (e.g., [209]), and learning
a mapping from the target domain to the source domain (e.g., [193]). Researchers in the
reinforcement learning community have also studied the problem of domain adaptation by
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learning invariant feature representations [59], adapting pretrained networks [165], and other
methods. See [59] for a more complete treatment of domain adaptation in the reinforcement
learning literature.

In this chapter we study the possibility of transfer from simulation to the real world
without performing domain adaptation.

Bridging the reality gap

Previous work on leveraging simulated data for physical robotic experiments explored several
strategies for bridging the reality gap.

One approach is to make the simulator closely match the physical reality by performing
system identification and using high-quality rendering. Though using realistic RGB render-
ing alone has had limited success for transferring to real robotic tasks [77], incorporating
realistic simulation of depth information can allow models trained on rendered images to
transfer well to the real world [147]. Combining data from high-quality simulators with
other approaches like fine-tuning can also reduce the number of labeled samples required in
the real world [158].

Unlike these approaches, ours allows the use of low-quality renderers optimized for speed
and not carefully matched to real-world textures, lighting, and scene configurations.

Other work explores using domain adaptation to bridge the reality gap. It is often faster
to fine-tune a controller learned in simulation than to learn from scratch in the real world [27,
89]. In [50], the authors use a variational autoencoder trained on simulated data to encode
trajectories as a low-dimensional latent code. A policy learned on real data can overcome the
reality gap by choosing latent codes via exploration that correspond to the desired physical
behavior. In the evolutionary robotics literature, the work of Cully et al. [26] demonstrates
that exploration in the real world can be more efficient with prior knowledge from a simulator.

Domain adaptation has also been applied to robotic vision. In [239], the authors show
that modularity between the perception system and control system can aid transferability.
Rusu et al. [166] find that using the progressive network architecture has better sample
efficiency than fine-tuning or training in the real-world alone. In [208], the authors learn
a correspondence between domains that allows the real images to be mapped into a space
understood by the model. While the preceding approaches require reward functions or
labeled data, Mitash and collaborators [122] pre-train an object detector using realistic
rendered images to bootstrap an automated learning learning process that does not require
manually labeling data and uses only around 500 real-world samples.

A related idea, iterative learning control, uses real-world data to improve the dynamics
model used to determine the optimal control behavior, rather than using real-world data
to improve the controller directly. Iterative learning control starts with a dynamics model,
applies the corresponding control behavior on the real system, and then closes the loop by
using the resulting data to improve the dynamics model. Iterative learning control has been
applied to a variety of robotic control problems, from model car control (e.g., [3] and [28]) to
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surgical robotics (e.g., [210]). Similar ideas have been explored in the evolutionary robotics
literature, such as in the work of Koos et al. [90].

Domain adaptation and iterative learning control are important tools for addressing the
reality gap, but in contrast to these approaches, ours requires no additional training on
real-world data. Our method can also be combined easily with most domain adaptation
techniques.

Several authors have previously explored the idea of using domain randomization to
bridge the reality gap.

In the context of physics adaptation, Mordatch and collaborators [127] show that training
a policy on an ensemble of dynamics models can make the controller robust to modeling
error and improve transfer to a real robot. Similarly, in [7], the authors use a simulator with
randomized friction and action delay and find behaviors transfer to the real world.

Rather than relying on controller robustness, Yu et al. [233] use a model trained on
varied physics to perform system identification using online trajectory data, but their ap-
proach is not shown to succeed in the real world. Rajeswaran et al. [151] explore different
training strategies for learning from an ensemble of models, including adversarial training
and adapting the ensemble distribution using data from the target domain, but also do not
demonstrate successful real-world transfer.

Earlier work in evolutionary robotics also uses domain randomization to encourage sim-
to-real transfer. In [73], the authors suggested that transferability can be achieved by ran-
domly varying the items in the implementation set — model parameters that are not essential
to the controller achieving near-optimal performance. Our work can be interpreted in this
framework by considering the rendering aspects of the simulator (lighting, texture, etc) as
part of the implementation set.

Researchers in computer vision have used 3D models as a tool to improve performance
on real images since the earliest days of the field (e.g., [134]). More recently, 3D models have
been used to augment training data to aid transferring deep neural networks between datasets
and prevent over-fitting on small datasets for tasks like viewpoint estimation [187] and object
detection [189], [130]. Recent work has explored using only synthetic data for training 2D
object detectors (i.e., predicting a bounding box for objects in the scene). In [142], the
authors find that by pretraining a network on ImageNet and fine-tuning on synthetic data
created from 3D models, better detection performance on the PASCAL dataset can be
achieved than training with only a few labeled examples from the real dataset.

In contrast to our work, most object detection results in computer vision use realistic
textures, but do not create coherent 3D scenes. Instead, objects are rendered against a solid
background or a randomly chosen photograph. As a result, our approach allows our models
to understand the 3D spatial information necessary for rich interactions with the physical
world.

Sadeghi and Levine’s work [168] is the most similar to our own. The authors demonstrate
that a policy mapping images to controls learned in a simulator with varied 3D scenes and
textures can be applied successfully to real-world quadrotor flight. However, their experi-
ments — collision avoidance in hallways and open spaces — do not demonstrate the ability
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to deal with high-precision tasks. Our approach also does not rely on precise camera in-
formation or calibration, instead randomizing the position, orientation, and field of view of
the camera in the simulator. Whereas their approach chooses textures from a dataset of
around 200 pre-generated materials, most of which are realistic, our approach is the first to
use only non-realistic textures created by a simple random generation process, which allows
us to train on hundreds of thousands (or more) of unique texturizations of the scene.

2.3 Methods

Given some objects of interest {s;};, our goal is to train an object detector d(Iy) that maps a
single monocular camera frame I to the Cartesian coordinates {(z;,y;, z;)}:; of each object.
In addition to the objects of interest, our scenes sometimes contain distractor objects that
must be ignored. Our approach is to train a deep neural network in simulation using domain
randomization. The remainder of this section describes the specific domain randomization
and neural network training methodology we use.

Domain randomization

The purpose of domain randomization is to provide enough simulated variability at training
time such that at test time the model is able to generalize to real-world data. We randomize
the following aspects of the domain for each sample used during training:

e Number and shape of distractor objects on the table

e Position and texture of all objects on the table

e Textures of the table, floor, skybox, and robot

e Position, orientation, and field of view of the camera

e Number of lights in the scene

e Position, orientation, and specular characteristics of the lights
e Type and amount of random noise added to images

Since we use a single monocular camera image from an uncalibrated camera to estimate
object positions, we fix the height of the table in simulation, effectively creating a 2D pose
estimation task. Random textures are chosen among the following:

(a) A random RGB value
(b) A gradient between two random RGB values

(c) A checker pattern between two random RGB values
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The textures of all objects are chosen uniformly at random — the detector does not have
access to the color of the object(s) of interest at training time, only their size and shape. We
render images using the MuJoCo Physics Engine’s [201] built-in renderer. This renderer is
not intended to be photo-realistic, and physically plausible choices of textures and lighting
are not needed.

Between 0 and 10 distractor objects are added to the table in each scene. Distractor
objects on the floor or in the background are unnecessary, despite some clutter (e.g., cables)
on the floor in our real images.

Our method avoids calibration and precise placement of the camera in the real world by
randomizing characteristics of the cameras used to render images in training. We manually
place a camera in the simulated scene that approximately matches the viewpoint and field
of view of the real camera. Each training sample places the camera randomly within a
(10 x 5 x 10) cm box around this initial point. The viewing angle of the camera is calculated
analytically to point at a fixed point on the table, and then offset by up to 5.7 degrees (0.1
radians) in each direction. The field of view is also scaled by up to 5% from the starting
point.

Model architecture and training

. Convolutional layers - Fully connected layers

“ -

(224 x 224 x 64) (112 x 112 x 128) (56 x 56 x 256) (28 x 28 x 512) (14 x 14 x 512) (1 x 1 x 256) (1 x 1 x 64)

Figure 2.2: The model architecture used in our experiments. Each vertical bar corresponds
to a layer of the model. ReLLU nonlinearities are used throughout, and max pooling occurs
between each of the groupings of convolutional layers. The input is an image from an external
webcam downsized to (224 x 224).

We parametrize our object detector with a deep convolutional neural network. In partic-
ular, we use a modified version the VGG-16 architecture [183] shown in Figure 2.2. We chose
this architecture because it performs well on a variety of computer vision tasks, and because
it has a wide availability of pretrained weights. We use the standard VGG convolutional
layers, but use smaller fully connected layers of sizes 256 and 64 and do not use dropout.
For the majority of our experiments, we use weights obtained by pretraining on ImageNet
to initialize the convolutional layers, which we hypothesized would be essential to achieving



CHAPTER 2. DOMAIN RANDOMIZATION 13

transfer. In practice, we found that using random weight initialization works as well in most
cases.

We train the detector through stochastic gradient descent on the Lo loss between the
object positions estimated by the network and the true object positions using the Adam
optimizer [87]. We found that using a learning rate of around le—4 (as opposed to the
standard 1le—3 for Adam) improved convergence and helped avoid a common local optimum,
mapping all objects to the center of the table.

2.4 Experiments

Experimental Setup

Figure 2.3: The geometric objects used in our experiments.

We evaluated our approach by training object detectors for each of eight geometric ob-
jects. We constructed mesh representations for each object to render in the simulator. Each
training sample consists of (a) a rendered image of the object and one or more distractors
(also from among the geometric object set) on a simulated tabletop and (b) a label cor-
responding to the Cartesian coordinates of the center of mass of the object in the world
frame.

For each experiment, we performed a small hyperparameter search, evaluating combina-
tions of two learning rates (le—4 and 2e—4) and three batch sizes (25, 50, and 100). We
report the performance of the best network.

The goals of our experiments are:
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(a) Evaluate the localization accuracy of our trained detectors in the real world, including
in the presence of distractor objects and partial occlusions

(b) Assess which elements of our approach are most critical for achieving transfer from
simulation to the real world

(c) Determine whether the learned detectors are accurate enough to perform robotic ma-
nipulation tasks

Evaluation type | Object only | Distractors | Occlusions
Cone 1.1£+£04 1.1£0.3 0.9+04
Cube 0.9+£0.5 20422 1.5+1.1
Cylinder 0.9+0.5 1.9+3.6 2.6+ 3.6
Hexagonal Prism 0.7+ 0.5 0.6 0.3 1.04+1.0
Pyramid 0.9+0.3 1.0£0.5 1.1£0.7
Rectangular Prism 1.1+04 1.1+£0.3 0.9+04
Tetrahedron 0.9+£0.5 1.3+£0.8 3.2£5.8
Triangular Prism 0.9+£04 0.9£0.3 1.6 £ 3.0

Figure 2.4: Localization error for various objects, cm.

Localization accuracy

To evaluate the accuracy of the learned detectors in the real world, we captured 480 webcam
images of one or more geometric objects on a table at a distance of 70 cm to 105cm from
the camera. The camera position remains constant across all images. We did not control
for lighting or the rest of the scene around the table (e.g., all images contain part of the
robot and tape and wires on the floor). We measured ground truth positions by aligning the
object of interest on a 1 millimeter grid on the tabletop. Note that the grid may add up to
1 mm of error, so we only report up to that resolution. Each of the eight geometric objects
has 60 labeled images in the dataset: 20 with the object alone on the table, 20 in which one
or more distractor objects are present on the table, and 20 in which the object is partially
occluded by another object.

Figure 2.4 summarizes the performance of our models on the test set. ur object detectors
are able to localize objects to within 1.5cm (on average) in the real world and perform
well in the presence of clutter and partial occlusions. Though the accuracy of our trained
detectors is promising, note that domain mismatch still causes worse performance than on
the simulated training data, where error is around 0.3 cm.
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Variability in detector performance

The localization accuracy reported in Figure 2.4 represents the the performance of the best
hyperparameter setting. Figure 2.5 summarizes how performance of trained detectors varies
with different seeds and hyperparameter settings. We used 2 seeds for each of the 6 hyper-
paremeter settings described in the previous section.

We evaluated each on the test set and a synthetic validation set consisting of the simulated
scene with more realistic non-random textures. The first six columns of Table IT show that
the performance varies significantly between runs on both evaluation sets.

The last column reports the cosine similarity between the performance of all models
on the test set and the synthetic validation set. The high similarity scores suggest that
relative performance of a model on the synthetic validation set is a good proxy for relative
performance on the test set. Choosing the best-performing model on the validation set may
be a reasonable strategy for finding the best-performing model in the real world.

Synthetic validation images Real images Cos
Best | Worst Avg Best | Worst Avg Sim
Cone 0.3 12.5 2.3+3.9 0.9 14.3 | 34+4.11]0.98
Cube 0.2 12.7 1.5£3.5 1.5 114 129+271]091

Cylinder 0.3 12.5 1.9+£35 1.8 14.7 |1 34+£3.8]0.95
Hex. Prism | 04 12.6 1.9+£3.5 0.8 14.8 | 2.5+ 3.6 | 0.98
Pyramid 0.3 12.5 1.5£3.1 1.3 142 1 3.0+£3.2 | 0.93
Rect. Prism | 0.5 12.8 21+£3.7 1.0 125 |1 2.6+£3.0 | 0.96
Tetrahedron | 0.3 12.8 3.0£4.7 1.8 14.6 | 47+£4.710.97
Tri. Prism | 0.3 12.9 29+t44 1.1 146 | 4.1+£4.7| 0.98

Figure 2.5: Variability in model performance across hyperparameters and seeds.

In addition to performance variability between seeds and hyperparameters, we looked
at the performance variability for the single best detector for each object. The results are
summarized in Figures 2.6 and 2.7.

Figure 2.6 summarizes the prediction error on all datapoints in the test set. The mode
of each error distribution is similar, suggesting that the difference in performance between
objects is largely caused by outliers like not finding the object in the image and predicting
the position of the wrong object.

Figure 2.7 shows how performance varies with the position of the object. Errors are more
concentrated toward the outside of the table, but are not consistent across object types.

To evaluate the performance of the models on corner cases, we tested create synthetic
test images in which (a) the object of interest is not present in the scene, or (b) there are
multiple copies of the object of interest on the table. In both cases, the model performed
as expected — in the first case, it estimated the position of the object to be the mean of the
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Figure 2.6: Error distributions for the best models. The x-axis corresponds to the error (in
centimeters), and the y-axis corresponds to the percentage of data points within each bucket.
The red line represents the mean performance.

training images (approximately the center of the table), and in the second case it predicted
the object was at the mean position of all the copies of the object of interest.

Performance on non-uniform textures

To examine how our detectors would perform on objects with complex textures, we created
simulated scenes in which the object of interest is given a texture from the Describable
Textures Dataset (DTD) [21]. Our synthetic test set consists of 7,000 total images using 5
random textures from each of the 35 categories in the DTD. We also gave realistic textures
to the table, floor, and background (wood, marble, and a warehouse background respec-
tively). We compared the performance on this dataset to a baseline consisting of scenes
with realistically textured table, floor, and background but a uniformly textured object of
interest.

The results in Figure 2.4 show that the model performs comparably when tested on
objects with complex, non-uniform textures, suggesting that it has learned a representation
invariant to the texture of the object of interest.
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Cube Cylinder

Pyramid Rectangular Prism Tetrahedron

Figure 2.7: Error distribution by object position. We divided the table into 4 horizontal and
4 vertical buckets. The bottom-left of each heatmap corresponds to the front-left corner of
the table in the camera frame. The scale on the right represents average error in centimeters.

Hexagonal Prism
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Triangular Prism

28]

[

Detection error for various objects, cm
Complex textures | Baseline

Cone 0.23 +0.09 0.30 +0.14
Cube 1.63 £ 0.37 0.64 + 1.37
Cylinder 0.30 + 0.06 0.34 +0.18
Hexagonal Prism 0.46 £ 0.26 0.37£0.25
Pyramid 0.214+0.11 0.30 £0.19
Rectangular Prism 0.5+0.26 0.51 + 0.69
Tetrahedron 0.32£0.15 0.32£0.19
Triangular Prism 0.27 + 0.09 0.29 + 0.16

Figure 2.8: Performance of trained models on simulated data with complex textures from
the Describable Textures Dataset. The baseline uses uniformly textured objects.

Comparison to existing methods

The accuracy of our detectors are comparable at a similar distance to the translation error in
traditional techniques for pose estimation in clutter from a single monocular camera frame
23] that use higher-resolution images.

The primary advantage of our technique over existing methods is that it uses a simple-to-
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implement, scalable pipeline that may be easy to extend to harder problems. However, our
technique has several limitations relative to existing approaches. The primary drawback of
our method is that it requires setting up simulated scenes and training separate detectors for
each object, including creating 3D models for each object. Once trained, the models may not
generalize well to new scenes (e.g., new positions of the table relative to the robot or large
changes of the position of the camera relative to the table). Finally, since our approach is
based on deep neural networks, failure cases can be extreme (e.g., greater than 15 cm error)
and difficult to interpret.

Ablation study

To evaluate the importance of different factors of our training methodology, we assessed the
sensitivity of the algorithm to the number of training images, the number of unique textures
seen in training, the use of random noise in pre-processing, the presence of distractors in
training, the randomization of camera position in training, and the use of pre-trained weights
in the detection model.

We found that the method is at least somewhat sensitive to all of the factors except the
use of random noise.
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Figure 2.9: Sensitivity of test error on real images to the number of simulated training
examples used. Each training example corresponds to a single labeled example of an object on
the table with between 0 and 10 distractor objects. Lighting and all textures are randomized
between iterations.

Figure 2.9 shows the sensitivity to the number of training samples used for pre-trained
models and models trained from scratch. Using a pre-trained model, we are able to achieve
relatively accurate real-world detection performance with as few as 5,000 training samples,
but performance improves up to around 50,000 samples.
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Figure 2.9 shows the performance of a model trained from scratch. Our hypothesis that
pre-training would be essential to generalizing to the real world proved to be false. With
a large amount of training data, random weight initialization can achieve nearly the same
performance as does pre-trained weight initialization. The best detectors for a given object
were often those initialized with random weights. However, using a pre-trained model can
significantly improve performance when less training data is used.

Figure 2.10 shows the sensitivity to the number of unique texturizations of the scene
when trained on a fixed number (10, 000) of training examples. We found that performance
degrades significantly when fewer than 1,000 textures are used, indicating that for our ex-
periments, using a large number of random textures (in addition to random distractors and
object positions) is necessary to achieving transfer. Note that when 1,000 random textures
are used in training, the performance using 10,000 images is comparable to that of using
only 1,000 images, indicating that in the low data regime, texture randomization is more
important than randomization of object positions.
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Figure 2.10: Sensitivity to amount of texture randomization. In each case, the detector was
trained using 10, 000 random object positions and combinations of distractors, but only the
given number of unique texturizations and lighting conditions were used.

Figure 2.11 examines the performance of the algorithm when random noise, distractors,
and camera randomization are removed in training. Incorporating distractors during training
appears to be critical to resilience to distractors in the real world. Randomizing the position
of the camera also consistently provides a slight accuracy boost, but reasonably high accuracy
is achievable without it. Adding noise during pretraining appears to have a negligible effect.
In practice, we found that adding a small amount of random noise to images at training time
improves convergence and makes training less susceptible to local minima.



CHAPTER 2. DOMAIN RANDOMIZATION 20

Evaluation Real images
type Object only | Distractors | Occlusions
Full method 1.3£0.6 1.8+1.7 24+3.0
No noise added 1.44+0.7 1.9+2.0 24+£28

No camera randomization 20+2.1 24+23 29+3.5
No distractors in training 1.5+ 0.6 72+45 74+5.3

Figure 2.11: Ablation study. Localization error (in centimeters) of object detectors trained
on 20,000 examples from different dataset configurations.

Robotics experiments

To demonstrate the potential of this technique for transferring robotic behaviors learned
in simulation to the real world, we evaluated the use of our object detection networks for
localizing an object in clutter and performing a prescribed grasp. For two of our most
consistently accurate detectors, we evaluated the ability to pick up the detected object in
20 increasingly cluttered scenes using the positions estimated by the detector and off-the-
shelf motion planning software [188]. To test the robustness of our method to discrepancies
in object distributions between training and test time, some of our test images contain
distractors placed at orientations not seen during training.

We deployed the pipeline on a Fetch robot [220], and found it was able to successfully
pick up the target object in 38 out of 40 trials, including in highly cluttered scenes with
significant occlusion of the target object. Note that the trained detectors have no prior
information about the color of the target object, only its shape and size, and are able to
detect objects placed closely to other objects of the same color.

To test the performance of our object detectors on objects with non-uniform textures,
we trained a detector to localize a can of Spam from the YCB Dataset [18]. At test time,
instead of using geometric object distractors like in training, we placed other food items from
the YCB set on the table. The detector was able to ignore the previously unseen distractors
and pick up the target in 9 of 10 trials.

Figure 2.12 shows examples of the robot grasping trials. For videos, please visit the web
page associated with this paper.!

2.5 Conclusion

We demonstrated that an object detector trained only in simulation can achieve high enough
accuracy in the real world to perform grasping in clutter. Future work will explore how to
make this technique reliable and effective enough to perform tasks that require contact-rich
manipulation or higher precision.

'https://sites.google.com/view/domainrandomization/
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Figure 2.12: Two representative executions of grasping objects using vision learned in sim-
ulation only. The object detector network estimates the positions of the object of interest,
and then a motion planner plans a simple sequence of motions to grasp the object at that
location.

Future directions that could improve the accuracy of object detectors trained using do-
main randomization include using higher resolution camera frames, optimizing model archi-
tecture choice, introducing additional forms of texture, lighting, and rendering randomization
to the simulation, training on more data, incorporating multiple camera viewpoints, stereo
vision, or depth information, and combining domain randomization with domain adaptation.

Domain randomization is a promising research direction toward bridging the reality gap
for robotic behaviors learned in simulation. Deep reinforcement learning may allow more
complex policies to be learned in simulation through large-scale exploration and optimization,
and domain randomization could be an important tool for making such policies useful on
real robots.
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Chapter 3

Domain Randomization for Grasping

3.1 Introduction

Robotic grasping remains one of the core unsolved problems in manipulation. The earliest
robotic grasping methods used analytical knowledge of a scene to compute an optimal grasp
for an object [132, 9, 135, 149, 159, 174]. Assuming a contact model and a heuristic for
the likelihood of success of a grasp, analytical methods can provide guarantees about grasp
quality, but they often fail in the real world due to inconsistencies in the simplified object
and contact models, the need for accurate 3D models of the objects in question, and sensor
inaccuracies [10].

As a result, significant research attention has been given to data-driven grasp synthesis
methods [10, 120, 141, 52, 126, 125, 171]. These algorithms avoid some of the challenges
of analytic methods by sampling potential grasps and ranking them according to a learned
function that maps sensor inputs to an estimate of a chosen heuristic.

Recently, several works have explored using deep neural networks to approximate the
grasp heuristic function [107, 144, 114, 81]. The promise of deep neural networks for learning
grasp heuristics is that with diverse training data, deep models can learn features that deal
with the edge cases that make real-world grasping challenging.

A core challenge for deep learning grasp quality heuristics is data availability. Due to the
difficulty and expense of collecting real-world data and due to the limited availability of high-
quality 3D object meshes, current approaches use as few as hundreds or thousands of unique
object instances, which may limit generalization. In contrast, ImageNet [93], the standard
benchmark for image classification, has about 15M unique images from 22K categories.

In order to increase the availability of training data in simulation, we explore applying
the idea of domain randomization [168, 200] to the creation of 3D object meshes. Domain
randomization is a technique for learning models that work in a test domain after only train-
ing on low-fidelity simulated data by randomizing all non-essential aspects of the simulator.
One of the core hypotheses of this work is that by training on a wide enough variety of unre-
alistic procedurally generated object meshes, our learned models will generalize to realistic
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objects.

Previous work in deep learning for grasping has focused on learning a function that
estimates the quality of a given grasp given observations of the scene. Choosing grasps
on which to perform this estimate has received comparatively little attention. Grasps are
typically chosen using random sampling or by solving a small optimization problem online.
The second goal of this chapter is to propose a deep learning-based method for choosing
grasps to evaluate. Our hypothesis is that a learned model for grasp sampling will be more
likely to find high-quality grasps for challenging objects and will do so more efficiently.

We use an autoregressive model architecture [98, 137, 138] that maps sensor inputs to a
probability distribution over grasps that corresponds to the model’s weighted estimate of the
likelihood of success of each grasp. After training, highest probability grasp according to the
distribution succeeds on 89% of test objects and the 20 highest probability grasps contain
a successful grasp for 96% of test objects. In order to determine which grasp to execute on
the robot, we collect a second observation in the form of an image from the robot’s hand
camera and train a second model to choose the most promising grasp among those sampled
from the autoregressive model, resulting in a success rate of 92%.

The contributions of this chapter can be summarized as follows:

o We explore the effect of training a model for grasping using unrealistic procedurally
generated objects and show that such a model can achieve similar success to one trained
on a realistic object distribution. (Another paper [14] developed concurrently to this
one explored a similar idea and reached similar conclusions.)

e We propose a novel generative model architecture and training methodology for learn-
ing a sampling distribution for grasps to evaluate.

e We evaluate our object generation, training, and sampling algorithms in simulated
scenes and find that we can achieve an 84% success rate on random objects and 92%
success rate on previously unseen real-world objects despite training only on non-
realistic randomly generated objects.

e We demonstrate that we can deploy these models in real-world grasping experiments
with an 80% success rate despite having been trained entirely in simulation.

3.2 Related Work

Domain Randomization

Domain randomization involves randomizing non-essential aspects of the training distribu-
tion in order to better generalize to a difficult-to-model test distribution. This idea has been
employed in robotics since at least 1997, when Jakobi proposed the “Radical Envelope of
Noise Hypothesis”, the idea that evolved controllers can be made more robust by completely
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randomizing all aspects of the simulator that do not have a basis in reality and slightly ran-
domizing all aspects of the simulator that do have a basis in reality [73]. Recently domain
randomization has shown promise in transferring deep neural networks for robotics tasks
from simulation to the real world by randomizing physics [127] and appearance properties
[168, 200, 238].

In another work developed concurrently with this one [14], the authors reach a similar
conclusion about the utility of procedurally generated objects for the purpose of robotic
grasping. In contrast to this work, theirs focuses on how to combine simulated data with
real grasping data to achieve successful transfer to the real world, but does not focus on
achieving a high overall success rate. Our work instead focuses on how to achieve the best
possible generalization to novel objects. Ours also has a comparable real-world success rate
despite not using any real-world training data.

Autoregressive models

This work uses an autoregressive architecture to model a distribution over grasps conditioned
on observations of an object. Autoregressive models leverage the fact that an N-dimensional
probability distribution p(X) can be factored as Hﬁf:l p(xy, | 1, ,x,_1) for any choice of
ordering of 1-dimensional variables x;. The task of modeling the distribution then consists
of modeling each p(z,, | z1,- -+ ,2,-1) [98]. In contrast to Generative Adversarial Networks
[54], another popular form for a deep generative model, autoregressive models can directly
compute the likelihood of samples, which is advantageous for tasks like grasping in which
finding the highest likelihood samples is important. Autoregressive models have been used
for density estimation and generative modeling in image domains [98, 57, 49] and have
been shown to perform favorably on challenging image datasets like ImageNet [137, 139].
Autoregressive models have also been successfully applied to other forms of data including
in topic modeling [97] and audio generation [138].

Robotic grasping

Grasp planning methods fall into one of two categories: analytical methods and empirical
methods [169].

Analytical methods use a contact model and knowledge of an object’s 3D shape to find
grasps that maximize a chosen metric like the ability of the grasp to resist external wrenches
[149] or constrain the object’s motion [159]. Some methods attempt to make these estimates
more robust to gripper and object pose uncertainty and sensor error by instead maximizing
the expected value of a metric under uncertainty [83, 216].

Most approaches use simplified Coulomb friction and rigid body modeling for compu-
tational tractability [132, 149], but some have explored more realistic object and friction
models [9, 150, 161]. Typically, grasps for an object are selected based on sensor data by
registering images to a known database of 3D models using a traditional computer vision
pipeline [22, 67, 227] or a deep neural network [60, 236].
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Empirical methods instead attempt to maximize the value of a quality metric through
sampling [169]. Many approaches use simulation to evaluate classical grasp quality metrics
(120, 141, 52, 119]. Others use human labeling or self-supervised learning to measure success
(126, 125, 171].

Most techniques estimate the value of the quality metric in real-world trials using tra-
ditional computer vision and learning techniques [172, 99, 171, 141]. More recently, deep
learning has been employed to learn a mapping directly from sensor observations to grasp
quality or motor torques.

Deep learning for robotic grasping

Work in deep learning for grasping can be categorized by how training data is collected and
how the model transforms noisy observations into grasp candidates.

Some approaches use hand-annotated real-world grasping trials to provide training labels
[105]. However, hand-labeling is challenging to scale to large datasets. To alleviate this
problem, some work explores automated large-scale data collection [107, 144]. Others have
explored replacing real data with synthetic depth data at training time [114, 115, 213, 81],
or combining synthetic RGB images with real images [14]. In many cases, simulated data
appears to be effective in replacing or supplementing real-world data in robotic grasping.
Unlike our approach, previous work using synthetic data uses small datasets of up to a few
thousand of realistic object meshes.

One commonly used method for sampling grasps is to learn a visuomotor control policy
for the robot that allows it to iteratively refine its grasp target as it takes steps in the environ-
ment. Levine and co-authors learn a prediction network g(I;,v;) that takes an observation
I; and motor command v, and outputs a predicted probability of a successful grasp if v; is
executed [107]. The cross-entropy method is used to greedily select the v; that maximizes g.
Viereck and co-authors instead learn a function d(I;,v;) that maps the current observation
and an action to an estimate of the distance to the nearest successful grasp after performing
vy [213]. Directions are sampled and a constant step size is taken in the direction with the
minimum value for d. In contrast to visuomotor control strategies, planning approaches like
ours avoid the local optima of greedy execution.

Another strategy to choose a grasp using a deep learning is to sample grasps and score
them using a deep neural network of the form f(I,g) — s, where I are the observation(s)
of the scene, g is a selected grasp, and s is the score for the selected grasp [114, 115, 81,
229]. These techniques differ in terms of how they sample grasps to evaluate at test time.
Most commonly they directly optimize g using the cross-entropy method [114, 115, 229].
In contrast to these approaches, our approach jointly learns a grasp scoring function and
a sampling distribution, allowing for efficient sampling and avoiding exploitation by the
optimization procedure of under- or over-fit regions of the grasp score function.

Other approaches take a multi-step approach, starting with a coarse representation of the
possible grasps for an object and then exhaustively searching using a learned heuristic [105]
or modeling the score function jointly for all possible coarse grasps [81]. Once a coarse grasp
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is sampled, it is then fine-tuned using a separate network [105] or interpolation [81]. By
using an autoregressive model architecture, we are able to directly learn a high- dimensional
(20* or 20%-dimensional) multimodal probability distribution.

3.3 Methods

Our goal is to learn a mapping that takes one or more observations I = {/;} of a scene and
outputs a grasp g to attempt in the scene. The remainder of the section describes the data
generation pipeline, model architecture, and training procedure used in our method.

Data collection

Figure 3.1: Examples of objects used in our experiments. Left: procedurally generated
random objects. Middle: objects from the ShapeNet object dataset. Right: objects from
the YCB object dataset.

We will first describe the process of generating training objects, and then the process of
sampling grasps for those objects.
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Object generation

One of our core hypotheses is that training on a diverse array of procedurally generated
objects can produce comparable performance to training on realistic object meshes. Our
procedurally generated objects were formed as follows:

1. Sample a random number n, € {1,---15}
2. Sample n, primitive meshes from our object primitive dataset
3. Randomly scale each primitive so that all dimensions are between 1 and 15cm

4. Place the meshes sequentially so that each mesh intersects with at least one of the
preceding meshes

5. Rescale the final object to approximate the size distribution observed in our real object
dataset

To build a diverse object primitive dataset, we took the more than 40,000 object meshes
found in the ShapeNet object dataset [19] and decomposed them into more than 400,000
convex parts using V-HACD!. Each primitive is one convex part.

We compared this object generation procedure against a baseline of training using rescaled
ShapeNet objects.

Grasp sampling and evaluation

We sample grasps uniformly at random from a discretized 4- or 6-dimensional grasp space
(4-dimensional when attention is restricted to upright grasps) corresponding to the (x,y, z)
coordinates of the center of the gripper and an orientation of the gripper about that point.
We discretize each dimension into 20 buckets. The buckets are the relative location of the
grasp point within the bounding box of the object — e.g., an z-value of 0 corresponds to a
grasp at the far left side of the object’s bounding box and a coordinate of 19 corresponds to
a grasp at the far right.

Grasps that penetrate the object or for which the gripper would not contact the object
when closed can be instantly rejected. The remainder are evaluated in a physics simulator.

For each grasp attempt, we also collect a depth image from the robot’s hand camera
during the approach to be used to train the grasp evaluation function.

Model architecture

The model architecture used for our experiments is outlined in Figure 3.2. The model
consists of two separate neural networks — a grasp planning module y(I) = o o(I) and
a grasp evaluation model f. The grasp planning module is used to sample grasps that are

Thttps://github.com/kmammou/v-hacd
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Figure 3.2: An overview of sampling from our model architecture. Solid lines represent
neural networks, and dotted lines represent sampling operations. The model takes as input
one or more observations of the target object in the form of depth images. The images are
passed to an image representation module «, which maps the images to an embedding s. The
embedding s is the input for the autoregressive module 3, which outputs a distribution over
possible grasps ¢ for the object by modeling each dimension g; of the grasp conditioned on
the previous dimensions. We sample k high-likelihood grasps ¢', - - - , ¢* from the model using
a beam search. For each of those grasps, a second observation is captured that corresponds
to an aligned image in the plane of the potential grasp. A grasp scoring model f maps each
aligned image to a score. The grasp with the highest score is selected for execution on the
robot.

likely to be successful. The grasp evaluation model takes advantage of more detailed data
in the form of a close-up image from a camera on the gripper of the robot to form a more
accurate estimate of the likelihood of each sampled grasp to be successful.

The image representation s = «([) is formed by passing each image through a separate
convolutional neural network. The flattened output of these convolutional layers are stacked
and passed through several dense layers to produce s.

The neural network (s) models a probability distribution pg(g|s) over possible grasps
for the object that corresponds to the normalized probability of success of each grasp. The
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model [ consists of n submodules §; where n is the dimensionality of the grasp. For any
grasp g,  and {f;} are related by

B(s)(g) = Hﬁi(gh o, 0i1,5),

where g; are the dimensions of g.

Each f; is a small neural network taking s and g¢;,--- ,¢;_1 as input and outputting a
softmax over the 20 possible values for g;, the next dimension of g. We found that sharing
weights between the (; hurts performance at convergence.

The grasp evaluation model f takes as input a single observation from the hand camera
of the robot and outputs a single scalar value corresponding to the likelihood of success of
that grasp. The model f is parameterized by a convolutional neural network with sigmoid
output.

Training methodology

Since our method involves capturing depth images from the hand of the robot corresponding
to samples from v(I) = B o a([), the entire evaluation procedure is not differentiable and
we cannot train the model end-to-end using supervised learning. As a result, our training
procedure involves independently training + and f.

Given datasets of objects D = {Djy,--- Dg}, observations I = {I',--- %} and successful
grasps G ={g{,---g},. -~ 9%, -~ g%}, 7 can be optimized by minimizing the negative log-
likelihood of GG conditioned on the observations I with respect to the parameters 6 of -,
which is given by:

d

1
mA
=1 L -

> “logpo(gl | I').
j=1

This can be decomposed as

S LSS ok o) (i)

v =1 k=1

This function can be optimized using standard backpropogation and minibatch SGD tech-
niques. [98]

In practice, « is usually a larger model than § and there are often tens or hundreds of
successful grasp attempts {g;} for a single observation I*. Therefore it is computationally
advantageous to perform the forward pass and gradient calculations for each «/(I*) once for
all {g’}.

This can be achieved in standard neural network and backpropagation libraries by stack-
ing all grasps for a given object so that SGD minibatches consist of pairs (I,-,gij}) where
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géj} is the m; X n matrix consisting of all successful grasps for object ¢. To deal with dif-
fering values for m;, we choose m = max({m;}) and form an m x n matrix by padding the
m; X n matrix with arbitrary values. We can then write the gradient V4J(6) of our objective
function as follows:

n

_é > miiVQa([i) D1y Velogfy (a(1) ((g1er)

j:l =

where 1; is an indicator function corresponding to whether the entry in j was one of the m;
successful grasps.

This form of the gradient allows us to compute Vya(I?) once for each I*, which we found
to increase training speed by more than a factor of 10 in our experiments.

The grasp evaluation function f is trained using supervised learning. Inputs are the
hand camera images collected during the data collection process and labels are an indicator
function corresponding to whether the grasp was successful.

3.4 Experiments

The goal of our experiments is to answer the following questions:

1. Can grasping models trained on unrealistic randomly generated objects perform as well
on novel realistic objects as those trained on realistic objects?

2. How efficiently can we sample grasps from our proposed autoregressive model archi-
tecture?

3. How important is using a large number of unique objects for training grasping models?

4. How well do models trained using our methodology work in the real world?

Experimental setup

We evaluated our approach by training grasping models on three datasets:

e ShapeNet-1M, a dataset of 1 Million scenes with a single object from the ShapeNet
dataset with randomized orientation and object scale.

e Random-1M, a dataset of 1 Million scenes with a single object generated at random
using the procedure above.

e ShapeNet-Random-1M, a dataset with 500,000 scenes from each of the previous datasets.
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For each object set, we recorded 2,000 grasp attempts per object. This number of grasps
was selected so that more than 95% of objects sampled had at least one successful grasp to
avoid biasing the dataset to easier objects®. For data generation, we used a disembodied
Fetch gripper to improve execution speed.

We trained the models using the Adam optimizer [87] with a learning rate of 107*. We
trained each model using three random seeds, and report the average of the three seeds
unless otherwise noted.

We evaluated the model on 300 training and hold-out scenes from ShapeNet-1M and
Random-1M, as well as 300 scenes generated from the 75 YCB objects with meshes capable
of being grasped by our robot’s gripper.

All executions were done using a Fetch robot in the MuJoCo physics simulator [201].
When evaluating the model, we sampled k£ = 20 likely grasps from the model using a beam
search with beam width 20. Among these grasps, only the one with the highest score
according to f is attempted on the robot. An attempt is considered successful if the robot
is able to use this grasp to lift the object by 30cm.

Performance using randomly generated training data

Figure 3.3 describes the overall success rate of the algorithm on previously seen and unseen
data. The full version of our algorithm is able to achieve greater than 90% success rate on
previously unseen YCB objects even when training entirely on randomly generated objects.
Training on 1M random objects performs comparably to training on 1M instances of realistic
objects.

ShapeNet ShapeNet Random Random

Training set Train Test Train Test  Ycb
ShapeNet-1M 0.91 0.91 0.72 0.71 0.93
Random-1M 0.91 0.89 0.86 0.84 0.92
ShapeNet-Random-1M 0.92 0.90 0.84 0.81 0.92

Figure 3.3: Performance of the algorithm on different synthetic test sets. The full algorithm
is able to achieve at least 90% success on previously unseen objects from the YCB dataset
when trained on any of the three training sets.

Note that these results were achieved by limiting the robot to grasps in which the gripper
is upright. The success rate is around 10% lower across experiments when using full 6-
dimensional grasps. Further experimentation could look into whether significantly scaling
the amount of training data or using a combination of the 4-dimensional training data and
6-dimensional training data could improve performance.

2This number is not closer to 100% because a small percentage of the random objects in our training set
are un-graspable with the Fetch gripper.
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Figure 3.4 compares the success rate of our algorithm to several baselines. In particular,
our full method performs significantly better than sampling the highest likelihood grasp from
the autoregressive model alone.

ShapeNet ShapeNet Random Random

Training set Train Test Train Test  Ycb
Full Algorithm 0.91 0.89 0.86 0.84 0.92
Autoregressive-Only 0.89 0.86 0.80 0.76  0.89
Random 0.22 0.21 0.10 0.11 0.26
Centroid 0.30 0.25 0.10 0.12 0.54

Figure 3.4: Performance of the algorithm compared to baseline approaches. The Full Algo-
rithm and Autoregressive-Only numbers reported are using models trained on random data.
The Autoregressive-Only baseline uses the model v to sample a single high-likelihood grasp,
and executes that grasp directly without evaluating it with the model f. The Random base-
line samples a random grasp. The centroid baseline deterministically attempts to grasps the
center of mass of the object, with the approach angle sampled randomly.

We observed the following three main failure cases for the learned model:

1. For objects that are close to the maximum size graspable by the gripper (10cm), the
grasp chosen sometimes collides with the object.

2. In some cases, the model chooses to grasp a curved object at a narrower point to avoid
wider points that may cause collision, and as a result the gripper slips off.

3. The model cannot find reasonable grasp candidates for some highly irregular objects
like a chain found in the YCB dataset.

Figure 3.5: Examples of three observed failure cases for our learned models. Left: the model
chooses a grasp for an object that is close to the maximum size of the gripper that collides
with the object. Middle: the model chooses a grasp for a large, highly curved object that
causes it to slip off. Right: the model fails to find a promising grasp for a highly irregular
object.
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The learned models primarily failed on objects for which all features are close in size to the
maximum allowed by the gripper. Supplementing the training set with additional objects
on the edge of graspability or combining planning with visual servoing could alleviate these
cases.

The model also failed for a small number of highly irregular objects like a chain present
in the YCB dataset. These failure cases present a larger challenge for the use of random
objects in grasping, but additional diversity in the random generation pipeline may mitigate
the issue.

Efficiency of the autoregressive model

To test how efficiently we are able to sample grasps from our autoregressive model, we looked
at the percentage of objects for which the top k£ most likely grasps according to v contain
at least one successful grasp. Figure 3.6 shows that the most likely grasp according to the
model succeeds close to 90% of the time on YCB objects, and the incremental likelihood
of choosing a valid grasp saturates between 10 and 20 samples, motivating our choice of 20
for k. Note that more objects have successful grasps among the 20 sampled than achieve
success using our method, suggesting the performance of the grasp evaluator f could be a
bottleneck to the overall performance of the algorithm.
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Figure 3.6: Percentage of objects that a trained model can grasp successfully as a function of
number of the number of samples from the autoregressive model attempted. Here, we sample
the 20 grasps from the autoregressive model that have the highest likelihood according to a
beam search and count the number of times success occurred on the nth attempt for n < 20.

Effect of amount of training data

Figure 3.7 shows the impact of the number of unique objects in the training set on the
performance of our models in validation data held out from the same distribution and out-
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of-sample test data from the YCB dataset. Although with enough data the model trained
entirely using randomly generated data performs as well as the models trained using realistic
data, with smaller training sets the more realistic object distributions perform significantly
better on the test set than does the unrealistic random object distribution.

Note that performance does not appear to have saturated yet in these examples. We
conjecture that more training data and more training data diversity could help reduce the
effects of the first two failure cases above, but may not allow the model to overcome the
third failure case.

— Shapenet = = Random =+ =+ Shapenet and Random

0.9

0.8

Performance on validation objects
(=]
[#)]

Performance on YCB objects

10° 10* 10° 108
Number of training objects

Figure 3.7: Impact of number of unique training objects used on the performance of the
learned model on held out data at test time. Each line represents a different training set.
The top chart indicates the performance of the models on held out data from the same
distribution (i.e., held out ShapeNet or Random objects depending on the training set), and
the bottom chart shows performance on out-of-sample objects from the ShapeNet dataset.
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Physical robot experiments

We evaluated the ability of models learned on synthetic data using our method to transfer
to the real world by attempting to grasp objects from the YCB dataset with a Fetch robot.
Figure 3.8 shows the objects used in our experiments. Models executed in the real-world
were the Autoregressive-Only variant of our method trained on the Random-1M dataset with
a single depth image from directly above the scene as input. Figure 3.9 depicts typical grasp
executions on the Fetch robot during our experiments.

At test time, the depth input was produced by an Intel RealSense D435 [84]. To model
the noise in real-world depth images, we followed the method of Mahler et al. [114], who
propose the observation model I = ol + €, where I is the rendered depth image, « is a
Gamma random variable and ¢ is a zero-mean Gaussian random variable.

We tested the learned model on 30 previously unseen objects chosen to capture the
diversity of the YCB object dataset. We observed an overall success rate of 80% (24 / 30),
which is comparable to the success rate reported on novel objects in other recent papers
applying deep learning to parallel jaw robotic grasping [114, 107].

In addition to the failure modes described above, we saw two additional failure modes
in real-world experiments. The first was an inability to deal with highly translucent objects
like the clear lid in our object dataset. This likely results from the inability of the RealSense
to provide accurate readings for such objects. The second is objects with highly nonuniform
densities like the hammer in our dataset. One reason for this failure is likely that our training
data pipeline does not generate objects with components of different densities.

A video of our real-world experiments is available on the website for this paper.?

Figure 3.8: The objects used in our real-world experiments.

3https:/ /sites.google.com /openai.com /domainrandomization-grasping /home
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Figure 3.9: Typical grasp executions on the physical robot.

3.5 Conclusion

We demonstrated that a grasping model trained entirely using non-realistic procedurally
generated objects can achieve a high success rate on realistic objects despite no training on
a realistic objects. Our grasping model architecture allows for efficient sampling of high-
likelihood grasps at evaluation time, with a successful grasp being found for 96% of objects
in the first 20 samples. By scoring those samples, we can achieve an overall success rate of
92% on realistic objects on the first attempt. We also demonstrated that models learned
using our method can be transferred successfully to the real world.

Future directions that could improve the success rate of the trained models include scaling
up to larger training sets, providing the model with feedback from failed grasps to influence
further grasp selection, combining our grasp planning module with work on visual servoing
for grasping, and incorporating additional sensor modalities like haptic feedback.

Another exciting direction is to explore using domain randomization for generalization
in other robotic tasks. If realistic object models are not needed, tasks like pick-and-place,
grasping in clutter, and tool use may benefit from the ability to randomly generate hundreds
of thousands or millions of 3D scenes.
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Chapter 4

Geometry-Aware Neural Rendering

4.1 Introduction

The ability to understand 3-dimensional structure has long been a fundamental topic of
research in computer vision [46, 96, 129, 176]. Advances in 3D understanding, driven by
geometric methods [64] and deep neural networks [39, 162, 206, 221, 224] have improved
technologies like 3D reconstruction, augmented reality, and computer graphics. 3D under-
standing is also important in robotics. To interact with their environments, robots must
reason about the spatial structure of the world around them.

Robotic agents can learn 3D structure implicitly (e.g., using end-to-end reinforcement
learning [121]), but these techniques can be data-inefficient and the representations often have
limited reuse. An explicit 3D representation can be created using keypoints and geometry
[64] or neural networks [224, 221, 156], but these can lead to inflexible, high-dimensional rep-
resentations. Some systems forgo full scene representations by choosing a lower-dimensional
state representation. However, not all scenes admit a compact state representation and
learning state estimators often requires expensive labeling.

Previous work demonstrated that Generative Query Networks (GQN) [39] can perform
neural rendering for scenes with simple geometric objects. However, robotic manipulation
applications require precise representations of high degree-of-freedom (DOF') systems with
complex objects. The goal of this paper is to explore the use of neural rendering in such
environments.

To this end, we introduce an attention mechanism that leverages the geometric relation-
ship between camera viewpoints called Epipolar Cross-Attention (ECA). When rendering
an image, ECA computes a response at a given spatial position as a weighted sum at all
relevant positions of feature maps from the context images. Relevant features are those on
the epipolar line in the context viewpoint.

Unlike GQN, GQN with ECA (E-GQN) can model relationships between pixels that are
spatially distant in the context images, and can use a different representation at each layer
in the decoder. And unlike more generic approaches to non-local attention [214], E-GQN
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Figure 4.1: Overview of the model architecture used in our experiments. Grey boxes denote
intermediate representations, z; latent variables, 4+ element-wise addition, and blue and red
boxes subcomponents of the neural network architecture. Green components are model
inputs, blue are as in GQN [39], and red are contributions of our model. (1) Context
images and corresponding viewpoints are passed through a convolutional neural network f
to produce a context representation. We use the Tower architecture from [39]. (2) We use
the epipolar geometry between the query viewpoint and the context viewpoint to extract
the features in the context representation that are relevant to rendering each spatial point
in the query viewpoint. These extracted features are stored in a 3-dimensional tensor called
the epipolar representation. See Figure 4.3 for more details. (3) At each generation step,
we compute the decoder input by attending over the epipolar representation. The attention
map captures the weighted contribution to each spatial position in the decoder hidden state
of all relevant positions in the context representations. See Figure 4.4 for more details. (4)
The decoder, or generation network, is the skip-connection convolutional LSTM cell from

[39).

only requires each feature to be compared to n other features instead of n? other features.
We evaluate our approach on datasets from the original GQN paper and three new
datasets designed to test the ability to render systems with many degrees of freedom and a
wide variety of objects. We find significant improvements in a lower bound on the negative
log likelihood (the ELBO), per-pixel mean absolute error, and qualitative performance on
most of these datasets. Finally, to asses the utility of our approach in problems in robotics,
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we show that using E-GQN pre-training for a pose estimation task allows us to achieve
similar error with randomized camera positions than a baseline approach with fixed camera
positions.

To summarize, our key contributes are as follows:

1. We introduce a novel attention mechanism, Epipolar Cross-Attention (ECA), that
leverages the geometry of the camera poses to perform efficient non-local attention.

2. We introduce three datasets: Disco Humanoid, OpenAl Block, and Room-Random-
Objects as a testbed for neural rendering with complex objects and high-dimensional
state.

3. We demonstrate the ECA with GQN (E-GQN) improves neural rendering performance
on those datasets.

4. We demonstrate the utility of E-GQN in robotics by using as pretraining to improve
pose estimation performance with free-moving cameras.

4.2 Related work

Multi-view 3D reconstruction

Constructing models of 3D scenes from multiple camera views is a widely explored subfield
of computer vision. If the camera poses are unknown, Structure-from-Motion (SfM) tech-
niques [173, 4] (for unordered images) or Simultaneous Localization and Mapping (SLAM)
techniques [34] (for ordered images from a real-time system) are typically used. If camera
poses are known, multi-view stereo or multi-view reconstruction (MVR) can be applied.

MVR techniques differ in how they represent the scene. Voxels [37], level-sets [40], depth
maps [192], and combinations thereof are common [177]. They also differ in how they
construct the scene representation. Popular approaches include adding parts that meet a
cost threshold [176], iteratively removing parts that do not [96, 46], or fitting a surface to
extracted feature points [129].

Most MVR techniques do not rely on ground truth scene representations and instead
depend on some notion of consistency between the generated scene representation and the
input images like scene space or image space photo consistency measures [80, 96, 177].

Deep learning for 3D reconstruction

Recently, researchers have used deep learning to learn the mapping from images to a scene
representation consisting of voxels [206, 224, 221, 156, 230] or meshes [156], with supervisory
signal coming from verifying the 3D volume against known depth images [206, 230] or coming
from a large-scale 3D model database [224, 156]. Loss functions include supervised losses
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[230], generative modeling objectives [156], a 3D analog of deep belief networks [102, 224],
and a generative adversarial loss [221, 55].

Some neural network approaches to 3D understanding instead create implicit 3D models
of the world. By training an agent end-to-end using deep reinforcement learning [121] or
path planning and imitation learning [61], agents can learn good enough models of their
environments to perform tasks in them successfully. Like our work, Gupta and coauthors
also incorporate geometric primitives into their model architecture, transforming viewpoint
representations into world coordinates using spatial transformer layers [72]. Instead of at-
tempting to learn 3D representations that help solve a downstream task, other approaches
learn generic 3D representations by performing multi-task learning on a variety of supervised
learning tasks like pose estimation [235].

View Synthesis and Neural rendering

Neural rendering or view synthesis approaches learn an implicit representation of the 3D
structure of the scene by training a neural network end-to-end to render the scene from an
unknown viewpoint. In [196], the authors map an images of a scene to an RGB-D image
from an unknown viewpoint with an encoder-decoder architecture, and train their model
using supervised learning. Others have proposed incorporating the geometry of the scene
into the neural rendering task. In [45], plane-sweep volumes are used to estimate depth of
points in the scene, which are colored by a separate network to perform view interpolation
(i.e., the input and output images are close together). Instead of synthesizing pixels from
scratch, other work explores using CNNs to predict appearance flow [243].

In [39], the authors propose the generative query network model (GQN) model archi-
tecture for neural rendering. Previous extensions to GQN include augmenting it with a
patch-attention mechanism [162] and extending it to temporal data [95].

4.3 Background

Problem description

Given one or more images =¥ and corresponding camera viewpoints v* of a scene S, the goal
of neural rendering is to learn a model that can accurately predict what the camera would
see from a query viewpoint v?. More formally, for distributions of scenes p(S) and images
with corresponding viewpoints p(v¥, 2% | S), the goal of neural rendering is to learn a model
that maximizes

ESNp(S)]Ev‘I,qup(Uq,:Eq\S)Evk,zkwp(vk,zkw) logp ($q| (xk)kz{l,--- K} (Uk)k:{l,--- K} Uq)

This can be viewed as an instance of few-shot density estimation [154].
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Generative Query Networks

Generative Query Networks model the likelihood above with an encoder-decoder neural
network architecture. The encoder, or representation network is a convolutional neural
network that takes v* and z* as input and produces a representation .

The decoder, or generation network, takes r and v? as input and predicts the image
rendered from that viewpoint. Uncertainty in the output is modeled using stochastic latent
variables z, producing a density g(z? | v?,7) = [ g(2%, 2z | v¢,r)dz that can be approximated
tractably with a variational lower bound [86, 39]. The generation network architecture is
based on the skip-connection convolutional LSTM decoder from DRAW [58].

See [39] for more details on the GQN model architecture.

Epipolar Geometry

The epipolar geometry between camera viewpoints v! and v? describes the geometric rela-
tionship between 3D points in the scene and their projections in images ' and z? rendered
from pinhole cameras at v! and v?. Figure 4.2 describes the relationship.

4

v

Figure 4.2: Illustration of the epipolar geometry. For any image point y in ' corresponding
to a 3D point Y, the image point 3/ in 22 that corresponds to Y is constrained to lie on a
line I in 2. This line corresponds to the projection onto z? of the ray passing through the
camera center of v! and y. This line depends only on the intrinsic geometry between v! and
v?, not the content of the scene.

There is a linear mapping called the fundamental matriz that captures this relationship.
The fundamental matrix is a mapping F from an image point y in ! to the epipolar line
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I'. Fis a3 x 3 matrix that depends on v! and v2. The image point ¥’ = [w’, 1/, 1]T lies on
the line I’ corresponding to y = [w, h, 1]T if (w’, #’) lies on the line azy + bx; + ¢ = 0, where
Fy=la,b,c]".

4.4 Methods

In GQN, the scene representation is an element-wise sum of context representations from
each context viewpoint. The context representations are created from the raw camera images
through convolutional layers. Since convolutions are local operations, long-range dependen-
cies are difficult to model [65, 68, 214]. As a result, information from distant image points in
the context representation may not propagate to the hidden state of the generation network.

The core idea of Epipolar Cross-Attention is to allow the features at a given spatial
position y in the generation network hidden state to depend directly on all of the relevant
spatial positions in the context representation. Relevant spatial positions are those that lie
on the epipolar line corresponding to y in the context viewpoint.

Figure 4.1 describes our model architecture. Our model is a variant of GQN [39]. Instead
of using r = Y, ¥ as input to compute the next generation network hidden state h;, we use
an attention map computed using our epipolar cross-attention mechanism. The next two
subsections describe the attention mechanism.

Computing the Epipolar Representation

For a given spatial position y = (h,w) in the decoder hidden state h;, the epipolar represen-
tation e* stores at (h,w) all of the features from r* that are relevant to rendering the image
at that position.'

Figure 4.3 shows how we construct the epipolar representation. To compute the epipolar
line [, in r* we first compute the fundamental matrix F f arising from camera viewpoints v?
and v*, and then find Ij, = F}[h,w,1]".

If h; has shape (H,W), then for each 0 < w' < W,

k _ ..k
eh’w’w/ — Th’,’w’

where the subscripts denote array indexing and h' is the point on [ corresponding to
w'.?

All of these operations can be performed efficiently and differentiably in automatic dif-

ferentiation libraries like Tensorflow [1] as they can be formulated as matrix multiplication

or gather operations.

'Note that care must be taken that the representation network does not change the effective field of view
of the camera.

2To make sure h' are valid array indices, we round down to the nearest integer. For indices that are too
large or too small, we instead use features of all zeros.
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Figure 4.3: Constructing the epipolar representation e* for a given camera viewpoint v*. For
a given spatial position in the decoder state h;, there is a 1-dimensional subset of feature
maps [’ in r* arising from the epipolar geometry. This can be viewed as the projection of
the line passing from the camera center at v? through the image point onto r*. The epipolar
representation e* is constructed by stacking these lines along a third spatial dimension.

Attention mechanism

Figure 4.4 describes our attention mechanism in more detail. We map the previous decoder
hidden state h;_; and the epipolar representations e* to an attention score af. af represents
the weighted contribution to each spatial position of all of the geometrically relevant features
in the context representation r*.

Typically the weights for the projections are shared between context images and decoder
steps. To facilitate passing gradients to the generation network, the attention maps af are

provided a skip connection to r*, producing
a; =\ Z af + Z 7
k k

where A is a learnable parameter. a; is provided as input to the decoder to produce the
next hidden state h;.
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Figure 4.4: Our attention mechanism. Blue rectangles denote convolutional layers with given
kernel size. “x” denotes batch-wise matrix multiplication, and “+” element-wise summation.
The previous decoder hidden state h;_; is used to compute a query tensor (); by linear
projection. The epipolar representation e” is also linearly projected to compute a key tensor
K* and value tensor V*. K* and ; are matrix-multiplied to form unnormalized attention
weights, which are scaled by 1/1/dy. A softmax is computed along the final dimension, and
the result is multiplied by V* to get an attention score as in [212]. All of the attention scores
are linearly projected into the correct output dimension and summed element-wise.

4.5 Experiments

Datasets

To evaluate our proposed attention mechanism, we trained GQN + Epipolar Cross-Attention
(E-GQN) on four datasets from the GQN paper: Rooms-Ring-Camera (RRC), Rooms-Free-
Camera (RFC), Jaco, and Shepard-Metzler 7 parts (SM7) [39, 180].

The GQN datasets are missing several important features for robotic representation learn-
ing. First, they contain only simple geometric objects. Second, they have relatively few
degrees of freedom: objects are chosen from a fixed set and placed with two positional and
1 rotational degrees of freedom. Third, they do not require generalizing to a wide range of
objects. Finally, with the exception of the Rooms-Free-Camera dataset, all images are size
64 x 64 or smaller.
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Figure 4.5: In addition to the GQN datasets, we designed the following additional datasets
to test the ability of models to capture detail and object variability. (a) OpenAl Block
(OAB). (b) Disco-Humanoid (Disco), (c) Rooms-Random-Objects (RRO)

To address these limitations, we created three new datasets: OpenAl Block (OAB), Disco
Humanoid (Disco), and Rooms-Random-Objects (RRO). All of our datasets are rendered at
size 128 x 128. Examples from these datasets are shown in Figure 4.5.

The OAB dataset is a modified version of the domain randomized [200] in-hand block
manipulation dataset from [140] where cameras poses are additionally randomized. Since
this dataset is used for sim-to-real transfer for real-world robotic tasks, it captures much of
the complexity needed to use neural rendering in real-world robotics, including a 24-DOF
robotic actuator and a block with letters that must be rendered in the correct 6-DOF pose.

The Disco dataset is designed to test the model’s ability to accurately capture many
degrees of freedom. It consists of the 27-DOF MuJoCo [201] model from OpenAl Gym [17]
rendered with each of its joints in a random position in [—7, 7). Each of the geometric shape
components of the Humanoid’s body are rendered with a random simple texture.

The RRO dataset captures the ability of models to render a broad range of complex
objects. Scenes are created by sampling 1-3 objects randomly from the ShapeNet [19] object
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Figure 4.6: ELBO (nats/dim) on the test set. The minimum y-value denotes the theoretical
minimum error (computed by assuming perfect predictions from the model). Note: the scale
is different on ours vs GQN because we use a different output variance.

database. The floor and walls of the room as well as each of the objects are rendered using
random simple textures.

Experimental setup

We use the the “Tower” representation network from [39]. Our generation network is from
Figure S2 of [39] with the exception of our attention mechanism. The convolutional LSTM
hidden state and skip connection state have 192 channels. The generation network has 12
layers and weights are shared between generation steps. We always use 3 context images.
Key dimension d; = 64 for all experiments, and value dimension d, = 128 on the GQN
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datasets with d, = 192 on our datasets.

We train our models using the Adam optimizer [87]. We ran a small hyperparameter
sweep to choose the learning rate schedule and found that a learning rate of le-4 or 2e-4
linearly ramped up from 2e-5 over 25,000 optimizer steps and then linearly decayed by a
factor of 10 over 1.6M optimizer steps performs best in our experiments.

We use a batch size of 36 in experiments on the GQN datasets and 32 on our datasets.
We train our models on 25M examples on 4 Tesla V-100s (GQN datasets) or 8 Tesla V-100s
(our datasets).

As in [39], we evaluate samples from the model with random latent variables; but taking
the mean of the output distribution. Input and output images are scaled to [—0.5,0.5] on
the GQN datasets and [—1,1] on ours. Output variance is scaled as in [39] on the GQN
datasets but fixed at 1.4 on ours.

Quantitative results

Model e rfc  jaco sm7  oab disco ITO
GQN 7.40 12.44 4.30 3.13 10.99 18.86 10.12
E-GQN 3.59 12.05 4.00 2.14 547 1246 6.59

Figure 4.7: Per-pixel mean average error (measured in pixels) for GQN and E-GQN on the
test set.

Figure 4.6 shows the learning performance of our method. Figure 4.7 shows the mean
average error (in pixels). Both show that our method significantly outperforms the baseline
on most datasets, with the exception of Jaco and RFC, where both methods perform about
the same.

Jaco has relatively few degrees of freedom, and both methods perform well. In RFC,
since the camera moves freely, the objects are not always contained in context and target
images. We hypothesize that our method provides comparatively little value in scenes with
little content overlap between images.

Qualitative results

Figures 4.9-4.15 show randomly chosen samples rendered by our model. Differences in ren-
dering quality are difficult to determine in the RRC, Jaco, and SM7 datasets as both models
perform near perfectly. Our model performs better on examples from RFC containing ob-
jects.

Larger differences can be seen in the OAB, Disco, and RRO datasets. On OAB, our
model near-perfectly captures the pose of the block and hand and faithfully reproduces
their textures, whereas the baseline model often misrepresents the pose and textures. On
Disco, ours more accurately renders the limbs and shadow of the humanoid. On RRO, ours
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faithfully (though not always accurately) renders the shape of objects, whereas the baseline
often renders the wrong object in the wrong location.

Pose estimation results

Dataset Position Error (cm) Angular Error (Degrees)
Fixed Cameras (oracle) 0.56 3.80
Random Cameras 2.67 8.92
Fine-tuned GQN 2.71 5.63
Fine-tuned E-GQN 2.66 3.98

Figure 4.8: Test set pose estimation error on the OpenAl Block dataset. Fixed Cameras:
same camera poses throughout training as in [140]. Random Cameras: cameras are random-
ized, but no pre-training.

To evaluate whether the representations learned by our model are useful for downstream
robotics tasks, we explore using them for pose estimation with randomized cameras. Figure
4.8 shows our results. A model trained from scratch to estimate the pose of the block in the
OpenAl Block dataset using the architecture from [140] performs significantly worse when
camera poses are randomized. If instead we fine-tune a pre-trained E-GQN (using the ELBO
as an auxilliary objective), we learn an object pose model that is agnostic to camera pose.

4.6 Conclusion

Robots require an understanding of the 3D world to interact with their environment. In this
work, we present a geometrically motivated attention mechanism that allows neural rendering
models to learn more accurate 3D representations and scale to more complex datasets with
higher dimensional images.
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Figure 4.9: Rooms Ring Camera examples. From left to right: context image 1, context
image 2, context image 3, ground truth, GQN prediction, E-GQN prediction

Figure 4.10: Rooms Free Camera FExamples
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Figure 4.15: Rooms Random Objects Examples
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Chapter 5

Discussion

5.1 Conclusion

In this thesis, we investigated how to learn perception models using simulated data that
are useful for downstream robotic control tasks. The main idea we deployed throughout
is domain randomization, the concept of massively randomizing aspects of the simulator
instead of carefully modeling them. We explore a sequence of progressively more general
state estimation techniques, beginning from learning an estimate of the position of a single
object, then learning a model that can estimate a distribution over grasp points for any
object, and finally developing a model that builds an implicit 3D representation of the entire
scene.

Since we began investigating domain randomization, this idea has been applied to a range
of other problems. We outline some of them here.

5.2 Other applications of domain randomization

Domain randomization in the visual domain has been applied to a number of other robotics
tasks. It has been explored in the context of 6-DOF pose estimation of objects relative to
a fixed reference point [190], relative to a robot gripper [111], and using active perception
[155]. Visual state estimation models trained with domain randomization have been used as
input to control systems that perform block stacking [217, 203], peg-insertion [205], in-hand
dextrous manipulation [140], grasping [202, 78, 116, 228, 62], manipulating non-rigid bodies
like cloth [117], bin picking of reflective parts [36], picking fish from a bucket [35], closed-loop
control of low-cost, low-precision robot arms [245, 244], and locomotion [185].

Domain randomization has also been used to train end-to-end visuomotor policies in
simulation that are transfered to the real world for pick-and-place [76, 75, 146], pushing
[146], visual servoing [167], reaching in clutter [238, 237], real-time active object tracking
[113], and autonomous quadrotor landing [148] tasks.
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Beyond robotics, other work has explored the use of visual domain randomization for
learning pixel-wise dense multi-object descriptors [44], bounding box detection of indoor
objects [152, 12] and cars [204, 85], detecting packaged food objects in refrigerators [153],
tracking underwater vehicles [91], performing segmentation of leaves in outdoor vegetation
scenes [215], human face tracking [160], estimating the joint angles of robotic arms [66], and
localizing a camera inside a human lung [178].

The idea of domain randomization has also been applied outside of vision. Randomizing
simulator dynamics has been shown to be a useful technique for transferring control policies
to the real world for pushing tasks [143], quadruped robots [194], flapping wing robots [41],
and dexterous in-hand manipulation [140]. It has been applied outside robotics to fields like
seismic phase association [163] and traffic control [79).

Designing simulated environments and randomization distributions is one the most chal-
lenging parts of using this technique. A promising direction toward making this easier is
simulations and environments that are designed with randomization in mind. Examples in-
clude the mujoco-py!' Python bindings for MuJoCo [201], the Random Worlds Gazebo plugin
[11], and the House3D dataset [222].

Another way to mitigate this difficulty is to find a metric that quantifies how much
learned models are overfitting to simulation [131].

A promising direction toward making domain randomization easier to use is learning a
randomization distribution directly by optimizing the distribution with respect to a chosen
objective. One such objective is to better match the simulation distribution to the real-world
data distribution, e.g., by iteratively learning a policy in simulation and using real rollouts
to minimize a distance function between the real data distribution and the simulated data
distribution [20]. A second objective is to choose randomizations that maximally confuse the
downstream model. To avoid constructing simulations that are too difficult, randomizations
can be constrained to perturbations from specific categories like background color, lighting,
etc [234]. A third possible objective is choosing randomizations that are informative in the
sense that they aid in generalizing to a reference simulated environment [118].

5.3 Future work in sim-to-real transfer

Though domain randomization shows promise in many domains, there are many opportuni-
ties to improve its usefulness. Today, we only have an informal understanding of why domain
randomization works. More comprehensive empirical studies examining new randomizations
to add, the effect of image size and simulator quality on transferability, the effect of model
architecture on transferability, failure cases of domain randomization, and domain random-
ization in uncontrolled environments could aid our understanding. Theoretical knowledge
about why domain randomization works and when it fails could be relevant to the study of
generalization in machine learning and practically useful in designing real world robotic and
computer vision systems.

thttps://github.com/openai/mujoco-py
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An under-explored approach is combining domain randomization with domain adapta-
tion. These classes of techniques are complimentary, but it is not yet known which domain
adaptation algorithms work best with randomized data. The intuition behind domain ran-
domization could also aid in creating better domain adaptation techniques - for example, by
encouraging adapted features to be more random.

A principal limitation of domain randomization is the difficulty of designing simulations
and randomization distributions. The ability to automatically select the randomization dis-
tribution explored in [20, 234, 118] is a promising approach, but more work here is needed
to produce dramatically better results in both vision and dynamics. A significant step for-
ward in the field would be the ability to automatically design simulations from unstructured
real-world data (real-to-sim). Our work on E-GQN represents a step in this direction, but
more work is needed to make these models work in the real world and to recognize not only
3D structure, but also semantic information and physical interactions.

Instead of using real data to design better simulations, another approach is to build on
our work on procedurally generated objects to design simulators that are even more ran-
dom. Beyond procedurally generated objects, a generative model could be used to generated
objects that are similar to real objects, dissimilar from existing objects, or difficult for the
current model to handle.

Simulated data could be the key to translating recent progress in deep supervised learning
and deep reinforcement learning into real-world robotic results. We look forward to low-cost,
perfectly labeled data being used to build cheaper, safer, and more capable autonomous
systems.
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