
Reduce Static Code Size and Improve RISC-V Compression

Peijie Li

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-107
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-107.html

June 27, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Reduce Static Code Size and Improve RISC-V Compression

Peijie Li

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-46
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-46.html

May 16, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Reduce Static Code Size and Improve RISC-V Compression

Copyright 2019
by

Peijie Li

1

Abstract

Reduce Static Code Size and Improve RISC-V Compression

by

Peijie Li

Master of Sciences in Electrical Engineering and Computer Sciences

University of California, Berkeley

,

Due to the evolution of technologies, embedded systems and IoT applications have become an
essential part of our lives - mobile phones, smart watches, video game consoles, digital cameras,
GPS - and at the same time they become more and more complex. Unlike traditional systems
that are equipped with large size of memory, such applications must fit themselves inside ever-
shrinking envelopes, limiting the amount of memory available to the developers. As the static code
size affects the spaced used and contributes greatly to the development of complex applications
and features, the study of code compression techniques is at increasing premium.

RISC-V ISA is an open-source instruction set architecture designed to be useful in a wide range
of devices, and its Compression extension, named RVC, is designed to reduce instruction band-
width of frequently occurring instructions. Aiming to evaluate the efficiency of RVC in reducing
static code size of applications compiled by RISC-V Embedded GCC and potentially further im-
prove compression rate, this report proposes several changes to the existing RVC extension. The
new RVC extension is expected to compress 10% more program instructions and fetch 5% fewer
instruction bits than RVC programs.

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

2 Background and Related Work 2

3 The RISC-V Approach 4

3.1 RVC: A Variable Length RISC-V ISA . 4
3.2 Optimizing Register Save/Restore Code Size . 4
3.3 RVC Optimization Design Methodology . 7

4 Optimizing RISC-V C Extension 8

4.1 Performance of RVC . 8
4.2 Add-Immediate Encoding . 13
4.3 Control Transfer Instruction Encoding . 17
4.4 Branch Control Transfer Instruction Encoding . 18
4.5 Load and Store Instruction Encoding . 21
4.6 Implementation Consideration . 23

5 Evaluation 24

6 Conclusion 27

Bibliography 28

ii

List of Figures

3.1 Compiler-generated function calls that handle register save/restore 5

4.1 Performance Result of RVC compiling benchmarks from various benchmark suites. . . 8
4.2 Uncompressed RISC-V Instruction, statically, seen in the set of benchmark suite. . . . 10
4.3 Cumulative distribution of immediate operand (size and whether in multiple of half-

words, words, etc) in a subset of the combined benchmark suite. 11
4.4 Distribution of instruction operators and immediate operand sizes in a subset of the

combined benchmark suite. 12
4.5 RVC instruction encodings for ADDI. rd specifies a destination register, while rs1

specifies source registers. The funct fields are additional opcodes. 13
4.6 Distribution of immediate operands seen across uncompressed Group A/B/C ADDI

instructions . 15
4.7 Register Usage Among ADDI operations where rs1 == rd 16
4.8 Proposed 16-bit instruction encoding for ADDI operations. 16
4.9 RVC instruction encoding for unconditional jump operations. 17
4.10 Immediate Operands Among Uncompressed J/JAL operations. 17
4.11 Proposed 16-bit instruction encoding for Jump operations. 18
4.12 RVC instruction encoding for branch operations. 18
4.13 Immediate Operands seen among Uncompressed branch control transfer operations. . . 20
4.14 Proposed 16-bit instruction encoding for branch operations. 20
4.15 Percentage of operator usage among uncompressed data-transfer operations. Majority

of data transfer instructions are register-based. 21
4.16 Registers Among Uncompressed (a) Word-size and (b) Byte-size Load and Store op-

erations. 22
4.17 Immediate Operands Among Uncompressed Register-based word/byte loads and stores. 22
4.18 Proposed 16-bit instruction encodings for LD/ST operations. 23

5.1 Instruction Compression Rate With and Without proposed changes to RVC. 25
5.2 Compression Rate With and Without proposed changes to RVC. 26

iii

List of Tables

3.1 Benchmark used for experiments . 6

4.1 Most frequent RVC instructions (as expressed in percentage of total instruction count
in benchmark program), statically, in a subset of the ZephyrRTOS, FreeRTOS, MiBench,
MediaBench benchmarks. 9

4.2 Uncompressed ADDI operations based on whether its register references satisfy one
of the RVC encoding. 14

4.3 Frequency of register usage of uncompressed ADDI operations. Approximately 50%
of uncompressed ADDI instructions reference only rvc-registers. 14

4.4 Operator Distribution and Register Usage seen among Uncompressed branch control
transfer operations. 19

1

Chapter 1

Introduction

Embedded systems are ubiquitous and indispensable from our daily life today. In contrast to tradi-
tional programs that are given large size of memory, embedded applications - such as smart watches
and GPS - only have very limited memory where they can store the object code. Hence the static
code size plays a crucial role in the development of modern complex embedded applications: The
smaller the generated code size, the more features a software can implement. It is imperative to
improve existing code compression technique or to design new compression algorithms in order to
further reduce code size for such applications.

Similar to data compression techniques, code compression algorithms aim to reduce redun-
dancy and increase the amount of content in a given block of information. However, code compres-
sion is particularly more challenging because the data being compressed are a series of instructions
that together compose an executable program. Hence code compression techniques must satisfy
additional restrictions, retrieve certain information efficiently as well as make the code size smaller.
In particular, code compression algorithms must provide a decompression technique that can re-
trieve branch targets and function entry points correctly and quickly.

There has been extensive work looking for an efficient code compression technique for pro-
gram code in general. Researchers developed reduced instruction set architecture to reduce code
size in trade of the number of instructions in compiled programs. Starting in late 1900s, several
dictionary-based code-compression techniques as well as statistical methods have been proposed
to compress compiler-generated static program code size. For example, MIPS and RISC-V, two
instruction set architecture based on this reduced instruction set computer principles, provide com-
pression extensions to further improve program code size. The RISC-V C compression extension,
named RVC, is designed to replace commonly reoccurring operations with a shorter 16-bit instruc-
tion encoding. Unlike standard dictionary-based approaches that require additional memory space
to store information necessary to decompress instruction code-word, RVC contains sufficient in-
formation in its 16-bit encoding to retrieve original operations at run time without storing data in
memory.

In this paper, we examine and evaluate the efficiency of RVC in compiling embedded and IoT
program applications. We then propose a few modifications to the RVC encoding set. Lastly, we
evaluate the performance of RVC with our proposed modifications.

2

Chapter 2

Background and Related Work

There has been extensive study on code-compression technique for embedded software program
applications. In 1992, Wolfe and Chanin [25] proposed the very first code-compression technique
that use huffman coding algorithm to compress instruction bits. The decompressor references a so-
called Line Address Table (LAT) to retrieve original instruction block addresses using compressed
codeword.

Wolfe and Chanin’s algorithm inspired the study and implementation on dictionary-based code
compression techniques that take advantages of reoccuring instruction sequences observed across
program applications [9, 16, 17]. IBM used CodePack in its embedded PowerPC Systems [5].
Lefurgy proposed to use a post-compilation compressor that replaces common sequences of in-
structions with a single instruction codeword [13, 12]. His technique stores the encoded instruc-
tion codewords in a dictionary which, in turn, is used at execution time to expand the codewords
back into the original sequence of instructions. Since then, many researchers worked on improv-
ing dictionary-based code-compression approaches. Prakash and Ros extends the technique to use
Hamming distance to compress instruction sequence that differ in a few bit positions [18, 19, 20].
Seong and Mishra uses bitmask patterns to aggressively create more matching sequences before
applying the dictionary-based technique in order to improve the compression ratio [21]. Collin
proposed a 2-level dictionary-based approach to further encode compressed instructions into com-
pressed sequences [4].

The technique discussed so far targeted program code either at bit level or instruction level.
There also has been significant amount of research on separate compression of instruction opera-
tor and operands. Araujo introduced operand factorization, the separation of program expression
trees into sequences of tree-patterns (operators) and operand patterns (registers and immediate
operands) [1]. Lekatsas and Wolf furthers uses arithmetic coding and Markov model to compress
tree-patterns and operand patterns separately [14] [15]. Recently Bonny introduced Combined
Compression Technique that splits individual instruction into portions of varying size before Huff-
man coding is applied [2].

The efficiency of dictionary-based code compression techniques are limited [22] because they
store additional information in memory at compile time so that at execution time the de-compressor
can use it to retrieve the original program code. In order to reduce and further eliminate the use

CHAPTER 2. BACKGROUND AND RELATED WORK 3

of extra memory space, a new variable-length instruction encoding technique was proposed and
widely implemented in reduced instruction set architectures. MIPS implements a compressed
MIPS16 ISA [8, 7]; the ARM processor has an additional condensed ”Thumb” instructor set [26];
Waterman proposed a similar compression extension for RISC-V ISA, named RVC. Their tech-
nique adds short 16-bit instruction encoding for commonly reoccurring operations [23, 24]. The
RVC extension is reported to cover 50% - 60% of the RISC-V instructions in a program, resulting
in a 25% - 30% code-size reduction.

Additionally, procedural abstraction has been used to take advantage of common sequences
of instructions that appear in different sections across program code. Lao’s ”echo-instruction” is
designed to compress these repeating sequences of instructions by replacing them with an ”echo-
ing” instruction that executes existing sub-sequences of code sequences from other locations in the
program [10]. RISC-V and MIPS also implements a save-restore routine to compress the register
save/restore code at function entry/exit, which represents a significant portion of static code size
[24, 3].

In the following sections, we first provide an evaluation of RVC, RISC-V’s current compressed
instruction set extension (Chapter 3). Then we propose several modifications to RVC (Chapter 4)
and lastly present a performance evaluation for the modified RVC (Chapter 5).

4

Chapter 3

The RISC-V Approach

3.1 RVC: A Variable Length RISC-V ISA

RISC-V is a free and open-source instruction set architecture designed to be useful in a wide
range of devices, including but not limited to embedded systems. The RISC-V ISA contains an
extension for compressed instruction, named RVC, designed to reduce static and dynamic code size
by substituting common instructions with shorter 16-bit instruction encoding[1]. For example, a
32-bit stack-pointer-based load (or store) with an immediate representable in 8 bits are replaced by
a 16-bit RVC instruction, reducing the size in half. At run-time the de-compressor will expand a
RVC instruction into a single 32-bit instruction in the base ISA. RVC compresses 32-bit RISC-V
instructions that satisfy one or more of the conditions:

• the immediate or address offset is small,

• one of the registers is the zero register, the ABI link register, or the ABI stack pointer,

• the destination register and the first source register are identical,

• the registers used are the 8 most popular ones (”denoted as rvc-registers”).

3.2 Optimizing Register Save/Restore Code Size

The RISC-V compiler supports procedural abstraction to optimize register save/restore code size
at function entry/exit. This optimization is designed to reduce the redundancy of memory access
instructions seen in function prologues and epilogues. With the -msave-restore flag, the compiler
replaces prologues and epilogues with a jal instruction, executing compiler generated procedures
that automatically handles grouped register saves and restores. Figure 3.1 shows part of .text
section obtained by compiling the qsort benchmark with -msave-restore flag. At function entry
point one can simply jump to procedures such as riscv save 0 to save register s0 - s2, along with
return-address register ra, onto the stack. One could also call riscv save 4 to save registers s0 - s6

CHAPTER 3. THE RISC-V APPROACH 5

and ra onto the stack, or riscv save 10 to save additional registers s7 - s10 (it jumps to riscv save 4

to store register s0 - s6), or riscv save 12 (which reuses instruction blocks from riscv save 10 and
riscv save 4) to save all 12 s⇤ registers. Similarly, riscv restore * handles automatic restore of
saved registers.

Figure 3.1: Compiler-generated function calls that handle register save/restore

CHAPTER 3. THE RISC-V APPROACH 6

Benchmark Static Program Instructions Compression Rate
epic 28545 70.62%
jpeg 57973 69.98%
adpcm 9732 66.84%
mpeg 38351 71.89%
g721 8951 67.70%
basicmath 15918 70.83%
dijkstra 5059 67.60%
fft 8752 70.30%
crc 3920 66.75%
linpack 6838 71.02%
qsort 7616 70.84%
stringsearch 3167 65.90%
dhrystone 6478 69.61%
sha 3609 66.13%
bitcnts 4848 67.14%
ghostscript 6947 69.65%
rijndael 7586 71.16%
whetstone 7643 70.28%
susan 16037 71.79%
pi css5 31881 66.85%
pegwit 11236 74.03%
freertos 9441 64.57%
cppsynchronization 2430 68.02%
philosophers 2847 72.00%
mpu 1938 68.55%
synchronization 2122 68.10%
grove 2531 69.79%
sensor 29239 70.68%
driver 19462 72.35%

Table 3.1: Benchmark used for experiments

CHAPTER 3. THE RISC-V APPROACH 7

3.3 RVC Optimization Design Methodology

To evaluate RVCs effectiveness on reducing static embedded code size, we collected static mea-
surements from a set of embedded benchmarks [11, 6]. Table 3.1 lists the benchmarks, their
static instruction counts and compression rate when compiled for RISC-V -march=rv32imac -

mabi=ilp32.
All benchmarks were compiled with a GNU MCU Eclipse RISC-V Embedded GCC, 32-bit

8.1.0 compiler, optimizing for size and more and linker-time optimization (-O3 -Os -msave-restore

-flto). Static measurements were obtained directly from the resulting executables.

8

Chapter 4

Optimizing RISC-V C Extension

4.1 Performance of RVC

We compiled the embedded benchmarks with 32-bit RISC-V Architecture rv32imac tool-chain,
optimization flags -O3 -Os, -msave-restore together with link-time optimizer (-flto) to evaluate the
performance of current RVC proposal. Figure 4.1a shows that RVC reduces static code-size by
20%-35%, giving a 65%-80% compression rate. On average, 60% of the RISC-V instructions in
an embedded program can be replaced with RVC instructions, resulting in a 30% static code-size
reduction.

(a) Compression Rate of each Benchmarks Suite (b) Percentage of Uncompressed Instructions for each
Benchmarks

Figure 4.1: Performance Result of RVC compiling benchmarks from various benchmark suites.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 9

We further observe the following interesting patterns about the compressed and uncompressed
instruction composition of embedded programs:

RVC encoding Static Frequency Cumulative
C.MV 9.89% 9.89%
C.LI 6.22% 16.11%
C.LWSP 5.95% 22.06%
C.LW 5.84% 27.90%
C.SWSP 5.80% 33.71%
C.J 3.85% 37.56%
C.ADDI 3.55% 41.10%
C.ADD 3.06% 44.16%
C.SW 2.57% 46.73%
C.BEQZ 1.86% 48.59%
C.JR 1.63% 50.22%
C.SLLI 1.45% 51.67%
C.BNEZ 1.44% 53.11%
C.JAL 1.36% 54.47%
C.ADDI16SP 0.81% 55.28%
C.JALR 0.77% 56.04%
C.ADDI4SPN 0.73% 56.78%
C.LUI 0.48% 57.26%
C.OR 0.46% 57.72%
C.ANDI 0.45% 58.17%
C.SRLI 0.43% 58.60%
C.SUB 0.42% 59.02%
C.SRAI 0.23% 59.25%
C.XOR 0.23% 59.48%
C.AND 0.21% 59.68%
C.FLDSP 0.05% 59.74%
C.FLD 0.00% 59.74%

Table 4.1: Most frequent RVC instructions (as expressed in percentage of total instruction count
in benchmark program), statically, in a subset of the ZephyrRTOS, FreeRTOS, MiBench, Media-
Bench benchmarks.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 10

Figure 4.2: Uncompressed RISC-V Instruction, statically, seen in the set of benchmark suite.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 11

• A small number of opcodes account for most instructions in an embedded program. Table
4.1 and Figure 4.2 show the static frequencies of most commonly occurring compressed
and base RISC-V instructions seen across the combined benchmark suite. Statically, 10
out of 17 RVC opcodes account for over 80% of compressed instructions and 10 RISC-V
opcodes account for 70% of uncompressed instructions. ADDI alone accounts for one-
third of total program instructions and, on average, 20% of uncompressed instructions seen
across compiled benchmark programs. The benchmarks do not have floating-point intensive
programs: The use of floating-point arithmetic/load/store instructions is very light (¡ 0.1%).

(a) Size of Immediate Operands seen among uncom-
pressed I-type and SB-type operations

(b) Immediate Operands seen among uncompressed
I-type and SB-type operations

Figure 4.3: Cumulative distribution of immediate operand (size and whether in multiple of half-
words, words, etc) in a subset of the combined benchmark suite.

• A notable portion of immediate operands, seen among uncompressed instructions, are posi-
tive and small enough to fit in a shorter 16-bit encoding. Since current RVC already takes ad-
vantages of most small immediate operands, many of those instructions are not compressed
by RVC due to their register references to registers other than the eight rvc-registers. Figure
4.3 shows the size of immediate operands seen in the uncompressed I-TYPE and SB-type
instructions across combined benchmark suite. Branch displacement are usually larger but
shorter branches are quite common.

• Most of immediate operands seen in uncompressed operations are multiples of 4. Many are
additionally multiple of 8 or 16. Figure 4.3 shows the size of immediate operands seen in
the uncompressed I-Type and SB-type instructions across combined benchmark suite.

• Data-transfer instructions account for one-third of uncompressed instructions in compiled
programs across combined benchmark suite. Among the uncompressed data-transfer op-
erations, three instructions (lw, sw, lbu) account for over 78% (Figure 4.4a). Similarly,
immediate operands of these uncompressed loads and stores are usually small (Figure 4.4b).

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 12

(a) Operators (b) Immediate Operands

Figure 4.4: Distribution of instruction operators and immediate operand sizes in a subset of the
combined benchmark suite.

From observations of static frequencies of compressed and uncompressed instructions, we no-
tice that our embedded benchmarks are not floating-point intensive: floating-point arithmetic op-
erations are rarely seen and floating-point loads and stores only account for a trivial percentage
of total program code. Therefore, we could potentially reuse those RVC instruction encoding for-
mats that are currently reserved for floating-point related operations to cover and compress other
frequently occurring uncompressed instruction formats.

In the following sections we take a closer look at most frequent uncompressed RISC-V in-
structions: add-immediate (ADDI), jump control transfers (J/JAL), branch control transfers and
data-transfer instructions. Since current proposal of RVC already includes shorter encoding of
such instructions, we focus on the patterns of such instructions that are not compressed by RVC.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 13

4.2 Add-Immediate Encoding

As displayed in Figure 4.2, uncompressed add-Immediate instructions account for over 7% among
total program instructions. In the base ISA, ADDI instructions takes a 5-bit registers (rs1), add to it
a 12-bit immediate and write the result to another 5-bit register (rd). Current RVC Extension (Fig-
ure 4.5) provides several 16-bit encoding for ADDI operations where signed immediate operand is
small enough to fit in 6 bits, or the operation specifies the same source and destination register or
can only reference the eight rvc-registers: two return-value registers and four argument registers,
and two callee-saved registers, in addition to x0 and the stack pointer:

Figure 4.5: RVC instruction encodings for ADDI. rd specifies a destination register, while rs1
specifies source registers. The funct fields are additional opcodes.

• C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register rd then
writes the result to rd. C.ADDI expands into addi rd, rd, nzimm[5:0].

• C.ADDI16SP adds the non-zero sign-extended 6-bit immediate to the value in the stack
pointer (sp=x2), where the immediate is scaled to represent multiples of 16 in the range
(-512,496). It expands into addi x2, x2, nzimm[9:4].

• C.ADDI4SPN adds a zero-extended non-zero immediate, scaled by 4, to the stack pointer,
x2, and writes the result to rd’. It expands to addi rd’, x2, nzuimm[9:2].

• C.LI loads the sign-extended 6-bit immediate, imm, into register rd. C.LI is only valid when
rd is not x0. C.LI expands into addi rd, x0, imm[5:0].

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 14

Register References Static Frequency Among
Uncompressed ADDI

Static Frequency Among
Overall Program

Partially Satisfies C.ADDI 41.66% 2.98%
Partially Satisfies C.LI 26.04% 1.86%
Partially Satisfies C.ADDI16SP 0.41% 0.03%
Partially Satisfies C.ADDI4SPN 0.30% 0.02%
Other 31.60% 2.26%

Table 4.2: Uncompressed ADDI operations based on whether its register references satisfy one of
the RVC encoding.

Current RVC encoding for ADDI already covers most operations where immediate operand is
small, restricting the potential registers an operation can reference. Table 4.2 shows that two-thirds
of ADDI instructions are not compressed because their immediate offsets are too large to fit in
an RVC encoding. About one-third of ADDI operations are not handled by RVC because their
register usage does not satisfy the constraints of any RVC encoding.

Register rd Register rs1 Static Freq.
(32-bit ADDI)

Static Freq.
(Overall)

rd 2 RVC Registers rs1 2 RVC Registers 52.52% 3.30%
rd 2 RVC Registers rs1 == x0 22.83% 1.43%
rd 2 RVC Registers rs1 /2 x0, RVC Registers 9.80% 0.62%
rd /2 RVC Registers rs1 2 RVC Registers 3.90% 0.25%
rd /2 RVC Registers rs1 == x0 3.22% 0.20%
rd /2 RVC Registers rs1 /2 x0, RVC Registers 7.72% 0.49%

Table 4.3: Frequency of register usage of uncompressed ADDI operations. Approximately 50% of
uncompressed ADDI instructions reference only rvc-registers.

In Table 4.3 we present a further analysis of the usage of rd and rs1 registers across uncom-
pressed ADDI instructions. Majority of rd and rs1 references are to the eight rvc-registers. One-
quarter of rs1 registers reference x0.

We then take a closer look at two groups of uncompressed ADDI operations based on their
register usage:

• (A) rd register references one of the eight rvc-registers. rs1 references x0,

• (B) rd == rs1, and references one of the eight rvc-registers.

• (C) rd != rs2 and both reference the eight rvc-registers.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 15

Figure 4.6: Distribution of immediate operands seen across uncompressed Group A/B/C ADDI
instructions

Figure 4.6 shows that majority of Group A has odd immediate, and about 60% of those im-
mediate operands can be represented using 7 bits. Group B has an extensive use of immediate
operands that are in multiple of 2 but those immediate typically requires more than 10 bits to rep-
resent. Half of Group C has an even immediate operand and over 40% of them is small enough
to be represented in 6 bits. Furthermore, we notice that about half of Group B operations has an
extensive reference to register a5 as both rd and rs1 registers. (Figure 4.7).

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 16

Figure 4.7: Register Usage Among ADDI operations where rs1 == rd

Hence, we propose to add the following 16-bit encoding to RVC in order to further compress
ADDI operations:

Figure 4.8: Proposed 16-bit instruction encoding for ADDI operations.

• C.LI* loads the zero-extended 8-bit immediate, imm, into register rd’. C.LI* is only valid
when rd 6= x0 and rd 2 rvc-registers. C.LI* expands into addi rd’, x0, imm[7:0].

• C.ADDI* adds the non-zero sign-extended 11-bit immediate, scaled by 2, to the value in
register a5 then writes the result to a5. C.ADDI* expands into addi a5, a5, nzimm[10:0].

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 17

4.3 Control Transfer Instruction Encoding

Figure 4.9: RVC instruction encoding for unconditional jump operations.

Unconditional jump is the second most frequent operations among uncompressed instructions,
accounting for 3.85% of total program instructions on average (Table 4.2). In the base ISA, un-
conditional jumps take in one destination register and a 20-bit immediate used to calculate target
jump address. RVC provides two 16-bit encoding for jumps that reference registers x0 or ra as
destination register and an immediate operand that is small enough to be represented using 11-bits
(Figure 4.9):

• C.J expands to jal x0, offset[11:1]. Offset is scaled by 2 and then added to the pc to form the
jump target address.

• C.JAL, similarly, expands to jal x1, offset[11:1].

We made the following observations about jump instructions across compiled programs:

• Unconditional jump instructions reference possibly only three registers: ra, x0, t0. Register
t0 only accounts for a small percentage of total register usage among jump operations.

Figure 4.10: Immediate Operands Among Uncompressed J/JAL operations.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 18

• Immediate operands across uncompressed jump instructions typically requires 15 or more
bits to represent. (Figure 4.10). Current RVC extension Jump instructions where immediate
operand can be represented in 11-bits are mostly handled by RVC already, except those that
reference t0.

• Uncompressed unconditional jumps mostly jump to another function label. Those target
addresses are stored in linker symbol table and resolved by linker during compilation.

Figure 4.11: Proposed 16-bit instruction encoding for Jump operations.

Hence, we propose to have unconditional jump instructions to reference the linker symbol table
to calculate target jump address. A Jump operation can then take an index (or pointer) to index
into address table and retrieve addresses (Figure 4.11):

• C.J* performs an unconditional control transfer. The index is used to retrieve target address
from linker symbol table. C.J* expands to jal rd*, symbols[offset[9:0]].

4.4 Branch Control Transfer Instruction Encoding

Figure 4.12: RVC instruction encoding for branch operations.

Branch (SB-type) instructions account for 17.32% among uncompressed program instructions and
6.85% of total program instructions. In base ISA, a branch operator compares values from two
registers rs1 and rs2 and jump to target branch address, computed by adding the 12-bit immediate
to pc, if the branch condition holds. RVC extension provides encoding branch operators where the
condition is an equality check with register x0 (Fig 4.12).

• C.BEQZ takes the branch if the value in register rs1’ is zero. It expands to beq rs’, x0,
offset[8:1].

• C.BNEZ expands to bne rs1’, x0, offset[8:1].

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 19

Instruction Register rs1 Register rs2 Static Freq. (Among Uncompressed ADDI)
beq rs1 2 RVC Register rs2 2 {x0, a5} 8.74%

rs2 /2 {x0, a5} 8.52%
rs1 /2 RVC Register rs2 2 {x0, a5} 7.22%

rs2 /2 {x0, a5} 1.98%
bne rs1 2 RVC Register rs2 2 {x0, a5} 12.97%

rs2 /2 {x0, a5} 10.18%
rs1 /2 RVC Register rs2 2 {x0, a5} 5.19%

rs2 /2 {x0, a5} 2.99%
bge rs1 2 RVC Register rs2 2 {x0, a5} 5.16%

rs2 /2 {x0, a5} 3.85%
rs1 /2 RVC Register rs2 2 {x0, a5} 1.55%

rs2 /2 {x0, a5} 2.78%
bgeu rs1 2 RVC Register rs2 2 {x0, a5} 1.61%

rs2 /2 {x0, a5} 4.81%
rs1 /2 RVC Register rs2 2 {x0, a5} 0.67%

rs2 /2 {x0, a5} 1.98%
blt rs1 2 RVC Register rs2 2 {x0, a5} 3.06%

rs2 /2 {x0, a5} 4.80%
rs1 /2 RVC Register rs2 2 {x0, a5} 1.74%

rs2 /2 {x0, a5} 3.14%
bltu rs1 2 RVC Register rs2 2 {x0, a5} 0.41%

rs2 /2 {x0, a5} 4.40%
rs1 /2 RVC Register rs2 2 {x0, a5} 0.12%

rs2 /2 {x0, a5} 1.53%

Table 4.4: Operator Distribution and Register Usage seen among Uncompressed branch control
transfer operations.

We make the following observation about uncompressed branch control transfers:

• The top frequent operators among uncompressed branch control transfer instructions are beq,
bne, bge and blt.

• RS1 register reference are usually to the eight rvc-registers.

• RS2 register reference are usually to x0 or a5.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 20

Figure 4.13: Immediate Operands seen among Uncompressed branch control transfer operations.

• A notable percentage of branch offsets are positive and representable using only 4 or 5 bits.
Due to the usage of branch instruction. branch offsets are always in multiple of 2 and about
75% are positive. Hence over 30% of offsets are positive and representable using 4 bits
if treated as unsigned numbers, dropping the least significat bit. Almost 50% of them are
positive and representable in 5 bits.

Hence, we propose to add the following 16-bit encodings to RVC to further compress branch
instructions:

Figure 4.14: Proposed 16-bit instruction encoding for branch operations.

• C.BEQBNE performs conditional control transfers bne or beq depending on a select bit (bit
8). The offset is zero-extended, scaled by 2, and then added to the pc to form the branch
target address. It requires rs2 reference to only x0 or a5. It expands to beq/bne rs1, rs2*,
offset[4:1].

• C.BRANCH performs conditional control transfers specified by sb funct (bne, beq, blt or
bge). The offset is zero-extended, scaled by 2, and then added to the pc to form the branch
target address. It is only valid when rs1 2 rvc-registers and rs2 2 x0, a5. It expands to
branchOP rs1’, rs2*, offset[5:1].

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 21

4.5 Load and Store Instruction Encoding

Data-transfer instructions account for 23.74% of uncompressed instructions and 9.55% of total pro-
gram instructions (Figure 4.2). Currently RVC includes several word and double-word loads and
stores where register references are to rvc-registers or the stack pointer and immediate operands
are small enough ([0, 255]) and in multiple of 4. Floating-point loads and stores are also included
in RVC as they are dynamically common in nearly all floating-point programs.

Figure 4.15: Percentage of operator usage among uncompressed data-transfer operations. Majority
of data transfer instructions are register-based.

We make the following observations about uncompressed load and store instructions:

• Most uncompressed data-transfer instructions are word loads and stores (37% and 27%,
respectively). Byte loads and stores (14% LBU and 9% SB) also account for a notable
portion. (Figure 4.15)

• Majority of uncompressed data-transfer operations are register-based (rs1 != sp). Majority
of stack-based data-transfer instructions (rs1 == sp) are handled by current RVC encodings
already. (Figure 4.15)

• Byte-size data-transfer instructions exhibit substantial locality of register reference. Figure
4.16 shows the static frequency of register usage across uncompressed byte-size loads and
stores distributed mainly among rvc-registers. None of the remaining references are to the

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 22

(a) (b)

Figure 4.16: Registers Among Uncompressed (a) Word-size and (b) Byte-size Load and Store
operations.

stack pointer or to the zero register. In contrast, uncompressed word-size data-tranfer opera-
tions reference both rvc-registers and other registers.

Figure 4.17: Immediate Operands Among Uncompressed Register-based word/byte loads and
stores.

CHAPTER 4. OPTIMIZING RISC-V C EXTENSION 23

• Immediate operand of byte-size data transfer instructions are mostly small. Over 50% of
immediate operands are zero and about 70% can be represented using 3 bits. Those of word-
size data-transfer instructions are larger and over 50% require 7 bits. However, many of
those immediate operands are mostly multiple of 8.

Hence, we propose to add the following 16-bit encodings to RVC to further compress branch
instructions:

Figure 4.18: Proposed 16-bit instruction encodings for LD/ST operations.

• C.LDSTBYTE0 loads a 8-bit (unsigned) value from memory into register rd or stores a
32-bit value in register rs2 to memory, depending on the select bit. The effective memory
address is retrieved by reading the base address in register rs1. It expands to lbu rd, 0(rs1) or
sb rs2, 0(rs1).

• C.LDSTWORD0 loads a 32-bit (unsigned) value from memory into register rd or stores a
32-bit value in register rs2 to memory, depending on the select bit. The effective memory
address is retrieved by reading the base address in register rs1. It expands to lw rd, 0(rs1) or
sw rs2, 0(rs1).

4.6 Implementation Consideration

As mentioned in section 4.1, the proposed instruction encoding will replace those existing ones
that are rarely used to compress static program code. Based on the statistics seen in Table 4.1,
floating-point loads and stores (C.FLD, C.FLDSP, C.FLW, C.FLWSP, C.FSW, C.FSWSP, C.FSD,
C.FSDSP) are seldom seen and individual instruction format accounts for a trivial percentage of
instructions in benchmark programs. Hence, we propose to redesign the RVC ISA, remove the
floating-point data transfer instructions and allocate those opcode and funct3 bits for the 7 pro-
posed instruction formats (C.LI*, CLADDI*, C,J*, C.BEQBNE, C.BRANCH, C.LDSTBYTE0,
C.LDSTWORD0).

24

Chapter 5

Evaluation

In this section, we present our evaluation results. The benchmarks are collected from ZephyrRTOS,
Apache Mynewt, MiBench and MediaBench benchmark suites. We compiled the benchmarks
using GNU MCU Eclipse RISC-V Embbed GCC, 32-bit 8.1.0 compiler with ISA = rv32imac and
ABI = ilp32, optimizing for size (-O3 -Os), register save/restore code (-msave-restore) and linker-
time optimization (-flto). Proposed compressed instruction set is evaluated as a pass at the last
step. The procedure is straight forward: instructions that satisfy the proposed instruction formats
are compressed using corresponding 16-bit formats, whereas floating-point loads and stores are
”decompressed” into 32-bit instructions because modified RVC no longer has a 16-bit encoding
for them any more.

Figure 5.1 compares the instruction compression rate before and after adding proposed changes
to RVC. On average the instruction compression rate is reduced by 10%. Figure 5.2 shows that
compression rate is improved by 4.97%.

CHAPTER 5. EVALUATION 25

Figure 5.1: Instruction Compression Rate With and Without proposed changes to RVC.

CHAPTER 5. EVALUATION 26

Figure 5.2: Compression Rate With and Without proposed changes to RVC.

27

Chapter 6

Conclusion

In this thesis report, we took a closed look at embedded benchmarks from various sources including
ZephyrRTOS, MediaBench, MiBench and FreeRTOS. From obtained statistics those benchmarks
are not floating-point intensive: floating-point arithmetic and data-transfer operations only account
for a very small portion of total program size. Hence, for the purpose of reducing static code size
for embedded systems and IoT applications, we could potentially drop those instruction format
encodings reserved for floating-point operations, and instead reuse them for other commonly oc-
curring but uncompressed instructions. Results show that the proposed encoding, for programs
that are not floating-point intensive, covers an additional 10% of program instructions and as a
result, improve the compression ratio by 5%. However, for floating-point intensive programs, our
proposed modifications may or may not achieve comparable improvement.

Additionally, implementation of the proposed modifications to the RISC-V Compressed ISA
are relatively straightforward. The change of instruction format encoding does not complicate
existing compressor and de-compressor, nor does it affects the compilation and execution time of
program applications.

28

Bibliography

[1] Guido Araujo et al. “Code Compression Based on Operand Factorization”. In: Proceed-

ings of the 31st Annual ACM/IEEE International Symposium on Microarchitecture (1998),
pp. 194–201.

[2] Talal Bonny and Jorg Henkel. “Huffman-based Code Compression Techniques for Embed-
ded Processors”. In: ACM Trans. Des. Autom. Electron. Syst. (2010), 31:1–31:37.

[3] Robert Britton. MIPS Assembly Language Programming. Pearson Education, 2003. ISBN:
0131420445.

[4] Mikael Collin and Mats Brorsson. “Two-Level Dictionary Code Compression: A New Scheme
to Improve Instruction Code Density of Embedded Applications”. In: Proceedings of the 7th

Annual IEEE/ACM International Symposium on Code Generation and Optimization (2009),
pp. 231–242.

[5] IBM (International Business Machines (IBM) Corporation. “CodePack PowerPC Code Com-
pression Utility User’s Manual Version 3.0”. In: IBM Technical Report (1998).

[6] M. R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark
suite”. In: Proceedings of the Fourth Annual IEEE International Workshop on Workload

Characterization (2001).

[7] A. Halambi et al. “An Efficient Compiler Technique for Code Size Reduction Using Re-
duced Bit-Width ISAs”. In: Proceedings of the Conference on Design, Automation and Test

in Europe (2002).

[8] Kissell K. “MIPS16: High-density MIPS for the Embedded Market”. In: Silicon Graphics

MIPS Group (1997).

[9] Michael Kozuch and Andrew Wolfe. “Compression of Embedded System Programs”. In:
Proceedings of the1994 IEEE International Conference on Computer Design: VLSI in Com-

puter Amp; Processors (1994), pp. 270–277.

[10] Jeremy Lau et al. “Reducing Code Size with Echo Instructions”. In: Proceedings of the 2003

International Conference on Compilers, Architecture and Synthesis for Embedded Systems

(2003), pp. 84–94.

BIBLIOGRAPHY 29

[11] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. “MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communicatons Systems”. In: Proceed-

ings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture (1997),
pp. 330–335.

[12] Charles Lefurgy, Eva Piccininni, and Trevor Mudge. “Evaluation of a High Performance
Code Compression Method”. In: Proceedings of the 32Nd Annual ACM/IEEE International

Symposium on Microarchitecture (1999), pp. 93–102.

[13] Charles Lefurgy et al. “Improving Code Density Using Compression Techniques”. In: Pro-

ceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture

(1997), pp. 194–203.

[14] Haris Lekatsas and Wayne Wolf. “Code Compression for Embedded Systems”. In: Proceed-

ings of the 35th Annual Design Automation Conference (1998), pp. 516–521.

[15] Haris Lekatsas and Wayne Wolf. “SAMC: A code compression algorithm for embedded
processors”. In: Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on 18 (Jan. 2000), pp. 1689–1701.

[16] Stan Liao, Srinivas Devadas, and Kurt Keutzer. “A Text-compression-based Method for
Code Size Minimization in Embedded Systems”. In: ACM Trans. Des. Autom. Electron.

Syst. (1999), pp. 12–38.

[17] E. Wanderley Netto et al. “Multi-profile Based Code Compression”. In: 2004, pp. 244–249.

[18] J. Prakash et al. “A simple and fast scheme for code compression for VLIW processors”. In:
Data Compression Conference, 2003. Proceedings. DCC 2003 (2003), pp. 444–.

[19] Montserrat Ros and Peter Sutton. “A Hamming Distance Based VLIW/EPIC Code Com-
pression Technique”. In: Proceedings of the 2004 International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (2004), pp. 132–139.

[20] Montserrat Ros and Peter Sutton. “A Post-compilation Register Reassignment Technique
for Improving Hamming Distance Code Compression”. In: Proceedings of the 2005 In-

ternational Conference on Compilers, Architectures and Synthesis for Embedded Systems

(2005), pp. 97–104.

[21] S. Seong and P. Mishra. “Bitmask-Based Code Compression for Embedded Systems”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2008),
pp. 673–685.

[22] KRISHNAN SUNDARESAN and NIHAR R. MAHAPATRA. “Code Compression Tech-
niques for Embedded Systems and Their Effectiveness”. In: Proceedings of the IEEE Com-

puter Society Annual Symposium on VLSI (2003).

[23] Andrew Waterman. “Improving Energy Efficiency and Reducing Code Size with RISC-V
Compressed”. In: (May 2011).

[24] Andrew Waterman et al. “The RISC-V Instruction Set Manual”. In: (2014).

BIBLIOGRAPHY 30

[25] Andrew Wolfe and Alex Chanin. “Executing Compressed Programs on an Embedded RISC
Architecture”. In: SIGMICRO Newsl. 23.1-2 (1992), pp. 81–91.

[26] X. H. Xu, S. R. Jones, and C. T. Clarke. “ARM/THUMB code compression for embedded
systems”. In: Proceedings of the 12th IEEE International Conference on Fuzzy Systems

(2003), pp. 32–35.

