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Abstract

Approximate counting, phase transitions and geometry of polynomials

by

Jingcheng Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alistair Sinclair, Chair

In classical statistical physics, a phase transition is understood by studying the geometry

(the zero-set) of an associated polynomial (the partition function). In this thesis, we will

show that one can exploit this notion of phase transitions algorithmically, and conversely

exploit the analysis of algorithms to understand phase transitions.

As applications, we give efficient deterministic approximation algorithms (FPTAS)

for counting q-colorings, and for computing the partition function of the Ising model.
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Chapter 1

Introduction

Counting problems arise in numerous fields of study, including statistical physics,

combinatorics, statistical inference and estimation, volume computation and machine learn-

ing. In a counting problem, the goal is to compute or to estimate a weighted sum or integral.

Canonical examples include estimating probabilities, or the expectation of a random vari-

able, or drawing samples from a given probability distribution. A central object in all these

problems is the partition function, a weighted sum over configurations, which generalizes

classical combinatorial counting problems. A number of examples come from spin systems

in statistical physics. Such a system is defined on a graph G = (V,E), so that the entities

comprising the system correspond to the vertices V and their pairwise interactions to the

edges E. A configuration of the system is an assignment σ : V → [q] of one of q possible

values (often called “spins”, or “states”) to each vertex. The model assigns to each config-

uration σ a positive weight w(σ) that depends on the local interactions, and the partition

function is defined as the sum ZG =
∑
σ w(σ).

To illustrate ideas, we discuss the classical Ising model, which was first introduced

a century ago as a model for magnetic phase transitions by Lenz and Ising [Isi25], and has

since become an important tool for the modeling of interacting systems. The Ising model,

like many other spin systems inspired by statistical physics, is also studied as a graphical

model (or Markov random field) in machine learning. There are q = 2 spins in the Ising

model, so that a configuration is an assignment σ : V → {+,−} of one of two possible

values (+ or −) to each vertex. Let λ be the vertex activity (sometimes also called an

“external field”), and let β be the edge activity that models the tendency of spins to agree
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with their neighbors. The model assigns a weight to each configuration σ as follows:

w(σ) := β|{{u,v}∈E | σ(u)6=σ(v)}|λ|{v | σ(v)=+}| = β|E(S,S)|λ|S|,

where S = S(σ) is the set of vertices assigned spin + in σ and E
(
S, S

)
is the set of edges

in the cut
(
S, S

)
(i.e., the set of pairs of adjacent vertices assigned opposite spins). The

probability of a configuration σ under the Gibbs distribution is then µ(σ) := w(σ)/ZβG(λ),

where the normalizing factor ZβG(λ) is the partition function defined as

ZβG(λ) :=
∑

σ:V→{+,−}

w(σ) =
∑
S⊆V

β|E(S,S)|λ|S|. (1.1)

Notice that the partition function may be interpreted combinatorially as a cut

generating polynomial in the graph G. In particular, if β > 1 then the model is called

antiferromagnetic, as the corresponding Gibbs distribution favors “disagreements” on edges,

or in other words, larger cuts; while if β < 1, the model is ferromagnetic and the distribution

favors “agreements” or smaller cuts. The parameter λ models an “external field”: if λ = 1,

we say the model has “zero-field”, as the model is symmetric regarding the two spins; while

if λ > 1, the distribution favors the spin +.

A natural generalization of the Ising model is the Potts model, which can be seen

as a generating polynomial for graph colorings. Given a graph G = (V,E), an edge activity

w, and an integer q ≥ 2, the partition function of the q-state Potts model is given by

ZG(w) :=
∑

σ:V→[q]

w|{{u,v}∈E :σ(u)=σ(v)}|. (1.2)

Here σ ranges over arbitrary (not necessarily proper) assignments of colors to vertices, and

each such coloring has a weight wm(σ), where m(σ) is the number of monochromatic edges

in σ. Note that the number of proper q-colorings of G is ZG(0). Furthermore, since graph

cuts are precisely 2-colorings, the zero-field Ising model is actually the special case of the

Potts model when q = 2 (along with a change of variable from w to β = 1
w , and rescaling

by w−|E|).

Given their ubiquitous role, a central question is the computation of partition

functions. There has been much progress on dichotomy theorems, which attempt to com-

pletely classify these problems as being either #P-hard or computable (exactly) in FP (see,

e.g., [CCL10, GGJT10]). Since the problems are in fact #P-hard in most cases, algorith-

mic interest has focused largely on approximation, motivated also by the general observa-
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tion [JVV86] that approximate counting (approximating the partition function) is polyno-

mial time equivalent to sampling (approximately) from the underlying Gibbs distribution.

Unlike exact counting, much less is known about the complexity of approximating parti-

tion functions. Recent developments seem to suggest that one might be able to obtain a

classification of the computational complexity of approximation, via the study of “phase

transitions” in the Gibbs distribution. Such a connection has been established in various

special cases, e.g., for the partition function of independent sets (also known as the hard-

core model) over the real line [Sly10, SS14b, GGŠ+14], and for the antiferromagnetic Ising

model over the real line [SS14b].

1.1 Algorithms, phase transitions, and zeros of polynomials

Historically, there have been two distinct (though closely related) mechanisms for

defining and understanding phase transitions in statisical physics. The first is decay of long-

range correlations in the Gibbs measure, which is familiar in theoretical computer science

due to its extensive use in approximation algorithms and the analysis of spin systems and

graphical models. Roughly speaking, “correlation decay” refers to the phenomenon whereby

the effect on the spin value at a fixed vertex of spins at distant vertices decays to zero as the

distance tends to infinity. The second mechanism, which is more classical and less familiar

in computer science, is analyticity of an appropriate limit of the “free energy density”

1
n logZn (where Zn is the partition function, and n is a size parameter), as the size of

the graphs under consideration increases to infinity. This second notion connects naturally

to the stability theory of polynomials, and in particular to the study of the location of

complex roots of the partition function Z, even when only real values of the parameters

make physical sense in the model. The seminal work of Lee and Yang [LY52,YL52] was one

of the first, and certainly the best known, to use this notion. It is interesting to note that

the stability theory of polynomials has seen a recent surge of interest following the central

role it has played in developments in a wide variety of areas ranging from mathematical

physics to combinatorics and theoretical computer science: examples include the resolution

of the Kadison-Singer conjecture [MSS15b], proofs of the existence of Ramanujan graphs

[MSS15a], and progress on the traveling salesman problem and other algorithmic questions

(see, e.g., [AG15,AG17,SV17]).

We now briefly describe the connection between the analyticity of the free energy
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and the location of complex zeros of the partition function. The first ingredient is that

natural observables of the model (e.g., the magnetization) can be written as derivatives of

the free energy with respect to an appropriate parameter of the model. Thus, analyticity

of the free energy for a given range S of parameters implies that all such observables vary

continuously (and have continuous derivatives) when the parameter value lies in S, which

in turn implies that there is no phase transition in S. However, it is not hard to see that

for any finite graph, the free energy is always analytic as a function of β when β lies on

the positive real axis, suggesting a complete absence of phase transitions. Indeed, it turns

out (see, e.g., [Sim93, Chapter 1]) that in order to see phase transitions one has to consider

infinite graphs. For concreteness, we consider the case of the Ising model on the infinite

2-dimensional integer lattice Z2 [YL52]. The free energy density of such an infinite graph

is defined as the limit of the free energy densities of a suitable increasing sequence of finite

subgraphs (e.g., increasing rectangles in Z2). Lee and Yang [YL52] showed that, for infinite

graphs of sub-exponential growth (including Z2), the free energy density obtained via this

prescription is well defined and analytic for a range of parameters S provided that the

partition functions of the finite graphs used in the limit definition, viewed as polynomials in

the parameter, are zero-free in a complex neighborhood of S. Thus, proving zero-freeness

of partition functions of such a sequence of finite graphs in a fixed (i.e., independent of

the finite graphs in question) complex neighborhood of S implies the absence of phase

transitions in S.

While the algorithmic consequences of phase transitions defined in terms of decay

of correlations have been well studied, first in the context of Markov chain Monte Carlo

algorithms (Glauber dynamics) and more recently in determinstic algorithms that directly

exploit correlation decay (see, e.g. [Wei06, BG08]), algorithmic use of the information on

complex roots of the partition function originated only recently in the work of Barvinok

(see [Bar17] for a survey). This has led to increased interest in understanding the relation-

ship between the above two notions of phase transitions. Such connections have been the

focus of some recent work on the independent set (or “hard-core lattice gas”) model [PR17b]

(see also [PR18]), while related ideas can be traced back to early work of Shearer [She85],

as later elucidated by Scott and Sokal [SS04]. The main focus of this thesis is to push

the study of these ideas further, leading both to new algorithmic applications of roots of

partition functions and to a deeper understanding of their connection with correlation decay.
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1.2 Organization of thesis

In this thesis, we will focus on the following two general directions:

• identifying the boundaries of computational tractability via the study of phase tran-

sitions from statistical physics;

• conversely, locating phase transitions in statistical physics via the analysis of algo-

rithms.

More specifically, in chapter 2 we will explain, in the context of the ferromagnetic Ising

model, that absence of phase transitions (complex zeros) implies efficient approximate count-

ing algorithms. Next, in chapter 3, we study the connection between the two notions of

phase transitions, and show that in many models correlation decay implies the absence of

zeros; interestingly, we will crucially exploit the algorithmic analysis of correlation decay

to prove absence of zeros. Finally, in chapter 4, we will push this connection further, and

obtain state-of-the-art results on both the Fisher zeros of the Potts model and deterministic

approximate counting algorithms for graph colorings.

The results in this thesis are derived in collaboration with Piyush Srivastava and

Alistair Sinclair, and some have already been published. In particular, chapter 2 is based

mainly on [LSS19c]; chapter 3 is derived from ideas in [LSS19b]; and chapter 4 is based

largely on [LSS19a].

1.3 Notation

Throughout this thesis, we use ι to denote the imaginary unit
√
−1, in order

to avoid confusion with the symbol “i” used for other purposes. For a complex number

z = a + ιb with a, b ∈ R, we denote its real part a as <z, its imaginary part b as =z, its

length
√
a2 + b2 as |z|, and, when z 6= 0, its argument sin−1

(
b
|z|

)
∈ (−π, π] as arg z. We

also generalize the notation [x, y] used for closed real intervals to the case when x, y ∈ C,

and use it to denote the closed straight line segment joining x and y.
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Chapter 2

An algorithmic Lee-Yang theorem

for the Ising model

In this chapter, we describe the algorithmic paradigm of Barvinok, which shows

how to approximately evaluate a partition function by exploiting information about the

locations of its complex zeros. As a concrete example, we will prove an algorithmic version

of the classical Lee-Yang theorem for the ferromagnetic Ising model, which provides the first

deterministic approximation algorithm for the partition function for almost all parameter

values. In section 2.2 we first describe Barvinok’s paradigm using the Lee-Yang theorem as

a black box. Then, combining with ideas from Patel and Regts, we will show how this can

be turned into an efficient approximation algorithm in section 2.3. Finally, we will conclude

the chapter with a generalization of the Lee-Yang theorem to hypergraphs, improving on a

classical result of Suzuki and Fisher [SF71].

2.1 Statements of results and technical overview

We recall the definition of the partition function of the Ising model: given an

undirected graph G = (V,E), a vertex activity or fugacity λ, that models an “external

field” and determines the propensity of a vertex to be in the spin +, and an edge activity

β ≥ 0 that models the tendency of vertices to agree with their neighbors, the Ising partition

function is defined as

ZβG(λ) :=
∑
S⊆V

β|E(S,S)|λ|S|. (2.1)
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In this chapter, we focus on the classical ferromagnetic case in which β ≤ 1, so that

configurations in which a larger number of neighboring spins agree (small cuts) have higher

probability. The anti-ferromagnetic regime β > 1 is qualitatively very different, and prefers

configurations with disagreements between neighbors. We note also that all our results in

this chapter hold in the more general setting where there is a different interaction βe on each

edge, provided that all the βe satisfy whatever constraints we are putting on β. (So, e.g.,

in the ferromagnetic case βe ≤ 1 for all e.) In addition, our results allow β to be negative

and λ to be complex; this will be discussed in more detail below.

Throughout this chapter, as indicated by the notation in eq. (2.1), we view the

Ising partition function as a polynomial in λ for a fixed β. Then, the classical Lee-Yang

theorem states that, for any graph G and any |β| ≤ 1 (corresponding to the ferromagnetic

regime), the complex zeros of ZβG(λ) lie on the unit circle |λ| = 1.

As in almost all statistical physics and graphical models, the partition function

captures the computational complexity of the Ising model. Partition functions are #P-hard1

to compute exactly in virtually any interesting case (e.g., this is true for the Ising model

except in the trivial cases λ = 0 or β ∈ {0, 1}), so attention is focused on approximation.

An early result in the field due to Jerrum and Sinclair [JS93] establishes a fully polynomial

randomized approximation scheme for the Ising partition function, valid for all graphs G

and all values of the parameters (β, λ) in the ferromagnetic regime. Like many of the first

results on approximating partition functions, this algorithm is based on random sampling

and the Markov chain Monte Carlo method.

For several statistical physics models on bounded degree graphs (including the

anti-ferromagnetic Ising model [SST14, LLY13] and the “hard core”, or independent set

model [Wei06]), fully-polynomial deterministic approximation schemes have since been de-

veloped, based on the decay of correlations property in those models: roughly speaking,

one can estimate the local contribution to the partition function at a given vertex v by ex-

haustive enumeration in a neighborhood around v, using decay of correlations to truncate

the neighborhood at logarithmic diameter. The range of applicability of these algorithms

is of course limited to the regime in which decay of correlations holds, and indeed com-

1If a combinatorial counting problem, such as computing a partition function in a statistical physics
model, is #P-hard, then it can be solved in polynomial time only if all counting problems belonging to
a very rich class can be solved in polynomial time. Hence #P-hardness is widely regarded as compelling
evidence of the intractibility of efficient exact computation. For a more detailed account of this phenomenon
in the context of partition functions, see, e.g., [SS14a, Appendix A].
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plementary results prove that the partition function is NP-hard to approximate outside

this regime [SS14b, GGŠ+14]. Perhaps surprisingly, however, no deterministic approxima-

tion algorithm is known for the classical ferromagnetic Ising partition function that works

over anything close to the full range of the randomized algorithm of [JS93]: to the best of

our knowledge, the best deterministic algorithm, due to Zhang, Liang and Bai [ZLB11], is

based on correlation decay and is applicable to graphs of maximum degree ∆ only when

β > 1− 2/∆.

The restricted applicability of correlation decay based algorithms for the ferro-

magnetic Ising model arises from two related reasons: the first is that this model does not

exhibit correlation decay for β sufficiently close to 0 (for any given value of the external

field), so any straightforward approach based only on this property cannot be expected to

work for all β. Secondly, there is a regime of parameters for which, even though decay of

correlation holds, there is evidence to believe that it cannot be exploited to give an algo-

rithm using the usual techniques: see [SST14, Appendix 2] for a more detailed discussion

of this point.

The first goal of this chapter is an algorithmic Lee-Yang theorem for graphs, which

supplies the first deterministic algorithm that covers almost the entire range of parameters

of the model except for the “zero-field” case |λ| = 1:

Theorem 2.1.1. Fix any ∆ > 0. There is a fully polynomial time approximation scheme

(FPTAS)2 for the Ising partition function ZβG(λ) in all graphs G of maximum degree ∆ for

all edge activities −1 ≤ β ≤ 1 and all (possibly complex) vertex activities λ with |λ| 6= 1.

Remarks 1. (i) For fixed ∆ and λ such that |λ| < 1, the running time of the FPTAS

for producing a (1 ± ε)-factor approximation on n-vertex graphs of degree at most ∆ is

(n/ε)
O
(

log ∆
|1−|λ||

)
. (The running times of the algorithms in Theorems 2.1.3 and 2.1.4 below

have a similar dependence on λ and ∆.) Such dependence on the “distance to the criti-

cal boundary” (in this case, the circle |λ| = 1) of the degree of the polynomial bounding

the running time of the FPTAS appears to be a common feature of algorithms based on

correlation decay [Wei06, SSŠY16, LLY13] as well as our present analytic continuation ap-

proach. In contrast, approximate counting algorithms based on Markov chain Monte Carlo

(e.g., [JS89,EHŠ+16,LV97]) often have the desirable feature that they are, in a sense, “fixed

2An FPTAS takes as input an n-vertex (hyper)graph G, model parameters β, λ, and an accuracy param-
eter ε ∈ (0, 1) and outputs a value that approximates ZβG(λ) within a factor 1± ε (see also eq. (2.3)). The
running time of the algorithm is polynomial in n and 1/ε.



CHAPTER 2. AN ALGORITHMIC LEE-YANG THEOREM 9

parameter tractable”: even as the fixed parameters of the problem are moved close to the

boundary up to which the algorithm is applicable, the degree of the polynomial bounding

its running time does not increase; it is only the constant factors which increase to infinity.

A similar phenomenon occurs in the case of the dependence of the exponent of the running

time on the maximum degree of the graph: MCMC methods typically have no dependence,

while both correlation decay and the methods used here have an exponent linear in log ∆.

In the present case, this dependence seems to be inevitable since a crucial step in the al-

gorithm is the enumeration of all connected sub-graphs of size roughly Θ(log n), and the

number of such sub-graphs may grow as nΘ(log ∆) (see Section 2.3 and, in particular, the

proof of Lemma 2.3.9). (ii) Note that although λ, β are positive in the “physically relevant”

range in most applications of the Ising model, the above theorem also applies more generally

to β ∈ [−1, 1] and complex valued λ not on the unit circle. Moreover, we can allow edge-

dependent activities βe provided all of them lie in [−1, 1]. (iii) A result of Goldberg and

Jerrum [GJ08, Lemmas 7 and 16] shows that if one can approximate the partition function

of the Ising model at λ = 1 with edge-dependent activities βe ∈ [−1, 1] in polynomial time,

then there is a deterministic polynomial time algorithm for approximately counting perfect

matchings in general graphs. This leads to the following tantalizing possibility: extending

Theorem 2.1.1 to the case λ = 1 (which lies at the boundary of the current range of appli-

cability of the theorem) will lead to a deterministic FPTAS for counting perfect matchings

in graphs, a problem that continues to remain wide open. (Note that if Theorem 2.1.1

applied to the case λ = 1 with edge dependent activities βe ∈ [−1, 1], then it would apply

to unbounded degree graphs as well. This is because in this case, a high degree vertex can

be replaced by a “comb” in which each edge has activity 0.)

The above theorem is actually a special case of a more general theorem for the

hypergraph version of the Ising model (Theorem 2.1.3 below). We now illustrate our ap-

proach to proving these theorems, which will also allow us to introduce and motivate our

further results in this chapter.

In contrast to previous algorithms based on correlation decay, our algorithm is

based on isolating the complex zeros of the partition function Z := ZβG(λ) (viewed as a

polynomial in λ for a fixed value of β). This approach was introduced recently by Barvi-

nok [Bar15a,Bar15b] (see also the recent monograph [Bar17] for a discussion of the approach

in a more general context). We start with the observation that the 1± ε multiplicative ap-
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proximation of Z required for an FPTAS corresponds to a O(ε) additive approximation of

logZ. Barvinok’s approach considers a Taylor expansion of logZ around a point λ0 such

that Z(λ0) is easy to evaluate. (For the Ising model, λ0 = 0 is such a choice.) It then seeks

to evaluate the function at other points by carrying out an explicit analytic continuation.

More concretely, suppose it can be shown that there are no zeros of Z in the open disk

D(λ0, r) of radius r around λ0. From standard results in complex analysis, it then follows

that the Taylor expansion around λ0 of logZ is absolutely convergent in D(λ0, r) and fur-

ther, that the first m terms of this expansion evaluated at a point λ ∈ D(λ0, r) provide

a O
(
nαm

1−α

)
additive approximation of logZ(λ), where α = |λ− λ0| /r < 1, and n is the

degree of Z as a polynomial in λ. We note that Barvinok’s approach may be seen as an

algorithmic counterpart of the traditional view of phase transitions in statistical physics in

terms of analyticity of logZ [YL52].

To apply this approach in the case of the ferromagnetic Ising model, we may appeal

to the famous Lee-Yang theorem of the 1950s [LY52], which establishes that the zeros of

Z(λ) all lie on the unit circle in the complex plane. This allows us to take λ0 = 0 and r = 1

in the previous paragraph, and thus approximate Z(λ) at any point λ satisfying |λ| < 1.

This extends to all λ with |λ| 6= 1 via the fact that Z(λ) = λnZ( 1
λ).

Remark 2. We note that the case |λ| = 1 is likely to require additional ideas because it is

known that there exist bounded degree graphs (namely, ∆-ary trees) for which the partition

function ZβG(λ) has complex zeros within distance O(1/n) of λ = 1, where n is the size of

the graph. In fact, the zeros are even known to become dense on the whole unit circle as n

increases to infinity [BG01,BM97]. This precludes the possibility of efficiently carrying out

the analytic continuation procedure for logZ to arbitrary points on the unit circle, and to

the point λ = 1 in particular.

Converting the above approach into an algorithm requires computing the first k

coefficients in the Taylor expansion of logZ around λ0. Barvinok showed that this com-

putation can in turn be reduced to computing the O(k) lowest-degree coefficients of the

partition function itself. In the case of the Ising model, computing k such coefficients is

roughly analogous to computing k-wise correlations between the vertex spins, and doing

so naively on a graph of n vertices requires time Ω(nk). Until recently, no better ways

to perform this calculation were known and hence approximation algorithms using this
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approach typically required quasi-polynomial time3 in order to achieve a (1 ± 1/ poly(n))-

factor multiplicative approximation of Z (equivalently, a 1/ poly(n) additive approximation

of logZ), since this requires the Taylor series for logZ to be evaluated to k = Ω(log n)

terms [BS16a,BS16b,Bar15b].

Recently, Patel and Regts [PR17a] proposed a way to get around this barrier for

several classes of partition functions. Their method is based on writing the coefficients in

the Taylor series of logZ as linear combinations of counts of connected induced subgraphs

of size up to Θ(log n). This is already promising, since the number of connected induced

subgraphs of size O(log n) of a graph G of maximum degree ∆ is polynomial in the size of

G when ∆ is a fixed constant. Further, the count of induced copies of such a subgraph can

also be computed in time polynomial in the size of G [BCKL13]. Patel and Regts built on

these tools to show a way to compute the Θ(log n) Taylor coefficients of logZ needed in

Barvinok’s approach for several families of partition functions, for some of which correlation

decay based algorithms are still not known.

Unfortunately, for the case of the Ising model, it is not clear how to write the Taylor

coefficients in terms of induced subgraph counts. Indeed, in their paper [PR17a, Theorem

1.4], Patel and Regts apply their method to the Ising model viewed as a polynomial in β

rather than λ, which allows them to use subgraph counts. However, this prevents them

from using the Lee-Yang theorem, and they are consequently able to establish only a small

zero-free region. As a result, they can handle only the zero-field “high-temperature” regime,

specifically the regime |β − 1| ≤ 0.34/∆ and λ = 1. (Note that in fact the correlation decay

property also holds in this regime.)

In this chapter, we instead propose a generalization of the framework of Patel

and Regts to labelled hypergraphs via objects that we call insects. In the special case

of graphs, an insect can be seen as a graph that includes edges to additional boundary

vertices: we refer to Section 2.3.1 for precise definitions. Using the appropriate notions for

counting induced sub-insects, we are then able to write the coefficients arising in the Taylor

expansion of logZ for the Ising model in terms of induced sub-insect counts, and derive

from there algorithms for computing Ω(log n) such coefficients in polynomial time in graphs

of bounded degree. This establishes Theorem 2.1.1. We note that if one is only interested in

deriving Theorem 2.1.1, then this can also be done using the notion of fragments, developed

3A quasi-polynomial time algorithm is one which runs in time exp{O((logn)c)} for some constant c > 1.
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by Patel and Regts [PR17a] in the different context of edge coloring models, which turns

out to be a special case of our notion of insects.

Our framework of insects, however, also allows us to extend the above approach to

edge-dependent activities and, more significantly, to the much more general setting where G

is a hypergraph, as studied, for example, in the classical work of Suzuki and Fisher [SF71],

and also more recently in the literature on approximate counting [GG16,LYZ16,SYZ16]. In

a hypergraph of edge size k ≥ 3, the pairwise interactions in the standard Ising model are

replaced by higher-order interactions of order k. We note that the Jerrum-Sinclair MCMC

approach [JS93] apparently does not extend to hypergraphs, and there is currently no known

polynomial time approximation algorithm (even randomized) for a wide range of β in this

setting. For a hypergraph H = (V,E), configurations are again assignments of spins to the

vertices V and the partition function ZβH(λ) is defined exactly as in (2.1), where the cut

E(S, S) now consists of those hyperedges with at least one vertex in each of S and S. The

computation of coefficients via insects carries through as before, but the missing ingredient

is an extension of the Lee-Yang theorem to hypergraphs. Suzuki and Fisher [SF71] prove a

weak version of the Lee-Yang theorem for hypergraphs (see Theorem 2.4.3 in section 2.4),

which we are able to strengthen to obtain the following optimal statement, which is of

independent interest:

Theorem 2.1.2. Let H = (V,E) be a hypergraph with maximum hyperedge size k ≥ 3.

Then all the zeros of the Ising model partition function ZβH(λ) lie on the unit circle if the

edge activity β lies in the range − 1
2k−1−1

≤ β ≤ 1
2k−1 cosk−1( π

k−1)+1
. Further, when β 6= 1

does not lie in this range, there exists a hypergraph H with maximum hypergraph edge size

at most k such that the zeros of the Ising partition function ZβH(λ) of H do not lie on the

unit circle.

Remark 3. Once again, we can allow edge-dependent activities βe provided all of them lie

in the range stipulated above. This extension also applies to Theorem 2.1.3 below.

Note that the classical Lee-Yang theorem (for the graph case k = 2) establishes

this property for 0 ≤ β ≤ 1 (the ferromagnetic regime). Our proof of Theorem 2.1.2 follows

along the lines of Asano’s inductive proof of the Lee-Yang theorem [Asa70], but we need to

carefully analyze the base case (where H consists of a single hyperedge) in order to obtain

the above bounds on β. The optimality of the range of β in our result follows essentially
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from the fact that our analysis of the base case is tight. For a detailed comparison with the

Suzuki-Fisher theorem, see the Remark following Corollary 2.4.5.

Combining Theorem 2.1.2 with our earlier algorithmic approach immediately yields

the following generalization of Theorem 2.1.1 to hypergraphs.

Theorem 2.1.3. Fix any ∆ > 0 and k ≥ 3. There is an FPTAS for the Ising partition

function ZβH(λ) in all hypergraphs H of maximum degree ∆ and maximum edge size k, for

all edge activities β in the range of Theorem 2.1.2 and all vertex activities |λ| 6= 1.

Finally, we extend our results to general ferromagnetic two-spin systems on hy-

pergraphs, again as studied in [SF71]. A two-spin system on a hypergraph H = (V,E)

is specified by hyperedge activities ϕe : {+,−}|e| → C for e ∈ E, and a vertex activity

ψ : {+,−} → C. (Note that we treat each hyperedge e as a set of vertices.) Then the

partition function is defined as:

Zϕ,ψH :=
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

) ∏
v∈V

ψ(σ(v)).

Without loss of generality, we will henceforth assume that ϕe(−, · · · ,−) = 1, and that

ψ(−) = 1, ψ(+) = λ. We can then write the partition function as

ZϕH(λ) =
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

)
λ|{v:σ(v)=+}|. (2.2)

We call a hypergraph two-spin system symmetric if ϕe(σ) = ϕe(−σ). Suzuki

and Fisher [SF71] proved a Lee-Yang theorem for symmetric hypergraph two-spin systems

(which is weaker than our Theorem 2.1.2 above when specialized to the Ising model). Com-

bining this with our general algorithmic approach yields our final result of this chapter:

Theorem 2.1.4. Fix any ∆ > 0 and k ≥ 2 and a family of symmetric edge activities

ϕ = {ϕe} satisfying |ϕe(+, · · · ,+)| ≥ 1
4

∑
σ∈{+,−}V |ϕe(σ)|. Then there exists an FPTAS

for the partition function ZϕH(λ) of the corresponding symmetric hypergraph two-spin system

in all hypergraphs H of maximum degree ∆ and maximum edge size k for all vertex activities

λ ∈ C such that |λ| 6= 1.



CHAPTER 2. AN ALGORITHMIC LEE-YANG THEOREM 14

2.2 Approximation of the log-partition function by Taylor

series

In this section we present an approach due to Barvinok [Bar15b] for approximating

the partition function of a physical system by truncating the Taylor series of its logarithm,

as discussed above. We will work in our most general setting of symmetric two-spin systems

on hypergraphs, which of course includes the Ising model (on graphs or hypergraphs) as a

special case. As in (2.2), such a system has partition function

ZϕH(λ) =
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

)
λ|{v:σ(v)=+}|.

Our goal is an FPTAS for ZϕH(λ), i.e., a deterministic algorithm that, given as input H,

{ϕe}, λ with |λ| 6= 1 and ε ∈ (0, 1], runs in time polynomial in n = |H| and ε−1 and outputs

a (1± ε)-multiplicative approximation of ZϕH(λ), i.e., a number Ẑ satisfying

|Ẑ − ZϕH(λ)| ≤ ε|ZϕH(λ)|. (2.3)

(Note that in our setting Ẑ and ZϕH(λ) may be complex numbers.) By the symmetry

ϕe(σ) = ϕe(−σ), we also have Zϕ(λ) = λnZϕ( 1
λ), so that without loss of generality we

may assume |λ| < 1.

For fixed H and (hyper)edge activities ϕ, we will write Z(λ) = ZϕH(λ) for short.

Letting f(λ) = logZ(λ), using the Taylor expansion around λ = 0 we get

f(λ) =
∞∑
j=0

f (j)(0) · λ
j

j!
, (2.4)

where f(0) = logZ(0) = 0. Note that Z = exp(f), and thus an additive error in f

translates to a multiplicative error in Z. More precisely, given ε ≤ 1/4, and f, f̃ ∈ C such

that |f − f̃ | ≤ ε, we have

| exp(f̃)− exp(f)| = | exp(f̃ − f)− 1| × | exp(f)| ≤ 4ε| exp(f)|,

where the last inequality, valid for ε ≤ 1/4, follows by elementary complex analysis. In other

words, to achieve a multiplicative approximation of Z within a factor 1± ε, as required by

an FPTAS, it suffices to obtain an additive approximation of f within ε/4.

To get an additive approximation of f , we use the first m terms in the Taylor

expansion. Specifically, we compute fm(λ) :=
∑m

j=0 f
(j)(0) · λjj! . We show next how to
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compute the derivatives f (j)(0) from the derivatives of Z itself (which are more readily

accessible).

To compute f (j)(0), note that f ′(λ) = 1
Z(λ)

dZ(λ)
dλ , or dZ(λ)

dλ = f ′(λ)Z(λ). Thus for

any m ≥ 1,

dm

dλm
Z(λ) =

m−1∑
j=0

(
m− 1

j

)
dj

dλj
Z(λ) · dm−j

dλm−j
f(λ). (2.5)

Given dj

dλj
Z(λ)

∣∣
λ=0

for j = 0, · · · ,m, eq. (2.5) is a triangular system of linear equations in{
f (j)(0)

}m
j=1

of representation length poly(m), and is non-degenerate since Z(0) = 1; hence

it can be solved in poly(m) time.

We can now specify the algorithm: first compute
{

dj

dλj
Z(λ)

∣∣
λ=0

}m
j=0

; next, use the

system in eq. (2.5) to solve for
{
f (j)(0)

}m
j=1

; and finally, compute and ouput the approxi-

mation fm(λ).

To quantify the approximation error in this algorithm, we need to study the lo-

cations of the complex roots r1, · · · , rn of Z. Throughout this chapter, we will be using

(some variant of) the Lee-Yang theorem to argue that, for the range of interactions ϕ we

are interested in, the roots ri all lie on the unit circle in the complex plane, i.e., |ri| = 1 for

all i. Note that since we are assuming that ϕe(−, · · · ,−) = 1, the constant term
∏n
i=1(−ri)

of Z(λ) is 1, and hence we have Z(λ) =
∏
i(1− λ

ri
). The log partition function can then be

written as

f(λ) = logZ(λ) =
n∑
i=1

log

(
1− λ

ri

)
= −

n∑
i=1

∞∑
j=1

1

j

(
λ

ri

)j
. (2.6)

Note that due to the uniqueness of the Taylor expansion of meromorphic functions, the

two power series expansions of f(λ) in eqs. (2.4) and (2.6) are identical in the domain

of their convergence. Denoting the first m terms of the above expansion by fm(λ) =

−∑n
i=1

∑m
j=1

1
j ( λri )

j , the error due to truncation is bounded by

|f(λ)− fm(λ)| ≤ n
∞∑

j=m+1

|λ|j
j
≤ n |λ|m+1

(m+ 1)(1− |λ|) ,

recalling that by symmetry we are assuming |λ| < 1. Thus to get within ε/4 additive error,

it suffices to take m ≥ 1
log(1/|λ|)

(
log(4n

ε ) + log( 1
1−|λ|)

)
. The following result summarizes our

discussion so far.
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Lemma 2.2.1. Given ε ∈ (0, 1), m ≥ 1
log(1/|λ|)

(
log(4n

ε ) + log( 1
1−|λ|)

)
, and the values of the

first m derivatives
{

dj

dλj
Z(λ)

∣∣
λ=0

}m
j=0

, fm(λ) can be computed in time poly(n/ε). Moreover,

if the Lee-Yang theorem holds for the partition function Z(λ), then |fm(λ)− f(λ)| < ε/4,

and thus exp(fm(λ)) approximates Z(λ) within a multiplicative factor 1± ε.

The missing ingredient in turning Lemma 2.2.1 into an FPTAS is the computation

of the derivatives dj

dλj
Z(λ)

∣∣
λ=0

for 1 ≤ j ≤ m, which themselves are just multiples of the

m + 1 lowest-degree coefficients of Z. Computing these values naively using the definition

of Z(λ) requires nΩ(m) time. Since m is required to be of order Ω(log(n/ε)), this results

in only a quasi-polynomial time algorithm. In the next section, we show how to compute

these values in polynomial time when H is a hypergraph of bounded degree and bounded

hyperedge size, which when combined with Lemma 2.2.1 gives an FPTAS.

2.3 Computing coefficients via insects

As discussed in section 2.1, Patel and Regts [PR17a] recently introduced a tech-

nique for efficiently computing the low-degree coefficients of a partition function using in-

duced subgraph counts. In this section we introduce the notion of sub-insect counts, and

show how it allows the Patel-Regts framework to be adapted to any hypergraph two-spin

system with vertex activities (including the Ising model with vertex activities as a special

case). We will align our notation with [PR17a] as much as possible. From now on, unless

otherwise stated, we will use G to denote a hypergraph. Recall from section 2.1 the partition

function of a two-spin system on a hypergraph G = (V,E):

ZϕG(λ) =
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

)
λ|{v:σ(v)=+}|. (2.7)

Due to the normalization ϕe(−, · · · ,−) = 1, each term in the summation depends only on

the set S = {v : σ(v) = +} and the labelled induced sub-hypergraph
(
S ∪ ∂S,E[S] ∪ E(S, S)

)
,

where E[S] is the set of edges within S, ∂S is the boundary of S defined as ∂S :=⋃
v∈S NG(v) \ S, and NG(v) is the set of vertices adjacent to the vertex v in G. This

fact motivates the induced sub-structures we will consider.

Let σS be the configuration where the set of vertices assigned +-spins is S, that

is, σS(v) = + for v ∈ S and σS(v) = − otherwise. We will also write ϕe(S) := ϕe(σ
S
∣∣
e
)
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for simplicity. Thus the partition function can be written

ZϕG(λ) =
∑
S⊆V

∏
e:e∩S 6=∅

ϕe(S)λ|S|.

We start with the standard factorization of the partition function in terms of its

complex zeros r1, . . . , rn, where n = |V |. As explained in the paragraph preceding eq. (2.6),

the assumption ϕe(−, · · · ,−) = 1 allows one to write the partition function as

ZϕG(λ) =
n∏
j=1

(1− λ/rj) =
n∑
i=0

(−1)iei(G)λi,

where ei(G) is the elementary symmetric polynomial of degree i evaluated at ( 1
r1
, · · · , 1

rn
).

On the other hand, we can also express the coefficients ei(G) combinatorially using

the definition of the partition function:

ei(G) = (−1)i
∑
S⊆V
|S|=i

∏
e:e∩S 6=∅

ϕe(S). (2.8)

Once we have computed the first m coefficients of Z (i.e., the values ei(G) for

i = 1, · · · ,m), where m = Ω
(

log(n/ε)−log(1−|λ|)
log(1/|λ|)

)
, we can use Lemma 2.2.1 to obtain an

FPTAS as claimed in Theorems 2.1.1, 2.1.3 and 2.1.4. The main result in this section will

be an algorithm for computing these coefficients ei(G):

Theorem 2.3.1. Fix k,∆ ∈ N and C > 0. There exists a deterministic poly(n/ε)-time

algorithm that, given any n-vertex hypergraph G of maximum degree ∆ and maximum hy-

peredge size k, and any ε ∈ (0, 1), computes the coefficients ei(G) for i = 1, · · · ,m, where

m = dC log(n/ε)e.

2.3.1 Insects in a hypergraph

To take advantage of the fact that each term in eq. (2.7) only depends on the

set S and the induced sub-hypergraph
(
S ∪ ∂S,E[S] ∪ E(S, S)

)
, we define the following

structure.

Definition 2.3.2. Given a vertex set S and a set E of hyperedges, H = (S,E) is called an

insect if for all e ∈ E, e ∩ S 6= ∅. The set S is called the label set of the insect H and the

set B(H) :=
(⋃

e∈E e
)
\ S is called the boundary set.
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Given an insect H, we use the notation V (H) for its label set. The size |H| of

the insect H is defined to be |V (H)|. An insect H = (S,E) is said to be connected if the

hypergraph (S, {e ∩ S | e ∈ E}) is connected. It is said to be disconnected otherwise. In

the latter case, there exists a partition of S into non-empty sets S1, S2, and a partition of

E into sets E1 and E2, such that (Si, Ei) are insects for i = 1, 2, and the sets S2 ∩ B(H1)

and S1 ∩ B(H2) are empty. In this case, we write H = H1 ]H2, and say that the insects

H1 and H2 are disjoint. (Note that disjoint insects may share boundary vertices.)

Remark 4. Note that a hypergraph G = (V,E) can itself be viewed as an insect. However,

as is clear from the definition, not all insects are hypergraphs.

In order to exploit the structure of the terms in eq. (2.7) alluded to above, we

now define the notion of an induced sub-insect of an insect. Given an insect H = (S,E)

and a subset S′ of S, we define the induced sub-insect H+ [S′] as (S′, {e ∈ E | e ∩ S′ 6= ∅}).
Further, we say that an insect H is an induced sub-insect of an insect G, denoted H ↪→ G,

if there is a set S ⊆ V (G) such that G+ [S] = H.

2.3.2 Weighted sub-insect counts

Just as graph invariants may be expressed as sums over induced subgraph counts,

we will consider weighted sub-insect counts of the form f(G) =
∑

S⊆V (G) aG+[S] and the

functions f expressible in this way. Here G is any insect, and the coefficients aH depend

only on H, not on G.

Let G∆,k
t be the set of insects up to size t, with maximum degree ∆ and maximum

hyperedge size k. Note that since insects are labelled, this is an infinite set. We will fix ∆

and k throughout, and write G :=
⋃
t≥1 G

∆,k
t . Let 1[H ↪→ G] be the indicator that H is an

induced sub-insect of G, that is,

1[H ↪→ G] = 1 if there is a set S ⊆ V (G) such that G+ [S] = H, and 0 otherwise.

A weighted sub-insect count f(G) of the form considered above can then also be written

as f(G) =
∑

H∈G aH · 1[H ↪→ G]. This alternative notation helps simplify the presentation

of some of the combinatorial arguments below. Note that even though G is infinite, the

above sum has only finitely many non-zero terms for any finite insect G. Further, as insects

are labelled, f(G) may also depend on the labelling of G, unlike a graph invariant where

isomorphic copies of a graph yield the same value.
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A weighted sub-insect count f is said to be additive if, given any two disjoint insects

G1 and G2, f(G1]G2) = f(G1)+f(G2). An argument due to Csikvári and Frenkel [CF16],

also employed in the case of graph invariants by Patel and Regts [PR17a], can then be

adapted to give the following:

Lemma 2.3.3. Let f be a weighted sub-insect count, so that f may be written as

f(G) =
∑
H∈G

aH · 1[H ↪→ G] .

Then f is additive if and only if aH = 0 for all insects H that are disconnected.

Proof. When H is connected, we have 1[H ↪→ G1 ]G2] = 1[H ↪→ G1] + 1[H ↪→ G2]; thus

f given in the above form is additive if aH′ = 0 for all H ′ that are not connected.

Conversely, suppose f is additive. By the last paragraph, we can assume without

loss of generality that the sequence aH is supported on disconnected insects (by subtracting

the component of f supported on connected H). We now show that for such an f , aH must

be 0 for all disconnected H as well.

For if not, let H be a (necessarily disconnected) insect of smallest size for which

aH 6= 0. Since aJ = 0 for all insects J with |J | < |H|, we must have f(J) = 0 for all such

insects. Also, since H is disconnected, there exist non-empty insects H1 and H2 such that

H = H1 ] H2. By additivity, we then have f(H) = f(H1) + f(H2) = 0, where the last

equality follows since both |H1|, |H2| are strictly smaller than |H|. On the other hand, since

H is an insect with the smallest possible number of vertices such that aH 6= 0, we also have

f(H) = aH1[H ↪→ H] = aH . This implies aH = 0, which is a contradiction. Hence we must

have aH = 0 for all disconnected H.

The next lemma implies that the product of weighted sub-insect counts can also

be expressed as a weighted sub-insect count. We begin with a definition.

Definition 2.3.4. An insect H1 = (S1, E1) is compatible with another insect H2 = (S2, E2)

if the insect H := (S1 ∪ S2, E1 ∪ E2) satisfies H+ [S1] = H1 and H+ [S2] = H2.

Lemma 2.3.5. Let H1 = (S1, E1), H2 = (S2, E2) be arbitrary insects.

(i) If H1 and H2 are not compatible, then there is no insect G such that H1 ↪→ G and

H2 ↪→ G. In other words, for every insect G,

1[H1 ↪→ G] 1[H2 ↪→ G] = 0.
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(ii) If H1 and H2 are compatible, then for every insect G,

1[H1 ↪→ G] 1[H2 ↪→ G] = 1[H ↪→ G] ,

where H is the insect (S1 ∪ S2, E1 ∪ E2), and satisfies H+ [Si] = Hi for i = 1, 2.

Proof. We start by making two observations. First, if G+ [S1] = H1 and G+ [S2] = H2 then

G+ [S1 ∪ S2] = H = (S1 ∪ S2, E1 ∪ E2). Second, if T ⊆ S ⊆ V and G1 := G+ [S] then

G+
1 [T ] = G+ [T ].

Suppose first that H1 and H2 are not compatible. Suppose, for the sake of con-

tradiction, that there exists an insect G such that G+ [Si] = Hi for i = 1, 2. Then, from the

first observation above we have G+ [S1 ∪ S2] = H = (S1∪S2, E1∪E2), while from the second

observation we have H+ [Si] = G+ [Si] = Hi for i = 1, 2. This contradicts the assumption

that H1 and H2 are incompatible. Thus, we must have 1[H1 ↪→ G] 1[H2 ↪→ G] = 0 for every

G, proving part (i).

Now suppose that H1 and H2 are compatible. As seen above, G+ [Si] = Hi for

i = 1, 2 implies that G+ [S1 ∪ S2] = H. On the other hand, if G+ [S1 ∪ S2] = H, then by

the compatibility of H1 and H2, and the second observation above, G+ [Si] = H+ [Si] = Hi

for i = 1, 2. This proves part (ii) of the lemma.

An immediate corollary of the above lemma is that a product of weighted sub-

insect counts is also a sub-insect count supported on slightly larger insects.

Corollary 2.3.6. If f1(G) =
∑

H aH · 1[H ↪→ G] and f2(G) =
∑

H bH · 1[H ↪→ G] are

weighted sub-insect counts, then so is g(G) := f1(G)f2(G). Moreover, if f1, f2 are supported

on sub-insects of sizes ≤ t1, t2 respectively (i.e., if aH = 0 when |H| > t1 and bH = 0 when

|H| > t2), then g is supported on sub-insects of size ≤ t1 + t2.

Proof. For compatible insects Hi = (Si, Ei) we denote by H1 ∪H2 the insect (S1 ∪S2, E1 ∪
E2). Now, for any insect G we have,

g(G) =
∑
H1,H2

aH1bH2 · 1[H1 ↪→ G] · 1[H2 ↪→ G]

=
∑

H1,H2 compatible

aH1bH2 · 1[H1 ∪H2 ↪→ G]

=
∑
H

cH · 1[H ↪→ G] ,

where in the second line we have used Lemma 2.3.5, and where
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cH :=
∑

H1,H2 compatible
H=H1∪H2

aH1bH2 . (2.9)

Note that the number of non-zero terms in the definition of each cH is finite, and that

|H1 ∪H2| ≤ |H1|+ |H2|. This completes the proof.

2.3.3 Enumerating connected sub-insects

We observe next that ei(G), as defined in eq. (2.8), can be written as a weighted

sub-insect count. Accordingly, we generalize eq. (2.8) to arbitrary insects G of maximum

degree ∆ and hyperedge size k as follows:

ei(G) = (−1)i
∑

S⊆V (G)
|S|=i

∏
e:e∩S 6=∅

ϕe(S) =
∑

H∈G∆,k
i

µH · 1[H ↪→ G] , (2.10)

where µH := (−1)i
∏
e:e∩V (H)6=∅ ϕe(V (H)). Note that this definition coincides with eq. (2.8)

when G is a hypergraph, and also extends the definition of the partition function from

hypergraphs to insects via the equation ZG(λ) =
∑|G|

i=0(−1)iei(G)λi; when G = (S,E) this

definition is equivalent to that of the partition function on the hypergraph (S ∪ B(G), E),

with the vertices in B(G) set to ‘−’. This latter observation implies that when the insect

G is disconnected and G = G1 ]G2, we have ZG(λ) = ZG1(λ)ZG2(λ).

We now consider the computational properties of the above expansion. Note that

each coefficient µH is readily computable in time poly(|H| ); however, as discussed in sec-

tion 2.1, the number of H ∈ G∆,k
i such that 1[H ↪→ G] 6= 0 is Ω(ni), so that a naive

computation of ei(G) using eq. (2.10) would be inefficient. To prove Theorem 2.3.1, we

consider the set of connected insects, denoted by C∆,k
i , rather than G∆,k

i . We will show in

this subsection that C∆,k
i can be efficiently enumerated, and then in the following subsection

reduce the above summation over G∆,k
i to enumerations of C∆,k

i .

As in [PR17a], we use the following calculation of Borgs et al. [BCKL13, Lemma

2.1 (c)].

Lemma 2.3.7. Let G be a multigraph with maximum degree ∆ (counting edge multiplicity)

and let v be a vertex of G. Then the number of subtrees of G with t vertices containing the

vertex v is at most (e∆)t−1

2 .

Proof. Consider the infinite rooted ∆-ary tree T∆. The number of subtrees with t vertices

starting from the root is 1
t

(
t∆
t−1

)
< (e∆)t−1

2 . (See also [SF99, Theorem 5.3.10].) The proof
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is completed by observing that the set of t-vertex subtrees of G containing vertex v can be

mapped injectively into subtrees of T∆ containing the root.

Corollary 2.3.8. Let G be a hypergraph with maximum degree ∆ and maximum hyperedge

size k, and let v ∈ V (G). Then the number of connected induced sub-insects of G of size t

whose label set contains the vertex v is at most (e∆k)t−1

2 .

Proof. Consider the multigraph H obtained by replacing every hyperedge of size r in G by

an r-clique. For any connected induced sub-insect A of G, the label set V (A) is connected

in H. Now, for any two distinct connected induced sub-insects A and B, let SA and SB

be the sets of trees in H that span the label sets V (A) and V (B) of A and B respectively.

Since the label sets of A and B are different, we must have SA ∩ SB = ∅. Thus the number

of connected subtrees on t vertices in H which contain the vertex v is an upper bound on

the number of connected induced sub-insects in G whose label set contains v.

Finally, in the multigraph H the maximum degree is ∆k, so by Lemma 2.3.7 the

number of such subtrees is at most (e∆k)t−1

2 .

As a consequence we can efficiently enumerate all connected induced sub-insects

of logarithmic size in a bounded degree graph. This follows from a similar reduction to a

multigraph, applying [PR17a, Lemma 3.4]. However, for the sake of completeness we also

include a direct proof.

Lemma 2.3.9. For a hypergraph G of maximum degree ∆ and maximum hyperedge size k,

there exists an algorithm that enumerates all connected induced sub-insects of size at most t

in G and runs in time Õ(nt3(e∆k)t+1). Here Õ hides factors of the form polylog(n) , polylog(∆k)

and polylog(t).

Proof. Let Tt be the set of S ⊆ V (G) such that |S| ≤ t and G+[S] is connected. Note

that given S ∈ Tt, G+[S] will be a sub-insect of size t, and this clearly enumerates all of

them. Also, by Corollary 2.3.8, |Tt| ≤ O(n(e∆k)t). Thus it remains to give an algorithm to

construct Tt in about the same amount of time.

We construct Tt inductively. For t = 1, T1 := V (G). Then given Tt−1, define the

multiset

T ∗t := Tt−1 ∪ {S ∪ {v} : S ∈ Tt−1 and v ∈ NG(S) \ S} .

Since |NG(S)| < t∆k, we can compute the set NG(S) \ S in time O(t∆k), and construct

T ∗t in time Õ(|Tt−1| t2∆k) = Õ(nt2(e∆k)t). Finally, we remove duplicates in T ∗t to get Tt
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(e.g., by sorting the sets S ∈ T ∗t , where each is represented as a string of length Õ(t)), in

time Õ(nt3(e∆k)t).

Starting from T1, inductively we perform t iterations to construct Tt. Thus the

overall running time is
∑t

i=1 Õ(ni3(e∆k)i) = Õ(nt3(e∆k)t+1).

2.3.4 Proof of Theorem 2.3.1

The results in the previous subsection allow us to efficiently enumerate connected

sub-insects. To prove Theorem 2.3.1, it remains to reduce the sum over all (possibly discon-

nected) H in eq. (2.10) to a sum over connected H. We now show that the method of doing

so using Newton’s identities and the multiplicativity of the partition function developed by

Patel and Regts [PR17a] for graphs extends to the case of insects. Let G be any insect of

size n and consider the t-th power sum of the inverses of the roots ri, 1 ≤ i ≤ n, of ZG(λ)

(extended to insects G as in the paragraph following eq. (2.10)):

pt(G) =

n∑
i=1

1

rti
.

Now by Newton’s identities (which relate power sums to elementary symmetric polynomi-

als), we have

pt =

t−1∑
i=1

(−1)i−1pt−iei + (−1)t−1tet. (2.11)

Recall from eq. (2.10) that ei is a weighted sub-insect count supported on insects of size ≤ i,
and also from Corollary 2.3.6 that the product of two weighted sub-insect counts supported

on insects of size ≤ ti, t2 respectively is a weighted sub-insect count supported on insects of

size ≤ t1 + t2. Therefore, by eq. (2.11) and induction, each pt is also a weighted sub-insect

count supported on insects of size ≤ t. Thus, for any insect G, we may write

pt(G) =
∑

H∈G∆,k
t

a
(t)
H · 1[H ↪→ G] (2.12)

for some coefficients a
(t)
H to be determined. (The superscript (t) reflects the fact that a

given H will in general have different coefficients for different pt.)

Recall now that if G is disconnected with G = G1 ] G2 then ZG(λ) = ZG1(λ) ·
ZG2(λ). Thus, the polynomials ZG(λ) are multiplicative over G, and hence sums of powers

of their roots, such as pt(G) are additive: pt(G1 ] G2) = pt(G1) + pt(G2). Hence by
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Lemma 2.3.3, the coefficients of pt are supported on connected insects, and we may write

eq. (2.12) as

pt(G) =
∑

H∈C∆,k
t

a
(t)
H · 1[H ↪→ G] . (2.13)

Notice that by Corollary 2.3.8, there are at most n(e∆k)t non-zero terms in this sum.

Lemma 2.3.10. There is a poly(n/ε)-time algorithm to compute all the coefficients a
(t)
H in

eq. (2.13), for t ≤ O(log(n/ε)).

Proof. By Lemma 2.3.9, we compute Tt, consisting of all S ⊆ V (G) such that |S| ≤ t and

G+[S] is connected. As we have removed duplicates, this is exactly C∆,k
t . We then use

dynamic programming to compute the coefficients a
(t)
H .

By eq. (2.11), for t = 1 we have p1 = e1, so by eq. (2.10) we can read off the

coefficients a
(1)
H from e1(G). Next suppose we have computed a

(t′)
H′ for |H ′| ≤ t′ < t,

and we want to compute a
(t)
H for some fixed connected H ∈ C∆,k

t such that 1[H ↪→ G].

Again by eq. (2.11), it suffices to compute the coefficient corresponding to H in pt−iei for

each 1 ≤ i ≤ k−1 (since the contribution of the last term in eq. (2.11) is simply (−1)t−1tµH

if |H| = t and 0 otherwise). By eqs. (2.9) and (2.13), this coefficient is given by∑
H1∈G∆,k

i , H2∈C∆,k
(t−i)

H1 compatible with H2
H1∪H2=H

a
(t−i)
H2

µ
(i)
H1

=
∑

(S1,S2)
S1∪S2=V (H)

H+[S1]∈G∆,k
i , H+[S2]∈C∆,k

(t−i)

a
(t−i)
H+[S2]

µH+[S1]. (2.14)

Since t ≤ O(log(n/ε)), the second sum involves at most 4t = poly(n/ε) terms. Moreover,

due to Corollary 2.3.8, there are at most nt(e∆k)t = poly(n/ε) previously computed a
(t′)
H′ ,

where H ′ is a connected sub-insect of G and |H ′| ≤ t′ < t. In order to look up a
(t−i)
H+[S]

, one

can do a linear scan, which also takes time poly(n/ε) for t ≤ O(log(n/ε)). The coefficients

µH+[S] can simply be read off from their definition in eq. (2.10).

To conclude, because t ≤ O(log(n/ε)), eq. (2.13) only contains poly(n/ε) terms.

And for each term, a
(t)
H can be computed using the above dynamic programming scheme in

poly(n/ε) time.

Finally, now that we can compute aH,t efficiently, by eq. (2.13) we can compute

pk using the sub-insect enumerator in Lemma 2.3.9, and we can then compute ek using

Newton’s identities as in eq. (2.11), which completes the proof of Theorem 2.3.1.



CHAPTER 2. AN ALGORITHMIC LEE-YANG THEOREM 25

2.3.5 Proofs of main theorems

Our first main result in section 2.1, the FPTAS for the Ising model on graphs

throughout the ferromagnetic regime with non-zero field stated in Theorem 2.1.1, now

follows by combining Theorem 2.3.1 with Lemma 2.2.1 and the Lee-Yang theorem [LY52]

(also stated as Theorem 2.4.2 in the next section). Recall from section 2.1 that the Lee-Yang

theorem ensures that the partition function has no zeros inside the unit disk.

Similarly, Theorem 2.1.4, the FPTAS for two-spin systems on hypergraphs, follows

by combining Theorem 2.3.1 with Lemma 2.2.1 and the Suzuki-Fisher theorem [SF71] (also

stated as Theorem 2.4.3 in the next section). Again, the Suzuki-Fisher theorem ensures

that there are no zeros inside the unit disk, under the condition on the hyperedge activities

stated in Theorem 2.1.4.

To establish our final main algorithmic result, Theorem 2.1.3, we first need to

prove a new Lee-Yang theorem for the hypergraph Ising model as stated in Theorem 2.1.2

in section 2.1. This will be the content of the next section. Once we have that, Theorem 2.1.3

follows immediately by the same route as above.

2.4 A Lee-Yang Theorem for Hypergraphs

In this section we prove a tight Lee-Yang theorem for the hypergraph Ising model

(Theorem 2.1.2 in section 2.1). We start by extending the definition of the hypergraph Ising

model to the multivariate setting, where each vertex and each hyperedge is allowed to have

a different activity. As before, we have an underlying hypergraph G = (V,E) with |V | = n

vertices. Given vertex activities λ1, λ2, . . . , λn and hyperedge activities β = (βe), we define

ZβG(λ1, · · · , λn) =
∑
S⊆V

∏
e∈E(S,S)

βe
∏
i∈S

λi ,

where for a subset S ⊆ V , E(S, S) is the set of hyperedges with at least one vertex in each

of S and S. Note that

ZβG(λ1, · · · , λn) =

n∏
i=1

λi · ZβG
(

1

λ1
, · · · , 1

λn

)
. (2.15)

We use the following definition of the Lee-Yang property. This definition is based

on the results of Asano [Asa70] and Suzuki and Fisher [SF71], and somewhat stricter than

the definition used by Ruelle [Rue10].
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Definition 2.4.1 (Lee-Yang property). Let P (z1, z2, . . . , zn) be a multilinear polyno-

mial. P is said to have the Lee-Yang property (sometimes written as “P is LY”) if for any

complex numbers λ1, · · · , λn such that |λ1| ≥ 1, · · · , |λn| ≥ 1, and |λi| > 1 for some i, it

holds that P (λ1, · · · , λn) 6= 0.

Then the seminal Lee-Yang theorem [LY52] can be stated as follows:

Theorem 2.4.2. Let G be a connected undirected graph, and suppose 0 < β < 1. Then the

Ising partition function ZβG(λ1, · · · , λn) has the Lee-Yang property.

The following extension of the Lee-Yang theorem to general symmetric two-spin

systems on hypergraphs is due to Suzuki and Fisher [SF71]. Again the theorem is stated in

the multivariate setting, where in the two-spin partition function in eq. (2.7) each vertex i

has a distinct activity λi.

Theorem 2.4.3. Consider any symmetric hypergraph two-spin system, with a connected

hypergraph G and edge activities {ϕe}. Then the partition function ZϕG(λ1, · · · , λn) has the

Lee-Yang property if |ϕe(+, · · · ,+)| ≥ 1
4

∑
σ∈{+,−}V |ϕe(σ)| for every hyperedge e.

Theorem 2.4.3 is not tight for the important special case of the Ising model on

hypergraphs. Our goal in this section is to prove a tight analog of the original Lee-Yang

theorem for this case. Specifically, we will prove the following:

Theorem 2.4.4. Let G = (V,E) be a connected hypergraph, and β = (βe)e∈E be a vector

of real valued hyperedge activities so that the activity of edge e ∈ E is βe. Then ZβG has the

Lee-Yang property if the following condition holds for every hyperedge e, where k ≥ 2 is the

size of e:

• if k = 2, then −1 < βe < 1;

• if k ≥ 3, then − 1
2k−1−1

< βe <
1

2k−1 cosk−1( π
k−1)+1

.

Further, if the above condition is not satisfied for a given real edge activity β and integer

k ≥ 2, then there exists a k-uniform hypergraph H with edge activity β such that ZβH does

not have the Lee-Yang property.

Note that the case k = 2 is just the original Lee-Yang theorem (Theorem 2.4.2).

The following corollary for the univariate polynomial ZβG(λ) follows immediately

via eq. (2.15) and the fact that, by Hurwitz’s theorem, the zeros of ZβG(λ) are continuous
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functions of β and thus remain on the unit circle after taking the limit in the range of

each βe.

Corollary 2.4.5. Let G = (V,E) be a connected hypergraph, and β = (βe)e∈E be the

vector of real valued hyperedge activities so that the activity of edge e ∈ E is βe. Then, all

complex zeros of the univariate partition function ZβG(λ) lie on the unit circle if the following

condition holds for every hyperedge e, where k ≥ 2 is the size of e:

• if k = 2, then −1 ≤ βe ≤ 1;

• if k ≥ 3, then − 1
2k−1−1

≤ βe ≤ 1
2k−1 cosk−1( π

k−1)+1
.

The corollary establishes the first part of Theorem 2.1.2 in section 2.1, and hence

also Theorem 2.1.3 as explained at the end of the previous section. The second part of

Theorem 2.1.2, which asserts that the range of edge activities under which the theorem

holds is optimal, is proven in Section 2.4.1. (Note that the optimality for the univariate case

claimed in Theorem 2.1.2 does not directly follow from the optimality for the multivariate

case guaranteed by Theorem 2.4.4 above.)

Remark 5. As a comparison, the result of Suzuki and Fisher, which we restated in Theo-

rem 2.4.3, implies that a sufficient condition for the Lee-Yang property of ZβG(λ) is

− 1

2k−1 − 1
≤ βe ≤

1

2k−1 − 1
.

Note that while the lower bound on βe is the same as ours, our (tight) upper bound is

always better, and significantly so for the more interesting case of small k. For example,

for k = 3 our result gives the optimal range −1
3 ≤ βe ≤ 1, while the Suzuki-Fisher theorem

gives −1
3 ≤ βe ≤ 1

3 . Similarly, for k = 4 the respective ranges are [−1/7, 1/2] (for ours) and

[−1/7, 1/7] (for Suzuki-Fisher). We note here that there is a combinatorial explanation for

the fact that for positive β one gets the same range for k = 3 as that for the case of graphs

(k = 2): a hyperedge of size three with activity β2 is equivalent to a clique on three vertices

in which each edge has activity β. Such constructions however do not work for k ≥ 4: the

special nature of k = 3 comes from the fact that in any configuration of a hyperedge on

three vertices, at least two vertices have the same spin.

We turn now to the proof of Theorem 2.4.4. The main technical step in our proof

is to derive conditions under which the Ising partition function of a hypergraph consisting
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of a single hyperedge has the Lee-Yang property. This “base case” turns out to be more

difficult than in the case of the original Lee-Yang theorem for graphs. However, as in the

graph case, it will turn out that the base case still determines the range of β in which the

theorem can be claimed to be valid; we show this latter claim, which implies the second

part of Theorem 2.4.4 in Section 2.4.1.

We begin with the following two lemmas which, taken together, give a partial char-

acterization of the Lee-Yang property. While similar in spirit to the results of Ruelle [Rue10],

these lemmas do not follow directly from those results since, as noted above, the version of

the Lee-Yang property used here imposes a stricter condition on the polynomial than does

the definition used in [Rue10].

Lemma 2.4.6. Given a multilinear polynomial P (z1, z2, . . . , zn) with real coefficients define,

for each 1 ≤ j ≤ n, multilinear polynomials Aj and Bj in the variables z1, . . . , zj−1, zj+1, . . . , zn

such that

P = Ajzj +Bj .

If P has the Lee-Yang property then, for every j such that the variable zj has positive

degree in P , it holds that Aj(z1, . . . , zj−1, zj+1, . . . , zn) 6= 0 when |zi| ≥ 1 for all i 6= j. In

particular, Aj itself is LY.

Proof. Without loss of generality, we assume that j = 1. Note that since z1 has pos-

itive degree in P , A1 is a non-zero polynomial. Suppose that, in contradiction to the

claim of the lemma, there exist complex numbers λ2, . . . , λn satisfying |λi| ≥ 1 such that

A1(λ2, . . . , λn) = 0. Since P is LY, it follows that B1(λ2, . . . , λn) 6= 0 (for otherwise, we get

a contradiction to the Lee-Yang property by choosing z1 to be an arbitrary value outside

the closed unit disk).

By continuity, this implies that |B1| is positive in any small enough neighborhood

of (λ2, . . . , λn) in Cn−1. In particular, let Sε be the open set

Sε := {(y2, . . . , yn) | |yi − λi| < ε and |yi| > 1 for 2 ≤ i ≤ n } .

Then there exist positive δ0 and ε0 such that |B1| is at least δ0 in the open set Sε when

ε < ε0.

Now, since A1 is a non-zero multilinear polynomial, it cannot vanish identically

on any open set. In particular, it cannot vanish identically in Sε for any ε > 0. On the

other hand, since A1 vanishes at (λ2, . . . , λn) it follows from continuity that for ε < ε0 small



CHAPTER 2. AN ALGORITHMIC LEE-YANG THEOREM 29

enough, |A1| ≤ δ0/2 in Sε. Since A1 does not vanish identically on Sε, there must exist a

point (y2, . . . , yn) in Sε such that 0 < |A1(y2, . . . , yn)| < δ0/2. Since |B1(y2, . . . , yn)| ≥ δ0

by the choice of ε0, it follows that if we define y1 = −B1(y2, . . . , yn)/A1(y2, . . . , yn) then

2 < |y1| < ∞. However, we then have P (y1, y2, . . . , yn) = 0 even though |y1| > 1 and

|yi| ≥ 1 for all i. This contradicts the Lee-Yang property of P .

By iterating the above lemma, we get the following corollary.

Corollary 2.4.7. Let P (z1, z2, . . . , zn) be a multilinear polynomial with non-zero real coef-

ficients, i.e.,

P (z1, . . . , zn) =
∑
S⊆[n]

pS
∏
i∈S

zi,

where pS ∈ R are non-zero for all S ⊆ [n], and assume that P is LY. Then, for every subset

S of [n], the polynomial AS defined by the equation

P (z1, . . . , zn) = AS((zi)i 6∈S)
∏
i∈S

zi +
∑

T :S 6⊆T
pT
∏
i∈T

zi

has the property that AS((zi)i 6∈S) 6= 0 when |zi| ≥ 1 for all i 6∈ S. In particular, AS is LY.

We next show that Lemma 2.4.6 has a partial converse for symmetric multilinear

functions.

Lemma 2.4.8. Let P (z1, z2, . . . , zn) be a symmetric multilinear polynomial with non-zero

real coefficients, i.e.,

P (z1, . . . , zn) =
∑
S⊆[n]

pS
∏
i∈S

zi,

where pS 6= 0 for all S ⊆ [n] and pS = pS. Assume further that the polynomials Aj as defined

in Lemma 2.4.6 all have the property that they are non-zero when all their arguments zi

satisfy |zi| ≥ 1. Then P is LY.

Proof. We first show that, under our assumptions, if all but one of the zj lie on the unit

circle, then P can only vanish if the remaining zj is also on the unit circle. Without loss of

generality we set j = 1, that is, we will show that if |zi| = 1 for i ≥ 2, then any root z1 = ζ1

of the equation A1z1 + B1 = 0 satisfies |ζ1| = 1. (Here A1 and B1 are in the notation of

Lemma 2.4.6.)
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Since by assumption A1 =
∑

S⊆[2,n] pS∪{1}
∏
i∈S zi does not vanish with this setting

of the zi, we have

|ζ1| =
∣∣∣∣B1

A1

∣∣∣∣ =

∣∣∣∣∣
∑

S⊆[2,n] pS
∏
i∈S zi∑

S⊆[2,n] pS∪{1}
∏
i∈S zi

∣∣∣∣∣ =

∣∣∣∣∣∣
 ∏
i∈[2,n]

zi


∑

S⊆[2,n] pS
∏
i 6∈S
i 6=1

(1/zi)∑
S⊆[2,n] pS∪{1}

∏
i∈S zi

∣∣∣∣∣∣
(?)
=

∣∣∣∣∣∣
∑

S⊆[2,n] pS
∏
i 6∈S
i 6=1

zi∑
S⊆[2,n] pS∪{1}

∏
i∈S zi

∣∣∣∣∣∣ (†)
=

∣∣∣∣∣
∑

S⊆[2,n] pS∪{1}
∏
i∈S zi∑

S⊆[2,n] pS∪{1}
∏
i∈S zi

∣∣∣∣∣ = 1. (2.16)

Here (?) uses the fact that |zi| = 1 for i ≥ 2 and (†) uses the symmetry of P . We have thus

shown that if (z1, z2, . . . , zn) is a zero of P such that |zi| ≥ 1 for all i then it is impossible

for only one zi to lie outside the closed unit disk.

We now show that if there are k ≥ 2 values of i for which zi lies outside the closed

unit disk, then we can find another zero (ζ1, ζ2, ζ3, . . . , ζn) of P such that |ζi| ≥ 1 for all

i, and exactly k − 1 of the ζi lie outside the closed unit disk. We can then iterate this

process to reduce k to 1, in which case the observation in the previous paragraph leads to

a contradiction.

By re-numbering the indices if needed, we can assume that |z1| , |z2| > 1 and

|zi| ≥ 1 for i ≥ 3. We can then write

P (z1, . . . , zn) = α12z1z2 + α1z1 + α2z2 + α∅,

where α12, α1, α2 and α∅ are non-zero polynomials in z3, . . . , zn. Further, the hypotheses

of the lemma imply that A1 = α12z2 + α1 and A2 = α12z1 + α2 both have the Lee-Yang

property. Thus, by Lemma 2.4.6, α12(z3, . . . , zn) 6= 0 when |zi| ≥ 1 for i ≥ 3. Now, again

by hypothesis, A2 6= 0 when |z1| and |z3| , . . . , |zn| are at least 1, while z1 = − α2(z3,...,zn)
α12(z3,...,zn)

gives A2 = 0. Thus, we must have that

|α2(z3, . . . , zn)|
|α12(z3, . . . , zn)| < 1 when |zi| ≥ 1 for i ≥ 3. (2.17)

We now set ζi = zi for i ≥ 3, and consider z1 as a function of z2. The equality P (z1, z2, ζ3, . . . , ζn) =

0 is then equivalent to

z1 = − α2z2 + α∅
α12z2 + α1

, (2.18)

where the hypotheses of the lemma imply that the denominator (which is equal toA1(z2, ζ3, . . . , ζn))

is non-zero when |z2| ≥ 1. We thus see that

lim
z2→∞

|z1| =
|α2|
|α12|

< 1. (2.19)
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Initially, both z1 and z2 lie outside the closed unit disk. Thus, by eq. (2.19) and continuity,

we can take z2 large enough in absolute value such that z1 as defined in eq. (2.18) lies on

the unit circle. We now choose ζ1 and ζ2 to be these values of z1 and z2, respectively, so

that we have P (ζ1, . . . , ζn) = 0 and the number of the ζi lying on the unit circle is exactly

one less than the number of the zi lying on the unit circle, as required.

Along with the above general facts about LY polynomials, we also need the fol-

lowing technical lemma.

Lemma 2.4.9. Let m be any integer, and k a positive integer such that 2 |m| ≤ k. Consider

the maximization problem

max
k∏
i=1

cos θi

subject to − π

2
≤ θi ≤

π

2
,

k∑
i=1

θi = mπ.

The maximum is cosk
(
mπ
k

)
, and is attained when θi = mπ

k for all i.

Proof. We may assume without loss of generality that θi ∈ (−π/2, π/2) at any maximum

(for otherwise the objective value is 0). Now, consider the function f(x) = log cosx defined

on the interval (−π/2, π/2). Since f ′(x) = − tanx is a decreasing function, f(x) is concave

for x ∈ (−π
2 ,

π
2 ). Thus by Jensen’s inequality,

log
k∏
i=1

cos θi =
k∑
i=1

f(θi) ≤ kf
(∑k

i=1 θi
k

)
≤ k log cos

(mπ
k

)
,

and equality holds when θi = mπ
k for all i. Note that these θi are in (−π/2, π/2) since

2 |m| ≤ k.

We are now ready to tackle the case of a single hyperedge.

Lemma 2.4.10. Fix an integer k ≥ 2 and a hyperedge activity β ∈ R. Let G = (V =

{v1, v2, . . . , vk} , E = {{v1, v2, . . . , vk}}) be a hypergraph consisting of a single hyperedge of

size k and activity β. If k = 2 and β ∈ (−1, 1), or k ≥ 3 and β satisfies

− 1

2k−1 − 1
< β <

1

2k−1 cosk−1
(

π
k−1

)
+ 1

,

then the partition function ZβG has the Lee-Yang property.
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Remark 6. Note that the condition on β imposed above is monotone in k: i.e., if β is

such that the partition function of a hyperedge of size k ≥ 2 is LY, then for the same β the

partition function of a hyperedge of size k′ < k is also LY.

Proof. For k = 2, the lemma is a special case of the Lee-Yang theorem [LY52] (although it

also follows by specializing the argument below). We therefore assume k ≥ 3.

Since the Ising partition function is symmetric and all terms in the polynomial

appear with positive coefficients, Lemma 2.4.8 applies and it suffices to verify that the

polynomials Aj do not vanish when |zi| ≥ 1 for i 6= j. Without loss of generality we fix

j = 1. We then have

A1 = β
k∏
i=2

(1 + zi) + (1− β)
k∏
i=2

zi.

Thus A1 = 0 is equivalent to

1

β
= 1−

k∏
i=2

(
1 +

1

zi

)
. (2.20)

To establish the lemma, we therefore only need to show that for the claimed values of β,

eq. (2.20) has no solutions when |zi| ≥ 1 for all i ≥ 2. We now proceed to establish this by

analyzing the product on the right hand side of eq. (2.20).

The map z 7→ 1 + 1/z is a bijection from the complement of the open unit disk

to the closed disk D of radius 1 centered at 1. Any y ∈ D can be written as y = r exp(ιθ)

for θ ∈ [−π/2, π/2] and 0 ≤ r ≤ 2 cos θ. Consider now the set R ∩
{∏k

i=2 yi | yi ∈
D for 2 ≤ i ≤ k

}
. We show that, for k ≥ 3, this set is exactly the interval [−τ0, τ1] where

τ0 = 2k−1 cosk−1(π/(k − 1)) and τ1 = 2k−1. The claim of the lemma then follows since for

the given values of β, 1− 1/β lies outside [−τ0, τ1] and hence eq. (2.20) cannot hold.

Recalling that each y ∈ D can be written in the form r exp(ιθ) where θ ∈
[−π/2, π/2] and 0 ≤ r ≤ 2 cos θ, we find that the values τ0 and τ1 are defined by the

following optimization problems (both of which are feasible since k ≥ 3):
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τ0 = 2k−1 max
k∏
i=2

cos θi

subject to − π

2
≤ θi ≤

π

2
,

k∑
i=2

θi = (2n+ 1)π

for some n ∈ Z
s.t. |2n+ 1| ≤ (k − 1)/2.

τ1 = 2k−1 max

k∏
i=2

cos θi

subject to − π

2
≤ θi ≤

π

2
,

k∑
i=2

θi = 2nπ

for some n ∈ Z
s.t. |n| ≤ (k − 1)/4.

Using Lemma 2.4.9, we then see that τ0 = 2k−1 cosk−1(π/(k − 1)) and τ1 = 2k−1,

as required.

We now proceed to an inductive proof of Theorem 2.4.4, using Lemma 2.4.10 as

the base case.

Proof of Theorem 2.4.4. The case k = 2 is a special case of the Lee-Yang theorem [LY52]

(though, as with the proof of Lemma 2.4.10, the argument below can again be specialized

to directly establish this). We assume therefore that k ≥ 3.

The proof uses the inductive method of Asano [Asa70]. When the hypergraph

consists of a single hyperedge of size k′ ≤ k, it follows from Lemma 2.4.10 and the remark

immediately after it that the partition function is LY for the claimed values of the edge

activity β. For the induction, we use the fact that the Lee-Yang property of the partition

function is preserved under the following two operations:

1. Adding a hyperedge: In this operation, a new hyperedge e of size k′ ≤ k and activity

βe as claimed in the statement of the theorem, is added to a connected hypergraph in

such a way that exactly one of its k′ vertices already exists in the starting hypergraph,

while the other k′−1 vertices are new. Note that this operation keeps the hypergraph

connected. We assume that the partition functions of both the original hypergraph

as well as the newly added edge separately have the Lee-Yang property: this follows

from the induction hypothesis (for the hypergraph) and Lemma 2.4.10 (for the new

hyperedge).

2. Asano contraction: In this operation, two vertices u′, u′′ in a connected hypergraph

that are not both included in any one hyperedge are merged so that the new merged
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vertex u is incident on all the hyperedges incident on u′ or u′′ in the original graph.

Note that this operation keeps the hypergraph connected and does not change the

size of any of the hyperedges.

Any connected non-empty hypergraph G can be constructed by starting with any arbitrary

hyperedge present in G and performing a finite sequence of the above two operations: to

add a new hyperedge e with activity βe, one first uses operation 1 to add a hyperedge which

has the same activity βe and has new copies of all but one of the incident vertices of e,

and then uses operation 2 to merge these new copies with their counterparts, if any, in the

previous hypergraph. Note that in this process, a hyperedge e can be added only when at

least one of its vertices is already included in the current hypergraph. However, since G is

assumed to be connected, its hyperedges can be ordered so that all of them are added by

the above process. Thus, assuming that the above two operations preserve the Lee-Yang

property, it follows by induction that the partition functions of all connected hypergraphs

of hyperedge size at most k, and edge activities βe as claimed in the theorem, have the

Lee-Yang property.

Given Corollary 2.4.7, it can be proved, by adapting an argument first developed by

Asano [Asa70], that these two operations preserve the Lee-Yang property. Asano’s method

has by now become standard (see, e.g., [SF71, Propositions 1, 2]), but we include the details

here for completeness.

Consider first operation 1. Let G be the original hypergraph and H the new hyper-

edge (with k′ ≤ k vertices) being added, and assume, by renumbering vertices if required,

that the single shared vertex is v1 in G and u1 in H, respectively. Let P (z1, z2, . . . , zn) =

A(z2, . . . , zn)z1 +B(z2, . . . , zn) and Q(y1, y2, . . . , yk′) = C(y2, . . . , yk′)y1 +D(y2, . . . , yk′) be

the Ising partition functions of G and H, respectively, where z1 and y1 are the variables

corresponding to v1 and u1, respectively. Both P and Q are LY by the hypothesis of the

operation. The partition function R of the new graph can be written as

R(z, z2, . . . , zn, y2, . . . , yk′) = A(z2, . . . , zn)C(y2, . . . , yk′)z +B(z2, . . . , zn)D(y2, . . . , yk′),

where z is a new variable corresponding to the new vertex created by the merger of u1 and

v1. Let λ2, . . . , λn, and µ2, . . . , µk′ be complex numbers lying outside the open unit disk.

In order to prove that R is LY, we need to show that (i) R(z, λ2, . . . , λn, µ2, . . . , µk′) = 0

implies that |z| ≤ 1; and (ii) when at least one of these complex numbers lies strictly
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outside the closed unit disk then R(z, λ2, . . . , λn, µ2, . . . , µk′) = 0 implies that |z| < 1. Now,

since P and Q are assumed to be LY, Lemma 2.4.6 implies that A = A(λ2, . . . , λn) and

C = C(µ2, . . . , µk′) are both non-zero. Thus, R = 0 implies that

|z| = |B/A| · |D/C| , (2.21)

where B = B(λ2, . . . λn) and D = D(µ2, . . . , µk′). Since all the λi and µi lie outside the

open unit disk and P and Q are LY, |B/A| , |D/C| ≤ 1, so that from eq. (2.21), |z| ≤ 1.

This establishes condition (i). Further, when at least one of the λi lies strictly outside the

closed unit disk, then again, since P is LY, |B/A| < 1. Similarly,|D/C| < 1 when one of the

µi lies outside the closed unit disk. Thus, when at least one of the λi and the µi lies outside

the closed unit disk, it follows from eq. (2.21) that |z| < 1, thus establishing condition (ii)

and concluding the argument that R is LY.

We now consider operation 2. By renumbering vertices if necessary, let v1 and v2

be the vertices to be merged. The partition function P of the original graph (where v1 and

v2 are not merged) can be written as

P (z1, z2, z3, . . . , zn) = A(z3, . . . , zn)z1z2 +B(z3, . . . , zn)z1 + C(z3, . . . , zn)z2 +D,

and is LY by the hypothesis of the operation. The partition function R after the merger is

then given by

R(z, z3, . . . , zn) = A(z3, . . . , zn)z +D,

where z is a new variable corresponding to the vertex created by the merger of v1 and v2.

Now, let λ3, . . . , λn be complex numbers lying outside the open unit disk. Corollary 2.4.7

implies that A = A(λ3, . . . , λn) 6= 0. Thus, R(z, λ3, . . . , λn) = 0 implies that

|z| = |D(λ3, . . . , λn)/A(λ3, . . . , λn)| = |D/A| . (2.22)

Now, since P is LY, both zeros of the quadratic equation P (x, x, λ3, . . . , λn) = 0 satisfy

|x| ≤ 1, and indeed, |x| < 1 when at least one of the λi lies strictly outside the closed unit

disk. Thus, the product D/A of its zeros also satisfies |D/A| ≤ 1, and further satisfies the

stronger inequality |D/A| < 1 in case at least one of the λi lies strictly outside the closed

unit disk. Eq. (2.22) then implies that |z| ≤ 1 in the first case and |z| < 1 in the second

case, which establishes that R is LY.

This concludes the proof of the first part of Theorem 2.4.4. We now prove the

optimality of the conditions imposed on the edge parameters. In the case k = 2, this
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follows by considering the partition function z1z2 + βz1 + βz2 + 1 of a single edge. When

β > 1 (respectively, when β < −1), z1 = z2 = −β −
√
β2 − 1 (respectively, z1 = z2 = −β +√

β2 − 1) is a zero of the partition function satisfying |z1| , |z2| > 1 and hence contradicting

the Lee-Yang property. Similarly z1 = −1, z2 = 2 when β = 1, and z1 = 1, z2 = 2 when

β = −1, are zeros which contradict the Lee-Yang property.

We now consider the case k ≥ 3. In this case, we take our example to be the single

hyperedge of size k and consider its partition function

P (z1, z2, . . . , zk) := β
k∏
i=1

(1 + zi) + (1− β)

(
1 +

k∏
i=1

zi

)
. (2.23)

Our strategy is to show that when

β 6∈
(
− 1

2−k−1 − 1
,

1

2k−1 cosk−1
(

π
k−1

)
+ 1

)
, (2.24)

the polynomialA1(z2, z2, . . . , zk), which is the coefficient of z1 in P as defined in Lemma 2.4.6,

vanishes at a point with |zi| ≥ 1 for i ≥ 2. It then follows from Lemma 2.4.6 that P cannot

have the Lee-Yang property.

To carry out the strategy, we reuse some of the notation and calculations from the

proof of Lemma 2.4.10. Let D be the closed disk of radius 1 centered at 1, as defined in

the proof of that lemma. Eq. (2.20), taken together with the discussion following it, implies

that finding a zero of A1(z2, . . . , zk) with |zi| ≥ 1, 2 ≤ i ≤ k, is equivalent to finding yi ∈ D,

yi 6= 1 such that 1− 1
β =

∏k
i=2 yi. We can in fact choose all the yi to be equal, so that using

the same representation of D as in the proof of Lemma 2.4.10, our task reduces to finding

an angle θ ∈ [−π/2, π/2] and 0 ≤ r ≤ 2 cos θ such that yi = reιθ, 2 ≤ i ≤ k, and

1− 1

β
=
(
reιθ

)k−1
. (2.25)

Let γ := 1 − 1
β . We now partition the condition on β in (2.24) into three different cases.

Suppose first that β ≤ − 1
2k−1−1

. This is equivalent to 1 < γ ≤ 2k−1. In this case θ = 0,

r = γ
1

k−1 ∈ (1, 2] gives a desired solution to (2.25) (note that we have yi ∈ (1, 2] in this

case). The same solution for θ and r also works when β > 1 (in which case 0 < γ < 1 and

yi ∈ (0, 1)) . The remaining case is 1 ≥ β ≥ 1
2k−1 cosk−1( π

k−1)+1
, which in turn is equivalent

to −2k−1 cosk−1( π
k−1) ≤ γ ≤ 0, and θ = π

k−1 , r = |γ| πk−1 ≤ 2 cos θ gives a solution in this

case.
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2.4.1 Optimality of the univariate hypergraph Lee-Yang theorem

We now prove the second part of the univariate hypergraph Lee-Yang theorem,

Theorem 2.1.2, i.e., that the range of edge activities under which the first part of that

theorem holds is optimal. The tight example for the case k = 2 is a single edge, and as

observed above, the roots of the univariate partition function of the edge when |β| > 1 are

−β ±
√
β2 − 1, which do not lie on the unit circle.

We now consider the case k ≥ 3. The tight example is again a hyperedge of size

k′ ≤ k. The partition function Pk′(z) of this graph is

Pk′(z) := β(1 + z)k
′
+ (1− β)(1 + zk

′
),

and we will show that it has at least one root outside the unit circle when β 6= 1 satisfies

β 6∈
[
− 1

2−k−1 − 1
,

1

2k−1 cosk−1
(

π
k−1

)
+ 1

]
. (2.26)

We consider three exhaustive cases under which (2.26) holds.

Case 1: β > 1. In this case our tight example is a hyperedge of size k′ = 2 ≤ k, and the

result follows from that of the case k = 2.

Case 2: β < − 1
2k−1−1

. In this case, our example is a hyperedge of size k. We note then

that Pk(0) = 1 and Pk(1) = 2β(2k−1−1)+2 < 0. Thus, there exists a z in the interval

(0, 1) for which Pk(z) = 0, and hence Pk has a zero that is not on the unit circle.

Case 3: 1
2k−1 cosk−1( π

k−1)+1
< β < 1. Our tight example is again a hyperedge of size k. We

will show that the degree k polynomial Pk has at most k − 3 zeros (counting with

multiplicities) on the unit circle C, and hence must have at least one zero outside it.

We first consider the point z = −1. Note that since β 6= 1, Pk(−1) = 0 if and only if k

is odd, and in this case P ′k(−1) = k(1−β) 6= 0. Therefore, −1 is a zero of multiplicity

1 of Pk when k is odd, and is not a zero of Pk when k is even.

We now consider zeros of Pk in C \ {−1}. Let τ := 2k−1 β
β−1 and g(z) := 1+zk

(1+z)k
. Note

that any z ∈ C \ {−1} is a zero of multiplicity l of Pk if and only if it is a zero of the

same multiplicity l of the meromorphic function g(z)− τ/2k−1. In particular, at such

a z, the order of the first non-zero derivative of Pk is the same as the order of the first

non-zero derivative of g, and this number is the multiplicity of z as a zero of P (or
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equivalently, as a root of g(z) = τ/2k−1). Note also that g(z) maps C \ {−1} into the

real line: in fact, for z = e2ιθ, θ ∈ (−π/2, π/2), we have

2k−1g(z) = 2k−1 · 1 + cos 2kθ + ι sin 2kθ

(1 + cos 2θ + ι sin 2θ)k
=

2k cos kθ

(2 cos θ)k
· e

ιkθ

eιkθ
=

cos kθ

cosk θ
=: h(θ),

and further h′(θ) = 2kιzg′(z), so that h′(θ) = 0 if and only if g′(z) = 0. Indeed, by

computing further derivatives, one sees that the multiplicity of any root of h(θ) = τ

in (−π/2, π/2) (i.e., the order of the first non-zero derivative of h at the root) is the

same as the multiplicity of the corresponding root z = e2ιθ of g(z) = τ/2k−1.

Thus, in order to establish our claim that Pk(z) has at most k−3 zeros (counting with

multiplicities and also accounting for the possible zero at −1 considered above) on the

unit circle C, we only need to show that the number of roots of the equation h(θ) = τ

on (−π/2, π/2) (counted with multiplicities) is at most k − 4. We now proceed to

establish this property of h. Note that for the range of β being considered, we have

τ < − seck−1
(

π
k−1

)
.

Since h(θ) = h(−θ), we consider its behavior only in the interval I = [0,−π/2). We

have h′(θ) = −k sin(k−1)θ
cosk+1 θ

, so that the zeros of h′ in I are given by ρi = iπ/(k − 1),

where 0 ≤ i < bk/2c is an integer. Note that all these zeros of h′ are in fact simple:

h′′(ρi) 6= 0. Thus, any root of h(θ) = τ is of multiplicity at most 2. Now, define

ρbk/2c = π/2, and let Ii be the interval [ρi, ρi+1) for 0 ≤ i ≤ bk/2c − 1. We note the

following facts (see Figure 2.1 for an example):

1. In the interval Ii, h is strictly decreasing when i is even and strictly increasing

when i is odd.

2. For i < bk/2c, h(ρi) = (−1)i seck−1
(
iπ
k−1

)
, so that h(ρi) is strictly positive when i

is even and strictly negative when i is odd. Further, h(ρ1) = − seck−1
(

π
k−1

)
> τ .

From these observations we can now deduce that when − seck−1
(

π
k−1

)
> τ , h(θ) = τ

has

1. no roots in I0 and I1,

2. at most two roots in Ii ∪ Ii+1, counting multiplicities, when i is a positive even

integer strictly less than bk/2c− 1. The two roots can arise in only the following

two ways: there can be one root each, with multiplicity 1, in each of the two

intervals Ii and Ii+1, or else there can be a root of multiplicity 2 at ρi+1.
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Figure 2.1. The function h(θ)

3. at most one additional root in Ibk/2c−1, and this additional root can arise only

when bk/2c − 1 is even.

Together, the above three items imply that when τ < − seck−1
(

π
k−1

)
, the number

of roots of h(θ) = τ in I = [0,−π/2), counted with their multiplicities, is at most

bk/2c− 2. Using the symmetry of h around 0 pointed out above, we thus see that the

number of roots of h(θ) − τ in (−π/2, π/2) is at most k − 4, so that Pk has at most

k− 3 zeros (accounting for the possible simple zero at −1 when k is odd) on the unit

circle for such β. This implies that at least one zero of the degree k polynomial Pk

must lie outside the unit circle, as required.

2.5 Related work

The problem of computing partition functions has been widely studied, not only

in statistical physics but also in combinatorics, because the partition function is often a

generating function for combinatorial objects (cuts, in the case of the Ising model). There

has been much progress on dichotomy theorems, which attempt to completely classify these

problems as being either #P-hard or computable (exactly) in polynomial time (see, e.g.,
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[CCL10,GGJT10]).

Since the problems are in fact #P-hard in most cases, algorithmic interest has

focused largely on approximation, motivated also by the general observation that approx-

imating the partition function is polynomial time equivalent to sampling (approximately)

from the underlying Gibbs distribution [JVV86]. In fact, most early approximation al-

gorithms exploited this connection, and gave fully-polynomial randomized approximation

schemes (FPRAS) for the partition function using Markov chain Monte Carlo (MCMC)

samplers for the Gibbs distribution. In particular, for the ferromagnetic Ising model, the

MCMC-based algorithm of Jerrum and Sinclair [JS93] is valid for all positive real values

of λ and for all graphs, irrespective of their vertex degrees. (For the connection with ran-

dom sampling in this case, see [RW99].) This was later extended to ferromagnetic two-spin

systems by Goldberg, Jerrum and Paterson [GJP03]. Similar techniques have been applied

recently to the related random-cluster model by Guo and Jerrum [GJ17].

Much detailed work has been done on MCMC for Ising spin configurations for sev-

eral important classes of graphs, including two-dimensional lattices (e.g., [MO94a,MO94b,

LS12]), random graphs and graphs of bounded degree (e.g., [MS13]), the complete graph

(e.g., [LNNP14]) and trees (e.g., [BKMP05,MSW04]); we do not attempt to give a compre-

hensive summary of this line of work here.

In the anti-ferromagnetic regime (β > 1), deterministic approximation algorithms

based on correlation decay have been remarkably successful for graphs of bounded degree.

Specifically, for any fixed integer ∆ ≥ 3, techniques of Weitz [Wei06] give a deterministic

FPTAS for the anti-ferromagnetic Ising partition function on graphs of maximum degree ∆

throughout a region R∆ in the (β, λ) plane (corresponding to the regime of uniqueness of the

Gibbs measure on the ∆-regular tree) [SST14,LLY13]. A complementary result of Sly and

Sun [SS14b] (see also [GGŠ+14]) shows that the problem is NP-hard outsideR∆. In contrast,

no MCMC based algorithms are known to provide an FPRAS for the anti-ferromagnetic

Ising partition function throughout R∆. More recently, correlation decay techniques have

been extended to obtain deterministic approximation algorithms for the anti-ferromagnetic

Ising partition function on hypergraphs over a range of parameters [LYZ16], as well as to

several other problems not related to the Ising model. In the ferromagnetic setting, however,

for reasons mentioned earlier, correlation decay techniques have had more limited success:

Zhang, Liang and Bai [ZLB11] handle only the “high-temperature” regime of the Ising

model, while the recent results for ferromagnetic two-spin systems of Guo and Lu [GL16]
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do not apply to the case of the Ising model.

In a parallel line of work, Barvinok initiated the study of Taylor approximation

of the logarithm of the partition function, which led to quasipolynomial time approxima-

tion algorithms for a variety of counting problems [Bar15b, Bar15a, BS16a, BS16b]. More

recently, Patel and Regts [PR17a] showed that for several models that can be written as

induced subgraph sums, one can actually obtain an FPTAS from this approach. In par-

ticular, for problems such as counting independent sets with negative (or, more generally,

complex valued) activities on bounded degree graphs, they were able to match the range

of applicability of existing algorithms based on correlation decay, and were also able to

extend the approach to Tutte polynomials and edge-coloring models (also known as Holant

problems) where little is known about correlation decay.

The Lee-Yang program was initiated by Lee and Yang [YL52] in connection with

the analysis of phase transitions. By proving the famous Lee-Yang circle theorem for the

ferromagnetic Ising model [LY52], they were able to conclude that there can be at most one

phase transition for the model. Asano [Asa70] extended the Lee-Yang theorem to the Heisen-

berg model, and provided a simpler proof. Asano’s work was generalized further by Suzuki

and Fisher [SF71], while Sinclair and Srivastava [SS14a] studied the multiplicity of Lee-Yang

zeros. A complete characterization of Lee-Yang polynomials that are independent of the

“temperature” of the model was recently obtained by Ruelle [Rue10]. The study of Lee-Yang

type theorems for other statistical physics models has also generated beautiful connections

with other areas of mathematics. For example, Shearer [She85] and Scott and Sokal [SS04]

established the close connection between the location of the zeros of the independence poly-

nomial and the Lovász Local Lemma, while the study of the zeros of generalizations of

the matching polynomial was used in the recent celebrated work of Marcus, Spielman and

Srivastava on the existence of Ramanujan graphs [MSS15a]. Such Lee-Yang type theorems

are exemplars of the more general stability theory of polynomials [BB09a, BB09b], a field

of study that has had numerous recent applications to theoretical computer science and

combinatorics (see, e.g., [BBL09,MSS15a,MSS15b,AG15,AG17,SS14a,SV17]).
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Chapter 3

Correlation decay implies absence

of zeros

In this chapter, we study the connection between the notions of correlation decay

phase transition and analyticity phase transition. In particular, we will see how one can

study the latter more classical notion of phase transition using the former one. We will begin

by formulating a general paradigm in the context of the Ising model (without external field),

and will then apply this paradigm to two other notable examples: the antiferromagnetic

Ising model with external field and the hard-core model, where the correlation decay phase

transitions have been well studied. Our paradigm is robust: to establish the absence of

zeros in all three cases, we are able to simply lift the existing correlation decay analysis in

an identical fashion. In doing so, we establish a formal connection between the two notions

of phase transition.

3.1 Ising model

In this section, we consider Fisher zeros of the Ising model, and show that there are

no Fisher zeros in a complex neighborhood around the correlation decay interval. Recall that

given a graph G, an edge activity β and a vertex activity λ, the Ising partition function is

defined as ZG(β, λ) = β|E(S,S)|λ|S|. Formally, we view this partition function as a polynomial

in β for a fixed λ, and study the complex zeros in β. This is in contrast to the previous

chapter, where we viewed the Ising partition function as a polynomial in λ for a fixed β,

and focused on the complex zeros in terms of λ. As discussed in the last chapter, the study
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of complex zeros in λ was famously pioneered by Lee and Yang [LY52], and has given rise

to a well developed theory; in contrast, very little is known about the zeros in β, which

were first studied in the classical 1965 paper of Fisher [Fis65] and are thus known as “Fisher

zeros”.

More precisely, we fix λ = 1, and hence we will simply write ZG(β) := ZG(β, 1)

for the rest of the section. The correlation decay interval for the Ising model has been well

studied: let ∆ be the maximum degree, and let d = ∆−1; then the correlation decay interval

for β is the interval (∆−2
∆ , ∆

∆−2). When β lies in this interval, the Gibbs distribution of the

Ising model on a ∆-regular tree exhibits decay of long-range correlations. The main result of

this section will be Corollary 3.1.7, which says that there are no Fisher zeros in a complex

neighborhood of the correlation decay interval. This provides a formal link between the

“decay of correlations” and “analyticity of free energy density” views of phase transitions.

Last but not least, we remark that this zero-freeness result also implies the existence of

efficient approximation algorithms for the partition function ZG(β) via Barvinok’s paradigm

discussed in section 2.2. The main difference here is that, instead of a disk, the zero-free

region is now a strip containing the interval of interest; but one can apply the same analysis

as in section 2.2 after mapping the zero-free region to a disk. A more detailed discussion of

this is deferred to Corollary 3.4.1 and section 4.2.3.

We proceed to give an overview of our approach. Let G be any graph of maximum

degree ∆. Our starting point is a recursive criterion that guarantees that the partition

function ZG(β) 6= 0. For any non-isolated vertex v of G, let Z+
G,v(β) (respectively, Z−G,v(β))

be the contribution to ZG(β) from configurations with σ(v) = + (respectively, σ(v) = −),

so that ZG(β) = Z+
G,v(β)+Z−G,v(β). Define also the ratio RG,v(β) :=

Z+
G,v(β)

Z−G,v(β)
. Now note that

Z+
G,v(β) and Z−G,v(β) can be seen as Ising partition functions defined on the same graph G

with the vertex v pinned to the appropriate spin; i.e., they are partition functions defined

on a graph with one less unpinned vertex. Without loss of generality, we assume that

every pinned vertex has degree exactly one. 1 We will prove, inductively on the number

of unpinned vertices, that neither Z+
G,v(β) nor Z−G,v(β) vanishes. Under this inductive

hypothesis, the condition ZG(β) 6= 0 is equivalent to RG,v(β) 6= −1. As we will see, for

β ∈ R, RG,v(β) > 0. Thus it suffices to show that for complex β sufficiently close to the

1Suppose that a vertex v of degree k is pinned in a graph G, and consider the graph G′ obtained by
replacing v with k copies of itself, each pinned to the same spin and connected to exactly one of the original
neighbors of v. Then ZG(β) = ZG′(β) for all β.
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correlation decay interval on the real line, RG,v(β) ≈ RG,v(<β).

Now we are ready to give the first technical ingredient: a formal recurrence, due

to Weitz [Wei06], for computing ratios such as RG,v(β) in two-state spin systems. We start

with some notation and definitions. For a vertex u in a graph G, if u has s+ neighbors

pinned to the spin +, and s− neighbors pinned to the spin −, then we say that u has

(s− − s+) signed pinned neighbors.

Definition 3.1.1 (The graphs Gi). Given a graph G and an unpinned vertex u in G, let

v1, · · · , vk be the unpinned neighbors of u. We define Gi (the vertex u will be understood

from the context) to be the graph obtained from G as follows:

• first, replace vertex u with u1, · · · , uk, and connect u1 to v1, u2 to v2, and so on;

• next, pin vertices u1, · · · , ui−1 to spin +, and vertices ui+1, · · · , uk to spin −;

• finally, remove vertex ui.

Note that the graph Gi has one fewer unpinned vertex than G. Moreover, the number of

unpinned neighbors of vi in Gi is at most d = ∆− 1.

Lemma 3.1.2. Let ω be a formal variable. Given a graph G and an unpinned vertex u, let

k be the number of unpinned neighbors of u, and s be the number of signed pinned neighbors

of u. Denoting hω(x) := ω+x
ωx+1 , we have

RG,u(ω) = ωs
k∏
i=1

hω(RGi,vi(ω)) .

Remark 7. Note that when a numerical value β ∈ C is substituted for ω in the above

formal equalities, they remain valid numerical equalities as long as βxi + 1 6= 0 for any x

appearing in the computation, and Z−G,v(β) 6= 0.

Moreover, as the number of unpinned neighbors of vi in Gi is at most d = ∆− 1,

the tree recurrence will be applied with k ≤ d except at the root.

Proof. Let v1, v2, · · · , vk be the unpinned neighbors of u, and vk+1, · · · , vdegG(u) be its pinned

neighbors. For 0 ≤ i ≤ degG(u), let Hi be the graph obtained from G as follows:

• replace vertex u with u1, · · · , udegG(u), and connect u1 to v1, u2 to v2, and so on;
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• pin vertices u1, · · · , ui to spin +, and vertices ui+1, · · · , udegG(u) to spin −.

Note that Hi is the same as Gi, except that the last step of the construction of Gi is skipped,

i.e, the vertex ui is not removed, and, further, ui is pinned to spin +. We can now write

RG,u(ω) =
Z+
G,u(ω)

Z−G,u(ω)
=
ZHdegG(u)

(ω)

ZH0(ω)
=

degG(u)∏
i=1

ZHi(ω)

ZHi−1(ω)
= ωs ·

k∏
i=1

ZHi(ω)

ZHi−1(ω)
.

We observe that

ZHi(ω) = Z+
Gi,vi

+ ω · Z−Gi,vi ,

ZHi−1(ω) = ω · Z+
Gi,vi

+ Z−Gi,vi .

Therefore we have

RG,u(ω) = ωs ·
k∏
i=1

Z+
Gi,vi

+ ω · Z−Gi,vi
ω · Z+

Gi,vi
+ Z−Gi,vi

= ωs ·
k∏
i=1

Z+
Gi,vi

Z−Gi,vi
+ ω

ω · Z
+
Gi,vi

Z−Gi,vi
+ 1

= ωs
k∏
i=1

hω(RGi,vi(ω)) .

This completes the proof.

Given Lemma 3.1.2, we consider the following recurrence relation on the ratios:

Fβ,k,s(x) := βs
k∏
i=1

hβ(xi), (3.1)

where as before hβ(x) := β+x
βx+1 . This recurrence has been studied extensively in the lit-

erature on the Ising model on trees. It has also been found useful to re-parameterize the

recurrence in terms of logarithms of likelihood ratios as follows (see, e.g., [Lyo89]). Let

ϕ(x) := log x and define

Fϕβ,k,s(x) :=
(
ϕ ◦ Fβ,k,s ◦ ϕ−1

)
(x) = s log β +

k∑
i=1

log hβ(exi). (3.2)

One then has the following “step-wise” version of correlation decay [Lyo89,ZLB11].

Proposition 3.1.3. Fix a degree ∆ = d+1 ≥ 3 and integers k ≥ 0 and s. If ∆−2
∆ < β < ∆

∆−2

then there exists an η > 0 (depending upon β and d) such that ‖∇Fϕβ,k,s(x)‖1 ≤ k
d (1 − η)

for every x ∈ Rk.
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Proof. By direct calculation, one has

‖∇Fϕβ,k,s(x)‖1 =
k∑
i=1

∣∣1− β2
∣∣

β2 + 1 + β(exi + e−xi)
.

By the AM-GM inequality, ex+e−x ≥ 2 for every real x, and the right hand side is therefore

at most k × |1−β|1+β . Now the condition on β implies that |1−β|1+β ≤
1−η
d for some fixed η > 0.

Therefore, we have ‖∇Fϕβ,k,s(x)‖1 ≤ k × |1−β|1+β ≤ k
d (1− η).

Next we give a bound on RG,u(β) for real-valued β. For any integers k ≥ 0 and

s, and a positive real β, we have βk+|s| ≤ Fβ,k,s(x) ≤ 1
βk+|s| when β ≤ 1, and 1

βk+|s| ≤
Fβ,k,s(x) ≤ βk+|s| for β ≥ 1, for all non-negative x ∈ Rk+. Taking the logarithm of these

bounds motivates the definition of the intervals I0(β, d) as follows:

I0 = I0(β, d) := [−d |log β| , d |log β| ] . (3.3)

Recalling Lemma 3.1.2, we see that the ratios RG,u(β) can be obtained by recur-

sively applying the recurrence Fβ,k,s(x). Therefore, for β ∈ R, any graph G and unpinned

vertex u, we have logRG,u(β) ∈ I0(β, d). Next we state a corollary of Proposition 3.1.3 in

the complex plane.

Corollary 3.1.4. Fix a degree ∆ = d+ 1 ≥ 3 and integers k ≥ 0 and s. If ∆−2
∆ < β < ∆

∆−2

then there exist positive constants η, ε, δ (depending upon β and d) such that the following

is true. Let D := D(β, d) be the set of points within distance ε of I0(β, d) in C. Then

‖∇Fϕβ,k,s(x)‖1 ≤ k
d (1 − η/2) for every x ∈ Dk. Moreover, there is a finite constant M

(depending upon β and d) such that Fϕβ,k,s is M -Lipschitz in a complex neighborhood around

β, i.e.,

sup
x∈Dk,β′∈C:|β′−β|<δ

∣∣∣Fϕβ,k,s(x)− Fϕβ′,k,s(x)
∣∣∣ < M

∣∣β − β′∣∣ .
Proof. Observe that ‖∇Fϕβ,k,s(x)‖1 =

∑k
i=1

|1−β2|
β2+1+β(exi+e−xi )

is a continuous function in xi

for every i. Since it is uniformly upper bounded by k
d (1 − η), for small enough ε, the

expression can be bounded by k
d (1− η/2) for all x ∈ Dk.

Finally, the existence of M follows from the analyticity of Fϕβ,k,s around the re-

spective point.

In order to prove, inductively, that RG,u(β) ≈ RG,u(<β), we use a consequence of

the mean value theorem for complex functions, tailored to our needs.
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Lemma 3.1.5. Let F (x) be a holomorphic function on a complex poly-region Dk. For any

x,x′ ∈ Dk, we have ∣∣F (x)− F (x′)
∣∣ ≤ sup

ξ∈Dk
‖∇F (ξ)‖1 · ‖x− x′‖∞.

Proof. Consider g(t) := F (x+ t(x′ − x)). Observe that

g′(t) = ∇F
(
x+ t(x′ − x)

)ᵀ (
x− x′) .

Thus, for any x,x′ ∈ Dk, we have∣∣F (x)− F (x′)
∣∣ = |g(1)− g(0)| =

∣∣∣∣∫ 1

0
g′(t)dt

∣∣∣∣
≤ sup

t∈[0,1]

∣∣g′(t)∣∣ ≤ sup
ξ∈Dk

‖∇F (ξ)‖1 · ‖x− x′‖∞.

Now we are ready to spell out the induction on the number of unpinned vertices.

Theorem 3.1.6. Fix a degree ∆ = d+ 1 ≥ 3, and let β ∈ (∆−2
∆ , ∆

∆−2). There exist positive

constants δ, ε (both depending on β and ∆) such that, for any graph G of maximum degree

∆, any unpinned vertex u in G with k unpinned neighbors, and any β′ with |β′ − β| < δ,

the following are true:

1.
∣∣∣Z+

G,u(β′)
∣∣∣ > 0,

∣∣∣Z−G,u(β′)
∣∣∣ > 0.

2. |ϕ(RG,u(β))− ϕ(RG,u(β′))| < ε ·max
{
k
d , 1
}

.

We will also refer to the two items above as the “induction hypothesis”. We remark

that β ∈ (∆−2
∆ , ∆

∆−2) is only needed so that we may appeal to correlation decay (in the form

of Corollary 3.1.4).

Proof. We use induction on the number of unpinned vertices in G. For the base case, if

u is the only unpinned vertex in G, with s+ neighbors pinned to spin + and s− neigh-

bors pinned to spin −, then Z+
G,u(β′) = (β′)s

−
, Z−G,u(β′) = (β′)s

+
, and ϕ(RG,u(β)) =

s log β, ϕ(RG,u(β′)) = s log β′. Thus it suffices to choose δ < ε
6d (where ε is to be de-

termined later), and the base case is satisfied. From now on, we consider a graph G with

at least two unpinned vertices.
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For the first item, let G′ be the graph where we pin vertex u to spin +. Note

that by definition, Z+
G,u(β′) = ZG′(β

′). Let v be any unpinned vertex in G′. Since G′ has

one less unpinned vertex than G, by the induction hypothesis we have
∣∣∣Z−G′,v(β′)∣∣∣ > 0, and∣∣ϕ(RG′,v(β)

)
− ϕ

(
RG′,v(β

′)
)∣∣ < ε. Recalling from eq. (3.3) that the range of RG′,v(β) is

such that ϕ is analytic, we see that
∣∣RG′,v(β)−RG′,v(β′)

∣∣ = O(ε). Next, we write∣∣ZG′(β′)∣∣ =
∣∣∣Z+

G′,v(β
′) + Z−G′,v(β

′)
∣∣∣ =
∣∣∣Z−G′,v(β′)∣∣∣ · ∣∣1 +RG′,v(β

′)
∣∣

=
∣∣∣Z−G′,v(β′)∣∣∣ · ∣∣1 +RG′,v(β) + ξ

∣∣ ,
for some ξ ∈ C with |ξ| = O(ε). Thus, for sufficiently small ε, we have <

(
RG′,v(β

′)
)

=

<
(
RG′,v(β) + ξ

)
, which is certainly at least −1

2 since RG′,v(β) > 0 as β is real. This means

that
∣∣1 +RG′,v(β) + ξ

∣∣ ≥ 1/2, which implies that∣∣∣Z+
G,u(β′)

∣∣∣ =
∣∣ZG′(β′)∣∣ ≥ 0.5 ·

∣∣∣Z−G′,v(β′)∣∣∣ > 0.

An identical argument also proves that
∣∣∣Z−G,u(β′)

∣∣∣ > 0, completing the verification of item

1 of the induction hypothesis.

For the second item, let v1, · · · , vk be the unpinned neighbors of u. We denote

A(β) := ϕ(RG,u(β)), Bi(β) := ϕ(RGi,vi(β)), B(β) := {B1(β), B2(β), · · · , Bk(β)}, and

Hβ(x1, x2, · · · , xk) := Fϕβ,k,s(x1, x2, · · · , xk). Then by Lemma 3.1.2 we have

A(β) = Hβ(B(β)) ,

A(β′) = Hβ′
(
B(β′)

)
.

Let η, ε, δ,M be the constants (depending on β and d) whose existence is guaran-

teed by Corollary 3.1.4. By the triangle inequality, we have∣∣A(β)−A(β′)
∣∣ ≤ ∣∣Hβ(B(β))−Hβ

(
B(β′)

)∣∣+
∣∣Hβ

(
B(β′)

)
−Hβ′

(
B(β′)

)∣∣
≤ sup ‖∇Fϕβ,k,s‖1 ·max

i

∣∣Bi(β)−Bi(β′)
∣∣+M

∣∣β − β′∣∣
≤(1− η/2)

k

d
ε+Mδ,

where the second line follows from Lemma 3.1.5, and the third line from Corollary 3.1.4

and the induction hypothesis applied to Gi.

Finally, replacing δ by min
{
δ, εη2M

}
ensures that this last expression is bounded by

max
{
k
d , 1
}
ε, thus concluding the proof of the second item in the induction hypothesis.
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The main result of this section now follows immediately, by noting that the proof

of the first item in the induction hypothesis remains valid even if u has ∆ = d+ 1 unpinned

neighbors, as it only required the analyticity of Fϕβ,k,s, and that throughout the rest of the

induction, vi has at most d = ∆− 1 unpinned neighbors in Gi.

Corollary 3.1.7. Fix a degree ∆ = d+ 1 ≥ 3, and let β ∈ (∆−2
∆ , ∆

∆−2). There exist positive

constants δ, ε (both depending on β and ∆) such that, for any graph G of maximum degree

∆, and any β′ with |β′ − β| < δ, we have ZG(β′) 6= 0.

3.2 Antiferromagnetic Ising model

In this section, we consider the antiferromagnetic Ising model. For any β < 1,

there is a critical activity λc(β,∆) such that the Gibbs measure on the ∆-regular tree is

unique if and only if |log λ| > log λc(β,∆) (see, e.g., [Geo11]). We will refer to this as

the correlation decay region for the antiferromagnetic Ising model. Fix any β, λ in the

correlation decay region. We will show that there exists δ > 0 such that for any β′ with

|β′ − β| < δ, the partition function ZG(β′, λ) 6= 0.

As before, for a fixed vertex v, we write ZG(β, λ) = Z+
G,v(β, λ)+Z−G,v(β, λ), and let

RG,v(β, λ) :=
Z+
G(β,λ)

Z−G (β,λ)
. Then, there is a formal recurrence relation analogous to Lemma 3.1.2

as follows.

Lemma 3.2.1. Let ωβ, ωλ be formal variables. Given a graph G and an unpinned vertex

u, let k be the number of unpinned neighbors of u, and s be the number of signed pinned

neighbors of u. Denoting hω(x) := ω+x
ωx+1 , we have

RG,u(ωβ, ωλ) = λωs
k∏
i=1

hω(RGi,vi(ωβ, ωλ)) ,

where the graphs Gi are defined as in Definition 3.1.1.

Given integers k and s, let Fβ,λ(x) := λβs
∏k
i=1 hβ(xi). This recurrence has been

studied before in the literature [LLY12,SST14]. It has been found useful to reparameterize

Fβ,λ with a “potential function” ϕ as follows: Fϕβ,λ := ϕ ◦ Fβ,λ ◦ ϕ−1. In [SST14], ϕ(x) :=

log x+D
1−x+D was chosen, where D > 0 is a constant depending on β and d. (Other choice

of ϕ can be found in, e.g., [LLY12, LLY13].) For this choice of ϕ, the following step-wise

correlation decay in the 1-norm is established:
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Proposition 3.2.2. Fix a degree ∆ = d + 1 ≥ 3 and integers k ≤ d and s. If (β, λ) is in

the correlation decay region, then there exists an η > 0 (depending upon β, λ and d) such

that ‖∇Fϕβ,λ(x)‖1 < 1− η for every x ∈ Rk.

We also note that an analog of eq. (3.3) gives the bound λ
βd
≤ RG,u(β, λ) ≤ λβd.

Thus we define

I0(β, λ, d) :=

[
ϕ

(
λ

βd

)
, ϕ
(
λβd

)]
. (3.4)

Since ϕ is analytic, it has finite and continuous derivative. Thus the following corollary is

immediate.

Corollary 3.2.3. Fix a degree ∆ = d+ 1 ≥ 3 and integers k ≤ d and s. If (β, λ) is in the

correlation decay region, then there exist positive constants η, ε, δ (depending upon β, λ and

d) such that the following is true. Let D := D(β, λ, d) be the set of points within distance

ε of I0(β, λ, d) in C. Then ‖∇Fϕβ,λ(x)‖1 < 1− η/2 for every x ∈ Dk. Moreover, there is a

finite constant M (depending upon β, λ and d) such that Fϕβ,λ is M -Lipschitz in a complex

neighborhood around β, i.e.,

sup
x∈Dk,β′∈C:|β′−β|<δ

∣∣∣Fϕβ,λ(x)− Fϕβ,λ(x)
∣∣∣ < M

∣∣β − β′∣∣ .

Finally, we see that given Lemma 3.2.1 and Corollary 3.2.3, an identical argument

to that in the proof of Theorem 3.1.6 proves the following:

Theorem 3.2.4. Fix a degree ∆ = d + 1 ≥ 3, and let (β, λ) be in the correlation decay

region. There exist positive constants δ, ε (both depending on β, λ and ∆) such that, for

any graph G of maximum degree ∆, any unpinned vertex u in G with at most d unpinned

neighbors, and any β′ with |β′ − β| < δ, the following are true:

1.
∣∣∣Z+

G,u(β′, λ)
∣∣∣ > 0,

∣∣∣Z−G,u(β′, λ)
∣∣∣ > 0.

2. |ϕ(RG,u(β, λ))− ϕ(RG,u(β′, λ))| < ε.

The main result of this section now follows in an identical fashion to Corollary 3.1.7.

Corollary 3.2.5. Fix a degree ∆ = d + 1 ≥ 3, and let (β, λ) be in the correlation decay

interval. There exist positive constants δ, ε (both depending on β, λ and ∆) such that, for

any graph G of maximum degree ∆, and any β′ with |β′ − β| < δ, we have ZG(β′, λ) 6= 0.



CHAPTER 3. CORRELATION DECAY IMPLIES ABSENCE OF ZEROS 51

3.3 Hard-core model

In this section, we consider the independence polynomial, which is the partition

function of the hard-core model. Formally, given a graph G = (V,E) and a vertex activity

λ, we let I(G) be the set of independent sets in G. Then the independence polynomial is

given by

ZG(λ) =
∑

I∈I(G)

λ|I|.

The hardcore model is a simple model of the “excluded volume” phenomenon: vertices in

the independent set I correspond to particles, each of which prevents neighboring sites from

being occupied The parameter λ specifies the density of particles in the system.

In two seminal papers, Weitz [Wei06] and Sly [Sly10] (see also [GGŠ+14]) showed

that there is a critical activity λc(∆) such that when λ < λc(∆), the partition function

can be approximated efficiently for graphs of maximum degree ∆, while for λ > λc(∆)

close to the threshold, it becomes NP-hard to approximate the partition function. Sly

and Sun [SS14b] (see also [GŠV15]) later extended the NP-hardness to the entire range of

λ > λc(∆). We will refer to λ < λc(∆) as the correlation decay interval for the hard-core

model. In this section, we view ZG(λ) as a polynomial in λ, and study the complex zeros

in λ. The main result of this section will again be that there are no zeros in a complex

neighborhood of the correlation decay interval (0, λc(∆)).

In similar fashion to the Ising model, for a fixed vertex v, we write ZG(λ) =

ZG\v(λ) + λ · ZG\NG[v](λ), and let RG,v(λ) :=
ZG\NG[v](λ)

ZG\v(λ) . It is worth noting that ZG\v(λ)

is the same as pinning v to be “unoccupied” (not in the independent set) in G, while

ZG\NG[v](λ) is the same as pinning v to be “occupied” (in the independent set) in G. By

analogy with Lemmas 3.2.1 and 3.1.2, we have the following formal recurrence relation for

RG,u [Wei06], which is easily verified.

Lemma 3.3.1. Let ω be a formal variable. Given a graph G and an unpinned vertex u, let

k be the number of unpinned neighbors of u. We then have

RG,u(ω) = λ

k∏
i=1

1

1 +RGi,vi(ω)
,

where the graphs Gi are defined analogous to Definition 3.1.1: specifically, Gi := G \
{u, v1, · · · , vi−1}.
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Given integers k and s, let Fλ(x) := λβs
∏k
i=1

1
1+xi

. This recurrence has been

studied before in the literature. As with the Ising model examples above, it has been found

useful to reparameterize Fλ with a “potential function” ϕ as follows: Fϕλ := ϕ ◦ Fλ ◦ ϕ−1.

In [LLY13], ϕ(x) = sinh−1(
√
x) was chosen, leading to the following step-wise correlation

decay in the 1-norm:

Proposition 3.3.2. Fix a degree ∆ = d + 1 ≥ 3 and integers k ≤ d. If λ is in the

correlation decay interval, then there exists an η > 0 (depending upon λ and d) such that

‖∇Fϕλ (x)‖1 < 1− η for every x ∈ Rk.

We also note that an analog of eq. (3.3) gives the bound 0 ≤ RG,u(β, λ) ≤ λ. Thus

we define

I0(λ, d) := [ϕ(0) , ϕ(λ) ] . (3.5)

Since ϕ is analytic, it has finite and continuous derivative. Thus the following corollary is

immediate.

Corollary 3.3.3. Fix a degree ∆ = d + 1 ≥ 3 and integers k ≤ d and s. If λ is in the

correlation decay interval, then there exist positive constants η, ε, δ (depending on λ and d)

such that the following is true. Let D := D(λ, d) be the set of points within distance ε of

I0(λ, d) in C. Then, ‖∇Fϕλ (x)‖1 < 1 − η/2 for every x ∈ Dk. Moreover, there is a finite

constant M (depending on λ and d) such that Fϕλ is M -Lipschitz in a complex neighborhood

around λ:

sup
x∈Dk,λ′∈C:|λ′−λ|<δ

∣∣Fϕλ (x)− Fϕλ (x)
∣∣ < M

∣∣λ− λ′∣∣

Finally, we see that given Lemma 3.3.1 and Corollary 3.3.3, an identical argument

to that in the proof of Theorem 3.1.6 proves the following:

Theorem 3.3.4. Fix a degree ∆ = d+ 1 ≥ 3, and let λ be in the correlation decay interval.

There exist positive constants δ, ε (both depending on λ and ∆) such that, for any graph

G of maximum degree ∆, any unpinned vertex u in G, and any λ′ with |λ′ − λ| < δ, the

following are true:

1. |ZG(λ′)| > 0.

2. |ϕ(RG,u(λ′))− ϕ(RG,u(λ))| < ε.
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The main result of this section now follows in an identical fashion to Corollary 3.1.7.

Corollary 3.3.5. Fix a degree ∆ = d+1 ≥ 3, and let λ be in the correlation decay interval.

There exist positive constants δ, ε (both depending on λ and ∆) such that, for any graph G

of maximum degree ∆, and any λ′ with |λ′ − λ| < δ, we have ZG(λ′) 6= 0.

3.4 Related work and discussion

The main highlight of this chapter is to go beyond the well studied Lee-Yang zeros

for the Ising model, and obtain new results on Fisher zeros. While there are some results

in the literature on Fisher zeros in the case of specific regular lattices (see, e.g., [LW01]

and [KHK08]), to the best of our knowledge, the previous best general result on Fisher

zeros appears in the work of Barvinok [Bar17] (see also Barvinok and Soberón [BS16a]),

who showed that ZG(β) is non-zero if |β − 1| < c/∆, where ∆ is the maximum degree of

G and c can be chosen to be 0.34 (and as large as 1.12 if ∆ is large enough). While this

result provides a disk around 1 in which there are no Fisher zeros, it cannot guarantee the

absence of Fisher zeros in a neighborhood of the correlation decay region B (which would

require at least that c ≥ 2 − o∆(1)). Our Corollary 3.1.7 therefore strengthens this result

to a neighborhood of the entire correlation decay region B.2

Our main theorem on Fisher zeros can also be combined with the techniques of

Barvinok [Bar17] and Patel and Regts [PR17a] to give a new deterministic polynomial

time approximation algorithm for the partition function of the ferromagnetic Ising model

with zero field on graphs of degree at most ∆ when β ∈ (∆−2
∆ , ∆

∆−2). In particular, com-

bining Corollary 3.1.7 with [Bar17, Lemmas 2.2.1 and 2.2.3] (see also the discussion at the

bottom of page 27 therein) and the proof of Theorem 6.1 of [PR17a], we obtain the following

corollary:

Corollary 3.4.1. Fix an integer ∆ ≥ 3 and δ1 > 0. There exist positive constants δ > 0

and c such that for any complex β with <(β) ∈
[

∆−2
∆ + δ1,

∆
∆−2 − δ1

]
and |=(β)| ≤ δ, the

following is true. There exists an algorithm which, on input a graph G of degree at most

2Technically the results are incomparable in the sense that, while our results cover a much larger portion
of the real line than that in [BS16a], the diameter of the disk centered around 1 in the region of [BS16a]
may be larger than the radius guaranteed by our result.
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∆ on n vertices, and an accuracy parameter ε > 0, runs in time O(n/ε)c and outputs Ẑ

satisfying
∣∣Ẑ − ZG(β)

∣∣ ≤ ε |ZG(β)|.

For real β in the same range, a deterministic algorithm with the above proper-

ties, based on correlation decay, was already analyzed in [ZLB11]. However, our extension

to complex values of the parameter is of independent algorithmic interest in light of the

fact that algorithms for approximating the Ising partition function at complex values of

the parameters have applications to the classical simulation of restricted models of quan-

tum computation [MB18]. Analogous algorithmic results to that in Corollary 3.4.1 for the

antiferromagnetic Ising model and the hard-core model follow in similar fashion from Corol-

lary 3.2.5 and Corollary 3.3.5, respectively.

In contrast to most other recent applications of Barvinok’s method (e.g., [PR17a,

BS16b, BS16a, Bar15b, LSS19c]), where the required results on the location of the roots of

the associated partition function are derived without reference to correlation decay, the

algorithmic version of correlation decay is crucial to our proof. Indeed, implicit in our

proof is an analysis of Weitz’s celebrated correlation decay algorithm [Wei06], which was

proposed originally for the independent set, or hard-core model. For the “zero field” Ising

model, Weitz’s algorithm was first analyzed by Zhang, Liang and Bai [ZLB11]; for the

antiferromagnetic Ising model, it was first analyzed in [SST14, LLY12]; and for the hard-

core model, the first “step-wise correlation decay” analysis can be found in [LLY13].3 We are

able to lift all these existing analyses and show that, in each case, there is a zero-free region

of constant width that contains the entire correlation decay interval. Thus, as mentioned

earlier, our work shows that Weitz’s algorithm can be viewed as a bridge between the “decay

of correlations” and “analyticity of free energy density” views of phase transitions.

We note that our work is close in spirit to recent work of Peters and Regts [PR17b]

(see also [BC18]), who employ correlation decay in the hard-core model to prove stability

results for the hard-core partition function. However, we note that the arguments of Peters

and Regts crucially require an ad-hoc choice of “potential function” in the correlation decay

analysis, so that certain geometric properties are satisfied. As a result, they were not able

to exploit the existing correlation decay analysis for the hard-core model. In contrast, in our

approach described in section 3.3, we can work with any correlation decay analysis based

on the tree recurrence. We mention also that, in more recent work posted after a preprint

3 [LLY13] worked with the more general two-state antiferromagnetic spin system, which includes the
hard-core model as a special case.
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of the present results appeared, Peters and Regts [PR18] also applied a combination of

techniques from complex dynamics and correlation decay to study the location (on the unit

circle) of Lee-Yang zeros of bounded degree graphs.
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Chapter 4

Graph colorings and Fisher zeros

of the Potts model

In the last chapter we saw that one can prove absence of zeros provided that a

certain tree recurrence has the correlation decay property. However, there are other forms

of correlation decay results, one notable example of which is the “strong spatial mixing”

result for list-colorings by Gamarnik, Katz and Misra [GKM15]. Perhaps more interestingly,

the argument in [GKM15] is not algorithmic. In the following, we will show that with a

more sophisticated argument, the strong spatial mixing arguments of [GKM15] can also be

exploited to prove absence of zeros. As a result, we are able to obtain efficient approximation

algorithms in the same regime, which go well beyond the range of applicability of all previous

deterministic algorithms for coloring.

4.1 Statements of results and technical overview

Counting colorings of a bounded degree graph is a benchmark problem in approx-

imate counting, due both to its importance in combinatorics and statistical physics, as

well as to the fact that it has repeatedly challenged existing algorithmic techniques and

stimulated the development of new ones.

Given a finite graph G = (V,E) of maximum degree ∆, and a positive integer q,

the goal is to count the number of (proper) vertex colorings of G with q colors. It is well

known [Bro41] that a greedy coloring exists if q ≥ ∆ + 1. While counting colorings exactly

is #P-complete, a long-standing conjecture asserts that approximately counting colorings
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is possible in polynomial time provided q ≥ ∆ + 1. It is known that when q ≤ ∆, even

approximate counting is NP-hard [GŠV15].

This question has led to numerous algorithmic developments over the past 25

years. The first approach was via Markov chain Monte Carlo (MCMC), based on the fact

that approximate counting can be reduced to sampling a coloring (almost) uniformly at

random. Sampling can be achieved by simulating a natural local Markov chain (or Glauber

dynamics) that randomly flips colors on vertices: provided the chain is rapidly mixing, this

leads to an efficient algorithm (a fully polynomial randomized approximation scheme, or

FPRAS ).

Jerrum’s 1995 result [Jer95] that the Glauber dynamics is rapidly mixing for q ≥
2∆ + 1 gave the first non-trivial randomized approximation algorithm for colorings and led

to a plethora of follow-up work on MCMC (see, e.g., [DF03,DFHV13,FV06,GMP04,Hay03,

HV03, HV05, Mol04, Vig00] and [FV08] for a survey), focusing on reducing the constant 2

in front of ∆. The best constant known for general graphs remains essentially 11
6 , obtained

by Vigoda [Vig00] using a more sophisticated Markov chain, though this was very recently

reduced to 11
6 − ε for a very small ε by Chen et al. [CDM+19]. The constant can be

substantially improved if additional restrictions are placed on the graph: e.g., Dyer et

al. [DFHV13] achieve roughly q ≥ 1.49∆ provided the girth is at least 6 and the degree is

a large enough constant, while Hayes and Vigoda improve this to q ≥ (1 + ε)∆ for girth at

least 11 and degree ∆ = Ω(log n), where n is the number of vertices.

A significant recent development in approximate counting is the emergence of de-

terministic approximation algorithms that in some cases match, or even improve upon,

the best known MCMC algorithms.1 These algorithms have made use of one of two main

techniques: decay of correlations, which exploits decreasing influence of the spins (colors)

on distant vertices on the spin at a given vertex; and polynomial interpolation, which uses

the absence of zeros of the partition function in a suitable region of the complex plane.

Early examples of the decay of correlations approach include [Wei06,BG08,BGK+07], while

for early examples of the polynomial interpolation method, we refer to the monograph of

Barvinok [Bar17] (see also, e.g., [BR17, HPR19, PR17a, JKP19, GLLZ19, LSS19c, EM18]

1In this case, the notion of an FPRAS is replaced by that of a fully polynomial time approximation scheme,
or FPTAS. An FPTAS for q-colorings of graphs of maximum degree at most ∆ is an algorithm that given
the graph G and an error parameter δ on the input, produces a (1± δ)-factor multiplicative approximation
to the number of q-colorings of G in time poly(|G|, 1/δ) (the degree of the polynomial is allowed to depend
upon the constants q and ∆).
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for more recent examples). Unfortunately, however, in the case of colorings on general

bounded degree graphs, these techniques have so far lagged well behind the MCMC al-

gorithms mentioned above. One obstacle to getting correlation decay to work is the lack

of a higher-dimensional analog of Weitz’s beautiful algorithmic framework [Wei06], which

allows correlation decay to be fully exploited via strong spatial mixing in the case of spin

systems with just two spins (as opposed to the q colors present in coloring). For polynomial

interpolation, the obstacle has been a lack of precise information about the location of the

zeros of associated partition functions (see below for a definition of the partition function

in the context of colorings).

So far, the best algorithmic condition for colorings obtained via correlation decay

is q ≥ 2.58∆ + 1, due to Lu and Yin [LY13], and this remains the best available condition

for any deterministic algorithm. This improved on an earlier bound of roughly q ≥ 2.78∆

(proved only for triangle-free graphs), due to Gamarnik and Katz [GK12]. For the special

case ∆ = 3, Lu et al. [LYZZ17] give a correlation decay algorithm for counting 4-colorings.

Furthermore, Gamarnik, Katz and Misra [GKM15] establish the related property of “strong

spatial mixing” under the weaker condition q ≥ α∆ + β for any constant α > α?, where

α? ≈ 1.7633 is the unique solution to xe−1/x = 1 and β is a constant depending on α, and

under the assumption that G is triangle-free (see also [GŠ11,GMP04] for similar results on

restricted classes of graphs). However, as discussed in [GKM15], this strong spatial mixing

result unfortunately does not lead to a deterministic algorithm.2

The newer technique of polynomial interpolation, pioneered by Barvinok [Bar17],

has also recently been brought to bear on counting colorings. In a recent paper, Bencs et

al. [BDPR18] use this technique to derive a FPTAS for counting colorings provided q ≥
e∆+1. This result is of independent interest because it uses a different algorithmic approach,

and because it establishes a new zero-free region for the associated partition function in the

complex plane (see below), but it is weaker than those obtained via correlation decay.

In this chapter, we push the polynomial interpolation method further and obtain

a FPTAS for counting colorings under the condition q ≥ 2∆:

Theorem 4.1.1. Fix positive integers q and ∆ such that q ≥ 2∆. Then there exists a fully

2The strong spatial mixing condition does imply fast mixing of the Glauber dynamics, and hence an
FPRAS, but only when the graph family being considered is “amenable”, i.e., if the size of the `-neighborhood
of any vertex does not grow exponentially in `. This restriction is satisfied by regular lattices, but fails, e.g.,
for random regular graphs.
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polynomial time deterministic approximation scheme (FPTAS) for counting q-colorings in

any graph of maximum degree ∆.

This is the first deterministic algorithm (of any kind) that for all ∆ matches

the “natural” bound for MCMC, first obtained by Jerrum [Jer95]. Indeed, q ≥ 2∆ +

1 remains the best bound known for rapid mixing of the basic Glauber dynamics that

does not require either additional assumptions on the graph or a spectral comparison with

another Markov chain: all the improvements mentioned above require either lower bounds

on the girth and/or maximum degree, or (in the case of Vigoda’s result [Vig00]) analysis

of a more sophisticated Markov chain. This is for good reason, since the bound q ≥
2∆ + 1 coincides with the closely related Dobrushin uniqueness condition from statistical

physics [SS97], which in turn is closely related [Wei05] to the path coupling method of Bubley

and Dyer [BD97] that provides the simplest currently known proof of the q ≥ 2∆+1 bound

for the Glauber dynamics.

We therefore view our result as a promising starting point for deterministic coloring

algorithms to finally compete with their randomized counterparts. In fact, as discussed

later in section 4.1.2, our technique is capable of directly harnessing strong spatial mixing

arguments used in the analysis of Markov chains for certain classes of graphs. As an example,

we can exploit such an argument of Gamarnik, Katz and Misra [GKM15] to improve the

bound on q in Theorem 4.1.1 when the graph is triangle-free, for all but small values of ∆.

(Recall that α? ≈ 1.7633 is the unique positive solution of the equation xe−1/x = 1.)

Theorem 4.1.2. For every α > α?, there exists a β = β(α) such that the following is

true. For all integers q and ∆ such that q ≥ α∆ + β, there exists a fully polynomial time

deterministic approximation scheme (FPTAS) for counting q-colorings in any triangle-free

graph of maximum degree ∆.

We mention also that our technique applies without further effort to the more

general setting of list colorings, where each vertex has a list of allowed colors of size q,

under the same conditions as above on q. Indeed, our proofs are written to handle this

more general situation.

In the next subsection we describe our algorithm in more detail.
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4.1.1 Our approach

Let G = (V,E) be an n-vertex graph of maximum degree ∆, and [q] := {1, . . . , q}
a set of colors. Define the polynomial

ZG(w) :=
∑

σ:V→[q]

w|{{u,v}∈E :σ(u)=σ(v)}|. (4.1)

Here σ ranges over arbitrary (not necessarily proper) assignments of colors to vertices, and

each such coloring has a weight wm(σ), where m(σ) is the number of monochromatic edges

in σ. Note that the number of proper q-colorings of G is just ZG(0).

The polynomial ZG(w) is the partition function of the Potts model of statistical

physics, and implicitly defines a probability distribution on colorings σ according to their

weights in (4.1). The parameter w measures the strength of nearest-neighbor interactions.

The value w = 1 corresponds to the trivial setting where there is no constraint on the

colors of neighboring vertices, while w = 0 imposes the hard constraint that no neighboring

vertices receive the same color. For intermediate values w ∈ [0, 1], neighbors with the same

color are penalized by a factor of w. Theorems 4.1.1 and 4.1.2 are in fact special cases of

the following more general theorem.

Theorem 4.1.3. Suppose that the hypotheses of either Theorem 4.1.1 or Theorem 4.1.2 are

satisfied, and fix w ∈ [0, 1]. Then there exists an FPTAS for the partition function ZG(w).

Theorem 4.1.3 of course subsumes Theorems 4.1.1 and 4.1.2, but the extension to

other values of w is of independent interest as the computation of partition functions is a

very active area of study in statistical physics and combinatorics.

To prove Theorem 4.1.3, we view ZG(w) as a polynomial in the complex variable w

and identify a region in the complex plane in which ZG(w) is guaranteed to have no zeros.

Specifically, we will show that this holds for the open connected set D∆ ⊂ C obtained by

augmenting the real interval [0, 1] with a ball of radius τ∆ around each point, where τ∆ is

a (small) constant depending only on ∆.

Theorem 4.1.4. Fix a positive integer ∆. Then there exists a τ∆ > 0 and a region D∆ of

the above form containing the interval [0, 1] such that the following is true. For any graph

G of maximum degree ∆ and integer q satisfying the hypotheses of either Theorem 4.1.1 or

Theorem 4.1.2, ZG(w) 6= 0 when w ∈ D∆.
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We remark that this theorem is also of independent interest, as the location of zeros of

partition functions has a long and noble history going back to the Lee-Yang theorem of

the 1950s [LY52, YL52]. In the case of the Potts model, Sokal [Sok01, Sok05] proved (in

the language of the Tutte polynomial) that the partition function has no zeros in w in

the entire unit disk centered at 0, under the strong condition q ≥ 7.964∆; the constant

was later improved to 6.907 by Fernández and Procacci [FP08] (see also [JPS13]). Much

more recently, the work of Bencs et al. [BDPR18] referred to above gives a zero-free region

analogous to that in Theorem 4.1.4 above, but under the stronger condition q ≥ e∆ + 1.

We note also that Barvinok and Soberón [BS16a] (see also [Bar17] for an improved version)

established a zero-free region in a disk centered at w = 1.

Theorem 4.1.4 immediately gives our algorithmic result, Theorem 4.1.3, by appeal-

ing to the recent algorithmic paradigm of Barvinok [Bar17]. The paradigm (see Lemma 2.2.3

of [Bar17]) states that, for a partition function Z of degree m, if one can identify a simply

connected, zero-free region D for Z in the complex plane that contains a τ -neighborhood

of the interval [0, 1], and a point on that interval where the evaluation of Z is easy (in

our setting this is the point w = 1), then using the first O
(
eΘ(1/τ) log(m/ε)

)
coefficients

of Z, one can obtain a 1 ± ε multiplicative approximation of Z(x) at any point x ∈ D.

Barvinok’s framework is based on exploiting the fact that the zero-freeness of Z in D is

equivalent to logZ being analytic in D, and then using a carefully chosen transformation to

deform D into a disk (with the easy point at the center) in order to perform a convergent

Taylor expansion. The coefficients of Z are used to compute the coefficients of this Taylor

expansion.

Barvinok’s framework in general leads to a quasi-polynomial time algorithm as the

computation of the O
(
eΘ(1/τ) log(m/ε)

)
terms of the expansion may take quasiploynomial

time O
(

(m/ε)e
Θ(1/τ) logm

)
for the partition functions considered here. However, additional

insights provided by Patel and Regts [PR17a] (see, e.g., the proof of Theorem 6.2 in [PR17a])

show how to reduce this computation time to O
(

(m/ε)e
Θ(1/τ) log ∆

)
for many models on

bounded degree graphs of degree at most ∆, including the Potts model with a bounded

number of colors at each vertex. Hence we obtain an FPTAS. This (by now standard)

reduction is the same path as that followed by Bencs et al. [BDPR18, Corollary 1.2]; for

completeness, we provide a sketch in Appendix 4.2.3. We note that for each fixed ∆ and q

the running time of our final algorithm is polynomial in n (the size of G) and ε−1, as required

for an FPTAS. However, as is typical of deterministic algorithms for approximate counting,
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the exponent in the polynomial depends on ∆ (through the quantity τ∆ in Theorem 4.1.4,

which in the case where all lists are subsets of [q], is inverse polynomial in q).

We end this section by sketching our approach to proving Theorem 4.1.4.

4.1.2 Technical overview

The starting point of our proof is a simple geometric observation, versions of which

have been used before for constructing inductive proofs of zero-freeness of partition functions

(see, e.g., [Bar17, BDPR18]). Fix a vertex v in the graph G. Given w ∈ C, and a color

k ∈ [q], let Z
(k)
v (w) denote the restricted partition function in which one only includes those

colorings σ in which σ(v) = k. Then, since ZG(w) =
∑

k∈[q] Z
(k)
v (w), the zero-freeness of

ZG will follow if the angles between the complex numbers Z
(k)
v (w), viewed as vectors in R2,

are all small, and provided that at least one of the Z
(k)
v is non-zero. (In fact, this condition

on angles can be relaxed for those Z
(k)
v (w) that are sufficiently small in magnitude, and this

flexibility is important when w is a complex number close to 0.) Therefore, one is naturally

led to consider so-called marginal ratios:

R
(i,j)
G,v (w) :=

Z
(i)
v (w)

Z
(j)
v (w)

.

(In the q-coloring problem, this ratio is 1 by symmetry. However, in our recursive approach,

we have to handle the more general list-coloring problem, in which the ratio becomes non-

trivial.)

We then require that for any two colors i, j for which Z
(k)
v (w) is large enough in

magnitude, the ratio R
(i,j)
G,v (w) is a complex number with small argument. This is what we

prove inductively in sections 4.4 and 4.5.

The broad contours of our approach as outlined so far are quite similar to some

recent work [Bar17, BDPR18]. However, it is at the crucial step of how the marginal

ratios are analyzed that we depart from these previous results. Instead of attacking the

restricted partition functions or the marginal ratios directly for given w ∈ C, as in these

previous works, we crucially exploit the fact that for any w̃ ∈ [0, 1] close to the given w,

these quantities have natural probabilistic interpretations, and hence can be much better

understood via probabilistic and combinatorial methods. For instance, when w̃ ∈ [0, 1],

the marginal ratio R
(i,j)
G,v (w) is in fact a ratio of the marginal probabilities PrG,w̃[σ(v) = i]

and PrG,w̃[σ(v) = j], under the natural probability distribution on colorings σ. In fact, our



CHAPTER 4. GRAPH COLORINGS AND THE POTTS MODEL 63

analysis cleanly breaks into two separate parts:

1. First, understand the behavior of true marginal probabilities of the form PrG,w̃[σ(v) = i]

for w̃ ∈ [0, 1]. This is carried out in section 4.3.

2. Second, argue that, for complex w ≈ w̃, the ratios R
(i,j)
G,v (w) remain well-behaved.

This is carried out separately for the two cases when w is close to 0 (in section 4.4)

and when w is bounded away from 0 but still in the vicinity of [0, 1] (in section 4.5).

A key point in our technical analysis is the notion of “niceness” of vertices, which

stipulates that the marginal probability PrG,w̃[σ(v) = i] ≤ 1
degG(v)+2 where degG(v) is the

degree of v in G (see Definition 4.3.1). Note that this condition refers only to real non-

negative w̃, and hence is amenable to analysis via standard combinatorial tools. Indeed,

our proofs that the conditions on q and ∆ in Theorems 4.1.1 and 4.1.2 imply this niceness

condition are very similar to probabilistic arguments used by Gamarnik et al. [GKM15] to

establish the property of “strong spatial mixing” (in the special case w̃ = 0). We emphasize

that this is the only place in our analysis where the lower bounds on q are used. One can

therefore expect that combinatorial and probabilistic ideas used in the analysis of strong

spatial mixing and the Glauber dynamics with smaller number of colors in special classes

of graphs can be combined with our analysis to obtain deterministic algorithms for those

settings, as we have demonstrated in the case of [GKM15].

The above ideas are sufficient to understand the real-valued case (part 1 above).

For the complex case in part 2, we start from a recurrence for the marginal ratios R
(i,j)
G,v

that is a generalization (to the case w 6= 0) of a similar recurrence used by Gamarnik

et al. [GKM15] (see Lemma 4.2.4). The inductive proofs in sections 4.4 and 4.5 use this

recurrence to show that, if w̃ ∈ [0, 1] is close to w ∈ C, then all the relevant R
(i,j)
G,v (w) remain

close to R
(i,j)
G,v (w̃) throughout. The actual induction, especially in the case when w is close

to 0, requires a delicate choice of induction hypotheses (see Lemmas 4.4.2 and 4.5.3). The

key technical idea is to use the “niceness” property of vertices established in part 1 to argue

that the two recurrences (real and complex) remain close at every step of the induction.

This in turn depends upon a careful application of the mean value theorem, separately to

the real and imaginary parts (see Lemma 4.2.5), of a function fκ that arises in the analysis

of the recurrence (see Lemma 4.2.6).
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4.1.3 Comparison with correlation-decay based algorithms

We conclude this overview with a brief discussion of how we are able to ob-

tain a better bound on the number of colors than in correlation decay algorithms, such

as [GK12, LY13] cited earlier. In these algorithms, one first uses recurrences similar to

the one mentioned above to compute the marginal probabilities, and then appeals to self-

reducibility to compute the partition function. Of course, expanding the full tree of com-

putations generated by the recurrence will in general give an exponential time (but exact)

algorithm. The core of the analysis of these algorithms is to show that even if this tree of

computations is only expanded to depth about O(log(n/ε)), and the recurrence at that point

is initialized with arbitrary values, the computation still converges to an ε-approximation

of the true value. However, the requirement that the analysis be able to deal with arbitrary

initializations implies that one cannot directly use properties of the actual probability distri-

bution (e.g., the “niceness” property alluded to above); indeed, this issue is also pointed out

by Gamarnik et al. [GKM15]. In contrast, our analysis does not truncate the recurrence,

and thus only has to handle initializations that make sense in the context of the graph

being considered. Moreover, the exponential size of the recursion tree is no longer a barrier

since, in contrast to correlation decay algorithms, we are using the tree only as a tool to es-

tablish zero-freeness; the algorithm itself follows from Barvinok’s polynomial interpolation

paradigm. Our approach suggests that this paradigm can be viewed as a method for using

(complex-valued generalizations of) strong spatial mixing results to obtain deterministic

algorithms.

4.2 Preliminary

4.2.1 Colorings and the Potts model

Throughout, we assume that the graphs that we consider are augmented with a

list of colors for every vertex. Formally, a graph is a triple G = (V,E, L), where V is the

vertex set, E is the edge set, and L : V → 2N specifies a list of colors for every vertex. The

partition function as defined in section 4.1 generalizes naturally to this setting: the sum is

now over all those colorings σ which satisfy σ(v) ∈ L(v).

We also allow graphs to contain pinned vertices: a vertex v is said to be pinned

to a color c if only those colorings of G are allowed in which v has color c. Suppose that
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a vertex v of degree dv in a graph G is pinned to a color c, and consider the graph G′

obtained by replacing v with dv copies of itself, each of which is pinned to c and connected

to exactly one of the original neighbors of v in G. It is clear that ZG′(w) = ZG(w) for all

w. We will therefore assume that all pinned vertices in our graphs G have degree exactly

one. The size of graph, denoted as |G|, is defined to be the number of unpinned vertices.

It is worth noting that the above operation of duplicating pinned vertices does not change

the size of the graph.

Let G be a graph and v an unpinned vertex in G. A color c in the list of v is said

to be good for v if for every pinned neighbor u of v is pinned to a color different from c.

The set of good colors for a vertex v in graph G is denoted ΓG,v. We sometimes omit the

graph G and write Γv when G is clear from the context. A color c that is not in Γv is called

bad for v. Further, given a graph G with possibly pinned vertices, we say that the graph

is unconflicted if no two neighboring vertices in G are pinned to the same color. Note that

since all pinned vertices have degree exactly one, each conflicted graph is the vertex-disjoint

union of an unconflicted graph and a collection of disjoint, conflicted edges.

We will assume throughout that all unconflicted graphs G we consider have at

least one proper coloring: this will be guaranteed in our applications since we will always

have |L(u)| ≥ degG(u) + 1 for every unpinned vertex u in G.

Definition 4.2.1. For a graph G, a vertex v and a color i ∈ L(v), the restricted partition

function Z
(i)
G,v(w) is the partition function restricted to colorings in which the vertex v

receives color i.

Definition 4.2.2. Let ω be a formal variable. For any G, a vertex v and colors i, j ∈ L(v),

we define the marginal ratio of color i to color j as R
(i,j)
G,v (ω) :=

Z
(i)
G,v(ω)

Z
(j)
G,v(ω)

. Similarly we also

define formally the corresponding pseudo marginal probability as PG,ω[c(v) = i] :=
Z

(i)
G,v(ω)

ZG(ω) .

Remark 8. Note that when a numerical value w ∈ C is substituted in place of ω in the

above formal definition, R
(i,j)
G,v (w) is numerically well-defined as long as Z

(j)
G,v(w) 6= 0, and

PG,w[c(v) = i] is numerically well-defined as long as ZG(w) 6= 0. In the proof of the main

theorem in sections 4.4 and 4.5, we will ensure that the above definitions are numerically

instantiated only in cases where the corresponding conditions for such an instantiation to

be well-defined, as stated above, are satisfied. For instance, when w ∈ [0, 1], this is the

case for the first definition when either (i) w 6= 0; or (ii) w = 0, but G is unconflicted and
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j ∈ ΓG,v; while for the second definition, this is the case when either (i) w 6= 0; or (ii) w = 0,

but G is unconflicted.

Remark 9. Note also that when w ∈ [0, 1], the pseudo probabilities, if well-defined, are ac-

tual marginal probabilities. In this case, we will also write PG,w[c(v) = i] as PrG,w[c(v) = i].

For arbitrary complex w, this interpretation as probabilities is of course not valid (since

PG,w[c(v) = i] can be non-real), but provided that ZG(w) 6= 0 it is still true that

∑
i∈L(v)

PG,w[c(v) = i] =
1

ZG(w)

∑
i∈L(v)

Z
(i)
G,v(w) =

ZG(w)

ZG(w)
= 1. (4.2)

We also note that if v is pinned to color k, then PG,w[c(v) = i] is 1 when k = i and 0 when

k 6= i.

Notation For the case w = 0 we will sometimes shorten the notations PG,0[c(v) = i] and

PrG,0[c(v) = i] to PG[c(v) = i] and PrG[c(v) = i] respectively.

Definition 4.2.3 (The graphs G
(i,j)
k ). Given a graphG and a vertex u inG, let v1, · · · , vdegG(u)

be the neighbors of u. We define G
(i,j)
k (the vertex u will be understood from the context)

to be the graph obtained from G as follows:

• first we replace vertex u with u1, · · · , udegG(u), and connect u1 to v1, u2 to v2, and so

on;

• next we pin vertices u1, · · · , uk−1 to color i, and vertices uk+1, · · · , udegG(u) to color j;

• finally we remove the vertex uk.

Note that the graph G
(i,j)
k has one fewer unpinned vertex than G. Moreover, u1, · · · , udegG(u)

are of degree 1, so this construction maintains the property that pinned vertices have degree

1.

We now derive a recurrence relation between the marginal ratios of the graph G

and pseudo marginal probabilities of the graphs G
(i,j)
k . This is an extension to the Potts

model of a similar recurrence relation derived by Gamarnik, Katz and Misra [GKM15] for

the special case of colorings (that is, w = 0).
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Lemma 4.2.4. Let ω be a formal variable. For a graph G, a vertex u and colors i, j ∈ L(u),

we have

R
(i,j)
G,u (ω) =

∏degG(u)
k=1

(
1− γ · P

G
(i,j)
k ,ω

[c(vk) = i]
)

∏degG(u)
k=1

(
1− γ · P

G
(i,j)
k ,ω

[c(vk) = j]
) ,

where we define γ := 1 − ω. In particular, when a numerical value w ∈ C is substituted

in place of ω, the above recurrence is valid as long as the quantities Z
G

(i,j)
k

(w) and 1 − γ ·
P
G

(i,j)
k ,w

[c(vk) = j] for 1 ≤ k ≤ degG(u) are all non-zero.

Proof. For 0 ≤ k ≤ degG(u), let Hk be the graph obtained from G as follows:

• first we replace vertex u with u1, · · · , udegG(u), and connect u1 to v1, u2 to v2, and so

on;

• we then pin vertices u1, · · · , uk to color i, and vertices uk+1, · · · , udegG(u) to color j.

Note that Hk is the same as G
(i,j)
k , except that the last step of the construction of G

(i,j)
k

is skipped, i.e, the vertex uk is not removed, and, further, uk is pinned to color i. We can

now write

R
(i,j)
G,u (ω) =

Z
(i)
G,u(ω)

Z
(j)
G,u(ω)

=
ZHdegG(u)

(ω)

ZH0(ω)
=

degG(u)∏
k=1

ZHk(ω)

ZHk−1
(ω)

.

Next, for 1 ≤ k ≤ degG(u), let Yk := Z
G

(i,j)
k

(ω) and Y
(i)
k := Z

(i)

G
(i,j)
k ,vk

(ω). We observe that

P
G

(i,j)
k ,ω

[c(vk) = i] =
Y

(i)
k

Yk
,

ZHk(ω) = Yk − (1− ω) · Y (i)
k ,

ZHk−1
(ω) = Yk − (1− ω) · Y (j)

k .

Therefore we have

R
(i,j)
G,u (ω) =

degG(u)∏
k=1

Yk − (1− ω) · Y (i)
k

Yk − (1− ω) · Y (j)
k

=

∏degG(u)
k=1

(
1− γ · P

G
(i,j)
k ,ω

[c(vk) = i]
)

∏degG(u)
k=1

(
1− γ · P

G
(i,j)
k ,ω

[c(vk) = j]
) ,

where γ = 1− ω. The claim about the validity of the recurrence on numerical substitution

then follows from the conditions outlined in Definition 4.2.2.
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4.2.2 Complex analysis

We start with a consequence of the mean value theorem for complex functions,

specifically tailored to our application. Let D be any domain in C with the following

properties.

• For any z ∈ D, <z ∈ D.

• For any z1, z2 ∈ D, there exists a point z0 ∈ D such that one of the numbers z1 −
z0, z2 − z0 has zero real part while the other has zero imaginary part.

• If z1, z2 ∈ D are such that either =z1 = =z2 or <z1 = <z2, then the segment [z1, z2]

lies in D.

We remark that a rectangular region symmetric about the real axis will satisfy all the above

properties.

Lemma 4.2.5 (Mean value theorem for complex functions). Let f be a holomorphic

function on D such that for z ∈ D, =f(z) has the same sign as =z. Suppose further that

there exist positive constants ρI and ρR such that

• for all z ∈ D, |=f ′(z)| ≤ ρI ;

• for all z ∈ D, <f ′(z) ∈ [0, ρR].

Then for any z1, z2 ∈ D, there exists Cz1,z2 ∈ [0, ρR] such that

|<(f(z1)− f(z2))− Cz1,z2 · <(z1 − z2)| ≤ ρI · |=(z1 − z2) |, and

|=(f(z1)− f(z2))| ≤ ρR ·

|=(z1 − z2)|, when (=z1) · (=z2) ≤ 0.

max{|=z1| , |=z2| } otherwise.

Proof. We write f = u + ιv, where u, v : D → R are seen as differentiable functions from

R2 to R satisfying the Cauchy-Riemann equations

u(1,0) = v(0,1) and u(0,1) = −v(1,0).

This implies in particular that <f ′(z) = u(1,0)(z) = v(0,1)(z) and =f ′(z) = v(1,0)(z) =

−u(0,1)(z).



CHAPTER 4. GRAPH COLORINGS AND THE POTTS MODEL 69

Let z0 be a point in D such that <(z2 − z0) = 0 and =(z1 − z0) = 0 (by the

conditions imposed on D, such a z0 exists, possibly after interchanging z1 and z2). Now we

have

<(f(z1)− f(z2)) = u(z1)− u(z0) + u(z0)− u(z2)

= u(1,0)(z′) · <(z1 − z0) + u(z0)− u(z2),

where z′ is a point lying on the segment [z0, z1], obtained by applying the standard mean

value theorem to the function u along this segment (note that the segment is parallel to the

real axis). On the other hand, since the segment [z0, z2] is parallel to the imaginary axis, we

apply the standard mean value theorem to the real valued function u to get (after recalling

that
∣∣u(0,1)(z)

∣∣ = |=f ′(z)| ≤ ρI for all z ∈ D)

|u(z0)− u(z2)| ≤ ρI |=(z2 − z0)| = ρI |=(z2 − z1)| .

This proves the first part, once we set Cz1,z2 = u(1,0)(z′) = <f ′(z′), which must lie in [0, ρR]

since z′ ∈ D.

For the second part, we note that since =f(z) = 0 when =z = 0, we have for

z ∈ D,

=f(z) = =(f(z)− f(<z)) = v(z)− v(<z)

= v(0,1)(z′) · =z,

where z′ is a point lying on the segment [z,<z], obtained by applying the standard mean

value theorem to the function v along this segment (note that the segment is parallel to the

imaginary axis).

Since v(0,1)(z′) = u(1,0)(z′) ∈ [0, ρR] for all z′ ∈ D, there exist a, b ∈ [0, ρR] such

that

|=(f(z1)− f(z2))| = |a=z1 − b=z2| ,

so that we get

|=(f(z1)− f(z2))| = |a=z1 − b=z2| ≤ ρR ·

|=(z1 − z2)|, when (=z1) · (=z2) ≤ 0.

max{|=z1| , |=z2| } otherwise.
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We will apply the above lemma to the function

fκ(x) := − ln(1− κex), (4.3)

which, as we shall see later, will play a central role in our proofs. (We note that here, and

also later in the paper, we use ln to denote the principal branch of the complex logarithm;

i.e., if z = reιθ with r > 0 and θ ∈ (−π, π), then ln z = ln r+ ιθ.) Below we verify that such

an application is valid, and record the consequences.

Lemma 4.2.6. Consider the domain D given by

D := {z | <z ∈ (−∞,−ζ) and |=z| < τ} ,

where τ < 1/2 and ζ are positive real numbers such that τ2 + e−ζ < 1. Suppose κ ∈ [0, 1]

and consider the function fκ as defined in eq. (4.3). Then,

1. The function fκ and the domain D satisfy the hypotheses of Lemma 4.2.5, if ρR and

ρI in the statement of the theorem are taken to be e−ζ

1−e−ζ and τ ·e−ζ

(1−e−ζ)
2 , respectively.

2. If ε > 0 and κ′ are such that |κ′ − κ| < ε and (1 + ε) < eζ , then for any z ∈ D,

|fκ′(z)− fκ(z)| ≤ ε

eζ − 1− ε.

In particular, we note that the domain D is indeed rectangular and symmetric

about the real axis.

Proof. The domain D is rectangular and symmetric about the real axis, so it clearly satisfies

the conditions. We also note that since κ ≤ 1, fκ(z) is well defined when <z < 0, and maps

real numbers in D to real numbers. Further, a direct calculation shows that =fκ(z) =

− arg(1 − κez) has the same sign as sin(=z) when <z < 0 (since κ ∈ [0, 1]). Since |=z| ≤
τ < π, we see therefore that =fκ(z) has the same sign as =z, and hence fκ satisfies the

hypothesis of Lemma 4.2.5.

Note that f ′κ(z) = κez

1−κez . A direct calculation then shows that <f ′κ(z) = κ<ez−κ2|ez |2

|1−κez |2

and =f ′κ(z) = κ=ez
|1−κez |2 . Now, for z ∈ D, |arg ez| ≤ τ , so that <ez ≥ |ez| cos arg ez ≥ |ez| (1−

τ2). Thus, we see that κ<ez − κ2 |ez|2 ≥ κ |ez|
(
1− τ2 − κ |ez|

)
≥ κ |ez|

(
1− τ2 − κe−ζ

)
.

Since κ ∈ [0, 1] and τ2 + e−ζ < 1 by assumption, we therefore have <f ′κ(z) ≥ 0. Fur-

ther <f ′κ(z) ≤ |f ′κ(z)| = κ|ez |
|1−κez | ≤

κ|ez |
1−κ|ez | ≤ κe−ζ

1−e−ζ , since κ ∈ [0, 1]. Together, these show
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that <f ′κ(z) ∈
[
0, e−ζ

1−e−ζ

]
for z ∈ D, so that the claimed choice of the parameter ρR in

Lemma 4.2.5 is justified.

Similarly, for the imaginary part, we have |=f ′κ(z)| = κ|=ez |
|1−κez |2 , which in turn is at

most κ·τ ·e−ζ
(1−κe−ζ)2 for z ∈ D. Since κ ∈ [0, 1], this justifies the choice of the parameter ρI .

We now turn to the second item of the observation. The derivative of fx(z) with

respect to x is ez

1−xez , which for x within distance ε (satisfying (1 + ε) < eζ) of κ and

z ∈ D has length at most 1
eζ−1−ε . Thus, the standard mean value theorem applied along

the segment [κ, κ′] (which is of length at most ε) yields the claim.

We will also need the following simple geometric lemma, versions of which have

been used in the work of Barvinok [Bar17] and also Bencs et al. [BDPR18].

Lemma 4.2.7. Let z1, z2, . . . , zn be complex numbers such that the angle between any two

non-zero zi is at most α ∈ [0, π/2). Then |∑n
i=1 zi| ≥ cos(α/2)

∑n
i=1 |zi|.

Proof. Fix a non-zero zi, and without loss of generality let z1 and z2 be the non-zero elements

giving the maximum and minimum values, respectively, of the quantity arg(zj/zi), as zj

varies over all the non-zero elements (breaking ties arbitrarily). Consider the ray z bisecting

the angle between z1 and z2. Then, by the assumption, the angle made by z and any of the

non-zero zi is at most α/2, so that the projection of zi on z is of length at least |zi| cos(α/2)

and is in the same direction as z. Thus, denoting by S′ the projection of S =
∑n

i=1 zi on z,

we have

|S| ≥ |S′| ≥
n∑
i=1

|zi| cos(α/2).

4.2.3 Sketch of the algorithm

In this subsection we outline how to apply Barvinok’s algorithmic paradigm to

translate our zero-freeness result (Theorem 4.1.4) into the FPTAS claimed in Theorem 4.1.3.

Let G be a graph with n vertices and m edges and maximum degree ∆. Recall that our

goal is to obtain a 1± ε approximation of the Potts model partition function ZG(w) at any

point w ∈ [0, 1]. Note that ZG is a polynomial of degree m, and that computing ZG at

w = 1 is trivial since ZG(1) = qn. Recall also that Theorem 4.1.4 ensures that ZG has no

zeros in the region D∆ of width τ∆ around the real interval [0, 1]. For technical convenience

we will actually work with a slightly smaller zero-free region consisting of the rectangle

D′∆ = {w ∈ C : −τ ′∆ ≤ <w ≤ 1 + τ ′∆; |=w| ≤ τ ′∆},
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where τ ′∆ = τ∆/
√

2. Note that D′∆ ⊂ D∆ so D′∆ is also zero-free. In the rest of this section,

we drop the subscript ∆ from these quantities.

Now let f(z) be a complex polynomial of degree d for which f(0) is easy to evaluate,

and suppose we wish to approximate f(1). Barvinok’s basic paradigm [Bar17, Section 2.2]

achieves this under the assumption that f has no zeros in the open disk B(0, 1+δ) of radius

1+ δ centered at 0: the approximation simply consists of the first k = O(1
δ log( dεδ )) terms of

the Taylor expansion of log f around 0. (Note that this expansion is absolutely convergent

within B(0, 1 + δ) by the zero-freeness of f .) These terms can in turn be expressed as

linear combinations of the first k coefficients of f itself. We now sketch how to reduce our

computation of ZG(w) to this situation.

First, for any fixed w ∈ [0, 1], define the polynomial g(z) := ZG(z(w − 1) +

1). Note that g(0) = ZG(1) is trivial, while g(1) = ZG(w) is the value we are trying

to compute. Moreover, plainly g(z) 6= 0 for all z ∈ D′. Next, define a polynomial φ :

C → C that maps the disk B(0, 1 + δ) into the rectangle D′, so that φ(0) = 0 and φ(1) =

1; Barvinok [Bar17, Lemma 2.2.3] gives an explicit construction of such a polynomial,

with degree N = exp(Θ(τ−1)) and with δ = exp(−Θ(τ−1)). Now we have reduced the

computation of ZG(w) to that of f(1), where f(z) := g(φ(z)) is a polynomial of degree

deg(g) · deg(φ) = mN that is non-zero on the disk B(0, 1 + δ), so the framework of the

previous paragraph applies. Note that the number of terms required in the Taylor expansion

of log f is k = O(1
δ log(mNεδ )) = exp(O(τ−1)) log(n∆

ε ).

Naive computation of these k terms requires time nΘ(k), which yields only a quasi-

polynomial algorithm since k contains a factor of log n. This complexity comes from the

need to enumerate all colorings of subgraphs induced by up to k edges. However, a technique

of Patel and Regts [PR17a], based on Newton’s identities and an observation of Csikvari and

Frenkel [CF16], can be used to reduce this computation to an enumeration over subgraphs

induced by connected sets of edges (see [PR17a, Section 6] for details). Since G has bounded

degree, this reduces the complexity to ∆O(k) = (n∆
ε )log(∆) exp(O(τ−1)). For any fixed ∆ this

is polynomial in (n/ε), thus satisfying the requirement of a FPTAS.

Note that the degree of the polynomial is exponential in τ−1; since τ−1 in turn is

exponential in ∆ (see the discussion following the proof of Theorem 4.1.4), the degree of

the polynomial is doubly exponential in ∆. The same discussion explains how this can be

improved to singly exponential for the case of uniformly large list sizes.
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4.3 Properties of the real-valued recurrence

In this section we prove some basic properties of the real-valued recurrence es-

tablished in Lemma 4.2.4, that is, in the case where w ∈ [0, 1] is real (and hence,

γ = 1− w ∈ [0, 1]).

We remark that in all graphs G appearing in our analysis, we will be able to assume

that for any unpinned vertex u in G, |L(u)| ≥ degG(u) + 1. Thus, ZG(w) 6= 0 whenever

either (i) w ∈ (0, 1]; or (ii) w = 0, but G is unconflicted. As discussed in the previous

section, this implies that the marginal ratios and the pseudo marginal probabilities are well-

defined, and, further, the latter are actual probabilities. Moreover, if G is not connected,

and G′ is the connected component containing u, then we have R
(i,j)
G,u (w) = R

(i,j)
G′,u(w) and

PG,w[c(u) = i] = PG′,w[c(u) = i]. Thus without loss of generality, we will only consider

connected graphs in this section.

We now formally state the conditions on the list sizes under which our main the-

orem holds.

Condition 1 (Large lists). The graph G satisfies at least one of the following two condi-

tions.

1. |L(v)| ≥ max{2, 2 · degG(v)} for each unpinned vertex v in G.

2. The graph G is triangle-free and further, for each vertex v of G,

|L(v)| ≥ α · degG(v) + β,

where α is any fixed constant larger than the unique positive solution α? of the equation

xe−
1
x = 1 and β = β(α) ≥ 2α is a constant chosen so that α · e−

1
α

(1+ 1
β

) ≥ 1. We note

that α? lies in the interval [1.763, 1.764], and β as chosen above is at least 7/2.

Remark 10. Note that the condition |L(v)| ≥ 2 imposed in case 1 above is without loss

of generality, since any vertex with |L(v)| = 1 can be removed from G after removing

the unique color in its list from the lists of its neighbors, without changing the number of

colorings of G.

As stated in section 4.1, an important element of our analysis is going to be the

fact that under Condition 1, one can show that certain vertices are “nice” in the sense of
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the following definition. We emphasize that Condition 1 is ancillary to our main technical

development: any condition under which the probability bounds imposed in the following

definition can be proved (as is done in Lemma 4.3.2 below) will be sufficient for the analysis.

Definition 4.3.1. Given a graph G and an unpinned vertex u in G, let d be the number

of unpinned neighbors of u. We say the vertex u is nice in G if for any w ∈ [0, 1] and any

color i ∈ L(u), PrG,w[c(u) = i] ≤ 1
d+2 .

Remark 11. We adopt the convention that if G is a conflicted graph (so that it has no

proper colorings) and w = 0, then PrG,w[c(u) = i] = 0 for every color i and every unpinned

vertex u in G. This is just to simplify the presentation in this section by avoiding the need

to explicitly exclude this case from the lemmas below. In the proof of our main result in

sections 4.4 and 4.5, we will never consider conflicted graphs in a situation where w could

be 0, so that this convention will then be rendered moot.

Lemma 4.3.2. If G satisfies Condition 1 then for any vertex u in G, and any unpinned

neighbor vk of u, we have that vk is nice in G
(i,j)
k .

We prove this lemma separately for each of the two cases in Condition 1.

4.3.1 Analysis for case 1 of Condition 1

Lemma 4.3.3. Let G be a graph that satisfies case 1 of Condition 1. Then for any unpinned

vertex u in G, and any unpinned neighbor vk of u, we have that vk is nice in G
(i,j)
k .

Proof. For ease of notation, we denote G
(i,j)
k by H and vk by v. Since G satisfies case 1 of

Condition 1, and degH(v) = degG(vk)−1 (since the neighbor u of vk in G is dropped in the

construction of H = G
(i,j)
k ), we have |LH(v)| = |LG(vk)| ≥ 2 degG(vk) ≥ 2 · degH(v) + 2.

Consider any valid coloring3 σ′ of the neighbors of v in H. For k ∈ LH(v), let nk

denote the number of neighbors of v that are colored k in σ′. Then for any w ∈ [0, 1] and

i ∈ LH(v),

PrH,w
[
c(v) = i|σ′

]
=

wni∑
j∈LH(v)w

nj
≤ 1

|LH(v)| − degH(v)
,

since at most degH(v) of the nj can be positive. Note in particular that if i is not a good

color for v in H, then the probability is 0. Since this holds for any coloring σ′, we have

3Here, we say that a coloring σ is valid if the color σ assigns to any vertex v is from L(v), and further,
in case w = 0, no two neighbors are assigned the same color by σ.
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PrH,w[c(v) = i] ≤ 1
|LH(v)|−degH(v) . Now, let d be the number of unpinned neighbors of v in H.

Noting that degH(v) ≥ d, and recalling the observation above that |LH(v)| ≥ 2 degH(v)+2,

we thus have

Pr
G

(i,j)
k ,w

[c(vk) = i] = PrH,w[c(v) = i] ≤ 1

|LH(v)| − degH(v)
≤ 1

d+ 2
.

Thus vk is nice in G
(i,j)
k .

4.3.2 Analysis for case 2 of Condition 1

Notice that if G satisfies case 2 of Condition 1, then so does G
(i,j)
k . Thus in order

to show that vk is nice in G
(i,j)
k , it suffices to show the following more general fact.

Lemma 4.3.4. Let G be any graph that satisfies case 2 of Condition 1, and let u be any

unpinned vertex in G, then u is nice in G.

The proof of this lemma is almost identical to arguments that appear in the work

of Gamarnik, Katz and Misra [GKM15] on strong spatial mixing; we include a proof here

for completeness.

Proof. We show first that PrG,w[c(u) = i] ≤ 1
β whenever LG(u) ≥ degG(u) + β; this will be

required later in the proof. To do so, we repeat the arguments in the proof of Lemma 4.3.3

to see that PrG,w[c(u) = i] ≤ 1
|L(u)|−degG(u) . The claimed bound then follows since |L(u)| −

degG(u) ≥ β.

Next we show that the upper bound of 1
d+2 , where d is the number of unpinned

neighbors of u in G, holds conditioned on every coloring of the neighbors of the (unpinned)

neighbors of u, by following a similar path as in [GKM15]. Consider any valid coloring4 σ′

of the vertices at distance two from u. Since G is triangle free, we claim that conditional

on σ′ there is a tree T of depth 2 rooted at u, with all the leaves pinned according to σ′,

such that

PrG,w
[
c(u) = i|σ′

]
= PrT,w[c(u) = i] . (4.4)

To see this, notice that once we condition on the coloring of the vertices at distance 2 from

u, the distribution of the color at u becomes independent of the distribution of colors of

vertices at distance 3 or more. Further, because of triangle freeness, no two neighbors of

4Here, we say that a coloring σ is valid if the color σ assign to any vertex v is from L(v), and further, in
case w = 0, no two neighbors are assigned the same color by σ.
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u have an edge between them, and hence any cycle in the distance-2 neighborhood, if one

exists, must go through at least one pinned vertex. We then observe that such a cycle

can be broken by replacing any pinned vertex v′ in it with deg(v′) copies, one for each of

its neighbor: as discussed earlier, this operation cannot change the partition function or

probabilities. This operation therefore ensures that every pinned vertex in the resulting

graph is now a leaf of a tree T of depth 2 rooted at u. Further, in T , the root u has d

unpinned children, and all vertices at depth 2 are pinned according to σ′.

Let v1, · · · , vd be the d unpinned neighbors of u in T , and let T1, · · · , Td be the

subtrees rooted at v1, · · · , vd respectively. For each k ∈ LG(u), let nk be the number of

neighbors of u that are pinned to color k. Then by Lemma 4.2.4,

R
(j,i)
T,u (w) =

wnj ·∏d
k=1(1− γ · PTk,w[c(vk) = j] )

wni ·∏d
k=1(1− γ · PTk,w[c(vk) = i] )

.

Define tkj := γ · PrTk,w[c(vk) = j], and note that from the calculation at the beginning of

the proof, we have 0 ≤ tkj ≤ γ
β ≤ 1

β ≤ 1/2. Note also that tkj = 0 if j 6∈ L(vk). Thus, we

have ∑
j∈Γu

tkj = γ
∑

j∈Γu∩L(vk)

PrTk,w[c(vk) = j] ≤ γ ≤ 1. (4.5)

Therefore,

PrT,w[c(u) = i] =
1∑

j∈L(v)R
(j,i)
T,v (w)

=
wni ·∏d

k=1(1− tki)∑
j∈L(u)w

nj ·∏d
k=1(1− tkj)

≤ 1∑
j∈Γu

∏d
k=1(1− tkj)

,

(4.6)

where, in the last inequality we use that nj = 0 when j is good for u in G, and also that

w ∈ [0, 1].

Since PrG,w[c(u) = i|σ′] = PrT,w[c(u) = i], it remains to lower bound the denom-

inator
∑

j∈Γu

∏d
k=1(1− tkj). We begin by recalling the following standard consequence of

the Taylor expansion of ln(1 − x) around 0: when 0 ≤ x ≤ 1
β < 1, and β is such that

(1− 1/β)2 ≥ 1/2,

ln(1− x) ≥ −x− x2

2(1− 1/β)2
≥ −x− x2 ≥ −

(
1 +

1

β

)
x. (4.7)

Note that the condition required of β is satisfied since β ≥ 2α ≥ 7/2, as stipulated in case 2

of Condition 1. Since 0 ≤ tkj ≤ 1/β, we therefore obtain, for every j ∈ Γu,

d∏
k=1

(1− tkj) ≥
d∏

k=1

exp

(
−
(

1 +
1

β

)
tkj

)
= exp

(
−
(

1 +
1

β

) d∑
k=1

tkj

)
. (4.8)
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For convenience of notation, we denote |Γu| by qu. Note that since |L(u)| ≥ α deg(u) + β,

and u has deg(u)− d pinned neighbors, we have

qu ≥ |L(u)| − (deg(u)− d) ≥ |L(u)| − α(deg(u)− d) ≥ αd+ β,

where in the second inequality we use α ≥ 1. Now, by the AM-GM inequality, we get

∑
j∈Γu

d∏
k=1

(1− tkj) ≥ qu

∏
j∈Γu

d∏
k=1

(1− tkj)

 1
qu

≥ qu exp

− 1

qu
(1 + 1/β) ·

d∑
k=1

∑
j∈Γu

tkj

 , using eq. (4.8)

≥ (αd+ β) exp

(
−d(1 + 1/β)

αd+ β

)
, using eq. (4.5) and qu ≥ αd+ β

≥ (d+ 2)α · exp

(
−(1 + 1/β)

α

)
, using β ≥ 2α

≥ (d+ 2),

where the last line uses the stipulation in case 2 of Condition 1 that α and β satisfy

α · exp
(
− (1+1/β)

α

)
≥ 1. From eqs. (4.4) and (4.6) we therefore get

PrG,w
[
c(u) = i|σ′

]
≤ 1

d+ 2
.

Since this holds for any conditioning σ′ of the colors of the neighbors of the neighbors of u

in G, we then have

PrG,w[c(u) = i] ≤ 1

d+ 2
,

which concludes the proof.

The proof of Lemma 4.3.2 is immediate from Lemmas 4.3.3 and 4.3.4.

Proof of Lemma 4.3.2. If G satisfies case 1 of Condition 1 then we apply Lemma 4.3.3. If

G satisfies case 2 of Condition 1 then we apply Lemma 4.3.4 after noting that if G satisfies

case 2 of Condition 1, then so does G
(i,j)
k , and further that, as assumed in the hypothesis

of Lemma 4.3.2, vk is unpinned in G
(i,j)
k .

We conclude this section by noting that, the niceness condition can be strengthened

in the case when all the list sizes are uniformly large (e.g., as in the case of q-colorings).
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Remark 12. In Condition 1, if we replace the degree of a vertex by the maximum degree

∆ (e.g., in case 1 of the condition, if we assume |L(v)| ≥ 2∆, instead of 2 degG(v), for each

v), then for every vertex v in the graph G, it holds that PrG,w[c(v) = i] < min
{

4
3∆ , 1

}
.

To see this, notice that the same calculation as in the proof of Lemma 4.3.3 above

gives PrG,w[c(v) = i] ≤ 1
|L(v)|−∆ ≤ 1

(α−1)∆+β ≤ 1
(α−1)∆ < 4

3∆ . We will refer to this stronger

condition on list sizes (which holds, in particular, when one is considering the case of q-

colorings), as the uniformly large list size condition.

4.4 Zero-free region for small |w|

As explained in section 4.2.3, all our algorithmic results follow from Theorem 4.1.4,

which establishes a zero-free region for the partition function ZG(w) around the interval [0, 1]

in the complex plane. We split the proof of Theorem 4.1.4 into two parts: in this section, we

establish the existence of a zero-free disk around the endpoint w = 0 (see Theorem 4.4.1):

this is the most delicate case because w = 0 corresponds to proper colorings. Then in

section 4.5 (see Theorem 4.5.1) we derive a zero-free region around the remainder of the

interval, using a similar but less delicate approach. Taken together, Theorems 4.4.1 and 4.5.1

immediately imply Theorem 4.1.4, so this will conclude our analysis.

Theorem 4.4.1. Fix a positive integer ∆. There exists a νw = νw(∆) such that the

following is true. Let G be a graph of maximum degree ∆ satisfying Condition 1, and

having no pinned vertices. Then, ZG(w) 6= 0 for any w satisfying |w| ≤ νw.

In the proof, we will encounter several constants which we now fix. Given the

degree bound ∆ ≥ 1, we define

εR :=
0.01

∆2
, εI := εR ·

0.01

∆2
, and εw := εI ·

0.01

∆3
. (4.9)

We will then see that the quantity νw in the statement of the theorem can be chosen to be

0.2εw/2
∆. (In fact, we will show that if one has the slightly stronger assumption of uniformly

large list sizes considered in Remark 12, then νw can be chosen to be εw/(300∆)).

Throughout the rest of this section, we fix ∆ to be the maximum degree of the

graphs, and let εw, εI , εR be as above.

We now briefly outline our strategy for the proof. Recall that, for a vertex u and

colors i, j, the marginal ratio is given by R
(i,j)
G,u (w) =

Z
(i)
G,u(w)

Z
(j)
G,u(w)

. When G is an unconflicted
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graph, R
(i,j)
G,u (0) is always a well-defined non-negative real number. Intuitively, we would

like to show that R
(i,j)
G,u (w) ≈ R

(i,j)
G,u (0), independent of the size of G, when w ∈ C is close

to 0. Given such an approximation one can use a simple geometric argument (see Conse-

quence 4.4.3) to conclude that the partition function does not vanish for such w. In order to

prove the above approximate equality inductively for a given graph G, we take an approach

that exploits the properties of the “real” case (i.e., of R
(i,j)
G,u (0)) and then uses the notion of

“niceness” of certain vertices described earlier to control the accumulation of errors. To this

end, we will prove the following lemma via induction on the number of unpinned vertices

in G. Theorem 4.4.1 will follow almost immediately from the lemma; see the end of this

section for the details.

Lemma 4.4.2. Let G be an unconflicted graph of maximum degree ∆ satisfying Condition 1,

and u be any unpinned vertex in G. Then, the following are true (with εw, εI , and εI as

defined in eq. (4.9)):

1. For i ∈ Γu,
∣∣∣Z(i)

G,u(w)
∣∣∣ > 0.

2. For i, j ∈ Γu, if u has all neighbors pinned, then R
(i,j)
G,u (w) = R

(i,j)
G,u (0) = 1.

3. For i, j ∈ Γu, if u has d ≥ 1 unpinned neighbors, then

1

d

∣∣∣< lnR
(i,j)
G,u (w)−< lnR

(i,j)
G,u (0)

∣∣∣ < εR.

4. For any i, j ∈ Γu, if u has d ≥ 1 unpinned neighbors, we have 1
d

∣∣∣= lnR
(i,j)
G,u (w)

∣∣∣ < εI .

5. For any i 6∈ Γu, j ∈ Γu, then
∣∣∣R(i,j)

G,u (w)
∣∣∣ ≤ εw.

We will refer to items 1 to 5 as “items of the induction hypothesis”. The rest of

this section is devoted to the proof of this lemma via induction on the number of unpinned

vertices in G.

We begin by verifying that the induction hypothesis holds in the base case when

u is the only unpinned vertex in an unconflicted graph G. In this case, items 3 and 4 are

vacuously true since u has no unpinned neighbors. Since all neighbors of u in G are pinned,

the fact that all pinned vertices have degree at most one implies that G can be decomposed

into two disjoint components G1 and G2, where G1 consists of u and its pinned neighbors,

while G2 consists of a disjoint union of unconflicted edges (since G is unconflicted). Now,
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since G1 and G2 are disjoint components, we have Z
(i)
G,u(w) = ZG2(w) = 1 for all i ∈ ΓG,u

and all w ∈ C. This proves items 1 and 2. Similarly, when i 6∈ ΓG,u, we have Z
(i)
G,u(w) = wni ,

where ni ≥ 1 is the number of neighbors of u pinned to color i. This gives∣∣∣R(i,j)
G,u (w)

∣∣∣ ≤ |w|ni ≤ εw,
since |w| ≤ εw ≤ 1, and proves item 5.

We now derive some consequences of the above induction hypothesis that will be

helpful in carrying out the induction. Throughout, we assume that G is an unconflicted

graph satisfying Condition 1.

Consequence 4.4.3. If |L(u)| ≥ degG(u) + 1 then

|ZG(w)| ≥ 0.9 min
i∈Γu

∣∣∣Z(i)
G,v(w)

∣∣∣ > 0.

Proof. Note that ZG(w) =
∑

i∈L(u) Z
(i)
G,u(w). From item 4, we see that the angle between

the complex numbers Z
(i)
G,u(w) and Z

(j)
G,u(w), when i, j ∈ Γu, is at most dεI . Applying

Lemma 4.2.7 to the terms corresponding to the good colors and item 5 to the terms corre-

sponding to the bad colors, we then have∣∣∣∣∣∣
∑
i∈L(u)

Z
(i)
G,u(w)

∣∣∣∣∣∣ ≥
(
|Γu| cos

dεI
2
− |L(u) \ Γu| εw

)
min
i∈Γu

∣∣∣Z(i)
G,u(w)

∣∣∣
≥
(

(|L(u)| − degG(u)) cos
dεI
2
− |degG(u)| εw

)
min
i∈Γu

∣∣∣Z(i)
G,u(w)

∣∣∣
≥
(

cos
dεI
2
− |degG(u)| εw

)
min
i∈Γu

∣∣∣Z(i)
G,u(w)

∣∣∣ ,
where we use the fact that |L(u) \ Γu| ≤ degG(u) in the second inequality, and |L(u)| ≥
degG(u) + 1 in the last inequality. Since dεI ≤ 0.01 and εw ≤ 0.01/∆, we then have∣∣∣∑i∈L(u) Z

(i)
G,u(w)

∣∣∣ ≥ 0.9 mini∈Γu

∣∣∣Z(i)
G,v(w)

∣∣∣, which in turn is positive from item 1.

Consequence 4.4.4. The pseudo-probabilities approximate the real probabilities in the fol-

lowing sense:

1. for any i 6∈ Γu, |PG,w[c(u) = i]| ≤ 1.2εw.

2. for any j ∈ Γu,∣∣∣∣= ln
PG,w[c(u) = j]

PG[c(u) = j]

∣∣∣∣ = |= lnPG,w[c(u) = j]| ≤ dεI + 2∆εw, and∣∣∣∣< ln
PG,w[c(u) = j]

PG[c(u) = j]

∣∣∣∣ ≤ dεR + dεI + 2∆εw,
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where d is the number of unpinned neighbors of u in G.

Proof. For part (1), by Consequence 4.4.3 we have

|PG,w[c(u) = i]| =

∣∣∣Z(i)
G,u(w)

∣∣∣
|ZG(w)| ≤

∣∣∣Z(i)
G,u(w)

∣∣∣
0.9 minj∈Γu

∣∣∣Z(j)
G,u(w)

∣∣∣ ≤ 1.2εw,

where the last inequality follows from induction hypothesis item 5.

For part (2), by items 2 to 4 of the induction hypothesis, there exist complex

numbers ξi (for all i ∈ Γu) satisfying |<ξi| ≤ dεR and |=ξi| ≤ dεI such that

1

PG,w[c(u) = j]
=
∑
i∈L(u)

Z
(i)
G,u(w)

Z
(j)
G,u(w)

=
∑
i∈Γu

Z
(i)
G,u(0)

Z
(j)
G,u(0)

eξi︸ ︷︷ ︸
:=A

+
∑

i∈L(u)\Γu

Z
(i)
G,u(w)

Z
(j)
G,u(w)︸ ︷︷ ︸

:=B

.

Next we show that A ≈ 1
PG[c(u)=j] and B is negligible. From item 5 of the induction

hypothesis we have

PG[c(u) = j] · |B| ≤ ∆εw. (4.10)

Now, note that
∑

i∈Γu

Z
(i)
G,u(0)

Z
(j)
G,u(0)

= 1
PG[c(u)=j] . Further, when εI ≤ 0.1/∆, we also have5

<eξi ∈ (exp(−dεR)− d2ε2
I , exp(dεR)), and | arg eξi | ≤ dεI . (4.11)

The above will therefore be true also for any convex combination of the eξi . Noting that

PG[c(u) = j] · A is just such a convex combination (as the coefficients of the eξi are non-

negative reals summing to 1), we have

PG[c(u) = j] · <A ∈ (exp(−dεR)− d2ε2
I , exp(dεR)), and (4.12)

| arg(PG[c(u) = j] ·A) | ≤ dεI . (4.13)

Together, eqs. (4.10), (4.12) and (4.13) imply that if C := PG[c(u)=j]
PG,w[c(u)=j] then (using the values

5Here, we also use the elementary facts that if z is a complex number satisfying <z = r and |=z| = θ ≤ 0.1
then |arg ez| = |=z| = θ, and er ≥ <ez = er cos θ = exp(r + ln cos θ) ≥ exp(r − θ2) ≥ er − erθ2. Hence if
r < 0, we have <ez ≥ er − θ2.
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of εR, εI , and εw)6

<C ∈
(
exp(−dεR)− d2ε2

I −∆εw, exp(dεR) + ∆εw
)
, and

argC ∈ (−dεI − 2∆εw, dεI + 2∆εw) .

Thus, since εI , εR are small enough and εw ≤ 0.01 min{εI , εR}, we have

|< lnC| ≤ dεR + dεI + 2∆εw, and

|= lnC| ≤ dεI + 2∆εw.

Here we use the elementary fact that for z ∈ C, < ln z = ln |z| and = ln z = arg z. Further,

for z satisfying <z = r ∈ [0.9, 1.1] and |arg z| = θ ≤ 0.1, we also have ln r ≤ < ln z ≤
ln r + ln sec θ ≤ ln r + θ2.

In the next consequence, we show that the error contracts during the induction.

We first set up some notation. For a graph G, a vertex u, and a color i ∈ Γu, we let

a
(i)
G,u(w) = lnPG,w[c(u) = i]. We also recall that γ := 1 − w, and the definition of the

function fγ(x) := − ln(1− γex) from eq. (4.3).

Consequence 4.4.5. There exists a positive constant η ∈ [0.9, 1) so that the following is

true. Let d be the number of unpinned neighbors of u. Assume further that u is nice in G.

Then, for any colors i, j ∈ Γu, there exists a real constant c = cG,u,i ∈ [0, 1
d+η ] such that∣∣∣<fγ(a

(i)
G,u(w))− f1(a

(i)
G,u(0))− c · <

(
a

(i)
G,u(w)− a(i)

G,u(0)
)∣∣∣ ≤ εI + εw. (4.14)∣∣∣=fγ(a

(i)
G,u(w))− fγ(a

(j)
G,u(w))

∣∣∣ ≤ 1

d+ η
· (dεI + 4∆εw) + 2εw.

(4.15)∣∣∣=fγ(a
(i)
G,u(w))

∣∣∣ ≤ 1

d+ η
· (dεI + 4∆εw) + εw.

(4.16)

Proof. Since u is nice in G, the bound PG,0[c(u) = k] ≤ 1
d+2 (for any k ∈ ΓG,u) applies.

Combining them with Consequence 4.4.4 we see that a
(i)
G,u(w), a

(i)
G,u(0), a

(j)
G,u(w), a

(j)
G,u(0) lie

in a domain D as described in Lemma 4.2.6 (with the parameter κ therein set to 1), with

6Here, for the second inclusion, we use the following elementary computation. Let z, s be complex
numbers such that <z = r ∈ [0.9, 1.1], |arg z| = θ ≤ 0.1 and |s| ≤ 0.1. Then, we have <(z + s) ≥ r − |s| and

|=(z + s)| ≤ rθ + |s|. Thus, |arg(z + s)| ≤ |=(z+s)|
|<(z+s)| ≤

rθ+|s|
r−|s| = θ + |s| · 1+θ

r−|s| ≤ θ + 2 |s|.
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the parameters ζ and τ in that observation chosen as

ζ = ln(d+ 2)− dεR − dεI − 2∆εw and

τ = dεI + 2∆εw.
(4.17)

Here, for the bound on ζ, we use the fact that for j ∈ ΓG,u, PG[c(u) = j] ≤ 1
d+2 , which is

due to u being nice in G.

The bounds on εw, εI and εR now imply eζ ≥ (d + 2)
(
1− 0.02

∆

)
≥ d + 1.94, and

also that τ ≤ 0.02/∆. Thus, the conditions required on ζ and τ in Lemma 4.2.6 (i.e. that

τ < 1/2 and τ2 + e−ζ < 1) are satisfied. Further, ρR and ρI as set in the observation satisfy

ρR ≤ 1
d+η , where η can be taken to be 0.94, and ρI < 3εI .

Using Lemma 4.2.5 followed by the value of εw, and noting that a
(i)
G,u(0) is a real

number, we then have∣∣∣<f1(a
(i)
G,u(w))− f1(a

(i)
G,u(0))− c · <

(
a

(i)
G,u(w)− a(i)

G,u(0)
)∣∣∣ ≤ ρI · ∣∣∣=(a(i)

G,u(w)− a(i)
G,u(0)

)∣∣∣
≤ 3εI(dεI + 2∆εw) ≤ 4dε2

I ≤ εI ,
(4.18)

for an appropriate positive c ≤ 1/(d + η). This is almost eq. (4.14), whose difference will

be handled later.

Similarly, applying Lemma 4.2.5 to the imaginary part we have∣∣∣=f1(a
(i)
G,u(w))− f1(a

(j)
G,u(w))

∣∣∣
≤ ρR ·max

{∣∣∣=(a(i)
G,u(w)− a(j)

G,u(w)
)∣∣∣ , ∣∣∣=a(i)

G,u(w)
∣∣∣ , ∣∣∣=a(j)

G,u(w)
∣∣∣} , (4.19)

where, as noted above, ρR ≤ 1
d+η . Now, note that the first term in the above maximum is

less than dεI by item 4 of the induction hypothesis, while the other two terms are at most

dεI +2∆εw from item 2 of Consequence 4.4.4. This is almost the bound in eq. (4.15), whose

difference will be handled later.

To prove the bound in eq. (4.16), we first apply the imaginary part of Lemma 4.2.5

along with the fact that =a(i)
G,u(0) = 0 to get∣∣∣=f1(a

(i)
G,u(w))

∣∣∣ =
∣∣∣=f1(a

(i)
G,u(w))− f1(a

(i)
G,u(0))

∣∣∣ ≤ ρR · ∣∣∣=(a(i)
G,u(w)

)∣∣∣ ≤ 1

d+ η
(dεI + ∆εw).

(4.20)

Finally, we use item 2 of Lemma 4.2.6 (with the parameter κ′ therein set to γ) to

conclude the proofs of eqs. (4.14) to (4.16). To this end, we note that γ satisfies |γ − 1| ≤ εw,
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so that the condition (1 + εw) < eζ required for item 2 to apply is satisfied. Thus we see

that for any z ∈ D,

|fγ(z)− f1(z)| ≤ εw,

so that the quantities |<fγ(a
(i)
G,u(w))−<f1(a

(i)
G,u(w))|, |=fγ(a

(i)
G,u(w))−=f1(a

(i)
G,u(w))|, |=fγ(a

(j)
G,u(w))−

=f1(a
(j)
G,u(w))|, and |=fγ(a

(j)
G,u(w))− =f1(a

(j)
G,u(w))| are all at most εw. The desired bounds

of eqs. (4.14) to (4.16) now follow from the triangle inequality and the bounds in eqs. (4.18)

to (4.20).

We set up some further notation for the next consequence. For a color i ∈ L(u)\Γu
we let b

(i)
G,u(w) = PG,w[c(u) = i]. We then consider the function gγ(x) := − ln(1− γx).

Consequence 4.4.6. For every color i 6∈ Γu,
∣∣∣gγ(b

(i)
G,u(w))

∣∣∣ ≤ 2εw.

Proof. Item 1 of Consequence 4.4.4 implies that
∣∣∣b(i)G,u(w)

∣∣∣ ≤ 1.2εw. Thus, recalling that

|γ − 1| ≤ εw, we get that for all εw < 0.01,
∣∣∣gγ(b

(i)
G,u(w))

∣∣∣ =
∣∣∣ln(1− γb(i)G,u(w))

∣∣∣ ≤ 2εw.

Inductive proof of Lemma 4.4.2

We are now ready to see the induction step in the proof of Lemma 4.4.2; recall that

the base case was already established following the statement of the lemma. Let G be any

unconflicted graph which satisfies Condition 1 and had at least two unpinned vertices (the

base case when |G| = 1 was already handled above). We first prove induction item 1 for any

vertex u ∈ G. Consider the graph G′ obtained from G by pinning vertex u to color i. Note

that by the definition of the pinning operation, Z
(i)
G,u(w) = ZG′(w), and when i ∈ ΓG,u, the

graph G′ is also unconflicted and satisfies Condition 1, and has one fewer unpinned vertex

than G. Thus, from Consequence 4.4.3 of the induction hypothesis applied to G′, we have

that
∣∣∣Z(i)

G,u(w)
∣∣∣ = |ZG′(w)| > 0.

We now consider item 2. When all neighbors of u in G are pinned, the fact that

all pinned vertices have degree at most one implies that G can be decomposed into two

disjoint components G1 and G2, where G1 consists of u and its pinned neighbors, while G2

is also unconflicted (when G is unconflicted) and has one fewer unpinned vertex than G.

Now, since G1 and G2 are disjoint components, we have Z
(k)
G,u(x) = ZG2(x) for all k ∈ ΓG,u

and all x ∈ C. Further, from Consequence 4.4.3 of the induction hypothesis applied to G2,

we also have that ZG2(w) and ZG2(0) are both non-zero. It therefore follows that when

i, j ∈ ΓG,u, R
(i,j)
G,u (w) = R

(i,j)
G,u (0) = 1.
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We now consider items 3 and 4. Recall that by Lemma 4.2.4, we have

R
(i,j)
G,u (w) =

degG(u)∏
k=1

(
1− γP

G
(i,j)
k ,w

[c(vk) = i]
)

(
1− γP

G
(i,j)
k ,w

[c(vk) = j]
) . (4.21)

For simplicity we write Gk := G
(i,j)
k . Note that when i, j ∈ ΓG,u, and G is unconflicted, so

are the Gk. Further, each Gk has exactly one fewer unpinned vertex than G, so that the

induction hypothesis applies to each Gk. Note also that when i, j ∈ ΓG,u, we can restrict

the product above to the d unpinned neighbors of u, since for such i, j, the contribution of

the factor corresponding to a pinned neighbor is 1, irrespective of the value of w. Without

loss of generality, we relabel these unpinned neighbors as v1, v2, . . . , vd.

Now, as before, for s ∈ ΓGk,vk we define a
(s)
Gk,vk

(w) := lnPGk,w[c(vk) = s]; while

for t ∈ L(vk) \ ΓGk,vk we let b
(t)
Gk,vk

(w) := PGk,w[c(vk) = t]. For a graph G, a vertex u and

a color s, we let BG,u(s) be the set of those neighbors of u for which s is a bad color in

G \ {u}. For simplicity we will also write B(s) := BG,u(s) when it is clear from the context.

As before, we have γ = 1−w, fγ(x) = − ln(1− γex), gγ(x) = − ln(1− γx). From the above

recurrence, we then have,

− lnR
(i,j)
G,u (w) =

∑
vk∈B(i)∩B(j)

fγ

(
a

(i)
Gk,vk

(w)
)
− fγ

(
a

(j)
Gk,vk

(w)
)

+

 ∑
vk∈B(i)∩B(j)

fγ

(
a

(i)
Gk,vk

(w)
)−

 ∑
vk∈B(i)∩B(j)

fγ

(
a

(j)
Gk,vk

(w)
)

−

 ∑
vk∈B(i)∩B(j)

gγ

(
b
(j)
Gk,vk

(w)
)+

 ∑
vk∈B(i)∩B(j)

gγ

(
b
(i)
Gk,vk

(w)
)

+

 ∑
vk∈B(i)∩B(j)

gγ

(
b
(i)
Gk,vk

(w)
)
− gγ

(
b
(j)
Gk,vk

(w)
) . (4.22)

Note that the same recurrence also applies when w is replaced by 0 (and hence γ by 1),

except in that case the last three sums are 0 (as, when i is bad for vk in Gk, we have

b
(i)
Gk,vk

(0) := PrGk [c(vk) = i] = 0):

− lnR
(i,j)
G,u (0) =

∑
vk∈B(i)∩B(j)

f1

(
a

(i)
Gk,vk

(0)
)
− f1

(
a

(j)
Gk,vk

(0)
)

+

 ∑
vk∈B(i)∩B(j)

f1

(
a

(i)
Gk,vk

(0)
)−

 ∑
vk∈B(i)∩B(j)

f1

(
a

(j)
Gk,vk

(0)
) . (4.23)
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Further, by Consequence 4.4.6 of the induction hypothesis applied to the graph Gk at a

vertex vk ∈ B(i) (respectively, vk ∈ B(j)) we see that
∣∣∣gγ(b(i)Gk,vk(w)

)∣∣∣ ≤ 2εw (respec-

tively, gγ

(
b
(j)
Gk,vk

(w)
)
≤ 2εw). Thus, applying the triangle inequality to the real part of the

difference of the two recurrences, we get

1

d

∣∣∣< lnR
(i,j)
G,u (0)− lnR

(i,j)
G,u (w)

∣∣∣ ≤ 2∆εw

+ max

{
max

vk∈B(i)∩B(j)

{∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− f1

(
a

(i)
Gk,vk

(0)
))

−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− f1

(
a

(j)
Gk,vk

(0)
))∣∣∣} ,

max
vk∈B(i)∩B(j)

{∣∣∣<fγ(a(i)
Gk,vk

(w)
)
− f1

(
a

(i)
Gk,vk

(0)
)∣∣∣} ,

max
vk∈B(j)∩B(i)

{∣∣∣<fγ(a(j)
Gk,vk

(w)
)
− f1

(
a

(j)
Gk,vk

(0)
)∣∣∣}} .
(4.24)

In what follows, we let vk be the vertex that maximizes the above expression, and

dk be the number of unpinned neighbors of vk in Gk. Before proceeding with the analysis,

we note that the graphs Gk are unconflicted and satisfy Condition 1, and further that vk is

nice in Gk (this last fact follows from Lemma 4.3.2 and the fact that G satisfies Condition 1).

Thus, the preconditions of Consequence 4.4.5 apply to the vertex vk in graph Gk. We now

proceed with the analysis.

We first consider vk ∈ B(i) ∩ B(j). Note that this implies that i ∈ ΓGk,vk . Thus,

the conditions of Consequence 4.4.5 of the induction hypothesis instantiated on Gk apply

to vk with color i, and we thus have from eq. (4.14) that∣∣∣<fγ(a(i)
Gk,vk

(w)
)
− f1

(
a

(i)
Gk,vk

(0)
)∣∣∣ ≤ 1

dk + η

∣∣∣<a(i)
Gk,vk

(w)− a(i)
Gk,vk

(0)
∣∣∣+ εI + εw,

where dk is the number of unpinned neighbors of vk and η ∈ [0.9, 1) is as in the statement

of Consequence 4.4.5. Applying item 2 of Consequence 4.4.4 (which, again, is applicable

because i ∈ ΓGk,vk), we then have
∣∣∣<a(i)

Gk,vk
(w)− a(i)

Gk,vk
(0)
∣∣∣ ≤ dk(εR + εI) + 2∆εw, so that∣∣∣<fγ(a(i)

Gk,vk
(w)
)
− f1

(
a

(i)
Gk,vk

(0)
)∣∣∣ ≤ dk

dk + η
εR + 2εI + 3∆εw. (4.25)

By interchanging the roles of i and j in the above argument, we see that, for vk ∈ B(j)∩B(i)∣∣∣<fγ(a(j)
Gk,vk

(w)
)
− f1

(
a

(j)
Gk,vk

(0)
)∣∣∣ ≤ dk

dk + η
εR + 2εI + 3∆εw. (4.26)
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We now consider vk ∈ B(i) ∩B(j). Note that both i and j are good for vk in Gk, so that∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− f1

(
a

(i)
Gk,vk

(0)
))
−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− f1

(
a

(j)
Gk,vk

(0)
))∣∣∣

≤ max
i′,j′∈ΓGk,vk

∣∣∣(<fγ(a(i′)
Gk,vk

(w)
)
− f1

(
a

(i′)
Gk,vk

(0)
))
−
(
<fγ

(
a

(j′)
Gk,vk

(w)
)
− f1

(
a

(j′)
Gk,vk

(0)
))∣∣∣ ,

Now, for any color s ∈ ΓGk,vk , Consequence 4.4.5 of the induction hypothesis instantiated

on Gk and applied to vk and s shows that there exists a Cs = Cs,vk,Gk ∈ [0, 1/(dk + η)] such

that ∣∣∣<fγ(a(s)
Gk,vk

(w)
)
− f1

(
a

(s)
Gk,vk

(0)
)
− Cs(<a(s)

Gk,vk
(w)− a(s)

Gk,vk
(0))

∣∣∣ ≤ εI + εw.

Substituting this in the previous display shows that∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− f1

(
a

(i)
Gk,vk

(0)
))
−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− f1

(
a

(j)
Gk,vk

(0)
))∣∣∣

≤ max
i′,j′∈ΓGk,vk

∣∣∣Ci′(<a(i′)
Gk,vk

(w)− a(i′)
Gk,vk

(0))− Cj′(<a(j′)
Gk,vk

(w)− a(j′)
Gk,vk

(0))
∣∣∣+ 2εI + 2εw

= 2εI + 2εw + max
i′,j′∈ΓGk,vk

∣∣Ci′<ξi′ − Cj′<ξj′∣∣ ,
= 2εI + 2εw + Cs<ξs − Ct<ξt, (4.27)

where ξl := a
(l)
Gk,vk

(w)− a(l)
Gk,vk

(0) for l ∈ ΓGk,vk , and s and t are given by

s := arg max
i′∈ΓGk,vk

Ci′<ξi′ and t := arg min
i′∈ΓGk,vk

Ci′<ξi′ .

We now have the following two cases:

Case 1: (<ξs) · (<ξt) ≤ 0. Recall that Cs, Ct are non-negative and lie in [0, 1/(dk + η)].

Thus, in this case, we must have <ξs ≥ 0 and <ξt ≤ 0, so that

Cs<ξs − Ct<ξt = Cs<ξs + Ct |<ξt| ≤
1

dk + η
(<ξs + |<ξt| ) =

1

dk + η
|<ξs −<ξt| . (4.28)

Now, note that

<ξs −<ξt = < ln
PGk,w[c(vk) = s]

PGk [c(vk) = s]
−< ln

PGk,w[c(vk) = t]

PGk [c(vk) = t]

= < ln
PGk,w[c(vk) = s]

PGk,w[c(vk) = t]
−< ln

PGk [c(vk) = s]

PGk [c(vk) = t]

= < lnR
(s,t)
Gk,vk

(w)− lnR
(s,t)
Gk,vk

(0).
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Note that all the logarithms in the above are well defined from Consequence 4.4.4 of the

induction hypothesis applied to Gk and vk (as s, t ∈ ΓGk,vk). Further from items 2 and 3 of

the induction hypothesis, the last term is at most dkεR in absolute value. Substituting this

in eq. (4.28), we get

Cs<ξs − Ct<ξt ≤
dk

dk + η
εR. (4.29)

This concludes the analysis of Case 1.

Case 2: <ξi′ for i′ ∈ ΓGk,vk all have the same sign. Suppose first that <ξi′ ≥ 0 for all

i′ ∈ ΓGk,vk . Then, we have

0 ≤ Cs<ξs − Ct<ξt ≤
1

dk + η
<ξs ≤

dk
dk + η

εR + εI + 4∆εw, (4.30)

where the last inequality follows from item 2 of Consequence 4.4.5 of the induction hypoth-

esis applied to Gk at vertex vk with color s, which states that |<ξs| ≤ dk(εR + εI) + 4∆εw.

Similarly, when <ξi′ ≤ 0 for all i′ ∈ ΓGk,vk , we have

0 ≤ Cs<ξs − Ct<ξt = Ct|<ξt| − Cs|<ξs|

≤ 1

dk + η
|<ξt| ≤

dk
dk + η

εR + εI + 4∆εw, (4.31)

where the last inequality follows from item 2 of Consequence 4.4.5 of the induction hypoth-

esis applied to Gk at vertex vk with color t, which states that |<ξt| ≤ dk(εR + εI) + 4∆εw.

This concludes the analysis of Case 2.

Now, substituting eqs. (4.29) to (4.31) into eq. (4.27), we get∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− f1

(
a

(i)
Gk,vk

(0)
))
−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− f1

(
a

(j)
Gk,vk

(0)
))∣∣∣

≤ dk
dk + η

εR + 3εI + 5∆εw. (4.32)

Substituting eqs. (4.25), (4.26) and (4.32) into eq. (4.24), we get

1

d

∣∣∣< lnR
(i,j)
G,u (w)− lnR

(i,j)
G,u (0)

∣∣∣ ≤ dk
dk + η

εR + 3εI + 7∆εw < εR,

where the last inequality follows since ηεR > (∆+1)(3εI+7∆εw) (recalling that 0 ≤ dk ≤ ∆

and η ∈ [0.9, 1)). This verifies item 3 of the induction hypothesis.

For item 4, we consider the imaginary part of eq. (4.22). As in the derivation of

eq. (4.24), we use the fact that the induction hypothesis applied to the graph Gk at the
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vertex vk ∈ B(i) (respectively, vk ∈ B(j)) implies that
∣∣∣gγ(b(i)Gk,vk(w)

)∣∣∣ ≤ 2εw (respectively,

gγ

(
b
(j)
Gk,vk

(w)
)
≤ 2εw). This yields

1

d

∣∣∣= lnR
(i,j)
G,u (w)

∣∣∣ ≤ 2∆εw

+ max

{
max

vk∈B(i)∩B(j)

∣∣∣=fγ(a(i)
Gk,vk

(w)
)
−=fγ

(
a

(j)
Gk,vk

(w)
)∣∣∣

max
vk∈B(i)∩B(j)

∣∣∣=fγ(a(i)
Gk,vk

(w)
)∣∣∣ , max

vk∈B(j)∩B(i)

∣∣∣=fγ(a(j)
Gk,vk

(w)
)∣∣∣} .

(4.33)

Again, let vk be the vertex that maximizes the above expression, and dk be the number of

unpinned neighbors of vk in Gk. We first consider vk ∈ B(i) ∩ B(j). Applying eq. (4.15)

of Consequence 4.4.5 of the induction hypothesis to the graph Gk at vertex vk with colors

i, j ∈ ΓGk,vk gives∣∣∣=fγ(a(i)
Gk,vk

(w)
)
−=fγ

(
a

(j)
Gk,vk

(w)
)∣∣∣ ≤ dk

dk + η
εI + 6∆εw. (4.34)

Now consider vk ∈ B(i)∩B(j). For this case, eq. (4.16) of Consequence 4.4.5 of the induction

hypothesis applied to Gk at vertex vk with color i ∈ ΓGk,vk gives∣∣∣=fγ(a(i)
Gk,vk

(w)
)∣∣∣ ≤ dk

dk + η
εI + 5∆εw. (4.35)

Similarly, for vk ∈ B(j)∩B(i). For this case, eq. (4.16) of Consequence 4.4.5 of the induction

hypothesis applied to Gk at vertex vk with color j ∈ ΓGk,vk gives∣∣∣=fγ(a(j)
Gk,vk

(w)
)∣∣∣ ≤ dk

dk + η
εI + 5∆εw. (4.36)

Substituting eqs. (4.34) to (4.36) into eq. (4.33) we then have

1

d

∣∣∣= lnR
(i,j)
G,u (w)

∣∣∣ ≤ dk
dk + η

εI + 8∆εw < εI ,

where the last inequality holds since ηεI > 8(∆ + 1)∆εw (recalling that 0 ≤ dk ≤ ∆ and

η ∈ [0.9, 1)). This completes the proof of item item 4 of the induction hypothesis.

Finally, we prove item 5. Since i 6∈ Γu, there exist ni > 0 neighbors of u that are

pinned to color i. Let H be the graph obtained by removing these neighbors of u from G.

Then, H is an unconflicted graph with the same number of unpinned vertices as G which
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also satisfies i, j ∈ ΓH,u; we can therefore apply the already proved items 1 to 3 to H to

conclude that ∣∣∣R(i,j)
H (w)

∣∣∣ ≤ ∣∣∣R(i,j)
H (0)

∣∣∣ exp(dεR). (4.37)

Now, since i, j ∈ ΓH,u, we can apply the recurrence of Lemma 4.2.4 in the same way as in

the derivation of eq. (4.21) above to get

R
(i,j)
H,u (w) =

degH(u)∏
k=1

(
1− P

H
(i,j)
k ,w

[c(vk) = i]
)

(
1− P

H
(i,j)
k ,w

[c(vk) = j]
) , (4.38)

where, for the reasons described in the discussion following eq. (4.21), the product can

be restricted to unpinned neighbors of u in H. Renaming these unpinned neighbors as

v1, v2, . . . , vd, we then have

0 ≤ R(i,j)
H (0) =

d∏
k=1

(1− PHk [c(vk) = i] )

(1− PHk [c(vk) = j] )
, (4.39)

where as before, Hk := H
(i,j)
k . Now, since G satisfies Condition 1, so does H. Thus, for

1 ≤ k ≤ d, vk is nice in Hk (Lemma 4.3.2), and hence, PHk [c(vk) = j] ≤ 1
dk+2 for 1 ≤ k ≤ d,

where dk ≥ 0 is the number of unpinned neighbors of vk in Hk. We then have

0 ≤ R(i,j)
H (0) =

d∏
k=1

(1− PHk [c(vk) = i] )

(1− PHk [c(vk) = j] )
≤

d∏
k=1

1

1− 1
dk+2

=
d∏

k=1

dk + 2

dk + 1
≤ 2∆.

(As an aside, we note that one could get a better bound under the slightly stronger as-

sumption of uniformly large list sizes considered in Remark 12. Under the conditions of

that remark, we have PHk [c(vk) = j] < min
{

4
3∆ , 1

}
, so that the above upper bound can be

improved to R
(i,j)
H (0) ≤ e4 for ∆ > 1.)

Combining the estimate with eq. (4.37), we get
∣∣∣R(i,j)

H (w)
∣∣∣ ≤ 5·2∆ since dεR ≤ 1/2.

Now note that since j ∈ ΓG,u,

Z
(i)
G,u(w) = wniZ

(i)
H,u(w), and Z

(j)
G,u(w) = Z

(j)
H,u(w),

so that
∣∣∣R(i,j)

G,u (w)
∣∣∣ = |w|ni

∣∣∣R(i,j)
H,u (w)

∣∣∣ ≤ 5 · 2∆ · |w|ni . The latter is at most εw whenever

|w| ≤ 0.2εw/2
∆. This proves item 5, and also completes the inductive proof of Lemma 4.4.2.

(Note also that using the stronger upper bound above under the condition of uniformly large

list sizes, we can in fact relax the requirement further to |w| ≤ εw/(300∆).)

We conclude this section by using Lemma 4.4.2 to prove Theorem 4.4.1.
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Proof of Theorem 4.4.1. Let G be a graph satisfying Condition 1. Since G has no pinned

vertices, G is unconflicted. Let u be an unpinned vertex in G. By Consequence 4.4.3 of the

induction hypothesis (which we proved in Lemma 4.4.2), we then have Zw(G) 6= 0 provided

νw ≤ 0.2εw/2
∆.

Furthermore, as discussed above, under a slightly stronger assumption of uniformly

large list sizes considered in Remark 12, νw can be chosen to be εw/(300∆).

4.5 Zero-free region around the interval (0, 1]

In this section, we consider the case of w close to [0, 1] but bounded away from 0.

In particular, we prove the following theorem, which complements Theorem 4.4.1.

Theorem 4.5.1. Fix a positive integer ∆ and let νw = νw(∆) be as in Theorem 4.4.1.

Then, for any w satisfying

<w ∈ [νw/2, 1 + ν2
w/8] and |=w| ≤ ν2

w/8, (4.40)

and any graph G satisfying Condition 1, we have ZG(w) 6= 0.

(Here, we recall that as described in the discussion following Theorem 4.4.1, νw

can be chosen to be εw/(300∆) when the uniformly large list size condition of Remark 12

is satisfied. However, as in that theorem, in the case of general list coloring, one chooses

νw = 0.2εw/2
∆.)

For w as in eq. (4.40), we define w̃ to be the point on the interval [0, 1] which is

closest to w. Thus

w̃ :=

<w when <w ∈ [νw/2, 1];

1 when <w ∈ (1, 1 + ν2
w/8].

We also define, in analogy with the last section, γ := 1 − w and γ̃ := 1 − w̃. We record a

few properties of these quantities in the following observation.

Observation 4.5.2. With w, γ, w̃ and γ̃ as above, we have

1. 0 ≤ γ̃, |γ| < 1.

2. | lnw − ln w̃| ≤ νw.
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Proof. We have γ̃ ∈ [0, 1−νw/2], <γ ∈ [−ν2
w/8, 1−νw/2] and |=γ| ≤ ν2

w/8. Since νw ≤ 0.01,

these bounds taken together imply item 1. We also have 0 ≤ w̃ ≤ |w| ≤ w̃ + ν2
w/4 and

w̃ ≥ νw/2. Thus

0 ≤ <(lnw − ln w̃) = ln
|w|
w̃
≤ ln

(
1 +

ν2
w

4w̃

)
≤ νw

2
.

Similarly, =(lnw − ln w̃) = = lnw = argw, so that

|=(lnw − ln w̃)| ≤ |argw| ≤ |=w|<w ≤
νw
4
.

Together, the above two bounds imply item 2.

In analogous fashion to the proof of Theorem 4.4.1, we would like to show that

R
(i,j)
G,u (w) ≈ R

(i,j)
G,u (w̃) independent of the size of G. (Note that for positive w̃, R

(i,j)
G,u (w̃) is a

well defined positive real number for any graph.) To this end, we will prove the following

analog of Lemma 4.4.2 for any graph G satisfying Condition 1 and any vertex u in G, via

an induction on the number of unpinned vertices in G. The induction is very similar in

structure to that used in the proof of Lemma 4.4.2, except that the fact that w has strictly

positive real part allows us to simplify several aspects of the proof. In particular, we do not

need to consider good and bad colors separately, and do not require the underlying graphs

to be unconflicted.

As in the previous section, we assume that all graphs in this section have maximum

degree at most ∆ ≥ 1, and define the quantities εw, εR, εI in terms of ∆ using eq. (4.9).

Lemma 4.5.3. Let G be a graph of maximum degree ∆ satisfying Condition 1 and let u be

any unpinned vertex in G. Then, the following are true (here, εw, εI , εR are as defined in

eq. (4.9)):

1. For i ∈ L(u),
∣∣∣Z(i)

G,u(w)
∣∣∣ > 0.

2. For i, j ∈ L(u), if u has all neighbors pinned, then | lnR(i,j)
G,u (w)− lnR

(i,j)
G,u (w̃)| < εw.

3. For i, j ∈ L(u), if u has d ≥ 1 unpinned neighbors, then

1

d

∣∣∣< lnR
(i,j)
G,u (w)−< lnR

(i,j)
G,u (w̃)

∣∣∣ < εR.

4. For any i, j ∈ L(u), if u has d ≥ 1 unpinned neighbors, then 1
d

∣∣∣= lnR
(i,j)
G,u (w)

∣∣∣ < εI .
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We will refer to items 1 to 4 as “items of the induction hypothesis”. The rest

of this section is devoted to the proof of this lemma via an induction on the number of

unpinned vertices in G.

We begin by verifying that the induction hypothesis holds in the base case when

u is the only unpinned vertex in a graph G. In this case, items 3 and 4 are vacuously true

since u has no unpinned neighbors. Since all neighbors of u in G are pinned, the fact that all

pinned vertices have degree at most one implies that G can be decomposed into two disjoint

components G1 and G2, where G1 consists of u and its pinned neighbors, while G2 consists

of a disjoint union of edges with pinned end-points. Let m be the number of conflicted edges

on G2, and let nk denote the number of neighbors of u pinned to color k. We then have

Z
(k)
G,u(x) = xnkZG2(x) = xnk+m for all x ∈ C. This already proves item 1 since w, w̃ 6= 0.

Item 2 follows via the following computation (which uses item 2 of Observation 4.5.2):

| lnR(i,j)
G,u (w)− lnR

(i,j)
G,u (w̃)| = |ni − nj | · | lnw − ln w̃| ≤ ∆νw < εw.

We now derive some consequences of the above induction hypothesis that will be helpful in

carrying out the induction.

Consequence 4.5.4. If |L(u)| ≥ 1, then |ZG(w)| > 0.

Proof. Note that ZG(w) =
∑

i∈L(u) Z
(i)
G,u(w). From item 4, we see that the angle between

the complex numbers Z
(i)
G,u(w) and Z

(j)
G,u(w), for all i, j ∈ L(u), is at most dεI . Applying

Lemma 4.2.7 we then have∣∣∣∣∣∣
∑
i∈L(u)

Z
(i)
G,u(w)

∣∣∣∣∣∣ ≥ |L(u)| cos
dεI
2
·min
i∈Γu

∣∣∣Z(i)
G,u(w)

∣∣∣ ≥ 0.9 min
i∈Γu

∣∣∣Z(i)
G,u(w)

∣∣∣ ,
when |L(u)| ≥ 1 and dεI ≤ 0.01. This last quantity is positive from item 1.

Consequence 4.5.5. For all εR, εI , εw small enough such that εI ≤ εR and εw ≤ 0.01εI ,

the pseudo-probabilities approximate the real probabilities in the following sense: for any

j ∈ L(u), ∣∣∣∣= ln
PG,w[c(u) = j]

PG,w̃[c(u) = j]

∣∣∣∣ = |= lnPG,w[c(u) = j]| ≤ dεI + 2∆εw, and∣∣∣∣< ln
PG,w[c(u) = j]

PG,w̃[c(u) = j]

∣∣∣∣ ≤ dεR + dεI + 2∆εw,

where d is the number of unpinned neighbors of u in G.
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Proof. Using items 2 to 4 of the induction hypothesis, there exist complex numbers ξi (for

all i ∈ Γu) satisfying |<ξi| ≤ dεR + εw and |=ξi| ≤ dεI + εw such that

PG,w̃[c(u) = j]

PG,w[c(u) = j]
= PG,w̃[c(u) = j]

∑
i∈L(u)

Z
(i)
G,u(w)

Z
(j)
G,u(w)

= PG,w̃[c(u) = j]
∑
i∈L(u)

Z
(i)
G,u(w̃)

Z
(j)
G,u(w̃)

eξi (4.41)

Now, note that
∑

i∈L(u)

Z
(i)
G,u(w̃)

Z
(j)
G,u(w̃)

= 1
PG,w̃[c(u)=j] , so that the sum above is a convex combi-

nation of the exp(ξi). From the bounds on the real and imaginary parts of the ξi quoted

above, by a calculation similar to that in eq. (4.11), we also have (when εI , εw ≤ 0.01/∆)

<eξi ∈ (exp(−dεR − εw)− (dεI + εw)2, exp(dεR + εw)), and | arg eξi | ≤ dεI + εw. (4.42)

The above will therefore be true also for any convex combination of the eξi , in particular

the one in eq. (4.41). We therefore have for C :=
PG,w̃[c(u)=j]
PG,w[c(u)=j]

<C ∈ (exp(−dεR − εw)− (dεI + εw)2, exp(dεR + εw)), and (4.43)

| argC| ≤ dεI + εw. (4.44)

Now recall that for |θ| ≤ π/4, we have −θ2 ≤ ln cos θ ≤ −θ2/2. Thus, using the values of

εw, εI and εR, we have

|< lnC| ≤ dεR + dεI + 2∆εw, and

|= lnC| ≤ dεI + εw.

As before we define a
(i)
G,u(w) = lnPG,w[c(u) = i], and recall the definition of the

function fγ(x) := − ln(1− γex).

Consequence 4.5.6. There exists a positive constant η ∈ [0.9, 1) so that the following is

true. Let d be the number of unpinned neighbors of u. Assume further that the vertex u is

nice in G. Then, for any colors i, j ∈ L(u), there exist a real constant c = cG,u,i ∈ [0, 1
d+η ]

such that∣∣∣<fγ(a
(i)
G,u(w))− fγ̃(a

(i)
G,u(w̃))− c · <

(
a

(i)
G,u(w)− a(i)

G,u(w̃)
)∣∣∣ ≤ εI + εw. (4.45)∣∣∣=fγ(a

(i)
G,u(w))− fγ(a

(j)
G,u(w))

∣∣∣ ≤ 1

d+ η
· (dεI + 4∆εw) + 2εw.

(4.46)
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Proof. Since u is nice in G, the bound PG,w̃[c(u) = k] ≤ 1
d+2 (for any k ∈ L(u)) applies.

Combining them with Consequence 4.5.5 we see that a
(i)
G,u(w), a

(i)
G,u(w̃), a

(j)
G,u(w), a

(j)
G,u(w̃) lie

in a domain D as described in Lemma 4.2.6, with the parameters ζ and τ in that lemma

chosen as

ζ = ln(d+ 2)− dεR − dεI − 2∆εw and

τ = dεI + 2∆εw.
(4.47)

Here, for the bound on ζ, we use the fact that for k ∈ L(u), PG,w̃[c(u) = k] ≤ 1
d+2 , since u

is nice in G. As in the proof of Consequence 4.4.5, we use the values of εw, εI , εR to verify

that the condition τ < 1/2 and τ2 + e−ζ < 1 are satisfied, so that item 1 of Lemma 4.2.6

applies (with the parameter κ therein set to γ̃) and further that ρR and ρI as set there

satisfy ρR ≤ 1
d+η and ρI < 3εI , with η = 0.94. Using Lemma 4.2.5 followed by the bound

on εw, we then have∣∣∣<fγ̃(a
(i)
G,u(w))− fγ̃(a

(i)
G,u(w̃))− c · <

(
a

(i)
G,u(w)− a(i)

G,u(w̃)
)∣∣∣ ≤ 3εI(dεI + 2∆εw) ≤ 4dε2

I ≤ εI ,
(4.48)

for an appropriate positive c ≤ 1/(d + η). This is almost eq. (4.45), whose difference will

be handled later.

Similarly, applying Lemma 4.2.5 to the imaginary part we have∣∣∣=fγ̃(a
(i)
G,u(w))− fγ̃(a

(j)
G,u(w))

∣∣∣
≤ ρR ·max

{∣∣∣=(a(i)
G,u(w)− a(j)

G,u(w)
)∣∣∣ , ∣∣∣=a(i)

G,u(w)
∣∣∣ , ∣∣∣=a(j)

G,u(w)
∣∣∣} , (4.49)

where, as noted above, ρR ≤ 1
d+η . Now, note that the first term in the above maximum is

less than dεI + εw by items 2 and 4 of the induction hypothesis, while the other two are at

most dεI + 2∆εw from item 2 of Consequence 4.5.5.

Finally, we use item 2 of Lemma 4.2.6 with the parameter κ′ therein set to γ. To

this end, we note that |γ − γ̃| ≤ εw, and that with the fixed values of εw, εR, and εI , the

condition (1 + εw) < eζ is satisfied, so that the item applies. Using the item, we then see

that for any z ∈ D,

|fγ(z)− fγ̃(z)| ≤ εw.

Thus, the following quantities: |<fγ(a
(i)
G,u(w))−<fγ̃(a

(i)
G,u(w))|, |=fγ(a

(i)
G,u(w))−=fγ̃(a

(i)
G,u(w))|,

|=fγ(a
(j)
G,u(w)) − =fγ̃(a

(j)
G,u(w))|, and |=fγ(a

(j)
G,u(w)) − =fγ̃(a

(j)
G,u(w))| are all at most εw.

The desired bounds now follow from the triangle inequality and the bounds in eqs. (4.48)

and (4.49).
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Inductive proof of Lemma 4.5.3

We are now ready to see the inductive proof of Lemma 4.5.3; recall that the base

case was already established following the statement of the lemma. Let G be any graph

which satisfies Condition 1 and had at least two unpinned vertices (the base case when

|G| = 1 was already handled above). We first prove induction item 1 for any vertex u in G.

Consider the graph G′ obtained from G by pinning vertex u to color i. Note that by the

definition of the pinning operation, ZiG,u(w) = ZG′(w). Further, the graph G′ also satisfies

Condition 1, and has one fewer unpinned vertex than G. Thus, from Consequence 4.5.4 of

the induction hypothesis applied to G′, we have that
∣∣∣Z(i)

G,u(w)
∣∣∣ = |ZG′(w)| > 0.

We now consider item 2. When all neighbors of u in G are pinned, the fact that

all pinned vertices have degree at most one implies that G can be decomposed into two

disjoint components G1 and G2, where G1 consists of u and its pinned neighbors, while G2

has one fewer unpinned vertex than G. Let nk be the number of neighbors of u pinned to

color k. Now, since G1 and G2 are disjoint components, we have Z
(k)
G,u(x) = xnkZG2(x) for

all k ∈ L(u) and all x ∈ C. Further, from Consequence 4.5.4 of the induction hypothesis

applied to G2, we also have that ZG2(w) and ZG2(w̃) are both non-zero. It therefore follows

that

| lnR(i,j)
G,u (w)− lnR

(i,j)
G,u (w̃)| = |ni − nj | · | lnw − ln w̃| ≤ ∆νw < εw.

We now consider items 3 and 4. Recall that by Lemma 4.2.4, we have

R
(i,j)
G,u (w) =

degG(u)∏
k=1

(
1− γP

G
(i,j)
k ,w

[c(vk) = i]
)

(
1− γP

G
(i,j)
k ,w

[c(vk) = j]
) .

As before, for simplicity we write Gk := G
(i,j)
k . Note that each Gk has exactly one fewer

unpinned vertex than G, so that the induction hypothesis applies to each Gk. Without loss

of generality, we relabel the unpinned neighbors of u as v1, v2, . . . , vd. Let nk be the number

of neighbors of u pinned to color k. Recalling that 1 − γ = w, we can then simplify the

above recurrence to

R
(i,j)
G,u (w) = wni−nj

d∏
k=1

(
1− γP

G
(i,j)
k ,w

[c(vk) = i]
)

(
1− γP

G
(i,j)
k ,w

[c(vk) = j]
) .

Now, as before, for s ∈ L(vk) we define a
(s)
Gk,vk

(w) := lnPGk,w[c(vk) = s]. From the above
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recurrence, we then have,

− lnR
(i,j)
G,u (w) = (ni − nj) lnw +

d∑
k=1

fγ

(
a

(i)
Gk,vk

(w)
)
− fγ

(
a

(j)
Gk,vk

(w)
)
. (4.50)

Note that the same recurrence also applies when w is replaced by w̃ (and hence γ by γ̃):

− lnR
(i,j)
G,u (w̃) = (ni − nj) ln w̃ +

d∑
k=1

fγ̃

(
a

(i)
Gk,vk

(w̃)
)
− fγ̃

(
a

(j)
Gk,vk

(w̃)
)
. (4.51)

(Recall that since <w, w̃ > 0, lnw and ln w̃ are well defined).

Using item 2 of Observation 4.5.2, |ni − nj | ≤ ∆, and the fact that ∆νw ≤ εw, we

have

|ni − nj | |lnw − ln w̃| ≤ εw.

Applying the triangle inequality to the real part of the difference of the two recurrences, we

therefore get

1

d

∣∣∣< lnR
(i,j)
G,u (w)− lnR

(i,j)
G,u (w̃)

∣∣∣ ≤ εw+

max
1≤k≤d

{∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− fγ̃

(
a

(i)
Gk,vk

(w̃)
))
−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− fγ̃

(
a

(j)
Gk,vk

(w̃)
))∣∣∣ } .

(4.52)

In what follows, we let vk be the vertex that maximizes the above expression, and

dk be the number of unpinned neighbors of vk in Gk. Before proceeding with the analysis,

we note that the graphs Gk satisfy Condition 1, and further that vk is nice in Gk (the

latter fact follows from Lemma 4.3.2 and the fact that G has Condition 1). Thus, the

preconditions of Consequence 4.5.6 applies to the vertex vk in graph Gk. We now proceed

with the analysis.

We begin by noting that∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− fγ̃

(
a

(i)
Gk,vk

(w̃)
))
−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− fγ̃

(
a

(j)
Gk,vk

(w̃)
))∣∣∣

≤ max
i′,j′∈L(vk)

∣∣∣(<fγ(a(i′)
Gk,vk

(w)
)
− fγ̃

(
a

(i′)
Gk,vk

(w̃)
))
−
(
<fγ

(
a

(j′)
Gk,vk

(w)
)
− fγ̃

(
a

(j′)
Gk,vk

(w̃)
))∣∣∣ .

On the other hand, for any color s ∈ L(vk), Consequence 4.5.6 of the induction hypothesis

instantiated on Gk and applied to vk and s shows that there exists a Cs = Cs,vk,Gk ∈
[0, 1/(dk + η)] such that∣∣∣<fγ(a(s)

Gk,vk
(w)
)
− fγ̃

(
a

(s)
Gk,vk

(w̃)
)
− Cs(<a(s)

Gk,vk
(w)− a(s)

Gk,vk
(w̃))

∣∣∣ ≤ εI + εw.
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Substituting this in the previous display shows that∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− fγ̃

(
a

(i)
Gk,vk

(w̃)
))
−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− fγ̃

(
a

(j)
Gk,vk

(w̃)
))∣∣∣

≤ max
i′,j′∈L(vk)

∣∣∣Ci′(<a(i′)
Gk,vk

(w)− a(i′)
Gk,vk

(w̃))− Cj′(<a(j′)
Gk,vk

(w)− a(j′)
Gk,vk

(w̃))
∣∣∣+ 2εI + 2εw

= 2εI + 2εw + max
i′,j′∈L(vk)

∣∣Ci′<ξi′ − Cj′<ξj′∣∣ ,
= 2εI + 2εw + Cs<ξs − Ct<ξt, (4.53)

where ξl := a
(l)
Gk,vk

(w)− a(l)
Gk,vk

(w̃) for l ∈ ΓGk,vk , and s and t are given by

s := arg max
i′∈L(vk)

Ci′<ξi′ and t := arg min
i′∈L(vk)

Ci′<ξi′ .

We now have the following two cases:

Case 1: (<ξs) · (<ξt) ≤ 0. Recall that Cs, Ct are non-negative and lie in [0, 1/(dk + η)].

Thus, in this case, we must have <ξs ≥ 0 and <ξt ≤ 0, so that

Cs<ξs − Ct<ξt = Cs<ξs + Ct |<ξt| ≤
1

dk + η
(<ξs + |<ξt| ) =

1

dk + η
|<ξs −<ξt| . (4.54)

Now, note that

<ξs −<ξt = < ln
PGk,w[c(vk) = s]

PGk,w̃[c(vk) = s]
−< ln

PGk,w[c(vk) = t]

PGk,w̃[c(vk) = t]

= < ln
PGk,w[c(vk) = s]

PGk,w[c(vk) = t]
−< ln

PGk,w̃[c(vk) = s]

PGk,w̃[c(vk) = t]

= < lnR
(s,t)
Gk,vk

(w)− lnR
(s,t)
Gk,vk

(w̃).

Note that all the logarithms in the above are well defined from Consequence 4.5.5 of the

induction hypothesis applied to Gk and vk. Further, from items 2 and 3 of the induction

hypothesis, the last term is at most dkεR + εw in absolute value. Substituting this in

eq. (4.54), we get

Cs<ξs − Ct<ξt ≤
dk

dk + η
εR + εw. (4.55)

This conclude the analysis of Case 1.
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Case 2: <ξi′ for i′ ∈ L(vk) all have the same sign. Suppose first that <ξi′ ≥ 0 for all

i′ ∈ L(vk). Then, we have

0 ≤ Cs<ξs − Ct<ξt ≤
1

dk + η
<ξs ≤

dk
dk + η

εR + εI + 4∆εw, (4.56)

where the last inequality follows from item 2 of Consequence 4.5.6 of the induction hypoth-

esis applied to Gk at vertex vk with color s, which states that |<ξs| ≤ dk(εR + εI) + 4∆εw.

Similarly, when <ξi′ ≤ 0 for all i′ ∈ ΓGk,vk , we have

0 ≤ Cs<ξs − Ct<ξt = Ct|<ξt| − Cs|<ξs|

≤ 1

dk + η
|<ξt| ≤

dk
dk + η

εR + εI + 4∆εw, (4.57)

where the last inequality follows from item 2 of Consequence 4.5.6 of the induction hypoth-

esis applied to Gk at vertex vk with color t, which states that |<ξt| ≤ dk(εR + εI) + 4∆εw.

This concludes the analysis of Case 2.

Now, substituting eqs. (4.55) to (4.57) into eq. (4.53), we get∣∣∣(<fγ(a(i)
Gk,vk

(w)
)
− fγ̃

(
a

(i)
Gk,vk

(w̃)
))
−
(
<fγ

(
a

(j)
Gk,vk

(w)
)
− fγ̃

(
a

(j)
Gk,vk

(w̃)
))∣∣∣

≤ dk
dk + η

εR + 3εI + 5∆εw. (4.58)

Substituting eq. (4.58) into eq. (4.52), we get

1

d

∣∣∣< lnR
(i,j)
G,u (w)− lnR

(i,j)
G,u (w̃)

∣∣∣ ≤ dk
dk + η

εR + 3εI + 7∆εw < εR,

where the last inequality holds since ηεR > (∆ + 1)(3εI + 7∆εw) (recalling that 0 ≤ dk ≤ ∆

and η =∈ [0.9, 1)). This verifies item 3 of the induction hypothesis.

Finally, for proving item 4, we consider the imaginary part of eq. (4.50). We first

note that

|ni − nj | |= lnw| ≤ ∆ |lnw − ln w̃| ≤ ∆νw ≤ εw.

We then have

1

d

∣∣∣= lnR
(i,j)
G,u (w)

∣∣∣ ≤ εw + max
1≤k≤d

∣∣∣=fγ(a(i)
Gk,vk

(w)
)
−=fγ

(
a

(j)
Gk,vk

(w)
)∣∣∣ . (4.59)

Again, let vk be the vertex that maximizes the above expression, and dk be the number of

unpinned neighbors of vk in Gk. Applying eq. (4.46) of Consequence 4.5.6 of the induction

hypothesis to the graph Gk at vertex vk with colors i, j ∈ L(vk) gives∣∣∣=fγ(a(i)
Gk,vk

(w)
)
−=fγ

(
a

(j)
Gk,vk

(w)
)∣∣∣ ≤ dk

dk + η
εI + 6∆εw. (4.60)
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Substituting eq. (4.60) into eq. (4.59) we then have

1

d

∣∣∣= lnR
(i,j)
G,u (w)

∣∣∣ ≤ dk
dk + η

εI + 8∆εw < εI ,

where the last inequality holds since ηεI > 8(∆ + 1)∆εw (recalling that 0 ≤ dk ≤ ∆ and

η ∈ [0.9, 1)). This proves item 4, and also completes the inductive proof of Lemma 4.5.3.

We now use Lemma 4.5.3 to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. Let G be any graph of maximum degree ∆ satisfying Condition 1.

If G has no unpinned vertices, then ZG(w) = 1 and there is nothing to prove. Otherwise,

let u be an unpinned vertex in G. By Consequence 4.5.4 of the induction hypothesis (which

we proved in Lemma 4.5.3), we then have Zw(G) 6= 0 for w as in the statement of the

theorem.

The proof of Theorem 4.1.4 is now immediate.

Proof of Theorem 4.1.4. Let the quantity νw = νw(∆) be as in the statements of Theo-

rems 4.4.1 and 4.5.1. Fix the maximum degree ∆, and suppose that w satisfies

− ν2
w/8 ≤ <w ≤ 1 + ν2

w/8 and |=w| ≤ ν2
w/8. (4.61)

Let G be a graph of maximum degree ∆ satisfying Condition 1. When w satisfying eq. (4.61)

is such that <w ≤ νw/2, we have |w| ≤ νw, so that ZG(w) 6= 0 by Theorem 4.4.1, while

when such a w satisfies <w ≥ νw/2, we have ZG(w) 6= 0 from Theorem 4.5.1. It therefore

follows that ZG(w) 6= 0 for all w satisfying eq. (4.61), and thus the quantity τ∆ in the

statement of Theorem 4.1.4 can be taken to be ν2
w/8.

We conclude with a brief discussion of the dependence of τ∆ on ∆. We saw above

that τ∆ can be taken to be νw(∆)2/8, so it is sufficient to consider the dependence of

νw = νw(∆) on ∆. Let c = 10−6. As stated in the discussion following eq. (4.9), νw can

be chosen to be 0.2c/(2∆∆7) for the case of general list colorings, or c/(300∆8) with the

assumption of uniformly large list sizes (which, we recall from Remark 12, is satisfied in

the case of uniform q-colorings). We have not tried to optimize these bounds, and it is

conceivable that a more careful accounting of constants in our proofs can improve the value

of the constant c by a few orders of magnitude.
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