
Stochastic Local Search and the Lovasz Local Lemma

Fotios Iliopoulos

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-125
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-125.html

August 16, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I thank Alistair Sinclair and Dimitris Achlioptas for various comments and
remarks.

Stochastic Local Search and the Lovász Local Lemma

By

Fotios Iliopoulos

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alistair Sinclair, Chair
Associate Professor Prasad Raghavendra

Assistant Professor Nikhil Srivastava

Summer 2019

Stochastic Local Search and the Lovász Local Lemma

Copyright 2019
by

Fotios Iliopoulos

Abstract

Stochastic Local Search and the Lovász Local Lemma

by

Fotios Iliopoulos

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alistair Sinclair, Chair

This thesis studies randomized local search algorithms for finding solutions of constraint satis-
faction problems inspired by and extending the Lovász Local Lemma (LLL).

The LLL is a powerful probabilistic tool for establishing the existence of objects satisfying
certain properties (constraints). As a probability statement it asserts that, given a family of “bad”
events, if each bad event is individually not very likely and independent of all but a small number of
other bad events, then the probability of avoiding all bad events is strictly positive. In a celebrated
breakthrough, Moser and Tardos made the LLL constructive for any product probability measure
over explicitly presented variables. Specifically, they proved that whenever the LLL condition
holds, their Resample algorithm, which repeatedly selects any occurring bad event and resamples
all its variables according to the measure, quickly converges to an object with desired properties.

In this dissertation we present a framework that extends the work of Moser and Tardos and
can be used to analyze arbitrary, possibly complex, focused local search algorithms, i.e., search
algorithms whose process for addressing violated constraints, while local, is more sophisticated
than obliviously resampling their variables independently of the current configuration. We give
several applications of this framework, notably a new vertex coloring algorithm for graphs with
sparse vertex neighborhoods that uses a number of colors that matches the algorithmic barrier for
random graphs, and polynomial time algorithms for the celebrated (non-constructive) results of
Kahn for the Goldberg-Seymour and List-Edge-Coloring Conjectures.

Finally, we introduce a generalization of Kolmogorov’s notion of commutative algorithms,
cast as matrix commutativity, and show that their output distribution approximates the so-called
“LLL-distribution”, i.e., the distribution obtained by conditioning on avoiding all bad events. This
fact allows us to consider questions such as the number of possible distinct final states and the
probability that certain portions of the state space are visited by a local search algorithm, extending
existing results for the Moser-Tardos algorithm to commutative algorithms.

1

Dedicated to my parents and my brother

i

Contents

1 Introduction 1
1.1 The Probabilistic Method and the Lovász Local Lemma 1
1.2 Connection to Local Search and Contributions 2
1.3 Organization of the Thesis . 4

2 The Lovász Local Lemma 5
2.1 The Lovász Local Lemma . 5
2.2 The Lopsided Local Lemma . 7
2.3 Extensions . 7

3 Algorithmic Techniques 9
3.1 Algorithmic Framework . 9
3.2 The Entropy Compression Method . 10

3.2.1 An Algorithm for Satisfiability . 10
3.2.2 Uniform Random Walks in Abstract Spaces 12

3.3 Backward-Looking Analysis . 15
3.3.1 Witness Trees . 16
3.3.2 The Moser-Tardos Algorithm . 17
3.3.3 Proof of Theorem 3.9 . 18

3.4 Forward-Looking Analysis . 19
3.4.1 A General Algorithmic LLL Condition 19
3.4.2 Causality, Lopsidependency and Approximate Resampling Oracles 21
3.4.3 Forward-Looking Witness Structures and the Role of the Flaw Choice

Strategy . 22
3.4.4 Proof of Theorem 3.19 . 24
3.4.5 Proof of Theorem 3.15 . 27

4 Point-to-Set Correlations and a Linear Algebraic Perspective 29
4.1 The Lovász Local Lemma as a Spectral Condition 29
4.2 Point to Set Correlations . 31

4.2.1 Informal Discussion . 33
4.3 A New Algorithmic LLL Condition . 34
4.4 Proof of Theorem 4.6 . 36

4.4.1 Charges as Norms of Transition Matrices 36
4.4.2 Tracking the Set of Current Flaws . 36

ii

4.4.3 Bounding the Sum . 39
4.4.4 Other Flaw Choice Strategies . 40

4.5 Applications to Backtracking Algorithms . 41
4.5.1 The Variable Setting . 42
4.5.2 Acyclic Edge Coloring . 44

5 Commutative Algorithms 47
5.1 Commutativity and the Witness Tree Lemma . 49
5.2 Approximating the LLL-distribution . 50
5.3 Byproducts of Theorem 5.7 . 52

5.3.1 Entropy of the Output Distribution . 52
5.3.2 Partially Avoiding Flaws . 52
5.3.3 Dealing with Super-Polynomially Many Flaws 53

5.4 Proof of Theorem 5.7 . 55
5.5 Proof of Theorem 5.5 . 56

5.5.1 Proof of Lemma 5.18 . 57
5.5.2 Proof of Lemma 5.19 . 58
5.5.3 Proof of Lemma 5.20 . 59

5.6 An Example: Rainbow Matchings . 60
5.6.1 Finding Rainbow Perfect Matchings . 60
5.6.2 Number of Rainbow Perfect Matchings 62
5.6.3 Low Weight Rainbow Perfect Matchings 62
5.6.4 Finding Rainbow Matchings with many edges 63

6 Coloring Graphs with Sparse Neighborhoods 65
6.1 Triangle-Free Graphs . 65

6.1.1 The Algorithm . 66
6.1.2 Proving Termination . 67
6.1.3 A Lower Bound on the Number of Possible Outputs 67
6.1.4 Proof of Lemma 6.3 . 68

6.2 General Graphs . 69
6.2.1 A Hybrid Algorithm . 71
6.2.2 Proving Termination . 73
6.2.3 Proof of Lemma 6.13 . 74
6.2.4 Proof of Lemma 6.15 . 75

7 Efficiently List-Edge Coloring Multigraphs Asymptotically Optimally 77
7.1 Statement of Results and Technical Overview . 77

7.1.1 Technical Overview . 78
7.2 Hard-Core Distributions on Matchings . 80
7.3 Edge Coloring Multigraphs: Proof of Theorem 7.3 81

7.3.1 The Algorithm . 81
7.3.2 Proof of Lemma 7.10 . 84
7.3.3 Proof of Lemma 7.13 . 85
7.3.4 Proof of Lemma 7.14 . 87

iii

7.4 List-Edge Coloring Multigraphs: Proof of Theorem 7.4 88
7.4.1 A High Level Sketch of the Existential Proof 88
7.4.2 The Algorithm . 91
7.4.3 Proof of Theorem 7.4 . 93
7.4.4 Proof of Lemma 7.20 . 93

Bibliography 96

8 Appendices 105
8.1 Matrices and Norms . 105
8.2 Recursive Algorithms . 105

8.2.1 Dense Neighborhoods . 106
8.2.2 A Left-Handed Algorithm . 107
8.2.3 Forests of the Recursive Walk (Theorem 8.2) 108
8.2.4 Forests of the Left-Handed Walk (Theorem 8.6) 108

8.3 Proofs Omitted from Chapter 5 . 110
8.3.1 Proof of Theorem 5.11 . 110
8.3.2 Proof of Theorem 5.12 . 110

8.4 Proofs Omitted from Chapter 6 . 110
8.4.1 Proof of Lemma 6.2 . 110
8.4.2 Proof of Lemma 6.5 . 111
8.4.3 Proof of Theorem 6.10 . 113
8.4.4 Proof of Lemma 8.14 . 115
8.4.5 Proof of Lemma 8.16 . 117
8.4.6 Proof of Proposition 6.9 . 118
8.4.7 Proof of Lemma 8.17 . 119

8.5 Proofs Omitted from Chapter 7 . 120
8.5.1 Proof of Lemma 7.16 . 120

iv

Acknowledgements

Throughout my graduate studies, I have been fortunate to be surrounded and supported by
mentors, friends and family, and I offer my heartfelt thanks:

To my advisor, Alistair Sinclair. Collaborating with Alistair has been a great privilege and an
amazing learning experience. His loyalty to high quality research and teaching, together with his
uncompromising ethics, have been a constant source of inspiration to me throughout my studies. I
thank him for his generous support and advice, both in research and in life.

To Dimitris Achlioptas, for advising me since my years as an undergraduate student and
throughout my PhD, and for being there for me as a mentor and as a friend. I am indebted to
him for all the things he has taught me, both about research and life, and the countless hours he
has spent working and discussing with me. I admire his relentless enthusiasm for science and his
great taste for it. Indeed, Dimitris was the one who introduced me to the Probabilistic Method and
its connections to local search algorithms, which is the topic of this thesis.

To my thesis and quals committee members, Prasad Raghavendra, Satish Rao, and Nikhil Sri-
vastava. I thank them for serving on my committee, and for their helpful comments at various
stages of this work.

To my collaborators and co-authors, Dimitris Achlioptas, Themis Gouleakis, Vladimir Kol-
mogorov, Alistair Sinclair and Nikos Vlassis. Also to David Harris, Nick Harvey, Mike Molloy
and Jan Vondrák for many insightful and inspiring conversations. Without them, this thesis would
not be possible.

To Dimitris Fotakis for introducing me to theoretical computer science during my undergradu-
ate studies. He is a wonderful teacher, and I thank him for his support and advice.

To all the theory graduate students in Berkeley for creating an amazing environment. I es-
pecially thank Antonio Blanca, Jonah Brown Cohen, Ben Caulfield, Jingcheng Liu, Pasin Ma-
nurangsi, Peihan Miao, Alex Psomas, Aviad Rubinstein, Manuel Sabin, Aaron Schild, Tselil
Schramm, and Sam Wong for their friendship and the many funny moments we shared together.

To Christos Adamopoulos, Vrettos Moulos, George Patsakis and Panagiotis Zarkos for being
my family in Berkeley.

To Paris Syminelakis for the many insightful conversations, and for being a great friend.

To Kyriakos Axiotis and Dimitris Tsipras for their friendship and the amazing time we had
together during their visit to Berkeley.

To Eleni Dimitropoulou for the radiant warmth and positive attitude.

To the Simons Institute for giving me the chance to meet some of the greatest researchers in
our community.

To Caffe Strada for the many hours I have spent there studying and working on my thesis.

To the Onassis Foundation, for financially supporting my graduate studies.

And to my mother Christine, my father Dimos, and my brother Kostas for their endless love
and support during my PhD.

v

Chapter 1

Introduction

Constraint satisfaction problems over discrete variables, such as satisfiability and graph coloring,
arise naturally in a wide variety of areas, among them artificial intelligence [32], bioinformat-
ics [89], combinatorics [11], complexity theory [30], communication theory [41], and statistical
image processing [43]. Solving them is an NP-hard task in general and, therefore, we cannot ex-
pect of a universal algorithm for it. Instead, researchers throughout the years have developed an
arsenal of successful heuristics [19, 72, 75] for tackling them in practice.

A large class of algorithms for solving constraint satisfaction problems employ “stochastic
local search”; such algorithms start in a violating configuration and try to reach a satisfying as-
signment via small randomized changes that in each step focus on satisfying a specific violated
constraint (while potentially introducing others). Given their great practical success, it is natural
to ask whether there are conditions under which stochastic local search algorithms provably work
efficiently, and use these conditions to show that interesting families of instances of hard problems
are in fact tractable.

This thesis concerns the design and analysis of such algorithms, using techniques that are
inspired by the Lovász Local Lemma [36], a powerful and widely applied tool of the Probabilis-
tic Method that has had far-reaching consequences in computer science and combinatorics (see,
e.g., [11, 79] for examples).

Besides presenting a compilation of results and applications developed by the author and col-
laborators [2, 3, 4, 5, 6, 59, 60], the purpose of this document is to serve as an overview of the state
of the art in the area. Our hope is that it will be useful to researchers who want to understand, or
further contribute to, this exciting line of work. To that end, the material is neither presented in
historical order nor is it exhaustive.

1.1 The Probabilistic Method and the Lovász Local Lemma
Numerous problems in computer science and combinatorics can be formulated as searching for
objects lacking certain bad properties, or “flaws”. For example, constraint satisfaction problems
can be seen as searching for objects (satisfying assignments) that are flawless, in the sense that
they do not violate any constraint.

We can often prove the existence of flawless objects via the Probabilistic Method, i.e., by
showing that a random object chosen from an appropriate probability distribution has the desired

1

properties with positive probability. The Probabilistic Method was pioneered by Paul Erdős, who
applied it to many problems in combinatorics and number theory.

In classical applications of the Probabilistic Method, the result obtained was not just that the
random object had the desired properties with positive probability, but rather that an overwhelm-
ing proportion of the random objects did. Indeed, early on the technique applied only to scenarios
where the probability that the random object is flawless was fairly large. (Note that in these restric-
tive settings we can find an object with the desired properties by simply picking one at random.)

In contrast, the Lovász Local Lemma (LLL) [36], which is one of the most important and
powerful tools of the Probabilistic Method, allows one to prove the existence of flawless objects
even in situations where the probability of avoiding every bad property is exponentially small.
Roughly speaking, it asserts that, given a collection of bad events in a probability space, if each of
them is individually not too likely, and independent of most other bad events, then the probability
that none of them occurs is strictly positive. For example, the LLL implies that every k-CNF
formula in which each clause shares variables with fewer than 2k/e other clauses is satisfiable.

The LLL has a short proof and is easy to apply. It has found applications in various field
of combinatorics and computer science, from Ramsey theory [11], to designing error-correcting
codes [85] and graph sparsification [14, 40]. The LLL has also had a large impact on graph the-
ory [79], as it is the basic ingredient of the so-called “semi-random method”, which is the technique
behind some of the strongest results in graph coloring. These include results by Kim, Johansson,
Molloy and others on coloring locally sparse graphs [10, 62, 63, 68, 76, 103], Kahn’s results on
list-edge coloring linear hypergraphs [64], Kahn’s proof that asymptotically the Goldberg-Seymour
and List-Edge-Coloring conjectures hold [65, 66], and the result of Molloy and Reed [77] on al-
most optimal total colorings of graphs.

In this thesis we will demonstrate several new applications of the LLL and also discuss its
various versions and generalizations.

1.2 Connection to Local Search and Contributions
As one can imagine, after proving via the LLL that objects with desired properties exist, it is nat-
ural to ask whether they can actually be found efficiently. However, since the number of such
objects is typically exponentially small, a priori it seems difficult to construct efficient algorithms
to find them. Indeed, making the LLL constructive has been a long quest, starting with the work of
Beck [15], with subsequent important developments by Alon [9], Molloy and Reed [78], Czumaj
and Scheideler [31], Srinivasan [101] and others. Each such work established a method for finding
flawless objects efficiently, but in all cases under significant additional conditions beyond the LLL.
The breakthrough was made only in 2009 by Moser [80], who showed that a shockingly simple
local search algorithm almost matches the LLL condition for k-CNF formulas. Very shortly af-
terwards, Moser and Tardos in a landmark paper [81] made the general LLL constructive for all
product measures over explicitly presented variables. Specifically, they proved that whenever the
LLL condition holds, their Resample algorithm, which repeatedly selects any bad event in the cur-
rent assignment and resamples all its variables according to the measure, quickly converges to a
desired object.

Naturally, a plethora of papers has employed and further developed the techniques of Moser
and Tardos to design and analyze local search algorithms in a wide variety of settings. For example,

2

the entropy compression method introduced by Moser for the analysis of his satisfiability algorithm
has drawn a lot of attention and has been applied to a variety of problems, e.g., [3, 38, 47], without
any explicit reference to the LLL. Furthermore, the backward-looking analysis of [81] has been
used [70, 88] to prove that the Moser-Tardos algorithm in fact converges in polynomial time under
the most powerful LLL conditions known, while the so-called forward-looking analysis has been
employed [4, 57] to make constructive applications of the LLL in non-product probability spaces.
One of the goals of this thesis is to provide an introduction to these LLL-inspired algorithmic
techniques, so that researchers can study and use them.

The main new contribution of this thesis is a framework that extends the work of Moser and
Tardos and can be used to analyze arbitrary, possibly quite complex, focused local search algo-
rithms, i.e., search algorithms whose process for addressing violated constraints, while local, is
more sophisticated than obliviously resampling their variables independently of the current con-
figuration. Moreover, it can be used to capture applications of the LLL in non-product probability
spaces, e.g., random permutations, random matchings of a clique, hard-core distributions etc.

This framework is based on work of the author in collaboration with other researchers, and
we note that some of the results presented here have been published elsewhere [3, 4, 5, 59, 60].
Among other things, we will employ our framework to establish concrete connections between
local search algorithms and the LLL, to study several new algorithms, and to give several new
applications. For instance, we use it to design polynomial time algorithms for the celebrated results
of Kahn [65, 66], which use probabilistic arguments to show that the chromatic and list-chromatic
index of multigraphs are asymptotically equal to their fractional chromatic index, verifying the
famous Goldberg-Seymour and List-Edge-Coloring conjectures asymptotically.

From a technical standpoint, the new insight of this thesis is that LLL-inspired convergence
arguments can be seen as method for bounding the spectral radius of a matrix specifying the algo-
rithm to be analyzed. Armed with this viewpoint, we establish a new condition for the convergence
of local search algorithms, which captures and unifies the most general results regarding the algo-
rithmic LLL [3, 4, 57], the classical potential function argument and a plethora of other papers
based on the entropy compression method.

To get a feeling for the main idea behind our analysis, imagine we wish to analyze the perfor-
mance of a Markovian algorithmM for solving a CSP instance. Let Ω be the set of all possible
variable assignments, e.g., {0, 1}n, and let Ω∗ ⊆ Ω be the set of violating assignments. Let A
be the |Ω∗| × |Ω∗| submatrix ofM corresponding to transitions that stay within Ω∗. Our starting
observation is that the algorithm will escape Ω∗ if and only if the spectral radius of A is strictly
less than 1. Of course, since A is huge and defined implicitly by the algorithm, its spectral radius,
ρ(A), is not readily available.

To sidestep the inaccessibility of the spectral radius, we bound an operator norm ‖ · ‖ of A,
possibly after performing a change of basis. That is, we exploit the facts that ρ(A) = ρ(MAM−1)
for any invertible matrix M and that every operator norm upper bounds the spectral radius. Our
next observation is that different norms capture different convergence arguments. For example:

• Let φ be a non-negative function on Ω that takes values 0 on satisfying assignments. The
potential function argument asserts that eventually φ = 0, i.e., the particle escapes Ω∗, if φ
is always reduced (in expectation) under the action of the algorithm. It is not hard to verify
that this is equivalent to requiring that ‖MAM−1‖∞ < 1, where M is the diagonal matrix
diag(1/φ(σ)).

3

• What is arguably far less obvious is that LLL-inspired convergence arguments bound ‖MAM−1‖1,
where M = diag(µ(σ)) and µ is the underlying probability measure on Ω. Thus, the LLL
can be viewed as the “dual” of the potential function argument (in the sense that ‖ · ‖1 is the
dual norm of ‖ · ‖∞).

As a demonstration of its power, we use this new condition to analyze a sophisticated local
search algorithm for the classical problem of coloring graphs with sparse neighborhoods. Specif-
ically, we give a constructive bound on the chromatic number of graphs as a function of the max-
imum degree and the number of triangles a vertex can be a part of. In addition, we prove that
any improvement over our algorithm would require a major breakthrough in random graph theory,
since it coincides with a phase transition in the geometry of the set of colorings known as the
shattering threshold [1].

Finally, it is often useful to obtain more detailed information about the execution of a stochas-
tic local search algorithm, such as the number of possible distinct outputs, or the probability that
certain portions of the state space are visited. This information is available for the Moser-Tardos
algorithm due to Haeupler, Saha and Srinivasan [49] and Harris and Srinivasan [56]. Here we intro-
duce a generalization of Kolmogorov’s [71] notion of commutative algorithms, cast as matrix com-
mutativity, and show that their output distribution approximates the so-called “LLL-distribution”,
i.e., the distribution obtained by conditioning on avoiding all bad events. This fact allows us to
extend already existing results regarding distributional properties of the Moser-Tardos algorithms
to commutative algorithms, and to give several applications.

1.3 Organization of the Thesis
In Chapter 2 we formally present the non-constructive statement of the Lovász Local Lemma and
its various versions and generalizations. In Chapter 3 we introduce our framework for the design
and analysis of stochastic local search algorithms, and we use it to present the three main tech-
niques that have been used in the algorithmic LLL literature to date, explaining the advantages and
limitations of each of them. Among other things, we state and prove the general algorithmic LLL
condition of [4], and use it to draw new connections between arbitrary focused local search algo-
rithms and the LLL. In Chapter 4 we introduce a linear algebraic perspective into the analysis of
LLL-inspired algorithms, and a new algorithmic LLL condition inspired by it. Chapter 5 concerns
the class of commutative algorithms, for which one can guarantee distributional properties besides
fast convergence. In Chapter 6 we apply our framework to design and analyze algorithms for the
problem of coloring locally sparse graphs. Finally, in Chapter 7 we give polynomial time algo-
rithms for the results of Kahn [65, 66] regarding the Goldberg-Seymour and List-Edge-Coloring
conjectures.

4

Chapter 2

The Lovász Local Lemma

In this chapter we formally present the non-constructive statement of the Lovász Local Lemma
and its various versions and generalizations.

2.1 The Lovász Local Lemma
Let Ω be a finite set and let F = {f1, f2, . . . , fm} be a collection of subsets of Ω, each of which will
be referred to as a “flaw.” Let

⋃
i∈[m] fi = Ω∗. For example, for a given CNF formula on n variables

with clauses c1, . . . , cm, we take Ω = {0, 1}n to be the set of all possible variable assignments, and
fi the set of assignments that fail to satisfy clause ci. Our goal is to find an assignment in Ω \ Ω∗,
i.e., a satisfying (“flawless”) assignment.

Given a set of objects Ω and a family of flaws we can often prove the existence of flawless
objects using the Probabilistic Method. Indeed, in many interesting cases this is the only way
we know how to do so. To employ the Probabilistic Method we introduce a probability measure
on the set of objects and consider the collection of (“bad”) events B corresponding to the flaws
(one event per flaw). The existence of flawless objects is then equivalent to the intersection of the
complements of the bad events having strictly positive probability. Clearly, such positivity always
holds if the events in B are independent and none of them has measure 1. One of the most powerful
tools of the Probabilistic Method is the Lovász Local Lemma, which asserts that such positivity
also holds under a condition of limited dependence among the events in B. The idea of the Local
Lemma was first circulated by Lovász in the early 1970s in an unpublished note. It was published
by Erdős and Lovász in [36]. Below we state it in its simplest form.

Lovász Local Lemma. Let (Ω, µ) be a probability space and let B = {B1, . . . , Bm} be a set of
(bad) events such that for each i:

(a) µ(Bi) ≤ p < 1; and

(b) Bi is mutually independent of all but d events.

If ep(d+ 1) ≤ 1 then with positive probability, none of the events in B occur.

As a first example, we apply the the LLL to a satisfiability problem.

5

Theorem 2.1. Every k-CNF formula in which each clause shares variables with at most 2k/e− 1
other clauses is satisfiable.

Proof. Let Ω = {0, 1}n, where n is the number of variables of the formula. Let µ be the proba-
bility distribution over Ω induced by setting each variable 0 or 1, independently, and uniformly at
random. For each clause c we define Bc to be the (bad) event that c is violated. Let also Dc denote
the set of clauses with which c shares variables.

Clearly, each event Bc is independent of the set of events {Bc′ : c′ /∈ Dc}. Moreover, µ(Bc) ≤
2−k for every clause c and, by assumption, d := maxc |Dc| ≤ 2k/e− 1. Thus, applying the Lovász
Local Lemma to this family of bad events concludes the proof.

The Local Lemma allows us to reach global conclusions using a local, “scale-free” analysis.
From this point of view, a drawback of the so-called “symmetric” version presented above is that
it requires global bounds for the probability of bad events and the dependencies between them.
In cases where the probabilities of bad events vary widely, this can be problematic. The general
form below circumvents this issue. It is also due in unpublished form to Lovász and was given by
Spencer in [100]. Note that, throughout, we use the convention that a product of devoid factors
equals 1, i.e.,

∏
x∈∅ f(x) = 1.

General LLL. Let (Ω, µ) be a probability space and let B = {B1, B2, . . . , Bm} be a set of (bad)
events. For each i ∈ [m] let D(i) ⊆ ([m] \ {i}) be such that µ(Bi | ∩j∈SBj) = µ(Bi) for every
S ⊆ [m] \ (D(i) ∪ {i}). If there exist positive real numbers {ψi}mi=1 such that for all i ∈ [m],

µ(Bi)
∑

S⊆D(i)∪{i}

∏
j∈S

ψj ≤ 1 , (2.1)

then the probability that none of the events in B occurs is at least
∏m

i=1 1/(1 + ψi) > 0.

The directed graph on [m] where each vertex i points to the vertices of D(i) is known as the
dependency graph.

Remark 2.2. Condition (2.1) above is equivalent to µ(Bi) ≤ xi
∏

j∈D(i)(1 − xj), where xi =

ψi/(1 + ψi), which often appears in the literature. As we will see the formulation (2.1) facilitates
comparisons. To see the equivalence, notice that since xi = 0 is uninteresting, we may assume
xi ∈ (0, 1). Taking ψi > 0, setting xi = ψi/(1 + ψi) ∈ (0, 1), and simplifying, the condition
becomes µ(Bi)

∏
j∈{i}∪D(i)(1 + ψj) ≤ ψi. Opening up the product yields (2.1).

While, at first sight, condition (2.1) may seem unwieldy, we note that in most applications
setting ψi = µ(Bi)ψ and optimizing over ψ > 0 (which is typically a straightforward task) suffices
to give the best result. Moreover, there exist several weaker, but more user-friendly conditions,
in which the parameters ψi do not appear. For example, the symmetric version we presented
originally is obtained from (2.1) by setting ψi = 1

d
for every i. The reader is referred to [79] for

more examples and details.

6

2.2 The Lopsided Local Lemma
In [37], Erdős and Spencer noted that one can replace the LLL’s requirement that each bad event
is independent of all but a few other bad events with the weaker requirement that each bad event is
negatively correlated with few other bad events, yielding the original version of what is known as
the lospided LLL. That is, for each bad event Bi there should only be few other bad events whose
non-occurrence may boost Bi’s probability of occurring; the non-occurrence of any subset of the
remaining events should leave Bi either unaffected, or make it less likely. A natural setting for
the lopsided LLL arises when one seeks a collection of permutations satisfying a set of constraints
and considers the uniform measure on them. While the bad events (constraint violations) are now
typically densely dependent (as fixing the image of even just one element affects all others), one
can often establish sufficient negative correlation among the bad events to apply the lopsided LLL.

More sophisticated versions of the lopsided LLL have also been established in [8, 33]. Below
we state the strongest form of the lopsided LLL that holds for arbitrary probability spaces and
families of bad events (see e.g., [79, p.228]).

Lopsided LLL. Let (Ω, µ) be a probability space and let B = {B1, B2, . . . , Bm} be a set of (bad)
events. For each i ∈ [m], let L(i) ⊆ [m] \ {i} be such that µ(Bi |

⋂
j∈S Bj) ≤ bi for every

S ⊆ [m] \ (L(i) ∪ {i}). If there exist positive real numbers {ψi}mi=1 such that for all i ∈ [m],

bi
ψi

∑
S⊆L(i)∪{i}

∏
j∈S

ψj ≤ 1 , (2.2)

then the probability that none of the events in B occurs is at least
∏m

i=1 1/(1 + ψi) > 0.

The directed graph on [m] where each vertex i points to the vertices of L(i) is known as the
lopsidependency graph.

The above form of the LLL is motivated by the fact that, in complex applications, small but non-
vanishing correlations tend to travel arbitrarily far in the space Ω. To isolate these dependencies so
that they can be treated locally, it can be crucial to allow mild negative correlations between each
bad event Bi and the events outside its “special” set L(i), achieved by allowing bi ≥ µ(Bi).

2.3 Extensions
While the lopsided LLL condition (2.2) is the weakest known condition in the general setting, it
can be improved under additional assumptions. We briefly discuss some of these improvements in
this section.

Perhaps the two most popular improvements come from considering the undirected graph, G,
on [m] such that L(i) is a subset of the neighbors of i, for every i ∈ [m]. (One can trivially get such
a G by ignoring the direction of eges in the lopsidependency graph, but at the cost of potentially
expanding the “neighborhood” of each vertex.)

The first improvement, which is called the cluster expansion condition, was introduced by
Bissacot et al. [21] who showed that the conclusion of the lopsided LLL remains valid if the
summation in (2.2) is restricted to those sets S ⊆ {i} ∪ L(i) which are independent in G. In
particular, letting Ind(S) = IndG(S) denote the set of independent subsets of S with respect to G,
we have the following condition.

7

Cluster Expansion Condition. Let (Ω, µ) be a probability space and let B = {B1, B2, . . . , Bm}
be a set of (bad) events. For each i ∈ [m], let L(i) ⊆ [m] \ {i} be such that µ(Bi |

⋂
j∈S Bj) ≤ bi

for every S ⊆ [m] \ (L(i) ∪ {i}). If there exist positive real numbers {ψi}mi=1 such that for all
i ∈ [m],

bi
ψi

∑
S∈Ind(L(i)∪{i})

∏
j∈S

ψj ≤ 1 , (2.3)

then the probability that none of the events in B occurs is at least
∏m

i=1 1/(1 + ψi) > 0.

The second improvement, which was introduced by Shearer [98], is based on certain forms of
the multivariate independence polynomial and exploits global information aboutG. In fact, it gives
a tight criterion under which all events can be avoided for a given graphG and, consequently, it sub-
sumes the cluster expansion condition. Unlike the cluster expansion condition, though, Shearer’s
condition involves a separate condition for every independent set in G and, therefore, verifying it
is typically an intractable task.

Shearer’s Condition. Let (Ω, µ) be a probability space and let B = {B1, B2, . . . , Bm} be a set
of m (bad) events. For each i ∈ [m], let L(i) ⊆ [m] \ {i} be such that µ(Bi |

⋂
j∈S Bj) ≤ bi for

every S ⊆ [m] \ (L(i) ∪ {i}). Let b ∈ Rm be the real vector such that b(i) = bi. Furthermore, for
S ⊆ [m] define bS =

∏
j∈S bj and the polynomial qS by:

qS(b) :=
∑

I∈Ind([m])
S⊆I

(−1)|I\S|bI . (2.4)

If qS(b) ≥ 0 for all S ⊆ [m], then the probability that none of the events in B occurs is at least
q∅(b).

Kolipaka, Szegedy and Xu [69] have developed other intermediate LLL versions that, again
given G, interpolate between (2.2) and Shearer’s condition. Moreover, it is known that when µ
is a product measure and the dependencies between events can be expressed in terms of variable
sharing (that is, under the assumptions of the variable setting [81]), several works [70, 52, 50, 58]
have shown that Shearer’s condition can be improved, i.e., that more permissive conditions exist.

Pegden [87] proved the so-called left-handed-version of the LLL, which is able to reduce the
number of edges in a (directed) lopsidependency graph when there is an ordering underlying the
significant dependencies of events.

Finally, Scott and Sokal [95], among many other contributions, introduced a so-called soft-
core LLL condition, in an effort to quantify interaction strengths between bad events (whereas in
all other works two bad events either interact or they do not). Since it relies on relatively involved
assumptions, we will not describe it here in the interest of brevity. We note though that finding
combinatorial applications for that condition was left as an open question in [95]. To the best of
our knowledge, it remains open.

8

Chapter 3

Algorithmic Techniques

In this chapter we develop tools for the design and analysis of stochastic local search algorithms
for finding flawless objects in a state space Ω. The general idea in stochastic local search is that Ω
is equipped with a neighborhood structure and that the search starts at some state of Ω and moves
from state to state within the neighborhood structure. Focused local search corresponds to the case
where each state change can be attributed to an effort to rid the state of some specific present flaw.

We start by introducing a general algorithmic framework for focused local search, and then we
present the three main techniques that have been used for the analysis of LLL-inspired algorithms:
the entropy-compression method, backward-looking analysis, and forward-looking analysis. We
explain the advantages and limitations of each of them, as well as their connection to the LLL.

It is worth noting that, using the tools presented in this chapter, one can give an efficient algo-
rithm for effectively all the existential applications of the LLL we are aware of.

3.1 Algorithmic Framework
Recall that Ω is a finite set, F = {f1, f2, . . . , fm} is a collection of subsets of Ω which we call
“flaws”, and that

⋃
i∈[m] fi = Ω∗. Since we will be interested in algorithms which traverse the set

Ω we will also refer to its elements as “states”.
For a state σ, we denote by U(σ) = {j ∈ [m] : fj 3 σ} the set of (indices of) flaws present

in σ. (Here and elsewhere, we shall blur the distinction between flaws and their indices.) We
consider algorithms which start in a state sampled from a probability distribution θ and, in each
flawed state σ ∈ Ω∗, choose a flaw fi 3 σ, and attempt to leave (“fix”) fi by randomly moving to
a neighboring state. We will assume that, for every flaw fi and every state σ ∈ fi, there is a non-
empty set of actions α(i, σ) ⊆ Ω such that addressing flaw fi in state σ amounts to selecting the
next state τ from α(i, σ) according to some probability distribution ρi(σ, τ). Note that potentially
α(i, σ) ∩ fi 6= ∅, i.e., addressing a flaw does not necessarily imply removing it. We sometimes
write σ i−→ τ to denote the fact that the algorithm addresses flaw fi at σ and moves to τ . Finally, we
say that a transition σ i−→ τ introduces flaw fj 3 τ if σ /∈ fj or if j = i. (Thus, a flaw (re)introduces
itself when a transition fails to address it.)

Definition 3.1 (Causality). We say that fi causes fj if there exists a transition σ i−→ τ that intro-
duces fj .

9

Definition 3.2 (Causality Digraph). Any digraph C = C(Ω, F) on [m] that includes every edge
i→ j such that fi causes fj is called a causality digraph. We write Γ(i) for the set of out-neighbors
of i in this graph.

The framework described above was introduced in [3]. Throughout this thesis, we will use it to
prove convergence results for local search algorithms, to establish connections between them and
the LLL, and to give several concrete applications.

As a final remark, we note that all our sufficient conditions for convergence will bound the
number of steps of the input algorithm, and will not consider the running time to perform each
step. (In most applications though, bounding the latter is a trivial task.)

3.2 The Entropy Compression Method
The entropy compression method is an elegant technique introduced by Moser [80] for the analysis
of his original algorithm for generating solutions to k-SAT instances that satisfy the LLL condi-
tions. As was later shown by Achlioptas and Iliopoulos [3], it can also be used to make constructive
applications of the lopsided LLL in arbitrary spaces endowed with the uniform measure, but it does
not seem to generalize to non-uniform probability spaces.

Besides applications of the LLL this method has also been used to analyze backtracking al-
gorithms, e.g., [34, 47, 34, 38, 45, 46, 84]. These natural and potentially powerful local search
algorithms operate on partial non-violating assignments, starting with the empty assignment, and
try to extend it to a complete, satisfying assignment. To do this, at each step they assign a (random)
value to a currently unassigned variable; if this leads to the violation of one or more constraints,
they backtrack to a partial non-violating assignment by unassigning some set of variables (typically
including the last assigned variable). While the spirit of the analysis in all these works is close to
that of Moser, they are not derived from a known form of the LLL and indeed often improve on ear-
lier results obtained from the LLL. Instead, the fact that the algorithm under consideration reaches
a flawless object is established in each case by a problem-specific counting argument. In Chapter 4
we will see several examples of backtracking algorithms and we will study them systematically
via a different approach.

Here, we first introduce the entropy compression method by analyzing Moser’s satisfiability
algorithm. Then, we extend the analysis to prove a simple sufficient algorithmic LLL condition
that applies to general local search algorithms which address flaws by picking actions uniformly at
random at each step. (This is a corollary of the main result of [3].) As an example, we apply this
condition to give an algorithm for an application of the lopsided LLL to a problem in the space of
permutations of [n].

3.2.1 An Algorithm for Satisfiability
The basic idea behind the entropy compression method is that a string of random bits cannot be
represented by a shorter string. Moser’s ingenious observation was that, quite surprisingly, we can
make use of this fact to establish algorithmic convergence.

At a high level, his argument proceeds as follows. Suppose that we wish to prove that a certain
algorithm for finding flawless objects eventually reaches one. To do that, we start by giving a

10

lower bound, r(t), on the number of random bits the algorithm requires in order to perform t steps.
Then, towards a contradiction, we show that the assumption that the algorithm has not encountered
a flawless object within the first t steps allows us to construct a string, Lt, of length at most `(t),
such that given access to it we can perfectly reconstruct the random bits used by the algorithm.
Finally, we show that there exists t0 > 0 such that for every t ≥ t0 we have r(t) > l(t), i.e., Lt
losslessly compresses the random string used by the algorithm. Since this is impossible, we have
established that the algorithm has to terminate with high probability within a bounded number of
steps.

To see this idea in action, consider the following algorithm for satisfiability that takes as input a
k-CNF formula φ = {c1, . . . , cm} on n variables, and an arbitrary initial assignment σ1 ∈ {0, 1}n.
Its main operation is the stochastic procedure RESAMPLE which takes as input a clause c and a
state σ ∈ {0, 1}n and outputs a new state σ′ by picking a random assignment for the variables of c.
For a clause c, let N(c) denote the set of clauses that share variables with c.

Algorithm 1 Recursive Algorithm for k-SAT
1: procedure SOLVE(φ, σ1)
2: σ ← σ1

3: while there exists a violated clause in σ do
4: Let c be the lowest indexed violated clause
5: σ ← FIX (c, σ)
6: procedure FIX(c, σ)
7: σ′ ← RESAMPLE(c, σ)
8: while there exists a violated clause of N(c) ∪ {c} in σ′ do
9: Let c′ be the lowest indexed violated clause in N(c) ∪ {c}

10: σ′ ←FIX(c′, σ′)

It is a straightforward exercise to establish that if the above algorithm terminates, then it outputs
a satisfying assignment for φ. The main idea is that to prove inductively that if on input (c, σ)
procedure FIX returns assignment σ′, then every clause that was satisfied in σ is also satisfied in σ′

and, further, c is also satisfied in σ′. (See also Proposition 8.8 in Appendix 8.) With this observation
in mind, we will now establish Theorem 2.1 constructively via the entropy compression method.

Theorem 3.3. Suppose that φ is a k-CNF formula with m clauses on n variables and such that
each clause shares variables with at most (1 − ε)2k/e − 1 other clauses, where ε ∈ (0, 1). Then,
the probability that Algorithm 1 on input φ has not terminated after (n+m+ s)/ log2(1/(1− ε))
resampling steps is 2−s.

Remark 3.4. Recall Theorem 2.1 and note that Theorem 3.3 requires an “ε-slack” in the LLL con-
ditions. This is an assumption that is necessary in general applications of the entropy compression
method. However, when the dependency digraph of the LLL application is symmetric, as it is here,
this requirement for slack can be avoided [57].

Proof of Theorem 3.3. Fix an integer T ≥ 0 to serve as an upper bound on the number of resam-
pling steps allowed. That is, the algorithm terminates as soon as it reaches a satisfying state, or
has performed T resampling steps, whichever comes first. If we resample clauses uniformly, the

11

algorithm “consumes” precisely k random bits per resampling. Consider the set of all 2kT binary
strings of length kT . We will prove that, for sufficiently large values of T , the vast majority of
these strings are such that the algorithm reaches a satisfying state in strictly fewer than T steps.
Specifically, let B be the set of binary strings of length kT that cause the algorithm to perform
precisely T resampling steps (thus, B also contains those binary strings for which a satisfying state
is reached after the very last resampling). We will prove that |B| ≤ 2λT+B, where λ < k and B is
independent of T . Since each random string has the same probability, we see that the probability
that the algorithm does not succeed in strictly fewer than T steps is bounded by 2B−(k−λ)T . In
particular, for any t ≥ 0, the probability that it does not succeed within t + B/(k − λ) steps is
exponentially small in (k − λ)t. Thus, not only does the algorithm finish quickly on average, but
it exhibits a cutoff, i.e., there is a critical number of resampling steps T0 = B/(k − λ), beyond
which the probability of non-termination drops exponentially.

To bound |B| we map each binary string b ∈ B to the following object: the sequence of T
clauses resampled by the algorithm in the course of consuming b, followed by the state, σT ,
reached after these T resampling steps. The first crucial point is that this map is 1-to-1. To see this,
observe that if the resampling step that took us from σT−1 to σT involved clause c, then σT−1 is
the state that results by changing in σT the variables in c to the unique value assignment falsifying
c (the uniqueness stemming from the nature of satisfiability constraints). And so on. Therefore,
|B| ≤ 2n times the number of possible clause resampling sequences.

To bound the number of possible clause resampling sequences we consider the forest of recur-
sive calls of FIX induced by the execution of the algorithm. This is a labeled forest with T nodes,
one for each call of FIX, where each node is labeled with the input clause of FIX in the corre-
sponding call. Note that it consists of at most m trees, one for each call of FIX from SOLVE, and
that each node has at most ∆ := maxc∈φ |N(c) ∪ {c}| distinct children. (Both of these statements
are a direct corollary of the guarantee for the output of FIX we mentioned earlier.) Ordering the
roots of the forest as well as the children of each node according to the indices of their labels allows
us to recover the clause resampling sequence that occurred in the execution of the algorithm via a
preorder transversal of the forest.

The latter observation implies that the number of possible clause resampling sequences is
bounded by the number of possible recursive forests. The latter is bounded by the number of ∆-ary
forests with at mostm roots and T nodes, which is known to be at most 2m (e∆)T ≤ 2m+λT , where
λ = k + log2(1− ε). Note that for the inequality we used the fact that ∆ ≤ (1− ε)2k/e according
to our hypothesis.

Therefore, the probability that the algorithm performs more than t∗ = (n+m+s)
log2(1/(1−ε)) steps is at

most 2n+m+(k−λ)t∗ = 2n+m+log2(1−ε)t∗ = 2−s, concluding the proof.

3.2.2 Uniform Random Walks in Abstract Spaces
In this section we extend the analysis of Moser’s satisfiability algorithm to general local search
algorithms which address flaws by picking actions uniformly at random at each step.

Suppose we are given a family of flaws F = {f1, . . . , fm}, a set of actions α(i, σ) for each
flaw fi and σ ∈ fi, and a causality graph C. Fix any permutation π on [m]. For any S ⊆ [m] let
π(S) = minj∈S π(j), i.e., the lowest index in S according to π. Recall that U(σ) denotes the set

12

of indices of flaws present in state σ, and note that we sometimes abbreviate π(U(σ)) as π(σ). We
consider the following recursive algorithm.

Algorithm 2 Recursive Uniform Random Walk
1: procedure ELIMINATE

2: σ ← σ1

3: while U(σ) 6= ∅ do
4: σ ← ADDRESS (π(σ), σ)

return σ
5: procedure ADDRESS(i, σ)
6: σ′ ← A uniformly random element of α(i, σ)
7: while S = U(σ′) ∩ Γ(i) 6= ∅ do
8: σ′ ← ADDRESS(π(S), σ′)

Algorithm 2 is inspired by Moser’s satisfiability algorithm; indeed, notice that procedure AD-
DRESS has the same property as procedure FIX of Algorithm 1: If on input (i, σ) procedure
ADDRESS returns assignment σ′, then every flaw that was absent from σ is also absent from σ′

and, further, σ′ /∈ fi. Thus, if Algorithm 2 ever terminates, it has reached a flawless object.
We will use the entropy compression method to show a simple algorithmic LLL condition

under which Algorithm 2 is guaranteed to terminate fast. For an arbitrary state τ ∈ Ω and flaw fi,
let

Ini(τ) := {σ ∈ fi : ρi(σ, τ) > 0} .

Theorem 3.5. Let α = mini∈[m], σ∈fi |α(i, σ)|, β = maxi∈[m] |Ini(τ)| and d = maxi∈[m] |Γ(i)|. If
there exists ε ∈ [0, 1) such that d · (β/α) · e ≤ 1 − ε , then the probability that Algorithm 2 does
not reach a flawless object within (log2 |Ω|+m+ s) / log2(1/(1− ε)) steps is at most 2−s.

Proof Sketch. We will call a walk Σ = σ1
w1−→ σ2

w2−→ . . . σt
wt−→ σt+1 a t-trajectory. A t-trajectory

is bad if it only goes through flawed states. Let Bad(t) be the set of bad t-trajectories starting at
σ1, and define the witness of a bad t-trajectory Σ to be the sequence W (Σ) = (w1, w2, . . . , wt).

Note that the probability that the algorithm follows any trajectory Σ is
∏t

i=1 ρwi(σi, σi+1)) ≤
α−t, and, therefore, the probability that it fails to reach a flawless object within t steps is at most
|Bad(t)|α−t. To bound the size of Bad(t) we will make use of the following key claim: The map
from bad t-trajectories Σ → 〈W (Σ), σt+1〉 is β-to-1. To see this, notice that σt ∈ Inwt(σt+1) and,
therefore, there are at most β possible choices for it.

Thus, |Bad(t)| is bounded by the number of possible witness t-sequences multiplied by |Ω|βt.
The proof is concluded by bounding the number of witness t-sequences by the number of d-ary
forests with at most m roots, in an identical way to the proof of Theorem 3.3. In particular, we
obtain that the probability that the algorithm fails to reach a flawless object within t steps is at most
|Ω|2m(d(1− ε)β/α)t. Therefore, if t ≥ t∗ := (log2 |Ω|+m+ s)/ log2(1/(1− ε)) the probability
of failure is at most 2−s, concluding the proof.

Theorem 3.5 is a corollary of the main results of [3], where several more refined convergence
conditions were developed and applied to various settings. In [6] the reader can find a more in-
volved entropy compression argument that also applies to non-uniform random walks in the context
of stochastic control.

13

Observe that Theorem 3.5 implies Theorem 3.3 by applying it to Moser’s satisfiability algo-
rithm. In this case Ω = {0, 1}n, we have for each i one flaw fi comprising the subset of Ω that
violates clause ci, and a symmetric causality graph in which an edge between two flaws exists if
and only if the corresponding clauses share variables. Thus, α = 2, d = (1 − ε)2k/e and β = 1.
(To see that β = 1, recall that the nature of satisfiability constraints implies that if a resampling
step that takes the algorithm from state σ to state τ involves clause c, then σ has to be the unique
state that is induced by mutating τ by changing the value of the variables of c to the unique value
assignment falsifying c. In other words, given τ and c, σ is uniquely determined.)

We will next see how Theorem 3.5 can be used to make constructive an application of the
lopsided Local Lemma to the problem of finding Latin transversals. This application was first
given (non-constructively) in the paper of Erdős and Spencer [37] which introduced the original
version of the lopsided LLL. We present it here as an example of how the entropy compression
method can be used to design and analyze algorithms for applications of the LLL in non-product
probability spaces. We note that Bissacot et.al. [21] gave a slightly better bound for this problem,
which can also be made constructive via the entropy compression method and, in particular, using
the main result of [3]. For the sake of simplicity, we will not show this improved bound.

Application to Latin transversals. Let M be an n× n matrix whose entries come from a set of
colors C. A Latin transversal of M is a permutation π ∈ Sn such that the entries {M(i, π(i))}ni=1

have distinct colors, i.e., a selection of n entries in distinct rows and columns such that no two
elements have the same color.

Theorem 3.6. If each color c ∈ C appears at most ∆ ≤ n
4e

times in M , then there exists an
algorithm that finds a Latin transversal of M in O(n5 log n) steps with high probability.

Proof. Let M be any matrix in which each color appears at most ∆ times and let Ω = Sn be the
set of all permutations of [n]. Let P = P (M) be the set of all quadruples (i, j, i′, j′) such that
M(i, j) = M(i′, j′). For each quadruple (i, j, i′, j′) ∈ P let

fi,j,i′,j′ = {π ∈ Ω : π(i) = j and π(i′) = j′} .

Thus, an element of Ω is flawless iff it is a Latin transversal of M .
To address the flaw induced by a pair of entries (i, j), (i′, j′) of M in an element π ∈ Ω, we se-

lect two other entries (k, `), (k′, `′), also selected by π, and replace the four entries (i, j), (i′, j′), (k, `), (k′, `′)
with the four entries (i, `), (i′, `′), (k, j), and (k′, j′). More precisely, for π ∈ f = fi,j,i′,j′ the set
α(f, π) consists of all possible outputs of SWITCH(π, i, j, i′, j′).

Algorithm 3 SWITCH(π, i, j, i′, j′)

1: Let k be any element of [n]. Let ` = π(k).
2: Let k′ 6= k be any element of [n]. Let `′ = π(`′).
3: Modify π to ω by the following “switch”: ω(i) = `, ω(i′) = `′, ω(k) = j, ω(k′) = j′, and
ω(z) = π(z) for all z /∈ {i, i′, k, k′}.

Enumerating the choices in Steps 1 and 2 we see that |α(f, π)| = n(n − 1). Let us now
consider the following symmetric causality graph G whose validity can easily be verified from the

14

description of SWITCH. Two flaws fi,j,i′,j′ and fp,q,p′,q′ are adjacent in G if and only if {i, i′} ∩
{p, p′} 6= ∅ or {j, j′} ∩ {q, q′} 6= ∅. Thus, each flaw fi,j,i′,j′ is adjacent to four types of flaws,
corresponding to the four new entries (i, y), (i′, y′), (x, i), and (x′, j′). The maximum degree of G
is at most 4n(∆−1), since for a fixed (i, j, i′, j′) we can choose (s, t) with s ∈ {i, i′} or t ∈ {j, j′}
in 4n different ways and, as there are at most ∆ entries of M with any given color, once (s, t) has
been chosen there are at most ∆ − 1 choices for (s′, t′) such that M(s, t) = M(s′, t′). Thus, the
set of vertices in Γ(fi,j,i′,j′) is the union of four subsets, each of cardinality at most n(∆− 1).

We will next show that, for every flaw f and state ω, it holds that |Inf (ω)| = 1. To see this,

consider any action π
fi,j,i′,j′−−−−→ ω. Suppose that ω(i) = y, ω(i′) = y′, ω−1(j) = x, and ω−1(j′) = x′.

Given ω and (i, j, i′, j′), we see that the image of every element under π other than i, i′, x, x′ is the
same as under ω, while π(i) = j, π(i′) = j′, π(x) = y and π(x′) = y′.

The above observations imply that α = n(n− 1), d = 4n(∆− 1) and β = 1 and, therefore,

d · (β/α) · e =
n− 4e

n− 1
=: 1− ε .

To bound the running time notice that there exist at most n4 flaws, that log2 |Ω| = log2 n! =
Θ(n log n), and that log2(1/(1− ε)) = Ω(1

n
).

3.3 Backward-Looking Analysis
In this section we present the backward-looking analysis that was introduced by Moser and Tar-
dos [81] in their breakthrough paper that made the LLL constructive for any product probability
measure over explicitly presented variables. Besides allowing us to handle application of the LLL
in non-uniform probability spaces, this kind of analysis has the benefit of being much more infor-
mative compared to others, as it often enables us to establish that algorithms have useful properties
besides fast convergence. Among other things, it allows for the design of parallel and distributed
algorithms, it can be used to give bounds on the entropy of the output distribution of the algorithm
and the expected “weight” of a solution, it avoids the need for slack in the LLL conditions, and it
does not depend on the strategy for choosing which flaw to address at each step.

Its main drawback is that it does not apply to arbitrary stochastic local search algorithms,
a fact that has been established rigorously in [57]. Fortunately though, and as we will see in
Chapter 5, it does apply to a large class of so-called commutative algorithms, a notion introduced by
Kolmogorov [71]. Other minor drawbacks include the requirement of a symmetric input causality
graph a and sufficiently random initial state for the algorithm.

Backward-looking analysis gets its name from the fact that it proceeds by bounding the prob-
ability of certain “witness structures” being consistent with the execution of the algorithm; these
are acyclic graphs or digraphs labelled by flaws which grow backwards in time. The intention is
to interpret each witness structure as an explanation of why certain (typically undesirable) events
occurred during the execution of the algorithm.

Here we will use the notion of witness trees from [81] (slightly reformulated to fit our frame-
work) in order to analyze the Moser-Tardos algorithm. Witness trees are used in the vast majority
of applications of backward-looking analysis, many of which we will study in the context of com-
mutative algorithms in Chapter 5.

15

3.3.1 Witness Trees
Throughout this section we consider algorithms with the property that fi causes fj if and only if
fj causes fi. We will thus view the causality graph as an undirected graph G that may contain
self-loops. We also write i ∼ j to denote that j ∈ Γ(i) (or equivalently, i ∈ Γ(j)).

Recall that, given a trajectory Σ = σ1
w1−→ . . . σt

wt−→ σt+1, we denote by W (Σ) = (w1, . . . , wt)
the witness sequence of Σ. A witness tree τ = (T, `T) is a finite, rooted, unordered tree T along
with a labelling `T : V (T) → [m] of its vertices with indices of flaws such that the children of a
vertex v ∈ V (T) receives labels from Γ(`T (v)). To lighten the notation, we will sometimes write
(v) to denote `T (v) and V (τ) instead of V (T). Given a witness sequence W = (w1, w2, . . . , wt)
we associate with each i ∈ [t] a witness tree τW (i) that is constructed as follows: Let τ iW (i) be an
isolated vertex labelled by wi. Then, going backwards for each j = i − 1, i − 2, . . . , 1: if there
is a vertex v ∈ τ j+1

W (i) such that (v) ∼ wj then we choose among those vertices the one having
the maximum distance (breaking ties arbitrarily) from the root and attach a new child vertex u to
v that we label wj to get τ jW (i). If there is no such vertex v then τ j+1

W (i) = τ jW (i). Finally, let
τW (i) = τ 1

W (i).
We will say that a witness tree τ occurs in a trajectory Σ if W (Σ) = (w1, w2, . . . , wt) and there

is k ∈ [t] such that τW (k) = τ .
Below we prove some properties of witness trees that have positive probability to occur in the

execution of the algorithm and which will be useful to us later.
Recall that for a set S ⊆ [m], Ind(S) = IndG(S) denotes the set of independent subsets of S

with respect to G.

Proposition 3.7. For a witness tree τ = (T, `T) let Li = Li(τ) denote the set of labels of the nodes
at distance i from the root. For each i ≥ 0, Li ∈ Ind([m]).

Proof. Fix a witness tree τ and let W = (w1, w2, . . . , wt) be a witness sequence that occurs with
positive probability during the execution of the algorithm and such that τW (t) = τ . To prove the
proposition, we will show that for each i ≥ 0, and each pair of labels α, β ∈ Li, α 6= β, we have
that α � β.

Fix a pair of labels α, β ∈ Li. By the definition of τ , labels α, β correspond to two indices
wj1 , wj2 of W . Assume without loss of generality that j1 < j2. Then, according to the algorithm
for constructing τ , the node corresponding to wj2 is attached to the i-th level of τ before the node
corresponding to wj1 . The proof is concluded by noticing that if wj1 = α ∼ β = wj2 , then the
node corresponding to wj1 is eligible to be a child of the node corresponding to wj2 , and, thus,
α /∈ Li, which is a contradiction.

Proposition 3.8. For a witness sequence W of length t and any two distinct i, j ∈ [t] we have
τW (i) 6= τW (j).

Proof. Let W = (w1, w2, . . . , wt) be a witness sequence that can occur with positive probability
in an execution of the algorithm, and assume w.l.o.g. that i < j. If wi 6= wj then the claim is
straightforward because the root of τW (i) is wi while the root of τW (j) is wj . If wi = wj = w,
then there are two cases. In the first case, w ∈ Γ(w), and so tree τW (j) has at least one more vertex
than τW (i). In the second case w /∈ Γ(w). This implies that at the i-th step of any trajectory Σ such
that W (Σ) = W , flaw fw was addressed and removed. However, the fact that wj = w implies that

16

there has to be k ∈ {i + 1, . . . , j − 1} such that addressing wk introduced w, and thus wk ∼ w.
Again, this means that τW (j) has at least one more vertex than τW (i).

3.3.2 The Moser-Tardos Algorithm
In this section we present and analyze the celebrated Moser-Tardos algorithm [81], which can
be used to make constructive applications of the LLL in the so-called variable setting. There,
the input is a set of variables X = {x1, . . . , xn} with domains D1, . . . ,Dn, along with a set of
constraints C = {c1, . . . , cm}. Each constraint ci is associated with a set of variables var(i) ⊆
X and corresponds to a set of forbidden value assignments for these variables, i.e., values that
violate the constraint. Moreover, we are also given a product measure µ over Ω :=

∏n
i=1Di

(i.e., a collection of n independent random variables, one for each variable in X), and a graph
G = G(V,E) with vertex set V = [m] and edge set E = {(i, j) : var(i) ∩ var(j) 6= ∅}.

The Moser-Tardos algorithm is defined as follows.

Algorithm 4 The Moser-Tardos Algorithm
1: procedure RESAMPLE(X , C, µ)
2: Sample all variables in X according to µ.
3: while there is some violated constraint do
4: Choose an arbitrary violated constraint ci
5: (Re)sample every variable in var(i) according to µ.

For each i ∈ [m], let fi be the flaw (bad event) that corresponds to the subset of Ω that comprises
the assignments which violate constraint ci. Let also D(i) = {j : (i, j) ∈ E} denote the set
of neighbors of i in G, and observe that for every S ⊆ [m] \ (D(i) ∪ {i}) it holds that µ(fi |
∩j∈Sfj) = µ(fi), i.e., G is a dependency graph for the family of bad events F = {f1, . . . , fm}
and the probability distribution µ. Finally, notice that the definition of the Moser-Tardos algorithm
implies that G (slightly modified so that each vertex has a self-loop) is also a valid causality graph
since a necessary condition for flaw fi to cause fj is that constraints ci and cj share variables.

Recall the cluster expansion condition (2.3). We will prove the following convergence guar-
antee for Algorithm 4, which corresponds to a constructive cluster expansion condition for the
variable setting.

Theorem 3.9. Let (X , C, µ) be the input of Algorithm 4 and F = {f1, . . . , fm} be the correspond-
ing set of flaws. If there exist positive real numbers {ψi}mi=1 such that, for all i ∈ [m],

µ(fi)

ψi

∑
S∈Ind(D(i)∪{i})

∏
j∈S

ψj ≤ 1 , (3.1)

then E[Ni] ≤ ψi, where Ni is the number of times constraint ci is addressed during the execution
of Algorithm 4.

Corollary 3.10. Under the assumptions of Theorem 3.9, Algorithm 4 terminates after
∑m

i=1 ψi
steps in expectation.

17

Remark 3.11. If Shearer’s condition (2.4) is satisfied, then one can replace ψi in the conclusion
of Theorem 3.9 with q{i}(b)

q∅(b)
, where b = (µ(f1), . . . , µ(fm)) is the vector whose entries correspond

to the probabilities of the flaws in F under µ.

3.3.3 Proof of Theorem 3.9
For a witness tree τ let Pr[τ] denote the probability that it occurs during the execution of the algo-
rithm. The key ingredient of the original analysis of Moser and Tardos is the following technical
lemma, which is known as the witness tree lemma.

Lemma 3.12 (Witness Tree Lemma). For every witness tree τ , Pr[τ] ≤
∏

v∈V (τ) µ(f(v)).

The witness tree lemma (and its variations) is at the heart of every application of backward-
looking analysis, and is also the main tool for establishing properties of stochastic local search
algorithms besides fast convergence. In the interest of brevity, we will not present its proof here,
as in Chapter 5 we will reformulate it and prove it in the commutative setting, which subsumes the
variable setting. The interested reader is referred to the original proof of Moser and Tardos [81],
which is based on the elegant “resampling table technique”. We note though that this technique
does not seem to generalize beyond the variable setting.

Note now that if W is the witness sequence corresponding to the trajectory of the algorithm,
then Ni is the number of occurrences of ci in W and, according to Proposition 3.8, also the number
of distinct witness trees occurring in W that have their root labeled i. Therefore, lettingWi denote
the set of witness trees whose root is labeled i, one can bound the expectation of Ni by summing
the bounds in Lemma 3.12. In particular, the following lemma concludes the proof of Theorem 3.9.

Lemma 3.13. Under the assumptions of Theorem 3.9,∑
τ∈Wi

∏
v∈V (τ)

µ
(
f(v)

)
≤ ψi .

Proof of Lemma 3.13. To proceed, we use ideas from [81, 88]. Specifically, we introduce a branch-
ing process that is able to produce every tree inWi and bound

∑
τ∈Wi

∏
v∈V (τ) µ(f(v)) by analyzing

it.
We start with a single node labelled by i. In each subsequent round each leaf u “gives birth” to

a set of nodes whose set of (distinct) labels is a set S ∈ List((u)) := Ind(D((u))) ∪ {(u)} with
probability proportional to

∏
j∈S ψj . Proposition 3.7 guarantees that this process creates every tree

in Wi with positive probability. To express the exact probability received by each S ⊆ [m] we
define

Q(S) :=
∏
j∈S

ψj (3.2)

and let Z(u) =
∑

S∈List((u)) Q(S). Clearly, each S ∈ List((u)) receives probability equal to Q(S)
Z(u)

.

Proposition 3.14. The branching process described above produces every tree τ ∈ Wi with prob-
ability

pτ =
1

ψi

∏
v∈V (τ)

ψ(v)∑
S∈List((v))

∏
j∈S ψj

.

18

Proof. For each tree τ ∈ Wi and each node v of τ , let N(v) denote the set of labels of its children.
Then:

pτ =
∏

v∈V (τ)

Q(N(v))∑
S∈List((v))Q(S)

=
1

ψi

∏
v∈V (τ)

ψ(v)∑
S∈List((v))Q(S)

.

Returning now to the proof of Lemma 3.13, notice that:∑
τ∈Wi

∏
v∈V (τ)

µ(f(v)) ≤
∑
τ∈Wi

∏
v∈V (τ)

ψ(v)∑
S∈List((v))

∏
j∈S ψj

(3.3)

= ψi
∑
τ∈Wi

pτ (3.4)

≤ ψi ,

where (3.3) follows by the hypothesis of Theorem 3.9 while (3.4) by Proposition 3.14.

As a final note, Remark 3.11 follows from the fact that, under the assumptions of Shearer’s
condition, it can be established that

∑
τ∈Wi

∏
v∈V (τ) µ

(
f(v)

)
≤ q{i}(b)

q∅(b)
. The reader is referred

to [57, 59, 70, 71] for more details.

3.4 Forward-Looking Analysis
In this section we present the forward-looking analysis which was introduced by Giotis et al. [44]
and further developed in [4, 57]. In this kind of analysis, and in contrast to the backward-looking
argument of Moser and Tardos, the structures of interest are forests labeled by flaws that grow
forwards in time. Its main advantage is that it can be used to make constructive every1 application
of the LLL we are aware of, i.e., even applications outside the variable setting. (Indeed, the primary
goal of this section is to state and prove the constructive analogue of condition (2.2) that was
developed by Achlioptas, Iliopoulos and Kolmogorov [4].) On the other hand, its main drawbacks
are that it cannot be used to guarantee distributional properties besides fast convergence, and that
it imposes restrictions on the strategy the algorithm employs in order to choose a flaw to address
in each step.

3.4.1 A General Algorithmic LLL Condition
We start by describing the general algorithmic LLL condition of [4] which can be used to analyze
arbitrary stochastic local search algorithms under minimal assumptions about how the algorithm

1As shown in [57], there exist scenarios where the LLL applies but finding the desired output is computationally hard under
standard cryptographic assumptions. However, we are not aware of any “natural” LLL application that cannot be made constructive.

19

chooses which flaw to address at each step; e.g. it is enough for the algorithm to choose the flaw
with the lowest index according to some permutation. There, the input is the algorithm to be
analyzed and a probability measure µ over the state space of the algorithm, that is either inherited
from an application of the probabilistic method, as in the classical LLL, or introduced by the
algorithm designer. At a high level, the role of the measure is to gauge how efficiently the algorithm
gets rid of flaws, by quantifying the trade-off between the probability that a flaw is present at
some state of the execution of the algorithm and the number of other flaws each flaw can possibly
introduce when the algorithm addresses it. In particular, the quality of the convergence condition
is affected by the compatibility between the measure and the algorithm.

To make this rigorous, for any fixed probability distribution µ > 0 on Ω, we define the charge
of flaw fi with respect to µ to be

γi := max
τ∈Ω

1

µ(τ)

∑
σ∈fi

µ(σ)ρi(σ, τ) . (3.5)

That is, the charge γi is an upper bound on the ratio between the ergodic flow into a state τ that
arrives through transitions that address flaw fi and the probability µ(τ) of τ .

As we will see in the next section, we can interpret charges as bounds on certain conditional
probabilities of flaws with respect to probability distribution µ, i.e., the quantities of interest in
condition (2.2). Additionally though, charges can be seen as a measure of compatibility between
the actions of the algorithm and µ. To see this, for a fixed flaw fi consider the probability νi(τ) of
ending up in state τ after (i) sampling a state σ ∈ fi according to µ; and then (ii) addressing fi at
σ. Define the distortion associated with fi as

di := max
τ∈Ω

νi(τ)

µ(τ)
≥ 1 , (3.6)

i.e., the maximum possible inflation of a state probability incurred by addressing fi (relative to
its probability under µ, and averaged over the initial state σ ∈ fi according to µ). Now observe
from (3.5) that

γi = max
τ∈Ω

1

µ(τ)

∑
σ∈fi

µ(σ)ρi(σ, τ) = di · µ(fi) . (3.7)

An algorithm for which di = 1 is called a resampling oracle [57] for fi, and notice that it perfectly
removes the conditional of the addressed flaw. For instance, note that the Moser-Tardos algorithm
defines resampling oracles for flaws in the variable setting.

Remarkably, Harvey and Vondrák have shown that the assumptions of condition (2.1) imply
the existence of resampling oracles for addressing the flaws that correspond to bad events, as well
as an associated causality graph that is a subgraph of the dependency graph for the bad events.
Although their proof does not guarantee that these oracles are efficiently implementable, it does
implies a new non-constructive proof of condition (2.1), revealing a strong connection between the
LLL and stochastic local search algorithms.

Nonetheless, designing resampling oracles for sophisticated measures can be impossible by
local search. This is because small, but non-vanishing, correlations can travel arbitrarily far in Ω.
Moreover, the assumptions of the weaker condition (2.2) do not imply the existence of resampling

20

oracles. Thus, allowing for non-trivial distortion can be very helpful, especially in cases where
correlations decay with distance.

Recall now that θ denotes the probability distribution according to which the algorithm chooses
the first state of its trajectory, and that U(σ) denotes the set of flaw indices present in state σ. We
denote by Span(θ) the set of flaw indices that may be present in the initial state, i.e., Span(θ) =⋃
σ∈Ω:θ(σ)>0 U(σ).

The main result of this section is the following.

Theorem 3.15. Assume that, at each step, the algorithm chooses to address the lowest indexed
flaw according to an arbitrary, but fixed, permutation of [m]. If there exist positive real numbers
{ψi} for 1 ≤ i ≤ m such that

ζi :=
γi
ψi

∑
S⊆Γ(i)

∏
j∈S

ψj < 1 for every i ∈ [m], (3.8)

then the algorithm reaches a flawless object within (T0 +s)/ log2(1/(1− ε)) steps with probability
at least 1− 2−s, where ε = 1−maxi∈[m] ζi > 0, and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S⊆Span(θ)

∏
j∈S

ψj

 .

As we will see very soon, Theorem 3.15 can be seen as the constructive analogue of condi-
tion (2.2), which we recall that is the weakest known condition in the general setting. We will prove
Theorem 3.15 in Sections 3.4.3 and 3.4.5. In Section 3.4.3 we will also discuss how we can obtain
constructive analogues of the cluster expansion and Shearer’s conditions via algorithms that adopt
more sophisticated flaw choice strategies. Later, in Chapters 6 and 7, we will use Theorem 3.15
to analyze Molloy’s algorithm [76] for coloring triangle-free graphs and to give algorithms for the
seminal results of Kahn [65, 66] that establish (non-constructively) that the Goldberg-Seymour and
List-Edge-Coloring conjectures are true asymptotically.

3.4.2 Causality, Lopsidependency and Approximate Resampling Oracles
In this section we show a connection between Theorem 3.15 and condition (2.2) that was estab-
lished by Iliopoulos and Sinclair [60]. While this section is not essential to neither the proof nor
to the applications of Theorem 3.15, it does provide useful intuition since it implies the follow-
ing natural approach to making applications of the lopsided LLL algorithmic: To design a local
search algorithm for addressing the flaws that correspond to bad events, we consider transition
probability distributions {ρi(σ, ·)}i∈[m],σ∈fi whose supports induce a causality graph that coincides
with the lopsidependency graph of the lopsided LLL application of interest. Identifying this fam-
ily of distributions is typically an automated task. The key to successful implementation is our
ability to make the way in which the algorithm addresses flaws sufficiently compatible with the
underlying probability measure µ. To make this precise, we prove Theorem 3.16 which shows that
Theorem 3.15 can be seen as the algorithmic counterpart of condition (2.2).

21

Theorem 3.16. Given a family of flaws F = {f1, . . . , fm} over a state space Ω, an algorithm
A with causality graph C with neighborhoods Γ(·), and a measure µ over Ω, then for each S ⊆
F \ Γ(i) we have

µ
(
fi |

⋂
j∈S

fj

)
≤ γi , (3.9)

where the γi are the charges of the algorithm as defined in (3.5).

Proof. Let FS :=
⋂
j∈S fj . Observe that

µ(fi | FS) =
µ(fi ∩ FS)

µ(FS)

=

∑
σ∈fi∩FS µ(σ)

∑
τ∈a(i,σ) ρi(σ, τ)

µ(FS)

=

∑
σ∈fi∩FS µ(σ)

∑
τ∈FS ρi(σ, τ)

µ(FS)
, (3.10)

where the second equality holds because each ρi(σ, ·) is a probability distribution and the third by
the definition of causality and the fact that S ⊆ F \ Γ(i). Now notice that changing the order of
summation in (3.10) gives∑

τ∈FS

∑
σ∈fi∩FS µ(σ)ρi(σ, τ)

µ(FS)
=

∑
τ∈FS µ(τ)

∑
σ∈fi∩FS

µ(σ)
µ(τ)

ρi(σ, τ)

µ(FS)

≤

∑
τ∈FS µ(τ)

(
maxτ ′∈Ω

∑
σ∈fi

µ(σ)
µ(τ ′)

ρi(σ, τ
′)
)

µ(FS)
= γi .

In words, Theorem 3.16 shows that causality graph C is a lopsidependency graph with respect
to measure µ with bi = γi for all i ∈ [m]. Thus, when designing an algorithm for an application
of condition (2.2) using Theorem 3.16, we have to make sure that the induced causality graph co-
incides with the lopsidependency graph, and that the measure distortion induced when addressing
flaw fi is sufficiently small so that the resulting charge γi is bounded above by bi.

3.4.3 Forward-Looking Witness Structures and the Role of the Flaw Choice
Strategy

Recall that a focused local search algorithm A amounts to a flaw choice mechanism driving a
random walk with transition probabilities {ρi}i∈[m] and starting state distribution θ.

The high level idea of forward-looking analysis is to bound the probability that A runs for t
or more steps by partitioning the set of all t-trajectories into equivalence classes, bounding the
total probability of each class, and summing the bounds for the different classes. Specifically, the
partition is according to the t-sequence of the first t flaws addressed.

22

Definition 3.17. For any integer t ≥ 1, let Wt(A) denote the set containing all t-sequences of
flaws that have positive probability of being the first t flaws addressed by A.

In general, the content ofWt(A) is an extremely complex function of the flaw choice strategy.
An essential idea of the analysis is to estimate it by syntactic considerations capturing the following
necessary condition for W ∈ Wt(A): while the very first occurrence of any flaw fj in W may be
attributed to fj 3 σ1, every subsequent occurrence of fj must be preceded by a distinct occurrence
of a flaw fi that “assumes responsibility” for fj . Definition 3.18 below establishes a framework for
bounding Wt(A) by relating flaw choice with responsibility by (i) requiring that the flaw choice
mechanism is such that the elements ofWt(A) can be unambiguously represented by forests with
t vertices; while on the other hand (ii) generalizing the subsets of flaws for which a flaw fi may be
responsible from subsets of Γ(i) to arbitrary subsets of flaws, thus enabling responsibility shifting.

Definition 3.18. We will say that algorithm A is traceable if there exist sets Roots(θ) ⊆ 2[m] and
List(1) ⊆ 2[m], . . . ,List(m) ⊆ 2[m] such that for every t ≥ 1, there is an injection from the flaw
sequences inWt(A) to the set of unordered rooted forests with t vertices that have the following
properties:

1. Each vertex of the forest is labeled by an integer i ∈ [m].

2. The labels of the roots of the forest are distinct and form an element of Roots(θ).

3. The indices labeling the children of each vertex are distinct.

4. If a vertex is labelled by i ∈ [m], then the labels of its children form an element of List(i).

In Section 3.4.5 we demonstrate that algorithms whose flaw choice strategy corresponds to
fixing an arbitrary permutation π on [m] and, in each step, addressing the lowest indexed flaw ac-
cording to π, are traceable. Specifically, for this class of algorithms the set Wt can be mapped
injectively into a family of forests, satisfying Definition 3.18, with Roots(θ) = 2Span(θ) and
List(i) = 2Γ(i). Moreover, and as we show in Appendix 8.2, recursive algorithms akin to Algo-
rithm 2 are also traceable and can be used to make constructive applications of the cluster expansion
condition (2.3). In this case, and assuming the input causality graph is symmetric, Wt can be in-
jected into so-called “Recursive Forests” with Roots(θ) = Ind(Span(θ)) and List(i) = Ind(Γ(i)).
Thus, the aforementioned convergence conditions follow readily from Theorem 3.19 below.

Theorem 3.19. If algorithm A is traceable and there exist positive real numbers {ψi}i∈[m] such
that for every i ∈ [m],

ζi :=
γi
ψi

∑
S∈List(i)

∏
j∈S

ψj < 1 , (3.11)

then A reaches a flawless object within (T0 + s)/ log2(1/(1 − ε)) steps with probability at least
1− 2−s, where ε = 1−max

i∈[m]
ζi and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S∈Roots(θ)

∏
j∈S

ψj

 .

23

Moreover, Theorem 3.19 also implies the “Left-Handed Random Walk” result of [3] and ex-
tends it to non-uniform transition probabilities, since that algorithm is also traceable. Notably, in
the left-handed LLL introduced by Pegden [87] and which inspired the algorithm, the flaw order π
can be chosen in a provably beneficial way, unlike in the algorithms of Theorem 3.15, which are
indifferent to π. Establishing this goodness, though, entails attributing responsibility very differ-
ently from what is suggested by the causality digraph, making full use of the power afforded by
traceability and Theorem 3.19. We present the details in Appendix 8.2.

Finally, assuming the input causality graph is symmetric and using a sophisticated flaw choice
strategy known as “MaximalSetResample” [57], one can establish the constructive analogue of
Shearer’s condition (2.4). This result is out of the scope of Theorem 3.19, but only in that it
requires a counting argument that exploits global properties of the induced witness structures. The
reader is referred to [57, 71] for more details.

3.4.4 Proof of Theorem 3.19
In this Section we present the proof of Theorem 3.19.

Bounding the Probabilities of Trajectories

To bound the probability that an algorithm A runs for t or more steps we partition its t-trajectories
into equivalence classes, bound the total probability of each class, and sum the bounds for the
different classes. Formally, for a trajectory Σ = σ1

w1−→ σ2
w2−→ · · · we let W (Σ) = w1, w2, . . .

denote its witness sequence, i.e., the sequence of indices of flaws addressed along Σ. (Note that Σ
determines W (Σ) as the flaw choice strategy is deterministic.) We let Wt(Σ) =⊥ if Σ has fewer
than t steps, otherwise we let Wt(Σ) be the t-prefix of W (Σ). Finally, recall that Wt = Wt(A)
denotes the range ofWt for algorithmA except for⊥, i.e.,Wt(A) is the set of t-sequences of flaws
that have positive probability of being the first t flaws addressed byA, as per Definition 3.17. Thus,

Pr[Algorithm A takes t or more steps] =
∑

W∈Wt(A)

Pr[Wt = W] .

Key to our analysis will be the derivation of an upper bound for Pr[Wt = W] that holds for
arbitrary t-sequences of flaws, i.e., not necessarily elements ofWt(A), and which factorizes over
the flaws in W . For an arbitrary sequence of flaws A = (a1, . . . , at), let us denote by (i) the index
j ∈ [m] such that ai = fj .

Lemma 3.20. Let ξ = ξ(θ, µ) = maxσ∈Ω{θ(σ)/µ(σ)}. For every sequence of flaws W =
w1, . . . , wt,

Pr[Wt = W] ≤ ξ
t∏
i=1

γ(i) .

Proof. We claim that for every t ≥ 0, every t-sequence of flaws W , and every state τ ∈ Ω,

Pr[(Wt = W) ∧ (σt+1 = τ)] ≤ ξ ·
t∏
i=1

γ(i) · µ(τ) . (3.12)

24

Summing (3.12) over all τ ∈ Ω proves the lemma.
To prove our claim (3.12) we proceed by induction on |W | after recalling that for every i ∈ [m]

and τ ∈ Ω, by the definition of {γi}i∈[m],∑
σ∈fi

µ(σ)ρi(σ, τ) ≤ γi · µ(τ) . (3.13)

For |W | = 0, (3.12) holds because Pr[σ1 = τ] = θ(τ) ≤ ξµ(τ) for all τ ∈ Ω, by the definition
of ξ.

For the inductive step, assume that (3.12) holds for all s-sequences of flaws, for some s ≥ 0.
Let A′ = A, fi be any sequence of s+1 flaws and let τ ∈ Ω be arbitrary. The first inequality below
is due to the fact that, since fi is the last flaw in A′, a necessary (but not sufficient) condition for
the event Ws+1 = A′ to occur is that fi is present in the state that results after the flaws in A have
been addressed. (It is not sufficient as A may choose to address a flaw other than fi.) Then we
have

Pr[Ws+1 = A′ ∩ σs+2 = τ] ≤
∑
σ∈fi

ρi(σ, τ) Pr[Ws = A ∩ σs+1 = σ]

≤ ξ ·
s∏
i=1

γ(i) ·
∑
σ∈fi

µ(σ) · ρi(σ, τ)

≤ ξ ·
s+1∏
i=1

γ(i) · µ(τ) ,

where the second inequality follows from the inductive hypothesis and the third from (3.13).

Bounding the Sum

Per the hypothesis of Theorem 3.19, the sequences inWt can be injected into a set of rooted forests
with t vertices that satisfy the properties of Definition 3.18. Let Ft be the set of all forests with
t vertices that satisfy the properties of Definition 3.18. By Lemma 3.20, to prove the theorem it
suffices to prove that maxσ∈Ω

θ(σ)
µ(σ)

∑
φ∈Ft

∏
v∈V (Ft) γ(v) is exponentially small in s for t = T0 + s,

where (v) ∈ [m] denotes the label of vertex v.
To proceed, we use ideas similar to the ones in the proof of Lemma 3.13. Specifically, we

introduce a branching process produces every forest in Ft with positive probability and bound∑
φ∈Ft

∏t
i=1 γ(i) by analyzing it. Let us write Roots(θ) = Roots to simplify notation, and recall

that neither the trees in each forest, nor the nodes inside each tree are ordered. To start the process
we produce the roots of the labeled forest by picking a set S ∈ Roots with probability proportional
to
∏

j∈S ψj . In each subsequent round we follow a very similar procedure. Specifically, at each
step, each leaf node u with label ` “gives birth” to a set of nodes whose set of (distinct) labels is a
set S ∈ List((u)) with probability proportional to

∏
j∈S ψj .

It is not hard to see that this process creates every forest in Ft with positive probability. Specif-
ically, for a vertex labeled by `, every set S 6∈ List(`) receives probability 0, while every set
S ∈ List(`) receives probability proportional to

Q(S) :=
∏
g∈S

ψg .

25

In particular, letting Z` =
∑

S′∈List(`) Q(S ′), we see that each S ∈ List(`) receives probability ex-

actly equal to Q(S)
Z`

. Similarly, each setR ∈ Roots receives probability equal toQ(R)
(∑

R′∈Roots Q(R′)
)−1.

For each forest φ ∈ Ft and each node v of φ, let N(v) denote the set of labels of the children
of v and let List(v) = List(`) and ψv = ψ`, where ` = (v) is the label of v.

Lemma 3.21. The branching process described above produces every forest φ ∈ Ft with proba-
bility

pφ =

(∑
S∈Roots

∏
i∈S

ψi

)−1∏
v∈φ

ψv∑
S∈List(v) Q(S)

.

Proof. Let R denote the set of roots of φ. According to our discussion above,

pφ =
Q(R)∑

S∈Roots Q(S)

∏
v∈V (φ)

Q(N(v))∑
S∈List(v) Q(S)

=
Q(R)∑

S∈Roots Q(S)
·

∏
v∈V (φ)\R ψv∏

v∈V (φ)

∑
S∈List(v) Q(S)

=

(∑
S∈Roots

Q(S)

)−1 ∏
v∈V (φ)

ψv∑
S∈List(v) Q(S)

.

Notice now that∑
φ∈Ft

∏
v∈V (φ)

γ(v) =
∑
φ∈Ft

∏
v∈V (φ)

ζ(v) ψ(v)∑
S∈List((v))Q(S)

(3.14)

≤
(

max
i∈[m]

ζi

)t ∑
φ∈Ft

∏
v∈V (φ)

ψ(v)∑
S∈List((v))Q(S)

=

(
max
i∈[m]

ζi

)t ∑
φ∈Ft

(
pφ

∑
S∈Roots

Q(S)

)
(3.15)

=

(
max
i∈[m]

ζi

)t ∑
S∈Roots

Q(S) , (3.16)

where (3.14) follows by the definition of ζi in (3.11), (3.15) follows from Lemma 3.21 and (3.16)
follows by the fact that Ft is a subset of the support of the probability distribution over forests
induced by the branching process.

Using (3.16) we see that the binary logarithm of the probability that the walk does not encounter
a flawless state within t steps is at most t log2 (maxi∈F ζi) + T0, where

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

(∑
S∈Roots

∏
i∈S

ψi

)
.

Therefore, if t = (T0 +s)/ log2(1/maxi∈F ζi), the probability that the algorithm does not reach
a flawless state within t steps is at most 2−s.

26

3.4.5 Proof of Theorem 3.15
In this section we present the proof of Theorem 3.15. Specifically, we show that algorithms whose
flaw choice strategy corresponds to fixing an arbitrary permutation π on [m] and, in each step,
addressing the lowest indexed flaw according to π, are traceable. Specifically, we show that for
these algorithms the setsWt can be injected into a family of forests satisfying Definition 3.18 with
Roots(θ) = 2Span(θ) and List(i) = 2Γ(i). Combining this fact with Theorem 3.19 concludes the
proof of Theorem 3.15.

Fix a permutation π on [m]. For every S ⊆ [m], let π(S) = minj∈S π(j), i.e., the lowest index
in S according to π. Recall also that U(σ) is the set of indices of flaws present in state σ, and note
that we sometimes write π(σ) to abbreviate π(U(σ)).

Let Bi be the set of indices of flaws “introduced” by the i-th step of the walk, where a flaw fk
is said to “introduce itself” if it remains present after an action from α(k, σi) is taken. Formally,
we define Bi inductively as follows:

Definition 3.22. Let B0 = U(σ1). For 1 ≤ i ≤ t− 1, let Bi = U(σi+1) \ (U(σi) \ π(σi)).

LetB∗i ⊆ Bi comprise the indices of those flaws addressed in the course of the trajectory. Thus,
B∗i = Bi \ {Oi ∪ Ni}, where Oi comprises any flaws in Bi that were eradicated “collaterally” by
an action taken to address some other flaw, andNi comprises any flaws inBi that remained present
in every subsequent state after their introduction without being addressed. Formally,

Definition 3.23. Let Σ = (σ1
w1−→ . . . σt

wt−→ σt+1) be any bad t-trajectory and define the sequence
(B∗0 , B

∗
1 , . . . , B

∗
t−1), where for 0 ≤ i ≤ t− 1,

Oi = {k ∈ Bi | ∃j ∈ [i+ 1, t] : k /∈ U(σj+1) ∧ ∀` ∈ [i+ 1, j] : k 6= w`}
Ni = {k ∈ Bi | ∀j ∈ [i+ 1, t] : k ∈ U(σj+1) ∧ ∀` ∈ [i+ 1, t] : k 6= w`}
B∗i = Bi \ {Oi ∪Ni} .

Given (B∗0 , B
∗
1 , . . . , B

∗
i−1), we can determine (w1, w2, . . . , wi) inductively as follows. Define

E1 = B∗0 , while for i ≥ 1,
Ei+1 = (Ei − wi) ∪B∗i . (3.17)

By construction, the setEi ⊆ U(σi) is guaranteed to contain wi = π(σi). Therefore, it must be that
π(Ei) = wi. We note that this is the only place we make use of the fact that the algorithm picks
the lowest indexed flaw present to address at each step, thus guaranteeing that for every i ∈ [m]
and S ⊆ [m], if π(S) 6= i then π(S \ {i}) = π(S).

We next give another 1-to-1 map, mapping each sequence (B∗0 , B
∗
1 , . . . , B

∗
t−1) to a vertex-

labeled rooted forest. Specifically, the Witness Forest of a bad t-trajectory Σ has |B∗0 | trees and
t vertices, each vertex labeled by an element of W (Σ). To construct it, we first lay down |B∗0 |
vertices as roots and then process the sets B∗1 , B

∗
2 , . . . in order, each set becoming the progeny of

an already existing vertex (empty sets giving rise to leaves).

27

Witness Forest Construction
1: Lay down |B∗0 | vertices, each labeled by a different element of B∗0 , and let V1 consist of these

vertices
2: for i = 1 to t− 1 do
3: Let vi be the vertex in Vi with lowest label according to π
4: Add |B∗i | children to vi, each labeled by a different element of B∗i
5: Construct Vi+1 from Vi by adding the children of vi and removing vi

Observe that even though neither the trees, nor the nodes inside each tree of the Witness Forests
are ordered, we can still reconstruct W (Σ) since the set of labels of the vertices in Vi equals Ei for
all 0 ≤ i ≤ t − 1. Note also that the set of roots of every witness forest is in Span(θ), and that if
a vertex is labeled by i ∈ [m], then the labels of its children form an element of Γ(i), as required.
This concludes the proof of Theorem 3.15. �

28

Chapter 4

Point-to-Set Correlations and a Linear
Algebraic Perspective

As we have already discussed, following the groundbreaking algorithm of Moser and Tardos, there
has been a plethora of results analyzing local search algorithms for various constraint satisfaction
problems. These algorithms fall into two broad categories: resampling algorithms, analyzed via
various algorithmic LLL conditions; and backtracking algorithms, analyzed via entropy compres-
sion arguments. In this chapter we present a new convergence condition due to Achlioptas, Iliopou-
los and Sinclair [5] that seamlessly handles resampling, backtracking, and hybrid algorithms, i.e.,
algorithms that perform both resampling and backtracking steps. Unlike all past LLL work, this
condition replaces the notion of a dependency or causality graph by quantifying point-to-set corre-
lations between bad events. As a result, this condition captures the most general algorithmic LLL
condition known as a special case; simplifies the analysis of entropy compression applications; re-
lates backtracking algorithms, which are conceptually very different from resampling algorithms,
to the LLL; and, most importantly, allows for the analysis of hybrid algorithms, which were outside
the scope of previous LLL conditions. We will give several applications of this condition, includ-
ing a new hybrid vertex coloring algorithm that extends the recent important result of Molloy [76]
for coloring triangle-free graphs to arbitrary graphs (see Chapter 6).

Our key insight is that LLL-inspired convergence arguments can be seen as a method for bound-
ing the spectral radius of a matrix specifying the algorithm. This linear algebraic perspective allows
us to view charges of flaws (as defined in (3.5)) as norms of transition matrices induced by the algo-
rithm, giving us a new handle on these key quantities. It also allows us to generalize Kolmogorov’s
notion of commutative algorithms [71], casting it as matrix commutativity, which affords much
simpler proofs both of the original results and of recent extensions. We will introduce the linear
algebraic perspective and give some illustrative applications in this chapter. We will present its
applications to commutative algorithms in Chapter 5.

4.1 The Lovász Local Lemma as a Spectral Condition
We start by sketching our linear algebraic viewpoint [5] for the analysis of stochastic local search
algorithms.

As in the previous chapter, let Ω be a (large) finite set of objects and let Ω∗ ⊆ Ω be the “bad”

29

part of Ω, comprising the flawed objects; e.g., for a CNF formula on n variables Ω = {0, 1}n and
Ω∗ comprises all non-satisfying assignments. Imagine a particle trying to escape Ω∗ by following
a Markov chain1 on Ω with transition matrix P . Our task is to develop conditions under which the
particle eventually escapes, thus establishing in particular that Ω∗ 6= Ω. (Motivated by this view,
we also refer to objects as states.) Letting A be the |Ω∗| × |Ω∗| submatrix of P that corresponds to
transitions from Ω∗ to Ω∗, and B the submatrix that corresponds to transitions from Ω∗ to Ω \ Ω∗,
we see that, after a suitable permutation of its rows and columns, P can be written as

P =

[
A B
0 I

]
.

Here I is the identity matrix, since we assume that the particle stops after reaching a flawless state.
Let θ = [θ1 | θ2] be the row vector that corresponds to the probability distribution of the starting

state, where θ1 and θ2 are the vectors that correspond to states in Ω∗ and Ω\Ω∗, respectively. Then,
the probability that after t steps the particle is still inside Ω∗ is exactly ‖θ1A

t‖1. Therefore, for any
initial distribution θ, the particle escapes Ω∗ if and only if the spectral radius, ρ(A), of A is strictly
less than 1. Moreover, the rate of convergence is dictated by 1 − ρ(A). Unfortunately, since A is
huge and defined implicitly by an algorithm, the magnitude of its largest eigenvalue, ρ(A), is not
readily available.

In linear systems analysis, to sidestep the inaccessibility of the spectral radius, ρ(A), one typ-
ically bounds instead some operator norm ‖ · ‖ of the matrix A, since ρ(A) ≤ ‖A‖ for any such
norm. (For brief background on matrix norms see Appendix 8.1.) Moreover, instead of bounding
an operator norm of A itself, one often first performs a “change of basis” A′ = MAM−1 and
bounds ‖A′‖, justified by the fact that ρ(A) = ρ(A′) ≤ ‖A′‖, for any invertible matrix M . The
purpose of the change of basis is to cast A “in a good light” in the eyes of the chosen operator
norm, in the hope of minimizing the cost of replacing the spectral norm with an operator norm.
To demonstrate this approach in action, we start by showing how it captures the classical potential
function argument.

Consider any function φ on Ω such that φ(σ) > 0 for σ ∈ Ω∗, while φ(σ) = 0 for σ /∈ Ω∗. In
our k-SAT example, φ(σ) could be the number of violated clauses under σ. The potential argument
asserts that eventually φ = 0 (i.e., the particle escapes Ω∗) if φ is always reduced in expectation,
i.e., if for every σ ∈ Ω∗, ∑

σ′∈Ω

P [σ, σ′]φ(σ′) < φ(σ) . (4.1)

To express this argument via matrix norms, let A′ = MAM−1 where M is the diagonal |Ω∗|×|Ω∗|
matrix diag(1/φ(σ)). Thus, A′[σ, σ′] = A[σ, σ′]φ(σ′)/φ(σ). Recalling that ‖ · ‖∞ is the maximum
row sum of a matrix, we see that the potential argument’s condition (4.1) is nothing other than
‖A′‖∞ < 1.

Our starting point is the observation that all entropy compression arguments, and indeed all
arguments in the algorithmic LLL literature, can be seen as dual to the potential function argument.
That is, after a suitable change of basis A′ = MAM−1, they bound not ‖A′‖∞, as the potential
argument, but the dual norm ‖A′‖1. As a concrete demonstration, let us consider the Moser-
Tardos algorithm for a k-CNF formula on n variables with clauses c1, . . . , cm, under the uniform

1The framework does not require the state evolution to be Markovian, but we make this assumption here to simplify exposition.

30

measure on Ω = {0, 1}n. For simplicity, assume that the lowest indexed violated clause is always
resampled, so that the state evolves as a Markov chain.

For each clause ci, let Ai be the |Ω∗| × |Ω∗| submatrix of A comprising all rows (states) where
the resampled clause is ci. (All other rows of Ai are 0). For t ≥ 1, let Wt contain every t-
sequence of (indices of) clauses that has non-zero probability of comprising the first t clauses
resampled by the algorithm. In other words, Wt is the set of all t-sequences of indices from [m]
corresponding to non-vanishing t-products of matrices from {A1, . . . , Am}, i.e., Wt = {W =
(wi) ∈ [m]t :

∏t
i=1 Awi 6= 0}. With these definitions, the first inequality below follows from the

fact that ρ(A) ≤ ‖A‖ for any operator norm ‖·‖, the triangle inequality gives the second inequality
and, crucially, the submultiplicativity of operator norms gives the third:

ρ(A)t = ρ(At) ≤
∥∥At∥∥ =

∥∥∥∥(∑
i∈[m]

Ai

)t∥∥∥∥ =

∥∥∥∥ ∑
W∈Wt

t∏
i=1

Awi

∥∥∥∥ ≤ ∑
W∈Wt

∥∥∥∥ t∏
i=1

Awi

∥∥∥∥ ≤ ∑
W∈Wt

t∏
i=1

‖Awi‖ .

(4.2)

Observe that (4.2) holds for every operator norm. To get a favorable bound here, we will
apply (4.2) with the norm ‖ · ‖1, i.e., the maximum column sum. We see that for all j ∈ [m], every
column of Aj has at most one non-zero entry, since Aj(σ, σ′) > 0 only if σ is the mutation of σ′ so
that cj is violated. Recalling that all non-zero entries of A equal 2−k, we conclude ‖Aj‖1 = 2−k

for all j ∈ [m]. Therefore, ‖At‖1 ≤ |Wt|2−kt. To bound |Wt| we use a simple necessary condition
for membership inWt which, by a standard counting argument, implies that if each clause shares
variables with at most ∆ other clauses, then |Wt| ≤ 2m(e∆)t. Therefore, ρ(A)t ≤ 2m(e∆2−k)t

implying that if ∆ < 2k/e, then 1 > ‖A‖1 ≥ ρ(A) and the algorithm terminates within O(m)
steps with high probability.

A very similar argument can be used to capture even the most general existing versions of
the algorithmic LLL [3, 57, 4], which are described by arbitrary flaws and, for each flaw fi, an
arbitrary corresponding transition matrix Ai for addressing the flaw. Note that (4.2) is in essence
a weighted counting of witness sequences, the weight of each sequence being the product of the
norms ‖Awi‖1. Observe also that in our k-SAT example above, the only probabilistic notion was
the transition matrix A and we did not make any implicit or explicit reference to a probability
measure µ. To cast general algorithmic LLL arguments in this same form, any measure µ is
incorporated as a change of basis for the transition matrix A, i.e., we bound ‖A′‖1 = ‖MAM−1‖1

as
∑

W∈Wt

∏t
i=1 ‖MAwiM

−1‖1, whereM is the diagonal |Ω∗|×|Ω∗|matrix diag(µ(σ)), similarly
to the potential function argument. (Recall definition (3.5) and note that ‖MAwiM

−1‖1 = γwi .)
We thus see that the measure µ is nothing other than a tool for analyzing the progress of the
algorithm.

4.2 Point to Set Correlations
As we saw in Chapter 3, Moser and Tardos [81] showed that a simple local search algorithm can be
used to make the LLL constructive for product probability spaces, and following this work, a large
amount of effort has been devoted to making different variants of the LLL constructive [70, 69, 22,
88], and to analyzing sophisticated resampling algorithms that extend the Moser-Tardos techniques

31

to non-product probability spaces [55, 3, 57, 6, 4, 76, 60]. Indeed, intimate connections have been
established between resampling algorithms and the LLL (see Section 3.4.2 and [57, 4, 60].)

Moreover, and as we already discussed in Section 3.2, the entropy compression method has
been used to analyze backtracking algorithms, e.g., [47, 34, 38, 45, 46, 84], which recall that is
a class of local search algorithms that have a very different flavor from resampling algorithms:
they operate on partial non-violating assignments, starting with the empty assignment, and try to
extend to a complete, satisfying assignment. To do this, at each step they assign a (random) value
to a currently unassigned variable; if this leads to the violation of one or more constraints, they
backtrack to a partial non-violating assignment by unassigning some set of variables (typically
including the last assigned variable).

While there have been efforts to treat certain classes of backtracking algorithms systemati-
cally [38, 46], the analysis of such algorithms via the entropy compression method in general
requires ad hoc technical machinery. Moreover, before the work of Achlioptas, Iliopoulos and
Sinclair [5] there was no known connection between backtracking algorithms and any known LLL
condition, either existential or algorithmic. The main reason for this is that backtracking steps
induce non-trivial correlations among bad events, which typically result in very dense dependency
graphs that are not amenable to currently known LLL conditions.

The main byproduct of the linear algebraic viewpoint we presented in the previous section is a
new algorithmic LLL condition for analyzing hybrid algorithms, i.e., algorithms that (potentially)
use both resampling and backtracking steps. Such algorithms combine the advantages of both
approaches by using resampling to explore the state space, while detecting and backing away from
unfavorable regions using backtracking steps. Unlike all past work, this new condition replaces
the notion of a dependency or causality graph by quantifying point-to-set correlations between
bad events. Notably, it captures the most general algorithmic LLL condition known so far, i.e., the
one corresponding to Theorem 3.15, and moreover, unifies the analysis of all entropy compression
applications, connecting backtracking algorithms to the LLL in the same fashion that the analyses
we described in Chapter 3 connect resampling algorithms to the LLL.

More concretely now, recall our discussion in Section 3.4.1 where, given a stochastic local
search algorithm and a probability distribution µ over its state space, we defined the charge of a
flaw fi to be its probability with respect to µ times a distortion factor that captures the compatibility
between µ and the algorithm. In particular, recall that “distortion” is a worst-case notion, and that
when designing stochastic local search algorithms there is a trade-off between the number of flaws
each flaw can possibly introduce when the algorithm addresses it, and minimizing distortion. The
algorithmic LLL condition of [5] allows for a more refined way of capturing the compatibility
between µ and the algorithm by defining a set of charges, {γSi }(i,S)∈[m]×2[m] , one for each pair of
a flaw fi and a set of (indices of) flaws S, such that γSi = 0 whenever S ∈ [m] \ Γ(i). From
a technical standpoint, and recalling the discussion in Section 4.1, this is a consequence of an
(overlapping) decomposition of matrix A into a sum of exponentially many matrices, one for each
(i, S) pair, which enables us to perform a more detailed analysis.

We informally discuss the condition of [5] forthwith, and give the full details in Section 4.3.

32

4.2.1 Informal Discussion
Recall that we say that a transition σ → τ , made to address flaw fi, introduces flaw fj if τ ∈ fj
and either σ /∈ fj , or j = i. For an arbitrary state τ ∈ Ω, flaw fi, and set of flaws S, let

InSi (τ) := {σ ∈ fi : the set of flaws introduced by the transition σ → τ includes S} . (4.3)

For any fixed probability distribution µ > 0 on Ω, we define the charge of the pair (i, S) with
respect to µ to be

γSi := max
τ∈Ω

 1

µ(τ)

∑
σ∈InSi (τ)

µ(σ)ρi(σ, τ)

 . (4.4)

That is, the charge γSi is an upper bound on the ratio between the ergodic flow into a state that
arrives through transitions that introduce every flaw in S (and perhaps more), and the probability
of the state under µ.

The condition of [5] may now be stated informally as follows:

Theorem 4.1. If there exist positive real numbers {ψi}mi=1 such that for all i ∈ [m],

1

ψi

∑
S⊆[m]

γSi
∏
j∈S

ψj < 1 , (4.5)

then a local search algorithm reaches a flawless object quickly with high probability.

The phrase “quickly with high probability” essentially means that the running time has expectation
linear in the number of flaws and an exponential tail; we spell this out more formally in Section 4.3.

A key feature of Theorem 4.1 is the absence of a causality/dependency graph, present in all
previous LLL conditions. This is because considering point-to-set correlations, i.e., how each flaw
interacts with every other set of flaws, frees us from the traditional hard view of dependencies
between individual events. In this new condition, every flaw may interact with every other flaw, as
long as the interactions are sufficiently weak. Notably, this is achieved without any compromise
in the traditional setting of a causality/dependency graph. To see this, note that if S contains any
flaw that is never introduced by addressing flaw fi, then γSi = 0. Thus, in the presence of a
causality/dependency graph, the only terms contributing to the summation in (4.5) are those that
correspond to subsets of the graph neighborhood of flaw fi, recovering the traditional setting.

Besides relaxing the traditional notion of dependence, condition (4.5) is also quantitatively
more powerful, even in the traditional setting. To get a feeling for this, observe that the previ-
ously most powerful algorithmic LLL condition, i.e., Theorem 3.15, can be derived from (4.5) by
replacing γSi by γ∅i for every S (and restricting S to subsets of the neighborhood of flaw fi, as
discussed in the previous paragraph). Indeed, recall Definition 3.5 and observe that γi = γ∅i . Note
though that since the charges γSi are decreasing in S, replacing γ∅i with γSi can lead to significant
improvement. For example, if the flaws in S are never introduced simultaneously when addressing
flaw fi, then γSi = 0 and S does not contribute to the sum in (4.5); in contrast, S contributes γ∅i ,
i.e., the maximum possible charge, to the corresponding sum in [4].

A natural question is whether Theorem 4.1 can be improved by replacing the word “includes”
with the word “equals” in (4.3), thus shrinking the sets InSi (τ). The short answer is “No,” i.e.,

33

such a change invalidates the theorem. The reason for this is that in resampling algorithms we
must allow for the possibility that flaws introduced when addressing fi may later be fixed “collat-
erally,” i.e., as the result of addressing other flaws rather than by being specifically addressed by
the algorithm. While it may seem that such collateral fixes cannot possibly be detrimental, they are
problematic from an analysis perspective as they can potentially increase the intensity of correla-
tions between flaw fi and S. Perhaps more convincingly, tracking collateral fixes and taking them
into account also appears to be a bad idea in practice [96, 97, 12, 13]: for example, local search
satisfiability algorithms which select which variable to flip (among those in the targeted violated
clause) based only on which clauses will become violated, fare much better than algorithms that
weigh this damage against the benefit of the collaterally fixed clauses.

Motivated by the above considerations, Achlioptas, Iliopoulos and Sinclair introduce the notion
of primary flaws. These are flaws which, once present, can only be eradicated by being addressed
by the algorithm, i.e., they cannot be fixed collaterally. Primary flaws allow us to change the
definition of the sets InSi (τ) in the desired direction. Specifically, say that a set of flaws T covers a
set of flaws S if:

1. the set of primary flaws in T equals the set of primary flaws in S; and

2. the set of non-primary flaws in T includes the set of non-primary flaws in S.

In other words, we demand equality at least for the primary flaws.

Theorem 4.2. Theorem 4.1 continues to hold if in (4.3) “includes” is replaced by “covers”.

The notion of primary flaws is one of the main conceptual contributions of [5]. Crucially for
the applications, backtracking steps always introduce only primary flaws and thus, for such steps,
we achieve an ideal level of control. The full version of our new algorithmic LLL condition,
incorporating primary flaws, is spelled out formally in Theorem 4.6 in the next section.

4.3 A New Algorithmic LLL Condition
In this section we state the main result of this chapter, which is a formal version of Theorem 4.2
discussed in Section 4.2.1.

Recall that θ denotes the probability distribution of the starting state and that we denote by
Span(θ) the set of flaw indices that may be present in the initial state, i.e., Span(θ) =

⋃
σ∈Ω:θ(σ)>0 U(σ).

Let π be an arbitrary permutation over [m]. We say that an algorithm follows the π-strategy
if at each step it picks to address the flaw corresponding to the element of U(σ) of lowest index
according to π.

We now formalize the definitions of primary flaws and charges introduced informally in the
previous section.

Definition 4.3. A flaw fi is primary if for every σ ∈ fi and every j 6= i, addressing fj at σ always
results in some τ ∈ fi, i.e., fi is never eradicated collaterally. For a given set S ⊆ [m], we
write SP and SN to denote the indices that correspond to primary and non-primary flaws in S,
respectively.

Definition 4.4. We say that a set of flaws T covers a set of flaws S if T P = SP and TN ⊇ SN .

34

Definition 4.5. For a state τ ∈ Ω, flaw fi, and set of flaws S, let

InSi (τ) = {σ ∈ fi : the set of flaws introduced by the transition σ → τ covers S} .

Let µ > 0 be an arbitrary measure on Ω. For every i ∈ [m] and S ⊆ [m], the charge of (i, S)
with respect to µ is,

γSi = max
τ∈Ω

 1

µ(τ)

∑
σ∈InSi (τ)

µ(σ)ρi(σ, τ)

 . (4.6)

We now state the formal version of the new algorithmic LLL condition, Theorem 4.1 of the
previous section.

Theorem 4.6. If there exist positive real numbers {ψi}i∈[m] such that for every i ∈ [m],

ζi :=
1

ψi

∑
S⊆[m]

γSi
∏
j∈S

ψj < 1 , (4.7)

then, for every permutation π over [m], the probability that an algorithm following the π-strategy
fails to reach a flawless state within (T0 + s)/ log2(1− ε) steps is 2−s, where ε = 1−maxi∈[m] ζi,
and

T0 = log2 µ
−1
min +m log2

(
1 + ψmax

ψmin

)
,

with µmin = minσ∈Ω µ(σ), ψmax = maxi∈[m] ψi and ψmin = mini∈[m] ψi.

Remark 4.7. In typical applications µ, {ψi}i∈[m] are such that T0 = O(log |Ω| + m) and the sum
in (4.7) is easily computable, as γSi = 0 for the vast majority of subsets S.

Remark 4.8. For any fixed permutation π, the charges γSi can be reduced by removing from InSi (τ)
every state for which i is not the lowest indexed element of U(σ) according to π.

Remark 4.9. Theorem 4.6 holds also for algorithms using flaw choice strategies other than π-
strategies. We discuss some such strategies in Section 4.4.4. However, there is good reason to
expect that it does not hold for arbitrary flaw choice strategies (see Chapter 5 and [71]).

Finally, we state a refinement of our running time bound that will be important in order to get
the best convergence guarantees in the applications of pure backtracking algorithms in Section 4.5.

Remark 4.10. The upper bound on T0 in Theorem 4.6 can be replaced by the more refined bound:

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

(∑
S⊆Span(θ)

∏
j∈S

ψj

)
+ log2

(
max
S⊆[m]

1∏
j∈S ψj

)
.

Moreover, if (as in pure backtracking algorithms) every flaw is primary, and (as is typical in pure
backtracking algorithms) every flaw is present in the initial state, and if ψi ∈ (0, 1] for all i, then
T0 = log2 µ

−1
min.

35

4.4 Proof of Theorem 4.6
In Sections 4.4.2 and 4.4.3 we present the proof of Theorem 4.6. In Section 4.4.4 we show how to
extend the theorem to allow flaw choice strategies other than following a fixed permutation over
flaws.

Throughout this section we use standard facts about operator norms, summarized briefly in
Appendix 8.1.

4.4.1 Charges as Norms of Transition Matrices
We will first show how charges can be seen as the norms of certain transition matrices.

Recall that for any S ⊆ [m], we denote by SP and SN the subsets of S that correspond to
primary and non-primary flaws, respectively.

Definition 4.11. For every i ∈ [m] and every set of flaw indices S ⊆ [m], let ASi be the |Ω| × |Ω|
matrix where ASi [σ, τ] = ρi(σ, τ) if the set of flaws introduced by σ → τ covers S, i.e., the set
of primary flaws introduced by the transition σ → τ equals SP and the set of non-primary flaws
introduced by σ → τ contains SN ; otherwise ASi [σ, τ] = 0.

Let ‖ · ‖1 denote the matrix norm induced by the L1-vector-norm, and recall that it is equal to
the max column sum. Let alsoM = diag(µ(σ)) denote the |Ω|×|Ω| diagonal matrix whose entries
correspond to the probability measure µ. Our key observation is that the charges γSi introduced
in (4.6) can be expressed as

γSi = ‖MASiM
−1‖1 . (4.8)

The reader is encouraged to verify this equivalence, which is an immediate consequence of the
definitions.

Remark 4.12. Although we are specializing here to the ‖ · ‖1 and matrix M = diag(µ(σ)), Theo-
rem 4.6 holds for any choice of matrix norm and invertible matrix M . It is an interesting research
direction whether using other norms can be useful in applications.

4.4.2 Tracking the Set of Current Flaws
We say that a trajectory Σ = (σ1, σ2, . . . , σt+1) followed by the algorithm is a bad t-trajectory if
every state σi, i ∈ [t + 1], is flawed. Thus, our goal is to bound the probability that the algorithm
follows a bad t-trajectory.

Given a bad trajectory, intuitively, we track the flaws introduced into the state in each step,
where a flaw is said to “introduce itself” whenever addressing it fails to remove it. Of the flaws
introduced in each step, we disregard those that later get eradicated collaterally, i.e., by an action
addressing some other flaw. The rest form the “witness sequence” of the trajectory, i.e., a sequence
of sets of flaws.

Fix any permutation π on [m]. For any S ⊆ [m], let π(S) = minj∈S π(j), i.e., the lowest
index in S according to π. Recalling that U(σ) is the set of indices of flaws present in σ, in
the following we assume that the index of the flaw addressed in state σ is π(U(σ)), which we
sometimes abbreviate as π(σ). Also, to lighten notation, we will denote A \ {π(B)} by A− π(B).

36

Definition 4.13. Let Σ = (σ1, σ2, . . . , σt+1) be any bad t-trajectory. Let B0 = U(σ1). For 1 ≤
i ≤ t, let

Bi = U(σi+1) \ [U(σi)− π(σi)] ,

i.e., Bi comprises the indices of the flaws introduced in the i-th step. For 0 ≤ i ≤ t, let

Ci = {k ∈ Bi | ∃j ∈ [i+ 1, t] : k /∈ U(σj+1) ∧ ∀` ∈ [i+ 1, j] : k 6= π(σ`)} ,

i.e., Ci comprises the indices of the flaws introduced in the i-th step that get eradicated collaterally.
The witness sequence of bad t-trajectory Σ is the sequence of sets

w(Σ) = (B0 \ C0, B1 \ C1, . . . , Bt \ Ct) .

A crucial feature of witness sequences is that they allow us to recover the sequence of flaws
addressed.

Definition 4.14. Given an arbitrary sequence S0, . . . , St, let S∗1 = S0, while for 1 ≤ i ≤ t, let

S∗i+1 =

{
[S∗i − π(S∗i)] ∪ Si if S∗i 6= ∅ ,
∅ otherwise .

If S∗i 6= ∅ for all 1 ≤ i ≤ t, then we say that (Si)
t
i=0 is plausible and write π(S∗i) = (i).

Lemma 4.15. If Σ = (σ1, σ2, . . . , σt+1) is any bad t-trajectory, then w(Σ) = (S0, . . . , St) is
plausible, π(σi) = π(S∗i) = (i) for all 1 ≤ i ≤ t, and for every flaw index z ∈ [m], the number of
times z occurs in the multiset

⋃t
i=0 Si minus the number of times it occurs in the multiset

⋃t
i=1(i)

equals 1z∈S∗t+1
.

Proof. Recall that Si = Bi\Ci. For 1 ≤ i ≤ t+1, let Li comprise the elements of U(σi) eradicated
collaterally during the i-th step and let Hi comprise the elements of U(σi) eradicated collaterally
during any step j ≥ i. Observe that Hi+1 = (Hi \ Li) ∪ Ci. We will prove, by induction, that for
all 1 ≤ i ≤ t+ 1,

S∗i ⊆ U(σi) (4.9)
U(σi) \ S∗i = Hi . (4.10)

Observe that if (4.9), (4.10) hold for a given i, then π(σi) = π(S∗i), since π(σi) 6∈ Hi by the
definition ofHi, and π(A) = π(A\B) whenever π(A) 6∈ B. Moreover, S∗i 6= ∅, because otherwise
U(σi) = Hi, an impossibility. To complete the proof it suffices to note that for any z ∈ [m], the
difference in question equals 1z∈U(σt+1) and that U(σt+1) = S∗t+1 since, by definition, Ht+1 = ∅.
The inductive proof is as follows.

For i = 1, (4.9), (4.10) hold since S∗1 = B0 \ C0, while U(σ1) = B0. If (4.9), (4.10) hold for
some i ≥ 1, then S∗i+1 = [S∗i − π(σi)] ∪ Si while, by definition, U(σi+1) = [(U(σi)− π(σi)) \
Li] ∪Bi. Thus, the fact that S∗i ⊆ U(σi) trivially implies S∗i+1 ⊆ U(σi+1), while

U(σi+1) \ S∗i+1 = ((U(σi) \ S∗i) \ Li) ∪ (Bi \ Si) = (Hi \ Li) ∪ Ci = Hi+1 .

37

The first step in our proof of Theorem 4.6 is to give an upper bound on the probability that
a given witness sequence occurs in terms of the charges γSi . In particular, and in order to justify
Remark 4.8, we will use an arbitrary norm ‖ · ‖ and invertible matrix M .

Recall that ‖ · ‖∗ denotes the dual of norm ‖ · ‖ and let θ> ∈ [0, 1]|Ω| denote the row vector
expressing the probability distribution of the initial state σ1. Moreover, for a state σ, let eσ denote
the indicator vector of σ, i.e., eσ[σ] = 1 and eσ[τ] = 0 for all τ ∈ Ω \ {σ}.

Lemma 4.16. Fix any integer t ≥ 0 and let Σ be the random variable (σ1, . . . , σt+1). Fix any
arbitrary invertible matrix M and operator norm ‖ · ‖, and let λSi = ‖MASiM

−1‖. For any
plausible sequence φ = (S0, . . . , St),

Pr[w(Σ) = φ] ≤ ‖θ>M−1‖∗

(∑
τ∈Ω

‖Meτ‖

)
t∏
i=1

λSi(i) . (4.11)

Proof. By Definition 4.13 and Lemma 4.15, a necessary condition for w(Σ) = φ to occur is that
(i) ∈ U(σi) and Si ⊆ Bi, for every 1 ≤ i ≤ t.

Recall that for any S ⊆ [m], we denote by SP and SN the subsets of S that correspond to
primary and non-primary flaws, respectively. By Definition 4.13 and Lemma 4.15, a necessary
condition for w(Σ) = φ to occur is that (i) ∈ U(σi) and Si ⊆ Bi, for every 1 ≤ i ≤ t. Moreover,
since primary flaws are never eradicated collaterally, i.e., CP

i = ∅ always, it must also be that
SPi = BP

i for 1 ≤ i ≤ t. Fix any state τ ∈ Ω. The probability that (1) ∈ U(σ1) ∧ SP1 =
BP

1 (Σ) ∧ SN1 ⊆ BN
1 (Σ) ∧ σ2 = τ equals the τ -column (coordinate) of the row-vector θ>AS1

(1).
More generally, we see that for any t ≥ 1,

Pr

[
t∧
i=1

((i) ∈ U(σi))
t∧
i=1

(
SPi = BP

i

) t∧
i=1

(
SNi ⊆ BN

i

)∧
σt+1 = τ

]
= θ>

t∏
i=1

ASi(i)eτ . (4.12)

Consider now any vector norm ‖ · ‖ and the corresponding operator norm. By (8.1),

θ>
t∏
i=1

ASi(i)eτ = θ>M−1

(
t∏
i=1

MASi(i)M
−1

)
Meτ ≤

∣∣∣∣∣
∣∣∣∣∣θ>M−1

(
t∏
i=1

MASi(i)M
−1

)∣∣∣∣∣
∣∣∣∣∣
∗

‖Meτ‖ .

(4.13)

Summing (4.13) over all τ ∈ Ω we conclude that

Pr[w(Σ) = φ] =
∑
τ∈Ω

Pr[w(Σ) = φ ∧ σt+1 = τ] ≤

∣∣∣∣∣
∣∣∣∣∣θ>M−1

t∏
i=1

MASi(i)M
−1

∣∣∣∣∣
∣∣∣∣∣
∗

∑
τ∈Ω

‖Meτ‖ .

(4.14)

Applying (8.3) and then (8.2) to (4.14) and recalling the definition of λSi(i) we conclude that

Pr[w(Σ) = φ] ≤ ‖θ>M−1‖∗

(∑
τ∈Ω

‖Meτ‖

)
t∏
i=1

‖MASi(i)M
−1‖ = ‖θ>M−1‖∗

(∑
τ∈Ω

‖Meτ‖

)
t∏
i=1

λSi(i) ,

as claimed.
38

Let Ft = {w(Σ) : Σ is a bad t-trajectory of the algorithm}. Since Ft contains only plausible
sequences, an immediate corollary of Lemma 4.16 is a bound on the probability that the algorithm
fails in t steps.

Corollary 4.17. The probability that the algorithm fails to reach a flawless state within t steps is
at most (

max
σ∈Ω

θ(σ)

µ(σ)

)
·
∑
φ∈Ft

t∏
i=1

γSi(i) . (4.15)

Proof. We apply Lemma 4.16 with M = diag(µ(σ)) and the ‖ · ‖1-norm. The proof is concluded
by noticing that the dual norm of ‖ · ‖1 is ‖ · ‖∞ and, thus, ‖θ>M−1‖∞ = maxσ∈Ω

θ(σ)
µ(σ)

, and that∑
τ∈Ω ‖Meτ‖1 = 1.

Thus, to complete the proof of Theorem 4.6 we are left with the task of bounding the sum
in (4.15).

4.4.3 Bounding the Sum
Given ψ1, . . . , ψm > 0 and S ⊆ [m], let Ψ(S) =

∏
j∈S ψj , with Ψ(∅) = 1. For each i ∈ [m], let

ζi =
1

ψi

∑
S⊆[m]

γSi Ψ(S) .

Finally, for each i ∈ [m] consider the probability distribution on 2[m] assigning to each S ⊆ [m]
probability

p(i, S) =
γSi Ψ(S)∑

S⊆[m] γ
S
i Ψ(S)

=
γSi Ψ(S)

ζiψi
.

For any S0 ⊆ [m], let Ft(S0) comprise the witness sequences in Ft whose first set is S0. Consider
the probability distribution on sequences of subsets of [m] generated as follows: R1 = S0; for
i ≥ 1, if Ri 6= ∅, then Ri+1 = (Ri − π(Ri)) ∪ Si, where Pr[Si = S] = p(π(Ri), S), for any
S ⊆ [m]. Under this distribution, by Lemma 4.15, each φ = (S0, . . . , St) ∈ Ft(S0) receives
probability pφ =

∏t
i=1 p((i), Si), while

∑
φ∈Ft(S0) pφ ≤ 1. At the same time, by the last claim in

Lemma 4.15,

pφ =
t∏
i=1

p((i), Si) =

(
t∏
i=1

p((i), Si)
ψ(i)

Ψ(Si)

)
Ψ(S∗t+1)

Ψ(S0)
=

Ψ(S∗t+1)

Ψ(S0)

t∏
i=1

γSi(i)

ζ(i)

. (4.16)

Combining (4.16) with the fact
∑

φ∈Ft(S0) pφ ≤ 1 it follows that

∑
φ∈Ft(S0)

t∏
i=1

γSi(i)

ζ(i)

≤ max
S⊆[m]

Ψ(S0)

Ψ(S)
. (4.17)

39

Let ζ = maxi∈[m] ζi. Then, summing equation (4.17) over all possible sets S0 yields

∑
φ∈Ft

t∏
i=1

γSi(i) =
∑

S0⊆Span(θ)

∑
φ∈Ft(S0)

t∏
i=1

γSi(i) ≤ ζt
∑

S0⊆Span(θ)

∑
φ∈Ft(S0)

t∏
i=1

γSi(i)

ζ(i)

≤ max
S⊆[m]

∑
S0⊆Span(θ)

Ψ(S0)

Ψ(S)
.

(4.18)

Proofs of Theorem 4.6 and Remark 4.10 . Combining (4.18) with Corollary 4.17 we see that the
binary logarithm of the probability that the algorithm does not encounter a flawless state within t
steps is at most t log2 ζ + T0, where

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S⊆Span(θ)

Ψ(S)

+ log2

(
max
S⊆[m]

1

Ψ(S)

)
.

Therefore, if t = (T0 + s)/ log2(1/ζ) ≤ (T0 + s)/δ, the probability that the algorithm does not
reach a flawless state within t steps is at most 2−s. This concludes the proofs of the first part of
Remark 4.10 and Theorem 4.6 since maxσ∈Ω θ(σ) ≤ 1 and

log2

 ∑
S⊆Span(θ)

Ψ(S)

+ log2

(
max
S⊆[m]

1

Ψ(S)

)
≤ log2

∏m
i=1 (1 + ψi)

(ψmin)m
≤ m log2

(
1 + ψmax

ψmin

)
.

To see the second part of Remark 4.10, let I(θ) denote the set comprising the sets of flaw-
indices that may be present in a state selected according to θ. Recall now that when every flaw
is primary, the only equivalence classes of Ft that contribute to the sum in (4.18) are those for
which S0 ∈ I(θ). Thus, for backtracking algorithms the sum over S ⊆ Span(θ) in the definition
of T0 can be restricted to S ∈ I(θ). Finally, if every flaw is always present in the initial state and
ψi ∈ (0, 1] for every i ∈ [m], then I(θ) = {F} and log

(
1

maxS⊆[m]

∏
j∈S ψj

)
= − log2

∏
j∈[m] ψj .

This implies that the second and third term in the expression of T0 in Remark 4.10 cancel out,
concluding its proof.

4.4.4 Other Flaw Choice Strategies
The only place where we used the fact that the flaw choice is based on a fixed permutation was
to assert, in Lemma 4.15, that the witness sequence of a trajectory determines the sequence of
addressed flaws. Thus, our analysis is in fact valid for every flaw choice strategy that shares this
property.

A first example of such a strategy is “pick a random occurring flaw and address it”. To im-
plement this, we can fix a priori an infinite sequence of uniformly random permutations π1, π2, . . .
and at the i-th step address the lowest indexed flaw present according to πi. It is straightforward to
see that Lemma 4.15 still holds if we replace π with πi therein and in Definition 4.14.

As a second example, consider the following recursive way to chose which flaw to address at
each step (which makes the algorithm non-Markovian). The algorithm now maintains a stack. The
flaws present in σ1, ordered according to some permutation π, comprise the initial stack content.

40

The algorithm starts by addressing the flaw at the top of the stack, i.e., π(σ1), as before. Now,
though, any flaws introduced in the i-th step, i.e., the elements of Bi, go on the top of the stack
(ordered by π), while all eradicated flaws are removed from the stack. The algorithm terminates
when the stack empties. It is not hard to see that, by taking S0 to be the initial stack content,
popping the flaw at the top of the stack at each step, and adding Si to the top of the stack (ordered
by π), the sequence of popped flaws is the sequence of addressed flaws.

4.5 Applications to Backtracking Algorithms
An important class of algorithms naturally devoid of “collateral fixes” are backtracking algorithms,
as discussed in Section 4.2. In this section we give three representative applications of Theorem 4.6
to this family of algorithms.

In particular, consider a Constraint Satisfaction Problem (CSP) over a set of variables V =
{v1, . . . , vn}, each variable vi taking values in a domainDi, with a set of constraints C = {c1, c2, . . . , cm}
over these variables. The backtracking algorithms we consider operate as follows. (Note that in
Step 1, we can always take θ to be the distribution under which all variables are unassigned; this
does not affect the convergence condition (4.7) but may have a mild effect on the running time.)

Generic Backtracking Algorithm
1: Sample a partial non-violating assignment σ0 according to a distribution θ and set i = 0
2: while unassigned variables exist do
3: Let v be the lowest indexed unassigned variable in σi
4: Choose a new value for v according to a state-dependent probability distribution
5: if one or more constraints are violated then
6: Remove the values from enough variables so that no constraint is violated
7: Let σi+1 be the resulting assignment
8: i← i+ 1

Let Ω be the set of partial assignments to V that do not violate any constraint in C. For each
variable vi ∈ V , let flaw fi ⊆ Ω comprise the partial assignments in which vi is unassigned.
Clearly, each flaw fi can only be removed by addressing it, as addressing any other flaw can only
unassign vi. Thus, every flaw is primary and a flawless state is a complete satisfying assignment.

Recently, Bissacot and Doin [20] showed that backtracking algorithms can make LLL applica-
tions in the variable setting constructive, using the entropy compression method. However, their
result applies only to the uniform measure and their algorithms are relatively complicated. Here
we show that condition (4.7) makes applications of the LLL in the variable setting [81], with any
measure, constructive via a single, simple backtracking algorithm, i.e., an algorithm of very dif-
ferent flavor from the Moser-Tardos resampling algorithm. For example, in the case of k-SAT the
algorithm takes the following form:

41

Randomized DPLL with single-clause backtracking
while unassigned variables exist do

Assign to the lowest indexed unassigned variable x a value v ∈ {0, 1} with probability pvx
if one or more clauses become violated then

Unassign all k variables in the lowest indexed violated clause

We also show that applying our condition to the algorithm of Esperet and Parreau [38] for
acyclic edge coloring recovers, in a simple, black-box fashion, the same bound of 4∆ as their
highly non-trivial, problem-specific analysis via entropy compression, while guaranteeing an im-
proved running time bound.

Finally, we make constructive in an effortless manner an existential result of Bernshteyn [16]
showing improved bounds for the acyclic chromatic index of graphs that do not contain an arbitrary
bipartite graph H .

4.5.1 The Variable Setting
In this section we show how we can use Theorem 4.6 to employ backtracking algorithms in order
to capture applications in the variable setting, i.e., the setting considered by Moser and Tardos.
In particular, we consider a product measure over variables V and define a bad event for each
constraint c ∈ C being violated and show the following corollary of Theorem 4.6.

Theorem 4.18. Let P be any product measure over a set of variables V and letAc be the event that
constraint c is violated. If there exist positive real numbers {ψv}v∈V such that for every variable
v ∈ V ,

1

ψv

(
1 +

∑
c3v

P (Ac)
∏
u∈c

ψu

)
< 1 , (4.19)

then there exists a backtracking algorithm that finds a satisfying assignment after an expected
number of O

(
log(P−1

min) + |V | log2

(
1+ψmax

ψmin

))
steps.

We now use Theorem 4.18 to capture a well-known application of the Lovász Local Lemma
to sparse k-SAT formulas when P is the uniform measure. For a k-SAT formula Φ we will be
denoting its maximum degree as ∆ ≡ ∆(Φ), i.e., each variable of Φ is contained in at most ∆
clauses.

Theorem 4.19. Every k-SAT formula Φ with maximum degree ∆ < 2k

ek
is satisfiable. Moreover,

there exists a backtracking algorithm that finds a satisfying assignment of Φ efficiently.

Proof. Setting ψv = ψ = 2α > 0 we see that it suffices to find a value α > 0 such that

1

ψ
+

1

2k
∆ψk−1 =

1

2α
+

1

2
∆αk−1 < 1 ,

which is feasible whenever

∆ < max
α>0

2α− 1

αk
=

2k

k
·
(

1− 1

k

)k−1

≤ 2k

ek
.

42

Remark 4.20. In [42] it is shown that using a non-uniform product measure P one can improve
the bound of Theorem 4.19 to ∆ < 2k+1

e(k+1)
and that this is asymptotically tight. We note that we

can achieve the same bound using Theorem 4.18 with the same P but since this an involved LLL
application we will not explicitly present it here.

Proof of Theorem 4.18

We consider a very simple backtracking algorithm: We start with each variable unassigned. Then,
at each state σ we choose the lowest indexed unassigned variable v and sample a value for it
according to the product measure P . If one or more constraints become violated, as a result we
remove the value from each variable of the lowest indexed violated constraint.

Let Ω be the set of partial non-violating assignments. Let µ : Ω → R be the probability
measure that assigns to each state σ ∈ Ω the value µ(σ) ∝

∏
v∈V

v/∈U(σ)
P (σ(v)), where we abuse

notation for brevity by letting P (σ(v)) denote the event that variable v is assigned value σ(v).
Theorem 4.18 will follow immediately from the following lemma. (For brevity, we will index

flaws with variables instead of integers.)

Lemma 4.21. For each vertex v and set of variables S 6= ∅:

γSv =

1 if S = ∅
P (Ac) if S = c, where c is a constraint containing v
0 otherwise,

,

Proof. Notice that the actions related to flaw fv can only remove the value from sets of of variables
that correspond to constraints that contain v. Thus, γSv = 0 for every set S 6= ∅ that does not
correspond to a constraint containing v. Recalling the definition of charges and U(σ), we have

γSv = max
τ∈Ω

∑
σ∈fv

S=U(τ)\(U(σ)\{v})

µ(σ)

µ(τ)
ρv(σ, τ) . (4.20)

To see the claim for the case of the empty set, notice that given a state τ there exists at most one
state σ such that ρv(σ, τ) > 0 and that U(τ) \ (U(σ) \ {v}) = ∅ . This is because we can uniquely
reconstruct σ from τ by removing the value from v at τ . Then we have

µ(σ)

µ(τ)
ρv(σ, τ) =

∏
u∈V \U(σ) P (σ(u))∏
u∈V \U(τ) P (τ(u))

P (τ(v)) =
1

P (τ(v))
P (τ(v)) = 1 .

To see the claim for the case where S = c, consider the set viol(c) consisting of the set of value
assignments of the variables of c that violate c. Notice now that for every state τ ∈ Ω there is
an injection from the set of states σ such that that ρv(σ, τ) > 0 and S = U(τ) \ (U(σ) \ {v}) to
viol(c). This is because c should be violated at each such state σ and, thus, it should be that each
state σ should be of the form σ = τα for α ∈ viol(c), where τα is the state induced by τ when
assigning α to the variables of c. Observe further that for every state of the form τα, α ∈ viol(c),
we have that

µ(τα)

µ(τ)
ρv(τα, τ) =

 ∏
u∈c\{v}

P (Xu = τα(u))

P (Xv = τ(v)) = P (Aαc) , (4.21)

43

where P (Aαc) is the probability of the event that the variables of c receive assignment α. Com-
bining (4.21) with (4.20) and the fact that P (Ac) =

∑
α∈viol(c) P (Aαc) concludes the proof of

Lemma 4.21.

Plugging Lemma 4.21 into Theorem 4.6 concludes the proof of Theorem 4.18.

4.5.2 Acyclic Edge Coloring
An edge-coloring of a graph is proper if all edges incident to each vertex have distinct colors.
A proper edge coloring is acyclic if it has no bichromatic cycles, i.e., no cycle receives exactly
two (alternating) colors. The smallest number of colors for which a graph G has an acyclic edge-
coloring is denoted by χ′a(G).

Acyclic Edge Coloring was originally motivated by the work of Coleman et al. [29, 28] on the
efficient computation of Hessians and, since then, there has been a series of papers [9, 78, 82, 49,
69, 38] that upper bound χ′a(G) for graphs with bounded degree. The current best result was given
recently by Giotis et al. in [44] who showed that χ′a(G) ≤ 3.74∆ in graphs with maximum degree
∆.

A Simple Backtracking Algorithm

We show how one can apply Theorem 4.6 to recover the main application of the framework of [38]
with a much simpler proof.

Let G be a graph with m edges E = {e1, . . . , em} and suppose we have q available colors.

Definition 4.22. Given a graph G = (V,E) and a (possibly partial) edge-coloring of G, say that
color c is 4-forbidden for e ∈ E if assigning c to e would result in either a violation of proper-edge-
coloration, or a bichromatic 4-cycle containing e. Say that c is 4-available if it is not 4-forbidden.

Lemma 4.23 ([38]). In any proper edge-coloring of G at most 2(∆ − 1) colors are 4-forbidden
for any e ∈ E.

Proof. The 4-forbidden colors for e = {u, v} can be enumerated as: (i) the colors on edges adja-
cent to u, and (ii) for each edge ev adjacent to v, either the color of ev (if no edge with that color
is adjacent to u), or the color of some edge e′ which together with e, ev and an edge adjacent to u
form a cycle of length 4.

Consider the following backtracking algorithm for Acyclic Edge Coloring with q = 2(∆ −
1) + Q colors. At each step, choose the lowest indexed uncolored edge e and attempt to color
it choosing uniformly at random among the 4-available colors for e. If one or more bichromatic
cycles are created, then choose the lowest indexed one of them, say C = {ei1 , ei2 , . . . , ei2` = e},
and remove the colors from all its edges except ei1 and ei2 .

The main result of [38] states that every graph G admits an acyclic edge coloring with q >
4(∆ − 1) colors. Moreover, such a coloring can be found in O (|E||V |∆2 ln ∆) time with high
probability.

We prove the following theorem, which improves the running time bound when the graph is
dense.

44

Theorem 4.24. Every graph G admits an acyclic edge coloring with q > 4(∆− 1) colors. More-
over, such a coloring can be found in O (|E||V |∆) time with high probability.

Proof. Let Ω be the set of partial acyclic edge colorings of G. For each edge e let fe be the subset
(flaw) of Ω that contains the partial acyclic edge colorings of G in which e is uncolored. We will
apply Theorem 4.6 using the ‖ · ‖1 norm and M = 1

|Ω| .
We first compute the charges γSe for each edge e and set of edges S. Notice that for γSe to be non-

zero, it should either be that S = ∅, or that S contains e and there exists a cycle C = {ei1 , ei2} ∪ S
so that, when a recoloring of e makes C bichromatic, the backtracking step uncolors precisely the
edges in S. With that in mind, for each edge e and each set S that contains e, let Ce(S) denote the
set of cycles with the latter property.

Lemma 4.25. For each edge e, let

γSe =

1
Q

if S = ∅
|Ce(S)|
Q

if e ∈ S
0 otherwise .

Proof. Notice that

γSe = max
τ∈Ω

∑
σ∈fe

S=U(τ)\(U(σ)\{e})

ρe(σ, τ) ≤ max
τ∈Ω

∑
σ∈fe

S=U(τ)\(U(σ)\{e})

1

Q
,

since according to Lemma 4.23 ρe(σ, τ) ≤ 1
Q

for each pair (σ, τ) ∈ fe × Ω. The proof follows by
observing that for each state τ :

• If S = ∅ then there exists at most one state σ such that ρe(σ, τ) > 0 andU(τ)\(U(σ) \ {e}) =
∅ (we can reconstruct σ from τ by uncoloring e).

• If S 3 e and |S| = 2` − 2 then there exist at most |Ce(S)| states such that ρe(σ, τ) > 0
and S = U(τ) \ (U(σ) \ {e}). Given a cycle C = S ∪ {ei1 , ei2} we reconstruct σ from
τ by finding the colors of edges in S \ {e} from τ(ei1), τ(ei2), exploiting the fact that the
backtracking step corresponds to an uncoloring of a bichromatic cycle; e is uncolored; and
every other edge has the same color as in τ .

• For all other S there exists no state σ such that ρ(σ, τ) > 0 and S = U(τ) \ (U(σ) \ {e}).

Observe that there are at most (∆− 1)2`−2 cycles of length 2` containing a specific edge e. In
other words, there exist at most (∆− 1)2`−3 sets of edges S of size 2`− 2 that contain e and such
that γSe > 0 and, in addition, note that we always have |Ce(S)| ≤ ∆− 1.

45

Thus, if Q = c(∆ − 1) for some constant c, setting ψe = αγe∅ = α
Q

, where α is a constant in
(1, c), Lemma 4.25 implies:

1

ψe

(∑
S⊆E

γSe
∏
e∈S

ψj

)
≤ min

α∈(1,c)

(
1

α
+
∞∑
i=3

(
∆− 1

Q

)2i−2

α2i−3

)

≤ min
α∈(1,c)

(
1

α
+

1

c

∞∑
i=3

(α
c

)2i−3
)

= min
α∈(1,c)

(
1

α
+

α3

c2(c2 − α2)

)
=

2

c

for α∗ = c
(√

5−1
2

)
. Thus, if c > 2 the probability that the algorithm fails to find an acyclic edge

coloring within T0+s
δ

steps is 2−s, where δ = 1− 2
c
, and, according to Remark 4.10,

T0 = log2 |Ω| = O(|E|) .

The proof is concluded by observing that each step can be performed in time O(|V |∆) (the time
it takes to find a 2-colored cycle containing a given edge, if such a cycle exists, in a graph with a
proper edge-coloring).

An Application of the Local Cut Lemma

Bernshteyn [18] introduced a non-constructive generalized LLL condition, called the “Local Cut
Lemma”, with the aim of to drawing connections between the LLL and the entropy compression
method. He later applied it in [16] to the problem of Acyclic Edge Coloring giving improved
bounds assuming further constraints on the graph besides sparsity. For example he proved the
following.

Theorem 4.26 ([16]). Let G be a graph with maximum degree ∆ and let H be a fixed bipartite
graph. If G does not contain H as a subgraph, then there exists an acyclic edge coloring of G
using at most 3(∆ + o(1)) colors.

We now show how to use our framework to give a constructive proof of Theorem 4.26. This
will follow immediately from the following structural lemma in [16].

Lemma 4.27 ([16]). There exist positive constants γ, δ such that the following holds. Let G be
a graph with maximum degree ∆ that does not contain H as a subgraph. Then for any edge
e ∈ E(G) and for any integer k ≥ 4, the number of cycles of length k in G that contain e is at
most γ∆k−2−δ.

Constructive Proof of Theorem 4.26. Notice that in this case, making almost identical calculations
to those in the proof of Theorem 4.24, invoking Lemma 4.27 to upper bound the number of cycles
that contain e and setting α = c

β
we obtain

1

ψe

(∑
S⊆E

γSe
∏
h∈S

ψh

)
≤ min

α∈(1,c)

(
1

α
+

(α)3γ∆−δ

c2(c2 − α2)

)
=

1

c
min
β>1

(
β +

βγ∆−δ

β(β2 − 1)

)
.

Thus, as ∆ grows, the value of c required for the algorithm to terminate approaches 1, concluding
the proof.

46

Chapter 5

Commutative Algorithms

Besides conditions for existence of and fast convergence to perfect objects, one may naturally
ask further questions regarding properties of focused search algorithms. For instance, “are they
parallelizable ?”, “how many solutions can they output?”, “what is the expected “weight” of a so-
lution?”, etc. These questions and more have been answered for the Moser-Tardos (MT) algorithm
in a long series of parpers [22, 27, 49, 48, 53, 56, 70, 81]. As a prominent example, the result of
Haeupler, Saha and Srinivasan [49], as well as follow-up work of Harris and Srinivasan [56, 51],
allows one to argue about the dynamics of the MT process, resulting in several new applications
such as estimating the entropy of the output distribution, partially avoiding bad events, dealing
with super-polynomially many bad events, and even new frameworks [54, 23].

Unfortunately, most of these follow-up results that further enhance, or exploit, our understand-
ing of the MT process are not transferable to the general setting we described in Section 3.1.
Mainly, this is because they are byproducts of the backward-looking analysis we saw in Chapter 3
and, in particular, of a key technical result of the original analysis of Moser and Tardos, the witness
tree lemma, which is known not to hold under the most general assumptions [57]. Roughly, the
witness tree lemma states that any tree of bad events growing backwards in time from a certain root
bad event Ai, with the children of each node Aj being bad events that are adjacent to Aj in the de-
pendency graph, is consistent with the trajectory of the algorithm with probability bounded by the
product of the probabilities of all events in this tree. (Recall that we have already seen this state-
ment it in Chapter 3, Lemma 3.12.) The witness tree lemma and its variations [70, 48] have been
used for several other purposes besides those already mentioned, such as designing deterministic,
parallel and distributed algorithms for the LLL [81, 22, 27, 48, 53].

On the other hand, Harris and Srinivasan [55] did manage to prove the witness tree lemma for
their algorithm for the LLL on the space of permutations, which lies outside the variable framework
of Moser-Tardos, via an analysis that is tailored specifically to this setting. Although their proof
does not seem to be easily generalizable to other spaces, their success makes it natural to ask if we
can impose mild assumptions in the general setting under which the witness tree lemma and most
of its byproducts can be established.

This question was answered positively by present author in [59], where it was shown that it
is possible to prove the witness tree lemma in the commutative setting. The latter was introduced
by Kolmogorov [71], who showed that under its assumptions one can obtain parallel versions of
stochastic local search algorithms, as well as the flexibility of removing the restrictions on the flaw
choice strategy imposed by the general LLL condition (3.8). We note that the commutative setting

47

captures the vast majority of LLL applications, including but not limited to both the variable and
the permutation settings.

Subsequently to [59], Achlioptas, Iliopoulos and Sinclair [5] gave a simpler proof of the witness
tree lemma under a more general notion of commutativity (essentially matrix commutativity) at
the mild cost of slightly restricting the flaw choice strategy. In this chapter we will present their
proof, as well as several results from [59] regarding properties of commutative algorithms and their
applications.

Distributional properties. As already mentioned, one of the most important applications of
the witness tree lemma is given in the paper of Haeupler, Saha and Srinivasan [49], who study
properties of the MT-distribution, the output distribution of the MT algorithm. Their main result is
that the MT-distribution well-approximates the LLL-distribution, i.e., the distribution obtained by
conditioning on all bad events being avoided. One immediate consequence of this fact is that one
can argue about the expected weight of the output of the MT algorithm, given a weighting function
over the space Ω. Furthermore, as shown in the same paper [49] and follow-up papers by Harris
and Srinivasan [56, 51], one can also lower bound the entropy of the MT distribution, relax the
LLL conditions (if one is willing to only partially avoid bad events), and deal with applications
with super-polynomially many bad events.

Here we extend the result of [49] to the commutative setting: Given a commutative algorithm
that is perfectly compatible with the underlying probability measure, its output well-approximates
the LLL-distribution in the same sense as the MT-distribution does in the variable setting. For
arbitrary commutative algorithms, the quality of the approximation depends additionally on the
compatibility of the algorithm with the measure on the event(s) of interest.

Moreover, we quantitatively improve the bounds of [49] under the weaker assumption of
Shearer’s condition (2.4); recall from Section 2.3 that this is the most general LLL criterion in
the setting where the dependency graph is undirected. This allows us to study distributional prop-
erties of commutative algorithms using criteria that lie between the general LLL and Shearer’s
condition such as the Clique LLL [69]. Finally, in Section 5.3 we discuss several byproducts of
the fact that commutative algorithms approximate the LLL-distribution.

Algorithmic LLL without a slack and improved running time bounds As we saw in Chap-
ter 3, the general LLL condition (3.8) requires a multiplicative slack in order to establish fast
convergence to a perfect object. On the other hand, Harvey and Vondrák [57] dispense with this
requirement in the important case of algorithms that are perfectly compatible with the underlying
measure under the mild assumption that the dependency graph is undirected. As we will see, us-
ing the witness tree lemma, we are able to dispense with the multiplicative slack requirement for
commutative algorithms. Moreover, we are able to improve the running time bounds of Harvey
and Vondrák [57] in the commutative setting, matching those of Kolipaka and Szegedy [70] for the
MT algorithm. This was posed as an open question in [57].

Concrete applications. In Section 5.6 we study a commutative algorithm for finding rainbow
matchings, which is a problem in the space of matchings of a complete graph. We use this prob-
lem as an example that allows us to show how several byproducts of approximating the LLL-
distribution can be applied in a black-box manner to a setting that is not captured either by the

48

variable or the permutation setting, and for which we know [3, 57, 71] how to design commutative
algorithms that are perfectly compatible with the uniform measure over the state space.

In Chapter 6, among other things, we will show that Molloy’s algorithm [76] for finding proper
colorings in triangle-free graphs with maximum degree ∆ using (1 + ε) ∆

ln ∆
colors, can actually

output exponentially many such colorings. We do this by showing that this is a commutative
algorithm, a fact that gives us access to properties of its output distribution.

Finally, in Chapter 7 we give an algorithm for the non-constructive result of Kahn [65], showing
that the Goldberg-Seymour conjecture is true asymptotically. This is a stochastic local search
algorithm for addressing a family of super-polynomially many flaws, and we will need to show
that it is commutative in order to establish its efficiency.

5.1 Commutativity and the Witness Tree Lemma
Throughout this chapter we consider algorithms with the property that fi causes fj if and only if
fj causes fi. We will thus view the causality graph as an undirected graph G which may contain
self-loops. We also write i ∼ j to denote that j ∈ Γ(i) (or equivalently, i ∈ Γ(j)).

Kolmogorov’s [71] notion of commutativity requires that for every i � j ∈ [m], every sequence
of state transitions of the form σ1

i−→ σ2
j−→ σ3 can be mapped to a distinct sequence of state

transitions of the form σ1
j−→ σ′2

i−→ σ3, so that ρi(σ1, σ2)ρj(σ2, σ3) = ρj(σ1, σ
′
2)ρi(σ

′
2, σ3) > 0.

The matrix framework of [5] allows us to introduce a more natural notion of algorithmic com-
mutativity, essentially matrix commutativity, that is also more general than the notion of [71]. For
i ∈ [m], let Ai denote the |Ω| × |Ω| matrix where Ai[σ, σ′] = ρi(σ, σ

′) for σ ∈ fi, and 0 otherwise.
Recall the definition of Γ(i).

Definition 5.1. An algorithm is commutative with respect to a symmetric binary relation ./ if

(a) AiAj = AjAi, for every i, j ∈ [m] such that i 6./ j.

(b) Γ(i) ⊆ {j : i ∼ j}.

Remark 5.2. In most applications AiAj 6= AjAi when i ∈ Γ(j), in which case a implies b.
For this reason, and to simplify notation, in the following we will always consider commutative
algorithms with respect to the causality relation ∼ induced by their corresponding (undirected)
causality graph.

Under this new notion, we recover all the results of [71, 59] with much simpler proofs, at the
mild cost of restricting the family of flaw choice strategies to canonical ones, per Definition 5.3
below. (In [71, 59] the flaw choice strategy can be arbitrary.) Note that in the commutative setting,
canonical flaw choice strategies suffice to capture the optimal convergence results, so that the
restriction to such strategies is indeed mild. Recall the definition of U(σ).

Definition 5.3. Fix an arbitrary sequence of (possibly stochastic) functions (si)i≥1 : Ω → [m],
each si mapping σ ∈ Ω to an element of U(σ). A flaw choice strategy is canonical if the flaw
addressed in the i-th step is si(σi), where σi ∈ Ω is the state after i steps.

49

In particular, we establish the Witness Tree Lemma, which we describe forthwith, and from
which all the other results follow. (In fact, we prove a more general version of the Witness Tree
Lemma that takes as input an operator norm ‖ · ‖ and diagonal matrix M . Using the ‖ · ‖1-norm
andM = diag(µ(σ)), where µ is a probability measure over Ω, recovers the standard Witness Tree
Lemma.)

For i ∈ [m], let Ai denote the |Ω| × |Ω| matrix defined by Ai[σ, σ′] = ρi(σ, σ
′) if σ ∈ fi, and

Ai[σ, σ
′] = 0 otherwise, and define

γi = ‖MAiM
−1‖ , (5.1)

where M is a fixed invertible matrix such that
∑

σ∈Ω ‖Meσ‖ = 1. Here eσ denotes the indicator
vector of σ, i.e., eσ[σ] = 1 and eτ [τ] = 0 for all τ ∈ Ω \ {σ}.

Remark 5.4. Recall equation (3.5), which defines the charge of a flaw with respect to a distribution
µ, and notice that is equivalent to (5.1) when ‖ · ‖ = ‖ · ‖1 and M = diag(µ(σ)).

Recall the definition of witness trees from Section 3.3.1 and, in particular, that Pr[τ] denotes
the probability that a given witness tree τ occurs during the execution of the algorithm. Recall also
that θ denotes the initial distribution of the algorithm.

Theorem 5.5 (Witness Tree Lemma). Assume that algorithm A is commutative with respect to
binary relation ∼ and follows a canonical flaw choice strategy. Then, for every witness tree τ ,

Pr[τ] ≤ λinit

∏
v∈V (τ)

γ(v) ,

where λinit = ‖θM−1‖∗ and ‖ · ‖∗ denotes the dual norm of ‖ · ‖.

5.2 Approximating the LLL-distribution
Assuming that the LLL condition (2.1) holds, the LLL-distribution, which we denote by µLLL, is
defined as the distribution induced by the measure µ conditional on no bad event occurring. The
following proposition relates the LLL-distribution to measure µ making it a powerful tool that can
be used to argue about properties of flawless objects. The idea is that if an (not necessarily bad)
event E is independent from most bad events, then its probability under the LLL-distribution is not
much larger than its probability under the probability measure µ.

Proposition 5.6 ([49]). If the LLL condition (2.1) holds, then for any event E:

µLLL(E) ≤ µ(E)
∑

S⊆D(E)

∏
j∈S

ψj , (5.2)

where D(E) ⊆ [m] is such that µ(E |
⋂
j∈S Aj) = µ(E) for all S ⊆ [m] \D(E).

The main result of Haeupler, Saha and Srinivasan [49] is that the Moser-Tardos algorithm
approximates well the LLL-distribution, in the sense that the left-hanside of (5.2) bounds the prob-
ability that it ever reaches a subspace E ⊆ Ω during its execution. Building on this fact, [49] and
followup works [56, 51] manage to show several new applications.

50

Here we extend the latter result to arbitrary commutative algorithms. Given an arbitrary set
E ⊆ Ω and a commutative algorithmA, consider an extension,AE , ofA by defining an extra flaw
fm+1 ≡ E with its own set of probability distributions ρm+1(σ, ·), σ ∈ E. If A is commutative
with respect to ∼, we will say that AE is a commutative extension of A if AE is also commutative
with respect to ∼; that is, if the conditions of Definition 5.1 also hold for matrix AE ≡ Am+1 and
set Γ(E) ≡ Γ(m+ 1).

As we will see, commutative extensions should be thought of as a tool to bound the probability
that A ever reaches a subset E of the state space. That is, they are defined only for the purposes
of the analysis and, typically in applications, they are a natural extension of the algorithm. For
example, in the case of the Moser-Tardos algorithm applied to k-SAT, if one would like to bound
the probability that the algorithm ever reaches a state such that variables x1, x2, x3 of the formula
are all set to true, then one could define fm+1 = {σ ∈ Ω s.t. σ(x1) = σ(x2) = σ(x3) = 1}
along with the corresponding commutative extension of the Moser-Tardos algorithm that addresses
fm+1 by resampling variables x1, x2, x3 according to the product measure over the variables of the
formula that the Moser-Tardos algorithm uses whenever it needs to resample a violated clause.
Indeed, commutative extensions of this form are implicitly defined in the analysis of [49] for the
Moser-Tardos algorithm.

We will use the notation Pr[·] = PrA[·] to refer to the probability of events in the probability
space induced by the execution of algorithm A. For example, the probability that A reaches a set
E ⊆ Ω of the state space during its execution will be denoted by Pr[E]. Finally, recall that for a
set S ⊆ [m], Ind(S) = IndG(S) denotes the set of independent subsets of S with respect to G.

The main result of this chapter is Theorem 5.7 below, which we prove in Section 5.4.

Theorem 5.7. Give a symmetric, binary relation ∼ and a commutative algorithm A with respect
to ∼, if there exist positive real numbers {ψi}i∈[m] such that for every i ∈ [m],

γi
ψi

∑
S∈Ind(Γ(i))

∏
j∈S

ψj ≤ 1 ,

then

1. for each i ∈ [m], E[Ti] ≤ λinitψi ;

2. for each E ⊆ Ω, Pr [E] ≤ λinitγE
∑

S∈Ind(Γ(E))

∏
j∈S ψj;

where Ti is the number of times flaw fi is addressed, λinit = ‖θ>M−1‖∗, and Γ(E), γE are defined
with respect to a fixed commutative extension AE .

Corollary 5.8. Algorithm A terminates after O(λinit

∑
i∈[m]

ψi) steps in expectation.

Remark 5.9. Theorem 5.7 corresponds to the cluster expansion condition (2.3). If the Shearer’s
condition is satisfied, then one can replace ψi in Theorem 5.7 with q{i}(b)

q∅(b)
, where b = (γ1, . . . , γm).

We note that the first part of Theorem 5.7 allows us to guarantee fast convergence of A to a
perfect object without having to assume a “slack” in the cluster expansion and Shearer’s conditions
(unlike the works of [4, 71]) and, moreover, improves upon the (roughly quadratically worse)
running bound of [57], matching the one of [70].

51

5.3 Byproducts of Theorem 5.7
In this section we discuss three important byproducts of Theorem 5.7 which we will use in our
applications.

5.3.1 Entropy of the Output Distribution
A useful application of the known bounds for the Moser-Tardos distribution is estimating its ran-
domness. In particular, Harris and Srinivasan [56] show that one can give lower bounds on the
Rényi entropy of the output of the Moser-Tardos algorithm.

Definition 5.10 ([26]). Let ν be a probability measure over a finite set S. The Rényi entropy with
parameter ρ of ν is defined to be

Hρ[ν] =
1

1− ρ
ln
∑
s∈S

ν(s)ρ .

The min-entropy H∞ is a special case defined as H∞[ν] = limρ→∞Hρ[ν] = − ln maxs∈S ν(s).

Given Theorem 5.7, we can show the analogous result in our setting, using a proof that is akin
to the one in [56], and which can be found in Appendix 8.3.

Theorem 5.11. Let∼ be a symmetric, binary relation, andA be a commutative algorithm with re-
spect to ∼. Assume the conditions of Theorem 5.7 are satisfied, and let ν be the output distribution
of A. Then, for ρ > 1,

Hρ[ν] ≥ Hρ[µ]− ρ

ρ− 1
ln

 ∑
S∈Ind([m])

∏
j∈S

ψj

− ρ

ρ− 1
lnλinit .

A straightforward application of having a lower bound on Hρ[ν] (for any ρ), where ν is the
output distribution of the algorithm, is that there exist at least exp(Hρ[ν]) flawless objects. Be-
fore [56], the authors in [74] also used the (existential) LLL for enumeration of combinatorial
structures by exploiting the fact that it guarantees a small probability p of avoiding all flaws when
sampling from the uniform measure (and, thus, their number is at least p|Ω|).

5.3.2 Partially Avoiding Flaws
One of the main results of [49, 56] are LLL conditions for the existence of objects that avoid a
large portion of the bad events. For instance, given a sufficiently sparse k-SAT formula which,
nonetheless, violates the LLL conditions (see Theorem 2.1), one can still find an assignment that
satisfies many clauses. Using Theorem 5.7, we are able to extend the (most general) result of
Harris and Srinivasan [56] to the commutative setting.

Given a sequence of positive numbers {ψi}mi=1, for each i ∈ [m] define:

ηi :=
∑

S∈Ind(Γ(i))

∏
j∈S

ψj ,

and notice that the cluster expansion condition can be expressed as requiring that for each i ∈ [m]
we have that γiηi ≤ ψi.

52

Theorem 5.12. Let ∼ be a symmetric, binary relation, and A be a commutative algorithm with
respect to ∼. Assume that the set of charges {γi}i∈[m] are defined with respect to the ‖ · ‖1-norm
and the diagonal matrix M = diag(µ(σ)), where µ is a probability distribution. Let also {ψi}mi=1

be a sequence of positive real numbers and assume θ = µ. There is an algorithm A′ (which is a
modification of A) and whose output distribution ν has the property that for each i ∈ [m]

ν(fi) ≤ max{0, γiηi − ψi} .

Furthermore, the expected number of times a flaw fi is addressed is at most ψi.

Given Theorem 5.7, the proof of Theorem 5.12 is akin to the one of [56] and can be found in
Appendix 8.3.

5.3.3 Dealing with Super-Polynomially Many Flaws
Here we discuss how one can deal with problems where the number of flaws is super-polynomial
in the natural size of the problem using commutative algorithms.

In such a setting, there are two issues to be resolved. The first issue is that one should be able
to show that the expected number of steps until convergence is polynomial, and thus, much less
than Θ(|F |). The second issue is that one should have an efficient procedure for finding a flaw that
is present in the current state, or decide that no such flaw exists.

Polynomial-Time Convergence. As far as the issue of polynomial-time convergence is con-
cerned, there are at least three approaches one can follow.

A first approach is to start the algorithm at a state σ1 in which the set of flaws present is of
polynomial size, and then employ the main results from [4] which guarantee that the algorithm
will terminate after O

(
|U(σ1)|+ maxσ∈Ω log2

1
µ(σ)

)
steps with high probability. This approach

does not require the algorithm to be commutative, but it does require that the LLL condition is
satisfied with a slack in order establish quick termination.

A second approach, which was first applied in the context of the Moser-Tardos algorithm by
Haeupler, Saha and Srinivsan [49], is to find a core set of flaws of polynomial size and apply
a modified version of the algorithm that effectively ignores any non-core flaw. The hope is that
non-core flaws will never occur during the execution of this modified algorithm. Extended to our
setting, one uses the following result which is a straightforward corollary of Theorem 5.7.

Corollary 5.13. Let A be a commutative algorithm with respect to a symmetric, binary relation
∼. Let I ⊆ [m] be a set of indices that corresponds to a core subset of F and assume there exist
positive real numbers {ψi}mi=1 such that for each i ∈ [m]

γi
∑

S∈Ind(Γ(i)∩I)

∏
j∈S

ψj ≤ ψi .

Then there exists a modification of A that terminates in an expected number of O
(∑

i∈I ψi
)

steps
and outputs a flawless element with probability at least 1−

∑
i∈[m]\I λinitγi

∑
S∈Ind(Γ(i)∩I)

∏
j∈S ψj .

53

Finally, a third approach is to show that the causality graph can be decomposed into a set of
cliques of polynomial size and then apply a result of [49] which states that, in this case, the running
time of the algorithm is polynomial (roughly quadratic) in the size of the decomposition. To be
more precise, we note that in [49] the latter result is shown for the Moser-Tardos algorithm in
the variable setting and assuming condition (2.1), where the clique decomposition considered is
induced by the family of independent random variables that form the probability space (one clique
per variable). However, the proof for the general case is identical. Using Theorem 5.7 and recalling
Remark 2.2 we can extend this result to our setting to get:

Theorem 5.14. LetA be a commutative algorithm with respect to a symmetric, binary relation ∼.
Assume there exist real numbers {xi}i∈[m] in (0, 1) such that

γi ≤ xi
∏
j∈Γ(i)

(1− xj) for every i ∈ [m] . (5.3)

Assume further that the causality graph induced by ∼ can be partitioned into n cliques, with
potentially further edges between them. Setting δ := mini∈[m] xi

∏
j∈Γ(i)(1 − xj), the expected

number of steps performed by A is at most t = O
(
λinit · nε log n log(1/δ)

ε

)
, and for any parameter

η ≥ 1, A terminates within ηt resamplings with probability 1− e−η.

Remark 5.15. In [49] it is argued that in the vast majority of applications δ = O(n log n) and in
many cases even linear in n.

Following Theorem 5.7, the proof of Theorem 5.14 is identical to the analogous result of Haue-
pler, Saha and Srinivasan [49] for the Moser-Tardos algorithm and hence we omit it.

Fast Search for Flaws. Searching for occurring flaws efficiently can be a major obstacle in
getting polynomial time algorithms, even in the case where convergence is guaranteed after a
polynomial number of steps. Again, there is more than one approach one can follow to deal with
this issue.

A first approach was introduced in [49] where it is shown that Corollary 5.13 and Theorem 5.14,
in the context of the variable setting, can be combined into a single theorem that guarantees the
existence of a Monte Carlo algorithm which runs in polynomial time, even in the presence of super-
polynomially many flaws. The theorem assumes the existence of a polynomial size decomposition
of the causality graph into cliques and, moreover, that the LLL condition holds with an exponential
slack. Using Theorem 5.7, we can extend this result in a straightforward way to our setting to get
the following theorem.

54

Theorem 5.16. LetA be a commutative algorithm with respect to a symmetric, binary relation ∼.
Assume there exist real numbers {xi}i∈[m] and ε in (0, 1) such that

γ1−ε
i ≤ xi

∏
j∈Γ(i)

(1− xj) for every i ∈ [m] . (5.4)

Assume further that the causality graph induced by ∼ can be partitioned into n cliques, with
potentially further edges between them, and let δ := mini∈[m] xi

∏
j∈Γ(i)(1−xj). If we furthermore

have that log 1/δ ≤ poly(n), then for every γ ≥ 1
poly(n)

the set {i ∈ [m] s.t. γi ≥ γ} has size at
most poly(n). There also exists a Monte Carlo algorithm that terminates after O(λinit

n
ε

log n
ε2

)
steps and returns a perfect object with probability at least 1−n−c, where c is any desired constant.

In a follow-up work [56], Harris and Srinivasan describe a general technique that yields effi-
cient procedures for searching for flaws. The main building blocks of their technique is a “witness
tree lemma for internal states” and problem-specific, possibly randomized, data-structures that
contain the flaws that are present in each state. We refer the reader to [56] for more details, but we
note that combining the proof of [56] with the proof of Theorems 5.5 and 5.7, one can show that
the “witness tree lemma for internal states” holds for commutative algorithms.

5.4 Proof of Theorem 5.7
Recall the definition of witness sequences and witness trees we saw in Section 3.3.1. The first
part follows by observing that if W is the witness sequence corresponding to the trajectory of the
algorithm, then Ti is the number of occurrences of flaw fi in W , and according to Proposition 3.8,
also the number of distinct witness trees occurring that have their root labeled i. Therefore, letting
Wi denote the set of witness trees whose root node is labelled by i, one can bound the expectation
of Ti by summing the bounds in Lemma 5.5. In particular, the following lemma, whose proof is
identical to the one of Lemma 3.13, and therefore omitted, concludes the proof of the first part.

Lemma 5.17. Under the assumptions of Theorem 5.7:∑
τ∈Wi

∏
v∈V (τ)

γ(i) ≤ ψi .

To see the second part of Theorem 5.7, consider the new set of flaws F ′ = F ∪ {fm+1}, where
fm+1 = E, as well as a “truncated” commutative extension A′ of A with the following properties:

(i) For each state σ /∈ fm+1 algorithm A′ invokes A to choose its next state;

(ii) γE := γ(m+1)(A′);

(iii) fm+1 is always of the highest priority: when at a state σ ∈ fm+1,A′ chooses to address fm+1;

(iv) A′ stops after it addresses fm+1 for the first time.

55

By coupling A and A′ we see that PrA[E] = PrA′ [fm+1]. LetWE be the set of witness trees
that can occur in an execution of A′ and whose root is labelled by m + 1. Notice that, due to
property (iv) of A′, every tree τ ∈ WE contains exactly one node (the root) labelled by m + 1,
while every other node is labelled by elements in [m]. Furthermore, the set of labels of the children
of the root of τ is an element of Ind(Γ(E)). Finally, if v is a node that corresponds to a child of
the root in τ , then the subtree τv that is rooted at v is an element of W(v). Using Theorem 5.5,
Lemma 5.17 and the fact that A′ is commutative we get:

Pr
A

[E] ≤
∑
τ∈WE

Pr
A′

[τ] ≤ λinitγE
∑

S∈Ind(Γ(E))

∏
j∈S

∑
τ∈Wj

∏
v∈τ

γ(v)

 ≤ λinitγE
∑

S∈Ind(Γ(E))

∏
j∈S

ψj ,

where the last equality follows from Lemma 5.17.
As a final note, Remark 5.9 follows from the fact that, under the assumptions of Shearer’s

condition, it can be established hat
∑

τ∈Wi

∏
v∈V (τ) γ(v) ≤ q{i}(b)

q∅(b)
. (See [70, 57, 71, 59] for more

details.)

5.5 Proof of Theorem 5.5
We will assume without loss of generality that our algorithm follows a deterministic canonical flaw
choice strategy. This is because randomized flaw choice strategies can equivalently be interpreted
as convex combination of deterministic ones, and hence their analysis is equivalent to taking an
expectation over deterministic strategies.

Theorem 5.5 will follow from Lemmas 5.18 and 5.19.

Lemma 5.18. Let A be a commutative algorithm with respect to ∼. Then for each witness W =
(w1, . . . , wt),

Pr [The witness of the trajectory of A has W as prefix] ≤

∥∥∥∥∥θ>
t∏
i=1

Awi

∥∥∥∥∥
1

.

For a given witness tree τ and an arbitrary permutation π of {1, 2, . . . ,m}, let χπ(τ) be the
ordered witness tree that is induced by ordering the children of each node in τ from left to right,
increasingly according to π.

Lemma 5.19. Let A = A(S) be a commutative algorithm with respect to ∼ that follows a canon-
ical flaw choice strategy S and let τ be a witness tree. Then there exists a canonical flaw choice
strategy S ′ such that, for algorithm A′ = A(S ′),

Pr
A

[τ] ≤ Pr
A′

[The witness of the trajectory of A′ has ((v1), (v2), . . . , (v|τ |)) as prefix] ,

where v1, v2, . . . v|τ | are the vertices of χπ(τ) in backward breadth first order.

Proof of Theorem 5.5. Define q = θ>
∏|τ |

i=1A[vi] and letA′ be the algorithm promised by Lemma 5.19
when applied to A. Applying Lemmata 5.18 and 5.19 we obtain

Pr[τ] ≤ Pr
[
The witness of the trajectory of A′ has ((v1), . . . , (v|τ |)) as prefix

]
≤
∑
σ′∈Ω

q(σ′) .

(5.5)

56

Now the righthand side of (5.5) can be written as

∑
σ′∈Ω

θ>M−1

 |τ |∏
i=1

MA(vi)M
−1

Me>σ′ ≤

∥∥∥∥∥∥θ>M−1

|τ |∏
i=1

MA(vi)M
−1

∥∥∥∥∥∥
∗

∑
σ′∈Ω

∥∥Me>σ′
∥∥ (5.6)

≤ ‖θ>M−1‖∗
|τ |∏
i=1

‖MA(vi)M
−1‖ (5.7)

= λinit

|τ |∏
i=1

γ(vi) , (5.8)

where to get (5.6) we apply (8.3), to get (5.7) we first apply (8.3) and then (8.2) and that
∑

σ′∈Ω ‖Meσ′‖ =
1, and, finally, (5.8) holds by the definitions of λinit and γi. Note that (5.8) concludes the proof.

5.5.1 Proof of Lemma 5.18
Given a deterministic flaw choice strategy S = (s1, s2 . . . ,), an integer t ≥ 1 and i ∈ {1, 2, . . . ,m},
define matrix Ai,st by Ai,st [σ, σ′] = Ai[σ, σ

′] = ρi(σ, σ
′) if st(σ) = i, and Ai,st [σ, σ′] = 0 other-

wise. Moreover, let P(W) denote the set of witnesses that can occur in an execution ofA and have
W = (w1, w2, . . . , wt) as prefix.

With this notation, we can express the probability that the witness of the trajectory ofA has W
as a prefix as ∥∥∥∥∥∥θ>

t∏
i=1

Awi,si
∑

W ′∈P(W)

|W ′|∏
j=t+1

Aw′j ,sj

∥∥∥∥∥∥
1

. (5.9)

Define q = θ>
∏t

i=1 Awi,si , and for any state σ let Pσ(W) denote the subset of witnesses of P(W)
that have st+1(σ) as their (t+ 1) element. With this notation we can write (5.9) as∑

σ∈Ω

∑
σ′∈Ω

q(σ′)eσ′
∑

W ′∈P(W)

|W ′|∏
j=t+1

Awj ,sjeσ =
∑
σ∈Ω

∑
σ′∈Ω

q(σ′)
∑

W ′∈Pσ′ (W)

eσ′

|W ′|∏
j=t+1

Aw′j ,sjeσ

≤
∑
σ′∈Ω

q(σ′)
∑
σ∈Ω

eσ′
∑

W ′∈Pσ′ (W)

|W ′|∏
j=t+1

Aw′j ,sjeσ

≤
∑
σ′∈Ω

q(σ′) ≤ ‖θ>
t∏
i=1

Awi‖1 ,

where the first equality follows from the fact that at step t+1 the algorithm addresses flaw fst+1(σ′),
and the last inequality follows from the fact that

∑
σ∈Ω

eσ′
∑

W ′∈Pσ′ (W)

|W ′|∏
j=t+1

Aw′j ,sjeσ =

∥∥∥∥∥∥eσ′
∑

W ′∈Pσ′ (W)

|W ′|∏
j=t+1

Aw′j ,sj

∥∥∥∥∥∥
1

is at most the probability that A starts from state σ′ and ends at some state in Ω and is therefore at
most 1.

57

5.5.2 Proof of Lemma 5.19
Recall the definition of canonical flaw choice strategies S = (s1, s2, . . .), as well as the definition
of Ai,st for i ∈ {1, 2, . . . ,m} and t ≥ 1. Let W(τ) denote the set of witnesses that can occur
in a trajectory of A(S) and for which τ occurs. That is, for each W ∈ W(τ) there exists t ∈
{1, . . . , |W |} so that τW (t) = τ . We can express the probability of τ occurring in an execution of
A as

Pr[τ] =

∥∥∥∥∥∥
∑

W∈W(τ)

θ>
|W |∏
i=1

Awi,si

∥∥∥∥∥∥
1

.

The idea now will be to gradually transform S andW(τ) to the canonical flaw choice strategy S ′ =
(s′1, s

′
2, . . .) and setW ′(τ), respectively, so that every witness inW ′(τ) has ((v1), (v2), . . . , (v(|τ |))

as a prefix, and

Pr[τ] =

∥∥∥∥∥∥
∑

W∈W(τ)

θ>
|W |∏
i=1

Awi,si

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑

W ′∈W ′(τ)

θ>
|W ′|∏
i=1

Aw′i,s′i

∥∥∥∥∥∥
1

. (5.10)

This will suffice to prove the lemma since if A′ = A(S ′) we have that∥∥∥∥∥∥
∑

W ′∈W ′(τ)

θ>
|W ′|∏
i=1

Aw′i,s′i

∥∥∥∥∥∥
1

≤ Pr
A′

[
The witness of the trajectory of A′ has ((v1), (v2), . . . , (v|τ |)) as prefix

]
.

We first define the elementary operation for transforming (S,W(τ)) to (S ′,W ′(τ)). For S ⊆
{1, . . . ,m} recall that we define π(S) to be the lowest indexed integer according to π in S. Given
an integer 1 ≤ i ≤ m we define pi : Ω → {1, 2, . . . ,m} to be the following function. For every
state σ:

pi(σ) =

{
i if σ ∈ fi ,

π(U(σ)) otherwise .

In words, pi(σ) always gives priority to flaw fi, unless fi is not present in σ in which case it selects
the flaw corresponding to the lowest index in U(σ). We also define function Swap that takes as
input a canonical flaw choice strategy S1 = (s1, . . . , si−1, si, . . .), a set of witnessesW1, a witness
W = (w1, w2 . . . wt) ∈ W1 and an integer i ∈ {1, 2, . . . , |W |} such that wi−1 � wi, and outputs
(S2,W2) defined as follows:

• S2 = (s1, . . . , pwi , pwi−1
, si+1, . . .);

• W2 is obtained fromW1 by changing every witness W ′ = (w′1, w
′
2, . . . , w

′
i−1, w

′
i, . . .) ∈ W1

such that w′i = wi and w′i−1 = wi−1 to W ′′ = (w′1, w
′
2, . . . , w

′
i, w

′
i−1, . . .).

We now describe the algorithm that achieves the transformation of (S,W) to (S ′,W ′) and then
prove its correctness. For a witness sequence W ∈ W(τ) and a vertex vi of τ , let pW (vi) denote
the position of the element that corresponds to [vi] in W . The algorithm is as follows.

58

1. Set S ′ ← S andW ′(τ)←W(τ)

2. For i = 1 to |τ |

• While there exist W ∈ W ′(τ) for which pW (vi) 6= i

– (S ′,W ′(τ))← Swap (S ′,W ′(τ),W, pW (vi))

First notice that if the algorithm terminates then each witnessW ∈ W ′(τ) has ((v1), (v2), . . . , (v|τ |))
as a prefix. Moreover, it always terminates because at every step, if W = (w1, . . . , wt) is the
input of Swap, then wpW (i) � wpW (i)−1. To see this, observe that the fact that there exists
t ∈ {1, 2, . . . , |W |} such that τW (t) = τ implies that fwpW (vi)−1

is either a flaw that appears in
τ and corresponds to a vertex at the same level with fwpW (vi)

or doesn’t appear in τ . Proposi-
tion 3.7 and the definition of the algorithm for constructing witness trees guarantee that in both
these cases we have wpW (i) � wpW (i)−1.

Finally, we need to show that (5.10) is true. To that end, we prove the following invariant
regarding Swap, concluding the proof.

Lemma 5.20. Fix any set of witnessesW and canonical flaw choice strategy S. For someW ∗ ∈ W
and k ∈ {1, . . . , |W ∗|}, let (S ′,W ′) = Swap(S,W ,W ∗, k). Then,∥∥∥∥∥∥

∑
W∈W(τ)

θ>
|W |∏
i=1

Awi,si

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑

W ′∈W ′(τ)

θ>
|W ′|∏
i=1

Aw′i,s′i

∥∥∥∥∥∥
1

.

5.5.3 Proof of Lemma 5.20
We start with a key observation.

Lemma 5.21. Consider an arbitrary pair of functions s1, s2 : Ω → {1, . . . ,m} that take as input
a state σ and output an index in U(σ). Let i � j be two arbitrary indices in {1, . . . ,m}. Then, for
every pair of states σ1, σ2 ∈ Ω we have that Ai,s1Aj,s2 [σ1, σ2] ≤ Aj,pjAi,pi [σ1, σ2].

Proof.

Ai,s1Aj,s2 [σ1, σ2] ≤
∑

σ∈α(i,σ1)

ρi(σ1, σ)ρj(σ, σ2) =
∑

σ∈α(j,σ1)

ρj(σ1, σ)ρi(σ, σ2) = Aj,pjAi,pi [σ1, σ2] .

where the first equality holds because AiAj = AjAj (since i � j) and the second equality holds
by the definitions of pi, pj .

Let W ∗ = (w∗1, w
∗
2, . . . , w

∗
i−1, w

∗
i , . . .) and define A(W ∗) ⊆ W to be the set of witnesses that

will be affected by Swap, i.e., the set of witnesses whose (i− 1)-th and i-th elements are w∗i−1 and
w∗i , respectively. Finally, let IA(W ∗) be the subset ofW ′ that is the image of A(W ∗). We consider
two cases.

In the first case, we assume that the mapping from W to W ′ is bijective. Given a witness
sequence W = (w1, . . . , w

∗
i−1, w

∗
i , . . . , wt) ∈ A(W ∗), let W ′ = (w1, . . . , w

∗
i , w

∗
i−1, . . . , wt) ∈

59

IA(W ∗) be the corresponding witness according to the bijection. By Lemma 5.21 and the definition
of S ′ we obtain∥∥θ>Aw1,s1 . . . Awi−1,si−1

Awi,si . . .
∥∥

1
≤
∥∥∥θ>Aw1,s1 . . . Awi,pwiAwi−1,pwi−1

. . .
∥∥∥

1
,

which concludes the proof for this case.
In the second case, the mapping fromW toW ′ is not bijective. Observe that this can only be

the case when there exist pairs (W1,W2) ∈ W of the form

W1 = (w1, w2, . . . , w
∗
i−1, w

∗
i , . . . , wt) ;

W2 = (w1, w2, . . . , w
∗
i , w

∗
i−1, . . . , wt) ,

in which case W1 is mapped to W2. Thus, it suffices to show that∥∥∥θ>Aw1,s1 . . . (Aw∗i−1,si−1
Aw∗i ,si + Aw∗i ,si−1

Aw∗i−1,si
) . . . Awt,st

∥∥∥
1
≤∥∥∥θ>Aw1,s1 . . . Aw∗i ,pw∗i

Aw∗i−1,pw∗i−1
. . . Awt,st

∥∥∥
1
. (5.11)

To prove (5.11) it suffices to show that

Aw∗i−1,si−1
Aw∗i ,si [σ, σ

′] + Aw∗i ,si−1
Aw∗i−1,si

[σ, σ′] ≤ Aw∗i ,p∗wiAw
∗
i−1,pw∗i−1

[σ, σ′] , (5.12)

for each pair of states (σ, σ′). If si−1(σ) /∈ {w∗i−1, w
∗
i }, then (5.12) is trivially true. If, on the

other hand, si−1(σ) ∈ {w∗i−1, w
∗
i }, then either si−1(σ) = w∗i and Aw∗i−1,si−1

Aw∗i ,si [σ, σ
′] = 0, or

si−1(σ) = w∗i−1 and Aw∗i ,si−1
Aw∗i−1,si

[σ, σ′] = 0. The proof of (5.12) in the first case follows
immediately by the definitions of pwi−1

, pwi and in the second case from Lemma 5.21.

5.6 An Example: Rainbow Matchings
In an edge-colored graph G = (V,E), say that S ⊆ E is rainbow if its elements have distinct
colors. In this section we consider the problem of finding rainbow matchings in complete graphs
of size 2n, where each color appears a limited amount of times.

Applying the cluster expansion condition, it can be shown [3, 57] that any edge-coloring of a
complete graph of size 2n in which each color appears on at most 27

128
n ≈ 0.211n edges admits a

rainbow perfect matching that can be found efficiently. Furthermore, in [71] it is shown that the
resampling oracles defined by [57] for the space of matchings in a clique of even size, and which
are used in this particular application, induce commutative algorithms. The latter fact will allow
us to use the results of this section to further study this problem.

5.6.1 Finding Rainbow Perfect Matchings
We first formulate the problem to fit our setting and use Theorem 5.7 to show that the algorithm
of [3, 57] finds a perfect rainbow matching efficiently. Assuming a multiplicative slack in the
cluster expansion conditions, a running time (number of steps) of O(n) can be given using the
results of [3, 57, 71]. However, the best known upper bound without this assumption was given
in [57] to be O(n2). Here we improve the latter to O(n).

60

Let φ be any edge-coloring of K2n in which each color appears on at most λn edges. Let
P = P (φ) be the set of all pairs of vertex-disjoint edges with the same color in φ, i.e., P =
{{e1, e2} : φ(e1) = φ(e2)}. Let Ω be the set of all perfect matchings of K2n. For each {ei, ej} ∈ P
let

fi,j = {M ∈ Ω : {ei, ej} ⊂M} .

Thus, an element of Ω is flawless iff it is a rainbow perfect matching. The algorithm that finds a
rainbow perfect matching starts at a state of Ω chosen uniformly at random and, in every subsequent
step, it chooses a flaw to address according to an arbitrary, but fixed, canonical flaw choice strategy.
Algorithm 5 below describes the probability distributions ρi,j(M, ·), where M ∈ fi,j . This a
special case of the implementation of a general resampling oracle with respect to the uniform
measure over Ω for perfect matchings described in [57]. For the problem of rainbow matchings,
the latter implies that γ(fi,j) = µ(fi,j) = 1

(2n−1)(2n−3)
, where we write γ(fi,j) := ‖MA(i,j)M

−1‖1,
M = diag(µ(σ)), to lighten the notation.

Algorithm 5 Probability Distribution ρi,j(M, ·)
1: M ′ := M , A := {e1, e2}, A′ := A.
2: while A′ 6= ∅ do
3: Pick (u, v) ∈ A′ arbitrarily
4: Pick (x, y) ∈M ′ \ A′ uniformly at random, with (x, y) randomly ordered;
5: With probability 1− 1

2|M ′\A′|+1
,

Add (u, y), (v, x) to M ′ and remove (u, v), (x, y) from M ′;
6: Remove (u, v) from A′;
7: Output M ′.

For a vertex v let Γ(v) denote the set of indices of flaws that correspond to edges adjacent to v.
By observing the algorithm it’s not hard to verify (and is also proved in [3, 57, 71]) that the graph
C over indices of flaws such that for each (ei = (v1, v2), ej = (v3, v4)) ∈ P we have that

Γ (i, j) =
4⋃
i=k

Γ(vk)

is a causality graph. Furthermore, if S ∈ Ind (Γ(i, j)), then for each k ∈ {1, 2, 3, 4} we have that
|S ∩ Γ(vk)| ≤ 1. This means that |S| ≤ 4 and, moreover, for each j ∈ {0, 1, 2, 3, 4} there are at
most

(
4
j

)
(2n−1)j(λn−1)j subsets S ∈ Ind(Γ(i, j)) of size j. Choosing parameters ψi,j = ψ = 3

4n2

we have that:

γ(fi,j)η(fi,j) := γ(fi,j)
∑

S∈Ind(Γ(i,j))

ψ|S| ≤ 1

(2n− 3)(2n− 1)
(1 + (2n− 1)(λn− 1))4 ,

from which it can be seen that whenever λ ≤ 27
128

we have that γ(fi,j)η(fi,j) ≤ 1 and so the cluster
expansion condition is satisfied.

Since |P | ≤ (2n)2 · (λn− 1) < 4λn3 , Theorem 5.7 implies that the algorithm terminates after
an expected number of 3λn steps. Overall, we have showed the following theorem.

61

Theorem 5.22. For any λ ≤ 27
128

, given any edge-coloring of the complete graph on 2n vertices
in which each color appears on at most λn edges, there exists an algorithm that terminates in an
expected number of at most 3λn steps and outputs a rainbow perfect matching.

5.6.2 Number of Rainbow Perfect Matchings
In this subsection we use Theorem 5.11 to give an exponential lower bound on the number of
perfect matchings when each color appears at most λn times, where λ ≤ 27

128
, by bounding the

entropy of the output distribution of the algorithm described in the previous subsection.

Theorem 5.23. For any λ ≤ 27
128

, given any edge-coloring of the complete graph on 2n vertices
in which each color appears on at most λn edges, there exist at least 1 e−3λn · (2n− 1)!! rainbow
perfect matchings. Furthermore, there exists an algorithm that outputs each one of them with
positive probability.

Proof. To apply Theorem 5.11, we will need to give an upper bound for
∑

S∈Ind([m]) ψ
|S|. Similarly

to applications in [56], we will find useful the following crude, but general upper bound:

∑
S∈Ind([m])

∏
j∈S

ψj ≤
∑
S⊆[m]

∏
j∈S

ψj ≤
∏
i∈[m]

(1 + ψi) ≤ exp

∑
i∈[m]

ψi

 . (5.13)

Since the number of perfect matching in K2n is (2n − 1)!! and also |P | < 4λn3, Theorem 5.11
and (5.13) imply that the number of rainbow perfect matchings is at least

exp

ln |Ω| −
∑
i∈[m]

ψ

 ≥ exp (ln ((2n− 1)!!)− 3λn) =
(2n− 1)!!

e3λn
,

concluding the proof.

5.6.3 Low Weight Rainbow Perfect Matchings
Consider an arbitrary weighting function W : E → R over the edges of K2n. Here we consider
the problem of finding rainbow perfect matchings of low weight, where the weight of a matching
is defined as the sum of weights of its edges. Clearly, there is a selection of n edges of K2n whose
total weight is at most 1/2

2n−1

∑
e∈K2n

W (e). We use Theorem 7.3 to show that, whenever λ ≤ 27
128

,
the algorithm of subsection 5.6.1 outputs a rainbow perfect matching of similar expected weight.

Theorem 5.24. For any λ ≤ 27
128

, given any edge-coloring of the complete graph on 2n vertices
in which each color appears on at most λn edges, there exists an algorithm that outputs a perfect
rainbow matching M such that

E[W (M)] ≤
(
1 + 3

2
λ
)2

2n− 1

∑
e∈K2n

W (e) .

1Recall that (2n− 1)!! = 1 · 3 · . . . · (2n− 1) = (2n)!
2nn!

.

62

Proof. Let Ae be the subset of Ω that consists of the matchings that contain e. It is proven in [57],
and it’s also not hard to verify, that Algorithm 5 with A = {e} is a resampling oracle for this type
of flaw. Moreover, using an identical counting argument to the one in subsection 5.6.1 we get that:∑

S∈Ind(Γ(Ae))

ψ|S| ≤ (1 + (2n− 1)(λn− 1)ψ)2 .

Applying Theorem 5.7 we get that:

E[W (M)] ≤
∑
e∈K2n

W (e) Pr[Ae]

≤
∑
e∈K2n

W (e)µ (Ae) (1 + (2n− 1)(λn− 1)ψ)2

<

(
1 + 3

2
λ
)2

2n− 1

∑
e∈K2n

W (e) ,

concluding the proof.

5.6.4 Finding Rainbow Matchings with many edges
In this subsection we use Theorem 5.12 to show that whenever λ < 0.5 we can find rainbow
matchings with a linear number of edges.

Theorem 5.25. Given any edge-coloring of the complete graph on 2n vertices in which each color
appears on at most λn edges, where λ < 0.5 and n is sufficiently large, there exists an algorithm
that terminates within O(n) steps in expectation and finds a rainbow matching with an expected

number of edges that is at least nmin
(

1, 0.94 3

√
2
λ
− 1
)

.

Proof. Let φ be any edge-coloring of K2n in which each color appears on at most λn edges and
recall the definitions of P = P (φ), Ω, and fi,j = {M ∈ Ω : {ei, ej} ⊂ M} from the proof of
Theorem 5.23.

The idea is to apply Theorem 5.12 that guarantees that we can come up with a “truncated
version”A′ of our algorithm for finding perfect rainbow matchings. In particular, if ν is the output
probability distribution of A′ and for each flaw fi,j we set ψi,j = α then:

ν(fi,j) ≤ max (0, γ(fi,j)ηi,j − α)

≤ max

(
0,

(1 + (2n− 1)(λn− 1)α)4

(2n− 3)(2n− 1)
− α

)
. (5.14)

Consider now the following strategy: We first execute algorithm A′ to get a perfect, possibly non-
rainbow, matching M of K2n. Then, for each flaw fi,j that appears in M , we choose arbitrarily one
of its corresponding edges and remove it from M , to get a non-perfect, but rainbow, matching M ′.
If S = S(M ′) is the random variable that equals the size (number of edges) of M ′ then by setting

α =
1

(2n− 1)(λn− 1)

(
3

√
2n− 3

4(λn− 1)
− 1

)
63

we get:

E[S] = n−
∑

(ei,ej)∈P

ν(fi,j)

≥ n−max

(
0, |P |

(
(1 + (2n− 1)(λn− 1)α)4

(2n− 3)(2n− 1)
− α

))

= nmin

(
1, 1− 4n

2n− 1

(
1− 3

4 · 22/3

3

√
2n− 3

λn− 1

))
.

For large enough n, the latter is min
(

1, 0.94 3

√
2
λ
− 1
)

. Finally, notice that (for large n) α is
positive whenever λ < 0.5.

64

Chapter 6

Coloring Graphs with Sparse
Neighborhoods

In this chapter we present two applications of the tools we developed in the previous chapters to
graph coloring. First, we show that Molloy’s algorithm [76] for coloring triangle-free graphs can
be analyzed using the main result of Achlioptas, Iliopoulos and Kolmogorov [4], and that it is
commutative. This further allows us to prove that it can output exponentially many colorings of
the input graph, a fact which was established by Iliopoulos in [59]. Second, we use the algorithmic
LLL condition of Achlioptas, Iliopoulos and Sinclair [5] to give a new vertex coloring algorithm
for graphs with a bounded number of triangles in the neighborhood of a vertex that uses a number
of colors that matches the algorithmic barrier [1] for random graphs.

6.1 Triangle-Free Graphs
In graph coloring one is given a graph G = (V,E) and the goal is to find a mapping of V to a
set of q colors so that no edge in E is monochromatic. The chromatic number, χ(G), of G is the
smallest integer q for which this is possible. Given a set Lv of colors for each vertex v (called a
list), a list-coloring maps each v ∈ V to a color in Lv so that no edge in E is monochromatic. A
graph is q-list-colorable if it has a list-coloring no matter how one assigns a list of q colors to each
vertex. The list chromatic number, χ`(G), is the smallest q for which G is q-list-colorable. Clearly
χ`(G) ≥ χ(G). A celebrated result of Johansson [62] established that there exists a large constant
C > 0 such that every triangle-free graph with maximum degree ∆ ≥ ∆0 can be list-colored
using C∆/ ln ∆ colors. Recently, using the entropy compression method, Molloy [76] improved
Johansson’s result, replacing C with (1 + ε) for any ε > 0 and all ∆ ≥ ∆ε. Soon thereafter, Bern-
shteyn [17] established the same bound for the list chromatic number, non-constructively, via the
lopsided LLL, and Iliopoulos [59] showed that the algorithm of Molloy can be analyzed using the
algorithmic LLL condition of [4], avoiding the need for a problem-specific entropy compression
argument.

Here we present the result of Iliopoulos and show that Molloy’s algorithm can output exponen-
tially many list-colorings of the input graph per the following theorem.

Theorem 6.1. For every ε > 0 there exists ∆ε such that every triangle-free graphG with maximum
degree ∆ ≥ ∆ε has list-chromatic number χ`(G) ≤ (1 + ε) ∆

ln ∆
. Furthermore, if G is a graph on

65

n vertices then, for every η > 0, there exists an algorithm A that constructs such a coloring in
polynomial time with probability at least 1 − 1

nη
. In addition, A is able to output ecn distinct

list-colorings with positive probability, where c > 0 is a constant that depends on ε and ∆.

6.1.1 The Algorithm
For each vertex v ∈ V , let Nv denote the neighbors of v. Recall that the color-list of v is denoted
by Lv. It will be convenient to treat Blank also as a color. Indeed, the algorithm will operate in the
space of partial proper colorings of G and, thus,

Ω ⊆
∏
v∈V

{Lv ∪ {Blank} .

Let L = ∆
ε
2 and assume ∆ is sufficiently large so that L ≥ 10.

The initial distribution. The initial distribution θ, which is important in order to get a good
lower bound on the number colorings the algorithm can output, is chosen to be the following: Fix
an independent set S of G of size at least n/(∆ + 1). (This is trivial to find efficiently via a greedy
algorithm). Choose one color from Lu \ Blank, u ∈ S, uniformly at random, and assign it to u.

The flaws. We let Lv(σ) ⊆ (Lv ∪ {Blank}) be the set of colors we can assign to v in state σ
without creating any monochromatic edge. We call these the available colors for v in σ and note
that Blank is always available. For each v ∈ V , we define a flaw expressing that there are “too few
available colors for v,” namely

Bv = {σ ∈ Ω : |Lv(σ)| < L} .

For each color c other than Blank, let Tv,c(σ) be the set of Blank neighbors of v for which c is
available in σ, i.e., the vertices that may “compete” with v for color c. For each v ∈ V , we define
a flaw expressing that there is “too much competition for v’s available colors,” namely

Zv =

σ ∈ Ω :
∑

c∈Lv(σ)\Blank

|Tv,c(σ)| > L

10
|Lv(σ)|

 .

Let Fv = Bv ∪ Zv and let Ω+ = Ω− ∪v∈V Fv.

Lemma 6.2 (The Second Phase [76]). Given σ ∈ Ω+, a complete list-coloring of G can be found
efficiently.

Lemma 6.2 was proved in [76] via a fairly straightforward application of the Lovász Local
Lemma, and can be made constructive via the Moser-Tardos algorithm. We also present its proof
in Appendix 8.4.1, as it will be useful in our analysis.

Flaw choice Strategy. The algorithm can use any π-strategy, i.e., it chooses to address the lowest
indexed flaw according to an arbitrary, but fixed, ordering π of the set of flaws.

66

The actions. To address either Bv or Zv in σ, the algorithm performs the following, i.e., the set
of actions and the distribution on them as induced by the following procedure.

1: procedure RESAMPLE(v, σ)
2: Assign to each colored vertex u in Nv a uniformly random color from Lu(σ)

6.1.2 Proving Termination
To prove fast converge we use Theorem 3.15. The measure µ we use for the analysis is the the
uniform measure over Ω. The following key lemma is proved in Section 6.1.4.

Lemma 6.3. For each vertex v and flaw f ∈ {Bv, Zv}: γf ≤ 2∆−4.

For any two vertices u, v, let dist(u, v) denote the length of a shortest path between u and v.
Consider the symmetric causality digraph for which, for any fv ∈ {Bv, Zv} and fu ∈ {Bu, Zu}, we
have that fu ∈ Γ(fv) iff dist(u, v) ≤ 3, and observe that its maximum degree is at most 2(∆3 + 1).
Setting ψf = ψ = 1

2(∆3+1)
for every flaw f ∈ {Bv, Zv} and applying (3.8), we obtain

γf
∑

S⊆Γ(f)

∏
g∈S

ψg ≤
2

∆4
· 2(∆3 + 1) · e < 4e

(
1

∆
+

1

∆4

)
< 1 ,

for large enough ∆. The proof of fast convergence is concluded by noticing that

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S⊆Span(θ)

∏
j∈S

ψj

 ≤ log2 |Ω|+ 2n log2(1 + ψ) = O(n log n) .

6.1.3 A Lower Bound on the Number of Possible Outputs
In this section it will be convenient to assume that the list of each vertex has size exactly q.

LetA1,A2 denote the first and second phase of our algorithm, respectively. The bound regard-
ing the number of list-colorings the algorithm can output with positive probability follows almost
immediately from the two following lemmas.

Lemma 6.4. AlgorithmA1 can output at least exp
(
n
(

ln q
∆+1
− 1

∆3

))
flawless partial colorings with

positive probability.

Proof. It is not hard to verify that algorithm A1 is commutative with respect to the causality rela-
tion ∼ induced by neighborhoods Γ(·). To see this, notice that for any two flaws fv, fu and any
σ ∈ fv ∩ fu, invoking procedure RESAMPLE(v, σ) does not change the list of available colors of
the neighbors of u. Applying Theorem 5.11 (using the crude bound we saw in (5.13)) we get that
the algorithm can output at least

exp

(
ln
|Ω|
λinit

−
∑
f∈F

ψf

)
= exp

(
ln

1

maxσ∈Ω θ(σ)
− 2n

2(∆3 + 1)

)
> exp

(
n

(
ln q

∆ + 1
− 1

∆3

))
(6.1)

flawless partial colorings.
67

Lemma 6.5. Suppose A1 can output N flawless partial colorings with positive probability. Sup-
pose further that among these partial colorings, the ones with the lowest number of colored
vertices have exactly αn vertices colored, where α ∈ (0, 1). Then, A2 can output at least
max

(
Nq−(1−α)n,

(
8L
11

)(1−α)n
)

list-colorings with positive probability.

The proof of Lemma 6.5 can be found in Appendix 8.4.

Proof of Theorem 6.1. According to Lemma 6.4 algorithmA1 can output at leastN := exp
(
n
(

ln q
∆+1
− 1

∆3

))
flawless partial colorings. Moreover, according to Lemma 6.5, algorithm A2 can output at least

min
α∈(0,1)

{
max

(
Nq−(1−α)n,

(
8L

11

)(1−α)n
)}

distinct full-list colorings. SinceNq−(1−α)n ,
(

8L
11

)(1−α)n are increasing and decreasing as functions
of α, respectively, the value of α that minimizes our lower bound is the one that makes them equal,
which can be seen to be

α∗ := 1− lnN

n ln(8Lq
11

)
= 1−

ln q
∆+1
− 1

∆3

ln q + ln(8L
11

)
.

Therefore, algorithm A2 can output at least

exp

(
n

(
ln q

∆ + 1
− 1

∆3

))
· q−(1−α∗)n = exp

(
n

(
q

∆ + 1
− 1

∆3

)
(1− δ)

)
,

list-colorings, where δ := 1

1+
ln(8L/11)

ln q

∈ (0, 1), concluding the proof.

6.1.4 Proof of Lemma 6.3
It will be convenient to extend the operation of “addressing a flaw f in a state σ” to arbitrary states
σ ∈ Ω, i.e., not necessarily elements of f , meaning that we recolor the vertices associated with
f in σ in the same way we would do it if the constraint corresponding to f was indeed violated.
Consider the following random experiments.

• Address Bv in an arbitrary state σ ∈ Ω to get a state τ . Let Prσ[Bv] denote the probability
that τ ∈ Bv.

• Address Zv in an arbitrary state σ ∈ Ω to get a state τ . Let Prσ[Zv] denote the probability
that τ ∈ Zv.

Our claim now is that for every f ∈ {Bv, Zv}

γf ≤ max
τ∈Ω

Pr
τ

[f] .

68

To see this, observe that

γf = max
τ∈Ω

∑
σ∈f

µ(σ)

µ(τ)
ρf (σ, τ) = max

τ∈Ω

∑
σ∈Inf (τ)

1

|Λ(σ)|
,

where Λ(σ) :=
∏

u∈Nv Lu(σ) is the cartesian product of the lists of available colors of each vertex
u ∈ Nv at state σ, and Inf (τ) is the set of states σ ∈ f such that τ ∈ α(f, σ).

The key observation now is that Λ(τ) = Λ(σ) for each state σ ∈ Inf (τ). This is because any

transition of the form σ
f−→ τ does not alter the lists of available colors of vertices u ∈ Nv, since

the graph is triangle-free. Thus,

γf = max
τ∈Ω

|Inf (τ)|
Λ(τ)

= max
τ∈Ω

Pr
τ

[f] ,

where the second equality follows from the fact that there is a natural bijection between Inf (τ) and
the set of color assignments from Λ(τ) to the vertices of Nv that violate the constraint related to
flaw f .

The following lemma, proved in [76] concludes the proof. (We omit the proof of Lemma 6.6
here because we will show the proof of more general lemma in Section 6.2.4.)

Lemma 6.6 ([76]). For every state σ ∈ Ω and every f ∈ {Bv, Zv}: Prσ[f] < ∆−4.

6.2 General Graphs
In this section we present the main application of Achlioptas, Iliopoulos and Sinclair [5], who
generalized Molloy’s algorithm by establishing a bound on the chromatic number of arbitrary
graphs, as a function of the maximum number of triangles in the neighborhood of a vertex, and
giving an algorithm that produces such a coloring.

Theorem 6.7 (Informal Statement). Let G be any graph with maximum degree ∆ in which the
neighbors of every vertex span at most T ≥ 0 edges between them. For every ε > 0, if ∆ ≥ ∆ε

and T . ∆2ε then

χ(G) ≤ (1 + ε)
∆

ln ∆− 1
2

ln(T + 1)
, (6.2)

and such a vertex coloring can be found efficiently. Moreover, the theorem holds for any T ≥ 0 if
the leading constant (1 + ε) is replaced with (2 + ε).

As we will see, the bound (6.2) matches the algorithmic barrier for random graphs [1]. This implies
that any improvement on the guarantee of the algorithm of [5] for T . ∆2ε would amount to an
unexpected breakthrough in random graph theory. (Random graphs are only informative in the
regime T . ∆2ε.) For arbitrary graphs our bound is within a factor of 4 of the chromatic number,
improving upon a classical result of of Alon, Krivelevich and Sudakov [10] who showed (6.2) with
an unspecified (large) leading constant.

We establish Theorem 6.7 in two steps. First, we present a hybrid local search algorithm that
is at the heart of Theorem 6.7, and which we analyze using Theorem 4.6. Molloy’s result (and

69

resampling algorithms based on it) breaks down immediately in the presence of triangles; the key
to our algorithm is to allow backtracking steps in order to avoid undesirable portions of the search
space. Specifically, in Section 6.2.1 we establish the following theorem which is a key ingredient
in the proof of Theorem 6.7. Note that, in order to comply with the standard notation used in
results in the area, we express the bound on the number of triangles as ∆2/f ; the triangle-free case
then corresponds to f = ∆2 + 1.

Theorem 6.8. Let G be any graph with maximum degree ∆ in which the neighbors of every
vertex span at most ∆2/f edges. For all ε > 0, there exists ∆ε such that if ∆ ≥ ∆ε and
f ∈ [∆

2+2ε
1+2ε (ln ∆)2,∆2 + 1], then

χ`(G) ≤ (1 + ε)∆/ ln
√
f .

Furthermore, if G is a graph on n vertices then, for every c > 0, there exists an algorithm that
constructs such a coloring in polynomial time with probability at least 1− 1

nc
.

Theorem 6.8 is interesting for several reasons. First, random graphs suggest that it is sharp,
i.e., that no efficient algorithm can color graphs satisfying the conditions of the theorem with
(1− ε)∆/ ln

√
f colors. More precisely, Proposition 6.9 below, proved in Appendix 8.4.6, implies

that any such algorithm would entail coloring random graphs using fewer than twice as many colors
as their chromatic number. This would be a major (and unexpected) breakthrough in random graph
theory, where beating this factor of two has been an elusive goal for over 30 years. Besides the lack
of progress, further evidence for the optimality of this factor of two is that it corresponds precisely
to a phase transition in the geometry of the set of colorings [1], known as the shattering threshold.
Second, Theorem 6.8 establishes that it is possible to have an algorithm that is robust enough to
apply to worst-case graphs, while at the same time matching the performance of the best known
(and highly tuned) algorithms for random graphs.

Proposition 6.9. For every ε > 0 and d ∈ (dε lnn, (n lnn)
1
3), there exist ∆ = ∆(d, ε) and

f = f(d, ε) such that with probability tending to 1 as n → ∞, a random graph G = G(n, d/n)
satisfies the conditions of Theorem 6.8 and χ(G) ≥ (1

2
− ε)∆/ ln

√
f .

Third, armed with Theorem 6.8, we are able to prove the following result concerning the chro-
matic number of arbitrary graphs. (This is a formal restatement of the second of part of Theo-
rem 6.7.)

Theorem 6.10. Let G be a graph with maximum degree ∆ in which the neighbors of every vertex
span at most ∆2/f edges. For all ε > 0, there exist ∆ε, fε such that if ∆ ≥ ∆ε and f ∈ [fε,∆

2 +1],
then

χ(G) ≤ (2 + ε)∆/ ln
√
f . (6.3)

Furthermore, if G is a graph on n vertices then, for every c > 0, there exists an algorithm that
constructs such a coloring in polynomial time with probability at least 1− 1

nc
.

As we have already said, Theorem 6.10 improves a classical result of Alon, Krivelevich and
Sudakov [10] which established (6.3) with an unspecified (large) constant in place of 2 + ε. The
main idea in their analysis is to break down the input graph into triangle-free subgraphs, and color
each one of them separately using distinct sets of colors by applying the result of Johansson [62].

70

Note that even if one used Molloy’s [76] recent result in place of Johansson’s in this scheme, the
corresponding constant would still be in the thousands. Instead, we break down the graph into
subgraphs with few triangles per neighborhood, and use Theorem 6.8 to color the pieces. The
proof of Theorem 6.10 can be found in Appendix 8.4.3.

As final remark, we note that Vu [103] proved the analogue of the main result of [10] (again
with a large constant) for the list chromatic number. While we don’t currently see how to sharpen
Vu’s result to an analogue of Theorem 6.10 for the list chromatic number using our techniques, we
note that our Theorem 6.8 improves over [103] for all f ≥ ∆

2+2ε
1+2ε (ln ∆)2.

6.2.1 A Hybrid Algorithm
To prove Theorem 6.8 we will generalize the algorithm of Molloy [76] for coloring triangle-free
graphs. The main issue we have to address is that in the presence of triangles, the natural general-
ization of Molloy’s algorithm introduces monochromatic edges when the neighborhood of a vertex
is recolored. As a result, the existing analysis fails completely even if each vertex participates in
just one triangle. To get around this problem, we introduce backtracking steps into the algorithm,
whose analysis is enabled by Theorem 4.6.

Recall that for each vertex v ∈ V , Nv denotes the neighbors of v and let Ev = {{u1, u2} :
u1, u2 ∈ Nv} denote the edges spanned by them. Recall that the color-list of v is denoted by Lv.
Again, it will be convenient to treat Blank also as a color. Indeed, the initial distribution θ of our
algorithm assigns all its probability mass to the state where every vertex is colored Blank. When-
ever assigning a color to a vertex creates monochromatic edges, the algorithm will immediately
uncolor enough vertices so that no monochromatic edge remains. Edges with two Blank endpoints
are not considered monochromatic. To uncolor a vertex v, the algorithm picks a monochromatic
edge e incident to v and assigns e to v instead of a color, thus also creating a record of the reason
for the uncoloring. Thus,

Ω ⊆
∏
v∈V

{Lv ∪ {Blank} ∪ Ev} .

Let L = (1 + ε) ∆
ln f
f−

1
2+2ε and assume ∆ is sufficiently large so that L ≥ 10.

The flaws. We let Lv(σ) ⊆ (Lv ∪ {Blank}) be the set of colors we can assign to v in state
σ without creating any monochromatic edge. We call these the available colors for v in σ and
note that Blank is always available. As in Molloy’s algorithm, for each v ∈ V , we define a flaw
expressing that there are “too few available colors for v,” namely

Bv = {σ ∈ Ω : |Lv(σ)| < L} ,

and, for each color c other than Blank, we let Tv,c(σ) be the set of Blank neighbors of v for
which c is available in σ, i.e., the vertices that may “compete” with v for color c. For each v ∈ V ,
we define a flaw expressing that there is “too much competition for v’s available (real) colors,”
namely

Zv =

σ ∈ Ω :
∑

c∈Lv(σ)\Blank

|Tv,c(σ)| > L

10
|Lv(σ)|

 .

71

Finally, for each v ∈ V and e ∈ E we define a flaw expressing that v is uncolored (because of
e), namely

f ev = {σ ∈ Ω : σ(v) = e} .

Let Fv = Bv ∪ Zv ∪e∈E f ev and let Ω+ = Ω− ∪v∈V Fv.

Lemma 6.11 (The Second Phase [76]). Given σ ∈ Ω+, a complete list-coloring of G can be found
efficiently.

The proof of Lemma 6.11 is an a fairly standard application of the (algorithmic) LLL, showing
that σ can be extended to a complete list-coloring by coloring all Blank vertices with actual colors.
(It is identical to the one of Lemma 6.2 and can be found in Appendix 8.4.) Thus, the heart of
the matter is reaching a state i.e., (a partial coloring) not suffering from any of the flaws specified
above.

Flaw choice. The algorithm can use any π-strategy in which everyB-flaw has priority over every
f -flaw.

The actions. To address f ev at σ, i.e., to color v, the algorithm simply chooses a color from Lv(σ)
uniformly and assigns it to v. The fact that B-flaws have higher priority than f -flaws implies that
there are always at least L choices.

Addressing B- and Z- flaws is significantly more sophisticated. For each vertex v, for each
vertex u ∈ Nv, let Rv

u(σ) ⊇ Lu(σ) comprise those colors having the property that assigning them
to u in state σ creates no monochromatic edge except, perhaps, in Ev. To address either Bv or Zv
in σ, the algorithm performs the following, i.e., the set of actions and the distribution on them as
induced by the following procedure.

1: procedure RECOLOR(v, σ)
2: Assign to each colored vertex u in Nv a uniformly random color from Rv

u(σ)
3: while monochromatic edges exist do
4: Let u be the lowest indexed vertex participating in a monochromatic edge
5: Let e be the lowest indexed monochromatic edge with u as an endpoint
6: Uncolor u by assigning e to u

Lemma 6.12. Let S ′(v, σ) be the set of colorings that can be reached at the end of Step 2 of
RECOLOR(v, σ) and let S ′′(v, σ) be the set of possible final colorings. Then |S ′(v, σ)| = |S ′′(v, σ)|.

Proof. Since Steps 4–6 are deterministic, |S ′′(v, σ)| ≤ |S ′(v, σ)|. To prove that |S ′′(v, σ)| ≥
|S ′(v, σ)|, we will prove that if u ∈ Nv has distinct colors in σ′1, σ

′
2 ∈ S ′, then there exists z ∈ V

such that σ′′1(z) 6= σ′′2(z). Imagine that in Step 6, we also oriented e to point away from u. Then,
in the resulting partial orientation, every vertex would have outdegree at most 1 and there would
be no directed cycles. Consider the (potentially empty) oriented paths starting at u in σ′′1 and σ′′2
and let z be their last common vertex. If z is uncolored, then σ′′1(z) = e1 and σ′′2(z) = e2, where
e1 6= e2; if z is colored, then σ′′i (z) = σ′i(u).

72

6.2.2 Proving Termination
Let Dv be the set of vertices at distance 1 or 2 from v and let

Sv = {Bu}u∈Dv ∪ {Zu}u∈Dv ∪ {f {u,w}u }u,w∈Nv .

To lighten notation, in the following we write γS(f) instead of γSf . Let q = (1 + ε) ∆
ln
√
f
≥ 1.

Lemma 6.13. For every vertex v ∈ V and edge e ∈ E,

1. if S 6⊆ Sv, then γS(Bv) = γS(Zv) = γS(f ev) = 0;

2. if S ⊇ {f {u1,u2}
u1 , f

{u1,u2}
u2 }, then γS(Bv) = γS(Zv) = γS(f ev) = 0.

3. maxS⊆F γ
S(f ev) ≤ 1

L
=: γ(f ev);

4. maxS⊆F γ
S(Bv) ≤ 2e−

L
6 =: γ(Bv) ;

5. maxS⊆F γ
S(Zv) ≤ 3qe−

L
60 =: γ(Zv),

where the charges are computed with respect to the uniform measure over Ω.

We note that while we give uniform bounds on the charges corresponding to each flaw, the
analysis of our algorithm cannot be captured by the result of [4]. This is because, crucially, we
exploit to our advantage the existence of primary flaws.

Before we give the proof, we first use Lemma 6.13 to derive Theorem 6.8.

Proof of Theorem 6.8. For every flaw f ∈ F , we will take ψf = γ(f)ψ, where ψ > 0 will be
chosen later.

For any vertex v ∈ V , flaw f ∈ {Bv, Zv, f
e
v}, and set of flaws S ⊆ F , Lemma (6.13) implies

that γS(f) = 0 unless all B- and Z-flaws in S correspond to vertices in Dv, per part (1), and every
edge e ∈ Ev contributes at most one flaw to S, per part (2). Therefore, for f ∈ {Bv, Zv, f

e
v},

1

ψf

∑
S⊆F

γS(f)
∏
g∈S

ψg ≤
1

ψ

∏
u∈Dv

(1 + γ(Bu)ψ)(1 + γ(Zu)ψ)
∏

e={u1,u2}∈Ev

(
1 + γ(f eu1

)ψ + γ(f eu2
)ψ
)
.

(6.4)

To bound the right hand side of (6.4) we use parts (3)–(5) of Lemma 6.13 along with the facts
|Dv| ≤ ∆2 + 1 and |Ev| ≤ ∆2/f to derive (6.5) below. To derive (6.6), we use the fact that
2e−

L
6 ≤ 3qe−

L
60 , since q ≥ 1, and that 1 + x ≤ ex for all x. Thus, for f ∈ {Bv, Zv, f

e
v}, we

conclude

1

ψf

∑
S⊆F

γS(f)
∏
g∈S

ψg ≤
1

ψ

(
1 + 2e−

L
6 ψ
)∆2+1 (

1 + 3qe−
L
60ψ
)∆2+1

(
1 +

2ψ

L

)∆2

f

(6.5)

≤ 1

ψ
exp

(
2ψ∆2

fL
+ 6qe−

L
60ψ(∆2 + 1)

)
:=

1

ψ
exp(Q) . (6.6)

Setting ψ = (1 + ε), we see that the right hand side of (6.6) is strictly less than 1 for all
∆ ≥ ∆ε, since Q ∆→∞−−−→ 0 for all f ∈ [∆

2+2ε
1+2ε (ln ∆)2,∆2 + 1]. To see this last claim, recall that

73

L = (1 + ε) ∆
ln f
f−

1
2+2ε and q = (1 + ε) ∆

ln
√
f

, and note that ln f < 3 ln ∆ and f
1+2ε
2+2ε ≥ ∆(ln ∆)

2+4ε
2+2ε .

Thus,

2ψ∆2

fL
=

2∆2

f ∆
ln f
f−

1
2+2ε

=
2∆ ln f

f
1+2ε
2+2ε

≤ 2 ln f

(ln ∆)
2+4ε
2+2ε

≤ 6 ln ∆

(ln ∆)
2+4ε
2+2ε

=
6

(ln ∆)
ε

1+ε

∆→∞−−−→ 0 , (6.7)

while the facts L = Ω(∆
ε

1+2ε) and q ≤ (1 + ε)∆ imply that 6qe−
L
60ψ(∆2 + 1)

∆→∞−−−→ 0.

6.2.3 Proof of Lemma 6.13
Proof of part (1). Addressing Bv or Zv by executing RECOLOR(v, ·) only changes the color of
vertices in Nv, with any resulting uncolorings being due to edges in Ev. Thus, only flaws in Sv
may be introduced. Addressing f ev , by coloring v, trivially, can only introduce flaws Bu, Zu, where
u ∈ Nv.

Proof of part (2). Since addressing an f -flaw never introduces another f -flaw, we only need to
discuss procedure RECOLOR. Therein, vertices are uncolored serially in time, so that any time a
vertexw is uncolored there exists, at the time ofw’s uncoloring, a monochromatic edge e = {w, u}.
Therefore, an edge e = {u1, u2} can never be the reason for the uncoloring of both its endpoints,
i.e., f eu1

∩ f eu2
= ∅.

Proof of part (3). If addressing f ev results in τ , then the previous state σ must be the mutation of
τ that results by assigning e to v. Since π(σ) = f ev implies σ 6∈ Bv, it follows that |Lv(σ)| ≥ L.
Since colors are chosen uniformly from Lv(σ), it follows that γ(f ev) ≤ 1/L.

Proof of parts (4) and (5). Observe that every flaw corresponding to an uncolored vertex is pri-
mary since procedure RECOLOR never colors an uncolored vertex and addressing f ev only colors
v. Thus, when computing γS(f), for f ∈ {Bv, Zv} and S ⊆ F , we can restrict to pairs (σ, τ) such
that the set of uncolored vertices in τ is exactly the union of the set of uncolored vertices in σ and
the set {u ∈ Nv : f eu ∈ S}. Fixing f ∈ {Bv, Zv}, S ⊆ F , and τ , let us denote by InSf (τ) the
candidate set of originating states and by USf (τ) their common set of uncolored vertices. Then, for
any f ∈ {Bv, Zv} and any S ⊆ F ,

γS(f) = max
τ∈Ω

∑
σ∈InSf (τ)

ρf (σ, τ) . (6.8)

To bound ρf (σ, τ) in (6.8) we recall that RECOLOR assigns to each colored vertex u ∈ Nv a
random color from Rv

u(σ) and invoke Lemma 6.12 to derive the first equality in (6.9). For the
second equality we observe that for every u ∈ Nv, the set Rv

u is determined by the colors of the
vertices in V \ Nv. Since RECOLOR only changes the color of vertices in Nv, it follows that
Rv
u(σ) = Rv

u(τ), yielding

ρf (σ, τ) =
1∏

u∈Nv\USf (τ) |Rv
u(σ)|

=
1∏

u∈Nv\USf (τ) |Rv
u(τ)|

:=
1

ΛS
f (τ)

. (6.9)

74

Next we bound |InSf (τ)|, as follows. First we observe that if σ ∈ InSf (τ), then σ(u) 6= τ(u)
implies u ∈ Nv \ USf (τ) and, therefore, σ(u) ∈ Rv

u(τ) since σ(u) ∈ Lu(σ) ⊆ Rv
u(σ) = Rv

u(τ).
Thus, the set of τ -mutations that result by recoloring each vertex in Nv \ USf (τ) with a color from
Rv
u(τ) so that the resulting state belongs in f is a superset of InSf (τ). Denoting this last set by

Viol(f, τ), we conclude that

γS(f) = max
τ∈Ω

|InSf (τ)|
ΛS
f (τ)

≤ max
τ∈Ω

|Viol(f, τ)|
ΛS
f (τ)

= max
τ∈Ω

Pr[RECOLOR(v, τ) ∈ f] , (6.10)

where for the last equality we use the definition of ΛS
f (τ).

Remark 6.14. We note that expressing the sum of the transition probabilities into a state in terms
of a random experiment as we do in (6.10) was the key technical idea of [76] in order to apply the
entropy compression method. It is also the one that breaks down if we allow our algorithm to go
through improper colorings.

To conclude the proof of Lemma 6.13 we prove the following in Section 6.2.4.

Lemma 6.15. For each vertex v and σ ∈ Ω:

1. Pr[RECOLOR(v, σ) ∈ Bv] ≤ 2e−
L
6 .

2. Pr[RECOLOR(v, σ) ∈ Zv] ≤ 3qe−
L
60 .

6.2.4 Proof of Lemma 6.15
Our computations are similar to the ones in [76]. The following version of Chernoff Bounds will
be useful:

Lemma 6.16. Suppose {Xi}mi=1 ∈ {0, 1} are boolean variables, and set Yi = 1 − Xi, X =∑m
i=1Xi. If {Yi}mi=1 are negatively correlated, then for any 0 < t ≤ E[X]

Pr[|X − E[X]| > t] < 2 exp

(
− t2

3E[X]

)
.

Proof of part (1). Let v ∈ V and σ ∈ Ω be arbitrary and let τ ∈ Ω be the (random) output (state)
of RECOLOR(v, σ). For each color c ∈ Lv, let P c

v = {u ∈ Nv : c ∈ Rv
u(σ)} and define

ρ(c) =
∑
u∈P cv

1

|Rv
u(σ)| − 1

.

Since c ∈ Rv
u(σ) implies |Rv

u(σ)| ≥ 2, and since 1 − 1/x > exp(−1/(x − 1)) for x ≥ 2, we see
that

E[|Lv(τ)|] = 1 +
∑
c∈Lv

∏
u∈P cv

(
1− 1

|Rv
u(σ)|

)
>
∑
c∈Lv

∏
u∈P cv

exp

(
− 1

|Rv
u(σ)| − 1

)
=
∑
c∈Lv

e−ρ(c) .

(6.11)
75

Also, since each Rv
u(σ) has |Rv

u(σ)| − 1 non-Blank colors, we see that

Zv :=
∑
c∈Lv

ρ(c) ≤
∑
u∈Nv

∑
c∈Rvu(σ)\Blank

1

|Rv
u(σ)| − 1

≤ ∆ . (6.12)

The fact that e−x is convex implies that the right hand side of (6.11) is at least |Lv| exp(−Zv/|Lv|).
Recalling that |Lv| = q = (1 + ε) ∆

ln
√
f

and combining (6.11) with (6.12) yields

E[|Lv(τ)|] > qe−Zv/q ≥ (1 + ε)
∆

ln
√
f

e−∆/q = 2(1 + ε)
∆

ln f
f−

1
2(1+ε) = 2L .

Let Xc be the indicator variable that c ∈ Lv(τ) so that |Lv(τ)| = 1 +
∑

c∈Lv(τ) Xc. It is not hard
to see that the variables Yc = 1−Xc are negatively correlated, so that applying Lemma 6.16 with
t = 1

2
E[|Lv(τ)|] > L yields

Pr
[
|Lv(τ)| < 1

2
E [|Lv(τ)|]

]
≤ 2e−E[|Lv(τ)|]/12 < 2e−L/6 .

Proof of part (2). Let Ψ = {c ∈ Lv(σ) : ρ(c) ≥ L/20} \ Blank. The probability that Lv(τ)
contains at least one color from Ψ is at most

E [|Lv(τ) ∩Ψ|] =
∑
c∈Ψ

∏
u∈P cv

(
1− 1

|Rv
u(σ)|

)
<
∑
c∈Ψ

∏
u∈P cv

exp

(
− 1

2(|Rv
u(σ)| − 1)

)
<
∑
c∈Ψ

e−ρ(c)/2 ,

where we used that c ∈ Rv
u(σ) implies |Rv

u(σ)| ≥ 2, and that 1 − 1/x < exp(−1/(2(x − 1))) for
x ≥ 2. Finally note that

∑
c∈Ψ e−ρ(c)/2 ≤ qe−L/40 by the definition of the set Ψ.

Recall that Tv,c(τ) = {u ∈ Nv : τ(u) = Blank and c ∈ Lu(τ)}. Since Lu(τ) ⊆ Ru(τ) =
Ru(σ), it follows that Tv,c(τ) ⊆ P c

v and, therefore, E [|Tv,c(τ)|] ≤
∑

u∈P cv
1/|Rv

u(σ)| ≤ ρ(c). Since
the vertices in P c

v are colored (and thus become Blank) independently and since ρ(c) < L/20
for c 6∈ Ψ, applying Lemma 6.16 with t = L/20 yields Pr [|Tv,c(τ)| > E [|Tv,c(τ)|] + L/20] <
2e−L/60. Applying the union bound over all q colors, we see that the probability there is at least one
c /∈ Ψ for which |Tv,c(τ)| > L/10 is at most 2qe−L/60. Thus, with probability at least 1−3qe−L/60,∑

c∈Lv(τ)\Blank

|Tv,c(τ)| =
∑

c∈Lv(τ)\(Ψ∪Blank)

|Tv,c(τ)| < L

10
|Lv(τ)| .

76

Chapter 7

Efficiently List-Edge Coloring Multigraphs
Asymptotically Optimally

In this chapter we present the polynomial time algorithms of Iliopoulos and Sinclair [5] for the
seminal results of Kahn [65, 66], who showed that the Goldberg-Seymour and List-Coloring con-
jectures for (list-) edge coloring multigraphs hold asymptotically. Kahn’s arguments are based on
the probabilistic method and are non-constructive. The key insight is to use the main result of
Achlioptas, Iliopoulos and Kolmogorov [4] (see also Section 3.4) to design algorithms that exploit
the fact that correlations in the probability spaces on matchings used by Kahn decay with distance.

7.1 Statement of Results and Technical Overview
In graph edge coloring one is given a (multi)graph G(V,E) and the goal is to find an assignment
of one of q colors to each edge e ∈ E so that no pair of adjacent edges share the same color.
The chromatic index, χe(G), of G is the smallest integer q for which this is possible. In the more
general list-edge coloring problem, a list of q allowed colors is specified for each edge. A graph is
q-list-edge colorable if it has a list-coloring no matter how the lists are assigned to each edge. The
list chromatic index, χ`e(G), is the smallest q for which G is q-list-edge colorable.

Edge coloring is one of the most fundamental and well-studied coloring problems with various
applications in computer science (e.g., [25, 39, 64, 65, 66, 83, 90, 92, 93, 94, 102]). To give just
one representative example, if edges represent data packets then an edge coloring with q colors
specifies a schedule for exchanging the packets directly and without node contention. In this
paper we are interested in designing algorithms for efficiently edge coloring and list-edge coloring
multigraphs. To formally describe our results, we need some notation.

For a multigraph G letM(G) denote the set of matchings of G. A fractional edge coloring is
a set {M1, . . . ,M`} of matchings and corresponding positive real weights {w1, . . . , w`}, such that
the sum of the weights of the matchings containing each edge is one. I.e., ∀e ∈ E,

∑
Mi:e∈Mi

wi =
1. A fractional edge coloring is a fractional edge c-coloring if

∑
M∈M(G) wM = c. The fractional

chromatic index of G, denoted by χ∗e(G), is the minimum c such that G has a fractional edge
c-coloring.

Let ∆ = ∆(G) be the maximum degree of G and define Γ := maxH⊆V,|H|≥2
|E(H)|
b|H|/2c . Both

of these quantities are obvious lower bounds for the chromatic index and it is known [35] that

77

χ∗e(G) = max(∆,Γ). Furthermore, Padberg and Rao [86] show that the fractional chromatic index
of a multigraph, and indeed an optimal fractional edge coloring, can be computed in polynomial
time.

Goldberg and Seymour independently stated the now famous conjecture that every multigraph
G satisfies χe(G) ≤ max (∆ + 1, dχ∗e(G)e). In a seminal paper [65], Kahn showed that the
Goldberg-Seymour conjecture holds asymptotically:

Theorem 7.1 ([65]). For multigraphs G, χe(G) ≤ (1 + o(1))χ∗e(G).

(Here o(1) denotes a term that tends to zero as χe(G) → ∞.) He later [66] proved the analogous
result for list-edge coloring, establishing that the List Coloring Conjecture, which asserts that
χ`e(G) = χe(G) for any multigraph G, also holds asymptotically:

Theorem 7.2 ([66]). For multigraphs G, χ`e(G) ≤ (1 + o(1))χ∗e(G).

The proofs of Kahn use the probabilistic method and are not constructive. The main contribu-
tion of this paper is to provide polynomial time algorithms for the above results, as follows:

Theorem 7.3. For every c > 0, there exists an algorithm that, given a multigraph G on n vertices,
constructs a (1 + o(1))χ∗e(G)-edge coloring of G with probability at least 1 − 1

nc
in expected

polynomial time.

Theorem 7.4. For every c > 0, there exists an algorithm that, given a multigraph G on n vertices
and an arbitrary list of q = (1+o(1))χ∗e(G) colors for each edge, constructs a q-list-edge coloring
of G with probability at least 1− 1

nc
in expected polynomial time.

Clearly, Theorem 7.4 subsumes Theorem 7.3. Moreover, in a very recent breakthrough [24],
Chen, Jing and Zang proved the (non-asymptotic) Goldberg-Seymour conjecture without exploit-
ing the arguments of Kahn. Even before this work, the results of Sanders and Steurer [92] and
Scheide [94] already give polynomial time algorithms for edge coloring multigraphs asymptot-
ically optimally, again without exploiting the arguments of Kahn. Nonetheless, we choose to
present the proof of Theorem 7.3 for three reasons. First and most importantly, its proof is signifi-
cantly easier than that of Theorem 7.4, while it contains many of the key ideas required for proving
Theorem 7.4. Second, our algorithms and techniques are very different from those of [24, 92, 94].
Finally, as we will see, we will need to show that the algorithm of Theorem 7.3 is commutative.
This fact may be of independent interest since, as shown in [71, 59] (see also Chapter 5), com-
mutative algorithms have several nice properties: they are typically parallelizable, their output
distribution has high entropy, etc.

As a final remark, we note that, to the best of our knowledge, Theorem 7.4 is the first result to
give an asymptotically optimal polynomial time algorithm for list-edge coloring multigraphs.

7.1.1 Technical Overview
The proofs of Theorems 7.1 and 7.2 are based on a very sophisticated variation of what is known
as the semi-random method (also known as the “naive coloring procedure”), which is the main
technical tool behind some of the strongest graph coloring results, e.g., [62, 64, 68, 77]. The idea
is to gradually color the graph in iterations, until we reach a point where we can finish the coloring

78

using a greedy algorithm. In its most basic form, each iteration consists of the following simple
procedure (using vertex coloring as a canonical example): Assign to each vertex a color chosen
uniformly at random; then uncolor any vertex which receives the same color as one of its neighbors.
Using the Lovász Local Lemma (LLL) [36] and concentration inequalities, one typically shows
that, with positive probability, the resulting partial proper coloring has useful properties that allow
for the continuation of the argument in the next iteration. For a nice exposition of both the method
and the proofs of Theorems 7.1 and 7.2, the reader is referred to [79].

The key new ingredient in Kahn’s arguments is the method of assigning colors. For each color
c, we choose a matching Mc from some hard-core distribution onM(G) and assign the color c to
the edges in Mc. The idea is that by assigning each color exclusively to the edges of one matching,
we avoid conflicting color assignments and the resulting uncolorings.

The existence of such hard-core distributions is guaranteed by the characterization of the
matching polytope due to Edmonds [35] and a result by Lee [73] (also shown independently by
Rabinovich et al. [91]). The crucial fact about them is that they are endowed with very useful
approximate stochastic independence properties, as was shown by Kahn and Kayll in [67]. In par-
ticular, for every edge e, conditioning on events that are determined by edges far enough from e in
the graph does not effectively alter the probability of e being in the matching.

The reason why this property is important is because it enables the application of the lopsided
Lovász Local Lemma, i.e., condition (2.2). Notably, the breakthrough result of Moser and Tar-
dos [80, 81] that made the LLL constructive for the vast majority of its applications does not apply
in this case, as it lies outside the variable setting (recall our discussion in Section 3.3.2.) The
lack of an efficient algorithm for lopsided LLL applications is the primary obstacle to making the
arguments of Kahn constructive.

Our main technical contribution is the design and analysis of such algorithms. Towards this
goal, we use the flaws-actions framework and, in particular, the algorithmic LLL condition (3.8)
for the analysis of stochastic local search algorithms developed by Achlioptas, Iliopoulos and
Kolmogorov in [4]. As we saw in Section 3.4.2, there is a connection between this condition
and the lopsided LLL, in the sense that the former can be seen as the constructive counterpart
of the latter. However, this observation by itself is not sufficient, since the result of [4] is a tool
for analyzing a given stochastic local search algorithm. Thus, we are still left with the task of
designing the algorithm before using it. Nonetheless, this connection provides valuable intuition
on how to realize this task.

To get a feeling for the nature of our algorithms it is helpful to recall the intuition behind
condition (3.8). There, the input is the stochastic local search algorithm to be analyzed and a
probability measure µ over the state space of the algorithm. The goal of the algorithm is to reach
a state that avoids every flaw. At a high level, the role of the measure is to gauge how efficiently
the algorithm rids the state of flaws, by quantifying the trade-off between the probability that a
flaw is present at some inner state of the execution of the algorithm and the number of other flaws
each flaw can possibly introduce when the algorithm addresses it. In particular, the quality of the
convergence criterion is affected by the compatibility between the measure and the algorithm.

Roughly, the states of our algorithm will be matchings in a multigraph (corresponding to color
classes) and the goal will be to construct matchings that avoid certain flaws. To that end, our
algorithm will locally modify each flawed matching by (re)sampling matchings in subgraphs of
G according to distributions induced by the hard-core distributions used in Kahn’s proof. The
fact that correlations decay with distance in these distributions allows us to prove that, while the

79

changes are local, and hence not many new flaws are introduced at each step, the compatibility of
our algorithms with these hard-core distributions is high enough to allow us to successfully apply
condition (3.8).

7.2 Hard-Core Distributions on Matchings
In this section we present the necessary background on hard-core distributions on matchings.

A probability distribution ν on the matchings of a multigraph G is hard-core if it is obtained
by associating to each edge e a positive real λ(e) (called the activity of e) so that the probability
of any matching M is proportional to

∏
e∈M λ(e). Thus, recalling thatM(G) denotes the set of

matchings of G, and setting λ(M) =
∏

e∈M λ(e) for each M ∈M(G), we have

ν(M) =
λ(M)∑

M ′∈M(G) λ(M ′)
.

The characterization of the matching polytope due to Edmonds [35] and a result of Lee [73]
(which was also shown independently by Rabinovich et al. [91]) imply the following connection
between fractional edge colorings and hard-core probability distributions on matchings. Before
describing it, we need a definition.

For any probability distribution ν on the matchings of a multigraph G, we refer to the prob-
ability that a particular edge e is in the random matching as the marginal of ν at e. We write
(νe1 , . . . , νe|E(G)|) for the collection of marginals of ν at all the edges ei ∈ E(G).

Theorem 7.5. There is a hard-core probability distribution ν with marginals (1
c
, . . . , 1

c
) if and only

if there is a fractional c′-edge coloring of G with c′ < c, i.e., if and only if χ∗e < c.

Kahn and Kayll [67] proved that the probability distribution promised by Theorem 7.5 is en-
dowed with very useful approximate stochastic independence properties.

Definition 7.6. Suppose we choose a random matching M from some probability distribution. We
say that an event Q is t-distant from a vertex v if Q is completely determined by the choice of all
matching edges at distance at least t from v. We say that Q is t-distant from an edge e if it is
t-distant from both endpoints of e.

Theorem 7.7 ([67]). For any δ > 0, there exists a K = K(δ) such that for any multigraph G with
fractional chromatic number c there is a hard-core distribution ν with marginals (1−δ

c
, . . . , 1−δ

c
)

such that

(a) for every e ∈ E(G), λ(e) ≤ K
c

and hence ∀v ∈ V (G),
∑

e3v λ(e) ≤ K.

(b) for every ε ∈ (0, 1), if we choose a matching M according to ν then, for any edge e and event
Q which is t-distant from e,

(1− ε) Pr[e ∈M] ≤ Pr[e ∈M | Q] ≤ (1 + ε) Pr[e ∈M] ,

where t = t(ε) = 8(K + 1)2ε−1 + 2.

80

We conclude this subsection with the result of Jerrum and Sinclair [61] for sampling from
hard-core distributions on matchings. The algorithm works by simulating a rapidly mixing Markov
chain on matchings, whose stationary distribution is the desired hard-core distribution ν, and out-
putting the final state.

Theorem 7.8 ([61], Corollary 4.3). Let G be a multigraph, {λ(e)}e∈E(G) a vector of activities
associated with the edges of G, and ν the corresponding hard-core distribution. Let n = |V (G)|
and define λ′ = max{maxu,v∈V (G)

∑
e3{u,v} λ(e), 1}. There exists an algorithm that, for any ε > 0,

runs in time poly(n, λ′, log ε−1) and outputs a matching in G drawn from a distribution ν ′ such
that ‖ν − ν ′‖TV ≤ ε.

Remark 7.9. [61] establishes this result for matchings in (simple) graphs. However, the exten-
sion to multigraphs is immediate: make the graph simple by replacing each set of multiple edges
e1, . . . , e` between a pair of vertices u, v by a single edge e of activity λ(e) =

∑
i λ(ei); then use

the algorithm to sample a matching from the hard-core distribution in the resulting simple graph;
finally, for each edge e = {u, v} in this matching, select one of the corresponding multiple edges
ei 3 {u, v} with probability λ(ei)/

∑
i λ(ei). Note that the running time will depend polynomially

on the maximum activity λ′ in the simple graph, as claimed.

7.3 Edge Coloring Multigraphs: Proof of Theorem 7.3
We follow the exposition of the proof of Kahn in [79]. The key to the proof of Theorem 7.3 is the
following lemma.

Lemma 7.10. For all ε > 0, there exists χ0 = χ0(ε) such that if χ∗e(G) ≥ χ0 then we can find
N = bχ∗e(G)

3
4 c matchings in G whose deletion leaves a multigraph G′ with χ∗e(G

′) ≤ χ∗e(G) −
(1 + ε)−1N in expected poly(n, ln 1

ε
) time with probability at least 1− 1

nc
, for any constant c > 0.

Using the algorithm of Lemma 7.10 recursively, for every ε > 0 we can efficiently find an edge
coloring of G using at most (1 + ε)χ∗e + χ0 colors as follows. First, we compute χ∗e(G) using the
algorithm of Padberg and Rao. If χ∗e ≥ χ0, then we apply Lemma 7.10 to get a multigraph G′ with
χ∗e(G

′) ≤ χ∗e(G)−(1+ε)−1N . We can now colorG′ recursively using at most (1+ε)χ∗e(G
′)+χ0 ≤

(1+ ε)χ∗e(G)−N +χ0 colors. Using one extra color for each one of the N matchings promised by
Lemma 7.10, we can then complete the coloring of G, proving the claim. In the base case where
χ∗e(G) < χ0, we color G greedily using 2∆− 1 colors. The fact that 2∆− 1 ≤ 2χ∗e − 1 < χ∗e +χ0

concludes the proof of Theorem 7.3 since the number of recursive calls is at most n.

7.3.1 The Algorithm
Observe that we only need to prove Lemma 7.10 for ε < 1

10
since, clearly, if it holds for ε then it

holds for all ε′ > ε. So we fix ε ∈ (0, 0.1) and let c∗ = χ∗e − (1 + ε)−1N . Our goal will be to delete
N matchings from G to get a multigraph G′ which has fractional chromatic index at most c∗.

81

The flaws. Let Ω = M(G)N be the set of possible N -tuples of matchings of G. For a state
σ = (M1, . . . ,MN) ∈ Ω let Gσ denote the multigraph induced by deleting the N matchings
M1, . . . ,MN from G. For a vertex v ∈ V (Gσ) we define dGσ(v) to be the degree of v in Gσ. We
now define the following flaws. For every vertex v ∈ V (G) let

fv =
{
σ ∈ Ω : dGσ(v) > c∗ − ε

4
N
}

.

For every connected subgraph H of G with an odd number of vertices, let

fH =

{
σ ∈ Ω : H ⊆ Gσ, |V (H)| ≤ ∆

(ε/4)N
and |E(H)| >

(
|V (H)| − 1

2

)
c∗
}

.

The following lemma states that it suffices to find a flawless state.

Lemma 7.11 ([65]). Any flawless state σ satisfies χ∗e(Gσ) ≤ c∗.

Proof. Edmonds’ characterization [35] of the matching polytope implies that the chromatic index
of Gσ is less than c∗ if

1. ∀v : dGσ(v) ≤ c∗; and

2. ∀H ⊆ Gσ with an odd number of vertices: E(H) ≤ |V (H)|−1
2

c∗.

Now clearly, addressing every flaw of the form fv establishes condition 1. By summing degrees
this also implies that for every subgraph F with an even number of vertices |E(F)| ≤

(
|V (F)|

2

)
c∗.

Moreover, any odd subgraphH can be split into a connected componentH ′ with an odd number
of vertices, and a subgraph F with an even number of vertices. Thus, in the absence of fv flaws,
it suffices to prove condition 2 for connected H . Again by summing degrees, we see that if no fv
flaw is present, then condition 2 can fail only for H with fewer than ∆

(ε/4)N
vertices, concluding the

proof.

To describe an efficient algorithm for finding flawless states we need to (i) determine the initial
distribution of the algorithm and show that is efficiently samplable; (ii) show how to address each
flaw efficiently; (iii) show that the expected number of steps of the algorithm is polynomial; and
finally (iv) show that we can search for flaws in polynomial time, so that each step is efficiently
implementable.

The initial distribution. Let δ = ε
4

and apply Theorem 7.7. Let ν be the promised hard-core
probability distribution, λ = {λ(e)} the vector of activities associated with it, and K the corre-
sponding constant. Note that the activities λ(e) defining ν are not readily available. However, the
next lemma says that we can efficiently compute a set of activities that gives an arbitrarily good
approximation to the desired distribution ν.

Lemma 7.12. For every η > 0, there exists a poly(n, ln 1
η
, ln 1

δ
)-time algorithm that computes a

set of edge activities {λ′(e)}e∈E(G) such that the corresponding hard-core distribution ν ′ satisfies
‖ν − ν ′‖TV ≤ η.

82

Proof. Lemma 7.12 is a straightforward corollary of the main results of Singh and Vishnoi [99]
and Jerrum and Sinclair [61]. Briefly, the main result of [99] states that finding a distribution that
apprxoximates ν can be seen as the solution of a max-entropy distribution estimation problem
which can be efficiently solved given a “generalized counting oracle” for ν. The latter is provided
by [61].

For a parameter η > 0 and a distribution p, we say that we η-approximately sample from p
to express that we sample from a distribution p̃ such that ‖p − p̃‖TV ≤ η. Set η = 1

nC
, where

C is a sufficiently large constant to be specified later, and let ν ′ be the distribution promised by
Lemma 7.12. The initial distribution of our algorithm, θ, is obtained by η-approximately sampling
N random matchings (independently) from ν ′. Observe that ‖θ − µ‖TV ≤ 2ηN , where µ denotes
the probability distribution over Ω induced by taking N independent samples from ν.

Addressing flaws. For an integer d > 0 and a connected subgraph H let S<d(H) be the set of
vertices within distance strictly less than d of a vertex u ∈ V (H).

We consider the procedure RESAMPLE below which takes as input a connected subgraph H , a
state σ and a positive integer d ≤ n, and which will be used to address flaws.

1: procedure RESAMPLE(H, σ, d)
2: Let σ = (M1,M2, . . . ,MN)
3: for i = 1 to N do
4: Let Ei,≥d be the set of edges of Mi that do not belong to the multigraph induced by
S<d+1(H)

5: Let Ei,=d be the set of edges of Mi whose both endpoints are in distance d from H
6: Let Vi,d be the set of vertices of S<d+1(H) that belong to edges in Ei,≥d ∪ Ei,=d
7: Let Gi,<d+1 be the multigraph induced by S<d+1(H) \ Vi,d
8: Let p be the hard-core distribution induced by {λ′(e)}e∈E(Gi,<d+1).
9: η-approximately sample a matching M from p

10: Let M ′
i = (Mi ∩ Ei,≥d) ∪M . By definition, M ′

i is a matching
11: Output σ′ = (M ′

1,M
′
2, . . . ,M

′
N)

Notice that Theorem 7.8 implies that procedure RESAMPLE (H, σ, d) terminates in poly(n, ln 1
η
)

time.
Set t = 8(K + 1)2δ−1 + 2. To address fv, fH at state σ, we invoke procedures RESAMPLE

({v}, σ, t) and RESAMPLE (H, σ, t), respectively.

Searching for flaws. Notice that we can compute c∗ in polynomial time using the algorithm of
Padberg and Rao [86]. Therefore, given a state σ ∈ Ω and c∗, we can search for flaws of the form
fv in polynomial time. However, the flaws of the form fH are potentially exponentially many, so a
brute-force search does not suffice for our purposes.

Fortunately, the result of Padberg and Rao essentially provides a polynomial time oracle for
this problem as well. Recall Edmonds’ characterization used in the proof of Lemma 7.11. The
constraints over odd subgraphs H are called matching constraints. Recall further that in the proof
of Lemma 7.11 we showed that, in the absence of fv-flaws, the only matching constraints that

83

could possibly be violated correspond to fH flaws. On the other hand, the oracle of Padberg and
Rao, given as input (1

c
, . . . , 1

c
) and a multigraph G, can decide in polynomial time whether G has

a fractional c-coloring or return a violated matching constraint. Hence, if our algorithm prioritizes
fv flaws over fH flaws, this oracle can be used to detect the latter in polynomial time.

7.3.2 Proof of Lemma 7.10
We are left to show that the expected number of steps of the algorithm is polynomial and that each
step can be executed in polynomial time. To that end, we will show that both of these statements are
true assuming that the initial distribution θ is µ instead of approximately µ, and that in Lines 8, 9 of
the procedure RESAMPLE(H, σ, d) we perfectly sample from the hard-core probability distribution
induced by activities {λ(e)}e∈E(Gi,<d(H)) instead of η-approximately sampling from p. Observe
that, since we will prove that in this case the expected running time of the ideal algorithm is
polynomial, we can maximally couple the approximate and ideal distributions, and then take the
constant C in the definition of the approximation parameter η to be sufficiently large. The latter
implies that the probability that the coupling will fail during the execution of the algorithm is
negligible (i.e., at most 1

nc
), establishing that the algorithm converges even if we use approximate

distributions.
For an integer d > 0 and a vertex v, let S∗d(v) be the set of flaws indexed by a vertex of

S<d(v) or a set H intersecting S<d(v). For each set H for which we have defined fH we let
S∗d(H) =

⋃
v∈V (H) S

∗
d(v). For each flaw fv we define the causality neighborhood Γ(fv) = S∗t+2(v)

and for each flaw fH we define Γ(fH) = S∗t+2(H), where t is as defined in the previous subsection.
Notice that this is a valid choice because flaw fv can only cause flaws in S∗t+1(v) and flaw fH can
only cause flaws in S∗t+1(H). The reason why we choose these neighborhoods to be larger than
seemingly necessary is because, as we will see, with respect to this causality graph our algorithm
is commutative, allowing us to apply Theorem 5.14. (We apply Theorem 5.14 using the ‖ · ‖1-
norm and a diagonal matrix that corresponds to a probability distribution, so that condition (5.14)
is equivalent to (3.8)).

Lemma 7.13. Let f ∈ {fv, fH} for a vertex v and a connected subgraph H of G with an odd

number of vertices and let D = ∆t+∆
1
3 +4. For every ζ > 0 there exists ∆ζ such that if ∆ ≥ ∆ζ

then

(a) γf ≤ 1−ζ
eD

;

(b) |Γ(f)| ≤ D,

where the charges are computed with respect to the measure µ and the algorithm that samples from
the ideal distributions.

The proof of Lemma 7.13 can be found in Section 7.3.3. Lemma 7.14 establishes that our
algorithm is commutative with respect to the causality relation ∼ induced by neighborhoods Γ(·).
Its proof can be found in Section 7.3.4.

Lemma 7.14. For each pair of flaws f � g, the matrices Af , Ag commute.

84

Setting xf = 1
1+maxf ′∈F |Γ(f ′)| for each flaw f , we see that condition (5.3) with ε = ζ/2 is

implied by

γf ·
(
1 + max

f ′∈F
(|Γ(f ′)|

)
· e ≤ 1− ζ/2 for every flaw f , (7.1)

which is true for large enough ∆ according to Lemma 7.13. Notice further that the causality graph
induced by ∼ can be partitioned into n cliques, one for each vertex of G, with potentially further
edges between them. Indeed, flaws indexed by subgraphs that contain a certain vertex of G form
a clique in the causality graph. Combining Lemma 7.14 with the latter observation, we are able to
apply Theorem 5.14 which implies that our algorithm terminates after an expected number of at
most O

(
maxσ∈Ω

θ(σ)
µ(σ)
· n
ζ

log n log(1/δ)
ζ

)
= O(n log n) steps. (This is because we assume that θ = µ

per our discussion above.)
This completes the proof of Lemma 7.10 and hence, as explained at the beginning of Sec-

tion 7.3, Theorem 7.3 follows. It remains, however, to go back and prove Lemmas 7.13 and 7.14,
which we do in the next two subsections.

7.3.3 Proof of Lemma 7.13
In this section we prove Lemma 7.13. Given a state σ = (M1, . . . ,MN), a subgraph H , and d > 0
let

QH(d, σ) = (M1 − S<d(H),M2 − S<d(H), . . . ,MN − S<d(H)) ,

where we define M − X = M ∩ E(G − X). Moreover, let Qi
H(d, σ) = Mi − S<d(H) denote

the i-th entry of QH(d, σ). Finally, let G<d+1(H) be the multigraph induced by S<d+1(H) and
Mi

d+1(H, σ) be the set of matchings of G<d+1(H) that are compatible with Qi
H(d, σ). That is, for

any matching M inMi
d+1(H, σ) we have that M ∪Qi

H(d, σ) is also a matching of G.

Remark 7.15. Recall the definition of the multigraph Gi,<d+1 in Line 7 of procedure RESAMPLE

and observe that the set of matchingsMi
d+1(H, σ) is exactly the set of matchings of this multigraph.

As we saw earlier, this implies that any hard-core distribution overMi
d+1(H, σ) is efficiently sam-

plable via the algorithm of [61]. We introduce this equivalent definition of Mi
d+1(H, σ) here

because it will be convenient in defining events with respect to the probability space induced by µ.

Proof of part (a). We will need the following key lemma, which was essentially proved in [65]. Its
proof can be found in Appendix 8.5.1. Recall that µ is the distribution over Ω induced by taking
N independent samples from ν.

Lemma 7.16. For every ζ > 0 there exists ∆ζ such that if ∆ ≥ ∆ζ then for any random state σ
distributed according to µ,

(i) for every flaw fv and state τ ∈ Ω: µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ)) ≤ 1−ζ
eD

, and

(ii) for every flaw fH and state τ ∈ Ω: µ(σ ∈ fH | QH(t, σ) = QH(t, τ)) ≤ 1−ζ
eD

.

We show the proof of part (a) of Lemma 7.13 only for the case of fv- flaws, as the proof for
fH- flaws is very similar. Specifically, our goal will be to prove that

γfv = max
τ∈Ω

µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ)) . (7.2)

85

Lemma 7.16 then concludes the proof.
Let xv(σ) = (xv,1(σ), . . . , xv,N(σ)) denote the vector such that xv,i(σ) = |Mi ∩ Ev|, where

Ev is the set of edges adjacent to v. Notice that xv,i(σ) ≤ 1 since Mi is a matching. For a vector
x ∈ {0, 1}N define O(x) := {i ∈ [N] : xi = 1} and observe that σ ∈ fv iff |O(xv(σ))| <
dG(v) − c∗ + ε

4
N . Define the set Xv = {x ∈ {0, 1}N : x = xv(σ) for some σ ∈ fv} and notice

that the latter observation implies that σ ∈ fv iff xv(σ) ∈ Xv. (In other words, the elements of Xv

induce a partition of fv.) Hence, for a fixed state τ ∈ Ω and a random sample σ from µ, we have

µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ)) =
∑
x∈Xv

N∏
i=1

ν
(
xv,i(σ) = xi | Qi

v(t, σ) = Qi
v(t, τ)

)
, (7.3)

since µ corresponds to N independent samples from ν. Recall that ν is associated with a set of
activities {λ(e)}e∈E . Thus, for any vector x ∈ Xv, we obtain

ν
(
xv,i(σ) = xi | Qi

v(t, σ) = Qi
v(t, τ)

)
=

ν ((xv,i(σ) = xi) ∩ (Qi
v(t, σ) = Qi

v(t, τ)))

ν (Qi
v(t, σ) = Qi

v(t, τ))

=

∑
M :|M∩Ev |=xi,(M−S<t(v))=Qiv(t,τ) λ(M)∑

M :(M−S<t(v))=Qiv(t,τ) λ(M)

=

∑
M∈Mi

t+1(v,τ),|M∩Ev |=xi λ(M)∑
M∈Mi

t+1(v,τ) λ(M)
, (7.4)

where recall that Mi
t+1(v, τ) denotes the set of matchings of G<t+1(v) that are compatible with

Qi
v(t, τ). To get (7.4) we used the form of λ(M) to cancel the contributions of edges in Qi

v(t, τ).
We will use (7.3) and (7.4) to prove that, for σ distributed according to µ, and any state τ ∈ Ω,∑

ω∈fv

µ(ω)

µ(τ)
ρfv(ω, τ) = µ(σ ∈ fv | Qv(t, σ) = Qv(t, τ)) . (7.5)

According to the definition of γfv , maximizing (7.5) over τ ∈ Ω yields (7.2) and completes the
proof.

Fix τ = (M1,M2, . . . ,MN) ∈ Ω. To compute the sum on the left-hand side of (7.5) we
need to determine the set of states Inv(τ) ⊆ fv for which ρfv(ω, τ) > 0. To do this, recall that
given as input a state ω = (Mω

1 ,M
ω
2 , . . . ,M

ω
N) ∈ fv, procedure RESAMPLE(v, ω, t) modifies one

by one each matching Mi, i ∈ [N], “locally” around v. In particular, observe that the support
of the distribution for updating Mi is exactly the set Mi

t+1(v, ω) and, hence, it has to be that
Qi
v(t, ω) = Qi

v(t, τ) for every i ∈ [N] and state ω ∈ Inv(τ). This also implies that, for every such
ω,

µ(ω)

µ(τ)
=

N∏
i=1

ν(Mω
i)

ν(Mi)
=

N∏
i=1

λ(Mω
i ∩ E(G<t+1(v)))

λ(Mi ∩ E(G<t+1(v)))
. (7.6)

Recall now that we have assumed that the hard-core distribution in Lines 8, 9 of RESAMPLE

(v, ω, t) is induced by the ideal vector of activities λ. In particular, we have

ρfv(ω, τ) =
N∏
i=1

λ(Mi ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,ω) λ(M)
=

N∏
i=1

λ(Mi ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
(7.7)

86

since Qi
v(t, ω) = Qi

v(t, τ), which combined with (7.6) yields

µ(ω)

µ(τ)
ρfv(ω, τ) =

N∏
i=1

λ(Mω
i ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
. (7.8)

Finally, recall that Xv = {x ∈ [0, 1]N : x = xv(ω) for some ω ∈ fv}, and specifically that ω ∈ fv
iff xv(ω) ∈ Xv. For x ∈ Xv, let Ωv,x = {ω : xv(ω) = x}. We now have∑

ω∈fv

µ(ω)

µ(τ)
ρfv(ω, τ) =

∑
x∈Xv

∑
ω∈Ωv,x

µ(ω)

µ(τ)
ρfv(ω, τ)

=
∑
x∈Xv

∑
ω∈Ωv,x

N∏
i=1

λ(Mω
i ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
(7.9)

=
∑
x∈Xv

N∏
i=1

∑
ω∈Ωv,x

xv,i(ω)=xi

λ(Mω
i ∩ E(G<t+1(v)))∑
M∈Mi

t+1(v,τ) λ(M)
(7.10)

=
∑
x∈Xv

N∏
i=1

∑
M∈Mi

t+1(v,τ),|M∩Ev |=xi λ(M)∑
M∈Mi

t+1(v,τ) λ(M)
. (7.11)

To get (7.9) we used (7.8). For (7.10) we used the fact that Ω is the product spaceM(G)N , so that
the choices per matching are independent, while for (7.11) we used the definition of xv,i(ω).

Combining (7.11) with (7.3) and (7.4) establishes (7.5), concluding the proof.

Proof of part (b). To see part (b) of Lemma 7.13, first notice that every set S<t+2(v) has at most
∆t+2 elements. Moreover, the fact that N = bχ∗e(G)3/4c = Θ(∆3/4) implies that ∆

(ε/4)N
≤ ∆

1
3

for sufficiently large ∆. So, every vertex u is in at most ∆∆
1
3 sets H corresponding to a flaw fH .

Hence, every S∗t+2(v) has at most ∆t+∆
1
3 +3 elements. Thus, since every H for which we define

S∗t+2(H) has fewer than ∆ vertices, every S∗t+2(H) has less than D = ∆t+∆
1
3 +4 elements.

7.3.4 Proof of Lemma 7.14
Fix σ1 = (M1,M2, . . . ,MN) ∈ f and σ2 = (M ′

1,M
′
2, . . . ,M

′
N) ∈ g such that f 6∼ g. To prove

that the matrices Af , Ag commute, we need to show that for every such pair∑
τ

ρf (σ1, τ)ρg(τ, σ2) =
∑
τ

ρg(σ1, τ)ρf (τ, σ2) . (7.12)

To that end, let Hf , Hg be the subgraphs (which may consist only of a single vertex) associated
with flaws f and g, respectively. Since f � g we have that minu∈V (Hf),v∈V (Hg) dist(u, v) ≥ t+ 2,
where dist(u, v) denotes the length of the shortest path between u and v. Notice that this implies
that S<t+2(Hf) ∩ S<t+2(Hg) = ∅.

Consider a pair of transitions σ1
f−→ τ , τ

g−→ σ2, where τ = (M ′′
1 , . . . ,M

′′
N), and so that

ρf (σ1, τ) > 0, ρg(τ, σ2) > 0. The facts that procedure RESAMPLE (σ, f, t) only modifies the input
87

set of matchings locally within S<t+1(Hf), that ρg(τ, σ2) > 0, and that S<t+2(Hf)∩S<t+2(Hg) = ∅
imply that (i) σ1 ∈ g; and (ii) for every i ∈ [N], Mi ∩ (S<t+2(Hg)) = M ′′

i ∩ (S<t+2(Hg)).
Notice now that the probability distribution ρg(τ, ·) depends only on (M ′′

1 ∩S<t+2(Hg), . . . ,M
′′
N ∩

St+2(Hg)). Hence, (i) and (ii) imply that the probability distribution ρg(σ1, ·) is well defined and,
in addition, there exists a natural bijection bg between the action set a(g, τ) and the action set
a(g, σ1) so that ρg(τ, τ ′) = ρg(σ1, bg(τ

′)) for every τ ′ ∈ a(g, τ). This is because both distributions
are implemented by sampling from the set of matchings of the same multigraph, according to the
same probability distribution.

Now let τ ′ = bg(σ2). A symmetric argument implies that τ ′ ∈ f and that there exists a natural
bijection bf between a(f, σ1) and a(f, τ ′) so that ρf (σ1, σ) = ρf (τ

′, bf (σ)) for every σ ∈ a(f, σ1).
In particular, notice that σ2 = bf (τ) and that

ρf (σ1, τ)ρg(τ, σ2) = ρg(σ1, τ
′)ρf (τ

′, bf (τ)) = ρg(σ1, τ
′)ρf (τ

′, σ2) . (7.13)

Overall, what we have shown is a bijective mapping that sends any pair of transitions σ1
f−→ τ, τ

g−→
σ2 to a pair of transitions σ1

g−→ τ ′, τ ′
f−→ σ2 and which satisfies (7.13). This establishes (7.12),

concluding the proof. �

7.4 List-Edge Coloring Multigraphs: Proof of Theorem 7.4
In this section we review the proof of Theorem 7.2 and then prove its constructive version, Theo-
rem 7.4.

7.4.1 A High Level Sketch of the Existential Proof
As we explained in the introduction, the non-constructive proof of Theorem 7.2 is a sophisticated
version of the semi-random method and proceeds by partially coloring the edges of the multigraph
in iterations, until at some point the coloring can be completed greedily. (More accurately, the
method establishes the existence of such a sequence of desirable partial colorings.)

We will follow the exposition in [79]. In each iteration, we have a list Le of acceptable colors
for each edge e. We assume that each Le originally hasC colors for someC ≥ (1+ε)χ∗e(G), where
ε > 0 is an arbitrarily small constant. For each color i, we let Gi be the subgraph of G formed by
the edges for which i is acceptable. Since Gi ⊆ G,χ∗e(Gi) ≤ χ∗e(G). Thus, Theorem 7.7 implies
that we can find a hard-core distribution on the matchings of Gi with marginals (1

C
, . . . , 1

C
) whose

activity vector λi satisfies λi(e) ≤ K
C

for all e, where K = K(ε) is a constant.
In each iteration, we will use the same activity vector λi to generate the random matchings

assigned to color i. Of course, in each iteration we restrict our attention to the subgraph of Gi

obtained by deleting the set E∗ of edges colored (with any color) in previous iterations, and the
endpoints of the set of edges E∗i colored i in previous iterations. (Thus, although we use the
same activity vector for each color in each iteration, the induced hard-core distributions may vary
significantly.) Further, we will make sure that our distributions have the property that for each edge
e, the expected number of matchings containing e is very close to 1.

We apply the lopsided LLL in the following probability space. For each color i, we choose a
matching Mi ∈ Gi from the corresponding distribution, with these choices made independently.

88

Next, we activate each edge in Mi independently with probability α := 1
log ∆(G)

; we assign colors
only to activated edges in order to ensure that very few edges are assigned more than one color.
We then update the multigraph by deleting the colored edges, and update the lists Le by deleting
any color assigned to an edge incident to e. We give a more detailed description below.

Notice that our argument needs to ensure that (i) at the beginning of each iteration the induced
hard-core distributions are such that, for each uncolored edge e, the expected number of random
matchings containing e is very close to 1; and (ii) after some number of iterations, we can complete
the coloring greedily.

As far as the latter condition is concerned, notice that if (i) holds throughout then, in each
iteration, the probability that an edge retains a color remains close to the activation probability α.
This allows us to prove that the maximum degree in the uncolored multigraph drops by a factor
of about 1 − α in each iteration. Hence, after log 1

1−α
3K iterations, the maximum degree in the

uncolored multigraph will be less than ∆
2K

. Furthermore, for each e and i, the probability that e is
in the random matching of color i is at most λi(e) ≤ K

C
. Since (i) continues to hold, this implies

there are at least C
K
> ∆

K
colors available for each edge, and so the coloring can be completed

greedily. (Recall that the C > χ∗e(G) ≥ ∆.)

An Iteration.

1. For each color i, pick a matching Mi according to a hard-core probability distribution µi on
M(Gi) with activities λi such that for some constant K:

(a) ∀e ∈ E(G),
∑

i µi(e ∈Mi) ≈ 1

(b) ∀i, e ∈ E(G), λi(e) ≤ K
C

and hence ∀v ∈ V (G),
∑

Le3i λi(e) ≤ K.

2. For each i, activate each edge of Mi independently with probability α = 1
log ∆(G)

, to obtain
a matching Fi. We color the edges of Fi with color i and delete V (Fi) from Gi. We also
delete from Gi every edge not in Mi which is in Fj for some j 6= i. We do not delete edges
of (Mi−Fi)∩Fj fromGi. (Note that this may result in edges receiving more than one color,
which is not a problem since we can always pick one of them arbitrarily at the end of the
iterative procedure.)

3. Note that the expected number of edges that are both colored and removed from Gi in Step 2
is less than α|E(Gi)| because, although the expected number of colors retained by an edge is
very close to α, some edges may be assigned more than one color. As is standard in this kind
of proof, we will perform an equalizing coin flip for each edge e of Gi so that the probability
that e is both colored and removed from Gi in either Step 2 or Step 3 is exactly α.

The outcome of an iteration is defined to be the choices of matchings, activations, and equaliz-
ing coin flips. LetQ = Q` denote the random variable that equals the outcome of the `-th iteration.
(In what follows, we will focus on a specific iteration ` and so we will omit the subscript.)

For each edge e = (u, v), we define a bad event Ae as follows. Let G′i be the multigraph
obtained after carrying out the modifications to Gi in Steps 2 and 3 of the above iteration. Let
t′ = 8(K + 1)2(log ∆)20 + 2 and recall the definition of S<t′(H) for subgraph H . Let Zi be a

89

random matching in G′i∩S<t′({u, v}) sampled from the hard-core probability distribution induced
by activity vector λi. Let Ae be the event that∣∣∣ ∑

i:G′i3e

Pr(e ∈ Zi | Q)−
∑
i:Gi3e

Pr(e ∈Mi)
∣∣∣ > 1

2(log ∆)4
. (7.14)

To get some intuition behind the definition of event Ae, let M ′
i be a random matching in G′i chosen

according to the hard-core distribution with activities λi. Since correlations decay with distance,
one can show that Pr(e ∈ M ′

i | Q) is within a factor of 1 + 1
(log ∆)20 of Pr(e ∈ Zi | Q). Thus,

according to (7.14), avoiding bad event Ae implies that
∑

i Pr(e ∈ M ′
i) ≈

∑
i Pr(e ∈ Mi) ≈ 1,

which is what is required in order to maintain property (i) at the beginning of the next iteration. In
particular, it is straightforward to see that avoiding all bad events {Ae}e∈E(G) guarantees that∣∣∣ ∑

i:G′i3e

Pr(e ∈M ′
i | Q)−

∑
i:Gi3e

Pr(e ∈Mi)
∣∣∣ ≤ 1

(log ∆)4
, (7.15)

for sufficiently large ∆, which is what we really need. The reason we consider Zi and not M ′
i is

that events defined with respect to the former are mildly negatively correlated with most other bad
events, making it possible to apply the lopsided LLL.

Further, for each vertex v we define Av to be the event that the proportion of edges incident to
v which are colored in the iteration is less than α− 1

(log ∆)4 .
It can be formally shown that, if we avoid all bad events, then (i) holds, i.e., at the beginning of

the next iteration we can choose new probability distributions so that for each uncolored edge e we
maintain the property that the expected number of random matchings containing e is very close to
1, and, moreover, after log 1

1−α
3K iterations we can complete the coloring greedily.

Theorem 7.17 ([66]). Assume that (7.15) holds for the edge marginals of the matching distribu-
tions of iteration `. Then, with positive probability, the same is true for the matching distributions
of iteration `+ 1.

Theorem 7.18 ([66]). If we can avoid the bad events of the first log 1
1−α

3K iterations, then we can
complete the coloring greedily.

Proving Theorems 7.17, 7.18 is the heart of the proof of Theorem 7.2. The most difficult part
is proving that for any x ∈ V ∪E the probability of event Ax is very close to 0 conditioned on any
choice of outcomes for distant events. (This is needed in order to apply the lopsided LLL.) Below
we state the key lemma that is proven in [66], and which we will also use in the analysis of our
algorithm.

Recall the definition of t′ and let t = (t′)2. For a subgraph H , we let RH be the random
outcome of our iteration in G − S<t(H), i.e., RH consists of

⋃
i (Mi − S<t(H)), together with

the choices of the activated edges in G− S<t(H) which determine the
⋃
i (Fi − S<t(H)), and the

outcomes of the equalizing coin flips for edges in this subgraph.

Lemma 7.19 ([66]). For every x ∈ E ∪ V and possible choice R∗x for Rx, there exists ∆0 such
that if ∆ ≥ ∆0, then Pr(Ax | Rx = R∗x) ≤ 1

∆3(t+t′+2) .

90

In the next sections we will focus on providing an efficient algorithm for Theorem 7.17 which,
combined with Theorem 7.18, will imply the proof of Theorem 7.4.

As a final remark, we note that detecting whether bad events {Ae}e∈E(G) are present in a state is
not a tractable task since it entails the exact computation of edge marginals of hardcore distributions
over matchings. In order to overcome this obstacle, we will define flaws {fe}e∈E(G) whose absence
provides somewhat weaker guarantees than ridding of bad events {Ae}e∈E(G), but nonetheless
implies (7.15) for every edge. To decide whether flaw a fe is present in a state, we will we use the
results of [61] to estimate the corresponding edge marginals of random variables Mi and Zi for
every color i. Note that since we will only perform an approximation, there is the possibility to
deduce that fe is not present while in reality it is. However, our approximation will be tight enough
so that, even in this case, (7.15) will still hold for every edge. We give the details forthwith.

7.4.2 The Algorithm
Let U denote the set of uncolored edges and N = |

⋃
e∈U Le| , the cardinality of the set of colors

that appear in the list of available colors of some uncolored edge. For a color i ∈ [N], recall that
Gi denotes the subgraph of uncolored edges that contain i in their list of available colors. Finally,
let Ei = |E(Gi)|.

Define Ω =
∏

i∈[N]

(
M(Gi)× {0, 1}Ei × {0, 1}Ei

)
. We consider an arbitrary but fixed order-

ing over U , so that each state σ ∈ Ω can be represented as σ = ((M1, a1, h1), . . . , (MN , aN , hN)),
where Mi, ai, hi are the matching, activation and equalizing coin flip vectors, respectively, that
correspond to color i, so that edge e is activated in Gi if ai(e) = 1 and is marked to be removed if
hi(e) = 1.

Recall that for color i we choose a matching according to probability distribution µi and we
define Eqi(e) to be the probability of success of the equalizing coin flip that corresponds to edge
e and color i. Note that, given access to the marginals of µi, the value of Eqi(e) can be computed
efficiently. (Of course, we will have only (arbitrarily good) estimates of the marginals of µi, but as
in the proof of Theorem 7.3, this suffices for our purposes.)

We let µ be the probability distribution over Ω that is induced by the product of the µi’s,
activation flips, and equalizing coin flips for each color i. In other words, µ is the probability
distribution over Ω induced by the iteration.

The initial distribution. Recall that each edge e initially has a listLe of size at least (1+ε)χ∗e(G).
As we have already seen in Lemma 7.12, the results of [61, 99] imply that for every color i and
parameter η > 0, there exists a poly(n, ln 1

η
, ln 1

ε
)-algorithm that computes a vector λ′i such that

the induced hard-core distribution η-approximates in variation distance the hard-core distribution
induced by vector λi. Setting η = 1

nβ
for β sufficiently large, let µ′ be the distribution obtained in

an identical way to µ but using vectors λ′i instead of vectors λi. The initial distribution θ of our
algorithm is obtained by η-approximately sampling from µ′. Theorem 7.8 implies that this can be
done in polynomial time.

91

Finding and addressing flaws. We define a flaw fv for each bad event Av. Moreover, for each
edge e we define flaw fe to be the set of states σ ∈ Ω such that∣∣∣ ∑

i:G′i3e

Pr(e ∈ Zi | σ)−
∑
i:Gi3e

Pr(e ∈Mi)
∣∣∣ > 2

3(log ∆)4
. (7.16)

We fix an arbitrary ordering π over V ∪ E. In each step, the algorithm finds the lowest indexed
flaw according to π that is present in the current state and addresses it.

Clearly, checking if vertex-flaws Av are present in the current state can be done efficiently.
For edge indexed flaws, we use the results of [61] to approximate the edge marginals of the cor-

responding distributions within a factor (1+η) with probability at least 1−η, in time poly(n, ln 1
η
)).

Recalling that η = 1
nβ

and taking β to be a sufficient large constant, we can subsume this error
probability into the probability that our algorithm fails.

Moreover, since, as we have already mentioned, Pr(e ∈M ′
i | σ) is within a factor 1 + 1

(log ∆)20

of Pr(e ∈ Zi | σ), for ∆ and β sufficiently large, deducing that flaw fe is not present in a state σ
using our estimates for the edge marginals implies that (7.15) holds for edge e at state σ. In other
words, if our algorithm decides that it has fixed every flaw, we are guaranteed that (7.15) holds for
its output, even if some flaws are in fact still present.

In the opposite direction, there is the possibility that our algorithm decides that a flaw fe is
present while in reality it is not. In particular, there is a danger that, due to approximation errors,
our algorithm effectively attempts to get rid of supersets f̃e ⊇ fe of the original flaws we defined
and, as a result, fails to converge efficiently. Nonetheless, using Lemma 7.19, together with the
facts that our approximations can be made arbitrarily accurate and that Ae ⊆ fe for all e ∈ E, we
can still conclude that µ(f̃e | Re = R∗e) ≤ ∆−3(t+t′+2).

Summarizing, we may and will assume without loss of generality that we are able to accurately
and efficiently search for edge-flaws fe, and that their probability with respect to measure µ is
bounded above by ∆−3(t+t′+2) conditional on any instantiation of Re.

Recall the definition of t and the procedure RESAMPLE described in Section 7.3.1. Below we
describe procedure FIX that takes as input a subgraph H and a state σ. In the description of FIX

below we invoke procedure RESAMPLE with an extra parameter, namely an activity vector λ′i for
each color i. By that we mean that in Lines 8, 9 of RESAMPLE we use the vector λ′i to define p.

1: procedure FIX(H, σ)
2: Let σ = ((M1, b1, h1), (M2, b2, h2) . . . , (MN , bN , hN))
3: (M ′

1,M
′
2, . . . ,M

′
N)← RESAMPLE(H, (M1,M2, . . . ,MN), t, λ′i)

4: for i = 1 to N do
5: Update ai to a′i by activating independently each edge in Gi ∩ S<t+1(H) with proba-

bility α
6: Update hi to h′i by flipping the corresponding equalizing coin for each edge in Gi ∩
S<t+1(H)

7: Output σ = ((M ′
1, a
′
1, h
′
1), (M ′

2, a
′
2, h
′
2), . . . , (M ′

N , a
′
N , h

′
N))

Theorem 7.8 implies that procedure FIX runs in polynomial time for any input subgraph H
and state σ. To address flaws fv, f{u1,u2} in a state σ we invoke FIX({v}, σ) and FIX({u1, u2}, σ),
respectively.

92

7.4.3 Proof of Theorem 7.4
Similarly to the proof of Theorem 7.3, for our analysis we will assume that our algorithm samples
from the “ideal” distributions, i.e., the ones induced by the vectors λi, rather than by the approxi-
mate ones λ′i. An identical argument shows that this is sufficient if we take the exponent β in the
definition of η to be large enough.

For two flaws fx1 , fx2 , where x1, x2 ∈ V ∪ E, we consider the causality relation fx1 ∼ fx2

iff dist(x1, x2) ≤ t + t′ + 2. By inspecting procedure FIX it is not hard to verify that this is a
valid choice for a causality graph in the sense that no flaw f can cause flaws outside Γ(f). This is
because, in order to determine whether a flaw fx is present in a state σ, we only need information
about σ in G ∩ S<t′(x), and procedure FIX locally modifies the state within a radius at most t of
the input subgraph H .

The algorithmic proof of Theorem 7.17, which as we explained earlier is the key ingredient in
making Kahn’s result constructive, follows almost immediately by combining Theorem 3.15 with
Lemma 7.20 below, whose proof can be found in Section 7.4.4.

Lemma 7.20. Let f ∈ {fe, fv} for an edge e and a vertex v. There exists ∆0 such that if ∆ ≥ ∆0

then

γf ≤
1

∆3(t+t′+2)
,

where the charges are computed with respect to measure µ and the algorithm that samples from
the ideal distributions.

Constructive Proof of Theorem 7.17. Setting ψf = 1
maxf∈F |Γ(f)| for each flaw f , condition (3.8)

with ε = ζ/2 is implied by

max
f∈F

γf ·
(
1 + max

f∈F
|Γ(f)|

)
· e ≤ 1− ζ/2 . (7.17)

Clearly, for each flaw f , |Γ(f)| = O(∆2(t+t′+2)) so, by Lemma 7.20, condition (7.17) is satisfied
for all sufficiently large ∆. Thus, Theorem 3.15 implies that, for every multigraph with large
enough degree ∆0, the algorithm for each iteration terminates after an expected number

O

(
(m+ n) log2

(
1

1− 1/∆2(t+t′+2)

))
= O(n2)

steps.

Finally, the proof of Theorem 7.4 is concluded by combining the algorithm for Theorem 7.17
with the greedy algorithm of Theorem 7.18. It remains only for us to prove Lemma 7.20 stated
above. This we do in the next subsection.

7.4.4 Proof of Lemma 7.20
Let Ω1 =

∏N
i=1M(Gi) and Ω2 = Ω3 =

∏N
i=1{0, 1}Ei and note that each state in σ ∈ Ω can be

represented as σ = (σ1, σ2, σ3) ∈ Ω1 × Ω2 × Ω3. For notational convenience, sometimes we write
Ωi

1 =M(Gi) and Ωi
2 = Ωi

3 = {0, 1}Ei , for i ∈ [N].
93

Let ν1 be the distribution over Ω1 induced by the product of distributions µi, i ∈ [N]. Let also
ν2, ν3 be the distributions over Ω2 and Ω3 induced by the product of activation and equalizing coin
flips of each color i ∈ [N], respectively. Recall that µ = ν1 × ν2 × ν3 is a product distribution.
Moreover, note that each νj , is the product of N distributions νij , one for each color i ∈ [N]. For
example, notice that νi1 is another name for µi, while νi2 is the product measure over the edges of
Gi induced by flipping a coin with probability α for each edge.

For σ1 = (M1,M2, . . . ,MN) ∈ Ω1, a subgraphH , and an integer d > 0, we defineQH(d, σ1) =
(M1 − S<d(H), . . . ,MN − S<d(H)) and Qi

H(d, σ1) = Mi − S<d(H), similarly to the proof of
Lemma 7.13. Moreover, for σ2 ∈ Ω2 that represents the outcome of the activations, we let
AH(d, σ2) denote the restriction of σ2 in Mi − S<d(H), for each color i ∈ [N]. In the same
fashion, for σ3 ∈ Ω3 that represents the outcome of the equalizing coin flips, we let CH(d, σ3)
denote the restriction of σ3 in Mi−S<d(H) for each color i ∈ [N]. For σ2 ∈ Ω2, σ3 ∈ Ω3, we also
defineAiH(d, σ2) andCi

H(d, σ3), i ∈ [N], similarly toQi
H(d, σ1). Finally, for σ = (σ1, σ2, σ3) ∈ Ω,

define RH(d, σ) = (QH(d, σ1), AH(d, σ2), CH(d, σ3)).
Our goal will be to show that, for every x ∈ V ∪ E,

γfx = max
τ∈Ω

µ(σ ∈ fx | Rx(t, σ) = Rx(t, τ)) , (7.18)

where σ is a random state distributed according to µ. This is because combining (7.18) with
Lemma 7.19 concludes the proof.

We only prove (7.18) for fe-flaws, since the proof for fv flaws is very similar (and we have
actually seen a big part of it in the proof of Lemma 7.13). Observe that whether flaw fe is present
at a state σ is determined by

⋃N
i=1 (Gi ∩ S<t′(e)) and the entries of the activation and equalizing

flip vectors of each color i ∈ [N] that correspond to edges in Gi ∩ S<t′(e). With that in mind,
for each color i let Mi(t

′, e) = Mi ∩ E(Gi ∩ S<t′(e)) and ai(t′, e), hi(t′, e) denote the (random)
vectors constraining the entries of the activation and equalizing coin flip vectors for color i that
correspond to the edges of Gi ∩ S<t′(e). Let also Di(t′, e) denote the domain of possible values of
(Mi(t

′, e), ai(t
′, e), hi(t

′, e)).
The fact that we can determine whether fe is present in a state by examining local information

around e implies that there exists a set Xe = Xe(t
′) of vectors of size N such that the i-th entry of

a vector x ∈ Xe is an element of Di(t′, e), and so that

fe =
⋃
x∈Xe

⋂
i∈[N]

((Mi(t
′, e), ai(t

′, e), hi(t
′, e)) = xi) . (7.19)

For a state σ ∈ Ω, let xσe be theN -dimensional vector whose i-th entry is (Mi(t
′, e), ai(t

′, e), hi(t
′, e)).

According to (7.19), for τ ∈ Ω we have

µ(σ ∈ fe | Re(t, σ) = Re(t, τ)) =
∑
x∈Xe

N∏
i=1

µ(xσe,i = xi | Re(t, σ) = Re(t, τ)) , (7.20)

since the random choices of matching, activation, and equalizing coin flips for each color are
independent. For an N -dimensional vector x whose i-th entry is an element of Di(t′, e), we write
xi(j) to denote the j-th element of triple xi. Thus, recalling the definition of the distributions νij ,
we have

µ(xσe,i = xi | Re(t, σ) = Re(t, τ)) =
3∏
j=1

νij(x
σ
e,i(j) = xi(j) | Re(t, σ) = Re(t, τ)) , (7.21)

94

because, for a fixed color, the random choices of matching, activation and equalizing coin flips are
independent.

Recall now that for a subgraphH , multigraphG<d+1(H) is induced by S<d+1(H) andMi
d+1(H, σ)

is the set of matchings of G<d+1(H) that are compatible with Qi
H(d, σ1). Hence,

νi1(xσe,i(1) = xi(1) | Re(t, σ) = Re(t, τ)) = νi1(xσe,i(1) = xi(1) | Qi
e(t, σ1) = Qi

e(t, τ1))

=
νi1(xσe,i(1) = xi(1) ∩Qi

e(t, σ1) = Qi
e(t, τ1))

νi1(Qi
e(t, σ1) = Qi

e(t, τ1))

=

∑
M∈Mi

t+1(e,τ1),M∩S<t′ (e)=xi(1) λi(M)∑
M∈Mi

t+1(e,τ1) λi(M)
. (7.22)

Moreover, we clearly have

νi2(xσe,i(2) = xi(2) | Re(t, σ) = Re(t, τ)) = νi2(ai(t
′, e) = xi(2)) , (7.23)

νi3(xσe,i(3) = xi(3) | Re(t, σ) = Re(t, τ)) = νi3(hi(t
′, e) = xi(3)) (7.24)

We will use (7.20)-(7.24) to show that, for σ distributed according to µ and any state τ ∈ Ω,∑
ω∈fe

µ(ω)

µ(τ)
ρfe(ω, τ) = µ(σ ∈ fe | Re(t, σ) = Re(t, τ)) . (7.25)

According to the definition of γfe , maximizing (7.25) over τ ∈ Ω yields (7.18).
To compute the sum in (7.25) we need to determine the set of states Ine(τ) = {ω : ρfe(ω, τ) >

0}. We claim that for each ω ∈ Ine(τ) we have that Re(t, ω) = Re(t, τ).
To see this, let

ω = (ω1, ω2, ω3) =
(
(ω1

1, . . . , ω
N
1), (ω1

2, . . . , ω
N
2), (ω1

3, . . . ω
N
3)
)
,

τ = (τ1, τ2, τ3) =
(
(τ 1

1 , . . . , τ
N
1), (τ 1

2 , . . . , τ
N
2), (τ 1

3 , . . . , τ
N
3)
)
,

where ωj, τj ∈ Ωj and ωij, τ
i
j ∈ Ωi

j . Notice that the probability distribution ρfe(ω, ·) can be seen
as the product of 3N distributions. Namely, for each i ∈ [N] we have a probability distribution
ρi,1fe (ωi1, ·) corresponding to Line 3 of FIX and color i, and similarly, for ωi2, ω

i
3 we have probability

distributions ρi,2fe (ωi2, ·), ρ
i,3
fe

(ωi3, ·), corresponding to Lines 5, 6 of FIX and color i, respectively.
Recalling procedure RESAMPLE, we see that the support of ρi,1fe (ωi1, ·) isMi

t+1(e, ω1) and, thus, it
must be the case that Qi

e(t, ω1) = Qi
e(t, τ1) for every i ∈ [N] and state ω ∈ Ine(τ). Similarly, by

inspecting procedure FIX one can verify that Aie(t, ω2) = Aie(t, τ2) and that Ci
e(t, ω3) = Ci

e(t, τ3)
for each i ∈ [N]. Hence, Re(t, ω) = Re(t, τ), as claimed.

For each ω ∈ fe,

µ(ω)

µ(τ)
ρfe(ω, τ) =

N∏
i=1

3∏
j=1

νij(ω
i
j)

νij(τ
i
j)
ρi,jfe (ωij, τ) =:

N∏
i=1

3∏
j=1

ri,j(ω) . (7.26)

We will now give an alternative expression for each ri,j(ω) in order to relate (7.26) to (7.25). We
start with ri,1(ω). The fact that Qi

e(t, ω1) = Qi
e(t, τ1) for each ω ∈ Ine(τ) implies that

νi1(ωi1)

νi1(τ i1)
=
λi(ω

i
1 ∩ E(G<t+1(e)))

λi(τ i1 ∩ E(G<t+1(e))
. (7.27)

95

Furthermore, since we have assumed that the hard-core distribution in Lines 8, 9 of RESAMPLE is
induced by the ideal vector of activities λi, we have

ρfe(ω
i
1, τ

i
1) =

λi(τ
i
1 ∩ E(G<t+1(e))∑

M∈Mi
t+1(e,ω1) λi(M)

. (7.28)

Combining (7.27) with (7.28) and the fact that Qi
e(t, ω1) = Qi

e(t, τ1) we obtain

ri,1(ω) =
λi(ω

i
1 ∩ E(G<t+1(e))∑

M∈Mi
t+1(e,τ1) λi(M)

. (7.29)

Recall now the definitions of ai(t′, e) and hi(t′, e). The fact that Aie(t, ω2) = Aie(t, τ2) for each
ω ∈ Ine(τ) implies that

νi2(ωi2)

νi2(τ i2)
=
νi2(ai(t

′, e) = xωe,i(2))

νi2(ai(t′, e) = xτe,i(2))
. (7.30)

Further, since in Line 5 of FIX we simply flip a coin independently with success probability α
for each edge of Gi ∩ S<t+1(e), we have

ρfe(ω
i
2, τ

i
2) =

νi2(ai(t
′, e) = xτe,i(2))∑

a ν
i
2(ai(t′, e) = a)

, (7.31)

where the sum in the denominator ranges over all the possible values for ai(t′, e). Thus, combin-
ing (7.30) with (7.31) we get

ri,2(ω) =
νi2(ai(t

′, e) = xωe,i(2))∑
a ν

i
2(ai(t′, e) = a)

. (7.32)

Finally, an identical argument shows that

ri,3(ω) =
νi3(hi(t

′, e) = xωe,i(2))∑
h ν

i
3(hi(t′, e) = h)

. (7.33)

For x ∈ Xe, let Ωe,x = {ω : xωe = x}. For σ distributed according to µ, the left-hand side of (7.25)
can be written as∑

x∈Xe

∑
ω∈Ωe

µ(ω)

µ(τ)
ρfe(ω, τ) =

∑
x∈Xe

∑
ω∈Ωe,x

N∏
i=1

3∏
j=1

ri,j(ω)

=
∑
x∈Xe

N∏
i=1

3∏
j=1

∑
ω∈Ωe,x
xωe,i=xi(j)

ri,j(ω) (7.34)

=
∑
x∈Xe

N∏
i=1

3∏
j=1

νij(x
σ
e,i(j) = xi(j) | Re(t, σ) = Re(t, τ)) (7.35)

= µ(σ ∈ fe | Re(t, σ) = Re(t, τ)) ,

concluding the proof of (7.25). Note that (7.34) follows from the fact that Ω is a product space,
and (7.35) follows by (7.22) and (7.29) for j = 1, (7.23) and (7.32) for j = 2, and (7.24) and (7.33)
for j = 3.

96

Bibliography

[1] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. In
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 793–802. IEEE Computer Society, 2008.

[2] Dimitris Achlioptas, Themis Gouleakis, and Fotis Iliopoulos. Local computation algorithms
for the Lovász Local Lemma. CoRR, abs/1809.07910, 2018.

[3] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the
Lovász local lemma. J. ACM, 63(3):22:1–22:29, July 2016.

[4] Dimitris Achlioptas, Fotis Iliopoulos, and Vladimir Kolmogorov. A local lemma for fo-
cused stochastic algorithms. To appear in SIAM Journal on Computing. Preprint at
arXiv:1805.02026.

[5] Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. Beyond the Lovász local lemma:
Point to set correlations and their algorithmic applications. To appear in Proceedings of
IEEE FOCS, 2019. Preprint at arXiv:1805.02026.

[6] Dimitris Achlioptas, Fotis Iliopoulos, and Nikos Vlassis. Stochastic control via entropy
compression. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 83:1–83:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[7] Dimitris Achlioptas and Assaf Naor. The two possible values of the chromatic number of a
random graph. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 587–593. ACM, 2004.

[8] Michael Albert, Alan Frieze, and Bruce Reed. Multicoloured Hamilton cycles. The Elec-
tronic Journal of Combinatorics, 2(1):R10, 1995.

[9] Noga Alon. A parallel algorithmic version of the local lemma. Random Struct. Algorithms,
2(4):367–378, 1991.

[10] Noga Alon, Michael Krivelevich, and Benny Sudakov. Coloring graphs with sparse neigh-
borhoods. Journal of Combinatorial Theory, Series B, 77(1):73–82, 1999.

[11] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition,
2016.

97

[12] Adrian Balint and Uwe Schöning. Choosing probability distributions for stochastic local
search and the role of make versus break. In International Conference on Theory and Ap-
plications of Satisfiability Testing, pages 16–29. Springer, 2012.

[13] Adrian Balint and Uwe Schöning. Engineering a lightweight and efficient local search SAT
solver. In Lasse Kliemann and Peter Sanders, editors, Algorithm Engineering - Selected
Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 1–18. 2016.

[14] Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsi-
fication for graphs and hypergraphs. arXiv preprint arXiv:1905.01495, 2019.

[15] József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures
Algorithms, 2(4):343–365, 1991.

[16] Anton Bernshteyn. New bounds for the acyclic chromatic index. Discrete Mathematics,
339(10):2543–2552, 2016.

[17] Anton Bernshteyn. The Johansson–Molloy theorem for DP-coloring. arXiv preprint
arXiv:1708.03843, 2017.

[18] Anton Bernshteyn. The local cut lemma. European Journal of Combinatorics, 63:95–114,
2017.

[19] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability, volume 185.
IOS press, 2009.

[20] Rodrigo Bissacot and Luı́s Doin. Entropy compression method and legitimate colorings in
projective planes. arXiv preprint arXiv:1710.06981, 2017.

[21] Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. An im-
provement of the Lovász local lemma via cluster expansion. Combinatorics, Probability &
Computing, 20(5):709–719, 2011.

[22] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algo-
rithms for the Lovász local lemma. SIAM J. Comput., 42(6):2132–2155, 2013.

[23] Antares Chen, David G. Harris, and Aravind Srinivasan. Partial resampling to approxi-
mate covering integer programs. In Robert Krauthgamer, editor, Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 1984–2003. SIAM, 2016.

[24] Guantao Chen, Guangming Jing, and Wenan Zang. Proof of the Goldberg-Seymour conjec-
ture on edge-colorings of multigraphs. arXiv preprint arXiv:1901.10316, 2019.

[25] Guantao Chen, Xingxing Yu, and Wenan Zang. Approximating the chromatic index of
multigraphs. Journal of Combinatorial Optimization, 21(2):219–246, 2011.

[26] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

98

[27] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM
Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18,
2014, pages 134–143. ACM, 2014.

[28] Thomas F Coleman and Jin Yi Cai. The cyclic coloring problem and estimation of spare
Hessian matrices. SIAM J. Algebraic Discrete Methods, 7(2):221–235, April 1986.

[29] Thomas F. Coleman and Moré Jorge J. Estimation of sparse Hessian matrices and graph
coloring problems. Mathematical Programming, 28(3):243–270, 1984.

[30] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM Symposium on Theory of Computing, pages 151–158. ACM, 1971.

[31] Artur Czumaj and Christian Scheideler. Coloring non-uniform hypergraphs: a new algorith-
mic approach to the general Lovász local lemma. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 2000), pages 30–39,
2000.

[32] Rina Dechter and David Cohen. Constraint processing. Morgan Kaufmann, 2003.

[33] Andrzej Dudek, Alan Frieze, and Andrzej Ruciński. Rainbow Hamilton cycles in uniform
hypergraphs. The Electronic Journal of Combinatorics, 19(1):46, 2012.

[34] Vida Dujmović, Gwenaël Joret, Jakub Kozik, and David R Wood. Nonrepetitive colouring
via entropy compression. Combinatorica, 36(6):661–686, 2016.

[35] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[36] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10.
North-Holland, Amsterdam, 1975.

[37] Paul Erdös and Joel Spencer. Lopsided Lovász local lemma and Latin transversals. Discrete
Applied Mathematics, 30(2-3):151–154, 1991.

[38] Louis Esperet and Aline Parreau. Acyclic edge-coloring using entropy compression. Euro-
pean Journal of Combinatorics, 34(6):1019–1027, 2013.

[39] Uriel Feige, Eran Ofek, and Udi Wieder. Approximating maximum edge coloring in multi-
graphs. In International Workshop on Approximation Algorithms for Combinatorial Opti-
mization, pages 108–121. Springer, 2002.

[40] Alan M Frieze and Michael Molloy. Splitting an expander graph. Journal of Algorithms,
33(1):166–172, 1999.

[41] RG Gallager. Low-density parity-check codes mit press. Cambridge, Massachusetts, 1963.

99

[42] Heidi Gebauer, Tibor Szabó, and Gábor Tardos. The local lemma is tight for SAT. In Dana
Randall, editor, SODA, pages 664–674. SIAM, 2011.

[43] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. In Readings in computer vision, pages 564–584. Elsevier,
1987.

[44] Ioannis Giotis, Lefteris M. Kirousis, Kostas I. Psaromiligkos, and Dimitrios M. Thilikos.
Acyclic edge coloring through the Lovász local lemma. Theor. Comput. Sci., 665:40–50,
2017.

[45] Adam Gkagol, Gwenael Joret, Jakub Kozik, and Piotr Micek. Pathwidth and nonrepetitive
list coloring. arXiv preprint arXiv:1601.01886, 2016.

[46] Daniel Gonçalves, Mickaël Montassier, and Alexandre Pinlou. Entropy compression
method applied to graph colorings. arXiv preprint arXiv:1406.4380, 2014.

[47] Jarosław Grytczuk, Jakub Kozik, and Piotr Micek. New approach to nonrepetitive se-
quences. Random Structures & Algorithms, 42(2):214–225, 2013.

[48] Bernhard Haeupler and David G Harris. Parallel algorithms and concentration bounds for
the Lovász local lemma via witness-DAGs. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1170–1187. SIAM, 2017.

[49] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovász local lemma. J. ACM, 58(6):Art. 28, 28, 2011.

[50] David G. Harris. Lopsidependency in the Moser-Tardos framework: Beyond the lopsided
Lovász local lemma. ACM Trans. Algorithms, 13(1):17:1–17:26, 2016.

[51] David G Harris. New bounds for the Moser-Tardos distribution. arXiv preprint
arXiv:1610.09653, 2016.

[52] David G. Harris. Comparison for two convergence criteria for the variable-assignment lop-
sided Lovasz local lemma. arXiv preprint arXiv:1610.01926, 2018.

[53] David G. Harris. Oblivious resampling oracles and parallel algorithms for the lopsided
Lovász local lemma. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 841–860. SIAM, 2019.

[54] David G. Harris and Aravind Srinivasan. The Moser-Tardos framework with partial resam-
pling. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
26-29 October, 2013, Berkeley, CA, USA, pages 469–478. IEEE Computer Society, 2013.

[55] David G. Harris and Aravind Srinivasan. A constructive algorithm for the Lovász local
lemma on permutations. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 907–925. SIAM, 2014.

100

[56] David G. Harris and Aravind Srinivasan. Algorithmic and enumerative aspects of the Moser-
Tardos distribution. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
2004–2023, 2016.

[57] Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma
via resampling oracles. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 1327–1346. IEEE Computer Society, 2015.

[58] Kun He, Liang Li, Xingwu Liu, Yuyi Wang, and Mingji Xia. Variable-version Lovász local
lemma: Beyond Shearer’s bound. In Foundations of Computer Science (FOCS), 2017 IEEE
58th Annual Symposium on, pages 451–462. IEEE, 2017.

[59] Fotis Iliopoulos. Commutative algorithms approximate the LLL-distribution. In Eric Blais,
Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs, pages 44:1–44:20. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[60] Fotis Iliopoulos and Alistair Sinclair. Efficiently list-edge coloring multigraphs asymptoti-
cally optimally. CoRR, abs/1812.10309, 2018.

[61] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM journal on com-
puting, 18(6):1149–1178, 1989.

[62] A. Johansson. Asympotic choice number for triangle free graphs. Unpublished manuscript,
1996.

[63] A. Johansson. The choice number of sparse graphs. Unpublished manuscript, 1996.

[64] Jeff Kahn. Asymptotically good list-colorings. Journal of Combinatorial Theory, Series A,
73(1):1–59, 1996.

[65] Jeff Kahn. Asymptotics of the chromatic index for multigraphs. journal of combinatorial
theory, Series B, 68(2):233–254, 1996.

[66] Jeff Kahn. Asymptotics of the list-chromatic index for multigraphs. Random Structures &
Algorithms, 17(2):117–156, 2000.

[67] Jeff Kahn and P Mark Kayll. On the stochastic independence properties of hard-core distri-
butions. Combinatorica, 17(3):369–391, 1997.

[68] Jeong Han Kim. On Brooks’ theorem for sparse graphs. Combinatorics, Probability and
Computing, 4(2):97–132, 1995.

[69] Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. A sharper local lemma with improved
applications. In Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,

101

volume 7408 of Lecture Notes in Computer Science, pages 603–614. Springer Berlin Hei-
delberg, 2012.

[70] Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In STOC,
pages 235–244. ACM, 2011.

[71] Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-
11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 780–787. IEEE
Computer Society, 2016.

[72] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine,
13(1):32–32, 1992.

[73] Carl W Lee. Some recent results on convex polytopes. Contemporary Math, 114:3–19,
1990.

[74] Linyuan Lu and Laszlo A Szekely. A new asymptotic enumeration technique: the Lovász
local lemma. arXiv preprint arXiv:0905.3983, 2009.

[75] Steven Minton, Mark D Johnston, Andrew B Philips, and Philip Laird. Minimizing conflicts:
a heuristic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58(1-3):161–205, 1992.

[76] Michael Molloy. The list chromatic number of graphs with small clique number. Journal of
Combinatorial Theory, Series B, 2018.

[77] Michael Molloy and Bruce Reed. A bound on the total chromatic number. Combinatorica,
18(2):241–280, 1998.

[78] Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In STOC
’98 (Dallas, TX), pages 524–529. ACM, New York, 1999.

[79] Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method, volume 23
of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2002.

[80] Robin A. Moser. A constructive proof of the Lovász local lemma. In STOC’09—
Proceedings of the 2009 ACM International Symposium on Theory of Computing, pages
343–350. ACM, New York, 2009.

[81] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):Art. 11, 15, 2010.

[82] Sokol Ndreca, Aldo Procacci, and Benedetto Scoppola. Improved bounds on coloring of
graphs. Eur. J. Comb., 33(4):592–609, May 2012.

[83] Takao Nishizeki and Kenichi Kashiwagi. On the 1.1 edge-coloring of multigraphs. SIAM
Journal on Discrete Mathematics, 3(3):391–410, 1990.

102

[84] Pascal Ochem and Alexandre Pinlou. Application of entropy compression in pattern avoid-
ance. arXiv preprint arXiv:1301.1873, 2013.

[85] Rafail Ostrovsky, Yuval Rabani, and Leonard J Schulman. Error-correcting codes for auto-
matic control. IEEE Transactions on Information Theory, 55(7):2931–2941, 2009.

[86] Manfred W Padberg and M Ram Rao. Odd minimum cut-sets and b-matchings. Mathemat-
ics of Operations Research, 7(1):67–80, 1982.

[87] Wesley Pegden. Highly nonrepetitive sequences: Winning strategies from the local lemma.
Random Struct. Algorithms, 38(1-2):140–161, 2011.

[88] Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM J.
Discrete Math., 28(2):911–917, 2014.

[89] Pavel Pevzner. Computational molecular biology: an algorithmic approach. MIT press,
2000.

[90] Michael Plantholt. A sublinear bound on the chromatic index of multigraphs. Discrete
Mathematics, 202(1-3):201–213, 1999.

[91] Yuri Rabinovich, Alistair Sinclair, and Avi Wigderson. Quadratic dynamical systems. In
Foundations of Computer Science, 1992. Proceedings., 33rd Annual Symposium on, pages
304–313. IEEE, 1992.

[92] Peter Sanders and David Steurer. An asymptotic approximation scheme for multigraph edge
coloring. ACM Transactions on Algorithms (TALG), 4(2):21, 2008.

[93] Diego Scheide. On the 15/14 edge-colouring of multigraphs. Institut for Matematik og
Datalogi, Syddansk Universitet, 2007.

[94] Diego Scheide. Graph edge colouring: Tashkinov trees and Goldberg’s conjecture. Journal
of Combinatorial Theory, Series B, 100(1):68–96, 2010.

[95] Alexander D Scott and Alan D Sokal. The repulsive lattice gas, the independent-set poly-
nomial, and the Lovász local lemma. Journal of Statistical Physics, 118(5-6):1151–1261,
2005.

[96] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for satisfiability
testing. In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and Satis-
fiability, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October
11-13, 1993, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 521–532. DIMACS/AMS, 1993.

[97] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving local search.
In Barbara Hayes-Roth and Richard E. Korf, editors, Proceedings of the 12th National Con-
ference on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1.,
pages 337–343. AAAI Press / The MIT Press, 1994.

103

[98] J.B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.

[99] Mohit Singh and Nisheeth K Vishnoi. Entropy, optimization and counting. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing, pages 50–59. ACM,
2014.

[100] Joel Spencer. Asymptotic lower bounds for ramsey functions. Discrete Mathematics,
20(0):69 – 76, 1977.

[101] Aravind Srinivasan. Improved algorithmic versions of the Lovász local lemma. In Shang-
Hua Teng, editor, SODA, pages 611–620. SIAM, 2008.

[102] Vadim G Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz, 3:25–
30, 1964.

[103] Van H Vu. A general upper bound on the list chromatic number of locally sparse graphs.
Combinatorics, Probability and Computing, 11(1):103–111, 2002.

104

Chapter 8

Appendices

8.1 Matrices and Norms
Let ‖ · ‖ be any norm over vectors in Rn. The dual norm, also over vectors in Rn, is defined as

‖z‖∗ = sup
‖x‖=1

|z>x| .

For example, the dual norm of ‖ · ‖∞ is ‖ · ‖1. It can be seen that ‖ · ‖∗∗ = ‖ · ‖ and that for any
vectors x, z,

z>x = ‖x‖
(
z>x

‖x‖

)
≤ ‖z‖∗‖x‖ . (8.1)

The corresponding operator norm, over n× n real matrices, is defined as

‖A‖ ≡ sup
‖x‖=1

‖Ax‖ .

For example, if A is a matrix with non-negative entries then ‖A‖∞ and ‖A‖1 can be seen to be the
maximum row and column sum of A, respectively. Operator norms are submultiplicative, i.e., for
every operator norm ‖ · ‖ and any two n× n matrices A,B,

‖AB‖ ≤ ‖A‖‖B‖ . (8.2)

Finally, for any vector norm ‖ · ‖, any row vector x> and n× n matrix A we have that

‖x>A‖∗ ≤ ‖x>‖∗‖A‖ . (8.3)

8.2 Recursive Algorithms
In this section we show how we can obtain constructive analogues of the cluster expansion condi-
tion (2.3) and the left-handed LLL condition of Pegden [87] via recursive algorithms.

105

8.2.1 Dense Neighborhoods
In a number of applications the subgraph induced by the neighborhood of each flaw in the causality
graph contains several (directed) edges. We improve Theorem 3.15 in such settings by employing
a recursive algorithm akin to Algorithm 2. This has the effect that the flaw addressed in each
step depends on the entire trajectory up to that point, not just the current state, i.e., the walk is
non-Markovian. It is for this reason that we required a non-empty set of actions for every flaw
present in a state, and why the definition of the causality digraph does not involve flaw choice.
Specifically, for any permutation π on [m] the recursive walk is the non-Markovian random walk
on Ω that occurs by invoking procedure ELIMINATE below.

Recall that U(σ) denotes the set of indices of flaws present in state σ, that for a set S ⊆ [m],
π(S) = minj∈S π(j), and that we sometimes abbreviate π(U(σ)) as π(σ).

Recursive Walk
1: procedure ELIMINATE

2: σ ← θ(·)
3: while U(σ) 6= ∅ do
4: σ ← ADDRESS (π(σ), σ)
5: procedure ADDRESS(i, σ)
6: σ′ ← τ ∈ α(i, σ) with probability ρi(σ, τ)
7: while S = U(σ′) ∩ Γ(i) 6= ∅ do
8: σ′ ← ADDRESS(π(B), σ′)

Theorem 8.2 below can be used to make constructive applications of the cluster expansion
condition (2.3). We prove it in Section 8.2.3 using Theorem 3.19.

Definition 8.1. For a causality graph C on [m], let G = G(C) = ([m], E) be the undirected graph
where {i, j} ∈ E iff both i → j and j → i exist in C. For S ⊆ [m], let Ind(S) = {S ′ ⊆ S :
S ′ is an independent set in G}.

Theorem 8.2. If there exist positive real numbers {ψi} for 1 ≤ i ≤ m such that

ζi :=
γi
ψi

∑
S∈Ind(Γ(i))

∏
j∈S

ψj < 1 , for every i ∈ [m] (8.4)

then for every permutation π, the recursive walk reaches a sink within (T0 + s)/ log2(1/(1 − ε))
steps with probability at least 1− 2−s, where ε = 1−maxi∈[m] ζi > 0, and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S⊆Ind(Span(θ))

∏
j∈S

ψj

 .

Remark 8.3. Theorem 8.2 strictly improves Theorem 3.15 since: (i) the summation in (8.4) is only
over the subsets of Γ(i) that are independent in G, instead of all subsets of Γ(i) as in (3.8); and
(ii) similarly, for T0 the summation is only over the independent subsets of Span(θ), rather than
all subsets of Span(θ).

106

Remark 8.4. Theorem 8.2 can be strengthened by introducing, for each flaw fi ∈ F , a permutation
πi of Γ(i) and replacing π with πi in line 8 of the Recursive Walk. With this change in (8.4) it suffices
to sum only over S ⊆ Γ(i) satisfying the following: if the subgraph of R induced by S contains an
edge j → k, then πi(j) ≥ πi(k). As such a subgraph cannot contain both j → k and k → j we
see that S ∈ Ind(Γ(i)).

8.2.2 A Left-Handed Algorithm
While Theorems 3.15 and 8.2 do not care about the permutation π on [m], inspired by the so-called
left-handed version of the LLL introduced by Pegden [87], we give a condition under which the
flaw order π can be chosen in a provably beneficial way. This is done by organizing the flaws in
an order akin to an elimination sequence. Specifically, the idea is to seek a permutation π and
a “responsibility digraph” R, derived from the causality digraph C so as to “shift responsibility”
from flaws failing to satisfy condition (3.8) of Theorem 3.15 to flaws that have slack.

Definition 8.5. For an ordered set of vertices v1 < v2 < · · · < vn, say that edge vi → vj is forward
if i < j and backward if i > j. Given a causality digraph C and a permutation π on [m] ordering
the vertices of C, we say that R is a responsibility digraph for C with respect to π if:

1. Every forward edge and self-loop of C exists in R.

2. If a backward edge vj → vi of C does not exist in R, then for each k such that vk → vj exists
in R, vk → vi exists in R as well.

The neighborhood of a flaw fi in a responsibility graphR is ΓR(i) = {j ∈ [m] : i→ j exists in R}.
For any permutation π of [m], and any responsibility digraph R with respect to π, the left-

handed walk is the random walk induced on Ω by modifying the Recursive Walk as follows.

Left-Handed Walk

For S ⊆ [m], let π(S) = maxj∈S π(j) denote the greatest index in S.
In line 7 of Recursive Walk replace Γ with ΓR.

In Section 8.2.4 we prove the following theorem, again as a corollary of Theorem 3.19.

Theorem 8.6. For any permutation π on [m] and any responsibility digraph R with respect to π,
if there exist positive real numbers {ψi} for every 1 ≤ i ≤ m such that

ζi :=
γi
ψi

∑
S⊆ΓR(i)

∏
j∈S

ψj < 1 for every i ∈ [m] ,

then the Left-Handed Walk reaches a sink within (T0 + s)/ log2((1/1 − ε)) steps with probability
at least 1− 2−s, where δ = 1−maxi∈[m] ζi, and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S⊆Span(θ)

∏
j∈S

ψj

 .

Remark 8.7. Since the causality digraph C is, trivially, a responsibility graph, Theorem 8.6 can
be seen as a non-Markovian generalization of Theorem 3.15 in which flaw choice is driven by
recursion and R.

107

8.2.3 Forests of the Recursive Walk (Theorem 8.2)
We will represent each bad t-trajectory, Σ, of the Recursive Walk as a vertex-labeled unordered
rooted forest, having one tree per invocation of procedure ADDRESS by procedure ELIMINATE.
Specifically, to construct the Recursive Forest φ = φ(Σ) we add a root vertex per invocation of
ADDRESS by ELIMINATE and one child to every vertex for each (recursive) invocation of ADDRESS

that it makes. As each vertex corresponds to an invocation of ADDRESS (step of the walk) it
is labeled by the invocation’s flaw-argument. Observe now that (the invocations of ADDRESS

corresponding to) both the roots of the trees and the children of each vertex appear in Σ in their
order according to π. Thus, given the unordered rooted forest φ(Σ) we can order its trees and the
progeny of each vertex according to π and recover W (Σ) as the sequence of vertex labels in the
preorder traversal of the resulting ordered rooted forest.

Recall the definition of graph G on [m] from Definition 8.1. We will prove that the flaws
labeling the roots of a Recursive Forest are independent in G and that the same is true for the flaws
labeling the progeny of every vertex of the forest. To do this we first prove the following.

Proposition 8.8. If ADDRESS(i, σ) returns at state τ , then U(τ) ⊆ U(σ) \ (Γ(i) ∪ {i}).

Proof. Let σ′ be any state subsequent to the ADDRESS(i, σ) invocation. If any flaw in U(σ)∩ Γ(i)
is present at σ′, the “while” condition in line 7 of the Recursive Walk prevents ADDRESS(i, σ)
from returning. On the other hand, if k ∈ Γ(i) \U(σ) is present in σ′, then there must have existed
an invocation ADDRESS(j, σ′′), subsequent to invocation ADDRESS(i, σ), wherein addressing j
caused k. Consider the last such invocation. If σ′′′ is the state when this invocation returns, then
k 6∈ U(σ′′′), for otherwise the invocation could not have returned, and by the choice of invocation,
k is not present in any subsequent state between σ′′′ and τ .

Let (wi, σi) denote the argument of the i-th invocation of ADDRESS by ELIMINATE. By Propo-
sition 8.8, {U(σi)}i≥1 is a decreasing sequence of sets. Thus, the claim that the root labels form
an independent set of Span(θ) follows trivially: for each i ≥ 1, the flaws in Γ(wi) ∪ {wi} are not
present in σi+1 and, therefore, are not present in U(σj), for any j ≥ i + 1. The proof of the claim
that the children of each node form an independent set in the subgraph of G induced by the neigh-
borhood of the label of the node is essentially identical. If a node corresponding to an invocation
ADDRESS(w, σ) has children corresponding to (recursive) invocations with arguments {(gi, σi)},
then the sequence of sets {U(σi)}i≥1 is decreasing. Thus, the flaws in Γ(gi) ∪ {gi} are not present
in σi+1 and, therefore, not present in U(σj), for any j ≥ i+ 1. Applying Theorem 3.19 concludes
the proof.

8.2.4 Forests of the Left-Handed Walk (Theorem 8.6)
Recall that π is an arbitrary permutation on [m] and that the Left-Handed Walk is the Recursive
Walk modified by replacing Γ(i) with ΓR(i) in line 7, where R is a responsibility graph for the
input causality graph C with respect to π. We map the bad trajectories of the Left-Handed Walk
into vertex-labeled unordered rooted forests, exactly as we did for the bad trajectories of the Re-
cursive Walk, i.e., one tree per invocation of ADDRESS by ELIMINATE, one child per recursive
invocation of ADDRESS, all vertices labeled by the flaw-argument of the invocation. The challenge
for the Left-Handed Walk is to prove that the labels of the roots are distinct and, similarly, that

108

the labels of the children of each node are distinct. (For Witness Forests both properties were true
automatically; for Recursive Forests we established the stronger property that each of these sets of
flaws is independent.) To do this we first prove the following analogue of Proposition 8.8.

Definition 8.9. Let Si denote the set of indices of flaws strictly greater than i according to π. For
a state σ and a flaw i ∈ U(σ), let W (σ, i) = U(σ) ∩ Si.

Proposition 8.10. If ADDRESS(i, σ) returns at state τ , then τ 6∈ fi and W (τ, i) ⊆ W (σ, i).

Proof. The execution of ADDRESS(i, σ) generates a recursion tree, each node labeled by the index
of its flaw-argument. Thus, the root is labeled by i and each child of the root is labeled by a flaw in
ΓR(i). Let S+

i = Si∪{i}. For a state ω, letQ(i, ω) be the set of flaws in S+
i \ΓR(i) that are present

in ω. We claim that if j ∈ ΓR(i) and ADDRESS(j, ω) terminates at ω′, then Q(i, ω′) ⊆ Q(i, ω).
This suffices to prove the lemma as:

• By the claim, any flaw in Q(i, τ) \ Q(i, σ) must be introduced by the action σ i−→ σ′ taken
by the original invocation ADDRESS(i, σ). Thus, Q(i, τ) ⊆ Q(i, σ′).

• All flaws in S+
i introduced by σ i−→ σ′ are in ΓR(i), since R contains all forward edges and

self-loops of C. Thus, Q(i, σ′) ⊆ Q(i, σ). In particular, fi can only be present in σ′ if
i ∈ ΓR(i).

• No flaw in ΓR(i) can be present in τ since ADDRESS(i, σ) returned at τ .

To prove the claim, consider the recursion tree of ADDRESS(j, ω). If k ∈ Q(i, ω′) and k /∈
Q(i, ω), then there has to be a path j1 = j, j2, . . . , j` from the root of the recursion tree of
ADDRESS(j, ω) to a node j` such that k ∈ Γ(j`) but k /∈ ΓR(jh) for each h ∈ [`]. To see this,
notice that since k was absent in ω but is present in ω′, it must have been introduced by some
flaw j` addressed during the execution of ADDRESS(j, ω). But if k belonged in the neighborhood
with respect to R of any of the flaws on the path from the root to j`, the algorithm would have
not terminated. However, such a path can not exist, as it would require all of the following to be
true, violating the definition of responsibility digraphs (let j0 = i for notational convenience): (i)
k ∈ Γ(j`); (ii) k /∈ ΓR(j`); (iii) j` ∈ ΓR(j`−1), and (iv) k /∈ ΓR(j`−1).

To establish the distinctness of the root labels, observe that each time procedure ELIMINATE is
invoked at a state σ, by the definition of π(·), we haveW (σ, (π(σ)) = ∅. By Proposition 8.10, if the
invocation returns at state τ , then neither π(σ) nor any greater flaws are present in τ . Therefore,
ELIMINATE invokes ADDRESS at most once for each i ∈ [m]. To see the distinctness of the
labels of the children of each node, consider an invocation of ADDRESS(i, σ). Whenever this
invocation recursively invokes ADDRESS(j, σ′), where j ∈ ΓR(i), by definition of π(·), every flaw
in Sj ∩ ΓR(i) is absent from σ′. By Proposition 8.10, whenever each such invocation returns,
neither j nor any of the flaws in Sj ∩ ΓR(i) are present implying that ADDRESS(i, σ) invokes
ADDRESS(j, σ′) at most once for each j ∈ ΓR(i). Applying Theorem 3.19 concludes the proof.

109

8.3 Proofs Omitted from Chapter 5

8.3.1 Proof of Theorem 5.11
To lighten the notation, let u := λinit

∑
S∈Ind([m])

∏
j∈S ψj . For each σ ∈ Ω, define a flaw fσ = {σ}

and consider the extended algorithm that addresses it by sampling from µ, as well as the extended
causality graph that connects fσ with every flaw in F . Observe that γ(fσ) := ‖MAfσM

−1‖ =
µ(σ), where M = diag(µ(σ)). Moreover, if the original algorithm is commutative, so is the
extended one since the commutativity condition is trivially true for flaws {fσ}σ∈Ω. Observe now
that for every σ ∈ Ω, Theorem 5.7 yields ν(σ) ≤ Pr[σ] ≤ u · µ(σ). Thus:

Hρ[ν] =
1

1− ρ
ln
∑
σ∈Ω

ν(σ)ρ ≥ 1

1− ρ
ln
∑
σ∈Ω

(uµ(σ))ρ =
1

1− ρ
ln
∑
σ∈Ω

µ(σ)ρ − ρ

ρ− 1
lnu ,

concluding the proof.

8.3.2 Proof of Theorem 5.12
For each flaw fi we define a Bernoulli variable Yi with probability of success pi = min

{
1, ψi

ηiγi

}
.

The sequence {Yi}mi=1 and Ω induce a new space Ω′ = Ω × {0, 1}m which can be thought as a
“labelled” version of Ω, where each state σ is labelled with a binary vector of length m whose i-th
bit describes the state of Yi. Similarly, measure µ and {Yi}mi=1 induce a measure µ′ over Ω′.

In this new state space we introduce a new family of flaws F ′ = {f ′1, f ′2, . . . , f ′m}, where f ′i is
defined as the subset of Ω′ where fi is present and Yi = 1. Consider now the algorithm A′ that is
induced by A as follows: Each time we want to address flaw f ′i we move in Ω by invoking A to
address fi and also take a sample from Yi to update the value of the i-th entry of the label-vector.

It is not hard to verify that (i) the charge of each flaw f ′i is γ(f ′i) = γipi; (ii) any causality graph
for (Ω, F,A) is also a causality graph for (Ω′, F ′,A′) (and, in particular, so is the one induced
by ∼); (iii) if A is commutative then so is A′ ; and that (iv) the cluster expansion condition with
respect to the causality graph induced by ∼ is satisfied.

To conclude the proof, consider a flaw f ′i and notice that in order for fi to be present in the
output of A′ it has to be the case that Yi = 0. Notice now that Theorem 5.7 implies:

ν(fi ∩ Yi = 0) ≤(1− pi)γiηi = max {0, γiηi − ψi} .

8.4 Proofs Omitted from Chapter 6

8.4.1 Proof of Lemma 6.2
We will use the following LLL condition which is obtained from (2.1) by setting ψi = 2µ(Bi)

1−2µ(Bi)
.

It’s proof can be found in [79].

Proposition 8.11. Let (Ω, µ) be an arbitrary probability space and let B = {B1, . . . , Bm} be a set
of (bad) events. For each i ∈ [m] let D(i) ⊆ ([m] \ {i}) be such that µ(Bi | ∩j∈SBj) = µ(Bi) for

110

every S ⊆ (D(i) ∪ {i}). If ∑
j∈D(i)∪{i}

µ(fj) <
1

4
for each i ∈ [m] ,

then the probability that none of the events in B occurs is strictly positive.

Let µ be the probability distribution induced by giving each Blank vertex v a color fromLv(σ)\
Blank uniformly at random. For any edge e and color c ∈

⋂
u∈e Lu(σ) \ Blank we define Ae,c to

be the event that all vertices of e receive c. We also define Blank(e) to be the set of vertices of e
that are Blank in σ. Observe now that

µ (Ae,c) ≤
1∏

v∈Blank(e) (|Lv(σ)| − 1)
.

Furthermore, Ae,c is mutually independent of all events with which it does not share a vertex.
The lemma follows from Proposition 8.11 (and can be made constructive using the Moser-Tardos
algorithm) as flaws Bv, Zv are not present for every vertex v ∈ V and so∑
v∈Blank(e)

∑
c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

µ
(
A{u,v},c

)
=

∑
v∈Blank(e)

∑
c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

1

(|Lv(σ)| − 1)(|Lu(σ)| − 1)

≤ 2 max
v∈Blank(e)

1

(|Lv(σ)| − 1) (L− 1)

∑
c∈Lv(σ)\Blank

|Tv,c′(σ)|

≤ 2

10
max

v∈Blank(e)

L · |Lv(σ)|
(L− 1) · (|Lv(σ)| − 1)

≤ 1

5

(
L

L− 1

)2

<
1

4
,

for large enough ∆, concluding the proof.

8.4.2 Proof of Lemma 6.5
Recall the description of A2 from the proof of Lemma 6.2.

First, we show thatA2 is able to output at leastNq−(1−α)n list-colorings with positive probabil-
ity. Let Ω∗A1

denote the set of flawless partial list-colorings algorithm A1 can output with positive
probability, and note that, according to our assumption, |Ω∗A1

| = N . To see the idea behind the
bound, observe that given two colorings σ1, σ2 ∈ Ω∗A1

, applying A1 to each one of them is guar-
anteed to result in different full list-colorings unless there is a way to start from σ1 (respectively,
from σ2) and assign colors to Blank vertices so that we reach σ2 (respectively, to σ1). In this bad
case we write σ1 ./ σ2. Consider now the graph H over Ω∗A1

in which two colorings σ1, σ2 are
adjacent iff σ1 ./ σ2, and observe that the size of any independent set of H is a lower bound on the
number of list-colorings A2 can output. Since we have assumed that every coloring in Ω∗A1

has at
least αn vertices colored, we see that the maximum degree of H is at most D := q(1−α)n − 1 and,
therefore, there exists an independent set of size at least

|Ω∗A1
|

D+1
= Nq−(1−α)n, concluding the proof

of the first part of Lemma 6.2.
111

Second, we show that A2 is able to output at least
(

8L
11

)(1−α)n list colorings with positive prob-
ability. To do that, we will need the following theorem regarding the output distribution of the
Moser-Tardos algorithm that was proved in [56], and which we rephrase here to fit our needs.

Theorem 8.12 ([56]). Consider a constraint satisfaction problem on a set of variables V and set
of constraints C. Assume we have a flaw fc for each constraint c, comprising the set of states that
violate c. We are also given an undirected causality graph such that two constraints are connected
with an edge iff they share variables. For each constraint c define

yc = (1 + ψc)
1

|var(c)| − 1 ,

where var(c) denotes the set of variables that correspond to constraint c. Then:

∑
S∈Ind(C)

∏
c∈S

ψc ≤
∏
v∈V

1 +
∑
c∈C

v∈var(c)

yc

 ,

where Ind(C) denotes the set of independent sets of C.

Observe that the hypothesis implies that A1 can output a flawless partial coloring σ where
exactly αn vertices are colored with positive probability. We apply A2 to σ, which recall that is
an instantiation of the Moser-Tardos algorithm using the uniform measure µ over the the cartesian
product, Ω′, of the lists of non-Blank available colors of the Blank vertices of σ, and where we have
a bad eventAe,c for any edge e and color c ∈

⋂
u∈e Lu(σ)\{Blank}. Recall further that the general

(and, thus, also the cluster expansion) LLL condition (2.1) is satisfied with ψe,c = 2µ(Ae,c)

1−2µ(Ae,c)
. Thus,

we can combine Theorem 5.11 and Theorem 8.12 to get that A2 can output at least

|Ω′|

 ∏
v∈V

σ(v)=Blank

1 +
∑

c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

y{u,v},c

−1

≥ L(1−α)n(
1 + 3

8

)(1−α)n
≥
(

8L

11

)(1−α)n

,

list-colorings with positive probability. To see this, notice that for any v ∈ V that is Blank in σ,
and sufficiently large ∆,

∑
c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

y{u,v},c =
∑

c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

(√
1 +

2µ(A{u,v},c)

1− 2µ(A{u,v},c)
− 1

)
≤

∑
c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

3µ(A{u,v},c)

≤ 3 ·
(

1

2
· 1

4

)
=

3

8
, (8.5)

where to obtain (8.5) we perform identical calculations to the ones in Lemma 6.2.

112

8.4.3 Proof of Theorem 6.10
We will follow closely the approach adopted by the authors in [10]. Throughout the proof we
assume that ε ∈ (0, ε0), where ε0 is sufficiently small, and that fε > 0 and ∆ε > 0 are sufficiently
large.

We distinguish two cases, depending on whether f ≥ ∆(2+ε2)ε or not. To prove Theorem 6.10
for the case f ≥ ∆(2+ε2)ε we will prove the following.

Theorem 8.13. For every θ, ζ ∈ (0, 1), there exists ∆θ,ζ > 0 such that every graph G with maxi-
mum degree ∆ ≥ ∆θ,ζ in which the neighbors of every vertex span at most ∆2−(2+ζ)θ edges, has
chromatic number χ(G) ≤ (1 + ζ)(1 + θ−1) ∆

ln ∆
.

Proof of Theorem 6.10 for f ≥ ∆(2+ε2)ε. We apply Theorem 8.13 with ζ = ε2 and θ = ln f
(2+ε2) ln ∆

≥
ε, so that ∆2/f = ∆2−(2+ζ)θ. Since ζ, θ < 1, we obtain

χ(G) ≤ (1 + ζ)

(
1 +

(2 + ζ) ln ∆

ln f

)
∆

ln ∆

= (1 + ζ)
∆

ln ∆
+ (1 + ζ)(1 + ζ/2)

∆

ln
√
f

≤ (1 + 2ζ)
∆

ln
√
f

+ (1 + ζ)(1 + ζ/2)
∆

ln
√
f

=

(
2 +

7ζ

2
+
ζ2

2

)
∆

ln
√
f

≤ (2 + ε)
∆

ln
√
f
.

Theorem 8.13 follows immediately from the following lemma, whose proof is similar to Lemma
2.3 in [10] and can be found in Section 8.4.4. The proof of Lemma 8.14 uses the standard Local
Lemma and Theorem 6.8, so it can be made constructive using the Moser-Tardos algorithm and
the algorithm in Theorem 6.8.

Lemma 8.14. For every θ, ζ ∈ (0, 1) there exists ∆θ,ζ > 0 such that for every graph G = (V,E)
with maximum degree ∆ ≥ ∆θ,ζ in which the neighbors of every vertex span at most ∆2−(2+ζ)θ

edges, there exists a partition of the vertex set V = V1 ∪ . . . ∪ Vk with k = ∆1−θ, such that for
every 1 ≤ i ≤ k,

χ(G[Vi]) ≤ (1 + ζ)(1 + θ−1)
∆θ

ln ∆
.

Proof of Theorem 8.13. If V1, V2, . . . , Vk, k = ∆1−θ is the partition promised by Lemma 8.14 then

χ(G) ≤
∆1−θ∑
i=1

χ(G[Vi]) ≤ (1 + ζ)(1 + θ−1)
∆

ln ∆
.

113

To prove Theorem 6.10 for f ∈ [fε,∆
(2+ε2)ε), we will perform a sequence of random halving

steps, as in [10], to partition the graph into subgraphs satisfying the condition of Theorem 6.10
with f ≥ ∆(2+ε2)ε and color these subgraphs using disjoint sets of colors. To perform the partition
we use the following lemma from [10]. As it is proven via the standard LLL, it can be made
constructive using the Moser-Tardos algorithm.

Lemma 8.15 ([10]). Let G(V,E) be a graph with maximum degree ∆ ≥ 2 in which the neighbors
of every vertex span at most s edges. There exists a partition V = V1 ∪ V2 such that the induced
subgraph G[Vi], i = 1, 2, has maximum degree at most ∆/2 + 2

√
∆ ln ∆ and the neighborhors of

every vertex in G[Vi], i = 1, 2, span at most s/4 + 2∆
3
2

√
ln ∆ edges.

We will also use the following lemma whose proof, presented in Section 8.4.5, is almost iden-
tical to a similar statement in the proof of Theorem 1.1 of [10].

Lemma 8.16. Given ∆, f sufficiently large, let the sequences ∆t and st be defined as follows.
∆0 = ∆, s0 = ∆2/f and

∆t+1 = ∆t/2 + 2
√

∆t ln ∆t, st+1 = st/4 + 2∆
3
2
t

√
ln ∆t .

For any δ ∈ (0, 1/100) and ζ > 0 such that ζ(2+δ) < 1/10, let j be the smallest integer for which

f >
(

(1+δ)∆
2j

)(2+δ)ζ

. Then ∆j ≤ (1 + δ)∆/2j and sj ≤ ((1 + δ)∆/2j)
2
/f .

Proof of Theorem 6.10 for f ∈ [fε,∆
(2+ε2)ε). Let ε0 = 1/11. For ε ∈ (0, ε0], let δ = ζ = ε2. Since

ζ(2 + δ) < 1/10, apply Lemma 8.16 and let j = j(∆, f, δ, ζ) be the integer described therein. Let
S be the process which, given a graph G, does nothing if ∆(G) < 2, and otherwise partitions G as
described in Lemma 8.15. Apply S to G to get subgraphs G[V1], G[V2]. Apply S to G[V1], G[V2] to
get G[V1,1], G[V1,2], G[V2,1], G[V2,2]. And so on, j times, obtaining a partition of G into at most 2j

induced subgraphs. Observe that for each such subgraphH , either ∆(G) < 2 and, thus, χ(H) ≤ 2,
or, by Lemma 8.16, ∆(H) ≤ (1 + δ)∆/2j =: ∆∗ and the neighbors of every vertex in H span at
most ∆2

∗/f edges, where f ≥ ∆
(2+δ)ζ
∗ = ∆

(2+ζ)ζ
∗ ≥ ∆

(2+ζ2)ζ
∗ . Therefore, by the already established

case of Theorem 6.10, either χ(H) ≤ 2, or χ(H) ≤ (2 + ζ)∆∗/ ln
√
f . Thus,

χ(G) ≤ 2j max

{
2, (2 + ζ)

(1 + δ)∆/2j

ln
√
f

}
≤ max

{
2j+1, (2 + ζ)

(1 + δ)∆

ln
√
f

}
.

To bound 2j+1 from above we first observe that for all f sufficiently large, i.e., for all f ≥ fε,(
(1 + δ)∆

∆
2 ln
√
f

)(2+δ)ζ

=
(

2(1 + δ) ln
√
f
)(2+δ)ζ

< f . (8.6)

Now, since j was defined as the smallest integer for which
(

(1+δ)∆
2j

)(2+δ)ζ

< f , we see that (8.6)

implies 2j ≤ ∆
2 ln
√
f

and, therefore, 2j+1 ≤ ∆
ln
√
f

. Finally, we observe that (2 + ζ)(1 + δ) =

(2 + ε2)(1 + ε2) < 2 + ε for all ε ∈ (0, ε0]. Therefore, as claimed,

χ(G) ≤ (2 + ε)
∆

ln
√
f
.

114

8.4.4 Proof of Lemma 8.14
We follow an approach similar to the one of Lemma 2.3 in [10] making appropriate modifications
as needed. First we partition the vertices of G into ∆1−θ parts by coloring them randomly and
independently with ∆1−θ colors. For a vertex v and a neighbor u adjacent to it, call u a bad
neighbor of v, if u and v have at least ∆1−(1+ζ/2)θ common neighbors. Otherwise, say that u is
a good neighbor. Since the neighbors of every vertex span at most ∆2−(2+ζ)θ edges, there are at
most 2∆1−(1+ζ/2)θ bad neighbors for any vertex in G.

For any vertex v, define three types of bad event with respect to the random partitioning exper-
iment.

• Av: more than (1 + θ)∆θ neighbors of v receive the same color as v.

• Bv: more than 10
θζ

bad neighbors of v receive the same color as v.

• Cv: the good neighbors of v that receive the same color as v span more than 100
(θζ)2 edges.

We will use the symmetric version of the Local Lemma [36] to show that we can find a coloring of
the graph that avoids all bad events. First, note that each of the bad eventsAv, Bv, Cv is independent
of all but at most ∆2 others, as it independent of all events Au, Bu, Cu corresponding to vertices u
whose distance from v is more than 2. Since the degree of any vertex in its colors class is binomially
distributed with mean at most ∆θ, standard Chernoff estimates imply that the probability that v has
more than (1 + θ)∆θ neighbors of the same color as that of v is at most e−Ω(∆θ), which means that
Pr[Av] < ∆−3 for large enough ∆. Moreover, we also have

Pr[Bv] ≤
(

2∆1−(1+ζ/2)θ

10
θζ

)(
1

∆1−θ

) 10
θζ

≤
(

2

∆
θζ
2

) 10
θζ

≤ ∆−3 ,

for large enough ∆. Finally, to bound the probability of Cv we make the following observation.
If a graph has at least e2 edges, then either it has a vertex of degree at least e, or every vertex has
degree strictly less than e, implying that the graph can be edge-colored with dee colors, in which
case the largest color class must contain at least e2/dee ≥ e − 1 edges. Thus, a graph with more
than 100/(θζ)2 edges either has a vertex of degree at least 10/(θζ) ≥ 9/(θζ) or a matching with
at least 10/(θζ) − 1 ≥ 9/(θζ) edges, where the inequality follows from the fact that θ, ζ < 1.
Thus, Cv can happen only if there is a good neighbor u of v such that u and v have at least 9/(θζ)
common neighbors with the same color as v, or if there is a matching of size at least 9/(θζ) on the
good neighbors of v that have the same color as v. The probabilities of the first and second of these
events are bounded, respectively, by

∆

(
∆1−(1+ζ/2)θ

9
θζ

)(
1

∆1−θ

) 9
θζ

≤
(

1

∆
θζ
2

) 9
θζ

≤ 1

2
∆−3 ,

(
∆2−(2+ζ)θ

9
θζ

)((
1

∆1−θ

)2
) 9

θζ

≤
(

1

∆θζ

) 9
θζ

≤ 1

2
∆−3 .

115

Therefore the probability of Cv is at most ∆−3. Thus, the Local Lemma applies since each bad
event has probability at most ∆−3 and is independent of all but at most ∆2 other bad events. This
means that we can find a partition V = V1, . . . , Vk, where k = ∆1−θ, so that in each induced
subgraph G[Vi], every vertex: has degree at most (1 + θ)∆θ, has at most 10

θζ
bad neighbors, and is

contained in at most 100
(θζ)2 triangles in which both other vertices are good. We will show that, given

such a partition, each G[Vi] can be colored with at most (1+ζ)(1+θ−1)∆θ

ln ∆
colors, assuming ∆ is large

enough.
To see this, consider the partition Bi, Vi \ Bi of Vi, where Bi is the set of vertices u ∈ Vi for

which there exists a vertex v ∈ Vi, such that u is a bad neighbor of v. We claim that χ(G[Bi]) ≤
20
θζ

+ 1 and χ(G[Vi \Bi]) ≤ (1+ζ/2)(1+θ−1)∆θ

ln ∆
. Assuming this claim, observe that

χ(G[Vi]) ≤
20

θζ
+ 1 +

(1 + ζ/2)(1 + θ−1)∆θ

ln ∆
≤ (1 + ζ)(1 + θ−1)∆θ

ln ∆
,

where the last inequality holds for all ∆ ≥ ∆θ,ζ .
To see the first part of the claim, note that it is well-known (and easy to see) that if a graph has

an orientation with maximum outdegree d, then it is (2d + 1)-colorable. Consider the orientation
of the graph on Bi that results when every vertex points to its bad neighbors in Bi. Clearly, the
maximum outdegree is at most 10

θζ
and, thus, χ(G[Bi]) ≤ 20

θζ
+ 1 .

To see the second part of the claim, observe that each vertex of G[Vi \ Bi] is contained in at
most 100

(θζ)2 triangles. Let ∆∗ = (1 + θ)∆θ and

f =

(
(1 + θ)∆θ

)2

100/(θζ)2
=

(θζ)2∆2
∗

100
≥ ∆

2+
2ζ
3

1+
2ζ
3

∗ (ln ∆∗)
2 ,

where the last inequality holds for ∆ ≥ ∆θ,ζ . Applying Theorem 6.8 to G[Vi \Bi] (by plugging in
ζ/3 for the ε in Theorem 6.8) we get that, for all ∆ ≥ ∆θ,ζ ,

χ`(G[Vi \Bi]) ≤ (1 + ζ/3)
∆∗

ln
√
f

= (1 + ζ/3)
(1 + θ)∆θ

ln (1+θ)θζ∆θ

10

= (1 + ζ/3)
(1 + θ)∆θ

θ ln ∆ + ln (1+θ)θζ
10

≤ (1 + ζ/2)
(1 + θ)

θ

∆θ

ln ∆

= (1 + ζ/2)
(1 + θ−1)∆θ

ln ∆
,

as claimed.

116

8.4.5 Proof of Lemma 8.16
Let ε′ := ζ(2 + δ) and recall that ε′ < 1

10
by hypothesis. By the definition of j, for every t < j,

∆t ≥ ∆/(2t) >
f

1
ε′

1 + δ
,

and f
1
ε′ /(1 + δ) can be made arbitrarily large by taking f to be sufficiently large. Hence, we can

assume that ∆t is sufficiently large in order for ∆t+1 ≤ ∆t

2
+ ∆

2
3
t ≤ 1

2

(
∆

1
3
t + 1

)3

to hold. Taking

cube roots and subtracting 1

2
1
3−1

from both sides we get

∆
1
3
t+1 −

1

2
1
3 − 1

≤ 1

2
1
3

(∆
1
3
t + 1)− 1

2
1
3 − 1

=
1

2
1
3

(
∆

1
3
t −

1

2
1
3 − 1

)
.

Therefore,

∆
1
3
j −

1

2
1
3 − 1

≤ 1

2j/3

(
∆

1
3
0 −

1

2
1
3 − 1

)
. (8.7)

Since ∆0 = ∆, 2
1
3 − 1 > 1

4
and ∆/2j−1 > f

1
ε′

1+δ
is large enough, (8.7) implies that

∆
1
3
j ≤

∆
1
3

2j/3
+ 4 ≤ (1 + δ)

1
3

∆
1
3

2j/3
.

Therefore, we have shown that ∆j ≤ (1 + δ) ∆
2j

. Note also that the same proof shows that for every
t ≤ j we have that ∆t ≤ (1 + δ) ∆

2t
.

We turn now to the claim regarding sj . For all t < j, we have by definition

st ≥
s0

4t
=

∆2

4tf
=

1

(1 + δ)2

(
(1+δ)∆

2t

)2

f
≥ 1

(1 + δ)2

(
(1 + δ)∆

2t

)2−ε′

≥ 1

(1 + δ)2
∆2−ε′
t , (8.8)

where in the last inequality we used the fact that ∆t ≤ (1+ δ) ∆
2t

for all t ≤ j. Using (8.8) to bound
∆t in the expression that defines st, we get

st+1 ≤
st
4

+ 2((1 + δ)2st)
3
2

1
(2−2ε′) . (8.9)

To bound the r.h.s. of (8.9) we recall that ε′ < 1
10

implying 3
2(2−2ε′)

< 3
2(2−1/5)

= 5/6. Assuming
that f (and, thus, ∆t) is large enough, we obtain

st+1 ≤
st
4

+ 3s
5/6
t ≤ 1

4
(s

1/6
t + 2)6 =

1

4
(st + 12s

5/6
t + 60s

2/3
t + · · ·) . (8.10)

Hence, taking 6-th roots and subtracting 5
61/6−1

from both sides, we obtain

s
1/6
t+1 −

5

61/6 − 1
≤ 1

41/6
(s

1/6
t + 2)− 5

61/6 − 1
≤ 1

41/6

(
s

1/6
t −

5

61/6 − 1

)
.

117

Therefore

s
1/6
j −

5

61/6 − 1
≤ 1

4j/6

(
s

1/6
0 − 5

61/6 − 1

)
,

and, since s0 = ∆2/f ,

s
1/6
j ≤ (∆2)1/6

4j/6f 1/6
+

5

61/6 − 1
≤
(

∆2

4jf

)1/6

+ 15 .

Since
∆2

4jf
=

(
∆

2j

)2
1

f
=

(
∆

2j−1

)2
1

4f
>

(
f 1/ε′

1 + δ

)2
1

4f
=

f
2
ε′−1

4(1 + δ)2

can be made arbitrarily large by taking f sufficiently large, we see that(
∆2

4jf

)1/6

+ 15 ≤ (1 + δ)1/3

(
∆2

4jf

)1/6

.

Thus, sj ≤ ((1 + δ)∆/2j)2/f , completing the proof.

8.4.6 Proof of Proposition 6.9
We use the term “with high probability” to refer to probabilities that tend to 1 as n goes to infinity.
Corollary 6.9 follows in a straightforward way from the following lemma.

Lemma 8.17. For any δ ∈ (0, 1) there exists a constant d0 such that, for any d ∈
(
d0 lnn, (n lnn)

1
3

)
,

each vertex of the random graph G = G(n, d/n) is contained in at most ∆δ triangles with high
probability, where ∆ is the maximum degree of G.

Proof of Corollary 6.9. According to [7], for a graph G ∈ G(n, d/n) we know that with high
probability

χ(G) =
1

2

d

ln d
(1 + o(1)) . (8.11)

Fix ζ ∈ (0, 1) and δ ∈ (0, 2ζ
1+2ζ

). According to Lemma 8.17, there exists a constant d0 such

that for any d ∈
(
d0 lnn, (n lnn)

1
3

)
each vertex of G = G(n, d/n) is contained in at most ∆δ

triangles with probability that tends to 1 as n goes to infinity. Thus, we can apply Theorem 6.8
with parameter ζ > 0 since

f =
∆2

∆δ
> ∆2− 2ζ

1+2ζ (ln ∆)2,

for large enough ∆. This yields an upper bound q on the chromatic number of G that is at most

q = (1 + ζ)
∆

ln
√
f

≤ (1 + ζ)
∆

1+ζ
1+2ζ

ln ∆ + ln ln ∆

≤ (1 + 2ζ)
∆

ln ∆
. (8.12)

118

Moreover, since the expected degree of every vertex of G is d and its distribution is binomial
with parameter d

n
, standard Chernoff bounds and the union bound imply that for any η ∈ (0, 1),

∆ ≤ (1 + η)d with high probability, for large enough d0.
Combining the latter fact with (8.11) and (8.12), we deduce that we can find an arbitrarily small

constant η′ ∈ (0, 1) such that

q ≤ (2 + η′)χ(G)

by choosing ζ and η sufficiently small. Picking η′ = 4ε
1−2ε

we obtain χ(G) ≥ q
2+η′

≥ q(1
2
− ε),

concluding the proof of Proposition 6.9.

8.4.7 Proof of Lemma 8.17
Let ∆v be the random variable that equals the degree of vertex v of G. Observe that ∆v ∼
Binom(n−1, d

n
) and, therefore, using a standard Chernoff bound and the fact that d ≥ d0 log n we

get that

Pr

[
∆v /∈ (1± 1

10
)d

]
≤ 1

n2
,

for large enough d0. Thus, by a union bound we get that Pr[∆ ∈ (1± 1
10

)d] ≤ 1
n

.
Let Tv be the number of triangles that contain vertex v and B be the event that ∆ /∈ (1± 1

10
)d.

Then,

Pr[Tv > ∆δ] ≤ Pr[Tv > ∆δ | B] + Pr[B] ≤
Pr[
(
Tv > ∆δ

)
∩B]

1− 1
n

+
1

n
.

Observe that Tv ∼ Binom
((

n−1
2

)
,
(
d
n

)3
)

and E[Tv] ≤ d3

2n
. Thus, for any fixed value of ∆ ∈

(1± 1
10

)d, setting 1 + β = ∆δ

d3/2n
and using a standard Chernoff bound we obtain:

Pr[Tv > ∆δ] ≤ e−
β2d3/2n

3 ≤ 1

n2

since

β ≥
(
(1− 1

10
)d
)δ − d3/2n

d3/2n
> 0 ,

1

3
β2 d

3

2n
≥ 1

3

((
(1− 1

10
)d
)δ − d3/2n

)2

d3/2n
≥ 2 lnn ,

whenever d ∈ [d0 lnn, (n lnn)
1
3] and for large enough n and d0. Taking a union bound over v

concludes the proof of the lemma.

119

8.5 Proofs Omitted from Chapter 7

8.5.1 Proof of Lemma 7.16
We will need the following standard concentration bound (see, e.g., Chapter 10, Section 10.1
of [79]).

Lemma 8.18. Let X be a random variable determined by n independent trials T1, . . . , Tn, and
such that changing the outcome of any one trial can affect X by at most c. Then

Pr[|X − E[X]| > λ] ≤ 2e−
λ2

2c2n .

Proof of Part (a) of Lemma 7.16. Recall that t = 8(K + 1)2δ−1 + 2 and that δ = ε
4
. Consider

a random state σ distributed according to µ and a fixed state τ ∈ Ω, and notice that applying
Theorem 7.7 with the parameter ε instantiated to δ and our choice of t imply that

µ(e ∈Mi | Qi
v(t, σ) = Qi

v(t, τ)) ≥ (1− δ) 1− δ
χ∗e(G)

≥
1− ε

2

χ∗e(G)
,

for any vertex v, any edge e adjacent to v and any i ∈ [N]. This implies

E[dGσ(v) | Qi
v(t, σ) = Qi

v(t, τ)] ≤ ∆

(
1−

1− ε
2

χ∗e(G)

)N
≤ χ∗e(G)

(
1−

1− ε
2

χ∗e(G)

)N
. (8.13)

Now, since N = o(χ∗e(G)), we have

E[dGσ(v) | Qi
v(t, σ) = Qi

v(t, τ)] ≤ χ∗e(G)

(
1− (1 + o(1))

(1− ε
2
)N

χ∗e(G)

)
≤ χ∗e(G)−

(
1− 9ε

17

)
N .

(8.14)

Further, since c∗ = χ∗e(G)− (1 + ε)−1N and ε ≤ 1
10

, (8.14) yields

E[dGσ(v) | Qi
v(t, σ) = Qi

v(t, τ)] ≤ c∗ −
(

1− 9ε

17
− (1 + ε)−1

)
N ≤ c∗ − ε

3
N . (8.15)

As the choices of the Mi are independent and each affects the degree of v in G′ by at most 1, we
can apply Lemma 8.18 with λ = (ε

3
− ε

4
)N = ε

12
N to prove part (a). In particular, recalling that

N = bχ∗e(G)
3
4 c ∼ ∆3/4 we have that

µ
(
dGσ(v) > c∗ − ε

4
N
∣∣∣ Qi

v(t, σ) = Qi
v(t, τ)

)
≤ 2e−

λ2

2N ≤ 1

∆C+∆
1
3

,

for any constant C for sufficiently large ∆.

Proof of Part (b) . The proof of part (b) is similar. Consider again a random state σ distributed
according to µ and fix a state τ ∈ Ω. Theorem 7.7 implies that for each i ∈ [N], the probability
that an edge e with both endpoints in H is in Mi, conditional on Qi

H(t, σ) = Qi
H(t, τ), is at least

(1 − δ) 1−δ
χ∗e(G)

≥ 1− ε
2

χ∗e(G)
. Moreover, Edmonds’ characterization of the matching polytope (which we

120

have already seen in the the proof of Lemma 7.11) implies that the number of edges in G with both
endpoints in H is at most χ∗e(G)bV (H)−1

2
c. Similar calculations to the ones in part (a) reveal that

E[|Eσ(H)| | Qi
H(t, σ) = Qi

H(t, τ)] ≤
(
V (H)− 1

2

)
(c∗ − ε

3
N) ,

where Eσ(H) is the set of edges of Gσ induced by H . Since the choices of matchings Mi are
independent and each affects |Eσ(H)| by at most |V (H)|−1

2
, we can again apply Lemma 8.18 to

prove part (b).

121

	Introduction
	The Probabilistic Method and the Lovász Local Lemma
	Connection to Local Search and Contributions
	Organization of the Thesis

	The Lovász Local Lemma
	The Lovász Local Lemma
	The Lopsided Local Lemma
	Extensions

	Algorithmic Techniques
	Algorithmic Framework
	The Entropy Compression Method
	An Algorithm for Satisfiability
	Uniform Random Walks in Abstract Spaces

	Backward-Looking Analysis
	Witness Trees
	The Moser-Tardos Algorithm
	Proof of Theorem 3.9

	Forward-Looking Analysis
	A General Algorithmic LLL Condition
	Causality, Lopsidependency and Approximate Resampling Oracles
	Forward-Looking Witness Structures and the Role of the Flaw Choice Strategy
	Proof of Theorem 3.19
	Proof of Theorem 3.15

	Point-to-Set Correlations and a Linear Algebraic Perspective
	The Lovász Local Lemma as a Spectral Condition
	Point to Set Correlations
	Informal Discussion

	A New Algorithmic LLL Condition
	Proof of Theorem 4.6
	Charges as Norms of Transition Matrices
	Tracking the Set of Current Flaws
	Bounding the Sum
	Other Flaw Choice Strategies

	Applications to Backtracking Algorithms
	The Variable Setting
	Acyclic Edge Coloring

	Commutative Algorithms
	Commutativity and the Witness Tree Lemma
	Approximating the LLL-distribution
	Byproducts of Theorem 5.7
	Entropy of the Output Distribution
	Partially Avoiding Flaws
	Dealing with Super-Polynomially Many Flaws

	Proof of Theorem 5.7
	Proof of Theorem 5.5
	Proof of Lemma 5.18
	Proof of Lemma 5.19
	Proof of Lemma 5.20

	An Example: Rainbow Matchings
	Finding Rainbow Perfect Matchings
	Number of Rainbow Perfect Matchings
	Low Weight Rainbow Perfect Matchings
	Finding Rainbow Matchings with many edges

	Coloring Graphs with Sparse Neighborhoods
	Triangle-Free Graphs
	The Algorithm
	Proving Termination
	A Lower Bound on the Number of Possible Outputs
	Proof of Lemma 6.3

	General Graphs
	A Hybrid Algorithm
	Proving Termination
	Proof of Lemma 6.13
	Proof of Lemma 6.15

	Efficiently List-Edge Coloring Multigraphs Asymptotically Optimally
	Statement of Results and Technical Overview
	Technical Overview

	Hard-Core Distributions on Matchings
	Edge Coloring Multigraphs: Proof of Theorem 7.3
	The Algorithm
	Proof of Lemma 7.10
	Proof of Lemma 7.13
	Proof of Lemma 7.14

	List-Edge Coloring Multigraphs: Proof of Theorem 7.4
	A High Level Sketch of the Existential Proof
	The Algorithm
	Proof of Theorem 7.4
	Proof of Lemma 7.20

	Bibliography
	Appendices
	Matrices and Norms
	Recursive Algorithms
	Dense Neighborhoods
	A Left-Handed Algorithm
	Forests of the Recursive Walk (Theorem 8.2)
	Forests of the Left-Handed Walk (Theorem 8.6)

	Proofs Omitted from Chapter 5
	Proof of Theorem 5.11
	Proof of Theorem 5.12

	Proofs Omitted from Chapter 6
	Proof of Lemma 6.2
	Proof of Lemma 6.5
	Proof of Theorem 6.10
	Proof of Lemma 8.14
	Proof of Lemma 8.16
	Proof of Proposition 6.9
	Proof of Lemma 8.17

	Proofs Omitted from Chapter 7
	Proof of Lemma 7.16

