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Abstract

Complex-valued Deep Learning with
Applications to Magnetic Resonance Image Synthesis

by

Patrick M. Virtue

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael Lustig, Co-chair
Professor Stella X. Yu, Co-chair

Magnetic resonance imaging (MRI) has the ability to produce a series of images that each
have different visual contrast between tissues, allowing clinicians to qualitatively assess
pathologies that may be visible in one contrast-weighted image but not others. Unfortu-
nately, these standard contrast-weighted images do not contain quantitative values, produc-
ing challenges for post-processing, assessment, and longitudinal studies. MR fingerprinting
is a recent technique that produces quantitative tissue maps from a single pseudorandom
acquisition, but it relies on computationally heavy nearest neighbor algorithms to solve the
associated nonlinear inverse problem. In this dissertation, we present our deep learning
methods to speed up quantitative MR fingerprinting and synthesize the standard contrast-
weighted images directly from the same MR fingerprinting scan.

Adapting deep learning methodologies to MR image synthesis presents two specific chal-
lenges: 1) complex-valued data and 2) the presence of noise while undersampling.

MRI signals are inherently complex-valued, as they are measurements of rotating mag-
netization within the body. However, modern neural networks are not designed to support
complex values. As an example, the pervasive ReLU activation function is undefined for
complex numbers. This limitation curtails the impact of deep learning for complex data
applications, such as MRI, radio frequency modulation identification, and target recogni-
tion in synthetic-aperture radar images. In this dissertation, we discuss the motivation for
complex-valued networks, the changes that we have made to implement complex backpropa-
gation, and our new complex cardioid activation function that made it possible to outperform
real-valued networks for MR fingerprinting image synthesis.

In Fourier-based medical imaging, undersampling results in an underdetermined system,
in which a linear reconstruction will exhibit artifacts. Another consequence is lower signal-
to-noise ratio (SNR) because of fewer acquired measurements. The coupled effects of low
SNR and underdetermined system during reconstruction makes it difficult to model the
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signal and analyze image reconstruction algorithms. We demonstrate that neural networks
trained only with a Gaussian noise model fail to process in vivo MR fingerprinting data,
while our proposed empirical noise model allows neural networks to successfully synthesize
quantitative images. Additionally, to better understand the impact of noise on undersampled
imaging systems, we present an image quality prediction process that reconstructs fully
sampled, fully determined data with noise added to simulate the SNR loss induced by a given
undersampling pattern. The resulting prediction image empirically shows the effects of noise
in undersampled image reconstruction without any effect from an underdetermined system,
allowing MR pulse sequence and reconstruction developers to determine if low SNR, rather
than the underdetermined system, is the limiting factor for a successful reconstruction.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) has the ability to measure soft tissue contrast and
subtle changes in anatomic function that cannot be detected by other imaging modalities.
The capabilities of MRI lie far beyond what is used during a standard clinical exam. MRI has
the ability to encode the three-dimensional velocity of blood flow, and MRI is able to quan-
titatively measure specific tissue parameters in the body, allowing for more accurate analysis
and the ability to track a patient’s progress over time. MRI produces many types of images
that can be categorized into two basic groups: qualitative images, most commonly, images
known as contrast-weighted images, and quantitative images, e.g., that contain numerical
tissue properties. Unfortunately, generating all of these images requires many repeated ac-
quisitions that consume significantly more time than is cost-effective for an already expensive
clinical MRI exam. Hence, for the sake of time and money, clinicians limit themselves to a
baseline set of images rather than taking advantage of all that MRI has to offer.

MR fingerprinting is a recent technique that aims to acquire the data required for a broad
set of quantitative images with only a single scan [6]. MR fingerprinting then relies upon im-
age synthesis methods to convert the raw data to quantitative images for health professionals
to analyze. However, existing synthesis methods for reconstructing MR fingerprinting data
are based on incomplete simulation models; furthermore, they are computationally expensive
as their runtime grows exponentially with the number of desired quantitative images.

In this thesis, we propose deep learning as a new method for MR fingerprinting synthesis.
Deep learning is able to learn a mapping from the acquired MRF data to both quantitative
images and the standard contrast-weighted images without relying on oversimplified simu-
lation models. Additionally, deep learning scales well as it is more computationally efficient
in terms of the number of desired images.

To develop our deep-learning MRF synthesis methods, we confront two primary chal-
lenges. First, MRI produces complex-valued data but modern deep learning methodologies
are designed for real-valued data. Second, MR fingerprinting data is undersampled, which
results in an undetermined system and noisy artifacts in the data.

We make three contributions towards developing robust deep learning based models from
undersampled MRI data in clinical settings: 1) evolving deep learning methods for complex-
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valued applications, 2) leveraging deep learning to extend the capabilities of MR fingerprint-
ing, and 3) developing tools to practically balance the degree of undersampling and the signal
to noise ratio in a clinical acquisition.

1.1 MRI Overview
Certain atoms, such as hydrogen, have a magnetic moment that reacts to the magnetic

field within a magnetic resonance imaging (MRI) scanner. MRI works by altering the mag-
netic field to excite these magnetic moments and then measuring the induced magnetic field
as they relax back to their equilibrium state. Different tissues will react at different rates
depending on their chemical composition and molecular structure.

One of the strengths of MRI is that it can adjust its scan parameters to maximize the
visual contrast between different tissue types. For example, it can acquire an image with
a strong contrast between white matter and gray matter to help measure the thickness of
the cortex in the brain, a key parameter to diagnosing neurodegenerative disorders, such
as Alzheimer’s disease [7]. MRI’s ability to customize these contrast-weighted images can
also be a drawback as it often requires additional exam time to repeat scans with different
settings to accentuate the contrast between various pairs of tissues, such as between fat and
water or between benign and malignant tissue.

Advanced MRI techniques include the ability to measure the four-dimensional velocity
of blood flow by encoding the velocity in the phase of the complex-valued MRI signal [8].
Additionally, MRI can quantitatively measure specific tissue parameters in the body, rather
than the qualitative contrast-weighted image mentioned above. This quantitative parameter
mapping allows for more accurate analysis and the ability to track a patient’s progress over
time [9, 10]. Unfortunately, these advanced techniques require many repeated acquisitions
that consume significantly more time than is cost-effective for an already expensive clinical
MRI exam.

MRI compressed sensing [11] and MR fingerprinting [6] are two recent developments that
scan faster by pseudorandomly undersampling the acquisition and then rely on a model of
the system to recover the full-fidelity image data. More specifically, compressed sensing is
an image reconstruction technique that aims to reconstruct an image from undersampled
data. MR fingerprinting, on the other hand, uses a single pseudorandom data acquisition to
produce quantitative tissue maps, such as mapping the relaxation rates of the tissue at each
pixel location.

Deep learning has been shown to be very well suited to learn a model to synthesize images
from these undersampled acquisitions [12]. However, deep learning research for complex-
valued clinical applications such as MR reconstruction and MR fingerprinting remains in its
infancy.
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1.2 Complex-valued Deep Learning
MRI data is acquired in the frequency domain of the image and is inherently complex-

valued. This presents a challenge for MRI applications of deep learning methods, as neural
network methods and software have been designed with only real values in mind. For exam-
ple, the max operator in the popular ReLU activation function is undefined. Without viable
complex-valued neural networks, applications will either drop the phase of the signal or split
the real and imaginary values into two channels, ignoring the inherent relationship between
the two components [13, 14, 15].

Pioneering work in the 1990s began to show that complex-valued neural networks could
leverage mathematical properties of complex values, such as the complex identity theorem
[16], to learn more efficient transform functions than with real-valued networks [1], see Figure
1.1.

Figure 1.1 : Illustration of how a complex-valued neural network could learn a unique transform func-
tion, despite an under-specified training dataset. Even though the training data lie on a single line,
left, the complex identity theorem implies that this is sufficient to define a unique complex-valued
holomorphic transform function, center [1]. However, there is no such theorem when considering
real-valued transform functions, right.

These early works attempted to use various complex-valued activation functions [1, 17],
but these attempts had limited success in applications to real-world settings.

More recent work in complex-valued deep learning aims to improve the convergence and
stability of neural networks by building upon complex number theory, including unitary
weight matrices [18] and wavelet transforms [19, 20]. Yet another set of researchers have
begun to generalize complex deep learning by recognizing that complex-values could be
extended to three dimensions as quaternions [21]. Most recently, complex-valued data are
approached from a Riemannian manifold perspective, and new CNN layer functions are
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developed in order to preserve equivariance and invariance properties that are important for
complex numbers [4].

Our research takes a contrasting approach. Where prior work begins from mathematical
principles and thence re-envisions deep learning, we take a systems-oriented approach. Start-
ing from existing deep-learning architectures, we identify the limitations that prevent these
approaches from incorporating complex-valued data; we then extend the existing systems
with the missing mathematical foundations needed to support complex data.

We design and implement a complex-valued network and propose two new complex acti-
vation functions, including the complex cardioid function. The cardioid activation function
preserves the input phase while gradually attenuating the input magnitude as the input
phase rotates from the positive real axis to the negative real axis. Of particular note is
that the cardioid activation reduces to a ReLU function when its domain is limited to the
real axis. Where prior attempts at complex-valued activation functions failed to match the
performance of their real-valued equivalents, cardioid not only meets but at times surpasses
the accuracy of real-valued networks for MR fingerprinting.

1.3 Deep Learning for MR Fingerprinting
MR fingerprinting produces quantitative tissue maps from a single pseudorandom acqui-

sition. Tissue maps include specific tissue parameters (T1, T2), as well as system parameters
(B0, B1). However, MR fingerprinting relies on computationally heavy dictionary matching
algorithms to solve the associated nonlinear inverse problem. Because the computational
complexity of dictionary matching scales exponentially with the number of parameters, MR
fingerprinting is limited to mapping only a small set of different parameters.

We replace the computationally heavy dictionary matching process entirely with a complex-
valued neural network. Our approach scales linearly with the number of parameters, opening
MR fingerprinting to a broader set of applications with more parameters being modeled.

Prior works to improve MR fingerprinting performance include more effective acquisition
encoding [22, 23], improved reconstruction methods [24, 25], and dictionary compression via
singular value decomposition [26]. Our proposed method complements these prior works and
can be used in conjunction with them for future improvements.

Despite the quantitative information present in the parameter maps, clinicians still re-
quire contrast weighted images as part of an MRI exam protocol. We demonstrate that
the MR fingerprinting signal is rich enough to synthesize contrast-weighted images as well,
potentially reducing exam times by several minutes. By learning to directly convert the
MRF signal into desired contrast-weighted images, a trained neural network bypasses the
inadequate simulation steps required to synthesize contrast images via parameter maps [27],
Figure 1.2.
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Figure 1.2 : Our proposed direct contrast synthesis (DCS) uses a trained neural network to transform
the MR fingerprinting signal directly into many different contrast-weighted images. DCS bypasses
two simulation steps and avoids incomplete modeling assumptions and error propagation.

1.4 Noise in Undersampled Reconstruction
Our third contribution aids in the practical application of undersampled imaging sys-

tems. The challenge is that system noise is coupled with incoherent acquisition artifacts.
When skipping acquisition measurements at regular intervals, the resulting data has aliasing
ambiguities that cannot be resolved. Compressed sensing [11] and MR fingerprinting, on the
other hand, acquire data using irregular sampling patterns, which cause incoherent aliasing
that presents as noise. Unfortunately, this aliasing is coupled with the system noise during
reconstruction, complicating an already challenging inverse problem.

Compressed sensing theory has provided us with an extensive analysis of the bounds of a
successful recovery of undersampled data [28, 29, 30]. However, when testing a compressed
sensing reconstruction algorithm on a new, undersampled clinical dataset and the image
results are unacceptable, it is difficult to understand the cause of the failure from theoretical
bounds.

We present an image quality prediction process to provide the tools to empirically ana-
lyze the effects of noise in undersampled reconstruction systems. This allows us to answer
questions like, "Should I improve my SNR, or reduce my undersampling rate?" in a practical
setting.
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1.5 Organization and Previously Published Work
In Chapter 2, we propose novel complex-valued neural network activation functions and

integrate complex-valued backpropagation and network layers into modern deep learning
software frameworks. This chapter includes published work with Stella Yu and Michael
Lustig [31, 32].

In Chapter 3, we apply deep learning to solve several problems in MR fingerprinting and
introduce an empirical model to train networks to be robust to the noise and undersampling
artifacts present in MRF acquisitions. This chapter includes published work with Jon Tamir,
Mariya Doneva, Stella Yu, and Michael Lustig [31, 33, 34].

In Chapter 4, we propose a model to assess the effectiveness of undersampling reconstruc-
tion methods by simulating a system with undersampling noise that is no longer coupled to
undersampling aliasing. This chapter includes published work with Michael Lustig [35].
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Chapter 2

Complex-valued Deep Learning

During the last seven years, deep learning has fueled the current rejuvenation of artificial
intelligence. The 2012 paper from Krizhevsky et al. [36] demonstrated that deep neural
networks could be efficiently trained on GPUs with big data [37] to produce record-breaking
results in the computer vision task of image classification. One of the primary reasons for
the subsequent acceleration in deep learning research and development is the accessibility of
neural network software frameworks. Shortly after the Krizhevsky paper, the neural network
framework, Caffe, made it possible quickly reproduce results and build upon the latest deep
learning research [38]. Caffe, a predecessor to deep learning frameworks TensorFlow (Google)
and Caffe2 (Facebook), provided seamless GPU support, and being an open-source project,
there was very little lag time between the publication of breakthrough techniques and when
they were implemented as a layer/algorithm in Caffe.

While computer vision applications were quick to adopt deep learning, not all domains
can leverage the benefits of existing neural network libraries. Domains with complex-valued
data cannot directly integrate real-valued network software into their applications. Deep
learning research is active in complex-valued applications, including radio frequency (RF)
signal classification [39], synthetic aperture radar (SAR) target detection [40, 41], and MRI
[12, 42], but the data passed to neural networks is either broken into independent real and
imaginary channels or the phase of the complex-data is simply discarded. Without access to
complex-valued implementations of deep learning software, alternative real-valued solutions
are used and the benefits of retaining a complex representation remains an open question.

Initial work on complex-valued deep learning showed that complex networks could lever-
age mathematical properties of complex values, such as the complex identity theorem to
learn more efficient transform functions than with real-valued networks [1]. These early
works attempted to use various complex-valued activation functions [1, 17]. However, these
attempts had limited success in applications to real-world settings.

More recent work in complex-valued deep learning aims to improve the convergence
and stability of neural networks by building upon complex number theory, unitary weight
matrices [18] and wavelet transforms [19, 20]. Yet another set of researchers have begun to
generalize complex deep learning by recognizing that complex-values could be extended to



2.1. COMPLEX NUMBERS 8

three dimensions as quaternions [21]. Most recently, complex-valued data are approached
from a Riemannian manifold perspective, and new CNN layer functions are developed in
order to preserve equivariance and invariance properties that are important for complex
numbers [4].

In this chapter, our research takes a contrasting approach. Where prior work begins from
mathematical principles and thence re-envisions deep learning, we take a systems-oriented
approach. Starting from existing deep-learning architectures, we identify the limitations
that prevent these approaches from incorporating complex-valued data; we then extend the
existing systems with the missing mathematical foundations needed to support complex data.
We present a specification for implementing modern complex-valued networks, including new
complex activation functions and a reference to our associated implementation of complex-
valued networks, built as an extension to the Caffe deep learning framework [32].

Later, in Chapter 3, we put complex networks to the test with the MR fingerprinting
application, where we show that the proposed complex cardioid activation function enables
complex networks to match and even exceed the performance of real-valued networks with
separate input channels for real and imaginary components [31].

2.1 Complex numbers
Before getting into the motivation and background for complex-valued deep learning,

we should first lay out the basics of complex numbers and the relationship to their various
real-valued components.

A complex number, z ∈ C, consists of a real component, x ∈ R, and an imaginary
component, y ∈ R:

z = x+ iy (2.1)

where i =
√
−1. The same complex number may be written in exponential, or polar, form

in terms of its magnitude, m ∈ R+, and its phase, θ ∈ R:

z = meiθ (2.2)

The complex conjugate is a common operation used in complex arithmetic. The complex
conjugate, z̄, is a reflection of a complex point, z, over the real axis. It may be computed by
negating the imaginary component or the phase of the input point:

z̄ = x− iy (2.3)
z̄ = me−iθ (2.4)

The real-valued components of a complex number may be extracted as follows:

Real x = Re(z) x = 1
2
(z + z̄)

Imaginary y = Im(z) y = 1
2i

(z − z̄)

Magnitude m = ||z|| m = (zz̄)
1
2

Phase θ = ∠z θ = −i log z
||z||

(2.5)
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2.2 Motivation
At first glance, complex numbers seem to be just an alternative way of representing

a two-dimensional real vector. In that case, why would anyone bother with a complex
representation when deep learning toolkits are already designed to handle vector data? We’ll
answer this question later in this motivation section, but first, let’s discuss where complex
values come into play in the context of neural network applications.

2.2.1 Where Do Complex Values Occur in Deep Learning Applica-
tions?

Opportunities to leverage complex-valued deep learning can arise in several different
types of applications. Complex-values occur naturally in the data itself, in the complex
spectral domain of real-valued applications, and in constructed complex representations.
Additionally, complex representations have been used to enable more efficient learning in
neural network models.

Naturally complex data

MRI measures the oscillating electrical current induced by changing magnetic fields within
the body. The Fourier transform of this complex signal produces a complex-valued image con-
taining the spatial location of different tissue types. While the magnitude of an MRI image
pixel is often related to the quantity or characterization of different tissues, the phase cannot
be disregarded as it can represent the velocity of blood flow, Figure 2.1, or contain valuable
information aliased from other pixels during a fast, undersampled scan. Similarly, for the
tasks of radio frequency signal classification [39, 4, 43], Figure 2.2, and synthetic-aperture
radar (SAR) target detection [4], leveraging the relationship between real and imaginary
components of the complex source signal can be critical.

Complex spectral domain

Even in applications with real-valued data, transformations to a complex domain can
enable simpler or more effective data processing. Let us not forget that in classical image
processing and computer vision, the complex-valued 2D Fourier transform converts image
data to the spatial frequency domain where statistical algorithms, and in some cases, humans,
are better able to process and interpret the data. Similarly, real-valued speech data is often
transformed into complex spectrograms to visualize frequencies and harmonics. However,
most methods discard the phase of this signal before processing. Recently, Fu et al. trained a
neural network to denoise the spectrograms, but in this case, the real and imaginary signals
were treated independently by the neural network [44].

Recent work on neural networks for graph-structured data [45, 46], has opened the door
to deep learning solutions in a wide range of applications, including computer graphics [47],
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Figure 2.1 : Visualization of blood flow, right, computed from velocity encoded in the phase of the
MRI signal, left. Repeated scans are performed to encode in the phase the x-, y-, and z-components
of the velocity vector. Images from [2].

quantum chemistry [48], and molecular biology [49]. A key aspect of doing convolutions on
graphs is to use the graph Laplacian [46]. For undirected graphs, this spectral transformation
produces all real-valued eigenvalues, while directed graphs lead to complex-valued eigenvalues
[50].

Constructed complex representations

Complex numbers can provide a natural representation for values that have a positive
scalar intensity and a directional or cyclical relationship. The work from Marie et al. on
AffinityCNN image segmentation uses a complex representation to simultaneously embed
both the prediction confidence and the relative depth between neighboring pixels [51]. This
complex embedding occurs at the end of their segmentation pipeline but could potentially
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Figure 2.2 : Example of time series of complex-valued radio frequency signals from the RadioML
dataset [3]. This figure from [4] shows the magnitude (vertical axis) and color-coded phase of
example radio frequency signals over time (horizontal axis).

benefit from an end-to-end network that optimizes over complex representations in the hidden
layers as well. Amin and Murase employ an even simpler complex embedding, mapping a
finite range of real values to the complex unit circle [52].

Rather than explicitly mapping real values to a complex representation, Cadieu and
Oshausen train a complex-valued sparse coding model to convert real-valued videos into two
features that capture edge structure and motion structure, where the latter is captured via
the phase of their complex-valued sparse coding coefficients [53].

2.2.2 Why Not Use a Real Network with Two Channels?

Complex numbers are isomorphic to a two-dimensional vector consisting of real and
imaginary components. Just like an image with three-dimensional RGB color vectors, the real
and imaginary components could be fed into a real-valued neural network with multiple input
channels. As in standard color image networks, the two input channels would be linearly
combined as part of the first fully connected (or convolution) layer. Unfortunately, this
real-valued inner-product layer operation dismisses the mathematical correlation between
the real and imaginary channels.
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Figure 2.3 : Illustration of the implicit shared weights in a complex inner product layer. In complex
multiplication, the real and imaginary components of the factors affect both effect the real and the
imaginary components of the output (left, top). In order to replicate the behavior of a complex-
valued fully connected layer (left, bottom) in a real-valued network (right), the components of the
weight must be replicated, or shared, in the 2-ch fully connected layer.

Linear Operations

Complex multiplication defines a specific operation for combining the real and imaginary
components to produce the real and imaginary components of the output, Figure 2.3, top
left. It is possible to connect real-valued neural network components to exactly mimic the
complex multiplication in the network’s linear fully connected, or "inner product", layers,
but as shown in Figure 2.3, right, the real and imaginary components of the weights must
be shared, as they each affect both the real and the imaginary components of the output.

When complex numbers are written in exponential form in terms of their magnitude, m,
and phase, θ, it is apparent that multiplying one complex number, z1, by another, z2, has
two effects: the magnitude is scaled by m2 and the phase is rotated by θ2.

z1 := m1e
iθ1 (2.6)

z2 := m2e
iθ2 (2.7)

z1z2 = m1e
iθ1m1e

iθ1 (2.8)

= m1m2e
i(θ1+θ2) (2.9)

When we contrast complex multiplication with scalar vector multiplication, we can see that
complex multiplication naturally has two degrees of freedom, scaling and rotation, rather
than the four degrees of freedom from multiplying by a 2x2 weight matrix, Figure 2.4. For
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a more detailed discussion of complex representations, please see [16].
In applications such as MRI and SAR, the relative change in phase between neighboring

pixels may be of importance and the absolute phase value irrelevant. Two-channel real
networks that treat real and imaginary independently can be problematic if an application
needs to be invariant to this arbitrary global complex scaling across an image [4].

Figure 2.4 : Illustration of the two degrees of freedom, scaling and rotation, in complex multiplication
(center) compared to real-valued implementations (left and right). The set of points on the complex
plane that make up the black letter ’R’, zin, may be changed in different ways depending on the
network implementation of multiplication. With single-channel real weights (left), the effect on the
input ’R’ is only scaling. If implemented with a real-valued fully connected layer with two inputs
and two outputs (right), there are four weight values to be learned, which is a more complicated
model than complex multiplication (center).

Non-linear Operations

While we can use shared weights to replicate complex multiplication in real-valued net-
works, Figure 2.3, non-linear activation functions for complex values are not as straight-
forward. As we discuss more below, standard neural network non-linearities are not trivially
translated to complex values. When passing complex values into a 2-channel real-valued net-
work, the non-linear activation functions in the network will operate on the different channels
independently, which again dismisses the natural correlation between real and imaginary
components in a complex number. For example, when applying the standard ReLU non-
linearity independently to the real and imaginary components of a complex number, some
complex values with large magnitude will be set to zero, which may not be the intent, Figure
2.5. Figure 2.5 also shows that the phase of the complex numbers is altered after applying
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ReLU operations that were designed to either pass or block a signal, but not rotate it.

2.2.3 Why Not Directly Extend Real-valued Layers to Complex?

Table 2.1 : Summary of issues regarding complex versions of common neural network layers.

Layer Type Math Complex Conversion Concerns

Multiplication Inner product
∑

iwizi 3 Well-defined, but 6x floating point
operations:

Convolution
∑

iwizr−i 3 (a+ib)(u+iv) = au−bv+i(av+bu)

Activation Sigmoid (also
softmax, tanh)

1

1 + e−z 7 Unbounded (infinity at iπ(2N−1)).
Probabilistic interpretation lost.

ReLU max(0, z) 7 Max function undefined in complex
domain.

Pooling Max maxi zi 7 Max function undefined in complex
domain.

Average 1
N

∑
i zi 3 Well-defined, but subject to

poor performance as seen in real
networks.

Normalization Batch Norm. ẑ =
z− E[z]√
V[z] + ε

3 Well-defined, including complex
affine post processing, y = γẑ + β,
which may be critical depending on
the activation function.

Loss Euclidean ||Y − Z||22 3 Well-defined.
Cross Entropy

∑
i yi log zi 7 Cannot optimize over complex out-

put.

Modern deep learning libraries have generic data structures that are agnostic to the spe-
cific numerical type. These data structures can hold complex data types in addition to
real-valued floating point types. The structures are used to hold input and output data,
learned parameters, and intermediate features/activations. The software interface for the
network layers and optimization algorithms are designed to process these generic data struc-
tures, so perhaps we could just push our complex data through standard deep learning
architecture implementations. Unfortunately, even assuming the underlying software imple-
mentation supports complex data types for each layer (which is not always the case), the
mathematical operations within many of the network layers are undefined or unstable for
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Figure 2.5 : Effect of ReLU applied independently to real and imaginary channels of an axial slice
of an MRI image. The phase of the image is rendered with a circular rainbow color map that is
darkened towards black for complex values with very small magnitude. Note that in addition to
attenuating pixels with high magnitude, the ReLU applied independently alters the phase of the
input image, as seen by the larger purple and cyan regions in the output phase image. MRI knee
data is from [5].
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complex numbers. Table 2.1 provides a quick summary of which common neural network
layers may be problematic.

Figure 2.6 : The maximum operator, found in ReLU and max pooling, is undefined for complex
numbers.

Max undefined for complex values

ReLU and max pooling have become key non-linear functions in modern neural networks,
providing numerical stability during optimization and an effective means to reduce the di-
mensionality of the data. Figure 2.6 display complex numbers as a two-dimensional vector
to illustrate the problem with the max operation in these two functions. As with comparing
2D vectors, it is unclear how one would determine the max of two complex numbers. In
order to use ReLU or max pooling layers, the max operation would need to be redefined,
e.g. to take the max of the magnitude or the max of just the real component.

Unstable activations

The undefined ReLU activation could be replaced by the traditional activation functions
sigmoid or tanh, but both of these functions have singularities along the imaginary axis of
the complex plane, Figure 2.7. The softmax operation used for classification networks will
also have to be redefined, constrained, or replace, as it is similarly unstable on the complex
plane.

Lost probabilistic interpretation.

With complex input values and resulting complex output, the sigmoid function does not
map values to the range [0, 1] required by any probability distribution. In other words, it
no longer represents the inverse of the log odds models used in logistic regression. Likewise,
the softmax function with complex input values does not represent a probability distribution
over a set of different outcomes.
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Figure 2.7 : Sigmoid activation function defined over the complex plane. Output magnitude (left)
goes to ±infinity at iπ(2N − 1). These singularities may also be seen in the output phase (surface
center; contour right).

Optimization of complex-valued output.

The loss function of a neural network cannot produce a complex value, because, as we
discussed with max functions above, the minimization of complex values is undefined. If
optimization of the loss function is undefined for complex-valued output, it is clear that
we cannot simply reuse deep learning architectures designed for real values without first
understanding the complex mathematics in neural networks forward and backward.

2.3 Complex Calculus Background

2.3.1 Complex-differentiable

The derivative of a complex-valued function, f(z), at a point, z0 ∈ C is defined by:

df

dz

∣∣∣∣
z0

= lim
h→0

f(z0 + h)− f(z0)

(z0 + h)− z0
(2.10)

This is the same definition as real-valued functions, except that for a function to be complex-
differentiable, this derivative definition must produce the same result regardless of the direc-
tion from which h approaches zero. A function is called holomorphic if, for all points in its
domain, it is complex-differentiable in a neighborhood around that point.

Unfortunately, even some seemingly simple functions are not holomorphic. Take, for
example, the absolute square function:

f(z) = |z|2 = zz (2.11)

where z is the complex conjugate of z. This norm-squared function, so often used in op-
timization, is not holomorphic. For instance, at z0 = 1, when h approaches zero from the
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positive real axis, e.g. when h = ε = 1e−10, the derivative is equal to two:

f(1 + ε)− f(1)

(1 + ε)− 1
=

(1 + ε)(1 + ε)− 1

ε
=

1 + 2ε+ ε2 − 1

ε
= 2 + ε→ 2 (2.12)

However, when h approaches zero from the positive imaginary axis, h = iε, the derivative is
equal to zero:

f(1 + iε)− f(1)

(1 + iε)− 1
=

(1− iε)(1 + iε)− 1

iε
=

1− iε+ iε+ ε2 − 1

iε
=
ε

i
→ 0 (2.13)

In fact, according to Liouville’s theorem, the only functions that are bounded (do not ap-
proach ±infinity) and entire (complex-differentiable in a neighborhood of every point in the
finite complex plane) are constant functions. Flat, constant functions are not particularly
useful as activation or loss functions in a neural network. That being said, just as subgra-
dients enable us to optimize functions that are not differentiable across their domain, e.g.
ReLU, we can leverage Wirtinger calculus to optimize functions that are not holomorphic
but are differentiable with respect to their real and imaginary components.

2.3.2 Wirtinger/CR Calculus

As stated in Table 2.1, standard activation functions, such as sigmoid, are problem-
atic because they are either undefined or unbounded when applied to the complex plane.
As discussed in the previous section, requiring neural network functions to have complex-
differentiable properties can be quite limiting. Fortunately, we can leverage Wirtinger calcu-
lus [54], or CR calculus [55], to do gradient descent on functions that are not holomorphic as
long as they are differentiable with respect to their real and imaginary components. The first
of the two Wirtinger calculus derivatives is the R-derivative (or real derivative) which com-
putes ∂f/∂z by treating z as a real variable and holding instances of z constant. Likewise,
the second derivative is the conjugate R-derivative, ∂f/∂z, where z acts as a real variable
and z is held constant. Note: we will often use blue and purple color-coding when we want to
highlight the different uses of the R-derivative and the conjugate R-derivative, respectively.
To illustrate with a specific example, the magnitude function, m, of a complex variable, z,
has the following Wirtinger derivatives:

m(z) := |z| = (zz)
1
2

∂m

∂z
=

1

2

z

(zz)
1
2

∂m

∂z
=

1

2

z

(zz)
1
2

(z treated as constant) (z treated as constant)

Wirtinger derivatives are a convenient means to derive the calculus of complex functions
without expanding the input variable into its real and imaginary components, z = x + iy,
and then differentiating f with respect to x and y. For example, deriving the derivative for
f(z) = z2z with respect to z (with z held as a constant):

∂f

∂z
= 2zz (2.14)



2.3. COMPLEX CALCULUS BACKGROUND 19

is much more straight forward than the derivation with respect to x:

f(z) = f(x, y) = (x− iy)2(x+ iy) (2.15)

∂f

∂x
= 2(x− iy)(x+ iy) + (x− iy)2 (2.16)

= 2x2 + 2y2 + x2 − 2ixy − y2 (2.17)

= 3x2 − 2ixy + y2 (2.18)

The R-derivative and conjugate R-derivatives of a real- or complex-valued function, f , are
related to the derivatives with respect to the real and imaginary components, x and y. From
[55] Equation 9 and proved in [56]:

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
and

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
(2.19)

When working with composite complex functions, the chain rule for the R-derivative and
the conjugate R-derivative is the same as the standard real-valued chain rule when you treat
the complex variables and their conjugates as a pair of two separate values, Figure 2.3.2.

Figure 2.8 : Illustration of complex chain rule when treating the input and output as real/imaginary
pairs (left) or as variable/conjugate pairs (right). For the former, the derivative ∂u2/∂x0 contains
two components related to intermediate variables x1 and y1. Likewise, for the R-derivative, the
chain rule for ∂f2/∂z0 has a term for the intermediate variable z1 and another for its conjugate z1.

From [55] Equations 12-13, the complex derivative identities include:

∂f

∂z
=

(
∂f

∂z

)
∂f

∂z
=

(
∂f

∂z

)
(2.20)

With these identities, the chain rule for the CR derivatives of the composite function
f ◦ g, where g is a complex-valued function of z, is as follows:

∂f

∂z
=
∂f

∂g

∂g

∂z
+
∂f

∂g

(
∂g

∂z

)
∂f

∂z
=
∂f

∂g

∂g

∂z
+
∂f

∂g

(
∂g

∂z

)
(2.21)
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When a function has a real-valued output, f(z) ∈ R, there is an additional pair of
identities:

∂f

∂z
=

(
∂f

∂z

)
(2.22)

∂f

∂z
=

(
∂f

∂z

)
(2.23)

from [55] Equation 17. As we discuss more in Section 2.4.1, this identity greatly simplifies
the computations in complex backpropagation, as the final loss function of any network is
always real-valued.

2.3.3 Gradient Descent

3 2 1 0 1 2 3
Real

3

2

1

0

1

2

3

Im
ag

in
ar

y

Figure 2.9 : One-dimensional example of gradient descent minimizing the real-valued function f(z) =

zz: correctly, using the complex cogradient, ∇zf = z, purple; and incorrectly, using the cogradient,
∇zf = z, blue. The complex cogradient steps towards the minimizing point at the origin, while the
cogradient (the conjugate of the complex gradient) moves in the wrong direction.

At the end of a neural network, there is a real-valued loss function that we are trying
to optimize. We can update complex weight vectors, w by doing gradient descent with
complex-valued gradients:

w ← w − α∇wf , where ∇wf =
[
∂f/∂w1, . . . , ∂f/∂wn

]T (2.24)
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This is the same as gradient descent with real-valued gradients with careful attention paid to
the gradient operator. As shown in [56] and illustrated in Figure 2.9, the direction of steepest
descent is the complex cogradient, ∇wf . Gradient descent extensions such as momentum
and weight decay may be applied on top of this basic update equation.

2.4 Complex-valued Neural Networks
Neural network software libraries contain implementations of multidimensional data struc-

tures, network layers, and optimization algorithms. From Wirtinger calculus backpropa-
gation to specific software implementation challenges, this section describes the details of
complex-valued neural network components and how they relate to existing real-valued net-
work implementations. We show that real-valued layers can be accurately used after complex
layer functions. We describe prior works, as well as our proposed complex layers, including
iGaussian and cardioid activation functions.

The network design presented in this section is based on our reference implementation,
which is an extension of the Caffe deep learning library [38, 32], but it should be a valuable
resource when considering complex-value support for other neural net frameworks.

We group complex network layers into four categories: loss functions, complex-to-real
functions, activation functions, and other, well-defined complex functions. Table 2.2 sum-
marizes the complex network functions that we have implemented in our extension to Caffe
[32]. As shown in Section 2.4.2, all of these layers are designed to interact with existing
real-valued layers commonly implemented in deep learning libraries.

Notation

In general, we denote a complex scalar z ∈ C as z = x+iy, where x ∈ R and y ∈ R are its
scalar real and imaginary components, respectively. When referring to vector values, we will
use bold font, such as z = x + iy, z ∈ CN , x ∈ RN , and y ∈ RN . To simplify notation, we
will refer to the partial derivative of a single input and output of a multidimensional function
rather than defining each element of the gradient or Jacobian. In these cases, we often drop
the notation for the index of the vector or matrix, e.g. ∂f/∂z rather than ∂fi/∂zj.

We denote the function of the `-th layer of a neural network as:

z` = f `(z`−1,w`) (2.25)

where z`−1 is the output of the previous layer and w` ∈ CM is the vector of any learnable
weight parameters in the `-th layer. To again simplify notation, when there is no loss of
generality we will refer to the scalar version of the layer function, dropping the bold type
face.

We define a neural network as a series of composite functions that input data, z0 and
ultimately output the loss value:

fL ◦ fL−1 · · · f2 ◦ f1 (2.26)
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Table 2.2 : Summary of complex network functions.

Category Layer Function Complex
Network
Source/
Section

Real-valued Loss Euclidean ||Y − Z||22 [57, 58],
2.4.1

Complex to Real Magnitude |z| = (zz)1/2 2.4.2

Phase −i log ei∠z 2.4.2

Real component
1

2
(z + z) 2.4.2

Imaginary component
1

2i
(z − z) 2.4.2

Activation Separable sigmoid g
(

Re(z)
)

+ ig
(

Im(z)
)
, [1], 2.4.3

g(x) =
1

1 + e−x

Siglog
z

c+ 1
r
|z|

[17], 2.4.3

iGaussian
(

1− e−zz/2σ2
) z
|z|

2.4.3

Cardioid
1

2
(1 + cos(∠z))z 2.4.3

Well-defined Fully connected/
∑

iwizi + b [57, 58],
2.4.4

Convolution/
∑

iwizr−i + b 2.4.4
Deconvolution

Max pooling (mag) zn, n = argmaxk{|zk|} 2.4.4

Average pooling 1
N

∑
n{zn} 2.4.4

Batch normalization ẑ =
z− E[z]√
V[z] + ε

2.4.4

Complex normalization
z

|z|
= ei∠z 2.4.4

Dropout
1

p
zn, if n ∈ mask 2.4.4
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We will refer to the final loss function in the network as fL and L, interchangeably.

2.4.1 Backpropagation with Real-valued Loss

During backpropagation, each network layer must leverage the gradient computation of
later layers to compute the gradient with respect to its input as well as with respect to
any of its learned parameters. In real-valued networks, this involves applying the chain rule
multiply the upstream derivative times the local derivative for that layer function, Table
2.3, left. With complex numbers and Wirtinger/CR calculus, there now two derivatives to
consider instead of one, Table 2.3, center. To complicate matters, the chain rule to compute
both of these derivatives has two terms rather than one, causing more than four times as
many calculations during the backward pass.

Fortunately, we can significantly reduce both memory and computation time during com-
plex backpropagation by assuming that our final network loss function produces a real-valued
output. This is a valid assumption because the loss is the value that we are trying to min-
imize and, as we discussed in Section 2.2.3, minimizing a complex value rather than real
is an undefined operation. With the real-valued loss assumption and Equation 2.23, back-
propagation only needs to pass one of the two CR derivatives back to the earlier layers 2.3,
right.

Note that although only one of two derivatives is passed backward, both the R-derivative
and the conjugate R-derivative of the layer function are still needed to compute the derivative
of the final layer for the layer input or layer weight. Figure 2.10 illustrates the activations,
weights, and derivatives that flow into and out of each layer during the forward and backward
passes.

From the gradient descent step in Equation 2.24, it is ultimately the conjugate R-
derivative that is needed, so the R-derivative can be dropped. If the software implementation
of gradient descent generically supports complex types, the weight update function will not
need to be changed as long as the conjugate R-derivative is stored in the weight gradient
variables:

wn ← wn − α∂f/∂wn (2.27)

Even if the software framework generally treats complex-values arrays 2-channel floating
point arrays, as in our complex Caffe implementation, we can still reuse the real-valued
solver to update the real and imaginary components of the weights, assuming the weight
gradients are also stored in 2-channel floating point arrays:

wn,real ← Re(wn)− αRe(∂f/∂wn) (2.28)
wn,imag ← Im(wn)− α Im(∂f/∂wn) (2.29)

Euclidean Loss

A real-valued implementation of the Euclidean loss layer is one of the few layers that
could be used as-is in the complex-valued network. The real-valued forward and backward
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Table 2.3 : Comparison of backpropagation calculus.

Standard
Real calculus Complex calculus Complex calculus,

Assuming real-valued loss

Input from layer `+ 1:
∂fL
∂x`

∂fL
∂z`

and
∂fL
∂z`

∂fL
∂z`

Output from layer `:

∂fL
∂x`−1

=
∂fL
∂x`

∂f`
∂x`−1

∂fL
∂z`−1

=
∂fL
∂z`

∂f`
∂z`−1

+
∂fL
∂z`

(
∂f`
∂z`−1

)
∂fL
∂z`−1

=
∂fL
∂z`

∂f`
∂z`−1

+
∂fL
∂z`

(
∂f`
∂z`−1

)
∂fL
∂z`−1

=

(
∂fL
∂z`

)
∂f`
∂z`−1

+
∂fL
∂z`

(
∂f`
∂z`−1

)

Figure 2.10 : Layer ` input and output as well as derivatives required during backpropagation.

calculations are equivalent to a complex version of the layer, assuming that the real-valued
layer interprets the complex input, as well as the output derivative, as just a 2x length vector
of real components concatenated to the imaginary components.

The complex Euclidean loss function of the network prediction vector z = x + iy, given
the fixed ground truth vector, zgt = xgt + iygt is:

L = L(z; zgt) =
1

2
||z− zgt||22 (2.30)

=
1

2
||[xT ,yT ]T − [xTgt,y

T
gt]

T ||22 (2.31)

= Lreal([xT ,yT ]T ; [xTgt,y
T
gt]

T ) (2.32)

See the appendix, Section A.8 for the expanded derivation.
The backward pass of a real-valued Euclidean loss layer with input [Re(z)T , Im(z)T ]T pro-

duces the real and imaginary components of the complex Euclidean conjugate R-derivative,



2.4. COMPLEX-VALUED NEURAL NETWORKS 25

but with a 2x scaling factor:

∂L

∂z
=

1

2
(z− zgt) (2.33)

∂Lreal
∂x

= x− xgt (2.34)

∂Lreal
∂[xT ,yT ]T

= [xT − xTgt,y
T − yTgt]

T (2.35)

= [Re(z− zgt)T , Im(z− zgt)T ]T (2.36)

=

[
Re

(
2
∂L

∂z

)T
, Im

(
2
∂L

∂z

)T]T
(2.37)

There is an extra factor of two in the derivative when using the real-valued implementation,
but this can be accounted for during optimization with a gradient descent learning rate of
half the size.

2.4.2 Hybrid Real/Complex Networks

The output of the loss function of complex-valued neural networks must be a real-valued
scalar to allow optimization algorithms to minimize that loss value. Thus, at some point in
a complex-valued neural network, the complex values must be converted to real values. In
some network architectures, this complex to real conversion may happen at the final layer in
the loss function, for example with Euclidean loss functions. However, if the complex values
are converted to real prior to the loss function, the network will be a hybrid of complex-valued
layers and real-valued layers. This begs the question, do we have to re-implement the real-
valued layers to return the conjugate R-derivatives during backpropagation? In other words,
can we use real-valued implementations for any network layers after the complex activations
have been converted to real values? As we show below, the answer is, fortunately, yes.

To use real-valued layer implementations after complex layers, we just need to account
for this transition in any layers that convert complex values to real values.

Theorem 2.1. Given a network layer function, f`(z`−1) → x`, which maps complex-valued
input, z`−1, to real-valued output, x`, the conjugate R-derivative of the final network layer
function, fL, with respect to z`−1 is:

∂fL
∂z`−1

=
∂fL
∂x`

∂f`
∂z`−1

(2.38)

Proof. From [55] Equation 9, for an R-differentiable function fL with input z` := x` + iy`,

∂fL
∂z`

=
1

2

(
∂fL
∂x`
− i∂fL

∂y`

)
and (2.39)
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∂fL
∂z`

=
1

2

(
∂fL
∂x`

+ i
∂fL
∂y`

)
(2.40)

When fL : R→ R, its derivative with respect to a nonexistent imaginary component is zero,
∂fL/∂y` = 0, so:

∂fL
∂z`

=
1

2

∂fL
∂x`

and (2.41)

∂fL
∂z`

=
1

2

∂fL
∂x`

(2.42)

Leveraging Equations 2.41 and 2.42 along with Equation 2.23 for the real-valued f`, we
can start with the CR calculus chain rule, [55] Equation 16, and modify the conjugate
R-derivative of the final network layer function fL with respect to z`−1 as follows:

∂fL
∂z`−1

=
∂fL
∂z`

∂f`
∂z`−1

+
∂fL
∂z`

(
∂f`
∂z`−1

)
(2.43)

=
1

2

∂fL
∂x`

∂f`
∂z`−1

+
1

2

∂fL
∂x`

(
∂f`
∂z`−1

)
(2.44)

=
1

2

∂fL
∂x`

∂f`
∂z`−1

+
1

2

∂fL
∂x`

∂f`
∂z`−1

(2.45)

=
∂fL
∂x`

∂f`
∂z`−1

(2.46)

�

Though this theorem may be the intuitive way to combine complex and real deep learning
components, it is important to show that we are indeed using the derivatives of existing real-
valued infrastructure correctly with any complex-valued layers.

In addition to the Euclidean loss mentioned above, functions to extract the magnitude,
phase, and real and imaginary components of a complex number are examples of operations
that convert complex-valued input to real-valued output. We have implemented these four
core operations as layers in our complex network reference implementation. We specify the
forward operation for these functions below and use Theorem 2.1 to derive the backward
pass gradients.

Magnitude Layer

The forward function for the complex magnitude layer with complex scalar input z and
real scalar output ẑ := x̂+ iŷ is as follows:

ẑ = m(z) = (zz)1/2 (2.47)
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Note that because m(z) ∈ R+, the imaginary component of ẑ is zero, thus ẑ = x̂.
Local CR derivatives of m:

∂m

∂z
=

1

2

z

(zz)
1
2

=
1

2

z

m(z)

∂m

∂z
=

1

2

z

(zz)
1
2

=
1

2

z

m(z)
(2.48)

As expected from Equation 2.23,

∂m

∂z
=

(
∂m

∂z

)
(2.49)

Because m(z) : C → R, the conjugate R-derivative of final layer with respect to the
conjugates of the input follows Theorem 2.1:

∂L

∂z
=
∂L

∂x̂

∂m

∂z
(2.50)

=
1

2

∂L

∂x̂

z

m(z)
(2.51)

Phase Layer

To compute the phase of complex scalar z, we can normalize z to have unit magnitude
and then take the log and divide by i:

ẑ = f(z) =
1

i
log ei∠z = −i log

z

|z|
(2.52)

Local CR derivatives of f(z):

∂f

∂z
=
−i
2z

∂f

∂z
=

i

2z
(2.53)

See the appendix, Section A.2 for the expanded derivation.
Because f(z) : C → R, the conjugate R-derivative of final layer with respect to the

conjugates of the input follows Theorem 2.1:

∂L

∂z
=
∂L

∂x̂

∂f

∂z
(2.54)

=
∂L

∂x̂

i

2z
(2.55)
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Real Component

The function returning the real component of the complex scalar input z is:

ẑ = Re(z) =
1

2
(z + z) (2.56)

Local CR derivatives of Re(z):

∂ Re

∂z
=

1

2

∂ Re

∂z
=

1

2
(2.57)

Because Re(z) : C → R, the conjugate R-derivative of final layer with respect to the
conjugates of the input follows Theorem 2.1:

∂L

∂z
=
∂L

∂x̂

∂ Re

∂z
(2.58)

=
1

2

∂L

∂x̂
(2.59)

Imaginary Component

The function returning the imaginary component of the complex scalar input z is:

ẑ = Im(z) =
1

2i
(z − z) (2.60)

Local CR derivatives of Im(z):

∂ Im

∂z
=

1

2i

∂ Im

∂z
=
i

2
(2.61)

Because Im(z) : C → R, the conjugate R-derivative of final layer with respect to the
conjugates of the input follows Theorem 2.1:

∂L

∂z
=
∂L

∂x̂

∂ Im

∂z
(2.62)

=
i

2

∂L

∂x̂
(2.63)

2.4.3 Complex Activation Functions

A significant facet of complex network research since the early 1990s has been to overcome
the issue that standard real-valued non-linear layers do not transfer well to complex-valued
networks. Standard non-linear layer functions are either unbounded (e.g. sigmoid(iπ),
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Figure 2.7) or undefined (e.g. the max operator in max pooling and ReLU, Figure 2.6). Ad-
ditionally, with complex outputs, we have lost the probabilistic interpretations that functions
like sigmoid and softmax provide. Without an obvious solution to this issue, past research
has provided a range of potential solutions, for example, limiting the domain of the activa-
tion input to avoid unbounded regions [57], or applying non-linearities to real and imaginary
components separately [1, 52]. In this section, we step through several complex activation
functions found in other work and then propose additional complex non-linear functions.

Prior Works

Complex Sigmoid

In 1990 and 1991, respectively, Kim & Guest and Leung & Haykin introduced the gen-
eralization of the neural network backpropagation calculus for complex values [58, 57]. In
these works, they leveraged the popular sigmoid activation function in their complex-valued
neural network, simply passing complex values through this nonlinearity rather than only
real numbers:

ẑ = g(z) =
1

1 + e−z
(2.64)

Leung & Haykin did recognize that the sigmoid function goes to plus/minus infinity period-
ically on the imaginary axis of the complex plane, Figure 2.7, left. They accounted for this
instability by limiting the domain of the values passed to the activation function; though it
is not clear what mechanism they used to enforce this constraint.

The R-derivative and conjugate R-derivative are as follows:

∂g

∂z
=

e−z

(1 + e−z)2
= g(z)(1− g(z))

∂g

∂z
= 0 (2.65)

The R-derivative is the same as the standard real derivative, while, as Leung & Haykin
noted, the conjugate R-derivative is zero. This is because the sigmoid function is defined
only in terms of z and not z.

Separable Sigmoid

Rather than constraining the complex domain to avoid unstable points in the sigmoid ac-
tivation function, Nitta applied a real-valued sigmoid independently to the real and imaginary
components, placing the respective results into the corresponding channels of the activation
output [1]:

f(z) = g
(

Re(z)
)

+ ig
(

Im(z)
)
, where g(x) =

1

1 + e−x
(2.66)

The R-derivative and conjugate R-derivative are as follows:

∂f

∂z
=

1

2

(
h
(

Re(z)
)

+ h
(

Im(z)
))

(2.67)
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∂f

∂z
=

1

2

(
h
(

Re(z)
)
− h
(

Im(z)
))

(2.68)

where h(z) = g(z)(1− g(z)) is the R-derivative of the sigmoid function. Derivations of these
derivatives are included in the appendix, Section A.3.

Figure 2.11 : Magnitude (left) and phase (right) output of the separable sigmoid activation function
applied to the complex plane.

Note that this separable sigmoid changes the phase of the signal to be in the range [0, 2π]
because the function output always has positive real and imaginary components, Figure 2.11,
right and Figure 2.12, center.

Figure 2.12 : A set of 16 complex values, eight with magnitude 0.5 and eight with magnitude 1.0,
left, are passed to separable sigmoid (center) and siglog (right) activation functions. Note that the
separable sigmoid function maps the input values all to the first quadrant, while siglog preserves
the input phase.

In 2009, Amin and Murase proposed applying the sigmoid separately to the real and imag-
inary components but combining the results to produce a real-valued output [52]. Specifically,
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they propose the following two combinations of sigmoid on the real and imaginary:

f1(z) = |g
(

Re(z)
)

+ ig
(

Im(z)
)
| (2.69)

f2(z) =
(
g
(

Re(z)
)
− g
(

Im(z)
))2

(2.70)

They use these activation functions to solve real-valued classification problems with complex-
valued neural networks, where they embed the real-valued input on to the complex unit circle
before sending it through the network.

Siglog

In their 1992 paper [17], Georgiou and Koutsougeras presented an activation that atten-
uates the magnitude of the signal while preserving the phase, Figure 2.12, right and Figure
2.4.3. We refer to this activation as siglog because it is equivalent to applying the sigmoid
operator to the log of the input magnitude and then restoring the phase:

siglog(z) = g(log(|z|))e−i∠z, where g(z) =
1

1 + e−z
(2.71)

=
z

1 + |z|
(2.72)

Unlike the sigmoid and separable sigmoid activation functions, input values with large
magnitudes are mapped to output values with magnitudes near one. Likewise, as the input
magnitude approaches zero, so does the output magnitude.

Georgiou and Koutsougeras [17] included two positive constants to adjust the scale, r,
and steepness, c, of the activation function:

siglog(z; r, c) = f(z; r, c) =
z

c+ 1
r
|z|

(2.73)

The CR derivatives of this function are:

∂f

∂z
=

c+ 1
r
1
2
m(z)(

c+ 1
r
m(z)

)2 (2.74)

∂f

∂z
= − 1

2r

z2

m(z)

1(
c+ 1

r
m(z)

)2 (2.75)

Derivations of these derivatives are included in the appendix, Section A.4.

Proposed Activations

iGaussian

The siglog activation function described above both preserves the phase of input and
maps input magnitude values from [0,∞) to [0, 1). However, with the sharp drop towards
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Figure 2.13 : Magnitude and phase of the siglog activation function output. Complex input values
with large magnitude are scaled to have a magnitude near one. At first glance, the surface plot of
the phase (right) may look complicated, but on the contrary, the helical shape shows that the phase
remains unchanged from input to output, i.e. the output phase increases from −π to π as the input
value rotates counter-clockwise starting from the negative real axis.
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Figure 2.14 : Comparison of activation functions. The left shows the real component of the activa-
tions applied to input values on the real axis. The right shows how the input phase maps to output
phase.
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zero from all directions, the siglog function has a nonzero gradient in the neighborhood of
the origin of the complex plane, which can lead to gradient descent optimization algorithms
to continuously stepping past the origin rather than approaching zero and staying there,
Figure 2.4.3, left.

We propose the iGaussian activation function that like siglog preserves the phase and
attenuates the magnitude, but it also has a gradient that approaches zero as the input
approaches zero, allowing for more stable network optimization, Figure 2.4.3.

iGaussian is an inverted Gaussian, which is one minus a scaled Gaussian function (and
then the phase restored). The forward function warps the magnitude of z by the inverted
Gaussian function, g(z), and then restores the phase by multiplying by the normalized version
of z, n(z):

f(z;σ2) = g(z;σ2)n(z) (2.76)

g(z;σ2) = 1− e−zz/2σ2

(inverted Gaussian) (2.77)

n(z) = ei∠z =
z

(zz)
1
2

(see complex normalization Section A.1) (2.78)

where σ is the standard deviation parameter that scales the width of the Gaussian.
Derivations of the CR derivatives of the iGaussian function are included in the appendix,

Section A.5.

Figure 2.15 : Magnitude and phase of the iGaussian activation function applied on the complex
plane. Input magnitude from zero to infinity is mapped smoothly from zero to one (left). The input
phase is preserved (right).

Complex Cardioid

While the iGaussian activation function has nice properties that allow network optimiza-
tion to smoothly guide complex features towards smaller or larger magnitudes, it still contains
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Figure 2.16 : Example of gradient descent minimizing L(z) = |f(z)|, the magnitude of activa-
tion function, f . Tested with learning rate 1.5 on three initial points for f=siglog, (left, orange),
f=iGaussian (blue), and f=cardioid (right, red). siglog overshoots the origin, while iGaussian grad-
ually approaches zero from each direction. Cardioid takes a very few large steps to efficiently jump
toward the negative real axis, where the magnitude of the cardioid output is zero.

Figure 2.17 : Our new cardioid activation function is a phase-sensitive complex extension of ReLU.
Left / Center: Each arrow indicates a sample input/output of our cardioid function on the complex
plane. Right: The magnitude transformation of the cardioid function shows that it is reduced to
ReLU on the real axis (orange line).
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the vanishing gradients for large values that have historically hindered the performance of
sigmoid-like activation functions.

We propose a second new complex activation function, complex cardioid, which acts
as an extension of the highly effective ReLU function to the complex plane. Like ReLU, the
cardioid activation scales by one input values that lie on the positive real axis, and it scales
by zero the input values on the negative real axis. Input values with nonzero imaginary
components are gradually scaled from one to zero as the complex number rotates in phase
from the positive real axis towards the negative real axis, Figure, 2.4.3. The cardioid function
is sensitive to the input phase rather than the input magnitude. The output magnitude is
attenuated based on the input phase using a cardioid function. Meanwhile, the output phase
remains equal to the input phase. The complex cardioid is defined as:

f(z) =
1

2
(1 + cos(∠z))z (2.79)

When the input values are restricted to real values, the complex cardioid function is simply
the ReLU activation function, Figure 2.4.3, left.

The local CR [55] derivatives are as follows:

∂f

∂z
=

1

2
+

1

2
cos
(
∠z
)

+
i

4
sin
(
∠z
)

(2.80)

∂f

∂z
=
−i
4

sin
(
∠z
)z
z

(2.81)

Derivations of these derivatives are included in the appendix, Section A.6.
As demonstrated in the MR fingerprinting experiments in Chapter 3, the proposed car-

dioid activation function enables the complex-valued neural networks to converge to an
effective learned model when other complex activation struggled to produce adequate re-
sults. The inclusion of the complex cardioid allowed the complex-valued neural networks to
meet and even surpass the performance of 2-channel real networks for the MR fingerprinting
reconstruction task. See the next chapter, Section 3.2 for detailed experimental setup and
results.

2.4.4 Well-defined Layers

Fully Connected, Convolution, Deconvolution.

The fully connected layer with length K complex-valued input vector, z, with length K
complex-valued weight vector, w, and complex scalar bias term, β is:

ẑ = f(z,w) =
∑
k

zkwk + β (2.82)

= zTw + β (2.83)
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The local CR derivatives of f are:
∂f

∂z
= w

∂f

∂z
= 0 (2.84)

∂f

∂w
= z

∂f

∂w
= 0 (2.85)

∂f

∂β
= 1

∂f

∂β
= 0 (2.86)

Because the local conjugate R-derivatives above are zero, we can simplify the conjugate
R-derivative of the final network layer, L, with respect to the conjugates of the input vector,
weight vector, and bias term, given the derivative from all later layers, ∂L/∂ẑ:

∂L

∂z
=

(
∂L

∂ẑ

)
0 +

∂L

∂ẑ

(
∂f

∂z

)
(2.87)

=
∂L

∂ẑ
w (2.88)

∂L

∂w
=

(
∂L

∂ẑ

)
0 +

∂L

∂ẑ

(
∂f

∂w

)
(2.89)

=
∂L

∂ẑ
z (2.90)

∂L

∂β
=

(
∂L

∂ẑ

)
0 +

∂L

∂ẑ

(
∂f

∂β

)
(2.91)

=
∂L

∂ẑ
(2.92)

Because the fully connected layer will be more efficiently implemented using linear algebra
libraries, we specify below the matrix form for the batch version of the fully connected
function and its conjugate R-derivatives. With batch size M , number of input channels K,
and number of output channels N , the input matrix, weight matrix, and bias vector are
Z ∈ CMxK , W ∈ CNxK , and β ∈ CN , respectively. The output matrix is Ẑ ∈ CMxN and we
represent the conjugate R-derivative of the scalar final layer function with respect to Ẑ as a
matrix also, ∂L/∂Ẑ ∈ CMxN .

Ẑ = f(Z,W, β) = ZW T + β (2.93)

∂L

∂Z
=
∂L

∂Ẑ
W (2.94)
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∂L

∂W
=
∂L

∂Ẑ

T

Z (2.95)

∂L

∂β
=
∂L

∂Ẑ

T

1 (2.96)

When implementing these operations, it is important to note the location of the conjugate
operations as well as the non-conjugate transpose operations.

We also implemented complex versions of convolution and deconvolution layers. The
math for these layers is essentially the same as the fully connected layer. The notable
difference is accounting for the shared weights of the convolution kernels, just as it is in the
real-valued implementations.

Pooling

As discussed in Section 2.2.3, pooling with the max operator on complex numbers is
undefined. As an alternative, we implemented the complex pooling layer to return the
complex-valued input element with the largest magnitude:

ẑ = f(z) = zn, where n = argmax
k
|zk| (2.97)

While this max-magnitude layer does not take into account the phase of the input vector,
the layer may be combined with complex convolution and cardioid layers. For example, the
network might include layer sequence: 1) convolution → 2) cardioid → 3) max magnitude
pooling, and 4) another convolution. In this case, 1) the complex convolutional weights can
learn to rotate the phase of desirable data towards the positive real axis, where 2) the cardioid
activation will allow that value to pass through without shrinkage giving it a better chance
to also pass through 3) the max-magnitude pooling layer. The subsequent convolution layers
(4) can then learn to rotate the data back to its original phase as needed.

Because the local conjugate R-derivative of an identity function is zero, the conjugate
R-derivative of the final network layer with respect to the input can be simplified.

∂f

∂zn
=

{
1, if n = argmaxk zk

0, otherwise
(2.98)

∂f

∂zn
= 0 (2.99)

∂L

∂z
=

(
∂L

∂ẑ

)
∂f

∂z
+
∂L

∂ẑ

(
∂f

∂z

)
(2.100)

=

{
∂L
∂ẑ
, if n = argmaxk zk

0, otherwise
(2.101)
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Batch Normalization

Batch normalization adjusts the scale and offset of network data before being passed to
an activation function [59]. By linearly adjusting the activation input such that each batch
has zero mean standard deviation one, batch normalization improves the stability of the
network optimization, especially with very deep networks where there is a greater chance
that activations and gradients shrink to zero or explode and overflow.

The mean, variance, and linear scaling operators found within batch normalization are
all well-defined operations in the complex domain. In fact, the only change to the real-valued
forward function is the conjugate square operation when computing the variance:

µ = µ(z) =
1

N

∑
n

zn (2.102)

σ2 = σ2(z, µ) =
1

N

∑
n

(zn − µ)(zn − µ) (2.103)

ẑ = f(z, µ, σ2) =
z− µ√
σ2 + ε

(2.104)

where ε is a small constant to avoid division by zero.
The complex batch normalization derivatives and associated derivations are included in

the appendix, Section A.7.

Complex Normalization

The complex normalization layer scales a complex scalar input, z, such that its magnitude
equal one. The phase of the input is unchanged. This projects z onto the unit circle.

The forward function simply divides the input by its magnitude:

ẑ = ei∠z =
z

(zz)1/2
(2.105)

The complex batch normalization derivatives and associated derivations are included in
the appendix, Section A.1.

Dropout

A dropout layer can help prevent overfitting by randomly zeroing out activations, forcing
the network to learn multiple viable paths through the network [60]. Like the real-valued
dropout implementation, complex dropout is simply a masked identity function. The forward
and backward implementation is straight-forward, but we can’t just use two-channel real
implementation because we don’t want to drop the real component independent from the
imaginary component.
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Because the local conjugate R-derivative of an identity function is zero, the conjugate
R-derivative of the final network layer with respect to the input can be simplified.

ẑn = f(zn) =

{
1
p
zn, if n ∈ mask

0, otherwise
(2.106)

∂f

∂zn
=

{
1
p
, if n ∈ mask

0, otherwise
(2.107)

∂f

∂zn
= 0 (2.108)

∂L

∂z
=

(
∂L

∂ẑ

)
∂f

∂z
+
∂L

∂ẑ

(
∂f

∂z

)
(2.109)

=

{
1
p
∂L
∂ẑ
, if n ∈ mask

0, otherwise
(2.110)

where p is the probability of an activation passing through the dropout layer. As in real-
valued dropout, the 1/p scaling factor allows the expected value of the layer output to remain
the same regardless of the value of p.

2.4.5 Software

We implemented our complex neural networks as an extension to the Caffe deep learning
library [38, 32]. In this section, we discuss a few of the challenges related to implementing
high-performance software with support for complex numbers. While the following points
were encountered while working with specific software, namely Caffe, C++, MKL/Apple
BLAS, and NVIDIA CUDA, many of the concepts and caveats are transferable to other
programming environments.

Complex Types

Modern deep learning libraries, including Caffe, have generic data structure objects that
are processed by the various data processing, network layer, and network optimization com-
ponents. When extending these libraries to support complex numbers, one of the first steps
is to understand how complex data types might need to interact with other data types,
specifically standard floating point data types. For instance, will existing data I/O layers
load complex data into complex arrays or to a float array with 2x entries? If there is a mix
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of complex layers and real layers as discussed in Section 2.4.2, would there be two data types
used in the system, complex and float?

Caffe uses C++ templates to allow the data objects, or Blobs, to support any numeric
type. Despite this flexibility, the design required that the templated type had to be the same
for all components in the network. So the network layers and optimization algorithms could
work with all float or all complex but not both. All complex would be problematic, as there
are many values within the code, such as the learning rate, that do not make sense to be
complex and would require reworking the whole system to ensure they all behaved properly
as complex numbers. Thus, we had to work with all the templates set to float (or double).

Naturally, one can store complex numbers as two float values for real and imaginary. In
fact, C and C++ complex types are implemented as a structure with two float values. How-
ever, to take advantage of any complex operations implemented in the language/library, such
as multiplication or matrix multiplication, the two float values would need to be converted
to a complex type. Converting between the two for a single number is not an issue, but for
large arrays of data, it is important to be able to convert types without having to copy the
data from one location to another. The good news is that according to the C++ standard
section 26.4, C++14 and section 29.5, C++17, one can safely cast a pointer to an array of
complex types to a pointer to an array of float values, where real and imaginary components
are interleaved [61, 62]. Unfortunately, the standard provides no such guarantee in the other
direction, casting from a float pointer to a complex pointer.

Because Caffe manages the data allocation within the Blob object and all template types
need to be float/double, any complex data must be first allocated as an array of floats and
then later converted to complex types. Unfortunately, this forced our complex Caffe code to
accept the risk of an unsafe cast from float to complex, rather than the prohibitively costly
allocation and copy to a new array.

Once the array pointers were cast to complex types, there were no issues converting the
C++ std::complex type to complex types in C or CUDA as needed.

Complex Operations

One of the primary benefits of deep learning libraries is that they are built to quickly
compute numerical operations on large arrays of data. Modern libraries, including Caffe,
rely on third party implementations of low-level numerical methods on both CPU and GPU.
Specifically, Caffe interfaces to fast CPU linear algebra via BLAS libraries, such as Intel MKL
or Apple Xcode Accelerate, and to GPU data processing via NVIDA CUDA and cuDNN.
While BLAS libraries and CUDA support complex numbers, the associated software interface
can be quite cumbersome.

As an example, the BLAS method for matrix multiply, gemm, conveniently support
optional operations to transpose or conjugate-transpose and input matrix. However, this
convenience does not extend to conjugating the elements of a matrix without transposing
it. So for matrix multiplications that require it, as in fully connected layer Equations 2.94,
a conjugate copy of the data must be made before the call to BLAS gemm.
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Caffe has many layers implemented in efficient GPU code using CUDA. Using the Caffe
CUDA macros, the GPU code for the low-level data processing is relatively conveniently to
code and easy to read. The complex versions of the same code can be much more challenging.
For instance, the log function in CUDA does not support complex types, and the complex
version must be implemented based on operations to the real and imaginary components.
So rather than a quick call to:

b = log ( a ) ;

we must implement the complex log method in CUDA with:

b . x = log ( cuCabsf ( a ) ) ;
b . y = atan2f ( a . y , a . x ) ;

Additionally, the lack of complex constructors and operator overloading makes the complex
CUDA code rather difficult to read and write. As an example, the complex cardioid code to
compute the conjugate R-derivative:

∂f

∂z
=
− i

4
sin(θ)z

z + ε
(2.111)

is implemented in CUDA as follows:

cuComplex dfdcz =
cuCdivf (

cuCmulf (
make_cuFloatComplex (0 , −0.25 f ∗ s i n f ( theta ) ) ,
z ) ,

cuCaddf (
cuConjf ( z ) ,
make_cuFloatComplex (1 e−14 ,0)) ) ;

As the demand for high-performance deep learning has grown, hardware vendors have
been developing highly optimized code to run neural network computations efficiently on
their CPUs and GPUs. Caffe networks gain a boost in performance when NVIDIA’s cuDNN
library is available to ease the computational bottleneck caused by convolution layers, but
unfortunately, cuDNN does not yet support complex data types.

2.5 Discussion
We defer our experiments with complex deep learning to the following chapter where

we apply our methods to the MR fingerprinting task. As we will see with those results, the
complex cardioid activation function makes it possible for complex-valued neural networks to
match and even outperform real-valued networks with two input channels. Whether or not
complex data representations, complex layer functions, and complex calculus will consistently
outperform real-valued neural networks is still an open question. Recently, neural networks
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have consistently been demonstrating that careful modeling can be replaced by enough data
and stable deep networks. That being said, there are certainly still modeling assumptions
that are critical to the success of deep learning. For instance, the convolution layer is based
upon a model of structural similarity across an image, which allows for an extreme reduction
in the number of weights required in a neural network.

The gains shown from our proposed cardioid activation highlight the importance of acti-
vation function design on network performance. We look forward to future work continuing
to develop new non-linear layers for complex data. In particular, the modified ReLU pre-
sented in [18] could be a very effective activation function. Though not explicitly mentioned
in [18], this modified ReLU is the complex soft-thresholding operator, which has strong
mathematical connections to enforcing the popular L1 norm sparsity constraint on complex
numbers [63, 64].

As deep learning continues to grow across application domains, it is critical to have the
tools necessary to quickly develop and experiment with new complex-valued deep learning
methods. We contribute an implementation of complex backpropagation and complex net-
work layers as an extension to the Caffe deep learning library, including high-performance
implementations on CPU with BLAS and on GPU with CUDA.
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Chapter 3

Deep Learning for MR Fingerprinting

Tissue in the body may be characterized by how it interacts with the magnetic field
during an MRI scan. Two tissue parameters, T1 and T2, are exponential time constants, e.g.
e−t/T2, that describe how fast hydrogen protons in different tissues relax after being excited
by an applied magnetic field. Different tissues have different relaxation properties that can
be emphasized during an MRI exam. For example, T1 and T2 values allow us to discern
the boundary between gray matter (T1' 830 ms, T2' 80 ms) and white matter (T1' 500
ms, T2' 70 ms) in MRI brain images [65]. These parameters also enable radiologists to
differentiate between benign and malignant tissues.

Traditional MRI generates images that contain a qualitative visual contrast between tis-
sues, but unfortunately, these contrast-weighted images do not provide quantitative and
consistent values, making it difficult to perform longitudinal studies and track disease pro-
gression over time. Standard methods to estimate quantitative tissue parameters are too
long to be feasible in clinical practice, as they require too many repeated scans to robustly
fit accurate parameters from the data [6, 66]. Recently, Ma et al. introduced a new technique
by the name of magnetic resonance fingerprinting (MRF) that computes quantitative tissue
parameters, as well as system parameters, from a single pseudorandom acquisition [6].

MR fingerprinting works by scanning the subject using a pseudorandom sequence of
scanner controls. The various tissues in the body will react to the controlled magnetic
field changes, producing measurable signals that have unique signatures depending on their
specific tissue parameters (T1, T2), applied magnetic field (B0, B1), and other system pa-
rameters. Just like a fingerprint pattern can identify a specific person, these measured signals
may be decoded to determine the tissue and magnetic field parameters at each pixel location
in the image.

In this chapter, we introduce relevant background material for MR fingerprinting and then
detail three projects to enhance MR fingerprinting methods with deep learning. Specifically,
in Section 3.2, we train complex-valued neural networks to replace the computationally
heavy fingerprint matching process. In section 3.3, we construct a noise model based on
in vivo MRF acquisitions to produce neural networks that are robust enough to accurately
decode tissue parameters despite severe noise and undersampling artifacts in accelerated,
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high-resolution MRF images. Finally, in section 3.4, our neural networks learn to leverage the
rich information content of a single MRF scan to directly synthesis the traditional contrast-
weighted images in addition to the quantitative parameter map images.

3.1 Background for MR Fingerprinting
To more efficiently describe our MR fingerprinting methods and experiments in this

chapter, we first introduce a select set of magnetic resonance imaging concepts, as well as
the MRF method itself. Naturally, there will be numerous simplifications and topics that we
will not cover. For instance, we omit the discussion of gradient magnetic fields and Fourier
imaging. Unless otherwise cited, the MR concepts described in this section may be found in
greater detail in Nishimura’s 2010 textbook Principles of Magnetic Resonance Imaging [67].

3.1.1 Measuring Net Magnetization

The nuclei of hydrogen (1H) atoms have a magnetic moment that interacts with the vari-
ous magnetic fields within an MRI scanner. When considering a collection of hydrogen atoms
within a particular region, the sum of their nuclear magnetic moments may be represented
by a net magnetization vector M. During an MRI scan, we measure how the magnitude
and orientation of this three dimensional M vector changes as it interacts with both the
applied magnetic fields as well as the molecular structure of tissue in that location. Figure
3.1 illustrates five important aspects of net magnetization that we describe next.
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Figure 3.1 : Five aspects related to measuring the net magnetization vector M. From left to right:
1) equilibrium is M’s initial/relaxed state; 2) the scanner excites M, rotating it towards or past the
x-y plane; 3) natural precession over time may rotate M about the z-axis; 4) relaxation over time
returns M to equilibrium; and 5) only the transverse components M, Mx and My, can be measured
through inductive coupling. We’ll later introduce the parenthetical terms PD, FA, TR, ∆B1, ∆B0,
T1, T2, and TE as they apply to each of these aspects.

Equilibrium. The net magnetization of a tissue sample has an equilibrium state M =
M0ẑ, to which M will return when being presented with only the main magnetic field,
Figure 3.1, left. MRI scanners have one large, persistent magnetic field, B0, which (ideally)
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has the same strength and orientation at each location within the scanner, i.e a homogeneous
magnetic field. When a sample of tissue containing hydrogen is in the scanner, before any
scan begins, the net magnetization is in this equilibrium state, specifically:

1. M is aligned with the B0 field, which by convention is the z direction of an x, y, z
coordinate system, and

2. M has magnitude M0, which is linearly proportional to B0 as well as the number of
hydrogen atoms in the sample.

Excitation. The scanner "excites" the hydrogen nuclei by applying a temporary radio
frequency (RF) magnetic field B1, which is perpendicular to B0 and as a result, rotates
M away from equilibrium, towards or past the transverse plan (x-y plane). The B1 field
is induced by radio frequency (RF) field controlled by the scanner. This RF excitation
creates non-zero Mx and My components of M and is critical to enabling two other net
magnetization concepts described below, namely relaxation and measurement.

Precession. Precession is a natural phenomenon that causes the net magnetization
vector to rotate about the axis of the magnetic field at an angular frequency proportional to
the strength of the magnetic field:

ω = γB (3.1)

where ω is the angular frequency and γ is a constant called the gyromagnetic ratio. Imaging
techniques in MR are based on a spatially homogeneous main magnetic field, B = B0

everywhere within the scanner bore. Small changes in the main magnetic field, ∆B0, alter the
precession rate and can cause imaging artifacts at positions containing this inhomogeneity.

Relaxation. Once the temporary B1 excitation field is turned off, the net magnetization
begins to relax back towards equilibrium. There are two natural relaxation mechanisms that
occur simultaneously: T1 relaxation is the exponential regrowth of theMz component, while
T2 relaxation is the exponential decay of the Mxy components. A key aspect of MRI, and
certainly MR fingerprinting, is that different tissues in the body have different relaxation
rates. We will elaborate below on how we can leverage the different relaxation rates by
measuring the net magnetization at particular times, hoping to discern between tissues
types.

Measurement. As the magnetic moments precess about the z-axis, they induce a
current in the scanner’s RF receiver coils, allowing a measurement of the Mx and My com-
ponents of the net magnetization vector. Because the two components of this RF signal
are a measurement of a rotating phenomenon, it is natural to represent them as a single
complex-valued number, Mxy.

3.1.2 Scanner Parameters

There are several scanner configurations and settings that affect the net magnetization
of tissues in the scanner. We have already mentioned the strength of the main magnetic
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field, which remains fixed for each scanner at B0. The excitation field B1 is controllable
and may be changed from scan to scan or from excitation to excitation. The following are
three scanner parameters that may be changed to significantly alter theMxy values measured
during an acquisition.

Flip angle (FA). The flip angle is a B1 field parameter that determines how much to
rotate the net magnetization during excitation. Starting at equilibrium, a flip angle of 90
degrees would rotate M down to the transverse plane (x-y plane) . The acquisition sequence
does not have to wait forM to fully return to equilibrium before applying another excitation.
For example, if the net magnetization is 20 degrees from Mz just before an excitation, a flip
angle of 90 degrees could rotate M to 20 degrees below the x-y plane. It is interesting to
note that in this case, T1-relaxation would then cause the negativeMZ to first move towards
zero before continuing to grow back to Mz = M0. In addition to the flip angle, the B1 field
may be applied in different directions, allowing the scanner to affect the phase of Mxy.

Repetition time (TR). TR is the time between excitations. As seen in the above flip
angle example, the timing between excitations affects the position of M before and after the
B1 rotation, which in turn will affect the measured signal. A long TR will allow the net
magnetization to fully recover to M = M0ẑ before the next excitation.

Echo time (TE). The TE parameter defines the timing of the Mxy measurement. Es-
sentially, it is the time between the excitation and the measurement. As an example, if we
apply a 90 degree excitation to a net magnetization at equilibrium, a very short TE will
capture a very large Mxy, near M0, effectively measuring the number of hydrogen atoms in
the sample, see proton density below.

3.1.3 Tissue Parameters

Proton density (PD). PD is a measure of the number of hydrogen atoms, or equiv-
alently the number of hydrogen protons, that are in a given region or pixel/voxel. The
magnitude of the net magnetization vector at equilibrium, M0, is directly proportional to
the proton density.

T1. T1 is the exponential growth time constant for Mz during T1-relaxation in a given
tissue sample. Given the value of T1 and Mz(0) at t = 0, the z-component of M at time t
is modeled by:

Mz(t) = Mz(0)(1− e−t/T1) (3.2)

T2. T2 is the exponential decay time constant for |Mxy| during T2-relaxation in a given
tissue sample. Given the value of T2 and Mxy(0) at t = 0, the transverse magnetization of
M at time t is modeled by:

Mxy(t) = Mxy(0)e−t/T2 (3.3)
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Figure 3.2 : Dynamic system model for the nuclear spins of the tissue within an MRI scanner. Input
tissue parameters (PD, T1, T2) at each location are converted to a series of Mxy measurements,
which are affected by a series of scanner control parameters. Inverting this nonlinear system would
allow us to convert the output images into maps of the tissue parameters, bottom green line.

3.1.4 Modeling the MR System

We can view the nuclear spins of the tissue within an MRI scanner as a dynamic system,
where the input values are the PD, T1, and T2 parameters of the tissue at a location
within the body and the output is a series of Mxy measurements as affected by a series
of scanner controls, FA, TE, and TR, Figure 3.2. The internal state of this system is the
three-dimensional net magnetization vector, M.

It is important to note that the output images of this system are just observations ofMxy

and not the tissue parameters themselves. In order to recover these parameters, we could
create a model of this system and attempt to invert it, Figure 3.2, bottom green line.

In 1946, Bloch proposed a model of how net magnetization changes over time, including
the two T1 and T2 relaxation models described above [68]. The Bloch equation combines
the relaxation effect with the precession of M about a magnetic field vector B:

d

dt
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+

 0
0
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 (3.4)

3.1.5 Parameter Mapping and Contrast-weighted Imaging

As noted above, the MRI system outputs the transverse component of the net magne-
tization but not the tissue parameter values themselves. However, we could sample the
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exponential decay of T2 relaxation by setting a long TR and then systematically increasing
TE for each scan. With a reasonably long TR setting, the net magnetization will essentially
recover to equilibrium between excitations, simplifying the system model to:

|Mxy,n| ∝ e−
TEn
T2 (3.5)

Using a predefined series of TEn values, we can acquire a series of theseMxy,n measurements
for each pixel and then fit the data to this simplified exponential model to solve for T2. The
resulting image of T2 values is called a T2 parameter map, Figure 3.4, right.

Figure 3.3 : Simpler dynamic system model for the nuclear spins of the tissue within an MRI scanner.
With a TR much longer than T1 and a 90 degree flip angle, the tissue parameter T2 may be modeled
based only on the scanner control TE.

The T1 parameter may be fit from an exponential curve in a similar manner by repeatedly
changing the timing of scanning techniques called saturation-recovery or inversion-recovery
[66].

Assuming a noise-free signal, it would only require measurements for two different time
points to fit the exponential function and recover the T1 or T2 value at each pixel. Unfor-
tunately, due to system noise, high-quality T1 and T2 parameter mapping with this brute
force mapping techniques requires many repeated measurements, which given the long TR,
would significantly increase the exam time [66].

Faster methods have been developed to do parameter mapping for T1 [9, 69], T2 [10, 70]
and T1/T2 jointly [71, 72]. However, these techniques remain prohibitively long for standard
clinical practice [6].

As an alternative to time-consuming parameter mapping, standard clinical practice in-
stead acquires what are referred to as contrast-weighted images. For example, a T2-weighted
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Figure 3.4 : A T2-weighted image (top row, purple border) is a single image acquired with TE set
such that the image contrast between tissues is greatest. The T2 parameter map image (far right)
is an estimate, at each pixel location, of the T2 exponential time constant itself, which may be fit
from a series of values acquired at different TE settings.

contrast image is acquired at a single TE, rather than a series of TE settings. The chosen
TE value is selected to maximize the difference in image intensity (contrast) between tissues
with different T2 values, as illustrated in the T2 relaxation plot of gray matter and white
matter in Figure 3.4. Unlike parameter maps with consistent, quantitative values for T1 or
T2, T1- and T2-weighted images show only qualitative visual intensity differences.

3.1.6 MR Fingerprinting

Rather than the slow, systematic sampling of T1 and T2 relaxation curves, MR finger-
printing proposes to simultaneously generate multiple parameter maps from a single acqui-
sition that randomly perturbs the net magnetization vector with a seemingly erratic set of
scanner controls for each excitation [6]. Rather than fitting a sequence ofMxy measurements
to an equation, as done in traditional parameter mapping describe above, MR fingerprint-
ing compares the measured Mxy signal evolution to a dictionary of simulated signals. As
illustrated in Figure, 3.5, the dictionary signals are generated with a Bloch simulator using
a specific sequence of scanner controls and many different combinations of (T1, T2) param-
eters. A subject is then scanned using the same sequence of scanner controls, generating a
measured signal evolution at each pixel. Similar to the process of identifying a person from
their fingerprint, the parameter values (T1, T2) for each pixel can be identified by matching
that pixel’s measured signal to the most similar signal in the dictionary of simulated signals
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and their corresponding (T1, T2) parameters.

Figure 3.5 : Illustration of the MR fingerprinting process. The same sequence of scanner controls
(e.g. flip angles) is given to both a Bloch simulator and the actual scanner. Offline, the Bloch
simulator generates a dictionary of signals modeling the measured evolution of the net magnetization
for a predefined grid of parameter values (T1, T2). The measured signal from the scanner is
compared to the dictionary signals to identify the parameters of the closest matching signal.
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3.2 Complex-valued Deep Learning
Traditional MRI requires many different scans that each accentuate one of the desired

parameters. Additionally, those scans only provide a qualitative visual contrast between
tissues, e.g. “in this image, tissues with high T1 are brighter than other tissues". MR
fingerprinting as proposed in [6], however, simultaneously produces quantitative values for
T1, T2, and proton density in one single scan. It can also provide information about system
imperfections, i.e. in B0 and in B1 [6, 73, 74], Figure 3.6.

Figure 3.6 : When considering additional parameters maps, such as magnetic field maps for B0
and B1, the dictionary for MR fingerprinting starts to grow exponentially, leading to infeasible
computation times for dictionary matching techniques. We propose using neural networks to learn
a fast inversion of this non-linear MR fingerprinting system.

From a machine learning perspective, the MR fingerprinting simulator provides a training
set consisting of length N , complex-valued vectors, each of which is paired with a tuple of
real-valued labels (T1, T2, B0, B1). At the test time, the MRI scanner acquires a length N ,
complex-valued signal at each pixel location that must be decoded into the tissue and system
parameters for that signal. Prior MR fingerprinting works [6, 75, 76] have used a nearest
neighbor search based approach to match the measured signal to a dictionary of simulated
training signals. Due to the non-parametric nature of dictionary matching methods, the
computation time scales linearly with the size of the dictionary and exponentially with the
number of parameters, quickly becoming infeasible with a finer parameter resolution or when
more parameters are required, Figure 3.7. Additional research has improved the dictionary
matching efficiency by compressing the dictionary using SVD [26] or by applying group
matching [77].

Rather than non-parametric dictionary matching-based methods, we propose learning a
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parameterized model for solving the MR fingerprinting inverse mapping problem. Specifi-
cally, we demonstrate that feed-forward neural networks can accurately model the complex
non-linear MR fingerprinting inverse mapping function with a computational efficiency that
does not scale with the number of training examples, Figure 3.7.

Figure 3.7 : Comparison of floating point operations required to compute the parameters for a single
pixel. Note the log scale on the y-axis, showing how dictionary matching compute times quickly
become infeasible.

We also investigate using complex-valued neural networks for MR fingerprinting, since
the MRF signals are inherently complex-valued. While complex-valued signals can be rep-
resented by 2-channel real signals, each channel containing real and imaginary components
respectively, such a representation does not fully exploit the phase information that is cap-
tured by complex algebra. Indeed, by including the complex cardioid activation function
proposed in Chapter 2, we demonstrate that complex-valued neural nets can be even more
effective than real-valued networks at MRF fingerprinting.

Work by Cohen et al. [13] and Hoppe et al. [14] independently developed deep learning
methods for MR fingerprinting, though they trained real-valued networks using only the
magnitude of the MRF signal. Golbabaee et al. later extended a real-value version of our
work to include a dimensionality reduction bottleneck within the MRF neural network [78].
Liu et al. later used deep learning to map a multi-echo acquisition to T2 parameters maps,
while incorporating their neural network into the iterative reconstruction loop [15]. Nataraj
et al., on the other hand, trained a non-linear regression model for MR fingerprinting rather
than using either dictionary matching or neural networks [79].

3.2.1 Methods

We compare the following six MR fingerprinting methods:
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1. Baseline: max cross-correlation dictionary matching with a T1, T2, B0 dictionary [6].

2. Real-valued neural nets with 2-channel real/imaginary inputs representing complex
MRI signals, using the ReLU activation function.

3. Real-valued neural nets that are twice as wide as the second model, with 1024 and 512
feature channels in the two hidden layers.

4. Complex-valued neural nets with 1-channel complex MRI signals, using our new car-
dioid activation function.

5. Complex-valued neural nets using separable sigmoid activation functions (i.e. sigmoid
applied to real and imaginary independently) [1].

6. Complex-valued neural nets using the siglog activation function [17].

We are particularly interested in comparing the performance of complex-valued neural
networks with both the real-valued network and the real-valued network that is twice as wide.
As described in Figure 2.4, the degrees of freedom of the complex network fall between the
degrees of freedom of these two real networks.

Training data. We simulate the MRI signal with the Bloch equations and the pseudo-
random pulse sequence parameters from [6] with signal length 500. We use 100,000 simulated
points for training, randomly sampled with the same T1, T2, B0 density as used in the dic-
tionary matching baseline technique.

Testing data. Following [75], we test our methods with the numerical MNI phantom
[80, 65] with the T1, T2, and proton density values specified for each tissue type in [65].
We add a linear ramp in the B0 field across the image from -60 Hz to 60 Hz. We compute
proton density from the norm of the test signal as in [6]. Although we do not include any
B1 inhomogeneity in our experiments, a fourth neural network could easily be added to
incorporate this or any other parameter(s). In addition to testing with a clean signal from
the numerical phantom, we also tested phantom signals with complex-valued Gaussian noise
added to produce a peak signal-to-noise ratio (pSNR) of 40.

Neural networks. Fig.3.8 shows our 3-layer neural network architecture for separate
T1, T2, and B0 neural networks. The fully connected network reduces the feature channels
as it gets deeper, similar to the first half of the autoencoders in [81]. Specifically, the
networks consisted of three fully connected layers with 512, 256, and one output channels.
The networks contained batch normalization [59] and non-linear activation between each
fully connected layer. Each network terminated with an L2 loss function that penalized any
error between predicted values and ground truth values for T1 and T2. The fully connected
layers used Xavier weight initialization computed using the number of input channels [82].

For the real-valued networks in our experiments, we used the ReLU activation func-
tion, while for the complex networks we compared three complex-valued activation functions
described in Chapter 2, namely separable sigmoid [1], siglog [17], and our complex cardioid.

We trained our networks using a stochastic gradient descent solver with momentum 0.9.
We trained for 1,000,000 mini-batches of size 100 signals, scaling the learning rate by 0.9
every 10,000 iterations. We trained each network with four different initial learning rates:
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Figure 3.8 : Fully connected neural network architecture, repeated for each desired output label
(T1, T2, B0).

0.1, 0.05, 0.01, and 0.001. At test time, we selected the learning rate that produced the
lowest loss on the validation dataset.

The neural networks were constructed, trained, and tested using Caffe [38] running on
a cluster of NVIDIA M60 GPUs. For the complex-valued neural nets, we extend the Caffe
platform with complex versions of the fully connected layer, batch normalization layer, and
complex activation layers, including the CR calculus backpropagation for all the layer func-
tions [32].

3.2.2 Results

Table 3.1 : NRMSE results: fingerprinting from clean signals.

Network T1 T2 ∆ B0

Dictionary matching 10.63 39.78 1.02
2-ch real/imaginary network 2.71 8.21 2.11
2-ch real/imaginary network 2x 2.21 8.04 2.44
Complex (cardioid) 1.42 4.34 1.32
Complex (separable sigmoid) 4.72 9.24 3.33
Complex (siglog) 2.99 12.04 3.05

For both clean and noisy signals, we computed the normalized root mean squared error of
the T1, T2, and ∆B0 values predicted by each technique, as compared to the ground truth
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Table 3.2 : NRMSE results: fingerprinting from noisy signals (pSNR=40).

Network T1 T2 ∆ B0

Dictionary matching 12.21 40.38 1.08
2-ch real/imaginary network 11.15 17.96 5.23
2-ch real/imaginary network 2x 11.08 22.15 7.08
Complex (cardioid) 9.40 20.98 4.43
Complex (separable sigmoid) 17.31 33.09 18.83
Complex (siglog) 102.22 237.88 266.33

parameter values in our MNI phantom test set. Tables 3.1 and 3.2 compare the prediction
accuracy at no noise and pSNR=40 noise level, respectively. Figures 3.9 and 3.10 show the
corresponding reconstruction results on the MNI phantom.

Fig. 3.7 compares the computational efficiency in terms of the number of floating-point
operations (FLOPs) to process parameter maps for just T1 and T2, as well as including a
third parameter ∆B0, and again with a fourth parameter ∆B1. FLOPs were tallied for the
dot product in dictionary matching and for the fully connected matrix multiplications in the
neural networks. As an example, the FLOPs to process the MRF signal in the T1, T2, and
∆B0 values for a single pixel are 563 million, compared to the 28 million for the complex
networks. Additionally, the elapsed real-time to compute the MNI T1, T2, and ∆B0 maps
using dictionary matching was 45 minutes, compared to 11 seconds for the complex networks.
Note that the elapsed real-time difference is even more dramatic than the number of FLOPs
as the dictionary matching computations were executed on CPU with python NumPy, while
the neural networks were executed on GPU with Caffe [38, 32].

We observe the following in our results:

1. A dictionary-based approach increases exponentially with more outputs and becomes
infeasible. Compared to the two outputs (T1,T2), the #FLOPs increases by 171× for
the three outputs (T1,T2,B0), and by 3,585× for the four outputs (T1,T2,B0,B1).

2. Inverse mapping by neural nets outperforms the traditional dictionary matching base-
line on T1 and T2 values, whereas the dictionary matching approach predicts B0 values
more accurately.

3. Complex-valued neural networks outperform 2-channel real-valued networks for almost
all of our experiments. This advantage cannot be explained by an increased number
of degrees of freedom in the complex network, Figure 2.4, as the complex network,
also outperforms the 2x wide real network, suggesting that complex-valued networks
can bring out information in the complex data more effectively than treating them as
arbitrary two-channel real data.

4. The 2-ch real network had lower NRMSE than complex networks for T2 with pSNR=40.
Upon inspecting the corresponding image quality, Figure 3.10, it can be observed that
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the complex network has a visibly larger error in the CSF region, but a slightly lower
error in the rest of the brain region.

5. The complex cardioid activation significantly outperformed both the separable sigmoid
and siglog activation functions, allowing complex networks to not only compete with
but surpass, real-valued networks.

3.2.3 Discussion

We propose a deep learning approach for MR fingerprinting that implements an efficient
nonlinear inverse mapping function that converts complex-valued MRF signals directly into
quantitative tissue and magnetic field parameters. Without compromising parameter map
quality, the proposed neural network methods can produce parameter maps two orders of
magnitude faster than the baseline dictionary matching methods when considering B0 maps
in addition to T1 and T2. Elapsed real-time performance measurements are even more im-
pressive than the expected computation measured in FLOPs, but perhaps real-time measure-
ment is an unfair comparison given that the baseline dictionary matching was implemented
for CPU with Python and NumPy, while the neural networks were implemented for GPU
with Caffe. That being said, as many industries are investing heavily in high-performance
deep learning, efficient and accessible neural network implementations will likely continue to
improve.

We demonstrated that our complex cardioid activation function described in Chapter
2 enables the successful real-world application of complex-valued neural networks. With
activation functions from prior work, complex neural networks struggle to produce any viable
images. However, with the cardioid activation function, complex-valued networks can meet
and even surpass the accuracy of real-valued networks for MR fingerprinting.
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Dictionary Matching Baseline

2-ch Real/Imaginary Neural Network

2-ch Real/Imaginary 2x Neural Network

Complex Neural Network

Figure 3.9 : Numerical phantom with no added noise. Predicted quantitative parameter map images
are shown adjacent to the error image. For visualization purposes, the error images are displayed
at 10x the scale of the images.
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Figure 3.10 : Numerical phantom with added noise (pSNR=40). Predicted quantitative parameter
map images are shown adjacent to the error image. For visualization purposes, the error images are
displayed at 5x the scale of the images.
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3.3 MRF Training Data Synthesis

3.3.1 Introduction

In the previous section on deep learning MRF, we trained on and were able to reconstruct
from, simulated MRF signals corrupted with complex Gaussian noise, Figure 3.10. However,
when testing these trained networks on in vivo MRF acquisition data, the resulting T1 and
T2 parameter maps have objectively poor image quality, Figure 3.11, left three columns.

Figure 3.11 : Parameter mapping results in different synthetic training data generation models.
Results are shown for one slice of test volume one. The neural network trained with Gaussian
noise fails to generate adequate parameter maps. The neural network trained with our empirical
residual model (fourth column) produces parameters with the same level of quality as the dictionary
matching baseline (right column).

While it is true that complex Gaussian noise is a good model for the predominant mea-
surement noise in the MRI system, the noise in a reconstructed MR image remains complex
Gaussian only when the acquisition is fully sampled on a Cartesian grid [67, 83]. The model
of the imaging system becomes more complicated as we introduce non-uniform and under-
sampled acquisitions. With the undersampled spiral acquisition patterns often used in in vivo
MR fingerprinting, the resulting image is affected by both measurement noise and aliasing
artifacts from undersampling, Figure 3.12.

A potential solution to the inadequate Gaussian noise model is to train the MRF neural
networks with in vivo MRF data paired with the ground truth labels, specifically in vivo
T1 and T2 parameter maps. Unfortunately, as mentioned in Section 3.1.5, acquiring and
fitting ground truth parameters maps is quite time-consuming. These long scans are further
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Figure 3.12 : In our MR fingerprinting system model, we must account for both aliasing artifacts
and lower SNR due to undersampling noisy data. The reconstructed image, Imagen, no longer fits
the Gaussian noise model assumed by our previous work.

complicated by human subjects that would have to remain still across all of these acquisitions
to ensure the MRF data is spatially aligned with the parameters maps.

We propose utilizing in vivo MRF acquisition data without ground truth parameters maps
to build an empirical residual model. This residual model is based upon the subtracting a
clean, simulated MRF signal from an in vivo MRF signal. Using this empirical residual
model, we can alter simulated MRF signals to train neural networks with MRF data that
is more representative of in vivo MRF data than when using a Gaussian noise model. The
resulting trained network converts test in vivo MRF data into T1 and T2 parameter maps
that are indistinguishable from the baseline dictionary matching parameter maps 3.11, right
two columns.

Undersampled imaging model and reconstruction

During an MRI scan, programmable linear magnetic field gradients make it possible to
encode the acquired signal, y, in the frequency domain, or k-space, of the true image mtrue.
When sampling a full 2D Cartesian grid in k-space, the forward model of the MRI system
may be expressed as the following linear system:

yfull = Ffullmtrue + n (3.6)

where yfull is a length-N complex-valued vector of the acquired signal (N being the number
of pixels in the image),mtrue is a length-N complex-valued vector of the true image, Ffull is
the 2D Fourier transform operator, and n is a length-N vector of zero-mean, complex-valued
Gaussian noise samples.
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The adjoint of the linear operator may be applied to reconstruct an image, mrecon,full,
from the fully sampled data, yfull:

mrecon,full = F ∗fullyfull (3.7)

= F ∗full(Ffullmtrue + n) (3.8)

= F ∗fullFfullmtrue + F ∗fulln (3.9)

= mtrue + F ∗fulln (3.10)

where F ∗full is the adjoint of the 2D Fourier transform operator, which, assuming scaling
is appropriate, is the inverse 2D Fourier transform. Note that the reconstructed image is
the true image plus the inverse 2D Fourier transform of the additive noise, thus zero-mean
complex-valued Gaussian noise is also present in the reconstructed image. The point spread
function (PSF) operator for this reconstruction system is F ∗fullFfull, which is simply the
identity operator, Figure 3.13, left. This implies that the signal from any pixel in the true
image does not interfere with any other pixel location in the reconstructed image. This is
not the case, however, with reconstruction systems for undersampled acquisitions.

Figure 3.13 : An illustration of different k-space acquisition patterns and the corresponding point
spread function and example reconstructed image. Uniform undersampling of every other column
in k-space (center) causes aliasing to manifest as a shifted copy of the image. Spiral undersampling
(right) causes aliasing to manifest as artifact noise, where the original signal interferes with every
other pixel location in varying amounts.

When undersampling k-space, the forward model of the MRI system changes to use an
undersampled Fourier operator, which applies the 2D Fourier transform and then only keeps
the values at the K number of locations that were sampled:

yunder = Fundermtrue + n (3.11)
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where yunder is a length-K complex-valued vector of the acquired signal.
The corresponding undersampled reconstruction now uses the adjoint of the undersam-

pled Fourier operator, F ∗under:

mrecon,under = F ∗underyunder (3.12)

= F ∗under(Fundermtrue + n) (3.13)

= F ∗underFundermtrue + F ∗undern (3.14)

The undersampled reconstruction point spread function operator, F ∗underFunder, does not
generally simplify to the identity operator. When undersampling every other column in k-
space, the point spread function has two peaks offset by half a field of view, meaning that the
signal from true input pixels will interfere with pixels shifted by half an image, Figure 3.13,
center. More incoherent sampling patterns, such as a spiral sampling pattern, has a point
spread function that affects every other pixel location. The resulting incoherent aliasing
causes every pixel in the original image to interfere with every location in the reconstructed
image, Figure 3.13, right.

The acquisition used to collect our in vivo MRF data has a different spiral undersampling
pattern for each repetition, n. It also incorporates parallel imaging, which uses multiple RF
receiver coils to measure the signal, each with different spatial sensitivities. The correspond-
ing reconstruction uses non-Cartesian gridding with density compensation [84, 85] and RF
coil combination with Philips CLEAR [86]. The forward model and reconstruction include a
different undersampling operator for each spiral pattern, Funder,n, a coil sensitivity operator,
S, and its adjoint, and a density compensation operator, D:

yunder,n = Funder,nSmtrue,n + nn (3.15)

mrecon,under,n = S∗F ∗under,nDnyunder,n (3.16)

= S∗F ∗under,nDn(Fundermtrue,n + nn) (3.17)

= S∗F ∗under,nDnFundermtrue,n + S∗F ∗under,nDdnn (3.18)

Synthetic MRF training data

When combining the forward model with the reconstruction system for fully sampled
acquisitions, Equation 3.10, the true image signal is independent from the system noise.
Because of this independence, labeled synthetic MRF training data may be generated for
a single pixel by: 1) randomly sampling a set of parameters (T1, T2), 2) simulating the
corresponding MRF signal vector, 3) randomly sampling a Gaussian noise vector, and 4)
adding the noise to the simulated signal.
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Because of the interference across pixels in the point spread function for undersampled
spiral acquisitions, Equation 3.18, generating a synthetic MRF training vector would require
simulating data at the image level rather than simply simulating the MRF evolution of
one-pixel location.

In order to train neural networks to generate parameter maps despite noise coupled with
aliasing, we propose using an empirical residual model. The basic idea is to create a dataset
of residual signals by subtracting measured MRF signals from their dictionary matched
simulated signal. These residual vectors contain an empirical combination of both the noise
and interference present in the undersampled reconstruction system. Rather than Gaussian
noise vectors, samples from this empirical residual dataset can be added to clean simulated
MRF signals to augment the neural network training set. Figure 3.14 shows an example of
how our empirical residual model matches the measured signal better than a Gaussian noise
model.

3.3.2 Methods

Empirical residual model

Our empirical residual model considers three factors: residual sample, scaling sample,
and random phase.

1. Residual sample: We create an empirical distribution of residual signals by comparing
the measured MRF signals, mmeas, from each pixel in our in-vivo training set to the
dictionary matched simulated MRF signal, msim:

residual = mmeas − αmsim (3.19)

where α is the signal scaling factor computed from argminα ||mmeas − αmsim||2. This
scaling factor brings the measured and simulated to roughly the same intensity level,
allowing us to better capture the residual. We store a collection of these empirical
residual vectors, one for each measured signal in our training set. Note that the
measured signal mmeas is a vector of complex values, thus the resulting vector will
contain complex values even if the simulated signal has no imaginary components, as
is the case in our simulated MRF FISP sequence.

2. Scaling sample: Proton density affects signal strength at each pixel, independent from
T1, T2, and acquisition noise. For this reason, we also store samples of estimated
scaling between the simulated signal and the residual for each pixel:

ρ =
||αmsim||2
||residual||2

(3.20)

The dominant noise is an MRI system is typically independent from the signal strength.
However, this is not the case when we consider the interference from incoherent aliasing.
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Figure 3.14 : The magnitudes of the measured signal (top row, left) compared to simulated signals
augmented with the proposed empirical residual model (top row, right) versus Gaussian noise as
various noise levels (center and bottom rows). For reference, the dashed red lines show the magnitude
of the associated clean simulated signal for T1 = 1280 ms, T2 = 96 ms. The dashed red line shown
with the measured signal (top row, left) is the dictionary matched simulated signal, T1 = 1276 ms,
T2 = 90 ms.
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When undersampling, the strength of the signal from a given pixel spreads across
the image. As the signal strength in the overall image increases, the aliasing energy
increases, leading to interference that is signal-dependent. This is a key difference
between the signal-independent Gaussian noise model. We store a collection of these
scaling factors, one for each measured signal in our training set.

3. Random phase: Because the absolute phase of the measured signal is arbitrary, we also
include a random phase shift to both our simulated signal and our sampled residual
signal:

φ ∼ U [0, 2π] (3.21)

We sample a random scalar φ and rotate the phase entire simulated signal, msim, by
that angle. We sample a different random φ and similarly rotate the phase our residual
signal.

We combine these three factors to create a synthetic version for each simulated training
signal msim:

msynthetic = msim · ejφ1 +
1

ρi

residualk
||residualk||2

ejφ2 (3.22)

where i and k are random indices and φ1 and φ2 are random angles. In other words, each
time we feed an EPG simulated training signal,msim, to the neural network, we 1) randomly
select a residual vector from our noise collection, 2) scale that residual vector by a random
scalar sampled from our scale collection, 3) randomly rotate the phase of both the simulated
signal and the scaled residual vector, and 4) add them together.

Experimental setup

Data acquisition and reconstruction. With IRB approval, we scanned 12 male
volunteers, ages ranging from 29 to 61 years, with a 1.5T Philips Ingenia scanner using 13
receive channels. We acquired a fingerprinting spoiled gradient echo (FISP) sequence similar
to the one proposed in [22] with 500 time points, constant TE=3.3 ms and TR=20 ms, and
flip angles shown in Figure 3.15. The MRF data were acquired with a spiral acquisition with
two spiral readouts per TR interval, rotated at 180◦. The spirals between two consecutive
time points were rotated by 9◦. The MRF sequence included nine or ten axial slices through
the brain with a prescribed maximum in-plane resolution of 0.72x0.72 mm (FOV 230x230
mm, matrix size 320x320) and slice thickness 5 mm.

Each TR of the spiral MRF acquisition was reconstructed to image space using gridding
with density compensation [84, 85] and coil combination with Philips CLEAR [86]. Figure
3.15 shows an example of the reconstructed MRF data.

To account for the arbitrary receiver gain that scales the output of any given scan, we
normalize the in vivo MRF data by dividing by the 95th percentile of the magnitude of the
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complex mean image (averaged across the 500 time points) of each MRF scan. This provides
a consistent scaling when doing any preprocessing, such as the foreground mask described
below. It also reduces the need for the network to be robust to a potentially large range of
receiver gain values.

Figure 3.15 : Empirical MRF signal. MR fingerprinting flip angle for each of the 500 time points
(dashed-green line) shown with the magnitude of acquired MRF signal (solid-blue line) and the
dictionary matched simulated MRF signal (dashed-red line), T1 = 1280 ms, T2 = 94 ms. The
measured signal is dominated by artifacts. Also shown are magnitude images of the measured MRF
signal at four different time points and the complex mean MRF across 500 time points.

Foreground mask. A significant portion of each image falls is the background. To avoid
near-zero background points in our residual model, we create a binary foreground mask to
exclude them. We automatically construct this mask by thresholding the magnitude of the
complex mean image of the MRF data (after normalization to the 95th percentile) at 0.1
or greater. We use this same mask method at test time with the goal of directly mapping
extremely low MRF signals to zero in all parameter maps.

Baseline parameter maps. We simulated a dictionary of MRF signals with the ex-
tended phase graph (EPG) algorithm [87, 88]. The dictionary consisted of 22,031 MRF
signals for: T1 parameters in increments of 2 ms from 4 ms to 100 ms, increments of 10
from 100 to 1000, increments of 20 from 1000 to 2000, and increments of 40 ms from 2000 to
3000 ms; and T2 parameters in increments of 2 ms from 2 to 150, increments of 10 from 150
to 500, increments of 20 from 500 to 1000, and increments of 40 ms from 1000 to 2000 ms.
Only species with T2 less than T1 were included in the dictionary. Each simulated signal in
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the dictionary was scaled to have a Euclidean norm equal to one. Additional factors, such
as B1 inhomogeneity and slice profile, were not included in the simulated dictionary. As in
[6], we used cosine similarity to match the acquired MRF signal to the most similar signal
in the simulated dictionary.

Synthetic training data. The simulated signals used in both the Gaussian and empir-
ical residual models were generated in the same manner as the baseline dictionary. However
rather than using T1 and T2 parameters on a uniform grid, we randomly sampled 100,000
(T1, T2) pairs using the same distribution as the dictionary. This random sampling allowed
for simulated signals to be generated for (T1, T2) that fall between the dictionary grid points.

For the Gaussian noise model, zero-mean Gaussian noise was independently added to the
real and imaginary channels of the simulated MRF signal, Figure 3.14. We experimented
with eight different noise levels, specifically with PSNR values 0.625, 1.25, 2.5, 5, 10, 20, 40,
60, where the standard deviation of the Gaussian noise, σnoise is determined from:

PSNR =
maxi,t |signali,t|

σnoise
(3.23)

where the max is taken over all 500 time points and all 100,000 samples in our simulated
MRF training set.

For the empirical residual model, each training mini-batch randomly selects 1000 signals
from our 100,000 EPG simulated signals and augments them according to the empirical
residual model described above, Figure 3.14, top right. After applying the foreground mask
to the in vivo MRF exam images, there were 4.7 million empirical residual signals and
scaling samples available to sample from during training. We reserved two of the training
MRF exams to create separate residual and scaling collections used only during validation.

We reserved two of the in vivo MRF exams to be used only for final testing of all of our
methods.

Ablation study and random phase. As the empirical residual model has several
components, we conducted an ablation study to better understand the impact of each of
these components. Specifically, we trained and tested the empirical residual model with:

• No scale sampling (used mean scale value) and no phase rotation on either the signal
or the noise

• No scale sampling (used mean scale), but phase rotation on both the signal and the
residual

• Scale sampling, but no phase rotation on either the signal or the residual

• Scale sampling and phase rotation on the residual but not on the signal

• Scale sampling and phase rotation on the signal but not on the residual

The results of this study indicate that the phase rotation on the simulated signal con-
tributed strongly to training successful networks, so we repeated our Gaussian noise model
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experiments with the addition of a random phase to each signal before adding Gaussian
noise, see φ1 in Equation 3.22.

Network architecture and training. We trained separate T1 and T2 neural net-
works, both with network architecture described in Figure 3.8 and [31]. Specifically, the
networks consisted of three fully connected layers with 512, 256, and one output channels.
The networks contained a ReLU non-linear activation between each fully connected layer
and terminated with an L2 loss function that penalized any error between predicted and
ground truth T1 and T2 values. The fully connected layers used Xavier weight initialization
computed using the number of input channels [82]. With this shallow network, we found
that batch normalization was not necessary to stabilize the optimization during training.

Because our spoiled gradient echo fingerprinting sequence is designed to be insensitive
to B0, the phase of the underlying signal is consistent across all time points and does not
carry any information, so we chose to use the two-channel real/imaginary network from [31],
rather than a complex-valued neural network.

We trained our networks using a stochastic gradient descent solver with momentum 0.9.
We trained for 100,000 mini-batches of size 1000 signals, scaling the learning rate by 0.9
every 1,000 iterations. We trained each network with four different initial learning rates:
10−1, 10−2, 10−3, and 10−4. At test time, we selected the learning rate that produced the
lowest loss on the validation dataset.

The neural networks were constructed, trained, and tested using Caffe [38] running on a
cluster of NVIDIA M60 GPUs.

3.3.3 Results

Figure 3.11 shows that the network trained with our empirical residual model performs
equally well on the in vivo test data as dictionary matching, whereas the network with no
noise and with various levels of Gaussian noise all fail to produce viable parameter maps.
Table 3.3 contains the root mean squared error (RMSE) values for the different synthetic
training data models. The RMSE was computed using the baseline dictionary matching T1
and T2 maps as a substitute for ground truth parameter maps.

The training sets for all networks are based upon the dataset of 100,000 simulated MRF
signals, which are clean signals before any noise/residual is added. Table 3.3 also shows how
each network performed on this database of clean MRF signals.

Table 3.4 contains the results of the ablation study on the empirical residual model,
breaking down the various components of the model, Equation 3.22. Combining all empirical
residual model components produced the best results. Sampling scaling and rotating the
phase of the simulated signal by φ1 had a major impact on performance, while rotating the
phase of the noise by φ2 only had an impact when included with the signal rotation, φ1.

We found that rotating the phase of the simulated signal before adding noise also sig-
nificantly improves the Gaussian noise model. Figures 3.16 and 3.17 and Table 3.5 show
improvements at all Gaussian noise levels when the φ1 rotation is included. In fact, the
T1 map image quality for the Gaussian PSNR level 2.5 is fairly close to both the empirical
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Table 3.3 : Results comparing the Gaussian and empirical residual models. RMSE values are com-
puted by comparing the predicted values to the T1 and T2 values found using the baseline dictionary
matching method.

T1 (RMSE) T2 (RMSE)
Synthetic model Clean Test Clean Test

Clean signal 0.002 0.805 0.002 0.148
Gaussian PSNR 60 0.009 0.896 0.004 0.157
Gaussian PSNR 40 0.003 0.937 0.006 0.161
Gaussian PSNR 20 0.005 1.039 0.013 0.215
Gaussian PSNR 10 0.013 1.109 0.026 0.270
Gaussian PSNR 5 0.027 1.143 0.050 0.317
Gaussian PSNR 2.5 0.077 0.923 0.093 0.378
Gaussian PSNR 1.25 0.223 0.731 0.165 0.186
Gaussian PSNR 0.625 0.492 0.642 0.266 0.209
Empirical residual model 0.058 0.126 0.026 0.071

model and the dictionary matching baseline. The RMSE for the T2 Gaussian PSNR 1.25
actually drops slightly below the empirical residual model RMSE, although, the image qual-
ity as shown in 3.17 indicates that the empirical residual model best matches the baseline,
especially in the gray matter regions.

Table 3.4 : Root mean squared error results of ablation study for the empirical residual model,
comparing the effect of omitting various components of the model.

T1 (RMSE) T2 (RMSE)
Residual Scaling φ1 φ2 Test Test

No No No No 0.805 0.148
Yes No No No 1.422 0.172
Yes No Yes Yes 0.498 0.504
Yes Yes No No 1.342 0.213
Yes Yes No Yes 0.902 0.148
Yes Yes Yes No 0.133 0.074
Yes Yes Yes Yes 0.126 0.071
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Table 3.5 : Results comparing synthetic models with and without rotating the phase of the simulated
signal by a random φ1 before adding noise/residual.

T1 (RMSE) T2 (RMSE)
Synthetic model Without φ1 With φ1 Without φ1 With φ1

Clean 0.805 0.556 0.148 0.322
Gaussian PSNR 20 1.039 0.554 0.215 0.181
Gaussian PSNR 10 1.109 0.427 0.270 0.201
Gaussian PSNR 5 1.143 0.272 0.317 0.161
Gaussian PSNR 2.5 0.923 0.168 0.378 0.119
Gaussian PSNR 1.25 0.731 0.191 0.186 0.069
Gaussian PSNR 0.625 0.642 0.243 0.209 0.113
Empirical residual model 0.902 0.126 0.148 0.071

Figure 3.16 : T1 parameter maps for one slice of test volume one, comparing the neural network
predictions after training on synthetic models with and without rotating the phase of the simulated
signal by φ1.
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Figure 3.17 : T2 parameter maps for one slice of test volume one, comparing the neural network
predictions after training on synthetic models with and without rotating the phase of the simulated
signal by φ1.

3.3.4 Discussion

As expected from results in Section 3.2, the networks trained with no noise or very little
Gaussian noise perform quite well on the clean training signal, but these networks overfit
to this clean signal and perform poorly on the in vivo test dataset, Table 3.3. A significant
amount of Gaussian noise, down to PSNR 1.25, must be added during training in order for
the test result to start surpassing the network trained on the clean signal. Unfortunately,
at that point, the noise level is so high that the Gaussian model network does not produce
adequate test results or even clean signal results. The network trained with the proposed
empirical residual model learns a parameter mapping function that performs well on both
the clean training signal and the in vivo test signal.

Our proposed empirical residual model augments the clean simulated MRF signal with
an empirical sample of the residual (noise coupled with aliasing interference), an empirical
sample of signal-to-residual ratio, and random phase rotations. When training on this em-
pirical residual model, the network becomes robust to variations that are seen in the in vivo
training set. Our empirical residual model samples the aliasing energy in the undersampled
MRF signal that corrupts the image. This residual is signal-dependent and one of the reasons
why the Gaussian noise model is not sufficient.

Through the ablation study of the empirical residual model, we found that both scale
sampling and randomly rotating the phase of the simulated signal were critical to
the success of the model, Table 3.4. Acquisition noise may be relatively constant across
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MRF signals, but the proton density of different tissues causes the SNR to vary across the
images. Additionally, in undersampled acquisitions, the signal-to-residual ratio is affected by
aliasing energy which is also dependent on the signal level. By sampling from a distribution
of residual scaling factors, the network can learn to be robust to the variety of signal-to-
residual ratio values in MRF images. The distribution of signal-to-residual ratio in an MRF
dataset may be one of the reasons that the Gaussian noise models trained a signal noise
level failed. Future work could consider training with a heterogeneous set of Gaussian noise
levels.

Our MRF EPG simulator does not account for an arbitrary absolute phase shift, nor does
it factor in the change in phase caused by incoherent undersampling. In fact, given that our
FISP MRF sequence is designed to be insensitive to B0 inhomogeneity, all of our simulated
MRF signals have zero phase, i.e. they are all real-valued. Without rotating the phase of
these simulated signals, our network would overfit to the homogeneous phase in the training
set. Including a random signal phase in both our empirical residual model and Gaussian
noise model was essential to network performances as shown in our results in Figures 3.16
and 3.17.

As with any data-driven learning, our empirical residual model is susceptible to overfitting
to the training dataset. Our networks were both trained and tested on healthy volunteers,
who were all scanned at the same institution. It is important for future applications of
this work to train networks with empirical residual model data acquired across a variety
of clinical scenarios, including anatomy, pathology, and scanner environment. It is equally
important to test the trained networks using datasets that were independently acquired and
representative of the application domain.
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3.4 Direct Contrast Synthesis
MRF parameter mapping and conventional parameter mapping aim to provide consis-

tent tissue measurements that enable quantitative comparison between exams, leading to
improved post-processing and longitudinal studies [89]. However, clinicians still rely on
standard contrast-weighted images, such as T1-weighted and T2-weighted images. If one
could synthesize the contrast-weighted image from the MRF acquisition data, there would
be a significant reduction in scan time. For example, a single four minute MRF sequence that
produces quantitative maps could replace the ten minutes needed to acquired T1-weighted,
T2-weighted, and FLAIR sequences, saving six minutes. Reduced exam times provide myr-
iad clinical and financial benefits including increased patient throughput, improved patient
comfort, and reduction of motion artifacts.

Contrast synthesis via parameter maps. One approach to generating contrast-
weighted images from an MRF acquisition is to synthesize the contrast-weighted images using
the MRF parameter maps and the MR signal equations [22], shown by Figure 3.18, dashed
blue line. With the values from T1, T2, and proton density maps, we can simulate how the
tissue at each pixel location will react to different pulse sequences, such as gradient echo, spin
echo, and inversion recovery sequences. The concept of MRI synthesis dates back to 1985 [27],
and techniques such as QRAPMASTER [72] have recently been shown to produce clinically
viable images [90]. Unfortunately, MRI synthesis techniques from MRF parameters are still
limited by biases, due to effects that are difficult to simulate and fit to, such as time varying
signals, partial volume and flow. In addition, to get more accurate modeling, one must
include slice profile, diffusion, magnetization transfer, and other contrast mechanisms and
imaging parameters. These increase the dictionary size and can cause over-fitting and even
further biases. In order to keep multi-parameter dictionaries from becoming computationally
impractical, fewer values are sampled for each parameter, leading to discretization errors that
limit the accuracy of the synthesized images.

Direct contrast synthesis (DCS). Deep learning methods excel at quickly and ac-
curately converting an acquired image into a segmented version of that image [91, 92, 93],
but they can also transform image data from one domain to another, for example converting
images from day to night or from an aerial image of a city to a map rendering of that same
location [94]. Recent work has shown that neural networks can also successfully transform
acquired MRF signal data in the image domain into quantitative parameter maps, bypassing
the computationally expensive dictionary matching [42, 31, 79, 14, 13]. In a similar manner,
we propose training neural networks to extract contrast-weighted images directly from the
MRF data, shown by Figure 3.18, solid red line. Using training data consisting of image-
domain MRF data paired with acquired contrast-weighted images, the neural network learns
to predict T1-weighted, T2-weighted, and FLAIR images from a single MRF acquisition.
Our in vivo MRF experiments demonstrate that our direct contrast synthesis technique pro-
vides more accurate synthetic contrast images than can be generated via T1, T2, and proton
density parameter maps obtained with MRF. Since the MRF sequence is broadly sensitive
to the tissue parameters, this approach could be used to synthesize other contrast weighted



3.4. DIRECT CONTRAST SYNTHESIS 74

Figure 3.18 : Two approaches to contrast synthesis fromMR fingerprinting: indirectly via parameter
maps (blue-dotted lines) versus directly from MRF signal (solid-red line). Direct contrast synthesis
(DCS) uses a trained neural network to transform the MRF signal directly into many different
contrast-weighted images. DCS bypasses two simulation steps and avoids incomplete modeling
assumptions and error propagation.

images by collecting other paired data.

3.4.1 Methods

Data acquisition and preprocessing

Acquisition and reconstruction. With IRB approval, we scanned 21 volunteers, ages
ranging from 29 to 61 years, with a 1.5T Philips Ingenia scanner using a head coil with
13 receive channels. Four consecutive axial brain sequences were acquired: T1-weighted
spin echo with TE=15 ms, TR=450 ms, FA=69, two averages; T2-weighted turbo spin
echo (TSE) with TE=110 ms, TR=1990 ms (twelve of the exams used TR=2215 ms), ETL
16, FA=90, two averages; FLAIR inversion recovery TSE with TE=120 ms, TR=8500 ms,
TI=2500 ms, ETL=41, FA=90, two averages; and a fingerprinting spoiled gradient echo
(FISP) sequence based upon [22] and [23] with 500 time points, constant TE=3.3 ms and
TR=20 ms. Following [23], the MRF flip angle pattern was chosen from the best of Monte
Carlo simulations with 500 time points, Figure 3.19, dashed-green line. The MRF data were
acquired with a spiral acquisition with two spiral readouts per TR interval, rotated at 180◦.
The spirals between two consecutive time points were rotated by 9◦. All of the scans were
acquired with in-plane resolution of 0.72x0.72 mm (FOV 230x230 mm, matrix size 320x320)
and slice thickness 5 mm. Each exam acquired the same nine or ten slices of the brain for
all four acquisitions. Of the 21 subjects, 17 were scanned twice (on different days), resulting
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in a total of 38 exams. FLAIR sequences were acquired for only 26 of the 38 exams.
Each TR of the spiral MRF acquisition was reconstructed to image space using gridding

with density compensation [84, 85] and coil combination with Philips CLEAR [86]. Both the
magnitude and phase of the reconstructed MRF signal were retained and stored as complex
values. Figure 3.19 shows an example of the reconstructed MRF image for three different
time points, as well as an image of the MRF signal, averaged across the temporal dimension
and then reconstructed.

Pruning and partitioning. At training time, we rely on the fingerprinting data to
be spatially aligned with each of the contrast images. If a subject moves or if the scan
prescription is altered between scans, the pixels will not map to the same subject location
for all four acquisitions, and the network would be trained to convert the fingerprinting data
into the wrong contrast values. To avoid this issue, the alignment of all four acquisitions
for each exam were visually inspected, and any exams containing patient movement were
dropped from the study. Specifically, the MRF mean image (averaged across the 500 time
points) showed no patient movement between any of the contrast images for 27 of the 38
exams; the remaining 11 exams were not used. Of the 27 aligned exams, 23 were used for
training, two for validation, and two only for the final test results. The subjects of the two
test exams were not included in any of the training or validation exams.

Normalization. Contrast-weighted MR images have arbitrary scaling factors for each
exam. To reduce this variation in the training, validation, and test data, each contrast-
weighted image was divided by a representative value of white matter in that image, produc-
ing a normalized image where white matter regions, often the largest regions, have values
at or near one. The representative white matter value was automatically determined by
computing a 50-bin histogram of the data and selecting the center value of the highest bin,
excluding the background bins near zero. The same process was followed to normalize the
MRF data, but the white matter scaling factor was found using the histogram of the magni-
tude of the complex mean image of the MRF data (averaged across the 500 time points). Note
that more robust normalization methods will be required to normalize different anatomical
regions or brain images where white matter is not the largest region.

Foreground mask. As the imaging FOV is larger than the scan subject, a significant
portion of each image falls beyond the extent of the subject. To avoid training on near-zero
background points, a binary foreground mask was created to exclude them. We automatically
construct this mask by thresholding the magnitude of the complex mean image of the MRF
data (after normalization) at 0.01 or greater. The binary mask was then dilated twice, with
a 4-connected structuring element, to close any holes near the anatomy. This same masking
method was used at test time with the goal of directly mapping extremely low MRF signals
to zero in all contrast images.

Contrast synthesis via parameter maps

Parameter maps. We simulated a dictionary of MRF signals with the extended phase
graph (EPG) algorithm [87, 88]. The dictionary consisted of 29,981 MRF signals for: T1
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Figure 3.19 : Top: MR fingerprinting flip angle for each of the 500 time points (dashed-green
line) shown with the magnitude of acquired MRF signal (solid-blue line) and the closest simulated
MRF signal (dashed-red line), T1 = 1280 ms, T2 = 94 ms. The measured signal is corrupted by
both acquisition noise (signal independent) and incoherent aliasing (signal dependent). Bottom:
magnitude images of the measured MRF signal at four different time points (a-d), the moving
average with kernel size 32 at four different time points (e-h), and the magnitude of the complex
mean MRF across 500 time points (i).
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parameters in increments of 2 ms from 4 ms to 100 ms, increments of 10 from 100 to 1000,
increments of 20 from 1000 to 2000, and increments of 40 ms from 2000 to 5000 ms; and T2
parameters in increments of 2 ms from 2 to 150, increments of 10 from 150 to 500, increments
of 20 from 500 to 1000, and increments of 40 ms from 1000 to 2000 ms. Each simulated
signal in the dictionary was scaled to have a Euclidean norm equal to one. As in [6], we used
cosine similarity to match the acquired MRF signal to the nearest neighbor in the simulated
dictionary. Figure 3.19, bottom left, shows one of the acquired MRF signals along with its
nearest signal in the simulated dictionary. Additional factors, such as B1 inhomogeneity and
slice profile, were not included in the simulated dictionary.

Contrast sequence simulation. The parameter maps from MRF dictionary matching
were converted to T1-weighted and T2-weighted contrast images by simulating spin echo
sequences using the TE, TR, and flip angle parameters specified in the data acquisition
section above:

SpinEcho (PD, T1, T2, TE, TR, θ2) (3.24)

= PD sin θ1 sin2

(
θ2
2

)
1 + (cos θ2 − 1)e−(TR−TE/2)/T1 − cos θ2e

−TR/T1

1− cos θ1 cos θ2e−TR/T1
e−

TE
T2

= PD sin2

(
θ2
2

)(
1 + (cos θ2 − 1)e−(TR−TE/2)/T1 − cos θ2e

−TR/T1
)
e−

TE
T2 (3.25)

where PD is the proton density, θ1 = 90◦ is the excitation flip angle, and θ2 is the refocusing
flip angle [95]. The proton density was computed by taking the magnitude of the dot product
between measured and simulated MRF signals.

Likewise, parameter maps were converted to FLAIR contrast images by simulating an
inversion recovery spin echo sequence [96, 97]:

IRSpinEcho (PD, T1, T2, TE, TR, TI, TElast) (3.26)

= PD ·
(

1− 2e−
TI
T1 + e−

(TR−TElast)

T1

)
e−

TE
T2

where TElast is the echo time of the last echo in the echo train, which was 234 ms for the
acquired FLAIR sequences.

Direct contrast synthesis (DCS)

Network. Following [31], a separate neural network was trained for each output parame-
ter: T1-weighted, T2-weighted, and FLAIR. Because our spoiled gradient echo fingerprinting
sequence is designed to be insensitive to B0, the phase of the underlying signal is consis-
tent across all time points and does not carry any information, so we chose to use the two
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Figure 3.20 : Patch-wise neural network architecture for direct contrast synthesis. 3x3 spatial
patches are flattened and passed through three convolutional layers and then three fully connected
layers, resulting in a contrast value prediction for the center of the input patch. Between each
layer is a ReLU non-linear filter. The number of feature channels is shown above each block, while
the size of the temporal dimensions is shown to the left. An L2 loss function is used to penalize
predicted values that do not match the acquired contrast value.

channel real/imaginary network from [31], rather than a complex-valued neural network.
Due to the temporal correlation across the highly undersampled MRF acquisition, temporal
convolution layers, interspaced with ReLU activation layers, were added to the beginning
of the network. These convolution layers gradually reduce the temporal dimension, leading
to a non-linear compressed representation similar to the linear reduction of the temporal
dimension by singular value decomposition in [26].

The neural networks for direct contrast synthesis were trained on approximately 10 mil-
lion 3x3 patches from the in vivo MRF training data with no data augmentation. The
3x3 overlapping spatial patches with 500 temporal values and real and imaginary channels
were flattened and passed through three temporal convolutional layers and then three fully
connected layers, resulting in a contrast value prediction for the center of the input patch.
The temporal convolutions used a kernel of size three and Xavier initialization computed
using the number of input channels [82]. Between each layer is a ReLU non-linear activation
function. The number of feature channels and the size of the temporal dimensions are shown
in Figure 3.20. An L2 loss function was used to penalize predicted values that do not match
the acquired contrast value. The neural networks were constructed, trained, and tested using
Caffe [38] running on a cluster of NVIDIA M60 GPUs.

In addition to the patch-based network, we also trained a network using only a single
MRF pixel as input. This pixel-wise network used the same architecture as the patch-wise
network in Figure 3.20, except that the input is 500x2 rather than 500x18 and because of this
smaller dimensional input, we reduced the number of feature channels for the three temporal
convolutions from 32, 64, and 128 down to 8, 16, and 32, respectively.

To compensate for the undersampling artifacts in the MRF data as well as the low
SNR due to relatively high spatial resolution, we also experimented with adding an average
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pooling layer at the very beginning of the network. A pooling stride length of 1 and kernel
of size 32 were used in the temporal dimension. This layer has no learned parameters and
acts as a fixed moving average preprocessing step to denoise the input data, similar to [98].
This pooling operation was not padded, which resulted in reduced temporal dimensions from
those shown in Figure 3.20, specifically 469, 235, 118, and 59 rather than 500, 250, 125, and
62.

To investigate the effect of limited data, the pixel-wise networks were trained with only
five exams and again with only ten exams, in addition to being trained with all 23 training
exams.

Mini-batch selection. During training, a mini-batch size of 1000 was used for both
the pixel-wise and patch-wise networks. The points/patches of each exam were partitioned
into 100 different files. While training, files were chosen at random without replacement,
repeating after processing all training files. Similarly, mini-batches were randomly populated
from each file without replacement, then a new random file was chosen.

Solver. The networks were trained using a stochastic gradient descent solver with mo-
mentum 0.9. Each network was trained with four different initial learning rates: 10−1, 10−2,
10−3, and 10−4. While training, the learning rate was scaled by 0.5 every 10,000 iterations.
We trained for 40,000 and 100,000 mini-batch epochs for the patch-wise and pixel-wise net-
works, respectively. At test time, we selected the learning rate that produced the lowest loss
on the validation dataset.

Image comparison

Quantitative comparison. Root mean squared error (RMSE) quantitative values were
computed for both contrast synthesis via parameter maps and direct contrast synthesis
methods. RMSE values were calculated using the square root of the mean squared differences
between the synthesized image and the acquired contrast image. The RMSE values are
computed from all pixels in our foreground mask across all slices of the two test exams.
Specifically, we compute:

MSEi =
1

Ni

||yi − xi||22 (3.27)

RMSE =

√
1

2

∑
i∈{1,2}

MSEi (3.28)

where yi ∈ RNi is the vector of all Ni foreground pixels in the acquired contrast-weighted
images of the i-th test exam and xi ∈ RNi is the vector of all Ni foreground pixels in the
direct contrast synthesis images of the i-th test exam.

Scaling for comparison. In general, MRI contrast-weighted images have an arbitrary
scaling factor as mentioned in the normalization preprocessing section above. The direct
contrast synthesis method learns to output contrast images with the same scaling as the
contrast images in the training set. Thus, because the acquired contrast-weighted images
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in the test set were also normalized in the same manner as the training set, the direct
contrast synthesis images do not require any scaling when comparing them via RMSE to the
acquired images. However, contrast synthesis via parameter maps images does not have this
normalization. To allow for the most optimistic RMSE values for these baseline images, we
compute and apply the scaling factor, α, that minimizes the sum of squared error between
the contrast synthesis via parameters image data, x, and the acquired contrast-weighted
image data, y. Specifically, we compute:

α∗i = argmin
α
||yi − αxi||22 (3.29)

=
yTi xi
xTi xi

(3.30)

RMSE =

√
1

2

∑
i∈{1,2}

1

Ni

||yi − α∗ixi||22 (3.31)

where yi ∈ RNi is the vector of all Ni foreground pixels in the acquired contrast-weighted
images of the i-th test exam, xi ∈ RNi is the vector of all Ni foreground pixels in the contrast
synthesis via parameter maps images of the i-th test exam, and αi is the computed scaling
factor for the i-th test exam.

3.4.2 Results

The training times for a single learning rate of one contrast-weighted network were 4.5
hours and 1.5 hours for the patch-wise and pixel-wise networks, respectively, when running
on a single GPU of an NVIDIA M60 card. With that same GPU at test time, a single slice
was processed in 1.5 seconds and 0.4 seconds, for the patch-wise and pixel-wise networks,
respectively. Example comparisons between the contrast synthesis via parameter maps and
the proposed direct contrast synthesis are shown in Figure 3.21. Direct contrast synthesis
consistently produced lower root mean squared error and higher qualitative image quality
than contrast synthesis via parameter maps, which contain significant artifacts, especially in
the vasculature and cerebrospinal fluid (CSF). Our pixel-wise network has better qualitative
image quality than that of the patch-wise network, which appears smoother. However, the
patch-wise network does provide better results for regions near the skull, as well as lower
root mean squared error, Table 3.6.

Figure 3.22 shows the T1, T2, and proton density parameter maps estimated from the
MRF data using dictionary matching, and used to generate the contrast-weighted images
shown in Figure 3.21, left column. The noisy T2 maps lead to noisy T2-weighted and FLAIR
images synthesized via parameter maps. The high values for vasculature in the generated
proton density map amplify errors in the synthesized contrast images, but even if the proton
density scaling factor is removed from Equation 3.25, the synthesized T2-weighted images
still contain erroneous bright vessels, Figure 3.22, bottom.
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Figure 3.21 : Results for both contrast synthesis via parameters and direct synthesis on test exam
number one for T1-weighted (a-c), T2-weighted (e-g), FLAIR (i-k), and FLAIR from an MRF signal
preprocessed with a moving average filter (m-o). Results are shown from training direct contrast
synthesis networks with MRF pixels (b,f,j,n) and MRF 3x3 spatial patches (c,g,k,o). Note that the
synthesis via parameters method presents inconsistent vessel contrast (white arrows) for all three
contrast-weighted images, most noticeably in the superior sagittal sinus.



3.4. DIRECT CONTRAST SYNTHESIS 82

Figure 3.22 : Quantitative maps for one slice of test exam number one computed as part of the
contrast synthesis via parameters method. The MRF data, shown as a mean over the 500 time
points (a), is matched to the nearest neighbor in a simulated MRF dictionary to produce T1 maps
(b) and T2 maps (c). These maps, as well as the computed proton density (c), are then used to
indirectly synthesize contrast-weighted images )(e-g). To illustrate the effect of the proton density
values, contrast-weighted images synthesized via parameter maps are also shown without the proton
density scaling factor (h-j).



3.4. DIRECT CONTRAST SYNTHESIS 83

Table 3.6 : Root mean squared error (RMSE) quantitative results for both contrast synthesis via
parameter maps and direct contrast synthesis (DCS) methods. The second column contains the
number of training exams used for each result. †The FLAIR results were trained with 11 exams
rather than 23.

Method \ RMSE Training exams T1w T2w FLAIR
Synthesis via parameter maps N/A 0.374 0.614 0.522
DCS pixel-wise 5 0.317 0.429 0.175
DCS pixel-wise 10 0.294 0.404 0.164
DCS pixel-wise 23† 0.290 0.399 0.163
DCS pixel-wise, moving average 23† 0.289 0.402 0.175
DCS patch-wise 23† 0.221 0.300 0.136
DCS patch-wise, moving average 23† 0.211 0.294 0.140

Figure 3.23 and Table 3.6 show the improved image quality as the number of training
exams is increased. With more training data, noise and artifacts decrease in the resulting
reconstruction, most noticeably in the CSF of the T1-weighted images. Figure 3.21 shows
little difference between training and testing results when training with 23 exams, which
indicates that we are not overfitting to specific subjects. That being said, our training and
test sets both came from healthy volunteers scanned at the same institution, so further study
is required to ensure that our networks are robust to various clinical scenarios.

3.4.3 Discussions and conclusions

Our direct contrast synthesis results demonstrate the feasibility of generating many
contrast-weighted images from a single MRF acquisition, which could significantly reduce
exam times. By learning to directly convert the MRF signal into desired contrast-weighted
images, a trained neural network bypasses the two simulation steps required to synthesize
contrast images via parameter maps. Our DCS network produces more accurate image con-
trast and contains far fewer artifacts compared to synthesizing via MRF parameter maps.
These image quality gains are most prevalent in regions containing vasculature, as flow is
particularly difficult to model when synthesizing via parameter maps [99].

Synthesis via parameter maps. The sources of error in the baseline contrast synthesis
via parameter maps include: 1) factors that were not included in the dictionary simulation;
2) approximations and error propagation in synthesis simulation; and 3) noise and artifacts
from high spatial resolution and under-sampling of the MRF acquisition, which also impacts
the direct contrast synthesis method.

Contrast synthesis via parameter maps could be improved by modeling more effects
during simulation, specifically B1 inhomogeneity, slice profile, flow, partial volume, and
fat. Unfortunately, including more simulation parameters quickly becomes a combinatorial
problem, forcing the dictionary to explode in size or severely sacrifice parameter resolution
and range.

One benefit of using a simulation model to synthesize contrast-weighted images is it
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Figure 3.23 : Training and testing results from pixel-wise direct contrast synthesis networks trained
using 5, 10, and 23 exams. Note how the noise and artifacts are reduced as the number of training
exams increases. The first and third rows show the network output using an MRF exam from our
training data, while the second and fourth rows show results for test exam number two, which was
never used for training or architecture/hyperparameter selection.
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inherently comes with a means to analyze how parameter values affect the contrast value
at each pixel. When shifting to a deep learning model for contrast synthesis, this straight-
forward analysis is lost to the complexities of a trained neural network. Golbabaee, et al.
[78] begin to address this problem for MRF parameter map networks, but analysis and
explainability remains an open challenge in deep learning.

Neural network training data. Direct contrast synthesis uses the training data to
learn a mapping from MRF signals to contrast-weighted images without explicitly modeling
any of the aforementioned effects. The DCS training data also includes a natural prior on
the distribution of these effects, for instance, partial volume proportions at tissue interfaces.
While Figure 3.23 shows that even a limited number of training exams can approximate the
correct image contrast, more training data is required to improve this empirical prior distri-
bution. As with all data-driven algorithms, care must be taken to acquire a representative
training set to avoid overfitting to specific anatomy, pathology, or scanning environment.

Collecting training data for DCS is relatively straight-forward, especially in comparison
to the time-intensive acquisitions to obtain "ground truth" parameter maps. Assuming
a cooperative subject who can limit movement between sequences, the training data only
requires adding an MRF sequence with matching acquisition geometry (spatial resolution,
slice thickness, FOV) onto the standard clinical protocol. Training data will need to be
curated to ensure all series are aligned, but registration algorithms could be incorporated to
detect alignment errors, as well as correct in-plane motion.

Network architecture. The pixel-wise networks presented in this work are small, effi-
cient, and train on the 10 million different MRF signals in our training set. The convolutions
along the temporal dimension take advantage of the structure of the MRF signal across repe-
tition time points and gradually reduce the 500 temporal values to a single contrast-weighted
pixel value. However, given the acquisition noise and undersampling, the pixel-wise network
does not quite reproduce the image quality of the contrast-weighted acquisitions. Training
on individual pixel locations does not take advantage of the spatial similarity in the desired
images. Our patch-based network begins to incorporate neighboring pixel signals and, in
some areas, is able to resolve finer structure, but the patches are still treated independently,
and the spatial information is all combined in the first convolution layer.

Image-to-image convolutional networks, such as U-net [92], would learn to preserve spatial
structure throughout the network, but a default implementation would treat the temporal
dimension as multiple channels and immediately combine them, essentially attempting to
learn the MRF signal in the first layer. A hybrid approach that combines an image-to-image
network with temporal convolutions could be beneficial. This combined approach would
have to be conscious of computing hardware limits on this larger network, and any training
at the image level would require a significantly larger dataset; while there are 10 million
pixel locations in our training data, there are only 200 images.

Acquisition and reconstruction. Our MRF sequence was acquired with 0.72 mm
in-plane spatial resolution in order to synthesize contrast-weighted images with spatial res-
olution seen in clinical protocols. However, this improved spatial resolution comes with the
cost of lower SNR in the MRF data and residual noise in the synthesized images. To re-
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duce the impact of lower SNR and undersampling artifacts, our methods introduced both
moving average preprocessing and temporal convolutions in our neural network. To further
improve image quality, future work could combine DCS with recent developments in MRF
sequence design, such as improved MRF encoding capability [100], and integrate DCS with
reconstruction methods, such as compressed sensing and low rank [101, 70, 24, 25, 102, 103].
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Chapter 4

Empirical Effect of Gaussian Noise in
Undersampled MRI Reconstruction

4.1 Introduction
Undersampling in Fourier-based medical imaging provides a variety of clinical benefits

including shorter exam times, reduced motion artifacts, and the ability to capture fast mov-
ing dynamics, such as cardiac motion. Undersampling reduces acquisition time by collecting
fewer measurements in the frequency domain than required by the Nyquist rate. However,
undersampling causes two specific challenges for the reconstruction system, namely, an un-
derdetermined system1 of linear equations and lower SNR (signal-to-noise ratio) due
to reduced measurement time. When reconstruction algorithms are able to overcome these
challenges, undersampling can benefit a variety of Fourier-based imaging modalities, includ-
ing MRI with parallel imaging or compressed sensing [104, 11], computed tomography (CT)
with reduced or gated acquisition views [105, 106], and positron emission tomography (PET)
with multiplexed or missing detectors [107, 108]. Undersampling for acceleration is becoming
the mainstream approach for fast imaging. In fact, this year, two of the major MRI manu-
facturers have announced products that leverage undersampling and a compressed sensing
reconstruction that have been approved by the FDA. While the tools and analysis discussed
in this chapter apply generally to Fourier-based medical imaging with Gaussian noise, we will
direct our numerical modeling, examples, and experiments to the application of compressed
sensing MRI.

When designing an undersampled reconstruction system, the primary concern is often
focused on compensating for the underdetermined system caused by sub-Nyquist sampling,
for example choosing a sparse representation for compressed sensing. However, we should

1In the context of this chapter, we specify fully determined and underdetermined as follows: for a fixed
Cartesian k-space (frequency space) grid with predefined field of view and spatial resolution parameters,
fully determined means having at least one measured sample for each k-space grid location and under-
determined means at least one k-space location has zero samples, in which case we have more unknowns
(image pixels) than equations (one per acquired k-space location).
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not overlook the fact that collecting fewer measurements in practice leads to overall lower
SNR in the acquired data. If the measurements are too noisy, the low SNR will lead to poor
reconstructed image quality even if the reconstruction system was fully determined. On
the other hand, with high SNR measurements, the resulting image quality will be limited
by how well the reconstruction can constrain the underdetermined system. The effects
of the underdetermined system and the lower SNR are coupled during the reconstruction
process, making it difficult to analyze one without the other. It is important, however, to
analyze how both issues impact the reconstruction system in order to determine the empirical
limits of undersampling and gain insight on how to improve undersampled acquisition and
reconstruction when targeting specific applications.

Compressed sensing theory has provided us with extensive analysis of the bounds for the
successful signal recovery from undersampled data. Candès [28] describes a bound on the
squared error of the recovered signal limited by the undersampling rate and the sparsity of
the data. He also shows that this bound scales linearly with the variance of the noise in
the measured data. Candès and Plan [29] provide a more general compressed sensing theory
that addresses a combination of practical concerns. For instance, they derive the bounds on
the squared error of the recovered signal for systems with Fourier encoding matrices, noise
measurements, and approximately sparse signals. Unfortunately, while the squared error is
an important tool in measuring the similarity between signals, it often fails to provide a
good measure of perceptual image quality. Wainwright [30] improves upon the squared error
definition of success by studying the undersampling rates and sparsity levels for which there
is a high probability of successfully recovering the support of the sparse signal.
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Figure 4.1 : Prediction of Image Quality: The process to add the proper amount of noise to fully-
sampled reference k-space and reconstruct an image affected by lower SNR due to reduced acquisi-
tion time but not affected by an underdetermined system. The expected measurement time at each
k-space location, τk, associated with the given sampling pattern is used to calculate the amount of
noise (zero mean, complex Gaussian with variance σ2add,k) to add to each position in the reference
k-space. This k-space with added noise is then processed by the reconstruction algorithm to produce
the prediction image.
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While it is important to have theory showing that reconstruction techniques are mathe-
matically founded, when testing a reconstruction algorithm on a new undersampled clinical
dataset and the image results are unacceptable, it is difficult to leverage the theoretical
bounds to understand the cause of the failure. Conversely, when an undersampled recon-
struction is successful at a certain undersampling rate, it is natural to then ask, how much
further can we push undersampling? In this case, it is difficult to translate theoretic analy-
sis, such as time constants for polylogarithmic bounds [29], into practice. Our goal in this
chapter is to provide the tools to empirically analyze the effects of lower SNR from reduced
measurement time using a reconstruction system that is fully determined, rather than un-
derdetermined. To this end, we present the image quality prediction process (Fig. 4.1).
The image quality prediction process takes a Nyquist-sampled (fully determined) reference
dataset and adds the proper amount of noise in order to mimic the lower SNR produced
by a given undersampling pattern. By reconstructing this noisy, but still Nyquist-sampled
dataset, we have a prediction image that has been affected by lower SNR from reduced
measurement time but not by artifacts from an underdetermined reconstruction. The image
quality prediction process gives us the following three benefits:

• Comparing the prediction image to the reference reconstruction allows us to see the
impact of lower SNR from reduced measurement time on the reconstruction system.

• Comparing the prediction image to the underdetermined reconstruction, we are able
to assess the added effect of the underdetermined system on the reconstructed image.

• The prediction image provides a better estimate of undersampled image quality than
over-optimistically comparing an underdetermined reconstruction to a fully-sampled
reference reconstruction.

As exemplified in Fig. 4.2, for a given clinical application and undersampling pattern,
pulse sequence and reconstruction developers can use the image quality prediction process
to determine if low SNR, rather than the underdetermined system, is the limiting factor for
a successful reconstruction. Specifically, an unsatisfactory prediction image indicates that
the undersampled acquisition contains more noise than the reconstruction can handle. On
the other hand, a high-quality prediction image and poor results from the underdetermined
reconstruction indicate that the constraints on the underdetermined system are not adequate
for the limited number of samples acquired. Once developers understand the limiting factor
in a given undersampling application, they can then recommend changes to the acquisition
protocol to adjust the measurement SNR or the undersampling rate. Developers can also
appropriately focus their efforts on improving the reconstruction algorithm to better account
for the noise distribution or to improve the reconstruction constraints, such as the sparsity
model.

Before describing the details of the image quality prediction process, we first specify how
measurement time affects SNR, specifically when undersampling. We complete this section
by introducing a weighted least squares optimization that generalizes the reconstruction
process for both undersampled data and the fully determined prediction data.
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Figure 4.2 : Using the image quality prediction process to adjust scan parameters. This 2D fast
spin echo acquisition with 1 mm slice thickness and 4x undersampling produces poor reconstruction
image quality (top right). The corresponding prediction image (top left) also has poor image
quality, indicating that noise is the limiting factor. Increasing to 2 mm slice thickness (center row)
reduces the noise and produces higher image quality in both the prediction and the underdetermined
reconstruction. Further accelerating the scan with 6x undersampling (bottom row), the prediction
image quality is significantly higher than the reconstruction image quality, indicating that the
underdetermined system is the limiting factor for those scan parameters.
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4.1.1 Measurement Time and SNR

For MRI reconstruction, we can model the signal s as the discrete Fourier transform of
the unknown target image object m:

sk = (Fm)k (4.1)

where F is the multidimensional discrete Fourier transform operator and k is the k-th location
in k-space. However, each measurement sk comes with an associated noise. We can model
the noisy measurement Yk as:

Yk ∼ N
(
Re(sk), σ2

acq/τk

)
+ iN

(
Im(sk), σ2

acq/τk

)
(4.2)

where Yk is a random variable drawn from a complex-valued Gaussian distribution with
mean sk and variance defined by the system noise variance, σ2

acq, scaled by one over the
measurement time, τk, as described in [83]. With this definition, we assume that the signal
is deterministic based on our model, the signal is independent from the noise, and that
the noise is independent and identically distributed. In cases where these assumptions do
not hold, additional care may be taken to adjust the data to this model, for example, pre-
whitening coil channels in parallel imaging or accounting for echo time variation in fast spin
echo acquisitions.

Again following [83], we define SNR as the signal intensity divided by the standard
deviation of the noise and note that from (4.2) we see that the SNR for measured data at
the k-th location in k-space scales with 1/

√
τk:

SNR =
signal√
noise var.

=
sk√
σ2
acq/τk

(4.3)

As an example, if we double measurement time at each k-space location (e.g. acquire two
samples rather than one), the modeled signal remains the same, the noise variance is reduced
by a factor of 2, and the SNR increases by a factor of

√
2.

We model the measurement time at the k-th location in k-space, τk, as the acquisition
time per sample times the number of samples:

τk = τacqnk (4.4)

Without loss of generality, we assume a fixed acquisition time for every sample, τacq, defined
by the acquisition parameters and the number of samples, nk, that may vary across k-space
locations.

The measurement time τk is not necessarily equal for all k-space locations. Variable den-
sity sampling across k-space can be a natural effect of certain acquisition techniques, such
as radial sampling. Variable density sampling may also be desired to take advantage of the
higher energy in the low-frequency regions to improve SNR (similar to Weiner filtering) or
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Figure 4.3 : With limited measurement time, the sampling density distribution τ (dashed green
line) may fall below one unit of measurement time. For systems with a minimum measurement
time, fractional samples (second column) are not possible / do not contribute to a reduction in
scan time, and we are forced to sample below the Nyquist rate (third column) to meet the required
measurement time limit. To simulate the infeasible Nyquist-sampled, fully determined acquisition
(second column), the image quality prediction process adds noise to a fully determined reference
acquisition (fourth column). Note that all three of these datasets have the same distribution of
expected noise variance across k-space (bottom row).

to account for asymptotic incoherence [109]. A variable density distribution of measurement
time generates a corresponding distribution of expected noise variance across k-space. Lower
sampling density at the high frequency k-space locations results in higher variance at these
locations, generating a colored (blue) noise distribution, rather than the white noise asso-
ciated with a uniform acquisition time distribution. It is this colored noise that is coupled
with the underdetermined system effects during image reconstruction.

Note that in this work, we are not attempting to determine the optimal sampling density,
but rather provide a tool to help analyze the effects of the chosen sampling density as well
as other acquisition and reconstruction parameters.

4.1.2 Undersampling and Expected Measurement Time

Fast and/or short acquisitions require a limit on the total measurement time. Unfortu-
nately, some systems and applications have constraints on the minimum measurement time
at a single k-space location. In this case, it is not feasible to sample k-space such that
the reconstruction system is fully determined (Fig. 4.3, second column). Undersampling is
required in order to meet the measurement time constraints without sacrificing other scan
requirements, such as spatial resolution, that are defined by the desired measurement time
distribution (Fig. 4.3, dashed green curve). Without loss of generality, we will define the
system’s minimum measurement time to be one sample of duration τacq and any shorter
acquisition times, τk < τacq, are infeasible.

Undersampling (Fig. 4.3, third column) avoids acquiring fractional samples by measuring
either one or zero samples at each k-space location. A binary undersampling pattern can be
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constructed to fit the desired sampling density, whether it be uniform or variable density.
This technique of constructing a continuous output with discrete inputs is analogous to
pulse-width modulation in digital signal generation and to digital halftoning in computer
graphics.

At first, it may appear that the SNR using these binary undersampling patterns is the
same as a fully-sampled acquisition because at the k-space locations where we collect a
measurement, it has the same variance, σ2

acq, as any fully-sampled measurement. Also, at
locations where we don’t measure any signal, we also don’t collect any noise. However, the
Fourier transform effectively averages the measured k-space locations with the zeros from
the missing measurements, scaling the SNR by the square root of the sampling density (4.3).
To model this averaging effect based on the density of binary sampling patterns, we consider
the expected measurement time at each k-space location, τk.

We model the expected measurement time for random undersampling patterns by con-
sidering the generation of a random sampling pattern. The binary value for each location
in the pattern may be determined by drawing a random sample from a Bernoulli distribu-
tion. To generate a pattern with a particular sampling density, the mean parameter of each
Bernoulli distribution is set to the desired fractional measurement time, ρk, for that location.
Specifically, let us model Tk as a Bernoulli random variable representing the measurement
time at a single location in k-space. The expected value of Tk is τpred,k:

Samplek ∼ Bern(ρk) (4.5)

Tk = τacqnkSamplek (4.6)

τpred,k = E[Tk] = τacqnkρk (4.7)

τpred,k gives us the expected measurement time per k-space location, which in turn leads us
to the expected noise variance per k-space location, σ2

pred,k = σ2
acq/τpred,k.

4.1.3 Image Quality Prediction

Using the expected measurement time described in the previous section, the image qual-
ity prediction process generates an image that shows the empirical effects of reduced mea-
surement time without any effects of an underdetermined system caused by undersampling.
This process, as depicted in Fig. 4.1, creates the prediction image by adding noise (based
on the expected measurement time of a specific undersampling pattern) to a fully-sampled
reference k-space dataset and then passing that adjusted k-space through the regularized
weighted least squares reconstruction algorithm described in the following section.

The first step in the prediction process is to determine the expected measurement time
at each k-space location, τpred,k, for the given undersampling pattern. For random sampling
patterns, this sampling density distribution is readily available, as it is the same distribution
that generated the sampling pattern. When the sampling density is not explicitly or analyt-
ically available, the measurement time distribution may be approximated from the sampling
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pattern with local averaging, Voronoi diagrams, or other techniques used in sampling density
compensation.

From the measurement time distribution, we calculate how much noise needs to be added
to the fully sampled (fully determined) reference k-space dataset to match the equivalent
statistical noise produced by the given undersampling pattern. To simulate an undersampled
acquisition with Gaussian noise variance σ2

pred,k = σ2
acq/τpred,k, we simply add complex-valued

Gaussian noise to the reference k-space based on the expected measurement time distribu-
tion, τpred,k (4.7), (Fig. 4.3, right). Given that σ2

ref = σ2
acq/τref is the Gaussian noise variance

measured from the reference data, we can calculate the variance of the complex Gaussian
noise, σ2

add,k, to add to location k in the reference k-space:

σ2
pred,k = σ2

ref + σ2
add,k (4.8)

σ2
add,k = σ2

pred,k − σ2
ref (4.9)

=

(
τref
τpred,k

− 1

)
σ2
ref (4.10)

where τref = τacqnref (4.4) and nref is the number of samples acquired in the reference data.
The detailed derivation between (4.9) and (4.10) may be found in Appendix B.1. Often
nref = 1, however, the reference data may be acquired using many samples, for example the
number of averages might equal two or, in the case of our first two experiments, nref = 144
(Fig. 4.4).

Note that with variable density sampling patterns, τpred,k, is not constant across k-space,
and thus, the variance of the added noise, σ2

add,k, will also vary across k-space.
The noise to add at each point in k-space is drawn from a complex-valued, zero-mean

Gaussian distribution with variance equal to the σ2
add,k for that k-space location. This noise

is simply added to the reference k-space to produce fully determined k-space with the noise
distribution matching that of the undersampled data (see Fig. 4.3, right).

The final step in the image quality prediction process is to pass the reference k-space
with added noise through the regularized weighted least squares reconstruction algorithm
described in the following section, producing a prediction image that gives an estimate of
the reconstruction image quality assuming no effect from an underdetermined reconstruction
system.

4.1.4 Weighted Least Squares Reconstruction

We require a consistent reconstruction formulation that supports standard fully-sampled
and undersampled data as well as the prediction data. To this end, we use a maximum a
posteriori (MAP) formulation of MRI reconstruction that leads, in general, to a regularized
weighted least squares optimization. Equations (4.1) and (4.2) combine to give us a Gaussian
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likelihood probability of measuring a signal yk given an image object m:

P (yk|m) =
1√

2πσ2
acq/τk

exp

(
−|yk − (Fm)k|2

2σ2
acq/τk

)
(4.11)

With this Gaussian likelihood and assuming a general prior probability on our image data
P (m), the resulting MAP formulation leads to a weighted-least squares optimization:

m∗ = argmax
m

P (m|y) (4.12)

= argmax
m

P (y|m)P (m) (4.13)

= argmin
m

1

2

NP∑
k=1

τk|yk − (Fm)k|2 − logP (m) (4.14)

= argmin
m

1

2
||Wy −WFm||22 − logP (m) (4.15)

where m is the vectorized image with NP number of pixels; y is the vectorized acquired
k-space locations with NP number of elements; F is the NPxNP multidimensional discrete
Fourier transform operator; and W is an NPxNP diagonal matrix with Wk,k =

√
τk values

along the diagonal. The detailed derivation between (4.13) and (4.14) may be found in the
Appendix B.2.

In this work, we will use a Laplacian-based prior to promote sparsity, (− logP (m) =
λ||Ψ(m)||1), where Ψ is a sparsity transform function and λ is the Laplace prior parameter.
This `1 regularized weighted least squares (WLS) optimization does not have an analytic
solution, and finding the solution requires a non-linear reconstruction algorithm. In general,
we can solve this optimization using an iterative algorithm, such as FISTA [110] or ADMM
[111].

This optimization framework, given the proper weight values described below, generalizes
the reconstruction of a) fully sampled, b) undersampled, and c) image quality prediction
datasets.

a) Fully sampled weights: The least squares weights for a fully sampled dataset (both
uniform and variable density sampling) are simply equal to the square root of the mea-
surement time, Wk,k =

√
τk =

√
τacqnk, for the k-th sample. Assuming, again, that the

acquisition time per sample is constant across k-space, τacq may be pulled out of the
`2 norm term, simplifying the weights to be equal to the square root of the number of
samples, Wk,k =

√
nk.

Note that with nk constant across k-space and a uniform prior P (m), the MAP opti-
mization becomes the standard least squares optimization:

m∗ = argmin
m

1

2
||y − Fm||22 (4.16)
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Figure 4.4 : Experimental setup allowing us to choose the number of acquisition samples (from 0 to
144) at each k-space location. Noise is added to 144 copies of the input gold image. These noisy
images are then Fourier transformed to create a stack of k-space images with 144 samples available
at each k-space location. Note that for the tomato dataset, there is no gold image and the k-space
stack comes directly from the 144 scanner acquisitions of the tomato.

b) Undersampled weights: When undersampling, the weights, Wk,k, are simply set to
one or zero depending on whether or not that k-space location has been sampled (assum-
ing the same measurement time at each sampled location). With these binary weights,
the operator W in (4.15) becomes the undersampling operator defined by the binary
sampling pattern. With a Laplacian-based prior, the MAP reconstruction becomes the
standard Lasso optimization [64] commonly used in compressed sensing. In addition
to strictly binary undersampling patterns, the WLS optimization also allows for under-
sampling patterns that have zero measurement time at certain locations and a range
of measurement times across the remaining locations, for example, an acquisition with
undersampled high frequencies and over-sampled low frequencies.

c) Prediction weights: The prediction data is designed to simulate the noise variance
from the expected measurement time for a given sampling density ρk, leading us to WLS
weightsWk,k =

√
τpred,k =

√
τacqnref,kρk, which may be simplified toWk,k =

√
ρk assuming

constant sampling time and constant number of samples per location in the fully-sampled
reference data.

4.2 Methodology
In this institutional review board-approved study, we acquired MRI data by scanning

two healthy, adult volunteers.

4.2.1 Effect of Measurement Time Distribution

To better understand the effects of reduced measurement time and undersampling and
to test our image quality prediction process, we created an experiment that enables us to
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compare the reconstructions of 1) a fully determined dataset, 2) an underdetermined dataset,
and 3) the corresponding prediction data, all using the same total measurement time and
sampling density distribution.

The foundation of this experiment is a "stack" of 144 fully-sampled k-space images (Fig.
4.4). Each entry in the k-space stack is a different noisy acquisition of the same object slice.
With 144 samples available at each of the N k-space locations, we are able to select a subset
of these samples to simulate acquiring a specific number of samples at each k-space location
based on a desired measurement time distribution.

We used two different datasets for this experiment. The first dataset was the classic
Shepp-Logan digital phantom [112] with a slight modification to add a set of parallel dark
bars that will help analyze spatial resolution. This phantom was chosen because it has an
explicitly sparse representation (many true zero values) in the finite differences domain (often
seen in total variation (TV) reconstructions), implying that we can use compressed sensing to
find a proper solution to the underdetermined system of equations caused by undersampling.
As seen in Candes, Romberg, and Tao [113], the Shepp-Logan phantom, without noise, may
be perfectly recovered after severe undersampling. To analyze how noise propagates through
the reconstruction system, we generated a different instance of complex-valued, zero-mean,
Gaussian noise to add to 144 copies of the k-space for the Shepp-Logan phantom. The second
dataset is 144 actual MRI acquisitions of a tomato at a single slice location. This data was
acquired on a 3T scanner (Siemens Healthineers, Erlangen, Germany) using a T1-weighted
gradient echo sequence with 10 ms TE, 35 ms TR, 12 degree FA, 90 mm FOV, 2 mm slice
thickness, and 192x192 acquisition matrix. Only the body coil was used during acquisition
to both simplify the reconstruction model and ensure that each of the 144 acquisitions had
relatively low SNR.

For both datasets, we selected a subset of the full stack of k-space samples based on three
different sampling distributions, as depicted in the top row of Fig. 4.5: reference, using all
144N samples (where N is the number of k-space locations); fully determined, selecting
only 18N samples according to either a uniform or variable density sampling distribution
across k-space locations; and underdetermined, selecting 18N samples and following the
same density distribution but collecting all 144 samples at N/8 randomly chosen k-space
locations and collecting zero samples for the remaining locations. We also reconstructed both
datasets using the image quality prediction process to add noise to the 144N reference
dataset to simulate the noise level from the 18N fully determined dataset.

For all reconstructions, the selected k-space samples were averaged at each k-space lo-
cation to create a single k-space image to be reconstructed (y, from equations (4.12) and
(4.15)).

We reconstructed all data using our implementation of ADMM, formulated for the reg-
ularized weighted least squares optimization, with the weights equal to the number of mea-
surements acquired at each k-space location, as specified in section 4.1.4. For the digital
phantom dataset, we used isotropic total variation as the sparsity model. For the single
channel MRI acquired data, we used Daubechies-4 wavelets with translation invariant cycle
spinning [114] as the sparsity model.
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4.2.2 Effects of Measurement Noise and Undersampling Rate

Given enough acquisition time, we can satisfy a given sampling density distribution by
either Nyquist sampling k-space or by undersampling. Both of these sampling patterns
produce similar distributions of expected noise variance in our data, but undersampling
incurs an additional cost from having an underdetermined system of equations. In this
experiment, we will extend the over-sampled stack experiment above to take a closer look
at the effect of measurement noise and undersampling rate on reconstruction image quality.
We accomplish this by varying both the measurement noise level and the undersampling
rate and then comparing the mean squared error (MSE) images reconstructed from variable
density fully determined data and from variable density underdetermined data.

As in the measurement time experiment above, we have a stack of k-space data, and we
generate an output image by reconstructing a subset of k-space samples, selected according
to an either a fully determined variable density sampling pattern or an underdetermined
pattern following the same measurement time distribution.

In this experiment, the k-space stack is generated from copies of a single relatively high
SNR (31.3 dB) in vivo head acquisition. Similar to the Shepp-Logon k-space stack, we added
to k-space a sample of complex-valued, Gaussian noise with zero mean and a given standard
deviation. We executed the experiment using three different values for the added noise
standard deviation (1, 5, 8) and four undersampling rates (2x, 4x, 8x, and 12x undersampled).

The head dataset for this experiment is an axial slice of a 3D fully-sampled, spoiled
gradient echo dataset acquired on a 1.5T scanner (GE Healthcare, Waukesha, WI) with
8 receive channels, 5 ms TE, 12 ms TR, 20 degrees FA, 184x230 mm FOV, 1 mm slice
thickness, and 256x256 acquisition matrix. This multi-channel dataset was preprocessed,
using ESPIRiT coil sensitivity maps [115], to combine the data into a single-channel, allowing
us to use a simpler reconstruction model for this experiment. This head dataset has relatively
high SNR, so we were able to experiment with very low noise and subsequently experiment
with higher noise levels by adding Gaussian noise to the k-space stack for this dataset. This
head dataset also provides a real example of an image that is only approximately sparse in
the wavelet transform domain.

We repeated these 12 experiments (three noise levels by four undersampling rates) 100
times, each time reconstructing the fully determined data and the underdetermined data,
as well as the corresponding prediction data. We then plotted the resulting MSE values
(relative to the original head image) (Fig. 4.7).

4.2.3 Image Quality Prediction

We demonstrate the image quality prediction process by comparing the output of the
actual undersampled reconstruction to both the generated prediction image and the fully
determined reference image. We executed this experiment for two in vivo fully-sampled
MRI datasets using increasingly aggressive retrospective undersampling rates.
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in vivo Knee

The in vivo knee dataset is an axial slice of a 3D fully-sampled, fast spin echo dataset
acquired on a 3T scanner (GE Healthcare, Waukesha, WI) with 8 receive channels, 25 ms
TE, 1550 ms TR, echo train length of 40, 160 mm FOV, 0.6 mm slice thickness, and 320x320
acquisition matrix. This dataset was collected by Epperson et al [5] and is available at [116].

The two retrospective undersampling patterns used were 4x and 12x undersampled, vari-
able density Poisson disc. Both patterns fully-sampled the center of k-space to allow for
ESPIRiT auto-calibration [115]. Neither the reference data nor the undersampling patterns
included the corners of k-space, a common acquisition acceleration.

The optimization equation for this parallel imaging, compressed sensing reconstruction is
an extension of equation (4.15), modified to include parallel imaging and a Laplacian prior:

min
m

1

2
‖Wy −WFSm‖22 + λ‖Ψm‖1 (4.17)

where m is the vectorized image with NP number of pixels; y is the vectorized acquired
multi-channel k-space data with NCNP number of elements (NP is the number of pixels, NC

is the number of coils); F is the NCNPxNCNP 2D Fourier transform operator for each coil
independently; S is the NCNPxNP block diagonal sensitivity maps generated with ESPIRiT
calibration; Ψ is the sparsity transform; λ is the regularization parameter; and W is the
NCNPxNCNP diagonal weight matrix.

Note that the reconstruction process now includes the parallel imaging coil combination
operator SH . With the addition of parallel imaging, the undersampled reconstruction system
is now both ill-conditioned and underdetermined. Previous works have provided tools to em-
pirically analyze the noise propagation through the ill-conditioned parallel imaging system,
for example by computing the geometry-factor [117] or with Monte Carlo simulations with
added noise [118]. The image quality prediction process will empirically show the effect of
lower SNR due to reduced measurement time on the compressed sensing and parallel imaging
reconstruction without any effect from an underdetermined or ill-conditioned system. The
actual underdetermined reconstruction will then produce an image affected by similar lower
SNR as well as the effects from the ill-conditioned and underdetermined parallel imaging
and compressed sensing system.

The sparsity filter (associated with Ψ) used within the reconstruction was wavelet soft-
thresholding using Daubechies-4 with translation invariant cycle spinning [114].

The regularized weighted least squares optimization for both prediction and underdeter-
mined reconstruction used our implementation of the ADMM algorithm. The only difference
between the two reconstructions was the appropriate change to the weights as specified in
section 4.1.4. Specifically, the weights for the prediction reconstruction were the square
root of the sampling density, ρk, at each k-space location and the actual underdetermined
reconstruction weights were binary with ones for acquired locations and zeros elsewhere.

The image quality prediction process requires an understanding of the existing noise level
in the fully-sampled reference data (σ2

full). Ideally, this noise level could be obtained from
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an explicit measurement of the received signal using the coils on the same scanner, prior
to the actual exam. In our experiments, we measured the noise level from the reference
data directly by Fourier transforming the (multi-channel) k-space data and measuring the
variance of the values from a 11x11 background patch in each coil image. The noise level
was measured and applied independently for each coil channel.

A direct inverse 2D Fourier transform followed by coil combination (mref = SHF−1yref )
was used on the reference k-space to generate the fully-sampled reference image for compar-
ison (Fig. 4.8 top).

in vivo Head

The in vivo head dataset is an axial 2D fast spin echo dataset acquired on a 3T scanner
(Siemens Healthineers, Erlangen, Germany) with 12 receive channels, 91 ms TE, 6000 ms
TR, echo train length of 11, 195x220 mm FOV, and 286x320 acquisition matrix. The 12
coil channels were reduced to 4 channels with Siemens coil compression. Multiple slices were
acquired at slice thicknesses of 1 mm and 2 mm. The phase encodes lines were retrospectively
undersampled at 4x and 6x acceleration using a 1D variable density Poisson disc sampling
with the center 24 lines fully sampled. This dataset was processed in the same manner as
the in vivo knee dataset above.

4.2.4 Regularization Parameter

The regularization parameter, λ, in the regularized weighted least-squares (WLS) opti-
mization balance the least-squares data consistency term with the `1 sparsity term. Due
to the WLS optimization formulation, the expected value of the least squares term is the
same for both the prediction process and the actual underdetermined reconstruction. This
indicates that we should use the same sparsity regularization parameter for both prediction
and underdetermined reconstructions.

In order to confirm that the same regularization parameter value works for both prediction
and underdetermined reconstructions, we repeated the in vivo head experiment above (with
9x undersampling) using a variety of λ values. Specifically, we used λ values of 0.002, 0.02,
and 0.2 for the prediction process and the underdetermined reconstruction. This experiment
is also designed to show that the image quality prediction process functions properly for
different choices of the regularization parameter value.

4.3 Results
The following three results are shared across all of our experiments:

1. the prediction image has equivalent or worse image quality than the reference image,

2. the undersampled reconstruction image has equivalent or worse image quality than
the prediction image,
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Figure 4.5 : Results from the effect of the measurement time distribution experiment using variable
density sampling. Each column uses a different set of k-space samples; from left to right: over-
sampled reference, using all 144 samples at each k-space location; variable density, fully
determined, using 1/8 of the total samples following a variable density distribution; prediction
data, using fully-sampled k-space with noise added to simulate the variable density, fully determined
dataset; variable density (randomly sampled), underdetermined, using 1/8 of the total
samples and following the same variable density distribution, but only using either 144 or zero
samples at each location. Row 1 : Illustration of how measurement time is distributed across k-
space. Row 2 : WLS reconstruction of the Shepp-Logan data, regularized with total variation. Row
3 : WLS reconstruction of the tomato k-space data, regularized with wavelets.

3. the prediction image for a given sampling density has equivalent image quality to the
fully determined image with the same sampling density.

4.3.1 Effect of Measurement Time Distribution

Fig. 4.5 shows the results of our experiment to test the effect of various measurement time
distributions on reconstruction image quality. For both the Shepp Logan digital phantom and
the MRI acquisition of the tomato, the fully determined images with reduced measurement
time show lower image quality than the images reconstructed from the reference acquisition
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Figure 4.6 : Results from the effect of the measurement time distribution experiment using uni-
form density sampling. Each column uses a different set of k-space samples; from left to right:
oversampled reference, using all 144 samples at each k-space location; uniform density, fully
determined, using 1/8 of the total samples following a uniform density distribution; prediction
data, using fully-sampled k-space with noise added to simulate the uniform density, fully deter-
mined dataset; uniform density (randomly sampled), underdetermined, using 1/8 of the
total samples and following the same uniform density distribution, but only using either 144 or
zero samples at each location. Row 1 : Illustration of how measurement time is distributed across
k-space. Row 2 : Direct inverse Fourier transform reconstruction of the Shepp-Logan data. Row
3 : WLS reconstruction of the Shepp-Logan data, regularized with total variation. Row 4 : WLS
reconstruction of the tomato k-space data, regularized with wavelets.
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data. As seen specifically in the blurred spatial vertical bars, the fully determined images
did not fully recover from the limited acquisition time despite not having any corruption
from an underdetermined systems of equations.

The variable density underdetermined Shepp Logan reconstruction (Fig. 4.5, third row,
right) was successful and has nearly identically image quality to the fully determined re-
construction but still lower image quality than the reference reconstruction. This indicates
that the underdetermined reconstruction recovered well from the underdetermined system,
but still could not completely recover from the lower SNR due to the reduced measurement
time. For the acquired tomato dataset, however, the underdetermined image quality (Fig.
4.5, bottom, right) is lower than the prediction and fully determined image quality, indicat-
ing that the reconstruction could not completely recover from the underdetermined system.
This is not a surprising result because the tomato image is not sufficiently sparse in the
wavelet transform domain, especially when compared to the explicit sparsity of the Shepp
Logan phantom in the finite differences domain.

Fig. 4.5 also shows the results of the image quality prediction process for the same
two datasets and sampling distributions. The second and third columns in this figure show
that the fully determined reconstructions have essentially identical image quality to their
corresponding prediction images. This verifies that the image quality prediction process
closely simulates the noise level and reconstructed image quality of the associated fully
determined acquisitions.

Similar results from the same experiment with uniform density sampling are shown in
Figure 4.6.

4.3.2 Effects of Measurement Noise and Undersampling Rate

By varying the input noise level and the undersampling rate, we see the differences in
the resulting MSE for the reconstructions of the fully determined data and underdeter-
mined data, both with the same measurement time distribution. Fig. 4.7 shows that for a
fixed noise level and increasing undersampling rate, the MSE of the fully determined images
increases, showing that the reduced measurement time affects image quality despite no un-
dersampling. Also, as we increase the undersampling rate, the MSE of the underdetermined
images increases significantly faster than the fully determined images. This gap in image
quality shows the degrading effect of the underdetermined reconstruction increasing as the
undersampling rate increases and the sparsity transform can no longer adequately model the
image in a sufficiently sparse representation.

As seen in Fig. 4.7, the MSE of the prediction images matches the MSE of the fully
determined reconstructions for all noise levels and undersampling rates, indicating that the
image quality prediction process is consistently simulating the expected noise level for the
given sampling density.

The results from this experiment help us to see that when the image quality of the predic-
tion image is unacceptable, the actual undersampled reconstruction will also be unacceptable
(i.e. higher MSE). In this situation, the low SNR of the acquisition is the limiting factor
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Figure 4.7 : Results of our experiment to compare fully determined and underdetermined recon-
structions with the same total measurement time across four different undersampling rates (2x,
4x, 8x, 12x) for three different noise levels (added noise standard deviations 1.0, 5.0, 8.0). Mean
squared error (MSE) values are plotted for each of the 100 repetitions of the same experiment.
Note that for the 2x undersampling rate, the fully determined and underdetermined reconstructions
have essentially the same MSE. As the undersampling rate increases, the underdetermined system
produces an increasingly worse MSE than the fully determined system. Note that one of the 100
underdetermined reconstructions at σ = 5 and R = 12x failed to converge. This outlier is consistent
with compressed sensing theory and practice where the reconstruction may fail to converge at higher
undersampling rates.

in the reconstruction, not the artifacts due to the underdetermined system. To improve the
reconstruction in this case, steps should be taken to adjust the acquisition parameters to
increase the SNR or better handle the expected noise levels (e.g. reducing spatial resolution,
decreasing undersampling rate, or improving the image prior P (m)).

4.3.3 Image Quality Prediction

Fig. 4.2 shows the prediction and underdetermined reconstruction images for the in
vivo head experiment. This figure illustrates how the prediction image may be used to gain
insight into the causes of poor undersampled image quality and adjust scan parameters, such
as slice thickness, as needed.

Fig. 4.8 shows the reference, prediction, and underdetermined reconstruction images
for the in vivo experiment using the knee dataset and various undersampling rates. Fig.
4.8 shows the following three qualitative results: 1) the reference image has better image
quality than the prediction images; 2) the prediction images have better image quality than
the corresponding underdetermined images; and 3) the underdetermined images are more
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Figure 4.8 : Results from in vivo image quality prediction experiment. Fully determined reference
axial knee (top) followed by prediction (left column) and actual underdetermined reconstruction
(right column) for two different undersampling rates: 4x and 12x. Images are zoomed and cropped
to show image quality detail.
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similar in image quality to the prediction images than the reference image. That the reference
images look better than the prediction images is expected because the prediction process adds
more noise to the fully sampled reference data. That the prediction images look better than
the underdetermined image is expected because the underdetermined reconstruction had to
find a proper solution to an underdetermined system of equations in addition to recovering
from the lower SNR from reduced measurement time. Finally, the prediction image provides
a better estimate of reconstruction image quality than the reference image.

With a reasonable amount of undersampling, the 4x underdetermined images only have
slightly lower image quality than the prediction images. As undersampling increases to
12x, the image quality gap between the underdetermined and prediction images increases.
These results are consistent with our effect of measurement noise and undersampling rate
experiment when increasing the sampling rate (section 4.3.2).

4.3.4 Regularization Parameter

Fig. 4.9 shows the prediction and reconstruction results for the head dataset with 9x
undersampling and wavelet regularization using three different regularization values (λ).
Low, medium, and high λ values of 0.002, 0.02, and 0.2, respectively, were used for the
prediction process and actual reconstruction. The resulting prediction and reconstruction
images match up well in terms of image quality. Specifically, the low λ images are both
fairly noisy; the high λ images are both over-smoothed; and the medium λ images both fall
in-between, representing the best image quality of each column. These results illustrate that
selecting the regularization parameter for the prediction process can give us a reasonable
expectation for the image quality of the reconstruction process using the same regularization
parameter.

4.4 Discussion
The presented image quality prediction process provides an empirical upper bound on

undersampled image quality, which serves as a better metric for evaluating the effectiveness
of a reconstruction algorithm than direct comparison to a fully-sampled reference reconstruc-
tion. The prediction process enables an analysis of a reconstruction algorithm’s ability to
handle lower SNR due to reduced measurement time without any effect from an underdeter-
mined system. By simulating the effect of lower SNR without any underdetermined effects,
the prediction process allows us to determine whether a reconstruction is actually limited by
our sparse recovery or simply limited by low acquisition signal to noise ratio. Comparison of
the prediction image to the reference reconstruction provides a means to assess the effects
of lower SNR on reconstruction image quality. Comparison of the prediction image to the
underdetermined reconstruction enables us to analyze what artifacts are introduced when
undersampling is used rather than fully determined following the same measurement time
distribution. The image quality prediction results and analysis are consistent with our exper-
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Figure 4.9 : Results from sparsity regularization parameter experiment. Fully determined reference
axial head (top) followed by prediction (left column) and actual underdetermined reconstruction
(right column) for three regularization values (λ). The λ values 0.002, 0.02, and 0.2 were used for
the prediction process and the underdetermined reconstruction. Images are zoomed and cropped to
show image quality detail.
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iments using our highly over-sampled datasets to explicitly compare reconstruction results
from variable density fully determined and underdetermined data.

An additional benefit of the prediction process is that it may be used to compare and
tune different reconstruction algorithms or parameters, assessing how different reconstruction
systems handle the lower SNR due to reduced measurement time in addition to comparing
the actual undersampled reconstructions.

A limitation of the image quality prediction process is that it requires a fully-sampled
reference dataset. Access to a fully-sampled acquisition is not always possible, especially
in cases with 3D or 4D dynamic imaging, where long, fully-sampled acquisition times are
not practical. Also, the image quality prediction process can isolate the effects of low SNR
from the effects from an underdetermined system, but it cannot do the contrary, i.e. it
cannot isolate the effects from an underdetermined system from the effects of low SNR. Fu-
ture work could investigate the effects of an underdetermined systems using in vivo data by
reconstructing fully-sampled reference datasets that are highly over-sampled to have mini-
mal input noise, σref . Of course, the effects of the underdetermined system would still be
dependent on the image content, which varies significantly across clinical applications.

While developing the image quality prediction process, we use a maximum a posteriori
formulation to derive a general weighted least-squares optimization framework that
accounts for both uniform and variable density sampling patterns, with undersampling as
a special case using binary weights. This weighted least squares formulation adjusts the
standard least squares term to account for the colored noise arising from the distribution of
expected measurement time across k-space locations. Future work could develop methods
to similarly incorporate the effects of measurement time distribution into the sparsity regu-
larization term, allowing the sparsity filters to better recover from colored noise in addition
to incoherent aliasing.
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Appendix A

Chapter 2 Derivations

This appendix contains the definitions and derivations of the forward pass function and
CR backpropagation gradients for the network layers referenced in Chapter 2. For all layers
functions derived in this section, we define the local CR gradients of the function with respect
to its input: ∂f/∂z and ∂f/∂z. During backpropagation, all layers return the conjugate R-
derivative of final layer, L, with respect to the input z:

∂L

∂z
=

(
∂L

∂ẑ

)
∂f

∂z
+
∂L

∂ẑ

(
∂f

∂z

)
(A.1)

where ∂L/∂ẑ ∈ C is the derivative received from the layers later in the network architecture.

A.1 Complex Normalization
Derivation for the layer to normalize a complex scalar input z by scaling its magnitude

to one.
Forward function:

ẑ = n(z) = ei]z (A.2)

=
z

m(z)
(A.3)

m = m(z) = (zz)1/2 (see complex magnitude, Section 2.4.2) (A.4)

Local CR derivatives of n:

∂n

∂z
=

1

m(z)
+ z

−1

m(z)2
∂m

∂z
(A.5)
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=
1

m(z)
+ z
−1

zz

1

2

z

m(z)
(A.6)

=
1

m(z)
− 1

2

1

m(z)
(A.7)

=
1

2

1

m(z)
(A.8)

∂n

∂z
= − z

m(z)2
∂m

∂z
(A.9)

= − z

zz

1

2

z

m(z)
(A.10)

= −1

2

z

zm(z)
(A.11)

Conjugate R-derivative of final layer, L, with respect to the conjugates of the input z,
given the derivative from all later layers, ∂L/∂ẑ ∈ C:

∂L

∂z
=

(
∂L

∂ẑ

)
∂n

∂z
+
∂L

∂ẑ

(
∂n

∂z

)
(A.12)

=

(
∂L

∂ẑ

)
1

2m(z)
+
∂L

∂ẑ

−z
2zm(z)

(A.13)

=
1

2m(z)

((
∂L

∂ẑ

)
− ∂L

∂ẑ

z

z

)
(A.14)

A.2 Phase
To compute the phase of complex scalar z, we can normalize z to have unit magnitude

and then take the log and divide by i:

ẑ = f(z) =
1

i
log ei]z = −i log n(z) (A.15)
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n = n(z) = ei]z =
z

(zz)1/2
(see complex normalization, Section A.1) (A.16)

Local CR derivatives of f(z):

∂f

∂z
=
∂f

∂n

∂n

∂z
+
∂f

∂n

(
∂n

∂z

)
, but

∂f

∂n
= 0 (A.17)

=
−i
n(z)

1

2

1

|z|
(A.18)

=
−i
2

|z|
z

1

|z|
(A.19)

=
−i
2z

(A.20)

∂f

∂z
=
∂f

∂n

∂n

∂z
+
∂f

∂n

(
∂n

∂z

)
, but

∂f

∂n
= 0 (A.21)

=
−i
n(z)

−1

2

n(z)

z
(A.22)

=
i

2z
(A.23)

A.3 Separable Sigmoid
Derivation for the separable sigmoid layer function that applies a sigmoid function, g, to

the real and imaginary parts of the complex scalar input z and places the respective results
into the real and imaginary components of the complex scalar output ẑ.

The forward function:

ẑ = f(z) = g
(

Re(z)
)

+ ig
(

Im(z)
)

(A.24)

g = g(z) =
1

1 + e−z
(A.25)
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Re = Re(z) =
1

2
(z + z) (see real component layer, Section 2.4.2) (A.26)

Im = Im(z) =
1

2i
(z − z) (see imaginary component layer, Section 2.4.2) (A.27)

Local CR derivatives of g and f , as well as a reminder of the derivatives for the real and
imaginary component functions:

h(z) :=
∂g

∂z
=

e−z

(1 + e−z)2
= g(z)(1− g(z))

∂g

∂z
= 0 (A.28)

∂ Re

∂z
=

1

2

∂ Re

∂z
=

1

2
(A.29)

∂ Im

∂z
=

1

2i

∂ Im

∂z
=
i

2
(A.30)

∂f

∂z
=

∂g

∂Re

∂ Re

∂z
+

∂g

∂Re

(
∂ Re

∂z

)
+ i

∂g

∂Im

∂ Im

∂z
+

∂g

∂Im

(
∂ Im

∂z

)
(A.31)

= h
(

Re(z)
)1

2
+ 0 + ih

(
Im(z)

) 1

2i
+ 0 (A.32)

=
1

2

(
h
(

Re(z)
)

+ h
(

Im(z)
))

(A.33)

∂f

∂z
=

∂g

∂Re

∂ Re

∂z
+

∂g

∂Re

(
∂ Re

∂z

)
+ i

∂g

∂Im

∂ Im

∂z
+

∂g

∂Im

(
∂ Im

∂z

)
(A.34)

= h
(

Re(z)
)1

2
+ 0 + ih

(
Im(z)

) i
2

+ 0 (A.35)
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=
1

2

(
h
(

Re(z)
)
− h
(

Im(z)
))

(A.36)

A.4 Siglog
Derivations for the siglog layer function with complex scalar input z and complex scalar

output ẑ.
We refer to this activation as siglog because it is equivalent to applying the sigmoid

operator to the log of the input magnitude and then restoring the phase:

siglog(z) = g(log(|z|))e−i]z, where g(z) =
1

1 + e−z
(A.37)

=
1

1 + e− log(|z|)
z

|z|
(A.38)

=
1

1 + 1
|z|

z

|z|
(A.39)

=
z

1 + |z|
(A.40)

The forward function including positive constant that can control the steepness, c, and
the scale, r, of the function:

ẑ = f(z; r, c) =
z

c+ 1
r
|z|

(A.41)

Local CR derivatives of f :

∂f

∂z
=
c+ 1

r
m(z)− z 1

r
1
2

z
m(z)(

c+ 1
r
m(z)

)2 (A.42)

=
c+ 1

r
m(z)− 1

r
1
2
m(z)(

c+ 1
r
m(z)

)2 (A.43)

=
c+ 1

r
1
2
m(z)(

c+ 1
r
m(z)

)2 (A.44)
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∂f

∂z
= − z(

c+ 1
r
m(z)

)2 1

r

1

2

z

m(z)
(A.45)

= − 1

2r

z2

m(z)

1(
c+ 1

r
m(z)

)2 (A.46)

A.5 iGaussian
Derivation for the inverted Gaussian with complex scalar input z and complex scalar

output ẑ.
The forward function warps the magnitude of z by the inverted Gaussian function, g(z),

and then restores the phase by multiplying by the normalized version of z, n(z):

ẑ = f(z;σ2) = (1− e−zz/2σ2

)e−i]z (A.47)

= g(z;σ2)n(z) (A.48)

g = g(z;σ2) = 1− e−zz/2σ2

(inverted Gaussian) (A.49)

n = n(z) =
z

(zz)
1
2

(see complex normalization, Section A.1) (A.50)

Local CR derivatives of g and f :

∂g

∂z
= e−zz/2σ

2 z

2σ2
(A.51)

∂g

∂z
= e−zz/2σ

2 z

2σ2
(A.52)

∂f

∂z
= n(z)

∂g

∂z
+ g(z)

∂n

∂z
(A.53)
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∂f

∂z
= n(z)

∂g

∂z
+ g(z)

∂n

∂z
(A.54)

A.6 Cardioid
Derivation for the complex cardioid layer function with complex scalar input z and com-

plex scalar output ẑ.
The forward function scales the magnitude of z by a cardioid function:

ẑ = f(z) =
1

2

(
1 + cos

(
]z
))
z (A.55)

=
1

2

(
1 + cos

(
− i log ei]z

))
z (A.56)

=
1

2

(
1 + cos

(
− i log n(z)

))
z (A.57)

=
1

2
z +

1

2
cos
(
− i log n(z)

)
z (A.58)

n = n(z) = ei]z =
z

(zz)1/2
(see complex normalization, Section A.1) (A.59)

Local CR derivatives of f :

∂f

∂z
=

1

2
+

1

2
cos
(
− i log n(z)

)
+ z
−1

2
sin
(
− i log n(z)

) −i
n(z)

∂n

∂z
(A.60)

=
1

2
+

1

2
cos
(
− i log n(z)

)
+ z

1

2
sin
(
− i log n(z)

) i

n(z)

1

2

1

(zz)1/2
(A.61)

=
1

2
+

1

2
cos
(
− i log n(z)

)
+ z

1

2
sin
(
− i log n(z)

)
i
(zz)1/2

z

1

2

1

(zz)1/2
(A.62)
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=
1

2
+

1

2
cos
(
− i log n(z)

)
+
i

4
sin
(
− i log n(z)

)
(A.63)

=
1

2
+

1

2
cos
(
]z
)

+
i

4
sin
(
]z
)

(A.64)

∂f

∂z
= z
−1

2
sin
(
− i log n(z)

) −i
n(z)

∂n

∂z
(A.65)

= z
−1

2
sin
(
− i log n(z)

) −i
n(z)

−1

2

z

z(zz)1/2
(A.66)

= z
−1

2
sin
(
− i log n(z)

)
i
(zz)1/2

z

1

2

z

z(zz)1/2
(A.67)

=
−i
4

sin
(
− i log n(z)

)z
z

(A.68)

=
−i
4

sin
(
]z
)z
z

(A.69)

A.7 Batch Normalization
Complex version of batch normalization introduced in [59] for input vector z ∈ CN and

output vector ẑ ∈ CN . The partial derivative ∂L/∂ẑ will be passed in from later layers. Note:
to simplify the derivations, the functions below do not include scale and bias parameters, γ
and β from [59]. These parameters are simply scalar versions of the fully connected linear
layer weights, which could be applied to each component of the output vector, ẑ.

Forward functions, including the functions to compute the mean and variance of z:

µ = µ(z) =
1

N

∑
n

zn (A.70)
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σ2 = σ2(z, µ) =
1

N

∑
n

(zn − µ)(zn − µ) (A.71)

ẑ = f(z, µ, σ2) =
z− µ√
σ2 + ε

(A.72)

Local CR derivatives for each function:
∂µ

∂z
=

1
N

∂µ

∂z
= 0 (A.73)

∂σ2

∂z
=

1

N
(z− µ)

∂σ2

∂z
=

1

N
(z− µ) (A.74)

∂σ2

∂µ
= − 1

N

∑
n

zn − µ = 0
∂σ2

∂µ
= − 1

N

∑
n

(zn − µ) = 0 (A.75)

∂f
∂z

=
I√
σ2 + ε

∂f
∂z

= 0 (A.76)

∂f
∂µ

=
−1√
σ2 + ε

∂f
∂µ

= 0 (A.77)

∂f
∂σ2

= −1

2
(z− µ)(σ2 + ε)−3/2

∂f
∂σ2

= 0 (A.78)

Derivatives of final layer, L, with respect to the mean and variance functions, given the
derivative from all later layers ∂L/∂ẑ:

∂L

∂σ2
=
∑
n

(
∂L

∂ẑn

)
∂fn
∂σ2

+
∂L

∂ẑn

(
∂fn

∂σ2

)
(A.79)

= −1

2

∑
n

(
∂L

∂ẑn

)
(zn − µ)(σ2 + ε)−3/2 (A.80)
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∂L

∂σ2
=
∑
n

(
∂L

∂ẑn

)
∂fn

∂σ2
+
∂L

∂ẑn

(
∂fn
∂σ2

)
(A.81)

= −1

2

∑
n

∂L

∂ẑn
(zn − µ)(σ2 + ε)−3/2 (A.82)

∂L

∂µ
=
∑
n

(
∂L

∂ẑn

)
∂fn
∂µ

+
∂L

∂ẑn

(
∂fn
∂µ

)
+

(
∂L

∂σ2

)
∂σ2

∂µ
+
∂L

∂σ2

(
∂σ2

∂µ

)
(A.83)

=
∑
n

∂L

∂ẑn

−1√
σ2 + ε

(A.84)

Note that ∂f/∂µ will not be required for the computation of ∂L/∂zn below.
Finally, the derivative of final layer, L, with respect to the conjugate of the input vector

components, zn:

∂L

∂zn
=

(
∂L

∂ẑ

)
∂f
∂zn

+
∂L

∂ẑ

(
∂f
∂zn

)
+
∂L

∂σ2

∂σ2

∂zn
+
∂L

∂σ2

(
∂σ2

∂zn

)
+
∂L

∂µ

∂µ

∂zn
+
∂L

∂µ

(
∂µ

∂zn

)
(A.85)

= 0 +
∂L

∂ẑn

1√
σ2 + ε

(A.86)

− 1

2

∑
m

(
∂L

∂ẑm

)
(zm − µ)(σ2 + ε)−3/2

1

N
(zn − µ)

− 1

2

∑
m

∂L

∂ẑm
(zm − µ)(σ2 + ε)−3/2

1

N
(zn − µ)
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+ 0 +
∑
m

∂L

∂ẑm

−1√
σ2 + ε

1

N

=
1√
σ2 + ε

(A.87)

(
∂L

∂ẑn
− 1

2N

∑
m

((
∂L

∂ẑm

)
zm − µ√
σ2 + ε

)
zn − µ√
σ2 + ε

− 1

2N

∑
m

(
∂L

∂ẑm

zm − µ√
σ2 + ε

)
zn − µ√
σ2 + ε

− 1

N

∑
m

∂L

∂ẑm

)

=
1√
σ2 + ε

(
∂L

∂ẑn
− 1

2N

∑
m

((
∂L

∂ẑm

)
ẑm

)
ẑn −

1

2N

∑
m

(
∂L

∂ẑm
ẑm

)
ẑn −

1

N

∑
m

∂L

∂ẑm

)
(A.88)

=
1√
σ2 + ε

(
∂L

∂ẑn
− ẑn
N

Re

(∑
m

∂L

∂ẑm
ẑm

)
− 1

N

∑
m

∂L

∂ẑm

)
(A.89)

A.8 Euclidean Loss
Derivation for the complex Euclidean loss layer with length N complex vector input z

and real scalar output L ∈ R.
Forward function, given the fixed ground truth vector, zgt:

L = L(z; zgt) =
1

2
||z− zgt||22 (A.90)

=
1

2
(z− zgt)H(z− zgt) (A.91)
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=
1

2

N∑
n=1

(zn − zgt,n)(zn − zgt,n) (A.92)

=
1

2

N∑
n=1

znzn − zgt,nzn − znzgt,n + zgt,nzgt,n (A.93)

Conjugate R-derivative of L, for both an individual component, zn, and for the full input
vector, z:

∂L

∂zn
=

1

2
(zn − zgt,n) (A.94)

∂L

∂z
=

1

2
(z− zgt) (A.95)

To show that the complex-valued Euclidean loss can be computed by a real-valued im-
plementations, we compare the values computed by the forward and backward passes of
each version with the assumption that the real methods are operating on 2x length vectors
with the real components concatenated to the imaginary components. The forward pass
derivation for z = x+ iy, given the fixed ground truth vector, zgt = xgt + iygt is as follows:

e := z− zgt (A.96)

= ex + iey (A.97)

L = L(z; zgt) =
1

2
||z− zgt||22 (A.98)

=
1

2
eHe (A.99)

=
1

2

N∑
n=1

enen (A.100)
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=
1

2

N∑
n=1

(ex,n − iey,n)(ex,n + iey,n) (A.101)

=
1

2

N∑
n=1

e2x,n + e2y,n (A.102)

=
1

2
||[eTx , eTy ]T ||22 (A.103)

=
1

2
||[xT − xTgt,x

T − xTgt]
T ||22 (A.104)

=
1

2
||[xT ,yT ]T − [xTgt,y

T
gt]

T ||22 (A.105)

= Lreal([xT ,yT ]T ; [xTgt,y
T
gt]

T ) (A.106)

The backward pass of a real-valued Euclidean loss layer with input [Re(z), Im(z] produces
the real and imaginary components of the complex Euclidean conjugate R-derivative, but
with a 2x scaling factor:

∂Lreal
∂xn

= xn − xgt,n (A.107)

∂Lreal
∂x

= x− xgt (A.108)

∂Lreal
∂[xT ,yT ]T

= [xT − xTgt,y
T − yTgt]

T (A.109)

= [Re(z− zgt)T , Im(z− zgt)T ]T (A.110)
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=

[
Re

(
2
∂L

∂z

)T
, Im

(
2
∂L

∂z

)T]T
(A.111)



132

Appendix B

Chapter 4 Derivations

B.1 Variance of Added Gaussian Noise
Derivation between equations (4.9) and (4.10) to determine the variance of the Gaussian

noise to add during the image quality prediction process:

σ2
add,k = σ2

under,k − σ2
ref (4.9)

=
σ2
acq

τpred,k
− σ2

ref

=
τref
τref

σ2
acq

τpred,k
− σ2

ref

=
τref
τpred,k

σ2
ref − σ2

ref

=

(
τref
τpred,k

− 1

)
σ2
ref (4.10)

B.2 Weighted Least Squares
Derivation of the maximum likelihood formulation of MRI reconstruction optimization.

This derivation applies directly to the likelihood term of the MAP derivation described in
section 4.1.4, specifically between equations (4.13) and (4.14):

m∗MLE
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= argmax
m

P (y|m)

= argmin
m

− logP (y|m)

= argmin
m

− log

NP∏
k=1

P (yk|m)

= argmin
m

−
NP∑
k=1

logP (yk|m)

= argmin
m

−
NP∑
k=1

log
1√

2πσ2
acq/τk

exp

(
−|yk − sk|2

2σ2
acq/τk

)

= argmin
m

NP∑
k=1

log
−1√

2πσ2
acq/τk

+
|yk − (Fm)k|2

2σ2
acq/τk

= argmin
m

1

2

NP∑
k=1

τk|yk − (Fm)k|2
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