
Learning to Generalize via Self-Supervised Prediction

Deepak Pathak

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-132
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-132.html

August 26, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Learning to Generalize via Self-Supervised Prediction

by

Deepak Pathak

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Alexei A. Efros, Chair

Professor Jitendra Malik
Professor Alison Gopnik

Summer 2019

Learning to Generalize via Self-Supervised Prediction

Copyright 2019
by

Deepak Pathak

1

Abstract

Learning to Generalize via Self-Supervised Prediction

by

Deepak Pathak

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Professor Alexei A. Efros, Chair

Generalization, i.e., the ability to adapt to novel scenarios, is the hallmark of human
intelligence. While we have systems that excel at recognizing objects, cleaning floors, playing
complex games and occasionally beating humans, they are incredibly specific in that they only
perform the tasks they are trained for and are miserable at generalization. Could optimizing
towards fixed external goals be hindering the generalization instead of aiding it? In this
thesis, we present our initial efforts toward endowing artificial agents with a human-like
ability to generalize in diverse scenarios. The main insight is to first allow the agent to learn
general-purpose skills in a completely self-supervised manner, without optimizing for any
external goal.

To be able to learn on its own, the claim is that an artificial agent must be embodied in the
world, develop an understanding of its sensory input (e.g., image stream) and simultaneously
learn to map this understanding to its motor outputs (e.g., torques) in an unsupervised
manner. All these considerations lead to two fundamental questions: how to learn rich
representations of the world similar to what humans learn?; and how to re-use such a
representation of past knowledge to incrementally adapt and learn more about the world
similar to how humans do? We believe prediction is the key to this answer. We propose
generic mechanisms that employ prediction as a supervisory signal in allowing the agents to
learn sensory representations as well as motor control. These two abilities equip an embodied
agent with a basic set of general-purpose skills which are then later repurposed to perform
complex tasks.

We discuss how this framework can be instantiated to develop curiosity-driven agents
(virtual as well as real) that can learn to play games, learn to walk, and learn to perform
real-world object manipulation without any rewards or supervision. These self-supervised
robotic agents, after exploring the environment, can generalize to find their way in office
environments, tie knots using rope, rearrange object configuration, and compose their skills
in a modular fashion.

i

To my parents, Durga and Madhwa Nand Pathak.

ii

Contents

List of Figures vi

List of Tables viii

Acknowledgments ix

1 Introduction 1
1.1 Background . 1
1.2 Current Dominant Paradigms for Generalization 3

1.2.1 Generalization by Data . 3
1.2.2 Generalization by Regularization/Design 3
1.2.3 Generalization by Meta/Transfer Learning 4
1.2.4 Generalization by Domain Adaptation 4
1.2.5 Generalization by End-to-End Reinforcement 4

1.3 Proposed Solution . 5
1.3.1 Learning to Generalize via Self-Supervised Prediction 6

I Self-Supervised Representation Learning 8

2 Learning Representation via Context Prediction 9
2.1 Context encoders for image generation . 11

2.1.1 Encoder-decoder pipeline . 11
2.1.2 Loss function . 13

2.2 Implementation details . 15
2.3 Evaluation . 16

2.3.1 Semantic Inpainting . 17
2.3.2 Feature Learning . 17

2.4 Related work . 19

3 Discovering Objects by Observation and Interaction 22
3.1 Evaluating Feature Representations . 24
3.2 Learning Features by Learning to Group . 25

iii

3.2.1 Training a ConvNet to Segment Objects 25
3.2.2 Experiments . 25

3.3 Learning Features by Watching Objects Move 28
3.3.1 Unsupervised Motion Segmentation 28
3.3.2 Learning to Segment from Noisy Labels 29

3.4 Evaluating the Learned Representation . 31
3.4.1 Transfer to Object Detection . 31
3.4.2 Low-shot Transfer . 33
3.4.3 Impact of Amount of Training Data 33
3.4.4 Transfer to Other Tasks . 33

3.5 Object-centric Representation via Interaction 34
3.5.1 Experimental Setup . 36
3.5.2 Instance Segmentation by Interaction 37
3.5.3 Results and Evaluations . 38

3.6 Related Work . 39
3.7 Discussion . 40

II Learning to Act via Self-Supervised Exploration 41

4 Curiosity-driven Exploration by Self-supervised Prediction 42
4.1 Curiosity-Driven Exploration . 45

4.1.1 Prediction error as curiosity reward 46
4.1.2 Self-supervised prediction for exploration 46

4.2 Experiments . 48
4.2.1 Experimental Setup . 48
4.2.2 Sparse Extrinsic Reward Setting . 49
4.2.3 No Reward Setting . 51
4.2.4 Generalization to Novel Scenarios . 52

4.3 Large-Scale Study of Curiosity-Driven Learning 54
4.3.1 Feature spaces for forward dynamics 55
4.3.2 Practical considerations in training with only curiosity 57
4.3.3 ‘Death is not the end’: infinite horizon 58

4.4 Large-Scale Experiments . 58
4.4.1 Curiosity-driven learning without extrinsic rewards 58
4.4.2 Generalization across novel levels in Super Mario Bros. 62
4.4.3 Curiosity with Sparse External Reward 63

4.5 Related Work . 64
4.6 Discussion . 66

5 Self-Supervised Exploration via Disagreement 68
5.1 Exploration via Disagreement . 70

iv

5.1.1 Disagreement as Intrinsic Reward . 70
5.1.2 Exploration in Stochastic Environments 71
5.1.3 Differentiable Exploration for Policy Optimization 72

5.2 Implementation Details and Baselines . 73
5.3 Experiments . 74

5.3.1 Sanity Check in Non-Stochastic Environments 74
5.3.2 Exploration in Stochastic Environments 75
5.3.3 Differentiable Exploration in Structured Envs 76

5.4 Discussion . 79

III From Skills to Goal-Directed Expertise 80

6 Zero-Shot Visual Imitation 81
6.1 Learning to Imitate without Expert Supervision 83

6.1.1 Learning the Goal-conditioned Skill Policy (GSP) 84
6.1.2 Forward Consistency Loss . 84
6.1.3 Goal Recognizer . 86

6.2 Experiments . 88
6.2.1 Rope Manipulation . 89
6.2.2 Navigation in Indoor Office Environments 90
6.2.3 3D Navigation in VizDoom . 92

6.3 Related Work . 93
6.4 Discussion . 95

IV Generalization via Modularity 96

7 Learning to Control Modular Self-Assembling Morphologies 97
7.1 Environment and Agents . 98
7.2 Learning to Control Self-Assemblies . 100

7.2.1 Co-evolution: Linking/Unlinking as an Action 101
7.2.2 Modularity: Self-Assembly as a Graph of Limbs 101
7.2.3 Dynamic Graph Networks (DGN) . 102

7.3 Experiments . 103
7.3.1 Learning to Self-Assemble . 104
7.3.2 Zero-Shot Generalization to Number of Limbs 106
7.3.3 Zero-Shot Generalization to Novel Environments 106

7.4 Related Work . 107
7.5 Discussion . 108

8 Conclusion 109

v

A Experimental Details for Curiosity-driven Exploration 111
A.1 Implementation Details . 111
A.2 Additional Results . 112

B Experimental Details for Zero-Shot Imitation 114
B.1 Rope Manipuation . 114
B.2 Navigation in Indoor Office Environments 114
B.3 3D Navigation in VizDoom . 115

C Experimental Details for Dynamic Graph Networks 117
C.1 Implementation and Training details . 117
C.2 Fixed-Graph Baseline vs. Number of Limbs 117
C.3 Pseudo Code for DGN Algorithm . 118

Bibliography 120

vi

List of Figures

1.1 Generalization of ImageNet trained model to YouTube video frames 2

2.1 Qualitative illustration of context prediction task 10
2.2 The architecutre of Context Encoder . 11
2.3 Semantic inpainting results for context encoder 12
2.4 Inpainting regions for context prediction . 14
2.5 Comparison with content-aware fill (photoshop) 15
2.6 Semantic inpainting using different methods . 16
2.7 Arbitrary region inpainting via context encoder 17
2.8 Nearest Neighbors in Context Encoder feature space 18

3.1 Motion-based grouping as supervisory signal . 23
3.2 Overview of learning features by watching objects move 24
3.3 Representation trained on manually-annotated segments from COCO 26
3.4 Variation of VOC object detection accuracy wrt noise 26
3.5 Degraded masks to measure the impact of learned segmentation quality 27
3.6 Our model learns from as well as refines the noisy training data 28
3.7 Examples of segmentations produced by our model on held out images 30
3.8 Variation of representation quality with amount of data 32
3.9 Results on classification and segmentation tasks 33
3.10 Overview of learning segmentation by interaction 35
3.11 Quantitative evaluation of the segmentation model on the held-out set 37

4.1 Discovering how to play Super Mario Bros without rewards 43
4.2 Overview of Intrinsic Curiosity Module . 45
4.3 Samples from VizDoom 3-D environment . 48
4.4 Quantitative results of curiosity-driven exploration on VizDoom 49
4.5 Robustness of ICM to uncontrollable distractors 50
4.6 Reward-free exploration in VizDoom . 52
4.7 Generalization evaluation of pre-trained curiosity agent 54
4.8 Snapshot of the 54 environments investigated 55
4.9 Quantitative comparison of feature learning methods for curiosity 59

vii

4.10 Large-scale comparisons on Mario and Pong . 61
4.11 Mario generalization experiments . 63
4.12 Unity 3D navigation experiments . 63
4.13 Noisy TV with remote experiment in Unity . 67

5.1 Self-Supervised Exploration via Disagreement 69
5.2 Sanity Check in Non-Stochastic Environments 74
5.3 Toy example to show usefulness of disagreement 76
5.4 3D Navigation in Unity . 76
5.5 Stochastic Atari Games . 77
5.6 Disagreement-based exploration with or without the differentiability 77
5.7 Object interaction rate wrt the number of samples 78

6.1 Different architecture for goal-conditioned policy 82
6.2 Qualitative visualization of rope manipulation results 87
6.3 Quantitative results for rope manipulation . 88
6.4 Visualization of the TurtleBot navigation trajectory 89
6.5 Trajectory of TurtleBot following a multi-step demonstration 91

7.1 Learning to control self-assemblies via dynamic graph networks 98
7.2 Illustration of locomotion and standing up enviroments 99
7.3 Co-evolution of morphology w/ control during training 102
7.4 Learning plots for self-assembling agents . 104

8.1 Deploying curiosity on a custom designed low-cost arm 110

A.1 Pure curiosity-driven exploration in Atari . 113

C.1 Performance of monolithic policy wrt number of limbs 118

viii

List of Tables

2.1 Semantic inpainting accuracy for Paris StreetView dataset 16
2.2 Quantitative comparison of representation learning methods 19

3.1 Object detection on VOC’12 with various pretrained ConvNets 31
3.2 Quantitative comparison of segmentation by interaction with baselines 38

4.1 Quantitative evaluation in Super Mario Bros. 53
4.2 Categorization of different feature spaces considered 56

6.1 Quantitative evaluation of various methods for navigation 90
6.2 Quantitative evaluation of TurtleBot’s performance in multi-step case 92
6.3 Quantitative evaluation in VizDoom . 94

7.1 Zero-Shot generalization to number of limbs . 105
7.2 Zero-Shot generalization to novel environments 105

A.1 Curiosity with extrinsic reward in Atari . 113

B.1 Detailed quantitative evaluation of TurtleBot for maze and loop tasks 115
B.2 Mean accuracy in VizDoom . 116

ix

Acknowledgments

It just so happens that I get to take credit as the sole author of this dissertation. In reality,
this is a purely collaborative effort, from working alongside my advisors, mentors, colleagues,
friends, and family. Several people have continually supported and guided me, throughout
my Ph.D., which in turn has made this dissertation a reality.

I would like to start by expressing sincere gratitude to my dear Ph.D. advisors, Trevor
Darrell, and Alyosha Efros, for taking me in as their advisee.

Ever since my admissions interview with Trevor, I was certain that I wanted to join his
research group, and feel grateful for the opportunity to have been a part of it. Trevor taught
me how to collect my ever wandering thoughts into a potentially cool idea. I learned from him
how to think broad, yet not losing focus from the ultimate long-term agenda. His consistent
reminder for being confident and broad has made me the researcher I am today. One of the
biggest strengths Trevor has instilled in me is to not give up. Many of my paper submissions
would not have been possible if he did not consistently have my back, always helping and
encouraging. Despite being responsible for leading such a large research group, Trevor has
this unique ability to take extremely good care of each of his students. Trevor shielded me
from any external hiccups and allowed me to primarily focus on research. No matter what
the issue was, I could always count on him to help me find a way out of it. I am thankful for
his continued support and guidance as I embark on my academic journey ahead.

As the time to leave Berkeley gets closer, I wonder if Alyosha’s imprint will ever leave me.
In his words, I carry a good discriminator model of him in my mind. I used to be an engineer,
but it is because of Alyosha that I can (even remotely) consider myself a scientist in disguise.
I owe it to him, for showing me the Science in Computer Science. Looking at the big picture,
constantly questioning fundamentals, writing concise and punchy sentences, being selfless in
every circumstance, and being bold yet reasonable are some of the invaluable gems I received
by working with him. I was and still, am fascinated by the stories of how huge scientific
discoveries were made through argumentative discussions. I used to think that the era was
over, but Alyosha showed me otherwise. From long late-night discussions, to even longer
arguments during hikes, I think I spent way more hours with him than Ph.D. students get to
these days. Of course, we were not always productive, but I am hopeful those discussions
will guide me in the long term! I could go on and on had I begun writing this in time, but
again, “if you do it at the last minute, it only takes a minute” – wish I could unlearn!

I am also extremely grateful to have Jitendra Malik and Alison Gopnik as my thesis

x

committee members. The ideology proposed in this dissertation is heavily motivated by their
research principles. I learned from Jitendra about the importance of scientific rigor, pursuing
big ideas and being well-read. He is a walking encyclopedia, and the gold standard for all of
us to aim for. Much of my memories of the UC Berkeley culture revolve around the trio of
Jitendra, Trevor, and Alyosha, participating actively in Monday morning reading groups.

I would like to also thank Pieter Abbeel and Sergey Levine for their precise critique of my
ideas. My maneuvering into the Reinforcement Learning (RL) world would not have been
possible without them. I would like to especially thank Pieter for helping with my faculty
applications and taking the time out for frequent meetings to discuss research ideas.

Working with Abhinav Gupta at Pittsburgh was one of the best times in my Ph.D. I
learned a lot from him, about research and mentoring students, in those few months. His
research style and emphasis on figuring out singlemost big contribution of a paper have had
a great impact on my thinking style. I am excited about having him as my colleague and
mentor at CMU.

I have also been greatly influenced by the research journeys of Yann LeCun and Geoffrey
Hinton as they helped make deep learning what it is today. I was amazed by Yann’s humility
and curiosity when I first met him in my first year. The several discussions I have had with
him over the years have acted as great motivation for me to aspire to do great research. I am
also thankful to Miro Dud́ık with whom I interned at Microsoft Research (MSR), New York,
during my third year of undergraduate studies. If I had not met him, I would have never
applied for a Ph.D. program. I also thank Vinay Namboodiri for being a great mentor.

I am extremely lucky to have also worked with Philipp Krähenbühl. Thank you for
teaching me optimization, how to think concretely about research ideas, trusting intuitions,
being confident, and the importance of being mathematically rigorous. My internship with
Ross Girshick, Bharath Hariharan and Piotr Dollár further inculcated in me the extreme value
of rigorous experimentation and not discarding any hypothesis without concrete evidence. I
also had a great time collaborating with Phillip Isola on our crazy, over a year-long project –
during which I learned a lot from him.

I would like to also thank Pulkit Agrawal who grew from being my academic senior to a
great friend over the years. We did many projects together, and brainstormed some of the
coolest ideas – some made it in writing and some eventually will. I am thankful for his help
on numerous accounts, including my job talk preparation. However, the biggest thing that I
owe him for is a piece of valuable advice he gave me once - to listen to and get feedback from
everyone but decide on your own. He taught me how not to get discouraged by criticism.

My memories of SDH7 will not be complete without Judy Hoffman, Ning Zhang, Jeff
Donahue, Jon Long, Evan Shelhamer, Lisa Hendricks, Eric Tzeng, and Samaneh Azadi. Evan
has this unique ability to come up with the most amazing titles and brewing the strongest
coffee – two things I have bugged him a lot for – thanks for bearing with me! I am also
thankful to Jun-Yan and Richard for being great friends and peers. Futile attempts at
continuing to go to the gym with Jun-Yan, Richard and Tae are one of the most comical
memories of my graduate life. Jun-Yan and I used to often stay until quite late in the lab and
I thank him for dropping me home several times. We have spent countless hours discussing

xi

research and brainstorming several other not-so-important topics. I am excited to have him as
my colleague at CMU. I thank Shubham for always helping me debug my ideas and showing
me corner cases which I would have missed otherwise. Thanks to Saurabh for being a great
academic senior and entertaining my endless research questions. Thanks to Somil for teaching
me controls.

Special thank you to all the postdocs - Jiashi Feng, Marcus Rohrbach, Sergio Guadarrama,
Anja Rohrbach, João Carreira, Andrew Owens, Dinesh Jayaraman, Angjoo Kanazawa, and
David Fouhey. Thank you, David, for adding humor to our lab and Angjoo for preventing
the labs from being awfully quiet.

My time at UC Berkeley would not have been the same without my awesome academic
and research peers. I feel privileged that I overlapped with one of the most amazing student
cohorts at UC Berkeley. I am extremely thankful to Carl Doersch, Shiry Ginosar, Tinghui
Zhou, Yang Gao, Taesung Park, Dequan Wang, Alan Jabri, Ashish Kumar, Eliza Kosoy,
Rachit Dubey, Coline Devin, Ronghang Hu, Huazhe Xu, Jasmine, Sasha, Erin Grant, Avi
Singh, Chelsea Finn, Vitchyr Pong and Kelvin Xu.

Finally, I would like to thank the amazing masters and undergraduate students whom
I was fortunate to work with. I especially thank Parsa for being patient with me all these
years. I am very lucky to have worked with Chris, Fred, Dian, Michael, Dhiraj, Pratyusha
and Wenxuan.

Hanging out with Abhishek, Somil, Shubham, Tejas, Varun, and Vivek has often helped
me not to get homesick. 1735 Cedar St. has been my defacto mailing address at Berkeley. I
would like to also thank Weicheng Kuo and Ke Li - my first friends at UC Berkeley. My first
few years would not have been so much fun if it did not involve attending classes, working on
assignments, and having lunch with them – a very special mention to them for agreeing to
countless visits to Urban Turban!

I am extremely grateful to Nikita for being on my side, keeping me sane and for being my
core strength all these years – thank you for entertaining my numerous last-minute requests
for proofreading! I would also like to thank my sister Divya for her love, support and for
keeping me attached to the home. Finally, I would like to thank my parents Durga and
Madhwa Nand Pathak. I would not have been fortunate enough to be the first engineer and
first doctorate in our entire family tree had it not been for their support. I wonder if I can
ever match the hard work they put in to provide myself and Divya with the opportunities
that made us reach where we are today. I am always humbled by remembering the roots of
their journey. I believe that they made progress worthy of two generations in one, by allowing
me to match shoulders with the most modern and developed society. I dedicate this thesis to
them for their uncountable sacrifices, boundless support, and unconditional love.

Thanks to Facebook, Nvidia, and Snapchat for awarding me their prestigious fellowships.

1

Chapter 1

Introduction

Consider an American college student embarking on her first trip abroad. She lands in Paris
and, incredibly, she can still navigate the streets of this new city, spot cars and traffic signs,
enter stores, etc., even though all of those look quite different in France than in the States.
We as humans are naturally able to re-use our past experiences to adapt to novel scenarios.
This ability to generalize makes us who we are. Generalization is the hallmark of human
intelligence. While we have algorithms that excel at learning to translate languages, play
complex games and even beat humans at it, they are miserable at generalization. For instance,
a classification model that achieves super-human performance on the famous ImageNet dataset
fails dramatically when deployed on a wearable camera in the real world. A robot that is an
expert in the intricate task of putting a car engine together will fail at an apparently ‘simple’
task of putting plates into a dishwasher. Indeed, as noted by Moravec: the hard things are
easy, and the easy things are hard.

1.1 Background

Since the inception of early ideas proposed by Alan Turing 70 years ago [246], AI has come a
long way in building expert specialist systems. We have systems that can master the complex
game of Go [226], classify images [95,128], find objects in them [94], recognize speech [89],
generate audio [168], translate languages [265], play table tennis [157] and perform many
mundane industrial tasks. However, in contrast to humans, our current machine learning
algorithms are incredibly narrow in performing the tasks they are trained for. A system
that is champion in Go cannot translate languages. Needless to say, our current systems are
missing the common-sense possessed by humans. However, the problem is more fundamental
and rooted in the way we approach artificial intelligence.

Consider the following case study. Classification challenge on ImageNet [205] has led to
the development of the methods that can classify images with superhuman accuracy (over
85%). This has been the flagship benchmark result and a crown jewel in the success of
deep neural networks. However, these models completely fail to generalize when tested on

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sample outputs of ResNet-50 model trained on ImageNet when tested on frames of a
video from YouTube. Left are representative samples of Labrador class from ImageNet, and right
are the examples of false predictions generated by the model on video frames.

real-world videos, and the accuracy dramatically falls to less than one third than that in
ImageNet. As shown in Figure 1.1, one such model, ResNet-50 [95], misclassifies Labrador
to detect classes like Ray (fish), Cobra (snake) and Flatworm (also see [204] for examples).
Why is that the case? ImageNet contains images that have objects at the center of the image,
taken from a good angle with photographer bias – these conditions do not prevail in real
videos which contain arbitrary changes in pose, motion blur, etc.

The reason is rather unsurprising, but questions a fundamental assumption in machine
learning. Most of the ML approaches assume that the distribution at test time will be the
same as seen during training. This could be true for passively collected datasets or simulated
environments, but it does not hold in the real world. We cannot hope to capture all the
possibilities, which one could ever encounter in the future, in a training dataset collected
once ahead of time.

Interestingly, this issue is not specific to recent approaches, it rather dates back to the
inception of AI. As the story goes, ARPA (now called DARPA) organized a challenge for
classifying the presence of a tank in images in the early 1960s. They released a dataset of
images with and without tanks. AI researchers at the time trained the classifiers (perhaps
Perceptron) and achieved high accuracy on the dataset. However, the models failed to
generalize to the tanks in the real world. It turns out that the non-tank images in the dataset
were of forests in cloudy days, and tank images were captured in sunny days. Thus, instead
of understanding tanks, the model found a shortcut by simplifying thresholding brightness
intensities. Whether apocryphal or not 1, this cautionary tale very accurately captures a
problem that is still unsolved by all means.

1The oldest reference we could find is Kanal and Randall, 1964 [115]. Although, the true version of this
story is still debatable.

CHAPTER 1. INTRODUCTION 3

1.2 Current Dominant Paradigms for Generalization

One of the reasons for assuming the train and test distribution be same is that it is easy to
handle mathematically. In contrast, the scenarios with changing the task or data distribution
are difficult to define precisely. Indeed, if the new data or tasks the model is supposed to
generalize to are too far from the training ones, there might not be any overlap of reusable
knowledge to generalize. It has to be rather a smooth continuum of changing distribution
where this notion of similar enough is really hard to capture mathematically. To scale our
AI systems beyond the lab environments to real-world setups, our models must learn to
generalize across changing data as well as task distributions. There have been several ways
to try to address this challenge, however, they all have come up short as we discuss below:

1.2.1 Generalization by Data

One way to force generalization is to use lots of data. The hope is that, given huge labeled
data, the model would have seen almost all possibilities such that generalization at test time
reduces to just an interpolation problem. To concretize it, consider that we would like to
train a function f(x) that takes an input x and outputs label y from dataset Dtrain = {x, y}.
The argument is that as |Dtrain| → inf, generalization would become trivial. This is of course
practically impossible to do for all possible tasks, however, it is worth analyzing scientifically.
For instance, in our tank example, it would mean that we need to collect images of tanks
in rainy days, cloudy days, and all possible scenarios. Would that be enough? Unlikely
because our world is continuously changing, and by the time we are done recording the
current snapshots, the model of a tank would have changed. Hence, just scaling data and
compute is implausible as a solution to building agents that can function in our ever-changing,
real, complex world.

1.2.2 Generalization by Regularization/Design

One of the major reasons for failure to generalize is that the model ends up overfitting to
spurious correlations instead of desired properties. The high-level goal in this paradigm is to
restrict the space of possible instantiations of our function f such that unwanted correlations
are avoided by construction. Classic approaches like L2/L1/elastic-regularizations [91] apply
broadly to almost all statistical methods. The less obvious ones are the constraints that one
could use by exploiting the domain structure. For instance, the structure of convolution
has been immensely successful in neural networks for dealing with raw images [134]. Other
examples include residual connections for training bigger networks [95], modularity in learned
components to incorporate structure in language and images, etc. [8] etc. However, these
constraints or structure help by reducing the probability of spurious correlations, but not
enough. In our tank classification example, these design choices will help with overfitting but
still won’t be able to avoid the shortcut of modeling brightness.

CHAPTER 1. INTRODUCTION 4

1.2.3 Generalization by Meta/Transfer Learning

Instead of training the models to optimize for low error rate on the training set, one could
directly optimize for generalization to unseen examples. The idea is captured by the family
of algorithms called meta learning [18,160,214,244] or transfer learning [33]. The standard
approach of optimizing for best performance on the training set is rephrased to optimizing
for a solution on training set such that it achieves good performance on some held-out data.
Hence, instead of training on a single fixed training set, the models are trained on a family of
tasks to generalize from one to another (see [65] for a detailed discussion). This paradigm is
certainly optimizing for the correct behavior and perhaps the model will learn less spurious
features. However, it still relies on a large amount of supervised labeled examples in the
meta-training phase. More importantly, to optimize transfer across tasks/dataset directly,
the tasks/datasets in the family has to be closely tied in practice. In such a case, the main
challenge again reduces to the original core problem, i.e., how to generalize beyond the (close)
family of tasks/datasets seen during training.

1.2.4 Generalization by Domain Adaptation

Domain adaption follows an alternative approach to generalizing the learned model to test
distribution. The idea is to rather transform the data at test time such that its distribution
becomes similar to training [27,43,96,207]. The most common approach is to transform the
data such that discrepancy is minimized between training and test data without explicitly
requiring labels for test examples (see [101] for discussion). For instance, in the tank
classification case, one could transform the tank images from rainy days, cloudy days, etc. to
look like a tank in sunny days by employing some perceptual losses on the images. However,
this exposes a critical issue that this transformation has to be learned for every new scenario
encountered by the agent in the future because the model still simply classifies brightness
and does not understand what a tank is. This is so because this paradigm sidesteps the core
problem of learning understanding the true structure to generalize.

1.2.5 Generalization by End-to-End Reinforcement

End-to-end learning from scratch is one of the most popular paradigms in machine learning
today. Instead of solving intermediate tasks in stages, the agent could directly solve for the
end goal and learn necessary abstractions without much specific domain knowledge. A generic
family of algorithms called reinforcement learning (RL) [241] encapsulate this approach. RL
has emerged as a popular method for training agents to perform complex sensorimotor tasks.
In RL, the agent’s policy is trained by maximizing a reward function that is designed to align
with the task. However, designing a well-shaped reward function is a notoriously challenging
engineering problem, and such rewards are often absent in the real world. Hence, in practice,
most of the success in RL has been achieved where this dense and well-shaped reward is
easily available, e.g., a running ‘score’ in video games [155], or zero-sum games like chess or

CHAPTER 1. INTRODUCTION 5

Go [226]. Moreover, rewards are very specific to the task and environment that they are
defined for, thus, generalizing to new tasks/scenarios is a serious concern in RL [98].

1.3 Proposed Solution

The ability to generalize to the novel, changing scenarios is essential for artificial agents
to function in real and diverse environments. As discussed above, the current dominant
paradigm of supervised learning, which relies on training with human-labeled examples, is
unlikely to achieve this goal. Having a human provide lots of labels for every possible task
that an agent could ever encounter is like building a ladder to the moon — there might
never be enough labels! Indeed, supervised learning is not how most learning transpires in
ecological contexts. Instead, all that is available to a biological agent is just raw sensory data
and the ability to act in the world to collect more data. More importantly, it could be that
the mere presence of a fixed goal (conveyed by human-labeled examples or rewards) tempts
our algorithms to cheat by modeling spurious correlations.

What if we remove this extrinsic goal? In the absence of a goal, our agent can no longer
‘cheat’ as there would be nothing to find a ‘shortcut’ for. This is not as strange as it sounds.
Developmental psychologists talk about intrinsic motivation (i.e., curiosity) as the primary
driver in the early stages of development [83,206,230]: babies appear to employ (extrinsic)
goal-free exploration to learn skills that will be useful later on in life, for instance, throwing,
pushing objects and interacting with the world in seemingly random ways. In fact, this form
of learning is not specific to humans. The example, given by Alison Gopnik [82], of the
contrast between domestic chicken and New Caledonian crow, precisely illustrates the crucial
role of such intrinsic exploration phase in shaping the intelligence of species. Domestic chicken
(also, ducks, geese, and turkeys) are often considered as the dumbest of all birds. They are
very good at the task of pecking grains, but pretty much useless otherwise. In contrast, a
New Caledonian crow is one of the intelligent bird species, and can even figure out the use
of a tool by shaping hooks to retrieve food [256]. Despite having similar cortical structure,
chickens are specialists while these crows are impressive generalists. Gopnik argues that it
is connected to the length of their childhood period of exploration without any end-goals.
While chickens become mature and functional in just a few months, the baby New Caledonian
crows depend on their caretaker to feed and nurture them up to 2 years, which is a long time
in the lifespan of a bird. This link between long childhood and intelligence of a species has
been studied in depth by Piantadosi and Kidd, 2016 (see Figure 3 in [189]). Across several
primate species, the length of the weaning period seemed to be strongly correlated with how
intelligent the species is. One crucial aspect of this seemingly frivolous ‘play’ is that it allows
these biological agents to learn how to continually adapt and increase knowledge about the
world without any explicit supervision or extrinsic end-goal.

CHAPTER 1. INTRODUCTION 6

1.3.1 Learning to Generalize via Self-Supervised Prediction

In this dissertation, inspired by these prominent ideas, we propose initial directions towards
the grand question of building artificial agents that learn, act and display seamless general-
purpose behavior. Our key emphasis is on building agents that continually develop knowledge
and acquire skills just from their own collected data by using data as its own supervision. We
begin with minimal assumptions and build complete systems that learn from raw sensory data.
To be able to learn from scratch, the claim is that an artificial agent must be embodied in the
world, develop an understanding of its sensory input (e.g., image stream) and simultaneously
learn to map this understanding to its motor outputs (e.g., torques) in an unsupervised
manner.

All these considerations lead to two fundamental questions: how to learn rich representa-
tions of the world similar to what humans learn?; and how to re-use such a representation
of past knowledge to incrementally adapt and learn more about the world similar to how
humans do? We believe prediction is the key to this answer. We propose generic mechanisms
that employ prediction as a self-supervisory signal in allowing the agents to learn sensory
representations as well as act on these representations to govern motor control. These two
abilities should equip an embodied agent with a basic set of general-purpose skills. Later, these
skills can be stitched together to achieve end-goals or tasks given to the agent, by planning
using the learned models with little to no supervision from outside. This thesis outlines
this ideology in detail and concretizes these ideas into algorithms which are demonstrated
via several case studies, ranging from passive datasets, games to real robotics setups, as
summarized below.

I. Self-Supervised Representation Learning Our world is diverse, yet highly struc-
tured, and humans have an uncanny ability to make sense of it. This ability to build rich
representations of raw sensory data is indispensable for agents learning to operate on their
own. But how is this structure discovered in the first place? In Part I, we propose two
approaches to learn sensory representations. Chapter 2 proposes Context Encoders which
employ prediction of context as supervision to learn visual features. Then in Chapter 3, we
extend this ideology to learn representation by leveraging the Gestalt principle of common-
fate [257], i.e., pixels that move together tend to belong together, which explicitly guides the
perception of object boundaries. These groupings are either obtained by watching passive
videos, or by active interaction of a robot.

II. Learning to Act via Self-Supervised Exploration Learning to see the world the
way we do is only the first step in building a self-supervised autonomous agent. An agent
will be able to adapt and acquire increasingly complex behaviors only when it learns to use
its sensory representation to act. However, acting in the world is unlike passive observations
because the data is sequentially dependent on the past which leads to exponentially many
possible trajectories and makes it intractable to figure out the ones that constitute useful
skills. In Chapter 4, we leverage self-supervised prediction to formulate a notion of curiosity

CHAPTER 1. INTRODUCTION 7

in artificial agents that allows learning to act without any extrinsic supervision or rewards.
Chapter 5 extends this formulation into an explicitly differentiable objective such that it can
be efficiently scaled to real robots.

III. From Skills to Goal-Directed Expertise Parts I and II discuss how an agent could
acquire sensorimotor skills of increasing complexity with no knowledge of labels or tasks.
However, to be useful for real-world tasks, the agent will eventually have to develop the ability
to perform a specific task given to it. One way is to finetune a pre-trained self-supervised
agent with task-specific rewards. However, reward-based finetuning is inefficient and not
scalable to real robots. In Chapter 6, we follow an alternative approach, where an agent first
explores the environment without any expert supervision and distills this exploration data
into goal-directed models. Then, an expert communicates only what needs to be done by
providing a goal image while the agent infers how to perform the task by itself.

IV. Generalization via Modularity Above chapters focus on learning sensorimotor skills
for artificial agents, but the agent itself always starts with an already complex physical body
(e.g., a robotic arm). It is hard to generalize when the agent is already so complex. If the
agent could itself (hardware) be composed of modular reusable components, it would become
easier for the learned controller (software) to generalize. Indeed, one could argue that it is
this modular design which allowed the multicellular organisms to successfully adapt, and
generalize to the constantly changing environment of prehistoric Earth [6]. In Chapter 7, we
take inspiration from multicellular evolution to study modularity as a model for emergent
complexity in artificial agents. However, unlike most previous works, we see modularity as a
way of improving generalization to unseen scenarios.

Finally, Chapter 8 concludes by summarizing the proposed ideology, algorithms, results,
and describes some of the future directions that immediately follow from this agenda.

8

Part I

Self-Supervised Representation
Learning

9

Chapter 2

Learning Representation via Context
Prediction

Our visual world is very diverse, yet highly structured, and humans have an uncanny
ability to make sense of this structure. In this chapter, we explore whether state-of-the-art
computer vision algorithms can do the same. Consider the image shown in Figure 2.1a.
Although the center part of the image is missing, most of us can easily imagine its content
from the surrounding pixels, without having ever seen that exact scene. Some of us can
even draw it, as shown on Figure 2.1b. This ability comes from the fact that natural images,
despite their diversity, are highly structured (e.g. the regular pattern of windows on the
facade). We humans are able to understand this structure and make visual predictions even
when seeing only parts of the scene. We show that it is possible to learn and predict this
structure using convolutional neural networks (CNNs), a class of models that have shown
success across a variety of image understanding tasks.

Given an image with a missing region (e.g., Fig. 2.1a), we train a convolutional neural
network to regress to the missing pixel values (Fig. 2.1d). We call our model context encoder,
as it consists of an encoder capturing the context of an image into a compact latent feature
representation and a decoder which uses that representation to produce the missing image
content. The context encoder is closely related to autoencoders [19, 99], as it shares a similar
encoder-decoder architecture. Autoencoders take an input image and try to reconstruct
it after it passes through a low-dimensional “bottleneck” layer, with the aim of obtaining
a compact feature representation of the scene. Unfortunately, this feature representation
is likely to just compresses the image content without learning a semantically meaningful
representation. Denoising autoencoders [248] address this issue by corrupting the input image
and requiring the network to undo the damage. However, this corruption process is typically
very localized and low-level, and does not require much semantic information to undo. In
contrast, our context encoder needs to solve a much harder task: to fill in large missing areas

This chapter is based on the paper published previously at CVPR 2016 [184].

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 10

(a) Input context (b) Human artist (c) CE (L2) (d) CE (L2 + adv.)

Figure 2.1: Qualitative illustration of the task. Given an image with a missing region (a), a human
artist has no trouble inpainting it (b). Automatic inpainting using our context encoder trained with
L2 reconstruction loss is shown in (c), and using both L2 and adversarial losses in (d).

of the image, where it can’t get “hints” from nearby pixels. This requires a much deeper
semantic understanding of the scene, and the ability to synthesize high-level features over
large spatial extents. For example, in Figure 2.1a, an entire window needs to be conjured up
“out of thin air.” This is similar in spirit to word2vec [151] which learns word representation
from natural language sentences by predicting a word given its context.

Like autoencoders, context encoders are trained in a completely unsupervised manner. Our
results demonstrate that in order to succeed at this task, a model needs to both understand
the content of an image, as well as produce a plausible hypothesis for the missing parts. This
task, however, is inherently multi-modal as there are multiple ways to fill the missing region
while also maintaining coherence with the given context. We decouple this burden in our
loss function by jointly training our context encoders to minimize both a reconstruction loss
and an adversarial loss. The reconstruction (L2) loss captures the overall structure of the
missing region in relation to the context, while the the adversarial loss [81] has the effect
of picking a particular mode from the distribution. Figure 2.1 shows that using only the
reconstruction loss produces blurry results, whereas adding the adversarial loss results in
much sharper predictions.

We evaluate the encoder and the decoder independently. On the encoder side, we show that
encoding just the context of an image patch and using the resulting feature to retrieve nearest
neighbor contexts from a dataset produces patches which are semantically similar to the
original (unseen) patch. We further validate the quality of the learned feature representation
by fine-tuning the encoder for a variety of image understanding tasks, including classification,
object detection, and semantic segmentation. We are competitive with the state-of-the-art
unsupervised/self-supervised methods on those tasks. On the decoder side, we show that our
method is often able to fill in realistic image content. Indeed, to the best of our knowledge,
ours is the first parametric inpainting algorithm that is able to give reasonable results for
semantic hole-filling (i.e. large missing regions). The context encoder can also be useful as a
better visual feature for computing nearest neighbors in non-parametric inpainting methods.

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 11

Figure 2.2: Context Encoder. The context image is passed through the encoder to obtain
features which are connected to the decoder using channel-wise fully-connected layer as described
in Section 2.1.1. The decoder then produces the missing regions in the image.

2.1 Context encoders for image generation

We now introduce context encoders: CNNs that predict missing parts of a scene from their
surroundings. We first give an overview of the general architecture, then provide details on
the learning procedure and finally present various strategies for image region removal.

2.1.1 Encoder-decoder pipeline

The overall architecture is a simple encoder-decoder pipeline. The encoder takes an input
image with missing regions and produces a latent feature representation of that image. The
decoder takes this feature representation and produces the missing image content. We found
it important to connect the encoder and the decoder through a channel-wise fully-connected
layer, which allows each unit in the decoder to reason about the entire image content.
Figure 2.2 shows an overview of our architecture.

Encoder Our encoder is derived from the AlexNet architecture [128]. Given an input image
of size 227× 227, we use the first five convolutional layers and the following pooling layer
(called pool5) to compute an abstract 6 × 6 × 256 dimensional feature representation. In
contrast to AlexNet, our model is not trained for ImageNet classification; rather, the network
is trained for context prediction “from scratch” with randomly initialized weights.

However, if the encoder architecture is limited only to convolutional layers, there is no
way for information to directly propagate from one corner of the feature map to another.
This is so because convolutional layers connect all the feature maps together, but never
directly connect all locations within a specific feature map. In the present architectures,
this information propagation is handled by fully-connected or inner product layers, where all
the activations are directly connected to each other. In our architecture, the latent feature
dimension is 6× 6× 256 = 9216 for both encoder and decoder. This is so because, unlike

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 12

Figure 2.3: Semantic Inpainting results for context encoder trained jointly using reconstruction
and adversarial loss. First four rows contain examples from Paris StreetView Dataset, and bottom
row contains examples from ImageNet.

autoencoders, we do not reconstruct the original input and hence need not have a smaller
bottleneck. However, fully connecting the encoder and decoder would result in an explosion
in the number of parameters (over 100M!), to the extent that efficient training on current
GPUs would be difficult. To alleviate this issue, we use a channel-wise fully-connected layer
to connect the encoder features to the decoder, described in detail below.

Channel-wise fully-connected layer This layer is essentially a fully-connected layer
with groups, intended to propagate information within activations of each feature map. If
the input layer has m feature maps of size n× n, this layer will output m feature maps of
dimension n× n. However, unlike a fully-connected layer, it has no parameters connecting
different feature maps and only propagates information within feature maps. Thus, the
number of parameters in this channel-wise fully-connected layer is mn4, compared to m2n4

parameters in a fully-connected layer (ignoring the bias term). This is followed by a stride 1
convolution to propagate information across channels.

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 13

Decoder We now discuss the second half of our pipeline, the decoder, which generates
pixels of the image using the encoder features. The “encoder features” are connected to the
“decoder features” using a channel-wise fully-connected layer.

The channel-wise fully-connected layer is followed by a series of five up-convolutional
layers [56,145,274] with learned filters, each with a rectified linear unit (ReLU) activation
function. A up-convolutional is simply a convolution that results in a higher resolution
image. It can be understood as upsampling followed by convolution (as described in [56]),
or convolution with fractional stride (as described in [145]). The intuition behind this is
straightforward – the series of up-convolutions and non-linearities comprises a non-linear
weighted upsampling of the feature produced by the encoder until we roughly reach the
original target size.

2.1.2 Loss function

We train our context encoders by regressing to the ground truth content of the missing
(dropped out) region. However, there are often multiple equally plausible ways to fill a
missing image region which are consistent with the context. We model this behavior by
having a decoupled joint loss function to handle both continuity within the context and
multiple modes in the output. The reconstruction (L2) loss is responsible for capturing the
overall structure of the missing region and coherence with regards to its context, but tends
to average together the multiple modes in predictions. The adversarial loss [81], on the other
hand, tries to make prediction look real, and has the effect of picking a particular mode from
the distribution. For each ground truth image x, our context encoder F produces an output
F (x). Let M̂ be a binary mask corresponding to the dropped image region with a value of
1 wherever a pixel was dropped and 0 for input pixels. During training, those masks are
automatically generated for each image and training iterations, as described in Section 2.1.2.
We now describe different components of our loss function.

Reconstruction Loss We use a masked L2 distance as our reconstruction loss, Lrec,
Lrec(x) = ‖M̂ � (x− F ((1− M̂)� x))‖2, (2.1)

where � is the element-wise product operation. We experimented with both L1 and L2 losses
and found no significant difference between them. While this simple loss encourages the
decoder to produce a rough outline of the predicted object, it often fails to capture any high
frequency detail (see Fig. 2.1c). This stems from the fact that the L2 (or L1) loss often prefer
a blurry solution, over highly accurate textures. We believe this happens because it is much
“safer” for the L2 loss to predict the mean of the distribution, because this minimizes the
mean pixel-wise error, but results in a blurry averaged image. We alleviated this problem by
adding an adversarial loss.

Adversarial Loss Our adversarial loss is based on Generative Adversarial Networks
(GAN) [81]. To learn a generative model G of a data distribution, GAN proposes to

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 14

(a) Central region (b) Random block (c) Random region

Figure 2.4: An example of image x with our different region masks M̂ applied to it.

jointly learn an adversarial discriminative model D to provide loss gradients to the generative
model. G and D are parametric functions (e.g., deep networks) where G : Z → X maps
samples from noise distribution Z to data distribution X . The learning procedure is a
two-player game where an adversarial discriminator D takes in both the prediction of G and
ground truth samples, and tries to distinguish them, while G tries to confuse D by producing
samples that appear as “real” as possible. The objective for discriminator is logistic likelihood
indicating whether the input is real sample or predicted one:

min
G

max
D

Ex∈X [log(D(x))] + Ez∈Z [log(1−D(G(z)))]

This method has shown encouraging results in generative modeling of images [200].
We thus adapt this framework for context prediction by modeling generator by context
encoder; i.e., G , F . To customize GANs for this task, one could condition on the given
context information; i.e., the mask M̂ � x. However, conditional GANs don’t train easily
for context prediction task as the adversarial discriminator D easily exploits the perceptual
discontinuity in generated regions and the original context to easily classify predicted versus
real samples. We thus use an alternate formulation, by conditioning only the generator (not
the discriminator) on context. We also found results improved when the generator was not
conditioned on a noise vector. The GAN objective for our context encoders is as follows
Hence the adversarial loss for context encoders, Ladv, is

Ladv = max
D

Ex∈X [log(D(x))

+ log(1−D(F ((1− M̂)� x)))], (2.2)

where, in practice, both F and D are optimized jointly using alternating SGD. Note that
this objective encourages the entire output of the context encoder to look realistic, not just
the missing regions as in Equation (2.1).

Joint Loss We define the overall loss function as

L = λrecLrec + λadvLadv. (2.3)

Currently, we use adversarial loss only for inpainting experiments as AlexNet [128] architecture
training diverged with joint adversarial loss. Details follow in Sections 2.3.1, 2.3.2.

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 15

Figure 2.5: Comparison with Content-Aware Fill (Photoshop feature based on [15]). Our method
works better in semantic cases (top row) and works slightly worse in textured settings (bottom row).

Region masks

The input to a context encoder is an image with one or more of its regions “dropped out”;
i.e., set to zero, assuming zero-centered inputs. The removed regions could be of any shape,
we present three different strategies here:

Central region: The simplest such shape is the central square patch in the image, as
shown in Figure 2.4a. While this works quite well for inpainting, the network learns low level
image features than latch on to the boundary of the central mask. Those low level image
features tend not to generalize well to images without masks, hence the features learned are
not very general.

Random block : To prevent the network from latching on the the constant boundary of the
masked region, we randomize the masking process. Instead of choosing a single large mask
at a fixed location, we remove a number of smaller possibly overlapping masks, covering up
to 1

4
of the image. An example of this is shown in Figure 2.4b. However, the random block

masking still has sharp boundaries convolutional features could latch onto.
Random region: To completely remove those boundaries, we experimented with removing

arbitrary shapes from images, obtained from random masks in the PASCAL VOC 2012
dataset [62]. We deform those shapes and paste in arbitrary places in the other images (not
from PASCAL), again covering up to 1

4
of the image. Note that we completely randomize

the region masking process, and do not expect or want any correlation between the source
segmentation mask and the image. We merely use those regions to prevent the network from
learning low-level features corresponding to the removed mask. See example in Figure 2.4c.

In practice, we found region and random block masks produce a similarly general feature,
while significantly outperforming the central region features. We use the random region
dropout for all our feature based experiments.

2.2 Implementation details

The pipeline was implemented in Caffe [112] and Torch. We used ADAM [119] for optimization.
The missing region in the masked input image is filled with constant mean value. Hyper-
parameter details are discussed in Sections 2.3.1, 2.3.2. We experimented with replacing all
pooling layers with convolutions of the same kernel size and stride. The overall stride of the

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 16

Figure 2.6: Semantic Inpainting using different methods. Context Encoder with just L2 are well
aligned, but not sharp. Using adversarial loss, results are sharp but not coherent. Joint loss alleviate
the weaknesses of each of them. The last two columns are the results if we plug-in the best nearest
neighbor (NN) patch in the masked region.

Method Mean L1 Loss Mean L2 Loss PSNR (higher better)

NN-inpainting (HOG features) 19.92% 6.92% 12.79 dB

NN-inpainting (our features) 15.10% 4.30% 14.70 dB
Our Reconstruction (joint) 10.33% 2.35% 17.59 dB

Table 2.1: Semantic Inpainting accuracy for Paris StreetView dataset on held-out images. NN
inpainting is basis for [93].

network remains the same, but it results in finer inpainting. Intuitively, there is no reason
to use pooling for reconstruction based networks. In classification, pooling provides spatial
invariance, which may be detrimental for reconstruction-based training. To be consistent
with prior work, we still use the original AlexNet architecture (with pooling) for all feature
learning results.

2.3 Evaluation

We now evaluate the encoder features for their semantic quality and transferability to
other image understanding tasks. We experiment with images from two datasets: Paris
StreetView [52] and ImageNet [205] without using any of the accompanying labels. In
Section 2.3.1, we present visualizations demonstrating the ability of the context encoder to
fill in semantic details of images with missing regions. In Section 2.3.2, we demonstrate the
transferability of our learned features to other tasks, using context encoders as a pre-training
step for image classification, object detection, and semantic segmentation. We compare
our results on these tasks with those of other unsupervised or self-supervised methods,
demonstrating that our approach outperforms previous methods.

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 17

Figure 2.7: Arbitrary region inpainting for context encoder trained with reconstruction loss.

2.3.1 Semantic Inpainting

We train context encoders with the joint loss function defined in Equation (2.3) for the task
of inpainting the missing region. The encoder and discriminator architecture is similar to that
of discriminator in [200], and decoder is similar to generator in [200]. However, the bottleneck
is of 4000 units (in contrast to 100 in [200]). We used the default solver hyper-parameters
suggested in [200]. We use λrec = 0.999 and λadv = 0.001. However, a few things were crucial
for training the model. We did not condition the adversarial loss (see Section 2.1.2) nor did
we add noise to the encoder. We use a higher learning rate for context encoder (10 times) to
that of adversarial discriminator. To further emphasize the consistency of prediction with the
context, we predict a slightly larger patch that overlaps with the context (by 7px). During
training, we use higher weight (10×) for the reconstruction loss in this overlapping region.

The qualitative results are shown in Figure 2.3. Our model performs generally well in
inpainting semantic regions of an image. However, if a region can be filled with low-level
textures, texture synthesis methods, such as [15,61], can often perform better (e.g. Figure 2.5).
For semantic inpainting, we compare against nearest neighbor inpainting (which forms the
basis of Hays et al . [93]) and show that our reconstructions are well-aligned semantically,
as seen on Figure 2.6. It also shows that joint loss significantly improves the inpainting
over both reconstruction and adversarial loss alone. Moreover, using our learned features
in a nearest-neighbor style inpainting can sometimes improve results over a hand-designed
distance metrics. Table 2.1 reports quantitative results on StreetView Dataset.

2.3.2 Feature Learning

For consistency with prior work, we use the AlexNet [128] architecture for our encoder.
Unfortunately, we did not manage to make the adversarial loss converge with AlexNet, so
we used just the reconstruction loss. The networks were trained with a constant learning
rate of 10−3 for the center-region masks. However, for random region corruption, we found
a learning rate of 10−4 to perform better. We apply dropout with a rate of 0.5 just for the
channel-wise fully connected layer, since it has more parameters than other layers and might
be prone to overfitting. The training process is fast and converges in about 100K iterations:

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 18

Figure 2.8: Context Nearest Neighbors. Center patches whose context (not shown here) are close in
the embedding space of different methods (namely our context encoder, HOG and AlexNet). Note
that the appearance of these center patches themselves was never seen by these methods. But our
method brings them close just from their context.

14 hours on a Titan X GPU. Figure 2.7 shows inpainting results for context encoder trained
with random region corruption using reconstruction loss. To evaluate the quality of features,
we find nearest neighbors to the masked part of image just by using the features from the
context, see Figure 2.8. Note that none of the methods ever see the center part of any image,
whether a query or dataset image. Our features retrieve decent nearest neighbors just from
context, even though actual prediction is blurry with L2 loss. AlexNet features also perform
decently as they were trained with 1M labels for semantic tasks, HOG on the other hand fail
to get the semantics.

Classification pre-training

For this experiment, we fine-tune a standard AlexNet classifier on the PASCAL VOC 2007 [62]
from a number of supervised, self-supervised and unsupervised initializations. We train the
classifier using random cropping, and then evaluate it using 10 random crops per test image.
We average the classifier output over those random crops. Table 2.2 shows the standard mean
average precision (mAP) score for all compared methods. A random initialization performs
roughly 25% below an ImageNen-trained model; however, it does not use any labels. Context
encoders are competitive with concurrent self-supervised feature learning methods [51,254]
and significantly outperform autoencoders and Agrawal et al . [4].

Detection pre-training

Our second set of quantitative results involves using our features for object detection. We use
Fast R-CNN [80] framework (FRCN). We replace the ImageNet pre-trained network with
our context encoders (or any other baseline model). In particular, we take the pre-trained
encoder weights up to the pool5 layer and re-initialize the fully-connected layers. We then
follow the training and evaluation procedures from FRCN and report the accuracy (in mAP)
of the resulting detector.

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 19

Pretraining Method Supervision Pretraining time Classification Detection Segmentation

ImageNet [128] 1000 class labels 3 days 78.2% 56.8% 48.0%

Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al . [4] egomotion 10 hours 52.9% 41.8% -
Doersch et al . [51] context 4 weeks 55.3% 46.6% -
Wang et al . [254] motion 1 week 58.4% 44.0% -

Ours context 14 hours 56.5% 44.5% 29.7%

Table 2.2: Quantitative comparison for classification, detection and semantic segmentation. Clas-
sification and Fast-RCNN Detection results are on the PASCAL VOC 2007 test set. Semantic
segmentation results are on the PASCAL VOC 2012 validation set from the FCN evaluation de-
scribed in Section 2.3.2, using the additional training data from [90], and removing overlapping
images from the validation set [145].

Our results on the test set of the PASCAL VOC 2007 [62] detection challenge are reported
in Table 2.2. Context encoder pre-training is competitive with the existing methods achieving
significant boost over the baseline. Krähenbühl et al . [126] proposed a data-dependent method
for rescaling pre-trained model weights. This significantly improves the features in Doersch et
al . [51] up to 65.3% for classification and 51.1% for detection. However, this rescaling doesn’t
improve results for other methods, including ours.

Semantic Segmentation pre-training

Our last quantitative evaluation explores the utility of context encoder training for pixel-wise
semantic segmentation. Fully convolutional networks [145] (FCNs) were proposed as an
end-to-end learnable method of predicting a semantic label at each pixel of an image, using a
convolutional network pre-trained for ImageNet classification. We replace the classification
pre-trained network used in the FCN method with our context encoders, afterwards following
the FCN training and evaluation procedure for direct comparison with their original CaffeNet-
based result.

Our results on the PASCAL VOC 2012 [62] validation set are reported in Table 2.2. In
this setting, we outperform a randomly initialized network as well as a plain autoencoder
which is trained simply to reconstruct its full input.

2.4 Related work

CNNs trained for ImageNet [205] classification with over a million labeled examples learn
features which generalize very well across tasks [53]. However, whether such semantically
informative and generalizable features can be learned from raw images alone, without any
labels, remains an open question. Unsupervised learning is a broad area with a large volume

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 20

of work; Bengio et al . [20] provide an excellent survey. Here, we briefly revisit some of the
recent work in this area.

Self-supervision via pretext tasks Instead of producing images, several recent studies
have focused on providing alternate forms of supervision (often called ‘pretext tasks’) that
do not require manual labeling and can be algorithmically produced. For instance, Doersch
et al . [51] task a ConvNet with predicting the relative location of two cropped image
patches. Noroozi and Favaro [164] extend this by asking a network to arrange shuffled
patches cropped from a 3×3 grid. Other pretext tasks include predicting color channels from
luminance [132,276] or vice versa [277], and predicting sounds from video frames [46,175].
The assumption in these works is that to perform these tasks, the network will need to
recognize high-level concepts, such as objects, in order to succeed.

Most closely related to our idea are efforts at exploiting spatial context as a source of
free and plentiful supervisory signal. Visual Memex [149] used context to non-parametrically
model object relations and to predict masked objects in scenes, while [50] used context to
establish correspondences for unsupervised object discovery. However, both approaches relied
on hand-designed features and did not perform any representation learning. Doersch et
al . [51] used the task of predicting the relative positions of neighboring patches within an
image as a way to train an unsupervised deep feature representations. We share the same
high-level goals with Doersch et al . but fundamentally differ in the approach: whereas [51]
are solving a discriminative task (is patch A above patch B or below?), our context encoder
solves a pure prediction problem (what pixel intensities should go in the hole?). Interestingly,
similar distinction exist in using language context to learn word embeddings: Collobert and
Weston [38] advocate a discriminative approach, whereas word2vec [151] formulate it as word
prediction. One important benefit of our approach is that our supervisory signal is much
richer: a context encoder needs to predict roughly 15,000 real values per training example,
compared to just 1 option among 8 choices in [51]. Likely due in part to this difference, our
context encoders take far less time to train than [51]. Moreover, context based prediction is
also harder to “cheat” since low-level image features, such as chromatic aberration, do not
provide any meaningful information, in contrast to [51] where chromatic aberration partially
solves the task. On the other hand, it is not yet clear if requiring faithful pixel generation is
necessary for learning good visual features.

Unsupervised learning by generating images Classical unsupervised representation
learning approaches, such as autoencoders [19, 99] and denoising autoencoders [248], attempt
to learn feature representations from which the original image can be decoded with a low
error. An alternative to reconstruction-based objectives is to train generative models of
images using generative adversarial networks [81]. These models can be extended to produce
good feature representations by training jointly with image encoders [54, 59]. However, to
generate realistic images, these models must pay significant attention to low-level details
while potentially ignoring higher-level semantics. We train our context encoders using an

CHAPTER 2. REPRESENTATION VIA CONTEXT PREDICTION 21

adversary jointly with reconstruction loss for generating inpainting results. We discuss this
in detail in Section 2.1.2.

Dosovitskiy et al . [56] and Rifai et al . [202] demonstrate that CNNs can learn to generate
novel images of particular object categories (chairs and faces, respectively), but rely on
large labeled datasets with examples of these categories. In contrast, context encoders can
be applied to any unlabeled image database and learn to generate images based on the
surrounding context.

Inpainting and hole-filling It is important to point out that our hole-filling task cannot
be handled by classical inpainting [22, 170] or texture synthesis [15, 61] approaches, since
the missing region is too large for local non-semantic methods to work well. In computer
graphics, filling in large holes is typically done via scene completion [93], involving a cut-paste
formulation using nearest neighbors from a dataset of millions of images. However, scene
completion is meant for filling in holes left by removing whole objects, and it struggles to fill
arbitrary holes, e.g. amodal completion of partially occluded objects. Furthermore, previous
completion relies on a hand-crafted distance metric, such as Gist [167] for nearest-neighbor
computation which is inferior to a learned distance metric. We show that our method is often
able to inpaint semantically meaningful content in a parametric fashion, as well as provide a
better feature for nearest neighbor-based inpainting methods.

22

Chapter 3

Discovering Objects by Observation
and Interaction

In previous chapter, we presented an unsupervised visual feature learning algorithm driven
by context-based pixel prediction. As apparent in the related works discussed, a recurring
theme in most self-supervised representation learning works is the idea of a ‘pretext task’: a
task that is not of direct interest, but can be used to obtain a good visual representation
as a byproduct of training. The challenge in this line of research lies in cleverly designing a
pretext task that causes the ConvNet (or other representation learner) to learn high-level
features.

In this chapter, we take a different approach that is motivated by human vision studies.
Both infants [231] and newly sighted congenitally blind people [172] tend to oversegment static
objects, but can group things properly when they move (Figure 3.1). To do so, they may rely
on the Gestalt principle of common fate [177,258]: pixels that move together tend to belong
together. The ability to parse static scenes improves [172] over time, suggesting that while
motion-based grouping appears early, static grouping is acquired later, possibly bootstrapped
by motion cues. Moreover, experiments in [172] show that shortly after gaining sight, human
subjects are better able to name objects that tend to be seen in motion compared to objects
that tend to be seen at rest.

Inspired by these human vision studies, we propose to train ConvNets for the well-
established task of object foreground vs. background segmentation, using unsupervised
motion segmentation to provide ‘pseudo ground truth’. Concretely, to prepare training
data we use optical flow to group foreground pixels that move together into a single object.
We then use the resulting segmentation masks as automatically generated targets, and
task a ConvNet with predicting these masks from single, static frames without any motion
information (Figure 3.2). Because pixels with different colors or low-level image statistics

This chapter is based on the papers published previously at CVPR 2017 [181] and CVPR Robotics
Vision Workshop 2018 [187].

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 23

Figure 3.1: Low-level appearance cues lead to incorrect grouping (mid-left). Motion helps us to
correctly group pixels that move together (mid-right) and identify this group as a single object
(rightmost). We use unsupervised motion-based grouping to train a ConvNet to segment objects in
static images and show that the network learns strong features that transfer well to other tasks.

can still move together and form a single object, the ConvNet cannot solve this task using a
low-level representation. Instead, it may have to recognize objects that tend to move and
identify their shape and pose. Thus, we conjecture that this task forces the ConvNet to learn
a high-level representation.

We evaluate our proposal in two settings. First, we test if a ConvNet can learn a good
feature representation when learning to segment from the high-quality, manually labeled
segmentations in COCO [142], without using the class labels. Indeed, we show that the
resulting feature representation is effective when transferred to PASCAL VOC object detection.
It achieves state-of-the-art performance for representations trained without any semantic
category labels, performing within 5 points AP of an ImageNet pretrained model and 10
points higher than the best unsupervised methods. This justifies our proposed task by
showing that given good ground truth segmentations, a ConvNet trained to segment objects
will learn an effective feature representation.

Our goal, however, is to learn features without manual supervision. Thus in our sec-
ond setting we train with automatically generated ‘pseudo ground truth’ obtained through
unsupervised motion segmentation on uncurated videos from the Yahoo Flickr Creative
Commons 100 million (YFCC100m) [243] dataset. When transferred to object detection,
our representation retains good performance even when most of the ConvNet parameters
are frozen, significantly outperforming previous unsupervised learning approaches. It also
allows much better transfer learning when training data for the target task is scarce. Our
representation quality tends to increase logarithmically with the amount of data, suggesting
the possibility of outperforming ImageNet pretraining given the countless videos on the web.

However, one does not have to wait passively for things to move as motion can also be
caused by active interaction. While passive motion helps in learning about object boundaries,
Smith and Gasser [230] argue that it is the “active interaction” that makes infants learn
about the properties of individual object entities. We put this developmental hypothesis to
the test in the final section of this chapter. We leverage the same idea of predicting motion
segments, but instead of observing passive videos, we deploy an autonomous robotic agent
that collects examples by actively interacting with objects in its arena.

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 24

Figure 3.2: Overview of our approach. We use motion cues to segment objects in videos without
any supervision. We then train a ConvNet to predict these segmentations from static frames, i.e.
without any motion cues. We then transfer the learned representation to other recognition tasks.

3.1 Evaluating Feature Representations

To measure the quality of a learned feature representation, we need an evaluation that
reflects real-world constraints to yield useful conclusions. Prior work on unsupervised learning
has evaluated representations by using them as initializations for fine-tuning a ConvNet
for a particular isolated task, such as object detection [51]. The intuition is that a good
representations should serve as a good starting point for task-specific fine-tuning. While
fine-tuning for each task can be a good solution, it can also be impractical.

For example, a mobile app might want to handle multiple tasks on device, such as image
classification, object detection, and segmentation. But both the app download size and
execution time will grow linearly with the number of tasks unless computation is shared. In
such cases it may be desirable to have a general representation that is shared between tasks
and task-specific, lightweight classifier ‘heads’.

Another practical concern arises when the amount of labeled training data is too limited
for fine-tuning. Again, in this scenario it may be desirable to use a fixed general representation
with a trained task-specific ‘head’ to avoid overfitting. Rather than emphasizing any one
of these cases, in this chapter we aim for a broader understanding by evaluating learned
representations under a variety of conditions:

1. On multiple tasks: We consider object detection, image classification and semantic
segmentation.

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 25

2. With shared layers: We fine-tune the pretrained ConvNet weights to different extents,
ranging from only the fully connected layers to fine-tuning everything (see [164] for a
similar evaluation on ImageNet).

3. With limited target task training data: We reduce the amount of training data
available for the target task.

3.2 Learning Features by Learning to Group

The core intuition behind the idea in this chapter is that training a ConvNet to group pixels
in static images into objects without any class labels will cause it to learn a strong, high-level
feature representation. This is because such grouping is difficult from low-level cues alone:
objects are typically made of multiple colors and textures and, if occluded, might even consist
of spatially disjoint regions. Therefore, to effectively do this grouping is to implicitly recognize
the object and understand its location and shape, even if it cannot be named. Thus, if we
train a ConvNet for this task, we expect it to learn a representation that aids recognition.

To test this hypothesis, we ran a series of experiments using high-quality manual annota-
tions on static images from COCO [142]. Although supervised, these experiments help to
evaluate a) how well our method might work under ideal conditions, b) how performance
is impacted if the segments are of lower quality, and c) how much data is needed. We now
describe these experiments in detail.

3.2.1 Training a ConvNet to Segment Objects

We frame the task as follows: given an image patch containing a single object, we want the
ConvNet to segment the object, i.e., assign each pixel a label of 1 if it lies on the object
and 0 otherwise. Since an image contains multiple objects, the task is ambiguous if we feed
the ConvNet the entire image. Instead, we sample an object from an image and crop a box
around the ground truth segment. However, given a precise bounding box, it is easy for the
ConvNet to cheat: a blob in the center of the box would yield low loss. To prevent such
degenerate solutions, we jitter the box in position and scale. Note that a similar training
setup was used for recent segmentation proposal methods [190,192].

We use a straightforward ConvNet architecture that takes as input a w × w image and
outputs an s× s mask. Our network ends in a fully connected layer with s2 outputs followed
by an element-wise sigmoid. The resulting s2 dimensional vector is reshaped into an s× s
mask. We also downsample the ground truth mask to s× s and sum the cross entropy losses
over the s2 locations to train the network.

3.2.2 Experiments

To enable comparisons to prior work, we use AlexNet [128] as our ConvNet architecture. We
use s = 56 and w = 227. We use images and annotations from the trainval set of the COCO

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 26

All >c1 >c2 >c3 >c4 >c5
Layers Finetuned

0

10

20

30

40

50

60

%
 m

e
a
n
 A

P

Object Detection (VOC2007)

ImageNet [21]

Supervised Masks

Context [6] (unsupervised)

Figure 3.3: Our representation trained
on manually-annotated segments from
COCO (without class labels) compared
to ImageNet pretraining and context
prediction (unsupervised) [51], for ob-
ject detection on PASCAL VOC 2007.
‘>cX’: all layers above convX are fine-
tuned; ‘All’: the entire net is fine-tuned.

0 4 8 12 16 20
Morph kernel size

30

35

40

45

50

55

%
 m

e
a
n
 A

P

0 10 20 30 40 50
% Truncation

3 10 30 100
% Data

Object Detection (VOC 2007)

Figure 3.4: VOC object detection accuracy using our su-
pervised ConvNet as noise is introduced in mask bound-
aries, the masks are truncated, or the amount of data
is reduced. Surprisingly, the representation maintains
quality even with large degradation.

dataset [142], discarding the class labels and only using the segmentations.

Does training for segmentation yield good features? Following recent work on un-
supervised learning, we perform experiments on the task of object detection on PASCAL
VOC 2007 using Fast R-CNN [80].1 We use multi-scale training and testing [80]. In keeping
with the motivation described in Section 3.1, we measure performance with ConvNet layers
frozen to different extents. We compare our representation to a ConvNet trained on image
classification on ImageNet, and the representation trained by Doersch et al . [51]. The latter
is competitive with the state-of-the-art. (Comparisons to other recent work on unsupervised
learning appear later.) The results are shown in Figure 3.3.

We find that our supervised representation outperforms the unsupervised context predic-
tion model across all scenarios by a large margin, which is to be expected. Notably though, our
model maintains a fairly small gap with ImageNet pretraining. This result is state-of-the-art
for a model trained without semantic category labels. Thus, given high-quality segments, our
proposed method can learn a strong representation, which validates our hypothesis.

Figure 3.3 also shows that the model trained on context prediction degrades rapidly as
more layers are frozen. This drop indicates that the higher layers of the model have become
overly specific to the pretext task [273], and may not capture the high-level concepts needed
for object recognition. This is in contrast to the stable performance of the ImageNet trained
model even when most of the network is frozen, suggesting the utility of its higher layers for
recognition tasks. We find that this trend is also true for our representation: it retains good
performance even when most of the ConvNet is frozen, indicating that it has indeed learned
high-level semantics in the higher layers.

1https://github.com/rbgirshick/py-faster-rcnn

https://github.com/rbgirshick/py-faster-rcnn

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 27

Figure 3.5: We degrade ground truth masks to measure the impact of segmentation quality on the
learned representation. From left to right, the original mask, dilated and eroded masks (boundary
errors), and a truncated mask (truncation can be on any side).

Can the ConvNet learn from noisy masks? We next ask if the quality of the learned
representation is impacted by the quality of the ground truth, which is important since the
segmentations obtained from unsupervised motion-based grouping will be imperfect. To
simulate noisy segments, we train the representation with degraded masks from COCO.
We consider two ways of creating noisy segments: introducing noise in the boundary and
truncating the mask.

Noise in the segment boundary simulates the foreground leaking into the background or
vice-versa. To introduce such noise during training, for each cropped ground truth mask, we
randomly either erode or dilate the mask using a kernel of fixed size (Figure 3.5, second and
third images). The boundaries become noisier as the kernel size increases.

Truncation simulates the case when we miss a part of the object, such as when only part
of the object moves. Specifically, for each ground truth mask, we zero out a strip of pixels
corresponding to a fixed percentage of the bounding box area from one of the four sides
(Figure 3.5, last image).

We evaluate the representation trained with these noisy ground truth segments on object
detection using Fast R-CNN with all layers up to and including conv5 frozen (Figure 3.4). We
find that the learned representation is surprisingly resilient to both kinds of degradation. Even
with large, systematic truncation (up to 50%) or large errors in boundaries, the representation
maintains its quality.

How much data do we need? We vary the amount of data available for training, and
evaluate the resulting representation on object detection using Fast-RCNN with all conv layers
frozen. The results are shown in the third plot in Figure 3.4. We find that performance drops
significantly as the amount of training data is reduced, suggesting that good representations
will need large amounts of data.

In summary, these results suggest that training for segmentation leads to strong features
even with imprecise object masks. However, building a good representation requires significant
amounts of training data. These observations strengthen our case for learning features in an
unsupervised manner on large unlabeled datasets.

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 28

Figure 3.6: From left to right: a video frame, the output of uNLC that we use to train our ConvNet,
and the output of our ConvNet. uNLC is able to highlight the moving object even in potentially
cluttered scenes, but is often noisy, and sometimes fails (last two rows). Nevertheless, our ConvNet
can still learn from this noisy data and produce significantly better and smoother segmentations.

3.3 Learning Features by Watching Objects Move

We first describe the motion segmentation algorithm we use to segment videos, and then
discuss how we use the segmented frames to train a ConvNet.

3.3.1 Unsupervised Motion Segmentation

The key idea behind motion segmentation is that if there is a single object moving with
respect to the background through the entire video, then pixels on the object will move
differently from pixels on the background. Analyzing the optical flow should therefore provide
hints about which pixels belong to the foreground. However, since only a part of the object
might move in each frame, this information needs to be aggregated across multiple frames.

We adopt the NLC approach from Faktor and Irani [64]. While NLC is unsupervised
with respect to video segmentation, it utilizes an edge detector that was trained on labeled
edge images [195]. In order to have a purely unsupervised method, we replace the trained
edge detector in NLC with unsupervised superpixels. To avoid confusion, we call our
implementation of NLC as uNLC. First uNLC computes a per-frame saliency map based

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 29

on motion by looking for either pixels that move in a mostly static frame or, if the frame
contains significant motion, pixels that move in a direction different from the dominant one.
Per-pixel saliency is then averaged over superpixels [2]. Next, a nearest neighbor graph is
computed over the superpixels in the video using location and appearance (color histograms
and HOG [41]) as features. Finally, it uses a nearest neighbor voting scheme to propagate
the saliency across frames.

We find that uNLC often fails on videos in the wild. Sometimes this is because the
assumption of there being a single moving object in the video is not satisfied, especially in
long videos made up of multiple shots showing different objects. We use a publicly available
appearance-based shot detection method [198] (also unsupervised) to divide the video into
shots and run uNLC separately on each shot.

Videos in the wild are also often low resolution and have compression artifacts, which
can degrade the resulting segmentations. From our experiments using strong supervision, we
know our approach can be robust to such noise. Nevertheless, since a large video dataset
comprises a massive collection of frames, we simply discard badly segmented frames based on
two heuristics. Specifically, we discard: (1) frames with too many (>80%) or too few (<10%)
pixels marked as foreground; (2) frames with too many pixels (>10%) within 5% of the frame
border that are marked as foreground. In preliminary tests, we found that results were not
sensitive to the precise thresholds used.

We ran uNLC on videos from YFCC100m [243], which contains about 700,000 videos.
After pruning, we ended up with 205,000 videos. We sampled 5-10 frames per shot from each
video to create our dataset of 1.6M images, so we have slightly more frames than images in
ImageNet. However, note that our frames come from fewer videos and are therefore more
correlated than images from ImageNet. We stress that our approach in generating this dataset
is completely unsupervised, and does not use any form of supervised learning in any part of
the pipeline.

Our motion segmentation approach is far from state-of-the-art, as can be seen by the
noisy segments shown in Figure 3.6. Nevertheless, we find that our representation is quite
resilient to this noise (as shown below). As such, we did not aim to improve the particulars
of our motion segmentation.

3.3.2 Learning to Segment from Noisy Labels

As before, we feed the ConvNet cropped images, jittered in scale and translation, and ask it
to predict the motile foreground object. Since the motion segmentation output is noisy, we
do not trust the absolute foreground probabilities it provides. Instead, we convert it into a
trimap representation in which pixels with a probability <0.4 are marked as negative samples,
those with a probability >0.7 are marked as positives, and the remaining pixels are marked
as “don’t cares” (in preliminary experiments, our results were found to be robust to these
thresholds). The ConvNet is trained with a logistic loss only on the positive and negative
pixels; don’t care pixels are ignored. Similar techniques have been successfully explored
earlier in segmentation [11,123].

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 30

Figure 3.7: Examples of segmentations produced by our ConvNet on held out images. The ConvNet
is able to identify the motile object (or objects) and segment it out from a single frame. Masks are
not perfect but they do capture the general object shape.

Despite the steps we take to get good segments, the uNLC output is still noisy and often
grossly incorrect, as can be seen from the second column of Figure 3.6. However, if there
are no systematic errors, then these motion-based segments can be seen as perturbations
about a true latent segmentation. Because a ConvNet has finite capacity, it will not be able
to fit the noise perfectly and might instead learn something closer to the underlying correct
segmentation.

Some positive evidence for this can be seen in the output of the trained ConvNet on its
training images (Fig. 3.6, third column). The ConvNet correctly identifies the motile object
and its rough shape, leading to a smoother, more correct segmentation than the original
motion segmentation.

The ConvNet is also able to generalize to unseen images. Figure 3.7 shows the output of
the ConvNet on frames from the DAVIS [188], FBMS [165] and VSB [74] datasets, which were
not used in training. Again, it is able to identify the moving object and its rough shape from
just a single frame. When evaluated against human annotated segments in these datasets,
we find that the ConvNet’s output is significantly better than the uNLC segmentation output
as shown below:

Metric uNLC ConvNet (unsupervised)

Mean IoU (%) 13.1 24.8
Precision (%) 15.4 29.9
Recall (%) 45.8 59.3

These results confirm our earlier finding that the ConvNet is able to learn well even
from noisy and often incorrect ground truth. However, the goal of this appraoch is not
segmentation, but representation learning. We evaluate the learned representation in the
next section.

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 31

Full train set 150 image set
Method All >c1 >c2 >c3 >c4 >c5 All >c1 >c2 >c3 >c4 >c5 #wins

Supervised
Imagenet 56.5 57.0 57.1 57.1 55.6 52.5 17.7 19.1 19.7 20.3 20.9 19.6 NA
Sup. Masks (Ours) 51.7 51.8 52.7 52.2 52.0 47.5 13.6 13.8 15.5 17.6 18.1 15.1 NA

Unsupervised
Jigsaw‡ [164] 49.0 50.0 48.9 47.7 45.8 37.1 5.9 8.7 8.8 10.1 9.9 7.9 NA
Kmeans [126] 42.8 42.2 40.3 37.1 32.4 26.0 4.1 4.9 5.0 4.5 4.2 4.0 0
Egomotion [4] 37.4 36.9 34.4 28.9 24.1 17.1 – – – – – – 0
Inpainting [183] 39.1 36.4 34.1 29.4 24.8 13.4 – – – – – – 0
Tracking-gray [254] 43.5 44.6 44.6 44.2 41.5 35.7 3.7 5.7 7.4 9.0 9.4 9.0 0
Sounds [175] 42.9 42.3 40.6 37.1 32.0 26.5 5.4 5.1 5.0 4.8 4.0 3.5 0
BiGAN [54] 44.9 44.6 44.7 42.4 38.4 29.4 4.9 6.1 7.3 7.6 7.1 4.6 0
Colorization [276] 44.5 44.9 44.7 44.4 42.6 38.0 6.1 7.9 8.6 10.6 10.7 9.9 0
Split-Brain Auto [277] 43.8 45.6 45.6 46.1 44.1 37.6 3.5 7.9 9.6 10.2 11.0 10.0 0
Context [51] 49.9 48.8 44.4 44.3 42.1 33.2 6.7 10.2 9.2 9.5 9.4 8.7 3
Context-videos† [51] 47.8 47.9 46.6 47.2 44.3 33.4 6.6 9.2 10.7 12.2 11.2 9.0 1
Motion Masks (Ours) 48.6 48.2 48.3 47.0 45.8 40.3 10.2 10.2 11.7 12.5 13.3 11.0 9

Table 3.1: Object detection AP (%) on PASCAL VOC 2012 using Fast R-CNN with various
pretrained ConvNets. All models are trained on train and tested on val using consistent Fast
R-CNN settings. ‘–’ means training didn’t converge due to insufficient data. Our approach achieves
the best performance in the majority of settings. †Doersch et al . [51] trained their original context
model using ImageNet images. The Context-videos model is obtained by retraining their approach
on our video frames from YFCC. This experiment controls for the effect of the distribution of
training images and shows that the image domain used for training does not significantly impact
performance. ‡Noroozi et al . [164] use a more computationally intensive ConvNet architecture
(>2× longer to finetune) with a finer stride at conv1, preventing apples-to-apples comparisons.
Nevertheless, their model works significantly worse than our representation when either layers are
frozen or in case of limited data and is comparable to ours when network is finetuned with full
training data.

3.4 Evaluating the Learned Representation

3.4.1 Transfer to Object Detection

We first evaluate our representation on the task of object detection using Fast R-CNN. We
use VOC 2007 for cross-validation: we pick an appropriate learning rate for each method out
of a set of 3 values {0.001, 0.002 and 0.003}. Finally, we train on VOC 2012 train and test
on VOC 2012 val exactly once. We use multi-scale training and testing and discard difficult
objects during training.

We present results with the ConvNet parameters frozen to different extents. As discussed
in Section 3.1, a good representation should work well both as an initialization to fine-tuning
and also when most of the ConvNet is frozen.

We compare our approach to ConvNet representations produced by prior work on unsu-
pervised learning [4,51,54,164,175,183,254,276]. We use publicly available models for all
methods shown. Like our ConvNet representation, all models have the AlexNet architecture,

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 32

All >c1 >c2 >c3 >c4 >c5
Layers finetuned

20
25
30
35
40
45
50
55
60

%
 m

e
a
n
 A

P

Object detection (VOC 2012): Full train set

ImageNet [21]

Tracking-gray [43]

Colorization [48]

Context [6]

BiGAN [8]

Sounds [30]

Sup. Masks (Ours)

Motion Masks (Ours)

All >c1 >c2 >c3 >c4 >c5
Layers finetuned

0

5

10

15

20

%
 m

e
a
n
 A

P

Object detection (VOC 2012): 150 image set

(a) Performance vs. Finetuning

105 106 107

Number of frames / images

30

35

40

45

50

55

60

65

%
 m

e
a
n
 A

P

Context-videos[6]

ImageNet

Tracking-gray[43]

Sup. Masks
(Ours)

Object detection (VOC 2007)
Motion Masks (Ours)

(b) Performance vs. Data

Figure 3.8: Results on object detection using Fast R-CNN. (a) VOC 2012 object detection results
when the ConvNet representation is frozen to different extents. We compare to other unsupervised
and supervised approaches. Left: using the full training set. Right: using only 150 training images
(note the different y-axis scales). (b) Variation of representation quality (mean AP on VOC 2007
object detection with conv5 and below frozen) with number of training frames. A few other methods
are also shown. Context-videos [51] is the representation of Doersch et al . [51] retrained on our
video frames. Note that most other methods in Table 3.1 use ImageNet as their train set.

but differ in minor details such as the presence of batch normalization layers [51] or the
presence of grouped convolutions [276].

We also compare to two models trained with strong supervision. The first is trained on
ImageNet classification. The second is trained on manually-annotated segments (without
class labels) from COCO (see Section 3.2).

Results are shown in Figure 3.8a (left) and Table 3.1 (left). We find that our representation
learned from unsupervised motion segmentation performs on par or better than prior work
on unsupervised learning across all scenarios.

As we saw in Section 3.2.2, in contrast to ImageNet supervised representations, the repre-
sentations learned by previous unsupervised approaches show a large decay in performance
as more layers are frozen, owing to the representation becoming highly specific to the pretext
task. Similar to our supervised approach trained on segmentations from COCO, we find that
our unsupervised approach trained on motion segmentation also shows stable performance as
the layers are frozen. Thus, unlike prior work on unsupervised learning, the upper layers in
our representation learn high-level abstract concepts that are useful for recognition.

It is possible that some of the differences between our method and prior work are because
the training data is from different domains (YFCC100m videos vs. ImageNet images). To
control for this, we retrained the model from [51] on frames from our video dataset (see
Context-videos in Table 3.1). The two variants perform similarly: 33.4% mean AP when
trained on YFCC with conv5 and below frozen compared to 33.2% for the ImageNet version.
This confirms that the different image sources do not explain our gains.

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 33

All >c1 >c2 >c3 >c4 >c5
Layers finetuned

35

45

55

65

75

%
 m

e
a
n
 A

P

Image classification (VOC 2007)

ImageNet [21]

Tracking-gray [43]

Colorization [48]

Context [6]

BiGAN [8]

Sounds [30]

Sup. Masks (Ours)

Motion Masks (Ours)

All >c1 >c2 >c3 >c4 >c5
Layers finetuned

10

20

30

40

%
 m

e
a
n
 A

cc
u
ra

cy

Action classification (Stanford 40)

All >c1 >c2 >c3 >c4 >c5
Layers finetuned

15

25

35

45

%
 m

e
a
n
 I
o
U

Semantic Segmentation (VOC 2011)

Figure 3.9: Results on image classification on VOC 2007, single-image action classification on
Stanford 40 Actions, and semantic segmentation on VOC 2011. Results shown with ConvNet layers
frozen to different extents (note that the metrics vary for each task).

3.4.2 Low-shot Transfer

A good representation should also aid learning when training data is scarce, as we motivated
in Section 3.1. Figure 3.8a (right) and Table 3.1 (right) show how we compare to other
unsupervised and supervised approaches on the task of object detection when we have few
(150) training images. We observe that in this scenario it actually hurts to fine-tune the
entire network, and the best setup is to leave some layers frozen. Our approach provides the
best AP overall (achieved by freezing all layers up to and including conv4) among all other
representations from recent unsupervised learning methods by a large margin.

Note that in spite of its strong performance relative to prior unsupervised approaches, our
representation learned without supervision on video trails both the strongly supervised mask
and ImageNet versions by a significant margin. We discuss this in the following subsection.

3.4.3 Impact of Amount of Training Data

The quality of our representation (measured by Fast R-CNN performance on VOC 2007 with
all conv layers frozen) grows roughly logarithmically with the number of frames used. With
396K frames (50K videos), it is already better than prior state-of-the-art [51] trained on a
million ImageNet images, see Figure 3.8b. With our full dataset (1.6M frames) accuracy
increases substantially. If this logarithmic growth continues, our representation will be on par
with one trained on ImageNet if we use about 27M frames (or 3 to 5 million videos, the same
order of magnitude as the number of images in ImageNet). Note that frames from the same
video are very correlated. We expect this number could be reduced with more algorithmic
improvements.

3.4.4 Transfer to Other Tasks

As discussed in Section 3.1, a good representation should generalize across tasks. We now
show experiments for two other tasks: image classification and semantic image segmentation.

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 34

For image classification, we test on both object and action classification.

Image Classification. We experimented with image classification on PASCAL VOC 2007
(object categories) and Stanford 40 Actions [269] (action labels). To allow comparisons to
prior work [54, 276], we used random crops during training and averaged scores from 10
crops during testing (see [54] for details). We minimally tuned some hyper-parameters (we
increased the step size to allow longer training) on VOC 2007 validation, and used the same
settings for both VOC 2007 and Stanford 40 Actions. On both datasets, we trained with
different amounts of fine-tuning as before. Results are in the first two plots in Figure 3.9.

Semantic Segmentation. We use fully convolutional networks for semantic segmentation
with the default hyper-parameters [145]. All the pretrained ConvNet models are finetuned
on union of images from VOC 2011 train set and additional SBD train set released by
Hariharan et al . [90], and we test on the VOC 2011 val set after removing overlapping images
from SBD train. The last plot in Figure 3.9 shows the performance of different methods
when the number of layers being finetuned is varied.

Analysis. Like object detection, all these tasks require semantic knowledge. However,
while in object detection the ConvNet is given a tight crop around the target object, the
input in these image classification tasks is the entire image, and semantic segmentation
involves running the ConvNet in a sliding window over all locations. This difference appears
to play a major role. Our representation was trained on object crops, which is similar to the
setup for object detection, but quite different from the setups in Figure 3.9. This mismatch
may negatively impact the performance of our representation, both for the version trained
on motion segmentation and the strongly supervised version. Such a mismatch may also
explain the low performance of the representation trained by Wang et al . [254] on semantic
segmentation.

Nevertheless, when the ConvNet is progressively frozen, our approach is a strong performer.
When all layers until conv5 are frozen, our representation is better than other approaches on
action classification and second only to colorization [276] on image classification on VOC 2007
and semantic segmentation on VOC 2011. Our higher performance on action classification
might be due to the fact that our video dataset has many people doing various actions.

3.5 Object-centric Representation via Interaction

It is believed that very early on in development, infants have a notion of objects and they
expect objects to move as wholes on connected paths, which in turn guides their perception
of object boundaries [231, 232]. Motion can either be obtained via passive observation or
be caused by active interaction. While passive motion data helps in learning about objects
as entities separated by boundaries, it is the “active interaction” that makes it possible for
infants to learn about properties of individual entities and correlate these properties with

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 35

Camera Locations

(b) Overview of our pipeline
<latexit sha1_base64="3WsgYf9NNTuqBbTpC+QWQetpenY=">AAACD3icbVC7TsMwFHV4lvIKMLJYVKCyVEkXGCuxwESR6ENqo8pxnNaqY1u2U1RV/QMWfoWFAYRYWdn4G9w0A7Rc6UpH59znCSWj2njet7Oyura+sVnYKm7v7O7tuweHTS1ShUkDCyZUO0SaMMpJw1DDSFsqgpKQkVY4vJrprRFRmgp+b8aSBAnqcxpTjIyleu5ZlwvKI8INLIfn8NbWjih5gCKGdgWUVGaje27Jq3hZwGXg56AE8qj33K9uJHCa2MGYIa07vidNMEHKUMzItNhNNZEID1GfdCzkKCE6mGT/TOGpZSIYC2XTHpaxvzsmKNF6nIS2MkFmoBe1Gfmf1klNfBlMKJepIRzPF8Upg0bAmTkwoopgw8YWIKyovRXiAVIIG2th0ZrgL768DJrViu9V/LtqqXaT21EAx+AElIEPLkANXIM6aAAMHsEzeAVvzpPz4rw7H/PSFSfvOQJ/wvn8ARW1nBI=</latexit><latexit sha1_base64="3WsgYf9NNTuqBbTpC+QWQetpenY=">AAACD3icbVC7TsMwFHV4lvIKMLJYVKCyVEkXGCuxwESR6ENqo8pxnNaqY1u2U1RV/QMWfoWFAYRYWdn4G9w0A7Rc6UpH59znCSWj2njet7Oyura+sVnYKm7v7O7tuweHTS1ShUkDCyZUO0SaMMpJw1DDSFsqgpKQkVY4vJrprRFRmgp+b8aSBAnqcxpTjIyleu5ZlwvKI8INLIfn8NbWjih5gCKGdgWUVGaje27Jq3hZwGXg56AE8qj33K9uJHCa2MGYIa07vidNMEHKUMzItNhNNZEID1GfdCzkKCE6mGT/TOGpZSIYC2XTHpaxvzsmKNF6nIS2MkFmoBe1Gfmf1klNfBlMKJepIRzPF8Upg0bAmTkwoopgw8YWIKyovRXiAVIIG2th0ZrgL768DJrViu9V/LtqqXaT21EAx+AElIEPLkANXIM6aAAMHsEzeAVvzpPz4rw7H/PSFSfvOQJ/wvn8ARW1nBI=</latexit><latexit sha1_base64="3WsgYf9NNTuqBbTpC+QWQetpenY=">AAACD3icbVC7TsMwFHV4lvIKMLJYVKCyVEkXGCuxwESR6ENqo8pxnNaqY1u2U1RV/QMWfoWFAYRYWdn4G9w0A7Rc6UpH59znCSWj2njet7Oyura+sVnYKm7v7O7tuweHTS1ShUkDCyZUO0SaMMpJw1DDSFsqgpKQkVY4vJrprRFRmgp+b8aSBAnqcxpTjIyleu5ZlwvKI8INLIfn8NbWjih5gCKGdgWUVGaje27Jq3hZwGXg56AE8qj33K9uJHCa2MGYIa07vidNMEHKUMzItNhNNZEID1GfdCzkKCE6mGT/TOGpZSIYC2XTHpaxvzsmKNF6nIS2MkFmoBe1Gfmf1klNfBlMKJepIRzPF8Upg0bAmTkwoopgw8YWIKyovRXiAVIIG2th0ZrgL768DJrViu9V/LtqqXaT21EAx+AElIEPLkANXIM6aAAMHsEzeAVvzpPz4rw7H/PSFSfvOQJ/wvn8ARW1nBI=</latexit><latexit sha1_base64="3WsgYf9NNTuqBbTpC+QWQetpenY=">AAACD3icbVC7TsMwFHV4lvIKMLJYVKCyVEkXGCuxwESR6ENqo8pxnNaqY1u2U1RV/QMWfoWFAYRYWdn4G9w0A7Rc6UpH59znCSWj2njet7Oyura+sVnYKm7v7O7tuweHTS1ShUkDCyZUO0SaMMpJw1DDSFsqgpKQkVY4vJrprRFRmgp+b8aSBAnqcxpTjIyleu5ZlwvKI8INLIfn8NbWjih5gCKGdgWUVGaje27Jq3hZwGXg56AE8qj33K9uJHCa2MGYIa07vidNMEHKUMzItNhNNZEID1GfdCzkKCE6mGT/TOGpZSIYC2XTHpaxvzsmKNF6nIS2MkFmoBe1Gfmf1klNfBlMKJepIRzPF8Upg0bAmTkwoopgw8YWIKyovRXiAVIIG2th0ZrgL768DJrViu9V/LtqqXaT21EAx+AElIEPLkANXIM6aAAMHsEzeAVvzpPz4rw7H/PSFSfvOQJ/wvn8ARW1nBI=</latexit>

(c) Examples of generated psuedo-masks
<latexit sha1_base64="Mnirx/0aVQTd1LsAER7lCSY5mNM=">AAACGXicbVDJSgNBEO1xN25Rj14ag6AHw4wXPQoi6C2CWSAJoaanJjbpZejuEUPwN7z4K148KOJRT/6NneWgxgcFj/eqqKoXZ4JbF4Zfwczs3PzC4tJyYWV1bX2juLlVszo3DKtMC20aMVgUXGHVcSewkRkEGQusx72zoV+/RWO5Vteun2FbQlfxlDNwXuoUw5bSXCWoHN1nB/T8DmQm0FKd0i4qNOAwoZnNMdGHEmzPdoqlsByOQKdJNCElMkGlU/xoJZrl0q9gAqxtRmHm2gMwjjOB94VWbjED1oMuNj1VING2B6PP7umeVxKaauPLnzhSf04MQFrbl7HvlOBu7F9vKP7nNXOXnrQHXGW5Q8XGi9JcUKfpMCaacIPMib4nwAz3t1J2AwaY82EWfAjR35enSe2oHIXl6OqodHo5iWOJ7JBdsk8ickxOyQWpkCph5IE8kRfyGjwGz8Fb8D5unQkmM9vkF4LPb9/SoD4=</latexit><latexit sha1_base64="Mnirx/0aVQTd1LsAER7lCSY5mNM=">AAACGXicbVDJSgNBEO1xN25Rj14ag6AHw4wXPQoi6C2CWSAJoaanJjbpZejuEUPwN7z4K148KOJRT/6NneWgxgcFj/eqqKoXZ4JbF4Zfwczs3PzC4tJyYWV1bX2juLlVszo3DKtMC20aMVgUXGHVcSewkRkEGQusx72zoV+/RWO5Vteun2FbQlfxlDNwXuoUw5bSXCWoHN1nB/T8DmQm0FKd0i4qNOAwoZnNMdGHEmzPdoqlsByOQKdJNCElMkGlU/xoJZrl0q9gAqxtRmHm2gMwjjOB94VWbjED1oMuNj1VING2B6PP7umeVxKaauPLnzhSf04MQFrbl7HvlOBu7F9vKP7nNXOXnrQHXGW5Q8XGi9JcUKfpMCaacIPMib4nwAz3t1J2AwaY82EWfAjR35enSe2oHIXl6OqodHo5iWOJ7JBdsk8ickxOyQWpkCph5IE8kRfyGjwGz8Fb8D5unQkmM9vkF4LPb9/SoD4=</latexit><latexit sha1_base64="Mnirx/0aVQTd1LsAER7lCSY5mNM=">AAACGXicbVDJSgNBEO1xN25Rj14ag6AHw4wXPQoi6C2CWSAJoaanJjbpZejuEUPwN7z4K148KOJRT/6NneWgxgcFj/eqqKoXZ4JbF4Zfwczs3PzC4tJyYWV1bX2juLlVszo3DKtMC20aMVgUXGHVcSewkRkEGQusx72zoV+/RWO5Vteun2FbQlfxlDNwXuoUw5bSXCWoHN1nB/T8DmQm0FKd0i4qNOAwoZnNMdGHEmzPdoqlsByOQKdJNCElMkGlU/xoJZrl0q9gAqxtRmHm2gMwjjOB94VWbjED1oMuNj1VING2B6PP7umeVxKaauPLnzhSf04MQFrbl7HvlOBu7F9vKP7nNXOXnrQHXGW5Q8XGi9JcUKfpMCaacIPMib4nwAz3t1J2AwaY82EWfAjR35enSe2oHIXl6OqodHo5iWOJ7JBdsk8ickxOyQWpkCph5IE8kRfyGjwGz8Fb8D5unQkmM9vkF4LPb9/SoD4=</latexit><latexit sha1_base64="Mnirx/0aVQTd1LsAER7lCSY5mNM=">AAACGXicbVDJSgNBEO1xN25Rj14ag6AHw4wXPQoi6C2CWSAJoaanJjbpZejuEUPwN7z4K148KOJRT/6NneWgxgcFj/eqqKoXZ4JbF4Zfwczs3PzC4tJyYWV1bX2juLlVszo3DKtMC20aMVgUXGHVcSewkRkEGQusx72zoV+/RWO5Vteun2FbQlfxlDNwXuoUw5bSXCWoHN1nB/T8DmQm0FKd0i4qNOAwoZnNMdGHEmzPdoqlsByOQKdJNCElMkGlU/xoJZrl0q9gAqxtRmHm2gMwjjOB94VWbjED1oMuNj1VING2B6PP7umeVxKaauPLnzhSf04MQFrbl7HvlOBu7F9vKP7nNXOXnrQHXGW5Q8XGi9JcUKfpMCaacIPMib4nwAz3t1J2AwaY82EWfAjR35enSe2oHIXl6OqodHo5iWOJ7JBdsk8ickxOyQWpkCph5IE8kRfyGjwGz8Fb8D5unQkmM9vkF4LPb9/SoD4=</latexit>

(a) Our robotic system
<latexit sha1_base64="iHXcPJ9HNiCX0z4LiKnmPu2Nm+k=">AAACCXicbVC7TsMwFHXKq5RXgJHFokIqS5V0gbESC0wUiT6kNqocx2mt+hHZDlJUdWXhV1gYQIiVP2Djb3DaDNByJEtH59yH7wkTRrXxvG+ntLa+sblV3q7s7O7tH7iHRx0tU4VJG0smVS9EmjAqSNtQw0gvUQTxkJFuOLnK/e4DUZpKcW+yhAQcjQSNKUbGSkMXDoSkIiLCwBo6h7epgkqG0lAMdaYN4UO36tW9OeAq8QtSBQVaQ/drEEmccjsSM6R13/cSE0yRsjMZmVUGqSYJwhM0In1LBeJEB9P5JTN4ZpUIxlLZZ780V393TBHXOuOhreTIjPWyl4v/ef3UxJfBlIokNUTgxaI4ZdBImMcCI6oINiyzBGFF8/vxGCmEjQ2vYkPwl09eJZ1G3ffq/l2j2rwp4iiDE3AKasAHF6AJrkELtAEGj+AZvII358l5cd6dj0VpySl6jsEfOJ8/n5GZqg==</latexit><latexit sha1_base64="iHXcPJ9HNiCX0z4LiKnmPu2Nm+k=">AAACCXicbVC7TsMwFHXKq5RXgJHFokIqS5V0gbESC0wUiT6kNqocx2mt+hHZDlJUdWXhV1gYQIiVP2Djb3DaDNByJEtH59yH7wkTRrXxvG+ntLa+sblV3q7s7O7tH7iHRx0tU4VJG0smVS9EmjAqSNtQw0gvUQTxkJFuOLnK/e4DUZpKcW+yhAQcjQSNKUbGSkMXDoSkIiLCwBo6h7epgkqG0lAMdaYN4UO36tW9OeAq8QtSBQVaQ/drEEmccjsSM6R13/cSE0yRsjMZmVUGqSYJwhM0In1LBeJEB9P5JTN4ZpUIxlLZZ780V393TBHXOuOhreTIjPWyl4v/ef3UxJfBlIokNUTgxaI4ZdBImMcCI6oINiyzBGFF8/vxGCmEjQ2vYkPwl09eJZ1G3ffq/l2j2rwp4iiDE3AKasAHF6AJrkELtAEGj+AZvII358l5cd6dj0VpySl6jsEfOJ8/n5GZqg==</latexit><latexit sha1_base64="iHXcPJ9HNiCX0z4LiKnmPu2Nm+k=">AAACCXicbVC7TsMwFHXKq5RXgJHFokIqS5V0gbESC0wUiT6kNqocx2mt+hHZDlJUdWXhV1gYQIiVP2Djb3DaDNByJEtH59yH7wkTRrXxvG+ntLa+sblV3q7s7O7tH7iHRx0tU4VJG0smVS9EmjAqSNtQw0gvUQTxkJFuOLnK/e4DUZpKcW+yhAQcjQSNKUbGSkMXDoSkIiLCwBo6h7epgkqG0lAMdaYN4UO36tW9OeAq8QtSBQVaQ/drEEmccjsSM6R13/cSE0yRsjMZmVUGqSYJwhM0In1LBeJEB9P5JTN4ZpUIxlLZZ780V393TBHXOuOhreTIjPWyl4v/ef3UxJfBlIokNUTgxaI4ZdBImMcCI6oINiyzBGFF8/vxGCmEjQ2vYkPwl09eJZ1G3ffq/l2j2rwp4iiDE3AKasAHF6AJrkELtAEGj+AZvII358l5cd6dj0VpySl6jsEfOJ8/n5GZqg==</latexit><latexit sha1_base64="iHXcPJ9HNiCX0z4LiKnmPu2Nm+k=">AAACCXicbVC7TsMwFHXKq5RXgJHFokIqS5V0gbESC0wUiT6kNqocx2mt+hHZDlJUdWXhV1gYQIiVP2Djb3DaDNByJEtH59yH7wkTRrXxvG+ntLa+sblV3q7s7O7tH7iHRx0tU4VJG0smVS9EmjAqSNtQw0gvUQTxkJFuOLnK/e4DUZpKcW+yhAQcjQSNKUbGSkMXDoSkIiLCwBo6h7epgkqG0lAMdaYN4UO36tW9OeAq8QtSBQVaQ/drEEmccjsSM6R13/cSE0yRsjMZmVUGqSYJwhM0In1LBeJEB9P5JTN4ZpUIxlLZZ780V393TBHXOuOhreTIjPWyl4v/ef3UxJfBlIokNUTgxaI4ZdBImMcCI6oINiyzBGFF8/vxGCmEjQ2vYkPwl09eJZ1G3ffq/l2j2rwp4iiDE3AKasAHF6AJrkELtAEGj+AZvII358l5cd6dj0VpySl6jsEfOJ8/n5GZqg==</latexit>

Initial
image

<latexit sha1_base64="QtAqRpU2XchzOIETqCeQdsTbE10=">AAACD3icbVC7TsMwFHXKq5RXgJHFogKxUCVdYKwEA2xFog+piSrHcahVPyLbqVRF/QMWfoWFAYRYWdn4G9w2A7QcydLROffhe6KUUW0879sprayurW+UNytb2zu7e+7+QVvLTGHSwpJJ1Y2QJowK0jLUMNJNFUE8YqQTDa+mfmdElKZS3JtxSkKOHgRNKEbGSn33NBCSipgIA28FNRSxYKRThEl+7nM+CYIKtR2k71a9mjcDXCZ+QaqgQLPvfgWxxBm3gzFDWvd8LzVhjpShmJFJJcg0sWuGdnbPUoE40WE+u2cCT6wSw0Qq++zHZurvjhxxrcc8spUcmYFe9Kbif14vM8llmFORZoYIPF+UZAwaCafhwJgqgg0bW4KwsnFgiAdIIWxshBUbgr948jJp12u+V/Pv6tXGdRFHGRyBY3AGfHABGuAGNEELYPAInsEreHOenBfn3fmYl5acoucQ/IHz+QMFw5yf</latexit><latexit sha1_base64="QtAqRpU2XchzOIETqCeQdsTbE10=">AAACD3icbVC7TsMwFHXKq5RXgJHFogKxUCVdYKwEA2xFog+piSrHcahVPyLbqVRF/QMWfoWFAYRYWdn4G9w2A7QcydLROffhe6KUUW0879sprayurW+UNytb2zu7e+7+QVvLTGHSwpJJ1Y2QJowK0jLUMNJNFUE8YqQTDa+mfmdElKZS3JtxSkKOHgRNKEbGSn33NBCSipgIA28FNRSxYKRThEl+7nM+CYIKtR2k71a9mjcDXCZ+QaqgQLPvfgWxxBm3gzFDWvd8LzVhjpShmJFJJcg0sWuGdnbPUoE40WE+u2cCT6wSw0Qq++zHZurvjhxxrcc8spUcmYFe9Kbif14vM8llmFORZoYIPF+UZAwaCafhwJgqgg0bW4KwsnFgiAdIIWxshBUbgr948jJp12u+V/Pv6tXGdRFHGRyBY3AGfHABGuAGNEELYPAInsEreHOenBfn3fmYl5acoucQ/IHz+QMFw5yf</latexit><latexit sha1_base64="QtAqRpU2XchzOIETqCeQdsTbE10=">AAACD3icbVC7TsMwFHXKq5RXgJHFogKxUCVdYKwEA2xFog+piSrHcahVPyLbqVRF/QMWfoWFAYRYWdn4G9w2A7QcydLROffhe6KUUW0879sprayurW+UNytb2zu7e+7+QVvLTGHSwpJJ1Y2QJowK0jLUMNJNFUE8YqQTDa+mfmdElKZS3JtxSkKOHgRNKEbGSn33NBCSipgIA28FNRSxYKRThEl+7nM+CYIKtR2k71a9mjcDXCZ+QaqgQLPvfgWxxBm3gzFDWvd8LzVhjpShmJFJJcg0sWuGdnbPUoE40WE+u2cCT6wSw0Qq++zHZurvjhxxrcc8spUcmYFe9Kbif14vM8llmFORZoYIPF+UZAwaCafhwJgqgg0bW4KwsnFgiAdIIWxshBUbgr948jJp12u+V/Pv6tXGdRFHGRyBY3AGfHABGuAGNEELYPAInsEreHOenBfn3fmYl5acoucQ/IHz+QMFw5yf</latexit><latexit sha1_base64="QtAqRpU2XchzOIETqCeQdsTbE10=">AAACD3icbVC7TsMwFHXKq5RXgJHFogKxUCVdYKwEA2xFog+piSrHcahVPyLbqVRF/QMWfoWFAYRYWdn4G9w2A7QcydLROffhe6KUUW0879sprayurW+UNytb2zu7e+7+QVvLTGHSwpJJ1Y2QJowK0jLUMNJNFUE8YqQTDa+mfmdElKZS3JtxSkKOHgRNKEbGSn33NBCSipgIA28FNRSxYKRThEl+7nM+CYIKtR2k71a9mjcDXCZ+QaqgQLPvfgWxxBm3gzFDWvd8LzVhjpShmJFJJcg0sWuGdnbPUoE40WE+u2cCT6wSw0Qq++zHZurvjhxxrcc8spUcmYFe9Kbif14vM8llmFORZoYIPF+UZAwaCafhwJgqgg0bW4KwsnFgiAdIIWxshBUbgr948jJp12u+V/Pv6tXGdRFHGRyBY3AGfHABGuAGNEELYPAInsEreHOenBfn3fmYl5acoucQ/IHz+QMFw5yf</latexit>

Intermediate
segmentation

<latexit sha1_base64="Q3/cFhw0YS4u4/BKQVwgpvVetk8=">AAACG3icbVDLSsNAFJ3UV42vqks3wSK4sSTd6LKgC91VsA9oQplMbtuhM5MwMymU0P9w46+4caGIK8GFf+OkzUJbDwwczrl37r0nTBhV2nW/rdLa+sbmVnnb3tnd2z+oHB61VZxKAi0Ss1h2Q6yAUQEtTTWDbiIB85BBJxxf535nAlLRWDzoaQIBx0NBB5RgbaR+pe6LmIoIhHbuhAbJIaJYgz9RCSaQXXicz3zfVjDkpqZoqro1dw5nlXgFqaICzX7l049ikuYfEIaV6nluooMMS00Jg5ntpwrMtDEeQs9QgTmoIJvfNnPOjBI5g1iaZ5acq787MsyVmvLQVHKsR2rZy8X/vF6qB1dBRkWSahBkMWiQMkfHTh6UE1EJRLOpIZhIanZ1yAhLTExKyjYheMsnr5J2vea5Ne++Xm3cFHGU0Qk6RefIQ5eogW5RE7UQQY/oGb2iN+vJerHerY9Fackqeo7RH1hfP1MTojM=</latexit><latexit sha1_base64="Q3/cFhw0YS4u4/BKQVwgpvVetk8=">AAACG3icbVDLSsNAFJ3UV42vqks3wSK4sSTd6LKgC91VsA9oQplMbtuhM5MwMymU0P9w46+4caGIK8GFf+OkzUJbDwwczrl37r0nTBhV2nW/rdLa+sbmVnnb3tnd2z+oHB61VZxKAi0Ss1h2Q6yAUQEtTTWDbiIB85BBJxxf535nAlLRWDzoaQIBx0NBB5RgbaR+pe6LmIoIhHbuhAbJIaJYgz9RCSaQXXicz3zfVjDkpqZoqro1dw5nlXgFqaICzX7l049ikuYfEIaV6nluooMMS00Jg5ntpwrMtDEeQs9QgTmoIJvfNnPOjBI5g1iaZ5acq787MsyVmvLQVHKsR2rZy8X/vF6qB1dBRkWSahBkMWiQMkfHTh6UE1EJRLOpIZhIanZ1yAhLTExKyjYheMsnr5J2vea5Ne++Xm3cFHGU0Qk6RefIQ5eogW5RE7UQQY/oGb2iN+vJerHerY9Fackqeo7RH1hfP1MTojM=</latexit><latexit sha1_base64="Q3/cFhw0YS4u4/BKQVwgpvVetk8=">AAACG3icbVDLSsNAFJ3UV42vqks3wSK4sSTd6LKgC91VsA9oQplMbtuhM5MwMymU0P9w46+4caGIK8GFf+OkzUJbDwwczrl37r0nTBhV2nW/rdLa+sbmVnnb3tnd2z+oHB61VZxKAi0Ss1h2Q6yAUQEtTTWDbiIB85BBJxxf535nAlLRWDzoaQIBx0NBB5RgbaR+pe6LmIoIhHbuhAbJIaJYgz9RCSaQXXicz3zfVjDkpqZoqro1dw5nlXgFqaICzX7l049ikuYfEIaV6nluooMMS00Jg5ntpwrMtDEeQs9QgTmoIJvfNnPOjBI5g1iaZ5acq787MsyVmvLQVHKsR2rZy8X/vF6qB1dBRkWSahBkMWiQMkfHTh6UE1EJRLOpIZhIanZ1yAhLTExKyjYheMsnr5J2vea5Ne++Xm3cFHGU0Qk6RefIQ5eogW5RE7UQQY/oGb2iN+vJerHerY9Fackqeo7RH1hfP1MTojM=</latexit><latexit sha1_base64="Q3/cFhw0YS4u4/BKQVwgpvVetk8=">AAACG3icbVDLSsNAFJ3UV42vqks3wSK4sSTd6LKgC91VsA9oQplMbtuhM5MwMymU0P9w46+4caGIK8GFf+OkzUJbDwwczrl37r0nTBhV2nW/rdLa+sbmVnnb3tnd2z+oHB61VZxKAi0Ss1h2Q6yAUQEtTTWDbiIB85BBJxxf535nAlLRWDzoaQIBx0NBB5RgbaR+pe6LmIoIhHbuhAbJIaJYgz9RCSaQXXicz3zfVjDkpqZoqro1dw5nlXgFqaICzX7l049ikuYfEIaV6nluooMMS00Jg5ntpwrMtDEeQs9QgTmoIJvfNnPOjBI5g1iaZ5acq787MsyVmvLQVHKsR2rZy8X/vF6qB1dBRkWSahBkMWiQMkfHTh6UE1EJRLOpIZhIanZ1yAhLTExKyjYheMsnr5J2vea5Ne++Xm3cFHGU0Qk6RefIQ5eogW5RE7UQQY/oGb2iN+vJerHerY9Fackqeo7RH1hfP1MTojM=</latexit>

Grasp at
location<latexit sha1_base64="VWyUVZYkTBw5YJjz8UayttGAHHA=">AAACE3icbVDLSgMxFM3UVx1fVZdugkUQwTLTjS4LCrqsYB/QGUomk7aheQxJplCG/oMbf8WNC0XcunHn35i2I2jrgcDhnHtz7z1Rwqg2nvflFFZW19Y3ipvu1vbO7l5p/6CpZaowaWDJpGpHSBNGBWkYahhpJ4ogHjHSioZXU781IkpTKe7NOCEhR31BexQjY6Vu6SwQkoqYCANvFNIJRCYY6QRhkp37nE+CwGXyp7jsVbwZ4DLxc1IGOerd0mcQS5xy+zlmSOuO7yUmzJAyFDMycYNUEztpiPqkY6lAnOgwm900gSdWiWFPKvvscjP1d0eGuNZjHtlKjsxAL3pT8T+vk5reZZhRkaSGCDwf1EsZNBJOA4IxVQQbNrYEYUXtrhAPkELY2BhdG4K/ePIyaVYrvlfx76rl2nUeRxEcgWNwCnxwAWrgFtRBA2DwAJ7AC3h1Hp1n5815n5cWnLznEPyB8/ENFNyeRQ==</latexit><latexit sha1_base64="VWyUVZYkTBw5YJjz8UayttGAHHA=">AAACE3icbVDLSgMxFM3UVx1fVZdugkUQwTLTjS4LCrqsYB/QGUomk7aheQxJplCG/oMbf8WNC0XcunHn35i2I2jrgcDhnHtz7z1Rwqg2nvflFFZW19Y3ipvu1vbO7l5p/6CpZaowaWDJpGpHSBNGBWkYahhpJ4ogHjHSioZXU781IkpTKe7NOCEhR31BexQjY6Vu6SwQkoqYCANvFNIJRCYY6QRhkp37nE+CwGXyp7jsVbwZ4DLxc1IGOerd0mcQS5xy+zlmSOuO7yUmzJAyFDMycYNUEztpiPqkY6lAnOgwm900gSdWiWFPKvvscjP1d0eGuNZjHtlKjsxAL3pT8T+vk5reZZhRkaSGCDwf1EsZNBJOA4IxVQQbNrYEYUXtrhAPkELY2BhdG4K/ePIyaVYrvlfx76rl2nUeRxEcgWNwCnxwAWrgFtRBA2DwAJ7AC3h1Hp1n5815n5cWnLznEPyB8/ENFNyeRQ==</latexit><latexit sha1_base64="VWyUVZYkTBw5YJjz8UayttGAHHA=">AAACE3icbVDLSgMxFM3UVx1fVZdugkUQwTLTjS4LCrqsYB/QGUomk7aheQxJplCG/oMbf8WNC0XcunHn35i2I2jrgcDhnHtz7z1Rwqg2nvflFFZW19Y3ipvu1vbO7l5p/6CpZaowaWDJpGpHSBNGBWkYahhpJ4ogHjHSioZXU781IkpTKe7NOCEhR31BexQjY6Vu6SwQkoqYCANvFNIJRCYY6QRhkp37nE+CwGXyp7jsVbwZ4DLxc1IGOerd0mcQS5xy+zlmSOuO7yUmzJAyFDMycYNUEztpiPqkY6lAnOgwm900gSdWiWFPKvvscjP1d0eGuNZjHtlKjsxAL3pT8T+vk5reZZhRkaSGCDwf1EsZNBJOA4IxVQQbNrYEYUXtrhAPkELY2BhdG4K/ePIyaVYrvlfx76rl2nUeRxEcgWNwCnxwAWrgFtRBA2DwAJ7AC3h1Hp1n5815n5cWnLznEPyB8/ENFNyeRQ==</latexit><latexit sha1_base64="VWyUVZYkTBw5YJjz8UayttGAHHA=">AAACE3icbVDLSgMxFM3UVx1fVZdugkUQwTLTjS4LCrqsYB/QGUomk7aheQxJplCG/oMbf8WNC0XcunHn35i2I2jrgcDhnHtz7z1Rwqg2nvflFFZW19Y3ipvu1vbO7l5p/6CpZaowaWDJpGpHSBNGBWkYahhpJ4ogHjHSioZXU781IkpTKe7NOCEhR31BexQjY6Vu6SwQkoqYCANvFNIJRCYY6QRhkp37nE+CwGXyp7jsVbwZ4DLxc1IGOerd0mcQS5xy+zlmSOuO7yUmzJAyFDMycYNUEztpiPqkY6lAnOgwm900gSdWiWFPKvvscjP1d0eGuNZjHtlKjsxAL3pT8T+vk5reZZhRkaSGCDwf1EsZNBJOA4IxVQQbNrYEYUXtrhAPkELY2BhdG4K/ePIyaVYrvlfx76rl2nUeRxEcgWNwCnxwAWrgFtRBA2DwAJ7AC3h1Hp1n5815n5cWnLznEPyB8/ENFNyeRQ==</latexit>

Final
image

<latexit sha1_base64="XJyhs6dgfwqh0VPxUU27tgA56mo=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwMeym0TKgiGUE84DsEmZnZ82QeSwzs4Gw5Ads/BUbC0Vs7e38GyfJFpp44cLhnPs8UcqoNp737ZRWVtfWN8qbla3tnd09d/+grWWmMGlhyaTqRkgTRgVpGWoY6aaKIB4x0omGV1O9MyJKUynuzTglIUcPgiYUI2OpvnsSCElFTISBN1QgFox0ijDJz33OJ0FQobae9N2qV/NmAZeBX4AqKKLZd7+CWOKM27GYIa17vpeaMEfKUMzIpBJkmtg1Qzu7Z6FAnOgwn30zgaeWiWEilU171oz93ZEjrvWYR7aSIzPQi9qU/E/rZSa5DHMq0swQgeeLkoxBI+HUGhhTRbBhYwsQVtTeCvEAKYSNNbBiTfAXX14G7XrN92r+Xb3auC7sKIMjcAzOgA8uQAPcgiZoAQwewTN4BW/Ok/PivDsf89KSU/Qcgj/hfP4ASPybqw==</latexit><latexit sha1_base64="XJyhs6dgfwqh0VPxUU27tgA56mo=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwMeym0TKgiGUE84DsEmZnZ82QeSwzs4Gw5Ads/BUbC0Vs7e38GyfJFpp44cLhnPs8UcqoNp737ZRWVtfWN8qbla3tnd09d/+grWWmMGlhyaTqRkgTRgVpGWoY6aaKIB4x0omGV1O9MyJKUynuzTglIUcPgiYUI2OpvnsSCElFTISBN1QgFox0ijDJz33OJ0FQobae9N2qV/NmAZeBX4AqKKLZd7+CWOKM27GYIa17vpeaMEfKUMzIpBJkmtg1Qzu7Z6FAnOgwn30zgaeWiWEilU171oz93ZEjrvWYR7aSIzPQi9qU/E/rZSa5DHMq0swQgeeLkoxBI+HUGhhTRbBhYwsQVtTeCvEAKYSNNbBiTfAXX14G7XrN92r+Xb3auC7sKIMjcAzOgA8uQAPcgiZoAQwewTN4BW/Ok/PivDsf89KSU/Qcgj/hfP4ASPybqw==</latexit><latexit sha1_base64="XJyhs6dgfwqh0VPxUU27tgA56mo=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwMeym0TKgiGUE84DsEmZnZ82QeSwzs4Gw5Ads/BUbC0Vs7e38GyfJFpp44cLhnPs8UcqoNp737ZRWVtfWN8qbla3tnd09d/+grWWmMGlhyaTqRkgTRgVpGWoY6aaKIB4x0omGV1O9MyJKUynuzTglIUcPgiYUI2OpvnsSCElFTISBN1QgFox0ijDJz33OJ0FQobae9N2qV/NmAZeBX4AqKKLZd7+CWOKM27GYIa17vpeaMEfKUMzIpBJkmtg1Qzu7Z6FAnOgwn30zgaeWiWEilU171oz93ZEjrvWYR7aSIzPQi9qU/E/rZSa5DHMq0swQgeeLkoxBI+HUGhhTRbBhYwsQVtTeCvEAKYSNNbBiTfAXX14G7XrN92r+Xb3auC7sKIMjcAzOgA8uQAPcgiZoAQwewTN4BW/Ok/PivDsf89KSU/Qcgj/hfP4ASPybqw==</latexit><latexit sha1_base64="XJyhs6dgfwqh0VPxUU27tgA56mo=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwMeym0TKgiGUE84DsEmZnZ82QeSwzs4Gw5Ads/BUbC0Vs7e38GyfJFpp44cLhnPs8UcqoNp737ZRWVtfWN8qbla3tnd09d/+grWWmMGlhyaTqRkgTRgVpGWoY6aaKIB4x0omGV1O9MyJKUynuzTglIUcPgiYUI2OpvnsSCElFTISBN1QgFox0ijDJz33OJ0FQobae9N2qV/NmAZeBX4AqKKLZd7+CWOKM27GYIa17vpeaMEfKUMzIpBJkmtg1Qzu7Z6FAnOgwn30zgaeWiWEilU171oz93ZEjrvWYR7aSIzPQi9qU/E/rZSa5DHMq0swQgeeLkoxBI+HUGhhTRbBhYwsQVtTeCvEAKYSNNbBiTfAXX14G7XrN92r+Xb3auC7sKIMjcAzOgA8uQAPcgiZoAQwewTN4BW/Ok/PivDsf89KSU/Qcgj/hfP4ASPybqw==</latexit>

Frame
di↵erence<latexit sha1_base64="G9Kx6T5pZlHB4mJvXb9Es9w+XV4=">AAACEnicbVDLSsNAFJ34rPUVdekmWARdWJJudFlQxGUF+4AmlMnkph06Mwkzk0IJ/QY3/oobF4q4deXOv3HaZqGtFwYO5947554Tpowq7brf1srq2vrGZmmrvL2zu7dvHxy2VJJJAk2SsER2QqyAUQFNTTWDTioB85BBOxxeT/vtEUhFE/GgxykEHPcFjSnB2lA9+9wXCRURCO3cSszBH6kUE8gvPM4nvl+OaByDBEGgZ1fcqjsrZxl4Baigoho9+8uPEpJx8zdhWKmu56Y6yLHUlDCYlP1MgdEa4j50DRRGXQX5zNLEOTVM5MSJNM/cNmN/b+SYKzXmoZnkWA/UYm9K/tfrZjq+CnIq0kwbV3OhOGOOTpxpPk5EJRDNxgZgIqm51SEDLDHRJsWyCcFbtLwMWrWq51a9+1qlflPEUULH6ASdIQ9dojq6Qw3URAQ9omf0it6sJ+vFerc+5qMrVrFzhP6U9fkDYYKd5g==</latexit><latexit sha1_base64="G9Kx6T5pZlHB4mJvXb9Es9w+XV4=">AAACEnicbVDLSsNAFJ34rPUVdekmWARdWJJudFlQxGUF+4AmlMnkph06Mwkzk0IJ/QY3/oobF4q4deXOv3HaZqGtFwYO5947554Tpowq7brf1srq2vrGZmmrvL2zu7dvHxy2VJJJAk2SsER2QqyAUQFNTTWDTioB85BBOxxeT/vtEUhFE/GgxykEHPcFjSnB2lA9+9wXCRURCO3cSszBH6kUE8gvPM4nvl+OaByDBEGgZ1fcqjsrZxl4Baigoho9+8uPEpJx8zdhWKmu56Y6yLHUlDCYlP1MgdEa4j50DRRGXQX5zNLEOTVM5MSJNM/cNmN/b+SYKzXmoZnkWA/UYm9K/tfrZjq+CnIq0kwbV3OhOGOOTpxpPk5EJRDNxgZgIqm51SEDLDHRJsWyCcFbtLwMWrWq51a9+1qlflPEUULH6ASdIQ9dojq6Qw3URAQ9omf0it6sJ+vFerc+5qMrVrFzhP6U9fkDYYKd5g==</latexit><latexit sha1_base64="G9Kx6T5pZlHB4mJvXb9Es9w+XV4=">AAACEnicbVDLSsNAFJ34rPUVdekmWARdWJJudFlQxGUF+4AmlMnkph06Mwkzk0IJ/QY3/oobF4q4deXOv3HaZqGtFwYO5947554Tpowq7brf1srq2vrGZmmrvL2zu7dvHxy2VJJJAk2SsER2QqyAUQFNTTWDTioB85BBOxxeT/vtEUhFE/GgxykEHPcFjSnB2lA9+9wXCRURCO3cSszBH6kUE8gvPM4nvl+OaByDBEGgZ1fcqjsrZxl4Baigoho9+8uPEpJx8zdhWKmu56Y6yLHUlDCYlP1MgdEa4j50DRRGXQX5zNLEOTVM5MSJNM/cNmN/b+SYKzXmoZnkWA/UYm9K/tfrZjq+CnIq0kwbV3OhOGOOTpxpPk5EJRDNxgZgIqm51SEDLDHRJsWyCcFbtLwMWrWq51a9+1qlflPEUULH6ASdIQ9dojq6Qw3URAQ9omf0it6sJ+vFerc+5qMrVrFzhP6U9fkDYYKd5g==</latexit><latexit sha1_base64="G9Kx6T5pZlHB4mJvXb9Es9w+XV4=">AAACEnicbVDLSsNAFJ34rPUVdekmWARdWJJudFlQxGUF+4AmlMnkph06Mwkzk0IJ/QY3/oobF4q4deXOv3HaZqGtFwYO5947554Tpowq7brf1srq2vrGZmmrvL2zu7dvHxy2VJJJAk2SsER2QqyAUQFNTTWDTioB85BBOxxeT/vtEUhFE/GgxykEHPcFjSnB2lA9+9wXCRURCO3cSszBH6kUE8gvPM4nvl+OaByDBEGgZ1fcqjsrZxl4Baigoho9+8uPEpJx8zdhWKmu56Y6yLHUlDCYlP1MgdEa4j50DRRGXQX5zNLEOTVM5MSJNM/cNmN/b+SYKzXmoZnkWA/UYm9K/tfrZjq+CnIq0kwbV3OhOGOOTpxpPk5EJRDNxgZgIqm51SEDLDHRJsWyCcFbtLwMWrWq51a9+1qlflPEUULH6ASdIQ9dojq6Qw3URAQ9omf0it6sJ+vFerc+5qMrVrFzhP6U9fkDYYKd5g==</latexit>

Figure 3.10: Overview of experimental setup and method: (a) Sawyer robot’s interactions with
objects placed on an arena are recorded by four cameras. The arena is designed to allow easy
modification of background texture. (b) From its visual observation (initial image) the robot
hypothesizes what group of pixels constitute an object (intermediate segmentation hypothesis).
It randomly chooses to interact with one such group by attempting to grasp and place it to a
different location on the arena. If the grasped group indeed corresponds to an object, the mask of
the object can be obtained by computing the difference image between the image after and before
the interaction. The mask obtained from the difference image is used as pseudo ground truth for
training a neural network to predict object segmentation masks. (c) Sometimes masks produced
by this process are good (first image), but they are often imperfect due to movement of multiple
objects in the process of picking one object (second image) or creation of false masks due to lighting
changes/shadows.

visual appearance [230]. So far, we showed that one could learn semantic representation by
leveraging motion from passive observation. In this section, our focus is on developing a
method that can make use of motion signal obtained via active interaction to learn an object
segmentation model that does not require any human annotations.

To that end, we set up an agent, shown in Figure 3.10, to interact with its environment
and record the resulting RGB images. The agent maintains a belief about how images can
be decomposed into objects, and actively tests its belief by attempting to grasp potential
objects in the world. Through such self-supervised interaction, we show that it is possible to
learn to segment novel objects kept on textured backgrounds into individual instances.

A major challenge in learning a segmentation model via self-supervised interactions is that
the training signal is very noisy as compared to object masks marked by human annotators
(Figure 3.10). Typical error modes include: (a) false negatives due to complete failure in
grasping an object; (b) failure in grasping that slightly perturbs the object resulting in
incomplete masks; (c) in case two objects are located near each other, picking one object
moves the other one, resulting in masks that span multiple objects; (d) erroneous masks due
to variation in lighting, shadows and other nuisance factors.

Dealing with such noise requires the training procedure to be robust, analogous to how
in regression, we need to be robust to outliers in the data. However, direct application of

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 36

Algorithm 1: Segmentation by Interaction

1 Pre-train network with passive unsupervised data
2 for iteration t = 1 to T do
3 Record current observation It
4 Generate object hypothesis: {st1, . . . stK} ⇐ CNN(It)
5 Randomly choose one hypothesis stj ∈ {st1, . . . stK}
6 Interact with hypothesized object (move(stj))

7 Record observation It+1

8 mask ⇐ frame difference(It, It+1)
9 if mask is empty then

10 {(x,y), mask, I t} is negative training example
11 else
12 {(x,y), mask, I t} is positive training example
13 end
14 if t % update interval == 0 then
15 Update CNN using positive/negative examples
16 end

17 end

pixel-wise robust loss is sub-optimal because we are interested in a set-level statistic, such as
the similarity between two sets of pixels (e.g. ground-truth and predicted masks) measured
for instance using Jaccard index. Such a measurement depends on all the pixels and therefore
requires one to define a robust loss over a set of pixels. We propose a technique, “robust
set loss”, to handle noisy segmentation training signal, with the general idea being that the
segmenter is not required to predict exactly the pixels in the candidate object mask, rather
that the predicted pixels as a set have a good Jaccard index overlap with the candidate
mask. We show that robust set loss significantly improves segmentation performance and
also reduces the variance in results.

3.5.1 Experimental Setup

The basic interaction primitive used by the robot allows it to attempt to pick and place
objects in the scene. We set up the robot to interact autonomously with its environment
without human supervision. Overall, the robot performed more than 50,000 interactions with
its environment. Approximately the first 15,000 interactions were recorded using the main
camera and the remainder of interactions were recorded using auxiliary four cameras. Data
recording from four cameras was used to increase invariance to viewpoint.

Datasets: We use 24 backgrounds for training, 6 for validation and 10 for testing. We
use 36 different objects for training, 8 for validation and 15 for testing. The validation set

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 37

22K 44K 66K 88K 110K 132K 154K 176K 198K
of images (overall ~50K interactions)

25

30

35

40

45

50

55

60

AP
 a

t I
oU

=0
.3

Ours w/ RSL
DeepMask

DeepMask-Tuned
GOP-Tuned

(a) Performance vs. Interactions

22K 44K 66K 88K 110K 132K 154K 176K
of images (overall ~50K interactions)

0

10

20

30

40

50

60

70

80

Re
ca

ll
at

 Io
U=

0.
3

at Prec > 30
at Prec > 40

at Prec > 50
at Prec > 60

(b) Successes vs. Interactions

0 20 40 60 80 100
Recall at IoU=0.3

0

20

40

60

80

100

Pr
ec

isi
on

 a
t I

oU
=0

.3

Ours w/ RSL
DeepMask

DeepMask-Tuned
GOP-Tuned

(c) Precision vs. Recall

Figure 3.11: Quantitative evaluation of the segmentation model on the held-out test. (a) The
performance of our system measured as mAP at IoU of 0.3 steadily increases with the amount of
data. After 50K iterations our system significantly beats GOP-Tuned. (b) The efficacy of robot’s
interactions is computed as the recall of ground truth objects that have IoU of more than 0.3 with
the group of pixels that the robot believes to be objects. The steady increase in recall at different
precision threshold shows that the robot learns to perform more efficient interactions with time. (c)
Precision-Recall curves re-confirm the results.

consisted of 30 images (5 images per background) and the test set consisted of 50 images
(5 images per background). We manually annotated object masks in these images for the
purpose of evaluation; no labels for training.

3.5.2 Instance Segmentation by Interaction

The training procedure is summarized in Algorithm 1. The major challenge in training a
model with such self-generated masks is that they are far from perfect (Figure 3.10). Typical
error modes include: (a) false negatives due to complete failure to grasp an object; (b) failure
in grasping that slightly perturb the object resulting in incomplete masks; (c) in case two
objects are located near each other, picking one object moves the other one, resulting in masks
that span multiple objects; (d) erroneous masks due to variation in lighting, shadows and
other nuisance factors. Any method attempting to learn object segmentation from interaction
must deal with such imperfections in the self-generated pseudo ground truth masks.

Robust Set Loss Attempting to exactly fit the noisy masks is adversarial for the learning
process, as (a) overfitting to noise would hamper the ability to generalize to unseen examples,
and (b) inability to fit noise would increase variance in the gradients and thereby make
training unstable.

The principled approach of learning with noisy training data is to use a robust loss for
mitigating the effect of outliers. Robust loss functions have been extensively studied in
statistics, in particular, Huber loss [105] applied to regression problems. However, such
ideas have mostly been explored in the context of regression and classification for modeling
independent outputs. Unfortunately, segmentation mask is a “set of pixels”, where a statistic
of interest such as the similarity between two sets of pixels (e.g., ground-truth and predicted

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 38

Method Supervision AP at IU 0.3 AP at IU 0.5

GOP Bottom up 10.9 04.1
GOP (tuned) Bottom up 23.6 16.3
DeepMask Strong Sup. 44.5 34.3
DeepMask (tuned) Strong Sup. 61.8 47.3

Ours + Human Semi-sup. 43.1 ± 2.6 21.1 ± 2.6

Ours Self-sup. 41.1 ± 2.4 16.0 ± 2.6
Ours + Robust Set Loss Self-sup. 45.9 ± 2.1 22.5 ± 1.3

Table 3.2: Quantitative comparison of our method with bottom-up (GOP [127]), learned top-down
(DeepMask [191]) segmentation methods and optimization without robust set loss on the full test
set. We report the mean and standard deviation for our approach. Our approach significantly
outperforms GOP, but is outperformed by DeepMask that uses strong manual supervision of 700K+
COCO segments and 1M ImageNet images. Adding 1470 images with clean manually annotated
masks improves performance of our base system. The robust set loss improves both the mean
performance and reduces variance over normal cross-entropy loss.

masks) measured for instance using Jaccard Index (i.e., intersection over union (IOU)) depends
on all the pixels. The dependence of the statistic on a set of pixels makes it non-trivial to
generalize ideas such as Huber loss in a straightforward manner. We formulate Robust Set
Loss (RSL) to deal with “set-level” noise. The key insight is to impose a soft constraint for
only matching a subset of target pixels while ensuring that (potentially non-differentiable)
some metric of interest, such as IOU, between the prediction and the noisy target is greater
than or equal to a certain threshold. We generalize the CCNN constrained formulation
proposed in Pathak et. al. [182] to achieve this loss. Please refer to full paper for the details
of RSL [187].

Bootstrapping via Passive Self-Supervision Without any prior knowledge, the agent’s
initial beliefs about objects will be arbitrary, causing it to spend most of its time interacting
with the background. This process would be very inefficient. We address this issue by
assuming that initially our agent can passively observe objects moving in its environment.
For this purpose we use a prior robotic pushing dataset [5] that was constructed by a robot
randomly pushing objects in a tabletop environment. We again apply uNLC, Section 3.3.1,
to automatically extract masks from this data, which we use to pre-train our ResNet-18
network (initialized with random-weights). Note that this method of pre-training is completely
self-supervised.

3.5.3 Results and Evaluations

We compare the performance of our method against a state-of-the-art bottom up segmentation
method called Geodesic Object Proposals (GOP [127]), and a top-down instance segmentation
method trained in a class agnostic manner using over 700K strongly supervised masks obtained

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 39

from the COCO dataset (DeepMask [191]) and pre-trained on 1M ImageNet, using the AP at
IOU 0.3 metric on the held-out testing set as shown in Figure 3.11a. Our system significantly
outperforms vanilla GOP and GOP with domain knowledge (tuned). These results are
re-confirmed by the precision-recall curves shown in Figure 3.11c. The performance of our
system steadily increases with the amount of data and from the performance curve (see
Figure 3.11a). Our method performs similar to vanilla DeepMask, but worse than the one
tuned to our domain for scaling and position of objects. This result is significant because
DeepMask was trained with perfect ground truth segmentation masks for 700K COCO objects
after being pre-trained to classify 1M ImageNet images, whereas our system was trained
using imperfect masks (section 3.5.2) using only 50K self-supervised active interactions after
pre-training with approximately 60K passive observations of moving objects. AP evaluation
at IOU 0.5 (see Table 3.2) reveals that while our method significantly outperforms GOP, it
is outperformed by DeepMask. We believe the main reason is that the masks obtained by
robot interaction are imperfect.

3.6 Related Work

We dicussed relevant prior works in self-supervised learning in Chapter 2, Section 2.4. We
now cover related literature specifically pertaining to learning from motion and interaction.

Learning from motion and action The human visual system does not receive static
images; it receives a continuous video stream. The same idea of defining auxiliary pretext
tasks can be used in unsupervised learning from videos too. Wang and Gupta [254] train a
ConvNet to distinguish between pairs of tracked patches in a single video, and pairs of patches
from different videos. Misra et al . [153] ask a network to arrange shuffled frames of a video
into a temporally correct order. Another such pretext task is to make predictions about the
next few frames: Goroshin et al . [85] predict pixels of future frames and Walker et al . [250]
predict dense future trajectories. However, since nearby frames in a video tend to be visually
similar (in color or texture), these approaches might learn low-level image statistics instead
of more semantic features. Alternatively, Li et al . [140] use motion boundary detection to
bootstrap a ConvNet-based contour detector, but find that this does not lead to good feature
representations. Our intuitions are similar, but our approach produces semantically strong
representations.

Animals and robots can also sense their own motion (proprioception), and a possible task
is to predict this signal from the visual input alone [4, 76, 111]. While such cues undoubtedly
can be useful, we show that strong representations can be learned even when such cues are
unavailable.

Self-Supervised Robot Learning Our work draws upon the ideas from the active percep-
tion [7, 12, 13, 77] to build a self-supervised object segmentation system. Many recent papers
have investigated use of self-supervised learning for performing sensorimotor tasks. This

CHAPTER 3. OBJECT-CENTRIC REPRESENTATIONS 40

includes self-supervised grasping [138,148,194], pushing [5,31,66,193], navigation [75,186]
and rope-manipulation [161,186]. However, the focus of these works was geared for an end
task. Our goal is different – it is to a learn robust “segmentation” from noisy interaction
signal. Such segmentation can be a building block for multiple robotic applications.

Interactive Segmentation Improving the result of segmentation by interaction has drawn
a lot of interest [23, 68, 92, 118,162,176, 247]. However, most these works are concerned with
using interaction to segment a specific scene. In contrast, our system uses interactions to
actively gather supervision to train a segmentation system that can be used to segment objects
in new images. The recent work on SE3 nets [31] learns to segment and model dynamics
of rigid bodies in table-top environments containing boxes. We show object segmentation
results from purely RGB images in visually more complex environment without using any
depth.

3.7 Discussion

We have presented a simple and intuitive approach to unsupervised learning by using segments
from low-level motion-based grouping to train ConvNets. Our experiments show that our
approach enables effective transfer especially when computational or data constraints limit
the amount of task-specific tuning we can do. Scaling to larger video datasets should allow
for further improvements.

We noted in Figure 3.6 that our network learns to refine the noisy input segments. This is
a good example of a scenario where ConvNets can learn to extract signal from large amounts
of noisy data. Combining the refined, single-frame output from the ConvNet with noisy
motion cues extracted from the video should lead to better pseudo ground truth, and can be
used by the ConvNet to bootstrap itself. We leave this direction for future work.

In the final section, we presented a method for using active self-supervision to reorganize
visual inputs into object instances. The performance of our system is likely to benefit from
obtaining better pseudo ground truth masks by the use of better grasping techniques, use of
other interaction primitives and joint learning of perceptual and control systems where the
interaction mechanism also improves with time.

To build general purpose sensorimotor learning systems, it is critical to find ways to
transfer knowledge across tasks. While one approach is to come up with better algorithms
for transfer learning, the other is to make use of more structured representations of sensory
data than obtained using vanilla feed-forward neural networks. This work, builds upon the
second view, in proposing a method for segmenting an image into objects in the hope that
object-centric representations might be an important aspect of future visuo-motor control
systems. Our system is only the first step towards the grander goal of creating agents that
can self-improve and continuously learn about their environment.

41

Part II

Learning to Act via Self-Supervised
Exploration

42

Chapter 4

Curiosity-driven Exploration by
Self-supervised Prediction

Learning to see the world the way we do is only the first step. An agent will be able
to adapt and acquire increasingly complex behaviors only when it learns to use its sensory
representation to act. However, acting in the world is unlike passive observations because
the data is sequentially dependent on the past which leads to exponentially many possible
trajectories and makes it intractable to figure out the ones that constitute useful skills.
Reinforcement learning (RL) is currently one of the dominant paradigms in learning how to
act.

RL algorithms aim at learning policies for achieving target tasks by maximizing rewards
provided by the environment. In some scenarios, these rewards are supplied to the agent
continuously, e.g. the running score in an Atari game [155], or the distance between a robot
arm and an object in a reaching task [141]. However, in many real-world scenarios, rewards
extrinsic to the agent are extremely sparse or missing altogether, and it is not possible to
construct a shaped reward function. This is a problem as the agent receives reinforcement
for updating its policy only if it succeeds in reaching a pre-specified goal state. Hoping to
stumble into a goal state by chance (i.e. random exploration) is likely to be futile for all but
the simplest of environments.

As human agents, we are accustomed to operating with rewards that are so sparse that
we only experience them once or twice in a lifetime, if at all. To a three-year-old enjoying a
sunny Sunday afternoon on a playground, most trappings of modern life – college, good job,
a house, a family – are so far into the future, they provide no useful reinforcement signal.
Yet, the three-year-old has no trouble entertaining herself in that playground using what
psychologists call intrinsic motivation [206] or curiosity [227]. Motivation/curiosity have been
used to explain the need to explore the environment and discover novel states. The French
word flâneur perfectly captures the notion of a curiosity-driven observer, the “deliberately

This chapter is based on the papers published previously at ICML 2017 [179] and ICLR 2019 [29].

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 43

(a) learn to explore in
Level-1

(b) explore faster in
Level-2

Figure 4.1: Discovering how to play Super Mario Bros without rewards. (a) Using only curiosity-
driven exploration, the agent makes significant progress in Level-1. (b) The gained knowledge helps
the agent explore subsequent levels much faster than when starting from scratch. Watch the video
at http://pathak22.github.io/noreward-rl/

aimless pedestrian, unencumbered by any obligation or sense of urgency” (Cornelia Otis
Skinner). More generally, curiosity is a way of learning new skills which might come handy
for pursuing rewards in the future.

Similarly, in reinforcement learning, intrinsic motivation/rewards become critical whenever
extrinsic rewards are sparse. Most formulations of intrinsic reward can be grouped into two
broad classes: 1) encourage the agent to explore “novel” states [17, 146,199] or, 2) encourage
the agent to perform actions that reduce the error/uncertainty in the agent’s ability to predict
the consequence of its own actions (i.e. its knowledge about the environment) [103,156,216,
217,229,234].

Measuring “novelty” requires a statistical model of the distribution of the environmental
states, whereas measuring prediction error/uncertainty requires building a model of envi-
ronmental dynamics that predicts the next state (st+1) given the current state (st) and the
action (at) executed at time t. Both these models are hard to build in high-dimensional
continuous state spaces such as images. An additional challenge lies in dealing with the
stochasticity of the agent-environment system, both due to the noise in the agent’s actuation,
which causes its end-effectors to move in a stochastic manner, and, more fundamentally, due
to the inherent stochasticity in the environment. To give the example from [217], if the
agent receiving images as state inputs is observing a television screen displaying white noise,
every state will be novel as it would be impossible to predict the value of any pixel in the
future. This means that the agent will remain curious about the television screen because
it is unaware that some parts of the state space simply cannot be modeled and thus the
agent can fall into an artificial curiosity trap and stall its exploration. Other examples of
such stochasticity include appearance changes due to shadows from other moving entities,
presence of distractor objects, or other agents in the environment whose motion is not only
hard to predict but is also irrelevant to the agent’s goals. Somewhat different, but related,
is the challenge of generalization across physically (and perhaps also visually) distinct but
functionally similar parts of an environment, which is crucial for large-scale problems. One

http://pathak22.github.io/noreward-rl/

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 44

proposed solution to all these problems is to only reward the agent when it encounters states
that are hard to predict but are “learnable” [216]. However, estimating learnability is a
non-trivial problem [146].

This work belongs to the broad category of methods that generate an intrinsic reward
signal based on how hard it is for the agent to predict the consequences of its own actions
However, we manage to escape most pitfalls of previous prediction approaches with the
following key insight: we only predict those changes in the environment that could possibly
be due to the actions of our agent or affect the agent, and ignore the rest. That is, instead of
making predictions in the raw sensory space (e.g. pixels), we transform the sensory input
into a feature space where only the information relevant to the action performed by the
agent is represented. We learn this feature space using self-supervision – training a neural
network on a proxy inverse dynamics task of predicting the agent’s action given its current
and next states. Since the neural network is only required to predict the action, it has no
incentive to represent within its feature embedding space the factors of variation in the
environment that do not affect the agent itself. We then use this feature space to train a
forward dynamics model that predicts the feature representation of the next state, given the
feature representation of the current state and the action. We provide the prediction error of
the forward dynamics model to the agent as an intrinsic reward to encourage its curiosity.

The role of curiosity has been widely studied in the context of solving tasks with sparse
rewards. In our opinion, curiosity has two other fundamental uses. Curiosity helps an
agent explore its environment in the quest for new knowledge (a desirable characteristic of
exploratory behavior is that it should improve as the agent gains more knowledge). Further,
curiosity is a mechanism for an agent to learn skills that might be helpful in future scenarios.
We evaluate the effectiveness of our curiosity formulation in all three of these roles.

We first compare the performance of an A3C agent [154] with and without the curiosity
signal on 3-D navigation tasks with sparse extrinsic reward in the VizDoom environment.
We show that a curiosity-driven intrinsic reward is crucial in accomplishing these tasks (see
Section 4.2.2). Next, we show that even in the absence of any extrinsic rewards, a curious
agent learns good exploration policies. For instance, an agent trained only with curiosity as
its reward is able to cross a significant portion of Level-1 in Super Mario Bros. Similarly
in VizDoom, the agent learns to walk intelligently along the corridors instead of bumping
into walls or getting stuck in corners (see Section 4.2.3). A question that naturally follows
is whether the learned exploratory behavior is specific to the physical space that the agent
trained itself on, or if it enables the agent to perform better in unseen scenarios too? We
show that the exploration policy learned in the first level of Mario helps the agent explore
subsequent levels faster (shown in Figure 4.1), while the intelligent walking behavior learned
by the curious VizDoom agent transfers to a completely new map with new textures (see
Section 4.2.4). These results suggest that the proposed method enables an agent to learn
generalizable skills even in the absence of an explicit goal.

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 45

Forward
Model

Inverse
Model

fe
at

ur
es

fe
at

ur
es

E

ICM	

st st+1

ri
tri

t

st+1stat

at at+1

�(st) �(st+1)

�̂(st+1) ât

ICM	

re
t+1 + ri

t+1re
t + ri

t

Figure 4.2: The agent in state st interacts with the environment by executing an action at sampled
from its current policy π and ends up in the state st+1. The policy π is trained to optimize the sum
of the extrinsic reward (ret) provided by the environment E and the curiosity based intrinsic reward
signal (rit) generated by our proposed Intrinsic Curiosity Module (ICM). ICM encodes the states
st, st+1 into the features φ(st), φ(st+1) that are trained to predict at (i.e. inverse dynamics model).
The forward model takes as inputs φ(st) and at and predicts the feature representation φ̂(st+1) of
st+1. The prediction error in the feature space is used as the curiosity based intrinsic reward signal.
As there is no incentive for φ(st) to encode any environmental features that can not influence or
are not influenced by the agent’s actions, the learned exploration strategy of our agent is robust to
uncontrollable aspects of the environment.

4.1 Curiosity-Driven Exploration

Our agent is composed of two subsystems: a reward generator that outputs a curiosity-driven
intrinsic reward signal and a policy that outputs a sequence of actions to maximize that
reward signal. In addition to intrinsic rewards, the agent optionally may also receive some
extrinsic reward from the environment. Let the intrinsic curiosity reward generated by the
agent at time t be rit and the extrinsic reward be ret . The policy sub-system is trained to
maximize the sum of these two rewards rt = rit + ret , with ret mostly (if not always) zero.

We represent the policy π(st; θP) by a deep neural network with parameters θP . Given
the agent in state st, it executes the action at ∼ π(st; θP) sampled from the policy. θP is
optimized to maximize the expected sum of rewards,

max
θP

Eπ(st;θP)[Σtrt] (4.1)

Unless specified otherwise, we use the notation π(s) to denote the parameterized policy
π(s; θP). Our curiosity reward model can potentially be used with a range of policy learning
methods; in the experiments discussed here, we use the asynchronous advantage actor critic
policy gradient (A3C) [154] for policy learning. Our main contribution is in designing
an intrinsic reward signal based on prediction error of the agent’s knowledge about its

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 46

environment that scales to high-dimensional continuous state spaces like images, bypasses
the hard problem of predicting pixels and is unaffected by the unpredictable aspects of the
environment that do not affect the agent.

4.1.1 Prediction error as curiosity reward

Making predictions in the raw sensory space (e.g. when st corresponds to images) is undesirable
not only because it is hard to predict pixels directly, but also because it is unclear if predicting
pixels is even the right objective to optimize. To see why, consider using prediction error in
the pixel space as the curiosity reward. Imagine a scenario where the agent is observing the
movement of tree leaves in a breeze. Since it is inherently hard to model breeze, it is even
harder to predict the pixel location of each leaf. This implies that the pixel prediction error
will remain high and the agent will always remain curious about the leaves. But the motion
of the leaves is inconsequential to the agent and therefore its continued curiosity about them
is undesirable. The underlying problem is that the agent is unaware that some parts of the
state space simply cannot be modeled and thus the agent can fall into an artificial curiosity
trap and stall its exploration. Novelty-seeking exploration schemes that record the counts of
visited states in a tabular form (or their extensions to continuous state spaces) also suffer
from this issue. Measuring learning progress instead of prediction error has been proposed in
the past as one solution [216]. Unfortunately, there are currently no known computationally
feasible mechanisms for measuring learning progress.

If not the raw observation space, then what is the right feature space for making predictions
so that the prediction error provides a good measure of curiosity? To answer this question,
let us divide all sources that can modify the agent’s observations into three cases: (1) things
that can be controlled by the agent; (2) things that the agent cannot control but that can
affect the agent (e.g. a vehicle driven by another agent), and (3) things out of the agent’s
control and not affecting the agent (e.g. moving leaves). A good feature space for curiosity
should model (1) and (2) and be unaffected by (3). This latter is because, if there is a source
of variation that is inconsequential for the agent, then the agent has no incentive to know
about it.

4.1.2 Self-supervised prediction for exploration

Instead of hand-designing features for every environment, we propose a general mechanism
for learning features for prediction error based curiosity. Given the raw state st, we encode it
using a deep neural network into a feature vector φ(st; θE), denoted as φ(st) for succinctness.
We propose to learn the parameters of this feature encoder using two sub-modules described
as follows. The first sub-module is the neural network g which takes the feature encoding
φ(st), φ(st+1) of two consequent states as input and predicts the action at taken by the agent
to move from state st to st+1, defined as:

ât = g
(
φ(st), φ(st+1); θI

)
(4.2)

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 47

where, ât is the predicted estimate of the action at. The neural network parameters θI , θE
are trained to optimize,

min
θI ,θE

LI(ât, at) (4.3)

where, LI measures the discrepancy between the predicted and actual actions. LI is modeled
as soft-max loss across all possible actions when at is discrete. The learned function g is
also known as the inverse dynamics model and the tuple (st, at, st+1) required to learn g is
obtained while the agent interacts with the environment using its current policy π(s).

Simultaneously with the inverse model g, we train another sub-module that takes as
inputs at and φ(st) to predict the feature encoding of the state at time step t+ 1,

φ̂(st+1) = f
(
φ(st), at; θF

)
(4.4)

where φ̂(st+1) is the predicted estimate of φ(st+1). The function f is also known as the
forward dynamics model and is trained to optimize the regression loss,

min
θF ,θE

LF

(
φ̂(st+1), φ(st+1)

)
(4.5)

Finally, the intrinsic reward signal rit is computed as,

rit =
η

2
‖φ̂(st+1)− φ(st+1)‖22 (4.6)

where η > 0 is a scaling factor. The inverse and forward dynamics losses, described in
equations (4.3) and (4.5), are jointly optimized with the policy. The inverse model helps
learn a feature space that encodes information relevant for predicting the agent’s actions only
and the forward model makes this learned feature representation more predictable. We refer
to this proposed curiosity formulation as Intrinsic Curiosity Module (ICM). As there is no
incentive for this feature space to encode any environmental features that are not influenced
by the agent’s actions, our agent will receive no rewards for reaching environmental states
that are inherently unpredictable and its exploration strategy will be robust to nuisance
sources of variation in the environment. See Figure 4.2 for illustration of the formulation.

The overall optimization problem can be written as,

min
θP ,θI ,θF ,θE

[
− λEπ(st;θP)[Σtrt] + (1− β)LI + βLF

]
(4.7)

where 0 ≤ β ≤ 1 is a scalar that weighs the inverse model loss against the forward model
loss and λ > 0 weighs the importance of the policy gradient loss against the intrinsic reward
signal. We do not backpropagate the policy gradient loss to the forward model to prevent
degenerate solution of agent rewarding itself.

Previous work has investigated inverse models to learn features [4, 5, 111] and forward
models to regularize those features [5] for recognition tasks. However, they do not learn any
policy for the agent.

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 48

(a) Input (b) Input w/ noise

S

(c) Train Map

S

S

Room:	13
(“sparse”)

Room:	17
(“very	sparse”)

Goal

(d) Test Map

Figure 4.3: Frames from VizDoom 3-D environment which agent takes as input: (a) Usual 3-D
navigation setup; (b) Setup when uncontrollable noise is added to the input. Maps for VizDoom
3-D environment (not shown to the agent): (c) For generalization experiments (c.f. Section 4.2.4),
map of the environment where agent is pre-trained only using curiosity signal without any reward
from environment. ‘S’ denotes the starting position. (d) Testing map for VizDoom experiments.
Green star denotes goal location. Blue dots refer to 17 agent spawning locations in the map in
the “dense” case. Rooms 13, 17 are the fixed start locations of agent in “sparse” and “very sparse”
reward cases respectively. Note that textures are also different in train and test maps.

4.2 Experiments

Three broad settings are evaluated: a) sparse extrinsic reward on reaching a goal (Sec-
tion 4.2.2); b) exploration with no extrinsic reward (Section 4.2.3); and c) generalization
to novel scenarios (Section 4.2.4). Generalization is evaluated on a novel map with novel
textures in VizDoom and on subsequent game levels in Mario.

4.2.1 Experimental Setup

Environments Our first environment is the VizDoom [117] game where we consider the
3D navigation task with four discrete actions – forward, left, right, and no-action. Our testing
setup in all the experiments is the ‘DoomMyWayHome-v0’ environment which is available
as part of OpenAI Gym [28]. The map consists of 9 rooms connected by corridors and the
agent is tasked to reach some fixed goal location from its spawning location. Episodes are
terminated either when the agent reaches the fixed goal or if the agent exceeds a maximum
of 2100 time steps. The agent is only provided a sparse terminal reward of +1 if it finds
the vest and zero otherwise. For generalization experiments, we pre-train on a different map
with different random textures from [55] with 2100 step long episodes as there is no goal
in pre-training. Sample frames and maps of VizDoom are shown in Figure 4.3. It takes
approximately 350 steps for an optimal policy to reach the vest location from the farthest
room in this map (sparse reward).

Our second environment is the classic Nintendo game Super Mario Bros with a reparam-
terized 14 dimensional action space following [178]. The actual game is played using a
joystick allowing for multiple simultaneous button presses, where the duration of the press

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 49

0 1 2 3 4 5 6 7 8 9
Number of training steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
tri

ns
ic

Re
wa

rd
s

pe
r E

pi
so

de

ICM + A3C
ICM (pixels) + A3C
ICM (aenc) + A3C
A3C

(a) “dense reward” setting

0 2 4 6 8 10 12 14 16 18
1umEer RI training steps (in milliRns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(x
tr

in
si

c
Re

w
ar

ds
 p

er
 (

pi
sR

de

IC0 + A3C
IC0 (pixels) + A3C
IC0 (aenc) + A3C
A3C

(b) “sparse reward” setting

0 1 2 3 4 5 6 7 8 9 10
1umEer RI training steps (in milliRns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(x
tr

in
si

c
5e

w
ar

ds
 p

er
 (

pi
sR

de

IC0 + A3C
IC0 (pixels) + A3C
IC0 (aenc) + A3C
A3C

(c) “very sparse reward” setting

Figure 4.4: Comparing the performance of the A3C agent with no curiosity (blue) against the
curiosity in pixel space agent (green) and the proposed curious ICM-A3C agent (orange) as the
hardness of the exploration task is gradually increased from left to right. Exploration becomes harder
with larger distance between the initial and goal locations: “dense”, “sparse” and “very sparse”.
The results depict that succeeding on harder exploration task becomes progressively harder for the
baseline A3C, whereas the curious A3C is able to achieve good score in all the scenarios. Pixel based
curiosity works in dense and sparse but fails in very sparse reward setting. The protocol followed in
the plots involves running three independent runs of each algorithm. Darker line represents mean
and shaded area represents mean ± standard error of mean. We did not perform any tuning of
random seeds.

affects what action is being taken. This property makes the game particularly hard, e.g. to
make a long jump over tall pipes or wide gaps, the agent needs to predict the same action up
to 12 times in a row, introducing long-range dependencies.

Baselines We compare our model (‘ICM + A3C’) against (a) vanilla ‘A3C’ with ε-greedy
exploration; (b) ‘ICM-pixels + A3C’ where we predict the next observation in the pixel space
instead of the feature space of the inverse model. The performance comparison between ‘ICM-
pixels + A3C’ and ‘ICM + A3C’ is indicative of pros/cons of our method over established
methods of computing curiosity reward by making predictions in observation space [217,234];
(c) comparison with state-of-the-art exploration methods based on variational information
maximization (VIME) [103].

4.2.2 Sparse Extrinsic Reward Setting

In the ‘DoomMyWayHome-v0’ 3D navigation setup (see section 4.2.1), the agent is provided
with a sparse extrinsic reward only when it reaches the goal located at a fixed location.
We systematically varied the difficulty of this task and constructed “dense”, “sparse” and
“very-sparse” reward (see Figure 4.3d) scenarios by varying the distance between the initial
spawning location of the agent and the location of the goal. In the “dense” reward case,
the agent is randomly spawned in any of the 17 spawning locations uniformly distributed
across the map. This is not a hard exploration task because sometimes the agent is randomly

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 50

0 2 4 6 8 10 12 14 16 18 20
Number of training steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
tri

ns
ic

Re
wa

rd
s

pe
r E

pi
so

de

ICM + A3C
ICM (pixels) + A3C

Figure 4.5: Evaluating the robustness of ICM to the presence of uncontrollable distractors in the
environment. We created such a distractor by replacing 40% of the visual observation of the agent
by white noise (see Figure 4.3b). The results show that while ICM succeeds most of the times, the
pixel prediction model struggles.

initialized close to the goal and therefore by random ε-greedy exploration it can reach the
goal with reasonably high probability. In the “sparse” and “very sparse” reward cases, the
agent is always spawned in Room-13 and Room-17 respectively which are 270 and 350 steps
away from the goal under an optimal policy. A long sequence of directed actions is required
to reach the goals from these rooms, making these settings hard goal directed exploration
problems.

Results in Figure 4.4 show that curious agents learn much faster indicating that their
exploration is more effective in compared to ε-greedy exploration of the baseline agent. One
possible explanation of the inferior performance of ICM-pixels in comparison to ICM is that
in every episode the agent is spawned in one out of seventeen rooms with different textures.
It is hard to learn a pixel-prediction model as the number of textures increases.

In the “sparse” reward case, as expected, the baseline A3C agent fails to solve the task,
while the curious A3C agent is able to learn the task quickly. Note that ICM-pixels and
ICM have similar convergence because, with a fixed spawning location of the agent, the
ICM-pixels encounters the same textures at the starting of each episode which makes learning
the pixel-prediction model easier as compared to the “dense” reward case. Finally, in the
“very sparse” reward case, both the A3C agent and ICM-pixels never succeed, while the ICM
agent achieves a perfect score in 66% of the random runs. This indicates that ICM is better
suited than ICM-pixels and vanilla A3C for hard goal directed exploration tasks.

Robustness to uncontrollable dynamics For testing this, we augmented the agent’s
observation with a fixed region of white noise which made up 40% of the image (see Figure 4.3b)
and evaluated on “sparse” reward setup of VizDoom. In navigation, ideally the agent should

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 51

be unaffected by this noise as the noise does not affect the agent in anyway and is merely
a nuisance. Figure 4.5 shows that while the proposed ICM agent achieves a perfect score,
ICM-pixels suffers significantly despite having succeeded at the “sparse reward” task when
the inputs were not augmented with any noise (see Figure 4.4b). This indicates that in
contrast to ICM-pixels, ICM is insensitive to nuisance changes in the environment.

Comparison to other baselines One possible reason for superior performance of the
curious agent is that the intrinsic reward signal is simply acting as a regularizer by providing
random rewards that push the agent out of the local minima. We systematically tested this
hypothesis using many different random reward distributions on the “sparse VizDoom” task
and found that with just random rewards the agents fail on sparse reward tasks. Comparison
to the state of the art TRPO-VIME [103] agent in the table below shows that the ICM agent
is superior in performance. The hyper-parameters and accuracy for TRPO and VIME agents
follow from the concurrent work [71].

Method Mean (Median) Score
(“sparse” reward setup) (at convergence)

TRPO 26.0 % (0.0 %)
A3C 0.0 % (0.0 %)

VIME + TRPO 46.1 % (27.1 %)

ICM + A3C 100.0 % (100.0 %)

4.2.3 No Reward Setting

For investigating how well does the ICM agent explore the environment, we trained it on
VizDoom and Mario without any rewards from the environment. We then evaluated how
much of the map was visited in VizDoom and how much progress the agent made on Mario.
To our surprise, we have found that in both cases, the no-reward agent was able to perform
quite well (see video at http://pathak22.github.io/noreward_rl/).

VizDoom: Coverage during Exploration. An agent trained with no extrinsic rewards
was able to learn to navigate corridors, walk between rooms, and explore many rooms in the
3D Doom environment. On many occasions, the agent traversed the entire map and reached
rooms that were farthest away from the room it was initialized in. Given that the episode
terminates in 2100 steps and farthest rooms are over 250 steps away (for an optimally-moving
agent), this result is quite remarkable, demonstrating that it is possible to learn useful skills
without the requirement of any external supervision of rewards. Example explorations are
shown in Figure 4.6. The first 3 maps show our agent explores a much larger state space
without any extrinsic signal, compared to a random exploration agent (last 2 maps).

Mario: Learning to play with no rewards. Without any extrinsic reward from
environment, our Mario agent can learn to cross over 30% of Level-1. The agent received no
reward for killing or dodging enemies or avoiding fatal events, yet it automatically discovered

http://pathak22.github.io/noreward_rl/

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 52

S 1 2

3 4 5

6 S 1 2

3
4 5

S 1

5

2

3

4 S
1 2 S 1

2

Figure 4.6: Each column in the figure shows the coverage of an agent by coloring the rooms it
visits during 2100 steps of exploration. The red arrow shows the initial location and orientation of
the agent at the start of the episode. The first three (in green) and the last two columns (in blue)
show visitation of curious (ICM) and randomly exploring agents respectively. The results clearly
show that the curious agent trained with intrinsic rewards explores a significantly larger number of
rooms as compared to a randomly exploring agent.

these behaviors (see video). One possible reason is that getting killed by the enemy will
result in only seeing a small part of the game space, making its curiosity saturate. In order
to remain curious, it is in the agent’s interest to learn how to kill and dodge enemies so
that it can reach new parts of the game space. This suggests that curiosity provides indirect
supervision for learning interesting behaviors.

To the best of our knowledge, this is the first work to show that the agent learns to
navigate a 3D environment and discovers how to play a game directly from pixels without
any extrinsic reward. Prior works [152,154] have trained agents for navigation and ATARI
games from pixels, but using rewards from environment.

4.2.4 Generalization to Novel Scenarios

In the previous section, we showed that our agent learns to explore large parts of the space
where its curiosity-driven exploration policy was trained. However it remains unclear, when
exploring a space, how much of the learned behavior is specific to that particular space and
how much is general enough to be useful in novel scenarios? To investigate this question,
we train a no reward exploratory behavior in one scenario (e.g. Level-1 of Mario) and then
evaluate the resulting exploration policy in three different ways: a) apply the learned policy
“as is” to a new scenario; b) adapt the policy by fine-tuning with curiosity reward only; c)
adapt the policy to maximize some extrinsic reward. Happily, in all three cases, we observe
some promising generalization results:

Evaluate “as is”: The distance covered by the agent on Levels 1, 2, and 3 when the policy
learned by maximizing curiosity on Level-1 of Mario is executed without any adaptation
is reported in Table 4.1. The agent performs surprisingly well on Level 3, suggesting good
generalization, despite the fact that Level-3 has different structures and enemies compared to
Level-1. However, note that the running “as is” on Level-2 does not do well. At first, this
seems to contradict the generalization results on Level-3. However, note that Level-3 has

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 53

Level Ids Level-1 Level-2 Level-3

Accuracy Scratch Run as is Fine-tuned Scratch Scratch Run as is Fine-tuned Scratch Scratch

Iterations 1.5M 0 1.5M 1.5M 3.5M 0 1.5M 1.5M 5.0M

Mean ± stderr 711 ± 59.3 31.9 ± 4.2 466 ± 37.9 399.7 ± 22.5 455.5 ± 33.4 319.3 ± 9.7 97.5 ± 17.4 11.8 ± 3.3 42.2 ± 6.4
% distance > 200 50.0 ± 0.0 0 64.2 ± 5.6 88.2 ± 3.3 69.6 ± 5.7 50.0 ± 0.0 1.5 ± 1.4 0 0
% distance > 400 35.0 ± 4.1 0 63.6 ± 6.6 33.2 ± 7.1 51.9 ± 5.7 8.4 ± 2.8 0 0 0
% distance > 600 35.8 ± 4.5 0 42.6 ± 6.1 14.9 ± 4.4 28.1 ± 5.4 0 0 0 0

Table 4.1: Quantitative evaluation of the agent trained to play Super Mario Bros. using only
curiosity signal without any rewards from the game. The policy trained on Level-1 is evaluated
both when it is is run “as is”, and further fine-tuned on subsequent levels. The results are compared
to settings when Mario agent is trained from scratch in Level-2,3 using only curiosity without any
extrinsic rewards. Evaluation metric is based on the distance covered by the Mario agent.

similar global visual appearance (day world with sunlight) to Level-1, whereas Level-2 is
significantly different (night world). If this is indeed the issue, then it should be possible to
quickly adapt the agent’s exploration policy to Level-2 with a little bit of “fine-tuning”.

Fine-tuning with curiosity only: From Table 4.1, we see that when the agent pre-trained
(using only curiosity as reward) on Level-1 is fine-tuned (using only curiosity as reward)
on Level-2 it quickly overcomes the mismatch in global visual appearance and achieves a
higher score than training from scratch with the same number of iterations. Interestingly,
training “from scratch” on Level-2 is worse than the fine-tuned policy, even when training
for more iterations than pre-training + fine-tuning combined. One possible reason is that
Level-2 is more difficult than Level-1, so learning the basic skills such as moving, jumping,
and killing enemies from scratch is harder than in the relative “safety” of Level-1. This result,
therefore, might suggest that first pre-training on an earlier level and then fine-tuning on
a later one produces a form of curriculum which aids learning and generalization. In other
words, the agent is able to use the knowledge it acquired by playing Level-1 to better explore
the subsequent levels. Of course, the game designers do this on purpose to allow the human
players to gradually learn to play the game.

However, interestingly, fine-tuning the exploration policy pre-trained on Level-1 to Level-3
deteriorates the performance, compared to running “as is”. This is because Level-3 is very
hard for the agent to cross beyond a certain point – the agent hits a curiosity blockade
and is unable to make any progress. As the agent has already learned about parts of the
environment before the hard point, it receives almost no curiosity reward and as a result
it attempts to update its policy with almost zero intrinsic rewards and the policy slowly
degenerates. This behavior is vaguely analogous to boredom, where if the agent is unable to
make progress it gets bored and stops exploring.

Fine-tuning with extrinsic rewards: We first pre-trained an agent on VizDoom using
only curiosity reward on the map shown in Figure 4.3c. We then test on the “sparse” and
“very sparse” reward settings of ‘DoomMyWayHome-v0’ environment which uses a different

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 54

0 1 2 3 4 5 6 7 8
Number of training steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ex

tri
ns

ic
Re

wa
rd

s
pe

r E
pi

so
de

finetuned: ICM + A3C
scratch: ICM + A3C
finetuned: ICM (pixels) + A3C
scratch: ICM (pixels) + A3C

(a) “sparse reward” setting

0 2 4 6 8 10 12 14
Number of training steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
tri

ns
ic

Re
wa

rd
s

pe
r E

pi
so

de

finetuned: ICM + A3C
scratch: ICM + A3C
finetuned: ICM (pixels) + A3C
scratch: ICM (pixels) + A3C

(b) “very sparse reward” setting

Figure 4.7: Curiosity pre-trained ICM + A3C when finetuned on the test map with environmental
rewards outperforms ICM + A3C trained from scratch using both environmental and curiosity reward
on the “sparse” (left) and “very sparse” (right) reward settings of VizDoom. The pixel prediction
based ICM agent completely fails indicating that our curiosity formulation learns generalizable
exploration policies.

map with novel textures (see Figure 4.3d). Results in Figure 4.7 show that the curiosity
pre-trained ICM agent when fine-tuned with external rewards learns faster and achieves
higher reward than an ICM agent trained from scratch to jointly maximize curiosity and the
external rewards. This result confirms that the learned exploratory behavior is also useful
when the agent is required to achieve goals in a new environment. It is also worth noting that
ICM-pixels does not generalize to the test environment. This indicates that the proposed
mechanism of measuring curiosity is significantly better for learning skills that generalize as
compared to measuring curiosity in the raw sensory space.

4.3 Large-Scale Study of Curiosity-Driven Learning

We showed that our prediction-error based curiosity formulation allows the agent to learn
navigation skills, and play games, e.g., Super Mario Bros., without using any game score.
More importantly, a curious agent is able to generalize its skills from one game level to learn
faster in the subsequent ones. This work was among the first ones to show exploration-driven
deep reinforcement learning without using any rewards from the environment. To demonstrate
its generality, we now perform a large-scale systematic study of learning with only intrinsic
rewards.

We experiment with agents driven purely by intrinsic rewards across a range of 54 diverse
environments: video games, physics engine simulations, and virtual 3D navigation tasks,
shown in Figure 4.8. To develop a better understanding of curiosity-driven learning, we
further study the crucial factors that determine its performance. In particular, predicting
the future state in the high dimensional raw observation space (e.g., images) is a challenging

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 55

Figure 4.8: A snapshot of the 54 environments investigated in this work. We show that agents are
able to make progress using no extrinsic reward, or end-of-episode signal, and only using curiosity.
Video results, code and models at https://pathak22.github.io/large-scale-curiosity/.

problem and we saw that learning dynamics in an auxiliary feature space leads to improved
results. However, how one chooses such an embedding space is a critical, yet open research
problem. To ensure stable online training of dynamics, we argue that the desired embedding
space should: 1) be compact in terms of dimensionality, 2) preserve sufficient information
about the observation, and 3) be a stationary function of the observations.

Through systematic ablation, we examine the role of different ways to encode agent’s
observation such that an agent can perform well, driven purely by its own curiosity. Here
“performing well” means acting purposefully and skillfully in the environment. This can be
assessed quantitatively, in some cases, by measuring extrinsic rewards or environment-specific
measures of exploration, or qualitatively, by observing videos of the agent interacting. We
show that encoding observations via a random network turn out to be a simple, yet surprisingly
effective technique for modeling curiosity across many popular RL benchmarks. This might
suggest that many popular RL video game test-beds are not as visually sophisticated as
commonly thought. Interestingly, we discover that although random features are sufficient for
good performance in environments that were used for training, the learned features appear
to generalize better (e.g., to novel game levels in Super Mario Bros.).

4.3.1 Feature spaces for forward dynamics

Consider the representation φ in the curiosity formulation above. If φ(x) = x, the forward
dynamics model makes predictions in the observation space. A good choice of feature space
can make the prediction task more tractable and filter out irrelevant aspects of the observation

https://pathak22.github.io/large-scale-curiosity/

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 56

space. But what makes a good feature space for dynamics driven curiosity? We propose the
qualities that a good feature space must have:

• Compactness : The features should be easy to model by being low(er)-dimensional and
filtering out irrelevant parts of the observation space.

• Sufficiency : The features should contain all the important information. Otherwise, the
agent may fail to be rewarded for exploring some relevant aspect of the environment.

• Stability : Non-stationary rewards make it difficult for reinforcement agents to learn.
Exploration bonuses by necessity introduce non-stationarity since what is new and
novel becomes old and boring with time. In our curiosity formulation, there are two
sources of non-stationarity: the forward dynamics model is evolving over time as it
is trained and the features are changing as they learn. The former is intrinsic to the
method, and the latter should be minimized where possible

In this section, we systematically investigate the efficacy of a number of feature-learning
methods, summarized briefly as follows:

Pixels The simplest case is where φ(x) = x and we fit our forward dynamics model in the
observation space. Pixels are sufficient, since no information has been thrown away, and
stable since there is no feature learning component. However, learning from pixels is tricky
because the observation space may be high-dimensional and complex.

Random Features (RF) The next simplest case is where we take our embedding network,
a convolutional network, and fix it after random initialization. Because the network is fixed,
the features are stable. The features can be made compact in dimensionality, but they are
not constrained to be. However, random features may fail to be sufficient.

VAE IDF RF Pixels

Stable No No Yes Yes
Compact Yes Yes Maybe No
Sufficient Yes Maybe Maybe Yes

Table 4.2: Table summarizing the categorization
of different kinds of feature spaces considered.

Variational Autoencoders (VAE) VAEs
were introduced in [120,201] to fit latent vari-
able generative models p(x, z) for observed
data x and latent variable z with prior p(z)
using variational inference. The method calls
for an inference network q(z|x) that approxi-
mates the posterior p(z|x). This is a feedfor-
ward network that takes an observation as
input and outputs a mean and variance vec-
tor describing a Gaussian distribution with
diagonal covariance. We can then use the mapping to the mean as our embedding network φ.
These features will be a low-dimensional approximately sufficient summary of the observation,
but they may still contain some irrelevant details such as noise, and the features will change
over time as the VAE trains.

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 57

Inverse Dynamics Features (IDF) Given a transition (st, st+1, at) the inverse dynamics
task is to predict the action at given the previous and next states st and st+1. Features are
learned using a common neural network φ to first embed st and st+1. The intuition is that the
features learned should correspond to aspects of the environment that are under the agent’s
immediate control. This feature learning method is easy to implement and in principle should
be invariant to certain kinds of noise as discussed earlier. A potential downside could be that
the features learned may not be sufficient, that is they do not represent important aspects of
the environment that the agent cannot immediately affect.

A summary of these characteristics is provided in Table 4.2. Note that the learned features
are not stable because their distribution changes as learning progresses. One way to achieve
stability could be to pre-train VAE or IDF networks. However, unless one has access to the
internal state of the game, it is not possible to get a representative data of the game scenes
to train the features. One way is to act randomly to collect data, but then it will be biased
to where the agent started, and won’t generalize further. Since all the features involve some
trade-off of desirable properties, it becomes an empirical question as to how effective each of
them is across environments.

4.3.2 Practical considerations in training with only curiosity

Deciding upon a feature space is only first part of the puzzle in implementing a practical
system. Here, we detail the critical choices we made in the learning algorithm. Our goal
is to reduce non-stationarity in order to make learning more stable and consistent across
environments. Through the following considerations outlined below, we are able to get
exploration to work reliably for different feature learning methods and environments with
minimal changes to the hyper-parameters.

• PPO. In general, we have found the PPO algorithm [218] to be a robust learning
algorithm that requires little hyper-parameter tuning and so we stick to it for our
experiments.

• Reward normalization. Since the reward function is non-stationary, it is useful to
normalize the scale of the rewards so that the value function can learn quickly. We did
this by dividing the rewards by a running estimate of the standard deviation of the
sum of discounted rewards.

• Advantage normalization. While training with PPO, we normalize the advantages [241]
in a batch to have a mean of 0 and a standard deviation of 1.

• Observation normalization. We run a random agent on our target environment for
10000 steps, then calculate the mean and standard deviation of the observation and use
these to normalize the observations when training. This is useful to ensure that the
features do not have very small variance at initialization, and also ensure features have
less variation across different environments.

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 58

• More actors. The stability of the method is greatly increased by increasing the number
of parallel actors (which affects the batch-size) used. We typically use 128 parallel runs
of the same environment for data collection while training an agent.

• Normalizing the features. In combining intrinsic and extrinsic rewards, we found it
useful to ensure that the scale of the intrinsic reward was consistent across state space.
We achieved this by using batch-normalization [108] in the feature embedding network.

4.3.3 ‘Death is not the end’: infinite horizon

One important point is that the use of an end-of-episode signal, sometimes called ‘done’,
can often leak information about the true reward function (assuming, as is common, that
we have access to an extrinsic reward signal that we hide from the agent to measure pure
exploration). If we don’t remove the ‘done’ signal, many of the Atari games become too
simple. For example, a simple strategy of giving +1 artificial reward at every time-step when
the agent is alive and 0 upon death is sufficient to obtain a high score in some games, e.g. the
Atari game ‘Breakout’ where it will seek to maximize the episode length and hence its score.
In the case of negative rewards, the agent will try to end the episode as quickly as possible.

In light of this, if we want to study the behavior of a pure exploration agent, we should
not bias it. In the infinite horizon setting (i.e., the discounted returns are not truncated
at the end of the episode and always bootstrapped using the value function), death is just
another transition to the agent, to be avoided only if it is “boring”. Therefore, we removed
‘done’ to separate the gains of an agent’s exploration from merely that of the death signal. In
practice, we do find that the agent avoids dying in the games since that brings it back to the
beginning of the game – an area it has already seen many times and where it can predict
the dynamics well. This subtlety has been neglected by previous works showing experiments
without extrinsic rewards.

4.4 Large-Scale Experiments

In all of our experiments, both the policy and the embedding network work directly from
pixels. For our implementation details including hyper-parameters and architectures, please
refer to the Appendix A.1. Unless stated otherwise, all curves are the average of three runs
with different seeds, and the shaded areas are standard errors of the mean. We have released
the code and videos of a purely curious agent playing across all environments on our website 1.

4.4.1 Curiosity-driven learning without extrinsic rewards

We begin by scaling up a pure curiosity-driven learning to a large number of environments
without using any extrinsic rewards. We pick a total of 54 diverse simulated environments,

1https://pathak22.github.io/large-scale-curiosity/

https://pathak22.github.io/large-scale-curiosity/

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 59

Figure 4.9: A comparison of feature learning methods on 8 selected Atari games and the Super Mario
Bros. These evaluation curves show the mean reward (with standard error) of agents trained purely
by curiosity, without reward or an end-of-episode signal. We see that our purely curiosity-driven
agent is able to gather rewards in these environments without using any extrinsic reward at training.
Results on all of the Atari games are in the appendix in Figure A.1. We find curiosity model trained
on pixels does not work well across any environment and VAE features perform either same or worse
than random and inverse dynamics features. Further, inverse dynamics-trained features perform
better than random features in 55% of the Atari games. An interesting outcome of this analysis is
that random features for modeling curiosity are a simple, yet surprisingly strong baseline and likely
to work well in half of the Atari games.

as shown in Figure 4.8, including 48 Atari games, Super Mario Bros., 2 Roboschool scenarios
(learning Ant controller and Juggling), Two-player Pong, 2 Unity mazes (with and without
a TV controlled by the agent). The goal of this large-scale analysis is to investigate the
following questions: (a) What happens when you run a pure curiosity-driven agent on a
variety of games without any extrinsic rewards? (b) What kinds of behaviors can you expect
from these agents? (c) What is the effect of the different feature-learning variants in our
curiosity formulation on these behaviors?

Atari Games To answer these questions, we began with a collection of well-known Atari
games and ran a suite of experiments with different feature-learning methods. One way to
measure how well a purely curious agent performs is to measure the extrinsic reward it is able
to achieve, i.e. how good is the agent at playing the game. We show the evaluation curves of
mean extrinsic reward in on 8 common Atari games in Figure 4.9 and all 48 Atari suite in
Figure A.1 in the appendix. It is important to note that the extrinsic reward is only used for
evaluation, not for training. However, this is just a proxy for pure exploration because the
game rewards could be arbitrary and might not align at all with how the agent explores out
of curiosity.

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 60

The first thing to notice from the curves is: most of them are going up. This shows that a
pure curiosity-driven agent can often learn to obtain external rewards without seeing any
extrinsic rewards during training! To understand why this is happening, consider the game
‘Breakout’. The main control action of the game is to keep hitting the bouncing ball with
the paddle, but this does not earn any points. The game score increases only when the ball
hits a brick (which then disappears). But the more bricks are struck by the ball, the more
complicated the pattern of remaining bricks becomes, making the agent more curious to
explore further, hence, collecting points as a bi-product. Furthermore, when the agent runs
out of lives, the bricks are reset to the initial configuration, which has been seen by the agent
many times before and is hence very predictable, so the agent tries to increase curiosity by
staying alive and avoiding the death reset.

The fact that the curiosity reward is often sufficient is an unexpected result and might
suggest that many popular RL test-beds do not need an external reward at all. It is likely
that game designers (similar to architects, urban planners, gardeners, etc.) are purposefully
setting up curricula to guide agents through the task by curiosity alone. This could explain
why curiosity-like objective aligns reasonably well with the extrinsic reward in many human-
designed environments [39,106,133,263]. However, this is not always the case, and sometimes
a curious agent can even do worse than a random agent. This happens when the extrinsic
reward has little correlation with the agent’s exploration, or when the agent fails to explore
efficiently (e.g. see games ‘Atlantis’ and ‘IceHockey’ in Figure A.1). We encourage the
reader to refer to the game-play videos of the agent available on the website for a better
understanding of the learned skills.

Comparison of feature learning methods: We compare four feature learning methods
in Figure 4.9: raw pixels, random features, inverse dynamics features and VAE features.
Training dynamics on raw pixels performs poorly across all the environments, while encoding
pixels into features does better. This is likely because it is hard to learn a good dynamics
model in pixel space, and prediction errors may be dominated by small irrelevant details.

Surprisingly, random features (RF) perform quite well across tasks and sometimes better
than using learned features. One reason for good performance is that the random features
are kept frozen (stable), the dynamics model learned on top of them has an easier time
because of the stationarity of the target. In general, random features should work well in
the domains where visual observations are simple enough, and random features can preserve
enough information about the raw signal, for instance, Atari games. One scenario where IDF
features consistently outperform random features is for generalization, e.g. training on one
level of Mario Bros and testing on another (see Section 4.4.2 for details).

The VAE method also performed well but was somewhat unstable, so we decided to use
RF and IDF for further experiments. The detailed result in appendix Figure A.1 compares
IDF vs. RF across the full Atari suite. To quantify the learned behaviors, we compared our
curious agents to a randomly acting agent. We found that an IDF-curious agent collects more
game reward than a random agent in 75% of the Atari games, an RF-curious agent does better
in 70%. Further, IDF does better than RF in 55% of the games. Overall, random features
and inverse dynamics features worked well in general. Further details in the appendix.

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 61

(a) Mario w/ large batch (b) Juggling (Roboschool) (c) Two-player Pong

Figure 4.10: (a) Left: A comparison of the RF method on Mario with different batch sizes.
Results are without using extrinsic reward. (b) Center: Number of ball bounces in the Juggling
(Roboschool) environment. (c) Right: Mean episode length in the multiplayer Pong environment.
The discontinuous jump on the graph corresponds to the agent reaching a limit of the environment -
after a certain number of steps in the environment the Atari Pong emulator starts randomly cycling
through background colors and becomes unresponsive to agent’s actions

Super Mario Bros. We compare different feature-learning methods in Mario Bros in
Figure 4.9. We already studied Super Mario Bros in the context of extrinsic reward-free
learning earlier in small-scale experiments, and now we were keen to see how far curiosity
alone can push the agent. We used a more efficient version of the Mario simulator, allowing
for longer training, while keeping observation space, actions, and dynamics of the game the
same. Due to 100x longer training and using PPO for optimization, our agent was able to
pass several levels of the game, significantly improving over prior exploration results on Mario
Bros.

Could we further push the performance of a purely curious agent by making the underlying
optimization more stable? One way is to scale up the batch-size. We do so by increasing
the number of parallel threads for running environments from 128 to 1024. We show the
comparison between training using 128 and 1024 parallel environment threads in Figure 4.10a.
As apparent from the graph, training with large batch-size using 1024 parallel environment
threads performs much better. In fact, the agent is able to explore much more of the game:
discovering 11 different levels of the game, finding secret rooms and defeating bosses. Note
that the x-axis in the figure is the number of gradient steps, not the number of frames,
since the point of this large-scale experiment is not a claim about sample-efficiency, but
performance with respect to training the agent. This result suggests that the performance of
a purely curiosity-driven agent would improve as the training of base RL algorithm (PPO in
our case) gets better. The video is on the website.

Roboschool Juggling We modified the Pong environment from the Roboschool framework
to only have one paddle and to have two balls. The action space is continuous with two-
dimensions, and we discretized the action space into 5 bins per dimension giving a total of
25 actions. Both the policy and embedding network are trained on pixel observation space

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 62

(note: not state space). This environment is more difficult to control than the toy physics
used in games, but the agent learns to intercept and strike the balls when it comes into its
area. We monitored the number of bounces of the balls as a proxy for interaction with the
environment, as shown in Figure 4.10b. See the video on the project website.

Roboschool Ant Robot We also explored using the Ant environment which consists of
an Ant with 8 controllable joints on a track. We again discretized the action space and
trained policy and embedding network on raw pixels (not state space). However, in this
case, it was less easy to measure exploration because the extrinsic distance reward measures
progress along the racetrack, but a purely curious agent is free to move in any direction. We
find that a walking like behavior emerges purely out of a curiosity-driven training. We refer
the reader to the result video showing that the agent is meaningfully interacting with the
environment.

Multi-agent curiosity in Two-player Pong We have already seen that a purely curiosity-
driven agent learns to play several Atari games without reward, but we wonder how much
of that behavior is caused by the fact that the opposing player is a computer agent with a
hard-coded strategy. What would happen if we were to make both the players curious-driven?
To find out, we set up a two-player Pong game where both the sides (paddles) of the game
are controlled by two curiosity-driven agents. We shared the initial layers of both the agents
but have different action heads, i.e., total action space is now the cross product of the actions
of player 1 by the actions of player 2.

Note that the extrinsic reward is meaningless in this context since the agent is playing both
sides, so instead, we show the length of the episode. The results are shown in Figure 4.10c.
We see from the episode length that the agent learns to have longer rallies over time, learning
to play pong without any teacher – purely by curiosity on both sides. In fact, the game
rallies eventually get so long that they break our Atari emulator causing the colors to change
radically, which crashes the policy as shown in the plot.

4.4.2 Generalization across novel levels in Super Mario Bros.

In the previous section, we showed that our purely curious agent can learn to explore efficiently
and learn useful skills, e.g., game playing behaviour in games, walking behavior in Ant etc.
So far, these skills were shown in the environment where the agent was trained on. However,
one advantage of developing reward-free learning is that one should then be able to utilize
abundant “unlabeled” environments without reward functions by showing generalization to
novel environments.

To test this, we first pre-train our agent using curiosity only in the Level 1-1 of Mario
Bros. We investigate how well RF and IDF-based curiosity agents generalize to novel levels of
Mario. In Figure 4.11, we show two examples of training on one level of Mario and fine-tuning
on another testing level, and compare to learning on the testing level from scratch. The

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 63

training signal in all the cases is curiosity-only reward. In the first case, from Level 1-1 to
Level 1-2, the global statistics of the environments match (both are ‘day-time’ environments,
i.e., blue sky) but levels have different enemies, different geometry, and different difficulty.
We see that there is strong transfer from for both methods in this scenario. However, the
transfer performance is weaker in the second scenario from Level 1-1 to Level 1-3. This is
so because the problem is considerably harder for the latter level pairing as there is a color
pallette shift from day to night, as shown in Figure 4.11.

We further note that IDF-learned features transfer in both the cases and random features
transfer in the first case, but do not transfer in the second scenario from day to night. These
results might suggest that while random features perform well on training environments,
learned features appear to generalize better to novel levels. However, this needs more analysis
in the future across a large variety of environments. Overall, we find some promising evidence
showing that skills learned by curiosity help our agent explore efficiently in novel environments.

0 10 20 300

250

500

750

1000

1250

1500

1750

2000

World 1 level 1 to world 2 level 1

0 10 20 300

250

500

750

1000

1250

1500

1750

2000

World 1 level 1 to world 3 level 1

Frames (millions)

Ex
tri

ns
ic

Re
wa

rd
 p

er
 E

pi
so

de

IDF scratch
IDF transfer

RF scratch
RF transfer

Figure 4.11: Mario generalization experiments.
On the left we show transfer results from Level
1-1 to Level 1-2, and on the right we show transfer
results from Level 1-1 to Level 1-3. Underneath
each plot is a map of the source and target envi-
ronments. All agents are trained without extrinsic
reward.

Figure 4.12: Mean extrinsic re-
ward in the Unity environment
while training with terminal extrin-
sic + curiosity reward. Note that
the curve for extrinsic reward only
training is constantly zero.

4.4.3 Curiosity with Sparse External Reward

In all our experiments so far, we have shown that our agents can learn useful skills without
any extrinsic rewards, driven purely by curiosity. However, in many scenarios, we might want
the agent to perform some particular task of interest. This is usually conveyed to the agent
by defining extrinsic rewards. When rewards are dense (e.g. game score at every frame),
classic RL works well and intrinsic rewards generally should not help performance. However,

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 64

designing dense rewards is a challenging engineering problem (see introduction for details).
In this section, we evaluate how well curiosity can help an agent perform a task in presence
of sparse, or just terminal, rewards.

Terminal reward setting: For many real problems, only terminal reward is available,
e.g. in navigation, you only get rewards once you find what you were looking for. This is a
setting where classic RL typically performs poorly. Hence, we consider the 3D navigation
in a maze designed in the Unity ML-agent framework with 9 rooms and a sparse terminal
reward. The action space is discrete, consisting of: move forward, look left 15 degrees, look
right 15 degrees and no-op. The agent starts in room-1, which is furthest away from room-9
which contains the goal. We compare an agent trained with extrinsic reward (+1 when the
goal is reached, 0 otherwise) to an agent trained with extrinsic + intrinsic reward. Extrinsic
only (classic RL) never finds the goal in all our trials, which means it is impossible to get any
meaningful gradients. Whereas extrinsic+intrinsic typically converges to getting the reward
every time. Results in Figure 4.12 show results for vanilla PPO, PPO + IDF-curiosity and
PPO + RF-curiosity.

Sparse reward setting: In preliminary experiments, we picked 5 Atari games which
have sparse rewards (as categorized by [17]), and compared extrinsic (classic RL) vs. ex-
trinsic+intrinsic (ours) reward performance. In 4 games out of 5, curiosity bonus improves
performance (see Table A.1 in the appendix, the higher score is better). We would like
to emphasize that this is not the focus here, and these experiments are provided just for
completeness. We just combined extrinsic (coefficient 1.0) and intrinsic reward (coefficient
0.01) directly without any tuning. We leave the question on how to optimally combine
extrinsic and intrinsic rewards as a future direction.

4.5 Related Work

Exploration is a well-studied problem in the field of reinforcement learning. Early approaches
focused on studying exploration from theoretical perspective [239] and proposed Bayesian
formulations [47,125] but they are usually hard to scale to higher dimensions (e.g., images).
In this chapter, we focus on the specific problem of exploration using intrinsic rewards.

Intrinsic Motivation: Classic work of Kearns et al . [116] and Brafman et al . [25] propose
exploration algorithms polynomial in the number of state space parameters. Others have
used empowerment, which is the information gain based on entropy of actions, as intrinsic
rewards [122,156]. A family of approaches to intrinsic motivation reward an agent based on
prediction error [3, 216,234], information gain [103,143,236,237], or improvement [146,215]
of a forward dynamics model of the environment that gets trained along with the agent’s
policy. As a result the agent is driven to reach regions of the environment that are difficult
to predict for the forward dynamics model, while the model improves its predictions in these
regions. This adversarial and non-stationary dynamics can give rise to complex behaviors.
Relatively little work has been done in this area on the pure exploration setting where there
is no external reward. Of these mostly closely related are those that use a forward dynamics

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 65

model of a feature space such as Stadie et al . [234] where they use autoencoder features.
Our approach of jointly training forward and inverse models for learning a feature space has
similarities to [5, 113,261], but these works use the learned models of dynamics for planning
a sequence of actions instead of exploration. The idea of using a proxy task to learn a
semantic feature embedding has been used in a number of works on self-supervised learning
in computer vision [4, 51,84,111,184,254].

Smoothed versions of state visitation counts can be used for intrinsic rewards [17,171,242].
Count-based methods have shown strong results when combining with extrinsic rewards such
as in the Atari game Montezuma’s Revenge [17], and also showing significant exploration
of the game without using the extrinsic reward. It is not yet clear in which situations
count-based approaches should be preferred over dynamics-based approaches; we chose to
focus on dynamics-based bonuses in this study since we found them straightforward to scale
and parallelize. In our preliminary experiments, we did not have sufficient success with
already existing count-based implementations in scaling up for a large-scale study.

Learning without extrinsic rewards or fitness functions has also been studied extensively
in the evolutionary computing where it is referred to as ‘novelty search’ [136,137,235]. There
the novelty of an event is often defined as the distance of the event to the nearest neighbor
amongst previous events, using some statistics of the event to compute distances. One
interesting finding from this literature is that often much more interesting solutions can be
found by not solely optimizing for fitness.

Other methods of exploration are designed to work in combination with maximizing a
reward function, such as those utilizing uncertainty about value function estimates [34, 169],
or those using perturbations of the policy for exploration [69,196]. Schmidhuber et al . [217]
and Oudeyer et al . [173,174] provide a great review of some of the earlier work on approaches
to intrinsic motivation.

Random Features: One of the findings is the surprising effectiveness of random features,
and there is a substantial literature on random projections and more generally randomly
initialized neural networks. Much of the literature has focused on using random features for
classification [110,209,268] where the typical finding is that whilst random features can work
well for simpler problems, feature learning performs much better once the problem becomes
sufficiently complex. Whilst we expect this pattern to also hold true for dynamics-based
exploration, we have some preliminary evidence showing that learned features appear to
generalize better to novel levels in Mario Bros.

Concurrent work: A number of interesting related papers have appeared in concurrent to
this line of work. Sukhbaatar et al . [240] generates supervision for pre-training via asymmetric
self-play between two agents to improve data efficiency during fine-tuning. Several methods
propose improving data efficiency of RL algorithms using self-supervised prediction based
auxiliary tasks [109,224]. Fu et al . [71] learn discriminative models, and Gregor et al . [86] use
empowerment,which is a measurement of the control an agent has over the state, to tackle
exploration in sparse reward setups. However, none of these works show learning without
extrinsic rewards or generalization of policy to novel scenarios. In [63], diversity is used as a
measure to learn skills without reward functions.

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 66

4.6 Discussion

In this chapter, we proposed a mechanism for generating curiosity-driven intrinsic reward
signal that scales to high dimensional visual inputs, bypasses the difficult problem of predicting
pixels and ensures that the exploration strategy of the agent is unaffected by nuisance factors
in the environment.

We have shown that our agents trained purely with a curiosity reward are able to learn
useful behaviours: (a) Agent being able to play many Atari games without using any rewards.
(b) Mario being able to cross over 11 levels without any extrinsic reward. (c) Walking-
like behavior emerged in the Ant environment. (d) Juggling-like behavior in Robo-school
environment (e) Rally-making behavior in Two-player Pong with curiosity-driven agent on
both sides. But this is not always true as there are some Atari games where exploring the
environment does not correspond to extrinsic reward. More generally, our results suggest
that, in many game environments designed by humans, the extrinsic reward is often aligned
with the objective of seeking novelty. The game designers seem to set up curricula to guide
users while playing the game explaining the reason Curiosity-like objective decently aligns
with the extrinsic reward in many human-designed games [39,106,133,263].

Generalization: It is common practice to evaluate reinforcement learning approaches in
the same environment that was used for training. However, we feel that it is also important
to evaluate on a separate “testing set” as well. This allows us to gauge how much of what
has been learned is specific to the training environment (i.e. memorized), and how much
might constitute “generalizable skills” that could be applied to new settings. We evaluate
generalization in two ways: 1) by applying the learned policy to a new scenario “as is” (no
further learning), and 2) by fine-tuning the learned policy on a new scenario (we borrow
the pre-training/fine-tuning nomenclature from the deep feature learning literature). We
believe that evaluating generalization is a valuable tool and will allow the community to
better understand the performance of various reinforcement learning algorithms. To further
aid in this effort, we have made the code for our algorithm, as well as testing and environment
setups freely available online.

Limitation of prediction error based curiosity: A more serious potential limitation
is the handling of stochastic dynamics. If the transitions in the environment are random,
then even with a perfect dynamics model, the expected reward will be the entropy of the
transition, and the agent will seek out transitions with the highest entropy. Even if the
environment is not truly random, unpredictability caused by a poor learning algorithm, an
impoverished model class or partial observability can lead to exactly the same problem. We
did not observe this effect in our experiments on games so we designed an environment to
illustrate the point.

We return to the maze of Section 4.4.3 to empirically validate a common thought experi-
ment called the noisy-TV problem. The idea is that local sources of entropy in an environment
like a TV that randomly changes channels when an action is taken should prove to be an
irresistible attraction to our agent. We take this thought experiment literally and add a
TV to the maze along with an action to change the channel. In Figure 4.13, we show how

CHAPTER 4. CURIOSITY-DRIVEN EXPLORATION 67

Figure 4.13: We add a noisy TV to the unity envi-
ronment in Section 4.4.3. We compare IDF and RF
with and without the TV.

adding the noisy-TV affects the perfor-
mance of IDF and RF. As expected the
presence of the TV drastically slows down
learning, but we note that if you run the
experiment for long enough the agents do
sometimes converge to getting the extrinsic
reward consistently. We have shown empir-
ically that stochasticity can be a problem,
and so it is important for future work to
address this issue in an efficient manner.

Another limitation of of our proposed
as well as prior approaches is that they are
too inefficient to be scalable to real robotics
setups. In the next chapter, we propose
a formulation for exploration inspired by
the work in active learning literature which
is able to handle both stochastic environ-
ments and is efficient enough to scale to
real world robots.

68

Chapter 5

Self-Supervised Exploration via
Disagreement

Generating intrinsic rewards, e.g. curiosity, requires building some form of a predictive
model of the world. However, there is a key challenge in learning predictive models beyond
noise-free simulated environments: how should the stochastic nature of agent-environment
interaction be handled? Stochasticity could be caused by several sources: (1) noisy environ-
ment observations (e.g, TV playing noise), (2) noise in the execution of agent’s action (e.g.,
slipping) (3) stochasticity as an output of the agent’s action (e.g., agent flipping coin). One
straightforward solution to learn a predictive forward model that is itself stochastic! Despite
several methods to build stochastic models in low-dimensional state space [36, 103], scaling it
to high dimensional inputs (e.g., images) still remains challenging. An alternative is to build
deterministic models but encode the input in a feature space that is invariant to stochasticity.
We discussed building such models in inverse model feature space in Section 4.3.1 which can
handle stochastic observations but fail when the agent itself is the source of noise (e.g. TV
with remote in Section 4.6).

Beyond handling stochasticity, a bigger issue in the current intrinsic reward formulations is
that of sample efficiency. The agent performs an action and then computes the reward based
on its own prediction and environment behavior. For instance, in curiosity (see Chapter 4),
the policy is rewarded if the prediction model and the observed environment disagree. From
an exploration viewpoint, this seems like a good formulation, i.e, rewarding actions whose
effects are poorly modeled. But this reward is a function of environment dynamics with
respect to the performed action. Since the environment dynamics is unknown, it is treated as
black-box and the policy’s gradients have to be estimated using high-variance estimators like
REINFORCE [259] which are extremely sample-inefficient in practice.

We address both the challenges by proposing an alternative formulation for exploration
taking inspiration from active learning. The goal of active learning is to selectively pick

This chapter is based on the paper published previously at ICML 2019 [180].

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 69

!"# = 3,!

&"'(

)*+

&"'(

&" ,"

-(

.&"'((

&"'(− .&"'((

&" ,"

-0

.&"'(0

&"'(− .&"'(0

&" ,"

-1

.&"'(1

&"'(− .&"'(1

&"

2

,"

Intrinsic
Reward

Current
Observation

Policy
Network

Action

Next
Observation

Ensemble of Dynamics Models

Figure 5.1: Self-Supervised Exploration via Disagreement. At time step t, the agent in the state xt
interacts with the environment by taking action at sampled from the current policy π and ends up
in the state xt+1. The ensemble of forward models {f1, f2, ..., fn} takes this current state xt and the
executed action at as input to predict the next state estimates {x̂1t+1, x̂

2
t+2, ..., x̂

n
t+1}. The variance

over the ensemble of network output is used as intrinsic reward rit to train the policy π. In practice,
we encode the state x into an embedding space φ(x) for all the prediction purposes.

samples to label such that the classifier is maximally improved. However, unlike current
intrinsic motivation formulations where an agent is rewarded by comparing the prediction to
the ground-truth, the importance of a sample is not computed by looking at the ground-truth
label but rather by looking at the state of the classifier itself. For instance, a popular
approach is to label the most uncertain samples by looking at the confidence of the classifier.
However, since most of the high-capacity deep neural networks tend to overfit, confidence is
not a good measure of uncertainty. Hence, taking an analogy from the Query-by-Committee
algorithm [223], we propose a simple disagreement-based approach: we train an ensemble of
forward dynamics models and incentivize the agent to explore the action space where there is
maximum disagreement or variance among the predictions of models of this ensemble. Taking
actions to maximize the model-disagreement allows the agent to explore in a completely
self-supervised manner without relying on any external rewards. We show that this approach
does not get stuck in stochastic-dynamics scenarios because all the models in the ensemble
converge to mean, eventually reducing the variance of the ensemble.

Furthermore, we show that our new objective is a differentiable function allowing us
to perform policy optimization via direct likelihood maximization – much like supervised
learning instead of reinforcement learning. This leads to a sample efficient exploration policy
allowing us to deploy it in a real robotic object manipulation setup with 7-DOF Sawyer arm.
We demonstrate the efficacy of our approach on a variety of standard environments including
stochastic Atari games [147], MNIST, Mujoco, Unity [114] and a real robot. Project videos
and code are at https://pathak22.github.io/exploration-by-disagreement/.

https://pathak22.github.io/exploration-by-disagreement/

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 70

5.1 Exploration via Disagreement

Consider an agent interacting with the environment E . At time t, it receives the observation
xt and then takes an action predicted by its policy, i.e., at ∼ π(xt; θP). Upon executing the
action, it receives, in return, the next observation xt+1 which is ‘generated’ by the environment.
Our goal is to build an agent that chooses its action in order to maximally explore the state
space of the environment in an efficient manner. There are two main components to our agent:
an intrinsic forward prediction model that captures the agent’s current knowledge of the
states explored so far, and policy to output actions. As our agent explores the environment,
we learn the agent’s forward prediction model to predict the consequences of its own actions.
The prediction uncertainty of this model is used to incentivize the policy to visit states with
maximum uncertainty.

Both measuring and maximizing model uncertainty are challenging to execute with high
dimensional raw sensory input (e.g. images). More importantly, the agent should learn to deal
with ‘stochasticity’ in its interaction with the environment caused by either noisy actuation
of the agent’s motors, or the observations could be inherently stochastic. A deterministic
prediction model will always end up with a non-zero prediction error allowing the agent to
get stuck in the local minima of exploration.

Similar behavior would occur if the task at hand is too difficult to learn. Consider a
robotic arm manipulating a keybunch. Predicting the change in pose and position of each
key in the keybunch is extremely difficult. Although the behavior is not inherently stochastic,
our agent could easily get stuck in playing with the same keybunch and not try other
actions or even other objects. Existing formulations of curiosity reward or novelty-seeking
count-based methods would also suffer in such scenarios. Learning probabilistic predictive
models to measure uncertainty [103], or measuring learnability by capturing the change in
prediction error [174,215] have been proposed as solutions, but have been demonstrated in
low-dimensional state space inputs and are difficult to scale to high dimensional image inputs.

5.1.1 Disagreement as Intrinsic Reward

Instead of learning a single dynamics model, we propose an alternate exploration formulation
based on ensemble of models as inspired by the classical active learning literature [223], see
Figure 5.1. The goal of active learning is to find the optimal training examples to label such
that the accuracy is maximized at minimum labeling cost. While active learning minimizes
optimal cost with an analytic policy, the goal of an exploration-driven agent is to learn a
policy that allows it to best navigate the environment space. Although the two might look
different at the surface, we argue that active learning objectives could inspire powerful intrinsic
reward formulations. In this chapter, we leverage the idea of model-variance maximization to
propose exploration formulation. Leveraging model variance to investigate a system is also a
well-studied mechanism in optimal experimental design literature [24] in statistics.

As our agent interacts with the environment, it collects trajectory of the form {xt, at, xt+1}.
After each rollout, the collected transitions are used to train an ensemble of forward prediction

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 71

models {fθ1 , fθ2 . . . , fθk} of the environment. Each of the model is trained to map a given
tuple of current observation xt and the action at to the resulting state xt+1. These models are
trained using straightforward maximum likelihood estimation that minimizes the prediction
error, i.e, ‖f(xt, at; θ)− xt+1‖2. To maintain the diversity across the individual models, we
initialize each model’s parameters differently and train each of them on a subset of data
randomly sampled with replacement (bootstrap).

Each model in our ensemble is trained to predict the ground truth next state. Hence,
the parts of the state space which have been well explored by the agent will have gathered
enough data to train all models, resulting in an agreement between the models. Since the
models are learned (and not tabular), this property should generalize to unseen but similar
parts of the state-space. However, the areas which are novel and unexplored would still
have high prediction error for all models as none of them are yet trained on such examples,
resulting in disagreement on the next state prediction. Therefore, we use this disagreement
as an intrinsic reward to guide the policy. Concretely, the intrinsic reward rit is defined as the
variance across the output of different models in the ensemble:

rit , Eθ
[
‖f(xt, at; θ)− Eθ[f(xt, at; θ)]‖22

]
(5.1)

Note that the expression on the right does not depend on the next state xt+1 — a property
which will exploit in Section 5.1.3 to propose efficient policy optimization.

Given the agent’s rollout sequence and the intrinsic reward rit at each timestep t, the policy
is trained to maximize the sum of expected reward, i.e., maxθP Eπ(xt;θP)

[∑
t γ

trit
]

discounted
by a factor γ. Note that the agent is self-supervised and does not need any extrinsic reward
to explore. The agent policy and the forward model ensemble are jointly trained in an
online manner on the data collected by the agent during exploration. This objective can be
maximized by any policy optimization technique, e.g., we use proximal policy optimization
(PPO) [218] unless specified otherwise.

5.1.2 Exploration in Stochastic Environments

Consider a scenario where the next state xt+1 is stochastic with respect to the current state
xt and action at. The source of stochasticity could be noisy actuation, difficulty or inherent
randomness. Given enough samples, a dynamic prediction model should learn to predict
the mean of the stochastic samples. Hence, the variance of the outputs in ensemble will
drop preventing the agent from getting stuck in stochastic local-minima of exploration. Note
this is unlike prediction error based objectives we discussed in previous chapter which will
settle down to a mean value after large enough samples. Since, the mean is different from
the individual ground-truth stochastic states, the prediction error remains high making the
agent forever curious about the stochastic behavior. We empirically verify this intuition by
comparing prediction-error to disagreement across several environments in Section 5.3.2.

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 72

5.1.3 Differentiable Exploration for Policy Optimization

One commonality between different exploration methods [17, 103,179], is that the prediction
model is usually learned in a supervised manner and the agent’s policy is trained using
reinforcement learning either in on-policy or off-policy manner. Despite several formulations
over the years, the policy optimization procedure to maximize these intrinsic rewards has
more or less remained the same – i.e. – treating the intrinsic reward as a “black-box” even
though it is generated by the agent itself.

Let’s consider an example to understand the reason behind the status quo. Consider a
robotic-arm agent trying to push multiple objects kept on the table in front of it by looking
at the image from an overhead camera. Suppose the arm pushes an object such that it
collides with another one on the table. The resulting image observation will be the outcome of
complex real-world interaction, the actual dynamics of which is not known to the agent. Note
that this resulting image observation is a function of the agent’s action (i.e., push in this case).
Most commonly, the intrinsic reward ri(xt, at, xt+1) is function of the next state (which is a
function of the agent’s action), e.g., information gain [103], prediction error (Chapter 4) etc.
This dependency on the unknown environment dynamics absolves the policy optimization of
analytical reward gradients with respect to the action. Hence, the standard way is to optimize
the policy to maximize the sequence of intrinsic rewards using reinforcement learning, and
not make any use of the structure present in the design of rit.

We formulate our proposed intrinsic reward as a differentiable function so as to perform
policy optimization using likelihood maximization – much like supervised learning instead
of reinforcement. If possible, this would allow the agent to make use of the structure in rit
explicitly, i.e., the intrinsic reward from the model could very efficiently inform the agent
to change its action space in the direction where forward prediction loss is high, instead
of providing a scalar feedback as in case of reinforcement learning. Explicit reward (cost)
functions are one of the key reasons for success stories in optimal-control based robotics [48,73],
but they don’t scale to high-dimensional state space such as images and rely on having access
to a good model of the environment.

We first discuss the one step case and then provide the general setup. Note that our
intrinsic reward formulation, shown in Equation (5.1), does not depend on the environment
interaction at all, i.e., no dependency on xt+1. It is purely a mental simulation of the ensemble
of models based on the current state and the agent’s prediction action. Hence, instead of
maximizing the intrinsic reward in expectation via PPO (RL), we can optimize for policy
parameters θP using direct gradients by treating rit as a differentiable loss function. The
objective for a one-step reward horizon is:

min
θ1,...,θk

(1/k)
k∑
i=1

‖fθi(xt, π(xt; θP))− xt+1‖2 (5.2)

max
θP

(1/k)
k∑
i=1

[
‖fθi(xt, π(xt; θP))− (1/k)

k∑
j=1

fθj(xt, π(xt; θP))‖22
]

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 73

This is optimized in an alternating fashion where the forward predictor is optimized
keeping the policy parameters frozen and vice-versa. Note that both policy and forward
models are trained via maximum likelihood in a supervised manner, and hence, efficient in
practice.

Generalization to multi-step reward horizon To optimize policy for maximizing a
discounted sum of sequence of future intrinsic rewards rit in a differentiable manner, the
forward model would have to make predictions spanning over multiple time-steps. The
policy objective in Equation (5.2) can be generalized to the multi-step horizon setup by
recursively applying the forward predictor, i.e., maxθP

∑
t r

i
t(x̂t, at) where x̂t = f(x̂t−1, at−1; θ),

at = π(xt; θP), x̂0 = x0, and rit(.) is defined in Equation (5.1). Alternatively, one could use
LSTM to make forward model itself multi-step. However, training a long term multi-step
prediction model is challenging and an active area of research. In this thesis, we show
differentiable exploration results for short horizon only and leave multi-step scenarios for
future work.

5.2 Implementation Details and Baselines

Learning forward predictions in the feature space In Chapter 4, we showed that
learning forward-dynamics predictor fθ in a feature space leads to better generalization
in contrast to raw pixel-space predictions. Our formulation is trivially extensible to any
representation space φ because all the operations can be performed with φ(xt) instead of
xt. Hence, in all of our experiments, we train our forward prediction models in feature
space. In particular, we use random feature space in all video games and navigation,
classification features in MNIST and ImageNet-pretrained ResNet-18 features in real world
robot experiments. We use 5 models in the ensemble.

Back-propagation through forward model To directly optimize the policy with respect
to the loss function of the forward predictor, as discussed in Section 5.1.3, we need to
backpropagate all the way through action sampling process from the policy. In case of
continuous action space, one could achieve this via making policy deterministic, i.e. at = πθP
with epsilon-greedy sampling [141]. For discrete action space, we found that straight-through
estimator [21] works well in practice.

Baseline Comparisons ‘Disagreement’ refers to our exploration formulation optimized
using PPO [218] as discussed in Section 5.1.1, unless mentioned otherwise. ‘Disagreement
[Differentiable]’ refers to the direct policy optimization for our formulation as described
in Section 5.1.3. ‘Pathak et.al. [ICML 2017]’ refers to the curiosity-driven exploration
formulation based on the prediction error of the learned forward dynamics model in inverse
model action space, discussed in Chapter 4. ‘Burda et.al. [ICLR 2019]’ refers to the random
feature-based prediction-error [30]; also discussed in Chapter 4. ‘Pred-Error Variance’ is an

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 74

Figure 5.2: Sanity Check in Non-Stochastic Environments. We compare different intrinsic reward
formulations across near-deterministic, non-stochastic standard benchmark of the Atari games.
Our disagreement-based approach compares favorably to state-of-the-art approaches without losing
accuracy in non-stochastic scenarios.

alternative ablation where we train the agent to maximize the variance of the prediction error
as opposed to the variance of model output itself. Finally, we also compare our performance
to Bayesian Neural Networks for measuring variance. In particular, we compared to Dropout
NN [72] represented as ‘Bayesian Disagreement’.

5.3 Experiments

We evaluate our approach on several environments including Atari games, 3D navigation
in Unity, MNIST, object manipulation in Mujoco and real world robotic manipulation task
using Sawyer arm. Our experiments comprise of three parts: a) verifying the performance on
standard non-stochastic environments; b) comparison on environments with stochasticity in
either transition dynamics or observation space; and c) validating the efficiency of differentiable
policy optimization facilitated by our objective.

5.3.1 Sanity Check in Non-Stochastic Environments

We first verify whether our disagreement formulation is able to maintain the performance on
the standard environment as compared to state of the art exploration techniques. Although
the primary advantage of our approach is in handling stochasticity and improving efficiency
via differentiable policy optimization, it should not come at the cost of performance in nearly-
deterministic scenarios. We run this sanity check on standard Atari benchmark suite, as
shown in Figure 5.2. These games are not completely deterministic and have some randomness
as to where the agent is spawned upon game resets [155]. The agent is trained with only
an intrinsic reward, without any external reward from the game environment. The external

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 75

reward is only used as a proxy to evaluate the quality of exploration and not shown to the
agent.

We train our ensemble of models for computing disagreement in the embedding space
of a random network as discussed in Section 5.2. The performance is compared to curiosity
formulation with inverse dynamics and random features (discussed in Chapter 4), Bayesian
network based uncertainty and variance of prediction error. As seen in the results, our
method is as good as or slightly better than state-of-the-art exploration methods in most
of the scenarios. Overall, these experiments suggest that our exploration formulation which
is only driven by disagreement between models output compares favorably to state of the
art methods. Note that the variance of prediction error performs significantly worse. This is
so because the low variance in prediction error of different models doesn’t necessarily mean
they will agree on the next state prediction. Hence, ‘Pred-Error Variance’ may sometimes
incorrectly stop exploring even if output prediction across models is drastically different.

5.3.2 Exploration in Stochastic Environments

A) Noisy MNIST. We first build a toy task on MNIST to intuitively demonstrate the
contrast between disagreement-based intrinsic reward and prediction error-based reward (cf.
Chapter 4) in stochastic setups. This is a one-step environment where the agent starts by
randomly observing an MNIST image from either class 0 or class 1. The dynamics of the
environment are defined as follows: 1) images with label 0 always transition to another image
from class 0. 2) Images with label 1 transition to a randomly chosen image from class label
2 to 9. This ensures that a transition from images with label 0 has low stochasticity (i.e.,
transition to the same label). On the other hand, transitions from images with label 1 have
high stochasticity. The ideal intrinsic reward function should give similar incentive (reward)
to both the scenarios after the agent has observed a significant number of transitions.

Figure 5.3 shows the performance of these methods on the test set of MNIST as a function
of the number of states visited by the agent. Even at convergence, the prediction error based
model assigns more reward to the observations with higher stochasticity, i.e., images with
label 1. This behavior is detrimental since the transition from states of images with label 1
cannot ever be perfectly modeled and hence the agent will get stuck forever. In contrast, our
ensemble-based disagreement method converges to almost zero intrinsic reward in both the
scenarios after the agent has seen enough samples, as desired.

B) 3D Navigation in Unity. The goal in this setup is to train the agent to reach a target
location in the maze. The agent receives a sparse reward of +1 on reaching the goal. For all
the methods, we train the policy of the agent to maximize the summation of intrinsic and
sparse extrinsic reward. This particular environment is a replica of VizDoom-MyWayHome
environment in unity ML-agent and was proposed in Burda et al . [30]. Interestingly, this
environment has 2 variants, one of which has a TV on the wall. The agent can change
the channel of the TV but the content is stochastic (random images appear after pressing
button). The agent can start randomly anywhere in the maze in each episode, but the

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 76

40 60 80 100 120 140 160 180 200
Number of Samples

0

2

4

6

8

In
tri

ns
ic

Re
wa

rd

PredErr, LessStochastic
PredErr, HighStochastic
VarOut [ours], LessStochastic
VarOut [ours], HighStochastic

Figure 5.3: Performance of disagreement
across ensemble vs prediction error based
reward function on Noisy MNIST environ-
ment. This environment has 2 sets of state
with different level of stochasticity associ-
ated with them. The disagreement-based
intrinsic reward converges to the ideal case
of assigning the same reward value for
both states. However, the prediction-error
based reward function assigns a high re-
ward to states with high stochasticity.

Figure 5.4: 3D Navigation in Unity. Comparison
of prediction-error based curiosity reward with our
proposed disagreement-based exploration on 3D navi-
gation task in Unity with and without the presence
of TV+remote. While both the approaches perform
similar in normal case (left), disagreement-based ap-
proach performs better in the presence of stochasticity
(right).

goal location is fixed. We compare our proposed method with state-of-the-art prediction
error-based exploration [30]. The results are shown in Figure 5.4. Our approach performs
similar to the baseline in the non-TV setup and outperforms the baseline in the presence of
the TV. This result demonstrates that an ensemble-based disagreement could be a viable
alternative in realistic stochastic setups.

C) Atari with Sticky Actions. As discussed in Section 5.3.1, the usual Atari setup is
nearly deterministic. Therefore, a recent study [147] proposed to introduce stochasticity in
Atari games by making actions ‘sticky’, i.e., at each step, either the agent’s intended action
is executed or the previously executed action is repeated with equal probability. As shown in
Figure 5.5, our disagreement-based exploration approach outperforms previous state-of-the-art
approaches. In Pong, our approach starts slightly slower than Burda et.al. [30], but eventually
achieves a higher score. Further note that the Bayesian network-based disagreement does not
perform as well as ensemble-based disagreement. This suggests that perhaps dropout [72]
isn’t able to capture good uncertainty estimate in practice. These experiments along with the
navigation experiment, demonstrate the potential of ensembles in the face of stochasticity.

5.3.3 Differentiable Exploration in Structured Envs

We now evaluate the differentiable exploration objective proposed in Section 5.1.3. As
discussed earlier, the policy is optimized via direct analytic gradients from the exploration

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 77

Figure 5.5: Stochastic Atari Games: Comparison of
different exploration techniques in the the Atari (‘sticky’)
environment. The disagreement-based exploration is
robust across both the scenarios.

Figure 5.6: Performance comparison
of disagreement-based exploration with
or without the differentiable policy opti-
mization in Enduro Atari Game. Differ-
entiability helps the agent learn faster.

module. Therefore, the horizon of exploration depends directly on the horizon of the module.
Since training long-horizon models from high dimensional inputs (images) is still an unsolved
problem, we evaluate our proposed formulation on relatively short horizon scenarios. However,
to compensate for the length of the horizon, we test on large action space setups for real-world
robot manipulation task.

A) Enduro Video Game. In this game, the goal of the agent is to steer the car on
racing track to avoid enemies. The agent is trained to explore via purely intrinsic rewards,
and the extrinsic reward is only used for evaluation. In order to steer the car, the agent
doesn’t need to model long-range dependencies. Hence, in this environment, we combine
our differentiable policy optimization with reinforcement learning (PPO) to maximize our
disagreement based intrinsic reward. The RL captures discounted long term dependency
while our differentiable formulation should efficiently take care of short-horizon dependencies.
We compare this formulation to purely PPO based optimization of our intrinsic reward.
As shown in Figure 5.6, our differentiable exploration expedites the learning of the agent
suggesting the efficacy of direct gradient optimization. We now evaluate the performance of
only differentiable exploration (without reinforcement) in short-horizon and large-structured
action space setups.

B) Object Manipulation by Exploration.

We consider the task of object manipulation in complex scenarios. Our setup consists of
a 7-DOF robotic arm that could be tasked to interact with the objects kept on the table
in front of it. The objects are kept randomly in the workspace of the robot on the table.

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 78

0 2 4 6 8 10

Number of training steps (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

M
e
a
n
 R

e
w

a
rd

s

Disagreement [Differentiable]

Disagreement [Reinforce]

(a) Mujoco

0 100 200 300 400 500 600 700
Number of training steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Re

wa
rd

s

Disagreement-Differentiable [Ours]
Pathak et.al. [ICML 2017]

(b) Real Robot (c) Real Robot Setup

Figure 5.7: Measuring object interaction rate with respect to the number of samples in (a) Mujoco,
and (b) real-world robot. Note that the Mujoco plot is in log-scale. We measure the exploration
quality by evaluating the object interaction frequency of the agent. In both the environments, our
differentiable policy optimization explores more efficiently. (c) A snapshot of the real-robotic setup.

Robot’s action space is end-effector position control: a) location (x, y) of point on the surface
of table, b) angle of approach θ, and c) gripper status, a binary value indicating whether
to grasp (open the gripper fingers) or push (keep fingers close). All of our experiments use
raw visual RGBD images as input and predict actions as output. Note that, to accurately
grasp or push objects, the agent needs to figure out an accurate combination of location,
orientation and gripper status.

The action space is discretized into 224×224 locations, 16 orientations for grasping (fingers
close) and 16 orientations for pushing leading to final dimension of 224× 224× 32. The policy
takes as input a 224× 224 RGBD image and produces push and grasp action probabilities
for each pixel. Following [275], instead of adding the 16 rotations in the output, we pass 16
equally spaced rotated images to the network and then sample actions based on the output
of all the inputs. This exploits the convolutional structure of the network. The task has a
short horizon but very large state and action spaces. We make no assumption about either
the environment or the training signal. Our robotic agents explore the work-space purely out
of their own intrinsic reward in a pursuit to develop useful skills. We have instantiated this
setup in a Mujoco simulation as well as in the real world robotics scenarios.

B1) Object Manipulation in MuJoCo. We first carry out a study in simulation to
compare the performance of differentiable variant of our disagreement objective against
the reinforcement learning based optimization. We used MuJoCo to simulate the robot
performing grasping and pushing on tabletop environment as described above.

To evaluate the quality of exploration, we measure the frequency at which our agent
interacts (i.e., touches) with the object. This measure is just used to evaluate the exploration
quantitatively and is not used as a training signal. It represents how quickly our agent’s
policy learns to explore an interesting part of space. Figures 5.7a shows the performance
when the environment consists of just a single object which makes it really difficult to touch
the object randomly. Our approach is able to exploit the structure in the loss, resulting in

CHAPTER 5. EXPLORATION VIA DISAGREEMENT 79

order of magnitude faster learning than REINFORCE.

B2) Real-World Robotic Manipulation. We now deploy our sample-efficient explo-
ration formulation on real-world robotics setup. The real-world poses additional challenges,
unlike simulated environments in terms of behavior and the dynamics of varied object types.
Our robotic setup consisted of a Sawyer-arm with a table placed in front of it. We mounted
KinectV2 at a fixed location from the robot to receive RGBD observations of the environment.

In every run, the robot starts with 3 objects placed in front of it. Unlike other self-
supervised robot learning setups, we keep fewer objects to make exploration problem harder
so that it is not trivial to interact with the objects by acting randomly. If either the robot
completes 100 interactions or there are no objects in front of it, objects are replaced manually.
Out of a total of 30 objects, we created a set of 20 objects for training and 10 objects for
testing. We use the same metric as used in the simulation above (i.e., number of object
interactions) to measure the effectiveness of our exploration policy during training. We
monitor the change in the RGBD image to see if the robot has interacted with objects.
Figure 5.7b shows the effectiveness of differentiable policy optimization for disagreement
over prediction-error based curiosity objective. Differentiable-disagreement allows the robotic
agent to learn to interact with objects in less than 1000 examples.

We further test the skills learned by our robot during its exploration by measuring
object-interaction frequency on a set of 10 held-out test objects. For both the methods, we
use the checkpoint saved after 700 robot interaction with the environment. For each model,
we evaluate a total of 80 robot interaction steps with three test objects kept in front. The
environment is reset after every 10 robot steps during evaluation. Our final disagreement
exploration policy interacts approximately 67% of times with unseen objects, whereas a
random policy performs at 17%. On the other hand, it seems that REINFORCE-based
curiosity policy just collapses and only 1% of actions involve interaction with objects. Videos
are available at https://pathak22.github.io/exploration-by-disagreement/.

5.4 Discussion

We discussed large body of literature in Chapter 4, Section 4.5 on exploration and curioity.
However, most of those approaches are considered in the context of external rewards and are
not efficient enough to be scalable to real robotics setup.

This chapter is inspired by large-body of work in active learning (AL). In the AL setting,
given a collection of unlabeled examples, a learner selects which samples will be labeled by an
oracle [222]. Common selection criteria include entropy [40], uncertainty sampling [139] and
expected informativeness [102]. Our work is inspired by [223], and we apply the disagreement
idea in a completely different setting of exploration and show its applicability to environments
with stochastic dynamics and improving sample-efficiency. Concurrent to this work, [225]
also show the effectiveness of model-based exploration in estimating novelty, and [97] use
variance regularization for policy learning via imitation.

https://pathak22.github.io/exploration-by-disagreement/

80

Part III

From Skills to Goal-Directed
Expertise

81

Chapter 6

Zero-Shot Visual Imitation

So far, we discussed how an agent could acquire sensorimotor skills of increasing complexity
with no knowledge of labels or tasks. However, in order to be useful for real-world tasks, the
agent will eventually have to develop the ability to perform a specific task given to it. One
way to develop such expertise is to fine-tune our curious agents using rewards that are tuned
for an external goal. We discuss results using this reward-based finetuning in Chapter 4.
However, this reward-based finetuning relies on reinforcement learning and is therefore too
sample inefficient to be scalable to complex real world robotic tasks. Furthermore, designing
such reward function for real-world tasks is a complex engineering problem.

Therefore, learning from demonstration (LfD) [10,163,197,211] has emerged as a powerful
mechanism for learning to perform tasks from raw sensory observations with real robots.
The current dominant paradigm in LfD requires the expert to either manually move the
robot joints (i.e., kinesthetic teaching) or teleoperate the robot to execute the desired task.
The expert typically provides multiple demonstrations of a task at training time, and this
generates data in the form of observation-action pairs from the agent’s point of view. The
agent then distills this data into a policy for performing the task of interest. Such a heavily
supervised approach, where it is necessary to provide demonstrations by controlling the robot,
is incredibly tedious for the human expert. Moreover, for every new task that the robot needs
to execute, the expert is required to provide a new set of demonstrations.

Instead of communicating how to perform a task via observation-action pairs, a more
general formulation allows the expert to communicate only what needs to be done by providing
the observations of the desired world states via a video or a sparse sequence of images. This
way, the agent is required to infer how to perform the task (i.e., actions) by itself. In
psychology, this is known as observational learning [14]. While this is a harder learning
problem, it is a more interesting setting, because the expert can demonstrate multiple tasks
quickly and easily.

An agent without any prior knowledge will find it extremely hard to imitate a task by

This chapter is based on the paper published previously at ICLR 2018 [186].

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 82

features
<latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit>

recurrent
state

<latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit>

forward
consistency

<latexit sha1_base64="Bcp8XF0mzVzho774hEeR8d4Bcs4=">AAACGXicbVBNS8NAEN3Urxq/oh69BIvgqSS9qLeCF48VjC00oWw2k3bpZhN2N0oI/R1e/CtePKh41JP/xk1bQVsfDDzezDDzXpgxKpXjfBm1ldW19Y36prm1vbO7Z+0f3Mo0FwQ8krJU9EIsgVEOnqKKQS8TgJOQQTccX1b97h0ISVN+o4oMggQPOY0pwUpLA8v1QxhSXhLgCsTEjFNxj0Xk+yZJudT3gZPC9IFHPyMDq+E0nSnsZeLOSQPN0RlYH36UkjzR64RhKfuuk6mgxEJRwmBi+rmEDJMxHkJfU44TkEE5tTaxT7QS2forXVzZU/X3RokTKYsk1JMJViO52KvE/3r9XMXnQUl5llcWZ4finNkqtauc7IgKIIoVmmAiqP7VJiMsMNEZSFOH4C5aXiZeq3nRdK9bjXZrnkYdHaFjdIpcdIba6Ap1kIcIekBP6AW9Go/Gs/FmvM9Ga8Z85xD9gfH5DShQobo=</latexit><latexit sha1_base64="Bcp8XF0mzVzho774hEeR8d4Bcs4=">AAACGXicbVBNS8NAEN3Urxq/oh69BIvgqSS9qLeCF48VjC00oWw2k3bpZhN2N0oI/R1e/CtePKh41JP/xk1bQVsfDDzezDDzXpgxKpXjfBm1ldW19Y36prm1vbO7Z+0f3Mo0FwQ8krJU9EIsgVEOnqKKQS8TgJOQQTccX1b97h0ISVN+o4oMggQPOY0pwUpLA8v1QxhSXhLgCsTEjFNxj0Xk+yZJudT3gZPC9IFHPyMDq+E0nSnsZeLOSQPN0RlYH36UkjzR64RhKfuuk6mgxEJRwmBi+rmEDJMxHkJfU44TkEE5tTaxT7QS2forXVzZU/X3RokTKYsk1JMJViO52KvE/3r9XMXnQUl5llcWZ4finNkqtauc7IgKIIoVmmAiqP7VJiMsMNEZSFOH4C5aXiZeq3nRdK9bjXZrnkYdHaFjdIpcdIba6Ap1kIcIekBP6AW9Go/Gs/FmvM9Ga8Z85xD9gfH5DShQobo=</latexit><latexit sha1_base64="Bcp8XF0mzVzho774hEeR8d4Bcs4=">AAACGXicbVBNS8NAEN3Urxq/oh69BIvgqSS9qLeCF48VjC00oWw2k3bpZhN2N0oI/R1e/CtePKh41JP/xk1bQVsfDDzezDDzXpgxKpXjfBm1ldW19Y36prm1vbO7Z+0f3Mo0FwQ8krJU9EIsgVEOnqKKQS8TgJOQQTccX1b97h0ISVN+o4oMggQPOY0pwUpLA8v1QxhSXhLgCsTEjFNxj0Xk+yZJudT3gZPC9IFHPyMDq+E0nSnsZeLOSQPN0RlYH36UkjzR64RhKfuuk6mgxEJRwmBi+rmEDJMxHkJfU44TkEE5tTaxT7QS2forXVzZU/X3RokTKYsk1JMJViO52KvE/3r9XMXnQUl5llcWZ4finNkqtauc7IgKIIoVmmAiqP7VJiMsMNEZSFOH4C5aXiZeq3nRdK9bjXZrnkYdHaFjdIpcdIba6Ap1kIcIekBP6AW9Go/Gs/FmvM9Ga8Z85xD9gfH5DShQobo=</latexit><latexit sha1_base64="Bcp8XF0mzVzho774hEeR8d4Bcs4=">AAACGXicbVBNS8NAEN3Urxq/oh69BIvgqSS9qLeCF48VjC00oWw2k3bpZhN2N0oI/R1e/CtePKh41JP/xk1bQVsfDDzezDDzXpgxKpXjfBm1ldW19Y36prm1vbO7Z+0f3Mo0FwQ8krJU9EIsgVEOnqKKQS8TgJOQQTccX1b97h0ISVN+o4oMggQPOY0pwUpLA8v1QxhSXhLgCsTEjFNxj0Xk+yZJudT3gZPC9IFHPyMDq+E0nSnsZeLOSQPN0RlYH36UkjzR64RhKfuuk6mgxEJRwmBi+rmEDJMxHkJfU44TkEE5tTaxT7QS2forXVzZU/X3RokTKYsk1JMJViO52KvE/3r9XMXnQUl5llcWZ4finNkqtauc7IgKIIoVmmAiqP7VJiMsMNEZSFOH4C5aXiZeq3nRdK9bjXZrnkYdHaFjdIpcdIba6Ap1kIcIekBP6AW9Go/Gs/FmvM9Ga8Z85xD9gfH5DShQobo=</latexit>

at�1
<latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit>

xt
<latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit>

xg
<latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit>

at
<latexit sha1_base64="hwXDxs6Wgyl7kVyCFMQvkgEmKdQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSPe1jv1pz6+4cZJV4BalBgVa/+tUbJCyLuUImqTFdz00xyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroJcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgRv+eVV4l/Ur+veXaPWbBRplOEETuEcPLiEJtxCC3xgMIRneIU3RzovzrvzsWgtOcXMMfyB8/kDt5WNkg==</latexit><latexit sha1_base64="hwXDxs6Wgyl7kVyCFMQvkgEmKdQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSPe1jv1pz6+4cZJV4BalBgVa/+tUbJCyLuUImqTFdz00xyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroJcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgRv+eVV4l/Ur+veXaPWbBRplOEETuEcPLiEJtxCC3xgMIRneIU3RzovzrvzsWgtOcXMMfyB8/kDt5WNkg==</latexit><latexit sha1_base64="hwXDxs6Wgyl7kVyCFMQvkgEmKdQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSPe1jv1pz6+4cZJV4BalBgVa/+tUbJCyLuUImqTFdz00xyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroJcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgRv+eVV4l/Ur+veXaPWbBRplOEETuEcPLiEJtxCC3xgMIRneIU3RzovzrvzsWgtOcXMMfyB8/kDt5WNkg==</latexit><latexit sha1_base64="hwXDxs6Wgyl7kVyCFMQvkgEmKdQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWNLbQhrLZbtqlm03YnQgl9Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fjm5nffuLaiEQ94CTlQUyHSkSCUbTSPe1jv1pz6+4cZJV4BalBgVa/+tUbJCyLuUImqTFdz00xyKlGwSSfVnqZ4SllYzrkXUsVjbkJ8vmpU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroJcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nQqNgRv+eVV4l/Ur+veXaPWbBRplOEETuEcPLiEJtxCC3xgMIRneIU3RzovzrvzsWgtOcXMMfyB8/kDt5WNkg==</latexit>

ât
<latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit>

x̂t+1
<latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit><latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit><latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit><latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit>

L(at, ât)
<latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit>

L(xt+1, x̂t+1)
<latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit><latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit><latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit><latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit>

features
<latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit>

recurrent
state

<latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit>

at�1
<latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit>

xt
<latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit>

xg
<latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit>

ât
<latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit>

L(at, ât)
<latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit>

L(xt+1, x̂t+1)
<latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit><latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit><latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit><latexit sha1_base64="SDjSAKsSxy5Txn0eEGxKCs9We10=">AAACCnicbVDLSsNAFJ3UV62vqEs3oUWoKCUpgroruHHhooKxhSaEyXTaDp08mLmRlpC9G3/FjQsVt36BO//GSZuFVg8MnDnnXu69x485k2CaX1ppaXllda28XtnY3Nre0Xf37mSUCEJtEvFIdH0sKWchtYEBp91YUBz4nHb88WXud+6pkCwKb2EaUzfAw5ANGMGgJE+vOgGGEcE8vc7qEy+FYys7cUYY0kk2/x15es1smDMYf4lVkBoq0Pb0T6cfkSSgIRCOpexZZgxuigUwwmlWcRJJY0zGeEh7ioY4oNJNZ7dkxqFS+sYgEuqFYMzUnx0pDqScBr6qzDeXi14u/uf1EhicuykL4wRoSOaDBgk3IDLyYIw+E5QAnyqCiWBqV4OMsMAEVHwVFYK1ePJfYjcbFw3r5rTWahZplNEBqqI6stAZaqEr1EY2IugBPaEX9Ko9as/am/Y+Ly1pRc8++gXt4xsCp5qJ</latexit>

fo
rw

ar
d

re
gu

la
ri

ze
r

<latexit sha1_base64="idR6iEhT8e9QSIE61Vqk7+uZSNY=">AAACGXicbVBNS8NAFNz4WeNX1KOXYBE8laQX9Vbw4rGCsYUmlM3mJV262YTdjVJDf4cX/4oXDyoe9eS/cdtG0NaBhWFmHvvehDmjUjnOl7G0vLK6tl7bMDe3tnd2rb39G5kVgoBHMpaJboglMMrBU1Qx6OYCcBoy6ITDi4nfuQUhacav1SiHIMUJpzElWGmpb7l+CAnlJQGuQIzNOBN3WES+bwpICoYFvQdh+sCjn0jfqjsNZwp7kbgVqaMK7b714UcZKVI9ThiWsuc6uQpKLBQlDMamX0jIMRniBHqacpyCDMrpaWP7WCuRrbfSjyt7qv6eKHEq5SgNdTLFaiDnvYn4n9crVHwWlJTnhQJOZh/FBbNVZk96siMqgCg20gQTQfWuNhlggYnuQJq6BHf+5EXiNRvnDfeqWW81qzZq6BAdoRPkolPUQpeojTxE0AN6Qi/o1Xg0no03430WXTKqmQP0B8bnNx7YobQ=</latexit><latexit sha1_base64="idR6iEhT8e9QSIE61Vqk7+uZSNY=">AAACGXicbVBNS8NAFNz4WeNX1KOXYBE8laQX9Vbw4rGCsYUmlM3mJV262YTdjVJDf4cX/4oXDyoe9eS/cdtG0NaBhWFmHvvehDmjUjnOl7G0vLK6tl7bMDe3tnd2rb39G5kVgoBHMpaJboglMMrBU1Qx6OYCcBoy6ITDi4nfuQUhacav1SiHIMUJpzElWGmpb7l+CAnlJQGuQIzNOBN3WES+bwpICoYFvQdh+sCjn0jfqjsNZwp7kbgVqaMK7b714UcZKVI9ThiWsuc6uQpKLBQlDMamX0jIMRniBHqacpyCDMrpaWP7WCuRrbfSjyt7qv6eKHEq5SgNdTLFaiDnvYn4n9crVHwWlJTnhQJOZh/FBbNVZk96siMqgCg20gQTQfWuNhlggYnuQJq6BHf+5EXiNRvnDfeqWW81qzZq6BAdoRPkolPUQpeojTxE0AN6Qi/o1Xg0no03430WXTKqmQP0B8bnNx7YobQ=</latexit><latexit sha1_base64="idR6iEhT8e9QSIE61Vqk7+uZSNY=">AAACGXicbVBNS8NAFNz4WeNX1KOXYBE8laQX9Vbw4rGCsYUmlM3mJV262YTdjVJDf4cX/4oXDyoe9eS/cdtG0NaBhWFmHvvehDmjUjnOl7G0vLK6tl7bMDe3tnd2rb39G5kVgoBHMpaJboglMMrBU1Qx6OYCcBoy6ITDi4nfuQUhacav1SiHIMUJpzElWGmpb7l+CAnlJQGuQIzNOBN3WES+bwpICoYFvQdh+sCjn0jfqjsNZwp7kbgVqaMK7b714UcZKVI9ThiWsuc6uQpKLBQlDMamX0jIMRniBHqacpyCDMrpaWP7WCuRrbfSjyt7qv6eKHEq5SgNdTLFaiDnvYn4n9crVHwWlJTnhQJOZh/FBbNVZk96siMqgCg20gQTQfWuNhlggYnuQJq6BHf+5EXiNRvnDfeqWW81qzZq6BAdoRPkolPUQpeojTxE0AN6Qi/o1Xg0no03430WXTKqmQP0B8bnNx7YobQ=</latexit><latexit sha1_base64="idR6iEhT8e9QSIE61Vqk7+uZSNY=">AAACGXicbVBNS8NAFNz4WeNX1KOXYBE8laQX9Vbw4rGCsYUmlM3mJV262YTdjVJDf4cX/4oXDyoe9eS/cdtG0NaBhWFmHvvehDmjUjnOl7G0vLK6tl7bMDe3tnd2rb39G5kVgoBHMpaJboglMMrBU1Qx6OYCcBoy6ITDi4nfuQUhacav1SiHIMUJpzElWGmpb7l+CAnlJQGuQIzNOBN3WES+bwpICoYFvQdh+sCjn0jfqjsNZwp7kbgVqaMK7b714UcZKVI9ThiWsuc6uQpKLBQlDMamX0jIMRniBHqacpyCDMrpaWP7WCuRrbfSjyt7qv6eKHEq5SgNdTLFaiDnvYn4n9crVHwWlJTnhQJOZh/FBbNVZk96siMqgCg20gQTQfWuNhlggYnuQJq6BHf+5EXiNRvnDfeqWW81qzZq6BAdoRPkolPUQpeojTxE0AN6Qi/o1Xg0no03430WXTKqmQP0B8bnNx7YobQ=</latexit>

x̂t+1
<latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit><latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit><latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit><latexit sha1_base64="0x+q3xF7eUb9QxlKb7w4+0biyLg=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlmw93J8US8ju8eFDx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvf1srq2vrGZmmrvL2zu7dfOTh80HGqGHdZLGPV9qnmUkTcRYGStxPFaehL3vJHN1O/NeZKizi6x0nCvZAOIhEIRtFIXndIMXvKexmeO3mvUrVr9gxkmTgFqUKBZq/y1e3HLA15hExSrTuOnaCXUYWCSZ6Xu6nmCWUjOuAdQyMacu1ls6NzcmqUPgliZSpCMlN/T2Q01HoS+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMk0AdIXijOUE0MoU8LcStiQKsrQ5FQ2ITiLLy8T96J2XXPu6tVGvUijBMdwAmfgwCU04Baa4AKDR3iGV3izxtaL9W59zFtXrGLmCP7A+vwBTp6R8g==</latexit>

features
<latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit>

recurrent
state

<latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit><latexit sha1_base64="w0N0cOTT7j6qojQolLXRB+aCdYg=">AAACFXicbVBPS8MwHE3nv1n/VT16CQ7Bi6PdRb0NvHic4NxgLSNNf93C0rQkqTDKPoUXv4oXDypeBW9+G7Otgm4+CLy893skvxdmnCntul9WZWV1bX2jumlvbe/s7jn7B3cqzSWFNk15KrshUcCZgLZmmkM3k0CSkEMnHF1N/c49SMVScavHGQQJGQgWM0q0kfrOmR/CgImCgtAgJ7YEmktpLr5vK0002D6I6MfuOzW37s6Al4lXkhoq0eo7n36U0jwxccqJUj3PzXRQEKkZ5TCx/VxBRuiIDKBnqCAJqKCYrTXBJ0aJcJxKc4TGM/V3oiCJUuMkNJMJ0UO16E3F/7xeruOLoGAiyzUIOn8ozjnWKZ52hCNmatB8bAihkpm/YjokklDTgbJNCd7iysuk3ahf1r2bRq3ZKNuooiN0jE6Rh85RE12jFmojih7QE3pBr9aj9Wy9We/z0YpVZg7RH1gf38KTn+Y=</latexit>

at�1
<latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit>

xt
<latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit>

xg
<latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit><latexit sha1_base64="0MAnFI/xq7kgWHSMOuVxnicJQbA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+nSzSbsTsRS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvzKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDTXjPsslaluh9RwKRT3UaDk7UxzmoSSt8Lh9dRvPXJtRKrucZTxIKGxEpFgFK1099SLe9WaW3dnIMvEK0gNCjR71a9uP2V5whUySY3peG6GwZhqFEzySaWbG55RNqQx71iqaMJNMJ6dOiEnVumTKNW2FJKZ+ntiTBNjRkloOxOKA7PoTcX/vE6O0WUwFirLkSs2XxTlkmBKpn+TvtCcoRxZQpkW9lbCBlRThjadig3BW3x5mfhn9au6d3tea5wXaZThCI7hFDy4gAbcQBN8YBDDM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AcbhjZw=</latexit>

ât
<latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit>

L(at, ât)
<latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit>

features
<latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit><latexit sha1_base64="Nne3Sl4H0qpz7KLzDlxlOEwOwwE=">AAAB7nicbVBNT8JAEJ3iF+IX6tFLIzHxRFou6o3Ei0dMrJBAQ7bLFDZst3V3akIIf8KLBzVe/T3e/Dcu0IOiL5nk5b2ZzMyLMikMed6XU1pb39jcKm9Xdnb39g+qh0f3Js01x4CnMtWdiBmUQmFAgiR2Mo0siSS2o/H13G8/ojYiVXc0yTBM2FCJWHBGVurEyCjXaPrVmlf3FnD/Er8gNSjQ6lc/e4OU5wkq4pIZ0/W9jMIp0yS4xFmllxvMGB+zIXYtVSxBE04X987cM6sM3DjVthS5C/XnxJQlxkySyHYmjEZm1ZuL/3ndnOLLcCpUlhMqvlwU59Kl1J0/7w6ERk5yYgnjWthbXT5imnGyEVVsCP7qy39J0Khf1f3bRq3ZKNIowwmcwjn4cAFNuIEWBMBBwhO8wKvz4Dw7b877srXkFDPH8AvOxzfAk4/r</latexit>

at�1
<latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit><latexit sha1_base64="ysq/OZ9vglm5xKNIE5toCuHU+5M=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgnorePFYwdhCG8pmu2mXbjZhdyKU0B/hxYOKV/+PN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fDo0SSZZtxniUx0J6SGS6G4jwIl76Sa0ziUvB2Ob2d++4lrIxL1gJOUBzEdKhEJRtFKbdrP8cKb9qs1t+7OQVaJV5AaFGj1q1+9QcKymCtkkhrT9dwUg5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOyVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2e9kIDRnKCeWUKaFvZWwEdWUoU2oYkPwll9eJf5l/abu3TdqzUaRRhlO4BTOwYMraMIdtMAHBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AFc/jxA=</latexit>

xt
<latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit><latexit sha1_base64="rU0DdKxkxJDs4oKyH3iqbpihi5s=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FLx4rGltoQ9lsN+3SzSbsTsQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88mCTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR9dRvPXJtRKLucZzyIKYDJSLBKFrp7qmHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7t+e1xnmRRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/2oiNqQ==</latexit>

ât
<latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit><latexit sha1_base64="8Pq4/T3q7jySBKy/bF5sPUI8Vf4=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkoN4KXjxWMLbShjLZbtqlm03YnQgl9Fd48aDi1b/jzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTx6MEmmGfdZIhPdCcFwKRT3UaDknVRziEPJ2+H4Zua3n7g2IlH3OEl5EMNQiUgwQCs99kaAOUz72K/W3Lo7B10lXkFqpECrX/3qDRKWxVwhk2BM13NTDHLQKJjk00ovMzwFNoYh71qqIOYmyOcHT+mZVQY0SrQthXSu/p7IITZmEoe2MwYcmWVvJv7ndTOMroJcqDRDrthiUZRJigmdfU8HQnOGcmIJMC3srZSNQANDm1HFhuAtv7xK/Iv6dd27a9SajSKNMjkhp+SceOSSNMktaRGfMBKTZ/JK3hztvDjvzseiteQUM8fkD5zPH4QkkF8=</latexit>

L(at, ât)
<latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit><latexit sha1_base64="bMtg3EOQoR3kjbw2verd42rypIM=">AAACAnicbVBNS8NAEN3Ur1q/qt70EixCBSlJEdRbwYsHDxWMLTQhTLbbdunmg92JUELBi3/FiwcVr/4Kb/4bt20O2vpg4PHeDDPzgkRwhZb1bRSWlldW14rrpY3Nre2d8u7evYpTSZlDYxHLdgCKCR4xBzkK1k4kgzAQrBUMryZ+64FJxePoDkcJ80LoR7zHKaCW/PKBGwIOKIjsZlwFH0/dAWAGYx9P/HLFqllTmIvEzkmF5Gj65S+3G9M0ZBFSAUp1bCtBLwOJnAo2LrmpYgnQIfRZR9MIQqa8bPrD2DzWStfsxVJXhOZU/T2RQajUKAx05+RiNe9NxP+8Toq9Cy/jUZIii+hsUS8VJsbmJBCzyyWjKEaaAJVc32rSAUigqGMr6RDs+ZcXiVOvXdbs27NKo56nUSSH5IhUiU3OSYNckyZxCCWP5Jm8kjfjyXgx3o2PWWvByGf2yR8Ynz80ppdj</latexit>

feed-forward
<latexit sha1_base64="AWl85Eukk0w0XtyqhXMHPz8x0Ks=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBiyXpRb0VvHisYGyhDWWzmbRLN5uwu1FK6d/w4kHFq7/Gm//GbZuDtj4YeLw3w8y8MBNcG9f9dkpr6xubW+Xtys7u3v5B9fDoQae5YuizVKSqE1KNgkv0DTcCO5lCmoQC2+HoZua3H1Fpnsp7M84wSOhA8pgzaqzUixGjizhVT1RF/WrNrbtzkFXiFaQGBVr96lcvSlmeoDRMUK27npuZYEKV4UzgtNLLNWaUjegAu5ZKmqAOJvObp+TMKhGxq21JQ+bq74kJTbQeJ6HtTKgZ6mVvJv7ndXMTXwUTLrPcoGSLRXEuiEnJLAAScYXMiLEllClubyVsSBVlxsZUsSF4yy+vEr9Rv657d41as1GkUYYTOIVz8OASmnALLfCBQQbP8ApvTu68OO/Ox6K15BQzx/AHzucPaLyRag==</latexit><latexit sha1_base64="AWl85Eukk0w0XtyqhXMHPz8x0Ks=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBiyXpRb0VvHisYGyhDWWzmbRLN5uwu1FK6d/w4kHFq7/Gm//GbZuDtj4YeLw3w8y8MBNcG9f9dkpr6xubW+Xtys7u3v5B9fDoQae5YuizVKSqE1KNgkv0DTcCO5lCmoQC2+HoZua3H1Fpnsp7M84wSOhA8pgzaqzUixGjizhVT1RF/WrNrbtzkFXiFaQGBVr96lcvSlmeoDRMUK27npuZYEKV4UzgtNLLNWaUjegAu5ZKmqAOJvObp+TMKhGxq21JQ+bq74kJTbQeJ6HtTKgZ6mVvJv7ndXMTXwUTLrPcoGSLRXEuiEnJLAAScYXMiLEllClubyVsSBVlxsZUsSF4yy+vEr9Rv657d41as1GkUYYTOIVz8OASmnALLfCBQQbP8ApvTu68OO/Ox6K15BQzx/AHzucPaLyRag==</latexit><latexit sha1_base64="AWl85Eukk0w0XtyqhXMHPz8x0Ks=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBiyXpRb0VvHisYGyhDWWzmbRLN5uwu1FK6d/w4kHFq7/Gm//GbZuDtj4YeLw3w8y8MBNcG9f9dkpr6xubW+Xtys7u3v5B9fDoQae5YuizVKSqE1KNgkv0DTcCO5lCmoQC2+HoZua3H1Fpnsp7M84wSOhA8pgzaqzUixGjizhVT1RF/WrNrbtzkFXiFaQGBVr96lcvSlmeoDRMUK27npuZYEKV4UzgtNLLNWaUjegAu5ZKmqAOJvObp+TMKhGxq21JQ+bq74kJTbQeJ6HtTKgZ6mVvJv7ndXMTXwUTLrPcoGSLRXEuiEnJLAAScYXMiLEllClubyVsSBVlxsZUsSF4yy+vEr9Rv657d41as1GkUYYTOIVz8OASmnALLfCBQQbP8ApvTu68OO/Ox6K15BQzx/AHzucPaLyRag==</latexit><latexit sha1_base64="AWl85Eukk0w0XtyqhXMHPz8x0Ks=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBiyXpRb0VvHisYGyhDWWzmbRLN5uwu1FK6d/w4kHFq7/Gm//GbZuDtj4YeLw3w8y8MBNcG9f9dkpr6xubW+Xtys7u3v5B9fDoQae5YuizVKSqE1KNgkv0DTcCO5lCmoQC2+HoZua3H1Fpnsp7M84wSOhA8pgzaqzUixGjizhVT1RF/WrNrbtzkFXiFaQGBVr96lcvSlmeoDRMUK27npuZYEKV4UzgtNLLNWaUjegAu5ZKmqAOJvObp+TMKhGxq21JQ+bq74kJTbQeJ6HtTKgZ6mVvJv7ndXMTXwUTLrPcoGSLRXEuiEnJLAAScYXMiLEllClubyVsSBVlxsZUsSF4yy+vEr9Rv657d41as1GkUYYTOIVz8OASmnALLfCBQQbP8ApvTu68OO/Ox6K15BQzx/AHzucPaLyRag==</latexit>

(d) Forward-consistent GSP
(ours)

<latexit sha1_base64="AvM0k9A7QnqkfACeBS/9IOKXx8o=">AAACJ3icbVBNSwMxEM36WdevqkcvwSK0B8uuCOpJQVCPFa0WuqVks9M2NJssSVYpS3+OF/+KFxEVPfpPTD8EtQ4MPN6bx8y8MOFMG8/7cKamZ2bn5nML7uLS8spqfm39WstUUahSyaWqhUQDZwKqhhkOtUQBiUMON2H3ZKDf3ILSTIor00ugEZO2YC1GibFUM38UhNBmIqMgDKi+W4xK+FSqO6KiHSqFthdYBZ9dVoLALdqtuuQGIKJvQzNf8MresPAk8MeggMZVaeafg0jSNLZ2yonWdd9LTCMjyjDKoe8GqYaE0C5pQ91CQWLQjWz4aB9vWybCLals26uG7E9HRmKte3FoJ2NiOvqvNiD/0+qpaR00MiaS1L5LR4taKcdG4kFqOGIKqOE9CwhVzN6KaYcoQm0G2rUh+H9fngTV3fJh2b/YLRzvjdPIoU20hYrIR/voGJ2jCqoiiu7RI3pBr86D8+S8Oe+j0Sln7NlAv8r5/AKncaXm</latexit><latexit sha1_base64="AvM0k9A7QnqkfACeBS/9IOKXx8o=">AAACJ3icbVBNSwMxEM36WdevqkcvwSK0B8uuCOpJQVCPFa0WuqVks9M2NJssSVYpS3+OF/+KFxEVPfpPTD8EtQ4MPN6bx8y8MOFMG8/7cKamZ2bn5nML7uLS8spqfm39WstUUahSyaWqhUQDZwKqhhkOtUQBiUMON2H3ZKDf3ILSTIor00ugEZO2YC1GibFUM38UhNBmIqMgDKi+W4xK+FSqO6KiHSqFthdYBZ9dVoLALdqtuuQGIKJvQzNf8MresPAk8MeggMZVaeafg0jSNLZ2yonWdd9LTCMjyjDKoe8GqYaE0C5pQ91CQWLQjWz4aB9vWybCLals26uG7E9HRmKte3FoJ2NiOvqvNiD/0+qpaR00MiaS1L5LR4taKcdG4kFqOGIKqOE9CwhVzN6KaYcoQm0G2rUh+H9fngTV3fJh2b/YLRzvjdPIoU20hYrIR/voGJ2jCqoiiu7RI3pBr86D8+S8Oe+j0Sln7NlAv8r5/AKncaXm</latexit><latexit sha1_base64="AvM0k9A7QnqkfACeBS/9IOKXx8o=">AAACJ3icbVBNSwMxEM36WdevqkcvwSK0B8uuCOpJQVCPFa0WuqVks9M2NJssSVYpS3+OF/+KFxEVPfpPTD8EtQ4MPN6bx8y8MOFMG8/7cKamZ2bn5nML7uLS8spqfm39WstUUahSyaWqhUQDZwKqhhkOtUQBiUMON2H3ZKDf3ILSTIor00ugEZO2YC1GibFUM38UhNBmIqMgDKi+W4xK+FSqO6KiHSqFthdYBZ9dVoLALdqtuuQGIKJvQzNf8MresPAk8MeggMZVaeafg0jSNLZ2yonWdd9LTCMjyjDKoe8GqYaE0C5pQ91CQWLQjWz4aB9vWybCLals26uG7E9HRmKte3FoJ2NiOvqvNiD/0+qpaR00MiaS1L5LR4taKcdG4kFqOGIKqOE9CwhVzN6KaYcoQm0G2rUh+H9fngTV3fJh2b/YLRzvjdPIoU20hYrIR/voGJ2jCqoiiu7RI3pBr86D8+S8Oe+j0Sln7NlAv8r5/AKncaXm</latexit><latexit sha1_base64="AvM0k9A7QnqkfACeBS/9IOKXx8o=">AAACJ3icbVBNSwMxEM36WdevqkcvwSK0B8uuCOpJQVCPFa0WuqVks9M2NJssSVYpS3+OF/+KFxEVPfpPTD8EtQ4MPN6bx8y8MOFMG8/7cKamZ2bn5nML7uLS8spqfm39WstUUahSyaWqhUQDZwKqhhkOtUQBiUMON2H3ZKDf3ILSTIor00ugEZO2YC1GibFUM38UhNBmIqMgDKi+W4xK+FSqO6KiHSqFthdYBZ9dVoLALdqtuuQGIKJvQzNf8MresPAk8MeggMZVaeafg0jSNLZ2yonWdd9LTCMjyjDKoe8GqYaE0C5pQ91CQWLQjWz4aB9vWybCLals26uG7E9HRmKte3FoJ2NiOvqvNiD/0+qpaR00MiaS1L5LR4taKcdG4kFqOGIKqOE9CwhVzN6KaYcoQm0G2rUh+H9fngTV3fJh2b/YLRzvjdPIoU20hYrIR/voGJ2jCqoiiu7RI3pBr86D8+S8Oe+j0Sln7NlAv8r5/AKncaXm</latexit>

(c) Forward-regularized GSP
<latexit sha1_base64="QssFByk0cucCCZphg4Fx0+OmJUk=">AAACH3icbVDLSgMxFM34rONr1KWbYBHqwjJThOquIKjLitYW2lIymds2NJMZkoxSh36KG3/FjQsVcde/MX0I2nogcDjnXG7u8WPOlHbdobWwuLS8sppZs9c3Nre2nZ3dOxUlkkKFRjySNZ8o4ExARTPNoRZLIKHPoer3zkd+9R6kYpG41f0YmiHpCNZmlGgjtZxiw4cOEykFoUEO7Bw9wheRfCAyOJbQSTiR7BECfHlTthsggp9gy8m6eXcMPE+8KcmiKcot56sRRDQJzTjlRKm658a6mRKpGeUwsBuJgpjQHulA3VBBQlDNdHzgAB8aJcDtSJonNB6rvydSEirVD32TDInuqllvJP7n1RPdPm2mTMSJBkEni9oJxzrCo7ZwwCRQzfuGECqZ+SumXSIJNR0o25TgzZ48TyqF/Fneuy5kSyfTNjJoHx2gHPJQEZXQFSqjCqLoCb2gN/RuPVuv1of1OYkuWNOZPfQH1vAbAiCjDQ==</latexit><latexit sha1_base64="QssFByk0cucCCZphg4Fx0+OmJUk=">AAACH3icbVDLSgMxFM34rONr1KWbYBHqwjJThOquIKjLitYW2lIymds2NJMZkoxSh36KG3/FjQsVcde/MX0I2nogcDjnXG7u8WPOlHbdobWwuLS8sppZs9c3Nre2nZ3dOxUlkkKFRjySNZ8o4ExARTPNoRZLIKHPoer3zkd+9R6kYpG41f0YmiHpCNZmlGgjtZxiw4cOEykFoUEO7Bw9wheRfCAyOJbQSTiR7BECfHlTthsggp9gy8m6eXcMPE+8KcmiKcot56sRRDQJzTjlRKm658a6mRKpGeUwsBuJgpjQHulA3VBBQlDNdHzgAB8aJcDtSJonNB6rvydSEirVD32TDInuqllvJP7n1RPdPm2mTMSJBkEni9oJxzrCo7ZwwCRQzfuGECqZ+SumXSIJNR0o25TgzZ48TyqF/Fneuy5kSyfTNjJoHx2gHPJQEZXQFSqjCqLoCb2gN/RuPVuv1of1OYkuWNOZPfQH1vAbAiCjDQ==</latexit><latexit sha1_base64="QssFByk0cucCCZphg4Fx0+OmJUk=">AAACH3icbVDLSgMxFM34rONr1KWbYBHqwjJThOquIKjLitYW2lIymds2NJMZkoxSh36KG3/FjQsVcde/MX0I2nogcDjnXG7u8WPOlHbdobWwuLS8sppZs9c3Nre2nZ3dOxUlkkKFRjySNZ8o4ExARTPNoRZLIKHPoer3zkd+9R6kYpG41f0YmiHpCNZmlGgjtZxiw4cOEykFoUEO7Bw9wheRfCAyOJbQSTiR7BECfHlTthsggp9gy8m6eXcMPE+8KcmiKcot56sRRDQJzTjlRKm658a6mRKpGeUwsBuJgpjQHulA3VBBQlDNdHzgAB8aJcDtSJonNB6rvydSEirVD32TDInuqllvJP7n1RPdPm2mTMSJBkEni9oJxzrCo7ZwwCRQzfuGECqZ+SumXSIJNR0o25TgzZ48TyqF/Fneuy5kSyfTNjJoHx2gHPJQEZXQFSqjCqLoCb2gN/RuPVuv1of1OYkuWNOZPfQH1vAbAiCjDQ==</latexit><latexit sha1_base64="QssFByk0cucCCZphg4Fx0+OmJUk=">AAACH3icbVDLSgMxFM34rONr1KWbYBHqwjJThOquIKjLitYW2lIymds2NJMZkoxSh36KG3/FjQsVcde/MX0I2nogcDjnXG7u8WPOlHbdobWwuLS8sppZs9c3Nre2nZ3dOxUlkkKFRjySNZ8o4ExARTPNoRZLIKHPoer3zkd+9R6kYpG41f0YmiHpCNZmlGgjtZxiw4cOEykFoUEO7Bw9wheRfCAyOJbQSTiR7BECfHlTthsggp9gy8m6eXcMPE+8KcmiKcot56sRRDQJzTjlRKm658a6mRKpGeUwsBuJgpjQHulA3VBBQlDNdHzgAB8aJcDtSJonNB6rvydSEirVD32TDInuqllvJP7n1RPdPm2mTMSJBkEni9oJxzrCo7ZwwCRQzfuGECqZ+SumXSIJNR0o25TgzZ48TyqF/Fneuy5kSyfTNjJoHx2gHPJQEZXQFSqjCqLoCb2gN/RuPVuv1of1OYkuWNOZPfQH1vAbAiCjDQ==</latexit>

(b) Multi-step GSP
<latexit sha1_base64="Yc+mcRoDnlO5sXR63/r0rjNGxRg=">AAACFnicbVBNSwMxFMzWr7p+VT16CRahHiy7RVBvBQ96ESpaW+guJZu+tqHZ7JJkhbL0X3jxr3jxoOJVvPlvTNsVtHUgMMy84eVNEHOmtON8WbmFxaXllfyqvba+sblV2N65U1EiKdRpxCPZDIgCzgTUNdMcmrEEEgYcGsHgfOw37kEqFolbPYzBD0lPsC6jRBupXSh7AfSYSCkIDXJkl4JDfJVwzY6Uhhhf3NRsD0Tnx28Xik7ZmQDPEzcjRZSh1i58ep2IJqGJU06UarlOrP2USM0oh5HtJQpiQgekBy1DBQlB+enkrhE+MEoHdyNpntB4ov5OpCRUahgGZjIkuq9mvbH4n9dKdPfUT5mIEw2CThd1E451hMcl4Q6TQDUfGkKoZOavmPaJJNR0oGxTgjt78jypV8pnZfe6UqweZ23k0R7aRyXkohNURZeohuqIogf0hF7Qq/VoPVtv1vt0NGdlmV30B9bHN3W8nwY=</latexit><latexit sha1_base64="Yc+mcRoDnlO5sXR63/r0rjNGxRg=">AAACFnicbVBNSwMxFMzWr7p+VT16CRahHiy7RVBvBQ96ESpaW+guJZu+tqHZ7JJkhbL0X3jxr3jxoOJVvPlvTNsVtHUgMMy84eVNEHOmtON8WbmFxaXllfyqvba+sblV2N65U1EiKdRpxCPZDIgCzgTUNdMcmrEEEgYcGsHgfOw37kEqFolbPYzBD0lPsC6jRBupXSh7AfSYSCkIDXJkl4JDfJVwzY6Uhhhf3NRsD0Tnx28Xik7ZmQDPEzcjRZSh1i58ep2IJqGJU06UarlOrP2USM0oh5HtJQpiQgekBy1DBQlB+enkrhE+MEoHdyNpntB4ov5OpCRUahgGZjIkuq9mvbH4n9dKdPfUT5mIEw2CThd1E451hMcl4Q6TQDUfGkKoZOavmPaJJNR0oGxTgjt78jypV8pnZfe6UqweZ23k0R7aRyXkohNURZeohuqIogf0hF7Qq/VoPVtv1vt0NGdlmV30B9bHN3W8nwY=</latexit><latexit sha1_base64="Yc+mcRoDnlO5sXR63/r0rjNGxRg=">AAACFnicbVBNSwMxFMzWr7p+VT16CRahHiy7RVBvBQ96ESpaW+guJZu+tqHZ7JJkhbL0X3jxr3jxoOJVvPlvTNsVtHUgMMy84eVNEHOmtON8WbmFxaXllfyqvba+sblV2N65U1EiKdRpxCPZDIgCzgTUNdMcmrEEEgYcGsHgfOw37kEqFolbPYzBD0lPsC6jRBupXSh7AfSYSCkIDXJkl4JDfJVwzY6Uhhhf3NRsD0Tnx28Xik7ZmQDPEzcjRZSh1i58ep2IJqGJU06UarlOrP2USM0oh5HtJQpiQgekBy1DBQlB+enkrhE+MEoHdyNpntB4ov5OpCRUahgGZjIkuq9mvbH4n9dKdPfUT5mIEw2CThd1E451hMcl4Q6TQDUfGkKoZOavmPaJJNR0oGxTgjt78jypV8pnZfe6UqweZ23k0R7aRyXkohNURZeohuqIogf0hF7Qq/VoPVtv1vt0NGdlmV30B9bHN3W8nwY=</latexit><latexit sha1_base64="Yc+mcRoDnlO5sXR63/r0rjNGxRg=">AAACFnicbVBNSwMxFMzWr7p+VT16CRahHiy7RVBvBQ96ESpaW+guJZu+tqHZ7JJkhbL0X3jxr3jxoOJVvPlvTNsVtHUgMMy84eVNEHOmtON8WbmFxaXllfyqvba+sblV2N65U1EiKdRpxCPZDIgCzgTUNdMcmrEEEgYcGsHgfOw37kEqFolbPYzBD0lPsC6jRBupXSh7AfSYSCkIDXJkl4JDfJVwzY6Uhhhf3NRsD0Tnx28Xik7ZmQDPEzcjRZSh1i58ep2IJqGJU06UarlOrP2USM0oh5HtJQpiQgekBy1DBQlB+enkrhE+MEoHdyNpntB4ov5OpCRUahgGZjIkuq9mvbH4n9dKdPfUT5mIEw2CThd1E451hMcl4Q6TQDUfGkKoZOavmPaJJNR0oGxTgjt78jypV8pnZfe6UqweZ23k0R7aRyXkohNURZeohuqIogf0hF7Qq/VoPVtv1vt0NGdlmV30B9bHN3W8nwY=</latexit>

(a) Inverse Model
<latexit sha1_base64="o2Szy8fNwwReoGQS1SHGJHnc36Q=">AAACFXicbVBNS8NAFNz4WeNX1KOXxSLUgyUpgnoreNGDUMHaQlPKZvPaLt1swu5GKKG/wot/xYsHFa+CN/+Nm7aCtg4sDDNvePsmSDhT2nW/rIXFpeWV1cKavb6xubXt7OzeqTiVFOo05rFsBkQBZwLqmmkOzUQCiQIOjWBwkfuNe5CKxeJWDxNoR6QnWJdRoo3UcY79AHpMZBSEBjmyS+QIX4k8Afg6DoHbPojwx+44RbfsjoHniTclRTRFreN8+mFM08jEKSdKtTw30e2MSM0oh5HtpwoSQgekBy1DBYlAtbPxWSN8aJQQd2NpntB4rP5OZCRSahgFZjIiuq9mvVz8z2ulunvWzphIUg2CThZ1U451jPOOcMgkUM2HhhAqmfkrpn0iCTUdKNuU4M2ePE/qlfJ52bupFKsn0zYKaB8doBLy0CmqoktUQ3VE0QN6Qi/o1Xq0nq03630yumBNM3voD6yPbyirnuo=</latexit><latexit sha1_base64="o2Szy8fNwwReoGQS1SHGJHnc36Q=">AAACFXicbVBNS8NAFNz4WeNX1KOXxSLUgyUpgnoreNGDUMHaQlPKZvPaLt1swu5GKKG/wot/xYsHFa+CN/+Nm7aCtg4sDDNvePsmSDhT2nW/rIXFpeWV1cKavb6xubXt7OzeqTiVFOo05rFsBkQBZwLqmmkOzUQCiQIOjWBwkfuNe5CKxeJWDxNoR6QnWJdRoo3UcY79AHpMZBSEBjmyS+QIX4k8Afg6DoHbPojwx+44RbfsjoHniTclRTRFreN8+mFM08jEKSdKtTw30e2MSM0oh5HtpwoSQgekBy1DBYlAtbPxWSN8aJQQd2NpntB4rP5OZCRSahgFZjIiuq9mvVz8z2ulunvWzphIUg2CThZ1U451jPOOcMgkUM2HhhAqmfkrpn0iCTUdKNuU4M2ePE/qlfJ52bupFKsn0zYKaB8doBLy0CmqoktUQ3VE0QN6Qi/o1Xq0nq03630yumBNM3voD6yPbyirnuo=</latexit><latexit sha1_base64="o2Szy8fNwwReoGQS1SHGJHnc36Q=">AAACFXicbVBNS8NAFNz4WeNX1KOXxSLUgyUpgnoreNGDUMHaQlPKZvPaLt1swu5GKKG/wot/xYsHFa+CN/+Nm7aCtg4sDDNvePsmSDhT2nW/rIXFpeWV1cKavb6xubXt7OzeqTiVFOo05rFsBkQBZwLqmmkOzUQCiQIOjWBwkfuNe5CKxeJWDxNoR6QnWJdRoo3UcY79AHpMZBSEBjmyS+QIX4k8Afg6DoHbPojwx+44RbfsjoHniTclRTRFreN8+mFM08jEKSdKtTw30e2MSM0oh5HtpwoSQgekBy1DBYlAtbPxWSN8aJQQd2NpntB4rP5OZCRSahgFZjIiuq9mvVz8z2ulunvWzphIUg2CThZ1U451jPOOcMgkUM2HhhAqmfkrpn0iCTUdKNuU4M2ePE/qlfJ52bupFKsn0zYKaB8doBLy0CmqoktUQ3VE0QN6Qi/o1Xq0nq03630yumBNM3voD6yPbyirnuo=</latexit><latexit sha1_base64="o2Szy8fNwwReoGQS1SHGJHnc36Q=">AAACFXicbVBNS8NAFNz4WeNX1KOXxSLUgyUpgnoreNGDUMHaQlPKZvPaLt1swu5GKKG/wot/xYsHFa+CN/+Nm7aCtg4sDDNvePsmSDhT2nW/rIXFpeWV1cKavb6xubXt7OzeqTiVFOo05rFsBkQBZwLqmmkOzUQCiQIOjWBwkfuNe5CKxeJWDxNoR6QnWJdRoo3UcY79AHpMZBSEBjmyS+QIX4k8Afg6DoHbPojwx+44RbfsjoHniTclRTRFreN8+mFM08jEKSdKtTw30e2MSM0oh5HtpwoSQgekBy1DBYlAtbPxWSN8aJQQd2NpntB4rP5OZCRSahgFZjIiuq9mvVz8z2ulunvWzphIUg2CThZ1U451jPOOcMgkUM2HhhAqmfkrpn0iCTUdKNuU4M2ePE/qlfJ52bupFKsn0zYKaB8doBLy0CmqoktUQ3VE0QN6Qi/o1Xq0nq03630yumBNM3voD6yPbyirnuo=</latexit>

xt+1
<latexit sha1_base64="IXtyAj4NSaMyZwaxl3+fWOMNXZ8=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlm03YnYgl9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZemEph0HW/nZXVtfWNzdJWeXtnd2+/cnD4YJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHN1O/9ci1EYm6x3HKg5gOlIgEo2il1lMvx3Nv0qtU3Zo7A1kmXkGqUKDZq3x1+wnLYq6QSWpMx3NTDHKqUTDJJ+VuZnhK2YgOeMdSRWNugnx27oScWqVPokTbUkhm6u+JnMbGjOPQdsYUh2bRm4r/eZ0Mo6sgFyrNkCs2XxRlkmBCpr+TvtCcoRxbQpkW9lbChlRThjahsg3BW3x5mfgXteuad1evNupFGiU4hhM4Aw8uoQG30AQfGIzgGV7hzUmdF+fd+Zi3rjjFzBH8gfP5A3eEjyU=</latexit><latexit sha1_base64="IXtyAj4NSaMyZwaxl3+fWOMNXZ8=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlm03YnYgl9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZemEph0HW/nZXVtfWNzdJWeXtnd2+/cnD4YJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHN1O/9ci1EYm6x3HKg5gOlIgEo2il1lMvx3Nv0qtU3Zo7A1kmXkGqUKDZq3x1+wnLYq6QSWpMx3NTDHKqUTDJJ+VuZnhK2YgOeMdSRWNugnx27oScWqVPokTbUkhm6u+JnMbGjOPQdsYUh2bRm4r/eZ0Mo6sgFyrNkCs2XxRlkmBCpr+TvtCcoRxbQpkW9lbChlRThjahsg3BW3x5mfgXteuad1evNupFGiU4hhM4Aw8uoQG30AQfGIzgGV7hzUmdF+fd+Zi3rjjFzBH8gfP5A3eEjyU=</latexit><latexit sha1_base64="IXtyAj4NSaMyZwaxl3+fWOMNXZ8=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlm03YnYgl9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZemEph0HW/nZXVtfWNzdJWeXtnd2+/cnD4YJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHN1O/9ci1EYm6x3HKg5gOlIgEo2il1lMvx3Nv0qtU3Zo7A1kmXkGqUKDZq3x1+wnLYq6QSWpMx3NTDHKqUTDJJ+VuZnhK2YgOeMdSRWNugnx27oScWqVPokTbUkhm6u+JnMbGjOPQdsYUh2bRm4r/eZ0Mo6sgFyrNkCs2XxRlkmBCpr+TvtCcoRxbQpkW9lbChlRThjahsg3BW3x5mfgXteuad1evNupFGiU4hhM4Aw8uoQG30AQfGIzgGV7hzUmdF+fd+Zi3rjjFzBH8gfP5A3eEjyU=</latexit><latexit sha1_base64="IXtyAj4NSaMyZwaxl3+fWOMNXZ8=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjxWMLbQhrLZbtqlm03YnYgl9Ed48aDi1f/jzX/jts1BWx8MPN6bYWZemEph0HW/nZXVtfWNzdJWeXtnd2+/cnD4YJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHN1O/9ci1EYm6x3HKg5gOlIgEo2il1lMvx3Nv0qtU3Zo7A1kmXkGqUKDZq3x1+wnLYq6QSWpMx3NTDHKqUTDJJ+VuZnhK2YgOeMdSRWNugnx27oScWqVPokTbUkhm6u+JnMbGjOPQdsYUh2bRm4r/eZ0Mo6sgFyrNkCs2XxRlkmBCpr+TvtCcoRxbQpkW9lbChlRThjahsg3BW3x5mfgXteuad1evNupFGiU4hhM4Aw8uoQG30AQfGIzgGV7hzUmdF+fd+Zi3rjjFzBH8gfP5A3eEjyU=</latexit>

Figure 6.1: The goal-conditioned skill policy (GSP) takes as input the current and goal observations
and outputs an action sequence that would lead to that goal. We compare the performance of the
following GSP models: (a) Simple inverse model; (b) Mutli-step GSP with previous action history;
(c) Mutli-step GSP with previous action history and a forward model as regularizer, but no forward
consistency; (d) Mutli-step GSP with forward consistency loss proposed in this chapter.

simply watching a visual demonstration in all but the simplest of cases. Thus, the natural
question is: in order to imitate, what form of prior knowledge must the agent possess? A large
body of work [26,49,107,129,130,266] has sought to capture prior knowledge by manually
pre-defining the state that must be inferred from the observations. The agent then infers
how to perform the task (i.e., plan for imitation) using this state. Unfortunately, computer
vision systems are often unable to estimate the state variables accurately and it has proven
non-trivial for downstream planning systems to be robust to such errors.

In this chapter, we follow [5,138,194] in pursuing an alternative paradigm, where an agent
explores the environment without any expert supervision and distills this exploration data
into goal-directed skills. These skills can then be used to imitate the visual demonstration
provided by the expert [161]. Here, by skill we mean a function that predicts the sequence of
actions to take the agent from the current observation to the goal. We call this function a
goal-conditioned skill policy (GSP). The GSP is learned in a self-supervised way by re-labeling
the states visited during the agent’s exploration of the environment as goals and the actions
executed by the agent as the prediction targets, similar to [5, 9]. During inference, given goal
observations from a demonstration, the GSP can infer how to reach these goals in turn from
the current observation, and thereby imitate the task step-by-step.

One critical challenge in learning the GSP is that, in general, there are multiple possible
ways of going from one state to another: that is, the distribution of trajectories between
states is multi-modal. We address this issue with our novel forward consistency loss based on

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 83

the intuition that, for most tasks, reaching the goal is more important than how it is reached.
To operationalize this, we first learn a forward model that predicts the next observation given
an action and a current observation. We use the difference in the output of the forward model
for the GSP-selected action and the ground truth next state to train the GSP. This loss has
the effect of making the GSP-predicted action consistent with the ground-truth action instead
of exactly matching the actions themselves, thus ensuring that actions that are different from
the ground-truth—but lead to the same next state—are not inadvertently penalized. To
account for varying number of steps required to reach different goals, we propose to jointly
optimize the GSP with a goal recognizer that determines if the current goal has been satisfied.
See Figure 6.1 for a schematic illustration of the GSP architecture.

We call our method zero-shot because the agent never has access to expert actions, neither
during training of the GSP nor for task demonstration at inference. In contrast, recent
works on one-shot imitation learning requires full knowledge of actions and a wealth of
expert demonstrations during training [57,67]. In summary, we propose a method that (1)
does not require any extrinsic reward or expert supervision during learning, (2) only needs
demonstrations during inference, and (3) restricts demonstrations to visual observations alone
rather than full state-actions. Instead of learning by imitation, our agent learns to imitate.
Videos and code at https://pathak22.github.io/zeroshot-imitation/.

6.1 Learning to Imitate without Expert Supervision

Let S : {x1, a1, x2, a2, ..., xT} be the sequence of observations and actions generated by the
agent as it explores its environment using the policy a = πE(s). This exploration data is used
to learn the goal-conditioned skill policy (GSP) π takes as input a pair of observations (xi, xg)
and outputs sequence of actions (~aτ : a1, a2...aK) required to reach the goal observation (xg)
from the current observation (xi).

~aτ = π(xi, xg; θπ) (6.1)

where states xi, xg are sampled from the S. The number of actions, K, is also inferred by the
model. We represent π by a deep network with parameters θπ in order to capture complex
mappings from visual observations (x) to actions. π can be thought of as a variable-step
generalization of the inverse dynamics model [113], or as the policy corresponding to a
universal value function [70,213], with the difference that xg need not be the end goal of a
task but can also be an intermediate sub-goal.

Let the task to be imitated be provided as a sequence of images D : {xd1, xd2, ..., xdN}
captured when the expert demonstrates the task. This sequence of images D could either
be temporally dense or sparse. Our agent uses the learned GSP π to imitate the sequence
of visual observations D starting from its initial state x0 by following actions predicted by
π(x0, x

d
1; θπ). Let the observation after executing the predicted action be x′0. Since multiple

actions might be required to reach close to xd1, the agent queries a separate goal recognizer
network to ascertain if the current observation is close to the goal or not. If the answer is

https://pathak22.github.io/zeroshot-imitation/

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 84

negative, the agent executes the action a = π(x′0, x
d
1; θπ). This process is repeated iteratively

until the goal recognizer outputs that agent is near the goal, or a maximum number of steps
are reached. Let the observation of the agent at this point be x̂1. After reaching close to the
first observation (xd1) in the demonstration, the agent sets its goal as (xd2) and repeats the
process. The agent stops when all observations in the demonstrations are processed.

Note that in the method of imitation described above, the expert is never required to
convey to the agent what actions it performed. In the following subsections we describe how
we learn the GSP, forward consistency loss, goal recognizer network and various baseline
methods.

6.1.1 Learning the Goal-conditioned Skill Policy (GSP)

We first describe the one-step version of GSP and then extend it to variable length multi-step
skills. One-step trajectories take the form of (xt, at, xt+1) and GSP, ât = π(xt, xt+1; θπ), is
trained by minimizing the standard cross-entropy loss L(at, ât),

L(at, ât) = p(at|xt, xt+1) log(ât) (6.2)

with respect to parameters θπ, where p and ât are the ground-truth and predicted action
distributions. While we do not have access to true p, we empirically approximate it using
samples from the distribution, at, that are executed by the agent during exploration. For
minimizing the cross-entropy loss, it is common to assume p as a delta function at at. However,
this assumption is notably violated if p is inherently multi-modal and high-dimensional. If
we optimize say a deep neural network assuming p to be a delta function, the same inputs
will be presented with different targets (due to multi-modality) leading to high-variance in
gradients which in turn would make learning challenging.

In our setup, such multi-modality can occur because multiple actions can lead the agent
to the same future observation from the initial observation. For instance, in navigation, if the
agent is stuck against a corner, turning or moving forward all collapse to the same effect. The
issue of multi-modality becomes more critical as the length of trajectories grow, because more
and more paths may take the agent from the initial observation to the goal observation given
more time. Furthermore, it would require many samples to even obtain a good empirical
estimate of a high-dimensional multi-modal action distribution p.

6.1.2 Forward Consistency Loss

One way to account for multi-modality is by employing the likes of variational auto-
encoders [120, 201]. However, in many practical situations it is not feasible to obtain
ample data for each mode. In this chapter, we propose an alternative based on the insight
that in many scenarios, we only care about whether the agent reached the final state or not
and the exact trajectory is of lesser interest. Instead of penalizing the actions predicted
by the GSP to match the ground truth, we propose to learn the parameters of GSP by

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 85

minimizing the distance between observation x̂t+1 resulting by executing the predicted action
ât = π(xt, xt+1; θπ) and the observation xt+1, which is the result of executing the ground
truth action at being used to train the GSP. In this formulation, even if the predicted and
ground-truth action are different, the predicted action will not be penalized if it leads to
the same next state as the ground-truth action. While this formulation will not explicitly
maintain all modes of the action distribution, it will reduce the variance in gradients and
thus help learning. We call this penalty the forward consistency loss .

Note that it is not immediately obvious as to how to operationalize forward consistency
loss for two reasons: (a) we need the access to a good forward dynamics model that can
reliably predict the effect of an action (i.e., the next observation state) given the current
observation state, and (b) such a dynamics model should be differentiable in order to train
the GSP using the state prediction error. Both of these issues could be resolved if an analytic
formulation of forward dynamics is known.

In many scenarios of interest, especially if states are represented as images, an analytic
forward model is not available. In this chapter, we learn the forward dynamics f model from
the data, and is defined as x̃t+1 = f(xt, at; θf). Let x̂t+1 = f(xt, ât; θf) be the state prediction
for the action predicted by π. Because the forward model is not analytic and learned from
data, in general, there is no guarantee that x̃t+1 = x̂t+1, even though executing these two
actions, at, ât, in the real-world will have the same effect. In order to make the outcome of
action predicted by the GSP and the ground-truth action to be consistent with each other, we
include an additional term, ‖xt+1− x̂t+1‖22 in our loss function and infer the parameters θf by
minimizing ‖xt+1− x̃t+1‖22 + λ‖xt+1− x̂t+1‖22, where λ is a scalar hyper-parameter. The first
term ensures that the learned forward model explains ground truth transitions (xt, at, xt+1)
collected by the agent and the second term ensures consistency. The joint objective for
training GSP with forward model consistency is:

min
θπ ,θf

‖xt+1 − x̃t+1‖22 + λ‖xt+1 − x̂t+1‖22 + L(at, ât) (6.3)

s.t. x̃t+1 = f(xt, at; θf)

x̂t+1 = f(xt, ât; θf)

ât = π(xt, xt+1; θπ)

Note that learning θπ, θf jointly from scratch is precarious, because the forward model f
might not be good in the beginning, and hence could make the gradient updates noisier for π.
To address this issue, we first pre-train the forward model with only the first term and GSP
separately by blocking the gradient flow and then fine-tune jointly.

Generalization to feature space dynamics Past work has shown that learning
forward dynamics in the feature space as opposed to raw observation space is more robust
and leads to better generalization [5,179]. Following these works, we extend the GSP to make
predictions in feature representation φ(xt), φ(xt+1) of the observations xt, xt+1 respectively
learned through the self-supervised task of action prediction. The forward consistency loss is
then computed by making predictions in this feature space φ instead of raw observations.

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 86

The optimization objective for feature space generalization with mutli-step objective is shown
in Equation (6.4).

Generalization to multi-step GSP We extend our one-step optimization to variable
length sequence of actions in a straightforward manner by having a multi-step GSP πm model
with a step-wise forward consistency loss. The GSP πm maintains an internal recurrent
memory of the system and outputs actions conditioned on current observation xt, starting
from xi to reach goal observation xT . The forward consistency loss is computed at each time
step, and jointly optimized with the action prediction loss over the whole trajectory. The
final multi-step objective with feature space dynamics is as follows:

min
θπ ,θf ,θφ

t=T∑
t=i

(
‖φ(xt+1) − φ̃(xt+1)‖22 + λ‖φ(xt+1)− φ̂(xt+1)‖22 + L(at, ât)

)
(6.4)

s.t. φ̃(xt+1) = f(φ(xt), at; θf)

φ̂(xt+1) = f(φ(xt), ât; θf)

ât = π(φ(xt), φ(xT); θπ)

where φ(.) is represented by a CNN with parameters θφ. The number of steps taken by the
multi-step GSP πm to reach the goal at inference is variable depending on the decision of goal
recognizer; described in next subsection. Note that, in this objective, if φ is identity then the
dynamics simply reduces to modeling in raw observation space. We analyze feature space
prediction in VizDoom 3D navigation and stick to observation space in the rope manipulation
and the office navigation tasks.

The multi-step forward-consistent GSP πm is implemented using a recurrent network
which at every step takes as input the feature representation of the current (φ(xt)) state, goal
(φ(xT)) states, action at the previous time step (at−1) and the internal hidden representation
ht−1 of the recurrent units and predicts ât. Note that inputting the previous action to GSP πm
at each time step could be redundant given that hidden representation is already maintaining
a history of the trajectory. Nonetheless, it is helpful to explicitly model this history. This
formulation amounts to building an auto-regressive model of the joint action that estimates
probability P (at|x1, a1, ...at−1, xt, xg) at every time step. It is possible to further extend our
forward-consistent GSP πm to build multi-step forward model, but we leave that direction of
future work.

6.1.3 Goal Recognizer

We train a goal recognizer network to figure out if the current goal is reached and therefore
allow the agent to take variable numbers of steps between goals. Goal recognition is especially
critical when the agent has to transit through a sequence of intermediate goals, as is the
case for visual imitation, as otherwise compounding error could quickly lead to divergence
from the demonstration. This recognition is simple given knowledge of the true physical
state, but difficult when working with visual observations. Aside from the usual challenges

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 87

Step-1 Step-2 Step-3 Step-4 Step-5 Step-6 Step-7 Step-8

Step-1 Step-2 Step-3 Step-4

R
ob

ot
F
ai

lu
re

R
ob

ot
S
u
cc

es
s

H
u
m

an
D

em
o

H
u
m

a
n

D
em

o

R
ob

ot
S
u
cc

es
s

(c) Manipulating rope into ‘S’ shape
<latexit sha1_base64="xARHEQwjlLu/oPqr4XKye1c1k6c=">AAACDHicbVDLTgIxFO34RHyhLt00ohE3ZIaNuiNx48YEowgJEOyUCzR02qbtmJAJP+DGX3HjQo1bP8Cdf2OBWSh4kiYn59yb23NCxZmxvv/tLSwuLa+sZtay6xubW9u5nd07I2NNoUoll7oeEgOcCahaZjnUlQYShRxq4eBi7NceQBsmxa0dKmhFpCdYl1FindTOHRboCb4igqmYO0n0sJYKMBNW4vubY2z6REE7l/eL/gR4ngQpyaMUlXbuq9mRNI5AWMqJMY3AV7aVEG0Z5TDKNmMDitAB6UHDUUEiMK1kkmaEj5zSwV2p3RMWT9TfGwmJjBlGoZuMiO2bWW8s/uc1Yts9ayVMqNiCoNND3ZhjF3VcDe4wDdTyoSOEaub+immfaEKtKzDrSghmI8+Taql4XgyuS/lyKW0jg/bRASqgAJ2iMrpEFVRFFD2iZ/SK3rwn78V79z6mowteurOH/sD7/AEHnJpt</latexit><latexit sha1_base64="xARHEQwjlLu/oPqr4XKye1c1k6c=">AAACDHicbVDLTgIxFO34RHyhLt00ohE3ZIaNuiNx48YEowgJEOyUCzR02qbtmJAJP+DGX3HjQo1bP8Cdf2OBWSh4kiYn59yb23NCxZmxvv/tLSwuLa+sZtay6xubW9u5nd07I2NNoUoll7oeEgOcCahaZjnUlQYShRxq4eBi7NceQBsmxa0dKmhFpCdYl1FindTOHRboCb4igqmYO0n0sJYKMBNW4vubY2z6REE7l/eL/gR4ngQpyaMUlXbuq9mRNI5AWMqJMY3AV7aVEG0Z5TDKNmMDitAB6UHDUUEiMK1kkmaEj5zSwV2p3RMWT9TfGwmJjBlGoZuMiO2bWW8s/uc1Yts9ayVMqNiCoNND3ZhjF3VcDe4wDdTyoSOEaub+immfaEKtKzDrSghmI8+Taql4XgyuS/lyKW0jg/bRASqgAJ2iMrpEFVRFFD2iZ/SK3rwn78V79z6mowteurOH/sD7/AEHnJpt</latexit><latexit sha1_base64="xARHEQwjlLu/oPqr4XKye1c1k6c=">AAACDHicbVDLTgIxFO34RHyhLt00ohE3ZIaNuiNx48YEowgJEOyUCzR02qbtmJAJP+DGX3HjQo1bP8Cdf2OBWSh4kiYn59yb23NCxZmxvv/tLSwuLa+sZtay6xubW9u5nd07I2NNoUoll7oeEgOcCahaZjnUlQYShRxq4eBi7NceQBsmxa0dKmhFpCdYl1FindTOHRboCb4igqmYO0n0sJYKMBNW4vubY2z6REE7l/eL/gR4ngQpyaMUlXbuq9mRNI5AWMqJMY3AV7aVEG0Z5TDKNmMDitAB6UHDUUEiMK1kkmaEj5zSwV2p3RMWT9TfGwmJjBlGoZuMiO2bWW8s/uc1Yts9ayVMqNiCoNND3ZhjF3VcDe4wDdTyoSOEaub+immfaEKtKzDrSghmI8+Taql4XgyuS/lyKW0jg/bRASqgAJ2iMrpEFVRFFD2iZ/SK3rwn78V79z6mowteurOH/sD7/AEHnJpt</latexit><latexit sha1_base64="xARHEQwjlLu/oPqr4XKye1c1k6c=">AAACDHicbVDLTgIxFO34RHyhLt00ohE3ZIaNuiNx48YEowgJEOyUCzR02qbtmJAJP+DGX3HjQo1bP8Cdf2OBWSh4kiYn59yb23NCxZmxvv/tLSwuLa+sZtay6xubW9u5nd07I2NNoUoll7oeEgOcCahaZjnUlQYShRxq4eBi7NceQBsmxa0dKmhFpCdYl1FindTOHRboCb4igqmYO0n0sJYKMBNW4vubY2z6REE7l/eL/gR4ngQpyaMUlXbuq9mRNI5AWMqJMY3AV7aVEG0Z5TDKNmMDitAB6UHDUUEiMK1kkmaEj5zSwV2p3RMWT9TfGwmJjBlGoZuMiO2bWW8s/uc1Yts9ayVMqNiCoNND3ZhjF3VcDe4wDdTyoSOEaub+immfaEKtKzDrSghmI8+Taql4XgyuS/lyKW0jg/bRASqgAJ2iMrpEFVRFFD2iZ/SK3rwn78V79z6mowteurOH/sD7/AEHnJpt</latexit>

(b) Manipulating rope into tying a knot
<latexit sha1_base64="jaXwaxC812ru5XbtTqEADRpdxHg=">AAACD3icbVDNTgIxGOziH+LfqkcvjcSIF7LLRb2RePFigokrJEBItxRo6LZN+60JITyCF1/Fiwc1Xr16820sCwcFJ2kynfm+tDOxFtxCEHx7uZXVtfWN/GZha3tnd8/fP7i3KjWURVQJZRoxsUxwySLgIFhDG0aSWLB6PLya+vUHZixX8g5GmrUT0pe8xykBJ3X801J8hm+I5DoVTpJ9bJRmmEtQGEbTO8FDqaDjF4NykAEvk3BOimiOWsf/anUVTRMmgQpibTMMNLTHxACngk0KrdQyTeiQ9FnTUUkSZtvjLNAEnzili3vKuCMBZ+rvjTFJrB0lsZtMCAzsojcV//OaKfQu2mMudQpM0tlDvVTgLK3L3eWGURAjRwg13P0V0wExhILrsOBKCBcjL5OoUr4sh7eVYrUybyOPjtAxKqEQnaMqukY1FCGKHtEzekVv3pP34r17H7PRnDffOUR/4H3+AODinAc=</latexit><latexit sha1_base64="jaXwaxC812ru5XbtTqEADRpdxHg=">AAACD3icbVDNTgIxGOziH+LfqkcvjcSIF7LLRb2RePFigokrJEBItxRo6LZN+60JITyCF1/Fiwc1Xr16820sCwcFJ2kynfm+tDOxFtxCEHx7uZXVtfWN/GZha3tnd8/fP7i3KjWURVQJZRoxsUxwySLgIFhDG0aSWLB6PLya+vUHZixX8g5GmrUT0pe8xykBJ3X801J8hm+I5DoVTpJ9bJRmmEtQGEbTO8FDqaDjF4NykAEvk3BOimiOWsf/anUVTRMmgQpibTMMNLTHxACngk0KrdQyTeiQ9FnTUUkSZtvjLNAEnzili3vKuCMBZ+rvjTFJrB0lsZtMCAzsojcV//OaKfQu2mMudQpM0tlDvVTgLK3L3eWGURAjRwg13P0V0wExhILrsOBKCBcjL5OoUr4sh7eVYrUybyOPjtAxKqEQnaMqukY1FCGKHtEzekVv3pP34r17H7PRnDffOUR/4H3+AODinAc=</latexit><latexit sha1_base64="jaXwaxC812ru5XbtTqEADRpdxHg=">AAACD3icbVDNTgIxGOziH+LfqkcvjcSIF7LLRb2RePFigokrJEBItxRo6LZN+60JITyCF1/Fiwc1Xr16820sCwcFJ2kynfm+tDOxFtxCEHx7uZXVtfWN/GZha3tnd8/fP7i3KjWURVQJZRoxsUxwySLgIFhDG0aSWLB6PLya+vUHZixX8g5GmrUT0pe8xykBJ3X801J8hm+I5DoVTpJ9bJRmmEtQGEbTO8FDqaDjF4NykAEvk3BOimiOWsf/anUVTRMmgQpibTMMNLTHxACngk0KrdQyTeiQ9FnTUUkSZtvjLNAEnzili3vKuCMBZ+rvjTFJrB0lsZtMCAzsojcV//OaKfQu2mMudQpM0tlDvVTgLK3L3eWGURAjRwg13P0V0wExhILrsOBKCBcjL5OoUr4sh7eVYrUybyOPjtAxKqEQnaMqukY1FCGKHtEzekVv3pP34r17H7PRnDffOUR/4H3+AODinAc=</latexit><latexit sha1_base64="jaXwaxC812ru5XbtTqEADRpdxHg=">AAACD3icbVDNTgIxGOziH+LfqkcvjcSIF7LLRb2RePFigokrJEBItxRo6LZN+60JITyCF1/Fiwc1Xr16820sCwcFJ2kynfm+tDOxFtxCEHx7uZXVtfWN/GZha3tnd8/fP7i3KjWURVQJZRoxsUxwySLgIFhDG0aSWLB6PLya+vUHZixX8g5GmrUT0pe8xykBJ3X801J8hm+I5DoVTpJ9bJRmmEtQGEbTO8FDqaDjF4NykAEvk3BOimiOWsf/anUVTRMmgQpibTMMNLTHxACngk0KrdQyTeiQ9FnTUUkSZtvjLNAEnzili3vKuCMBZ+rvjTFJrB0lsZtMCAzsojcV//OaKfQu2mMudQpM0tlDvVTgLK3L3eWGURAjRwg13P0V0wExhILrsOBKCBcjL5OoUr4sh7eVYrUybyOPjtAxKqEQnaMqukY1FCGKHtEzekVv3pP34r17H7PRnDffOUR/4H3+AODinAc=</latexit>

(a) Robotics Setup
<latexit sha1_base64="7KV8YnO3VZyRoRUAP3A5qg/CPVE=">AAAB+nicbVDLTgIxFL2DL8QX4tJNIzHBDZlho+5I3LjExwgJTEindKCh007ajpFM+BU3LtS49Uvc+TcWmIWCJ7nJyTn3tveeMOFMG9f9dgpr6xubW8Xt0s7u3v5B+bDyoGWqCPWJ5FJ1QqwpZ4L6hhlOO4miOA45bYfjq5nffqRKMynuzSShQYyHgkWMYGOlfrlSw2foVobSMKLRHTVp0i9X3bo7B1olXk6qkKPVL3/1BpKkMRWGcKx113MTE2RY2Tc5nZZ6qaYJJmM8pF1LBY6pDrL57lN0apUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+umJroIMiaS1FBBFh9FKUdGolkQaMAUJYZPLMFEMbsrIiOsMDE2rpINwVs+eZX4jfpl3btpVJuNPI0iHMMJ1MCDc2jCNbTABwJP8Ayv8OZMnRfn3flYtBacfOYI/sD5/AE1bZNp</latexit><latexit sha1_base64="7KV8YnO3VZyRoRUAP3A5qg/CPVE=">AAAB+nicbVDLTgIxFL2DL8QX4tJNIzHBDZlho+5I3LjExwgJTEindKCh007ajpFM+BU3LtS49Uvc+TcWmIWCJ7nJyTn3tveeMOFMG9f9dgpr6xubW8Xt0s7u3v5B+bDyoGWqCPWJ5FJ1QqwpZ4L6hhlOO4miOA45bYfjq5nffqRKMynuzSShQYyHgkWMYGOlfrlSw2foVobSMKLRHTVp0i9X3bo7B1olXk6qkKPVL3/1BpKkMRWGcKx113MTE2RY2Tc5nZZ6qaYJJmM8pF1LBY6pDrL57lN0apUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+umJroIMiaS1FBBFh9FKUdGolkQaMAUJYZPLMFEMbsrIiOsMDE2rpINwVs+eZX4jfpl3btpVJuNPI0iHMMJ1MCDc2jCNbTABwJP8Ayv8OZMnRfn3flYtBacfOYI/sD5/AE1bZNp</latexit><latexit sha1_base64="7KV8YnO3VZyRoRUAP3A5qg/CPVE=">AAAB+nicbVDLTgIxFL2DL8QX4tJNIzHBDZlho+5I3LjExwgJTEindKCh007ajpFM+BU3LtS49Uvc+TcWmIWCJ7nJyTn3tveeMOFMG9f9dgpr6xubW8Xt0s7u3v5B+bDyoGWqCPWJ5FJ1QqwpZ4L6hhlOO4miOA45bYfjq5nffqRKMynuzSShQYyHgkWMYGOlfrlSw2foVobSMKLRHTVp0i9X3bo7B1olXk6qkKPVL3/1BpKkMRWGcKx113MTE2RY2Tc5nZZ6qaYJJmM8pF1LBY6pDrL57lN0apUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+umJroIMiaS1FBBFh9FKUdGolkQaMAUJYZPLMFEMbsrIiOsMDE2rpINwVs+eZX4jfpl3btpVJuNPI0iHMMJ1MCDc2jCNbTABwJP8Ayv8OZMnRfn3flYtBacfOYI/sD5/AE1bZNp</latexit><latexit sha1_base64="7KV8YnO3VZyRoRUAP3A5qg/CPVE=">AAAB+nicbVDLTgIxFL2DL8QX4tJNIzHBDZlho+5I3LjExwgJTEindKCh007ajpFM+BU3LtS49Uvc+TcWmIWCJ7nJyTn3tveeMOFMG9f9dgpr6xubW8Xt0s7u3v5B+bDyoGWqCPWJ5FJ1QqwpZ4L6hhlOO4miOA45bYfjq5nffqRKMynuzSShQYyHgkWMYGOlfrlSw2foVobSMKLRHTVp0i9X3bo7B1olXk6qkKPVL3/1BpKkMRWGcKx113MTE2RY2Tc5nZZ6qaYJJmM8pF1LBY6pDrL57lN0apUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+umJroIMiaS1FBBFh9FKUdGolkQaMAUJYZPLMFEMbsrIiOsMDE2rpINwVs+eZX4jfpl3btpVJuNPI0iHMMJ1MCDc2jCNbTABwJP8Ayv8OZMnRfn3flYtBacfOYI/sD5/AE1bZNp</latexit>

Baxter Robot

Camera to capture  
RGB images

One end of the rope is fixed.

Figure 6.2: Qualitative visualization of results for rope manipulation task using Baxter robot. (a)
Our robotics system setup. (b) The sequence of human demonstration images provided by the
human during inference for the task of knot-tying (top row), and the sequences of observation states
reached by the robot while imitating the given demonstration (bottom rows). (c) The sequence of
human demonstration images and the ones reached by the robot for the task of manipulating rope
into ‘S’ shape. Our agent is able to successfully imitate the demonstration.

of visual recognition, the dependence of observations on the agent’s own dynamics further
complicates goal recognition, as the same goal can appear different while moving forward or
turning during navigation.

We pose goal recognition as a binary classification problem that given an observation xi
and the goal xg infers if xi is close to xg or not. Lacking expert supervision of goals, we draw
goal observations at random from the agent’s experience during exploration, since they are
known to be feasible. For each such pseudo-goal, we consider observations that were only a
few actions away to be positives (i.e., close to the goal) and the remaining observations that
were more than a fixed number of actions (i.e., a margin) away as negatives. We trained the
goal classifier using the standard cross-entropy loss. Like the skill policy, our goal recognizer is
conditioned on the goal for generalization across goals. We found that training an independent
goal recognition network consistently outperformed the alternative approach that augments
the action space with a “stop” action. Making use of temporal proximity as supervision has

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 88

Published as a conference paper at ICLR 2018

Method Success %

Inverse Model [Nair et.al. 2017] 36% ± 9.6%
Forward-regularized GSP 44% ± 9.9%
Forward-consistent GSP [Ours] 60% ± 9.8%

Table 1: GSP trained using forward consistency loss, significantly outperforms the baseline GSP
model (i.e. inverse model only) at knot tying.

3.1 ROPE MANIPULATION

Manipulation of non-rigid and deformable objects, e.g., rope, is a challenging problem in robotics.
Even humans learn complex rope manipulation such as tying knots, either by observing an expert
perform it or by receiving explicit instructions. To test whether our agent could manipulate ropes
by simply observing a human, we use the data collected by Nair et al. (2017), where a Baxter robot
manipulated a rope kept on the table in front of it. During exploration, the robot interacts with the
rope by using a pick and place primitive that chooses a random point on the rope, and displaces it by
a randomly chosen length and direction. This process is repeated number of times to collect about
60K interaction pairs of the form (xt, at, xt+1) that are used to train the GSP.

During inference, our proposed approach is tasked to follow a visual demonstration provided by a
human expert for manipulating the rope into a complex ‘S’ shape and tying a knot. Our agent, Baxter
robot, only gets to observe the image sequence of intermediate states, as human manipulates the
rope, without any access to the corresponding actions. Note that the knot shape is never encountered
during the self-supervised data collection phase and therefore the learned GSP model would have to
generalize to be able to follow the human demonstration. More details follow in the supplementary
material, Section A.

Metric The performance of the model is evaluated by measuring the non-rigid registration cost
between the rope state achieved by the robot and the state demonstrated by the human at every step in
the demonstration. The matching cost is measured using the thin plate spline robust point matching
technique (TPS-RPM) described in (Chui & Rangarajan, 2003). While TPS-RPM provides a good
metric for measuring performance for constructing the ‘S’ shape, it is not an appropriate metric for
knots because the configuration of the rope in a knot is 3D due to intertwining of the rope, and fails
to find the correct point correspondences. We, therefore, use accuracy as the metric in knot tying
where the completion of successful knot is judged by human verification.

Visual Imitation We compare our approach to the previous best method of visual imitation that
deploys an inverse model which takes as input a pair of current and goal images to output the
desired action to reach goal (Nair et al., 2017). We re-implement the baseline and train in our setup
for a fair comparison. The comparison is performed apples-to-apples and the only difference is that
we deploy forward-consistency loss for our approach. The results in Figure 2 show that our method
significantly outperforms the baseline at task of manipulating the rope in the ‘S’ shape and achieves
an accuracy of 60% in comparison to 36% achieved by the baseline.

3.2 NAVIGATION IN INDOOR OFFICE ENVIRONMENTS

A natural way to instruct a robot to move in an indoor office environment is to ask it to go near
a certain location, such as, a refrigerator or a certain person’s office. Instead of using language to
command the robot, in this work, we communicate with the robot by either showing it a single image
of the goal, or a sequence of images leading to faraway goals. In both scenarios, the robot is required
to autonomously determine the motor commands for moving to the goal. We used TurtleBot2 for
navigation using an onboard camera for sensing RGB images. For learning the GSP, an automated
self-supervised scheme for data collection was devised that required no human supervision. The
robot collected number of trajectories that contain 230K interactions data, i.e. (xt, at, xt+1), from
two floors of a academic building in total. We then deployed the learned model on a separate floor of
a building with substantially different textures and furniture layout for performing visual imitation at
test time. The details of robotic setup, data collection and network architecture of GSP are described
in supplementary material, Section A.

7

(a) TPS-RPM error for ‘S’ shape manipulation
<latexit sha1_base64="+MwVkN1OAH67HmygYYuFUpId50Q=">AAACFHicbVC7SgNBFJ31GeMramkzGEQFDbs2ahewsRFWkzVCEvTu5K4ZnJ1dZmaFEPITNv6KjYWKrYWdf+Mk2cLXgYHDOecy954wFVwb1/10JianpmdmC3PF+YXFpeXSyuqFTjLFMGCJSNRlCBoFlxgYbgRepgohDgU2wtvjod+4Q6V5Iuuml2I7hhvJI87AWOmqtLsNO7Tu1/bO/VOKSiWKRvZd17ao7kKKNAbJ00zk8bJbcUegf4mXkzLJ4V+VPlqdhGUxSsMEaN303NS0+6AMZwIHxVamMQV2CzfYtFRCjLrdH101oJtW6Yy2iRJp6Ej9PtGHWOteHNpkDKarf3tD8T+vmZnosN3nMs0MSjb+KMoENQkdVkQ7XCEzomcJMMXtrpR1QQEztsiiLcH7ffJfEuxXjire2X656uZtFMg62SDbxCMHpEpOiE8Cwsg9eSTP5MV5cJ6cV+dtHJ1w8pk18gPO+xcLB50V</latexit><latexit sha1_base64="+MwVkN1OAH67HmygYYuFUpId50Q=">AAACFHicbVC7SgNBFJ31GeMramkzGEQFDbs2ahewsRFWkzVCEvTu5K4ZnJ1dZmaFEPITNv6KjYWKrYWdf+Mk2cLXgYHDOecy954wFVwb1/10JianpmdmC3PF+YXFpeXSyuqFTjLFMGCJSNRlCBoFlxgYbgRepgohDgU2wtvjod+4Q6V5Iuuml2I7hhvJI87AWOmqtLsNO7Tu1/bO/VOKSiWKRvZd17ao7kKKNAbJ00zk8bJbcUegf4mXkzLJ4V+VPlqdhGUxSsMEaN303NS0+6AMZwIHxVamMQV2CzfYtFRCjLrdH101oJtW6Yy2iRJp6Ej9PtGHWOteHNpkDKarf3tD8T+vmZnosN3nMs0MSjb+KMoENQkdVkQ7XCEzomcJMMXtrpR1QQEztsiiLcH7ffJfEuxXjire2X656uZtFMg62SDbxCMHpEpOiE8Cwsg9eSTP5MV5cJ6cV+dtHJ1w8pk18gPO+xcLB50V</latexit><latexit sha1_base64="+MwVkN1OAH67HmygYYuFUpId50Q=">AAACFHicbVC7SgNBFJ31GeMramkzGEQFDbs2ahewsRFWkzVCEvTu5K4ZnJ1dZmaFEPITNv6KjYWKrYWdf+Mk2cLXgYHDOecy954wFVwb1/10JianpmdmC3PF+YXFpeXSyuqFTjLFMGCJSNRlCBoFlxgYbgRepgohDgU2wtvjod+4Q6V5Iuuml2I7hhvJI87AWOmqtLsNO7Tu1/bO/VOKSiWKRvZd17ao7kKKNAbJ00zk8bJbcUegf4mXkzLJ4V+VPlqdhGUxSsMEaN303NS0+6AMZwIHxVamMQV2CzfYtFRCjLrdH101oJtW6Yy2iRJp6Ej9PtGHWOteHNpkDKarf3tD8T+vmZnosN3nMs0MSjb+KMoENQkdVkQ7XCEzomcJMMXtrpR1QQEztsiiLcH7ffJfEuxXjire2X656uZtFMg62SDbxCMHpEpOiE8Cwsg9eSTP5MV5cJ6cV+dtHJ1w8pk18gPO+xcLB50V</latexit><latexit sha1_base64="+MwVkN1OAH67HmygYYuFUpId50Q=">AAACFHicbVC7SgNBFJ31GeMramkzGEQFDbs2ahewsRFWkzVCEvTu5K4ZnJ1dZmaFEPITNv6KjYWKrYWdf+Mk2cLXgYHDOecy954wFVwb1/10JianpmdmC3PF+YXFpeXSyuqFTjLFMGCJSNRlCBoFlxgYbgRepgohDgU2wtvjod+4Q6V5Iuuml2I7hhvJI87AWOmqtLsNO7Tu1/bO/VOKSiWKRvZd17ao7kKKNAbJ00zk8bJbcUegf4mXkzLJ4V+VPlqdhGUxSsMEaN303NS0+6AMZwIHxVamMQV2CzfYtFRCjLrdH101oJtW6Yy2iRJp6Ej9PtGHWOteHNpkDKarf3tD8T+vmZnosN3nMs0MSjb+KMoENQkdVkQ7XCEzomcJMMXtrpR1QQEztsiiLcH7ffJfEuxXjire2X656uZtFMg62SDbxCMHpEpOiE8Cwsg9eSTP5MV5cJ6cV+dtHJ1w8pk18gPO+xcLB50V</latexit>

(b) Success rate for Knot-tying
<latexit sha1_base64="cBf7Qn6YbkKIP8MivMmrJ74hT5M=">AAACB3icbVC7TgJBFJ3FF+Jr1dLCicQEC8kujdqR2JjYYBQhAUJmh7swYXZmM3PXhBBKG3/FxkKNrb9g59+4PAoFT3Vyzr25554glsKi5307maXlldW17HpuY3Nre8fd3bu3OjEcqlxLbeoBsyCFgioKlFCPDbAokFAL+pdjv/YAxgqt7nAQQytiXSVCwRmmUts9LAQn9DbhHKylhiHQUBt6rTSe4kCobtvNe0VvArpI/BnJkxkqbfer2dE8iUAhl8zahu/F2Boyg4JLGOWaiYWY8T7rQiOlikVgW8PJIyN6nCqdSYJQK6QT9ffGkEXWDqIgnYwY9uy8Nxb/8xoJhuetoVBxgqD49FCYSIqajluhHWGAoxykhHEj0qyU95hhHNPucmkJ/vzLi6RaKl4U/ZtSvuzN2siSA3JECsQnZ6RMrkiFVAknj+SZvJI358l5cd6dj+loxpnt7JM/cD5/AJGGmJQ=</latexit><latexit sha1_base64="cBf7Qn6YbkKIP8MivMmrJ74hT5M=">AAACB3icbVC7TgJBFJ3FF+Jr1dLCicQEC8kujdqR2JjYYBQhAUJmh7swYXZmM3PXhBBKG3/FxkKNrb9g59+4PAoFT3Vyzr25554glsKi5307maXlldW17HpuY3Nre8fd3bu3OjEcqlxLbeoBsyCFgioKlFCPDbAokFAL+pdjv/YAxgqt7nAQQytiXSVCwRmmUts9LAQn9DbhHKylhiHQUBt6rTSe4kCobtvNe0VvArpI/BnJkxkqbfer2dE8iUAhl8zahu/F2Boyg4JLGOWaiYWY8T7rQiOlikVgW8PJIyN6nCqdSYJQK6QT9ffGkEXWDqIgnYwY9uy8Nxb/8xoJhuetoVBxgqD49FCYSIqajluhHWGAoxykhHEj0qyU95hhHNPucmkJ/vzLi6RaKl4U/ZtSvuzN2siSA3JECsQnZ6RMrkiFVAknj+SZvJI358l5cd6dj+loxpnt7JM/cD5/AJGGmJQ=</latexit><latexit sha1_base64="cBf7Qn6YbkKIP8MivMmrJ74hT5M=">AAACB3icbVC7TgJBFJ3FF+Jr1dLCicQEC8kujdqR2JjYYBQhAUJmh7swYXZmM3PXhBBKG3/FxkKNrb9g59+4PAoFT3Vyzr25554glsKi5307maXlldW17HpuY3Nre8fd3bu3OjEcqlxLbeoBsyCFgioKlFCPDbAokFAL+pdjv/YAxgqt7nAQQytiXSVCwRmmUts9LAQn9DbhHKylhiHQUBt6rTSe4kCobtvNe0VvArpI/BnJkxkqbfer2dE8iUAhl8zahu/F2Boyg4JLGOWaiYWY8T7rQiOlikVgW8PJIyN6nCqdSYJQK6QT9ffGkEXWDqIgnYwY9uy8Nxb/8xoJhuetoVBxgqD49FCYSIqajluhHWGAoxykhHEj0qyU95hhHNPucmkJ/vzLi6RaKl4U/ZtSvuzN2siSA3JECsQnZ6RMrkiFVAknj+SZvJI358l5cd6dj+loxpnt7JM/cD5/AJGGmJQ=</latexit><latexit sha1_base64="cBf7Qn6YbkKIP8MivMmrJ74hT5M=">AAACB3icbVC7TgJBFJ3FF+Jr1dLCicQEC8kujdqR2JjYYBQhAUJmh7swYXZmM3PXhBBKG3/FxkKNrb9g59+4PAoFT3Vyzr25554glsKi5307maXlldW17HpuY3Nre8fd3bu3OjEcqlxLbeoBsyCFgioKlFCPDbAokFAL+pdjv/YAxgqt7nAQQytiXSVCwRmmUts9LAQn9DbhHKylhiHQUBt6rTSe4kCobtvNe0VvArpI/BnJkxkqbfer2dE8iUAhl8zahu/F2Boyg4JLGOWaiYWY8T7rQiOlikVgW8PJIyN6nCqdSYJQK6QT9ffGkEXWDqIgnYwY9uy8Nxb/8xoJhuetoVBxgqD49FCYSIqajluhHWGAoxykhHEj0qyU95hhHNPucmkJ/vzLi6RaKl4U/ZtSvuzN2siSA3JECsQnZ6RMrkiFVAknj+SZvJI358l5cd6dj+loxpnt7JM/cD5/AJGGmJQ=</latexit>

Figure 6.3: GSP trained using forward consistency loss significantly outperforms the baselines at
the task of (a) manipulating rope into ‘S’ shape as measured by TPS-RPM error and (b) knot-tying
where we report success rate with bootstrap standard deviation.

also been explored for feature learning in the concurrent work of Sermanet et al . [220].

6.2 Experiments

We evaluate our model by testing its performance on: rope manipulation using Baxter
robot, navigation of a wheeled robot in cluttered office environments, and simulated 3D
navigation. The key requirements of a good skill policy are that it should generalize to
unseen environments and new goals while staying robust to irrelevant distractors in the
observations. For rope manipulation, we evaluate generalization by testing the ability of the
robot to manipulate the rope into configurations such as knots that were not seen during
random exploration. For navigation, both real-world and simulation, we check generalization
by testing on a novel building/floor.

Ablations and Baselines Our proposed formulation of GSP composed of following com-
ponents: (a) recurrent variable-length skill policy network, (b) explicitly encoding previous
action in the recurrence, (c) goal recognizer, (d) forward consistency loss function, and
(w) learning forward dynamics in the feature space instead of raw observation space. We
systematically ablate these components of forward-consistent GSP, to quantitatively review
the importance of each component and then perform comparisons to the prior approaches
that could be deployed for the task of visual imitation.

The following methods will be evaluated and compared to in the subsequent experiments
section: (1) Classical methods: In visual navigation, we attempted to compare against the
state-of-the-art open source classical methods, namely, ORB-SLAM2 [44, 158] and Open-
SFM [150]. (2) Inverse Model: Nair et al . [161] leverage vanilla inverse dynamics to follow

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 89

Step-7 Step-14 Step-21 Step-28

Step-35 Step-42 Step-44 Step-51

Initial Image

Final Image (Step-59) Fixed Goal Image

Figure 6.4: Visualization of the TurtleBot trajectory to reach a goal image (right) from the initial
image (top-left). Since the initial and goal image have no overlap, the robot first explores the
environment by turning in place. Once it detects overlap between its current image and goal image
(i.e. step 42 onward), it moves towards the goal. Note that we did not explicitly train the robot to
explore and such exploratory behavior naturally emerged from the self-supervised learning.

demonstration in rope manipulation setup. We compare to their method in both visual
navigation and manipulation. (3) GSP-NoPrevAction-NoFwdConst is the ablation of our
recurrent GSP without previous action history and without forward consistency loss. (4)
GSP-NoFwdConst refers to our recurrent GSP with previous action history, but without
forward consistency objective. (5) GSP-FwdRegularizer refers to the model where forward
prediction is only used to regularize the features of GSP but has no role to play in the
loss function of predicted actions. The purpose of this variant is to particularly ablate the
benefit of consistency loss function with respect to just having forward model as feature
regularizer. (6) GSP refers to our complete method with all the components. We now discuss
the experiments and evaluate these baselines.

6.2.1 Rope Manipulation

Manipulation of non-rigid and deformable objects, e.g., rope, is a challenging problem in
robotics. Even humans learn complex rope manipulation such as tying knots, either by
observing an expert perform it or by receiving explicit instructions. We test whether our
agent could manipulate ropes by simply observing a human perform it. We use the data
collected by Nair et al . [161], where a Baxter robot manipulated a rope kept on the table
in front of it. During exploration, the robot interacts with the rope by using a pick and
place primitive that chooses a random point on the rope and displaces it by a randomly
chosen length and direction. This process is repeated a number of times to collect about 60K
interaction pairs of the form (xt, at, xt+1) that are used to train the GSP.

During inference, our proposed approach is tasked to follow a visual demonstration
provided by a human expert for manipulating the rope into a complex ‘S’ shape and tying
a knot. Our agent, Baxter robot, only gets to observe the image sequence of intermediate
states, as human manipulates the rope, without any access to the corresponding actions.
Note that the knot shape is never encountered during the self-supervised data collection

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 90

Model Name Run Id-1 Run Id-2 Run Id-3 Run Id-4 Run Id-5 Run Id-6 Run Id-7 Run Id-8 Num Success

Random Search Fail Fail Fail Fail Fail Fail Fail Fail 0
Inverse Model [Nair et. al. 2017] Fail Fail Fail Fail Fail Fail Fail Fail 0

GSP-NoPrevAction-NoFwdConst 39 steps 34 steps Fail Fail Fail Fail Fail Fail 2
GSP-NoFwdConst 22 steps 22 steps 39 steps 48 steps Fail Fail Fail Fail 4

GSP (Ours) 119 steps 66 steps 144 steps 67 steps 51 steps Fail 100 steps Fail 6

Table 6.1: Quantitative evaluation of various methods on the task of navigating using a single
image of goal in an unseen environment. Each column represents a different run of our system for
a different initial/goal image pair. Our full GSP model takes longer to reach the goal on average
given a successful run but reaches the goal successfully at a much higher rate.

phase and therefore the learned GSP model would have to generalize to be able to follow the
human demonstration. More details follow in the supplementary material, Section B.1.

Metric The performance of the model is evaluated by measuring the non-rigid registration
cost between the rope state achieved by the robot and the state demonstrated by the human
at every step in the demonstration. The matching cost is measured using the thin plate
spline robust point matching technique (TPS-RPM) described in [37]. While TPS-RPM
provides a good metric for measuring performance for constructing the ‘S’ shape, it is not an
appropriate metric for knots because the configuration of the rope in a knot is 3D due to
intertwining of the rope, and it fails to find the correct point correspondences. We, therefore,
use success rate as the metric in knot tying where the completion of a successful knot is
judged by human verification.

Visual Imitation Qualitative examples of our agent trying to manipulate rope are
shown in Figure 6.2. We compare our approach to the baseline that deploys an inverse model
which takes as input a pair of current and goal images to output the desired action to reach
the goal [161]. We re-implement the baseline and train in our setup for a fair comparison. To
further ablate the importance of consistency loss, we compare to a baseline that just uses a
forward model as a regularizer of features. The results in Figure 6.3 show that our method
significantly outperforms the baseline at task of manipulating the rope in the ‘S’ shape and
achieves a success rate of 60% in comparison to 36% achieved by the baseline.

6.2.2 Navigation in Indoor Office Environments

A natural way to instruct a robot to move in an indoor office environment is to ask it to go
near a certain location, such as a refrigerator or a someone’s office. Instead of using language
to command the robot, in this chapter, we communicate with the robot by either showing it a
single image of the goal, or a sequence of images leading to faraway goals. In both scenarios,
the robot is required to autonomously determine the motor commands for moving to the goal.
We used TurtleBot2 for navigation using an onboard camera for sensing RGB images. For
learning the GSP, an automated self-supervised scheme for data collection was devised that
doesn’t require human supervision. The robot collected a number of navigation trajectories
from two floors of a academic building which in total contain 230K interactions data, i.e.

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 91

Demo Image-1 Demo Image-2 Demo Image-3 Demo Image-4 Demo Image-5 Demo Image-6

Robot WayPoint-1 Robot WayPoint-2 Robot WayPoint-3 Robot WayPoint-4 Robot WayPoint-5 Robot WayPoint-6Initial Robot Image

Figure 6.5: The performance of TurtleBot at following a visual demonstration given as a sequence of
images (top row). The TurtleBot is positioned in a manner such that the first image in demonstration
has no overlap with its current observation. Even under this condition the robot is able to move close
to the first demo image (shown as Robot WayPoint-1) and then follow the provided demonstration
until the end. This also exemplifies a failure case for classical methods; there are no possible keypoint
matches between WayPoint-1 and WayPoint-2, and the initial observation is even farther from
WayPoint-1.

(xt, at, xt+1). We then deployed the learned model on a separate floor of a building with
substantially different textures and furniture layout for performing visual imitation at test
time. The details of the robotic setup, data collection, and network architecture of GSP are
described in supplementary material, Section B.2.

1) Goal Finding We first tested if the GSP learned by the TurtleBot can enable it to
find its way to a goal that is within the same room from just a single image of the goal.
To test the extrapolative generalization, we keep the Turtlebot approximately 20-30 steps
away from the target location in a way that current and goal observations have no overlap as
shown in Figure 6.4. We test the robot in an indoor office environment on a different floor
that it has never encountered before. We judge the robot to be successful if it stops close to
the goal and failure if it crashed into furniture or does not reach the goal within 200 steps.
Since the initial and goal images have no overlap, classical techniques such as structure from
motion that rely on feature matching cannot be used to infer the executed action. Therefore,
in order to reach the goal, the robot must explore its surroundings. We find that our GSP
model outperforms the baseline models in reaching the target location. Our model learns the
exploratory behavior of rotating in place until it encounters an overlap between its current
and goal image. Results are shown in Table 6.1 and videos are available at the website 1.

2) Visual Imitation In the previous paragraph, we saw that the robot can reach a goal
that’s within the same room. However, our agent is unable to reach far away goals such as
in other rooms using just a single image. In such scenarios, an expert might communicate
instructions like go to the door, turn right, go to the closest chair etc. Instead of language
instruction, in our setup we provide a sequence of landmark images to convey the same
high-level idea. These landmark images were captured from the robot’s camera as the expert

1https://pathak22.github.io/zeroshot-imitation/

https://pathak22.github.io/zeroshot-imitation/

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 92

Maze Demonstration Loop Demonstration
Model Name Run-1 Run-2 Run-3 Run-1 Run-2 Run-3

SIFT 10% 5% 15% — — —
GSP-NoPrevAction-NoFwdConst 60% 70% 100% — — —
GSP-NoFwdConst 65% 90% 100% 0% 0% 0%

GSP (ours) 100% 60% 100% 0% 100% 100%

Table 6.2: Quantitative evaluation of TurtleBot’s performance at following visual demonstrations
in two scenarios: maze and the loop. We report the % of landmarks reached by the agent across
three runs of two different demonstrations. Results show that our method outperforms the baselines.
Note that 3 more trials of the loop demonstration were tested under significantly different lighting
conditions and neither model succeeded. Detailed results are available in the supplementary
materials.

moved the robot from the start to a goal location. However, note that it is not necessary
for the expert to control the robot to capture the images because we don’t make use of the
expert’s actions, but only the images. Instead of providing the image after every action in the
demonstration, we only provided every fifth image. The rationale behind this choice is that
we want to sample the demonstration sparsely to minimize the agent’s reliance on the expert.
Such sub-sampling (as shown in Figure 6.5) provides an easy way to vary the complexity of
the task.

We evaluate via multiple runs of two demonstrations, namely, maze demonstration where
the robot is supposed to navigate through a maze-like path and perturbed loop demonstration,
where the robot is supposed to make a complete loop as instructed by demonstration images.
The loop demonstration is longer and more difficult than the maze. We start the agent
from different starting locations and orientations with respect to that of demonstration.
Each orientation is initialized such that no part of the demonstration’s initial frame is
visible. Results are shown in Table 6.2. When we sample every frame, our method and
classical structure from motion can both be used to follow the demonstration. However,
at sub-sampling rate of five, SIFT-based feature matching approaches did not work and
ORBSLAM2 [158] failed to generate a map, whereas our method was successful. Notice
that providing sparse landmark images instead of dense video adds robustness to the visual
imitation task. In particular, consider the scenario in which the environment has changed
since the time the demonstration was recorded. By not requiring the agent to match every
demonstration image frame-by-frame, it becomes less sensitive to changes in the environment.

6.2.3 3D Navigation in VizDoom

We have evaluated our approach on real-robot scenarios thus far. To further analyze the
performance and robustness of our approach through large scale experiments, we setup the
same navigation task as described in previous subsection in a simulated VizDoom environment.

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 93

Our goal is to measure: (1) the robustness of each method with proper error bars, (2) the
role of initial self-supervised data collection for performance on visual imitation, (3) the
quantitative difference in modeling forward consistency loss in feature space in comparison to
raw visual space.

In VizDoom, we collect data by deploying two types of exploration methods: random
exploration and curiosity-driven exploration (see Chapter 4). The hypothesis is that if the
initial data collected by the robot is driven by a better strategy than just random, this
should eventually help the agent follow long demonstrations better. Our environment consists
of 2 maps in total. We train on one map with 5 different starting positions for collecting
exploration data. For validation, we collect 5 human demonstrations in a map with the same
layout as in training but with different textures. For zero-shot generalization, we collect 5
human demonstrations in a novel map layout with novel textures. Exact details for data
collection and training setup are in the supplementary, Section B.3.

Metric We report the median of maximum distance reached by the robot in following
the given sequence of demonstration images. The maximum distance reached is the distance
of farthest landmark point that the agent reaches contiguously, i.e., without missing any
intermediate landmarks. Measuring the farthest landmark reached does not capture how
efficiently it is reached. Hence, we further measure efficiency of the agent as the ratio of
number of steps taken by the agent to reach farthest contiguous landmark with respect to
the number of steps shown in human demonstrations.

Visual Imitation The task here is same as the one in real robot navigation where
the agent is shown a sparse sequence of images to imitate. The results are in Table 6.3.
We found that the exploration data collected via curiosity significantly improves the final
imitation performance across all methods including the baselines with respect to random
exploration. Our baseline GSP model with a forward regularizer instead of consistency loss
ends up overfitting to the training layout. In contrast, our forward-consistent GSP model
outperforms other methods in generalizing to new map with novel textures. This indicates
that the forward consistency is possibly doing more than just regularizing the policy features.
Training forward consistency loss in feature space further enhances the generalization even
when both pixel and feature space models perform similarly on training environment.

6.3 Related Work

Our work is closely related to imitation learning, but we address a different problem statement
that gives less supervision and requires generalization across tasks during inference.

Imitation Learning The two main threads of imitation learning are behavioral cloning [10,
197], which directly supervises the mapping of states to actions, and inverse reinforcement
learning [1,100,138,163,280], which recovers a reward function that makes the demonstration
optimal (or nearly optimal). Inverse RL is most commonly achieved with state-actions, and
is difficult to extend to fitting the reward to observations alone, though in principle state
occupancy could be sufficient. Recent works in imitation learning [57,67, 87] can generalize

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 94

Same Map, Same Texture Same Map, Diff Texture Diff Map, Diff Texture
Model Name Median % Efficiency % Median % Efficiency % Median % Efficiency %

Random Exploration for Data Collection:

GSP-NoFwdConst 63.2 ± 5.7 36.4 ± 3.3 32.2 ± 0.7 28.9 ± 4.0 34.5 ± 0.6 23.1 ± 2.4
GSP (ours pixels) 62.2 ± 5.1 43.0 ± 2.6 32.4 ± 0.8 30.9 ± 2.9 35.4 ± 1.1 29.3 ± 3.9
GSP (ours features) 68.9 ± 6.9 53.9 ± 4.0 32.4 ± 0.7 47.4 ± 7.6 39.1 ± 2.0 30.4 ± 2.5

Curiosity-driven Exploration for Data Collection:

GSP-NoFwdConst 78.2 ± 2.3 63.0 ± 4.3 43.2 ± 2.6 33.9 ± 3.0 40.2 ± 4.0 27.3 ± 1.9
GSP-FwdRegularizer 78.4 ± 3.4 59.8 ± 4.1 50.6 ± 4.7 30.9 ± 3.0 37.9 ± 1.1 28.9 ± 1.7
GSP (ours pixels) 78.2 ± 3.4 65.2 ± 4.2 47.1 ± 4.7 32.4 ± 3.0 44.8 ± 4.0 29.5 ± 1.9
GSP (ours features) 78.2 ± 4.6 67.0 ± 3.3 49.4 ± 4.8 26.9 ± 1.5 47.1 ± 3.0 24.1 ± 1.7

Table 6.3: Quantitative evaluation of our proposed GSP and the baseline models at following visual
demonstrations in VizDoom 3D Navigation. Medians and 95% confidence intervals are reported for
demonstration completion and efficiency over 50 seeds and 5 human paths per environment type.

to novel goals, but require a wealth of demonstrations comprised of expert state-actions for
learning. Our approach does not require expert actions at all.

Visual Demonstration The common scenario in LfD is to assume full knowledge of
expert states and actions during demonstrations, but several papers have focused on relaxing
this supervision to visual observations alone. Nair et al . [161] observe a sequence of images
from the expert demonstration for performing rope manipulations. Sermanet et al . [220, 221]
imitate humans with robots by self-supervised learning but require expert supervision at
training time. Third person imitation learning [233] and the concurrent work of imitation-
from-observation [144] learn to translate expert observations into agent observations such
that they can do policy optimization to minimize the distance between the agent trajectory
and the translated demonstration, but they require demonstrations for learning. Visual
servoing is a standard problem in robotics [124] that seeks to take actions that align the
agent’s observation with a target configuration of carefully-designed visual features [260, 272]
or raw pixel intensities [32]. Classical methods rely on fixed features or policies, but more
recently end-to-end learning has improved results [131,135].

Forward/Inverse Dynamics and Consistency Numerous prior works, such as [60,
166,255], have learned forward dynamics model for planning actions. The works of [5,113,179,
261] jointly learn forward and inverse dynamics model but do not optimize for consistency
between the forward and inverse dynamics. We empirically show that learning models by our
forward consistency loss significantly improves task performance. Enforcing consistency as a
meta-supervision has also been successful in finding visual correspondences [278] or unpaired
image translations [279].

Goal Conditioning By parameterizing the value or policy function with a goal, an
agent can learn and do multiple tasks. The idea of learning goal-conditioned policies has
been explored in [5,9,161,213]. Similarly to hindsight experience replay [9] we draw goals
from experience, but our policy optimization has better sample efficiency through supervised

CHAPTER 6. ZERO-SHOT VISUAL IMITATION 95

learning and dynamics modeling instead of reinforcement learning. Moreover, we work from
high-dimensional visual inputs instead of knowledge of the true states and do not make use
of a task reward during training. In our setting, all of the expert goals are followed zero-shot
since they are only revealed after learning.

6.4 Discussion

In this chapter, we presented a method for imitating expert demonstrations from visual
observations alone. In contrast to most work in imitation learning, we never require access
to expert actions. The key idea is to learn a GSP using data collected by self-supervised
exploration. However, this limits the quality of the learned GSP as per the exploration data.
For instance, we deploy random exploration on our real-world navigation robot, which means
that it would almost never follow trajectories that go between rooms. Consequently, the
learned GSP is unable to navigate towards a goal image taken in another room without
requiring intermediate sub-goals. We showed in Chapter 4 that the agent learns to move along
corridors and transition between rooms purely driven by curiosity in VizDoom. Training
GSP on such a structured data could equip the agent with more interesting search behaviors,
e.g., going across rooms to find a goal. In general, using better methods of exploration for
training the GSP could be a fruitful direction toward generalizing zeroshot imitation.

One limitation of our approach is that we require first-person view demonstrations.
Extension to third-person demonstrations [144,233] would make the method applicable in
more general scenarios. Another limitation is that, in the current framework, it is implicitly
assumed that the statistics of visual observations when the expert demonstrates the task
and the agent follows it are similar. For e.g., when the expert performs a demonstration in
one setting, say in daylight and the agent needs to imitate say in the evening, the change in
the lighting conditions might result in worse performance. Making the GSP robust to such
nuisance changes or other changes in environment by domain adaptation would be necessary
to scale the method to practical problems. Another thing to note is that, in the current
framework, we do not learn from expert demonstrations, but simply imitate them. It would
be interesting to investigate ways for an agent to learn from the expert to bias its exploration
to more useful parts of the environment.

While we used a sequence of images to provide a demonstration, our work makes no
image-specific assumptions and can be extended to using formal language for communicating
goals. For instance, after training the GSP, instead of transforming an image into features
φ as described in section 6.1.2, one could possibly learn a mapping to transform language
instructions into this feature space.

96

Part IV

Generalization via Modularity

97

Chapter 7

Learning to Control Modular
Self-Assembling Morphologies

People who are really serious about software should make their own hardware.
— Alan Kay

Possibly the single most pivotal event in the history of evolution was the point when
single-celled organisms switched from always competing with each other for resources to
sometimes cooperating, first by forming colonies, and later by merging into multicellular
organisms [6]. These modular self-assemblies were successful because they combined the
high adaptability of single-celled organisms while making it possible for vastly more complex
behaviors to emerge. Indeed, one could argue that it is this modular design which allowed
the multicellular organisms to successfully adapt, increase in complexity, and generalize to
the constantly changing environment of prehistoric Earth. Like many researchers before
us [159,228,245,270,271], we are inspired by the biology of multicellular evolution as a model
for emergent complexity in artificial agents. Unlike most previous work however, we are
primarily focused on modularity as a way of improving adaptability and generalization to
novel test-time scenarios.

In this chapter, we present a study of modular self-assemblies of primitive agents — “limbs”
— which can link up to solve a task. Limbs have the option to bind together by a magnet that
connects their morphologies within magnetic range (Figure 7.1), and when they do so, they
pass messages and share rewards. Each limb comes with a simple neural net that controls
the torque applied to its joints. Linking and unlinking are treated as dynamic actions so
that the limb assembly can change shape within an episode. Similar setup has previously
been explored in robotics as “self-reconfiguring modular robots” [238]. However, unlike prior
work on such robots, where the control policies are hand-defined, we show how to learn the
policies and study the generalization properties that emerge.

This chapter is based on Pathak et al . 2019 [185].

CHAPTER 7. GENERALIZATION VIA MODULARITY 98

Modular Policy
Parent 
Limb

Child  
Limb

Magnetic
Joint

attached
unattached

Potential
attachment

Environment Agent

Output
message

Input 
message

Node
input

Action
Bottom-up

function

Node

Node

Node

Node
Node

Node Node

Node

Node

Node
Node Node

Figure 7.1: This work investigates the joint learning of control and morphology in self-assembling
agents. Several primitive agents, containing a cylindrical body with a configurable motor, are
dropped in a simulated environment (left). These primitive agents can self-assemble into collectives
using magnetic joints (middle). Policy of the self-assembled agent is represented via proposed
dynamic graph networks (DGN) with shared parameters (modular) across each limb (right).

Our self-assembled agent can be represented as a graph of primitive limbs. Limbs pass
messages to their neighbors in this graph in order to coordinate behavior. All limbs have
a common policy network with shared parameters, i.e., a modular policy which takes the
messages from adjacent limbs as input and outputs a torque to rotate the limb in addition
to the linking/un-linking action. We call the aggregate neural network a Dynamic Graph
Network (DGN) since it is a graph neural network [210] that can dynamically change topology
as a function of its own outputs.

We test our dynamic limb assemblies on two separate tasks: standing up and locomotion.
We are particularly interested in assessing how well can the assemblies generalize to novel
testing conditions, not seen at training, compared to static and monolithic baselines. We
evaluate test-time changes to both the environment (changing terrain geometry, environmental
conditions), as well as the agent structure itself (changing the number of available limbs).
We show that the dynamic self-assembles are better able to generalize to these changes than
the baselines. For example, we find that a single modular policy is able to control multiple
possible morphologies, even those not seen during training, e.g., a 6-limb policy, trained to
build a 6-limb tower, can be applied at test time on 3 or 12 limbs, and still able to perform
the task.

7.1 Environment and Agents

Investigating the co-evolution of control (i.e., software) and morphology (i.e., hardware)
is not supported within standard benchmark environments typically used for sensorimotor
control, requiring us to create our own. We opted for a minimalist design for our agents, the
environment, and the reward structure, which is crucial to ensuring that the emergence of
limb assemblies with complex morphologies is not forced, but happens naturally.

CHAPTER 7. GENERALIZATION VIA MODULARITY 99

More Limbs Fewer Limbs Wind

More Limbs

Stairs Valley

Bi-Modal Bumps

Hurdles
Zero-Shot GeneralizationTraining

Water

WaterFewer Limbs

Lo
co

m
ot

io
n

St
an

di
ng

 U
p

Gaps

+ Y axis

+ X axis

Figure 7.2: We illustrate our dynamic agents in two environments / tasks: standing up and locomo-
tion. For each of these, we generate several new environment for evaluating generalization. Refer to
project video at https://pathak22.github.io/modular-assemblies/ for better understanding
of tasks.

Environment Structure Our environment contains an arena where a collection of primi-
tive agent limbs can self-assemble to perform control tasks. This arena is a ground surface
equipped with gravity and friction. The arena can be procedurally changed to generate a
variety of novel terrains by changing the height of each tile on the ground (see Figure 7.2).
To evaluate the generalization properties of our agents, we generate a series of novels terrains.
This include generating bumpy terrain by randomizing the height of nearby tiles, stairs by
incrementally increasing the height of each row of tiles, hurdles by changing the height of
each row of tiles, gaps by removing alternating rows of tiles, etc. Some variations also include
putting the arena ‘under water’ which basically amounts to increased drag (i.e. buoyancy).
During training, we start our environment with a set of six primitive limbs on the ground
which can assemble to form collectives to perform complex tasks.

Agent Structure All limbs share the same structure: a cylindrical body with a configurable
motor on one end and the other end is free. The free-end of the limb can link up with the
motor-end of the other limb, and then the motor acts as a joint between two limbs with
three degrees of rotation. Hence, one can refer to the motor-end of the cylindrical limb as a
parent-end and the free end as a child-end. Multiple limbs can attach their child-end to the
parent-end of another limb, as shown in Figure 7.1, to allow for complex graph morphologies
to emerge. The limb of the parent-end controls the torques of joint. The unlinking action can

https://pathak22.github.io/modular-assemblies/

CHAPTER 7. GENERALIZATION VIA MODULARITY 100

be easily implemented by detaching two limbs, but the linking action has to deal with the
ambiguity of which limb to connect to (if at all). To resolve this, we implement the linking
action by attaching the closest limb within a small radius around the parent-node. The
attachment mechanism is driven by a magnet inside the parent node which forces the closest
child-limb within the magnetic range node to get docked onto itself if the parent signals to
connect. If no other limb is present within the magnetic range, the linking action has no
effect.

The primitive limbs are dropped in an environment to jointly solve a given control task.
One key component of the self-assembling agent setup that makes it different from typical
multi-agent scenarios [262] is that if some agents assemble to form a collective, the resulting
morphology becomes a new single agent and all limbs within the morphology maximize a joint
reward function. The output action space of each primitive agent contains the continuous
torque values that are to be applied to the motor connected to the agent, and are denoted by
{τα, τβ, τγ} for three degrees of rotation. In addition to the torque controls, each limb can
decide to attach another link at its parent-end, or decide to unlink its child-end if already
connected to other limb. The linking and unlinking decisions are binary. This complementary
role assignment of child and parent ends, i.e., parent can only link and child can only unlink,
makes it possible to decentralize the control across limbs.

Sensory Inputs In our self-assembling setup, each agent limb only has access to its local
sensory information and does not know about other limbs. The sensory input of each agent
includes its own dynamics, i.e., the location of the limb in 3-D euclidean coordinates, its
velocity, angular rotation and angular velocity. Each end of the limb also has a trinary touch
sensor to detect whether the end of the cylinder is touching 1) the floor, 2) another limb, or
3) nothing. Additionally, we also provide our limbs with a point depth sensor that captures
the surface height on a 9× 9 grid around the projection of center of limb on the surface.

One essential requirement to operationalize this setup is an efficient simulator to allow
simultaneous simulation of several of these primitive limbs. We implement our environments
in the Unity ML [114] framework, which is one of the dominant platforms for designing
realistic games. For computational reasons, we do not allow the emergence of cycles in the
self-assembling agents by not allowing the limbs to link up with already attached limbs within
the same morphology. However, our setup is trivially extensible to general graphs.

7.2 Learning to Control Self-Assemblies

Consider a set of primitive limbs indexed by i in {1, 2, . . . , n} dropped in an environment
arena E to perform a continuous control task. If needed, these limbs can assemble to form
complex collectives in order to improve their performance on the task. The task is represented
by a reward function rt and the goal of the limbs is to maximize the discounted sum of rewards
over time t. If some limbs assemble into a collective, the resulting morphology effectively
becomes a single agent with a combined policy to maximize the combined reward of the

CHAPTER 7. GENERALIZATION VIA MODULARITY 101

connected limbs. Further, the reward of an assembled morphology is a function of the whole
morphology and not the individual agent limbs. For instance, in the task of learning to stand
up, the reward is the height of the individual limbs if they are separate, but is the height of
the whole morphology if those limbs have assembled into a collective.

7.2.1 Co-evolution: Linking/Unlinking as an Action

To learn a modular controller policy that could generalize to novel setups, our agents
must learn the controller jointly as the morphology evolves over time. The limbs should
simultaneously decide which torques to apply to their respective motors, while taking into
account the connected morphology. Our hypothesis is that if a controller policy could learn in
a modular fashion over iterations of increasingly sophisticated morphologies (see Figure 7.3),
it could learn to be robust and generalizable to diverse situations. So, how can we optimize
control and morphology under a common end-to-end framework?

We propose to treat the decision of linking and unlinking as additional actions of
our primitive limbs. The total action space at at each iteration t can be denoted as
{τα, τβ, τγ, σlink, σunlink} where τ∗ denote the raw continuous torque values to be applied
at the motor and σ∗ denote the binary actions whether to connect another limb at the
parent-end or disconnect the child-end from the other already attached limb. This simple
view of morphological evolution allows us to use ideas from RL [241].

7.2.2 Modularity: Self-Assembly as a Graph of Limbs

Integration of control and morphology in a common framework is only the first step. The key
question is how to model this controller policy such that it is modular and reuses information
across generations of morphologies. Let ait be the action space and sit be the local sensory
input-space of the agent i. One naive approach to maximizing the reward is to simply combine
the states of the limbs into the input-space, and output all the actions jointly using a single
network. Formally, the policy is simply ~at = [a0t , a

1
t . . . a

n
t] = Π(s0t , s

0
t . . . , s

n
t). This interprets

the self-assemblies as a single monolithic agent, ignoring the graphical structure. This is
the current approach to solve many control problems, e.g., Mujoco humanoid [28] where the
policy Π is trained to maximize the sum of rewards using RL.

In this work, we represent the agent’s policy via a graph neural network [210] in such a
way that it explicitly corresponds to the morphology of the agent. Consider a collection of
primitive limbs as graph G where each node is a limb i. Two limbs being physically connected
by a joint is analogous to having an edge in the graph. As discussed in Section-7.1, each
limb has two endpoints, a parent-end and a child-end. At a joint, the limb which connects
via its parent-end acts as a parent-node in the corresponding edge, and the other limbs,
which connect via their child-ends, are child-nodes. The parent-node (i.e., the agent with the
parent-end) controls the torque of the edge (i.e., the joint motor).

CHAPTER 7. GENERALIZATION VIA MODULARITY 102

training training

Standing Locomotion

Figure 7.3: Co-evolution of Morphology w/ Control during Training: The gradual co-evolution of
controller as well as the morphology of self-assembling agents over the course of training for the
task of Standing Up (left) and Locomotion (right).

7.2.3 Dynamic Graph Networks (DGN)

Each primitive limb node i has a policy controller of its own, which is represented by a neural
network πiθ and receives a corresponding reward rit for each time step t. We represent the
policy of the self-assembled agent by the aggregated neural network that is connected in
the same graphical manner as the physical morphology. The edge connectivity of the graph
is represented in the overall graph policy by passing messages that flow from each limb to
the other limbs physically connected to it via a joint. The parameters θ are shared across
each primitive limbs allowing the overall policy of the graph to be modular with respect to
each node. However, recall that the agent morphologies are dynamic, i.e., the connectivity
of the limbs changes based on policy outputs. This changes the edge connectivity of the
corresponding graph network at every timestep, depending on the actions chosen by each
limb’s policy network in the previous timestep. Hence, we call this aggregate neural net a
Dynamic Graph Network (DGN) since it is a graph neural network that can dynamically
change topology as a function of its own outputs in the previous iteration.

DGN Optimization A typical rollout of our self-assembling agents during an episode of
training contains a sequence of torques τ it and the linking actions σit for each limb at each
timestep t. The policy parameters θ are optimized to jointly maximize the reward for each
limb:

max
θ

∑
i={1,2...,n}

E~ai∼πiθ [Σtr
i
t] (7.1)

We optimize this objective via policy gradients, in particular, PPO [218]. DGN pseudo-code
(as well as source code) and all training implementation details are in Section C.1, C.3 of the
appendix.

DGN Connectivity The topology is captured in the DGN by passing messages through
the edges between individual network nodes. Since the parameters of these limb networks are
shared across each node, these messages can be seen as context information that may inform
the policy of its role in the corresponding connected component of graph.

CHAPTER 7. GENERALIZATION VIA MODULARITY 103

(a) Message passing: Messages are passed from leaf nodes to root, i.e., each agent gets
information from its children. Instead of defining πiθ to be just as a function of state sit,
we pass each limb’s policy network information about its children nodes. We redefine πiθ
as πiθ : [sit,m

Ci
t] → [ait,m

i
t] where mi

t is the output message of policy that goes into the
parent limb and mCi

t is the aggregated input messages from all the children nodes, i.e,
mCi
t =

∑
c∈Cim

c
t . If i has no children (i.e, root), a vector of zeros is passed in mCi

t . Messages
are passed recursively until the root node. Alternative way is to start from root node and
recursively pass until the messages reach the leaf nodes.

(b) No message passing : Note that for some environments or tasks, the context from the
other nodes might not be a necessary requirement for effective control. In such scenarios,
message passing might creates extra overhead for training a DGN. Importantly, even with
no messages, DGN still allows for coordination between limbs. This is similar to a typical
cooperative multi-agent setup [262] where each limb makes its own decisions in response to
the previous actions of the other agents. However, our setup differs in that our agents may
physically join up, rather than just coordinating behavior.

7.3 Experiments

We test the co-evolution of morphology and control across two primary tasks where self-
assembling agents learn to: (a) stand up, and (b) perform locomotion. Limbs start each
episode disconnected and located just above the ground plane at random locations, as shown
in Figure 7.3. In the absence of an edge, input messages are set to 0 and the output ones are
ignored. Action space is continuous raw torque values. Across all the tasks, the number of
limbs at training is kept fixed to 6. We take the model from each time step and evaluate it
on 50 episode runs to plot mean and std-deviation confidence interval in training curves. At
test, we report the mean reward across 50 episodes of 1200 environment steps. The main
focus of our investigation is to evaluate if the emerged modular controller generalizes to novel
morphologies and environments. Video is on the project website.

Baselines We further compare how well these dynamic morphologies perform in comparison
to a learned monolithic policy for both dynamic and fixed morphologies. In particular, we
compare to a (a) Monolithic Policy, Dynamic Graph: Baseline where agents are still dynamic
and can self-assemble, but their controller is represented by a single monolithic policy that
takes as input the combined state of all agents and outputs actions for each of them. (b)
Monolithic Policy, Fixed Graph: Similar single monolithic policy as previous baseline, but
the morphology is hand-designed constructed from the limbs and kept fixed and static during
training and test. This is analogous to a standard robotics “vanilla RL” setup in which
a morphology is predefined and then a policy is learned to control it. We chose the fixed
morphology to be a straight chain of 6-limbs in all the experiments. This linear-chain may be
optimal for standing as tall as possible, but it is not necessarily optimal for learning to stand;
the same would hold for locomotion. However, we confirmed that the both standing and

CHAPTER 7. GENERALIZATION VIA MODULARITY 104

0 250 500 750 1000 1250 1500 1750

1uPber Rf trDining steSs

2000

4000

6000

8000

10000

12000

14000

16000

0
eD

n
5e

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(a) Standing Up

0 200 400 600 800 1000

1uPber Rf trDining steSs

2000

4000

6000

8000

10000

12000

14000

16000

0
eD

n
Re

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(b) Standing Up w/ Wind

0 500 1000 1500 2000 2500

1uPber Rf trDining steSs

−2

0

2

4

6

8

0
eD

n
5e

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(c) Locomotion

Figure 7.4: Training self-assembling agents: We show the performance of different methods for
joint training of control and morphology for three tasks: learning to stand up (left), standing up in
the presence of wind (center) and locomotion in bumpy terrain (right). These policies generalize to
novel scenarios as shown in the tables.

locomotion task are solvable with linear-chain morphology (shown in Figure 7.3 and video on
project website).

Although monolithic policy is more expressive (complete state information of all limbs), it
is also harder to train as we increase the number of limbs, because the observation and action
spaces increase in dimensionality. Indeed, this is what we find in the appendix Figure C.1:
the monolithic policy can perform well on up to three limbs, but does not reach the optimum
on four to six limbs. In contrast, the DGN limb policy (shared between all limbs) has a fixed
size observation and action space, independent of the number of limbs under control.

7.3.1 Learning to Self-Assemble

We first validate if it is possible to train self-assembling agent policy end-to-end via Dynamic
Graph Networks. Below, we discuss our environments and compare the training efficiency of
each method.

Standing Up Task In this task, each agent’s objective is to maximize the height of the
highest point in its morphology. Limbs have an incentive to self-assemble because the potential
reward would scale with the number of limbs if the self-assembled agent can control them. The
training process begins with six-limbs falling on the ground randomly, as shown in Figure 7.3.
These limbs act independently in the beginning but gradually learn to self-assemble as training
proceeds. Figure 7.4a compares the training efficiency and performance of different methods
during training. We found that our DGN policy variants perform significantly better than
the monolithic policies for the standing up task.

Standing Up in the Wind Task Same as the previous task, except with the addition of
‘wind’, which we operationalize as random forces applied to random points of each limb at

CHAPTER 7. GENERALIZATION VIA MODULARITY 105

Environment DGN (ours)
Monolithic Policy

(dynamic) (fixed)

Standing Up Task

Training Environment
Standing Up 17518 4104 5351

Zero-Shot Generalization
More (2x) Limbs 19796 (113%) n/a n/a
Fewer (.5x) Limbs 10839 (62%) n/a n/a

Standing Up in the Wind Task

Training Environment
Stand-Up in Wind 18423 4176 4500

Zero-Shot Generalization
2x Limbs + (S)Wind 15351 (83%) n/a n/a

Locomotion Task

Training Environment
Locomotion 8.71 0.96 2.96

Zero-Shot Generalization
More (2x) Limbs 5.47 (63%) n/a n/a
Fewer (.5x) Limbs 6.64 (76%) n/a n/a

Table 7.1: Zero-Shot Generalization to Number
of Limbs: Quantitative evaluation of the gen-
eralizability of the learned policies. For each
method, we first pick the best performing model
from the training and then evaluate it on each
of the novel scenarios without further finetuning,
i.e., in a zero-shot manner. We report the score
attained by the self-assembling agent along with
the percentage of training performance retained
upon transfer in parenthesis. Higher is better.

Environment DGN (ours)
Monolithic Policy

(dynamic) (fixed)

Standing Up Task

Training Environment
Standing Up 17518 4104 5351

Zero-Shot Generalization
Water + 2x Limbs 16871 (96%) n/a n/a
Winds 16803 (96%) 3923 (96%) 4531 (85%)
Strong Winds 15853 (90%) 3937 (96%) 4961 (93%)

Standing Up in the Wind Task

Training Environment
Stand-Up in Wind 18423 4176 4500

Zero-Shot Generalization
(S)trong Wind 17384 (94%) 4010 (96%) 4507 (100%)
Water+2x+SWd 17068 (93%) n/a n/a

Locomotion Task

Training Environment
Locomotion 8.71 0.96 2.96

Zero-Shot Generalization
Water + 2x Limbs 6.57 (75%) n/a n/a
Hurdles 6.39 (73%) -0.77 (-79%) -3.12 (-104%)
Gaps in Terrain 3.25 (37%) -0.32 (-33%) 2.09 (71%)
Bi-modal Bumps 6.62 (76%) -0.56 (-57%) -0.44 (-14%)
Stairs 6.6 (76%) -8.8 (-912%) -3.65 (-122%)
Inside Valley 5.29 (61%) 0.47 (48%) -1.35 (-45%)

Table 7.2: Zero-Shot Generalization to Novel
Environments: The best performing model from
the training is evaluated on each of the novel
scenarios without any further finetuning. The
score attained by the self-assembling agent is
reported along with the percentage of training
performance retained upon transfer in parenthe-
sis. Higher value is better.

random times, see Figure 7.2(Wind). Figure 7.4b shows the superior performance of DGN
compared to the baselines.

Locomotion Task The reward function for locomotion is defined as the distance covered
by the agent along X-axis. The training is performed on a bumpy terrain shown in Figure 7.2.
The training performance in Figure 7.4c shows that DGN variants outperform the monolithic
baselines.

As shown in Figure 7.4, training our DGN algorithm with message passing either seems
to perform better or similar to the one without message passing. In particular, message
passing is significantly helpful where long-term reasoning is needed across limbs, for instance,

CHAPTER 7. GENERALIZATION VIA MODULARITY 106

messages help in standing up task because there is only one morphological structure to do well
(i.e., linear tower). In locomotion, it is possible to do well with a large variety of morphologies,
and thus both DGN variants reach similar performance. Now onwards, we show results using
DGN w/ msgs as our primary approach.

7.3.2 Zero-Shot Generalization to Number of Limbs

We investigate if our trained policy generalizes to changes in the number of limbs. We pick the
best model from training and evaluate it without any finetuning at test-time, i.e., zero-shot
generalization.

Standing Up Task We train the policy with 6 limbs and test with 12 and 4 limbs. As
shown in Table 7.1, despite changes in number of limbs, DGN is able to retain similar
performance w/o any finetuning. The co-evolution of morphology jointly with the controller
allows the modular policy to experience increasingly complex morphological structures. We
hypothesize that this morphological curriculum at training makes the agent more robust at
test-time.

Note that we can not generalize Monolithic policy baselines to scenarios with more or
fewer limbs because they can’t accommodate different action and state space dimensions from
training; it has to be retrained. Hence, we made a comparison to DGN by retraining baseline
on Standing task: DGN is trained on 6 limbs and tested on 4 limbs w/o any finetuning, while
baseline is trained both times. DGN achieves 17518 (6limbs - train), 10839 (4limbs - test)
scores, while baseline achieves 5351 (6limbs - train), 7356 (4limbs - train). Even without
any training on 4 limbs, DGN outperforms baseline because it is difficult to train monolithic
policy with large action space (Figure C.1 in the appendix).

Standing Up in the Wind Task Similarly, we evaluate the agent policy trained for
standing up task in winds with 6 limbs to 12 limbs. Table 7.1 shows that the DGN performs
significantly better than monolithic policy at train, and able to retain most of its performance
even with twice the limbs.

Locomotion Task We also evaluate the generalization of locomotion policies trained with
6 limbs to 12 and 4 limbs. As shown in Table 7.1, DGN not only achieves good performance
at training but is also able to retain most of its performance.

7.3.3 Zero-Shot Generalization to Novel Environments

We now evaluate the performance of our modular agents in novel terrains by creating several
different scenarios by varying environment conditions (described in Section 7.1) to test
zero-shot generalization.

CHAPTER 7. GENERALIZATION VIA MODULARITY 107

Standing Up Task We test our trained policy without any further finetuning in envi-
ronments with increased drag (i.e., ‘under water’), and adding varying strength of random
push-n-pulls (i.e. , ‘wind’). Table 7.2 shows that DGN seems to generalize better than
monolithic policies. We believe that this generalization is result of both the learning being
modular as well as the fact that limbs learned to assemble in physical conditions (e.g. forces
like gravity) with gradually growing morphologies. Such forces with changing morphology
are similar to setup with varying forces acting on fixed morphology resulting in robustness to
external interventions like winds.

Standing Up in the Wind Task Similarly, the policies trained with winds are able to
generalize to scenarios with either stronger winds or winds inside water.

Locomotion Task We generate several novel scenarios for evaluating locomotion: with
water, a terrain with hurdles of a certain height, a terrain with gaps between platforms, a
bumpy terrain with a bi-modal distribution of bump heights, stairs, and an environment with
a valley surrounded by walls on both sides (see Figure 7.2). These variations are generated
procedurally. The modular policies learned by DGN tend to generalize better than the
monolithic agent policies as shown in Table 7.2.

This generalization could be explained by the incrementally increasing complexity of
self-assembling agents at training. For instance, the training begins with all limbs separate
which gradually form group of two, three and so on, until the training converges. Since the
policy is modular with shared parameters across limbs, the training of smaller size assemblies
with small bumps would in turn prepare the large assemblies for performing locomotion
through higher hurdles, stairs etc at test. Furthermore, the training terrain has a finite length
which makes the self-assemblies launch themselves forward as far as possible upon reaching
the boundary to maximize the distance along X-axis. This behavior helps the limbs generalize
to environments like gaps or valley where they end up on the next terrain upon jumping and
continue to perform locomotion.

7.4 Related Work

Morphologenesis & self-reconfiguring modular robots The idea of modular and
self-assembling agents goes back at least to Von Neumman’s Theory of Self-Reproducing
Automata [249]. In robotics, such systems have been termed “self-reconfiguring modular
robots” [159, 238]. There has been a lot of work in modular robotics to design real hardware
robotic modules that can be docked together to form complex robotic morphologies [42,79,
203,264,270]. Alternatives to optimize agent morphologies include genetic algorithms that
search over a generative grammar [228] and energy-based minimization to directly optimizing
controllers [45,251]. Conditioning on several hardware designs has also been shown to increase
robustness [35]. We approach morphogenesis from a learning perspective, in particular deep
RL, and study the resulting generalization properties. We achieve morphological co-evolution

CHAPTER 7. GENERALIZATION VIA MODULARITY 108

via dynamic actions (linking), which agents take during their lifetimes, whereas the past
approaches treat morphology as an optimization target to be updated between generations or
episodes. Since the physical morphology also defines the connectivity of the policy net, our
proposed algorithm can also be viewed as performing a kind of neural architecture search [281]
in physical agents.

Graph neural networks Encoding graphical structures into neural networks [210] has
been used for a large number of applications, including question answering [8], quantum
chemistry [78], semi-supervised classification [121], and representation learning [267]. The
works most similar to ours involve learning controllers [208,253]. For example, Nervenet [253]
represents individual limbs and joints as nodes in a graph and demonstrates multi-limb
generalization. However, the morphologies on which Nervenet operates are not learned jointly
with the policy and hand-defined to be compositional in nature. Others [16, 104] have shown
that graph neural networks can also be applied to inference models as well as to planning.
Prior graph neural network based approaches deal with static graph which is defined by
auxiliary information, e.g. language parser [8]. In contrast, we propose dynamic graph
networks where the graph policy changes itself dynamically over the training.

Concurrent Work [88,212] use RL to improve limb design given fixed morphology. Wang
et al . [252] gradually evolves the environment to improve robustness. However, both the work
assume the topology of agent morphology to stay the same during train and test.

7.5 Discussion

Modeling intelligent agents as modular, self-assembling morphologies has long been a very
appealing idea. The efforts to create practical systems to evolve artificial agents goes back at
least two decades to the beautiful work of Karl Sims [228]. In this chapter, we are revisiting
these ideas using the contemporary machinery of deep networks and reinforcement learning.
Examining the problem in the context of machine learning, rather than optimization, we
are particularly interested in modularity as a key to generalization, in terms of improving
adaptability and robustness to novel environmental conditions. Poor generalization is the
Achilles heel of modern robotics research, and the hope is that this could be a promising
direction in addressing this key issue. We demonstrated a number of promising experimental
results, suggesting that modularity does indeed improve generalization in simulated agents.
While these are just the initial steps, we believe that the proposed research direction is
promising and its exploration will be fruitful to the research community.

109

Chapter 8

Conclusion

We employ self-supervised prediction as a central theme in building agents that learn to
represent the sensory input and simultaneously learn to map this understanding to their
motor outputs to acquire skills using data as its own supervision. We begin with minimal
assumptions and build complete systems that learn from just raw sensory data. This is
inspired by the kind of learning that humans engage in from a very early stage of development
and is the main driving force for our seamless general-purpose behavior [230].

We adopted this ideology toward learning visual representations via self-supervision;
building curiosity-driven agents (virtual as well as real) that can learn to play video games,
walk in simulation and perform real-world object manipulation without any rewards or
supervision; and learning to control self-assembling modular agents. Later, this combination
of skills is deployed to achieve the end-goals, i.e., tasks given to the agent, by explicitly
planning using the learned models with little to no supervision from a teacher. These self-
supervised robotic agents, after exploring the environment, can tie knots using rope, find
their way in office environments and rearrange objects. In this dissertation, we have put
forward some initial efforts toward a larger goal of developing human-like general-purpose
intelligent systems. Now, we describe some of the future directions that immediately follow
from this agenda.

Exploration: Intrinsic Goals, Hierarchy, and Representation In [58], we have quan-
tified the exploration of humans players in video games. This study reveals is that humans
often explore by generating intermediate goals, e.g., reaching object-like concepts, which is
unlike the prediction error formulation as we discussed in Chapter 4. Formulating this intrinsic
goal-driven exploration [219] in artificial agents motivates several deep questions: What
constitutes a good intrinsic goal? How to represent goals? How should such representation be
learned? Each of these questions could lead to a thesis in itself. In the long run, we believe
that exploration formulations should not be limited to modeling intrinsic rewards, but should
also take into account the hierarchy at which such a reward is generated.

CHAPTER 8. CONCLUSION 110

Figure 8.1: Attempt to deploy
curiosity-driven exploration on
a custom designed low-cost arm.
Soft-padding is to prevent catas-
trophic damages.

Low-cost Robot Learning Today’s robotic systems are
too expensive to be deployable at scale, and hence, building
low-cost robotic setups is an attractive proposal. We have
taken some initial steps toward this direction by assembling
a mobile robot (see Chapter 6), and a low-cost arm setup
that costs less than 1400 USD (see Figure 8.1). However,
low-cost actuators are also noisy and inaccurate in addition to
being parallelizable. Therefore, such agents would also need
multiple sensors and robust algorithms that could generalize
to unexpected failures.

Social Learning: Large-scale, Multi-agent, Imitation
An agent learning on its own is limited by both its efficiency
and the complexity of skills it learns. Learning in a multi-agent scenario is fundamental
to acquiring complex skills which a single agent might never develop. While most of the
works in robotic learning today use multi-agent settings to parallelize training, an adversarial
competition between different agents could be the key to their success. A setup where different
agents have competing objectives creates an arms race leading to progressively increasing
complexity. Another important aspect in social learning is to be able to learn from a third
person’s point of view: an agent should be able to understand the actions and translate them
into its own frame of reference.

Toward the long-term goal of understanding intelligence, we have drawn inspiration from
psychology and biology and built practical systems at the interface of computer vision,
machine learning, and robotics. In the words of Alan Turing,

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

Indeed, only time will tell the true potential of these directions.

111

Appendix A

Experimental Details for
Curiosity-driven Exploration

A.1 Implementation Details

We have released the training code and environments on our website 1.

Pre-processing: All experiments were done with pixels. We converted all images to
grayscale and resized to size 84x84. We learn the agent’s policy and forward dynamics
function both on a stack of historical observations [xt−3, xt−2, xt−1, xt] instead of only using
the current observation. This is to capture partial observability in these games. In the case
of Super Mario Bros and Atari experiments, we also used a standard frameskip wrapper that
repeats each action 4 times.

Hyper-parameters: Our embedding network and policy networks had identical architec-
tures and were based on the standard convolutional networks used in Atari experiments. The
layer we take as features in the embedding network had dimension 512 in all experiments
and no nonlinearity. To keep the scale of the prediction error consistent relative to extrinsic
reward, in the Unity experiments we applied batchnorm to the embedding network. We
also did this for the Mario generalization experiments to reduce covariate shift from level
to level. For the VAE auxiliary task and pixel method, we used a similar deconvolutional
architecture the exact details of which can be found in our code submission. The IDF and
forward dynamics networks were heads on top of the embedding network with several extra
fully-connected layers of dimensionality 512. We used a learning rate of 0.0001 for all networks.
In most experiments, we used 128 parallel environments with the exceptions of the Unity
and Roboschool experiments where we could only run 32 parallel environments, and the
large scale Mario experiment where we used 1024. We used rollouts of length 128 in all
experiments except for the Unity experiments where we used 512 length rollouts so that the

1Website at https://pathak22.github.io/large-scale-curiosity/

https://pathak22.github.io/large-scale-curiosity/

APPENDIX A. CURIOSITY-DRIVEN EXPLORATION DETAILS 112

Algorithm 2: Curiosity-driven Learning

1 Initialize the networks f(xt, at; θf), π(xt; θπ) and φ(x; θφ)
2 D = {}
3 for iteration i = 1 to . . . do
4 for envs in parallel t = 1 to 128 do
5 for iteration t = 1 to 128 do
6 Sample a ∼ π(xt; θπ) and act using a in the environment
7 D ⇐ D + (xt, at, xt+1, rt) where rt = ‖f(xt, at; θf)− φ(xt+1; θφ)‖22
8 end

9 end
10 for steps k = 1 to 64 do
11 Sample batch size of 2048 from D and update using ADAM as follows:

12 θ
′

f := θf − η1 ∇θfE
[
‖f(xt, at; θf)− φ(xt+1; θφ)‖22

]
13 θ

′

φ := θφ − η2 ∇θφE
[
‖ . . . ‖22

]
: some auxiliary task

14 θ
′
π := θπ + η3 ∇θπEπ(xt;θπ)

[∑
t rt
]
: use PPO with discounted returns

15 θf ⇐ θ
′

f

16 θφ ⇐ θ
′

φ

17 θπ ⇐ θ
′
π

18 end

19 end

network could quickly latch onto the sparse reward. In the initial 9 experiments on Mario
and Atari, we used 3 optimization epochs per rollout in the interest of speed. In the Mario
scaling, generalization experiments, as well as the Roboschool experiments, we used 6 epochs.
In the Unity experiments, we used 8 epochs, again to more quickly take advantage of sparse
rewards.

A.2 Additional Results

Figure A.1 shows the performance of curiosity-driven agents based on Inverse Dynamics and
Random features on 48 Atari games. For the majority of the training process RF perform
better than a random agent in about 67% of the environments, while IDF perform better
than a random agent in about 71% of the environments.

We include some results on combining intrinsic and extrinsic reward on several sparse
reward Atari games. When combining with extrinsic rewards, we use the end of the episode
signal. The reward used is the extrinsic reward plus 0.01 times the intrinsic reward. The
results are shown in Table A.1. We don’t observe a large difference between the settings,
likely because the combination of intrinsic and extrinsic reward needs to be tuned. We did
observe that one of the intrinsic+extrinsic runs on Montezuma’s Revenge explored 10 rooms.

APPENDIX A. CURIOSITY-DRIVEN EXPLORATION DETAILS 113

Figure A.1: Pure curiosity-driven exploration (no extrinsic reward, or end-of-episode signal) on
48 Atari games. We observe that the extrinsic returns of curiosity-driven agents often increases
despite the agents having no access to the extrinsic return or end of episode signal. In multiple
environments, the performance of the curiosity-driven agents is significantly better than that of a
random agent, although there are environments where the behavior of the agent is close to random,
or in fact seems to minimize the return, rather than maximize it.

Reward Gravitar Freeway Venture PrivateEye MontezumaRevenge

Ext Only 999.3± 220.7 33.3± 0.6 0± 0 5020.3± 395 1783± 691.7
Ext + Int 1165.1± 53.6 32.8± 0.3 416± 416 3036.5± 952.1 2504.6± 4.6

Table A.1: These results compare the mean reward (± std-error) after 100 million frames across 3
seeds for an agent trained with intrinsic plus extrinsic reward versus extrinsic reward only. The
extrinsic (coefficient 1.0) and intrinsic reward (coefficient 0.01) were directly combined without any
hyper-parameter tuning, and leave the question on how to optimally combine them for future work.

114

Appendix B

Experimental Details for Zero-Shot
Imitation

B.1 Rope Manipuation

Robotic Setup Our setup of Baxter robot for rope manipulation task follows the one
described in Nair et al . [161]. We re-use the data that is collected by a Baxter robot
interacting with a rope kept on a table in front of it in a self-supervised manner, and consists
of approximately 60K interaction pairs.

Implementation Details The base architecture for all the methods consists of a pre-
trained AlexNet, whose features are fed into a skill policy that predicts the location of grasp,
direction of displacement, and the magnitude of displacement. For the forward regularizer
baseline, a forward model is trained to jointly regularize the AlexNet features along with
the skill policy network with loss weight of forward model set to 0.1. For our proposed
forward-consistent GSP, a forward consistency loss is then applied to the actions predicted
by the skill policy network. The forward consistency loss weight is set to 0.1. Since this is a
fully observed setup, we did not use recurrence in any of the skill policy networks. All the
models are optimized using Adam [119] with a learning rate of 1e − 4. For the first 40K
iterations, AlexNet weights were frozen, and then fine-tuned jointly with the later layers.

B.2 Navigation in Indoor Office Environments

Robotic Setup We used the TurtleBot2 robot comprising of a wheeled Kobuki base and
an Orbbec Astra camera for capturing RGB images for all our experiments. The robot’s
action space had four discrete actions: move forward, turn left, turn right, and stand still
(i.e., no-op). The forward action is approximately 10cm forward translation and the turning
actions are approximately 14-18 degrees of rotation. These numbers vary due to the use
of velocity control. A powerful on-board laptop was used to process the images and infer
the motor commands. Several modifications were made to the default TurtleBot setup: the

APPENDIX B. ZERO-SHOT IMITATION DETAILS 115

Maze Runs - Optimal Steps: 100 Loop Runs - Optimal Steps: 85
Model Name Run-1 Run-2 Run-3 Run-1 Run-2 Run-3

SIFT 2/20 (10) 1/20 (9) 3/20 (38) — — —
GSP-NoPrevAction-NoFwdConst 12/20 (109) 14/20 (184) 20/20 (263) — — —
GSP-NoFwdConst 13/20 (147) 18/20 (325) 20/20 (166) 0/17 (0) 0/17 (0) 0/17 (0)

GSP (ours) 20/20 (353) 12/20 (194) 20/20 (168) 0/17 (0) 17/17 (243) 17/17 (165)

Table B.1: Quantitative evaluation of TurtleBot’s performance at following visual demonstrations
in two conditions: maze and the loop. The fraction denotes how many landmarks it reaches out of
the total number of landmarks in the full demonstration. The bracketed number represents the
number of actions the agent took to reach its farthest landmark.

base’s batteries were replaced with longer lasting ones, and the default NVIDIA Jetson
TK1 embedded board was replaced with a more powerful GigaByte Aero laptop and an
accompanying portable charging power bank.

Self-supervised Data Collection We devised an automated self-supervised scheme
for data collection which does not require any human supervision. The robot first samples
one out of four actions and then the number of times to repeat the selected action (i.e. action
repeat). The no-op action is sampled with probability 0.05 and the other three actions are
sampled with equal probability. In case the no-op action is chosen, an action repeat of {1, 2}
steps is uniformly sampled. In case of other actions, an action repeat of 1-5 steps is randomly
and uniformly chosen. The robot autonomously repeated this process and collected 230K
interactions from two floors of a building. If the robot crashes into an object, it performs a
reset maneuver by first moving backwards and then turning right/left by a uniformly sampled
angle between 90-270 degrees. A separate floor of the building with substantially different
furniture layout and visual textures is then used for testing the learned model.

Implementation Details The data collected by self-supervised exploration is then used
to train our recurrent forward-consistent GSP. The base architecture of our model is an
ImageNet pre-trained ResNet-50 [95] network. Input are the images and output are the
actions of robot. The forward consistency model is first pre-trained and then fine-tuned
together end-to-end with the GSP. The loss weight of the forward model is 0.1, and the
objective is minimized using Adam [119] with learning rate of 5e− 4.

B.3 3D Navigation in VizDoom

Self-supervised Data Collection Our environment consists of two map. One map is used
for training and validation, with different textures for validation. Second map has different
textures than training and validation and is used for generalization experiments. For both
curiosity and random exploration, we collect a total of 1.5 million frames each with action
repeat of 4 collected in the standard DoomMyWayHome map used for training in Chapter 4. ∼ 2

3

of the data comes from random-room resets, and ∼ 1
3

of the data comes from a fixed-room

APPENDIX B. ZERO-SHOT IMITATION DETAILS 116

Same Map, Same Texture Same Map, Diff Texture Diff Map, Diff Texture
Model Name Mean % Efficiency % Mean % Efficiency % Mean % Efficiency %

Random Exploration for Data Collection:

GSP-NoFwdConst 61.8 ± 0.9 60.4 ± 2.1 37.6 ± 0.7 68.6 ± 2.5 42.2 ± 0.8 50.6 ± 1.9
GSP (ours pixels) 61.0 ± 1.0 68.0 ± 2.2 38.1 ± 0.7 69.1 ± 2.5 40.3 ± 0.9 64.2 ± 2.3
GSP (ours features) 62.0 ± 1.0 75.8 ± 2.5 37.0 ± 0.7 87.1 ± 2.8 48.7 ± 0.9 52.5 ± 1.8

Curiosity-driven Exploration for Data Collection:

GSP-NoFwdConst 70.7 ± 0.9 66.9 ± 1.4 49.8 ± 0.8 55.8 ± 2.2 51.2 ± 1.0 39.5 ± 1.3
GSP-FwdRegularizer 70.6 ± 0.9 67.9 ± 1.6 51.9 ± 0.8 49.3 ± 1.6 48.3 ± 1.0 49.3 ± 1.8
GSP (ours pixels) 71.0 ± 0.9 73.1 ± 2.7 53.3 ± 0.9 53.4 ± 2.0 52.2 ± 1.0 44.0 ± 1.5
GSP (ours features) 68.8 ± 1.0 72.0 ± 1.7 53.2 ± 0.8 53.0 ± 2.3 52.8 ± 0.9 37.7 ± 1.3

Table B.2: Quantitative evaluation of our proposed GSP and the baseline models at following
visual demonstrations in VizDoom 3D Navigation. Means and standard errors are reported for
demonstration completion and efficiency over 50 seeds and 5 human paths per environment type.

reset (i.e, room number 10). The curiosity policy was half sampled and half greedy with the
exact split being 40% greedy policy random-room reset, 25% sample policy random-room
reset, 25% sample policy fixed-room reset, and 10% greedy policy fixed-room reset.

For each scenario, we collect 5 human demonstrations each and give every 10th frame as
input to the agent for the task of visual imitation. For each human path, we evaluate on 50
different seeds where the agent starts with a uniformly sampled orientation. We then get
the median across 250 (50x5) total runs for each type of environment and report median of
the percentage of the human path reached by the agent and how soon it got to that point
relative to the human.

In the Chapter 6, we report median accuracy and the confidence interval for median 1.
Since the initial position of the agent is randomized in orientation compared to the one in
visual demonstration, the mean results suffer from high variance due to outliers. Hence,
median accuracy results in a more reliable metric. However, we report mean results in
Table B.2 for the completion.

Implementation Details All models were trained with batch size 64, Adam Solver
with 1e-4 learning rate, and landmark slices uniformly sampled between 5 to 15 action steps
for each batch. The observations are 42x42 resolution, grayscale images with only one-time
channel both for goal and current state. All models used the same goal recognizer that was
trained on the curiosity data. For selecting the hyper-parameters in forward regularizer,
pixel-based forward consistency, and feature-based forward consistency models, we selected
the best loss coefficient among {0.01, 0.05, 0.1} that achieved the highest median completion
on our validation environment which consisted of the training maps with novel textures.

1Formula for computing median confidence intervals: http://www.ucl.ac.uk/ich/

short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_

single_median

http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median

117

Appendix C

Experimental Details for Dynamic
Graph Networks

In this section, we provide additional details about the experimental setup, pseudo-code for
DGN and extra experiments.

C.1 Implementation and Training details

We use PPO [218] as the underlying reinforcement learning method to optimize Equation 7.1
in Section 7.2.3. Each limb policy is represented by 4-layered fully-connected neural network
with ReLU non-linearities and trained with a learning rate of 3e− 4, discount factor of 0.995,
entropy coefficient of 0.01, advantage parameter of 0.95 and batch size of 2048. The messages
are 32 length float vectors. The optimizer used to optimize PPO is RMS-Prop. Parameters
are shared across network modules and they all predict action at the same time. Each episode
is 5000 steps long at training. Across all the tasks, the number of limbs at training is kept
fixed to 6. Limbs start each episode disconnected and located just above the ground plane
at random locations, as shown in Figure 7.3. In the absence of an edge, input messages
are set to 0 and the output ones are ignored. Action space is continuous raw torque values.
We take the model from each time step and evaluate it on 50 episodes to plot mean and
standard-deviation (confidence intervals) in training curves. At test, we report the mean
reward across 50 episode runs of 1200 environment steps.

C.2 Fixed-Graph Baseline vs. Number of Limbs

To verify whether the training of Monolithic Policy w/ Fixed Graph is working, we ran it on
standing up and locomotion tasks across varying number of limbs. We show in Figure C.1 that
the baseline performs well with less number of limbs which suggests that the reason for failure
in 6-limbs case is indeed the morphology graph being fixed, and not the implementation of
this baseline.

APPENDIX C. DGN EXPERIMENTAL DETAILS 118

0 500 1000 1500 2000 2500

1umber Rf traLnLng steps

1000

2000

3000

4000

5000

6000

7000

8000

9000

0
ea

n
5e

w
ar

ds 1 LLmb
2 LLmbs
3 LLmbs
4 LLmbs
5 LLmbs
6 LLmbs

(a) Standing Up

0 500 1000 1500 2000 2500

1umber Rf traLnLng steps

−2

−1

0

1

2

3

4

5

6

0
ea

n
5e

w
ar

ds 1 LLmb
2 LLmbs
3 LLmbs
4 LLmbs
5 LLmbs
6 LLmbs

(b) Locomotion

Figure C.1: The performance of Monolithic Policy w/ Fixed Graph baseline as the number of limbs
varies in the two tasks: standing up (left) and locomotion (right). This shows that the monolithic
baseline works well with less (1-3 limbs), but fails with 6 limbs during training.

C.3 Pseudo Code for DGN Algorithm

Notation is summarized in Algorithm 3, and the full pseudo-code is summarized in Algorithm 4.
The pseudo-code for no-message DGN is same as Algorithm 4 but hard-code incoming child
and parent messages to be always 0, i.e., mCi

t = 0 and mpi
t = 0 in each iteration. Full source

code available at https://pathak22.github.io/modular-assemblies/.

Algorithm 3: Notation Summary (defined in Section 7.2.3)

1 foreach node i do

2 ait,m
i
t = πiθ(s

i
t,m

Ci
t)

3 end
4 where
5 sit: observation state of agent limb i
6 ait: action output of agent limb i: 3 torques, attach, detach

7 mCi
t : aggregated message from children nodes input to agent i (bottom-up-1)

8 mi
t: output message that agent i passes to its parent (bottom-up-2)

9 θ: θ1, θ2
10 messages are 32 length floating point vectors.

https://pathak22.github.io/modular-assemblies/

APPENDIX C. DGN EXPERIMENTAL DETAILS 119

Algorithm 4: Pseudo-code: DGN w/ Message Passing

1 Initialize parameters θ1, θ2 randomly.

2 Initialize all message vectors mCi
t ,m

i
t to be zero

3 Represent graph connectivity G as a list of edges
4 Note: In the beginning, all edges are zeros, i.e., non-existent
5 foreach timestep t do
6 Each limb agent i observes its own state vector sit
7 foreach agent i do
8 # Compute incoming child messages

9 mCi
t = 0

10 foreach child node c of agent i do

11 mCi
t + = mc

t

12 end
13 # Compute action and message to parent p of agent i in G

14 ait,m
i
t := πiθ(s

i
t,m

Ci
t)

15 # Execute morphology change as per ait
16 if ait[3] == attach then
17 find closest agent j within distance d from agent i, otherwise j=NULL
18 add edge (i, j) in G
19 also make physical joint between (i, j)

20 end
21 if ait[4] == detach then
22 delete edge (i, parent of i) in G
23 also delete physical joint between (i, j)

24 end
25 # Execute torques from ait
26 Apply torques ait[0], ait[1], ait[2]

27 end
28 # Update graph and agent morphology
29 Find all connected components in G
30 foreach connected component c do
31 foreach agent i ∈ c do
32 reward rit = reward of c (e.g. max height)
33 end

34 end

35 end
36 Update θ to maximize discounted reward using PPO as follows:
37 let ~at = [a1t , a

2
t ..a

n
t]

38 ~st = [s1t , s
2
t ..s

n
t]

39 Ât = advantage of discounted rewards, rt =
∑

agenti r
i
t

40 PPO: maxθ E[Ât
πθ(~at|~st)
πθold (~at|~st)

− βKL(πθold(.|~st)πθ(.|~st))]
41 Repeat until training converges

120

Bibliography

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
ICML, 2004.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC superpixels
compared to state-of-the-art superpixel methods. TPAMI, 2012.

[3] J. Achiam and S. Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017.

[4] P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. ICCV, 2015.

[5] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. NIPS, 2016.

[6] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular
Biology of the Cell. Garland Publishing, New York, 1994.

[7] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. International journal of
computer vision, 1(4):333–356, 1988.

[8] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural module networks. In CVPR,
2016.

[9] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba. Hindsight experience replay. In NIPS, 2017.

[10] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 2009.

[11] C. Arteta, V. Lempitsky, and A. Zisserman. Counting in the wild. In ECCV, 2016.

[12] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):966–1005, 1988.

[13] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos. Revisiting active perception. Autonomous
Robots, pages 1–20, 2016.

[14] A. Bandura and R. H. Walters. Social learning theory, volume 1. Prentice-hall
Englewood Cliffs, NJ, 1977.

[15] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman. Patchmatch: A randomized
correspondence algorithm for structural image editing. ACM Transactions on Graphics,
2009.

BIBLIOGRAPHY 121

[16] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Mali-
nowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[17] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.
Unifying count-based exploration and intrinsic motivation. In NIPS, 2016.

[18] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the optimization of a synaptic
learning rule. In Optimality in Artificial and Biological Neural Networks, 1992.

[19] Y. Bengio. Learning deep architectures for AI. Foundations and trends in Machine
Learning, 2009.

[20] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. TPAMI, 35(8), 2013.

[21] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv:1308.3432, 2013.

[22] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. Computer
graphics and interactive techniques, 2000.

[23] M. Björkman and D. Kragic. Active 3d scene segmentation and detection of unknown
objects. In ICRA, 2010.

[24] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[25] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. JMLR, 2002.

[26] C. Breazeal and B. Scassellati. Robots that imitate humans. Trends in cognitive
sciences, 2002.

[27] J. S. Bridle and S. J. Cox. Recnorm: Simultaneous normalisation and classification
applied to speech recognition. In NIPS, 1991.

[28] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[29] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale
study of curiosity-driven learning. In ICLR, 2019.

[30] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale
study of curiosity-driven learning. ICLR, 2019.

[31] A. Byravan and D. Fox. Se3-nets: Learning rigid body motion using deep neural
networks. In ICRA, 2017.

[32] G. Caron, E. Marchand, and E. M. Mouaddib. Photometric visual servoing for omnidi-
rectional cameras. Autonomous Robots, 2013.

[33] R. Caruana. Multitask learning: A knowledge-based source of inductive bias. In ICML,
1993.

BIBLIOGRAPHY 122

[34] R. Y. Chen, J. Schulman, P. Abbeel, and S. Sidor. UCB and infogain exploration via
q-ensembles. arXiv preprint arXiv:1706.01502, 2017.

[35] T. Chen, A. Murali, and A. Gupta. Hardware conditioned policies for multi-robot
transfer learning. In NIPS, 2018.

[36] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114,
2018.

[37] H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration.
CVIU, 2003.

[38] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. ICML, 2008.

[39] G. Costikyan. Uncertainty in games. Mit Press, 2013.

[40] I. Dagan and S. Engelson. Committee-based sampling for training probabilistic classifiers.
ICML, 1995.

[41] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. CVPR,
2005.

[42] J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Campbell. An
integrated system for perception-driven autonomy with modular robots. Science
Robotics, 2018.

[43] H. Daumé III. Frustratingly easy domain adaptation. ACL, 2007.

[44] A. J. Davison and D. W. Murray. Mobile robot localisation using active vision. In
ECCV, 1998.

[45] M. De Lasa, I. Mordatch, and A. Hertzmann. Feature-based locomotion controllers. In
ACM Transactions on Graphics (TOG), 2010.

[46] V. R. de Sa. Learning classification with unlabeled data. NIPS, 1994.

[47] M. Deisenroth and C. Rasmussen. Pilco: A model-based and data-efficient approach to
policy search. ICML, 2011.

[48] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach
to policy search. In ICML, 2011.

[49] R. Dillmann. Teaching and learning of robot tasks via observation of human performance.
Robotics and Autonomous Systems, 2004.

[50] C. Doersch, A. Gupta, and A. A. Efros. Context as supervisory signal: Discovering
objects with predictable context. ECCV, 2014.

[51] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by
context prediction. ICCV, 2015.

[52] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros. What makes paris look like
paris? ACM Transactions on Graphics, 2012.

BIBLIOGRAPHY 123

[53] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. ICML, 2014.

[54] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial Feature Learning. ICLR, 2017.

[55] A. Dosovitskiy and V. Koltun. Learning to act by predicting the future. ICLR, 2016.

[56] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with
convolutional neural networks. CVPR, 2015.

[57] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider, I. Sutskever, P. Abbeel,
and W. Zaremba. One-shot imitation learning. In NIPS, 2017.

[58] R. Dubey, P. Agrawal, D. Pathak, T. L. Griffiths, and A. A. Efros. Investigating human
priors for playing video games. In ICML, 2018.

[59] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and
A. Courville. Adversarially learned inference. ICLR, 2017.

[60] F. Ebert, C. Finn, A. X. Lee, and S. Levine. Self-supervised visual planning with
temporal skip connections. arXiv preprint arXiv:1710.05268, 2017.

[61] A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. ICCV, 1999.

[62] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
The Pascal Visual Object Classes challenge: A retrospective. IJCV, 2014.

[63] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning
skills without a reward function. ICLR, 2019.

[64] A. Faktor and M. Irani. Video Segmentation by Non-Local Consensus voting. BMVC,
2014.

[65] C. Finn. Learning to Learn with Gradients. PhD thesis, UC Berkeley, 2018.

[66] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pages 2786–2793.
IEEE, 2017.

[67] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning
via meta-learning. CoRL, 2017.

[68] P. Fitzpatrick. First contact: an active vision approach to segmentation. In IROS,
2003.

[69] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,
D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

[70] D. Foster and P. Dayan. Structure in the space of value functions. Machine Learning,
2002.

[71] J. Fu, J. D. Co-Reyes, and S. Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. NIPS, 2017.

BIBLIOGRAPHY 124

[72] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. arXiv preprint arXiv:1506.02142, 2015.

[73] Y. Gal, R. McAllister, and C. E. Rasmussen. Improving pilco with bayesian neural
network dynamics models. In Data-Efficient Machine Learning workshop, ICML, 2016.

[74] F. Galasso, N. Nagaraja, T. Cardenas, T. Brox, and B. Schiele. A unified video
segmentation benchmark: Annotation, metrics and analysis. ICCV, 2013.

[75] D. Gandhi, L. Pinto, and A. Gupta. Learning to fly by crashing. arXiv preprint
arXiv:1704.05588, 2017.

[76] R. Garg, V. K. B.G., G. Carneiro, and I. Reid. Unsupervised cnn for single view depth
estimation: Geometry to the rescue. ECCV, 2016.

[77] J. J. Gibson. The ecological approach to visual perception. Psychology Press, 1979.

[78] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

[79] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu. Miche: Modular shape formation by
self-disassembly. IJRR, 2008.

[80] R. Girshick. Fast R-CNN. ICCV, 2015.

[81] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. NIPS, 2014.

[82] A. Gopnik. What do babies think? https://www.ted.com/talks/alison_gopnik_

what_do_babies_think, 2011.

[83] A. Gopnik, A. N. Meltzoff, and P. K. Kuhl. The scientist in the crib: Minds, brains,
and how children learn. William Morrow & Co, 1999.

[84] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised learning of
spatiotemporally coherent metrics. ICCV, 2015.

[85] R. Goroshin, M. Mathieu, and Y. LeCun. Learning to linearize under uncertainty.
NIPS, 2015.

[86] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. ICLR
Workshop, 2017.

[87] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping
and planning for visual navigation. CVPR, 2017.

[88] D. Ha. Reinforcement learning for improving agent design. arXiv preprint
arXiv:1810.03779, 2018.

[89] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates, et al. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567, 2014.

[90] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from
inverse detectors. ICCV, 2011.

https://www.ted.com/talks/alison_gopnik_what_do_babies_think
https://www.ted.com/talks/alison_gopnik_what_do_babies_think

BIBLIOGRAPHY 125

[91] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical
learning: data mining, inference and prediction. The Mathematical Intelligencer, 2005.

[92] K. Hausman, D. Pangercic, Z.-C. Márton, F. Bálint-Benczédi, C. Bersch, M. Gupta,
G. Sukhatme, and M. Beetz. Interactive segmentation of textured and textureless
objects. In Handling Uncertainty and Networked Structure in Robot Control. Springer,
2015.

[93] J. Hays and A. A. Efros. Scene completion using millions of photographs. SIGGRAPH,
2007.

[94] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. arXiv preprint
arXiv:1703.06870, 2017.

[95] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[96] J. J. Heckman. Sample selection bias as a specification error (with an application to
the estimation of labor supply functions), 1977.

[97] M. Henaff, A. Canziani, and Y. LeCun. Model-predictive policy learning with uncertainty
regularization for driving in dense traffic. ICLR, 2019.

[98] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep
reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

[99] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 2006.

[100] J. Ho and S. Ermon. Generative adversarial imitation learning. In NIPS, 2016.

[101] J. Hoffman. Adaptive Learning Algorithms for Transferable Visual Recognition. PhD
thesis, UC Berkeley, 2016.

[102] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active learning for
classification and preference learning. arXiv, 2011.

[103] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime:
Variational information maximizing exploration. In NIPS, 2016.

[104] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles.
Neural task graphs: Generalizing to unseen tasks from a single video demonstration.
arXiv preprint arXiv:1807.03480, 2018.

[105] P. J. Huber. Robust estimation of a location parameter. The annals of mathematical
statistics, 1964.

[106] R. Hunicke, M. LeBlanc, and R. Zubek. Mda: A formal approach to game design and
game research. In AAAI Workshop on Challenges in Game AI, 2004.

[107] K. Ikeuchi and T. Suehiro. Toward an assembly plan from observation. i. task recognition
with polyhedral objects. IEEE Transactions on Robotics and Automation, 1994.

[108] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

BIBLIOGRAPHY 126

[109] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. ICLR,
2017.

[110] K. Jarrett, K. Kavukcuoglu, Y. LeCun, et al. What is the best multi-stage architecture
for object recognition? In Computer Vision, 2009 IEEE 12th International Conference
on, pages 2146–2153. IEEE, 2009.

[111] D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion.
ICCV, 2015.

[112] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM
Multimedia, 2014.

[113] M. I. Jordan and D. E. Rumelhart. Forward models: Supervised learning with a distal
teacher. Cognitive science, 1992.

[114] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange. Unity:
A general platform for intelligent agents. arXiv preprint arXiv:1809.02627, 2018.

[115] L. Kanal and N. Randall. Recognition system design by statistical analysis. In
Proceedings of the 1964 19th ACM national conference, 1964.

[116] M. Kearns and D. Koller. Efficient reinforcement learning in factored mdps. In IJCAI,
1999.

[117] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. ViZDoom: A
Doom-based AI research platform for visual reinforcement learning. In IEEE Conference
on Computational Intelligence and Games, 2016.

[118] J. Kenney, T. Buckley, and O. Brock. Interactive segmentation for manipulation in
unstructured environments. In ICRA, 2009.

[119] D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.

[120] D. P. Kingma and M. Welling. Auto-encoding variational bayes. ICLR, 2014.

[121] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[122] A. S. Klyubin, D. Polani, and C. L. Nehaniv. Empowerment: A universal agent-centric
measure of control. In Evolutionary Computation, 2005.

[123] P. Kohli, P. H. Torr, et al. Robust higher order potentials for enforcing label consistency.
IJCV, 2009.

[124] H. Koichi and H. Tom. Visual servoing: real-time control of robot manipulators based
on visual sensory feedback. World scientific, 1993.

[125] Z. Kolter and A. Ng. Near-bayesian exploration in polynomial time. ICML, 2009.

[126] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-dependent initializations
of convolutional neural networks. ICLR, 2016.

BIBLIOGRAPHY 127

[127] P. Krähenbühl and V. Koltun. Geodesic object proposals. In ECCV, 2014.

[128] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep
convolutional neural networks. NIPS, 2012.

[129] Y. Kuniyoshi, M. Inaba, and H. Inoue. Teaching by showing: Generating robot programs
by visual observation of human performance. In International Symposium on Industrial
Robots, 1989.

[130] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Extracting reusable
task knowledge from visual observation of human performance. IEEE Transactions on
Robotics and Automation, 1994.

[131] T. Lampe and M. Riedmiller. Acquiring visual servoing reaching and grasping skills using
neural reinforcement learning. In Neural Networks (IJCNN), The 2013 International
Joint Conference on, 2013.

[132] G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic
colorization. ECCV, 2016.

[133] N. Lazzaro. Why we play games: Four keys to more emotion in player experiences. In
Proceedings of GDC, 2004.

[134] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
computation, 1989.

[135] A. X. Lee, S. Levine, and P. Abbeel. Learning visual servoing with deep features and
fitted q-iteration. arXiv preprint arXiv:1703.11000, 2017.

[136] J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems through
the search for novelty. In ALIFE, 2008.

[137] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary computation, 2011.

[138] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination
for robotic grasping with large-scale data collection. In ISER, 2016.

[139] D. Lewis and W. Gale. A sequential algorithm for training text classifiers. ACM SIGIR,
1994.

[140] Y. Li, M. Paluri, J. M. Rehg, and P. Dollár. Unsupervised learning of edges. CVPR,
2016.

[141] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. ICLR, 2016.

[142] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft COCO: Common objects in context. ECCV, 2014.

[143] D. Y. Little and F. T. Sommer. Learning and exploration in action-perception loops.
Closing the Loop Around Neural Systems, 2014.

BIBLIOGRAPHY 128

[144] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to
imitate behaviors from raw video via context translation. ICRA, 2018.

[145] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. CVPR, 2015.

[146] M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer. Exploration in model-based
reinforcement learning by empirically estimating learning progress. In NIPS, 2012.

[147] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht, and
M. Bowling. Revisiting the arcade learning environment: Evaluation protocols and
open problems for general agents. CoRR, abs/1709.06009, 2017.

[148] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg.
Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and
analytic grasp metrics. arXiv preprint arXiv:1703.09312, 2017.

[149] T. Malisiewicz and A. Efros. Beyond categories: The visual memex model for reasoning
about object relationships. NIPS, 2009.

[150] Mapillary. Open source structure from motion pipeline. https: // github. com/

mapillary/ OpenSfM , 2016.

[151] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. NIPS, 2013.

[152] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, et al. Learning to navigate in complex environ-
ments. ICLR, 2017.

[153] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification. ECCV, 2016.

[154] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In ICML,
2016.

[155] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 2015.

[156] S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In NIPS, 2015.

[157] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize
striking movements in robot table tennis. IJRR, 2013.

[158] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras. IEEE Transactions on Robotics, 2017.

[159] S. Murata and H. Kurokawa. Self-reconfigurable robots. IEEE Robotics & Automation
Magazine, 2007.

https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM

BIBLIOGRAPHY 129

[160] D. K. Naik and R. Mammone. Meta-neural networks that learn by learning. In IJCNN,
1992.

[161] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining
self-supervised learning and imitation for vision-based rope manipulation. ICRA, 2017.

[162] L. Nalpantidis, M. Björkman, and D. Kragic. Yes-yet another object segmentation:
exploiting camera movement. In IROS, 2012.

[163] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In ICML,
pages 663–670, 2000.

[164] M. Noroozi and P. Favaro. Unsupervised Learning of Visual Representations by Solving
Jigsaw Puzzles. ECCV, 2016.

[165] P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video
analysis. TPAMI, 36(6), 2014.

[166] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-conditional video prediction
using deep networks in atari games. In NIPS, 2015.

[167] A. Oliva and A. Torralba. Building the gist of a scene: The role of global image features
in recognition. Progress in brain research, 2006.

[168] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499, 2016.

[169] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped
dqn. In NIPS, 2016.

[170] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization
method for total variation-based image restoration. Multiscale Modeling & Simulation,
2005.

[171] G. Ostrovski, M. G. Bellemare, A. v. d. Oord, and R. Munos. Count-based exploration
with neural density models. ICML, 2018.

[172] Y. Ostrovsky, E. Meyers, S. Ganesh, U. Mathur, and P. Sinha. Visual parsing after
recovery from blindness. Psychological Science, 2009.

[173] P.-Y. Oudeyer. Computational theories of curiosity-driven learning. arXiv preprint
arXiv:1802.10546, 2018.

[174] P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 2009.

[175] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba. Ambient sound
provides supervision for visual learning. ECCV, 2016.

[176] J. Pajarinen and V. Kyrki. Decision making under uncertain segmentations. In Robotics
and Automation (ICRA), 2015 IEEE International Conference on, pages 1303–1309.
IEEE, 2015.

BIBLIOGRAPHY 130

[177] S. E. Palmer. Vision science: Photons to phenomenology. MIT press, 1999.

[178] P. Paquette. Super mario bros. in openai gym. github:ppaquette/gym-super-mario, 2016.

[179] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

[180] D. Pathak, D. Gandhi, and A. Gupta. Self-supervised exploration via disagreement. In
ICML, 2019.

[181] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan. Learning features by
watching objects move. CVPR, 2017.

[182] D. Pathak, P. Krähenbühl, and T. Darrell. Constrained convolutional neural networks
for weakly supervised segmentation. In ICCV, 2015.

[183] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros. Context Encoders:
Feature Learning by Inpainting. CVPR, 2016.

[184] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders:
Feature learning by inpainting. In CVPR, 2016.

[185] D. Pathak, C. Lu, T. Darrell, P. Isola, and A. Efros. Learning to control self-
assembling morphologies: A study of generalization via modularity. In arXiv preprint
arXiv:1902.05546, 2019.

[186] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer,
J. Malik, A. A. Efros, and T. Darrell. Zero-shot visual imitation. In ICLR, 2018.

[187] D. Pathak, Y. Shentu, D. Chen, P. Agrawal, T. Darrell, S. Levine, and J. Malik.
Learning instance segmentation by interaction. In CVPR Robotics Vision Workshop,
2018.

[188] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and A. Sorkine-Hornung.
A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation.
CVPR, 2016.

[189] S. T. Piantadosi and C. Kidd. Extraordinary intelligence and the care of infants. PNAS,
2016.

[190] P. O. Pinheiro, R. Collobert, and P. Dollár. Learning to Segment Object Candidates.
NIPS, 2015.

[191] P. O. Pinheiro, R. Collobert, and P. Dollár. Learning to segment object candidates. In
Advances in Neural Information Processing Systems, pages 1990–1998, 2015.

[192] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learning to Refine Object
Segments. ECCV, 2016.

[193] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The curious robot: Learning
visual representations via physical interactions. In ECCV, 2016.

[194] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries
and 700 robot hours. ICRA, 2016.

BIBLIOGRAPHY 131

[195] L. Z. Piotr Dollár. Structured forests for fast edge detection. ICCV, 2013.

[196] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour,
P. Abbeel, and M. Andrychowicz. Parameter space noise for exploration. ICLR, 2018.

[197] D. A. Pomerleau. ALVINN: An autonomous land vehicle in a neural network. In NIPS,
1989.

[198] D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid. Category-specific video summa-
rization. ECCV, 2014.

[199] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete bayesian
reinforcement learning. In ICML, 2006.

[200] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. ICLR, 2016.

[201] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[202] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza. Disentangling factors of
variation for facial expression recognition. ECCV, 2012.

[203] J. W. Romanishin, K. Gilpin, and D. Rus. M-blocks: Momentum-driven, magnetic
modular robots. In IROS, 2013.

[204] A. Rosenfeld, R. Zemel, and J. K. Tsotsos. The elephant in the room. arXiv preprint
arXiv:1808.03305, 2018.

[205] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 2015.

[206] E. L. Ryan, Richard; Deci. Intrinsic and extrinsic motivations: Classic definitions and
new directions. Contemporary Educational Psychology, 2000.

[207] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new
domains. In ECCV. Springer, 2010.

[208] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell,
and P. Battaglia. Graph networks as learnable physics engines for inference and control.
arXiv preprint arXiv:1806.01242, 2018.

[209] A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng. On random
weights and unsupervised feature learning. In ICML, pages 1089–1096, 2011.

[210] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEE Transactions on Neural Network, 2009.

[211] S. Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive
sciences, 1999.

[212] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter. Jointly learning to construct
and control agents using deep reinforcement learning. arXiv preprint arXiv:1801.01432,
2018.

BIBLIOGRAPHY 132

[213] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators.
In ICML, 2015.

[214] J. Schmidhuber. Evolutionary principles in self-referential learning. PhD thesis,
Technische Universität München, 1987.

[215] J. Schmidhuber. Curious model-building control systems. In Neural Networks, 1991.
1991 IEEE International Joint Conference on, 1991.

[216] J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In From animals to animats: Proceedings of the first international
conference on simulation of adaptive behavior, 1991.

[217] J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010).
IEEE Transactions on Autonomous Mental Development, 2010.

[218] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

[219] L. Schulz. Finding new facts; thinking new thoughts. In Advances in child development
and behavior. Elsevier, 2012.

[220] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine.
Time-contrastive networks: Self-supervised learning from video. In ICRA, 2018.

[221] P. Sermanet, K. Xu, and S. Levine. Unsupervised perceptual rewards for imitation
learning. In RSS, 2017.

[222] B. Settles. Active learning literature survey. U Madison Tech Report, 2010.

[223] H. Seung, M. Opper, and H. Sompolinsky. Query by committee. COLT, 1992.

[224] E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell. Loss is its own reward:
Self-supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2017.

[225] P. Shyam, W. Jaśkowski, and F. Gomez. Model-Based Active Exploration. In ICML,
2019.

[226] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. nature, 2016.

[227] P. J. Silvia. Curiosity and motivation. In The Oxford Handbook of Human Motivation,
2012.

[228] K. Sims. Evolving virtual creatures. In Computer graphics and interactive techniques,
1994.

[229] S. P. Singh, A. G. Barto, and N. Chentanez. Intrinsically motivated reinforcement
learning. In NIPS, 2005.

[230] L. Smith and M. Gasser. The development of embodied cognition: Six lessons from
babies. Artificial life, 2005.

[231] E. S. Spelke. Principles of object perception. Cognitive science, 1990.

BIBLIOGRAPHY 133

[232] E. S. Spelke and K. D. Kinzler. Core knowledge. Developmental science, 10(1):89–96,
2007.

[233] B. C. Stadie, P. Abbeel, and I. Sutskever. Third-person imitation learning. In ICLR,
2017.

[234] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. NIPS Workshop, 2015.

[235] K. O. Stanley and J. Lehman. Why greatness cannot be planned: The myth of the
objective. Springer, 2015.

[236] S. Still and D. Precup. An information-theoretic approach to curiosity-driven reinforce-
ment learning. Theory in Biosciences, 2012.

[237] J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforcement driven information
acquisition in non-deterministic environments. In ICANN, 1995.

[238] K. Stoy, D. Brandt, D. J. Christensen, and D. Brandt. Self-reconfigurable robots: an
introduction. Mit Press Cambridge, 2010.

[239] A. Strehl and M. Littman. An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 2008.

[240] S. Sukhbaatar, I. Kostrikov, A. Szlam, and R. Fergus. Intrinsic motivation and automatic
curricula via asymmetric self-play. In ICLR, 2018.

[241] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press
Cambridge, 1998.

[242] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman,
F. DeTurck, and P. Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In NIPS, 2017.

[243] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and
L.-J. Li. YFCC100M: The new data in multimedia research. Communications of the
ACM, 59(2), 2016.

[244] S. Thrun and L. Pratt. Learning to learn: Introduction and overview. In Learning to
learn. Springer, 1998.

[245] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception, behavior.
In Proceedings of the 21st annual conference on Computer graphics and interactive
techniques, 1994.

[246] A. M. Turing. Computing machinery and intelligence, 1950. One
of the most influential papers in the history of the cognitive sciences:
http://cogsci.umn.edu/millennium/final.html.

[247] H. Van Hoof, O. Kroemer, and J. Peters. Probabilistic segmentation and targeted
exploration of objects in cluttered environments. IEEE Transactions on Robotics,
30(5):1198–1209, 2014.

BIBLIOGRAPHY 134

[248] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. ICML, 2008.

[249] J. Von Neumann, A. W. Burks, et al. Theory of self-reproducing automata. IEEE
Transactions on Neural Networks, 1966.

[250] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting
from static images using variational autoencoders. ECCV, 2016.

[251] K. Wampler and Z. Popović. Optimal gait and form for animal locomotion. In ACM
Transactions on Graphics (TOG), 2009.

[252] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their
solutions. arXiv preprint arXiv:1901.01753, 2019.

[253] T. Wang, R. Liao, J. Ba, and S. Fidler. Nervenet: Learning structured policy with
graph neural networks. ICLR, 2018.

[254] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos.
ICCV, 2015.

[255] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. In NIPS, 2015.

[256] A. A. Weir, J. Chappell, and A. Kacelnik. Shaping of hooks in new caledonian crows.
Science, 2002.

[257] M. Wertheimer. Laws of organization in perceptual forms. A source book of Gestalt
Psychology, 1923.

[258] M. Wertheimer. Laws of organization in perceptual forms. A source book of Gestalt
psychology, 1938.

[259] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 1992.

[260] W. J. Wilson, C. W. Hulls, and G. S. Bell. Relative end-effector control using cartesian
position based visual servoing. IEEE Transactions on Robotics and Automation, 1996.

[261] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan. An internal model for sensorimotor
integration. Science-AAAS-Weekly Paper Edition, 1995.

[262] M. Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

[263] P. Wouters, H. Van Oostendorp, R. Boonekamp, and E. Van der Spek. The role of
game discourse analysis and curiosity in creating engaging and effective serious games
by implementing a back story and foreshadowing. Interacting with Computers, 2011.

[264] C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni,
M. Gonzalez-Rivero, R. Hatton, and H. Choset. Design of a modular snake robot. In
IROS, 2007.

BIBLIOGRAPHY 135

[265] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[266] Y. Yang, Y. Li, C. Fermüller, and Y. Aloimonos. Robot learning manipulation action
plans by ”watching” unconstrained videos from the world wide web. In AAAI, 2015.

[267] Z. Yang, B. Dhingra, K. He, W. W. Cohen, R. Salakhutdinov, Y. LeCun, et al. Glomo:
Unsupervisedly learned relational graphs as transferable representations. arXiv preprint
arXiv:1806.05662, 2018.

[268] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z. Wang. Deep
fried convnets. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1476–1483, 2015.

[269] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action
recognition by learning bases of action attributes and parts. ICCV, 2011.

[270] M. Yim, D. G. Duff, and K. D. Roufas. Polybot: a modular reconfigurable robot. In
ICRA, 2000.

[271] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. S.
Chirikjian. Modular self-reconfigurable robot systems. IEEE Robotics & Automation
Magazine, 2007.

[272] B. H. Yoshimi and P. K. Allen. Active, uncalibrated visual servoing. In Robotics and
Automation, 1994. Proceedings., 1994 IEEE International Conference on, 1994.

[273] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep
neural networks? NIPS, 2014.

[274] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
ECCV, 2014.

[275] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. A. Funkhouser. Learning
synergies between pushing and grasping with self-supervised deep reinforcement learning.
CoRR, abs/1803.09956, 2018.

[276] R. Zhang, P. Isola, and A. A. Efros. Colorful Image Colorization. ECCV, 2016.

[277] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning
by cross-channel prediction. CVPR, 2017.

[278] T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A. Efros. Learning dense
correspondence via 3d-guided cycle consistency. In CVPR, 2016.

[279] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. ICCV, 2017.

[280] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse
reinforcement learning. In AAAI, 2008.

[281] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

