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Abstract

Faster Algorithms and Graph Structure via Gaussian Elimination

by

Aaron Victor Schild

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Satish Rao, Chair

Graph partitioning has played an important role in theoretical computer science, particularly
in the design of approximation algorithms and metric embeddings. In some of these applica-
tions, fundamental tradeoffs in graph partitioning prevented further progress. To overcome
these barriers, we consider partitions of certain derived graphs of an undirected graph G ob-
tained by applying Gaussian elimination to the Laplacian matrix of G to eliminate vertices
from G. We use this technique and others to obtain new results on the following fronts:

Cheeger’s Inequality: Cheeger’s inequality shows that any undirected graph G with min-
imum nonzero normalized Laplacian eigenvalue λG has a cut with conductance at most
O(
√
λG). Qualitatively, Cheeger’s inequality says that if the relaxation time of a graph is

high, there is a cut that certifies this. However, there is a gap in this relationship, as cuts
can have conductance as low as Θ(λG).

To better approximate the relaxation time of a graph, we consider a more general object.
Specifically, instead of bounding the mixing time with cuts, we bound it with cuts in graphs
obtained via Gaussian elimination from G. Combinatorially, random walks in these graphs
are equivalent in distribution to random walks in G restricted to a subset of its vertices. As
a result, all Schur complement cuts have conductance at least Ω(λG). We show that unlike
with cuts, this inequality is tight up to a constant factor. Specifically, there is a derived
graph containing a cut with conductance at most O(λG).

Oblivious Routing: We show that in any graph, the average length of a flow path in an
electrical flow between the endpoints of a random edge is O(log2 n). This is a consequence of
a more general result which shows that the spectral norm of the entrywise absolute value of
the transfer impedance matrix of a graph is O(log2 n). This result implies a simple oblivious
routing scheme based on electrical flows in the case of transitive graphs.

Random Spanning Tree Sampling: We give an m1+o(1)βo(1)-time algorithm for generat-
ing uniformly random spanning trees in weighted graphs with max-to-min weight ratio β. In
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the process, we illustrate how fundamental tradeoffs in graph partitioning can be overcome
by eliminating vertices from a graph using Schur complements of the associated Laplacian
matrix.

Our starting point is the Aldous-Broder algorithm, which samples a random spanning tree
using a random walk. As in prior work, we use fast Laplacian linear system solvers to shortcut
the random walk from a vertex v to the boundary of a set of vertices assigned to v called a
“shortcutter.” We depart from prior work by introducing a new way of employing Laplacian
solvers to shortcut the walk. To bound the amount of shortcutting work, we show that most
random walk steps occur far away from an unvisited vertex. We apply this observation by
charging uses of a shortcutter S to random walk steps in the Schur complement obtained by
eliminating all vertices in S that are not assigned to it.

Spectral Sparsification: We introduce a new approach to spectral sparsification that
approximates the quadratic form of the pseudoinverse of a graph Laplacian restricted to a
subspace. We show that sparsifiers with a near-linear number of edges in the dimension
of the subspace exist. Our setting generalizes that of Schur complement sparsifiers. Our
approach produces sparsifiers by sampling a uniformly random spanning tree of the input
graph and using that tree to guide an edge elimination procedure that contracts, deletes,
and reweights edges. In the context of Schur complement sparsifiers, our approach has two
benefits over prior work. First, it produces a sparsifier in almost-linear time with no runtime
dependence on the desired error. We directly exploit this to compute approximate effective
resistances for a small set of vertex pairs in faster time than prior work [33]. Secondly,
it yields sparsifiers that are reweighted minors of the input graph. As a result, we give a
near-optimal answer to a variant of the Steiner point removal problem.

A key ingredient of our algorithm is a subroutine of independent interest: a near-linear
time algorithm that, given a chosen set of vertices, builds a data structure from which we
can query a multiplicative approximation to the decrease in the effective resistance between
two vertices after identifying all vertices in the chosen set to a single vertex with inverse
polynomial additional additive error in near-constant time.
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Chapter 1

Introduction

Over the past century, computer science as a field has been interested in obtaining fast
algorithms for a myriad of problems and applications. One particularly central area of
work has been the study of fast algorithms for graph problems. Graph problems are an
important area of study not just due to their immediate applications. Problems on graphs,
like the maximum flow problem, are often very general subcases of harder tasks, like linear
programming. As a result, better techniques for graph problems have and will continue to
be instructive for obtaining better algorithms in general.

In the past decade, many fundamental problems in graph algorithms, like the maximum
flow problem [64], have seen dramatically faster algorithms. These improvements began with
a near-linear time algorithm for solving special linear systems associated with graphs called
Laplacian linear systems [91]. This tool – used as a black box – led to improved algorithms
for several problems [30, 64, 72, 23, 46]. For many of these problems, we do not yet have
near-linear time algorithms. In this thesis, we investigate the graph-theoretic structure of
Laplacian systems in order to obtain better algorithms for some of these problems.

Chapter 2: A Schur Complement Cheeger Inequality

In this chapter, we prove a structural result about graphs which philosophically motivates
some of the work of this thesis. Cheeger’s Inequality, a classic result in spectral graph theory,
links the conductance of cuts that one can find in a graph to the second eigenvalue λG of
the graph G’s normalized Laplacian matrix. It says that all cuts have conductance at least
λG/2 and that there exists a cut with conductance at most

√
2λG. Notice that there is a gap

between the upper and lower bounds in this result.
We close this gap by minimizing over a more general set of partitions. Cheeger’s In-

equality considers the minimum conductance of a cut ∂S defined by a set of vertices S. We
instead minimize over pairs of disjoint sets of vertices (S1, S2) and consider the conductance
of the S1-S2 cut in a certain graph H defined using the graph G, which we call the Schur
complement of G onto S1 ∪ S2. H has vertex set S1 ∪ S2. The edges in G are defined by
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computing the Schur complement of the Laplacian matrix of G onto the rows and columns
defined by the vertices S1 ∪ S2. H has the combinatorial property that the list of vertices
visited by a random walk in H is equivalent in distribution to the list of vertices visited by
a random walk in G with vertices outside of S1 ∪S2 omitted. We call the cut of S1 in H the
Schur complement cut of (S1, S2) in G. In this section, we show that all Schur complement
cuts have conductance at least Ω(λG) and that there exists a Schur complement cut with
conductance at most O(λG).

While we do not directly use this result in the rest of this thesis, we do make extensive use
of Schur complement cuts in Chapter 4. Intuitively, these cuts are useful in this algorithm
due to the fact that they enable lower conductance partitions of graphs.

No coauthor for the result in this chapter, which presents the result originally in [84].
The constant factors in our result were improved in a follow-up work by Miller, Walkington,
and Wang [78].

Chapter 3: Oblivious Routing using Electrical Flow

Here, we prove a structural result about electrical flow. We show that in any n-vertex
graph, the average length of a flow path in the electrical flow between the endpoints of a
random edge is O(log2 n). This follows from a more general result about the spectral norm
of the entrywise absolute value of the transfer-impedance matrix BL†BT of an undirected
unweighted graph, where B and L are the incidence and Laplacian matrices of the graph.
The spectral norm of this matrix is always at most O(log2 n).

This result has a few applications. In edge-transitive unweighted graphs, it implies that
electrical flows are O(log2 n)-competitive oblivious routers. It also implies that in general
graphs, electrical flows are O(log2 n)-competitive `2-oblivious routers. It is also used in
Chapters 4 and 5. The context in which it is used is to accelerate a certain algorithm that
iteratively (a) computes an electrical flow and then (b) changes the resistance of some edge
by a constant factor, where the edge is chosen using the result of part (a). Our result allows
batches of edges to be updated in part (b) instead of just one edge at a time, substantially
reducing the runtime of the algorithm. For a more detailed overview of how the result is
used, see the introduction of Chapter 5.

This chapter is based on joint work [86] with Satish Rao and Nikhil Srivastava.

Chapter 4: Random Spanning Tree Sampling

We give an m1+o(1)βo(1)-time algorithm for sampling uniformly random spanning trees in
weighted graphs with max-to-min weight ratio β. In the process, we illustrate how funda-
mental tradeoffs in graph partitioning can be overcome by eliminating vertices from a graph
using Schur complements of the associated Laplacian matrix.
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Our starting point is the Aldous-Broder algorithm, which samples a random spanning tree
using a random walk. As in prior work, we use fast Laplacian linear system solvers to shortcut
the random walk from a vertex v to the boundary of a set of vertices assigned to v called a
“shortcutter.” We depart from prior work by introducing a new way of employing Laplacian
solvers to shortcut the walk. To bound the amount of shortcutting work, we show that most
random walk steps occur far away from an unvisited vertex. We apply this observation by
charging uses of a shortcutter S to random walk steps in the Schur complement obtained by
eliminating all vertices in S that are not assigned to it. This charging is possible due to the
combinatorial interpretation of Schur complements discussed in the overview to Chapter 2.

No coauthor for the result in this chapter, which presents the result given in [85].

Chapter 5: Spectral Subspace Sparsification

We introduce a new approach to spectral sparsification that approximates the quadratic
form of the pseudoinverse of a graph Laplacian restricted to a subspace. We show that
sparsifiers with a near-linear number of edges in the dimension of the subspace exist. Our
setting generalizes that of Schur complement sparsifiers. Our approach produces sparsifiers
by sampling a uniformly random spanning tree of the input graph and using that tree to
guide an edge elimination procedure that contracts, deletes, and reweights edges. In the
context of Schur complement sparsifiers, our approach has two benefits over prior work.
First, it produces a sparsifier in m1+o(1) time in an m-edge graph. We directly exploit this
to compute approximate effective resistances for a small set of vertex pairs in faster time
than prior work [33], which produced a (1 + ε)-approximate sparsifier in Õ(m+ n/ε2) time.
Secondly, it yields sparsifiers that are reweighted minors of the input graph. As a result, we
give a near-optimal answer to a variant of the Steiner point removal problem.

A key ingredient of our algorithm is a subroutine of independent interest: a near-linear
time algorithm that, given a chosen set of vertices, builds a data structure from which we
can query a multiplicative approximation to the decrease in the effective resistance between
two vertices after identifying all vertices in the chosen set to a single vertex with inverse
polynomial additional additive error in near-constant time.

This chapter is based on joint work [68] with Huan Li.
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Chapter 2

A Schur Complement Cheeger
Inequality

2.1 Introduction

For a set of vertices S, let φS denote the total weight of edges leaving S divided by the
total degree of the vertices in S. Throughout the literature, this quantity is often called
the conductance of S. To avoid confusion with electrical conductance, we call this quantity
the fractional conductance of S. Let φG denote the minimum fractional conductance of any
set S with at most half of the volume (total vertex degree). Let λG denote the minimum
nonzero eigenvalue of the normalized Laplacian matrix of G. Cheeger’s inequality for graphs
[5, 4] is as follows:

Theorem 2.1.1 (Cheeger’s Inequality). For any weighted graph G, λG/2 ≤ φG ≤
√

2λG.

Cheeger’s inequality was originally introduced in the context of manifolds [21]. It is a
fundamental primitive in graph partitioning [91, 70] and for upper bounding the mixing time
1 of Markov chains [89]. Motivated by spectral partitioning, much work has been done on
higher-order generalizations of Cheeger’s inequality [61, 69]. The myriad of applications for
Cheeger’s inequality and generalizations of it [16, 92], along with the Θ(

√
λG) gap between

the upper and lower bounds, have led to a long line of work that seeks to improve the quality
of the partition found when the spectrum has certain properties (for example, bounded
eigenvalue gap [56] or when the graph has special structure [49].)

Here, we get rid of the Θ(
√
λG) gap by taking a different approach. Instead of assuming

special combinatorial or spectral structure of the input graph to obtain a tighter relationship

1Every reversible Markov chain is a random walk on some weighted undirected graph G with vertex
set equal to the state space of the Markov chain. The relaxation time of a reversible Markov chain with
transition graph G is defined to be 1/λG. This quantity is within a Θ(log(πmin)) factor of the mixing time
of the chain, where πmin is the minimum nonzero entry in the stationary distribution (Theorems 12.3 and
12.4 of [67]).
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between fractional conductance and λG, we introduce a more general object than graph cuts
that enables a tighter approximation to λG. Instead of just considering cuts in the given
graph G, we consider cuts in certain derived graphs of the input graph obtained by Schur
complementing the Laplacian matrix of the graph G onto rows and columns corresponding to
a subset of G’s vertices. Specifically, pick two disjoint sets of vertices S1 and S2, compute the
Schur complement of G onto S1 ∪ S2, and look at the cut consisting of all edges between S1

and S2 in that Schur complement. Let ρG be the minimum fractional conductance of any such
cut (defined formally in Section 2.2). We show that the minimum fractional conductance of
any such cut is a constant factor approximation to λG:

Theorem 2.1.2. Let G be a weighted graph. Then

λG/2 ≤ ρG ≤ 25600λG

2.1.1 Effective Resistance Clustering

Our result directly implies a clustering result that relates 1/λG to effective resistances be-
tween sets of vertices in the graph G. Think of the weighted graph G as an electrical network,
where each edge represents a conductor with electrical conductance equal to its weight. For
two sets of vertices S1 and S2, obtain a graph H by contracting all vertices in S1 to a single
vertex s1 and all vertices in S2 to a single vertex s2. Let ReffG(S1, S2) denote the effective
resistance between the vertices s1 and s2 in the graph H. The following is a consequence of
our main result:

Theorem 2.1.3. In any weighted graph G, there are two sets of vertices S1 and S2 for
which ReffG(S1, S2) ≥ 1/(25600λG min(volG(S1), volG(S2))). Furthermore, for any pair of
sets S ′1, S

′
2, ReffG(S ′1, S

′
2) ≤ 2/(λG min(volG(S ′1), volG(S ′2)).

[19] proved the upper bound present in this result when |S ′1| = |S ′2| = 1. We prove
Theorem 2.1.3 in Appendix A.1.

2.1.2 Graph Partitioning

Effective resistance in spectral graph theory has been used several times recently (for example
[73, 3]) to obtain improved graph partitioning results. 1/λG may not yield a good approxima-
tion to the effective resistance between pairs of vertices [19]. For example, on an n-vertex grid
graph G, all effective resistances are between Ω(1) and O(log n), but λG = Θ(1/n). Theorem
2.1.3 closes this gap by considering pairs of sets of vertices, not just pairs of vertices.

Cheeger’s inequality is the starting point for analysis of spectral partitioning. In some
partitioning tasks, cutting the graph does not make sense. For example, spectral partitioning
is an important tool in image segmentation [88, 76]. Graph partitioning makes the most sense
in image segmentation when one wants to find an object with a sharp boundary. However,
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S1

S2

S1

S2

Figure 2.1: Spectral partitioning finds the S1-S2 cut in the left image, but may not in the
right due to the presence of many equal weight cuts. The minimum fractional conductance
Schur complement cut is displayed in both images.

in many images, like the one in Figure 2.1 on the right, objects may have fuzzy boundaries.
In these cases, it is not clear which cut an image segmentation algorithm should return.

Considering cuts in Schur complements circumvents this ambiguity. Think of an image
as a graph by making a vertex for each pixel and making an edge between adjacent pixels,
where the weight on an edge is inversely related to the disparity between the colors of the
endpoint pixels for the edge. An optimal segmentation in our setting would consist of the
two sets S1 and S2 corresponding to pixels on either side of the fuzzy boundary. Computing
the Schur complement of the graph onto S1 ∪ S2 eliminates all vertices corresponding to
pixels in the boundary.

Some examples in which Cheeger’s inequality is not tight illustrate a similar phenomenon
in which there are many equally good cuts. For example, let G be an unweighted n-vertex
cycle. This is a tight example for the upper bound in Cheeger’s inequality, as no cut has
fractional conductance smaller than O(1/n) despite the fact that λG = Θ(1/n2). Instead,
divide the cycle into four equal-sized quarters and let S1 and S2 be two opposing quarters.
The Schur complement cut between S1 and S2 has fractional conductance at most O(1/n2),
which matches λG up to a constant factor.

2.2 Preliminaries

Graph theory: Consider an undirected, connected graph H with edge weights {cHe }e∈E(H),
m edges, and n vertices. Let V (H) and E(H) denote the vertex and edge sets of H re-
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S1

S2

Figure 2.2: A tight example for the upper bound in Cheeger’s inequality. The minimum
fractional conductance of any cut in this graph is 1/8, while the fractional conductance of
the illustrated Schur complement cut on the right is 2(1/4)/(2(1/4) + 8(1)) = 1/17 < 1/8.

spectively. For two sets of vertices A,B ⊆ V (H), let EH(A,B) denote the set of edges in
H incident with one vertex in A and one vertex in B and let cH(A,B) :=

∑
e∈EH(A,B) c

H
e .

For a set of edges F ⊆ E(H), let cH(F ) :=
∑

e∈F c
H
e . For a set of vertices A ⊆ V (H),

let ∂HA := EH(A, V (H) \ A). For a vertex v ∈ V (H), let ∂Hv := ∂H{v} denote the
edges incident with v in H and let cHv :=

∑
e∈∂Hv c

H
e . For a set of vertices A ⊆ V (H), let

volH(A) :=
∑

v∈A c
H
v . When A and B are disjoint, let H/(A,B) denote the graph with all

vertices in A identified to one vertex a and all vertices in B identified to one vertex b. For-
mally, let H/(A,B) be the graph with V (H/(A,B)) = (V (H)\ (A∪B))∪{a, b}, embedding
f : V (H) → V (H/(A,B)) with f(u) := a if u ∈ A, f(u) := b if u ∈ B, and f(u) := u
otherwise, and edges {f(u), f(v)} for all {u, v} ∈ E(H). Let H/A := H/(A, ∅).

Laplacians: Let DH be the n×n diagonal matrix with rows and columns indexed by vertices
in H and DH(v, v) = cHv for all v ∈ V (H). Let AH be the adjacency matrix of H; that is
the matrix with AH(u, v) = cHuv for all u, v ∈ V (H). Let LH := DH − AH be the Laplacian

matrix of H. Let NH := D
−1/2
H LHD

−1/2
H denote the normalized Laplacian matrix of H. For

a matrix M , let M † denote the Moore-Penrose pseudoinverse of M . For subsets A and B
of rows and columns of M respectively, let M [A,B] denote the |A| × |B| submatrix of M
restricted to those rows and columns. For a set of vertices S ∈ V (H), let 1S denote the
indicator vector for the set S. For two vertices u, v ∈ Rn, let χuv := 1{u} − 1{u}. When the
graph is clear from context, we omit H from all of the subscripts and superscripts of H. For
a vector x ∈ Rn, let xS ∈ RS denote the restriction of x to the coordinates in S.

Let λH denote the smallest nonzero eigenvalue of NH . Equivalently,

λH := min
x∈Rn:xTD

1/2
H 1V (H)=0

xTNHx

xTx
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For any set of vertices X ⊆ V (H), let

LSchur(H,X) := LH [X,X]− LH [X, V (H) \X]LH [V (H) \X, V (H) \X]−1LH [V (H) \X,X]

where brackets denote submatrices with the indexed rows and columns. The following fact
applies specifically to Laplacian matrices:

Remark 1 (Fact 2.3.6 of [57]). For any graph H and any X ⊆ V (H), LSchur(H,X) is the
Laplacian matrix of an undirected graph.

Let Schur(H,X) denote the graph referred to in Remark 1. Schur complementation
commutes with edge contraction and deletion and is associative:

Theorem 2.2.1 (Lemma 4.1 of [27], statement from [57]). Given H, S ⊆ V (H), and any
edge e with both endpoints in S,

Schur(H \ e, S) = Schur(H,S) \ e

and, for any pair of vertices x, y ∈ S,

Schur(H/{x, y}, S) = Schur(H,S)/{x, y}

Theorem 2.2.2. Given H and two sets of vertices X ⊆ Y ⊆ V (H), Schur(Schur(H,Y ), X) =
Schur(H,X).

The following property follows from the definition of Schur complements:

Remark 2. Let H be a graph and S ⊆ V (H). Let I := Schur(H,S). For any x ∈ RV (H)

that is supported on S with xT1V (H) = 0,

xTL†Hx = xTSL
†
IxS

The weight of edges in this graph can be computed using the following folklore fact,
which we prove for completeness:

Theorem 2.2.3. For two disjoint sets C,D ⊆ V (H), let I := Schur(H,C ∪D). Then

cI(C,D) =
1

χTcdL
†
H/(C,D)χcd

Proof. By definition, cI(C,D) = cI/(C,D)({c}, {d}). By Theorem 2.2.1,
I/(C,D) = Schur(H/(C,D), {c, d}). By Remark 4, cSchur(H/(C,D),{c,d})({c}, {d}) = 1

χTcdL
†
H/(C,D)

χcd
.

Combining these equalities gives the desired result.

We also use the following folklore fact about electrical flows, which we prove for the sake
of completeness:
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Theorem 2.2.4. For two vertices s, t ∈ V (H),

χTstL
†
Hχst =

1

minp∈RV (H):ps≤0,pt≥1 p
TLHp

Proof. We first show that

χTstL
†
Hχst =

1

minp∈RV (H):ps=0,pt=1 p
TLHp

Taking the gradient of the objective pTLHp shows that that the optimal p are the potentials
for an electrical flow with flow conservation at all vertices besides s and t. Therefore, p is
proportional to L†Hχst + γ1 for some γ ∈ R. The constant of proportionality is χTstL

†
Hχst

since the s-t potential drop in p is 1. Therefore,

min
p∈RV (H):ps=0,pt=1

pTLHp =

(
L†Hχst

χTstL
†
Hχst

)T

LH

(
L†Hχst

χTstL
†
Hχst

)
=

1

χTstL
†
Hχst

The desired result follows from the fact that in the optimal p, all potentials are between
0 and 1 inclusive.

Notions of fractional conductance: For a set of vertices A ⊆ V (H), let

φHA :=
cH(∂H(A))

min(volH(A), volH(V (H) \ A))

be the fractional conductance of A. Let

φH := min
A⊆V (H):A 6=∅

φHA

be the fractional conductance of H.
For two disjoint sets of vertices A,B ⊆ V (H), let I := Schur(H,A ∪B) and

ρHA,B :=
cI(A,B)

min(volI(A), volI(B))

be the Schur complement fractional conductance of the pair of sets (A,B). Define the Schur
complement fractional conductance of the graph H to be

ρH := min
A,B⊆V (H):A∩B=∅,A 6=∅,B 6=∅

ρHA,B
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It will be helpful to deal with the quantities

σHA,B :=
cI(A,B)

min(volH(A), volH(B))

and
σH := min

A,B⊆V (H):A∩B=∅,A 6=∅,B 6=∅
σHA,B

as well, which we call the mixed fractional conductances of (A,B) and H respectively.
The following will be useful in relating ρHA,B to σHA,B:

Proposition 2.2.5. For any two sets X ⊆ Y ⊆ V (H), let I := Schur(H, Y ). Then,

volI(X) ≤ volH(X)

Proof. It suffices to show this result when |X| = 1 because vol is a sum of volumes (degrees)
of vertices in the set. Furthermore, by Theorem 2.2.2, it suffices to show the result when
|Y | = |V (H)| − 1. Let v be the unique vertex in H outside of Y and let u be the unique
vertex in X. Then, by definition of the Schur complement,

volI(X) = cIu

=
∑

w∈V (I)

cIuw

=
∑

w∈V (I)

(
cHuw +

cHuvc
H
vw

cHv

)

=

 ∑
w∈V (I)

cHuw

+
cHuv
cHv

 ∑
w∈V (I)

cHvw


≤

 ∑
w∈V (I)

cHuw

+ cHuv

= cHu
= volH(X)

as desired.

To prove the upper bound, we given an algorithm for constructing a low fractional con-
ductance Schur complement cut. The following result is helpful for making this algorithm
take near-linear time:
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Theorem 2.2.6 (Theorem 8.2 of [95]). Given a graph H, there is a Õ(m)-time algorithm

that produces a vector x← ApxFiedler(H) ∈ RV (H) with xTD
1/2
H 1V (H) = 0 for which

xTNHx ≤ 2λHx
Tx

2.3 Lower bound

We now show the first inequality in Theorem 2.1.2, which follows from the following lemma
by Proposition 2.2.5, which implies that σG ≤ ρG.

Lemma 2.3.1.
λG ≤ 2σG

Proof. We lower bound the Schur complement fractional conductance of any pair of disjoint
sets A,B ⊆ V (G). Let I := Schur(G,A∪B). Let P be the (A∪B)×(A∪B) diagonal matrix
with P (u, u) = cGu for each u ∈ A ∪ B. We start by lower bounding the minimum nonzero
eigenvalue λ of the matrix P−1/2LIP

−1/2. Let λmax(M) denote the maximum eigenvalue of
a symmetric matrix M . By definition of the Moore-Penrose pseudoinverse,

1/λ = λmax(P 1/2L†IP
1/2)

By Remark 4,
λmax(P 1/2L†IP

1/2) ≤ λmax(N †G) = 1/λG

Therefore, λ ≥ λG. We now plug in a test vector. Let

z := P 1/2

(
1A

volG(A)
− 1B

volG(B)

)
zT (P 1/21V (I)) = 0, so

λG ≤ λ

= min
x∈RA∪B :xTP 1/21V (I)=0

xT (P−1/2LIP
−1/2)x

xTx

≤ zT (P−1/2LIP
−1/2)z

zT z

=
cI(A,B) ((1/volG(A)) + (1/volG(B)))2

(volG(A)/volG(A)2) + (volG(B)/volG(B)2)

=
cI(A,B)volG(A ∪B)

volG(A)volG(B)

≤ 2σGA,B
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2.4 Upper bound

We now show the second inequality in Theorem 2.1.2:

Lemma 2.4.1.
ρG ≤ 25600λG

To prove this lemma, we need to find a pair of sets A and B with low Schur complement
fractional conductance:

Lemma 2.4.2. There is a near-linear time algorithm SweepCut(G) that takes in a graph
G with λG ≤ 1/25600 and outputs a pair of nonempty sets A and B with the following
properties:

• (Low Schur complement fractional conductance) σGA,B ≤ 640λG

• (Large interior) φGA ≤ 1/4 and φGB ≤ 1/4

We now prove Lemma 2.4.1 given Lemma 2.4.2:

Proof of Lemma 2.4.1 given Lemma 2.4.2. Let I := Schur(G,A ∪ B). For any two vertices
u, v ∈ A ∪ B, cIuv ≥ cGuv. Therefore, volI(A) ≥ 2

∑
u,v∈A c

G
uv and volI(B) ≥ 2

∑
u,v∈B c

G
uv. By

the “Large interior” guarantee of Lemma 2.4.2, 2
∑

u,v∈A c
G
uv ≥ (3/4)volG(A) and 2

∑
u,v∈B c

G
uv ≥

(3/4)volG(B). Therefore,
ρGA,B ≤ 4/3σGA,B ≤ 1280λG

by the “Low Schur complement fractional conductance” guarantee when λG ≤ 1/25600, as
desired. When λG > 1/25600, the lemma is trivially true, as desired.

Now, we implement SweepCut. The standard Cheeger sweep examines all thresholds q ∈
R and for each threshold, computes the fractional conductance of the cut ∂S≤q of edges from
vertices with eigenvector coordinate at most q to ones greater than q. Instead, the algorithm
SweepCut examines all thresholds q ∈ R and computes an upper bound (a proxy) for the
σGS≤q/2,S≥q for each positive q and σGS≤q ,S≥q/2 for each negative q. Let Iq := Schur(G,S≥q ∪
S≤q/2) for q > 0 and Iq := Schur(G,S≤q ∪S≥q/2). Let κq(y) := min(q,max(q/2, y)) for q > 0
and κq(y) = min(q/2,max(q, y)) for q ≤ 0. The proxy is the following quantity, which is
defined for a specific shift of the Rayleigh quotient minimizer y ∈ RV (G).

ĉIq(S≥q, S≤q/2) :=
4

q2

∑
e=uv∈E(G)

cGe (κq(yu)− κq(yv))2

for q > 0 and

ĉIq(S≤q, S≥q/2) :=
4

q2

∑
e=uv∈E(G)

cGe (κq(yu)− κq(yv))2

for q ≤ 0. We now show that this is indeed an upper bound:
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Proposition 2.4.3. For all q > 0,

cIq(S≤q/2, S≥q) ≤ ĉIq(S≤q/2, S≥q)

For all q ≤ 0,

cIq(S≤q, S≥q/2) ≤ ĉIq(S≤q, S≥q/2)

Proof. We focus on the q > 0, as the reasoning for the q ≤ 0 case is the same. By Theorems
2.2.3 and 2.2.4,

cIq(S≤q/2, S≥q) = min
p∈RV (G):pa≤0∀a∈S≤q/2,pa≥1∀a∈S≥q

pTLGp

The vector p with pa := 2
q
κq(ya) − 1 for all vertices a ∈ V (G) is a feasible solution to the

above optimization problem with objective value ĉIq(S≤q/2, S≥q). This is the desired result.

This proxy allows us to relate Schur complement fractional conductances together across
different thresholds q in a similar proof to the proof of the upper bound of Cheeger’s in-
equality given in [93]. One complication in our case is that Schur complements for different
values of q overlap in their eliminated vertices. Our choice of ≤ q/2, ≥ q plays a key role
here (as opposed to ≤ 0, ≥ q, for example) in ensuring that the overlap is small. We now
give the algorithm SweepCut:
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Algorithm 1: SweepCut(G)

Input: A graph G with λG ≤ 1/25600
Output: Two sets of vertices A and B satisfying the guarantees of Lemma 2.4.2

1 z ← vector with zTNGz ≤ 2λGz
T z and zT (D

1/2
G 1V (G)) = 0

2 x← D
−1/2
G z

3 y ← x− α1V (G) for a value α such that volG({v : yv ≤ 0}) ≥ volG(V (G))/2 and
volG({v : yv ≥ 0}) ≥ volG(V (G))/2

4 foreach q ∈ R do
5 S≥q ← vertices with yv ≥ q
6 S≤q ← vertices with yv ≤ q

7 end
8 foreach q > 0 do
9 if (1) ĉIq(S≤q/2, S≥q) ≤ 640λG min(volG(S≤q/2), volG(S≥q))), (2)

cG(∂S≥q/2) ≤ 1/4volG(S≥q), and (3) φS≥q ≤ 1/4 then
10 return (S≤q/2, S≥q)
11 end

12 end
13 foreach q ≤ 0 do
14 if (1) ĉIq(S≥q/2, S≤q) ≤ 640λG min(volG(S≥q/2), volG(S≤q))), (2)

cG(∂S≥q/2) ≤ 1/4volG(S≤q), and (3) φS≤q ≤ 1/4 then
15 return (S≤q, S≥q/2)
16 end

17 end

Our analysis relies on the following key technical result, which we prove in Appendix A.2:

Proposition 2.4.4. For any a, b ∈ R,∫ ∞
0

(κq(a)− κq(b))2

q
dq ≤ 10(a− b)2

Proof of Lemma 2.4.2. Algorithm well-definedness. We start by showing that SweepCut
returns a pair of sets. Assume, for the sake of contradiction, that SweepCut does not return
a pair of sets. Let Iq := Schur(G,S≥q ∪ S≤q/2) for q > 0 and Iq := Schur(G,S≤q ∪ S≥q/2) for
q ≤ 0. By the contradiction assumption, for all q > 0,

volG(S≥q) ≤
ĉIq(S≥q, S≤q/2)

640λG
+ 4cG(∂S≥q) + 4cG(∂S≤q/2)

and for all q < 0,

volG(S≤q) ≤
ĉIq(S≤q, S≥q/2)

640λG
+ 4cG(∂S≤q) + 4cG(∂S≥q/2)
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Since
∑

v∈V (G) c
G
v xv = 0, ∑

v∈V (G)

cGv x
2
v ≤

∑
v∈V (G)

cGv y
2
v

Now, we bound the positive yv and negative yv parts of this sum separately. Negating y
shows that it suffices to bound the positive part. Order the vertices in S≥0 in decreasing
order by yv value. Let vi be the ith vertex in this ordering, let k := |S≥0|, yk+1 := 0, yi := yvi ,
ci := cGvi , and Si := {v1, v2, . . . , vi} for each integer i ∈ [k]. Then

∑
v∈S≥0

cGv y
2
v =

k∑
i=1

ciy
2
i

=
k∑
i=1

(volG(Si)− volG(Si−1))y2
i

=
k∑
i=1

volG(Si)(y
2
i − y2

i+1)

= 2

∫ ∞
0

volG(S≥q)qdq

By our volume upper bound from above,

2

∫ ∞
0

volG(S≥q)qdq ≤ 2

∫ ∞
0

ĉIq(S≥q, S≤q/2)

640λG
qdq + 8

∫ ∞
0

cG(∂S≥q)qdq + 8

∫ ∞
0

cG(∂S≤q/2)qdq

= 2

∫ ∞
0

ĉIq(S≥q, S≤q/2)

640λG
qdq + 8

∫ ∞
0

cG(∂S≥q)qdq + 8

∫ ∞
0

cG(∂S>q/2)qdq

= 2

∫ ∞
0

ĉIq(S≥q, S≤q/2)

640λG
qdq + 40

∫ ∞
0

cG(∂S≥q)qdq

Substitution and Proposition 2.4.4 show that

2

∫ ∞
0

volG(S≥q)qdq ≤ 8
∑

e=uv∈E(G)

cGe

∫ ∞
0

(
(κq(yu)− κq(yv))2

640λGq
+ 51q∈[yu,yv ]q

)
dq

≤ 8
∑

e=uv∈E(G)

cGe

(
10

640λG
(yu − yv)2 + 5|y2

u − y2
v |
)

By Cauchy-Schwarz,
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8
∑

e=uv∈E(G)

cGe

(
10

640λG
(yu − yv)2 + 5|y2

u − y2
v |
)

≤ 1

8λG

∑
e=uv∈E(G)

cGe (yu − yv)2

+ 40

√ ∑
e=uv∈E(G)

cGe (yu − yv)2

√ ∑
e=uv∈E(G)

cGe (yu + yv)2

≤ 1

4

∑
v∈V (G)

cGv x
2
v

+ 80
√
λG

√ ∑
v∈V (G)

cGv x
2
v

√ ∑
v∈V (G)

cGv y
2
v

But since
∑

v∈V (G) c
G
v x

2
v ≤

∑
v∈V (G) c

G
v y

2
v and λG < 1/25600,

1

4

∑
v∈V (G)

cGv x
2
v + 80

√
λG

√ ∑
v∈V (G)

cGv x
2
v

√ ∑
v∈V (G)

cGv y
2
v <

1

2

∑
v∈V (G)

cGv y
2
v

Negating y shows that
∑

v∈S≤0
cGv y

2
v < 1/2

∑
v∈V (G) c

G
v y

2
v as well. But these statements can-

not both hold; a contradiction. Therefore, SweepCut must output a pair of sets.

Runtime. Computing z takes Õ(m) time by Theorem 2.2.6. Therefore, it suffices to show
that the foreach loops can each be implemented in O(m) time. This implementation is
similar to the O(m)-time implementation of the Cheeger sweep.

We focus on the first foreach loop, as the second is the same with q negated. First,
note that the functions φS≥q , c

G(∂S≥q/2), and volG(S≥q) of q are piecewise constant, with
breakpoints at q = yu and q = 2yu for each u ∈ V (G). Furthermore, these functions can be
computed for all values in O(m) time using an O(m)-time Cheeger sweep for each function.

Therefore, it suffices to compute the value of ĉIq(S≤q/2, S≥q) for all q ≥ 0 that are local
minima in O(m) time. Let h(q) := ĉIq(S≤q/2, S≥q). Notice that the functions h(q) and h′(q)
are piecewise quadratic and linear functions of q respectively, with breakpoints at q = yu and
q = 2yu. Using five O(m)-time Cheeger sweeps, one can compute the q2, q and 1 coefficients
of h(q) and the q and 1 coefficients of h′(q) between all pairs of consecutive breakpoints.
After computing these coefficents, one can compute the value of each function at a point q in
O(1) time. Furthermore, given two consecutive breakpoints a and b, one can find all points
q ∈ (a, b) with h′(q) = 0 in O(1) time. Each local minimum for h is either a breakpoint
or a point with h′(q) = 0. Since h and h′ have O(n) breakpoints, all local minima can be
computed in O(n) time. h can be evaluated at all of these points in O(n) time. Therefore,
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all local minima of h can be computed in O(m) time. Since the algorithm does return a q,
some local minimum for h also suffices, so this implementation produces the desired result
in O(m) time.

Low Schur complement fractional conductance. By Proposition 2.4.3,

cIq(S≥q, S≤q/2) ≤ ĉIq(S≥q, S≤q/2)

Therefore, cIq(S≥q, S≤q/2) ≤ 640λG min(volG(S≥q), volG(S≤q/2)) for q ≥ 0 by the foreach loop
if condition. Repeating this reasoning for q < 0 yields the desired result.

Large interior. By definition of α, volG(S≥q) ≤ volG(S≤q/2) for q > 0. Since cG(∂S≤q/2) ≤
1/4volG(S≥q), φS≤q/2 ≤ 1/4, as desired.
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Chapter 3

Oblivious Routing using Electrical
Flow

3.1 Introduction

Electrical Flows have have played an important role in several recent advances in graph al-
gorithms — for instance, in the context of exact and approximate maximum flow/minimum
cut [23, 63, 72], multicommodity flow [47], oblivious routing [42, 60, 50], graph sparsification
[90], and random spanning tree generation [46, 73]. This is due to the emergence of nearly
linear time Laplacian solvers for computing them, beginning with the work of Spielman and
Teng [91], and also to their well-known connections with random walks. Using them to solve
combinatorial problems is not typically immediate, and may be likened to putting a square
peg into a round hole: at a high level, many of the traditional problems of computer science
are concerned with finding flows in graphs with controlled `1 and `∞ norms (corresponding
to distance and congestion, respectively), whereas electrical flows minimize the `2 norm (en-
ergy). Reducing one to the other often requires some sort of iterative method for combining
many electrical flows with varying demands and graphs.

In this work, we ask the following basic structural question about electrical flows in
arbitrary unweighted graphs:

What is the typical `1 norm of the unit current electrical flow between two neigh-
boring vertices u, v in a graph?

Recall that the `1 norm of a unit circulation-free flow is the average distance traveled by the
flow, since any such flow fuv : E → R may be decomposed as a convex combination of paths
which all have the same direction of flow on every edge:

fuv =
∑
i∈Puv

αifi,
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where Puv is the set of simple paths from u to v, and we have

‖fuv‖1 =
∑
i∈Puv

αi‖fi‖1 =
∑
i∈Puv

αilength(fi).

Thus, this question asks when/whether electrical flows in a graph travel a greater distance
than shortest paths, and by how much.

3.1.1 Three Examples

To get a feel for this problem, and to set the context for our result and its proof, we begin by
presenting three instructive examples. We will use the notation bv for the indicator vector
of a vertex, buv = bu − bv for the signed incidence vector of an edge uv, B for the m × n
signed edge-vertex incidence matrix of a graph (where the edges are oriented arbitrarily),
and L = BTB for the Laplacian matrix. For any pair of vertices u, v, we will use the notation
∆(u, v) := ‖fuv‖1/dist(u, v), where fuv is the unit electrical flow between u and v and dist
is the shortest path distance in the graph.

The first example shows that in general ∆(u, v) can be quite large for the worst-case edge
in a graph.

Example 3.1.1 (Parallel Paths). Consider the graph consisting of a single edge between
vertices u and v and

√
m disjoint parallel paths of length

√
m with endpoints u and v. Since

the effective resistance of the parallel paths taken together is 1, half of the unit flow between
u and v will use the paths, assigning a flow of 1/2

√
m to each path, and the other half will

traverse the ege uv. Thus, we have ∆(u, v) = (
√
m+ 1)/2. However, notice that for most of

the other edges in the graph, ∆ is tiny. For instance, for any edge ab near the middle of one
of the parallel paths, a 1−O(1/

√
m) fraction of the flow will traverse the single edge, so we

will have ∆(a, b) = O(1).

On the other hand, ∆(u, v) is uniformly bounded for every edge in an expander.

Example 3.1.2 (Expander Graphs). Let G be a constant degree d−regular expander graph
with transition matrix P satisfying ‖P − J/n‖ ≤ λ for some constant λ, where J is the all
ones matrix. Letting Q := P − J/n and E = I − J/n, we have the power series expansion
orthogonal to the all ones vector:

(L/d)+ = (E −Q)+ = E +
∑
k≥1

Qk.

Now for every edge uv we calculate the electrical flow across its endpoints:

‖BL+buv‖1 ≤ ‖B‖1→1‖L+‖1→1‖buv‖1,
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where ‖ · ‖1→1 is the 1→1 operator norm, i.e., maximum column sum of the matrix. Let
T = O(log n) be the mixing time of G, after which ‖P T − J/n‖1→1 = ‖QT‖1→1 ≤ 1/n.
Noting that ‖B‖1→1 ≤ d and Qk = P k−J/n and applying the triangle inequality, we obtain:

‖BL+buv‖1 ≤
2d

d

T∑
k=0

(‖P k‖1→1 + ‖J/n‖1→1) + ‖L+‖1→1 · ‖QT‖1→1.

Since P k is a doubly stochastic matrix we have ‖P k‖1→1 = 1 for all k. Moreover, ‖L+‖1→1 ≤√
n‖L+‖ ≤

√
n/λ. Combining these facts, we get a final bound of ∆(u, v) = O(log n), for

every edge uv ∈ G.

We remark that bounds similar to (and somewhat more general than) the above were
shown in the papers [60, 50] using different techniques.

Finally, we note that there are highly non-expanding graphs for which ∆(u, v) is also
uniformly bounded, which means that expansion does not tell the whole story.

Example 3.1.3 (The Grid). Let G be the n× n two dimensional torus (i.e., grid with sides
identified). Then it is shown in [60] that for every edge uv ∈ G we have ∆(u, v) = O(log n),
even though G is clearly not an expander. We briefly sketch an argument explaining where
this bound comes from. Let uv be any horizontal edge in G, and let w be a vertex in G at
vertical distance k from u and v. We will show that the potential at w in the unit current
uv-electrical flow is small, in particular that

φ(w) := bTwL
+buv = O(1/k2).

First we recall (see, e.g., [17] Chapter IX) that the potential at a vertex w when u, v are fixed
to potentials −1, 1 is: 2(Pw(tv < tu)− Pw(tu < tv)), where Pw is the law of the random walk
started at w and tu is the first time at which the walk hits u. By Ohm’s law, this means that:

φ(w) ≤
∣∣∣∣ 2

Reff(u, v)
(Pw(tv < tu)− Pw(tu < tv))

∣∣∣∣ ,
where Reff(u, v) := bTuvL

+buv is the effective resistance of the edge uv. Since the resistance of
every edge in the grid is equal to 1/2, we find that |φ(w)| = O(|Pw(tv < tw)− Pw(tw < tv)|).

We now analyze these probabilities. Roughly speaking, the random walk from w will take
time Ω(k2) to reach the horizontal line H containing uv, at which point its horizontal distance
(along H) from w will be distributed as a k2-step random horizontal random walk centered at
w (since about half of the steps of the random walk up to that point will be horizontal). The
difference in probabilities between any two neighboring points in H will therefore be at most
O(1/k2), which implies the bound on |φ(x)|. Consequently, the potential difference across
any edge wx at distance k is at most O(1/k2); since there are O(k) edges at distance k,
the total contribution from such edges is O(1/k), and summing over all distances k (and
repeating the argument for vertical edges) yields a bound of O(log n).
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3.1.2 Our Results

Our first theorem is the following.

Theorem 3.1.4. If G = (V,E) is an unweighted graph with m edges, then∑
uv∈E

∆(u, v) ≤ O(m log2 n).

This theorem formalizes the intuition in the parallel paths example that there cannot be
too many edges in a graph for which the electrical flow uses very long paths. A corollary
for edge-transitive graphs is that the above bound holds for every edge, by symmetry. This
generalizes our analysis on the grid (which used very specific properties) to a much broader
category which includes all Cayley graphs.

Theorem 3.1.4 is a consequence of a more general result concerning the weighted transfer
impedance matrix of a graph. Given a weighted graph G = (V,E, c) with edge weights
ce ≥ 0, let C be an m×m diagonal matrix containing the edge weights. Then L = BTCB is
the Laplacian matrix of G and the weighted transfer impedance matrix is the m×m matrix
defined as:

Π = C1/2BL+BTC1/2.

It is well-known and easy to see that the entry (BL+B)(e, f) is the potential difference across
the ends of edge e when a unit current is injected across the ends of edge f , and vice versa,
and that Π is a projection matrix with trace n− 1. In particular, the latter fact implies that
‖Π‖ = 1, where ‖ · ‖ is the spectral norm.

Let Π be the entrywise absolute value matrix of Π. Our main theorem is:

Theorem 3.1.5. For an arbitrary weighted graph G,

‖Π‖ = O(log2 n)

Theorem 3.1.4 follows from Theorem 3.1.5 by plugging in the the all ones vector u =
(1, . . . , 1)T :

uTΠu =
∑
e∈E

‖Πe‖1 =
∑
e∈E

∆(e),

where Πe = BL+buv is the row of Π corresponding to e = uv, i.e., the electrical flow across
the endpoints of e. Since ‖u‖2 = m, the spectral norm bound in Theorem 3.1.5 implies that
uTΠu ≤ O(m log2 n).

3.1.3 Applications to Oblivious Routing

Oblivious routing refers to the following problem: given a graph G, specify a set of flows
{fuv} between pairs of vertices u, v so that for any set of demand pairs (s1, t1), . . . , (sk, tk),
the congestion of the flow obtained by taking the union of {fsiti}i≤k is at most a small factor
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(called the competitive ratio) greater than the congestion of the optimal multicommodity
flow for the given pairs. This is a well-studied problem with a vast literature which we will
not attempt to recount; a landmark result is the optimal theorem of Räcke [82] which shows
that there is an oblivious routing scheme with competitive ratio O(log n) for every graph.

In spite of this optimal result, there has been interest in studying whether simpler schemes
achieve good competitive ratios. A particulary simple scheme, studied in [42, 60, 50], is to
simply route fuv using the electrical flow. The paper [42] shows that this scheme has a good
competitive ratio on any graph when restricted to demands which all share a single source.
It was shown in [60, 50] that the competitive ratio of electrical routing on an unweighted
graph is exactly equal to ‖Π‖1→1, i.e., the maximum of ∆(u, v) over all edges in a graph. In
these papers, it was shown that for grids, hypercubes, and expanders the competitive ratio
is O(log n). Our theorem immediately extends this to all transitive graphs, albeit with a
guarantee of O(polylog(n)) rather than O(log(n)).

Corollary 3.1.6. Electrical Flow Routing achieves a competitive ratio of O(log2 n) on every
edge-transitive graph.

Proof. By Theorem 3.1.4 and symmetry, we have that every column sum of Π is at most
O(log2 n). By Proposition 1 and Lemma 4 of [60] (or by Theorem 3.1 of [50]), this implies that
routing each pair by the electrical flow has a competitive ratio of O(log2 n) as an oblivious
routing scheme.

3.1.4 Techniques

Given the expander example above, it may be tempting to attempt to prove Theorem 3.1.4
by decomposing an arbitrary graph into disjoint expanding clusters. However, using such a
decomposition would likely require proving that edge electrical flows do not cross between
the clusters, which is what we are trying to show in the first place.

We use an alternate scheme inspired by recent Schur-complement based Laplacian solvers.
Recall the Schur complement formula for the pseudoinverse of a symmetric block matrix (see
e.g. [33] Section 5):

Fact 3.1.7. If

L =

[
P Q
QT R

]
for symmetric P,R and R invertible, then:

L+ = ZT

[
I 0

−R−1QT I

] [
Schur (L, P )+ 0

0 R−1

] [
I −QR−1

0 I

]
Z (3.1)

where Schur (L, P ) = P − QR−1QT denotes the Schur complement of L onto P , obtained
by eliminating R by partial Gaussian elimination, and Z is the projection orthogonal to the
nullspace of L.
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The idea is to apply this formula to compute the terms |bTe L+bf | by eliminating vertices
one-by-one, as in [58], and bounding the original value of |bTe L+bf | in terms of the value on
small Schur complements. One cannot eliminate arbitrary vertices and get a good bound,
though. We use Proposition 3.3.2 to show that there always exists a vertex whose elimination
results in a good bound. Since Laplacian matrices with self loops are closed under taking
Schur complements the remaining matrix is the Laplacian of a weighted graph as well.
Mapping the demand vectors be and bf to the vertex set of this graph and recurring yields
the sum of interest.

3.2 Schur Complements, Probabilities, and Energies

In this section we collect some preliminary facts about Schur complements of Laplacians and
establish some useful correspondences between electrical potentials and probabilities. We do
this so that after recurring on a Schur complement of the graph G that we care about, we can
interpret the recursively generated sums that we generate using Fact 3.1.7 in terms of G. We
will make frequent use of the fact that for a Laplacian matrix LG with block LS, the Schur
complement Schur (LG, LS) is also a Laplacian. For a graph G and subset of vertices S will
use the notation Schur (G,S) to denote the graph corresponding to Schur (LG, LS). Since
all vectors we will apply pseudoinverses to will be orthogonal to the corresponding nullspaces
(the corresponding constant vectors, since all Schur complements will be Laplacians), we will
not write the projection Z in Fact 3.1.7 in what follows.

Definition 3.2.1. Consider a graph G. For any set of vertices S ⊆ V (G) with |S| ≥ 2, a
vertex v ∈ S, and a vertex x ∈ V (G), let

pG,Sv (x) := Px[tv < tS\v]

For an edge e = {x, y} ∈ E(G), let

qG,Sv (e) := |pSv (x)− pSv (y)|

where tS′ denotes the hitting time to the set S ′. Let

rG,Sv (e) := max(pSv (x), pSv (y), 1/|S|)

When G is clear from the context, we omit G from the superscript.

Corollary 3.2.2. For any set S and any e = {x, y} ∈ E(G),
∑

v∈S r
G,S
v (x) ≤ 3.

Proof. {pG,Sv (z)}v is a distribution for any fixed vertex z ∈ V (G). Bounding rG,Sv (e) ≤
pG,Sv (x) + pG,Sv (y) + 1

|S| yields the desired result.

It is well-known that the above probabilities can be represented as normalized potentials
(see, for instance, [17] Chapter IX).
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Fact 3.2.3. Let H be the graph obtained by identifying all vertices of S\{v} to one vertex

s. Then pSv (x) :=
|bTvsL

+
Hbxs|

bTvsL
+
Hbvs

for any x ∈ V (G) and qSv (e) :=
|bTvsL

+
Hbe|

bTvsL
+
Hbvs

for any e ∈ E(G).

In proving the desired result, it will help to recursively compute Schur complements with
respect to certain sets of vertices S. We now relate the Schur complement to the above
probabilities, which will be central to our proof; the following proposition is likely to be
known but we include it for completeness.

Proposition 3.2.4. For a set of vertices S ⊆ V (G) and a vertex x ∈ V (G) possibly not
in S, let bx ∈ RV (G) denote the indicator vector of x. Let bSx ∈ RS denote the vector with
coordinates bSx(v) = pSv (x) for all v ∈ S. Write LG as a two-by-two block matrix:

L =

[
P Q
QT R

]
where P , Q, and R have index pairs S × S, S × (V (G) \ S), and V (G) \ S × V (G) \ S
respectively. Then

bSx = MSbx

where
MS =

[
I −QR−1

]
.

Proof. If x ∈ S, then bSx is the indicator vector of x and x is in the identity block of MS.
Therefore, bSx = MSbx.

If x /∈ S, then let bcx denote the coordinate restriction of bx to V (G) \ S. We want to
show that bSx = −QR−1bcx. Consider the linear system

bcx = Rp

Let H be the graph obtained by identifying all vertices in S within G to a single vertex
s. Then the vector p′ with p′s = 0 and p′v = pv for all v ∈ V (H) \ {s} is a solution to a
boundary value problem with p′s = 0 and p′x having the maximum potential of any vertex.
The block matrix Q can be viewed as mapping the potentials p′ to a flow proportional to the
xs-flows on edges incident with s. By Proposition 2.2 of [71], for example, the incoming flow
on edges to s is equal to the probability that an x→ s random walk first visits s by crossing
that edge. Grouping edges according to their common endpoints shows that −QR−1bcx is a
scalar multiple of bSx .

However, notice that

1T (−QR−1)bcx = (−1TQ)R−1bcx = 1TRR−1bcx = 1 = 1T bSx

so bSx = −QR−1bcx, as desired.

Once one views the the qSv (e)s in the above way, it makes sense to discuss the energy of the
qSv (e)s in relation to the probabilities pSv (x). It turns out that the total energy contributed
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by edges with both endpoints having potential at most p is at most a p fraction of the total
energy.

Proposition 3.2.5. For any p ∈ (0, 1), let F be the set of edges {x, y} with maxz∈{x,y} p
S
v (z) ≤

p. Then the total energy of those edges is at most a p fraction of the overall energy. More
formally, ∑

e∈F

ce(q
S
v (e))2 ≤ p

∑
e∈E(G)

ce(q
S
v (e))2

Proof. Let H be the graph obtained by identifying S\{v} to a vertex s in G. By Fact 3.2.3,
we can show the desired proposition by proving the following:∑

e∈F

ce(b
T
vsL

+
Hbe)

2 ≤ pbTvsL
+
Hbvs

for an arbitrary graph H and the subset of edges F ⊆ E(H) with maxz∈{x,y} |bTvsL+
Hbzs| ≤

pbTvsL
+
Hbvs.

Write the sum on the left side in terms of an integral over sweep cuts. For p ∈ (0, 1), let
Cp denote the set of edges cut by the normalized potential p. More precisely, let Cp be the
set of edges {x, y} with |bTvsL+

Hbxs| ≥ pbTvsL
+
Hbvs and |bTvsL+

Hbys| ≤ pbTvsL
+
Hbvs. Notice that

∑
e∈F

ce(b
T
vsL

+
Hbe)

2 ≤
∫ pbTvsL

+
Hbvs

0

∑
e∈Cq

ce|bTvsL+
Hbe|dq

=

∫ pbTvsL
+
Hbvs

0

1dq

≤ pbTvsL
+
Hbvs

where the equality follows from the fact that Cq is a threshold cut for the v− s electrical
flow and the first inequality follows from splitting the contribution of e to the sum in terms
of threshold cuts. This inequality is the desired result.

Finally, we relate the weighted degrees of of vertices in Schur (G,S) to energies in G with
respect to S.

Definition 3.2.6. Let cHv denote the sum of the conductances1of edges incident with v in H.

1To avoid confusion, we remind the reader that by conductances we always mean electrical conductances,
i.e., weights in the graph, and not conductances in the sense of expansion.
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Proposition 3.2.7. Let G be a graph. Consider a set S and let H = Schur(G,S). Then

cHv =
∑

e∈E(G)

cGe (qG,Sv (e))2

Proof. Let I be the graph obtained by identifying S \ {v} to s in H. Since the effective
conductance of parallel edges is the sum of the conductance of those edges, cHv = 1

bTvsL
+
I bvs

.

By commutativity of Schur complements, I can also be obtained by identifying S\{v} in
G before eliminating all vertices besides s and v. Let J be the graph obtained by just doing
the first step (identifying S\{v}). By definition of Schur complements,

bTvsL
+
I bvs = bTvsL

+
J bvs

By Fact 3.2.3,

bTvsL
+
J bvs =

1∑
e∈E(G) c

G
e (qG,Sv (e))2

Substitution therefore shows the desired result.

3.3 Proof of Theorem 3.1.5

We will deduce Theorem 3.1.5 from the following seemingly weaker statement regarding
positive test vectors.

Theorem 3.3.1. Let G be a graph. Then for any vector w ∈ RE(G)
≥0 ,∑

e,f∈E

wewf
√
cecf |bTe L+

Gbf | ≤ O(log2 n)||w||22

Theorem 3.1.5 can be deduced from this by a Perron-Frobenius argument.

Proof of Theorem 3.1.5. Since the matrix M = |C1/2
G BGL

+
GB

T
GC

1/2
G | has nonnegative entries,

there is an eigenvector with maximum eigenvalue with nonnegative coordinates by Perron-
Frobenius. Such an eigenvector corresponds to a positive eigenvalue. Theorem 3.3.1 bounds
the value of the quadratic form of this eigenvector. In particular, the quadratic form is at
most O(log2 n) times the `2 norm squared of the vector, as desired.

The proof hinges on the following key quantity. Define

DegreeS(u) :=
(
∑

e∈E(G) we
√
ceq

S
u (e))2∑

e∈E(G) ceq
S
u (e)2
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The quantity DegreeS(u) may be interpreted as a measure of the sparsity of the vector
(qSu (e))e, since it is the ratio of the (weighted) `2

1 norm of this vector and its `2
2 norm. Note

that when S = V (G), w = 1, and G is unweighted, DegreeS(u) is simply the degree of u.
There are two parts to the proof: (1) recursively reducing the original problem to a

number of problems involving sums of simpler inner products and (2) bounding those sums.
The difference between the value of a problem and the subproblem after eliminating u is at
most DegreeS(u). We want to show that there always is a choice of u with a small value of
DegreeS(u). The following proposition shows this:

Proposition 3.3.2. For any {ce}e-weighted graph G, set S ⊆ V (G) with |S| ≥ 2, and
nonnegative weights {we}e∈E(G), the following holds:∑

u∈S

DegreeS(u) ≤ O(log |S|)
∑

e∈E(G)

w2
e

We now reduce Theorem 3.3.1 to this proposition by picking the vertex u with that mini-
mizes the summand DegreeS(u) of Proposition 3.3.2 and recurring on the Schur complement
with u eliminated. The summand of Proposition 3.3.2 is an upper bound on the decrease
due to eliminating u.

Proof of Theorem 3.3.1 given Proposition 3.3.2. Define the following:

• G0 ← G, c(0) ← c, x0 ← arg minx∈V (G) DegreeS0
(x), S0 ← V (G), i← 0.

• While |V (Gi)| > 2:

– i← i+ 1

– Gi ← Schur(Gi−1, V (Gi−1) \ {xi−1})
– c(i) ← conductance vector for Gi

– Si ← V (Gi)

– xi ← arg minx∈V (Gi) DegreeSi(x)

• T ← i

Let Li ← LGi and let mi = Lxixi . We start by understanding how to express the left

hand side of the desired inequality in Gi for all i. For a vertex x ∈ V (G), let b
(i)
x ∈ RV (Gi)

denote the vector with b
(i)
x (v) = pG,Siv (x) for all v ∈ V (Gi). For an edge {x, y} ∈ V (G), let

b
(i)
xy = b

(i)
x − b(i)

y . Let

Vi :=
∑

e,f∈E(G)

we
√
ce|b(i)T

e L+
i b

(i)
f |
√
cfwf
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We now bound Vi in terms of Vi+1 for all nonnegative integers i < T . By Fact 3.1.7 and
Proposition 3.2.4,

Vi =
∑

e,f∈E(G)

we
√
ce|b(i)T

e L+
i b

(i)
f |
√
cfwf

=
∑

e,f∈E(G)

we
√
ce|b(i+1)T

e L+
i+1b

(i+1)
f + x(i)T

e

1

mi

x
(i)
f |
√
cfwf

≤ Vi+1 +
∑

e,f∈E(G)

we
√
ce|x(i)T

e

1

mi

x
(i)
f |
√
cfwf

where x
(i)
e := b

(i)
e (xi). Since the x

(i)
e s are scalars, we can futher simplify the above sum:

∑
e,f∈E(G)

we
√
ce|x(i)T

e

1

mi

x
(i)
f |
√
cfwf =

1

mi

 ∑
e∈E(G)

we
√
ce|x(i)

e |

2

=
1

c
(i)
xi

 ∑
e∈E(G)

we
√
cex

(i)
e

2

=

(∑
e∈E(G) we

√
ceq

Si
xi

(e)
)2

∑
e∈E(G) ceq

Si
xi (e)2

= DegreeSi(xi)

where the second-to-last denominator equality follows from Proposition 3.2.7. Since xi
minimizes DegreeSi(xi), Proposition 3.3.2 with S ← Si and G← G implies that

DegreeSi(xi) ≤ O

(
log n

|Si|
||w||22

)
≤ O

(
log n

n− i
||w||22

)

Plugging this in shows that

Vi ≤ Vi+1 +O

(
log n

n− i

)
||w||22
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for all i < T . Therefore, to bound V0, it suffices to bound VT . Let ST = {a, b}. Then

VT =
∑

e,f∈E(G)

we
√
ce|b(T )T

e L+
T b

(T )
f |
√
cfwf

=
∑

e,f∈E(G)

we
√
ceq

G,Si
ui

(e)|bTabL+
T bab|q

G,Si
ui

(f)
√
cfwf

=
∑

e,f∈E(G)

we
√
ce
|bTabL+

T be|
bTabL

+
T bab

bTabL
+
T ′bab

|bTabL+
T bf |

bTabL
+
T bab

√
cfwf

≤ ||w||22

where the last line follows from Cauchy-Schwarz. Therefore,

VT ≤ ||w||22
Combining these bounds yields a harmonic sum that proves the desired result.

Now, we prove Proposition 3.3.2.

Proof. For each vertex v ∈ S and each integer i ∈ [0, log |S|], let X
(i)
v ⊆ E(G) denote the

set of edges e = {x, y} for which rSv (e) ≤ 2−i. Let T := log |S|. For each 0 ≤ i < T , let

Y
(i)
v = X

(i)
v \X(i+1)

v . Let Y
(T )
v = X

(T )
v .

For each v and each i ≥ 0, X
(0)
v = E(G), and X

(i+1)
v ⊆ X

(i)
v . Therefore, {Y (i)

v }Ti=0 is a
partition of E(G) for each v ∈ S. By Cauchy-Schwarz,

∑
u∈S

DegreeS(u) =
∑
u∈S

(
∑

e∈E(G) we
√
ceq

S
u (e))2∑

e∈E(G) ceq
S
u (e)2

≤
∑
u∈S

 ∑
e∈E(G)

rSu (e)w2
e

∑e∈E(G) ceq
S
u (e)2/rSu (e)∑

e∈E(G) ceq
S
u (e)2

By the definition of X
(i+1)
u ,

∑
u∈S

 ∑
e∈E(G)

rSu (e)w2
e

∑e∈E(G) ceq
S
u (e)2/rSu (e)∑

e∈E(G) ceq
S
u (e)2

≤
∑
u∈S

 ∑
e∈E(G)

rSu (e)w2
e

( T∑
i=0

2i+1

∑
e∈Y (i)

u
ceq

S
u (e)2∑

e∈E(G) ceq
S
u (e)2

)
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By the definition of X
(i)
u and Proposition 3.2.5,

∑
u∈S

 ∑
e∈E(G)

rSu (e)w2
e

( T∑
i=0

2i+1

∑
e∈Y (i)

u
ceq

S
u (e)2∑

e∈E(G) ceq
S
u (e)2

)
≤
∑
u∈S

 ∑
e∈E(G)

rSu (e)w2
e

( T∑
i=0

2

)

≤
∑
u∈S

 ∑
e∈E(G)

rSu (e)w2
e

 (2T + 2)

By Proposition 3.2.2,

∑
u∈S

 ∑
e∈E(G)

rSu (e)w2
e

 (2T + 2) ≤ (6T + 6)
∑

e∈E(G)

w2
e

Combining these bounds shows that∑
u∈S

DegreeS(u) ≤ (6T + 6)
∑

e∈E(G)

w2
e ≤ O(log |S|)||w||22

as desired.
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Chapter 4

Random Spanning Tree Sampling

4.1 Introduction

In this paper, we give the first almost-linear time algorithm for the following problem:

Given an undirected graph G with weights (conductances) {ce}e∈E(G) on its edges,
generate a spanning tree T of G with probability proportional to

∏
e∈E(T ) ce.

Random spanning tree generation has been studied for a long time [51], has many con-
nections to probability theory (for example [15]), and is a special case of both determinantal
point processes [8] and uniform matroid basis sampling [9, 29]. They also have found ap-
plications in constructing cut sparsifiers [35, 39] and have played crucial roles in obtaining
better approximation algorithms for both the symmetric [36] and asymmetric [12] traveling
salesman problem.

The uniform random spanning tree distribution is also one of the simplest examples of a
negatively-correlated probability distribution that is nontrivial to sample from. Much work
has gone into efficiently sampling from the uniform spanning tree distribution in the past
forty years [40]. This work falls into three categories:

• Approaches centered around fast exact computation of effective resistances [40, 27, 55,
28, 43]. The fastest algorithm among these takes Õ(nω) time for undirected, weighted
graphs [27].

• Approaches that approximate and sparsify the input graph using Schur complements
[33, 32]. [33] samples a truly uniform tree in Õ(n4/3m1/2 +n2) time, while [32] samples
a random tree in Õ(n2δ−2) time from a distribution with total variation distance δ
from the real uniform distribution for undirected, weighted graphs.

• Random-walk based approaches [2, 18, 96, 46, 73]. [73] takes Õ(m4/3) time for undi-
rected, unweighted graphs.
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Our main result is an algorithm for sampling a uniformly random spanning tree from
a weighted graph with polynomial ratio of maximum to minimum weight in almost-linear
time:

Theorem 4.1.1. Given a graph G with edge weights {ce}e and β = (maxe∈E(G) ce)/(mine∈E(G) ce),
a uniformly random spanning tree of G can be sampled in m1+o(1)βo(1) time.

We also give a result whose runtime does not depend on the edge weights, but samples
from a distribution that is approximately uniform rather than exactly uniform. However, the
runtime dependence on the error is small enough to achieve 1/poly(n) error in almost-linear
time, so it suffices for all known applications:

Theorem 4.1.2. Given a weighted graph G and ε ∈ (0, 1), a random spanning tree T of G
can be sampled from a distribution with total variation distance at most ε from the uniform
distribution in time m1+o(1)ε−o(1) time.

Our techniques are based on random walks and are inspired by [2, 18, 46, 73]. Despite
this, our runtime guarantees combine the best aspects of all of the former approaches. In
particular, our m1+o(1)ε−o(1)-time algorithm has no dependence on the edge weights, like the
algorithms from the first two categories, but has subquadratic running time on sparse graphs,
like the algorithms in the third category.

4.1.1 Other Contributions

We use random walks to generate random spanning trees. The behavior of random walks
can be understood through the lens of electrical networks. We prove several new results
about electrical flows (for example Lemmas 4.5.4, 4.7.2, and 4.10.14) and find new uses for
many prior results (for example [44, 42]). We highlight one of our new results here.

One particularly important quantity for understanding random walks is the effective
resistance between two vertices:

Definition 4.1.3 (Effective resistance). The energy of a flow f ∈ RE(G) in an undirected
graph G with weights {ce}e∈E(G) is ∑

e∈E(G)

f 2
e

ce

For two vertices s, t in a graph G, the G-effective resistance between s and t, denoted
ReffG(s, t), is the minimum energy of any s− t flow that sends one unit of flow from s to t.

We study the robustness of the s− t effective resistance to random changes in the graph
G. Specifically, we consider random graphs H ∼ G[F ] obtained by conditioning on the
intersection of a random spanning tree in G with the set F ⊆ E(G), which amounts to
sampling a tree T from G, contracting all edges in E(T ) ∩ F , and deleting all edges in
F \ E(T ).
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Surprisingly, the s− t effective resistance in H is the same as the s− t effective resistance
in G in expectation as long as G \ F is connected. However, the s − t effective resistance
in H does not concentrate around the effective resistance in G. In particular, s and t could
be identified to one another in G, in which case the s− t effective resistance is 0. We show
that changing a small number of contractions to deletions makes the effective resistance not
much smaller than its original value:

Lemma 4.1.4. Let G be a graph, F ⊆ E(G), ε ∈ (0, 1), and s, t ∈ V (G). Sample a uniformly
random spanning tree T of G. Then, with high probability, there is a set F ′ ⊆ E(T )∩F that
depends on T and satisfies both of the following guarantees:
• (Effective resistance) Let H ′ be the graph obtained from G by contracting all edges

in (E(T ) ∩ F ) \ F ′ and deleting all edges in F ′ ∪ (F \ E(T )). Then ReffH′(s, t) ≥
(1− ε)ReffG(s, t)
• (Size) |F ′| ≤ O((log n)/ε2)

Even better, we show that F ′ can be computed in almost-linear time. Our algorithm
uses a combination of matrix sketching [6, 44] and localization (Chapter 3) that may be of
independent interest.

4.2 Algorithm Overview

Our algorithm, like those of [46] and [73], is based on the following beautiful result of Aldous
[2] and Broder [18]:

Theorem 4.2.1 (Aldous-Broder). Pick an arbitrary vertex u0 and run a random walk start-
ing at u0 in a weighted graph G. Let T be the set of edges used to visit each vertex besides
u0 for the first time. Then T is a weighted uniformly random spanning tree of G.

The runtime of Aldous-Broder is the amount of time it takes to visit each vertex for the
first time, otherwise known as the cover time of G. On one hand, the cover time can be as
high as Θ(mn). On the other hand, Aldous-Broder has the convenient property that only a
small number of vertex visits need to be stored. In particular, only n − 1 visits to vertices
add an edge to the sampled tree (the first visits to each vertex besides the starting vertex).
This observation motivates the idea of shortcutting the random walk.

4.2.1 The shortcutting meta-algorithm

To motivate our algorithm, we classify all existing algorithms based on Aldous-Broder [18,
2, 46, 73] at a very high level. We start by describing Aldous-Broder in a way that is more
readily generalizable:

Aldous-Broder
• For each v ∈ V (G), let S

(0)
v = {v}.
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• Pick an arbitrary vertex u0 and set u← u0.
• Until all vertices in G have been visited

– Sample the first edge that the random walk starting at u uses to exit S
(0)
u

– Replace u with the non-S
(0)
u endpoint of this edge.

• Return all edges used to visit each vertex besides u0 for the first time.

We now generalize the above algorithm to allow it to use some number σ0 of shortcutters
{v} ⊆ S

(i)
v ⊆ V (G) for each vertex v ∈ V (G). If the {S(i)

v }σ0i=1s are chosen carefully, then

instead of running the random walk until it exits S
(i)
v , one can sample the exiting edge much

faster using Laplacian solvers.
Ideally, we could shortcut the random walk directly to the next unvisited vertex in order

to minimize the number of wasted visits. Unfortunately, we do not know how to do such
shortcutting efficiently. Instead, we use multiple shortcutters per vertex. More shortcutters
per vertex means a better approximation to the set of previously visited vertices, which leads
to fewer unnecessary random walk steps and a better runtime.

Simple shortcutting meta-algorithm

• For each v ∈ V (G), let S
(0)
v = {v} and pick shortcutters {S(i)

v }σ0i=1

• Pick an arbitrary vertex u0 and set u← u0.
• Until all vertices in G have been visited

–
Let i∗ ∈ {0, 1, . . . , σ0} be the maximum value of i for which all vertices in

S
(i)
u have been visited

– Sample the first edge that the random walk starting at u uses to exit S
(i∗)
u

– Replace u with the non-S
(i∗)
u endpoint of this edge.

• Return all edges used to visit each vertex besides u0 for the first time.

To implement the above meta-algorithm, one must make two important choices, each of
which is bolded above. Both of these choices only affect the runtime of the meta-algorithm;
not its correctness:

• A set of shortcutters for each vertex v ∈ V (G)

• A method for sampling the first exit edge from S
(i)
u , which we call a shortcutting method

The meta-algorithm could also choose an arbitrary starting location u0, but this choice
is not important to any shortcutting-based algorithm.

We now argue that the meta-algorithm correctly samples a uniformly random spanning
tree, no matter the choice of the S

(i)
v s or shortcutting method. First of all, i = 0 is always

a valid choice for i∗, so i∗ exists and the algorithm is well-defined. Since all vertices in
S

(i∗)
v have been previously visited, using the shortcutter S

(i∗)
v does not skip any first visits.
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Therefore, by Theorem 4.2.1, the edges returned form a uniformly random spanning tree.
Next, we summarize all algorithms based on this meta-algorithm [2, 18, 46, 73] with σ0

— the number of shortcutters per vertex — and the choice of shortcutting method. We also
list bounds on the runtimes of these algorithms on unweighted graphs to offer context.

While we have not yet discussed what “Offline” and “Online” shortcutting are, we high-
light that our shortcutting method is different from that of [46] and [73]. This is one of the
key reasons why we are able to obtain a faster algorithm and are able to effectively use more
shortcutters per vertex.

4.2.2 Shortcutting methods

The starting point for our improvement is an online shortcutting method. This method is
based on the following observation:

Key Idea 4.2.2 (Online shortcutting). For a vertex u and a shortcutter Su associated with u,
the probability that a random walk exits Su through an edge e can be ε-additively approximated
for all e ∈ ∂Su simultaneously using one ε-approximate Laplacian system solve on a graph
with |E(Su) ∪ ∂Su| edges.

When combined with a trick due to Propp [81], one can exactly sample an escape edge in
expected Õ(|E(Su) ∪ ∂Su|) time with no preprocessing.

We call this method online due to its lack of preprocessing and the shortcutting technique
used in [46] and [73] offline due to its fast query time with high preprocessing time. We
summarize the runtime properties of these shortcutting methods for a shortcutter Su here:

The upside to the online method is that its runtime does not depend quadratically on the
size of Su’s boundary. This is a critical barrier to improving the technique of [46] and [73]
because it is impossible to obtain balanced cuts with arbitrarily small size that separate a
graph into low-radius parts in most metrics. While the high query time for the online method
may seem prohibitive initially, it is fine as long as online shortcutting does substantially less
work than the random walk would have done to reach the boundary of Su. In the following
path example, it takes the random walk Θ(k2) time for the random walk to escape Su starting
at u, but online shortcutting only takes Õ(k) time to find the escape edge:

4.2.3 Properties of shortcutters

Now, we describe the machinery that allows us to bound the total amount of work. We start
with a bound that captures the idea that most random walk steps happen far away from an
unvisited vertex. This bound is a weighted generalization of Lemma A.4 given in [73]. We
prove it in Appendix B.3.1:

Lemma 4.2.3 (Key result for bounding the number of shortcutter uses). Consider an arbi-
trary vertex u0 in a graph I, an edge {u, v} = f ∈ E(I), and an R ≥ 0. Let B(u,R) ⊆ V (I)
denote the set of vertices in I with I-effective resistance distance at most R from u. The
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expected number of times that the random walk starting at u0 traverses f from u→ v before
all vertices in B(u,R) have been visited is at most Õ(cfR), where cf is the conductance of
the edge f .

The effective resistance metric1 appears in the above lemma due to the relationship
between random walks and electrical networks. Unlike recent work on sampling random
spanning trees ([46, 73]), we apply this lemma in the original graph and in other graphs ob-
tained by “eliminating” vertices from the original graph. Specifically, we apply Lemma 4.2.3
to Schur complements of the input graph G. In all sections before Section 4.9 — including
this one — one does not need to understand how the Schur complement is constructed or
its linear algebraic properties. We use the following combinatorial, folklore fact about Schur
complements to employ Schur complements as an analysis tool:

Theorem 4.2.4. Consider a graph I and some set of vertices S ⊆ V (I). Let J = Schur(I, S).
Pick a vertex v ∈ S and generate two sequences of vertices as follows:

• Do a random walk in J starting at v and write down the sequence of visited vertices.

• Do a random walk in I starting at v and write down the sequence of visited vertices
that are also in S.

These two distributions over sequences are identical.

For a shortcutter Su, consider the graph H = Schur(G, (V (G) \ Su) ∪ {u}). Each use
of the shortcutter Su can be charged to crossing of at least one edge incident with u in the
random walk on H by Theorem 4.2.4. Therefore, to bound the number of times a shortcutter
Su is used over the course of the algorithm, it suffices to bound the total conductance of edges
between u and V (H) \ {u} in H. This motivates one of the key properties of shortcutters,
which we call conductivity in later sections:

Key Idea 4.2.5 (Shortcutter Schur complement conductance bound). Let SC denote a

shortcutter for which S
(i)
u = SC for all u ∈ C.Then “on average,” the total conductance of

the edges between C and V (G) \ SC in the graph Schur(G,C ∪ (V (G) \ SC)), which we call

the Schur complement conductance of SC, is at most mo(1)

αi/(σ0+1)rmin
. α is the ratio between the

maximum and minimum effective resistance distance between any two vertices in G and rmin
is the minimum effective resistance distance between any two vertices in G.

By “on average,” we mean that the shortcutters SC are organized into mo(1) sets and
within each set C, the total Schur complement conductance of the shortcutters SC ∈ C is

at most mo(1)|C|
αi/(σ0+1)rmin

. For the rest of this section, we think of each shortcutter as having

1The effective resistance ReffG satisfies the triangle inequality and therefore forms a metric space on
the vertices of G
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Schur complement conductance at most mo(1)

αi/(σ0+1)rmin
in order to simplify the description. For

a more formal description of the organization of our shortcutters, see Section 4.4.
To bound the number of times SC is used, Lemma 4.2.3 requires two things:

Sufficient properties for bounding shortcutter uses
(1) A bound on the Schur complement conductance of SC
(2) A bound on the effective resistance distance to the nearest unvisited vertex outside of

SC

The Schur complement conductance is at most mo(1)

αi/(σ0+1)rmin
by conductivity. Therefore,

we just need to bound the distance to the nearest unvisited vertex. If there was an unvisited
vertex within effective resistance distance α(i+1)/(σ0+1)rminm

o(1) of C, Lemma 4.2.3 would
imply that SC is only used

(
α(i+1)/(σ0+1)rminm

o(1)
)( mo(1)

αi/(σ0+1)rmin

)
= mo(1)α1/(σ0+1)

times over the course of the shortcutted random walk. To bound the total work done, the
following fact suffices:

Key Idea 4.2.6 (Shortcutter overlap). Each vertex in G is in at most mo(1) shortcutters.

The above idea implies that the total size of all shortcutters is O(m1+o(1)). To use a
shortcutter, we apply the online shortcutting method, which takes time proportional to the
shortcutter’s size (see Table 4.2.2). If each shortcutter is used at most mo(1)α1/(σ0+1) times
as described above, the total work due to all shortcutter uses is (m1+o(1))(mo(1)α1/(σ0+1)) ≤
m1+o(1)αo(1), as desired.

Therefore, if we can obtain shortcutters with bounds on (1) and (2) that also respect Key
Idea 4.2.6, we would have an almost-linear time algorithm for sampling random spanning
trees on weighted graphs.

4.2.4 Obtaining shortcutters with Property (1) and small overlap

We have not yet discussed how to actually obtain shortcutters with the desired conductance
property. We discuss this in detail in Section 4.5, but we give a summary here for interested
readers. We construct {S(i)

v }v∈V (G) for each i independently by

• constructing a small number of families of sets that are each well-separated in the
effective resistance metric, have distance separation roughly αi/(σ0+1)rmin, and together
cover the graph. These are the cores and the construction of these cores is similar to
constructions of sparse covers of metric spaces (for example [13]).
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• making the shortcutter around each core C be the set of vertices SC ⊆ V (G) for which
a random walk starting at x ∈ SC is more likely to hit C before any other core in its
family. The sparsity of the cover ensures that the shortcutters satisfy Key Idea 4.2.6,
while their well-separatedness ensures Property (1).

4.2.5 Obtaining Property (2) using partial sampling and carving

We now show that when S
(i)
u is used, there is an unvisited vertex with effective resistance

distance at most mo(1)α(i+1)/(σ0+1)rmin from u. Review the shortcutting meta-algorithm.
When S

(i∗)
u is used, there is some vertex v ∈ S

(i∗+1)
u that the random walk has not yet

visited. v, however, may not be close to u. This motivates the following property of a
shortcutter S

(i)
u , which we call being carved with respect to (a set of vertices) S:

Key Idea 4.2.7 (Carving). A shortcutter S
(i)
u is carved with respect to S ⊆ V (G) if S

(i)
u ∩S

only consists of vertices that are within effective resistance distance mo(1)αi/(σ0+1)rmin of u.

If S
(i∗+1)
u is carved with respect to V (G), then the unvisited vertex v is within dis-

tance mo(1)α(i+1)/(σ0+1)rmin of u. As a result, there is an unvisited vertex within distance
mo(1)α(i+1)/(σ0+1)rmin of u, as desired.

It is difficult to directly build shortcutters to make them carved with respect to some
set S. Instead, we explore how we could remove vertices from shortcutters so that all
shortcutters for all vertices are carved with respect to V (G). To carve V (G) out of all

shortcutters S
(i)
u , one could just remove all vertices in S

(i)
u that are farther than resistance

distance mo(1)αi/(σ0+1)rmin away from u. Unfortunately, this could remove almost all of the
shortcutter in general.

Instead, we compute a partial sample of a random spanning tree in order to make it so that
each shortcutter does not have to be carved with respect to as many vertices. Specifically,
we modify the simple shortcutting meta-algorithm as follows:

Full shortcutting meta-algorithm(one round of partial sampling)

• Choose a set S ⊆ V (G) for partial sampling

• For each v ∈ V (G), let S
(0)
v = {v} and pick shortcutters {S(i)

v }σ0i=1

• Pick an arbitrary vertex u0 and set u← u0.
• Until all vertices in S have been visited

– Let i∗ ∈ {0, 1, . . . , σ0} be the maximum value of i for which all vertices in S ∩ S(i)
u

have been visited
– Sample the first edge that the random walk starting at u uses to exit S

(i∗)
u

– Replace u with the non-S
(i∗)
u endpoint of this edge.

• Let T ′ be all edges used to visit each vertex besides u0 in S for the first

time that are in the induced subgraph F := E(G[S])



CHAPTER 4. RANDOM SPANNING TREE SAMPLING 39

• Condition on the partial sample, which amounts to contracting all edges
in E(T ′) ∩ F and deleting all edges of F \ E(T ′) in G

[73] also exploited partial sampling in this way. This algorithm correctly samples the
intersection of a random spanning tree of G with E(G[S]) because it does not skip any of
the first visits to vertices in S and only vertices in S need to be visited in order to determine
the edges in G[S] that are in the sample. While this algorithm no longer samples the entirety
of a tree, we only need shortcutters to be carved with respect to S rather than all of V (G)
in order to show that the total work is m1+o(1)αo(1).

Our algorithm and [73] exploit the full meta-algorithm in multiple rounds. During each
round, we pick a set S to condition on, run the meta-algorithm, and repeat until G is a
single vertex. At this point, we have sampled a complete spanning tree of G.

We want to choose S to be small enough so that every shortcutter can be carved with
respect to S without increasing the Schur complement conductance of those shortcutters too
much. As long as all shortcutters are carved with respect to S, the meta-algorithm takes
m1+o(1)αo(1) time. However, we also want S to be large enough to make substantial progress.

When σ0 = 1, let S be the set of vertices u assigned to the largest shortcutters. By Key
Idea 4.2.6, there cannot be too many large shortcutters, which means that S is the union of
a small number of clusters with small effective resistance diameter (

√
αrmin). Deleting each

cluster from each shortcutter SC with a far-away core C makes SC carved with respect to S.
Furthermore, because the cluster was well-separated from C, its deletion did not increase the
Schur complement conductance of SC much. For more details on this analysis, see Section
4.7.1.

4.2.6 Bounding the number of rounds of partial sampling when
σ0 = 1

In the previous section for the σ0 = 1 case, we saw that conditioning on the induced subgraph
of the vertices assigned to the largest shortcutters was a good idea for carving. We now show
that computing a partial sample for the induced subgraph of these vertices allows us to make
substantial progress. Ideally, one could show that conditioning on the induced subgraph of
vertices assigned to the largest shortcutters decreases the size of the graph by a constant
fraction. Unfortunately, we do not know how to establish this in general.

To get around this, we do not rebuild shortcutters from scratch after each partial sampling

round. Instead, we show that it is possible to make shortcutters S
(i)′
u that are contained

within the shortcutter S
(i)
u from the previous round. It is quite tricky to do this directly,

as conditioning on a partial sample can change the metric structure of the graph G. In
particular, the conductance of a shortcutter could dramatically increase after conditioning.

To cope with this, we show a concentration inequality that promises the existence of a
small set of edges with high probability that, when deleted, restore the conductance of all
shortcutters back to their value before conditioning. This result follows from a nontrivial
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generalization (Lemma 4.8.2) of Lemma 4.1.4 that we reduce to in Section 4.8, prove in
Section 4.10, and find a fast algorithm for in Section 4.11.

Given that S
(i)′
u is contained in S

(i)
u for all u ∈ V (G) and all i ∈ [σ0], conditioning on

the vertices with the near-largest shortcutters decreases the maximum size of a remaining
shortcutter by a large factor. Therefore, after O(log n) rounds of conditioning on the induced
subgraph of the vertices assigned to the largest shortcutters, no shortcutters are left. At this
point, the algorithm is done. Each round takes m1+o(1)

√
α time in the σ0 = 1 case for a total

of Õ(m1+o(1)
√
α) runtime.

4.2.7 Carving and progress when σ0 > 1

The bottleneck in the algorithm for the σ0 = 1 case is the sampling step. As discussed in
Section 4.2.1, using more shortcutters allows us to approximate the set of previously visited
vertices better, leading to a better runtime. In particular, the runtime-bounding argument
presented earlier, given a carving and conductance bound, shows that using σ0 shortcutters
yields an m1+o(1)α1/(σ0+1)-runtime algorithm for sampling a spanning tree.

Unfortunately, carving shortcutters is more complicated when σ0 > 1. We need to pick
a relatively large set of vertices that can be carved out of all shortcutters for all vertices
simultaneously. To do this, one could start by trying to generalize the strategy in the σ0 = 1
case through repetition. Specifically, one could try the following strategy for picking a set S
for use in one round of the meta-algorithm with partial sampling:

First attempt at conditioning when σ0 > 1
• Sσ0+1 ← V (G)
• For i = σ0, σ0 − 1, . . . , 1

– Si ← the vertices u ∈ Si+1 with near-maximum size S
(i)
u shortcutters; that is

within a factor of m−1/σ1 of the maximum.
• Let S ← S1

This strategy has some benefits. If S1 could be carved out of all shortcutters, the maxi-
mum size of S

(1)
v shortcutters for vertices v ∈ S2 would decrease by a factor of m−1/σ1 .

Before moving on, we elaborate on how conditioning on the induced subgraph of vertices
assigned to a shortcutter renders it unnecessary in the future. Start by refining all cores
of all S

(i)
v shortcutters to obtain σ0 partitions {Pi}σ0i=1 of V (G), with one for each i ∈ [σ0].

Standard ball-growing (for example [66]) ensures that the total conductance of all boundary
edges of parts in Pi is at most m1+o(1)/(αi/(σ0+1)rmin). Conditioning on the induced subgraph
of a part P deletes or contracts all edges in the induced subgraph of P , only leaving P ’s
boundary. Since P ’s boundary is small, the random walk never needs to use P ’s shortcutter
again because the total number of steps across Pi boundary edges is at most

m1+o(1)

αi/(σ0+1)rmin
α(i+1)/(σ0+1)rmin ≤ m1+o(1)αo(1)
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where the α(i+1)/(σ0+1)rmin bound follows from carving. Therefore, conditioning on a part
replaces it with its boundary, thus rendering its shortcutter unnecessary.

Now, we go back to analyzing our first attempt at a σ0 > 1 algorithm for selecting S. If we
could always carve all shortcutters with respect to S1, conditioning σ1 times on various S1s
would make all shortcutters for P1 parts intersecting S2 irrelevant, thus making it possible
to condition on S2 directly. More generally, if carving were not an issue, every σ1 rounds of
conditioning on Si would pave the way for one round of conditioning on Si+1. Combining
this reasoning for all i implies that we have sampled the entire tree after σσ01 applications of
the meta-algorithm.

Unfortunately, our first attempt does not produce carvable sets S in general because there
could be a very large shortcutter with core just outside of some Si that happens to intersect
many of the vertices in Si. To cope with this, we incorporate a ball-growing type approach
that switches to conditioning on this very large but nearby shortcutter if one exists. Once
this procedure stops, one can carve the parts assigned to the selected shortcutters out of
all other shortcutters because the selected shortcutters are larger than all other shortcutters
that the selected parts intersect. For more details, see Section 4.7.

4.2.8 Coping with the fixing lemma in the shortcutting method

In Section 4.2.6, we established that we could obtain containment of shortcutters in past
shortcutters if we deleted a small set of “fixing edges” from the graph. However, we cannot
actually delete these edges from the graph, as we must do partial sampling in graphs resulting
directly from conditioning in order to correctly sample a uniformly random spanning tree.

Instead of deleting these fixing edges from the graph, we just remove their endpoints
from the shortcutters and use offline shortcutting [73, 46] to make it so that shortcutting to
the endpoints of these fixing edges only takes constant time rather than time proportional to
the size of the shortcutter. Since there are a small number of fixing edges, the preprocessing
time for offline shortcutting is small. Each shortcut to the endpoints of a removed edge
takes Õ(1) time and can be charged to crossing a boundary edge of some core. Constructing
the cores using standard ball-growing makes the total conductance of these boundary edges
small, so Lemma 4.2.3 can be used to show that the number of such shortcutting steps is
small.

While this completes the high-level description of our algorithm, it does not describe all
of the contributions of this paper. Along the way, we prove many new results about effective
resistance metrics (like Lemma 4.5.4) that may be of independent interest.
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4.3 Preliminaries

Graphs

For a (directed or undirected) graph G, let V (G) and E(G) denote its vertex and edge set
respectively. n and m refer to the number of vertices and edges respectively of the input
graph to our random spanning tree generation algorithm. For a set of edges F ⊆ E(G),
G \ F denotes the graph obtained by deleting the edges in F from G. For a set of vertices
S ⊆ V (G), let G/S be the graph obtained by identifying all vertices in S to a single vertex;
that is

V (G/S) := (V (G) \ S) ∪ {s}

and each endpoint of an edge e ∈ E(G) that is also in S is replaced with s. For a set of
edges F ⊆ E(G), let V (F ) denote the set of endpoints of edges in F . For an edge f ∈ E(G),
let G \ f and G/f denote the graph obtained by deleting and contracting f respectively.

For two sets of vertices S, S ′ ∈ V (G), let EG(S, S ′) denote the set of edges with one
endpoint in S and the other endpoint in S ′. Let G[S] := EG(S) := EG(S, S). When the
graph G is clear from context, we omit it from the subscript. For a graph G with two sets
X, Y ⊆ V (G), let G/(X, Y ) denote the graph obtained by identifying all vertices in X to
one vertex x and all vertices in Y to one vertex y.

For a set of vertices S ∈ V (G), let ∂GS := EG(S, V (G) \ S) denote the boundary edges
of S. For a singleton set S = {w}, ∂GS is abbreviated ∂Gw.

In this paper, graphs are sometimes weighted with conductances {ce}e∈E(G). For a set
F ⊆ E(G), let cG(F ) :=

∑
e∈F c

G
e . Let rGe = 1/cGe . Let βG := (maxe∈E(G) r

G
e )/(mine∈E(G) r

G
e ).

When the context is clear, the graph G is omitted from all superscripts in the aforementioned
definitions.

Laplacian matrices, electrical flows, and effective resistances

For an undirected graph G with two vertices s, t ∈ V (G), let bst ∈ RV (G) denote the vector
with bs = 1, bt = −1, and bv = 0 for v 6= s, t. Direct all of the edges of G arbitrarily. Suppose
that e = {a, b} and is directed from a to b. Define be := bab. Define the Laplacian matrix of
a weighted graph G as ∑

e∈E(G)

cebeb
T
e

This definition is invariant of the orientations of the edges. LG has nontrivial kernel, but
still has a Moore-Penrose pseudoinverse L+

G. The vector L+
Gbst is a vector of potentials for the

electrical flow CGBGL
+
Gbst, where BG is the |E(G)| × |V (G)| matrix with rows equal to the

vectors be for e ∈ G and CG is the |E(G)| × |E(G)| diagonal matrix of edge conductances.
The effective resistance between two vertices s, t ∈ V (G) is the energy of the electrical

flow from s to t, which equivalently is
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ReffG(s, t) := bTstL
+
Gbst

For an edge e = {a, b} ∈ E(G), let ReffG(e) := ReffG(a, b). We use the following folklore
fact about effective resistances extensively without reference:

Remark 3. The vertex set of V (G) is a metric space with respect to the metric ReffG. In
particular, ReffG satisfies the triangle inequality; i.e.

ReffG(s, t) ≤ ReffG(s, w) + ReffG(w, t)

for any three vertices s, t, w ∈ V (G).

For a set S ∈ V (G), define its effective resistance diameter to be

max
u,v∈S

ReffG(u, v)

Often, for clarity, we call this the G-effective resistance diameter of S. Let rmin :=
minu,v∈V (G) ReffG(u, v), rmax := maxu,v∈V (G) ReffG(u, v), and α = rmax

rmin
. Notice that β ≤

α ≤ m2β. Therefore, to obtain an m1+o(1)βo(1)-time algorithm, it suffices to obtain an
m1+o(1)αo(1) time algorithm.

Laplacian solvers

In this paper, we make extensive use of efficient approximate Laplacian solvers [91, 54, 48,
26, 80, 62, 58]:

Theorem 4.3.1 ([26]). There is an O(m
√

log n log(n/ε)) time algorithm, that, given a de-
mand vector d ∈ RV (G) for some graph G, computes a vector p ∈ RV (G) such that

||p− L+
Gd||∞ ≤ ε

with high probability.

Random walks

For a weighted graph G and some vertex a ∈ V (G), let Pra,G[E] denote the probability of
an event E over random walks starting at a in the graph G. When the graph is clear from
context, we denote this by Pra[E]. For a set of vertices S ∈ V (G), let tS be the random
variable denoting the hitting time to the set S. When S is a singleton {b}, we abbreviate tS
as tb.

We use the following fact about random walks extensively:
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Theorem 4.3.2 (Proposition 2.2 of [71]). Let G be a graph with conductances {ce}e. Con-
sider two vertices s, t ∈ V (G). For a vertex u, let pu = bTstL

+
Gbut. Consider an edge e = {u, v}.

Then

puce = Es[ number of times e is crossed from u→ v before tt]

Low-dimensional embedding of the effective resistance metric

Throughout this paper, we use the fact that the effective resistance metric can be embedded
into low-dimensional Euclidean space:

Theorem 4.3.3 ([90]). With high probability, one can compute an embedding D : V (G) →
Rd of the vertices of a graph G with d ≤ (log n)/ε2 for which

||D(u)−D(v)||22 ∈ [(1− ε)Reff(u, v), (1 + ε)Reff(u, v)]

in near-linear time. Furthermore, for each vertex u ∈ V (G), D(u) takes O((log n)/ε2)
time to compute.

Throughout this paper, we use ε = 1/2. In most of this paper, we use this result to
approximately compute effective resistances. In the appendix and in Section 4.7, we make
greater use of this through approximate nearest neighbors. Specifically, we apply locality-
sensitive hashing for `2

2:

Definition 4.3.4 (Locality-sensitive hashing and approximate nearest neighbors[11]). A
family H of functions with domain Rd is called (R, cR, p1, p2)-sensitive if for any p, q ∈ Rd,

• If ||p− q||22 ≤ R, then Prh∼H[h(q) = h(p)] ≥ p1.

• If ||p− q||22 ≥ cR, then Prh∼H[h(q) = h(p)] ≤ p2.

Theorem 4.3.5 ([11]). For any R > 0 and dimension d, a (R,O(c)R, 1/n1/c, 1/n5)-sensitive
family of hash functions with query time O(dn1/c) for Rd can be computed in almost-linear
time.

Locality sensitive hashing can be used to find approximate nearest neighbors in Euclidean
space. In particular, by Theorem 4.3.3, it can be used to find approximate nearest neighbors
in effective resistance metrics of graphs with c← γann := log n:

Theorem 4.3.6 (Fact 2.7 in [11]). Given a graph G and a set of vertices S ⊆ V (G), there is
a data structure D computed by an algorithm D ← PreprocANN(G,S) with query algorithm
v′ ← ANND(v). ANND takes any vertex v ∈ V (G) as input and uses the data structure D to
return a vertex v′ ∈ S with the following properties with probability at least 1− 1/n10:

• (Closeness) ReffG(v, v′) ≤ minu∈S γannReffG(v, u)
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• (Preprocessing runtime) PreprocANN takes Õ(m) time.

• (Query runtime) ANN takes Õ(1) time.

Basic facts about random spanning trees

Let T ∼ G denote the distribution over spanning trees of G with each tree selected with
probability proportional to

∏
e∈E(T ) ce. The following shows that conditioning on a partial

sample is equivalent to modifying the input graph:

Theorem 4.3.7 ([73]). Consider a graph G and a set of edges F ⊆ E(G). Fix a spanning
tree T0 of G and let F0 := E(T0) ∩ F . Obtain a graph H of G by contracting all edges in F0

and deleting all edges in F \ F0. Then

Pr
T∼G

[T = T0|E(T ) ∩ F = F0] = Pr
T ′∼H

[T ′ = T0/F0]

For any set F ⊆ E(G), let H ∼ G[F ] denote the distribution over minors H of G
obtained by sampling a tree T ∼ G, contracting all edges in F ∩E(T ), and deleting all edges
in F \ E(T ). We also use the following folklore fact extensively:

Theorem 4.3.8 ([51]). Consider a graph G and an edge e ∈ E(G). Then

Pr
T∼G

[e ∈ E(T )] = cGe ReffG(e)

Schur complements

Definition 4.3.9 (Schur complements). The Schur complement of a graph I with respect
to a subset of its vertices S ⊆ V (I), denoted Schur(I, S), is the weighted graph J with
V (J) = S with Laplacian matrix

LJ = LI [S, S]− LI [S, Sc]LI [Sc, Sc]−1LI [S
c, S]

where M [S0, S1] denotes the submatrix of a matrix M with rows and columns indexed by
S0 and S1 respectively.

In the above definition, it is not immediately clear that LJ is the Laplacian matrix of a
graph, but it turns out to be one. Furthermore, the following associativity property holds:

Remark 4. For any two disjoint sets of vertices S0, S1 ∈ V (I) for some graph I,

Schur(Schur(I, S0 ∪ S1), S0) = Schur(I, S0)

Also, Schur complements commute with edge deletions and contractions in the kept set
S:
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Remark 5 (Lemma 4.1 of [27]). Let S be a set of vertices in a graph G and f ∈ EG(S).
Then,

Schur(G \ f, S) = Schur(G,S) \ f

and

Schur(G/f, S) = Schur(G,S)/f

Schur complements also have the following combinatorial property, which is the only
property we use of Schur complements before Section 4.9:

Theorem 4.2.4. Consider a graph I and some set of vertices S ⊆ V (I). Let J = Schur(I, S).
Pick a vertex v ∈ S and generate two sequences of vertices as follows:

• Do a random walk in J starting at v and write down the sequence of visited vertices.

• Do a random walk in I starting at v and write down the sequence of visited vertices
that are also in S.

These two distributions over sequences are identical.

While this result is likely known, we include a proof for completeness. To prove this, we
use the following folklore fact:

Remark 6 (Chapter IX of [17]). Let S ⊆ V (G) be a set of vertices in a graph G and let
v ∈ S, x ∈ V (G). Let H = G/(S \ {v}) and let s be the identification of the set S \ {v} in
H. Then

Pr
x

[tv < tS\v] =
bTvsL

+
Hbxs

bTvsL
+
Hbvs

Proof of Theorem 4.2.4. Let {si}i≥0 be the list of vertices visited by a random walk in J
starting at v. Let {s′i}i≥0 be the list of vertices visited by a random walk in I starting at v,
with all vertices outside of S omitted. To prove Theorem 4.2.4, it suffices to show that for
any sequence {`i}i≥0 of vertices in S and any j ≥ 0,

Pr[sj+1 = `j+1|si = `i∀i ∈ {0, 1, . . . , j}] = Pr[s′j+1 = `j+1|s′i = `i∀i ∈ {0, 1, . . . , j}]

By the Markov property,

Pr[sj+1 = `j+1|si = `i∀i ∈ {0, 1, . . . , j}] = Pr
`j ,J

[t`j+1
< tS\{`j ,`j+1}]

and
Pr[s′j+1 = `j+1|s′i = `i∀i ∈ {0, 1, . . . , j}] = Pr

`j ,I
[t`j+1

< tS\{`j ,`j+1}]
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Let J ′ = J/(S \ {`j, `j+1}) and I ′ = I/(S \ {`j, `j+1}). In both graphs, let s be the identifi-
cation of S \ {`j, `j+1}. By Remark 6 applied with S ← S \ {`j} and v ← `j+1,

Pr
`j ,J

[t`j+1
< tS\{`j ,`j+1}] =

bT`jsL
+
J ′b`j+1s

bT`j+1s
L+
J ′b`j+1s

and

Pr
`j ,I

[t`j+1
< tS\{`j ,`j+1}] =

bT`jsL
+
I′b`j+1s

bT`j+1s
L+
I′b`j+1s

Since Schur complements preserve quadratic forms supported on the kept set,

bT`jsL
+
I′b`j+1s

bT`j+1s
L+
I′b`j+1s

=
bT`jsL

+
Schur(I′,{s,`j ,`j+1})b`j+1s

bT`j+1s
L+
Schur(I′,{s,`j ,`j+1})b`j+1s

By Remark 5,

Schur(I ′, {s, `j, `j+1}) = Schur(I/(S \ {`j, `j+1}), {s, `j, `j+1})
= Schur(I, S)/(S \ {`j, `j+1})
= J/(S \ {`j, `j+1})
= J ′

Therefore,
bT`jsL

+
I′b`j+1s

bT`j+1s
L+
I′b`j+1s

=
bT`jsL

+
J ′b`j+1s

bT`j+1s
L+
J ′b`j+1s

as desired.
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4.4 Structure of this Chapter and the Proof of

Theorem 4.1.1

Now, we formally introduce the concepts that were alluded to in Section 4.2. In the process,
we outline the structure of the paper and reduce the main result (Theorem 4.1.1) given the
four main components of our algorithm: building shortcutters, selecting vertices to condition
on, sampling, and computing a set of fixing edges.

Throughout this section, we use two key parameters: σ0 and σ1. These parameters should
be thought of as distance and shortcutter size-related parameters respectively. While there
are other constants (like the µs, which are all mo(1)), these constants are purely determined
by proofs in the main sections. Only σ0 and σ1 are traded off in order to bound the runtime
of the main algorithm ExactTree. For more details on parameter values, see Appendix B.7.

4.4.1 Our shortcutting data structure

Recall that in Section 4.2, we stated that no vertices were in more than mo(1) different
shortcutters. Here, we organize the shortcutters into a small number of families of disjoint
shortcutters, which we call clans, in order to achieve this property.

Definition 4.4.1 (Organization of shortcutters). Consider a graph H obtained as a minor
of G. A cluster is a set of vertices. In our algorithm, there are three kinds of clusters: parts,
cores and shortcutters. We define parts in Definition 4.4.3. A core is an arbitrary cluster.
A shortcutter is a cluster SC that contains a core C of vertices that are “assigned” to it. A
clan is a set of (vertex-)disjoint shortcutters. A horde is set of clans.

All hordes in our algorithm satisfy the following invariant:

Invariant 4.4.2. A horde H consists of at most `max ≤ mo(1) clans.

Definition 4.4.3 (Covering hordes and overlay partitions). A horde H is said to cover H
if each vertex in H is in the core of some shortcutter in some clan of H.

Given a collection of covering hordes {Hi}σ0i=1, the overlays Pi({Hi}σ0i=1) are formed by
refining all cores of shortcutters from all clans in ∪j≥iHj. More precisely, let χi denote the
equivalence relation formed by letting u ∼χi v if and only if for all clans C ∈ ∪j≥iHj, u and
v are either (a) both in the same core of C or (b) both not in any core of C. Let Pi({Hi}σ0i=1)
denote the equivalence classes of χi.

Since all His are covering, each Pi({Hi}σ0i=1) is a partition of V (H). A part P is some
cluster in Pi({Hi}σ0i=1) for some i ∈ [σ0]. Each part P ∈ Pi({Hi}σ0i=1) is assigned to a single
core CP of a shortcutter SP in some clan of Hi.

Let ∂Pi({Hi}σ0i=1) denote the set of boundary edges of parts in Pi({Hi}σ0i=1).

Organizing shortcutters into clans allows us to define properties that hold for shortcutters
in a clan “on average.” Now, we define various properties that cores, shortcutters, clans,
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and hordes should have. After defining these properties, we summarize their relevance to
bounding the shortcutted random walk simulation time in Table 4.4.1.

For each of these definitions, fix a distance scale R. We start by insisting that each core
consist of closeby vertices.

Definition 4.4.4 (R-clans). Call a clan an R-clan if each shortcutter’s core has H-effective
resistance diameter at most R.

R may be referred to even if a clan is not an R-clan (i.e. the clan may not have bounded
diameter cores).

Each clan contains shortcutters that are relatively similar to one another. This way, our
analysis of the shortcutting scheme can focus on the clans within a horde independently.
Specifically, a clan C is said to be bucketed if the maximum size of a shortcutter in C is at
most 4m/|C|.

Inverting this definition suggests a more convenient definition of the size of a clan.

Definition 4.4.5 (Effective size and bucketing). The effective size of a clan C, denoted sC,
is the following:

sC :=
m

maxSC∈C |E(SC) ∪ ∂SC |
We say that a clan C is bucketed if

|C| ≤ 4sC

Clans also contain shortcutters with the property that using a shortcutter bypasses many
random walk steps. Specifically, the conductance of a shortcutter is relevant for assessing
how many times it is used, as discussed in Section 4.2. For an arbitrary graph H ′, let cH

′
(SC),

the conductance of SC with respect to H ′, be

cH
′
(SC) :=

∑
e∈E(C,V (H′)\SC)

cSchur(H′,C∪(V (H′)\SC))
e

We define the conductance with respect to H ′, not H, because we need to delete edges
from H in order to maintain the condition that cH

′
(SC) is low after conditioning. H ′ will be

a graph obtained by deleting some edges deleted(C) from H:

Definition 4.4.6 (Deletion set and the deletion set condition). For a clan C ∈ Ei, maintain
a set deleted(C) of edges. This set must satisfy the deletion set condition, which states that
no deleted edge is incident with a nonempty part. Specifically, for any P ∈ Pi(E) for which
E(P ) 6= ∅,

deleted(C) ∩ (∂HP ) = ∅
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The deletion set condition ensures that precomputed random walk steps to the endpoint
of a deleted edge cross a boundary edge of some part in Pi(E). We exploit this in Section
4.6.

The following condition is used to bound the precomputation work during the shortcut-
ting algorithm:

Definition 4.4.7 (Modifiedness). We say that a clan C is τ -modified if the number of deleted
edges is not too high on average:

|deleted(C)| ≤ τm1/σ1sC

For a clan C, let HC := H \ deleted(C). For a shortcutter SC ∈ C, let cC(SC) = cHC(SC).

Definition 4.4.8 (Conductivity). A clan C is ζ-conductive if

∑
SC∈C

cC(SC) ≤ ζm1/σ1sC
R

The ζ-conductive requirement is a way of saying that shortcutters within a clan are
large on average. However, we also need a way of saying that they are not too large. If
they are too large, the set of vertices that we are conditioning on may intersect too many
shortcutters from another clan. View these vertices as being clustered into a small number
of low effective resistance diameter balls and focus on each ball C ′ one at a time. If C ′ is
close to the core of some shortcutter SC , then C ′ does not need to be removed from SC to
make SC carved with respect to C ′. Therefore, we only need to delete C ′ from SC when C ′

and C are well-separated. This motivates the notion of ties.
Consider an R-clan C and a shortcutter SC ∈ C. Let C ′ be a cluster with HC-effective

resistance diameter at most βR for some β ≥ 1. We say that C ′ is tied to SC if both of the
following hold:

• (Intersection) C ′ intersects SC .

• (Well-separatedness) minu∈C,v∈C′ ReffHC(u, v) > β0βR, where β0 = 100.

Definition 4.4.9 (Well-spacedness). An R-clan C is well-spaced if no cluster C ′ ⊆ V (H)
is tied to more than one shortcutter SC ∈ C.

The lack of ties for well-spaced clusters ensures that deleting C ′ from all shortcutters in
C does not increase the total conductance of shortcutters in C much.

All of the definitions that we have discussed leading up to this are used to show that
conditioning once takes at most O(m1+o(1)αo(1)) time. Recall from Section 4.2 that sampling
the intersection of a random tree with E(S) for some set of vertices S is supposed to allow
us to get rid of some shortcutters because the boundary of S is small.
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Definition 4.4.10 (Boundedness). Say that a clan associated with distance scale R is κ-
bounded if ∑

SC∈C

cH(∂C) ≤ κm

R

We now extend our definitions of clans to hordes. A horde H is an R-horde if each clan
in H is an R-clan. A horde H is bucketed if each clan in it is bucketed. A horde is τ -modified
if each clan in it is τ -modified. A horde H is ζ-conductive if each clan in it is ζ-conductive.
A horde is well-spaced if each of its clans are well-spaced. A horde is κ-bounded if each of its
clans is κ-bounded. A horde satisfies the deletion set condition if each of its clans satisfies
it.

We now give definitions that are specific to hordes and to collections of hordes. Each
vertex needs to have a shortcutter at every distance scale. Since a horde is associated with
one distance scale R, each vertex should have a shortcutter in each horde. Now, we define a
special collection of hordes called an empire with which sampling can be performed:

Definition 4.4.11 (Empires). An empire E is a set of covering hordes {Ei}σ0i=1, with Ei
being an µradα

i/(σ0+1)rmin-horde. Define bucketedness, τ -modifiedness, ζ-conductivity, well-
spacing, κ-boundedness, and the deletion set condition for empires as well if these conditions
hold for all constituent hordes.

Now, we show how these properties fit together to bound the runtime of our implemen-
tation of the full shortcutting meta-algorithm described in Section 4.2. When the random
walk is at a vertex u, the meta-algorithm first finds the maximum i ∈ [σ0] for which the
intersection of a shortcutter SPi with the set S is covered, where Pi ∈ Pi(E) is the unique
part containing u. If E(Pi) = ∅, it does a standard random walk step. Otherwise, it samples
whether the random walk hits an endpoint of an edge in deleted(C) before exiting SPi , where
C is the clan containining SPi . If so, it uses offline shortcutting to shortcut to deleted(C).
Otherwise, it uses online shortcutting to shortcut to the boundary of SPi .

The above discussion cites three kinds of random walk-related work and one kind of
precomputation work. To bound the random walk-related work, we exploit Lemma 4.2.3.
Lemma 4.2.3 requires two things: a bound on conductance and a bound on the distance
to an unvisited vertex. Work done using a part Pi is charged to the clan containing SPi as
follows:

This table does not discuss the well-spacedness or bucketing conditions. Well-spacedness
is used to bound the conductivity increase due to carving in the proof of Lemma 4.4.15,
while the bucketing condition is used to bound the number of edges added to deleted(C) in
the proof of Lemma 4.4.18.



CHAPTER 4. RANDOM SPANNING TREE SAMPLING 52

4.4.2 Creating and maintaining shortcutters

Our algorithm maintains an empire E . Before each conditioning phase, it recomputes short-
cutters in order to endow them with properties that are lost after one round of conditioning:

Lemma 4.4.12. There is an almost-linear time algorithm RebuildEmpire({Hi}σ0i=1) that,
when given a set of covering hordes {Hi}σ0i=1 withHi associated with distance scale αi/(σ0+1)rmin
in a graph H, returns an empire E = {H′i}

σ0
i=1 with the following properties:

• (Bucketing) E is bucketed.

• (Conductivity) If each horde Hi is ζ-conductive, then E is (8 log n)ζ + (16 log n)µapp-
conductive.

• (Well-spacedness) E is well-spaced.

• (Boundedness) If each horde Hi is κ-bounded, then E is κ+κ0 bounded, for κ0 ≤ mo(1).

• (Modifiedness and deletion set condition) If each horde Hi is τ -modified, then E is τ -
modified as well. Furthermore, if the deletion set condition is satisfied in each clan of
each Hi, it continues to be satisfied in E.

• (Clan growth) The number of clans in E is at most µapp log n times as high as the
number of clans in all of the His.

• (Containment) For any i ∈ [σ0], consider any part P ∈ Pi(E). There is a unique part
Q ∈ Pi({Hj}j) for which P ⊆ Q. Furthermore, CP ⊆ CQ and SP ⊆ SQ.

Our spanning tree generation algorithm starts by calling RebuildEmpire on the set of
hordes consisting of one clan, each of which just contains the one shortcutter V (G). These
hordes are clearly covering and have ζ = 0, κ = 0, and τ = 0. RebuildEmpire is useful to call
on the remnants of empires after conditioning later on in order to achieve the containment
property. Containment is essential to our notion of progress, as discussed in Section 4.2.

4.4.3 Selecting parts to condition on

Given an empire E with respect to a graph H, we can choose a set of vertices S to condition
on. The set S is small enough that, when carved out of shortcutters in E , does not increase
their conductivity too much. The upside of carving is that each vertex in S is close to the
core of any shortcutter that it is in. We now define this precisely:

Definition 4.4.13 (Active parts and carving). A part P is called active if it has nonempty
interior, i.e. E(P ) 6= ∅. A shortcutter is called active if any part assigned to it is active.

A shortcutter SC in an R-clan has been carved with respect to S ⊆ V (G) if each vertex
v ∈ S ∩ SC is within H-effective resistance distance µcarveR of all vertices in C. An R-clan
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C in an empire E has been carved with respect to S if all of its active shortcutters have been
carved with respect to S. An R-horde H in an empire E has been carved with respect to S if
each clan in it has been carved with respect to S. An empire E has been carved with respect
to S if each of its hordes has been carved with respect to S.

The routine ConditioningVerts both (a) selects parts K for conditioning on and (b)
removes vertices from the shortcutters of the input empire E in order to ensure that it is
carved with respect to ∪P∈KP . The ConditioningVerts subroutine maintains internal state
and is the only method that exploits the “Containment” guarantee of Lemma 4.4.12. The
“Progress” input condition in the following definition captures the fact that partial sampling
eliminates edges in the induced subgraph of the previously chosen parts:

Definition 4.4.14 (ConditioningVerts input conditions). Given an empire E in a graph H,
the algorithm ConditioningVerts(E) returns a set of parts K to condition on and removes
vertices from the shortcutters in the empire E to obtain E ′. Let Eprev be the argument sup-
plied to the previous call to ConditioningVerts, let Kprev := ConditioningVerts(Eprev),
and let E ′prev be the empire Eprev after being modified by ConditioningVerts. Let Hprev

be the graph in which Eprev lies. The following conditions are the input conditions for
ConditioningVerts:

• (Parameters) E is a bucketed, ζ-conductive, well-spaced, τ -modified, and κ-bounded
empire that satisfies the deletion set condition.

• (Containment) For any i ∈ [σ0], consider any part P ∈ Pi(E). There is a unique part
Q ∈ Pi(Eprev) for which P ⊆ Q. Furthermore, CP ⊆ CQ and SP ⊆ SQ.

• (Progress) For each P ∈ Kprev, EH(P ) = ∅.

Lemma 4.4.15. Given an empire E = {Ei}σ0i=1 in a graph H that satisfies the input conditions
given in Definition 4.4.14, ConditioningVerts(E) returns a set of parts K to condition on
and removes vertices from the shortcutters in the empire E to obtain E ′. Let S = ∪P∈KP ⊆
V (H). Then the following guarantees are satisfied:

• (Conductivity) E ′ is a bucketed, τ -modified, ζ + 10(logm)µapp(`max + τ)-conductive,
well-spaced, κ-bounded empire that satisfies the deletion set condition.

• (Carving) E ′ is carved with respect to S.

4.4.4 Making enough progress during each round of conditioning

In the previous section, we showed that S is small enough to ensure that carving S out of
all shortcutters in E does not increase the conductivity of E too much. We now show that S
is large enough to make a lot of progress. Specifically, we show the following:
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Lemma 4.4.16. Consider a sequence of calls Kj ← ConditioningVerts(E j) that modifies
E j to obtain (E j)′. Suppose that Hj is the graph in which E j is defined. Suppose that for
each j > 0, E ← E j, Eprev ← E j−1, Kprev ← Kj−1 satisfies the input conditions in Definition
4.4.14. Let

jfinal = (2σ1)2σ0

Then E(Hjfinal) = ∅.

This means that only (2σ1)2σ0 ≤ o(log n) rounds of conditioning are necessary to sample
a random spanning tree.

4.4.5 Conditioning on the intersection of a random tree with the
selected vertices

Now that each shortcutter SC only intersects vertices to condition on that are close to C,
we can make the idea for using online shortcutting in Section 4.2 a reality:

Lemma 4.4.17. Let K ⊆ ∪σ0i=1Pi(E) be a set of parts. Let F = ∪P∈KE(P ) and S =
∪P∈KP . Suppose that the empire E is ζ-conductive, κ-bounded, τ -modified, satisfies the
deletion set condition, and has been carved with respect to S. Then, there is an algorithm
PartialSample(E ,K) that returns the intersection of a random spanning tree T in H with
F in Õ(((ζ + κ)µcarve + τ)`maxm

1+1/σ1α1/(σ0+1)) time.

4.4.6 Fixing shortcutters

After computing T ∩F ← PartialSample, contracting all edges in F ∩T in H, and deleting
all edges in F \T from H, E is no longer an empire with respect to H. In particular, the well-
spacedness, ζ-conductivity, and core diameter conditions break down. Well-spacedness and
diameter can be fixed by applying RebuildEmpire. However, the ζ-conductivity constraint
accumulates over an old value. We could recompute the empire from scratch, but that forgoes
the containment property that is so important to establishing progress. We deal with this
issue by adding edges to deleted(C) for each clan C in E :

Lemma 4.4.18. Let H be a graph, E be an empire in H and K be a set of parts. Let
S = ∪P∈KP and let F = ∪P∈KE(P ). Let H ′ ∼ H[F ]. Suppose that the following input
conditions hold E:

• (Bucketing) The empire E is bucketed.

• (Carving) E is carved with respect to S.

With high probability over H ′, FixShortcutters(E , H ′,K) adds edges to the deletion set
of each clan of E to obtain a set of covering hordes {H′i} with the following properties:
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• (Boundedness) For each i, if Ei is κ-bounded, then H′i is `κ-bounded, where ` =∑σ0
i=1 |Ei|.

• (Modifiedness and deletion set condition) For each i, if Ei is τ -modified and satisfies
the deletion set condition, then H′i is µmod(τ+ζ)-modified and also satisfies the deletion
set condition.

• (Conductivity) For each i, if Ei is ζ-conductive with respect to H, then H′i is at most
7ζ-conductive with respect to H ′.

Futhermore, it does so in m1+o(1) time.

4.4.7 An m1+o(1)αo(1) time algorithm for exact random spanning
tree generation

We now tie the results from the previous sections together to prove Theorem 4.1.1. We
prove this result using the algorithm ExactTree, which simply chains the algorithms from
the previous sections in order:

Algorithm 2: ExactTree(G)

1 H ← G
// the set of hordes which contain one clan consisting of one

shortcutter (the entire graph)

2 E ← {{{V (G)}}}σ0i=1

3 T ← ∅
4 while E(H) 6= ∅ do
5 E ← RebuildEmpire(E)
6 K ← ConditioningVerts(E)
7 T ← T ∪ PartialSample(E ,K)
8 Contract all edges in H added to T and delete all other edges internal to parts of K
9 FixShortcutters(E , H,K)

10 end
11 return T

Most of the effort in proving the above result boils down to checking that all of the input
conditions are satisfied for each of the subroutines that ExactTree calls.

Proof of Theorem 4.1.1. Invariant 4.4.2. Each of RebuildEmpire,
ConditioningVerts, PartialSample, and FixShortcutters increases the number of clans
by at most a factor of (logm)µapp. By Lemma 4.4.16, only (2σ1)2σ0 iterations take place.
Since there is only one clan initially, the number of clans at the end is at most

((logm)µapp)(2σ1)2σ0 = `max ≤ mo(1)

as desired.
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κ ≤ κmax. Each of the subroutines called in the while loop increases κ by at most a factor

of `max and additively by at most κ0 ≤ mo(1). Therefore,

κ ≤ (`max)(2σ1)2σ0

≤ ((logm)µapp)(2σ1)4σ0

= κmax

≤ mo(1)

as desired.
τ ≤ τmax and ζ ≤ ζmax. Each subroutine call increases max(τ, ζ) by a factor of at most

10(logm)µapp and additively by at most 10(logm)µapp`maxµmod. Therefore,

max(τ, ζ) ≤ (10(logm)µapp`maxµmod)(2σ1)2σ0

≤ ((logm)µapp)(2σ1)8σ0

= max(τmax, ζmax)

≤ mo(1)

as desired.
Well-definedness. Start with RebuildEmpire. At the beginning of the algorithm,

ζ = 0, κ = 0, and all of the deletion sets are empty, so the deletion set condition is satisfied.
E is not an empire when it is supplied to RebuildEmpire, but is a set of covering hordes
because either (a) this is the first iteration and the cores are all V (G) or (b) Lemma 4.4.18
states that the hordes Hi are covering. Therefore, RebuildEmpire’s input conditions given
in Lemma 4.4.12 are always respected.

Next, consider ConditioningVerts. The “Parameters” condition is the “Parameters”
guarantee from Lemma 4.4.12. The “Containment” condition follows from the “Contain-
ment” guarantee of Lemma 4.4.12, along with the fact that FixShortcutters only adds to
the deletion sets of the clans and PartialSample does not change E . Line 8 of ExactTree
contracts or deletes each edge internal to each part in K. Therefore, the “Progress” condition
is satisfied afterwards.

The desired parameter bounds for PartialSample are given in the “Boundedness and
covering” guarantee of Lemma 4.4.15. The carving condition of Lemma 4.4.17 is the “Carv-
ing” guarantee of Lemma 4.4.15.

Finally, deal with FixShortcutters. The input conditions for Lemma 4.4.18 are given
directly as the “Carving” guarantee of Lemma 4.4.15, the “Bucketing” guarantee of Lemma
4.4.12, and the fact that removing vertices from shortcutters preserves the bucketing guar-
antee.
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Correctness. By Theorem 4.3.7, sampling a random tree in some H is equivalent
to partial sampling with F = ∪P∈KE(P ) and sampling a tree in the graph obtained by
contracting the chosen edges in F and deleting all others. By Lemma 4.4.17, PartialSample
returns a valid sample from a uniformly random spanning tree of H intersected with F .
Therefore, once E(H) = ∅, T has been completely sampled and is valid.

Runtime. By Lemma 4.4.16, the while loop runs at most (2σ1)2σ0 ≤ mo(1) times.
RebuildEmpire, ConditioningVerts, PartialSample, and FixShortcutters each take
m1+o(1)αo(1)+1/(σ0+1) time by Lemmas 4.4.12, 4.4.15, 4.4.17, and 4.4.18 respectively and our
bounds on `max, τmax, κmax, and ζmax. Contracting and deleting edges only takes O(m)
time. Therefore, the entire algorithm only takes O(m1+o(1)αo(1)+1/(σ0+1)) time. Since σ0 is
superconstant, this runtime is m1+o(1)αo(1), as desired.

4.4.8 An m1+o(1)ε−o(1)-time algorithm for generating a random
spanning tree from a distribution with total variation
distance ε from uniform

In Section B.9, we give a simple reduction that proves Theorem 4.1.2 given just Theorem
4.1.1. The reduction samples the intersection of a random tree with a part of the graph with
polynomial aspect ratio and smallest resistances. Conditioning on this part of the graph
removes the edges with smallest resistance from the graph. A ball-growing-type technique
and Theorem 4.1.1 ensures that each round of conditioning eliminates a number of edges
from the graph proportional to the amount of work done.
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4.5 Computing Shortcutters

In this section, we prove Lemma 4.4.12 by implementing RebuildEmpire. RebuildEmpire

starts by building cores in CoveringCommunity. It then builds shortcutters around those
cores in Voronoi.

4.5.1 Building cores

In order to ensure that Voronoi can actually build good shortcutters around the cores,
CoveringCommunity outputs cores that are organized into well-separated families. We start
by giving some relevant definitions.

Definition 4.5.1 (CoveringCommunity-related definitions: families and communities). Con-
sider a graph I. A family is a set of clusters F . A community is a set of families. An
R-family is a family of clusters with I-effective resistance diameter at most R. An R-
community is a community consisting of RF -families for possibly different values R

µrad
≤

RF ≤ R. An (R, γ)-well-separated family is an R-family F with the additional property that
the I-effective resistance distance between any two vertices in different clusters in F is at least
γR. A γ-well-separated community is a community that consists of (RF , γ)-well-separated
families F .

Notice that in this definition, γ is constant across all families but RF is not. Well-
separatedness is important for obtaining ζ-conductive shortcutters. However, Lemma 4.4.12
also demands that cores have small total boundary. The boundary size is judged based
on a cluster C coming from remains of a former empire. This motivates the definition of
X-constraint.

Definition 4.5.2 (CoveringCommunity-related definitions: X-constraint and boundedness).
Say that a community is X-constrained if all vertices in clusters within families of the
community are in X. Say that an X-constrained R-community D is κ-bounded if for any
family F ∈ D, ∑

C∈F

cI(∂C) ≤ κ|EI(X) ∪ ∂IX|
R

We construct cores using the following result, which is proven in Section B.2.1:

Lemma 4.5.3. The algorithm CoveringCommunityD(X, I,R), when given a cluster X, a
graph I, a radius R, and a Johnson-Lindenstrauss embedding D of the vertices of V (I),
returns an µradR-community D with the following properties:

• (Input constraint) D is X-constrained.

• (Covering) Each vertex in X is in some cluster of some family in D.
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• (Boundedness) Each family F ∈ D satisfies

∑
C∈F

cI(∂IC) ≤ κ0|EI(X) ∪ ∂IX|
R

+ cI(∂IX)

• (Well-separatedness) D is γds-well-separated.

• (Number of families) D has at most µapp families.

Furthermore, CoveringCommunity takes almost-linear time in |E(X) ∪ ∂X|.

D is only given as input to CoveringCommunity for runtime purposes.
We now briefly discuss how each of these properties relates to properties of cores in

Lemma 4.4.12. We apply CoveringCommunity(X, I,R) to each core C in the R-clain C with
I ← HC. The input, covering, and number of families constraints of Lemma 4.5.3 relate to the
parts of the containment constraint of Lemma 4.4.12 as it relates to C. The boundedness
constraint relates to the boundedness constraint of Lemma 4.5.3. The well-separatedness
constraint is used later on to obtain a ζ-conductive clan of shortcutters.

CoveringCommunity is very similar to the sparse cover constructions (for example [13]).
When growing each cluster, though, (1) consider all nearby vertices for adjacent growth, not
just adjacent balls and (2) ball-grow the resulting cluster afterwards to ensure that it has
small boundary size. We give this construction in the appendix.

4.5.2 Building the shortcutters

Now we exploit the well-separatedness of the cores to build good shortcutters. We start by
showing a result that allows us to translate well-separatedness into a shortcutter conductance
upper bound:

Lemma 4.5.4. Consider a γds = 2(logn)2/3 well-separated R-family of clusters F in a graph
G. Let H := Schur(G,∪C∈FC). Then∑

e∈E(C,C′),C 6=C′∈F

ReffH(e)

rHe
≤ µapp|F|

We prove this lemma in the appendix. We now give a brief description of the proof. If
each cluster is a single vertex, the result is equivalent to Foster’s Theorem (Remark 12).
One can prove Remark 12 combinatorially by running the Aldous-Broder algorithm on H
and writing down the sequence of relevant cluster visits; i.e. visits that end up adding a new
edge to the tree. This sequence has the property that no two clusters can alternate more
than once; otherwise at least one would be covered. Such sequences have been investigated
before; they are Davenport-Schinzel sequences. In particular, Davenport-Schinzel sequences
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are known to have linear length in the number of letters. This means that only a linear
number of edges can be added.

This reasoning generalizes to the case where clusters are not single vertices. If the random
walk alternates between two clusters more than logγds n times, it covers one of them with
probability at least 1− 1/n. Therefore, the sequence of visits is logγds n-Davenport-Schinzel.
Picking γds to be a high enough subpolynomial value gives a linear bound on the length of
the sequence. There are some minor complications caused by the fact that a cluster can
appear multiple times in a row in the sequence, so it is not truly Davenport-Schinzel. We
describe how to cope with this issue in the proof of Lemma 4.5.4.

If we could compute the Schur complement H, we could directly run Aldous-Broder on
this Schur complement and sample the intersection of a random tree with all of intraclus-
ter edges in F . This is expensive, though. Furthermore, the resulting graph is no longer
sparse. Instead, we build shortcutters around each cluster in order to make it so that using
a shortcutter effectively simulates one step of the Schur complement random walk in F .
Intuitively, we design a shortcutter around each core that has the property that using it
takes the random walk from a cluster C to a vertex from which it is more likely to hit some
cluster besides C before returning to C. This intuition motivates the following definition:

Definition 4.5.5 (Potential level sets). Consider a family of clusters F in a graph G and a
cluster C ∈ F . Let SF(p, C) denote the cluster of vertices v ∈ V (G) for which

Pr
v

[tC < tF\{C}] ≥ 1− p

Due to the interpretation of probabilities as electrical potentials, this set can be computed
using one Laplacian solve on G with each cluster in F identified to a vertex:

Remark 7. For any family F in a graph G, a cluster C ∈ F , and a number p ∈ (0, 1).
Then a set S ′ ⊆ V (G) with SF(p−1/(mα)4, C) ⊆ S ′ ⊆ SF(p+1/(mα)4, C) can be computed
in near-linear time in |E(G \ (∪C′∈FC ′))|.

The upper bound on SC in the following lemma is used to show that C is well-spaced;
i.e. that the shortcutters are far away from one another. The lower bound is used to show
that C is ζ-conductive for some ζ ≤ mo(1)αo(1); i.e. that using those shortcutters saves a lot
of work. We show the following in Section B.2.2:

Lemma 4.5.6. The algorithm Voronoi(I,F) takes a family F in the graph I and outputs
a clan C in near-linear time in |E(Z) ∪ ∂Z| with the property that for each C ∈ F , there
is a shortcutter SC ∈ C with the property that SF(1/(8 log n), C) ⊆ SC ⊆ SF(1/8, C), where
Z = V (I) \ (∪C∈FC).

One could satisfy the above lemma just by returning a clan of SF(p, C)s for some constant
p ∈ [1/(8 log n), 1/8]. SF(p, C) can be computed using one approximate Laplacian system
solve. We are not aware of a way to compute all shortcutters for F efficiently. Instead,
Voronoi partitions clusters into two megaclusters in log n different ways so that no two
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clusters are in the same part of every partition. Then, it computes SF(1/(8 log n), P ) where
P is one side of the partition and intersects all of the partitions to obtain shortcutters.
This only requires O(log n) Laplacian solves. The Laplacian solves are all in the graph with
clusters identified to different vertices. This graph has size |E(Z) ∪ ∂Z|.

As we saw in the Algorithm Overview, these shortcutters are modified many times over
the course of the algorithm. The intuitive description of these shortcutters quickly breaks
down after any modification. We use Lemma 4.5.4, along with the following proposition, to
establish that the clan output by Voronoi is ζ-conductive for some reasonable ζ:

Proposition 4.5.7. Consider a γ-well-separated R-family F in Y ⊆ X ⊆ V (HC) and let
I := Schur(HC,∪C∈FC). Suppose that

cSchur(HC ,Y ∪(V (H)\X))(E(Y, V (H) \X)) ≤ ξ

For any C ∈ F , let

∆F(C) :=
∑

e∈EI(C,C′),C′ 6=C∈F

ReffI(e)

rIe

Let F ′ := F ∪ {V (H) \ X} and consider any clusters SC with SF ′(p, C) ⊆ SC for all
C ∈ F . Then

∑
C∈F

cC(SC) ≤

(∑
C∈F

∆F(C)

p(γ − 4)R

)
+
ξ

p

A relatively simple argument about electrical potentials and their relationship with ef-
fective resistances shows the following, which is used to establish well-spacedness:

Proposition 4.5.8. Consider a family F in a graph H. Let C ∈ F be a cluster with H-
effective resistance diameter R. Consider some SC for which C ⊆ SC ⊆ SF(p, C) for any
p ∈ (0, 1/2). Consider a cluster C ′ that is tied to C. Then C ′ ⊆ SF(p+ 3/10, C).

We prove all of these statements in the appendix.
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4.5.3 Tying the parts together

Now, we combine the statements of the previous two subsections into a proof of Lemma
4.4.12. We first implement the algorithm RebuildEmpire:

Algorithm 3: RebuildEmpire({Hi}σ0i=1)

1 D ← factor 2 error Johnson-Lindenstrauss embedding of H into RC1 logn dimensions
2 foreach i ∈ {1, 2, . . . , σ0} do
3 Ei ← ∅
4 foreach clan C ∈ Hi do
5 T ← µapp

6 {C1k}logm
k=1 , {C2k}logm

k=1 , . . . , {CTk}
logm
k=1 all are initialized to ∅

7 foreach shortcutter SC ∈ C do
8 F1,F2, . . . ,FT ← ∅
9 For each j ∈ [T ], Fj ← jth family of the community

CoveringCommunityD(C,HC, α
i/(σ0+1)rmin)

// bucketing

10 foreach j ∈ [T ] do
11 Fj1 ← Fj
12 for k = 1, 2, . . . , logm do
13 Cjk ← Cjk∪ the shortcutters in Voronoi(HC,Fjk ∪ {V (H) \ SC})

with size at most 2k

14 deleted(Cjk)← deleted(C)
15 Fj(k+1) ← the subset of Fjk with shortcutters in

Voronoi(HC,Fjk ∪ {V (H) \ SC}) with size greater than 2k

16 Ei ← Ei ∪j∈[T ],k∈[logm] {Cjk}

17 foreach i ∈ {1, 2, . . . , σ0} do
18 foreach P ∈ Pi(E) do

// will justify well-definedness in ‘‘Containment’’ analysis

19 Let Q be the unique part in Pi({Hi}σ0i=1) containing P
20 Let CP be an arbitrary core in an Fj obtained from the

CoveringCommunity(CQ, HC, α
i/(σ0+1)rmin) call on Line 9

21 Let SP be the shortcutter in E assigned to CP

22 return {Ei}σ0i=1

We now prove Lemma 4.4.12 given all of the propositions and lemmas in this section.

Lemma 4.4.12. There is an almost-linear time algorithm RebuildEmpire({Hi}σ0i=1) that,
when given a set of covering hordes {Hi}σ0i=1 withHi associated with distance scale αi/(σ0+1)rmin
in a graph H, returns an empire E = {H′i}

σ0
i=1 with the following properties:

• (Bucketing) E is bucketed.
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• (Conductivity) If each horde Hi is ζ-conductive, then E is (8 log n)ζ + (16 log n)µapp-
conductive.

• (Well-spacedness) E is well-spaced.

• (Boundedness) If each horde Hi is κ-bounded, then E is κ+κ0 bounded, for κ0 ≤ mo(1).

• (Modifiedness and deletion set condition) If each horde Hi is τ -modified, then E is τ -
modified as well. Furthermore, if the deletion set condition is satisfied in each clan of
each Hi, it continues to be satisfied in E.

• (Clan growth) The number of clans in E is at most µapp log n times as high as the
number of clans in all of the His.

• (Containment) For any i ∈ [σ0], consider any part P ∈ Pi(E). There is a unique part
Q ∈ Pi({Hj}j) for which P ⊆ Q. Furthermore, CP ⊆ CQ and SP ⊆ SQ.

Proof of Lemma 4.4.12. Radii of clans. CoveringCommunity outputs an µradα
i/(σ0+1)rmin-

community, so each cluster has H effective resistance diameter at most µradα
i/(σ0+1)rmin, as

desired.
Bucketing. Each clan Cjk ∈ Ei arises from one clan C of Hi and Fjk for that clan C. By

Line 13,

max
SC′∈Cjk

|E(SC′) ∪ ∂SC′ | ≤ 2k

Therefore,

sCjk ≥
m

2k

Next, we bound |Cjk|. The shortcutters in Voronoi(HCjk ,Fjk) are disjoint because the
shortcutters SF(1/2 − ε, C ′) for C ′ ∈ F are disjoint for any ε ∈ (0, 1/2). Line 15 ensures
that the clusters Fjk are cores of shortcutters with size at least 2k−1. The shortcutters in Cjk
are disjoint because Voronoi produces disjoint subclusters of SC and the SCs are disjoint by
definition of C. This means that

|Cjk| ≤ m/2k−1

Combining inequalities shows that

|Cjk| ≤ 2sCjk

which implies bucketing.
Conductivity. Suppose that each Hi is ζ-conductive and consider a clan C ∈ Hi.

Consider a shortcutter SC ∈ C, j ∈ [T ], and k ∈ [σ1]. Let X ← SC , Y ← C, F ← Fjk,
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γ ← γds, and p← 1/(8 log n). This is valid because Fjk is a γds-well-separated αi/(σ0+1)rmin-
family by Lemma 4.5.3. Therefore, Proposition 4.5.7 applies and shows that

∑
C′∈Fjk

cCjk(SC′) ≤

 ∑
C′∈Fjk

2∆Fjk(C
′)

pγαi/(σ0+1)rmin

+
cC(SC)

p

where the shortcutters SC′ are in Cjk. By Lemma 4.5.4, ∑
C′∈Fjk

2∆Fjk(C
′)

pγαi/(σ0+1)rmin

+
cC(SC)

p
≤ 2µapp|Fjk|
pγαi/(σ0+1)rmin

+
cC(SC)

p

Summing over all SC ∈ C shows that

∑
SC′∈Cjk

cCjk(SC′) ≤

(∑
SC∈C

2µapp|Fjk|
pγαi/(σ0+1)rmin

)
+

(∑
SC∈C

cC(SC)

p

)
where Fjk is defined for SC in the above right hand side summand. Furthermore,

(∑
SC∈C

2µapp|Fjk|
pγαi/(σ0+1)rmin

)
+

(∑
SC∈C

cC(SC)

p

)
≤ 2µapp|Cjk|
pγαi/(σ0+1)rmin

+
ζm1/σ1

pαi/(σ0+1)rmin
sC

≤
(
16(log n)µapp + (8 log n)ζm1/σ1

)
sC/(α

i/(σ0+1)rmin)

by the bucketing of Cjk. This is the desired conductivity statement.
Well-spacedness. Consider any cluster C ′′ that is tied to SC′ ∈ Cjk. Suppose that SC′

was generated from the shortcutter SC . By Lemma 4.5.6, SC′ ⊆ SFjk∪{V (H)\SC}(1/8, C
′),

where Fjk corresponds to SC . By Proposition 4.5.8 applied in the graph H ← HC, C
′′ ⊆

SFjk∪{V (H)\SC}(3/8, C
′). Since each vertex has potential greater than 1/2 for only one cluster

in Fjk∪{V (H)\SC}, SFjk∪{V (H)\SC}(3/8, C
′) does not intersect any other SFjk∪{V (H)\SC}(3/8, C

′′′)
for C ′′′ ∈ Fjk \{C ′}. Therefore, C ′′ cannot intersect any other shortcutter in Cjk for a core in
Fjk. Furthermore, SFjk∪{V (H)\SC}(3/8, C

′) does not intersect SFjk∪{V (H)\SC}(3/8, V (H)\SC).
Therefore, C ′′ cannot contain any vertices outside of SC . As a result, it cannot intersect any
shortcutters of Cjk that are not for cores in Fjk. Combining these two statements shows that
C ′′ can only be tied to one shortcutter SC′ ∈ Cjk, which is well-spacedness.

Boundedness. Boundedness follows from the following:
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∑
SC′∈Cjk

cH(∂HC
′) =

∑
SC∈C

∑
C′∈Fjk

cH(∂HC
′)

≤

(∑
SC∈C

cH(∂HC) +
κ0|EH(C) ∪ ∂HC|
αi/(σ0+1)rmin

)

≤

(∑
SC∈C

cH(∂HC)

)
+

κ0m

αi/(σ0+1)rmin

≤ (κ+ κ0)m

αi/(σ0+1)rmin

where the first inequality follows from the “Boundedness” guarantee of Lemma 4.5.3, the
second inequality follows from the fact that SCs in C are disjoint, and the third inequality
follows from the κ-boundedness of C.

Clan growth. Each clan C is replaced by clans of the form Cjk. There are only T logm ≤
µapp log n clans of this form.

Containment. We start by showing that the part Q defined on Line 19 is well-defined.
It suffices to show that Pi(E) is a refinement of Pi({Hj}σ0j=1) for all i ∈ {1, 2, . . . , σ0}. We
show this by induction on decreasing i. Inductively assume that Pi+1(E) is a refinement of
Pi+1({Hj}σ0j=1) and consider a part P ∈ Pi(E).

Let C be a core in some clan of Hi that intersects P . By the “Covering” guarantee of
Lemma 4.5.3, some core C ′ in some family output during the call to CoveringCommunity on
C in Line 9 intersects P . By the “Input constraint” guarantee of Lemma 4.5.3, C ′ ⊆ C. By
definition of Pi(E), P ⊆ C ′. Therefore, P is contained in all cores C in some clan of Hi that
intersect P . Furthermore, P is contained in a unique part of Pi+1(E) by definition. This part
is contained in a unique part of Pi+1({Hj}σ0j=1) by the inductive assumption. Since Pi(E) is
the refinement of all cores in Ei and Pi+1(E) and P is contained in all cores of Hi and parts
of Pi+1(E) that it intersects, P is contained in a part Q in the refinement Pi({Hj}σ0j=1). This
completes the inductive step and shows that Q is well-defined.

Let CQ be the core assigned to Q in {Hj}σ0j=1. By the “Covering” guarantee of Lemma
4.5.3 applied to the CQ call, there is a core C ′ ⊆ CQ (by the “Input constraint”) with P ⊆ C ′.
Therefore, there exists a choice of CP on Line 20 and CP ⊆ CQ.

Now, we show that SP ⊆ SQ, which is the same as showing that SCP ⊆ SCQ . Since
CP is in some Fk created on Line 9 for CQ, the Voronoi call that creates SCP has the set
V (H) \ SCQ in its input family. This means that SCP cannot intersect V (H) \ SCQ , which
means that SCP ⊆ SCQ , as desired.

Modifiedness and the deletion set condition. This follows from the fact that
deleted(Cjk) = deleted(C) and the “Containment” guarantee for cores.

Runtime. For each core C of a shortcutter in C, the runtime of CoveringCommunity is
at most mo(1)|E(C) ∪ ∂C| by the runtime condition of Lemma 4.5.3. The runtime of the j
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and k loops is at most mo(1)|E(SC)∪ ∂SC |, by Lemma 4.5.6 and the fact that Voronoi takes
V (G) \ SC as one input cluster. Since C ⊆ SC and shortcutters in C are disjoint, the total
work for shortcutters in C is m1+o(1). Since there are mo(1) clans in the input hordes, the
total runtime of RebuildEmpire is m1+o(1).
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4.6 Conditioning on the selected parts

Now, we prove Lemma 4.4.17. Let S = ∪P∈KP . Aldous-Broder only needs to cover S in
order to sample the intersection of a random tree with ∪P∈KE(P ). Since E has been carved
with respect to S, each active shortcutter SC ∈ Hi ∈ E has one of two statuses at any time:

• (Ready) SC has been covered and therefore can be used or SC is not active.

• (Boundary) SC has not been covered and C is within distance µcarveα
i/(σ0+1)rmin of

some unvisited vertex in S.

Now, suppose that a vertex v is in a part Pi in Pi(E). Look at the maximum level i
for which Pi’s shortcutter has a “Ready” status. Since Pi+1’s shortcutter has a “Boundary”
status, v is within distance µcarveα

(i+1)/(σ0+1)rmin of some unvisited vertex in S.
Since Pi’s shortcutter is “Ready,” it can be used without skipping any first visits to

vertices in S. We now clarify what “use” means. Ideally, we could just use online shortcutting
to shortcut from Pi to ∂SPi . This could be too expensive for two reasons:

• E(Pi) = ∅, in which case SPi is not active and may be larger than the promised
maximum active shortcutter size.

• SPi ’s conductance is low in HCi where Ci is the clan containing SPi , not in H.

In the first case, no shortcutting is necessary, as ∂SPi is part of a set of boundary edges
with small enough total weight (conductance). In the second case, we precompute the prob-
ability that a random walk hits an edge in deleted(Ci) before ∂SPi . This is our use of offline
shortcutting. We show that the precomputation work is small thanks to τ -modifiedness. If
the random walk does hit one of these edges first, shortcutting takes Õ(1) work and the
work can be charged to a traversal over an edge in ∂Pi. Otherwise, the shortcut step can be
charged to a step over a small conductance set given by ζ-conductivity.

Our random walk analysis relies heavily on the following lemma, which we prove in the
appendix. One can think of this lemma as a softer version of the subgraph cover time bound
used by [46]. Unlike [46] and [73], we use the following lemma on many different graphs I
corresponding to various Schur complements:

Lemma 4.2.3 (Key result for bounding the number of shortcutter uses). Consider an arbi-
trary vertex u0 in a graph I, an edge {u, v} = f ∈ E(I), and an R ≥ 0. Let B(u,R) ⊆ V (I)
denote the set of vertices in I with I-effective resistance distance at most R from u. The
expected number of times that the random walk starting at u0 traverses f from u→ v before
all vertices in B(u,R) have been visited is at most Õ(cfR), where cf is the conductance of
the edge f .

We prove this in the appendix.
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4.6.1 Our shortcutting method

We now introduce our shortcutting primitive. It relies on two facts about electrical flows,
the first of which was used by both Kelner-Madry and Madry-Straszak-Tarnawski:

Theorem 4.6.1 ([46, 73]). Consider two vertices u, v in a graph I. Let p ∈ RV (I) denote
the potentials for a u − v electrical flow with pu and pv normalized to 1 and 0 respectively.
Then for any vertex w ∈ V (I),

Pr
w

[tu < tv] = pw

where tu is the hitting time to u.

Theorem 4.6.2 (Special case of Theorem 4.3.2). Consider two vertices u, v ∈ V (I). For
each edge e ∈ ∂v, let fe denote the unit u− v electrical flow on e. Then for each e ∈ ∂v,

Pr
u

[e traversed to visit v for the first time ] = fe

The first result motivates offline shortcutting, while the second motivates online short-
cutting. Efficient Laplacian solvers are approximate rather than exact. A trick due to Propp
[81] allows us to get around this issue in expected near-linear time.

Our algorithm maintains a data structure D of shortcutting probabilities that is internal
to it and an accuracy parameter εD, which initially is 1/|XC |. Let C be the clan containing
SC . For each vertex v ∈ C of a shortcutter SC and the set XC = V (deleted(C)) ∩ SC ,
D stores an εD-approximations qvx for all x ∈ XC and qv to Prv[tx < t(XC\{x})∪∂SC ] for
all x ∈ XC and Prv[t∂SC < tXC ] respectively. It occasionally recomputes D when it needs
higher accuracy in accordance with Propp’s trick. Also in accordance with Propp’s trick, D
represents these probabilities as subintervals of [0, 1], with rvx = qvx +

∑
y before x qvy for an
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arbitrary ordering of XC .

Algorithm 4: Shortcut(SC , v)

// offline part

1 p← uniformly random number in [0, 1]
2 x1, x2, . . . , xk ← arbitrary ordering of XC

3 while p is within εD distance of some rvx do
4 εD ← εD/2
5 recompute D for SC

6 if p is in a qvx interval then
7 return an arbitrary edge incident with x

8 else
// p is in the qv interval, so switch to online

9 I ← H[SC ∪ ∂SC ] \XC , with ∂SC identified to a vertex s
10 Compute ε-additive approximations to u− s electrical flows for decreasing ε

repeatedly using Propp’s trick to sample an escape edge from I
11 return the sampled escape edge

The runtime analysis of this algorithm takes place over three parts: preprocessing, run-
time to hit XC , and the runtime to hit ∂SC :

Lemma 4.6.3. Shortcut(SC , v) takes as input a shortcutter SC in a clan C and a vertex
v ∈ C. It samples the first vertex w ∈ XC ∪ ∂SC that the random walk starting at v in H
hits with the correct probability. The edge is correct if that vertex is outside of SC. Shortcut

satisfies the following runtime guarantees:

• (Preprocessing) The total work to update D over an arbitrary number of uses of Shortcut
on SC is at most Õ(|XC ||E(SC) ∪ ∂SC |) in expectation.

• (Runtime to hit XC) If Shortcut(SC , v) returns some vertex in XC, it took Õ(1) time
to do so, excluding time to update D.

• (Runtime to hit ∂SC) If Shortcut(SC , v) returns some vertex in ∂SC, it took Õ(|E(SC)∪
∂SC |) time to do so in expectation.

Proof. Correctness. Consider some x ∈ XC . p is in the qvx interval with probability
exactly Prv[tx < t(XC\{x})∪∂SC ] by Theorem 4.6.1, so any x ∈ XC is sampled with the right
probability. ∂SC is sampled with probability exactly Prv[t∂SC < tXC ]. Moreover, notice that
for any non-SC endpoint w of an edge in ∂SC ,

Pr
v

[tw < t(∂SC\{w})∪XC in H |t∂SC < tXC in H ] = Pr
v

[tw < t∂SC\{w} in H \XC ]
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Since I = H[SC ∪ ∂SC ] \XC , Theorem 4.6.2 implies that we are sampling escape edges
with the right probabilities for endpoints w of edges in ∂SC .

Preprocessing. For a particular value of εD, the probability of recomputation is at most
2|XC |εD, as this is a bound on the probability that p is within distance εD of an rvx. If this
happens, Theorem 4.6.1 implies that the quxs for all u ∈ C and one x can be computed using
one Laplacian solve. Doing this for all vertices in XC takes Õ(|XC ||E(SC)∪ ∂SC | log(1/εD))
time. The expected time is at most

∞∑
values of εD

2|XC |εDÕ(|XC ||E(SC) ∪ ∂SC | log(1/εD)) =
∞∑
i=0

i

2i
Õ(|XC ||E(SC) ∪ ∂SC |)

= Õ(|XC ||E(SC) ∪ ∂SC |)

to update D, as desired.
Runtime to hit XC. If x ∈ XC is sampled, the else block does not execute. Everything

in the if block takes Õ(1) time besides updating D, as desired.
Runtime to hit ∂SC. i Laplacian solves on I with error 2−i are done with probability

at most 2−i to compute all of the exit probabilities for v out of SC . Therefore, the expected
work is Õ(|E(SC) ∪ ∂SC |), as desired.
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4.6.2 Our implementation of the shortcutting meta-algorithm

Now, we implement PartialSample. This algorithm is exactly the same as the shortcutting
meta-algorithm given at the beginning of Section 4.2:

Algorithm 5: PartialSample(E ,K)

1 S ← ∪P∈KP
2 v ← arbitrary vertex in H
3 F ← ∅
4 while there is a vertex in S that has not been visited do
5 i← maximum i for which the shortcutter SPi for the part Pi ∈ Pi(E) containing v

has status “Ready”
6 if E(Pi) = ∅ then
7 {v, w} ← random edge incident with v with probability proportional to

conductance
8 e← {v, w}
9 else

10 e← Shortcut(SPi , v)

11 w ← the XPi ∪ ∂SPi endpoint of e
12 if both endpoints of e are in S and w not previously visited then
13 F ← F ∪ {e}
14 v ← w

15 return F

The runtime analysis does the following:

• Preprocessing takes a small amount of time because of τ -modifiedness.

• Random walk steps and shortcut steps to XPi take Õ(1) time. We can afford to
charge these steps to traversals over boundary edges of Pi(E) thanks to the deletion
set condition.

• Shortcut steps to ∂SPi can be charged to a step over an edge in the Schur complement
obtained by eliminating all vertices internal to SPi besides XPi . ζ-conductivity can be
used to bound the number of these steps.

Picking the maximum level “Ready” shortcutter allows us to charge these steps to cover-
ing the i+ 1th horde, since the above “Boundary” shortcutter contains a closeby uncovered
vertex.

Correctness relies on the following fact, which we restate from the overview:

Theorem 4.2.1 (Aldous-Broder). Pick an arbitrary vertex u0 and run a random walk start-
ing at u0 in a weighted graph G. Let T be the set of edges used to visit each vertex besides
u0 for the first time. Then T is a weighted uniformly random spanning tree of G.
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Lemma 4.4.17. Let K ⊆ ∪σ0i=1Pi(E) be a set of parts. Let F = ∪P∈KE(P ) and S =
∪P∈KP . Suppose that the empire E is ζ-conductive, κ-bounded, τ -modified, satisfies the
deletion set condition, and has been carved with respect to S. Then, there is an algorithm
PartialSample(E ,K) that returns the intersection of a random spanning tree T in H with
F in Õ(((ζ + κ)µcarve + τ)`maxm

1+1/σ1α1/(σ0+1)) time.

Proof of Lemma 4.4.17. We start with correctness. We need to sample the intersection of a
random tree with Z = ∪P∈KE(P ). By Theorem 4.2.1, it suffices to show that PartialSample
finds all of the edges used to visit S for the first time, since all edges in Z have both of their
endpoints in S.

Since SPi has a status of “Ready,” it is either (1) covered or (2) not necessary to use.
If (2) is the case, then E(Pi) = ∅, which means that a true random walk step out of v is
performed. If (1) is the case, then using the shortcutter SPi will not skip any first visits to
vertices in S. Furthermore, XPi ∩ S has been visited, so there is no need to keep track of
the correct edge used to visit these vertices. By Lemma 4.6.3, Shortcut returns the correct
visit edge if the walk exits through ∂SPi . Therefore, PartialSample does not miss any first
visits to S, which means that it returns the intersection of a random tree with Z.

Now, we bound the runtime of PartialSample. We break this analysis up into a number
of different types of steps. First, though, we make an observation that is relevant for all
types. v is within distance α(i+1)/(σ0+1)αo(1)rmin of some unvisited vertex in S because either
(1) SPi+1

has status “Boundary” or (2) i = σ0, in which case the diameter of the graph is at
most αrmin = α(i+1)/(σ0+1)rmin.

If-statement steps. These occur when E(Pi) = ∅, including the case in which i does
not exist. In this case, one random walk step is performed incident with v. This takes
O(log n) time to execute and occurs over an edge of ∂Pi(E), where ∂Pi(E) := ∪P ′∈Pi(E)∂P

′.
Apply Lemma 4.2.3 to I ← H, all edges in ∂Pi(E), S ← S, andR← µcarveα

(i+1)/(σ0+1)rmin.
By the κ-boundedness of E , the total number of steps across edges in ∂Pi(E) within distance
R of an unvisited vertex of S is at most

Õ(cH(∂Pi(E))R) ≤ κmaxm

αi/(σ0+1)rmin
µcarveα

(i+1)/(σ0+1)rmin ≤ µcarveκmaxmα
1/(σ0+1)

per clan. Summing over all clans yields a bound of `maxµcarveκmaxmα
1/(σ0+1), as desired.

Else-statement XPi steps. Notice that since E(Pi) is nonempty, the deletion set
condition applies, which ensures that no edge in deleted(C) for any C is on the boundary of
Pi. The random walk, in going from Pi to XPi , must cross an edge of ∂Pi, as the deletion set
condition implies that XPi is disjoint from ∂Pi. As discussed in the If-statement steps bound,
only `maxµcarveκmaxmα

1/(σ0+1) steps occur. By the XPi step condition of Lemma 4.6.3, each
of these steps takes Õ(1) time to execute.

Else-statement ∂SPi steps. Lemma 4.6.3 says that Shortcut returns an edge incident
with the first vertex in XPi ∪ ∂SPi that the random walk visits. In particular, by Theorem
4.2.4, a shortcut step directly to ∂SPi can be charged to random walk steps across a CPi−∂SPi
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edge in I ← Schur(H,XPi∪CPi∪(V (H)\SPi)). Let F ← EI(CPi , V (H)\SPi), S ← V (I)∩S,
and R← µcarveα

(i+1)/(σ0+1)αo(1)rmin. By Lemma 4.2.3, the total number of steps that occur
across EI(CPi , V (H) \ SPi) that are within distance R of S ∩ V (I) is at most

cI(EI(CPi , V (H) \ SPi))R

in expectation. We start by arguing that each ∂SPi shortcut step can be charged to one
of these random walk steps. Recall that SPi is only used when S∩SPi is covered. All vertices
that were eliminated to obtain I were in SPi , so all shortcut steps occur within distance R
of some vertex in S ∩V (I). Each shortcut step can be charged to at least one step across an
edge of EI(CPi , V (H) \ SPi), as discussed earlier. Therefore, the number of shortcut steps is
at most cI(EI(CPi , V (H) \ SPi))R.

Now, we bound cI(EI(CPi , V (H) \ SPi)). Let I ′ = Schur(H \ deleted(CPi), XPi ∪
CPi ∪ (V (H) \ SPi)), where CPi is the clan that contains the shortcutter SPi . Each edge
of deleted(CPi) with endpoints in SPi has both of its (identified) endpoints in XPi , by defi-
nition of XPi . Therefore, deleting these edges does not affect the conductance of the relevant
set:

cI(EI(CPi , V (H) \ SPi)) = cI
′
(EI′(CPi , V (H) \ SPi))

Eliminating XPi also can only increase the conductance of this set. Precisely, let I ′′ =
Schur(H \ deleted(CPi), CPi ∪ (V (H) \ SPi)). Then

cI
′
(EI′(CPi , V (H) \ SPi)) ≤ cI

′′
(EI′′(CPi , V (H) \ SPi))

This quantity has already been defined. Recall that HCPi = H \ deleted(CPi). As a
result,

cI
′′
(EI′′(CPi , V (H) \ SPi)) = cCPi (SPi)

ζ-conductivity can be used to bound this quantity. In particular, summing these bounds
over CPi shows that the total number of times shortcutters in CPi can be used to travel to
their true boundaries is at most

Õ

 ∑
SC∈CPi

cCPi (SPi)R

 ≤ Õ

(
ζm1/σ1sCPi
αi/(σ0+1)rmin

R

)
≤ Õ(µcarveζmaxsCPim

1/σ1α1/(σ0+1))

By Lemma 4.6.3, using any shortcutter SC ∈ CPi takes at most maxSC∈CPi |E(SC)∪ ∂SC |
time in expectation. By definition of sCPi , the total work done using shortcutters in CPi is at
most
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( max
SC∈CPi

|E(SC) ∪ ∂SC |)Õ(µcarveζmaxsCPim
1/σ1α1/(σ0+1)) ≤ µcarveζmaxm

1+1/σ1α1/(σ0+1)

in expectation. Since E contains `max clans, the total amount of work due to online
shortcut steps is at most `maxµcarveζmaxm

1+1/σ1α1/(σ0+1).
Else-statement preprocessing work. Each edge in deleted(C) for any clan C is inci-

dent with at most two shortcutters in C since shortcutters in a clan are disjoint. By Lemma
4.6.3, an expected O(1) Laplacian solves on a cluster with size at most maxSC∈C |E(SC)∪∂SC |
happen for each edge in deleted(C). Therefore, the expected total amount of work is at
most

(max
SC∈C
|E(SC) ∪ ∂SC |)|deleted(C)|

Since C is τ -modified,

(max
SC∈C
|E(SC) ∪ ∂SC |)|deleted(C)| ≤ (max

SC∈C
|E(SC) ∪ ∂SC |)(τmaxm

1/σ1sC) ≤ τmaxm
1+1/σ1

The desired bound follows from the fact that E only has `max clans.
Completing the proof. All work that PartialSample does falls into one of these four

categories for some i. Since there are only σ0 possible values of i, the total runtime is at
most Õ(((ζmax + κmax)µcarve + τmax)`maxm

1+1/σ1α1/(σ0+1)), as desired.
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4.7 Choosing vertices to condition on

In this section, we implement ConditioningVerts. This amounts to choosing which parts
to condition on when there are multiple levels of shortcutters.

Before doing this, we implement a simple version, SimpleConditioningVerts, which
works when σ0 = 1. This method illustrates the utility of conditioning on parts whose
shortcutters are largest. When σ0 > 1, we can no longer chose parts whose shortcutters
in all hordes are largest. Instead, we find parts whose shortcutters are “locally largest” in
all hordes; i.e. they are well-separated from cores of larger shortcutters. In this case, the
parts chosen for conditioning can be carved out anyways. This choice makes enough progress
because one can show that the sizes of shortcutters for parts chosen decrease by a factor of
m1/σ1 . After conditioning σ1 times, one can condition on parts in a higher-level horde. Since
there are σ0 hordes, the number of rounds required is σσ01 .

4.7.1 Warmup: A version of ConditioningVerts for σ0 = 1 (one
shortcutter per vertex)

In this section, we implement SimpleConditioningVerts, which satisfies Lemmas 4.4.15 and
4.4.16 when σ0 = 1. SimpleConditioningVerts is not used in any way to prove Theorem
4.1.1, but is included to motivate some of the ideas behind ConditioningVerts. Recall that
using no shortcutters (Aldous-Broder) takes Õ(mα) time. Replacing ConditioningVerts

with SimpleConditioningVerts results in a Õ(m1+o(1)α1/2+o(1))-time algorithm.
The SimpleConditioningVerts(E) routine just takes the input empire E , outputs the

parts whose shortcutters have size within an m1/σ1-factor of the maximum, and “carves” the
selected parts out of every shortcutter:

Algorithm 6: SimpleConditioningVerts(E), never executed

Data: an empire E consisting of one µradrmin
√
α-horde H

Result: a set of parts K to condition on
1 X ← set of parts P ∈ P1(E) that have nonempty E(P ) (are active)
2 K ← set of parts P ∈ X whose shortcutters SP have size at least

m−1/σ1 maxQ∈X |E(SQ) ∪ ∂SQ|
// carving

3 foreach active shortcutter SC in some clan of E do
4 Z ← parts in K with distance greater than µcarvermin

√
α from all vertices in C

5 Remove all parts in Z from SC

6 return K
We now analyze this algorithm. We need to show that

• conductivity does not increase much (Lemma 4.4.15)

• enough progress is made (Lemma 4.4.16)
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We start with Lemma 4.4.15. The key idea is that conditioning on the parts with largest
shortcutters ensures that there are not many of them. Specifically, each of the parts P
assigned to a shortcutter SP is contained in SP ’s core CP , which has low effective resistance
diameter (O(

√
αrmin)). Since the shortcutters come from a small number of clans, each of

which consists of disjoint shortcutters, the number of distinct shortcutters for chosen parts
is at most m|E1|/(minimum size of shortcutter for a selected part). Since E1 only consists
of mo(1) clans and all shortcutters for selected parts have size within an m1/σ1-factor of
the maximum across all of E1, the number of distinct shortcutters for chosen parts is at
most m1+o(1)m1/σ1sC for any clan C ∈ H1. In particular, all parts chosen for conditioning are
contained in a small number of low-radius clusters (the cores). The following key proposition
finishes the proof:

Proposition 4.7.1. Let H be a graph, E be an empire in this graph, and L be a set of clusters
with H-effective resistance diameter at most ψαi/(σ0+1)rmin for some i ∈ [σ0]. Consider a
well-spaced clan C ∈ Ei. Let S := ∪C∈LC be the set of vertices in clusters of L.

Obtain a new clan C ′ by deleting all vertices v ∈ S from shortcutters SC ∈ C for which v
is not within H-effective resistance distance γdelψµappα

i/(σ0+1)rmin of any vertex in C, where
γdel = 1000.

Then ∑
SC∈C′

cC
′
(SC) ≤ µapp(|L|+ |deleted(C)|)

αi/(σ0+1)rmin
+
∑
SC∈C

cC(SC)

The proof of this proposition relies on the following lemmas, both of which are proven in
the appendix:

Lemma 4.7.2. Consider a graph H and a set of clusters D, each with effective resistance
diameter at most R. Let F be a set of edges in H. Then there is a set of clusters D′ with
the following properties:

• (Covering) Each vertex in a cluster of D is in a cluster of D′.

• (Diameter) The effective resistance diameter of each cluster in D′ is at most µappR in
the graph H \ F .

• (Number of clusters) |D′| ≤ µapp(|D|+ |F |).

Lemma 4.7.3. Consider a graph H and two clusters C and SC, with C ⊆ SC. Let C ′ be
disjoint from C. Additionally, suppose that

• The effective resistance diameters of C and C ′ in H are both at most R.

• The effective resistance distance between any pair of points in C and C ′ in H is at
least β1R.
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• cH(SC) ≤ τ
R

.

Then cH(SC \ C ′) ≤ τ+1/(β1−4)
R

.

Proof of Proposition 4.7.1. By Lemma 4.7.2 applied to the clusters L with deleted edge set
deleted(C), S is the union of a set of clusters L′ with HC-effective resistance diameter
µappψα

i/(σ0+1)rmin. Furthermore, |L′| ≤ µapp(|L|+ |deleted(C)|).
Now, consider a cluster C ∈ L′. To delete all vertices in S from shortcutters with far-

away cores, it suffices to delete each of the clusters C from any shortcutter SC′ for which the
minimum HC distance between vertices in C ′ and C is at least (γdel− 2)µappψα

i/(σ0+1)rmin ≥
β0µappψα

i/(σ0+1)rmin by the triangle inequality. In this case, C is tied to SC′ . Since C is
a well-spaced clan, C cannot be tied to any other shortcutter in C. Therefore, deleting C
from all shortcutters for whom the cores are at least HC-distance (γdel−2)mo(1)ψαi/(σ0+1)rmin
only modifies one shortcutter SC′ . Furthermore, the conductance of this shortcutter only
increases additively by 1/((γdel − 2)µappψα

i/(σ0+1)rmin) ≥ 1/αi/(σ0+1)rmin by Lemma 4.7.3.
Removing vertices from shortcutters in C does not destroy its well-spacedness. There-

fore, we can apply this reasoning for each of the clusters in L′; incurring a 1/αi/(σ0+1)rmin
conductance increase per cluster deletion. After doing this, we obtain a clan C ′ for which

∑
SC∈C′

cC
′
(SC) ≤ |L′|

αi/(σ0+1)rmin
+
∑
SC∈C

cC(SC)

≤ µapp(|L|+ |deleted(C)|)
αi/(σ0+1)rmin

+
∑
SC∈C

cC(SC)

as desired.

Now, we use Proposition 4.7.1 to prove Lemma 4.4.15 for σ0 = 1:

Proof of Lemma 4.4.15, with ConditioningVerts replaced by SimpleConditioningVerts.
Let R = µcarve

√
αrmin.

Number of cores containing parts in K. Recall that each part P ∈ K is assigned to a
shortcutter SP in the horde E1 of E . Let CP denote this core of SP and let K′ = {CP :
∀P ∈ K}. We now bound |K′|. Start by bounding the size of the intersection of K′ with the
coreset of an arbitrary clan C. C consists of disjoint shortcutters, so they must have total
size at most m. As a result, K′ has size at most



CHAPTER 4. RANDOM SPANNING TREE SAMPLING 78

|K′| ≤ |E1|
m

minC∈K′ |E(SC) ∪ ∂SC |

≤ `max
m1+1/σ1

maxC∈K′ |E(SC) ∪ ∂SC |

= `max
m1+1/σ1

maxQ∈X |E(SQ) ∪ ∂SQ|
≤ `maxm

1/σ1sC

for any clan C ∈ E1. The first inequality follows from Line 2 of SimpleConditioningVerts.
This is the desired bound.

Conductivity. Apply Proposition 4.7.1 with i ← 1 and L ← K′ on each of the clans
in E1. SimpleConditioningVerts does strictly fewer vertex removals than the procedure
described in Proposition 4.7.1. As a result, Proposition 4.7.1 implies that the conductance
of the shortcutters in a clan C additively increases by at most µapp(|K′|+|deleted(C)|)√

αrmin
. By the

“Number of cores containing parts in K” and τ -modifiedness of C, the conductance increase

is at most µapp(`maxm1/σ1+τm1/σ1 )sC√
αrmin

. Therefore, the conductivity of C in E ′ (at the end of

SimpleConditioningVerts) is at most ζ1 higher than it was in E , as desired.
Carving. Line 5 of SimpleConditioningVerts ensures that the shortcutter SC has been

carved with respect to K. Therefore, all active shortcutters in E ′ are carved with respect to
K, which means that E ′ is carved with respect to K.

Now, we show that SimpleConditioningVerts conditions on a large enough set to make
substantial progress. Progress is measured by the maximum size of an active shortcutter:

Proof of Lemma 4.4.16, with ConditioningVerts replaced by SimpleConditioningVerts.
We show that the maximum size of an active shortcutter decreases by a factor of m1/σ1 in
between applications of SimpleConditioningVerts. If we do this, then no shortcutter is
active after σ1 iterations. Since each part is assigned to a shortcutter, each part P must
have E(P ) = ∅ after σ1 iterations.

Now, consider any part P ∈ P1(E) with an active shortcutter. By the “Containment”
input condition, P is contained in a unique Q ∈ P1(Eprev). SP being active implies that SQ
was active. By the “Progress” condition, Q /∈ Kprev. Therefore, by the conditioning choice
that chose Kprev,

|E(SQ) ∪ ∂SQ| ≤ m−1/σ1 max
previously active parts X

|E(SX) ∪ ∂SX |

By the “Containment” condition, SP is smaller than SQ, so

max
currently active parts P

|E(SP ) ∪ ∂SP | ≤ m−1/σ1 max
previously active parts X

|E(SX) ∪ ∂SX |
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In particular, the maximum active shortcutter size decreased by a factor of m−1/σ1 , as
desired.

Now, consider what happens when all shortcutters are inactive. By the above proof, this
happens after σ1 conditioning rounds. Since E is mo(1)-bounded at this point and all parts
are empty (by inactivity), the total conductance of all edges left over in the graph is at most
m1+o(1)/(

√
αrmin). Running Aldous-Broder therefore takes O((m1+o(1)/(

√
αrmin))αrmin) =

O(m1+o(1)
√
α) time. Therefore, the entire algorithm for sampling a random spanning tree

from the original graph G takes O(m1+o(1)
√
α) time, as desired.

4.7.2 Generalizing to σ0 > 1

We start by reviewing how the main algorithm ExactTree with σ0 = 1 uses
SimpleConditioningVerts. ExactTree starts by making arbitrary shortcutters using
RebuildEmpire. Afterwards, it calls SimpleConditioningVerts followed by the routines
PartialSample, conditioning, FixShortcutters, and RebuildEmpire again.
SimpleConditioningVerts chooses all of the parts with near-largest shortcutters for con-
ditioning. Applying the routines PartialSample, conditioning, FixShortcutters, and
RebuildEmpire makes the induced subgraphs of the parts with the largest shortcutters
empty (inactive), as described by the “Progress” condition. By the “Containment” condi-
tion, all remaining shortcutters are smaller than they were previously, so the empire supplied
to the second call of SimpleConditioningVerts has no shortcutters with size greater than
m1−1/σ1 . Specifically, the quantity

s1 := blogm1/σ1 ( max
active parts P ∈ P1(E)

|E(SP ) ∪ ∂SP |)c

strictly decreases during each iteration of the while loop in the ExactTree algorithm.
s1 ≤ σ1 initially, so s1 = 0 after at most σ1 while loop iterations. At this point, E has
no active parts. As a result, the graph at this point just consists of boundary edges for
parts in P1(E), at which point just running Aldous-Broder without shortcutting is efficient.
Specifically, conditioning on all parts in E1 paved the way for ExactTree to be able to
efficiently condition on the entire graph.

Now, we generalize this reasoning to the case in which σ0 > 1. Specifically, we design
a scheme that is built around the idea of conditioning on parts in Ei in order to make
conditioning on Ei+1 efficient:

Key Idea 4.7.4. ConditioningVerts maintains state across multiple calls. Specifically, for
all i ∈ [σ0], it maintains a choice of parts Qi ⊆ Pi(E) that it would like to be able to condition
on and a set of parts Ri ⊆ Pi(E) with Qi ⊆ Ri that are “relevant” to being able to condition
on Qi+1. Specifically, if all of the parts in Ri are inactive, then ConditioningVerts can
condition on Qi+1. Conditioning on at most σ1 different choices of Qi will make all of the
parts in Ri irrelevant.
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We encourage the reader to delay trying to internalize how exactly the Ris are con-
structed. We discuss this in detail in Section 4.7.7. Qi can almost be thought of as the set of
parts in Ri with near-maximum shortcutters. We discuss the reasons for saying “almost” in
Section 4.7.7. In particular, the Qi parts have “locally maximum” shortcutters. We discuss
this in more detail in Section 4.7.3.

To get a feel for what one could expect Ri and Qi to be, it helps to think about the
σ0 = 1 case. In this case, R1 = P1(E) during each call of SimpleConditioningVerts. Q1

is the set of active parts in R1 with near-maximum shortcutters. After σ1 iterations of the
while loop of ExactTree, all parts in R1 are inactive, which allows us to condition on Q2,
which is defined to be just one part containing the entire graph. After doing this, all parts
in R2 — which is also defined to be just one part with the entire graph — are inactive.
In particular, the graph contains no more edges and we have sampled a complete random
spanning tree.

Making progress and intuition for the proof of Lemma 4.4.16

Now that we have some idea for what the Ris and Qis could be, we can talk about our
notion of progress. We start by generalizing s1 to a quantity si. Roughly speaking, msi/σ1 is
the maximum size of a relevant shortcutter in a clan of Ei:

si := blogm1/σ1 ( max
active parts P ∈ Ri

|E(SP ) ∪ ∂SP |)c

This is not how we actually define si, but it is a good way to think about it. In partic-
ular, the function DSize is similar to maxactive parts P ∈ Ri |E(SP ) ∪ ∂SP | and we encourage a
confused reader to mentally replace DSize with maxactive parts P ∈ Ri |E(SP ) ∪ ∂SP | with the
exception of one place, which we point out in Section 4.7.4. Now, we discuss progress:

Key Idea 4.7.5. Our notion of progress is that each iteration of the while loop in ExactTree

lexicographically decreases the word sσ0+1sσ0sσ0−1sσ0−2 . . . s2s1.

Now, we understand how ConditioningVerts could be implemented to guarantee such
a lexicographic decrease. Each call to ConditioningVerts returns Qk for some k ∈ [σ0]
with sk > 0. By the “Progress” input condition in Definition 4.4.14, all parts in Qk become
inactive before the next call to ConditioningVerts. Roughly speaking, as described earlier,
Qk contains all of the parts with largest shortcutters in Rk. As long as Rk shrinks (which we
show that it does in Section 4.7.7), sk strictly decreases. All si for i > k do not increase by the
“Containment” input condition. Therefore, the word sσ0+1sσ0sσ0−1 . . . s2s1 lexicographically
decreased between conditioning rounds.

We now briefly discuss why sis with i < k could increase. To make progress again, Qk
needs to be changed. Recall in Key Idea 4.7.4 that the only purpose of Qi for i < k is to
make it possible to condition on parts in Qk. Therefore, once Qk changes, the Qis and Ris
for i < k become useless and need to be chosen anew. In particular, si for i < k could
increase.
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Eventually, sσ0+1sσ0sσ0−1 . . . s2s1 = 00 . . . 00. At this point, because Rσ0+1 consists of one
part which is the entire graph, the entire graph is empty and consists of just one vertex. In
particular, we have completely sampled a random spanning tree. Since there are only σσ0+1

1

possible words, this happens after σσ0+1
1 conditioning rounds, suggesting a proof of Lemma

4.4.16.

Conditioning on Qk
In the previous subsubsection, we needed to find some Qk with sk > 0 that could actually
be conditioned on. Specifically, we need to find some Qk that can be carved out of all
shortcutters in all hordes of E with increasing the conductivity of any clan too much.

At the beginning of each call to ConditioningVerts, the Qk′ selected for conditioning
from the previous iteration consists of inactive parts by the “Progress” input condition.
Let i∗ be the maximum i for which Qi∗ = ∅. This exists because k′ is a valid choice for
i∗. If si∗ > 0, then Ri∗ still contains active parts, which means that we shoud reselect
Qi∗ in order to continue rendering parts in Ri∗ inactive. This is done using the routine
ExtendHierarchy. After reselecting Qi∗ , ConditioningVerts reselects all Qis for i < i∗

using ExtendHierarchy. Then, ConditioningVerts returns the parts Qk∗+1, where k∗ is
the maximum value for which sk∗ = 0.

While the previous subsubsection illustrated that this algorithm (ConditioningVerts)
makes enough progress (satisfies Lemma 4.4.16), we still need to demonstrate that E can be
carved with respect to Qk∗+1 without increasing its conductivity too much (by more than
mo(1) additively). To do this, it suffices to design the Ris in a way that respects the following
property:

Key Idea 4.7.6. For each part P ∈ Pi(E)\Ri, SP does not intersect any part P ′ ∈ ∪j≤i+1Qj.
In particular, SP is carved with respect to ∪j≤i+1Qj.

Now, we see how this idea enables ConditioningVerts to choose Qk∗+1. Each part
P ∈ Pk∗(E) is either in Rk∗ or not in Rk∗ . If P ∈ Rk∗ , then P is inactive because sk∗ = 0.
Therefore, its shortcutter SP does not need to be carved with respect to Qk∗+1 because
SP does not need to be used. If P 6∈ Rk∗ , then SP is carved with respect to Qk∗+1 by
Key Idea 4.7.6. For parts Q ∈ Pj(E) for j ≥ k∗ + 1, either Q /∈ Rj(E) in which case
Key Idea 4.7.6 implies that SQ is carved, or Q ∈ Rj(E) and Qj can be carved out of SQ
because Qj’s shortcutters are bigger than SQ. In particular, applying Proposition 4.7.1
here implies that carving does not increase the conductivity of SQ’s clan too much (see the
MakeNonedgesPermanent routine). Therefore, all shortcutters are carved with respect to
Qk∗+1. For more details on this argument, see Proposition 4.7.16.

Choosing conditioning hierarchies that respect the key ideas

While we have discussed most of the key properties of conditioning hierarchies that al-
low ConditioningVerts to establish Lemmas 4.4.15 and 4.4.16 (as summarized in the Key
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Ideas), it has not been made clear how to actually obtain any of them. We now discuss
some insufficient approaches for defining the Qis and Ris. Specifically, we attempt to design
ExtendHierarchy, which is called on level i∗ and below if si∗ > 0 in order to get closer
to making all of Ri∗ inactive. For simplicity, we focus our discussion on the first call to
ConditioningVerts, in which case Qi = Ri = ∅ for all i ≤ σ0 and Qσ0+1 and Rσ0+1 consist
of just one part that contains the entire graph.

One natural attempt at designing ExtendHierarchy is to do the following:

• For each i← σ0, σ0 − 1, . . . , 1,

– Let Ri be the set of parts with parents in Qi+1.

– Let Qi be the parts P ∈ Ri with near-maximum-size shortcutters.

This approach is a simple generalization of the algorithm SimpleConditioningVerts.
Unfortunately, it does not respect Key Idea 4.7.6 because parts P ∈ Pi(E) \ Ri could have
shortcutters SP that intersect some part in Qi+1. More concretely, this approach does not
work because there may be a part P ∈ Pσ0−2(E)\Rσ0−2 for which (a) SP intersects Qi+1 and
(b) SP is very large compared to the shortcutters of the parts in Qi. In this case, carving
would increase the conductance of SP too much (see Figure 4.7.1).

We deal with the above issue by allowing Qi to not necessarily be contained in Qi+1 and
picking Qi before Ri rather than the other way around. In particular, if there is a P ∈ Pi(E)
with a parent in Ri+1 for which (a) SP intersects Qi+1 and (b) SP is very large compared
to the shortcutters for the default choice of Qi described in the first attempt, switch Qi
to be all parts satisfying (a) that have near-maximum shortcutter size (similar to (b)). Of
course, the new choice for Qi may be bad for the exact same reasons as the original choice.
Luckily, though, this switching procedure can only happen σ1 times because each switch of
Qi increases the sizes of the shortcutters considered by an m1/σ1 factor.

The above approach also has the unfortunate property that chosen parts at level j for
j < i could make choices at higher levels unusable. To deal with this problem, we would
like all parts at lower levels to look as if they are part of Qi. One way of doing this is to
require chosen parts at level Qj to be close to Qi (see the “Vertical closeness” condition in
the definition of conditioning hierarchies). This suggests modifying the algorithm mentioned
in the previous paragraph to discuss the effective resistance metric:

• For each i = σ0, σ0 − 1, . . . , 1,

– Qi ← the set of parts of Pi(E) with parents in Qi+1

– While there is a part P ∈ Pi(E) with parent in Ri for which (a) SP intersects
Qi+1 (b) SP is much larger than shortcutters for parts in Qi and (c) P is not too
much farther away (say no more than 7 times farther away) from Qi+1 than some
part in the current value of Qi
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∗ Replace Qi with all parts P with parent in Ri that satisfy (a) and (c) with
near-maximum size.

– Ri ← all parts with parents in Ri that satisfy (a) and (c) for Qi

The irrelevant parts are far away, so Qi+1 can be carved out of their shortcutters. While
this algorithm works for call to ConditioningVerts, it happens to violate Key Idea 4.7.5.
Luckily, we can fix this issue by observing that the above strategy is part of a more general
family of strategies based on a digraph ConditioningDigraph at each level i. This digraph
is a digraph on parts in Pi(E) with parents in Ri+1. An edge is present in this digraph from
P → Q if and only if (1) P intersects SQ and (2) Q is not much farther from Qi+1 than P .
(1) and (2) are similar to (a) and (c) respectively.

As a result, the second attempt given above can be viewed as doing a BFS in this
digraph and making a histogram of sizes of shortcutters for parts at these distances. The
above strategy is equivalent to letting Qi be the set of parts corresponding to the closest
local maximum to the source Qi+1 in this histogram. See Figure 4.7.2 for a visual on
the construction of this histogram. This visual suggests a large family of strategies based
on finding local maxima in histograms. In ExtendHierarchy, we give a simple histogram
strategy which picks local maxima each time. This allows us to satisfy Key Idea 4.7.6.
However, this strategy also has the property that Ri shrinks across multiple conditioning
rounds. This ensures that Key Idea 4.7.5 is also respected.

There are other complications that we have not adequately addressed in this summary.
For example, it is a priori unclear if conditioning digraphs from one call to ConditioningVerts
relate in any way to conditioning digraphs in previous calls. Luckily, later digraphs are sub-
graphs of earlier digraphs, thanks to the “Containment” input condition, after modification
by the routine MakeNonedgesPermanent that does not increase conductivity much.

4.7.3 Conditioning hierarchies: the data structure for
representing parts to condition on

In this section, we formally define the data structure used to keep track of sets to condition
on: the conditioning hierarchy. We again encourage the reader to delay trying to understand
exactly how the Qis and Ris are constructed until Section 4.7.7, where ExtendHierarchy is
introduced.

Definition 4.7.7 (Conditioning hierarchies). Consider the empire E, a family of sets of
chosen parts {Qi}σ0i=1, and a family of sets of relevant parts {Ri}σ0i=1. The pair CH =
({Qi}σ0i=1, {Ri}σ0i=1) is called a conditioning hierarchy if the following properties are true for
all i ∈ [σ0]:

• (Horizontal containment) Qi ⊆ Ri ⊆ Pi(E)

• (Vertical containment) For every part P ∈ Ri, there is some Q ∈ Ri+1 for which
P ⊆ Q.
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• (Vertical closeness) Each vertex in a part of Qi is within distance

(µcarve/(100γtempγ
2
ann))α(i+1)/(σ0+1)rmin of some vertex in a part of Qi+1, where γtemp :=

4γdel.

The “Vertical closeness” property is in some sense a weaker version of the “Vertical
containment” property that applies to the chosen parts. While the chosen parts from different
hordes are not truly nested, they are close to chosen parts from higher hordes. Recall from
the end of the previous section that we do not want the Qis to be truly nested, as there may
be a much larger shortcutter that intersects Qi but whose core is outside of Qi.

As the conditioning algorithm proceeds, the “Containment” input condition allows us to
argue that conditioning hierarchies are in some sense contained within one another:

Definition 4.7.8 (Fitting of conditioning hierarchies). Consider two conditioning hierar-
chies CH = ({Qk}σ0k=1, {Rk}σ0k=1) and CH′ = ({Q′k}

σ0
k=1, {R′k}

σ0
k=1) for two (possibly different)

empires E and E ′.
CH i-fits within CH′ if both of the following conditions hold for all j ≥ i:

• (Q-fitting) For all P ∈ Qj, there is a Q ∈ Q′j for which P ⊆ Q.

• (R-fitting) For all P ∈ Rj, there is a Q ∈ R′j for which P ⊆ Q.

CH completely fits in CH′ if CH 1-fits in CH′.

Next, we define a property of chosen parts that will allow us to carve without substantially
increasing conductivity when combined with the “Vertical closeness” property of conditioning
hierarchies:

Definition 4.7.9 (Descendant size). Given an empire E and a part P ∈ Pi(E), the descen-
dant size of P , denoted DSize(E , P ), is the maximum number of edges incident with any
shortcutter for a descendant part:

DSize(E , P ) := max
Q∈∪j≤iPj(E):Q⊆P

|E(SQ) ∪ ∂SQ|

When understanding these concepts for the first time, it is helpful to think of defining
DSize(E , P ) as |E(SP ) ∪ ∂SP | instead of the maximum over all descendant parts. DSize is
used in place of |E(SP ) ∪ ∂SP | for reasons discussed in Section 4.7.4.

Definition 4.7.10 (Locally maximum conditioning hierarchies). Consider a conditioning
hierarchy CH = ({Qk}σ0k=1, {Rk}σ0k=1) for an empire E. CH is said to be locally maximum if
for all i ∈ [σ0] with Qi 6= ∅,

min
P∈Qj

DSize(E , P ) ≥ m−1/σ1 max
Q∈Rj

DSize(E , Q)
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ConditioningVerts keeps a conditioning hierarchy as continued state, along with a size
and distance parameter associated with each i ∈ [σ0]. The size parameter tracks the largest
size of a shortcutter for a part in Ri. We discuss the distance parameter in Section 4.7.4.
The conditioning hierarchy is initialized with Qi = ∅ for all i ∈ [σ0] and Ri = ∅ except
for i = σ0 + 1, for which Qσ0+1 = {V (G)} and Rσ0+1 = {V (G)}. On a particular call to
ConditioningVerts, it

• Picks the highest i for which both (1) Qi = ∅ and (2) all parts in Ri have inactive
shortcutters and calls this value i∗

• If a part in Ri∗ has an active shortcutter, ConditioningVerts uses a ball-growing
strategy (see ExtendHierarchy) to reselect the chosen and relevant parts for levels i∗

and below. After doing this, Q1 is selected for conditioning.

• Otherwise, Qi∗+1 can be conditioned on (see Proposition 4.7.19)

This process results in a conditioning hierarchy that i∗+1-fits in the previous conditioning
hierarchy. As a result, all sj for j > i∗ do not increase.

4.7.4 Conditioning digraphs: the metric used for choosing parts
to condition on

At the end of Section 4.7.2, we discussed the fact that picking parts to condition on based
on a plot of shortcutter DSizes versus “distance” would be a good strategy. We now define
ConditioningDigraph, from which that distance is defined.

The digraph ConditioningDigraph(E , i+1,Qi+1,Ri+1) is used to obtain Qi andRi from
Qi+1 from Ri+1.

Definition 4.7.11 (Conditioning Digraph). Consider an empire E defined in a graph H, an
index i ∈ [σ0], and a set of chosen parts Q ⊆ Pi(E), and a set of relevant parts R ⊆ Pi(E)
with Q ⊆ R. For each part P ∈ R, pick an arbitrary representative vertex vP ∈ P . The
digraph I = ConditioningDigraph(E , i,Q,R), called a temporary conditioning digraph, is
the digraph with vertex set V (I) = R and a directed edge (P,Q) ∈ E(I) if and only if all of
the following conditions hold, where D ← PreprocANN(H, {vP}P∈Q):

• (Permanent condition) There exists some descendant Q′ ∈ ∪j≤iPj(E) of Q for which
P intersects SQ′.

• (Temporary condition) JLReffH(vQ, ANND(vP )) ≤ 8γtempγann(JLReffH(vP , ANND(vP ))+
αi/(σ0+1)rmin) where JLReffH(a, b) for a, b ∈ V (H) denotes a multiplicative 2-approximation
to ReffH(a, b) given using Theorem 4.3.3.

The digraph J = PermanentConditioningDigraph(E , i,R), called a permanent condi-
tioning digraph, has vertex set V (J) = R and a directed edge (P,Q) ∈ E(I) if and only if
the “Permanent Condition” holds for the (P,Q) pair.
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The “Temporary condition” implies the following relevant metric properties thanks to the
“Closeness” guarantee of Theorem 4.3.6. We only use ANN in the definition of the temporary
condition for runtime purposes:

Corollary 4.7.12 (Temporary condition implications). Consider two different parts P,Q ∈
R and let Pmin := arg minP ′∈Q ReffH(vP , vP ′). If the pair of parts (P,Q) satisfies the “Tem-
porary condition,” then

ReffH(vQ, vPmin
) ≤ 34γtempγ

2
ann(ReffH(vP , vPmin

) + αi/(σ0+1)rmin)

If the pair does not satisfy the “Temporary condition,” then

ReffH(vQ, vPmin
) ≥ γtemp(ReffH(vP , vPmin

) + αi/(σ0+1)rmin)

Proof. Upper bound. Since the “Temporary condition” is satisfied,

JLReffH(vQ, ANND(vP )) ≤ 8γtempγann(JLReffH(vP , ANND(vP )) + αi/(σ0+1)rmin)

Since JLReffH is a 2-approximation to ReffH ,

ReffH(vQ, ANND(vP )) ≤ 32γtempγann(ReffH(vP , ANND(vP )) + αi/(σ0+1)rmin)

By Theorem 4.3.6,

ReffH(vQ, ANND(vP )) ≤ 32γtempγ
2
ann(ReffH(vP , vPmin

) + αi/(σ0+1)rmin)

By the triangle inequality and Theorem 4.3.6,

ReffH(vQ, vPmin
) ≤ ReffH(vQ, ANND(vP )) + ReffH(ANND(vP ), vP ) + ReffH(vP , vPmin

)

≤ 34γtempγ
2
ann(ReffH(vP , vPmin

) + αi/(σ0+1)rmin)

as desired.
Lower bound. Since the “Temporary condition” is not satisfied,

JLReffH(vQ, ANND(vP )) ≥ 8γtempγann(JLReffH(vP , ANND(vP )) + αi/(σ0+1)rmin)

By the approximation of JLReffH to ReffH ,

ReffH(vQ, ANND(vP )) ≥ 2γtempγann(ReffH(vP , ANND(vP )) + αi/(σ0+1)rmin)

By definition of Pmin,
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ReffH(vQ, ANND(vP )) ≥ 2γtempγann(ReffH(vP , vPmin
) + αi/(σ0+1)rmin)

By the triangle inequality and Theorem 4.3.6,

ReffH(vQ, vPmin
) ≥ ReffH(vQ, ANND(vP ))− ReffH(ANND(vP ), vP )− ReffH(vP , vPmin

)

≥ γtempγann(ReffH(vP , vPmin
) + αi/(σ0+1)rmin)

≥ γtemp(ReffH(vP , vPmin
) + αi/(σ0+1)rmin)

as desired.

Notice that the “Permanent condition” is slightly different from the condition (a) discused
in the last subsubsection of Section 4.7.2 in that we are interested in any intersection of
descendant shortcutters of Q with P , not just SQ with P . This is done for the same reason
that we use DSize in place of the actual size of SQ. Specifically, we use these definitions
because they guarantee that any edge in PermanentConditioningDigraph for level i is also
an edge in PermanentConditioningDigraph for higher levels:

Proposition 4.7.13 (Vertical monotonicity). Consider any empire E, two indices j < i ∈
[σ0], and two sets of parts Rj ⊆ Pj(E) and Ri ⊆ Pi(E) with every part in Rj having an
ancestor in Ri. Then for any (P,Q) ∈ PermanentConditioningDigraph(E , j,Rj),

(P ′, Q′) ∈ PermanentConditioningDigraph(E , i,Ri), where P ′ and Q′ are the ancestors
of P and Q respectively in Pi(E).

Proof. The permanence condition only gets more restrictive in lower levels. Therefore, if
(P,Q) ∈ PermanentConditioningDigraph(E , j,Rj),

the edge (P ′, Q′) ∈ PermanentConditioningDigraph(E , i,Ri), as desired.

ExtendHierarchy uses I ← ConditioningDigraph(E , i + 1,Qi+1,Ri+1) to define a di-
rected metric on the set R′i+1 ⊆ Pi(E) of parts with ancestors in Ri+1. Specifically, define a
(distance) function ddir on R′i+1 by letting ddir(Q) be the distance from Qi+1 to the parent
of Q in Ri+1 in the digraph I.

ExtendHierarchy could use ddir by picking some distance threshold j∗ + 1 from Qi+1,
letting Ri be the set of all P ∈ R′i+1 with ddir(P ) ≤ j∗ + 1, and defining Qi to be the set of
parts P ∈ Ri with ddir(P ) ≤ j∗ with near-largest shortcutter size. If it did this, R′i+1 \ Ri

would consist of parts that at least distance α(i+1)/(σ0+1)rmin from any of the chosen parts Qi.
Even better, theQis are at least γtemp times closer toQi+1 in the H-effective resistance metric
than any part in R′i+1 \ Ri. Therefore, the conditioning hierarchy being locally maximum
at level i + 1 shows that deleting all parts of Qi from shortcutters for parts in Qi+1 that
they have edges to does not increase the conductivity of E much. The upside of doing this is
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that all shortcutters for parts in R′i+1 \Ri have shortcutters that are carved with respect to
∪j≤i+1Qj, thus respecting Key Idea 4.7.6. This approach does not quite work across multiple
conditioning rounds, but is easily fixed in Section 4.7.7 by using j∗+ (2σ1)i instead of j∗+ 1.

The previous paragraph suggests that conditioning digraphs can be used to pick good
parts to condition on once. To pick good parts to condition on multiple times, we need to
show that (a) distances only grow in conditioning digraphs and (b) parts chosen at lower
levels cannot intersect shortcutters for parts in higher levels that were declared irrelevant.
We discuss concern (a) in Section 4.7.5, while we discuss concern (b) in Section 4.7.7.

Fast computation with conditioning digraphs

We now show that computations involving conditioning digraphs are cheap. These graphs
may be very dense, but luckily they are not dense compared to the input graph H:

Proposition 4.7.14. The conditioning digraphs has two nice computational properties:

• (Size) ConditioningDigraph(E , i,Q,R) and

PermanentConditioningDigraph(E , i,R) have at most m1+o(1) edges.

• (Computation time) The graphs ConditioningDigraph(E , i,Q,R) and

PermanentConditioningDigraph(E , i,R) can be computed in m1+o(1) time.

Proof. Size. It suffices to bound the number of possible intersections between a cluster P
and a shortcutter SQ (property (1) for edge existence). Each intersection must contain a
vertex and each vertex is only in one shortcutter in each clan. Since there are only mo(1)

clans in E , only (mo(1))2 ≤ mo(1) pairwise intersections can involve this vertex. Therefore,
there are at most nmo(1) ≤ m1+o(1) candidate pairs that satisfy (1).

Computation time. For each candidate edge described in the “Size” part, it takes two
approximate nearest neighbor calls to check whether then “Temporary condition” is satisfied.
By Theorems 4.3.6 and 4.3.3, these queries take Õ(1) time each, with Õ(m) preprocessing
time up front. Therefore, it only takes m1+o(1) time to compute ConditioningDigraph.

Since this graph has almost-linear size, ConditioningDigraph(E , i,Q,R)
and PermanentConditioningDigraph(E , i,R)-distances from all parts in Q to each part

in R can be computed in total time m1+o(1).

4.7.5 Maintained state across multiple conditioning rounds (and
deleting far-away conditioned vertices) using
MakeNonedgesPermanent

In this section, we deal with issue (a) raised in the previous section by turning nonedges
that do not satisfy the “Temporary condition” into ones that do not satisfy the “Permanent
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condition.” We start by showing that the permanent conditioning digraph at each level only
gets smaller:

Proposition 4.7.15 (Permanent horizontal monotonicity). Consider two empires E ′prev and
E that satisfy the “Containment” input condition in Definition 4.4.14. Consider some
i ∈ [σ0] and relevant sets R′prev ⊆ Pi(E ′prev) and R ⊆ Pi(E). Suppose that each part
P ∈ R is contained in some (unique by “Containment”) part Q ∈ R′prev. Let I ′prev :=
PermanentConditioningDigraph(E ′prev, i,R′prev)
and I := PermanentConditioningDigraph(E , i,R). Consider any parts P, P ′ ∈ V (I) and
let Q,Q′ ∈ V (I ′prev) be the unique parts that contain P and P ′ respectively. If (P, P ′) ∈ E(I),
then (Q,Q′) ∈ E(I ′prev).

Proof. Since (P, P ′) ∈ E(I), there exists a descendant W ′ ∈ Pj(E) of P ′ for which P
intersects SW ′ for some j ≤ i. Let U ′ ∈ Pj(E ′prev) be the unique part for which W ′ ⊆ U ′. This
exists by the “Containment” input condition in Definition 4.4.14. Also by “Containment,”
SW ′ ⊆ SU ′ . Therefore, SU ′ intersects Q since P ⊆ Q.

Now, we just need to show that U ′ is a descendant of Q′; i.e. that U ′ ⊆ Q′. W ′ ⊆ P ′ since
W ′ is a descendant of P ′. P ′ ⊆ Q′ by definition of Q′. W ′ ⊆ U ′ by definition of U ′, which
means that U ′ ∩Q′ 6= ∅. Since the overlay partitions of any empire form a laminar family of
sets, this means that U ′ ⊆ Q′ or that Q′ ⊆ U ′. Since U ′ is in a lower horde than Q′, U ′ ⊆ Q′.
Therefore, Q′ has a descendant whose shortcutter intersects Q, so (Q,Q′) ∈ E(I ′prev), as
desired.

Proposition 4.7.15 only reasons about containment of permanent conditioning digraphs
between applications of ConditioningVerts. In particular, it does not say anything a priori
about containment of temporary conditioning digraphs. In general, temporary conditioning
digraphs may not be contained within prior conditioning digraphs because conditioning can
substantially change the effective resistance metric of a graph. We show that the shortcutters
in E can be modified to make temporary conditioning digraphs into permanent ones. As
long as the Qs defining each temporary conditioning digraph are part of a locally maximum
conditioning hierarchy, this modification does not substantially increase the conductivity of
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E .

Algorithm 7: MakeNonedgesPermanent(E , i,Q,R)

1 foreach clan C in the horde Ei of E do
2 split C into clans C0, C1, . . . , Clogm, where Cj consists of all shortcutters in C with

between 2j and 2j+1 incident edges

3 end
4 I ← ConditioningDigraph(E , i,Q,R)
5 foreach pair (P,Q) with P,Q ∈ R and P intersecting SQ′ for some descendant Q′ of
Q do

6 if (P,Q) /∈ E(I) then
7 foreach descendant Q′ of Q do
8 SQ′ ← SQ′ \ P
9 end

10 end

11 end

Proposition 4.7.16. MakeNonedgesPermanent(E , i,Q,R) takes an empire E, an index i,
a set of parts R ⊆ Pi(E), and a set of parts Q ⊆ R.

Suppose that that the locally maximum condition holds; i.e. that

min
P∈Q

DSize(E , P ) ≥ m−1/σ1 max
P∈R

DSize(E , P )

Then MakeNonedgesPermanent deletes vertices from shortcutters in E and splits clans
to obtain an empire E ′ with the following guarantees:

• (Permanence) PermanentConditioningDigraph(E ′, i,R) is a subdigraph of

ConditioningDigraph(E , i,Q,R).

• (Conductivity and number of clans) If E is ζ-conductive, then E ′ is ζ+(log n)µapp(`max+
τ)-conductive. Furthermore, |E ′i| ≤ O(log n)|Ei| for all i ∈ [σ0].

Furthermore, MakeNonedgesPermanent takes almost-linear time.

Proof. Permanence. Line 8 removes any intersection between two parts with no edge from
one to the other, thus ensuring that any nonedge in ConditioningDigraph(E , i,Q,R), which
may satisfy the “Permanent condition,” does not satisfy it in E ′.

Conductivity and number of clans. Removing shortcutters from a clan cannot
decrease its effective size, so sCk ≤ sC for all k ∈ {0, 1, . . . , logm}. Therefore, the number of
clans grew by a factor of at most O(log n).

Now, we bound the increase in conductivity. It suffices to consider a clan Ck ∈ Ej for
some j ≤ i that contains a shortcutter for a descendant of a part P∗ ∈ R. Otherwise, no
shortcutter in Ck is modified by Line 8, which means that its conductivity does not increase.
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We start by characterizing the removals done by Line 8 in a simpler way. Let Nz be a
set of clusters with radius 2zαi/(σ0+1)rmin that contain all vertices with H-effective resistance
distance at most 2zαi/(σ0+1)rmin from Q. Then all vertex removals done by Line 8 are also
done by, for all z ∈ {0, 1, . . . , logm}, removing the clusters in Nz from shortcutters for
cores in Ck with H-distance greater than γtemp2zαi/(σ0+1)rmin from Nz. This holds by the
“Temporary condition” not being satisfied for nonedges of ConditioningDigraph(E , i,Q,R)
and Corollary 4.7.12.

Now, we bound the effect of deleting Nz for one z ∈ {0, 1, . . . , logm} from shortcutters
for γtemp-separated cores in Ck. We start by bounding |Nz| in terms of sCk . Start by noticing
to bound |Nz|, it suffices to bound the number of O(αi/(σ0+1)rmin) H-effective resistance
diameter clusters needed to cover all parts in Q. By definition of DSize(E , P ′), there is a
shortcutter with core in Ej for some j ≤ i whose size is ρ = DSize(E , P ′) that intersects
P ′. Each clan has at most m/ρ such shortcutters. Furthermore, this core has H-effective
resistance diameter αj/(σ0+1)rmin ≤ αi/(σ0+1)rmin. “Assigning” a part P ′ ∈ Q to the core of
the maximum size descendant shortcutter therefore shows that,

|Nz| ≤ (
i∑

i′=1

|Ei′|)
m

minQ∈Q DSize(E , Q)

≤ `maxm

minQ∈Q DSize(E , Q)

By the “Locally maximum” input condition,

`maxm

minQ∈Q DSize(E , Q)
≤ `maxm

1+1/σ1

maxQ∈R DSize(E , Q)

Since Ck contains a shortcutter for a descendant of a part in R,

`maxm
1+1/σ1

maxQ∈R DSize(E , Q)
≤ `maxm

1+1/σ1

minC∈Ck |E(SC) ∪ ∂SC |
By definition of Ck on Line 2,

`maxm
1+1/σ1

minC∈Ck |E(SC) ∪ ∂SC |
≤ 2`maxm

1+1/σ1

maxC∈Ck |E(SC) ∪ ∂SC |
By definition of sCk ,

|Nz| ≤
2`maxm

1+1/σ1

maxC∈Ck |E(SC) ∪ ∂SC |
≤ 2`maxm

1/σ1sCk

Therefore, by Proposition 4.7.1 applied to L ← Nz and C ← Ck, Line 8 only additively
increases the conductivity of Ck by µapp(2`max + τ). Therefore, summing over each z ∈
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{0, 1, 2, . . . , logm} shows that the total increase in conductivity of Ck due to Line 8 is at
most (logm)µapp(2`max + τ), as desired.

Runtime. Looping over intersecting pairs takes m1+o(1) time. Checking the presence of
an edge takes constant time. Therefore, this procedure takes m1+o(1) time.

Now, we are ready to prove the main result of this section. Specifically, applying
MakeNonedgesPermanent to each temporary conditioning digraph ensures that temporary
conditioning digraphs from later applications of ConditioningVerts are contained in earlier
ones:

Lemma 4.7.17 (Temporary horizontal monotonicity). Consider some i ∈ [σ0] and two
conditioning hierarchies CHprev = ({Qprevi }σ0i=1, {R

prev
i }σ0i=1) and CH = ({Qi}σ0i=1, {Ri}σ0i=1) for

the empires Eprev and E in graphs Hprev and H respectively.
Define an empire E ′prev in Hprev that satisfies the following conditions:

• (E ′prev description) E ′prev is obtained by applying MakeNonedgesPermanent(Eprev, i,Qprevi ,Rprev
i )

for each i and letting E ′prev ← Eprev afterwards.

• (Containment) E ′prev and E satisfy the “Containment” input condition in Definition
4.4.14.

• (Locally maximum) CHprev is locally maximum.

For each i, let I := ConditioningDigraph(E , i,Qi,Ri) and
Iprev := ConditioningDigraph(Eprev, i,Qprevi ,Rprev

i ). Consider any parts P, P ′ ∈ V (I)
and let Q,Q′ ∈ V (Iprev) be the unique parts that contain P and P ′ respectively. If (P, P ′) ∈
E(I), then (Q,Q′) ∈ E(Iprev).

Proof. Since edges in ConditioningDigraph are more constrained then those in
PermanentConditioningDigraph, I is a subdigraph of PermanentConditioningDigraph(E , i,Ri).

Therefore,

(P, P ′) ∈ E(PermanentConditioningDigraph(E , i,Ri))

By the “Containment” condition of this lemma, Proposition 4.7.15 applies and shows
that

(Q,Q′) ∈ E(PermanentConditioningDigraph(E ′prev, i,R
prev
i ))

By the “E ′prev description” and “Locally maximum” conditions, Proposition 4.7.16 ap-
plies. By the “Permanence” guarantee of Proposition 4.7.16,
PermanentConditioningDigraph(E ′prev, i,R

prev
i ) is a subdigraph of Iprev, which means that

(Q,Q′) ∈ E(Iprev)

as desired.
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4.7.6 MakeNonedgesPermanent implies carving as a side effect

In this section, we define carvable conditioning hierarchies and show that the empire E
associated with a conditioning hierarchy is carved with respect to the bottom of the hierarchy.
In later sections, we will show that ConditioningVerts maintains a carvable conditioning
hierarchy, which will make it easy to show Lemma 4.4.15.

Definition 4.7.18 (Carvable conditioning hierarchies). Consider an empire E and two fam-
ilies of sets {Qi}σ0i=1 and {Ri}σ0i=1. We say that the pair ({Qi}σ0i=1, {Ri}σ0i=1) is carvable if
satisfies the following properties for all i ∈ [σ0]:

• (Horizontal containment) Qi ⊆ Ri ⊆ Pi(E)

• (Vertical containment) For every part P ∈ Ri, there is some Q ∈ Ri+1 for which
P ⊆ Q.

• (Strong vertical closeness) The Ri+1 parent of each part in Qi is within distance
(2σ1)(4σ1)i of some part in Qi+1 in ConditioningDigraph(E , i+ 1,Qi+1,Ri+1).

• (Locally maximum) If Qi 6= ∅, minP∈Qi DSize(E , P ) ≥ m−1/σ1 maxQ∈Ri DSize(E , Q).

• (Irrelevant parts are far away) Any part P ∈ Pi(E) \ Ri with parent Q ∈ Ri+1 has
the property that Q is at least distance (4σ1)i from any parent of a part in Qi in the
digraph ConditioningDigraph(E , i+ 1,Qi+1,Ri+1).

The above definition does not specifically call the ({Qi}σ0i=1, {Ri}σ0i=1) pair a conditioning
hierarchy. We now show that it is. This allows us to call such a pair of families of sets a
carvable conditioning hierarchy for E :

Remark 8. A carvable pair of families of sets ({Qi}σ0i=1, {Ri}σ0i=1) for E is a locally maximum
conditioning hierarchy.

Proof. Horizontal containment, vertical containment, and locally maximum. All
of these conditions are exactly the same as the definitions for conditioning hierarchies.

Vertical closeness. Consider the shortest path P = P0 → P1 → . . . → Pt = Q
in ConditioningDigraph(E , i + 1,Qi+1,Ri+1) from a part P ∈ Qi+1 to the parent of a
part Q ∈ Qi. By Corollary 4.7.12 and the triangle inequality, all vertices in Q are at
most distance (34γtempγ

2
ann)tα(i+1)/(σ0+1)rmin from Qi+1 in the effective resistance metric

of H, the graph associated with E . By the “Strong vertical closeness” condition, t ≤
(2σ1)(4σ1)i. Since (34γtempγ

2
ann)(2σ1)(4σ1)i ≤ (µcarve/(100γtempγ

2
ann)), all vertices in Q are at

most (µcarve/(100γtempγ
2
ann))α(i+1)/(σ0+1)rmin-distance away from P ∈ Qi+1, as desired.

Now, we show that applying MakeNonedgesPermanent for each i ∈ [σ0] does the required
amount of carving:
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Proposition 4.7.19. Consider the empire E and a carvable conditioning hierarchy CH =
({Qi}σ0i=1, {Ri}σ0i=1) for E. Obtain an empire E ′ by applying MakeNonedgesPermanent(E , i,Qi,Ri)
for each i ∈ [σ0] and letting E ′ be E at the end. E ′ has the following property:

• (Carving) For each active part P , let Q ∈ Pi∗(E) be the smallest ancestor of P (possibly
P ) for which Q ∈ Ri∗. Then SP is carved with respect to ∪j≤i∗Qj.

Proof. Well-definedness. We just need to make sure that the input conditions for
MakeNonedgesPermanent are satisfied. Qi ⊆ Ri because CH is a conditioning hierarchy.

Since CH is locally maximum,

min
P∈Qi

DSize(E , P ) ≥ m−1/σ1 max
P∈Ri

DSize(E , P )

for all i ∈ [σ0]. This is the remaining input condition to MakeNonedgesPermanent.
Carving. Let i′ ≤ i∗ be the value for which P ∈ Pi′(E). Break the reasoning up into

two cases:
i′ < i∗. By the “Irrelevant parts are far away” condition of carvable conditioning hierar-

chies, the distance from any part in Qi∗ to Q in PermanentConditioningDigraph(E ′, i∗,Ri∗)
is at least (4σ1)i

∗−1. By “Strong vertical closeness” for all j < i∗ and Proposition 4.7.13, the
distance from Qi∗ to any Pi∗(E)-ancestor of a part in Qj is at most

(2σ1)((4σ1)i
∗−2 + (4σ1)i

∗−3 + . . .+ 1) < (4σ1)i
∗−1 − 1

In particular, no Pi∗(E)-ancestor of a part in Qj for any j ≤ i∗ has an edge to Q in
PermanentConditioningDigraph(E ′, i∗,Ri∗). Therefore, since the “Permanent condi-

tion” is not satisfied for nonedges of this graph and P ⊆ Q, SP does not intersect any part
in ∪j≤i∗Qj, which is the desired carving property.

i′ = i∗. In this case, P = Q ∈ Ri∗ . Consider any X ∈ Qj for some j ≤ i∗ that intersects
SP and let Y be its ancestor in Pi∗(E). By “Vertical containment,” Y ∈ Ri∗ . Let Ymin =
arg minY ′∈Qi∗ ReffH(vY , vY ′). By “Vertical closeness” and the triangle inequality,

ReffH(vY , vYmin
) ≤ (µcarve/(100γtempγ

2
ann))α(i∗)/(σ0+1)rmin

By construction of E ′, Lemma 4.7.17 applies. Therefore, edges in
PermanentConditioningDigraph(E ′, i∗,Ri∗) also satisfy the “Temporary condition,” which

means that

ReffH(vP , vYmin
) ≤ (34γtempγ

2
ann)(ReffH(vY , vYmin

) + α(i∗)/(σ0+1)rmin)

by Corollary 4.7.12. By the triangle inequality and the previous two inequalities,

ReffH(vP , vY ) ≤ ReffH(vP , vYmin
) + ReffH(vYmin

, vY )

≤ (µcarve/2)α(i∗)/(σ0+1)rmin
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Therefore, by α(i∗)/(σ0+1)rmin-boundedness of Ei∗ and the triangle inequality, all vertices
of X are within distance µcarveα

(i∗)/(σ0+1)rmin of P , which means that SP is carved with
respect to ∪j≤i∗Qj, as desired.

4.7.7 Deciding on parts to condition on from Pi(E) given a choice
from Pi+1(E)

In the previous section, we defined carvable conditioning hierarchies. Proposition 4.7.19
shows that MakeNonedgesPermanent makes E carved with respect to the lowest Qi with
active shortcutters. In this section, we give an algorithm, ExtendHierarchy, which adds
one level to the bottom of a carvable conditioning hierarchy. ExtendHierarchy extends
carvable conditioning hierarchies while ensuring that if we can condition on Qi, we make a
substantial amount of progress. We now define conditioning hierarchies for which substantial
progress can be made at any level:

Definition 4.7.20 (Advanceable conditioning hierarchies). Consider an empire E, a con-
ditioning hierarchy CH = ({Qi}σ0i=1, {Ri}σ0i=1) for E, and a tuple of distance indices (ji)

σ0
i=1.

CH is advanceable for (ji)
σ0
i=1 if the following holds for all i ∈ [σ0]:

• (All local maxima) Let si := blogm1/σ1 (maxP∈Ri DSize(E , P ))c. Then Qi contains all
parts Q ∈ Ri whose Pi+1(E) parents are within distance ji(4σ1)i of some part in Qi+1

in

ConditioningDigraph(E , i+ 1,Qi+1,Ri+1) with DSize(E , Q) ≥ msi/σ1.

• (Relevant set bound) When Qi+1 6= ∅, Ri contains the set of parts whose Pi+1(E)
parents are within distance (ji + 1)(4σ1)i of Qi+1 in ConditioningDigraph(E , i +
1,Qi+1,Ri+1).

The “All local maxima” condition, when coupled with the “Progress” input condition for
ConditioningVerts, shows that conditioning on Qi replaces the word of sizes sσ0+1sσ0 . . . s1

with a lexicographically smaller word, as desired in Key Idea 4.7.5. The “Relevant set bound”
is used to show that relevant sets only get smaller in the output of ExtendHierarchy.

We now give an algorithm ExtendHierarchy that adds an additional level to a carvable
conditioning hierarchy that is advanceable for some tuple of indices that is lexicographically
smaller than the previous tuple. The intuition behind ExtendHierarchy is that the distance
index j∗ returned has the property that parts just beyond that distance (within distance
(j∗ + 1)(4σ1)i) do not have larger shortcutters. As a result, after “Temporary condition”
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nonedges are converted into “Permanent condition” nonedges, the shortcutters with parts
that are farther than distance (j∗ + 1)(4σ1)i respect Key Idea 4.7.6.

Algorithm 8: ExtendHierarchy(E , i,Qi+1,Ri+1, jprev)

1 I ← ConditioningDigraph(E , i+ 1,Qi+1,Ri+1)
2 foreach j ∈ {0, 1, 2, . . . , 2σ1} do
3 Q′j ← the set of parts in Pi(E) with Pi+1(E) parents that are in Ri+1 and have

distance at most j(4σ1)i from Qi+1 in I
4 sj ← blogm1/σ1 (maxQ∈Q′j DSize(E , Q)c
5 end
// selection rule: pick the maximum local maximum closer than the

previous one

6 j∗ ← arg maxj:(1)sj+1=sj and (2)j≤jprev j
// condition on all parts with shortcutters with size in the sj∗ bucket

7 return (j∗, sj∗, all parts Q in Q′j∗ with DSize(E , Q) ≥ msj∗/σ1, all parts Q in Q′j∗+1)

Proposition 4.7.21. ExtendHierarchy(E , i,Qi+1,Ri+1, jprev) takes in an empire E, an in-
dex i, and Qi+1 and Ri+1 for a carvable conditioning hierarchy CH = ({Qk}σ0k=1, {Rk}σ0k=1)
that is advanceable with respect to some distance indices (jk)

σ0
k=1 with ji = jprev. If

• jprev ≥ σ1

• Qk = ∅ for all k ≤ i

then ExtendHierarchy(E , i,Qi+1,Ri+1, jprev) returns j′i, sj′i, Qi, and Ri that, when added
to CH, make it have the following properties:

• (Carvable) CH is a carvable conditioning hierarchy for E.

• (Advanceable) CH is advanceable for the distance indices (j′k)
σ0
k=1, where j′k = jk for all

k > i and

ji − (sji − sj′i)− 1 ≤ j′i ≤ ji

• (Strong relevant set bound) Ri is the set of parts whose Pi+1(E) parents are within
distance (j′i + 1)(4σ1)i of Qi+1 in ConditioningDigraph(E , i+ 1,Qi+1,Ri+1).

Proof. Well-definedness. It suffices to show that the optimization problem on Line 6 is
feasible. Since Q′j ⊆ Q′j+1 for all j, sj ≤ sj+1 for all j. Since jprev > σ1 + 2 and the sjs are
integers between 0 and σ1 inclusive, there must exist a j ≤ jprev that satisfies condition (1)
of the optimization problem on Line 6. Therefore, the algorithm is well-defined.

Carvable conditioning hierarchy.
Horizontal containment. Follows from the fact that Q′j ⊆ Q′j+1 for all j.
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Vertical containment. All of the parts in Q′j∗+1 have parents in Ri+1.
Strong vertical closeness. The algorithm only considers j ≤ 2σ1.
Locally maximum. This is the definition of sj∗ and Qj∗ .
Irrelevant parts are far away. All parts in Pi(E)\Ri have parents in ConditioningDigraph(E , i+

1,Qi+1,Ri+1) with distance greater than (j∗+ 1)(4σ1)i from Qi+1, while all parts in Qi have
distance at most j∗(4σ1)i from Qi+1. Therefore, by the triangle inequality, the distance from
parents of Qi to any parent of a part in Pi(E) \ Ri is at least (4σ1)i as long as the parent
is in Ri+1. Otherwise, the desired bound follows from the fact that CH satisfied “Irrelevant
parts are far away” on higher levels along with Proposition 4.7.13.

Advanceable.
j′i bound. In the output, j′i ← j∗, so we just need to bound j∗. j∗ ≤ jprev by condition

(2) for j∗. For all j, sj+1 ≥ sj. This combined with condition (1) shows that for all j > j∗,
sj+1 ≥ sj + 1. Therefore, sjprev − sj∗ ≥ jprev − j∗− 1. Rearrangement gives the desired lower
bound.

All local maxima. By definition in the output,Qj′i contains all parts P with DSize(E , P ) ≥
m
sj′
i
/σ1 . This is the desired property by Line 4.

Strong relevant set bound. This is the definition of Q′j′i+1.

4.7.8 ConditioningVerts

Now, we implement ConditioningVerts, which returns parts to condition on in order to
satisfy Lemmas 4.4.15 and 4.4.16. ConditioningVerts maintains a carvable conditioning
hierarchy that is advanceable for distance indices (ji)

σ0
i=1. While maintaining such a hierarchy

is relatively simple (just get rid of anything outside of the promised distances/sizes), many
lower level Qis will become empty. To make more progress, ConditioningVerts applies
ExtendHierarchy to refill the lower Qis with parts for smaller shortcutters than before.
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Algorithm 9: ConditioningVerts(E) initialization

// Initialization; only occurs on first ConditioningVerts call

1 Qσ0+1 ← {V (G)}
2 Rσ0+1 ← {V (G)}
3 sσ0+1 ← σ1

4 jσ0+1 ← 2σ1

5 for i = {1, 2, . . . , σ0} do
6 Qi ← ∅
7 Ri ← ∅
8 si ← σ1

9 ji ← 2σ1

10 end
// End initialization

Algorithm 10: ConditioningVerts(E) each execution

1 for i = {σ0, σ0 − 1, . . . , 2, 1} do
2 Qi ← refinement of Qi by Pi(E), with all parts with shortcutters of size either (a)

below msi/σ1 or (b) parent distance to Qi+1 in
ConditioningDigraph(E , i+ 1,Qi+1,Ri+1) farther than ji(4σ1)i removed

3 Ri ← refinement of Ri by Pi(E)

4 end
// claim: always exists

5 i∗ ← maximum i for which Qi = ∅
6 if si∗ = 0 then

// can condition on i∗ + 1 directly, as no i∗ shortcutters are active

7 Postprocess(E)
8 return Qi∗+1

9 else
10 Set all jis to 2σ1 for i < i∗

11 for i = i∗, i∗ − 1, . . . , 1 do
12 (ji, si,Qi,Ri)← ExtendHierarchy(E , i,Qi+1,Ri+1, ji)
13 end
14 Postprocess(E)
15 return Q1

16 end

Algorithm 11: Postprocess(E), which shares state with ConditioningVerts

1 for i = {1, 2, . . . , σ0} do
2 MakeNonedgesPermanent(E , i,Qi,Ri)
3 end
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We start by checking that this algorithm is well-defined. In doing so, we also describe
the conditioning hierarchy throughout the algorithm:

Proposition 4.7.22. ConditioningVerts is well-defined. More precisely, all of the input
conditions for algorithms called are met.

Furthermore, CH = ({Qi}σ0i=1, {Ri}σ0i=1) is a carvable conditioning hierarchy that is ad-
vanceable for the distance indices (ji)

σ0
i=1 between the end of the first for loop and the Postprocess

call.

Proof. We inductively show that call k to ConditioningVerts is well-defined. In partic-
ular, we show that i∗ always exists and that the input conditions to ExtendHierarchy,
MakeNonedgesPermanent, and Proposition 4.7.19 are satisfied. In this induction, we also
show that the carvable and advanceable conditions are maintained.

Base case. During the first call to ConditioningVerts, i∗ = σ0 because everything
besides Qσ0+1 is initialized to the empty set. The input conditions to ExtendHierarchy for
each i are satisfied because ji = 2σ1 ≥ σ1 and the “Carvable” and “Advanceable” guarantees
from the level i+1 application of ExtendHierarchy. The “Carvable” guarantee ensures that
the input conditions for both MakeNonedgesPermanent and Proposition 4.7.19 are satisfied.
This completes the proof that the first call to ConditioningVerts is well-defined and that
CH is carvable and advanceable in the desired line range.

Call k for k > 1 i∗ existence. Consider the set Qiprev returned during the (k − 1)th
call to ConditioningVerts. By the “Progress” input condition to ConditioningVerts,
every part P ∈ Qiprev has the property that E(P ) = ∅ at the beginning of the kth call to
ConditioningVerts. In particular, Line 2 eliminates P from Qiprev . In particular, Qiprev = ∅
after Line 2. In particular, the optimization problem defining i∗ is feasible, so i∗ exists.

Call k for k > 1 ExtendHierarchy jprev feasibility. It suffices to show that ji ≥ σ1 +si
after each execution of ConditioningVerts, because si ≥ 0 for all i. When ji is set to 2σ1,
ji ≥ σ1 + si holds trivially. Only ExtendHierarchy changes ji to some other value. When it
does this during the lth call to ConditioningVerts for l < k,

jli ≥ jl−1
i − ((sl−1

i − 1)− sli)− 1 ≥ jl−1
i − (sl−1

i − sli)
by Proposition 4.7.21 inductively working in earlier ConditioningVerts calls. The su-

perscript denotes the value after the lth call to ConditioningVerts. The (sl−1
i − 1) bound

holds because when Qi becomes empty, si decreases. By the inductive hypothesis,

jl−1
i ≥ σ1 + sl−1

i

Conbining these two inequalities shows that jli ≥ σ1 + sli. This completes the inductive
step and shows that ji ≥ σ1 + si ≥ σ1 before the kth call to ConditioningVerts. Therefore,
the jprev argument supplied to ExtendHierarchy is always at least σ1 +sl−1

i ≥ σ1, as desired.
Call k for k > 1 carvable. Suppose that during call k−1 for k > 1 to ConditioningVerts,

CH is a carvable conditioning hierarchy just before Postprocess. After Postprocess from
call k − 1, CH has not changed, as Propositions 4.7.16 and 4.7.19 imply that Postprocess
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does not modify CH. Therefore, CH is still a locally maximum conditioning hierarchy at this
point that satisfies the “Irrelevant parts are far away” condition. The conditions of Lemma
4.7.17 are satisfied, so distances in each temporary conditioning digraph do not decrease
between the end of call k − 1 and the beginning of call k. Therefore, the “Irrelevant parts
are far away” condition still applies. Line 2 maintains “Horizontal containment,”“Vertical
containment,” and “Locally maximum” while restoring “Strong vertical closeness.”

Therefore, ({Qi}σ0i=1, {Ri}σ0i=1) is a carvable conditioning hiearchy at the end of the first for
loop. Since ExtendHierarchy maintains carvable conditioning hierarchies, ({Qi}σ0i=1, {Ri}σ0i=1)
is a carvable conditioning hierarchy when Postprocess is called during the kth call to
ConditioningVerts. This completes the inductive step.

Call k for k > 1 advanceable. Suppose that during call k−1 for k > 1 to ConditioningVerts,
CH is an advanceable conditioning hierarchy for indices (ji)

σ0
i=1. By Lemma 4.7.17, condition-

ing digraph distances only increase, which means that the “Relevant set bound” continues to
at the beginning of ConditioningVerts call k. Line 2 restores the “All local maxima” prop-
erty. These are both of the conditions for CH being advanceable, so CH is advanceable for
(ji)

σ0
i=1 after the first for loop. ExtendHierarchy maintains advanceability. This completes

the inductive step.
Call k for k > 1 ExtendHierarchy. We have already shown that CH is carvable and

advanceable before the for loop containing Line 12. Furthermore, we have already shown
that ji ≥ σ1. These are all of the conditions for ExtendHierarchy.

Call k for k > 1 MakeNonedgesPermanent. CH is carvable when it is supplied to
Postprocess. This is a sufficient input condition for MakeNonedgesPermanent.

4.7.9 Proof of Lemmas 4.4.15 (conductivity not increased much)
and 4.4.16 (enough progress is made)

Now, we are finally ready to show that ConditioningVerts satisfies Lemmas 4.4.15 and
4.4.16.

Lemma 4.4.15. Given an empire E = {Ei}σ0i=1 in a graph H that satisfies the input conditions
given in Definition 4.4.14, ConditioningVerts(E) returns a set of parts K to condition on
and removes vertices from the shortcutters in the empire E to obtain E ′. Let S = ∪P∈KP ⊆
V (H). Then the following guarantees are satisfied:

• (Conductivity) E ′ is a bucketed, τ -modified, ζ + 10(logm)µapp(`max + τ)-conductive,
well-spaced, κ-bounded empire that satisfies the deletion set condition.

• (Carving) E ′ is carved with respect to S.

Proof of Lemma 4.4.15. Conductivity and clan count. By Proposition 4.7.22, the input
to both MakeNonedgesPermanent is a carvable conditioning hierarchy. Therefore, the “Con-
ductivity” guarantee of Proposition 4.7.16 shows the desired conductivity increase. These
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propositions also show that the number of levels only increases by a factor of O(log n). No
other parameters increase, as desired.

Carving. Proposition 4.7.19 implies that all shortcutters in E ′ are carved with respect
to Q1. When si∗ = 0, all parts in Ri∗ have inactive shortcutters, so they do not need to be
carved.

Now, consider any part P ∈ Pk(E) \ Rk for some k ≤ i∗ with E(P ) 6= ∅. Let Q be the
ancestor of P in Rj for minimum j. Since E(P ) 6= ∅ and si∗ = 0, j > i∗, which means that
SP is carved with respect to Qi∗+1 by Proposition 4.7.19.

The shortcutters in ∪`≥i∗+1E` are carved with respect to vertices in parts of Qi∗+1 by
Proposition 4.7.19. Therefore, all shortcutters are carved with respect to Qi∗+1 if si∗ = 0, as
desired.

The proof of Lemma 4.4.16 shows that enough progress is made by showing that each
conditioning round lexicographically decreases the word sσ0sσ0−1 . . . s2s1:

Lemma 4.4.16. Consider a sequence of calls Kj ← ConditioningVerts(E j) that modifies
E j to obtain (E j)′. Suppose that Hj is the graph in which E j is defined. Suppose that for
each j > 0, E ← E j, Eprev ← E j−1, Kprev ← Kj−1 satisfies the input conditions in Definition
4.4.14. Let

jfinal = (2σ1)2σ0

Then E(Hjfinal) = ∅.

Proof of Lemma 4.4.16. By the “Relevant set bound,” Lemma 4.7.17, and the “Strong rele-
vant set bound,”Ri decreases (all parts replaced with subsets) during an interval of iterations
in which i∗ ≤ i. If si∗ > 0, then si∗ strictly decreases by the “All local maxima” condition
defining the sis. Furthermore, the sis for i > i∗ do not increase by the “Containment” input
condition. In particular, the new word is lexicographically smaller than the old one.

Therefore, we just need to consider the case in which si∗ = 0. In this case, the “Progress”
input condition implies that si∗+1 decreases in the next call to ConditioningVerts. By
“Containment,” si for i > i∗ + 1 does not increase. Therefore, the new word is again
lexicographically smaller than the old one. These are all of the cases. The desired bound
on the number of conditioning rounds follows from the fact that there are only σσ01 possible
words.
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Algorithm
Shortcutting

method
σ0 Runtime

[2, 18] N\A 0 O(mn)
[46] Offline 1 O(m

√
n)

[73] Offline 2 O(m4/3)

This paper Online Θ
(

log logn
log log logn

)
m1+O( log log log n

log log n )

= m1+o(1)

Table 4.2.1: Shortcutting methods, number of shortcutters, and runtimes for prior algorithms

Shortcutting method Preprocessing Query

Online None Õ(|E(Su) ∪ ∂Su|)
Offline Õ(|E(Su) ∪ ∂Su||∂Su|) Õ(1)

Table 4.2.2: Shortcutting methods and their runtimes

Figure 4.2.1: How online shortcutting saves over the random walk.

Figure 4.2.2: Bounding the number of times S
(i)
u is used.
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Figure 4.4.1: Visualizing shortcutters and cores within a clan. Each shortcutter (light gray)
contains a core (dark gray) of vertices for whom the shortcutter is usable.
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Figure 4.4.2: The conductivity of the light gray shortcutter is determined by the conduc-
tance of the dashed edges, which are obtained by Schur complementing all vertices in the
shortcutter with its core (dark gray) removed. The conductance of these edges is relevant for
assessing the quality of a shortcutter because (1) doing a random walk on a Schur comple-
ment is equivalent to doing a random walk on the original graph and removing all eliminated
vertices from the visit list and (2) Lemma 4.2.3.
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Type of work Edge to charge to Reason for charging
Walk across ∂Pi Pi boundary edge Normal random walk step

Shortcut to deleted(C) Pi boundary edge Deletion set condition
Shortcut to ∂SPi An edge in Schur(HC, CPi ∪ V (H) \ SPi) Theorem 4.2.4

Type of work
Conductance bound for

work charged to a clan C Distance to unvisited vertex

Walk across ∂Pi κm/(αi/(σ0+1)rmin) (boundedness) α(i+1)/(σ0+1)rmin (carving, R-clan)

Shortcut to deleted(C) κm/(αi/(σ0+1)rmin) (boundedness) α(i+1)/(σ0+1)rmin (carving, R-clan)

Shortcut to ∂SPi ζm1/σ1sC/(α
i/(σ0+1)rmin) (conductivity) α(i+1)/(σ0+1)rmin (carving, R-clan)

Type of work Total steps Work per step Total work

Walk across ∂Pi κmα1/(σ0+1) (Lemma 4.2.3) O(1) ≤ m1+o(1)αo(1)

Shortcut to deleted(C) κmα1/(σ0+1) (Lemma 4.2.3) Õ(1) (offline) ≤ m1+o(1)αo(1)

Shortcut to ∂SPi ζm1/σ1sCα
1/(σ0+1) (Lemma 4.2.3) Õ(m

sC
) (online) ≤ m1+o(1)αo(1)

Precomputation τm1/σ1sC (modifiedness) Õ(m
sC

) ≤ m1+o(1)

Table 4.4.1: Accounting for work during each sampling round
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Figure 4.4.3: Organization of the paper. Each section only depends on its children in the
tree.
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Figure 4.5.1: CoveringCommunity splits the set X into a small number of well-separated
families of clusters in the effective resistance metric. CoveringCommunity is applied to each
core of each clan independently. This splits each clan into mo(1) clans.
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Figure 4.5.2: Voronoi produces shortcutters SC that contain SF(1/(8 log n), C) and are
contained within SF(1/8, C). This containment guarantee, along with the well-separatedness
of F , is translated into a bound on conductivity using Proposition 4.5.7 and Lemma 4.5.4.



CHAPTER 4. RANDOM SPANNING TREE SAMPLING 109

Figure 4.6.1: Runtime analysis of the shortcutted random walk in PartialSample. When
SPi is used to shortcut a random walk starting at v, there is guaranteed to be an unvisited
vertex x in SPi+1

. By carving, x is within distance µcarveα
(i+1)/(σ0+1)rmin of v. Therefore, R =

µcarveα
(i+1)/(σ0+1)rmin can be used when applying Lemma 4.2.3. α(i+1)/(σ0+1)rmin partially

cancels with an αi/(σ0+1)rmin in the denominator of both the boundedness and conductivity
of Ei.
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Figure 4.7.1: The situation that SimpleConditioningVerts is trying to avoid. Sup-
pose that the shortcutter SC makes up a large fraction of the graph and that
SimpleConditioningVerts were to select the red cores to condition on first. Applying
the algorithm in Lemma 4.4.15 could cause the conductance of SC to increase untenably.
Intuitively, this is because the shortcutter SC will take the random walk from C to each of
the deleted cores at least once. This is bad, though, as the deleted cores could correspond to
very small shortcutters. As a result, there could be Θ(n) of them. SC contains Θ(m) edges,
so the work just due to this shortcutter is Θ(mn), which is quadratic! If one conditions on
parts in C before the red cores, this issue does not come up because the large size of SC
ensures that there are not many of them.
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Figure 4.7.2: Constructing sjs from parts and their shortcutters in ExtendHierarchy. Our
choice of j∗ allows us to get rid of all parts that are closer to Q than j∗ that have near-
maximum size, thus bringing us one step closer to being able to condition on Q (one out of
at most σ1 steps.)
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Figure 4.7.3: Typical Qis (dark gray ovals) and Ris (light gray rectangle). Notice that the
Ris are laminar and that they contain the Qi parts from the level above.
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Figure 4.7.4: Containment relationships between conditioning digraphs. CD and PCD
abbreviate ConditioningDigraph and PermanentConditioningDigraph respectively. A
conditioning digraph I0 is contained in another conditioning digraph I1 if (a) each ver-
tex (part) P ∈ V (I0) is entirely contained in a unique part Q ∈ V (I1) and (b) for any edge
(P, P ′) ∈ E(I0), (Q,Q′) ∈ E(I1), where Q and Q′ are the unique containing parts for P and
P ′. Arrows point towards the containing graph. The dashed horizontal edges are present
due to Lemma 4.7.17 and calls to MakeNonedgesPermanent. The solid horizontal edges are
present due to Proposition 4.7.15. The vertical edges are present thanks to Proposition
4.7.13.
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Figure 4.7.5: Picking parts to condition on in ExtendHierarchy. The top diagram depicts
parts in Pi+1(E) (thick outline) with their shortcutters. All of the thick-outlined parts are
in R and the leftmost one is also in Q. The thick arrows depict directed edges in the graph
ConditioningDigraph(E , i + 1,Q,R). The bottom diagram depicts parts in Pi(E). The
three thick-outlined parts from left to right contain the thin-outlined parts in Q′1,Q′2, and
Q′3 respectively. The bottom diagram depicts the shortcutters for some of those parts (the
thin-outlined, light-gray dashed regions). The medium gray shortcutters determine sj for
each Q′j. The darkest shortcutter motivates the choice of j∗ = 2 in this example.
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Figure 4.7.6: In the above diagram, Qi∗ is empty. Since si∗ = 0 and Qi∗ contains all of
the parts in Ri∗ with nearly-largest shortcutters, all parts in the relevant set have size 0
(inactive) shortcutters. Therefore, any shortcutter in level i∗ or below is either irrelevant or
inactive. This means that carving is only required on levels i∗ + 1 and higher, which has
already been achieved.



CHAPTER 4. RANDOM SPANNING TREE SAMPLING 116

4.8 Fixing reduction

In this section, we reduce Lemma 4.4.18 to a simpler result (Lemma 4.8.2).

Definition 4.8.1 (Schur complement conductance and degree). Consider a graph I. Let
J := Schur(I, S ∪ S ′), J ′ := Schur(I/S, S ∪ S ′),

cI(S, S ′) := cJ(EJ(S, S ′))

and

∆I(S, S ′) :=
∑

e∈EJ′ (S,S′)

ReffJ ′(e)c
J ′

e

Lemma 4.8.2. There is an algorithm F ′ ← FastFix(I, J,D, S, S ′, F, ε) that takes as input a
graph I, a random graph J that is a valid sample from the distribution I[F ], a set D ⊆ E(I),
S, S ′ ⊆ V (G), F ⊆ E(I) \ D, and an accuracy parameter ε ∈ (0, 1). With high probability
on J , it outputs a set F ′ ⊆ F with two properties:

• (Conductance) cJ\D\F
′
(S, S ′) ≤ (1 + ε)cI\D(S, S ′)

• (Size) |F ′| ≤ µcon(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|)ε−3

Furthermore, FastFix takes m1+o(1) time.

When trying to understand the statement of Lemma 4.8.2 for the first time, it is helpful
to think about the case when D = ∅. The D = ∅ case is very similar to the general
case. It is also helpful to disregard the J argument to FastFix. This argument is only
provided for runtime purposes, since sampling from a tree is only efficient in our case due to
PartialSample. Our reduction only uses ε = Ω(1).

We prove this result in Section 4.10 and implement the almost-linear time algorithm for
producing F ′ in Section 4.11. We illustrate many of the ideas behind the analysis of FastFix
in Section 4.10.1.

4.8.1 Reduction from Lemma 4.4.18 to Lemma 4.8.2

Let Li be the set of clusters with H-effective resistance diameter at most αi/(σ0+1)rminµcarve

for which S ⊆ ∪C∈LiC. These sets are guaranteed to exist by the “Carved” condition of
Lemma 4.4.18. Each of these sets of clusters maps to another set of clusters with HC-effective
resistance diameter at most αi/(σ0+1)rminµcarve for any clan C ∈ Ei. Call this set LCi . LCi is not
much larger than Li by Lemma 4.7.2. We restate Lemma 4.7.2 here to emphasize that one
does not need to read Section 4.7 before reading this section. It is proven in the appendix:
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Lemma 4.7.2. Consider a graph H and a set of clusters D, each with effective resistance
diameter at most R. Let F be a set of edges in H. Then there is a set of clusters D′ with
the following properties:

• (Covering) Each vertex in a cluster of D is in a cluster of D′.

• (Diameter) The effective resistance diameter of each cluster in D′ is at most µappR in
the graph H \ F .

• (Number of clusters) |D′| ≤ µapp(|D|+ |F |).

We can now focus on the clans C in Ei independently. Consider each shortcutter SC ∈ C.
SC intersects some clusters in LCi . If clusters in LCi contain a path from C to ∂SC and that
path is contracted after conditioning, the conductance of SC becomes infinite. We want to
avoid this situation. To do this, we could try to apply Lemma 4.8.2 with S ← C, S ′ ← ∂SC ,
I ← H, D ← deleted(C), F ← F , and ε ← 1/2. While this ensures that the conductance
of SC does not increase much after deleting F ′, ∆H\D(S, S ′) could be very large. Our goal
is for F ′ to have average size mo(1), where the average is over the shortcutters in C.

To achieve this, instead of directly tempering SC ’s conductance, it is useful to consider
fixing the conductance between C and all clusters in LCi that intersect SC . One slight issue
with this is that some of these clusters may be very close to C, resulting in the initial C−LCi
conductance being much higher than 1/αi/(σ0+1)rmin. This can be alleviated by fixing the
conductance between C and the subclusters in LCi restricted to SC \ S{C,V (H)\SC}(1/4, C).
S{C,V (H)\SC}(1/4, C) serves as “buffer space” between C and the restrictions of LCi , ensuring

that the initial conductance is at most mo(1)

αi/(σ0+1)rmin
. The fact that LCi consists of a relatively

small set of clusters ensures that ∆H\D(C,∪C′∈LC′i C
′) is small. This ensures that there is a

small set F ′ that, when deleted, nearly reverses the increase in the C −LCi conductance due
to conditioning.

However, we need to reverse the increase in SC ’s conductance, not the C−LCi conductance.
SC ’s conductance, though, can essentially be upper bounded by the sum of the C − LCi
conductance and the conductance of edges in the Schur complement with respect to C ∪LCi
that go directly from the boundary of the buffer zone S{C,V (H)\SC}(1/4, C) and ∂SC . The
latter conductance is not affected by conditioning, because all edges of F that are not in
the buffer zone are covered by clusters in LCi . We have already argued that the former
conductance is restored by deleting F ′. Therefore, SC ’s conductance only increases by a
small constant factor over what it used to be.

We formalize the above intuition by implementing the reduction in FixShortcutters
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using FastFix.

Algorithm 12: FixShortcutters(E , H ′,K)

1 foreach i ∈ [σ0] do
2 foreach clan C ∈ Ei do
3 S ′ ← ∅
4 KC ← the parts in K that intersect some SC ∈ C
5 foreach part P ∈ KC do
6 S ′ ← S ′ ∪ (P with all S{C,V (H)\SC}(1/4, C)s for cores C of shortcutters

SC ∈ C removed)

7 deleted(C)← deleted(C) ∪ FastFix(H,H ′, deleted(C),∪SC∈CC, S ′, F, 1/4)

8 return E
Now, we prove that this algorithm has the desired effect. Before doing so, we state some

useful facts about Schur complements and conductances that we prove in the appendix.

Lemma 4.8.3. Consider any three disjoint sets of vertices S0, S1, S2 ⊆ V (I) and S ′0 ⊆ S0.
Let J = Schur(I, S0 ∪ S1 ∪ S2) and J ′ = Schur(I, S ′0 ∪ S1 ∪ S2). Then

cJ
′
(EJ ′(S

′
0, S1)) ≤ cJ(EJ(S0, S1))

Lemma 4.8.4. Consider any two disjoint sets S0, S1 ⊆ V (I) with S ′0 ⊆ S0. Then cI(S ′0, S1) ≤
cI(S0, S1).

Lemma 4.8.5. For any cluster SC in a graph I and any p ∈ (0, 1),

cI(C, V (I) \ S{C,V (I)\SC}(p, C)) ≤ cI(C, V (I) \ SC)

p

Lemma 4.8.6. Consider a graph I with two clusters C1 and C2 with two properties:

• The I-effective resistance diameters of C1 and C2 are both at most R.

• The minimum effective resistance between a vertex in C1 and a vertex in C2 is at least
γR for γ > 4.

Let J be the graph with C1 and C2 identified to s and t respectively. Then ReffJ(s, t) ≥
(γ − 4)R.

Lemma 4.4.18. Let H be a graph, E be an empire in H and K be a set of parts. Let
S = ∪P∈KP and let F = ∪P∈KE(P ). Let H ′ ∼ H[F ]. Suppose that the following input
conditions hold E:
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Figure 4.8.1: The reduction for one shortcutter in some clan. All edges of F are between
two vertices of S ′, two vertices of Z, or one vertex in S ′ and one in Z. The edges between
two vertices in S ′ are irrelevant, as Z is primarily responsible for certifying that X has low
conductance after conditioning. The edges between one vertex in S ′ and one vertex in Z do
not affect the (V (H) \X)−Z direct conductance. The edges in F with both edges in Z can
be in F ′.
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• (Bucketing) The empire E is bucketed.

• (Carving) E is carved with respect to S.

With high probability over H ′, FixShortcutters(E , H ′,K) adds edges to the deletion set
of each clan of E to obtain a set of covering hordes {H′i} with the following properties:

• (Boundedness) For each i, if Ei is κ-bounded, then H′i is `κ-bounded, where ` =∑σ0
i=1 |Ei|.

• (Modifiedness and deletion set condition) For each i, if Ei is τ -modified and satisfies
the deletion set condition, then H′i is µmod(τ+ζ)-modified and also satisfies the deletion
set condition.

• (Conductivity) For each i, if Ei is ζ-conductive with respect to H, then H′i is at most
7ζ-conductive with respect to H ′.

Futhermore, it does so in m1+o(1) time.

Proof of Lemma 4.4.18 given Lemma 4.8.2. Boundedness. No part in K ∩ (∪k≤iPk(E))
intersects the boundary of a core C in some clan of Ei, as C is part of the refinement used
to define Pk(E). Therefore, each H ′-boundary edge of the image C ′ of C in H ′ is either
a boundary edge of some part in K ∩ (∪k>iPk(E)) or is a boundary edge of C. The total
conductance of such edges is at most `κm/(αi/(σ0+1)rmin), as desired.

Conductivity. Consider each clan C in isolation and consider the set S ′ generated for
the clan C. Let X = ∪SC′∈CSC′ and Y = ∪SC′∈CC

′.
We start by bounding the Y − S ′ conductance before conditioning. This is depicted in

Figure 4.8.2. By definition of S ′ and the fact that the SCs are vertex disjoint, S ′ does not
intersect Z = S{Y,V (H)\X}(1/4, Y ). Therefore, by Lemma 4.8.4 with S0 ← S ′, S ′0 ← V (H)\Z,
and S1 ← Y ,

cHC(S ′, Y ) ≤ cHC(V (H) \ Z, Y )

By Lemma 4.8.5 with C ← Y , SC ← X and p← 1/4 and the definition of Z,

cHC(V (H) \ Z, Y ) ≤ 4cHC(X, Y )

Since C was ζ-conductive before conditioning,

cHC(X, Y ) ≤ ζm1/σ1sC
αi/(σ0+1)rmin

Combining these inequalities shows that

cHC(S ′, Y ) ≤ 4ζm1/σ1sC
αi/(σ0+1)rmin
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Let H ′C be the graph obtained by deleting deleted(C) from H ′ after adding the FastFix

edges. By the “Conductance” guarantee of Lemma 4.8.2,

cH
′
C(S ′, Y ) ≤ 5ζm1/σ1sC

αi/(σ0+1)rmin
We have now finished bounding the Y − S ′ conductance after conditioning. Now, we

bound the Y − (V (H) \X) conductance after conditioning. This is depicted in Figure 4.8.3.
By definition, Y ⊆ Z. Notice that all edges in F have endpoints in S ′ ∪ Z. As a result, the
direct Z to V (H) \X conductance does not depend on F :

cSchur(H′C ,Z∪S
′∪(V (H)\X))(E(Z, V (H) ∪X)) = cSchur(HC ,Z∪S′∪(V (H)\X))(E(Z, V (H) ∪X))

The graph subscript for E is eliminated here for clarity, as the graph is the same as the
Schur complement given in the superscript. Apply Lemma 4.8.3 with I ← H ′C, S0 ← Z,
S ′0 ← Y , S1 ← V (H) \X, and S2 ← S ′ to conclude that

cSchur(H′C ,Y ∪S
′∪(V (H)\X))(E(Y, V (H) ∪X)) ≤ cSchur(H′C ,Z∪S

′∪(V (H)\X))(E(Z, V (H) ∪X))

= cSchur(HC ,Z∪S′∪(V (H)\X))(E(Z, V (H) ∪X))

≤ 4ζm1/σ1sC
3αi/(σ0+1)rmin

where the last inequality follows from the fact that X \Z = S{Y,V (H)\X}(3/4, V (H) \X),
Lemma 4.8.5, and the ζ-conductivity of C in the graph HC.

Now, we have bounds on the direct Y −V (H)\X and Y −S ′ conductances in H ′C. We now
eliminate S ′ to obtain the desired bound on the Y − (V (H) \X) conductance in H ′C. This is
depicted in Figure 4.8.4. Start by applying Lemma 4.8.3 with I ← H ′C, S0 ← (V (H)\X)∪S ′,
S ′0 ← V (H) \X, S1 ← Y , and S2 ← ∅ to show that

cSchur(H′C ,Y ∪(V (H)\X))(E(Y, V (H) \X)) ≤ cSchur(H′C ,Y ∪S
′∪(V (H)\X))(E(Y, S ′ ∪ (V (H) \X)))

≤ cSchur(H′C ,Y ∪S
′∪(V (H)\X))(E(Y, S ′))

+ cSchur(H′C ,Y ∪S
′∪(V (H)\X))(E(Y, (V (H) \X)))

≤ cH
′
C(Y, S ′) + cSchur(H′C ,Y ∪S

′∪(V (H)\X))(E(Y, (V (H) \X)))

≤ 19ζm1/σ1sC
3αi/(σ0+1)rmin

This is precisely saying that C is 19ζ
3

-conductive after running FixShortcutters, as
desired.
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Modifiedness and deletion set condition. We start with the deletion set condition.
Consider any part P ∈ Pi(E) for some i ∈ [σ0]. By the laminarity of the overlay partition,
either P ⊆ Q for some Q ∈ K or P does not intersect any part in K. In the former case,
conditioning on all parts in K makes EH′(P ) = ∅ and the deletion set condition does not
need to apply for P . In the latter case, F does not intersect EH(P ) ∪ ∂HP . Since FastFix

adds a subset of F to each deleted(C ′) for any clan C ′ in the empire E , the deletion set
condition remains satisfied for the part P , as desired.

Now, we move onto modifiedness. To apply Lemma 4.8.2, we just need to bound
∆HC(Y, S ′), ∆HC(S ′, Y ), and |D|. The reasoning for the first two bounds is very similar.
By the modifiedness of the input, |D| ≤ τm1/σ1sC, so it suffices to bound the first two
quantities.

We start with bounding ∆HC(S ′, Y ). Consider the graph HC/S
′ with the vertices S ′

identified to one vertex s. By Rayleigh monotonicity, cores of shortcutters in C have HC/S
′

effective resistance diameter at most µradα
i/(σ0+1)rmin ≤ µcarveµappα

i/(σ0+1)rmin := R. Break
the cores of shortcutters in C up into two sets Cnear and Cfar, with these sets being the cores
in C with and without respectively a vertex with HC/S

′ effective resistance distance from s
at most 3R. We bound the contribution to the degree of Cnear and Cfar independently.

First, we bound the Cnear contribution. Every vertex in Cnear clusters is within HC/S
′

effective resistance distance 4R of s by the triangle inequality. Recall that Z separates
the Cnear clusters from s. Therefore, by Lemma 4.8.3, Lemma 4.8.5 with p = 1/4, and
ζ-conductivity before conditioning,

cHC/S
′
(s,∪C∈CnearC) ≤ 4ζm1/σ1sC

αi/(σ0+1)rmin

Let K = Schur(HC/S
′, {s} ∪ (∪C∈CC)). Then,

∑
e∈EK(s,∪C∈CnearC)

ReffK(e)cKe ≤ 4RcK(EK(s,∪C∈CnearC))

≤ 16µcarveζm
1/σ1sC

Now, we bound the Cfar contribution. To do this, we exploit Lemma 4.8.6 on each cluster.
In particular, for each cluster C ∈ Cfar with a vertex at distance exactly γC from s, Lemma
4.8.6 implies that

cK(s, C) ≤ 1

(γC − 4)R

By the triangle inequality, all vertices have K-effective resistance distance at most (γC +
1)R from s. Therefore, they contribute at most (γC + 1)/(γC − 4) ≥ (5 + 1)/(5− 4) = 6 to
the degree each. By bucketing, there are at most 4sC clusters in C. Therefore,
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∑
e∈EK(s,∪C∈CfarC)

ReffK(e)cKe ≤ 24sC

We have now shown that

∆HC(S ′, Y ) ≤ (24 + 24ζµcarvem
1/σ1)sC

Next, we bound ∆HC(Y, S ′). Since the shortcutters of C are carved with respect to S ′

and all parts in S ′ intersect some shortcutter of C (by Line 4), S ′ can be written as a union
of |C| clusters with H-effective resistance diameter at most µcarveα

i/(σ0+1)rmin given by a
µcarveα

i/(σ0+1)rmin H-effective resistance ball around each core in C. Let L be this set. By
the bucketing of C, |L| ≤ 4sC. By Lemma 4.7.2, the clusters in L can be covered by a set L′
with size |L′| ≤ µapp(|L|+ |deleted(C)|) ≤ µapp(4 + τm1/σ1)sC of clusters with HC effective
resistance diameter at most µappµcarveα

i/(σ0+1)rmin ≤ R.
Split L′ into two sets Lnear and Lfar, based on whether or not they contain a vertex

within HC/Y distance 3R of the identification t of Y in HC/Y . Applying the same argument
as above with s replaced with t and the core set of C replaced with L′ shows that

∆HC(Y, S ′) ≤ 24|Lfar|+ 24µappµcarve(ζm
1/σ1sC)

As discussed after defining L′,

|Lfar| ≤ |L′| ≤ µapp(4 + τm1/σ1)sC

Plugging this bound in shows that ∆HC/Y (Y, S ′) ≤ 100µapp(µcarveζ + τ)m1/σ1sC. By
Lemma 4.8.2, C is 200µappµcarveµcon(ζ+τ) = µmod(ζ+τ)-modified after applying FixShortcutters,
as desired.

Runtime. FixShortcutters does a linear amount of work and one call to FastFix for
each clan. Since there are at most `max ≤ mo(1) clans, the total runtime is almost-linear.
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4.9 Conductance concentration inequality (fixing

lemma) preliminaries

Now, we give preliminaries for Lemmas 4.10.1 and 4.8.2.

4.9.1 Linear algebraic descriptions of conductances and rank one
updates

For the rest of the paper, it will be helpful to think about the quantities cI(S, S ′) and
∆I(S, S ′) linear-algebraically. We start with cI(S, S ′):

Proposition 4.9.1.

cI(S, S ′) =
1

bTss′L
+
I/(S,S′)bss′

Proof. Since all edges accounted for in cI(S, S ′) go directly between S and S ′ in Schur(I, S∪
S ′), cI/(S,S

′)(s, s′) = cI(S, S ′). cI/(S,S
′)(s, s′) is the conductance of the one edge between s

and s′ in the graph Schur(I/(S, S ′), {s, s′}). The conductance of this edge is the reciprocal
of its resistance. By commutativity of Schur complements with identification, this edge’s
resistance is bTss′L

+
I/(S,S′)bss′ , as desired.

Now, we interpret ∆I(S, S ′) linear-algebraically. As discussed in Section 4.3, the effective
resistance between vertices x and y in a graph I is just bTxyL

+
I bxy. Therefore, we just need

to interpret condunctances between a vertex s and a set of vertices S ′. Proposition 4.9.1
gives us a way of thinking about the total conductance of edges between s and S ′, so it
suffices to describe the normalized conductances. It turns out that these conductances can
be computed using one electrical flow:

Proposition 4.9.2. Consider a graph I with a vertex s and a set S ′ ⊆ V (I). Let J ←
Schur(I, {s} ∪ S ′). Let K = I/S ′ with S ′ identified to a vertex s′. For each vertex w ∈ S ′,

cJsw
cJ(s, S ′)

=
∑
e∈∂Iw

(bTss′L
+
Kbe)c

K
e

Proof. By Theorem 4.3.2, ∑
e∈∂Iw

(bTss′L
+
Kbe)c

K
e = Pr

s
[tw < tS′\{w}]

The random walk in the above expression is done in the graph I. By Theorem 4.2.4,

Pr
s

[tw < tS′\{w}] =
cJsw

cJ(s, S ′)

Combining these equalities yields the desired result.
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We now characterize how conductances and effective resistances change after deleting
single edges.

Definition 4.9.3 (Leverage and nonleverage scores). For any graph I and e ∈ E(I), let

levI(e) := cIeReffI(e)

and

nonlevI(e) := 1− cIeReffI(e)

The following bounds follow immediately from the Sherman-Morrison rank one update
formula ([87]).

Proposition 4.9.4. Let I be a graph. Consider two vertices s, t ∈ V (I), an edge f , and a
demand vector d ∈ RV (I). Then

bTstL
+
I\fd = bTstL

+
I d+

(bTstL
+
I bf )(b

T
f L

+
I d)

rf (1− levI(f))

Proposition 4.9.5. Let I be a graph. Consider two vertices s, t ∈ V (I), an edge f , and a
demand vector d ∈ RV (I). Then

bTstL
+
I/fd = bTstL

+
I d−

(bTstL
+
I bf )(b

T
f L

+
I d)

rflevI(f)

4.9.2 Splitting edges

In Propositions 4.9.4 and 4.9.5, the dependencies on nonlevI(f) and levI(f) are inconve-
nient. One can mitigate this by splitting edges in one of two ways. When an edge has
low leverage score, it should be split in series by replacing it with two edges that have
half the resistance. When an edge has high leverage score, it should be split in parallel by
replacing it with two edges that have double the resistance. For an edge e ∈ E(I), define
(J, {e1, e2})← Split(I, e) to be the routine that does the following:

• If levI(e) ≤ 1/2, let J be the graph with e replaced by a path of two edges e1 and e2,
each with conductance 2ce.

• If levI(e) > 1/2, let J be the graph with e replaced by two parallel edges e1 and e2,
each with conductance ce/2.

Let (I ′, F ′) ← Split(I, F ) be the graph-set pair that results from splitting all edges in
F . For any F ⊆ E(I), the distribution over graphs I ′ ∼ I[[F ]] is obtained by splitting all
edges in F and conditioning on an arbitrary copy for each edge. The purpose of doing this
is as follows:
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Proposition 4.9.6. For an arbitrary subset F ⊆ E(I), let (I ′, F ′) ← Split(I, F ). For all
copies fi, i ∈ {1, 2} of edges f ∈ F in I ′,

levI′(fi) ∈ [1/4, 3/4]

Proof. Splitting an edge e 6= f ∈ F does not change the leverage score of f , so it suffices
to show the desired proposition when F = {f}. When levI(f) ≥ 1

2
, splitting it into two

parallel copies does not change its effective resistance but doubles its resistance. Therefore,
1
4
≤ levI′(fi) ≤ 1

2
. When levI(e) ≤ 1

2
, subdividing f to a copy fi makes

levI′(fi) =
1

2
levI(f) +

1

2

Since 0 ≤ levI(f) ≤ 1
2
, the desired inequality follows.

Furthermore, doing this does not change the random spanning tree distribution:

Proposition 4.9.7. Sampling a random spanning tree T ∼ J for (J, {e1, e2})← Split(I, e)
is equivalent to doing the following:

• Sample a random tree T ∼ I.

• If levI(e) ≤ 1/2, do the following:

– If e ∈ T , return a tree T ′ obtained by replacing e with e1 and e2.

– If e /∈ T , return a tree T ′ obtained by adding e1 with probability 1/2 and e2

otherwise.

• If levI(e) ≥ 1/2, do the following:

– If e ∈ T , return a tree T ′ obtained by replacing e with e1 with probability 1/2 and
e2 otherwise.

– If e /∈ T , return T ′ ← T .

Proof. Consider each of the two cases separately:
Leverage score below 1/2. In this case, we need to show that (a) splitting e in

series into edges e1 and e2 and sampling a tree from the resulting graph J is equivalent
to (b) sampling a tree from I, splitting e in series if e is in the tree, and adding one of
e1, e2 to the tree otherwise with probability 1/2 for each. It suffices to show that each
spanning tree T of J has the same probability of being generated through Procedures (a)
and (b). Suppose first that e1, e2 ∈ E(T ). T is generated with probability proportional
to cJe1c

J
e2

∏
f 6=e1,e2∈E(T ) c

J
f = 4(cIe)

2
∏

f 6=e1,e2∈E(T ) c
I
f using Procedure (a) and with probability

proportional to cIe
∏

f 6=e1,e2∈E(T ) c
I
f using Procedure (b). Now, suppose that one of e1, e2

is not in T and that e1 ∈ E(T ) without loss of generality. Procedure (a) generates T
with probability proportional to (cJe1)

∏
f 6=e1,e2∈E(T ) c

J
f = 2cIe

∏
f 6=e1,e2∈E(T ) c

I
f . Procedure (b)
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generates T with probability proportional to (1/2)
∏

f 6=e1,e2∈E(T ) c
I
f . In both cases, Procedure

(a) generates trees with weight 4cIe times the weight that Procedure (b) uses. Since the
weights used for the Procedure (a) and (b) are proportional, Procedures (a) and (b) generate
trees from the same distribution.

Leverage score above 1/2. We need to show that (c) splitting e in parallel into
edges e1 and e2 and sampling from the resulting graph J is equivalent to (d) sampling
a tree from I and replacing e with e1 or e2 with probability 1/2 for each if e is in the
tree. First, consider the case in which one of e1, e2 is in T . Without loss of generality,
suppose that e1 ∈ E(T ). T comes from Procedure (c) with probability proportional to
cJe1
∏

f 6=e1,e2∈E(T ) c
J
f = (cIe/2)

∏
f 6=e1,e2∈E(T ) c

I
f . T comes from Procedure (d) with probabil-

ity proportional to (1/2)cIe
∏

f 6=e1,e2∈E(T ) c
I
f . Now, suppose that e1, e2 /∈ E(T ). In both

procedures, T is generated with probability proportional to
∏

f∈E(T ) c
I
f . The weights for

Procedures (c) and (d) are equal, so Procedures (c) and (d) generate trees from the same
distribution, as desired.

We use the above proposition to show that computing a graph from the distribution H[F ]
(the second algorithm below) is equivalent to computing a graph using a more incremental
strategy that is particularly amenable to analysis using rank 1 updates (the first algorithm
below):

Proposition 4.9.8. Consider a graph H and a set F ⊆ E(H). Consider any algorithm of
the following form:

• Initialize H0 ← H and k ← 0

• While F is not empty

– Pick a random edge fk ∼ Dk, where Dk is an arbitrary distribution over F that
only depends on the contractions/deletions of the previous edges f0, f1, . . . , fk−1

– Let Hk+1 ∼ Hk[[fk]]

– Remove fk from F if a self-loop/leaf is created; otherwise replace fk in F with the
remaining copy

– Increment k

Then Hk is equivalent in distribution to H ′k in the following algorithm for all k ≥ 0,
which only requires sampling the intersection of T0 with F , not all of T0:

• Sample T0 ∼ H, H ′0 ← H, and set k ← 0

• While F is not empty

– Pick a random edge fk ∼ Dk and let (J, {f (0), f (1)})← Split(H ′k, fk).
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– Let Tk+1 be the random spanning tree of J obtained by setting T ← Tk and e← fk
in Proposition 4.9.7

– Let H ′k+1 be the subgraph of J with f (0) contracted if f (0) ∈ E(Tk+1) and f (0)

deleted otherwise

– Increment k

Proof. We prove this fact by induction on k. For k = 0, clearly H0 = H ′0. Hk is obtained
from Hk−1 by sampling the intersection of a random spanning tree in the graph J obtained
by doing (J, {f (0), f (1)}) ← Split(Hk−1, fk−1). By Proposition 4.9.7, this is equivalent to
sampling a random tree in Hk−1 and splitting it randomly as described in Proposition 4.9.7.

By the inductive hypothesis, Hk−1 and H ′k−1 have the same distribution. Furthermore,
for k > 0, notice that fk−1 is obtained from the same distribution Dk−1. These replacements,
when coupled with the previous paragraph, yield the second algorithm. Therefore, Hk and
H ′k are equivalent in distribution, completing the induction step.

Proposition 4.9.9. Consider a graph H and a set F ⊆ E(H). Sampling H ′ ∼ H[F ] is
equivalent to any strategy of the following form:

• Initialize H0 ← H and k ← 0

• While F is not empty

– Pick a random edge fk ∼ Dk, where Dk is an arbitrary distribution over F that
only depends on the contractions/deletions of the previous edges f0, f1, . . . , fk−1

– Let Hk+1 ∼ Hk[[fk]]

– Remove fk from F if a self-loop/leaf is created; otherwise replace fk in F with the
remaining copy

– Increment k

Proof. By Proposition 4.9.8, this algorithm is the same as the second algorithm in Proposi-
tion 4.9.8. The final output of the second algorithm given in Proposition 4.9.8 is equivalent
to sampling from H[F ] in distribution. Therefore, the algorithm given in Proposition 4.9.9
is equivalent to sampling from H[F ] in distribution, as desired.

4.9.3 Concentration inequalities

The following is relevant for the slow version of Lemma 4.8.2:

Theorem 4.9.10 (Theorem 16 of [24]). Let X be the martingale satisfying |Xi+1−Xi| ≤ ci
for all i specifying martingale increments. Then

Pr[|Xn −E[Xn]| ≥ λ] ≤ 2e
− λ2

2
∑n
i=1

c2
i

where n is the total number of martingale increments.
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To speed up the algorithm and prove Lemma 4.8.2, we exploit the following additional
concentration inequality:

Theorem 4.9.11 (Theorem 18 in [24]). Let X be a martingale satisfying:

• Var(Xi|Xi−1) ≤ σ2
i for all i.

• |Xi −Xi−1| ≤M for all i.

Then

Pr[|Xn −E[Xn]| ≥ λ] ≤ e
− λ2

2(
∑n
i=1

σ2
i
+Mλ/3)

4.9.4 [42] bound for source-sharing demand vectors

We use the following bound to bound changes in normalized potentials of vertices due to
conditioning:

Theorem 4.9.12 (Lemma 3.1 of [42], with n replaced by τ). Let G be a graph and consider
three vertices s1, s2, t ∈ V (G). Then for any positive integer τ

∑
f∈E(G)

|bTs1tL
+
Gbf ||bTf L

+
Gbs2t|

rf
≤ (8 log τ)|bTs1tL

+
Gbs2t|+

1

τ
(bTs1tL

+
Gbs1t + bTs2tL

+
Gbs2t)

4.9.5 Matrix sketching

The FastFix algorithm needs to compute `p norms of vectors whose entries would naively
require as many as Θ(m) Laplacian solves to compute. We show that these vector norms
can be approximated with O(polylog(n)) Laplacian solves using matrix sketching:

Theorem 4.9.13 ([44], Theorem 3 stated for `p rather than just `1). An efficiently com-
putable, polylog(d)-space linear sketch exists for all `p norms exists for all p ∈ (0, 2]. That is,
given a d ∈ Z≥1, δ ∈ (0, 1), p ∈ (0, 2], and ε ∈ (0, 1), there is a matrix C = SketchMatrix(d, δ, p, ε) ∈
Rl×d and an algorithm RecoverNorm(s, d, δ, p, ε) with the following properties:

• (Approximation) For any vector v ∈ Rd, with probability at least 1 − δ over the ran-
domness of SketchMatrix, the value r = RecoverNorm(Cv, d, δ, p, ε) is as follows:

(1− ε)||v||p ≤ r ≤ (1 + ε)||v||p

• l = c/ε2 log(1/δ) for some constant c > 1

• (Runtime) SketchMatrix and RecoverNorm take O(ld) and poly(l) time respectively.
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4.9.6 Localization bound

The FastFix algorithm needs to be able to reuse low-contribution edges for many iterations.
We exploit the following bound to do this:

Theorem 4.9.14 (Restatement of Theorem 3.3.1). Let G be a graph. Then for any vector

w ∈ RE(G)
≥0 , ∑

e,f∈E(G)

wewf
|bTe L+

Gbf |√
re
√
rf
≤ O(log2 n)||w||22
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4.10 Conductance concentration inequality

In this section, we prove the following inefficient analogue of Lemma 4.8.2:

Lemma 4.10.1. Given a graph I, a random graph J that is a valid sample from the dis-
tribution I[F ], a set D ⊆ E(I), S, S ′ ⊆ V (G), F ⊆ E(I) \ D, and an accuracy parameter
ε ∈ (0, 1). With high probability on J , there is a set F ′ ⊆ F with two properties:

• (Conductance) cJ\D\F
′
(S, S ′) ≤ (1 + ε)cI\D(S, S ′)

• (Size) |F ′| ≤ Õ(ε−3(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|))

The proof conditions on one edge in F at a time. In principle, doing this could drastically
change the conductance between S and S ′. Luckily, it does not change much in expectation
if one conditions on a random edge in F . While the conductance does not change much
in expectation, it could change in absolute amount. In Proposition 4.10.5, we show that
there always exists an edge an edge that, if conditioned on, does not change the S − S ′

conductance much. Using these statements in concert with Azuma’s Inequality shows that
the S − S ′ conductance does not change by more than a (1 + ε) factor with high probability
if one conditions on all but a very small number of edges in F . Letting these edges be F ′

proves the desired result.
To prove Lemma 4.10.1, we will need to use Azuma’s Inequality to control a number of

other quantities besides the S − S ′ conductance to show that one can always find the edges
described in Proposition 4.10.5. As a result, we choose to discuss a much simpler result first,
which may be of independent interest.

4.10.1 Warmup: Controlling the effective resistance between two
vertices

In this subsection, we prove Lemma 4.10.1 with S = {s} and S ′ = {t} each being one vertex
and D being empty. This is also Lemma 4.1.4, which we restate here with notation that
agrees with Lemma 4.10.1:

Lemma 4.10.2 (Restatement of Lemma 4.1.4). Let I be a graph, F ⊆ E(I), ε ∈ (0, 1),
and s, t ∈ V (I). Sample a graph J ∼ I[F ]. Then, with high probability, there is a set
F ′ ← SpecialFix(I, s, t, F, ε) ⊆ F that satisfies both of the following guarantees:

• (Effective resistance) bTstL
+
J\F ′bst ≥ (1− ε)(bTstL+

I bst)

• (Size) |F ′| ≤ O((log n)/ε2)

While this special case is not directly relevant to the proof of Lemma 4.10.1, it offers a
simpler way of demonstrating most of the key ideas.
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SpecialFix splits and conditions on the edge with lowest energy until there areO((log n)/ε2)
edges left. At this point, the algorithm returns the remaining edges in F to be in F ′.

Algorithm 13: SpecialFix(I, s, t, F, ε), never executed

Data: the graph I, s, t ∈ V (I), arbitrary F ⊆ E(I), ε ∈ (0, 1)
Output: the subset F ′ ⊆ F of edges that should be deleted

1 J ← I
2 while F has more than 9(log n)/ε2 non-leaf/loop edges do
3 f ← the non-leaf/loop edge in E(J) that minimizes (bTstL

+
J bf )

2cf
4 (J, {f1, f2})← Split(J, f)
5 J ∼ J [f1]
6 F ← (F \ {f}) ∪ {f2}
7 return the non-leaf/loop edges of F

Proof of Lemma 4.10.2. Let F 0 = F and for all i ≥ 0, let F i+1 be the set of non-leaf/loop
edges left over after conditioning on |F i|/8 edges in F i. When a non-leaf/loop edge is split
and conditioned on, it has a probability of at least 1/4 of resulting in an additional loop or
leaf. Furthermore, the number of non-leaf/loop edges in F never increases. Therefore, since
all conditionings are independent of each other, |F i+1| ≤ 63|F i|/64 with high probability
as long as |F i| ≥ log n by Chernoff bounds. Therefore, there are only log n F is before the
algorithm terminates.

Let J i be the graph J with F = F i. We now show that

bTstL
+
Ji+1bst ≥ (1− 10

√
log n√
|F i|

)(bTstL
+
Ji
bst)

with high probability. Let Jj be the graph immediately before the jth iteration after J i

and let fj be the edge conditioned on during this iteration to obtain Jj+1. Let Fj be the
value of f before conditioning on fj. By Propositions 4.9.4 and 4.9.5,

EJj+1
[bTstL

+
Jj+1

bst] = levJj(fj)

(
bTstL

+
Jj
bst −

(bTstL
+
Jj
bfj)

2

rfjlevJj(fj)

)

+ nonlevJj(fj)

(
bTstL

+
Jj
bst +

(bTstL
+
Jj
bfj)

2

rfjnonlevJj(fj)

)
= bTstL

+
Jj
bst

so Xj := bTstL
+
Jj
bst is a martingale. We now show that our choice of fj makes the martin-

gale Lipschitz. Proposition 4.9.6 implies that levJj(fj) ≥ 1/4 and that nonlevJj ≥ 1/4. By
Propositions 4.9.4 and 4.9.5,
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|bTstL+
Jj+1

bst − bTstL+
Jj
bst| ≤ 4

(bTstL
+
Jj
bfj)

2

rfj

This is the energy contribution of fj to the overall s− t energy. Therefore,

|bTstL+
Jj+1

bst − bTstL+
Jj
bst| ≤

4

|Fj|
bTstL

+
Jj
bst

Since |F i|/8 conditionings occur during J i and J i+1, |Fj| ≥ 7|F i|/8 for all j and

bTstL
+
Jj+1

bst ≤
(

1 +
32

7|F i|

)|F i|/8
bTstL

+
Jj
bst ≤ ebTstL

+
Jj
bst

We now bootstrap this bound using Azuma’s Inequality to obtain a much better bound
on the change in the s− t resistance. In particular,

|bTstL+
Jj+1

bst − bTstL+
Jj
bst| ≤

4e

|Fj|
bTstL

+
Ji
bst

Therefore, by Theorem 4.9.10,

Pr[|bTstL+
Ji+1bst − bTstL+

Ji
bst| ≥

10
√

log n√
|F i|

bTstLJibst] ≤ 1/poly(n)

Therefore, with high probability, the change is at most a (1 − ε) factor unless |F i| ≤
(log n)/ε2. Deleting these edges can only increase the s − t resistance. Conditioning on F ′

instead of deleting would have given a graph Jfinal equivalent to sampling Jfinal ∼ I[F ] by
Proposition 4.9.7. This completes the proof.

4.10.2 Generalizing the warmup

By Proposition 4.9.1, for any graphH with disjoint sets of vertices S, S ′ ⊆ V (H), 1/cH(S, S ′) =
bTss′L

+
H′bss′ , where H ′ is a graph obtained from H by identifying S to s and S ′ to s′. There-

fore, to show that cH(S, S ′) does not increase by more than a (1 + ε) factor, it suffices to
show that bss′L

+
H′bss′ does not decrease by more than a (1 − ε) factor, where H is obtained

from I \D by conditioning on a partial sample from a random spanning tree in I.
This quantity is similar to the quantity controlled during the warmup. There are two

initial obstacles to directly using the approach in the warmup:

• The tree being sampled is sampled in a different graph (H ∪ D) from the graph in
which the quantity bTss′L

+
H′bss′ is defined. This discrepancy causes bTss′L

+
H′bss′ to not be

a martingale under conditioning.

• Conditioning could cause the quantity in the “Size” upper bound to change.
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To get around these issues, we show that there exists an edge that changes bTss′L
+
H′bss′ ,

∆H(S, S ′), and ∆H(S ′, S) by a very small factor in expectation. Ideally, there would be an
edge to condition on that changes bTss′L

+
H′bss′ and the “Size” bound in expectation by at most

a (1 + (∆H(S, S ′) + ∆H(S ′, S) + |D|)/|F |2) factor in expectation. If this is the case, then
conditioning on all but (∆H(S, S ′) + ∆H(S ′, S) + |D|)ε−1 edges changes the expectation by
at most a (1 + ε) factor in expectation. When combined with martingale concentration, this
shows that the size bound and the conductance change by at most a factor of (1 + O(ε))
with high probability.

Unfortunately, such an increase is hard to obtain. For example, the expected change in
bTss′L

+
H′bss′ due to conditioning on an edge f can be written as a product of two terms:

• The change in f ’s leverage score due to identifying S to s, identifying S ′ to s′, and
deleting all edges in D.

• The energy of the bss′ electrical flow in H ′ on f .

The second quantity is at most O(1/|F |)bTss′L+
H′bss′ for most edges in F due to the fact that

the average energy on an edge is small. The first quantity is trickier to bound and sometimes
cannot be bounded at all. For example, if F solely consists of edges with endpoints in S,
the change in leverage score upon identifying S to s is for all edges in F is high (constant).
Luckily, though, the endpoints of these edges are very close to s in the L+

H′bss′ potential
embedding.

This phenomenon holds in general. In particular, Lemma 4.10.12 can be used to show
that the total leverage score decrease of all edges with an endpoint that has s−s′ normalized
potential at least p away from s and s′ when S and S ′ are identified is at most O((∆H(S ′, S)+
∆H(S, S ′))/p). The total leverage score increase is at most |D|, so the total leverage score
change is at most the sum of these two quantities. Therefore, if a large fraction of the edges
in F have an endpoint with normalized s− s′ potential that is between p and 1− p, there is
an edge f ∈ F , which, when conditioned on, causes an

1+O

((
|D|+ (∆H(S ′, S) + ∆H(S, S ′))/p

ε

)(
bTss′L

+
H′bss′

|F |

))
≤ 1+

(|D|+ ∆H(S ′, S) + ∆H(S, S ′))

p|F |2

factor change in the “Size” bound and bTss′L
+
H′bss′ in expectation. This differs from the

desired bound due to the factor of 1/p.

This bound is good enough, though, to allow conditioning on all but roughly (|D|+∆H(S′,S)+∆H(S,S′))
pε

edges before the “Size” bound or bTss′L
+
H′bss′ changes by more than an (1 + ε) factor. Once

this many edges are left that have maximum normalized endpoint potential at most O(p),
defer conditioning on these edges until the very end of the algorithm.

Deferring conditioning on these edges works for the following reasons.

• The total normalized potential of such edges is at most (|D|+∆H(S′,S)+∆H(S,S′))
pε

O(p) =

O((|D|+ ∆H(S ′, S) + ∆H(S, S ′))ε−1).
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• If we can show that the total normalized potential of deferred edges only increases by
a (1 + ε) factor over the course of conditioning on the rest of F , the total normalized
potential of all deferred edges is at most O((|D| + ∆H(S ′, S) + ∆H(S, S ′))ε−1) at the
end of the algorithm.

• By Markov’s inequality, at most O((|D| + ∆H(S ′, S) + ∆H(S, S ′))ε−2) of the deferred
edges have any endpoint with normalized potential in the interval [ε, 1 − ε]. Con-
ditioning on the rest of the edges therefore decreases the s − s′ resistance in H ′ by
at most a factor of (1 − O(ε)) by Proposition 4.10.20. Letting F ′ be the remain-
ing O((|D| + ∆H(S ′, S) + ∆H(S, S ′))ε−2) edges yields the desired result by Rayleigh
monotonicity.

4.10.3 Reducing the fixing lemma to the existence of stable
oracles

We prove Lemma 4.10.1 using the algorithm Fix with the oracle SlowOracle. This algorithm
picks edges to condition on in F one by one in the graph I. It selects edges that do not
change the following quantities very much:

• ∆I\D(S, S ′)

• ∆I\D(S ′, S)

• cI\D(S, S ′)

• Various sums of potential drops

The key idea is that there always is an edge that does not change any of these quantities
very much. Unlike in the special case when S and S ′ are single vertices, conditioning might
decrease the effective resistance in expectation. We show that the same choice of edge that
does not change these quantities also leads to a very small change in the expectation.

Stability implies concentration

We now formalize the concept of low-change edges using stable functions :

Definition 4.10.3 (Stable functions). Call a function g on graphs electrical if g is preserved
under two operations:

• edge subdivision; that is replacing an edge e with a path of length two consisting of
edges with resistance re/2

• edge splitting; that is replacing an edge e with two parallel copies with resistance 2re
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A set of edges X ⊆ F is called a (ρL, ρE, δ)-stable subset of F for an electrical function
g if

• |g(H/f)− g(H)| ≤ ρL
|F |g(H) + δ for all edges f ∈ X

• |g(H\f)− g(H)| ≤ ρL
|F |g(H) + δ for all f ∈ X

• 1
|X|
∑

f∈X |g(H)−EH′∼H[f ][g(H ′)]| ≤ ρE
|F |2 g(H) + δ

An set X is called (ρL, ρE)-stable for g if it is (ρL, ρE, 0)-stable for g.

Definition 4.10.4 (Multiplicative functions). A function h : Rd
>0 → R>0 is called γ-

multlipschitz if the function h′(x1, . . . , xd) := log h(exp(x1), exp(x2), . . . , exp(xd)) is γ-Lipschitz
in the `1 norm.

We encapsulate our use of standard concentration inequalities into one proposition. This
proposition is used to show that conditioning on a long sequence of edges that are stable for
the functions {xa}`1a=1 and {yb}`2b=1 does not change the value of any of these functions by a
large amount with high probability. This proposition allows the stability to depend on the
xa functions, which one should think of as being related to ∆I\D(S, S ′).

Proposition 4.10.5. Consider two collections of electrical functions {xa}`1a=1 and {yb}`2b=1.
Fix a graph I0 = I and a set F0 = F ⊆ E(I). Consider two sequences of random graphs
{Ii}i, {I ′i}i, edges {fi}i, and edge sets {Fi}i, {Xi}i with the following properties for all i:

• Ii+1 ∼ Ii[[fi]] for a uniformly random edge fi ∈ Xi

• Fi+1 := Fi ∩ E(Ii+1)

• Xi ⊆ Fi

• Xi is (I ′i, ρL, ρi, 0)-stable for all functions xa and (I ′i, F
′
i ) := Split(Ii, Fi)

• Xi is (I ′i, ρL, ρi, δ)-stable for all functions yb

• |Fi| ≥ σ

• ρi := ρE({xa(Hi)}a); that is ρi is only a function of the values of the xas on Hi.

• ρE is a γ-multlipschitz function.

Let τE := maxi(ρi/|Xi|). Then with high probability, all of the following bounds apply for
all i:
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• For all w ∈ {xa}a,

|w(I)− w(Ii)| ≤ Õ

(
τE +

√
γ`1ρ

3/2
L√

σ

)
w(H)

• For all w ∈ {yb}b,

|w(I)− w(Ii)| ≤ Õ

(
τE +

√
γ`1ρ

3/2
L√

σ

)
w(H) + Õ(ρLγ`1|F |δ)

Before proving this, notice that fi ∈ Fi+1 if and only if the edge set of Ii doesn’t change,
i.e. one of the following two conditions holds:

• levIi(fi) ≤ 1/2 and fi is contracted to form Ii+1

• levIi(fi) > 1/2 and fi is deleted to form Ii+1

The proof of Proposition 4.10.5 uses Azuma’s Inequality.

Proof of Proposition 4.10.5. Break up the sequence of edges to condition on into a small
number of subsequences with guaranteed small changes in xa(I) and yb(I) values. Then,
apply Theorem 4.9.10 to each subsequence. Specifically, let i0 = 0 and ij+1 be the maximum
value for which |Fij+1

| ≥ |Fij |(1 − 1/(16γ`1ρL)). Concentration bounds will be shown for
each subsequence of is between ij and ij+1.

We start with bounds on |ij+1 − ij|. Consider the random variable |Fi|. By the fourth
property of stable edges, E[|Fi+1||Fi] ≤ |Fi| − 1

4
. In particular for any z > ij,

E[|Fz||Fij , ij] ≤ |Fij | −
1

4
(z − ij)

Xi = |Fi| − E[|Fi|] is a martingale with ci = 1 for all i, so by Theorem 4.9.10

|Fz| ≤ |Fij | −
1

4
(z − ij) +

√
(z − ij) log n

with probability at least 1 − 1
poly(n)

. As long as z − ij > 8 log n, the above inequality
implies that

|z − ij| ≤ 8(|Fij | − |Fz|)

For z = ij+1, |ij+1 − ij| ≤ 1
2γ`1ρL

|Fij | with high probability.

By the first two properties of stable edges and the fact that |Fi| is nondecreasing,
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xa(Ii) ≤ xa(Iij)

(
1 +

ρL
|Fij+1

|

)ij+1−ij

≤
(

1 +
1

γ`1

)
xa(Iij)

and xa(Ii) ≥ (1 − 1
γ`1

)xa(Iij) for all i ∈ [ij, ij+1] and all a with high probability. By the
multlipschitzness of ρE,

ρi ≤ (1 + 1/(γ`1))γ`1ρij ≤ eρij

for all i ∈ [ij, ij+1] with high probability. Similarly,

yb(Ii) ≤ (1 + 1/(γ`1))(yb(Iij) + |F |δ)
for all i ∈ [ij, ij+1] and b with high probability.
We now use these worst-case bounds on xas and ybs within each interval to get a better

bound using the expectation. By the third property of stable edges and the definition of τE,

|E[w(Iij+1
)|Iij , ij]− w(Iij)| ≤ (ij+1 − ij)

τE
|Fij+1

|
e(w(Iij) + |F |δ) + |F |δ

≤ 2e
τE

γ`1ρL
w(Iij) +O(|F |δ)

for functions w ∈ {yb}b. For functions w ∈ {xa}a, a similar bound holds:

|E[w(Iij+1
)|Iij , ij]− w(Iij)| ≤ (ij+1 − ij)

τE
|Fij+1

|
ew(Iij)

≤ 2e
τE

γ`1ρL
w(Iij)

Therefore, by Theorem 4.9.10,

|w(Iij+1
)− w(Iij)| ≤ 2e

τE
γ`1ρL

w(Iij) + 2e

√
(log n)

|Fij |
2γ`1ρL

ρL
|Fi|

w(Iij) + Õ(|F |δ)

with high probability for w ∈ {yb}b, with analogous statements for xa with δ = 0 (see
proposition guarantees). Since |Fij+1+1| ≤ |Fij |(1 − 1

16ρLγ`1
), j ≤ 16ρLγ`1(log n). Since

|Fi| ≥ σ for all i, the total change is
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Õ

(
τe +

ρ
3/2
L

√
γ`1√
σ

)
w(I) + Õ(ρLγ`1|F |δ)

as desired.

Stable oracles and their use in proving the fixing lemmas

In this section, we exploit Proposition 4.10.5 to reduce Lemmas 4.10.1 and 4.8.2 to the
construction of a certain oracle. This oracle outputs a set of edges remains stable for the
main objective bTss′L

+
Hbss′ , the “Size” bound, and an auxilliary objective that bounds the

endpoint potentials of two sets of “deferred” edges.
Before defining the oracle, we define a proxy for the degree function, called the normalized

degree, that will be more convenient to control directly than ∆H(X, Y ):

Definition 4.10.6 (Normalized degree). For a graph H with disjoint vertex sets X, Y , let

δX,Y (H) :=
∆H(X, Y )

cH(X, Y )

It is easier to control due to the following representation, which involves quantities whose
change can be easily analyzed using rank 1 updates:

Remark 9. δX,Y (H) can be written in a different way:

δX,Y (H) =
∑
w∈Y

∑
e∈∂Hw

(bTxwL
+
H/Xbxw)

bTxyL
+
H/(X∪Y )be

re

where x and y are the identifications of X and Y respectively in H/(X ∪ Y ) and e is
oriented towards w.

Proof. By Proposition 4.9.2, for each w ∈ Y ,

∑
e∈∂Hw

bTxyL
+
H/(X∪Y )be

re
=

c
Schur(H/X,X∪Y )
xw∑

w′∈Y c
Schur(H/X,X∪Y )
xw′

Since Schur complement conductances do not depend on edges with endpoints that were
not eliminated, ∑

w′∈Y

c
Schur(H/X,X∪Y )
xw′ = cH(X, Y )

Combining these equalities shows that

∑
w∈Y

(bTxwL
+
H/Xbxw)

∑
e∈∂Hw

bTxyL
+
H/(X∪Y )be

re
=

∆H(X, Y )

cH(X, Y )
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as desired.

Now, we define an oracle that generalizes the concept of picking the minimum energy
edge that was so important to SpecialFix:

Definition 4.10.7 (Stable oracles). An (ρ,K(z))-stable oracle, is a function
Z ← Oracle(I, S, S ′, D,A,B,W ) that takes in a graph I, two disjoint sets of vertices

S, S ′ ⊆ V (I), a set of deleted edges D ⊆ E(I), two sets of deferred edges A,B ⊆ E(I), and
a set of edges W to condition on. K is allowed to be a function of some parameter z. This
oracle is given inputs that satisfy the following conditions:

• (Bounded leverage score difference) For all e ∈ W , |levI\D(e)− levI/(S,S′)(e)| ≤ 1/16

• (Narrow potential neighborhood) There is a p ≤ 1/4 for which one of the following
conditions holds:

– (s narrow potential neighborhood)
bT
ss′L

+
(I\D)/(S,S′)((bsu+bsv)/2)

bT
ss′L

+
(I\D)/(S,S′)bss′

∈ [p, 2p] for all {u, v} ∈
W .

– (s′ narrow potential neighborhood)
bT
ss′L

+
(I\D)/(S,S′)((bus′+bvs′ )/2)

bT
ss′L

+
(I\D)/(S,S′)bss′

∈ [p, 2p] for all {u, v} ∈
W .

It outputs a set Z ⊆ E(I) of edges to condition on.
Let I0 = I and for each i > 0, obtain Ii by picking a uniformly random edge fi−1 ∈ Z,

letting Ii ← Ii−1[[fi−1]], and removing fi−1 from Z.
Oracle satisfies the following stability-related properties with high probability for all i <

K(|W |):

• (Size of Z) |Z| ≥ |W |/(log4 n)

• (Leverage score stability)

– (Upper leverage score stability) |levIi\D(fi)− levI\D(fi)| ≤ 1/16

– (Lower leverage score stability) |levIi/(S,S′)(fi)− levI/(S,S′)(fi)| ≤ 1/16

• (Midpoint potential stability)

– (s midpoint potential stability) Let fi = {ui, vi}. Then

bTss′L
+
(Ii\D)/(S,S′)(bsui + bsvi)/2

bTss′L
+
(Ii\D)/(S,S′)bss′

≥ p/2
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– (s′ midpoint potential stability) Let fi = {ui, vi}. Then

bTss′L
+
(Ii\D)/(S,S′)(buis′ + bvis′)/2

bTss′L
+
(Ii\D)/(S,S′)bss′

≥ p/2

• (S − S ′-normalized degree change stability)

– (S − S ′ conductance term stability)

∑
w∈S′

(bTswL
+
(Ii\D)/Sbsw)

∑
e∈∂Iiw

|bTss′L+
(Ii\D)/(S,S′)bfi ||bTfiL

+
(Ii\D)/(S,S′)be|

rfire
≤ ρ

|W |
δS,S′(I\D)

– (S ′ − S conductance term stability)

∑
w∈S

(bTs′wL
+
(Ii\D)/S′bs′w)

∑
e∈∂Iiw

|bTss′L+
(Ii\D)/(S,S′)bfi||bTfiL

+
(Ii\D)/(S,S′)be|

rfire
≤ ρ

|W |
δS′,S(I\D)

– (S − S ′ energy term stability)

∑
w∈S′

(bTswL
+
(Ii\D)/Sbfi)

2

rfi

∑
e∈∂Iiw

bTss′L
+
(Ii\D)/(S,S′)be

re
≤ ρ

|W |
δS,S′(I \D)

– (S ′ − S energy term stability)

∑
w∈S

(bTs′wL
+
(Ii\D)/S′bfi)

2

rfi

∑
e∈∂Iiw

bTss′L
+
(Ii\D)/(S,S′)be

re
≤ ρ

|W |
δS′,S(I \D)

• (Deferred endpoint potential change stability)

 ∑
{u,v}∈A

|bTss′L+
(Ii\D)/(S,S′)bfi||bTfiL

+
(Ii\D)/(S,S′)(bsu + bsv)|

rfi


+

 ∑
{u,v}∈B

|bTss′L+
(Ii\D)/(S,S′)bfi ||bTfiL

+
(Ii\D)/(S,S′)(bus′ + bvs′)|

rfi


≤ ρ

|W |

 ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)

+
rmin
n4
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• (Main objective change stability)

(bTss′L
+
(Ii\D)/(S,S′)bfi)

2

rfi
≤ ρ

|W |
bTss′L

+
(I\D)/(S,S′)bss′

|W | in each of the above guarantees refers to the original size of W .

We now use this oracle to prove the following result, which will later be used to show
Lemmas 4.10.1 and 4.8.2:

Lemma 4.10.8. Given a (ρ,K)-stable oracle Oracle, there is an algorithm Fix(I, J, S, S ′, ε, F,D)
that takes in a graph I, a random graph J that is a valid sample from the distribution I[F ],
a set D ⊆ E(I) of deleted edges, S, S ′ ⊆ V (G), F ⊆ E(I) \D, and an accuracy parameter
ε ∈ (0, 1). With high probability on J , there is a set F ′ ← Fix(I, J, S, S ′, ε, F,D) ⊆ F with
two properties:

• (Conductance) cJ\D\F
′
(S, S ′) ≤ (1 + ε)cI\D(S, S ′)

• (Size) |F ′| ≤ Õ(ρ3ε−3(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|))

Futhermore, Fix takes Õ(m + (maxz≤|F |
zρ3

K(z)
+ log2 n)(m + T (Oracle))) time, where

T (Oracle) is the runtime of Oracle.

The runtime in the above guarantee corresponds to running Oracle
|F |ρ3
K

times. Later in
this section, we implement a simple (O(polylog(n)), 1)-stable oracle called SlowOracle. This
oracle is sufficient to prove Lemma 4.10.1. However, T (SlowOracle) = Θ(m2). Furthermore,
K = 1. As a result, the runtime of the algorithm could be as high as Θ(m3). To reduce
this runtime, we exploit Theorem 5.4.1 and sketching techniques to obtain FastOracle.
Sketching allows us to make T (FastOracle) = m1+o(1) and Theorem 5.4.1 allows us to
reuse Z for many iterations. Specifically, FastOracle is an (mo(1), zm−o(1))-stable oracle.
Therefore, plugging in FastOracle to Fix proves Lemma 4.8.2.

To prove Lemma 4.10.8, proceed as described in Section 4.10.2. At any given point,
bucket edges in F by their maximum normalized endpoint S − S ′ potential. Let [p, 2p] be
the potential range with the most edges of F in the corresponding bucket. If this bucket
W has more than ρ3((∆I\D(S, S ′) + ∆I\D(S ′, S))/p+ |D|), call Oracle to produce a subset
Z ⊆ W and split and condition on a uniformly random sample of K elements from Z.
Otherwise, “defer” conditioning on all edges of Z by adding them to A or B, depending
on whether they are closer to S or S ′ respectively in the potential embedding. Once all
remaining edges of F are in either A or B, delete the ones with an endpoint with normalized
potential in the interval [ε, 1− ε] and condition on all others.
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We now give pseudocode that implements the above description:

Algorithm 14: Fix(I, J, S, S ′, ε, F,D)

Data: two disjoint sets of vertices S and S ′, the graph I, the random sample
J ∼ I[F ], ε ∈ (0, 1), F,D ⊆ E(G)

Result: the set F ′

// edges whose endpoint potentials we want to control

1 A,B ← ∅
2 while |F | is not empty do

// identifications s, s′

3 I ′ ← (I \D)/(S, S ′)
4 foreach i← 0, 1, . . . do

5 Xi ← {{u, v} ∈ F :
bT
ss′L

+
I′ (bsu+bsv)/2

bT
ss′L

+
I′bss′

∈ (2−i−2, 2−i−1]}

6 Yi ← {{u, v} ∈ F :
bT
ss′L

+
I′ (bus′+bvs′ )/2

bT
ss′L

+
I′bss′

∈ [2−i−2, 2−i−1)}
7 end
8 imax ← 2 log n
9 Xlow ← ∪i>imaxXi

10 Ylow ← ∪i>imaxYi
11 W ← arg maxW∈{X0,Y0,...,Ximax ,Yimax ,Xlow,Ylow} |W |
12 i← index of W as Xi or Yi, with i← imax + 1 if W is low
13 p← 2−i−2

14 if |W | ≤ 10000(log n)ξ2
bucketsρ

3ε−2(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|)2i then
// defer all edges in W

15 F ← F \W
16 Add edges of W to A if W = Xi, otherwise add W to B

17 else
18 Remove all edges e from W for which levI\D(e)− levI/(S,S′)(e) > 1/32 using

Johnson-Lindenstrauss with ε = 1/64
19 Z ← Oracle(I, S, S ′, D,A,B,W )
20 Z ′ ← a uniformly random subset of Z with size K(|W |)

// can be implemented using J in O(|Z ′|) time

21 I ← I[[Z ′]]
22 F ← F ∩ E(I)

23 end

24 end
25 F ′ ← set of edges in A ∪B that have some endpoint with normalized I ′ potential

between ε/2 and 1− ε/2
26 return F ′

Our analysis of this algorithm centers around applying Proposition 4.10.5. Specifically,
Proposition 4.10.5 is applied to show that the electrical functions
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• δS,S′(H \D)

• δS′,S(H \D)

• bTss′L+
(H\D)/(S,S′)bss′

•
(∑

u∈V (A) b
T
suL

+
(H\D)/(S,S′)bss′

)
+
(∑

v∈V (B) b
T
vs′L

+
(H\D)/(S,S′)bss′

)
do not change much over the course of conditioning on many edges. We focus our

discussion of intuition on the first two functions, since the others are easier. The first two
functions are very similar, so we focus our discussion on the first one. Furthermore, bounding
ρE is in Proposition 4.10.5 is more difficult than bounding ρL, so we focus on that.

To bound expected changes in δS,S′(H \ D), it helps to define a quantity related to
the discrepancy between leverage scores in H (the graph a tree is being sampled in) and
(H \D)/(S, S ′) (the graph in which quantities of interest are defined):

Definition 4.10.9 (Leverage score change). Consider an edge e in a graph H obtained by
identifying vertices and deleting edges in a graph G. Define

levcngG→H(e) =
re − bTe L+

Gbe
re − bTe L+

Hbe
− bTe L

+
Gbe

bTe L
+
Hbe

=
re(b

T
e L

+
Hbe − bTe L

+
Gbe)

(re − bTe L+
Hbe)b

T
e L

+
Hbe

It is also helpful to define the following maximum energy fraction, which is used to define
a generalization of the fact that the effective resistance is the sum of energies on all edges:

Definition 4.10.10 (Maximum energy fraction). For a graph H, a set Y ⊆ V (H), a vertex
x0 /∈ Y , and some edge f ∈ E(X), let

αHx0,Y (f) = max
w∈Y

(bTx0wL
+
Hbf )

2

(bTx0wL
+
Hbx0w)rf

Remark 10. When γ ≤ levH(e) ≤ 1− γ for some γ ∈ [0, 1/2],

|levG(e)− levH(e)| ≤ |levcngG→H(e)| ≤ 2|levG(e)− levH(e)|/γ

Consider any edge f ∈ E(H) \ D. One can write the expected change in δS,S′(H \ D)
after conditioning using rank-one updates:
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EH′∼H[f ][δS,S′(H
′ \D)]− δS,S′(H \D)

= −levcngH→(H\D)/S(f)
∑
w∈S′

∑
e∈∂Hw

(
(bTswL

+
(H\D)/Sbf )

2

rf

)(
bTss′L

+
(H\D)/(S,S′)be

re

)

− levcngH→(H\D)/(S,S′)(f)
∑
w∈S′

∑
e∈∂Hw

(
bTswL

+
(H\D)/Sbsw

)((bTss′L
+
(H\D)/(S,S′)bf )(b

T
f L

+
(H\D)/(S,S′)be)

rfre

)

+

(
levH(f)

lev(H\D)/S(f)lev(H\D)/(S,S′)(f)
+

1− levH(f)

(1− lev(H\D)/S(f))(1− lev(H\D)/(S,S′)(f))

)
∑
w∈S′

∑
e∈∂Hw

(
(bTswL

+
(H\D)/Sbf )

2

rf

)(
(bTss′L

+
(H\D)/(S,S′)bf )(b

T
f L

+
(H\D)/(S,S′)be)

rfre

)

By the triangle inequality and the definition of α
(H\D)/S
s,S′ (f),

|EH′∼H[f ][δS,S′(H
′ \D)]− δS,S′(H \D)|

≤ |levcngH→(H\D)/S(f)|
∑
w∈S′

∑
e∈∂Hw

(
(bTswL

+
(H\D)/Sbf )

2

rf

)(
bTss′L

+
(H\D)/(S∪S′)be

re

)

|levcngH→(H\D)/(S,S′)(f)|
∑
w∈S′

∑
e∈∂Hw

(
bTswL

+
(H\D)/Sbsw

)( |bTss′L+
(H\D)/(S,S′)bf ||bTf L

+
(H\D)/(S,S′)be|

rfre

)

+

(
levH(f)

lev(H\D)/S(f)lev(H\D)/(S,S′)(f)
+

1− levH(f)

(1− lev(H\D)/S(f))(1− lev(H\D)/(S,S′)(f))

)
α

(H\D)/S
s,S′ (f)

∑
w∈S′

∑
e∈∂Hw

(
bTswL

+
(H\D)/Sbsw

)( |bTss′L+
(H\D)/(S,S′)bf ||bTf L

+
(H\D)/(S,S′)be|

rfre

)

The stable oracle guarantees can be used on all of the quantities in the above sum. The
“S − S ′ normalized degree change stability” guarantees bound the double sums in each of
the three above terms. The “Leverage score stability” guarantees bound the leverage score
quantity in the second order term. Initially, the levcng and α quantities may seem trickier
to bound. Luckily, we can prove bounds on their average values in terms of ∆H\D(US, S

′) +
∆H\D(US′ , S), where US and U ′S are the sets of vertices with normalized potential less than
1− p and greater than p respectively, with s and s′ assigned to 0 and 1 respectively. These
∆ quantities are in turn bounded using the “Midpoint potential stability” guarantee, along
with the following:
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Proposition 4.10.11. Consider two disjoint sets of vertices X and Y in a graph G. Let
G′ = G/(X ∪ Y ), with x and y the identifications of X and Y respectively. Let Z be the set
of vertices v with electrical potential pv ≤ γ for some γ ∈ (0, 1) with boundary conditions
px = 0 and py = 1. Then

∆G(Z, Y ) ≤ 1

1− γ
∆G(X, Y )

where z is the identification of Z in G/Z.

This bound on ∆ is then used in conjunction with the following to bound levcng and α:

Lemma 4.10.12 (Bounding first order terms, part 1). Consider a graph G and two sets
X, Y ⊆ V (G) with X ∩ Y = ∅. Let H = G/Y with y the identification of Y in G. Let
∆ = ∆G(X, Y ). Then ∑

f∈G[X]∪∂GX:1/4≤levG(f)≤3/4

|levcngG→H(f)| ≤ 32∆

Lemma 4.10.13 (Bounding first order terms, part 2). Consider a graph G and a set of
edges D ⊆ E(G). Then ∑

e∈E(G)\D:1/4≤levG(e)≤3/4

|levcngG→G\D(e)| ≤ 4|D|

Lemma 4.10.14 (Bounding the second order term). Consider a graph G and two disjoint
sets of vertices X, Y ⊆ V (G). For any s ∈ X,∑

e∈EG(X)∪∂GX

αGs,Y (e) =
∑

e∈EG(X)∪∂GX

max
t∈Y

(bTstL
+
Gbe)

2

(bTstL
+
Gbst)re

≤ 24ξ2
buckets∆

G(X, Y )

where ξbuckets = log(mα).

Appendix B.5.1 is dedicated towards proving these bounds. Notice that in Line 20, the
algorithm chooses edges to condition on randomly. This allows us to exploit the above
bounds in order to eliminate the levcng and α dependencies. This completes the outline of
the proof of the bound on ρE for the normalized degree and illustrates how we prepare to
apply Proposition 4.10.5 in general.

We now state all of the stability results that a stability oracle implies in the algorithm
Fix. These are shown in Appendix B.5.2. These propositions analyze of Lines 20-22 by
conditioning on a uniformly random sample one edge at a time.
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Definition 4.10.15 (Stability propositions setup). Let Z0 = Z ← Oracle(I, S, S ′, D,A,B,W )
and I0 = I, where Oracle is (ρ,K)-stable. Assume that the input to Oracle satisfies the
conditions described in Definition 4.10.7.

Obtain Zk and Ik for k > 0 by choosing a uniformly random edge fk−1 ∈ Zk−1, letting
Zk ← Zk−1\{fk−1}, and letting Ik ← Ik−1[[fk−1]]. Let ∆k := ∆Ik\D(S, S ′)+∆Ik\D(S ′, S)+|D|.

Notice that the set Z ′ defined in the algorithm Fix could analogously be defined by
letting Z ′ ← Z \ ZK . We now show that the following stability properties hold:

Proposition 4.10.16 (Stability with respect to ∆). For all k ∈ {0, 1, . . . , K(|W |)− 1}, the
set Zk is a (Õ(ρ), Õ(ρ∆k/p), 0)-stable subset of W for the electrical functions

δS,S′(H \D)

and

δS′,S(H \D)

of H with high probability.

Proposition 4.10.17 (Stability with respect to sums of deferred potentials). For all k ∈
{0, 1, . . . , K(|W |)− 1}, the set Zk is a (Õ(ρ), Õ(ρ∆k/p), rmin/n

4)-stable subset of W for the
electrical function

 ∑
{u,v}∈A

bTss′L
+
(H\D)/(S,S′)(bsu + bsv)

+

 ∑
{u,v}∈B

bTss′L
+
(H\D)/(S,S′)(bus′ + bvs′)


of H with high probability.

Proposition 4.10.18 (Stability with respect to the main objective). For all k ∈ {0, 1, . . . , K(|W |)−
1}, the set Zk is a (Õ(ρ), Õ(ρ∆k/p), 0)-stable subset of W for the electrical function

bTss′L
+
(H\D)/(S,S′)bss′

of H with high probability.

Now, we use Proposition 4.10.5 to show the following result:

Proposition 4.10.19. Immediately before Line 25 of the algorithm Fix, the graph I and
the sets A and B have the following properties with high probability:

• (Main objective) Let I0 be the graph supplied as input to Fix. Then bTss′L
+
I\Dbss′ ≥

(1− ε)bTss′L+
I0\Dbss′
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• (Normalized potentials of deferred edges are not too high on average)

1

bTss′L
+
I\Dbss′

 ∑
{u,v}∈A

bTss′L
+
I\D(bsu + bsv)

+

 ∑
{u,v}∈B

bTss′L
+
I\D(bus′ + bvs′)


≤ Õ(ρ3ε−2(∆I0\D(S, S ′) + ∆I0\D(S ′, S) + |D|))

The first condition of the above proposition states that the value that Fix needs to
preserve (bTss′L

+
I\Dbss′ = 1

cI\D(S,S′)
) is in fact similar to its value at the beginning of the

algorithm. This is not enough, however, because the deferred edges have not been conditioned
on before Line 25. The second condition of Proposition 4.10.19 ensures that contracting
or deleting all but Õ((∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|)ε−1) of the deferred edges does not
decrease the main objective by more than a factor of 1− ε. Setting the remaining edges to
be F ′ shows the desired result.

We now show Proposition 4.10.19:

Proof of Proposition 4.10.19. Number of “If” block visits. Start by bounding the number of
times the “If” block in the algorithm Fix is entered. Each time the “If” statement is entered,
Line 15 removes W from F . By construction, |W | ≥ |F |/(2imax) = |F |/(2 log n). Therefore,
this removal can only take place (log |F |)(2 log n) ≤ 2 log2 n times, so the “If” statement
only executes 2 log2 n times over the course of Fix.

Verifying stable oracle input conditions and size of W . After Line 18, W only contains
edges for which |levI\D(e)− levI/(S,S′)(e)| ≤ 1/32 + 2(1/64) ≤ 1/16. Therefore, W satisfies
the “Bounded leverage score difference” condition. W satisfies one of the “Narrow potential
neighborhood” conditions by definition of the Xis and Yis.

Now, we lower bound the size of W after Line 18. Let US and US′ be the vertices with
(I \ D)/(S, S ′)-normalized potentials greater than p and less than 1 − p respectively, with
s← 0 and s′ ← 1. By Proposition 4.10.11 with γ ← 1− p,

∆I\D(US, S
′) ≤ ∆I\D(S, S ′)/p

and

∆(I\D)/S′(US′ , S) ≤ ∆I\D(US′ , S) ≤ ∆I\D(S ′, S)/p

Every edge in W has an endpoint in US ∩ US′ by the bucketing definition. Applying
Lemma 4.10.12 twice and the first inequality of Remark 10 shows that∑

e∈W

levI\D(e)− lev(I\D)/(S,S′)(e) ≤ 32(∆I\D(S, S ′) + ∆I\D(S ′, S))/p

By Lemma 4.10.13 and Remark 10,
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∑
e∈W

lev(I\D)/(S,S′)(e)− levI/(S,S′)(e) ≤ |D|

Therefore, by Rayleigh monotonicity,∑
e∈W

|levI\D(e)− levI/(S,S′)(e)| ≤ 32(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|)/p

By the “If” condition,

|W | ≥ 4096(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|)/p

before Line 18. In particular,∑
e∈W

|levI\D(e)− levI/(S,S′)(e)| ≤ |W |/128

which means that Line 18 can only remove (|W |/128)/(1/32) ≤ |W |/4 edges from W .
Therefore, Line 18 only decreases the size of W by a factor of 3/4. In particular, |W | ≥
Ω̃(ρ3ε−2(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|)/p) after Line 18.

Concentration in “Else”-only intervals. Now, define the functions

x0(H) := bTss′L(H\D)/(S,S′)bss′ = 1/cH\D(S, S ′)

x1(H) := δS,S′(H \D)

x2(H) := δS′,S(H \D)

and

y0(H) :=

 ∑
{u,v}∈A

bTss′L
+
H\D(bsu + bsv)

+

 ∑
{u,v}∈B

bTss′L
+
H\D(bus′ + bvs′)


All of these functions are electrical functions for the graph H, as they are preserved under

splitting edges in series and in parallel.
We now check that Proposition 4.10.5 can be applied between “If” block executions to

show that x0, x1, x2, and y0 do not change by more than a (1 + ε/(2 log2 n))-factor over
each “Else”-only interval. Line 20 is equivalent picking uniformly random edges from Z ′

without replacement K times. Let ∆ := ∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|. By Propositions
4.10.16,4.10.17, and 4.10.18, each of the selected edges is sampled from a set that is a
(Õ(ρ), Õ(ρ(∆/p)), 0)-stable subset of W for the xis and (Õ(ρ), Õ(ρ(∆/p)), rmin/n

4)-stable
for y0. Therefore, we may apply Proposition 4.10.5 with
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ρE({xa(H)}a)← Õ(ρ(∆H\D(S, S ′) + ∆H\D(S ′, S) + |D|)/p))
= Õ(ρ(δS,S′(H \D) + δS′,S(H \D))/(pbTss′L

+
(H\D)/(S,S′)bss′))

= Õ(ρ(x1(H) + x2(H))/(px0(H)))

ρL ← Õ(ρ)

δ ← rmin/n
4

and

σ ← Ω̃(ρ3/ε2)

because ρE is a 1-multlipschitz function in its inputs. In order to apply Proposition
4.10.5, we need to bound τE. By the “If” statement and the “Size of W” bound earlier in
this proof, τE ≤ ε/(100 log2 n) and

√
γ`1ρ

3/2
L /
√
σ ≤ ε/(100 log2 n). Therefore, Proposition

4.10.5 implies that each xi function changes by at most a factor of (1 + ε/(8 log2 n)) during
each “Else”-only interval. Furthermore, y0 changes by at most an (1 + ε/(8 log2 n)) factor
during each interval, along with an additive change of at most Õ(ρrmin|F |/n4) ≤ rmin/n

3.
This is the desired change in each “Else”-interval.

Main objective. Each “Else” interval causes x0(H) = bTss′L
+
H\Dbss′ to change by a factor

of at most (1+ε/(8 log2 n)). By “Number of If block visits,” there are at most 2 log2 n of these
intervals. Therefore, x0(I) ≥ (1 − ε/(8 log2 n))2 log2 nx0(I0) ≥ (1 − ε)x0(I0). In particular,
bTss′L

+
I\Dbss′ ≥ (1− ε)bTss′L+

I0\Dbss′ , as desired.
Normalized potentials are not too high on average. Each “Else”interval causes

the quantity ∆I\D(S, S ′)+∆I\D(S ′, S) to increase by a factor of at most (1+ ε/(8 log2 n)) by
Proposition 4.10.5 applied to all of the xis. Therefore, the total increase over the course of
the entire algorithm is at most a factor of (1 + ε) ≤ 2, since there are at most 2 log2 n “Else”
intervals. Therefore, I in the bound of the “If” statement can be replaced with I0 with at
most a factor of 2 increase in the value.

Each “If” statement adds at most Õ(ρ3ε−2(∆I0\D(S, S ′) + ∆I0\D(S ′, S) + |D|)2i) edges
to A or B. Each of these edges contributes at most 2−i−2(bTss′L

+
I\Dbss′) ≤ 2−i−1(bTss′L

+
I0\Dbss′)

(by Proposition 4.10.5) to the sum, so each “If” block increases y0 by at most

Õ(ρ3ε−2(∆I0\D(S, S ′) + ∆I0\D(S ′, S) + |D|)2i)2−i−1(bTss′L
+
I0\Dbss′)

≤ Õ(ρ3ε−2(∆I0\D(S, S ′) + ∆I0\D(S ′, S) + |D|))(bTss′L+
I0\Dbss′)
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additively. Each “Else” statement increases the value of y0 by at most a factor of (1 +
ε/(8 log2 n)) along with an additive increase of at most rmin/n

3. Therefore, the value of y0 im-
mediately before Line 25 is at most Õ(ρ3ε−2(∆I0\D(S, S ′)+∆I0\D(S ′, S)+|D|))(bTss′L+

I0\Dbss′),

as desired. Dividing both sides by (bTss′L
+
I0\Dbss′) and using the concentration of x0 gives the

desired result.

We now use this proposition, along with the following result:

Proposition 4.10.20. Consider two disjoint sets of vertices X and Y in a graph G. Let
G′ = G/(X, Y ), with x and y the identifications of X and Y respectively. Let A and B be
sets of edges for which both endpoints have normalized L+

G′bxy potential at most γ and at
least 1− γ respectively for some γ ∈ (0, 1/2). Arbitrarily contract and delete edges in A and
B in G to obtain the graph H. Then

cH(X, Y ) ≤ 1

(1− γ)2
cG(X, Y )

to show Lemma 4.10.8 using the intuition given earlier:

Proof of Lemma 4.10.8. Correctness and runtime of conditioning. The conditioning process
given in Fix can be written in the form described in Proposition 4.9.9. Therefore, by Propo-
sition 4.9.9, its output is equivalent in distribution to sampling from I[F ]. Furthermore,
Line 21 can be implemented using the sample J in constant time per edge by Proposition
4.9.8.

Conductance. By the “Main objective” condition, the s−s′ effective resistance in I\D is
at least (1−ε) times its original value right before Line 25. Contracting or deleting (A∪B)\F ′
in I only decreases the resistance by a factor of at most (1− ε/2)2 ≥ (1− ε) by Proposition
4.10.20. By Rayleigh monotonicity, deleting F ′ only increases the s − s′ resistance. The
total decrease due to all of these changes is at most a factor of (1− ε)2 ≥ 1− O(ε). Taking
reciprocals and using the fact that cJ\D\F

′
(S, S ′) = 1/(bTss′L

+
J\D\F ′bss′) yields the desired

result.
Size. By Markov’s Inequality and the “Normalized potentials of deferred edges are

not too high on average” guarantee of Proposition 4.10.19, only Õ(ρ3ε−3(∆I\D(S, S ′) +
∆I\D(S ′, S) + |D|)) edges in A ∪ B can have any endpoint with normalized potential in
the interval [ε/2, 1 − ε/2]. Therefore, |F ′| ≤ Õ(ρ3ε−3(∆I\D(S, S ′) + ∆I\D(S ′, S) + |D|)), as
desired.

Runtime. Each “While” loop iteration takes Õ(m + T (Oracle)) time, so it suffices to
bound the number of “While” loop iterations. Each “If” block “While” loop iteration reduces
the size of |F | by a factor of 1− 1/(imax) ≤ 1− 1/(2 log n), so only O(log2 n) such iterations
can occur. Each “Else” block “While” loop iteration decreases the size of F in expectation
by at least K(|F |)/4 by Proposition 4.9.6. By Chernoff bounds, for K(|F |) ≥ polylog(n), F
decreases in size by at least K(|F |)/8 with high probability. Therefore, each “Else” iteration

reduces the size of |F | by a factor of (1 − K(|F |)
|F | ) with high probability. Therefore, only
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Õ(|F |/K(|F |)) “Else” iterations can occur. All “While” loop iterations either call “If” or
“Else,” so we have finished the runtime analysis.

4.10.4 Warmup: A (polylog(n), 1)-stable oracle

We now give a stable oracle SlowOracle that suffices for proving Lemma 4.10.1. SlowOracle
is similar in concept to picking the minimum energy edge in W . However, it needs to do
so for multiple functions simultaneously and for more complicated functions than effective
resistances. To cope with these complexities, we exploit Theorem 4.9.12 in place of the fact
that the sum of the energies on edges is the effective resistance.

Algorithm 15: SlowOracle(I, S, S ′, D,A,B,W ), never executed

1 Return all edges in W that satisfy all of the inequalities in the “S − S ′-normalized
degree change stability,” “Deferred endpoint potential change stability,” and “Main
objective change stability” guarantees of Oracle with ρ = 400 log(βn)

Proposition 4.10.21. There is a (400 log(βn), 1)-stable oracle SlowOracle.

Proof. Everything besides size of Z. Let Z ← SlowOracle(I, S, S ′, D,A,B,W ). By
construction, all edges in Z (in particular f0) satisfy the “S − S ′-normalized degree change
stability,” “Deferred endpoint potential change stability,” and “Main objective change stabil-
ity” guarantees of Oracle. The “Midpoint potential stability” and “Leverage score stability”
guarantees follow from the fact that K = 1.

Size of Z. In each of the “Conductance term stability” quantities, the edge e has s′ as
an endpoint in the graph (I0 \D)/(S, S ′). Furthermore, in the “Deferred endpoint potential
change stability” quantity, bsu+bsv has one source that is the same as bss′ ’s source. Similarly,
bus′ + bvs′ and bss′ have the same sink. Therefore, Theorem 4.9.12 applies with τ = β12n12

and shows that
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∑
f∈W

∑
w∈S′

(bTswL
+
(I0\D)/Sbsw)

∑
e∈∂I0w

|bTss′L+
(I0\D)/(S,S′)bf ||bTf L

+
(I0\D)/(S,S′)be|

rfre

=
∑
w∈S′

(bTswL
+
(I0\D)/Sbsw)

∑
e∈∂I0w

∑
f∈W

|bTss′L+
(I0\D)/(S,S′)bf ||bTf L

+
(I0\D)/(S,S′)be|

rfre

≤
∑
w∈S′

(bTswL
+
(I0\D)/Sbsw)

∑
e∈∂I0w

(
(12 log(nβ))

bTss′L
+
(I0\D)/(S,S′)be

re
+

n2rmax
reβ12n12

)

≤
∑
w∈S′

(bTswL
+
(I0\D)/Sbsw)

∑
e∈∂I0w

(
(24 log(nβ))

bTss′L
+
(I0\D)/(S,S′)be

re

)
= 24 log(nβ)δS,S′(I \D)

where the second-to-last inequality follows from the fact that effective resistances in any
graph are within a factor of n2β of one another. Similarly,

∑
f∈W

∑
w∈S

(bTs′wL
+
(I0\D)/Sbs′w)

∑
e∈∂I0w

|bTss′L+
(I0\D)/(S,S′)bf ||bTf L

+
(I0\D)/(S,S′)be|

rfre
≤ 24 log(nβ)δS′,S(I\D)

∑
f∈W

∑
w∈S′

(bTswL
+
(I0\D)/Sbf )

2

rf

∑
e∈∂I0w

bTss′L
+
(I0\D)/(S,S′)be

re
≤ δS,S′(I \D)

∑
f∈W

∑
w∈S

(bTs′wL
+
(I0\D)/S′bf )

2

rf

∑
e∈∂I0w

bTss′L
+
(I0\D)/(S,S′)be

re
≤ δS′,S(I \D)

∑
f∈W

 ∑
{u,v}∈A

|bTss′L+
(I0\D)/(S,S′)bf ||bTf L

+
(I0\D)/(S,S′)(bsu + bsv)|

rf


+
∑
f∈W

 ∑
{u,v}∈B

|bTss′L+
(I0\D)/(S,S′)bf ||bTf L

+
(I0\D)/(S,S′)(bus′ + bvs′)|
rf


≤ 12 log(βn)

∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv) + 12 log(βn)

∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′) +

rmin
n6

∑
f∈W

(bTss′L
+
(I0\D)/(S,S′)bf )

2

rf
≤ bTss′L

+
(I\D)/(S,S′)bss′



CHAPTER 4. RANDOM SPANNING TREE SAMPLING 154

By Markov’s Inequality, only |W |/16 edges in W can violate any one of the six conditions
tested in SlowOracle. Therefore, |Z| ≥ |W | − 6|W |/16 ≥ |W |/2, as desired.

Proof of Lemma 4.10.1. Follows directly from Lemma 4.10.8, with SlowOracle substituted
in for Oracle by Proposition 4.10.21.
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4.11 Efficient construction for the conductance

concentration inequality

To accelerate Fix, we need to construct an almost-linear time (mo(1), |W |m−o(1))-stable ora-
cle. To do this, we need to do the following:

• Compute a large subset of W consisting of edges that respect all of the conditions of
stable oracles in almost-linear time.

• Show that this large subset of W continues to satisfy the stable conditions even after
conditioning on a significant fraction of W .

The first objective boils down to computing approximations to moments of Laplacian
inner products. This can be done using techniques from streaming algorithms; for example
[6, 44]. Specifically, we use Theorem 4.9.13. The second objective boils down to showing
that a set of stable edges remains stable for many iterations. To show this, we use Theorem
5.4.1.

4.11.1 Exploiting localization

Concentration preliminaries

In this subsection, it is helpful to have a few concentration inequalities that allow us to
control the `∞ norm of certain vectors. We apply Theorem 4.9.11 to obtain two concentration
inequalities that will be applied directly:

Proposition 4.11.1. Let {M (k)}k ∈ Rn×n be a sequence of symmetric, nonnegative random
matrices, {Z(k)}k ∈ {0, 1}n, and S(k) ⊆ [n] with the following properties:

• For all i ∈ [n],
∑n

j=1,j 6=iM
(0)
ij ≤ σ where σ ≤ σ0. Furthermore, S(0) = ∅.

• The random variables {Z(k)}k are defined by making Z(k+1) the indicator of a uniformly
random choice w(k+1) ∈ [n] \ S(k). Let S(k+1) := S(k) ∪ {w(k+1)}.

• For all i, j ∈ [n] and k, M
(k+1)
ij ≤M

(k)
ij + γ

∑n
l=1M

(k)
il Z

(k+1)
l M

(k)
lj .

With probability at least 1− 1/n8, ∑
j 6=i,j /∈S(k)

M
(k)
ij ≤ σ1

for all i /∈ S(k) and all k ≤ n/2.

We also need a bound on how M affects a random vector v:
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Proposition 4.11.2. Let {M (k)}k ∈ Rn×n be a sequence of symmetric, nonnegative random
matrices, {v(k)}k ∈ Rn be a sequence of nonnegative random vectors, {Z(k)}k ∈ {0, 1}n, and
{S(k)}k ⊆ [n] with the following properties:

• For all i ∈ [n] and all k,
∑

j 6=i,j /∈S(k) M
(k)
ij ≤ σ1.

• The random variables {Z(k)}k are defined by making Z(k+1) the indicator of a uniformly
random choice w(k+1) ∈ [n] \ S(k). Let S(k+1) := S(k) ∪ {w(k+1)}.

• For all i ∈ [n], v
(0)
i ≤ τ .

• For all i ∈ [n] and k, v
(k+1)
i ≤ v

(k)
i + γ

∑n
l=1M

(k)
il Z

(k+1)
l (v

(k)
l + v

(k)
i ).

With probability at least 1− 1/n8,

v
(k)
i ≤ τ1

for all i /∈ S(k) and all k ≤ n/2.

We prove both of these propositions in Appendix B.6.1.

Flexible functions

We now discuss how to exploit the concentration inequalities from the previous subsubsection
to make stable sets of edges remain stable for an almost-linear number of iterations. The
bounds below are motivated by applications of Sherman-Morrison.

Definition 4.11.3 (Flexible families of functions). Let G′ be a graph and consider any minor
H of G′. Let X ⊆ E(G′) and consider a family of electrical functions {ge}e∈X on minors of
G′ along with a function φ that maps minors H of G′ to graphs with a subset of the edges in
H. This family is called flexible if for any graph H and any edges e, f ∈ X ∩ E(H), all of
the following hold:

• (φ commutes with modifications) For any minor H of G′ and any edge f ∈ E(H),
φ(H/f) = φ(H)/f and φ(H\f) = φ(H)\f .

• (Contractions) |ge(H/f)− ge(H)| ≤
|bTe L

+
φ(H)

bf |
√
re
√
rf

3
(levφ(H)(f))2

(gf (H) + ge(H))

• (Deletions) |ge(H\f)− ge(H)| ≤
|bTe L

+
φ(H)

bf |
√
re
√
rf

3
(1−levφ(H)(f))2

(gf (H) + ge(H))
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Crudely controlling flexible functions

We now make use of Theorem 5.4.1 to find a set of edges for which flexible functions do not
increase much if one splits and conditions for a linear number of iterations.

In the Fix algorithm, edges were split in one of two ways before conditioning on them.
This ensured that they had a leverage score that was bounded away from both 0 and 1. In
order to decide which way to split an edge, the algorithm must approximately know its effec-
tive resistance. Naively, this requires recomputing approximate effective resistances during
each iteration. One can avoid recomputation for a linear number of iterations, however, by
showing the following:

Proposition 4.11.4. Given any set X ⊆ E(G′) in some graph G′ along with a graph G′′ on
a subset of the edges of G′ with the following property:

• Each edge e ∈ X has levG′′(e) ∈ [1/4, 3/4]

there is a set Y ← VeryStableG′(G
′′, X) with Y ⊆ X and the following additional

properties:

• (Size) |Y | ≥ |X|/polylog(n) with probability at least σ/(16O(log2 n)).

• (Leverage score bound) Pick a subset Y0 ⊆ Y and sample a random sequence of edges
f0, f1, . . . , f|Y0|/2 without replacement. For any integer 0 ≤ i ≤ |Y0|/2, let G′′i denote
the graph obtained by arbitrarily deleting/contracting the edges f0, f1, . . . , fi−1 in G′′.
Then, with probability at least 1− 1/n6,

|levG′′i (e)− levG′′(e)| ≤
1

8

for all e ∈ Y0 \ {f0, f1, . . . , fi−1}.

• (Flexible function bound) For any flexible family of functions ({ge}e∈X , φ) with G′′ =
φ(G′),

max
e∈Y0\{f0,f1,...,fi−1}

ge(G
′
i) ≤ 2 max

e∈Y0
ge(G

′)

with probability at least 1− 1/n6.

• (Runtime) The algorithm takes Õ(m+T (ColumnApxPreprocessing)+|X|T (ColumnApx))
time.
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To apply this proposition, one just needs to run it O((log3 n)/σ) times to obtain the
desired set with high probability. We encourage the reader to ignore the approximation
aspect of the ves this is only included for efficiency purposes later on:

Algorithm 16: VeryStableG′(G
′′, X)

Data: An ambient graph G′, a graph G′′ that stable functions are “defined” in (is the
image of φ), and a set of edges X ∈ E(G′) for possible conditioning

Result: The set Y ⊆ X
1 Z ← subset of edges e ∈ X, with each edge independently added to Z with

probability σ/(8O(log2 n))
2 ColumnApxPreprocessing(G′′, Z)
3 Y ← ∅
4 foreach e ∈ Z do

// multiplicative 2-approximation to the quantity
∑

f∈Z,f 6=e
|bTe L

+
G′′bf |√

re
√
rf

5 ve ← ColumnApx(e)
6 Add e to Y if ve ≤ σ

7 end
8 return Y

Proof. Size. By Markov’s Inequality and Theorem 5.4.1 applied to the vector w = 1X , the

subset X0 ⊆ X consisting of edges e ∈ X with
∑

f∈X
|bTe L

+
G′′bf |√

re
√
rf
≤ 2O(log2 n) has size at least

|X|/2. For any edge e ∈ X0,

EZ

[ ∑
f∈Z,f 6=e

|bTe L+
G′′bf |√

re
√
rf
| e ∈ Z

]
= EZ

[ ∑
f∈Z,f 6=e

|bTe L+
G′′bf |√

re
√
rf

]

=
σ

8O(log2 n)

∑
f∈Z,f 6=e

|bTe L+
G′′bf |√

re
√
rf

≤ σ

4

where the first equality follows from the fact that edges in X are added to X0 indepen-
dently. Therefore, for e ∈ X0, E[ve|e ∈ Z] ≤ σ/2 and
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Pr
Z

[e ∈ Y ] = Pr
Z

[e ∈ Y, e ∈ Z]

= (1− Pr
Z

[e /∈ Y | e ∈ Z]) Pr
Z

[e ∈ Z]

=
(

1− Pr
Z

[ve > σ | e ∈ Z]
)

Pr
Z

[e ∈ Z]

≥ 1

2
Pr
Z

[e ∈ Z]

=
σ

16O(log2 n)

where the inequality follows from Markov. Since |Y ∩X0| ≤ |X0|,

Pr
Z

[
|Y ∩X0| >

σ|X0|
(32O(log2 n))

]
|X0|+

σ|X0|
(32O(log2 n))

≥ EZ [|Y ∩X0|] ≥
σ|X0|

(16O(log2 n))

and

Pr
Z

[
|Y | > σ|X|

(64O(log2 n))

]
≥ σ

(32O(log2 n))

thus completing the size bound.
Leverage score bound and continued electrical flow sum bound. We now show induc-

tively that for all k ≤ |Y0|/2 and e ∈ Y0 \ {f0, f1, . . . , fk−1}, both

∑
f∈Y0\{e,f0,f1,...,fk−1}

|bTe L+
G′′k
bf |

√
re
√
rf
≤ 4σ (4.1)

and

|levG′′k (e)− levG′′ | ≤
1

8
(4.2)

where G′′k is a graph obtained by contracting or deleting the edges f0, f1, . . . , fk−1 in G′′.
We start by checking the base case. The base case for (4.1) follows immediately from the

approximation lower bound on ve. The base case for (4.2) follows from the input condition
to Proposition 4.11.4.

Now, we continue on to the inductive step. By the input condition,

1

4
≤ levG′′(e) ≤

3

4
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for all e ∈ Y0. Let M
(k)
ef ←

|bTe L
+

G′′
k
bf |

√
re
√
rf

, γ ← 8, and σ ← 2σ (last one uses the lower bound

for ve). Notice that

M
(k+1)
ef ≤M

(k)
ef +

∑
g∈Y0

1

min(levG′′k (g), nonlevG′′k (g))
Z(k+1)
g M (k)

eg M
(k)
gf

by Sherman-Morrison and the triangle inequality. Z(k+1) is the indicator for the edge fk+1.
By the inductive assumption and the triangle inequality, min(levG′′k (g), nonlevG′′k (g)) ≥
1/8 = 1/γ. Therefore, Proposition 4.11.1 applies. It shows that for all k ≤ |Y0|/2 and all
e 6= f0, . . . , fk−1,

∑
f∈Y0\{e,f0,...,fk−1}

|bTe L+
G′′k
bf |

√
re
√
rf
≤ σ1

with probability at least 1− 1/n8. This is (4.1). Now, we bound how much e’s effective
resistance can change using martingale concentration. The above inequality implies that∣∣∣∣∣EG′′k+1

[
bTe L

+
G′′k+1

be

re
| G′′k

]
−
bTe L

+
G′′k
be

re

∣∣∣∣∣ ≤ 8EG′′k+1

[
(bTe L

+
G′′k
bfk)

2

rerfk

]
≤ 16

|Y0|
σ2

1

VarG′′k+1

[
bTe L

+
G′′k+1

be

re
| G′′k

]
= VarG′′k+1

[
bTe L

+
G′′k+1

be

re
−
bTe L

+
G′′k
be

re
| G′k

]

≤ 64EG′′k+1

[
(bTe L

+
G′′k
bfk)

4

r2
er

2
fk

| G′′k

]

≤ 128σ4
1

|Y0|∣∣∣∣∣b
T
e L

+
G′′k+1

be

re
−
bTe L

+
G′′k
be

re

∣∣∣∣∣ ≤ 8σ2
1

if e 6= fk. By Theorem 4.9.11, Pr[|levG′′k (e) − levG′′(e)| > 160(log n)σ2
1] ≤ 1/n10. Since

levG′′(e) ∈ [1/4, 3/4] and 160(log n)σ2
1 < 1/8, |levG′′k (e) − levG′′(e)| ≤ 1/8 for all k and

all e 6= f0, f1, . . . , fk−1 with probability at least 1 − n2/n10 = 1 − 1/n8. This verifies the
inductive hypothesis and proves (4.2).

Flexible function bound. Set M
(k)
ef ←

|bTe L
+

G′′
k
bf |

√
re
√
rf

, v
(k)
e ← ge(G

′
k), γ ← 300, σ1 ← σ1

(using (4.1)), and τ ← maxe∈Y0 ge(G
′). Notice that

M
(k)
ef =

|bTe L+
φ(G′k)bf |√
re
√
rf
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as well by the “φ commutes with modifications” property of φ. By definition of flexibility
and (4.2),

v(k+1)
e ≤ v(k)

e +
∑
f∈Y0

3

min(levG′′k (f), 1− levG′′k (f))
M

(k)
ef Z

(k)
f (v

(k)
f + v(k)

e )

≤ v(k)
e +

∑
f∈Y0

γM
(k)
ef Z

(k)
f (v

(k)
f + v(k)

e )

In particular, Proposition 4.11.2 applies and shows that

v(k)
e ≤ τ1

for all e ∈ Y0 \ {f0, f1, . . . , fk−1}, as desired.
Runtime. ColumnApx is called at most |X| times and ColumnApxPreprocessing is

called once.

4.11.2 A (mo(1), |W |m−o(1))-stable oracle that runs in almost-linear
time (FastOracle) given fast approximations to certain
quantities

Now, we implement FastOracle modulo some subroutines that efficiently return approxi-
mations to certain quantities. We start by intuitively discussing how to make each of the
quantities that FastOracle needs to control not change for multiple iterations.

The “Bounded leverage score difference” condition ensures that when an edge is split, it
can be split in the same direction for all graphs whose edge resistances are between those in
I \D and I/(S, S ′). Specifically, in all graphs between I \D and I/(S, S ′), splitting an edge
e in one particular direction ensures that its leverage score is bounded away from 0 and 1.

Leverage score stability intuition

This bound follows immediately from returning a subset of VeryStable(I\D, VeryStable(I/(S, S ′),W )).
The “Leverage score bound” of Proposition 4.11.4 yields the desired result.

Midpoint potential stability intuition

By Theorem 4.9.12, for any {u, v} ∈ W ,

∑
f∈W

|bTss′L+
(I\D)/(S,S′)bf ||bTf L

+
(I\D)/(S,S′)(bsu + bsv)/2|
rf

≤ bTss′L
+
(I\D)/(S,S′)(bsu+bsv)/2 ≤ O(log(n/p))p
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In particular, using the birthday paradox (as in VeryStable), one can find a 1/polylog(n/p)
fraction W ′ ⊆ W for which

|bTss′L+
(I\D)/(S,S′)bf ||bTf L

+
(I\D)/(S,S′)(bsu + bsv)/2|
rf

≤ p

log n

for all pairs of distinct edges e = {u, v}, f ∈ W ′. Passing W ′ through VeryStable makes
it so that the following flexible functions of H do not change by more than a factor of 2 over
the course of many edge contractions or deletions:

g
(0)
f (H) :=

|bTss′L+
(H\D)/(S,S′)bf |√

rf

φ(0)(H) := (H \D)/(S, S ′)

g
(1),X,s
f (H) :=

∑
{u,v}∈X\f

|bTf L+
(H\D)/(S,S′)(bsu + bsv)/2|

√
rf

g
(1),X,s′

f (H) :=
∑

{u,v}∈X\f

|bTf L+
(H\D)/(S,S′)(bus′ + bvs′)/2|

√
rf

φ(1)(H) := (H \D)/(S, S ′)

for some set of edges X ⊆ W .
We have to bucket edges by similar value of these functions in order to fully exploit this

(since the bound at the end is in terms of the maximum). Therefore, we can find a relatively
large subset of W for which random sampling will on average causes a (1− Õ(1/|W |))-factor
decrease in the function bTss′L

+
(H\D)/(S,S′)(bsu + bsv)/2 and in the worst case only decreases it

by a (1 − 1/(log n)) factor. Therefore, by Theorem 4.9.11, bTss′L
+
(I\D)/(S,S′)(bsu + bsv)/2 only

decreases by a small constant factor over the course of conditioning on this relatively large
subset of W .

Main objective change stability intuition

g
(0)
f (H) is the square root of the quantity that needs to be bounded here. Therefore, we are

done by the discussion of the previous subsubsection.

Deferred endpoint potential change stability intuition

Exploit bucketing and Theorem 4.9.12, as discussed in Subsubsection 4.11.2. In particular,
we will control the function
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g
(2)
f (H) :=

∑
{u,v}∈A

|bTf L+
(H\D)/(S,S′)(bsu + bsv)|

√
rf

+
∑
{u,v}∈B

|bTf L+
(H\D)/(S,S′)(bus′ + bvs′)|

√
rf

φ(2)(H) := (H \D)/(S, S ′)

S − S ′ normalized degree change stability intuition

The only complication over the previous subsubsection is that the coefficients bTswL
+
(Ii\D)/Sbsw

and
bT
ss′L

+
(Ii\D)/(S,S′)be

re
can increase. We show using Theorem 4.9.12 that stopping after |W |m−o(1)

samples does not result in an overly large increase in the coefficients. This is the only part
of this section that requires ρ = mo(1).

Specifically, the following proposition will help us. Think of v(k) = bTswL
+
(Ik\D)/Sbsw and

v(k) = bTss′L
+
(Ik\D)/(S,S′)be in two different applications of Proposition 4.11.5. It is proven in

Appendix B.6.1:

Proposition 4.11.5. Consider a random sequence {v(k)}k≥0 generated as follows. Given
v(k),

• Pick {u(k)
i }

`k
i=1 and {w(k)

i }
`k
i=1, with

∑`k
i=1 u

(k)
i w

(k)
i ≤ ηv(k)

• Let Z(k+1) ∈ {0, 1}`k denote the indicator of a uniformly random choice over [`k]

• Pick v(k+1) ≤ v(k) + γ
∑`k

i=1 u
(k)
i Z

(k+1)
i w

(k)
i

Let m0 = mink `k and M0 = maxk `k. Then with probability at least 1− 2τ ,

v(k′) ≤ (2γη)ρv(0)

for all k′ ≤ m0 min( 1
(log(M2

0 /τ))η2γ2
, 1

200ηγ2 log(M2
0 /τ)

(τ/M2
0 )1/ρ)

We use this proposition to show that controlling the following functions with constant
coefficients suffices:

g
(3),s
f (H) =

∑
w∈S′

bTswL
+
(I\D)/Sbsw

∑
e∈∂Hw

|bTf L+
(H\D)/(S,S′)be|√

rfre

g
(3),s′

f (H) =
∑
w∈S

bTs′wL
+
(I\D)/S′bs′w

∑
e∈∂Hw

|bTf L+
(H\D)/(S,S′)be|√

rfre

φ(3)(H) := (H \D)/(S, S ′)
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g
(4),s
f (H) =

∑
w∈S′

(
|bTswL+

(H\D)/Sbf |√
rf

)2 ∑
e∈∂Iw

bTss′L
+
(I\D)/(S,S′)be

re

φ(4),s(H) := (H \D)/S

g
(4),s′

f (H) =
∑
w∈S

(
|bTs′wL+

(H\D)/S′bf |√
rf

)2 ∑
e∈∂Iw

bTss′L
+
(I\D)/(S,S′)be

re

φ(4),s′(H) := (H \D)/S ′
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Tying the parts together

Now, we implement FastOracle. This oracle is similar to SlowOracle but restricts the set
W up front using VeryStable in order to take care of the flexibility of the g() functions.

Algorithm 17: FastOracle(I, S, S ′, D,A,B,W ) part 1 (everything but return state-
ment)

Data: graph I, sets S, S ′ ⊆ V (I) for identification, deleted edges D ⊆ E(I), deferred
edges A,B ⊆ E(I), input edges W ⊆ E(I)

Result: a relatively large subset Z ⊆ W for which objectives remain stable
1 I ′ ← graph obtained by splitting each edge of W
2 W ′ ← arbitrary copy of each edge in W in I ′

// leverage scores

3 W ′ ← VeryStableI′(I
′ \D,W ′)

4 W ′ ← VeryStableI′(I
′/(S, S ′),W ′)

// controlling flexible functions

5 W ′ ← VeryStableI′((I
′ \D)/(S, S ′),W ′)

6 W ′ ← VeryStableI′((I
′ \D)/S,W ′)

7 W ′ ← VeryStableI′((I
′ \D)/S ′,W ′)

8 ApxPreprocessing(I ′, S, S ′, D,A,B,W ′)
9 foreach e ∈ W ′ do

// ApxQuery returns multiplicative 2-approximations h
()
e to each g

()
e

10 h
()
e (I ′)← ApxQuery(g

()
e (I ′))

11 end
// bucketing for deferred, degree, and midpoint objectives

12 foreach i ∈ {0, 1, . . . , imax := log(n8α4)} do
13 W ′

i ← edges f ∈ W ′ for which
14

h
(0)
f (I ′)√

bTss′L
+
(I′\D)/(S,S′)bss′

∈
[
2−i−1, 2−i

]

15 with no lower bound for i = imax
16 end
17 W ′ ← the W ′

i with maximum size
// midpoint objective downsampling

18 W ′ ← uniform random sample of 1/(1000 log2(n/p)) fraction of W ′
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Algorithm 18: FastOracle part 2 (return statement)

// final output

1 Z ← edges e ∈ W ′ with all of the following properties:

• (Midpoint s) h
(0)
e (I ′)h

(1),W ′,s
e (I ′) ≤ p(bTss′L

+
(I\D)/(S,S′)bss′)/(100 log n) if “s narrow

potential neighborhood” input condition is satisfied

• (Midpoint s′) h
(0)
e (I ′)h

(1),W ′,s′
e (I ′) ≤ p(bTss′L

+
(I\D)/(S,S′)bss′)/(100 log n) if “s′ narrow

potential neighborhood” input condition is satisfied

• (Conductance s− s′) h(0)
e (I ′)h

(3),s
e (I ′) ≤ 100(log(nα))

|W ′| δS,S′(I
′ \D)

• (Conductance s′ − s) h(0)
e (I ′)h

(3),s′
e (I ′) ≤ 100(log(nα))

|W ′| δS′,S(I ′ \D)

• (Energy s− s′) h(4),s
e (I ′) ≤ 100

|W ′|δS,S′(I
′ \D)

• (Energy s′ − s) h(4),s′
e (I ′) ≤ 100

|W ′|δS′,S(I ′ \D)

• (Deferred) h
(0)
e (I ′)h

(2)
e (I ′) ≤

100(log(αn))
|W ′|

(∑
{u,v}∈A b

T
ss′L

+
(I′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B b

T
ss′L

+
(I′\D)/(S,S′)(bus′ + bvs′)

)
+

rmin/n
4

• (Main) (h
(0)
e (I ′))2 ≤ 100

|W ′|b
T
ss′L

+
(I\D)/(S,S′)bss′

return Z

Now, we outline the analysis of this algorithm. Simple calculations involving Sherman-
Morrison show the following proposition:

Proposition 4.11.6. For any graph J with S, S ′ ⊆ V (J) and A,B,D,X ⊆ E(J), the
families of functions

• F0 := ({g(0)
e (H)}e∈X , φ(0))

• F1,s := ({g(1),X∩E(H),s
e (H)}e∈X , φ(1))

• F1,s′ := ({g(1),X∩E(H),s′
e (H)}e∈X , φ(1))

• F2 := ({g(2)
e (H)}e∈X , φ(2))

• F3,s := ({g(3),s
e (H)}e∈X , φ(3))

• F3,s′ := ({g(3),s′
e (H)}e∈X , φ(3))

• F4,s := ({g(4),s
e (H)}e∈X , φ(4),s)
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• F4,s′ := ({g(4),s′
e (H)}e∈X , φ(4),s′)

are flexible for the graph J .

We prove the above proposition in Appendix B.6.1. Proposition 4.11.4 therefore implies
that the maximum values of the functions in each family do not change by more than a factor
of 2 with high probability over the course of |W ′|/2 edge contractions and deletions. The

bucketing lower bound for h
(0)
e (I ′) together with the upper bounds given in bullets implies

an upper bound on the values of all of the h
()
e functions, which in turn gives upper bounds

on the g
()
e functions. This essentially completes all bounds besides the “Midpoint potential

stability” bounds. We prove these bounds using a simple application of Theorem 4.9.11.
Now, we just have to check the “Size of Z” guarantee. This proof of this guarantee is

similar to the analysis of SlowOracle.

Proposition 4.11.7. There is an (mo(1), |W |m−o(1))-stable oracle FastOracle with runtime

Õ(m+ T (VeryStable) + T (ApxPreprocessing) + |W |T (ApxQuery))

In the following proof, notice that some statements have been reordered from their ap-
pearance in the definition of stable oracles. The statements are roughly stated in order of
difficulty.

Proof. Algorithm well-definedness. By Proposition 4.11.8, the h functions are indeed approx-
imations to the g functions. Therefore, to check that this algorithm is well-defined, it suffices
to check that the input condition of VeryStable described in Proposition 4.11.4 is satisfied.
The “Bounded leverage score difference” input condition and Rayleigh monotonicity imply
that all leverage scores levH(e) in graphs H used in calls to VeryStable are within 1/16
additively of levI(e). Therefore, by Proposition 4.9.6, after splitting, all leverage scores are
within 1/8 additively of levI′(e). Also by Proposition 4.9.6, levI′(e) ∈ [1/4, 3/4]. Therefore,
levH′(e) ∈ [1/8, 7/8], where H ′ is the graph with W split for each graphs H supplied as an
argument to VeryStable. In particular, splitting using I satisfies all of the input conditions
to the VeryStable calls.

Runtime. ApxQuery is called Õ(|W |) times while ApxPreprocessing and VeryStable

are only called a constant number of times. The rest of the algorithm takes Õ(m) time, as
desired.

Leverage score stability. Notice that VeryStable is applied with both I ′ \ D and
I ′/(S, S ′) as arguments. Therefore, the desired result follows directly from the “Leverage
score bound” guarantee of Proposition 4.11.4 applied to I ′ \D and I ′/(S, S ′).

Main objective change stability. By the “Flexible function bound” on the family
{g(0)

e }e∈Z ,
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(g
(0)
fi

(I ′i))
2 ≤ 4 max

e∈Z
(g(0)
e (I ′))2

≤ 16 max
e∈Z

(h(0)
e (I ′))2

≤ 1600

|Z|
(bTss′L

+
(I\D)/(S,S′)bss′)

for any i ≤ |Z|/2 with high probability, where I ′i is the graph Ii with edges in Z split.

By definition of g
(0)
fi

(I ′i) and the fact that the g functions are electrical,

g
(0)
fi

(I ′i) =
bTss′L

+
(I′i\D)/(S,S′)bfi
√
rfi

=
bTss′L

+
(Ii\D)/(S,S′)bfi√

rfi

so plugging this in completes the stability proof since 1600 < ρ.

Main objective change. By “Main objective change stability,”“Leverage score stability,”
and the fact that fi is split before contraction or deletion, each contraction or deletion causes
a maximum change of

|bTss′L+
(Ii+1\D)/(S,S′)bss′ − b

T
ss′L

+
(Ii\D)/(S,S′)bss′ | ≤ 8

1600bTss′L
+
(Ii\D)/(S,S′)bss′

|Z|

for all i. Therefore, since K = |W |m−o(1) ≤ |W |/12800, the main objective can only
increase by a factor of 2 over the course of conditioning on the fis.

Deferred endpoint potential change stability. Suppose that W ′
a is the bucket

in W ′ that is chosen in Line 17 in Part 1 of FastOracle. For edges e ∈ Z, h
(0)
e (I ′) ≥

2−a−1
√
bTss′L

+
(I′\D)/(S,S′)bss′ by the bucketing lower bound. Therefore, by the “Deferred” con-

dition on edges in Z,

g(2)
e (I ′) ≤ 2h(2)

e (I ′) ≤ 2a+2√
bTss′L

+
(I′\D)/(S,S′)bss′

100(log(αn))

|Z| ∑
{u,v}∈A

bTss′L
+
(I′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I′\D)/(S,S′)(bus′ + bvs′)


By the bucketing upper bound,
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g(0)
e (I ′) ≤ 2−a+1

√
bTss′L

+
(I′\D)/(S,S′)bss′

These bounds hold for all e ∈ Z. Therefore, by the “Flexible function bound” of Propo-
sition 4.11.4 applied to both of the flexible families {g(0)

e }e∈Z and {g(2)
e }e∈Z ,

g
(0)
fi

(I ′i) ≤ max
e∈Z

2g(0)
e (I ′) ≤ 2−a+2

√
bTss′L

+
(I′\D)/(S,S′)bss′

and

g
(2)
fi

(I ′i) ≤ max
e∈Z

2g(2)
e (I ′)

≤ 2a+3√
bTss′L

+
(I′\D)/(S,S′)bss′

100(log(αn))

|Z| ∑
{u,v}∈A

bTss′L
+
(I′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I′\D)/(S,S′)(bus′ + bvs′)


with high probability for all i ≤ |Z|/2. Therefore, since the gs are electrical functions,

 ∑
{u,v}∈A

|bTss′L+
(Ii\D)/(S,S′)bfi ||bTfiL

+
(Ii\D)/(S,S′)(bsu + bsv)|

rfi


+

 ∑
{u,v}∈B

|bTss′L+
(Ii\D)/(S,S′)bfi ||bTfiL

+
(Ii\D)/(S,S′)(bus′ + bvs′)|

rfi


= g

(0)
fi

(Ii)g
(2)
fi

(Ii)

≤ 3200(log(αn))

|Z|

 ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)


as desired, since K < |Z|/2.

S − S ′-normalized degree change stability. We omit the S ′− S guarantees, as their
proofs are the same with s and S swapped for s′ and S ′ respectively in all places.

S − S ′-conductance term stability. We break this analysis up into two parts.
Bounding increases in effective resistances. We show that with high probability, for all

w ∈ S ′ and all i ≤ m−o(1)|Z|,
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bTswL
+
(Ii\D)/Sbsw ≤ mo(1)bTswL

+
(I\D)/Sbsw

We use Proposition 4.11.5 with

• ρ←
√

log n

• τ ← 1/n6

• γ ← 8

• u(i)
e = w

(i)
e ← |bTswL+

(Ii\D)/Sbe|/
√
re

• v(i) ← bTswL
+
(Ii\D)/Sbsw

• η ← 1 (which works because the sum of energies on edges is at most the overall energy)

• `i ← number of remaining edges in Z in Ii

By electrical functions, Sherman-Morrison, and the triangle inequality,

v(i+1) = bTswL
+
(I′i+1\D)/Sbsw

≤ bTswL
+
(I′i\D)/Sbsw +

(bTswL
+
(I′i\D)/Sbfi)

2/rfi

min(lev(I′i\D)/S(fi), 1− lev(I′i\D)/S(fi))

≤ bTswL
+
(I′i\D)/Sbsw + 8(bTswL

+
(I′i\D)/Sbfi)

2/rfi

≤ v(i) + γ
∑
e

u(i)
e Z

(i+1)
e w(i)

e

Therefore, Proposition 4.11.5 applies, which means that

v(i) = bTswL
+
(Ii\D)/Sbsw ≤ 16

√
lognbTswL

+
(I\D)/Sbsw

for all i ≤ |Z|n−6/
√

logn = |Z|2−6
√

logn with high probability (at least 1 − 1/n6). This is
the desired result for this part since K < |Z|2−6

√
logn.

Bounding increases in flows with constant coefficients. We now show that

∑
w∈S′

(bTswL
+
(I\D)/Sbsw)

∑
e∈∂Iiw

|bTss′L+
(Ii\D)/(S,S′)bfi ||bTfiL

+
(Ii\D)/(S,S′)be|

rfire
≤ Õ

(
1

|Z|

)
δS,S′(I \D)

with high probability for all i ≤ |Z|/2. Assume that W ′
a is the bucket chosen on Line 17.

Then, by the lower bound on h
(0)
e (I ′),
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g(3),s
e (I ′) ≤ 2h(3),s

e (I ′) ≤ 2a+2√
bTss′L

+
(I′\D)/(S,S′)bss′

100 log(αn)

|Z|
δS,S′(I

′ \D)

for any e ∈ Z. By the bucketing upper bound,

g(0)
e (I ′) ≤ 2h(0)

e (I ′) ≤ 2−a+1
√
bTss′L

+
(I′\D)/(S,S′)bss′

By the “Flexible function bound” of Proposition 4.11.4,

g
(0)
fi

(I ′i)g
(3),s
fi

(I ′i) ≤ 4(max
e∈Z

g(0)
e (I ′))(max

e∈Z
g(3),s
e (I ′))

≤ 3200

log(αn)
|Z|δS,S′(I ′ \D)

for all i ≤ |Z|/2 with high probability. Substituting in the definitions of g
(0)
fi

(I ′i) and

g
(3),s
fi

(I ′i) yields the desired result for this part.
Combining the parts. By the first part,

∑
w∈S′

(bTswL
+
(Ii\D)/Sbsw)

∑
e∈∂Iiw

|bTss′L+
(Ii\D)/(S,S′)bfi ||bTfiL

+
(Ii\D)/(S,S′)be|

rfire

≤ mo(1)
∑
w∈S′

(bTswL
+
(I\D)/Sbsw)

∑
e∈∂Iiw

|bTss′L+
(Ii\D)/(S,S′)bfi||bTfiL

+
(Ii\D)/(S,S′)be|

rfire

By the second part,

mo(1)
∑
w∈S′

(bTswL
+
(I\D)/Sbsw)

∑
e∈∂Iiw

|bTss′L+
(Ii\D)/(S,S′)bfi ||bTfiL

+
(Ii\D)/(S,S′)be|

rfire
≤ 3200mo(1)

|Z|
δS,S′(I\D)

The desired result follows from substitution since 3200mo(1) < ρ.

S−S ′ energy term stability. As in the previous bound, we break the analysis up into
two parts:

Bounding increases in flows to S ′ vertices. We show that with high probability, for all

w ∈ S ′ and all i ≤ m−o(1)|Z|,
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∑
e∈∂Iiw

bTss′L
+
(Ii\D)/(S,S′)be

re
≤ mo(1)

∑
e∈∂Iw

bTss′L
+
(I\D)/(S,S′)be

re

We use Proposition 4.11.5 with

• ρ←
√

log n

• τ ← 1/n6

• γ ← 8

• u(i)
f ←

|bT
ss′L

+
(Ii\D)/(S,S′)bf |√

rf

• w(i)
f ←

∑
e∈∂Iiw

|bTf L
+
(Ii\D)/(S,S′)be|√

rf re

• v(i) ←
∑

e∈∂Iiw
bT
ss′L

+
(Ii\D)/(S,S′)be

re

• η ← O(log(nα)) (which works by Theorem 4.9.12)

• `i ← number of remaining edges in Z in Ii

By electrical functions, Sherman-Morrison, and the triangle inequality,

v(i+1) =
∑

e∈∂I′
i+1

w

bTss′L
+
(I′i+1\D)/(S,S′)be

re

≤

 ∑
e∈∂I′

i
w

bTss′L
+
(I′i\D)/(S,S′)be

re

+
1

min(lev(I′i\D)/(S,S′)(fi), 1− lev(I′i\D)/(S,S′)(fi)) ∑
e∈∂Iiw

|bTss′L+
(Ii\D)/(S,S′)bfi |√

rfi

|bTfiL
+
(Ii\D)/(S,S′)be|√
rfire


≤ v(i) + γ

∑
e

u(i)
e Z

(i+1)
e w(i)

e

Therefore, Proposition 4.11.5 applies, which means that,

v(i) =
∑
e∈∂Iiw

bTss′L
+
(Ii\D)/(S,S′)be

re
≤ (16 log n)

√
logn

∑
e∈∂Iw

bTss′L
+
(I\D)/(S,S′)be

re
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for all i ≤ |Z|n−6/
√

logn = |Z|2−6
√

logn with high probability (at least 1 − 1/n6). This is
the desired result for this part since K < |Z|2−6

√
logn.

Bounding increases in energies with constant coefficients. By the “Flexible function bound”

of Proposition 4.11.4 applied to g(4),s, with high probability for all i,

g
(4),s
fi

(I ′i) ≤ 2 max
e∈Z

g(4),s
e (I ′)

≤ 4 max
e∈Z

h(4),s
e (I ′)

≤ 400

|Z|
δS,S′(I

′ \D)

as desired.
Combining the parts. By the first part,

∑
w∈S′

(bTswL
+
(Ii\D)/Sbfi)

2

rfi

∑
e∈∂Iiw

bTss′L
+
(Ii\D)/(S,S′)be

re
≤ mo(1)

∑
w∈S′

(bTswL
+
(Ii\D)/Sbfi)

2

rfi

∑
e∈∂Iiw

bTss′L
+
(I\D)/(S,S′)be

re

By the second part,

mo(1)
∑
w∈S′

(bTswL
+
(Ii\D)/Sbfi)

2

rfi

∑
e∈∂Iiw

bTss′L
+
(I\D)/(S,S′)be

re
≤ 400mo(1)

|Z|
δS,S′(I \D)

The desired result follows from substitution since 400mo(1) < ρ.
Midpoint potential stability. We assume that the “s narrow potential neighborhood”

input condition is satisfied. The “s′ narrow potential neighborhood” case is the same with
s and s′ swapped.

Suppose that bucket W ′
a was chosen on Line 17. Then for all e ∈ Z,

g(0)
e (I ′) ≤ 2h(0)

e (I ′) ≤ 2−a+1
√
bTss′L

+
(I′\D)/(S,S′)bss′

and

g(1),Z,s
e (I ′) ≤ 2h(1),W ′,s

e (I ′)

≤ 2a+2√
bTss′L

+
(I′\D)/(S,S′)bss′

p(bTss′L
+
(I\D)/(S,S′)bss′)

100 log n
+

p

200(log n)h
(0)
e (I ′)

by the bucketing upper and lower bounds respectively. By the “Flexible function bound”
of Proposition 4.11.4 and the “Midpoint s” bound, for all i ≤ |Z|/2, with high probability
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g
(0)
fi

(I ′i)g
(1),Z\{f0,f1,...,fi−1},s
fi

(I ′i) ≤
32

100(log n)
p(bTss′L

+
(I\D)/(S,S′)bss′)

For any {u, v} ∈ Z \ {f0, f1, . . . , fi−1},

|bTss′L+
(I′i\D)/(S,S′)bfi ||b

T
fi
L(I′i\D)/(S,S′)(bsu + bsv)/2|
rfi

≤ g
(0)
fi

(I ′i)g
(1),Z\{f0,f1,...,fi−1},s
fi

(I ′i)

≤ 32

100(log n)
p(bTss′L

+
(I\D)/(S,S′)bss′)

Therefore, Theorem 4.9.11 applies with expectation changeO((log(n/p))(3p)(bTss′L
+
(I\D)/(S,S′)bss′))/|Z|,

stepwise variance (O((log(n/p))(3p)(bTss′L
+
(I\D)/(S,S′)bss′)))

2/|Z| (both by Theorem 4.9.12 and
an upper bound inductive hypothesis with base case that is the upper bound of “s narrow po-
tential neighborhood”), and maximum change 32

100(logn)
p(bTss′L

+
(I\D)/(S,S′)bss′). Theorem 4.9.11

shows that

Pr[|(bTss′L+
(Ii\D)/(S,S′)(bsui+bsvi)/2)−(bTss′L

+
(I\D)/(S,S′)(bsui+bsvi)/2)| > p/8bTss′L

+
(Ii\D)/(S,S′)bss′ ] ≤ 1/n6

Therefore, since 2p + p/8 < 3p < 1 − (p/2) (because p ≤ 1/4 by the “Narrow potential
neighborhood” condition), the inductive hypothesis is verified and the “s′ midpoint potential
stability” guarantee is satisfied. Furthermore, by the “s narrow potential neighborhood”
lower bound, the normalized potential of the midpoint of fi is at least p − p/8 > p/2, as
desired.

Size of Z. We show that |Z| ≥ |W |/polylog(n) with constant probability. This can be
boosted to high probability by running FastOracle Θ(log n) times, since all other guarantees
are satisfied with high probability.

By the “Size” guarantee of Proposition 4.11.4, |W ′| ≥ |W |/(polylog(n))5 immediately
after all applications of VeryStable. After Line 17,

|W ′| ≥ |W |/((polylog(n))5imax)

Let W ′′ be the version of W ′ immediately after Line 18. Then

|W ′′| ≥ |W |/((polylog(n))5imax1000 log2(n/p))

Now, we just need to upper how many edges in W ′′ are not in Z. We bound this on a
constraint-by-constraint basis.

Midpoint constraints with the “s narrow potential neighborhood” input condition.This part
is very similar in spirit to the “Size” bound proof in Proposition 4.11.4. This part under the
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“s′ narrow potential neighborhood” assumption is the same with s and s′ swapped, so we
focus on the s case.

Start by exploiting how W ′′ was sampled from W ′ on Line 18, which we denote by W ′
orig

for clarity. By Theorem 4.9.12, for any e ∈ W ′
orig

∑
e∈W ′orig

g(0)
e (I ′)g

(1),W ′orig ,s
e (I ′) =

∑
e∈W ′orig

∑
f={u,v}∈W ′orig\{e}

|bTss′L+
(I′\D)/(S,S′)be||bTe L

+
(I′\D)/(S,S′)(bsu + bsv)/2|
re

≤
∑

f={u,v}∈W ′orig

O(log(n/p))bTss′L
+
(I′\D)/(S,S′)(bsu + bsv)/2

By the “s narrow potential neighborhood” condition,

∑
f={u,v}∈W ′orig

O(log(n/p))bTss′L
+
(I′\D)/(S,S′)(bsu+bsv)/2 ≤ O(log(n/p))(2pbTss′L

+
(I′\D)/(S,S′)bss′)|W

′
orig|

Therefore, there is a set W ′
low ⊆ W ′

orig with |W ′
low| ≥ |W ′

orig|/2 with the property that

g(0)
e (I ′)g

(1),W ′orig ,s
e (I ′) ≤ O(log(n/p))(4pbTss′L

+
(I′\D)/(S,S′)bss′)

for all e ∈ W ′
low. We now upper bound the expected number of edges in W ′

low that violate
the “Midpoint s” condition. First, for any e ∈ W ′

low

EW ′′ [g
(0)
e (I ′)g(1),W ′′,s

e (I ′)|e ∈ W ′′] = g(0)
e (I ′)EW ′′ [g

(1),W ′′,s
e (I ′)]

=
1

1000 log2(n/p)
g(0)
e (I ′)g

(1),W ′orig ,s
e (I ′)

≤ p

400(log n)
(bTss′L

+
(I′\D)/(S,S′)bss′)

The first equality follows from the fact that the sum in ge does not include e. The second
equality follows from the definition of W ′′ on Line 18. The last line follows from the definition
of W ′

low. By Markov’s Inequality, for any e ∈ W ′
low,
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Pr
W ′′

[e satisfies “Midpoint s” condition and e ∈ W ′′]

Pr
W ′′

[e satisfies “Midpoint s” condition|e ∈ W ′′] Pr
W ′′

[e ∈ W ′′]

≥ 1− Pr
W ′′

[g(0)
e (I ′)g(1),W ′′,s

e (I ′) >
p

200(log n)
(bTss′L

+
(I′\D)/(S,S′)bss′)|e ∈ W

′′]
1

1000 log2(n/p)

≥ 1

2000 log2(n/p)

Let Zmid be the set of edges in W ′
orig satisfying the “Midpoint s” condition. Then

EW ′′ [|Zmid|] ≥
∑

e∈W ′low

Pr
W ′′

[e ∈ Zmid]

=
∑

e∈W ′low

Pr
W ′′

[e satisfies “Midpoint s” condition and e ∈ W ′′]

≥ |W ′
low|

2000 log2(n/p)

≥
|W ′

orig|
4000 log2(n/p)

Since |Zmid| ⊆ |W ′
orig|, |Zmid| ≥

|W ′orig |
8000 log2(n/p)

with probability at least 1
8000 log2(n/p)

, as

desired.
Conductance s− s′ constraint. We upper bound the number of elements in Zmid that do

not satisfy this. By Theorem 4.9.12,∑
e∈Zmid

g(0)
e (I ′)g(3),s

e (I ′) ≤ (log(nα))δS,S′(I
′ \D)

By the approximation lower bound, for all edges e with h
(0)
e (I ′)h

(3),s
e (I ′) ≥ 100(log(nα))

|Zmid|
δS,S′(I

′\
D),

g(0)
e (I ′)g(3),s

e (I ′) ≥ 25(log(nα))

|Zmid|
δS,S′(I

′ \D)

By the previous inequality, only |Zmid|/25 edges in Zmid can satisfy the above inequality,
as desired.

Conductance s′ − s constraint. Same as above, but with s and S swapped for s′ and S ′

and vice versa.
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Energy s− s′ constraint. Since the sum of energies on edges is at most the overall energy,∑
e∈Zmid

g(4),s
e (I ′) ≤ δS,S′(I

′ \D)

For all edges with h
(4),s
e (I ′) ≥ 100

|Zmid|
δS,S′(I

′ \D),

g(4),s
e (I ′) ≥ 50

|Zmid|
δS,S′(I

′ \D)

By the previous inequality, only |Zmid|/50 edges in Zmid can satisfy the above inequality,
as desired.

Energy s′ − s constraint. Same as above, but with s and S swapped for s′ and S ′ and
vice versa.

Deferred constraint. By Theorem 4.9.12,

∑
e∈Zmid

g(0)
e (I ′)g(2)

e (I ′) ≤ (log(nα))

 ∑
{u,v}∈A

bTss′L
+
(I′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I′\D)/(S,S′)(bus′ + bvs′)


+ rmin/n

6

Therefore, only |Zmid|/25 edges e ∈ Zmid can have

h(0)
e (I ′)h(2)

e (I ′) ≥ 100(log(αn))

|W ′|

 ∑
{u,v}∈A

bTss′L
+
(I′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I′\D)/(S,S′)(bus′ + bvs′)


+ rmin/n

4

as desired.
Main constraint. Since the sum of energies on edges is at most the overall energy,∑

e∈Zmid

(g(0)
e (I ′))2 ≤ bTss′L

+
(I\D)/(S,S′)bss′

For edges e with (h
(0)
e (I ′))2 ≥ 100

|Zmid|
bTss′L

+
(I\D)bss′ ,

(g(0)
e (I ′))2 ≥ 25

|Zmid|
bTss′L

+
(I\D)/(S,S′)bss′

By the previous inequality, this can only occur for |Zmid|/25 edges in Zmid, as desired.
Combining the parts. Adding all of the guarantees from the previous parts about Zmid

shows that at most 6|Zmid|
25

edges in Zmid are removed by those constraints. This leaves a
set Z with |Z| ≥ 19|Zmid|/25. Therefore, with probability at least 1/polylog(n), |Z| ≥
|W |/polylog(n). Repeating FastOracle polylog(n) times therefore finds a set Z with the
desired size lower bound with high probability.
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4.11.3 Efficient approximations to required quantities

Now, we just need to efficiently compute approximations h
()
e to the functions g

()
e used in

FastOracle. We do this by observing that

• Each of the functions are weighted `1 or `2 norms of columns of a matrix M with
entries Mij := vTi L

+
Hvj.

• `1 and `2 norms of columns can be approximated using O(log n) “linear queries” of the
form vTL+

Hvj by Theorem 4.9.13. All linear queries for all vjs can be computed using
one Laplacian solve with demand vector v (preprocessing) and a constant amount of
work for vj (query). One can extract the desired information from the queries by taking
the median, which takes Õ(1) time per query.

While this is good enough for some of the functions we need to compute, we also need
to leave out elements on the diagonal in some cases. To do this, we use the above idea
to efficiently compute row sums for entries in some off-diagonal rectangle in the matrix.
We show that all off-diagonal row sums can be approximated using O(log n) off-diagonal
rectangle queries.

Full row norm approximations

In this subsection, we describe how to obtain 2-approximations for the functions g
(0)
e , g

(2)
e ,

g
(3),s
e , and g

(4),s
e for arbitrary query edges e. g

(0)
e (H) for all e can be computed using one

Laplacian solve for the demand bss′ on the graph (H \D)/(S, S ′). g
(2)
e (H) and g

(3),s
e (H) are

each weighted `1 norms, while g
(4),s
e (H) is a weighted `2 norm.

We now implement the first parts of ApxPreprocessing and ApxQuery that compute
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these functions:

Algorithm 19: ApxPreprocessing(H,S, S ′, D,A,B,X) part 1 (functions with diago-
nal terms)

Input: a graph H, S, S ′ ⊆ V (H), D,A,B,X ⊆ E(H)
Result: an implicit data structure for use by ApxQuery

// main terms

1 X(0) ← L+
(H\D)/(S,S′)bss′

// deferred terms

2 C(2) ← SketchMatrix(|A|+ |B|, 1/n6, 1, 1/2)

3 D(2) ← the n× (|A|+ |B|) matrix with columns bsu + bsv for {u, v} ∈ A and bus′ + bvs′
for {u, v} ∈ B

4 X(2) ← L+
(H\D)/(S,S′)D

(2)(C(2))T

// conductance terms

5 C(3),s ← SketchMatrix(|∂HS ′|, 1/n6, 1, 1/2)

6 D(3),s ← the n× |∂HS ′| matrix with columns bTswL
+
(H\D)/Sbsw

∑
e∈∂Hw

be
re

for edges

e ∈ ∂Hw for some w ∈ S ′, where the effective resistance value is 1.1-approximated
using Johnson-Lindenstrauss

7 X(3),s ← L+
(H\D)/(S,S′)D

(3),s(C(3),s)T

8 C(3),s′ ← SketchMatrix(|∂HS ′|, 1/n6, 1, 1/2)

9 Compute X(3),s′ in the same way as X(3),s with s,S and s′,S ′ interchanged

// energy terms

10 C(4),s ← SketchMatrix(|S ′|, 1/n6, 2, 1/2)

11 D(4),s ← the n× |S ′| matrix with columns

(√∑
e∈∂Hw

bT
ss′L

+
(H\D)/(S,S′)be

re

)
bsw for

w ∈ S ′, where the flow values are computed using the vector L+
(H\D)/(S,S′)bss′ with one

Laplacian solve

12 X(4),s ← L+
(H\D)/SD

(4),s(C(4),s)T

13 C(4),s′ ← SketchMatrix(|S ′|, 1/n6, 2, 1/2)

14 Compute X(4),s′ in the same way as X(4),s, with s,S and s′,S ′ swapped
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Algorithm 20: ApxQuery(g
()
f (H)) for non-g(1) functions

Input: a function g
()
f (H)

Output: a 2-approximation to the value of the function
1 d← number of columns of C()

2 p← 1 or 2, depending on whether g(4) is being used

3 return RecoverNorm((X())T (bf/
√
rf ), d, 1/n

6, p, 1/2) or this value squared if p = 2

Row with diagonal element left out

Now, we compute g(1) and implement ColumnApx. These quantities differ from the ones
discussed in the previous subsubsection in that they leave out one “diagonal” element in
each row. One could try to subtract out this element, but this destroys multiplicative
approximation.

Instead, we use sketching to approximate sums of rows of random off-diagonal submatri-
ces. Specifically, the algorithm does the following for ColumnApxPreprocessing:

• Do Θ(log n) times:

– Pick a random balanced partition (Z0, Z1) of Z

– For each e ∈ Z0, approximate ae ←
∑

f∈Z1

|bTe L
+
G′bf |√

re
√
rf

using sketching

• For each e ∈ Z, average the aes together and scale up the average by a factor of 4 to

obtain an estimate for
∑

f 6=e∈Z
|bTe L

+
G′bf |√

re
√
rf

This algorithm takes Õ(m) time thanks to the sketching step. To show correctness,
think about the indicator variable Yef that is 1 if and only if e ∈ X0 and f ∈ X1. This event
happens with probability 1/4 in each of the Θ(log n) trials if e 6= f and with probability
0 otherwise. Since the trials are independent, the weight in front of each off-diagonal term
concentrates around 1/4. Scaling up the average by a factor of 4 yields the desired result.

Now, we formally implement this idea. We analyze these implementations in the proof
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of Proposition 4.11.8.

Algorithm 21: ColumnApxPreprocessing(G′, Z)

Input: a graph G′ and Z ⊆ E(G′)
Result: nothing; implicit data structure

1 K ← 100 log n
2 ae ← 0 for each e ∈ Z
3 foreach k ← 1, 2, . . . , K do
4 Z0, Z1 ← uniformly random partition of Z with |Z0| − |Z1| ≤ 1
5 C ← SketchMatrix(|Z1|, 1/n6, 1, 1/4)
6 D ← n× |Z1| matrix of columns bf/

√
rf for f ∈ Z1

7 U ← L+
G′DC

T

8 foreach e ∈ Z0 do
9 Increment ae by RecoverNorm(UT (be/

√
re), |Z1|, 1/n6, 1, 1/4)

10 end

11 end

Algorithm 22: ColumnApx(e)

Input: an edge e ∈ Z
Result: a 2-approximation to the value of

∑
f 6=e∈Z

|bTe L
+
G′bf |√

re
√
rf

1 return 4ae/K
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Algorithm 23: ApxPreprocessing(H,S, S ′, D,A,B,X) part 2 (functions without di-
agonal terms)

Input: a graph H, S, S ′ ⊆ V (H), D,A,B,X ⊆ E(H)
Result: an implicit data structure for use by ApxQuery

// code for s only given for clarity; swap s, S for s′, S ′

1 K ← 100 log n
2 ae ← 0 for each e ∈ X
3 foreach k ← 1, 2, . . . , K do
4 X0, X1 ← uniformly random partition of X with |X0| − |X1| ≤ 1
5 C ← SketchMatrix(|X1|, 1/n6, 1, 1/4)
6 D ← n× |X1| matrix of columns (bsu + bsv)/2 for {u, v} ∈ X1

7 U ← L+
(H\D)/(S,S′)DC

T

8 foreach e ∈ X0 do
9 Increment ae by RecoverNorm(UT (be/

√
re), |X1|, 1/n6, 1, 1/4)

10 end

11 end

Algorithm 24: ApxQuery(g
(1),X,s
e )

Input: the function g
(1),X,s
e

Result: a 2-approximation to its value on H
// code for s only given for clarity; swap s, S for s′, S ′

1 return 4ae/K

Combining the parts

Proposition 4.11.8. The following guarantees hold for ApxQuery, ColumnApx, ApxPreprocessing,
and ColumnApxPreprocessing:

• (Correctness) Each call to ApxQuery and ColumnApx returns a 2-approximation to the
correct value.

• (Query runtime) Each call to ApxQuery and ColumnApx takes Õ(1) time.

• (Preprocessing runtime) Each call to ApxPreprocessing and ColumnApxPreprocessing

takes Õ(m) time.

Proof. Correctness for ApxQuery for all but g(1). Follows directly from the “Approxima-
tion” guarantee of Theorem 4.9.13.

Correctness for ApxQuery for g(1) and ColumnApx. We focus on g
(1),X,s
e , since an

intuitive overview for ApxQuery was given earlier and the proof is very similar in both

cases. Let Y
(k)
ef be the indicator variable of the event {e ∈ X0 and f ∈ X1}. By the
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“Approximation” guarantee of Theorem 4.9.13, at the end of the outer foreach loop in
ApxPreprocessing,

ae ∈ [3/4, 5/4]

 ∑
f={u,v}∈X

|bTe L+
(H\D)/(S,S′)(bsu + bsv)/2|

√
re

(
K∑
k=1

Y
(k)
ef

)
for each e ∈ X. Since Y

(k)
ee = 0 for all k and e ∈ X,

 ∑
f={u,v}∈X

|bTe L+
(H\D)/(S,S′)(bsu + bsv)/2|

√
re

(
K∑
k=1

Y
(k)
ef

)
=

 ∑
f={u,v}∈X\e

|bTe L+
(H\D)/(S,S′)(bsu + bsv)/2|

√
re

(
K∑
k=1

Y
(k)
ef

)

Notice that E[Y
(k)
ef ] = 1/4 if e 6= f and that for any fixed e, f , the collection of random

variables {Y (k)
ef }Kk=1 is independent. Therefore, by Chernoff bounds (using the value of K)

and a union bound over all pairs e 6= f ∈ X,

3K/16 ≤
K∑
k=1

Y
(k)
ef ≤ 5K/16

Therefore,

ae ∈ [9K/64, 25K/64]

 ∑
f={u,v}∈X\e

|bTe L+
(H\D)/(S,S′)(bsu + bsv)/2|

√
re


which means that 4ae/K is a 2-approximation, as desired.
Query runtime. ColumnApx and ApxQuery for g(1) just return precomputed values, so

they both take constant time. ApxQuery for other functions computes a matrix-vector prod-
uct with a vector that is supported on only two entries. Therefore, this product only takes
time proportional to the number of rows of the matrix, which is ` = O(log n) by Theorem
4.9.13. RecoverNorm only take poly(`) = polylog(n) time by the “Runtime” guarantee of
Theorem 4.9.13. Therefore, all queries take polylog(n) time, as desired.

Preprocessing runtime. Each X matrix computation takes near-linear time, as it in-
volves a ` sparse matrix-vector products to compute DCT and ` Laplacian solves to compute
L+DC. Each SketchMatrix call takes Õ(m) time by Theorem 4.9.13. All other operations
take Õ(m) time, so the total precomputation runtime is Õ(m), as desired.
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4.11.4 Proof of Lemma 4.8.2 (an algorithm for the fixing lemma
with almost-linear runtime)

Now, we combine all of the results of this section to prove Lemma 4.8.2:

Proof of Lemma 4.8.2. The result follows immediately from Lemma 4.10.8 and Proposition
4.11.7 with FastOracle substituted in for Oracle in the Fix algorithm. Call this algorithm
FastFix. FastOracle’s runtime is bounded using Proposition 4.11.8.
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Figure 4.8.2: The first step in bounding conductivity. To bound the Y − S ′ conductance in
Schur(HC, Y ∪ S ′ ∪ (V (H) \ X)), it suffices to bound the Y − (V (H) \ Z)-conductance in
Schur(HC, Y ∪ (V (H) \Z)), which is bounded because Z is 1/4th of the way from Y to ∂X.
More formally, we apply Lemma 4.8.5 with p = 1/4.
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Figure 4.8.3: The second step in bounding conductivity. To bound the direct Y −V (H) \X
conductance, it suffices to bound the direct Z − V (H) \ X conductance. This is bounded
using Lemma 4.8.5 on X \ Z with p = 3/4.
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Figure 4.8.4: The third step in bounding conductivity. The light dashed edges are the
direct Y − V (H) \ X edges, whose total conductance was bounded in the second step.
The dark dashed edges obtained by eliminating S ′ have smaller total conductance than the
direct dark dashed edges to S ′ by Lemma 4.8.3. The total conductance of these edges in
Schur(H ′C, Y ∪S ′∪V (H)\X) is bounded by the first part and Lemma 4.8.2. The end goal was
to bound Y − (V (H)\X) conductance in the Schur complement Schur(H ′C, Y ∪ (V (H)\X))
obtained from the fixed graph H ′C, so we are done.
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Figure 4.10.1: Why Lemma 4.10.1 has a dependence on ∆I(S, S ′). In this diagram, let F be
the set of all edges and D = ∅. Conditioning on a random spanning tree in I contracts all of
the edges in F . In order to make the S − S ′ conductance finite, all of the edges in F must
be deleted. There are ∆I(S, S ′) of these edges, no matter what the conductances of these
edges are.
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Figure 4.10.2: The SpecialFix algorithm for |F |/2 iterations. In the above example, each
of the dashed edges is in F . During each iteration, one edge is chosen, split, and conditioned
on. During the first conditioning round in this example, the chosen edge is deleted. In the
last diagram, all contracted edges yield self-loops with resistance k, which are irrelevant for
the s− t resistance. With high probability, roughly k/2 edges are left in F after conditioning
on each edge once. Furthermore, the s− t resistance is extremely close to its original value
by martingale concentration.



CHAPTER 4. RANDOM SPANNING TREE SAMPLING 190

Figure 4.10.3: Depiction of Lemma 4.10.12. When Y is identified, the expected number of
random spanning tree edges decreases.

Figure 4.10.4: Depiction of Lemma 4.10.14. When ∆G(X, Y ) is low, the vertices in Y are
similar to each other from the perspective of s− Y demand vectors.
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Chapter 5

Spectral Subspace Sparsification

5.1 Introduction

Graph sparsification has had a number of applications throughout algorithms and theoretical
computer science. In this work, we loosen the requirements of spectral sparsification and
show that this loosening enables us to obtain sparsifiers with fewer edges. Specifically,
instead of requiring that the Laplacian pseudoinverse quadratic form is approximated for
every vector, we just require that the sparsifier approximates the Laplacian pseudoinverse
quadratic form on a subspace:

Definition 5.1.1 (Spectral subspace sparsifiers). Consider a weighted graph G, a vector
space S ⊆ RV (G) that is orthogonal to 1V (G), and ε ∈ (0, 1). For a minor H of G with
contraction map φ : V (G)→ V (H), let P ∈ RV (H)×V (G) be a matrix with Puv = 1[u = φ(v)]
for all u ∈ V (H), v ∈ V (G). A reweighted minor H of G is a called an (S, ε)-spectral
subspace sparsifier if for all vectors x ∈ S,

(1− ε)xTL+
Gx ≤ xTHL

+
HxH ≤ (1 + ε)xTL+

Gx

where xH := Px.

[52] also considers a form of specific form of subspace sparsification related to controlling
the k smallest eigenvalues of a spectral sparsifier for S = RV (G). When S is the dimen-
sion |S| − 1 subspace of R|S| × 0n−|S| that is orthogonal to 1V (G), a (S, ε)-spectral subspace
sparsifier is a sparsifier for the Schur complement of G restricted to the set of vertices S.
Schur complement sparsifiers are implicitly constructed in [58] and [59] by an approximate
Gaussian elimination procedure and have been used throughout spectral graph theory. For
example, they are used in algorithms for random spanning tree generation [33, 32], approxi-
mate maximum flow [77], and effective resistance computation [37, 38, 33].

Unlike the existing construction of Schur complement sparsifiers [33], our algorithm (a)
produces a sparsifier with vertices outside of S and (b) produces a sparsifier that is a minor
of the input graph. While (a) is a disadvantage to our approach, it is not a problem in
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applications, in which the number of edges in the sparsifier is the most relevant feature
for performance, as illustrated by our almost-optimal algorithm for ε-approximate effective
resistance computation. (b) is an additional benefit to our construction and connects to the
well-studied class of Steiner point removal problems [22, 34].

In the Approximate Terminal Distance Preservation problem [22], one is given a graph
G and a set of k vertices S. One is asked find a reweighted minor H of G with size poly(k)
for which

dG(u, v) ≤ dH(u, v) ≤ αdG(u, v)

for all u, v ∈ S and some small distortion α > 1. The fact that H is a minor of G is
particularly useful in the context of planar graphs. One can equivalently phrase this problem
as a problem of finding a minor H in which the `1-norm of the `1-minimizing flow between
any two vertices s, t ∈ S is within an α-factor of the `1 norm of the `1-minimizing s− t flow
in G. The analogous problem for `∞ norms is the problem of constructing a flow sparsifier
(with non-s− t demands as well). Despite much work on flow sparsifiers [79, 65, 20, 74, 34,
25, 10, 83], it is still not known whether α = (1 + ε)-flow sparsifiers with size poly(k, 1/ε)
exist, even when the sparsifier is not a minor of the original graph.

5.1.1 Our Results

Our main result is the following:

Theorem 5.1.2. Consider a weighted graph G, a d-dimensional vector space S ⊆ RV (G),
and ε ∈ (0, 1). Then an (S, ε)-spectral subspace sparsifier for G with O

(
d log d
ε2

)
edges exists.

When S is the maximal subspace of RS × 0V (G)\S orthogonal to 1V (G) for some set of
vertices S ⊆ V (G), (S, ε)-spectral subspace sparsifiers satisfy the same approximation guar-
antee as Schur complement sparsifiers. The approximation guarantee of a spectral subspace
sparsifier H of G is equivalent to saying that for any demand vector d ∈ S, the energy
of the `2-minimizing flow for d in H is within a (1 + ε) factor of the energy for the `2-
minimizing flow for d in G. This yields an near-optimal (up to a log d factor) answer to
the (1 + ε)-approximate Steiner vertex removal problem for the `2 norm. The `2 version is
substantially different from the `1 problem, in which there do not exist o(k2)-size minors
that 2-approximate all terminal distances [22].

Unlike Schur complement sparsifiers, (RS, ε)-spectral subspace sparsifiers may contain
“Steiner nodes;” i.e. vertices outside of S. This is generally not relevant in applications,
as we illustrate in Section 5.6. Allowing Steiner nodes allows us to obtain sparsifiers with
fewer edges, which in turn allows us to obtain faster constructions. Specifically, we show the
following result:

Theorem 5.1.3. Consider a weighted graph G, a set of vertices S ⊆ V (G), and ε ∈ (0, 1).
Let Trst(G) denote the time it takes to generate a random spanning tree from a distri-
bution with total variation distance at most 1/m10 from the uniform distribution. Then
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(RS × 0V (G)\S, ε)-spectral subspace sparsifier for G with min(m,O
(
|S|polylog(n)

ε2

)
) edges can

be constructed in Trst(G) +O(mpolylog(n)) ≤ m1+o(1) time.

This sparsifier has as many edges as the Schur complement sparsifier given in [33] but
improves on their Õ(m+ n/ε2) runtime. An important ingredient in the above construction
is an algorithm for multiplicatively approximating changes in effective resistances due to
certain modifications of G. This algorithm is called with δ = Θ(1) in this paper:

Lemma 5.1.4. Consider a weighted graph G, a set of vertices S ⊆ V (G), and δ0, δ1 ∈ (0, 1).
There is an O(mpolylog(n) log(m/δ1)/δ2

0)-time algorithm DiffApx(G,S, δ0, δ1) that outputs
numbers νe for all e ∈ E(G) with the guarantee that

(1− δ0)νe − δ1 ≤
bTe L

+
Gbe
re

−
bTe L

+
G/Sbe

re
≤ (1 + δ0)νe + δ1

Finally, we replace the use of Theorem 6.1 in [33] with our Theorem 5.1.3 in their im-
provement to Johnson-Lindenstrauss to obtain a faster algorithm:

Corollary 5.1.5. Consider a weighted graph G, a set of pairs of vertices P ⊆ V (G)×V (G),
and an ε ∈ (0, 1). There is an m1+o(1) + Õ(|P |/ε2)-time algorithm ResApx(G,P, ε) that
outputs (1 + ε)-multiplicative approximations to the quantities

bTuvL
+
Gbuv

for all pairs (u, v) ∈ P .

This directly improves upon the algorithm in [33], which takesO((m+(n+|P |)/ε2)polylog(n))-
time.

5.1.2 Technical Overview

To construct Schur complement sparsifiers, [33] eliminates vertices one-by-one and sparsifies
the cliques resulting from those eliminations. This approach is fundamentally limited in that
each clique sparsification takes Ω(1/ε2) time in general. Furthermore, in the n+1 vertex star
graph with n vertices v1, v2, . . . , vn connected to a single vertex vn+1, a (1 + ε)-approximate
Schur complement sparsifier without Steiner vertices for the set {v1, v2, . . . , vn} must contain
Ω(n/ε2) edges. As a result, it seems difficult to obtain Schur complement sparsifiers in time
less than Õ(m+ n/ε2) time using vertex elimination.

Instead, we eliminate edges from a graph by contracting or deleting them. Edge elimina-
tion has the attractive feature that, unlike vertex elimination, it always reduces the number
of edges. Start by letting H := G. To eliminate an edge e from the current graph H, sample
Xe ∼ Ber(pe) for some probability pe depending on e, contract e if Xe = 1, and delete e if
Xe = 0.
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To analyze the sparsifier produced by this procedure, we set up a matrix-valued mar-
tingale and reduce the problem to bounding the maximum and minimum eigenvalues of a
random matrix with expectation equal to the identity matrix. The right value for pe for
preserving this matrix in expectation turns out to be the probability that a uniformly ran-
dom spanning tree of H contains the edge e. To bound the variance of the martingale, one
can use the Sherman-Morrison rank one update formula to bound the change in L+

H due to
contracting or deleting the edge e. When doing this, one sees that the maximum change in
eigenvalue is at most a constant times

max
x∈S

(xTL+
Hbe)

2

re min(levH(e), 1− levH(e))(xTL+
Gx)

where levH(e) is the probability that e is in a uniformly random spanning tree of H. This
quantity is naturally viewed as the quotient of two quantities:

(a) The maximum fractional energy contribution of e to any demand vector in S’s electrical
flow.

(b) The minimum of the probabilities that e is in or is not in a uniformly random spanning
tree of H.

We now make the edge elimination algorithm more specific to bound these two quantities.
Quantity (a) is small on average over all edges in e (see Proposition 5.3.9), so choosing the
lowest-energy edge yields a good bound on the maximum change. To get a good enough
bound on the stepwise martingale variance, it suffices to sample an edge uniformly at random
from the half of edges with lowest energy. Quantity (b) is often not bounded away from 0, but
can be made so by modifying the sampling procedure. Instead of contracting or deleting the
edge e, start by splitting it into two parallel edges with double the resistance or two series
edges with half the resistance, depending on whether or not levH(e) ≤ 1/2. Then, pick
one of the halves e0, contract it with probability pe0 , or delete it otherwise. This produces
a graph in which the edge e is either contracted, deleted, or reweighted. This procedure
suffices for proving our main existence result (Theorem 5.1.2). This technique is similar to
the technique used to prove Lemma 4.1.4.

While the above algorithm does take polynomial time, it does not take almost-linear
time. We can accelerate it by batching edge eliminations together using what we call steady
oracles. The contraction/deletion/reweight decisions for edges in H during each batch can
be made by sampling just one 1/m10-approximate uniformly random spanning tree, which
takes m1+o(1) time. The main remaining difficulty is finding a large set of edges for which
quantity (a) does not change much over the course of many edge contractions/deletions.
To show the existence of such a set, we exploit electrical flow localization (Chapter 3). To
find this set, we use matrix sketching and a new primitive for approximating the change in
leverage score due to the identification of some set of vertices S (Lemma 5.1.4), which may
be of independent interest. The primitive for approximating the change works by writing
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the change in an Euclidean norm, reducing the dimension by Johnson-Lindenstrauss Lemma,
and then computing the embedding by Fast Laplacian Solvers in near-linear time.

We conclude by briefly discussing why localization is relevant for showing that quantity
(a) does not change over the course of many iterations. The square root of the energy
contribution of an edge e to x’s electrical flow after deleting an edge f is

∣∣∣∣∣x
TL+

H\fbe√
re

∣∣∣∣∣ =

∣∣∣∣∣xTL+
Hbe√
re

+
(xTL+

Hbf )(b
T
f L

+
Hbe)

(rf − bTf L
+
Hbf )
√
re

∣∣∣∣∣
=

∣∣∣∣∣xTL+
Hbe√
re

+
1

1− levH(f)

xTL+
Hbf√
rf

bTf L
+
Hbe√

rf
√
re

∣∣∣∣∣
≤
∣∣∣∣xTL+

Hbe√
re

∣∣∣∣+
1

1− levH(f)

∣∣∣∣xTL+
Hbf√
rf

∣∣∣∣
∣∣∣∣∣ bTf L+

Hbe√
rf
√
re

∣∣∣∣∣
by Sherman-Morrison. In particular, the new energy on e is at most the old energy plus some
multiple of the energy on the deleted edge f . By Theorem 3.3.1 applied with edge weights
1, the average value of this multiplier over all edges e and f is Õ( 1

|E(H)|), which means that

the algorithm can do Θ̃(|E(H)|) edge deletions/contractions without seeing the maximum
energy on edges e change by more than a factor of 2.

5.2 Preliminaries

5.2.1 Graphs and Laplacians

For a graph G and a subset of vertices S, let G/S denote the graph obtained by identifying
S to a single vertex s. Specifically, for any edge e = {u, v} in G, replace each endpoint
u, v ∈ S with s and do not change any endpoint not in S. Then, remove all self-loops to
obtain G/S.

Let G = (V (G), E(G)) be a weighted undirected graph with n vertices, m edges, and
edge weights {we}e∈E(G). The Laplacian of G is an n× n matrix given by:

(LG)u,v :=


−w(u,v) if u 6= v and (u, v) ∈ E(G),∑

(u,w)∈E(G) w(u,w) if u = v,

0 otherwise.

We define edge resistances {re}e∈E(G) by re = 1/we for all e ∈ E(G).
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If we orient every edge e ∈ E(G) arbitrarily, we can define the signed edge-vertex inci-
dence matrix BG by

(BG)e,u :=


1 if u is e’s head,

−1 if u is e’s tail,

0 otherwise.

Then we can write LG as LG = BT
GWGBG, where WG is a diagonal matrix with (WG)e,e = we.

For vertex sets S, T ⊆ V , (LG)S,T denotes the submatrix of LG with row indices in S and
column indices in T .

LG is always positive semidefinite, and only has one zero eigenvalue if G is connected.
For a connected graph G, let 0 = λ1(LG) < λ2(LG) ≤ . . . ≤ λn(LG) be the eigenvalues of
LG. Let u1, u2, . . . , un be the corresponding set of orthonormal eigenvectors. Then, we can
diagonalize LG and write

LG =
n∑
i=2

λi(LG)uiu
T
i .

The pseudoinverse of LG is then given by

L+
G =

n∑
i=2

1

λi(LG)
uiu

T
i .

In the rest of the paper, we will write λmin(·) to denote the smallest eigenvalue and λmax(·)
to denote the largest eigenvalue. We will also write σmax(·) to denote the largest singular
value, which is given by

σmax(A) =
√
λmax(ATA)

for any matrix A.
We will also need to use Schur complements which are defined as follows:

Definition 5.2.1 (Schur Complements). The Schur complement of a graph G onto a subset
of vertices S ⊂ V (G), denoted by SC(G,S) or SC(LG, S), is defined as

SC(LG, S) = (LG)S,S − (LG)S,T (LG)−1
T,T (LG)T,S,

where T := V (G) \ S.

The fact below relates Schur complements to the inverse of graph Laplacian:

Fact 5.2.2 (see, e.g., Fact 5.4 in [33]). For any graph G and S ⊂ V (G),(
I − 1

|S|
J

)(
L+
G

)
S,S

(
I − 1

|S|
J

)
= (SC(LG, S))+ ,

where I denotes the identity matrix, and J denotes the matrix whose entries are all 1.
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5.2.2 Leverage scores and rank one updates

For a graph G and an edge e ∈ E(G), let be ∈ RV (G) denote the signed indicator vector of
the edge e; that is the vector with −1 on one endpoint, 1 on the other, and 0 everywhere
else. Define the leverage score of e to be the quantity

levG(e) :=
bTe L

+
Gbe
re

Let d1, d2 ∈ Rn be two vectors with d1, d2 ⊥ 1V (G). Then the following results hold by the
Sherman-Morrison rank 1 update formula:

Proposition 5.2.3. For a graph G and an edge f , let G\f denote the graph with f deleted.
Then

dT1L
+
G\fd2 = dT1L

+
Gd2 +

(dT1L
+
Gbf )(b

T
f L

+
Gd2)

rf − bTf L
+
Gbf

Proposition 5.2.4. For a graph G and an edge f , let G/f denote the graph with f con-
tracted. Then

dT1L
+
G/fd2 = dT1L

+
Gd2 −

(dT1L
+
Gbf )(b

T
f L

+
Gd2)

bTf L
+
Gbf

5.2.3 Random spanning trees

We use the following result on uniform random spanning tree generation:

Theorem 5.2.5 (Restatement of Theorem 4.1.2). Given a weighted graph G with m edges, a
random spanning tree T of G can be sampled from a distribution with total variation distance
at most 1/m10 from the uniform distribution in time m1+o(1).

Let T ∼ G denote the uniform distribution over spanning trees of G. We also use the
following classic result:

Theorem 5.2.6 ([51]). For any edge e ∈ E(G), PrT∼G[e ∈ T ] = levG(e).

For an edge e ∈ E(G), let G[e] denote a random graph obtained by contracting e with
probability levG(e) and deleting e otherwise.

5.2.4 Some useful bounds and tools

We now describe some useful bounds/tools we will need in our algorithms. In all the following
bounds, we define the quantities wmax and wmin as follows:

wmax := max
{

1,maxe∈E(G) 1/re
}
,

wmin := min
{

1,mine∈E(G) 1/re
}
.

The following lemma bounds the range of eigenvalues for Laplacians and SDDM matrices:
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Lemma 5.2.7. For any Laplacian LG and S ⊂ V (G),

λ2(LG) ≥ wmin/n
2, (5.1)

λmin ((LG)S,S) ≥ wmin/n
2, (5.2)

λmax ((LG)S,S) ≤ λmax(LG) ≤ nwmax. (5.3)

Proof. Defered to Appendix C.1.

The lemma below gives upper bounds on the largest eigenvalues/singular values for some
useful matrices:

Lemma 5.2.8. The following upper bounds on the largest singular values/eigenvalues hold:

σmax(W
1/2
G BG) ≤ (nwmax)1/2, (5.4)

λmax(SC(LG, S)) ≤ nwmax, (5.5)

σmax((LG)S,T ) = σmax((LG)T,S) ≤ nwmax, (5.6)

where T := V (G) \ S.

Proof. Defered to Appendix C.2.

We will need to invoke Fast Laplacian Solvers to apply the inverse of a Laplacian of
an SDDM matrix. The following lemma characterizes the performance of Fast Laplacian
Solvers:

Lemma 5.2.9 (Fast Laplacian Solver [91, 26]). There is an algorithm x̃ = LaplSolve(M, b, ε)
which takes a matrix Mn×n either a Laplacian or an SDDM matrix with m nonzero entries,
a vector b ∈ Rn, and an error parameter ε > 0, and returns a vector x̃ ∈ Rn such that

‖x− x̃‖M ≤ ε ‖x‖M

holds with high probability, where ‖x‖M :=
√
xTMx, x := M−1b, and M−1 denotes the pseu-

doinverse of M when M is a Laplacian. The algorithm runs in time O(mpolylog(n) log(1/ε)).

The following lemmas show how to bound the errors of Fast Laplacian Solvers in terms of
`2 norms, which follows directly from the bounds on Laplacian eigenvalues in Lemma 5.2.7:

Lemma 5.2.10. For any Laplacian LG, vectors x, x̃ ∈ Rn both orthogal to 1, and real number
ε > 0 satifiying

‖x− x̃‖LG ≤ ε ‖x‖LG ,

the following statement holds:

‖x− x̃‖ ≤ εn1.5

(
wmax

wmin

)1/2

‖x‖ .
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Proof. Defered to Appendix C.3.

Lemma 5.2.11. For any Laplacian LG, S ⊂ V , vectors x, x̃ ∈ R|S|, and real number ε > 0
satifiying

‖x− x̃‖M ≤ ε ‖x‖M ,

where M := (LG)S,S, the following statement holds:

‖x− x̃‖ ≤ εn1.5

(
wmax

wmin

)1/2

‖x‖ .

Proof. Defered to Appendix C.3.

When computing the changes in effective resistances due to the identification of a given
vertex set (i.e. merging vertices in that set and deleting any self loops formed), we will need
to use Johnson-Lindenstrauss lemma to reduce dimensions:

Lemma 5.2.12 (Johnson-Lindenstrauss Lemma [45, 1]). Let v1, v2, . . . , vn ∈ Rd be fixed
vectors and 0 < ε < 1 be a real number. Let k be a positive integer such that k ≥ 24 log n/ε2

and Qk×d be a random ±1 matrix. With high probability, the following statement holds for
any 1 ≤ i, j ≤ n:

(1− ε) ‖vi − vj‖2 ≤ ‖Qvi −Qvj‖2 ≤ (1 + ε) ‖vi − vj‖2 .

5.3 Existence of sparsifiers

In this section, we reduce the construction of spectral subspace sparsifiers to an oracle that
outputs edges that have low energy with respect to every demand vector in the chosen
subspace S. We prove it by splitting and conditioning on edges being present in a uniformly
random spanning tree one-by-one until Õ(d/ε2) edges are left. This construction is a high-
dimensional generalization of the construction given in Section 4.10.1. We use the following
matrix concentration inequality:

Theorem 5.3.1 (Matrix Freedman Inequality applied to symmetric matrices [93]). Consider
a matrix martingale (Yk)k≥0 whose values are symmetric matrices with dimension s, and let
(Xk)k≥1 be the difference sequence Xk := Yk − Yk−1. Assume that the difference sequence is
uniformly bounded in the sense that

λmax(Xk) ≤ R

almost surely for k ≥ 1. Define the predictable quadratic variation process of the martin-
gale:
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Wk :=
k∑
j=1

E[X2
j |Yj−1]

Then, for all t ≥ 0 and σ2 > 0,

Pr[∃k ≥ 0 : λmax(Yk − Y0) ≥ t and λmax(Wk) ≤ σ2] ≤ s exp

(
−t2/2

σ2 +Rt/3

)
Now, we give an algorithm SubspaceSparsifier(G,S, ε) that proves Theorem 5.1.2. The

algorithm simply splits and conditions on the edge that minimizes the martingale difference
repeatedly until there are too few edges left. For efficiency purposes, SubspaceSparsifier(G,S, ε)
receives martingale-difference-minimizing edges from a steady oracle O with the additional
guarantee that differences remain small after many edge updates. This oracle is similar to
the stable oracles given in Section 4.10.

Definition 5.3.2 (Steady oracles). A (ρ,K(z))-steady oracle is a function Z ← O(I,S)
that takes in a graph I and a subspace S ⊆ RV (I) that satisfy the following condition:

• (Leverage scores) For all e ∈ E(I), levI(e) ∈ [3/16, 13/16].

and outputs a set Z ⊆ E(I). Let I0 = I and for each i > 0, obtain Ii by picking a
uniformly random edge fi−1 ∈ Z, arbitrarily letting Ii ← Ii−1 \ fi−1 or Ii ← Ii−1/fi−1, and
letting Z ← Z \ {fi−1}. O satisfies the following guarantees with high probability for all
i < K(|E(I)|):

• (Size of Z) |Z| ≥ |E(I)|/ρ

• (Leverage score stability) levIi(fi) ∈ [1/8, 7/8]

• (Martingale change stability) maxx∈S
(xTIi

L+
Ii
bfi )

2

rfi (x
TL+

I x)
≤ ρdim(S)

|E(I)|

We now state the main result of this section:

Lemma 5.3.3. Consider a weighted graph G, a d-dimensional vector space S ⊆ RV (G),
and ε ∈ (0, 1). There is an algorithm SubspaceSparsifier(G,S, ε) that, given access to a
(ρ,K(z))-steady-oracle O, computes a (S, ε)-spectral subspace sparsifier for G with

O

(
ρ2d log d

ε2

)
edges in time
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O

(
(log n)( max

z≤|E(G)|
z/K(z))(Trst + TO +m)

)
≤ O

(
(log n)( max

z≤|E(G)|
z/K(z))(m1+o(1) + TO)

)
where Trst is the time required to generate a spanning tree of G from a distribution with

total variation distance ≤ n−10 from uniform and TO is the runtime of the oracle.

The algorithm will use two simple subroutines that modify the graph by splitting edges.
Split replaces each edge with approximate leverage score less than 1/2 with a two-edge
path and each edge with approximate leverage score greater than 1/2 with two parallel
edges. Unsplit reverses this split for all pairs that remain in the graph. We prove the
following two results about this subroutines in the appendix:

Proposition 5.3.4. There is a linear-time algorithm (I,P)← Split(H) that, given a graph
H, produces a graph I with V (H) ⊆ V (I) and a set of pairs of edges P with the following
additional guarantees:

• (Electrical equivalence) For all x ∈ RV (I) that are supported on V (H), xTL+
I x =

xTHL
+
HxH .

• (Bounded leverage scores) For all e ∈ E(I), levI(e) ∈ [3/16, 13/16]

• (P description) Every edge in I is in exactly one pair in P. Furthermore, there is a
bijection between pairs (e0, e1) ∈ P and edges e ∈ E(H) for which either (a) e0, e1 and
e have the same endpoint pair or (b) e0 = {u,w}, e1 = {w, v}, and e = {u,w} for
some degree 2 vertex w.

Proposition 5.3.5. There is a linear-time algorithm H ← Unsplit(I,P) that, given a
graph I and a set of pairs P of edges in I, produces a minor H with V (H) ⊆ V (I) and the
following additional guarantees:

• (Electrical equivalence) For all x ∈ RV (I) that are supported on V (H), xTL+
I x =

xTHL
+
HxH .

• (Edges of H) There is a surjective map φ : E(I) → E(H) from non-self-loop,non-
leaf edges of I such that for any pair (e0, e1) ∈ P, φ(e0) = φ(e1). Furthermore, for
each e ∈ E(H), either (a) φ−1(e) = e, (b) φ−1(e) = {e0, e1}, with (e0, e1) ∈ P and
e0, e1 having the same endpoints as e or (c) φ−1(e) = {e0, e1}, with (e0, e1) ∈ P and
e0 = {u,w}, e1 = {w, v}, and e = {u, v} for a degree 2 vertex w.
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Algorithm 25: SubspaceSparsifier(G,S, ε)
Input: A weighted graph G, a vector space S ⊆ RV (G), ε ∈ (0, 1), and (implicitly) a

(ρ,K(z))-steady oracle O
Output: A (S, ε)-spectral subspace sparsifier for G

1 H ← G
2 while |E(H)| ≥ 10000ρ2(dim(S) log(dim(S)))/ε2 do
3 (I,P)← Split(H)
4 Z ← O(I,S)
5 Z ′ ← a uniformly random subset of Z with size K(|E(I)|)
6 T ← a spanning tree of I drawn from a distribution with TV distance

≤ κ0 := 1/n10 from uniform
7 I ′ ← the graph with all edges in E(T ) ∩ Z ′ contracted and all edges in Z ′ \ E(T )

deleted
8 H ← Unsplit(I ′,P)

9 end
10 return H

We analyze the approximation guarantees of H by setting up two families of matrix-
valued martingales. In all of the proof besides the final “Proof of Lemma 5.3.3,” we sample
T from the uniform distribution rather than from a distribution with total variation distance
κ0 from uniform. We bound the error incurred from doing this in the final “Proof of Lemma
5.3.3.”

We start by defining the first family, which just consists of one martingale. Let H0 := G
and letHk be the graphH between iterations k and k+1 of the while loop of SubspaceSparsifier.
Let d = dim(S). Since S is orthogonal to 1V (G), dim((L+

G)1/2S) = dim(S) = d, which means
that S has a basis {yi}di=1 for which yTi L

+
Gyj = 0 for all i 6= j ∈ [d] and yTi L

+
Gyi = 1 for

all i ∈ [d]. Let Yk be the |V (Hk)| × d matrix with ith column (yi)Hk and let Y := Y0. Let
Mk := Y T

k L
+
Hk
Yk − Y TL+

GY . Since the yis form a basis of S, there is a vector ax for which
x = Y ax for any x ∈ S. Furthermore, xHk = Ykax for any k ≥ 0. In particular,∣∣∣∣∣xTHkL+

Hk
xHk

xTL+
Gx

− 1

∣∣∣∣∣ =

∣∣∣∣aTxMkax
||ax||22

∣∣∣∣
so it suffices to show that λmax(Mk) ≤ ε for all k ≤ kfinal, where kfinal is the number of while
loop iterations.

In order to bound the change between Mk and Mk+1, we introduce a second family of mar-
tingales consisting of one martingale for each while loop iteration. Let Ik,0 := I during the
kth iteration of the while loop in SubspaceSparsifier. Generate Z ′ in Z during iteration k
of the while loop by sampling a sequence of edges fk,0, fk,1, . . . , fk,K(|E(I)|)−1 without replace-
ment from Z. Let Ik,t = Ik,t−1[fk,t−1] for all t > 0. For a vector v ∈ RV (G), let vIk,0 ∈ RV (Ik,0)

be the vector with vIk,0(p) = vHk(p) for p ∈ V (Hk) and vIk,0(p) = 0 for p ∈ V (Ik,0) \ V (Hk).

For t > 0 and v ∈ RV (G), let vIk,t := (vIk,0)Ik,t . Let Yk,t be the |V (Ik,t)| × d matrix with
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ith column (yi)Ik,t . Let Nk,t := Y T
k,tL

+
Ik,t
Yk,t − Y TL+

GY . For any x ∈ S, t ≥ 0, and k ≥ 0,
xIk,t = Yk,tax. In particular, ∣∣∣∣∣x

T
Ik,t
L+
Ik,t
xIk,t

xTL+
Gx

− 1

∣∣∣∣∣ =

∣∣∣∣aTxNk,tax
||ax||22

∣∣∣∣
Next, we write an equivalent formulation for the steady oracle “Martingale change stability”
guarantee that is easier to analyze:

Proposition 5.3.6.

max
x∈S

(xTIk,tL
+
Ik,t
bf )

2

rf (xTL
+
Gx)

=
bTf L

+
Ik,t
Yk,tY

T
k,tL

+
Ik,t
bf

rf

Proof. Notice that

max
x∈S

(xTIk,tL
+
Ik,t
bf )

2

rf (xTL
+
Gx)

= max
x∈S

(aTxY
T
k,tL

+
Ik,t
bf )(b

T
f L

+
Ik,t
Yk,tax)

rf ||ax||22

= max
a∈Rd

aTY T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,ta

rf ||a||22

= λmax

(
Y T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,t

rf

)

=
bTf L

+
Ik,t
Yk,tY

T
k,tL

+
Ik,t
bf

rf

as desired.

Now, we analyze the inner family of matrices Nk,t. Let Zk,t denote the set Z during
iteration k of the while loop after sampling t edges without replacement.

Proposition 5.3.7. Yt := Nk,t for fixed k ≥ 0 and varying t ≥ 0 is a matrix martingale.
Furthermore, if

xTIk,sL
+
Ik,s
xIk,s

xTL+
Gx

≤ 10

for all x ∈ S, k ≥ 0, and s ≤ t for some t ≥ 0, λmax(Xt+1) ≤ 90d
|E(Ik,t)|

and λmax(E[X2
t+1|Yt]) ≤

25600ρ2d
|E(Ik,0)|2 , where Xt+1 is defined based on the Yss as described in Theorem 5.3.1.

Proof. We compute the conditional expectation of Xt+1 = Yt+1−Yt given Yt using Sherman-
Morrison:
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E[Xt+1|Yt] = E[Nk,t+1 −Nk,t|Nk,t]

=
1

|Zk,t|
∑
f∈Zk,t

−
bTf L

+
Ik,t
bf

rf

(
Y T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,t

bTf L
+
Ik,t
bf

)

+
1

|Zk,t|
∑
f∈Zk,t

(
1−

bTf L
+
Ik,t
bf

rf

)(
Y T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,t

rf − bTf L
+
Ik,t
bf

)
= 0

Therefore, (Yt)t≥0 is a martingale. Since Ik,0 is the output of Split, all edges in Ik,0
have leverage score between 3/16 and 13/16 by Proposition 5.3.4. In particular, the input
condition to O is satisfied. Furthermore,

λmax(Xt+1) ≤ λmax(Nk,t+1 −Nk,t)

≤ 1

|Zk,t|
∑
f∈Zk,t

λmax

(
Y T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,t

min(bTf L
+
Ik,t
bf , rf − bTf L

+
Ik,t
bf )

)

≤ 8 max
f∈Zk,t

λmax

(
Y T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,t

rf

)

= 8 max
f∈Zk,t

max
x∈S

(xTIk,tL
+
Ik,t
bf )

2

rf (xTL
+
Gx)

≤ 80 max
f∈Zk,t

max
x∈S

(xTIk,tL
+
Ik,t
bf )

2

rf (xTIk,0L
+
Ik,0
xIk,0)

≤ 90ρd

|E(Ik,0)|

where the third inequality follows from “Leverage score stability,” the equality follows
from Proposition 5.3.6, the fourth inequality follows from the input condition, and the last
inequality follows from “Martingale change stability.” Also,
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λmax(E[X2
t+1|Yt]) = λmax

(
E[(Nk,t+1 −Nk,t)

2|Yt]
)

≤ 256

|Zk,t|
λmax

 ∑
f∈Zk,t

1

r2
f

Y T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,tY

T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,t


≤ 256d

|Zk,t|

(
max
f∈Zk,t

1

rf
bTf L

+
Ik,t
Yk,tY

T
k,tL

+
Ik,t
bf

)
λmax

 ∑
f∈Zk,t

1

rf
Y T
k,tL

+
Ik,t
bfb

T
f L

+
Ik,t
Yk,t


≤ 2560ρd

|Zk,t||E(Ik,0)|
λmax

(
Y T
k,tL

+
Ik,t
Yk,t

)
=

2560ρd

|Zk,t||E(Ik,0)|
max
x∈S

xTIk,tL
+
Ik,t
xIk,t

xTL+
Gx

≤ 25600ρ2d

|E(Ik,0)|2

where the second inequality follows from Sherman-Morrison and “Leverage score stabil-
ity,” the fourth follows from “Martingale change stability,” and the last follows from “Size
of Z” and the input condition.

Now, consider the sequence of matrices ((Nk,t)
K(|E(Ik,t)|)
t=0 )k≥0 obtained by concatenating

the (Nk,t)t martingales for each k. We now analyze this sequence:

Proposition 5.3.8. The sequence of matrices (Ykt)k,t ordered lexicographically by (k, t) pairs
defined by Ykt := Nk,t is a matrix martingale. Furthermore, if for any k ≥ 0, t ≥ 0, any pairs
(l, s) lexicographically smaller than (k, t), and any x ∈ S,

xTIl,sL
+
Il,s
xIl,s

xTL+
Gx

≤ 10

then

λmax(Xk′t′) ≤
90d

|E(Ik′,t′)|

, λmax(E[X2
k′t′ |Ykt]) ≤

25600ρ2d
|E(Ik′,t′ )|2

, and

λmax(Wkt) ≤
∑

(l,s)≤(k,t)

25600ρ2d

|E(Il,s)|2

where (k′, t′) is the lexicographic successor to (k, t) and Xk′t′ = Yk′t′ − Ykt as described in
Theorem 5.3.1.
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Proof. Consider a pair (k′, t′) with lexicographic predecessor (k, t). If k = k′, then t′ = t+ 1,
which means that

E[Yk′t′|Ykt] = E[Nk,t+1|Nk,t] = Nk,t = Ykt

, λmax(Xk′t′) ≤ 90d
|E(Ik′,t′ )|

, and λmax(E[X2
k′t′|Ykt]) ≤

25600ρ2d
|E(Ik′,t′ )|2

by Proposition 5.3.7. If k = k′−1,

then t′ = 0. As a result, Ykt = Nk,t = Mk by the “Electrical equivalence” guarantee
of Proposition 5.3.5 and Mk = Nk′,t′ = Yk′t′ by the “Electrical equivalence” guarantee of
Proposition 5.3.4. In particular, Xk′t′ = 0 and satisfies the desired eigenvalue bounds. The
bound on λmax(Wkt) follows directly from the stepwise bound λmax(E[X2

k′t′|Ykt]) and the
definition of Wkt as the predictable quadratic variation.

Now, we are ready to prove Lemma 5.3.3.

Proof of Lemma 5.3.3. H a minor of G. It suffices to show that for every k ≥ 0, Hk+1 is
a minor of Hk. I

′ is a minor of I, as I is only modified by deletion and contraction. Now,
we show that the unweighted version of Hk+1 can be obtained from Hk by contracting each
edge e ∈ E(Hk) with an I ′-self-loop in its pair (e0, e1) ∈ P and deleting each edge e ∈ E(Hk)
with an I ′-leaf edge in its pair. Let H ′k+1 be the result of this procedure.

We show that H ′k+1 = Hk+1 without weights. We start by showing that V (Hk+1) =
V (H ′k+1). Each vertex v ∈ V (Hk+1) corresponds to a set of vertices in V (Hk) that were
identified, as the “Edges of H” requirement ensures that Hk+1 contains no vertices that
were added to Hk by Split. Since T is a tree, each vertex v ∈ V (Hk+1) corresponds to
a subtree of identified vertices in Hk. Since Z only contains one edge for each pair in P ,
the self-loop edges in I ′ match the edges contracted to form the subtree for v, which means
that V (Hk+1) = V (H ′k+1). E(Hk+1) ⊆ E(H ′k+1) because for every e ∈ E(Hk+1), φ−1(e) does
not contain an I ′ self-loop or leaf by the “Edges of H” and “P description” guarantees.
E(H ′k+1) ⊆ E(Hk+1) because each e ∈ E(H ′k+1) does not map to a self-loop or leaf in I ′,
which means that φ−1(e) exists by surjectivity of φ. Therefore, H ′k+1 = Hk+1. Since H ′k+1 is
a minor of Hk, Hk+1 is also a minor of Hk, as desired.

Number of edges. This follows immediately from the while loop termination condition.
Approximation bound. Let (kτ , tτ ) be the final martingale index pair that the while

loop encounters before termination. We start by obtaining a high-probability bound on
Wkτ tτ given that T is drawn from the exact uniform distribution on spanning trees of I. By
Proposition 5.3.8,

Wkτ tτ ≤
∑

(k,t)≤(kτ ,tτ )

25600ρ2d

|E(Ik,t)|2

The process of generating Ik,t+1 from Ik,t does not increase the number of edges and decreases
the number of edges by 1 with probability at least 1/8, by “Leverage score stability.” There-
fore, by Azuma’s Inequality, |E(Ik,t)| ≤ 2|E(G)| − ck,t/8 + 10

√
log d
√
ck,t with probability at

least 1 − 1/d5, where ck,t is the number of pairs that are lexicographically less than (k, t).
Therefore, as long as |E(G)| > 20 log d, which is true when d > 10000000 = Θ(1),

|E(Ik,t)| ≤ 2|E(G)| − ck,t/16



CHAPTER 5. SPECTRAL SUBSPACE SPARSIFICATION 207

with probability at least 1− 1/d3 for all pairs (k, t). This means that

ckτ ,tτ ≤ 32000000|E(G)|

and that

Wkτ ,tτ ≤
32000000000ρ2d

|E(Ikτ ,tτ )|
≤ ε2/(10 log d)

with probability at least 1− 1/d3.
Now, we apply the Matrix Freedman Inequality (Theorem 5.3.1). Apply it to the martin-

gale (Ykt)k,t to bound λmax(Ykτ tτ − Y00). By Proposition 5.3.8 and the termination condition
for the while loop, we may set R← ε/(10 log d) ≥ 90d

|E(Ikτ ,tτ )| . By Theorem 5.3.1,

Pr
[
λmax(Ykτ tτ ) ≥ ε and λmax(Wkτ tτ ) ≤ ε2/(10 log d)

]
≤ d exp

(
−ε2/2

ε2/(10 log d) + ε2/(30 log d)

)
≤ 1/d2

Therefore,
Pr

T uniform
[λmax(Ykτ tτ ) ≥ ε] ≤ 1/d2 + 1/d3 ≤ 2/d2

Now, switch uniform spanning tree sampling to κ0-approximate random spanning tree sam-
pling. The total number of iterations is at most m, so the total TV distance of the joint
distribution sampled throughout all iterations is at most mκ0. Therefore,

Pr
T κ0-uniform

[λmax(Ykτ tτ )] ≤ 2/d2 +mκ0 ≤ 3/d2

In particular, with probability at least 1− 3/d2,∣∣∣∣∣xHkτL
+
Hkτ

xHkτ
xTL+

Gx
− 1

∣∣∣∣∣ ≤ λmax(Mkτ ) = λmax(Ykτ tτ ) ≤ ε

for all x ∈ S, as desired.
Runtime. By Azuma’s Inequality,

|E(Hk)| ≤ |E(Hk−1)| −K(|E(Hk−1)|)/32 ≤ (1−min
z≥0

K(z)/32z)|E(Hk−1)|

for all k ≤ kτ with probability at least 1− 1/d2. Therefore,

|E(Hk)| ≤ (1−min
z≥0

K(z)/(32z))k|E(G)|

which means that the termination condition is satisfied with high probability after

O((log n) max
z≤|E(G)|

z/K(z))

iterations with high probability. Each iteration samples one spanning tree, calls the oracle
once, and does a linear amount of additional work, yielding the desired runtime.
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5.3.1 Slow oracle and proof of existence

In this section, we prove Theorem 5.1.2 by exhibiting a (2, 1)-steady oracle MultiDimSlowOracle(I,S).
The oracle just returns all edges in the bottom half by maximum energy fraction:

Algorithm 26: MultiDimSlowOracle, never executed

Input: A graph I and a subspace S ⊆ RV (I)

Output: A set Z of edges satisfying the steady oracle definition

1 return all edges e ∈ E(I) with maxx∈S
(xTL+

I be)
2

re(xTL
+
I x)
≤ 2dim(S)

|E(I)|

To lower bound the number of edges added to Z, we use the following result and Markov’s
Inequality:

Proposition 5.3.9. ∑
f∈E(I)

max
x∈S

(xTL+
I bf )

2

rf (xTL
+
I x)

= dim(S)

Proof. Let YI be a V (I)×dim(S)-matrix consisting of a basis (yi)
d
i=1 for S with yTi L

+
I yj = 0

for all i 6= j ∈ [dim(S)] and yTi L
+
I yi = 1 for all i ∈ [dim(S)]. By Proposition 5.3.6,

∑
f∈E(I)

max
x∈S

(xTL+
I bf )

2

rf (xTL
+
I x)

=
∑
f∈E(I)

bTf L
+
I YIY

T
I L

+
I bf

rf

=
∑
f∈E(I)

trace

(
bTf L

+
I Y Y

TL+
I bf

rf

)

=
∑
f∈E(I)

trace

(
L+
I YIY

T
I L

+
I bfb

T
f

rf

)
= trace(L+

I YIY
T
I )

=
d∑
i=1

yTi L
+
I yi

= dim(S)

as desired.

Now, we prove Theorem 5.1.2:

Proof of Theorem 5.1.2. By Lemma 5.3.3, it suffices to show that MultiDimSlowOracle is a
(2, 1)-steady oracle.

Size of Z. By Markov’s Inequality and Proposition 5.3.9, |Z| ≥ |E(I)|/2.
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Leverage score stability. We are only interested in i = 0, for which the “Leverage
score” input condition immediately implies the “Leverage score stability” guarantee.

Martingale change stability. We are only interested in i = 0. The return statement
specifies the “Martingale change stability” guarantee for ρ = 2.

5.4 Fast oracle

In this section, we give a (O(log3 n),Ω(z/ log3 n))-steady oracle MultiDimFastOracle that
proves Theorem 5.1.3 when plugged into SubspaceSparsifier. To do this, we use localiza-
tion (Chapter 3) to find a set of edges whose leverage scores and martingale changes do not
change much over time. We use sketching and Lemma 5.1.4 to find these edges efficiently.
This section can be described using the flexible function framework given in Chapter 4, but
we give a self-contained treatment here.

5.4.1 Efficient identification of low-change edges

MultiDimFastOracle needs to find a large collection of edges whose electrical energies do
not change over the course of many iterations. This collection exists by the following result:

Theorem 5.4.1 (Restatement of Theorem 3.3.1). Let I be a graph. Then for any vector
w ∈ RE(I), ∑

e,f∈E(I)

wewf
|bTe L+

I bf |√
re
√
rf
≤ clocal(log2 n)||w||22

for some constant clocal.

Plugging in w ← 1E(I) shows that at least half of the edges e ∈ E(I),∑
f∈E(I)

|bTe L+
I bf |√

re
√
rf
≤ 2clocal log2 n

We decrease this bound by subsampling the edges in I to obtain Z. To identify the edges
with low sum, we use matrix sketching:

Theorem 5.4.2 (Theorem 3 of [44] stated for `1). An efficiently computable, polylog(d)-space
linear sketch exists for `1 norms. That is, given a d ∈ Z≥1, δ ∈ (0, 1), and ε ∈ (0, 1), there
is a matrix C = SketchMatrix(d, δ, ε) ∈ Rl×d and an algorithm RecoverNorm(s, d, δ, ε) with
the following properties:

• (Approximation) For any vector v ∈ Rd, with probability at least 1 − δ over the ran-
domness of SketchMatrix, the value r = RecoverNorm(Cv, d, δ, ε) is as follows:

(1− ε)||v||1 ≤ r ≤ (1 + ε)||v||1
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• l = c/ε2 log(1/δ)

• (Runtime) SketchMatrix and RecoverNorm take O(ld) and poly(l) time respectively.

Approximation of column norms

Consider a graph I and a set W ⊆ E(I). We can obtain multiplicative approximations the

quantities
∑

f∈W
|bTe L

+
I bf |√

re
√
rf

for all e ∈ W in near-linear time using Theorem 5.4.2. However, we

actually need to multiplicatively approximate the quantities
∑

f∈W,f 6=e
|bTe L

+
I bf |√

re
√
rf

. In particular,

we need to estimate the `1 norm of the rows of the matrix M with Mef :=
|bTe L

+
I bf |√

re
√
rf

with the

diagonal left out. To do this, we tile the matrix as described in the proof of Proposition
4.11.8 (self-contained treatment below):

• Do Θ(log n) times:

– Pick a random balanced partition (W0,W1) of W

– For each e ∈ W0, approximate ae ←
∑

f∈Z1

|bTe L
+
I bf |√

re
√
rf

using sketching

• For each e ∈ W , average the aes together and scale up the average by a factor of 4 to

obtain an estimate for
∑

f 6=e∈W
|bTe L

+
I bf |√

re
√
rf

The expected contribution of each off-diagonal entry is 1, while no diagonal entry can
contribute. After Θ(log n) trials, the averages concentrate by Chernoff and a union bound.
Now, we formally implement this idea:

Proposition 5.4.3. There is a near-linear time algorithm (ae)e∈W ← ColumnApx(I,W ) that
takes a graph I and a set of edges W ⊆ E(I) and returns estimates ae for which

ae/2 ≤
∑

f 6=e∈W

|bTe L+
I bf |√

re
√
rf
≤ 3ae/2

for all e ∈ W .
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Algorithm 27: ColumnApx(I,W )

Input: a graph I and W ⊆ E(I)

Output: approximations to the values {
∑

f 6=e∈W
|bTe L

+
I bf |√

re
√
rf
}e∈W

1 K ← 100 log n
2 κe ← 0 for each e ∈ W
3 foreach k ← 1, 2, . . . , K do
4 W0,W1 ← partition of W with e ∈ W0 or e ∈ W1 i.i.d. with probability 1/2
5 C ← SketchMatrix(|W1|, 1/n6, 1/4)
6 D ← V (I)× |W1| matrix of columns bf/

√
rf for f ∈ W1

7 U ← L+
I DC

T

8 foreach e ∈ W0 do
9 Increase κe by RecoverNorm(UT (be/

√
re), |W1|, 1/n6, 1/4)

10 end

11 end
12 return (4κe/K)e∈W

Proof of Proposition 5.4.3. Approximation. Let Y
(k)
ef be the indicator variable of the event

{e ∈ W0 and f ∈ W1 in iteration k}. By the “Approximation” guarantee of Theorem 5.4.2,
at the end of the foreach loop in ColumnApx,

κe ∈ [3/4, 5/4]

(∑
f∈W

|bTe L+
I bf |√

re
√
rf

(
K∑
k=1

Y
(k)
ef

))

for each e ∈ W . Since Y
(k)
ee = 0 for all k and e ∈ W ,

∑
f∈W

|bTe L+
I bf |√

re
√
rf

(
K∑
k=1

Y
(k)
ef

)

=
∑

f 6=e∈W

|bTe L+
I bf |√

re
√
rf

(
K∑
k=1

Y
(k)
ef

)

Notice that for e 6= f , {Y (k)
ef }k is a family of independent Bernoullis with mean 1/4. There-

fore, by Chernoff bounds and our choice of K, K(1/4)(7/8) ≤
∑K

k=1 Y
(k)
ef ≤ K(1/4)(9/8) for

all e 6= f with probability at least 1− 1/n5. As a result,

κe ∈
K

4
[1/2, 3/2]

( ∑
f 6=e∈W

|bTe L+
I bf |√

re
√
rf

)
with high probability, as desired.
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Runtime. Lines 5 and 9 contribute at most Õ(|E(I)|) to the runtime of ColumnApx by
the “Runtime” guarantee of Theorem 5.4.2. Line 7 only takes Õ(|E(I)|) time to compute U
because CT only has O(log n) columns. All other lines take linear time, so ColumnApx takes
near-linear time.

Construction of concentrated edges

Now, we subsample localized sets:

Proposition 5.4.4. Given a graph I and γ ∈ (0, 1), there is a set of edges W ⊆ E(I) with
two properties:

• (Size) |W | ≥ (γ/4)|E(I)|

• (Value) For all e ∈ W ,
∑

f 6=e∈W
|bTe L

+
I bf |√

re
√
rf
≤ ψ for all e ∈ W , where ψ := 100clocalγ(log2 n)

Furthermore, there is an Õ(|E(I)|/γ)-expected time algorithm Subsample(I, γ) that pro-
duces W .

Algorithm 28: Subsample(I, γ)

1 while W does not satisfy Proposition 5.4.4 do
2 W0 ← random subset of E(I), with each edge of e ∈ E(I) included i.i.d. with

probability 2γ
3 (ae)e∈W0 ← ColumnApx(I,W0)
4 W ← set of edges e ∈ W0 with ae ≤ ψ/2

5 end
6 return W

Proof. We show that each iteration of the while loop terminates with probability at least
1/polylog(n). As a result, only polylog(n) iterations are required to find the desired set. We
do this by setting up an intermediate family of subsets of E(I) to obtain W .

Size. Let X1 ⊆ E(I) be the set of edges e with
∑

f∈E(I)

|bTe L
+
I bf |√

re
√
rf
≤ 2clocal log2 n. By

Theorem 5.4.1, |X1| ≥ |E(I)|/2.
Let W1 := X1∩W0. W1 can alternatively be sampled by sampling W1 from X1, including

each element of X1 in W1 i.i.d. with probability 2γ. Furthermore,
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EW1

[ ∑
f 6=e∈W0

|bTe L+
I bf |√

re
√
rf

∣∣∣e ∈ W1

]
= EW1

[ ∑
f 6=e∈W0

|bTe L+
I bf |√

re
√
rf

]

= 2γ
∑

f 6=e∈E(I)

|bTe L+
I bf |√

re
√
rf

≤ 4γclocal(log2 n)

By the approximation upper bound for ae and Markov’s Inequality,

Pr
W1

[e /∈ W |e ∈ W1] ≤ Pr
W1

[ae > ψ/2|e ∈ W1]

≤ Pr
W1

 ∑
f 6=e∈E(I)

|bTe L+
I bf |√

re
√
rf

> ψ/4|e ∈ W1


≤ 4γclocal(log2 n)

ψ/4

≤ 1/2

for every e ∈ X1. Therefore,

E[|W |] > (1/2)E[|W1|] = γ|X1| ≥ γ|E(I)|/2

Since 0 ≤ |W | ≤ |E(I)|, |W | ≥ γ|E(I)|/4 with probability at least γ/4, as desired.
Value. By the upper bound on ae due to Proposition 5.4.3, all edges e ∈ W have the

property that ∑
f 6=e∈W

|bTe L+
I bf |√

re
√
rf
≤

∑
f 6=e∈W0

|bTe L+
I bf |√

re
√
rf
≤ ψ

as desired.
Runtime. Each iteration of the while loop succeeds with probability at least γ/4, as dis-

cussed in the “Size” analysis. Each iteration takes Õ(|E(I)|) time by the runtime guarantee
for ColumnApx. Therefore, the expected overall runtime is Õ(|E(I)|/γ).

5.4.2 MultiDimFastOracle

We now implement the (Θ(log3 n),Θ(z/ log3 n))-steady oracle MultiDimFastOracle. It
starts by finding a set W guaranteed by Proposition 5.4.4 with γ = Θ(1/ log3 n). It then
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further restricts W down to the set of edges satisfying “Martingale change stability” for I0

and returns that set. The “Value” guarantee of Proposition 5.4.4 ensures that these edges
continue to satisfy the “Martingale change stability” guarantee even after conditioning on
edges in Z.

Algorithm 29: MultiDimFastOracle(I,S)

Input: a graph I with leverage scores in [3/16, 13/16] and a subspace S ⊆ V (I) with
S := RS × 0V (I)\S for some S ⊆ V (I)

Output: a set Z ⊆ E(I) satisfying the steady oracle guarantees
1 W ← Subsample(I, γ), where γ := 1/(100000000clocal(log3 n)))
2 {νe}e∈E(I) ← DiffApx(I, S, 1/4, 1/m5)

3 return all e ∈ W for which νe ≤ 4|S|
|W |

To ensure that DiffApx is applicable, note the following equivalence to what its approx-
imating and the quantity in the “Martingale change stability” guarantee:

Proposition 5.4.5.

max
x∈RS

(xTL+
Hbf )

2

rf (xTL
+
Hx)

=
bTf L

+
Hbf

rf
−
bTf L

+
H/Sbf

rf

Proof. Define an n×(|S|−1) matrix C with signed indicator vectors of edges in a star graph
on C. For every x ∈ RS with xT1 = 0, x = Ccx for some unique cx ∈ R|S|−1. Therefore,

max
x∈RS

(xTL+
Hbf )

2

rf (xTL
+
Hx)

= max
c∈R|S|−1

cTCTL+
Hbfb

T
f L

+
HCc

rf (cTCTL+
HCc)

=
1

rf
λmax((CTL+

HC)−1/2CTL+
Hbfb

T
f L

+
HC(CTL+

HC)−1/2)

=
1

rf
(bTf L

+
HC(CTL+

HC)−1CTL+
Hbf )

=
bTf L

+
Hbf

rf
−
bTf L

+
H/Sbf

rf

where the last equality follows from the Woodbury formula.

To analyze MultiDimFastOracle, we start by showing that any set of localized edges
remains localized under random edge modifications:

Proposition 5.4.6. Consider a graph I and a set of edges Z ⊆ E(I) that satisfy the following
two initial conditions:

• (Initial leverage scores) levI(e) ∈ [3/16, 13/16] for all e ∈ Z.



CHAPTER 5. SPECTRAL SUBSPACE SPARSIFICATION 215

• (Initial localization)
∑

f∈Z
|bTe L

+
I bf |√

re
√
rf
≤ τ for all e ∈ Z, where τ = 1

10000 logn
.

Sample a sequence of minors {Ik}k≥0 of I and sets Zk ⊆ E(Ik) by letting I0 := I and for
each k ≥ 0, sampling a uniformly random edge ek ∈ Zk, letting Ik+1 ← Ik\ek or Ik+1 ← Ik/ek
arbitrarily, and letting Zk+1 ← Zk\ek. Then with probability at least 1− 1/n2, the following
occurs for all i:

• (All leverage scores) levIk(e) ∈ [1/8, 7/8] for all e ∈ Zk.

• (All localization)
∑

f∈Zk,f 6=e
|bTe L

+
Ik
bf |

√
re
√
rf
≤ τ ′ for all e ∈ Zk, where τ ′ = 2τ .

To prove this result, we cite the following submartingale inequality:

Theorem 5.4.7 (Theorem 27 of [24] with ai = 0 for all i). Let (Yi)i≥0 be a submartingale
with difference sequence Xi := Yi − E[Yi|Yi−1] and Wi :=

∑i
j=1 E[X2

j |Yj−1]. Suppose that
both of the following conditions hold for all i ≥ 0:

• Wi ≤ σ2

• Xi ≤M

Then

Pr[Yi − Y0 ≥ λ] ≤ exp

(
− λ2

2(σ2 +Mλ/3)

)
Proof of Proposition 5.4.6. We prove this result by induction on k. For k = 0, “Initial
leverage scores” and “Initial localization” imply “All leverage scores” and “All localiza-
tion” respectively. For k > 0, we use submartingale concentration to show the inductive
step. For any edge e ∈ Zk, define two random variables U

(k)
e := levIk(e) and V

(k)
e :=∑

f∈Zk,f 6=e
|bTe L

+
Ik
bf |

√
re
√
rf

. Let

Û (k)
e := U (k)

e −
k−1∑
l=0

E[U (l+1)
e − U (l)

e |U (l)
e ]

and

V̂ (k)
e := V (k)

e −
k−1∑
l=0

E

[
V (l+1)
e − V (l)

e +
|bTe L+

Il
bel |√

re
√
rel

∣∣∣V (l)
e

]
(Û

(k)
e )k≥0 is a martingale and (V̂

(k)
e )k≥0 is a submartingale for all e ∈ Zk. Let

X̂U
(k)

e := Û (k)
e − E[Û (k)

e |Û (k−1)
e ] = U (k)

e − U (k−1)
e − E[U (k)

e − U (k−1)
e |U (k−1)

e ]

X̂V
(k)

e := V̂ (k)
e − E[V̂ (k)

e |V̂ (k−1)
e ] = V (k)

e − V (k−1)
e − E[V (k)

e − V (k−1)
e |V (k−1)

e ]
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ŴU
(k)

e :=
k∑
j=1

E[(X̂U
(j)

e )2|Û (j−1)
e ]

and

ŴV
(k)

e :=
k∑
j=1

E[(X̂V
(j)

e )2|V̂ (j−1)
e ]

By Sherman-Morrison and the inductive assumption applied to the edges e, ek−1 ∈ Zk−1,

|X̂U
(k)

e | ≤ |U (k)
e − U (k−1)

e |+ E[|U (k)
e − U (k−1)

e ||U (k−1)
e ]

≤ 2
(bTe L

+
Ik−1

bek−1
)2

re min(bTek−1
L+
Ik−1

bek−1
, rek−1

− bTek−1
L+
Ik−1

bek−1
)

≤ 16(τ ′)2

X̂V
(k)

e =

(
V (k)
e −

(
V (k−1)
e −

|bTe L+
Ik−1

bek−1
|

√
re
√
rek−1

))
− E

[
V (k)
e −

(
V (k−1)
e −

|bTe L+
Ik−1

bek−1
|

√
re
√
rek−1

)]

≤ 2
∑

g∈Zk,g 6=e

∣∣∣∣∣ |bTe L+
Ik
bg|√

re
√
rg
−
|bTe L+

Ik−1
bg|

√
re
√
rg

∣∣∣∣∣
≤ 2

∑
g∈Zk,g 6=e

|bTe L+
Ik−1

bek−1
||bTek−1

L+
Ik−1

bg|
√
rerek−1

min(1− levIk−1
(ek−1), levIk−1

(ek−1))
√
rg

≤ 16
|bTe L+

Ik−1
bek−1
|

√
re
√
rek−1

∑
g∈Zk−1,g 6=e

|bTek−1
L+
Ik−1

bg|
√
rg
√
rek−1

≤ 16(τ ′)2
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E[(X̂U
(k)

e )2|Û (k−1)
e , e 6= ek−1, . . . , e 6= e0]

≤ 4E[(U (k)
e − U (k−1)

e )2|U (k−1)
e , e 6= ek−1, . . . , e 6= e0]

≤ 4Eek−1

[
(bTe L

+
Ik−1

bek−1
)4

r2
er

2
ek−1

min(1− levIk−1
(ek−1), levIk−1

(ek−1))2

∣∣∣e 6= ek−1

]

≤ 256Eek−1

[
(bTe L

+
Ik−1

bek−1
)4

r2
er

2
ek−1

∣∣∣e 6= ek−1

]

≤ 256

|Zk−1| − 1

 ∑
f∈Zk−1,f 6=e

|bTe L+
Ik−1

bf |
√
re
√
rf

4

≤ 256(τ ′)4

|Zk−1| − 1

E[(X̂V
(k)

e )2|V̂ (k−1)
e , e 6= ek−1, . . . , e 6= e0]

≤ 4E

(V (k)
e −

(
V (k−1)
e −

|bTe L+
Ik−1

bek−1
|

√
re
√
rek−1

))2 ∣∣∣V (k−1)
e , e 6= ek−1, . . . , e 6= e0


≤ 4Eek−1

( ∑
g∈Zk,g 6=e

|bTe L+
Ik−1

bek−1
||bTek−1

L+
Ik−1

bg|
√
rerek−1

min(1− levIk−1
(ek−1), levIk−1

(ek−1))
√
rg

)2 ∣∣∣e 6= ek−1


≤ 256Eek−1

((bTe L
+
Ik−1

bek−1
)2

rerek−1

)( ∑
g∈Zk,g 6=e

|bTek−1
L+
Ik−1

bg|
√
rek−1

√
rg

)2 ∣∣∣e 6= ek−1


≤ 256

|Zk−1| − 1
max
f∈Zk−1

 ∑
g∈Zk−1,g 6=f

|bTf L+
Ik−1

bg|
√
rf
√
rg

4

≤ 256(τ ′)4

|Zk−1| − 1

Therefore, for all k ≤ |Z|/2, |ŴU
(k)

e | ≤ 256(τ ′)4 and |ŴV
(k)

e | ≤ 256(τ ′)4 given the inductive
hypothesis. By Theorem 5.4.7,

Pr[|Ûk − Û0| > 2000(log n)(τ ′)2] ≤ exp

(
− (2000(log n)(τ ′)2)2

512(τ ′)4 + 512(τ ′)2(2000(log n)(τ ′)2/3)

)
≤ 1

n5
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and

Pr[V̂k − V̂0 > 2000(log n)(τ ′)2] ≤ exp

(
− (2000(log n)(τ ′)2)2

512(τ ′)4 + 512(τ ′)2(2000(log n)(τ ′)2/3)

)
≤ 1

n5

Now, we bound Uk − Ûk and Vk − V̂k. By Sherman-Morrison and the inductive assumption
for Zk−1,

E[|U (k)
e − U (k−1)

e ||U (k−1)
e , e 6= ek−1] ≤ Eek−1

[
(bTe L

+
Ik−1

bek−1
)2

re min(1− levIk−1
(ek−1), levIk−1

(ek−1))rek−1

∣∣∣e 6= ek−1

]

≤ 8(τ ′)2

|Zk−1| − 1

and

E

[
V (k)
e − V (k−1)

e +
|bTe L+

Ik−1
bek−1
|

√
re
√
rek−1

∣∣∣V (k−1)
e , e 6= ek−1

]

≤ Eek−1

[ ∑
g∈Zk,g 6=e

|bTe L+
Ik−1

bek−1
||bTek−1

L+
Ik−1

bg|
√
rerek−1

min(1− levIk−1
(ek−1), levIk−1

(ek−1))
√
rg

∣∣∣e 6= ek−1

]

≤ 8(τ ′)2

|Zk−1| − 1

so for k ≤ |Z|/2, |Uk − Ûk| ≤ 8(τ ′)2 and Vk − V̂k ≤ 8(τ ′)2. In particular, with probability at
least 1− 2/n5,

|levIk(e)− levI0(e)| = |U (k)
e − U (0)

e |
≤ |U (k)

e − Û (k)
e |+ |Û (k)

e − Û (0)
e |+ |Û (0)

e − U (0)
e |

≤ 8(τ ′)2 + 2000(log n)(τ ′)2 + 0

≤ 1/16

Therefore, levIk(e) ∈ [1/8, 7/8] with probability at least 1−2/n5 for all e ∈ Zk. Furthermore,
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∑
g∈Zk,g 6=e

|bTe L+
Ik
bg|√

re
√
rg

= V (k)
e

= (V (k)
e − V̂ (k)

e ) + (V̂ (k)
e − V̂ (0)

e ) + (V̂ (0)
e − V (0)

e ) + V (0)
e

≤ 8(τ ′)2 + 2000(log n)(τ ′)2 + 0 + τ

≤ 2τ = τ ′

This completes the inductive step and the proof of the proposition.

Now, we prove Theorem 5.1.3. By Lemma 5.3.3, it suffices to show that MultiDimFastOracle
is a (O(log3 n),Ω(z/ log3 n)))-steady oracle with runtime Õ(|E(I)|).

Proof of Theorem 5.1.3. Size of Z. By Proposition 5.3.9, Proposition 5.4.5, and the ap-
proximation upper bound for νe,∑

e∈E(I)

νe ≤ (5/4)|S|+ 1/m4 ≤ (3/2)|S|

Therefore, by Markov’s Inequality, |Z| ≥ 5|W |/8. By the “Size” guarantee of Proposition
5.4.4, |W | ≥ Ω(1/(log n)3)|E(I)|, so |Z| ≥ Ω(1/(log n)3)|E(I)|, as desired.

Leverage score stability. We start by checking that the input conditions for Proposi-
tion 5.4.6 are satisfied for Z. The “Initial leverage scores” condition is satisfied thanks to the
“Leverage scores” input guarantee for steady oracles. The “Initial localization” condition
is satisfied because of the “Value” output guarantee for Subsample applied to W . There-
fore, Proposition 5.4.6 applies. The “All leverage scores” guarantee of Proposition 5.4.6 is
precisely the “Leverage score stability” guarantee of steady oracles, as desired.

Martingale change stability. Let (yi)
d
i=1 be a basis of S for which yiL

+
I yj = 0 for i 6= j

and yiL
+
I yi for all i ∈ [dim(S)]. Let Yt be a V (It)× dim(S) matrix with columns (yi)It . By

Proposition 5.3.6 applied with G← I,

max
x∈S

(xTItL
+
It
bf )

2

rf (xTL
+
I x)

=
bTf L

+
It
YtY

T
t L

+
It
bf

rf

for all f ∈ E(It). We now bound this quantity over the course of deletions and contractions
of the edges ei by setting up a martingale. For all t ≥ 0 and f ∈ E(I), let

A
(t)
f :=

bTf L
+
It
YtY

T
t L

+
It
bf

rf
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and

Â
(t)
f := A

(t)
f −

t−1∑
s=0

[A
(s+1)
f − A(s)

f |A
(s)
f ]

For each f ∈ E(I), (A
(t)
f )t≥0 is a martingale. Let

X̂A
(t)

f := Â
(t)
f − Â

(t−1)
f = A

(t)
f − A

(t−1)
f − E[A

(t)
f − A

(t−1)
f |A(t−1)

f ]

and

ŴA
(t)

f :=
t∑

s=1

E[(X̂A
(s)

f )2|A(s−1)
f ]

We now inductively show that for all f ∈ Zt (which includes ft),

A
(t)
f ≤

ξ′|S|
|E(I)|

where ξ := 8E(I)
|W | ≤ O(log3 n) and ξ′ := 2ξ. Initially,

A
(0)
f ≤

8|S|
|W |

=
ξ|S|
|W |

for all f ∈ Z by the approximation lower bound for νe, completing the base case. For
t > 0, we bound A

(t)
f for f ∈ Zt by using martingale concentration. We start by bounding

differences using the “All leverage scores” guarantee of Proposition 5.4.6, Sherman-Morrison,
Cauchy-Schwarz, and the inductive assumption:
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|A(t)
f − A

(t−1)
f | =

∣∣∣∣∣bTf L+
It
YtY

T
t L

+
It
bf

rf
−
bTf L

+
It−1

Yt−1Y
T
t−1L

+
It−1

bf

rf

∣∣∣∣∣
≤ 2

∣∣∣∣∣ bTf L
+
It−1

bft−1b
T
ft−1

L+
It−1

Yt−1Y
T
t−1L

+
It−1

bf

rft−1 min(1− levIt−1(ft−1), levIt−1(ft−1))rf

∣∣∣∣∣
+

∣∣∣∣∣bTf L
+
It−1

bft−1b
T
ft−1

L+
It−1

Yt−1Y
T
t−1L

+
It−1

bft−1b
T
ft−1

L+
It−1

bf

r2
ft−1

(min(1− levIt−1(ft−1), levIt−1(ft−1)))2rf

∣∣∣∣∣
≤ 16

|bTf L+
It−1

bft−1||bTft−1
L+
It−1

Yt−1Y
T
t−1L

+
It−1

bf |
rft−1rf

+ 64
(bTf L

+
It−1

bft−1)
2bTft−1

L+
It−1

Yt−1Y
T
t−1L

+
It−1

bft−1

r2
ft−1

rf

≤ 16
|bTf L+

It−1
bft−1|

√
rft−1

√
rf

√
A

(t−1)
ft−1

√
A

(t−1)
f

+ 64

(
|bTf L+

It−1
bft−1|

√
rf
√
rft−1

)2

A
(t−1)
ft−1

≤ 80
|bTf L+

It−1
bft−1|

√
rft−1

√
rf

ξ′|S|
|E(I)|

By the “All localization” guarantee of Proposition 5.4.6,

|X̂A
(t)

f | ≤ |A
(t)
f − A

(t−1)
f |+ E[|A(t)

f − A
(t−1)
f ||At−1

f ]

≤ 160τ ′
ξ′|S|
|E(I)|

and

E[(X̂A
(t)

f )2|Â(t−1)
f ] ≤ 4Eft−1 [(A

(t)
f − A

(t−1)
f )2|A(t−1)

f , f 6= ft−1]

6400(τ ′)2

|Zt−1| − 1

(
ξ′|S|
|E(I)|

)2
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SinceK(|Z|) ≤ |Z|/2, |ŴA
(t)

f | ≤ 6400(τ ′)2
(
ξ′|S|
|E(I)|

)2

. Therefore, by Theorem 5.4.7 applied

to the submartingales (Â
(t)
f )t≥0 and (−Â(t)

f )t≥0,

Pr

[
|Â(t)

f − Â
(0)
f | >

ξ′|S|
5|E(I)|

]
≤ exp

(
− ((ξ′|S|)/(5|E(I)|))2

(6400(τ ′)2 + 160(τ ′))((ξ′|S|)/(|E(I)|))2

)
≤ 1/n5

Since Â
(0)
f = A

(0)
f , we just need to bound |A(t)

f − Â
(t)
f |. We do this by bounding expectations

of differences:

E[|A(t)
f − A

(t−1)
f ||A(t−1)

f , f 6= ft−1] ≤ 80E

[
|bTf L+

It−1
bft−1|

√
rft−1

√
rf

ξ′|S|
|E(I)|

∣∣∣f 6= ft−1

]

≤ 80τ ′

|Zt−1| − 1

ξ′|S|
|E(I)|

Therefore, |A(t)
f − Â

(t)
f | ≤

∑t−1
s=0 E[|A(s+1)

f − A(s)
f ||A

(s)
f , f 6= fs] ≤ ξ′|S|

5|E(I)| . This means that

A
(t)
f ≤ |A

(t)
f − Â

(t)
f |+ |Â

(t)
f − Â

(0)
f |+ A

(0)
f ≤

2ξ′|S|
5|E(I)|

+
ξ|S|
|E(I)|

≤ ξ′|S|
|E(I)|

with probability at least 1− 1/n5, which completes the inductive step.
Therefore, by a union bound and the fact that ft ∈ Zt for all t ≥ 0,

max
x∈S

(xItL
+
It
bft)

2

rft(x
TL+

I x)
= A

(t)
ft
≤ ξ′|S|
|E(I)|

≤ O(log3 n)|S|
|E(I)|

completing the “Martingale change stability” proof.

5.5 Efficient approximation of differences

In this section, we show how to approximate changes in effective resistances due to the
identification of a given vertex set S, and thus prove Lemma 5.1.4. Namely, given a vertex
set S ⊂ V , we need to approximate the following quantity for all edges e ∈ E(G):

(bTe L
+
Gbe)− (bTe L

+
G/Sbe).

By a proof similar to that of Proposition 5.4.5, this quantity equals

max
x⊥1,x∈RS

(xTL+
Gbe)

2

xTL+
Gx

, (5.7)

where 1 denotes the all-one vector.
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Lemma 5.5.1. The decrease in the effective resistance of an edge e ∈ E(G) due to the
identification of a vertex set S ⊂ V equals

(bTe L
+
Gbe)− (bTe L

+
G/Sbe) = max

x⊥1,x∈RS

(xTL+
Gbe)

2

xTL+
Gx

.

Proof. Let C be the n × (|S| − 1) matrix with signed indicator vectors of edges in a star
graph supported on S. Then we have

(bTe L
+
Gbe)− (bTe L

+
G/Sbe)

=bTe L
+
HC(CTL+

HC)−1CTL+
Hbe by Woodbury

=λmax((CTL+
HC)−1/2CTL+

Hbeb
T
e L

+
HC(CTL+

HC)−1/2)

= max
c∈R|S|−1

cTCTL+
Hbeb

T
e L

+
HCc

cTCTL+
HCc

= max
x⊥1,x∈RS

(xTL+
Gbe)

2

xTL+
Hx

,

where the last equality follows from that the columns of C form a basis of the subspace of
RS orthogonal to the all-ones vector.

Let k := |S|, and suppose without loss of generality that S contains the first k vertices
in G. We construct a basis (plus an extra vector) of the subspace of RS orthogonal to the
all-ones vector by letting

Cn×k :=

(
Ik×k − 1

k
Jk×k

0(n−k)×k

)
, (5.8)

where I denotes the identity matrix, and J denotes the matrix whose entries are all 1.

Let Pn×k :=
(
Ik×k 0

)T
be the projection matrix taking the first k coordinates, and let
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Πk×k := Ik×k − 1
k
Jk×k. Now we can write (5.7) as

max
x⊥1,x∈RS

(xTL+
Gbe)

2

xTL+
Gx

= max
c∈Rk

cTCTL+
Gbeb

T
e L

+
GCc

cTCTL+
GCc

= max
c∈Rk

(
cTΠk×k

)
CTL+

Gbeb
T
e L

+
GC (Πk×kc)

(cTΠk×k) CTL+
GC (Πk×kc)

by CΠk×k = C

= max
c∈Rk

(
cT (CTL+

GC)+/2
)
CTL+

Gbeb
T
e L

+
GC

(
(CTL+

GC)+/2c
)(

cT (CTL+
GC)+/2

)
CTL+

GC
(
(CTL+

GC)+/2c
)

since (CTL+
GC)+/2 and Πk×k have the same column space

=λmax((CTL+
GC)+/2CTL+

Gbeb
T
e L

+
GC(CTL+

GC)+/2)

=bTe L
+
GC(CTL+

GC)+CTL+
Gbe

=bTe L
+
GC(Πk×kP

TL+
GPΠk×k)

+CTL+
Gbe by PΠk×k = C

=bTe L
+
GC SC(LG, S) CTL+

Gbe by Fact 5.2.2. (5.9)

To approximate (5.9), we further write it as

bTe L
+
GC SC(LG, S) CTL+

Gbe

=bTe L
+
GC SC(LG, S)(SC(LG, S))+SC(LG, S) CTL+

Gbe

=bTe L
+
GC SC(LG, S) CTL+

GC SC(LG, S) CTL+
Gbe

=bTe L
+
GC SC(LG, S) CTL+

G(BT
GWGBG)L+

GC SC(LG, S) CTL+
Gbe,

where the last equality follows from L+
G = L+

GLGL
+
G and LG = BT

GWGBG.
We now write the change in the effective resistance of an edge e in a square of an Euclidean

norm as

bTe L
+
Gbe − b

T
e L

+
G/Sbe =

∥∥∥W 1/2
G BGL

+
GC(SC(LG, S))CTL+

Gbe

∥∥∥2

.

We then use Johnson-Lindenstrauss Lemma to reduce dimensions. Let Qk×m be a random
±1 matrix where k ≥ 24 log n/ε2. By Lemma 5.2.12, the following statement holds for all e
with high probability:∥∥∥W 1/2

G BGL
+
GC(SC(LG, S))CTL+

Gbe

∥∥∥2

≈1+ε

∥∥∥QW 1/2
G BGL

+
GC(SC(LG, S))CTL+

Gbe

∥∥∥2

. (5.10)

To compute the matrix on the rhs, we note that C is easy to apply by applying I and J ,
and L+

G can be applied to high accuracy by Fast Laplacian Solvers. Thus, we only need to
apply the Schur complement SC(LG, S) to high accuracy fast. We recall Definition 5.2.1 of
Schur complements:

SC(LG, S) := (LG)S,S − (LG)S,T (LG)−1
T,T (LG)T,S,
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where T := V \ S. Since (LG)T,T is a principle submatrix of LG, it is an SDDM matrix and
hence its inverse can be applied also by Fast Laplacian Solvers to high accuracy.

5.5.1 The subroutine and proof of Lemma 5.1.4

We give the algorithm for approximating changes in effective resistances due to the identifi-
cation of S as follows:

Algorithm 30: DiffApx(G,S, δ0, δ1)

Input: A weighted graph G, a set of vertices S ⊆ V (G), and δ0, δ1 ∈ (0, 1)
Output: Estimates {νe}e∈E(G) to differences in effective resistances in G and G/S

1 Let Qk×m be a random ±1 matrix where k ≥ 24 log n/δ2
0.

2 Compute each row of Yk×n := QW
1/2
G BGL

+
GC(SC(LG, S))CTL+

G by applying L+
G and

L−1
V \S,V \S to accuracy

ε =
δ1

48
√
k · n8.5 · w2.5

maxw
−3
min

.

3 νe ← ‖Y be‖2 for all e ∈ E(G)
4 return {νe}e∈E(G)

To prove the approximation ratio for DiffApx, we first track the errors for applying Schur
complement in the following lemma:

Lemma 5.5.2. For any Laplacian LG, S ⊂ V (G), vector b ∈ Rn, and ε > 0, the following
statement holds:

‖x− x̃‖ ≤ εn3.5w2.5
maxw

−0.5
min ‖b‖ ,

where

x :=
(
(LG)S,S − (LG)S,T (LG)−1

T,T (LG)T,S
)
b,

x̃ := (LG)S,Sb− (LG)S,T x̃1,

x̃1 := LaplSolve((LG)T,T , (LG)T,Sb, ε).

Using Lemma 5.5.2, we track the errors for computing the embedding in (5.10) as follows:

Lemma 5.5.3. For any Laplacian LG, S ⊂ V (G), vector q ∈ Rn with entries ±1, and

0 < ε < 1/
(
4n6 · w2.5

maxw
−1.5
min

)
, (5.11)

and a matrix Cn×k defined by

CS,1:k = Ik×k −
1

k
Jk×k,

CV \S,1:k = 0,



CHAPTER 5. SPECTRAL SUBSPACE SPARSIFICATION 226

the following statement holds:

‖x− x̃‖ ≤ ε · 8n8 ·
(
wmax

wmin

)2.5

,

where

x :=
(
qTW

1/2
G BGL

+
GC(SC(LG, S))CTL+

G

)T
,

x̃ := LaplSolve(LG, Cx̃1, ε),

x̃1 := (LG)S,S(CT x̃2)− (LG)S,T LaplSolve((LG)T,T , (LG)T,S(CT x̃2), ε),

x̃2 := LaplSolve(LG, B
T
GW

1/2
G q, ε).

Before proving the above two lemmas, we show how they imply Lemma 5.1.4.

Proof of Lemma 5.1.4. The running time follows directly from the running time of LaplSolve.

Let Xk×n := QW
1/2
G BGL

+
GC(SC(LG, S))CTL+

G. The multiplicative approximation follows
from Johnson-Lindenstrauss Lemma. To prove the additive approximation, we write the
difference between ‖Xbe‖2 and ‖Y be‖2 as∣∣‖Xbe‖2 − ‖Y be‖2

∣∣ = |‖Xbe‖ − ‖Y be‖| · (‖Xbe‖+ ‖Y be‖) .

Let u, v be the endpoints of e. We upper bound |‖Xbe‖ − ‖Y be‖| by

|‖Xbe‖ − ‖Y be‖| ≤ ‖(X − Y )be‖ = ‖(X − Y )(eu − ev)‖ by triangle ineq.

≤ ‖(X − Y )eu‖+ ‖(X − Y )ev‖ by triangle ineq.

≤
√

2
(
‖(X − Y )eu‖2 + ‖(X − Y )ev‖2)1/2

by Cauchy-Schwarz

≤
√

2 ‖X − Y ‖F =
√

2

(
k∑
i=1

∥∥(X − Y )T ei
∥∥2

)1/2

≤
√

2k · ε · 8n8 ·
(
wmax

wmin

)2.5

by Lemma 5.5.3

≤ δ1

3
√

2n1/2w
−1/2
min

and upper bound ‖Xbe‖+ ‖Y be‖ by

‖Xbe‖+ ‖Y be‖ ≤2 ‖Xbe‖+ |‖Xbe‖ − ‖Y be‖|

≤2
(

(1 + δ0)
(
bTe L

+
Gbe − b

T
e L

+
G/Sbe

))1/2

+ |‖Xbe‖ − ‖Y be‖| by Lemma 5.2.12

≤2 ((1 + δ0)n/wmin)1/2 + |‖Xbe‖ − ‖Y be‖| upper bounding bTe L
+
Gbe

≤3
√

2n1/2w
−1/2
min by δ0 < 1
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Combining these two upper bounds gives∣∣‖Xbe‖2 − ‖Y be‖2
∣∣ ≤ δ1,

which proves the additive error.

5.5.2 Analysis of additional errors

We now prove Lemma 5.5.2 and 5.5.3.

Proof of Lemma 5.5.2. We upper bound ‖x− x̃‖ by

‖x− x̃‖ =
∥∥(LG)S,T

(
(LG)−1

T,T (LG)T,Sb− x̃1

)∥∥
≤nwmax

∥∥(LG)−1
T,T (LG)T,Sb− x̃1

∥∥ by (5.6)

≤εn2.5w1.5
maxw

−0.5
min ‖(LG)T,Sb‖ by Lemma 5.2.11

≤εn3.5w2.5
maxw

−0.5
min ‖b‖ by (5.6).

Proof of Lemma 5.5.3. We first bound the norm of vector L+
GB

T
GW

1/2
G q by∥∥∥L+

GB
T
GW

1/2
G q

∥∥∥ ≤ n2

wmin

‖q‖ by σmax(L+
GB

T
GW

1/2
G ) = λmax(L+

G) and (5.1)

=
n2.5

wmin

since q’s entries are ±1, (5.12)

and upper bound the norm of vector SC(LG, S)CTL+
GB

T
GW

1/2
G q by∥∥∥SC(LG, S)CTL+

GB
T
GW

1/2
G q

∥∥∥ ≤nwmax

∥∥∥L+
GB

T
GW

1/2
G q

∥∥∥ by (5.5)

≤n3.5wmax

wmin

. (5.13)

The error of x̃2 follows by∥∥∥L+
GB

T
GW

1/2
G q − x̃2

∥∥∥ ≤εn1.5

(
wmax

wmin

)1/2 ∥∥∥L+
GB

T
GW

1/2
G q

∥∥∥ by Lemma 5.2.10

≤εn4w1/2
maxw

−1.5
min by (5.12). (5.14)

The norm of x̃2 can be upper bounded by

‖x̃2‖ ≤
∥∥∥L+

GB
T
GW

1/2
G q

∥∥∥+
∥∥∥L+

GB
T
GW

1/2
G q − x̃2

∥∥∥ by triangle inequality

≤2n2.5

wmin

by (5.12) and (5.11). (5.15)
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The error of x̃1 follows by∥∥∥SC(LG, S)CTL+
GB

T
GW

1/2
G q − x̃1

∥∥∥
≤
∥∥∥SC(LG, S)CT

(
L+
GB

T
GW

1/2
G q − x̃2

)∥∥∥+
∥∥SC(LG, S)CT x̃2 − x̃1

∥∥ by triangle ineq.

≤εn5w1.5
maxw

−1.5
min +

∥∥SC(LG, S)CT x̃2 − x̃1

∥∥ by (5.14), (5.5) and σmax(C) = 1

≤εn5w1.5
maxw

−1.5
min + ε ·

∥∥CT x̃2

∥∥ · n3.5 · w2.5
maxw

−0.5
min by Lemma 5.5.2

≤εn5w1.5
maxw

−1.5
min + ε · 2n6 · w2.5

maxw
−1.5
min by (5.15)

≤ε · 4n6 · w2.5
maxw

−1.5
min . (5.16)

The norm of x̃1 can be upper bounded by

‖x̃1‖

≤
∥∥∥SC(LG, S)CTL+

GB
T
GW

1/2
G q

∥∥∥+
∥∥∥SC(LG, S)CTL+

GB
T
GW

1/2
G q − x̃1

∥∥∥ by triangle ineq.

≤2n3.5wmax

wmin

by (5.13) and (5.11). (5.17)

Finally, the error of x̃ follows by

‖x− x̃‖
≤
∥∥L+

GC
(
SC(LG, S)CTL+

GB
T
GW

1
G/2q − x̃1

)∥∥+
∥∥L+

GCx̃1 − x̃
∥∥ by triangle ineq.

≤ε · 4n8 · w2.5
maxw

−2.5
min +

∥∥L+
GCx̃1 − x̃

∥∥ by (5.16) and (5.1)

≤ε · 4n8 · w2.5
maxw

−2.5
min + εn1.5w0.5

maxw
−0.5
min ‖Cx̃1‖ by Lemma 5.2.10

≤ε · 4n8 · w2.5
maxw

−2.5
min + 2εn5w1.5

maxw
−1.5
min by (5.17)

≤ε · 8n8 · w2.5
maxw

−2.5
min (5.18)

5.6 Better effective resistance approximation

In this section, we use divide-and-conquer based on Theorem 5.1.3 to ε-approximate ef-
fective resistances for a set of pairs of vertices P ⊆ V (G) × V (G) in time O(m1+o(1) +
(|P | /ε2)polylog(n)). The reduction we use is the same as in [33]. We give the algorithm
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ResApx as follows:

Algorithm 31: ResApx(G,P, ε), never executed

Input: A weighted graph G, a set of pairs of vertices P , and an ε ∈ (0, 1)
Output: Estimates {r̃u,v}(u,v)∈P to effective resistances between vertex pairs in P

1 if |P | = 1 then
2 Compute the Schur complement H of G onto P with error ε

3 return
{
r̃u,v := bTu,vL

+
Hbu,v

}
for the only (u, v) ∈ P

4 end
5 Let ε1 := 1

2
· ε · (1/ log |P |) and ε2 := ε · (1− 1/ log |P |).

6 Divide P into subsets P (1) and P (2) with equal sizes.

7 Let V (1) and V (2) be the respective set of vertices in P (1) and P (2).

8 Compute the Schur complement H(1) of G onto V (1) with error ε1
9 Compute the Schur complement H(2) of G onto V (2) with error ε2

10 r̃ ← ResApx(H(1), P (1), ε2) ∪ ResApx(H(2), P (2), ε2)
11 return r̃

Proof of Corollary 5.1.5. The approximation guarantees follows from

r̃u,v ≥
(

1− 1

2
· ε/ log |P |

)log|P |−1

·
(
bTu,vL

+
Gbu,v

)
≥(1− ε)bTu,vL+

Gbu,v

and

r̃u,v ≤
(

1 +
1

2
· ε/ log |P |

)log|P |−1

·
(
bTu,vL

+
Gbu,v

)
≤(1 + ε)bTu,vL

+
Gbu,v.

We then prove the running time. Let T (p, ε) denote the running time of ResApx(G,P, ε) when
|P | = p and |E(G)| = O((p/ε2)polylog(n)). Clearly, the total running time of ResApx(G,P, ε)
for any G with m edges is at most

2 · T (|P | /2, ε · (1− 1/ log |P |)) +O
(
m1+o(1) + (|P | /ε2)polylog(n)

)
, (5.19)

since the first step of ResApx will divide the graph into two Schur complements withO((|P | /ε2)polylog(n))
edges each. Furthermore, we can write T (p, ε) in a recurrence form as

T (p, ε) = 2 · T (p/2, ε · (1− 1/ log p)) +O
(
p1+o(1) + (p/ε2)polylog(n)

)
,

which gives
T (p, ε) = O

(
p1+o(1) + (p/ε2)polylog(n)

)
.

Combining this with (5.19) gives the overall running time

O
(
m1+o(1) + (|P | /ε2)polylog(n)

)
.
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Appendix A

Schur Complement Cheeger Appendix

A.1 Proof of Theorem 2.1.3

Proof of Theorem 2.1.3. For any two sets of vertices S1, S2 in a graph G,

ReffG(S1, S2) min(volG(S1), volG(S2)) =
1

σGS1,S2

Therefore, the desired result follows from Lemmas 2.4.1 and 2.3.1.

A.2 Proof of Proposition 2.4.4

Proof of Proposition 2.4.4. Without loss of generality, suppose that a ≤ b. We break the
analysis up into cases:
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Case 1: a ≤ 0. In this case, κq(a) = q/2 for all q ≥ 0, so∫ ∞
0

(κq(a)− κq(b))2

q
dq =

∫ b

0

(q/2− q)2

q

+

∫ 2b

b

(q/2− b)2

q
dq

+

∫ ∞
2b

(q/2− q/2)2

q
dq

=
b2

8
+

∫ 2b

b

(q/4− b+ b2/q)dq

=
b2

2
− b2 + b2(ln 2)

≤ 10(a− b)2

as desired.

Case 2: a > 0 and b ≤ 2a. In this case,∫ ∞
0

(κq(a)− κq(b))2

q
dq =

∫ a

0

(q − q)2

q
dq

+

∫ b

a

(a− q)2

q
dq

+

∫ 2a

b

(a− b)2

q
dq

+

∫ 2b

2a

(q/2− b)2

q
dq

+

∫ ∞
2b

(q/2− q/2)2

q
dq

≤
∫ 2b

a

(a− b)2

q
dq

= (a− b)2 ln(2b/a)

≤ (a− b)2 ln 4 ≤ 10(a− b)2

as desired.
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Case 3: a > 0 and b > 2a. In this case,∫ ∞
0

(κq(a)− κq(b))2

q
dq =

∫ a

0

(q − q)2

q
dq

+

∫ 2a

a

(a− q)2

q
dq

+

∫ b

2a

(q/2− q)2

q
dq

+

∫ 2b

b

(q/2− b)2

q
dq

+

∫ ∞
2b

(q/2− q/2)2

q
dq

≤
∫ 2b

a

(q/2− q)2

q
dq

≤ b2/2

≤ 2(a− b)2 ≤ 10(a− b)2

as desired.
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Appendix B

Random Spanning Tree Appendix

B.1 Facts about electrical potentials

B.1.1 Bounding potentials using effective resistances

Lemma B.1.1. Consider a graph I with three vertices u, v, w ∈ V (I). Then

Pr
v

[tu > tw] ≤ ReffI(u, v)

ReffI(u,w)

Proof. This probability can be written in terms of normalized potentials:

Pr
v

[tu > tw] =
bTuwL

+
I buv

bTuwL
+
I buw

Since electrical potentials are maximized on the support of the demand vector,

bTuwL
+
I buv

bTuwL
+
I buw

≤ bTuvL
+
I buv

bTuwL
+
I buw

=
ReffI(u, v)

ReffI(u,w)

as desired.

Lemma 4.8.6. Consider a graph I with two clusters C1 and C2 with two properties:

• The I-effective resistance diameters of C1 and C2 are both at most R.

• The minimum effective resistance between a vertex in C1 and a vertex in C2 is at least
γR for γ > 4.

Let J be the graph with C1 and C2 identified to s and t respectively. Then ReffJ(s, t) ≥
(γ − 4)R.

To prove this, we take advantage of the dual formulation of electrical flow given in [48]:
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Remark 11 (Equation (2) of [48]). The solution x for the optimization problem Lx = b is
also the vector that optimizes

max
p∈Rn

2bTp− pTLp

Proof of Lemma 4.8.6. Pick arbitrary s ∈ C1, t ∈ C2 in I and use the electrical potentials p =
L+
I bst to construct a good solution q to the dual formulation of electrical flows in J . Construct

J from I by adding 0-resistance edges from s and t to all C1 and C2 vertices respectively.
Notice that ps = minv pv and pt = maxv pv. For all v, let qv = max(ps +R,min(pt −R, pv)).

q is feasible, so by the above remark,

ReffJ(s, t) ≥ 2bTstq − qTLJq
Notice that 2bTstq = 2(pt − ps − 2R), so we just need to upper bound qTLJq. Notice that

for any x ∈ C1, px − ps = bTstL
+
I bsx ≤ bTsxL

+
I bsx ≤ R. Similarly, for any y ∈ C2, pt − py ≤ R.

Therefore, all vertices x ∈ C1 and y ∈ C2 have qx = ps + R and qy = pt − R respectively.
This means that all 0-resistance edges in J have potential drop 0 across them, which means
that qTLJq is defined.

No other edges were added to create J and potential drops are only smaller using q
instead of p, so qTLJq ≤ pTLIp = pt − ps. Therefore,

ReffJ(s, t) ≥ pt − ps − 4R ≥ (γ − 4)R

as desired.

B.1.2 Schur complement facts

Lemma 4.8.3. Consider any three disjoint sets of vertices S0, S1, S2 ⊆ V (I) and S ′0 ⊆ S0.
Let J = Schur(I, S0 ∪ S1 ∪ S2) and J ′ = Schur(I, S ′0 ∪ S1 ∪ S2). Then

cJ
′
(EJ ′(S

′
0, S1)) ≤ cJ(EJ(S0, S1))

Proof. It suffices to show this when S0 = S ′0 ∪ {v} for some vertex v ∈ V (I). By Remark 4,
J ′ = Schur(J, V (J) \ {v}). By the formula in Definition 5.2.1, each edge {u, v} for u ∈ S1 is
mapped to a set of edges {u,w} with cuw = cJuvc

J
vw/c

J
v , where cJv is the total conductance of

edges incident with v in J . In particular, summing over all w and using the fact that∑
w∈S′0

cJvw ≤ cJv

shows that the sum of the conductances of the edges created when v is eliminated is less
than the original uv conductance. This is the desired result.

Lemma 4.8.4. Consider any two disjoint sets S0, S1 ⊆ V (I) with S ′0 ⊆ S0. Then cI(S ′0, S1) ≤
cI(S0, S1).
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Proof. By Proposition 4.9.1, 1/cI(S ′0, S1) = bTs′0s1
L+
I/(S′0,S1)bs′0s1 and 1/cI(S0, S1) = bTs0s1L

+
I/(S0,S1)bs0s1 .

I/(S0, S1) can be obtained from I/(S ′0, S1) by identifying vertices. This only reduces the
quadratic form by Rayleigh monotonicity, as desired.

Lemma 4.8.5. For any cluster SC in a graph I and any p ∈ (0, 1),

cI(C, V (I) \ S{C,V (I)\SC}(p, C)) ≤ cI(C, V (I) \ SC)

p

Proof. Let J = I/(C, V (I) \ SC), with C and V (I) \ SC identified to s and t respectively.
Let J ′ be the graph obtained by subdividing every edge that crosses the p normalized st-
potential threshold in J , identifying the vertices created through subdivision, and making J ′

the induced subgraph on vertices with normalized st-potential at most p. The st electrical
flow on J restricted to J ′ is also an electrical flow in J ′ with energy exactly p(bTstL

+
J bst).

SC,V (I)\SC (p, C) contains all edges of J ′, so by Proposition 4.9.1 and Rayleigh monotonicity,

cI(C, V (I) \ SC,V (I)\SC (p, C)) ≤ 1

pbTstL
+
J bst

By 4.9.1 again,

bTstL
+
J bst =

1

cI(C, V (I) \ SC)

Substitution yields the desired result.

B.1.3 Carving clusters from shortcutters does not increase
conductance much

Lemma B.1.2. Consider a graph I and three disjoint sets S0, S1, S2 ⊆ V (I) with S ′2 ⊆ S2.
Let J = Schur(I, S0 ∪ S1 ∪ S2) and J ′ = Schur(I, S0 ∪ S1 ∪ S ′2). Then

cJ(EJ(S0, S1)) ≤ cJ
′
(EJ ′(S0, S1))

Proof. It suffices to show this result when S2 = S ′2∪{v} for some vertex v ∈ V (I), since one
can eliminate the vertices of S2 one at a time to get to S ′2. In this case, J ′ = Schur(J, V (J)\
{v}) by Remark 4. By Definition 5.2.1,

LJ ′ = LJ [V (J) \ {v}, V (J) \ {v}]− LJ [V (J) \ {v}, {v}]1/cJvLJ [{v}, V (J) \ {v}]

where cJv is the total conductance of edges incident with v in the graph J . LJ [V (J) \
{v}, {v}] only consists of nonpositive numbers, so conductances in J ′ are only larger than
they are in J . In particular, summing over all edges in EJ(S0, S1) shows that
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cJ(EJ(S0, S1)) ≤ cJ
′
(EJ ′(S0, S1))

as desired.

Lemma 4.7.3. Consider a graph H and two clusters C and SC, with C ⊆ SC. Let C ′ be
disjoint from C. Additionally, suppose that

• The effective resistance diameters of C and C ′ in H are both at most R.

• The effective resistance distance between any pair of points in C and C ′ in H is at
least β1R.

• cH(SC) ≤ τ
R

.

Then cH(SC \ C ′) ≤ τ+1/(β1−4)
R

.

Proof. Let H0 = Schur(H,C ∪ C ′ ∪ (V (H) \ SC)). By Lemma 4.8.6 and Proposition 4.9.1,

cH(C,C ′) ≤ 1

(β1 − 4)R

By Lemma B.1.2 with I ← H, S0 ← C, S1 ← C ′, S ′2 ← ∅, and S2 ← V (H) \ SC ,

cH0(EH0(C,C
′)) ≤ cH(C,C ′)

By Lemma B.1.2 with I ← H, S0 ← C, S1 ← V (H) \ SC , S ′2 ← ∅ and S2 ← C ′

cH0(EH0(C, V (H) \ SC)) ≤ cH(SC)

Therefore,

cH(SC \ C ′) = cH(C,C ′ ∪ (V (H) \ SC))

= cH0(EH0(C,C
′)) + cH0(EH0(C, V (H) \ SC))

≤ 1

(β1 − 4)R
+ cH(SC)

as desired.
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B.2 Deferred proofs for Section 4.5

B.2.1 Efficient construction of covering communities
(CoveringCommunity implementation)

We now prove Lemma 4.5.3. Our construction is similar to the construction of sparse covers
given in [14] and is made efficient for low-dimensional `2

2 metrics using locality-sensitive
hashing ([11]). Our use of locality-sensitive hashing is inspired by [41].

The algorithm maintains a set of uncovered vertices S and builds families of clusters one
at a time. We build each family by initializing a set S ′ ← S and repeatedly building clusters
one-by-one. Each cluster is built by picking a vertex in S ′ and building a effective resistance
ball around it. We repeatedly consider growing the effective resistance radius of the ball
by a factor of γ if it could contain a much larger number of edges (an m1/z0 factor). This
neighborhood can be generated efficiently (in time comparable to its size) using locality-
sensitive hashing. After generating this neighborhood, one can grow it slightly in a way that
decreases its boundary size using ball-growing (for example [66]).

Before giving the CoveringCommunity algorithm, we start by giving the ball-growing
algorithm BallGrow. Ideally, BallGrow would do standard ball-growing done by sorting
vertices x ∈ X with respect to the values ||D(x0)−D(x)||22. Unfortunately, ||D(x)−D(y)||22
is not necessarily a metric on X, despite the fact that it approximates the metric Reff(x, y).
Luckily, though, we only need to preserve distances to some vertex x0 along with distances
between endpoints of edges. This can be done by modifying D slightly, as described in the
first line of BallGrow:

Algorithm 32: BallGrowD(x0, X, I, R1, R2)

1 J ← the graph with V (J) = V (I) and E(J) = EI(X)∪ edges from x0 to each edge in
X

2 dJ ← the shortest path metric of J with {x, y} edge weight ||D(x)−D(y)||22
3 x0, x1, . . . , xk ← vertices in X in increasing order of dJ(x0, xi) value
4 i∗ ← the value for which cI(∂{x0, x1, . . . , xi∗}) is minimized subject to the constraint

that dJ(x0, xi) ∈ (R1, R2] or dJ(x0, xi+1) ∈ (R1, R2]
5 return {x0, x1, . . . , xi∗}

Proposition B.2.1. BallGrowD(x0, X, I, R1, R2), given the Johnson-Lindenstrauss embed-
ding D of the effective resistance metric of I with ε = 1/2, returns a cluster C with the
following properties:

• (Subset of input) C ⊆ X.

• (Large enough) C contains the subset of X with effective resistance distance 2R1/3 of
x0.

• (Not too large) The I-effective resistance diameter of C is at most 4R2.
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• (Boundary size) cI(∂C) ≤ 2|EI(X)|
R2−R1

+ cI(∂C ∩ ∂X).

Furthermore, it does so in Õ(|EI(X) ∪ ∂X|) time.

Proof. Subset of input. The xis are all in X and C only consists of xis.
Large enough. By the lower bound constraint on i∗, C contains all vertices x ∈ X

with dJ(x0, x) ≤ R1. Since the edge {x0, x} ∈ E(J), dJ(x0, x) ≤ ||D(x0) − D(x)||22 ≤
(3/2)ReffI(x0, x) by the upper bound of Theorem 4.3.3. For any vertex x with effective
resistance distance at most 2R1/3 from x0, dJ(x0, x) ≤ R1. Therefore, any such x is in C,
as desired.

Not too large. Consider any vertex x ∈ C. By the upper bound constraint on i∗,
dJ(x0, x) ≤ R2. By the triangle inequality for the effective resistance metric, to get a diameter
bound of 4R2 on C, it suffices to show that for any x ∈ X, ReffI(x0, x) ≤ 2dJ(x0, x).

Consider any path {y0 = x0, y1, y2, . . . , yk = x} in J . The length of this path is∑k−1
i=0 ||D(yi)−D(yi+1)||22 by definition of J . By the lower bound of Theorem 4.3.3,

k−1∑
i=0

ReffI(yi, yi+1)/2 ≤
k−1∑
i=0

||D(yi)−D(yi+1)||22

By the triangle inequality for the effective resistance metric,

ReffI(x0, x)/2 = ReffI(y0, yk)/2 ≤
k−1∑
i=0

ReffI(yi, yi+1)/2

so all paths from x0 to x in J have length at least ReffI(x0, x)/2. Therefore, ReffI(x0, x)/2 ≤
dJ(x0, x), as desired.

Boundary size. It suffices to bound the conductance of edges in ∂C that have both
endpoints in X. Consider the quantity

Q =
∑

e={x,y}∈EI(X):dJ (x0,x)≤dJ (x0,y)

cIe(dJ(x0, y)− dJ(x0, x))

with x closer to x0 than y in dJ -distance. We start by showing that there is a dJ distance
threshold cut with conductance at most Q

R2−R1
. For any number a ∈ R, let clamp(a) =

max(min(a,R2), R1). Notice that
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(R2 −R1) min
i:dJ (x0,xi)∈(R1,R2] or dJ (x0,xi+1)∈(R1,R2]

∑
e∈EI(X)∩∂{x0,x1,...,xi}

cIe

≤
k−1∑
i=0

(clamp(dJ(x0, xi+1))− clamp(dJ(x0, xi)))
∑

e∈EI(X)∩∂{x0,x1,...,xi}

cIe

=
∑

e={x,y}∈EI(X):dJ (x0,x)≤dJ (x0,y)

cIe(clamp(dJ(x0, y))− clamp(dJ(x0, x)))

≤ Q

Dividing both sides by (R2 − R1) shows that the minimizing cut (for defining i∗) has
total conductance at most Q/(R2 − R1). Now, we upper bound Q. By the upper bound of
Theorem 4.3.3 and the triangle inequality for dJ ,

Q ≤
∑

e={x,y}∈EI(X)

cIedJ(x, y)

≤
∑

e={x,y}∈EI(X)

cIe||D(x)−D(y)||22

≤
∑

e∈EI(X)

cIe(3/2)ReffI(e)

≤ 2|EI(X)|

This yields the desired conductance bound.
Runtime. Only |X|− 1 edges are added to I to make J . It only takes Õ(|EI(X)∪ ∂X|)

time to compute all of the distances to x0, which are the only ones that are queried. Finding
i∗ only takes one linear sweep over the xis, which takes Õ(|EI(X) ∪ ∂X|) time.
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Now, we implement CoveringCommunity:

Algorithm 33: CoveringCommunityD(X, I,R)

// the community that we output

1 F ← ∅
// the set of uncovered vertices

2 S ← X
3 while S 6= ∅ do

// set to form Fis from

4 S ′ ← S
5 for i = 0, . . . , 2z0 do
6 Fi ← ∅
7 Hi ← (Rγi, Rγi+1, 1/n1/γ, 1/n)-sensitive hash family for the `2

2 metric
||D(x)−D(y)||22

8 H′i ← a sample of (log n)n1/γ hash functions from Hi

9 bucket all vertices by hash values for each function in H′i
10 end
11 while S ′ 6= ∅ do
12 C ← { arbitrary vertex v0 in S ′}
13 C ′ ← X
14 C ′′ ← X
15 i← 0

16 while |EI(C ′) ∪ ∂C ′| > m1/z0|EI(C) ∪ ∂C| do
// update C ′ to be the set of nearby vertices to C

17 C ′ ← the set of vertices v ∈ X with h(v) = h(v0) for some h ∈ H′i+1

18 C ′′ ← subset of C ′ within D-distance (2R/3)γi+1 of v0 found using a scan
of C ′

19 C ← BallGrowD(v0, C
′′, I, (3/2)Rγi, 2Rγi)

20 i← i+ 1

21 end
22 Fi ← Fi ∪ {C}
23 S ′ ← S ′ \ C ′
24 S ← S \ C
25 end
26 add all Fis to C
27 end
28 return C

Lemma 4.5.3. The algorithm CoveringCommunityD(X, I,R), when given a cluster X, a
graph I, a radius R, and a Johnson-Lindenstrauss embedding D of the vertices of V (I),
returns an µradR-community D with the following properties:
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Figure B.2.1: How CoveringCommunity constructs one core. When clustering stops at some
C ′′, a ball C with small boundary between the (3/2)Rγi and 2R radii balls centered around
C0 is found using BallGrow. C ′′ is removed from the set S ′ of candidates that are well-
separated from v0 and C is removed from the set of vertices that need to be covered.

• (Input constraint) D is X-constrained.

• (Covering) Each vertex in X is in some cluster of some family in D.

• (Boundedness) Each family F ∈ D satisfies

∑
C∈F

cI(∂IC) ≤ κ0|EI(X) ∪ ∂IX|
R

+ cI(∂IX)

• (Well-separatedness) D is γds-well-separated.

• (Number of families) D has at most µapp families.

Furthermore, CoveringCommunity takes almost-linear time in |E(X) ∪ ∂X|.

Proof of Lemma 4.5.3. µradR-community. By the “Not too large” condition of Proposition
B.2.1, each cluster added to some family has diameter at most 8Rγimax ≤ µradR, where imax
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is the maximum value of i over the course of the algorithm. To show that C is an µradR-
community, we therefore just have to show that

imax ≤ 2z0

, where z0 = (1/10) logγ µrad.
To do this, we show that the innermost while loop executes at most 2z0 times. Let Ci, C

′
i,

and C ′′i be the values of C,C ′, and C ′′ set for the value of i in the innermost while loop. By
the second (high distance) condition of locality-sensitive families, C ′i only consists of vertices
in X with D-distance at most Rγi+2 from v0 with high probability. By the first (low distance)
condition of locality-sensitive families, C ′′i contains all of the vertices in X with D-distance at
most (2R/3)γi+1 from v0. Therefore, by the “Large enough” condition of Proposition B.2.1,
Ci consists of all vertices in X with D-distance at most Rγi from v0. Therefore, C ′i ⊆ Ci+2

for all i. By the inner while loop condition, |E(Ci+2) ∪ ∂Ci+2| ≥ m1/z0|E(Ci) ∪ ∂Ci| for all
i for which iteration i + 2 occurs. But |E(Ci+2) ∪ ∂Ci+2| ≤ n for all i. This means that
imax ≤ 2z0, as desired.

Input constraint. Each cluster consists of vertices in S, which is initialized to X and
only decreases in size. Therefore, C is X-constrained at the end of the algorithm.

Covering. Vertices are only removed from S in Line 24. When they are removed from
S, they are added to some cluster in F in Line 22. The algorithm only terminates when S
is empty. Therefore, if CoveringCommunity terminates, it outputs a covering community.

Boundedness. Let C be a cluster and consider the C ′ and C ′′ used to generate it. By
the “Boundary size” condition of Proposition B.2.1,

cI(∂C) ≤ 4|EI(C ′′)|
Rγi

+ cI(∂C ∩ ∂C ′′)

Now, we bound the conductance of the set ∂C∩∂C ′′. By the first (upper bound) condition
of locality-sensitive families, C ′′ contains all vertices in X within (4R/9)γi+1 ≥ 16Rγi I-
effective resistance distance of v0. By the “Not too large” condition of Proposition B.2.1, C
contains vertices with I-effective resistance distance 8Rγi of v0. Therefore, by the triangle
inequality for effective resistance, each edge in ∂C ∩ ∂C ′′ with both endpoints in X has
conductance at most 1/(8Rγi). This means that

cI(∂C ∩ ∂C ′′) ≤ |∂C
′′|

8Rγi
+ cI(∂C ∩ ∂X)

The C ′′s for clusters C in the same family are disjoint by Line 23. Therefore, the total
boundary size of all clusters C in one family F is at most∑

C∈F

(
4|EI(C ′′)|

R
+

4|∂C ′′|
R

+ cI(∂X ∩ ∂C)

)
= cI(∂X) +

4|EI(X) ∪ ∂X|
R

since γ > 1. This is the desired result.
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Well-separatedness. By the “Not too large” condition of Proposition B.2.1 and The-
orem 4.3.3, C ′ contains all vertices with I-effective resistance distance at most (2R/3)γi+1

from v0. The corresponding cluster C has I-effective resistance diameter at most 8Rγi.
Therefore, if C is added to a family Fi+1, it is γ/12-well-separated from any cluster added
to Fi+1 in the future.

Since Fi+1 only consists of clusters that were added to Fi+1 with separation at least
(2R/3)γi+1 from the remaining vertices in S ′, each cluster in Fi+1 is also γ/12-well-separated
from any cluster added to Fi+1 in the past. Therefore, each Fi is a well-separated family.

Number of families. When a cluster C is added to a family Fi, the number of edges
incident with S ′ decreases by at most |EI(C ′) ∪ ∂C ′| ≤ m1/z0 |EI(C) ∪ ∂C|. The number of
edges incident with S decreases by at least |EI(C) ∪ ∂C|. Therefore, when S ′ is empty, S
must have had at least m1−1/z0 incident edges removed. Therefore, the outer while loop can
only execute m1/z0 times. Each outer while loop iteration adds 2z0 families to C, so the total
number of families is at most 2z0m

1/z0 , as desired.
Runtime. The innermost while loop runs for 2z0 iterations. Line 17 takes time propor-

tional to the number of elements in the bin h(v0) for the n1/γ = mo(1) hash functions in H′i+1.
The runtime of the innermost while loop is therefore at most O(n1/γz0|EI(C ′)∪∂C ′|) for the
final C ′ that it outputs by the “Runtime” condition of Proposition B.2.1. This runtime can
be charged to the removal of C ′ (and its incident edges) from S ′. Therefore, each middle
while loop takes O(n1/γz0|EI(X)∪∂X|) time. As described in the “Number of families” con-
dition, the outermost while loop only executes 2z0m

1/z0 times. Therefore, the total runtime
is O(m1/z0n1/γz2

0 |EI(X) ∪ ∂X|) ≤ |EI(X) ∪ ∂X|mo(1), as desired.

B.2.2 Efficient construction of Voronoi diagrams (Voronoi
implementation)

We now prove Lemma 4.5.6. Ideally, the algorithm would just compute the set of ver-
tices from which a random walk has a probability of 7/8 of hitting one cluster in F before
any other. While this satisfies the correctness constraints, doing this would take too long.
Computing the set with probability 7/8 of hitting one cluster before another would take
a Laplacian solve on Z for each cluster. This is prohibitive, as we have no bound on the
number of clusters in F . This algorithm does not take advantage of slack on the lower bound
for SC .

Instead, we arbitrarily split the clusters into two groups (Xi, Yi) in log n different ways,
generate S{Xi,Yi}(1/(8 log n), Xi) and S{Xi,Yi}(1/(8 log n), Yi), and refine the resulting clus-
ters. This only requires O(log n) Laplacian solves on Z. The lower bound on SC follows
immediately from implication. The upper bound on SC follows from thinking in terms of
random walks. The event in which a random walk hitting C before any other cluster in F
is equivalent to the conjunction of the log n events in which the random walk hits C’s half
in each partition before the other half. The probability that any of these events can bound
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bounded satisfactorially with a union bound.

Algorithm 34: Voronoi(I,F)

1 C1, C2, . . . , Ck ← arbitrary ordering of clusters in F
2 SC1 , . . . , SCk ← V (I)
3 for i = 0, 1, . . . , log k do
4 Xi ← the union of clusters Cj ∈ F with ith index digit 0 in binary
5 Yi ← {C1, . . . , Ck}\Xi

6 for j = 1, . . . , k do
7 Zij ← the member of {Xi, Yi} that contains Cj;
8 SCj ← SCj ∩ S{Xi,Yi}(1/(8 log k), Zij)

9 end

10 end
11 return {SC1 , . . . , SCk}

Lemma 4.5.6. The algorithm Voronoi(I,F) takes a family F in the graph I and outputs
a clan C in near-linear time in |E(Z) ∪ ∂Z| with the property that for each C ∈ F , there
is a shortcutter SC ∈ C with the property that SF(1/(8 log n), C) ⊆ SC ⊆ SF(1/8, C), where
Z = V (I) \ (∪C∈FC).

Proof of Lemma 4.5.6. Lower bound. We show that SF(1/(8 log k), C) ⊆ SC for each
C ∈ F . Consider a vertex x ∈ SF(1/(8 log k), C). This vertex has the property that
Prx[tC > tF\C ] ≤ (1/8 log k). Let Cj := C. Since C ⊆ Zij, x ∈ S{Xi,Yi}(1/(8 log k), Zij) for
all i. Therefore, it is in the intersection of them as well. Since SC is this intersection, x ∈ SC ,
as desired.

Upper bound. We show that SC ⊆ SF(1/8, C). Consider a vertex x ∈ SC . Let Cj := C.
Since some {Xi, Yi} partition separates C from each other cluster in F ,

Pr
x

[tC > tF\C ] = Pr
x

[∃i tZij > tF\Zij ]

By a union bound,

Pr
x

[∃i tZij > tF\Zij ] ≤
log k∑
i=1

Pr
x

[tZij > tF\Zij ] ≤
log k

8 log k
≤ 1/8

Therefore, x ∈ SF(1/8, C), as desired.
Runtime. Each S{Xi,Yi}(1/(8 log k), Zij) can be computed in near-linear time in the

number of edges incident with Z by Remark 7. Since there are only log k is and only 2
possible Zijs for each i, the algorithm takes near-linear time.
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Figure B.2.2: How Voronoi constructs shortcutters. The horizontal and vertical dotted
boundary sets are the S{X1,Y1}(1/(8 log k), Zi1) and S{X2,Y2}(1/(8 log k), Zi2) respectively.

B.2.3 A generalization of
∑

e∈E(G) levG(e) = n− 1 to edges between
well-separated clusters in the effective resistance metric
(Lemma 4.5.4)

In this section, we prove Lemma 4.5.4:

Lemma 4.5.4. Consider a γds = 2(logn)2/3 well-separated R-family of clusters F in a graph
G. Let H := Schur(G,∪C∈FC). Then∑

e∈E(C,C′),C 6=C′∈F

ReffH(e)

rHe
≤ µapp|F|
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We will use the Aldous-Broder algorithm for sampling random spanning trees (see The-
orem 4.2.1) to reduce proving this result to a combinatorial problem. This problem is very
closely related to Davenport-Schinzel strings from computational geometry:

Definition B.2.2 (Davenport-Schinzel strings [31]). Consider a string S = s1s2 . . . sy from
an alphabet of size n. S is called an (n, s)-Davenport-Schinzel string if the following two
properties hold:

• si 6= si+1 for all i

• There is no subsequence of S of the form ABA . . . BA of length s+ 2 for two distinct
letters A and B. We call such a subsequence an alternating subsequence with length
s+ 2.

Davenport-Schinzel strings are useful because they cannot be long. Here is a bound that
is good for nonconstant s, but is not optimal for constant s:

Theorem B.2.3 (Theorem 3 and Inequality (34) of [31]). (n, s)-Davenport-Schinzel strings
cannot be longer than nC0(n, s) := n(3s)! exp(10

√
s log s log n).

We now outline the proof of Lemma 4.5.4. Recall that the leverage score of an edge is
the probability that the edge is in a random spanning tree (see Theorem 4.3.8). Therefore, it
suffices to bound the expected number of edges in a random spanning tree between clusters
of F in H.

We bound this by reasoning about Aldous-Broder. Start by considering the case in which
each cluster in F is a single vertex. Then H is a graph with k vertices. All spanning trees
of this graph have at most k edges, so the total leverage score of edges between clusters is
at most k.

When F consists of (possibly large) well-separated clusters, we exploit Lemma B.1.1
to show that a random walk that goes between any two clusters more than logγds n times
covers both clusters with high probability. This ensures that the sequence of destination
clusters (si)i for edges added to the tree by Aldous-Broder satisfies the second condition
of Davenport-Schnizel sequences for s = logγds n = (log n)1/3 with high probability. If two
clusters did alternate more than s times in this sequence, both would be covered, which
means that Aldous-Broder would not add any more edges with a desination vertex in either
cluster.

The sequence (si)i does not necessarily satisfy the first definition of Davenport-Schinzel
because the random walk could go from an uncovered cluster C to a covered one C ′ and back.
This motivates all of the pseudocode in the if statement on Line 15 of InterclusterEdges.
If C is visited more than ζ times in a row, the random walk must visit many clusters that
are very “tied” to C in the sense that they have a high probability of returning to C before
hitting any other unvisited cluster. These ties are represented in a forest T on the clusters
of F . Each time a sequence of ζ Cs occurs, one can add another edge to T . T can only
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have k edges because it is a forest. These ideas show that (si)i is only ζ times longer than
an (k, logγds n)-Davenport-Schinzel after removing ζk additional letters that are charged to
edges of T . Theorem B.2.3 applies and finishes the proof.

Now, we discuss this intuition more formally. Let k = |F|. It suffices to show that a
random spanning tree in H contains O(kC0(k, logγds n)) edges between the clusters of F with
high probability. Generate a random spanning tree using Aldous-Broder and organize the
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intercluster edges using the following algorithm:

Algorithm 35: InterclusterEdges(H,F), never executed

Data: a family of disjoint clusters F and a graph H on the vertices in ∪C∈FC
Result: A sequence of visited clusters (si)

`
i=0 and a rooted forest T with V (T ) = F

with all edges pointing towards from the root
1 i← 0

2 ζ ← 100 log2(nα)
3 β ← 1/(2 log n)
// start Aldous-Broder

4 u0 ← arbitrary vertex of H
5 c← 1
6 T ← (F , ∅)
7 while H is not covered do
8 uc ← random neighbor of uc−1 in H
9 u← uc−1, v ← uc

10 Cu ← cluster in F containing u
11 Cv ← cluster in F containing v
12 if Cu 6= Cv and Cv is not covered then
13 si ← Cv
14 i← i+ 1
15 if sj = Cv for all j ∈ [i− ζ, i− 1], and i ≥ ζ then

// in a multiset, members can be counted multiple times

16 E ← the multiset of clusters A ∈ F for which (1) A is visited immediately
after one of the last ζ occurrences of Cv, (2) The root cluster BA of A’s tree
in T is visited before the next visit to Cv and (3)
Prx[ hit Cv before any other uncovered cluster] ≥ 1− β for any x ∈ BA

17 while E contains a cluster C whose tree in T contains more than half of
the clusters in the new tree formed by attaching E’s trees to Cv do

18 Remove all clusters in C’s arborescence that are also in E from E
19 end
20 for clusters A ∈ E do
21 add an edge from BA to Cv in T if one does not exist
22 end
23 remove the last ζ occurrences of Cv from (sj)j
24 i← i− ζ
25 end

26 end
27 c← c+ 1

28 end
29 return (si)i, T
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Let (s′i)i be the sequence (si)i obtained by removing lines 14 to 25 from InterclusterEdges

and removing the statement “and Cv is not covered” from the outer if statement; that is s′i is
the list of all cluster visits. We break up the analysis of this algorithm into a few subsections.

Invariants of the forest T

We start by discussing some invariants that hold for the directed graph T over the entire
course of the algorithm:

Invariant B.2.4. T is a forest of directed arborescences with all edges pointing towards the
root.

Proof. Initially, T just consists of isolated vertices, which trivially satisfy the invariant. Line
21 is the only line of InterclusterEdges that adds edges to T . When Line 21 adds an edge,
it adds an edge from a root of one arborescence to the root of another arborescence. This
preserves the invariant, so we are done.

Invariant B.2.5. Each arborescence with size κ in T has maximum leaf-to-root path length
log κ.

Proof. Initially, T consists of isolated vertices, each of which has diameter log 1 = 0. Line
19 ensures that the arborescence produced by the for loop containing Line 21 contains at
least twice as many vertices as any of the constituent child arborescences. Furthermore, the
length of the path to the root from each leaf increases by at most 1. Therefore, the new
maximum path length is at most 1 + log κ ≤ log(2κ) ≤ log κ′, where κ is the maximum size
of a child arborescence and κ′ is the size of the combined arborescence created by Line 21.
Therefore, Line 21 maintains the invariant.

Invariant B.2.6. For each edge (C0, C1) ∈ E(T ) and any x ∈ C0,

Pr
x

[hits C1 before any uncovered cluster] ≥ 1− β

Proof. Initially, there are no edges, so the invariant is trivially satisfied. When an edge
(C0, C1) is added to T , property (3) on Line 16 ensures that the invariant is satisfied. As
InterclusterEdges progresses, clusters that are covered remain covered, so

Prx[hits C1 before any uncovered cluster] only increases. In particular, the invariant re-
mains satisfied.

These invariants imply the following proposition, which will effectively allow us to replace
occurences of a cluster A ∈ F in the sequence {s′j}j with the root BA of A’s arborescence in
T :

Proposition B.2.7. For each cluster A ∈ F in a component of T with root BA ∈ F ,

Pr
x

[hits BA before any uncovered cluster] ≥ 1/2
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for any x ∈ A.

Proof. By Invariant B.2.5, there is a path from A to BA in T with length at most log κ ≤
log n. Let C0 = A,C1, . . . , C` = BA with ` ≤ log n be the path in A’s arborescence from A
to BA. Notice that

Pr
x

[hits BA before any uncovered cluster]

≥ Pr
x

[∧`p=0hits Cp after Cp−1, Cp−2, . . . , C1, C0 and before any uncovered cluster]

=
`−1∏
p=0

Pr
x

[hits Cp+1 after Cp, Cp−1, . . . , C0 and before any uncovered cluster

|hits Cp after Cp−1 after . . . after C0 and before any uncovered cluster]

=
`−1∏
p=0

Pr
x

[hits Cp+1 after Cp and before any uncovered cluster

|hits Cp after Cp−1 after . . . after C0 and before any uncovered cluster]

By the Markov property,

`−1∏
p=0

Pr
x

[hits Cp+1 after Cp and before any uncovered cluster

|hits Cp after Cp−1 after . . . after C0 and before any uncovered cluster]

=
`−1∏
p=0

Pr
x

[hits Cp+1 after Cp and before any uncovered cluster|hits Cp before any uncovered cluster]

Furthermore, by Invariant B.2.6,

Pr
x

[hits Cp+1 after Cp and before any uncovered cluster|hits Cp before any uncovered cluster]

≥ max
y∈Cp

Pr
y

[hits Cp+1 before any uncovered cluster]

≥ 1− β

Combining these inequalities shows that

Pr
x

[hits BA before any uncovered cluster] ≥ (1− β)`

≥ (1− `β)

≥ (1− (log n)β)

≥ 1/2



APPENDIX B. RANDOM SPANNING TREE APPENDIX 261

as desired.

Number of possible alternations before coverage

Next, we show that any two clusters can alternate a small number of times before both being
covered. This is useful for bounding both the length of (si)i at the end of the algorithm and
the number of edges added to T .

Specifically, we show the following:

Proposition B.2.8. Consider two clusters C and C ′ in some graph G. Suppose that the C
and C ′ have effective resistance diameter γR and that minu∈C,v∈C′ ReffG(u, v) ≥ γR. Then,
for any x ∈ C or C ′ and any z > 0,

Pr
x

[C or C ′ is not covered after alternating between them more than T times] ≤ n

(
1

γ − 4

)τ
Proof. Consider two vertices y0, y1 ∈ C. By Lemmas B.1.1 and 4.8.6

Pr
y0

[hit C ′ before visiting y1]
R

(γ − 4)R
=

1

γ − 4

In particular, by the Markov property,

Pr
x

[y not visited before alternating between C and C ′ T times]

≤
T−1∏
t=0

max
y′∈C

Pr
y′

[y not visited before alternating between C and C ′ once]

≤
(

1

γ − 4

)τ

If C or C ′ has not been covered, then there exists a vertex in C or C ′ that has not yet
been visited. Therefore, by a union bound, the probability that there exists an unvisited
vertex in C or C ′ after T alternations is at most (1/(γ − 4))τ , as desired.

For all subsequent sections, set τ = 5(log(αm))/(log(γ − 4)). This ensure that any pair
of clusters is covered with probability at least 1−n(1/(mα)5) ≥ 1− (mα)4 after the random
walk alternates between both of them T times. In particular, the following property holds:

Definition B.2.9 (Fresh sequences). Consider the two sequences (si)i and the supersequence
(s′j)j defined using the algorithm InterclusterEdges. This pair of sequences is called fresh
if any cluster C ∈ F ’s appearances in (si)i do not alternate with some cluster C ′ more than
τ times in the supersequence (s′j)j.
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We exploit Proposition B.2.8 to show the following:

Proposition B.2.10. The pair of sequences (si)i and (s′j)j is fresh with probability at least
1− 1/(mα)2.

Proof. (si)i is a sequence of uncovered clusters. Therefore, by Proposition B.2.8, the appear-
ances of a cluster C in (si)i cannot alternate with the appearances of some other cluster C ′

in (s′j)j more than τ times with probability at least 1 − 1/(mα)4. Union bounding over all
pairs of clusters C and C ′ yields the desired result.

Hitting probabilities are similar within a cluster

We now show the following fact, which will allow us to turn a maximum probability lower
bound into a bound on the minimum. In the following proposition, think of F ′ as being the
set of uncovered clusters besides Cv:

Proposition B.2.11. Let C,C ′ ∈ F and F ′ ⊆ F , with C,C ′ /∈ F ′. Then

(1−1/(γ−4)) max
y∈C

Pr
y

[hit C ′ before any cluster in F ′] ≤ min
y∈C

Pr
y

[hit C ′ before any cluster in F ′]

Proof. Let y0 ∈ C be the maximizer of Pry[hit C ′ before any cluster in F ′]. By Lemmas
B.1.1 and 4.8.6, Pry[hit C ′ before y0] ≤ R

(γ−4)R
= 1

γ−4
for any y ∈ C. Furthermore,

Pr
y

[hit C ′ before any cluster in F ′] ≥ Pr
y

[(hit C ′ before any cluster in F ′) ∧ (hit y0 before C ′)]

= Pr
y

[hit C ′ before any cluster in F ′|hit y0 before C ′]

Pr
y

[hit y0 before C ′]

= Pr
y0

[hit C ′ before any cluster in F ′] Pr
y

[hit y0 before C ′]

≥ Pr
y0

[hit C ′ before any cluster in F ′](1− 1/(γ − 4))

as desired.

Line 21 always adds an edge

Here, we assume that the pair of sequences (si)i, (s
′
j)j is fresh in light of Proposition B.2.10.

Subject to this assumption, we examine the effect of Lines 16 and 19 on E . Specifically,
we show that passing E through these lines does not make it empty in a sequence of four
propositions.
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Proposition B.2.12. Let E1 be the multiset of clusters A ∈ F for which Property (1) on
Line 16 is satisfied. Then |E1| ≥ ζ − 1.

Proof. The number of clusters visited immediately after each of the last ζ visits to Cv is at
least ζ−1, since all prior visits to Cv were followed immediately by a visit to another cluster.
Therefore, |E1| ≥ ζ − 1, as desired.

We use the following supermartingale concentration inequality to bound the drop from
E1 to E2:

Theorem B.2.13 (Theorem 29 in [24] with φi = 0 for all i and M = 0). Suppose a
supermartingale X associated with filter F satisfies, for all 1 ≤ i ≤ n,

Var(Xi|Fi−1) ≤ σ2
i

and

E[Xi|Fi−1] ≤ ai

Then

Pr[Xn ≤ X0 − λ] ≤ e
−λ2

2
∑n
i=1

(σ2
i
+a2
i
)

Proposition B.2.14. Let E2 be the submultiset of E1 for which Property (2) on Line 16
is satisfied. Suppose that |E1| > 256 log(mα). Then |E2| ≥ |E1|/4 with probability at least
1− 1/(mα)3.

Proof. Let A1, A2, . . . , A|E1| be the (possibly nondistinct) clusters in E1 listed in visitation
order. For each i ∈ {1, 2, . . . , |E1|}, let Xi be the indicator variable of the event

{BAi is visited between Ai and the next visit to Cv}

and let Zi = (
∑

j≤iXi)− i/2. By Proposition B.2.7 applied to A← Ai, E[Xi] ≥ 1/2 for all
i. This means that {Zi} is a supermartingale with stepwise variance 1 and change in mean
at most 1. By Theorem B.2.13,

Pr[Zi = Zi − Z0 ≤ −i/4] ≤ exp(−(i/4)2/(4i)) = exp(−i/64)

Since |E1| > 256 log(mα), at least |E1|/4 Ais visit BAi before returning to Cv with prob-
ability at least 1 − 1/(mα)4. Union bounding over all Cvs gives the desired result that
|E2| ≥ |E1|/4 with high probability.

Proposition B.2.15. Let E3 be the submultiset of E2 for which Property (3) on Line 16 is
satisfied. Then |E3| ≥ |E2| − 10(log2(mα)) with probability at least 1− 1/(mα)4.
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Proof. Suppose that

Pr[ all roots for clusters in E2 hit Cv before another uncovered cluster ] ≥ 1/(mα)3

Let xi be a random variable denoting the first vertex that the random walk visits in BAi .
Then

Pr[ all roots for clusters in E2 hit Cv before another uncovered cluster ]

= Pr[∧i:Ai∈E2random walk starting at xi hits Cv before another uncovered cluster]

By the Markov property applied after writing the above wedge as a product of conditional
probabilities,

∏
i:Ai∈E2

max
y∈BAi

Pr
y

[hits Cv before another uncovered cluster]

≥ Pr[ all clusters in E2 hit Cv before another uncovered cluster ]

≥ 1/(mα)4

Therefore, for all but 10 log2(mα) of the Ais,

max
y∈BAi

Pr
y

[hits Cv before another uncovered cluster] ≥ 1− 1/(4 log n)

For each of these Ais, apply Proposition B.2.11 with C ← BAi , C
′ ← Cv,

and F ′ ← {uncovered clusters besides Cv} to show that

min
y∈BAi

Pr
y

[hits Cv before another uncovered cluster] ≥ (1− 1/(4 log n))(1− 1/(γ− 4)) ≥ 1− β

Therefore, each of these Ais is also in E3. As a result, |E3| ≥ |E2| − 10(log2(mα)) if

Pr[ all roots for clusters in E2 hit Cv before another uncovered cluster ] ≥ 1/(mα)4

The other case happens with probability at most 1/(mα)4 for each Cv. Union bounding
over all clusters in F gives the desired result.

Proposition B.2.16. Let Efinal be the submultiset of E3 that remains in E after Line 19.
Suppose that the pair (si)i, (s

′
j)j is fresh. Then |Efinal| ≥ |E3| − τ(log n).
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Proof. We start by noticing that no arborescence in T can contain more than τ clusters
(possibly repeated) in the multiset E3. Otherwise, by Property (2), Cv would alternate with
the root of that arborescence more than τ times, which contradicts the freshness of the
pair (si)i, (s

′
j)j. Therefore, each iteration of the while loop on Line 19 can only remove τ

elements from E3. Each iteration reduces the size of the arborescence formed by joining E ’s
arborescences to Cv by at least a factor of 2. Therefore, the while loop can only execute for
log n iterations. Therefore, |Efinal| ≥ |E3| − τ(log n), as desired.

We now combine all of these propositions into one key observation:

Corollary B.2.17. Efinal 6= ∅.

Proof. Since ζ ≥ 100 log2(mα), the size reductions due to Propositions B.2.12, B.2.14, B.2.15,
and B.2.16 ensure that |Efinal| > 0, as desired.

As a result, InterclusterEdges adds an edge to T every time the if statement on Line
15 is triggered. Therefore, the ζ elements that are removed from (si)i can be charged to the
addition of one edge to T . By Invariant B.2.4, T can only have |F| − 1 edges, which means
that only (|F| − 1)ζ letters can be removed from (si)i over the course of the algorithm.

Tying the parts together

The upside to removing elements of (si)i is that the resulting sequence does not contain more
than ζ consecutive occurrences of any cluster. Since (si)i, (s

′
j)j is a fresh pair, (si)i with all

consecutive duplicates removed is a (|F|, τ)-Davenport-Schinzel string. Therefore, its length
can be bounded using Theorem B.2.3. Since each edge in a random spanning tree can be
charged to a specific visit in si or a visit removed from si, we are done.

Proof of Lemma 4.5.4. We start with the high probability regime in which all of the above
propositions hold. By Theorem 4.3.8,

∑
e∈E(C,C′),C 6=C′∈F

ReffH(e)

rHe
= E[random spanning tree edges in H between clusters in F ]

By Theorem 4.2.1, the number of spanning tree edges between clusters in F is at most
the number of clusters appended to the sequence (si)i. The number of clusters appended to
(si)i is equal to the number removed over the course of the algorithm plus the number left
at the end of the algorithm. We bound these two quantities separately:

Clusters removed from (si)i. Only Line 23 removes elements from (si)i. By Corollary
B.2.17, every ζ deletions from (si)i result in the addition of at least one edge to T . By
Invariant B.2.4, only |F| − 1 edges can be added to T , so at most ζ|F| elements of (si)i are
removed over the course of the algorithm.

Clusters remaning in (si)i at the end. At the end of InterclusterEdges, no cluster ap-
pears more than ζ times consecutively in (si)i by the if condition on Line 15. Therefore,
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the sequence (s′′i )i obtained by removing consecutive duplicates of clusters in (si)i is at
most ζ times shorter than (si)i. Furthermore, if (si)i, (s

′
j)j is a fresh pair (which by Propo-

sition B.2.10 occurs with high probability), (s′′i )i is an (|F|, τ)-Davenport-Schinzel string.
Therefore, by Theorem B.2.3, the length of (s′′i )i is at most |F|C0(m, τ) ≤ |F|(µapp/(2ζ)).
Therefore, the length of (si)i at the end of the algorithm is at most ζ|F|mo(1).

Combining the parts. Therefore, with probablity at least 1 − 1/(mα)2, the number of
random spanning tree edges in H between clusters in F is at most

ζ|F|(µapp/(2ζ)) + ζ|F|

The maximum number of edges that can be added is at most n2, as there are at most n
vertices in H. Therefore, the expected number of edges is at most

ζ|F|(µapp/(2ζ)) + ζ|F|+ n2/(mα)2 ≤ µapp|F|

as desired.

B.2.4 Proof of Proposition 4.5.7

Proposition 4.5.7. Consider a γ-well-separated R-family F in Y ⊆ X ⊆ V (HC) and let
I := Schur(HC,∪C∈FC). Suppose that

cSchur(HC ,Y ∪(V (H)\X))(E(Y, V (H) \X)) ≤ ξ

For any C ∈ F , let

∆F(C) :=
∑

e∈EI(C,C′),C′ 6=C∈F

ReffI(e)

rIe

Let F ′ := F ∪ {V (H) \ X} and consider any clusters SC with SF ′(p, C) ⊆ SC for all
C ∈ F . Then

∑
C∈F

cC(SC) ≤

(∑
C∈F

∆F(C)

p(γ − 4)R

)
+
ξ

p

Proof. Let J := Schur(HC, (V (HC)\X)∪(∪C∈FC)). By Lemma 4.8.3 with I ← HC, S0 ← Y ,
S ′0 ← ∪C∈FC, and S1 ← V (HC) \X, and S2 ← ∅,∑

C∈F

cJ(EJ(C, (V (HC) \X))) ≤ ξ

By Lemma B.1.2 with I ← HC, S0 ← C, S1 ← C ′, S2 ← (V (HC)\X)∪(∪C′′∈F ,C′′ 6=C,C′C ′′),
and S ′2 ← S2 \ (V (HC) \X) and Lemma 4.8.6, for any C ∈ F
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∑
C′∈F\{C}

cJ(EJ(C,C ′)) ≤
∑

C′∈F\{C}

cI(EI(C,C
′))

=
∑

e∈EI(C,C′)

cIe

≤ 1

(γ − 4)R

∑
e∈EI(C,C′)

ReffI(e)c
I
e

=
∆F(C)

(γ − 4)R

By definition of SC , SF ′(p, C) ⊆ SC for all C ∈ F . Therefore, by Lemma 4.8.5,

∑
C∈F

cC(SC) ≤
∑
C∈F

cC(SF ′(p, C))

≤
∑
C∈F

cJ(EJ(C,∪C′∈F ′,C′ 6=CC ′))
p

Substitution shows that

∑
C∈F

cJ(EJ(C,∪C′∈F ′,C′ 6=CC ′))
p

=
∑
C∈F

cJ(EJ(C,∪C′∈F ,C′ 6=CC ′))
p

+
∑
C∈F

cJ(EJ(C, V (HC) \X))

p

≤

(∑
C∈F

∆F(C)

p(γ − 4)R

)
+
ξ

p

as desired.

B.2.5 Proof of Proposition 4.5.8

Proposition 4.5.8. Consider a family F in a graph H. Let C ∈ F be a cluster with H-
effective resistance diameter R. Consider some SC for which C ⊆ SC ⊆ SF(p, C) for any
p ∈ (0, 1/2). Consider a cluster C ′ that is tied to C. Then C ′ ⊆ SF(p+ 3/10, C).

Proof. Consider a vertex x ∈ C ′ ∩ SC . This vertex exists by the “Intersection” condition of
ties. Let J be the graph obtained by identifying C to a vertex s and all vertices in clusters
of F \ {C} to a vertex t. Then bTstL

+
J bsx ≤ pbTstL

+
J bst since SC ⊆ SF(p, C).

Let y be any vertex in C ′. LetH0 = Schur(H, (∪C′′∈FC ′′)∪{x, y}) and letH1 be the graph
obtained by identifying C to s. By Lemma 4.8.6 and the “Well-Separatedness” condition of
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ties, bTsxL
+
H1
bsx ≥ β0R = 100R and bTsyL

+
H1
bsy ≥ 90R. This means that rH1

sx ≥ 100R and that
rH1
sy ≥ 90R.

Let J0 = Schur(J, {s, x, y, t}). We now reason about the s − t electrical flow on the
edges {s, x} and {x, y}. Since J is obtained by identifying F \ {C} to t, the {s, x} and
{s, y} conductances are uneffected in obtaining J0 from H1, so rJ0sx = rH1

sx ≥ 100R and
rJ0sy = rH1

sy ≥ 90R. Let f ∈ RE(J0) be the s − t unit electrical flow vector for J0. Since flow
times resistance is the potential drop,

fsx =
bTstL

+
J0
bsx

rJ0sx
≤
bTstL

+
J0
bst

100R

By Rayleigh monotonicity, bTxyL
+
J0
bxy ≤ 10R. Therefore, either rJ0xy ≤ 30R or rJ0xt + rJ0ty ≤

30R since rJ0sx, r
J0
sy ≥ 90R. We start by showing that the latter case does not happen. In the

latter case, the potential drop from s to t is

bTstL
+
J bst = bTstL

+
J0
bst

≤ bTstL
+
J0
bsx + rJ0xt fxt

≤ pbTstL
+
J bst + rJ0xt fsx

≤ (1/2 + 3/10)bTstL
+
J bst

< bTstL
+
J bst

which is a contradiction. Therefore, rJ0xy ≤ 30R. In this case, if y’s potential is less than
x’s, we are done. Otherwise, by flow conservation,

fxy ≤ fsx ≤
bTstL

+
J0
bst

100R

and the x− y potential drop is therefore at most

rJ0xyfxy ≤ (30R)
bTstL

+
J0
bst

100R
≤ (3/10)bTstL

+
J0
bst

In particular, y’s normalized potential is at most 3/10 greater than x’s, as desired.

B.3 Deferred proofs for Section 4.6

B.3.1 Bound on the number of random walk steps before
covering a neighborhood

We prove Lemma 4.2.3 in this section. We exploit the Matthews trick in this proof [75]:
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Lemma 4.2.3 (Key result for bounding the number of shortcutter uses). Consider an arbi-
trary vertex u0 in a graph I, an edge {u, v} = f ∈ E(I), and an R ≥ 0. Let B(u,R) ⊆ V (I)
denote the set of vertices in I with I-effective resistance distance at most R from u. The
expected number of times that the random walk starting at u0 traverses f from u→ v before
all vertices in B(u,R) have been visited is at most Õ(cfR), where cf is the conductance of
the edge f .

Proof of Lemma 4.2.3. Let B := B(u,R). For any two vertices x, y ∈ B, the random walk
from x to y in I traverses f from u to v at most ReffI(x, y)cIf times in expectation by
Theorem 4.3.2. By the triangle inequality, this is at most 2RcIf .

Pick a random bijection π : {1, 2, . . . , |B| − 1} → B \ {u} of the vertices in B \ {u}. All
traversals across f from u→ v within distance R of S occur between the first visit to u and
the last first visit to any vertex in B. Let τi be the random variable denoting the number of
u→ v f traversals before the last first visit to {π1, . . . , πi}. Let τ0 be the the first visit to u.
Notice that for all i > 0,

E[τi − τi−1] ≤ Pr
π

[tπi < t{πi−1,...,π1}] max
x,y∈B

E[ f traversals from x→ y ]

≤ Pr
π

[tπi < t{πi−1,...,π1}]2Rc
I
f

≤ 1

i
2RcIf

Summing over all i shows that

E[K] = E[τi] = τ0 +

|B|−1∑
i=1

E[τi − τi−1] ≤ 0 +O(log n)RcIf

as desired.

B.4 Deferred proofs for Sections 4.7 and 4.8

B.4.1 Ball splitting after deletions

We now prove the following:

Lemma 4.7.2. Consider a graph H and a set of clusters D, each with effective resistance
diameter at most R. Let F be a set of edges in H. Then there is a set of clusters D′ with
the following properties:

• (Covering) Each vertex in a cluster of D is in a cluster of D′.
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• (Diameter) The effective resistance diameter of each cluster in D′ is at most µappR in
the graph H \ F .

• (Number of clusters) |D′| ≤ µapp(|D|+ |F |).

Our proof uses Lemma 4.5.4 to reduce to the case where both (1) D just consists of
one cluster C and (2) F = (∂C) ∪ F ′, where F ′ ⊆ E(C). We deal with this case using a
sparsification technique that peels many low-stretch spanners off of the graph to show that
the effective resistance between two particular vertices is low [53].

The case where D just contains one cluster and F = (∂C) ∪ F ′

Before proving this result, we discuss low-stretch sparse spanners [7]:

Theorem B.4.1 ([7]). Any unweighted graph G has a subgraph H with the following two
properties:

• (Distortion) For any two vertices u, v ∈ V (G), dH(u, v) ≤ 2(log n)dG(u, v), where dI
is the shortest path metric on the vertices of the graph I.

• (Sparsity) H has at most 100n log n edges.

We use this as a tool to sparsify G in a way that ignores the deleted edges in the deleted
set F .

Proposition B.4.2. Consider a resistance-weighted graph G. Let C be a cluster with effec-
tive resistance diameter R in G. Let F ⊆ E(G) and suppose that k = |F |. Furthermore,
suppose that F is the union of ∂C and a set of edges F ′ with both endpoints in C.

Let H = G\F . Then C is the union of at most O(k log6 n) clusters in H that have
effective resistance diameter O(R log6 n).

Proof of Proposition B.4.2. The following iterative algorithm, PartitionBall, partitions C
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into the desired clusters.

Algorithm 36: PartitionBall(G,C, F ), never executed

Data: A graph G, a cluster C, and a set of edges F to delete from G
Result: A partition C1 ∪ . . . ∪ Cτ = C

1 H ← G\F
// set of current centers

2 K ← V (C)
3 i← 0
4 while |K| ≥ 31k log n do
5 Ii ← Schur(G, V (F ) ∪K)
6 K ′ ← K \ V (F )
7 foreach j from 0 to 2 log n do
8 Bj ← the set of edges e ∈ E(Ii) \ F with 2jReffIi(e) ≤ rIie ≤ 2j+1ReffIi(e)
9 end

10 j∗ ← the index j ∈ {0, 1, . . . , 2 log n} for which the number of vertices incident
with leverage score at least 1/(2 log n) in Bj is maximized

11 I ′i ← Ii[Bj∗ ]

12 foreach of b2j∗/(64 log3 n)c rounds do
13 J ← a 2(log n)− 1 spanner of I ′i as per Theorem B.4.1
14 I ′i ← I ′i \ E(J)

15 end
16 K ← the minimum dominating set of the unweighted version of I ′i
17 i← i+ 1

18 end
19 return Voronoi diagram of C with respect to K in the metric ReffG\F

Now, we analyze this algorithm. We start by showing that the while loop only executes
O(log2 n) times. Start by noticing that |K ′| ≥ 30k log n ≥ |K|/2 because |V (F )| ≤ 2k and
|K| ≥ 31k log n.

For an edge e ∈ Ii, let ze = levIi(e). For a set S ⊆ E(Ii), let z(S) =
∑

e∈S ze. The
total z-weight of edges incident with each vertex in Ii is at least 1 since the total leverage
score incident with a vertex in any graph is at least 1. Since there are only 2 log n Bjs,
at least one contributes 1/(2 log n) to the z-weight incident with each vertex. Therefore,
the number of vertices in K ′ with more than 1/(2 log n) incident z-weight in I ′i is at least
|K ′|/(2 log n) ≥ (|K| + k)/(2 log n) before the second ForEach loop. Therefore, by the
bucketing resistance lower bound, |E(I ′i)| ≥ (|K|+k)2j

∗
/(2 log n) before the second ForEach

loop.
The spanners created during the second ForEach loop delete at most (2j

∗
/(64 log3 n))(2(|K|+

k) log n) = (|K| + k)2j∗/(32 log2 n) edges from I ′i. Each of the (|K| + k)/(2 log n) high z-
weight vertices is incident with at least 2j

∗
/(2 log n) edges in Bj∗ . Each edge is incident with

two vertices. Notice that the number of vertices that can have all of their incident edges
deleted is at most
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2((|K|+ k)2j∗/(32 log2 n))

2j∗/(2 log n)
= (|K|+ k)/(8 log n)

so the number of vertices with an incident edge after the second ForEach loop is at
least (|K| + k)/(4 log n). The spanners are edge-disjoint, so together they contain at least
2j∗/(64 log3 n) disjoint paths with at most 2 log n edges between the endpoints of each edge
of I ′i. In particular, each path has resistance length at most (2 log n)2j∗+1R by the bucketing
resistance upper bound. Therefore, the effective resistance between the endpoints of any
edge left over in I ′i\F is at most 256(log4 n)R.

Since the while loop only executes when |K| ≥ 31k log n, the number of vertices in K ′

with an incident edge in I ′i after the second ForEach loop is at least 8k, for a total of at
least 4k disjoint pairs. Removing one side of each K pair certifies that there is a dominating
set with size at most |K| − (|K| + k)/(8 log n) + 2k ≤ (1− 1/(16 log n))|K|. Therefore, the
algorithm will only take 16 log2 n iterations.

At the end of those iterations, for every vertex in C there is a connected sequence of
16 log2 n pairs to some vertex in K with each pair having G\F effective resistance distance
at most 256(log4 n)R. By the triangle inequality, this means that every vertex in C is within
G\F distance O(R log6 n) of some vertex in K at the end of the algorithm. This is the
desired result.

Sparsification

We now prove a version of spectral sparsification that allows a large part of the graph to not
be changed. We are sure that this is known, but provide a proof for completeness.

Proposition B.4.3 (Subset sparsification). Let G be a weighted graph and let F ⊆ E(G).
Let ε ∈ (0, 1). Then, there exists a graph H with V (H) = V (G) and the following additional
properties:

• (Only F modified) The weights of edges in G \ F are not modified.

• (Sparsity of F ) |E(H) ∩ F | ≤ (8(log n)/ε2)(1 +
∑

e∈F levG(e))

• (Spectral approximation) For any vector d ∈ Rn,

(1− ε)dTL+
Gd ≤ dTL+

Hd ≤ (1 + ε)dTL+
Gd

The proof is a simple application of matrix Chernoff bounds, which we state here:

Theorem B.4.4 (Theorem 1.1 in [94]). Consider a finite sequence {Xk}k of independent,
random, self-adjoint matrices with dimension n. Assume that each random matrix satisfies

Xk � 0
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and

λmax(Xk) ≤ R

Define

µmin := λmin(
∑
k

E[Xk])

and

µmax := λmax(
∑
k

E[Xk])

Then

Pr[λmin(
∑
k

Xk) ≤ (1− δ)µmin] ≤ n

(
e−δ

(1− δ)1−δ

)µmin/R

and

Pr[λmax(
∑
k

Xk) ≤ (1 + δ)µmax] ≤ n

(
eδ

(1 + δ)1+δ

)µmax /R

Proof of Proposition B.4.3. Let q = 20(log n)/ε2. For each edge e ∈ E(G), define q matrices

X
(k)
e for k ∈ {1, 2, . . . q}, with

• X(k)
e = cGe

levG(e)q
(L+

G)1/2beb
T
e (L+

G)1/2 with probability levG(e) and 0 otherwise for e ∈ F

• X(k)
e = cGe

q
(L+

G)1/2beb
T
e (L+

G)1/2 deterministically for e /∈ F .

Notice that

∑
e∈E(G)

q∑
k=1

E[X(k)
e ] = I

so µmin = µmax = 1. Apply Theorem B.4.4 with δ = ε and R = 1/q (since λmax(X
(k)
e ) =

cGe (bTe L
+
Gbe)/(qlevG(e)) = 1/q for all e ∈ F ) to reason about the random matrix MH =∑

e∈E(G)

∑q
k=1X

(k)
e and LH = L

1/2
G MHL

1/2
G . We now analyze the guarantees one by one.

Only F modified. The contribution of edge edge e /∈ F to LH is cGe beb
T
e , which is the

same as its weight in G.
Sparsity of F . By standard Chernoff bounds on each edge, the total number of edges

from F in H is at most 8(log n)/ε2.
Spectral approximation. By Theorem B.4.4,
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Pr[(1 + ε)I �MH � (1− ε)I] ≥ 1− n
(

e−ε

(1− ε)1−ε

)q
− n

(
eε

(1 + ε)1+ε

)q
≥ 1− n

(
1− ε2/4

)q − n (1− ε2/4)q
≥ 1− 1/n4

By standard facts about the Loewner ordering, (1 + ε)LG � LH � (1 − ε)LG and (1 +
ε)L+

G � L+
H � (1− ε)L+

G, as desired.

Tying the parts together

Now, we prove Lemma 4.7.2. To do this, we exploit the algorithm CoveringCommunity to
split the clusters of D into a small number of well-separated families. All vertices outside of
these clusters can be Schur complemented out, as they are irrelevant. By Lemma 4.5.4, the
intercluster edges have small total leverage score. Proposition B.4.3 allows us to replace these
intercluster edges with mo(1)|D| reweighted edges that separate all of the clusters. Therefore,
the clusters in each well-separated family can be handled independently using Proposition
B.4.2.

Proof of Lemma 4.7.2. Start by applying Lemma 4.5.3 to produce a community
G ← CoveringCommunity(V (H), H,R). Form a new community G ′ by taking each cluster

C in a family of G and replacing it with a cluster C ′ formed by adding all vertices in clusters
of D that intersect C ′. Furthermore, remove all clusters in G ′ that do not intersect a cluster
in D.

Each family in G ′ is γds/3-well-separated after doing this by the “Well-separatedness”
guarantee of CoveringCommunity, the “R-community” guarantee, and the fact that each
cluster in D has effective resistance diameter at most R. Furthermore, by the “Covering”
guarantee of G, each cluster in D intersects some cluster in a family of G. This means that
each cluster in D is completely contained in some cluster in some family of G ′. Therefore,
we can focus on each family of G ′ independently.

The above paragraph effectively reduced the problem to the case where D is a small
number of well-separated families of clusters. Now, we exploit this. By Lemma 4.5.4, the
total leverage score of the intercluster edges in a family is at most O(C0(`, γds)`) ≤ mo(1)`,
where ` is the number of clusters in all families in G ′. Since each family consists of clusters
that contain at least one cluster in D, ` ≤ |G||D| ≤ mo(1)|D|. By Proposition B.4.3 applied
to all intercluster edges, a graph Hi can be made for each family G ′i ∈ G that spectrally
approximates H and only has mo(1)|D| intercluster edges. Add these intercluster edges to F
to obtain Fi. Each of these edges is incident with at most two clusters in Gi.

Apply Proposition B.4.2 to each cluster C ∈ Gi in the graph Hi with deleted edge
set consisting of the edges of Fi incident with the cluster. This shows that C splits into
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Õ(|Fi ∩ (C ∪ ∂HiC)|) clusters with radius Õ(R). Add these clusters to D′. We now analyze
the guarantees one-by-one:

Covering. Each vertex in a cluster in D is in some cluster of G, which is in turn covered
by the clusters produced using Proposition B.4.2, as desired.

Diameter. Since G is R-bounded, each cluster in G has H-effective resistance diameter
at most mo(1)R. By the “Spectral approximation” guarantee of Proposition B.4.3, each
cluster in G has Hi-effective resistance diameter at most (1 + ε)mo(1)R = mo(1)R as well.
Proposition B.4.2 implies that after deleting the edges in F , all clusters added to D′ have
Hi \ F = H \ F -effective resistance diameter O(log n)mo(1)R = mo(1), as desired.

Number of clusters. Summing up Õ(|Fi ∩ (C ∪ ∂HiC)|) over all clusters in Gi shows
that applications of Proposition B.4.2 add Õ(|Fi|) ≤ mo(1)(|D| + |F |) clusters to D′. Doing
this for all |G ′| ≤ mo(1) families in G yields the desired result.

B.5 Deferred proofs for Section 4.10

B.5.1 Stable objective subresults

We also use the following folklore fact about leverage scores:

Remark 12. In any graph G with n vertices,∑
e∈E(G)

levG(e) = n− 1

Preliminaries for first-order terms

Proposition B.5.1. Consider a graph G, a vertex x ∈ V (G), a set Y ⊆ V (G) with x /∈ Y ,
and γ ∈ [0, 1]. Calculate electrical potentials with boundary conditions px = 0 and pw = 1
for every w ∈ Y . Suppose that there is no edge {u, v} ∈ E(G) with pu < γ and pv > γ.

Let U be the set of vertices u with pu ≤ γ. Make a new electrical flow with boundary
conditions qu = 0 for u ∈ U and qw = 1 for all w ∈ Y . Then for any w ∈ Y ,∑

w′∈NG(w)

qw − qw′
rww′

=
1

1− γ
∑

w′∈NG(w)

pw − pw′
rww′

Proof. For any edge e = (u, v) with pv ≥ pu, let fe = pv−pu
re

,

ge =

{
1

1−γfe if pu ≥ γ

0 if pv ≤ γ

and
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Figure B.5.1: Depiction of Proposition B.5.1. The proof follows from the observation that
identifying the vertices of U to x does not change the x−Y electrical flow (with y identified)
on any edge outside of U .
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qw = max(0, 1− 1− pw
1− γ

)

The cases for ge form a partition of the edges thanks to the condition that no edge can
cross the γ potential threshold. One can check that ge is an electrical flow with respect to
the potentials qw, qw = 1 for any w ∈ Y , and qu = 0 for all u ∈ U . Therefore, since no edge
crosses the γ threshold, ∑

w′∈NG(w)

qw − qw′
rww′

=
1

1− γ
∑

w′∈NG(w)

pw − pw′
rww′

as desired.

Proposition B.5.2. Consider a vertex x and a set Y in a graph G. Let Z be a set of edges
with both endpoints having electrical potential at most γ, with px = 0 and py = 1 in G/Y
with identification y. Let G′ be a graph obtained by deleting and contracting edges in Z in
an arbitrary way. Let H ′ = Schur(G′, {x} ∪ Y ) and H = Schur(G, {x} ∪ Y ). Then for any
w ∈ Y ,

rH
′

xw ≥ (1− γ)rHxw

Proof. Let G0 be a graph with every edge {u, v} with pu < γ and pv > γ subdivided at
potential γ. Let U be the set of vertices u with pu ≤ γ. Let H0 = Schur(G0, Y ∪ U) and
H ′0 = Schur(G0\Z, Y ∪ U). Since Z ⊆ E(G[U ]), H ′0 = H0\Z, so for any w ∈ Y ,∑

u∈U

1

r
H′0
wu

=
∑
u∈U

1

rH0
wu

By Proposition B.5.1 applied to H0, for any w ∈ Y ,∑
u∈U

1

rH0
wu

=
1

1− γ
1

rHwx

Obtain H ′ from H ′0 by eliminating vertices of U\{x} one by one. Let U0 = U =
{u0, u1, . . . , u`, x}, Ui = {ui, . . . , u`, x}, andH ′i be the graph obtained by eliminating u0, u1, . . . , ui−1.
By the formula for elimination of one vertex,
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Figure B.5.2: Depiction of Proposition B.5.2. Contracting edges like e and deleting edges
like f can only decrease resistances of edges like g by a small amount.
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∑
u∈Ui+1

c
H′i+1
wu =

∑
u∈Ui+1

cH′iwu +
c
H′i
wuic

H′i
uiu∑

v∈Ui+1∪Y c
H′i
uiv


≤ c

H′i
wui +

∑
u∈Ui+1

c
H′i
wu

=
∑
u∈Ui

c
H′i
wu

Chaining these inequalities shows that

cH
′

wx ≤
1

1− γ
cHwx

since U`+1 = {x} and H ′`+1 = H ′. Taking reciprocals shows the desired result.

Proposition B.5.3. Consider two sets X, Y ⊆ V (G) with X ∩ Y = ∅. Let G0 be a graph
obtained by splitting each edge e ∈ ∂GX into a path of length 2 consisting of edges e1 and e2

with re1 = re2 = re/2, with e1 having an endpoint in X. Add X and all endpoints of edges
e1 to a set X0. Let x and x0 denote the identifications of X and X0 in G/X and G0/X0

respectively. Then

∆G0(X0, Y ) ≤ 2∆G(X, Y )

Proof. Recall that

∆G0(X0, Y ) =
∑
yi∈Y

bTx0yiL
+
G0/X0

bx0yic
H0
x0yi

whereH0 = Schur(G0, {x0}∪Y ). By Rayleigh monotonocity andX ⊆ X0, bTx0yiL
+
G0/X0

bx0yi ≤
bTxyiL

+
G/Xbxyi . By Proposition B.5.2 and the fact that all vertices in X0 have normalized po-

tential at most 1/2 in G with px = 0 and pw = 1 for all w ∈ Y ,

cH0
x0yi
≤ 2cHxyi

where H = Schur(G, {x} ∪ Y ). Therefore,

∆G0(X0, Y ) ≤ 2
∑
yi∈Y

(bTxyiL
+
G/Xbxyi)c

H
xyi

= 2∆G(X, Y )

as desired.
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Figure B.5.3: Depiction of Proposition B.5.3.

Lemma 4.10.12 (Bounding first order terms, part 1). Consider a graph G and two sets
X, Y ⊆ V (G) with X ∩ Y = ∅. Let H = G/Y with y the identification of Y in G. Let
∆ = ∆G(X, Y ). Then ∑

f∈G[X]∪∂GX:1/4≤levG(f)≤3/4

|levcngG→H(f)| ≤ 32∆

Proof of Lemma 4.10.12. Split every edge in ∂GX into a path of two edges with half the
resistance. Let X0 be the set of edges with endpoints in X or one of the copies incident with
X and let G0 be this graph. We start by showing that∑

f∈G0[X0]

(levG0(f)− levG0/Y (f)) ≤ ∆0
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where ∆0 = ∆G0(X0, Y ), G′0 = G0/X0, and x0 is the identification of X0. First, by
Remark 12 ∑

f∈H′0[Y ]

levH′0(f) = |Y | −∆0

where H ′0 = Schur(G′0, {x0} ∪ Y ). By Rayleigh monotonicity,∑
f∈H0[Y ]

levH0(f) ≥ |Y | −∆0

where H0 = Schur(G0, X0 ∪ Y ). By Remark 12,∑
f∈E(H0)\H0[Y ]

levH0(f) ≤ |X0|+ ∆0 − 1

But by Remark 12, ∑
f∈E(H0)\H0[Y ]

levH0/Y (f) = |X0|

so therefore ∑
f∈E(H0)\H0[Y ]

(levH0(f)− levH0/Y (f)) ≤ ∆0 − 1

By Rayleigh monotonicity, the summand of the above sum is always nonnegative. There-
fore, the above inequality also applies for any subset of E(H0) \ H0[Y ]. In particular, it
applies for G0[X0], completing the proof that∑

f∈G0[X0]

(levG0(f)− levG0/Y (f)) ≤ ∆0

Consider an edge f that is one of the two copies of an edge e resulting from subdivision
with levG(e) ≥ 1

4
. Consider the three-vertex Schur complement of G with respect to V (e)∪

V (f). Identifying Y only changes the Schur complement resistance of the edge with endpoints
V (e). Let f ′ be the remaining of the three edges in this Schur complement. levG0(f) =
levG0(f

′) and levG0/Y (f) = levG0/Y (f ′) since the edge weights of f and f ′ are the same
and they are part of the same path with length 2. Therefore, by Remark 12 applied to the
three-vertex Schur complement,

levG(e)− levG/Y (e) = (1− (3− 1− 2levG(f)))− (1− (3− 1− 2levG/Y (f)))

= 2levG(f)− 2levG/Y (f)
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so ∑
f∈G[X]∪∂GX

(levG(f)− levG/Y (f)) ≤ 2∆0

.
By Proposition B.5.3, ∆0 ≤ 2∆. Combining this with Remark 10 proves the lemma.

Lemma 4.10.13 (Bounding first order terms, part 2). Consider a graph G and a set of
edges D ⊆ E(G). Then ∑

e∈E(G)\D:1/4≤levG(e)≤3/4

|levcngG→G\D(e)| ≤ 4|D|

Proof. By Remark 10, it suffices to show that∑
e∈E(G)\D

(levG\D(e)− levG(e)) ≤ |D|

Furthermore, we may assume that D consists of just one edge f , because deleting one
edge at a time suffices for proving the above inequality for general D. By Sherman-Morrison,

∑
e∈E(G)\f

(levG\{f}(e)− levG(e)) =
∑

e∈E(G)\f

(bTe L
+
Gbf )

2

re(rf − bTf L
+
Gbf )

=
1

rf − bTf L
+
Gbf

(bTf L
+
Gbf −

(bTf L
+
Gbf )

2

rf
)

= levG(f)

≤ 1

as desired.

Preliminaries for second-order terms

Proposition B.5.4. Consider a graph G with a set Y ⊆ V (G), X := V (G)\Y , e = {a, b} ∈
E(X), s ∈ X, and t ∈ Y . Then

|bTstL+
Gbe| ≤

∑
f={p,q}∈E(Y,X)

|bTsqL+
Gbe|
|bTstL+

G/Xbf |
rf

Proof. We start by showing that

bTstL
+
Gbsu =

∑
f={p,q}∈E(Y,X)

bTsqL
+
Gbsu
|bTstL+

G/Xbf |
rf



APPENDIX B. RANDOM SPANNING TREE APPENDIX 283

for any vertex u ∈ X. To show this, interpret the statement probabilistically. Notice
that

Pr
t

[ts > tu] =
bTstL

+
Gbsu

bTsuL
+
Gbsu

This probability can be factored based on which edge is used to exit Y first:

Pr
t

[ts > tu] =
∑

f={p,q}∈E(Y,X)

Pr
t

[ts > tu, f used to exit Y for the first time]

=
∑

f={p,q}∈E(Y,X)

Pr
t

[ts > tu|f used to exit Y for the first time]

Pr
t

[f used to exit Y for the first time]

=
∑

f={p,q}∈E(Y,X)

Pr
q

[ts > tu] Pr
t

[f used to exit Y for the first time]

=
∑

f={p,q}∈E(Y,X)

bTsqL
+
Gbsu

bTsuL
+
Gbsu

|bTstL+
G/Xbf |
rf

Multiplying both sides by bTsuL
+
Gbsu shows that

bTstL
+
Gbsu =

∑
f={p,q}∈E(Y,X)

bTsqL
+
Gbsu
|bTstL+

G/Xbf |
rf

For any two vertices u, v ∈ X, subtracting the resulting equations shows that

bTstL
+
Gbuv =

∑
f={p,q}∈E(Y,X)

bTsqL
+
Gbuv
|bTstL+

G/Xbf |
rf

Letting buv := be and orienting the edge in the positive direction shows the desired
inequality.

Proposition B.5.5. Consider a graph G with a set Y ⊆ V (G), X := V (G) \Y , u ∈ X, s ∈
X, and t ∈ Y . Let Sγ be the set of edges f = {p, q} ∈ E(Y,X) with |bTsqL+

Gbsu| ≥ γ|bTstL+
Gbst|.

Then

∑
f∈Sγ

|bTstL+
G/Xbf |
rf

≤ 3

γ
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Figure B.5.4: Depiction of Proposition B.5.5. In this example, there are k parallel paths
with length k from s to t and the X − Y cut cuts the middle edge of each path. u is close
to the cutedge f . f is the one X − Y cutedge for which q has roughly k times the s − u
potential of t. The proposition implies that f has at most O(1/k) flow.
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Proof. Split each edge e ∈ Sγ with resistance re into a path with two edges e1 and e2 with
resistance re/2. Let the resulting graph be H. For an edge {p, q} ∈ E(Y,X), suppose that
it is split into {p, w} and {w, q}. Notice that |bTstL+

H/Xbe2|/rHe2 = |bTstL+
Hbe|/rGe , so it suffices

to bound the st-flow on the edges e2 for each edge e ∈ Sγ.
Let S ′γ be the set of edges e2 for edges e ∈ Sγ.Notice that |bTsuL+

Hbsz| ≥ γbTstL
+
Gbst/2 =

γ|bTstL+
Hbst|/2 for each z ∈ V (S ′γ). Let I = Schur(H,V (S ′γ) ∪ X ∪ {t}). By the harmonic

property of vertex potentials,

 ∑
x∈V (S′γ)∪X

cIxt

 bTstL
+
I bst ≥

 ∑
x∈V (S′γ)∪X

cIxt

 bTsuL
+
I bst

=
∑

x∈V (S′γ)∪X

cIxtb
T
suL

+
I bsx

≥
∑

x∈V (S′γ)\X

cIxtb
T
suL

+
I bsx

≥ γ

2
bTstL

+
I bst

∑
x∈V (S′γ)\X

cIxt

so at least a 1− 2/γ fraction of the conductance incident with t is also incident with X.

By Rayleigh monotonicity, 1/
(∑

x∈V (S′γ)∪X c
I
xt

)
≤ bTstL

+
I/Xbst. Therefore, the total flow in

I/X incident with t that does not come directly from s is

∑
x∈V (S′γ)\X

c
I/X
xt bTstL

+
I/Xbxt = 1− cI/Xst bTstL

+
I/Xbst

= 1−

(∑
x∈X

cIxt

)
bTstL

+
I/Xbst

≤ 1−
∑

x∈X c
I
xt∑

x∈V (S′γ)∪X c
I
xt

=

∑
x∈V (S′γ)\X c

I
xt∑

x∈V (S′γ)∪X c
I
xt

≤ 2

γ

Notice that I contains the edges in S ′γ and that all s− t flow on these edges in I/X enters
t through some vertex besides s. Since all edges of S ′γ are incident with X, flow only travels
across one edge in S ′γ. This means that
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∑
f∈S′γ

cIf |bTstL+
I/Xbf | ≤

2

γ

The desired result follows from the fact that |bTstL+
I/Xbf | = |bTstL+

G/Xbf | by definition of

the Schur complement for all f ∈ S ′γ and the fact that cIf ≥ cGf .

Proposition B.5.6. Consider a graph I with two vertices s, t ∈ V (I). Let F be the set of
edges e = {a, b} ∈ E(I) with maxc∈{a,b} b

T
stL

+
I bsc ≤ ρ for some ρ > 0. Then∑

e∈F

(bTstL
+
I be)

2/re ≤ ρ

Proof. Write energy as current times potential drop. Doing this shows that

∑
e∈F

(bTstL
+
I be)

2/re ≤
∫ ρ

0

∑
e∈x threshold cut

(|bTstL+
I be|/re)dx

=

∫ ρ

0

dx

= ρ

as desired.

Lemma 4.10.14 (Bounding the second order term). Consider a graph G and two disjoint
sets of vertices X, Y ⊆ V (G). For any s ∈ X,∑

e∈EG(X)∪∂GX

αGs,Y (e) =
∑

e∈EG(X)∪∂GX

max
t∈Y

(bTstL
+
Gbe)

2

(bTstL
+
Gbst)re

≤ 24ξ2
buckets∆

G(X, Y )

where ξbuckets = log(mα).

Proof of Lemma 4.10.14. We start by reducing to the case where all edges have both end-
points in X. Subdividing all edges in ∂GX to obtain a graph G0. Let X0 be the set of
vertices in G0 that are endpoints of edges in EG(X) ∪ ∂G0X. Let x0 be the identification of
X0 in G0/X0. Notice that
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∑
e∈EG(X)∪∂GX

max
t∈Y

(bTstL
+
Gbe)

2

(bTstL
+
Gbst)r

G
e

=
∑

e∈EG0
(X)

max
t∈Y

(bTstL
+
G0
be)

2

(bTstL
+
G0
bst)r

G0
e

+
∑

e∈∂G0
X

max
t∈Y

4(bTstL
+
G0
be)

2

(bTstL
+
G0
bst)2r

G0
e

≤ 2
∑

e∈EG0
(X0)

max
t∈Y

(bTstL
+
G0
be)

2

(bTstL
+
G0
bst)r

G0
e

with all equalities and inequalities true termwise. By Proposition B.5.3,

∆G0(X0, Y ) ≤ 2∆G(X, Y )

so to prove the lemma it suffices to show that

∑
e∈EG0

(X0)

max
t∈Y

(bTstL
+
G0
be)

2

(bTstL
+
G0
bst)r

G0
e

≤ 6ξ2
buckets∆

G0(X0, Y )

Let H = Schur(G0, X0 ∪ Y ). The Schur complement only adds edges to E(X0), so

∑
e∈EG0

(X0)

max
t∈Y

(bTstL
+
G0
be)

2

(bTstL
+
G0
bst)r

G0
e

≤
∑

e∈EH(X0)

max
t∈Y

(bTstL
+
Hbe)

2

(bTstL
+
Hbst)r

H
e

For an edge g ∈ EH(X0, Y ), let xg and yg denote its endpoints in X0 and Y respectively,
Sg,i ⊆ EH(X0) be the set of edges e = {a, b} with maxc∈{a,b} |bTsxgL

+
Gbsc| ∈ [2i, 2i+1] for

integers i ∈ (log(rmin/m), log rmax] and maxc∈{a,b} |bTsxgL
+
Gbsc| ∈ [0, 2i+1] for i = log(rmin/m).

By Proposition B.5.4,

|bTstL+
Hbe| ≤

∑
g∈EH(X0,Y )

|bTsxgL
+
Hbe|
|bTstL+

H/X0
bg|

rHg

Applying Cauchy-Schwarz twice and Proposition B.5.5 shows that



APPENDIX B. RANDOM SPANNING TREE APPENDIX 288

∑
e∈EH(X0)

max
t∈Y

(bTstL
+
Hbe)

2

(bTstL
+
Hbst)r

H
e

≤
∑

e∈EH(X0)

max
t∈Y

1

(bTstL
+
Hbst)r

H
e

 log rmax∑
i=log(rmin/m)

∑
g:e∈Sg,i

|bTsxgL
+
Hbe|
|bTstL+

H/X0
bg|

rHg

2

≤ ξbuckets

log rmax∑
i=log(rmin/m)

∑
e∈EH(X0)

max
t∈Y

1

(bTstL
+
Hbst)r

H
e

 ∑
g:e∈Sg,i

|bTsxgL
+
Hbe|
|bTstL+

H/X0
bg|

rHg

2

≤ ξbuckets

log rmax∑
i=log(rmin/m)

∑
e∈EH(X0)

max
t∈Y

1

(bTstL
+
Hbst)r

H
e

 ∑
g:e∈Sg,i

(bTsxgL
+
Hbe)

2
|bTstL+

H/X0
bg|

rHg

 ∑
g:e∈Sg,i

|bTstL+
H/X0

bg|
rHg


≤ ξbuckets

log rmax∑
i=log(rmin/m)+1

∑
e∈EH(X0)

max
t∈Y

 ∑
g:e∈Sg,i

(bTsxgL
+
Hbe)

2

(bTstL
+
Hbst)r

H
e

|bTstL+
H/X0

bg|
rHg

 3bTstL
+
Hbst

2i

+ ξbuckets

∑
e∈EH(X0)

max
t∈Y

 ∑
g:e∈Sg,log(rmin/m)

(bTsxgL
+
Hbe)

2

(bTstL
+
Hbst)r

H
e

|bTstL+
H/X0

bg|
rHg

m

≤ 3ξbuckets

log rmax∑
i=log(rmin/m)

∑
g∈EH(X0,Y )

∑
e∈Sg,i

(bTsxgL
+
Hbe)

2

2irHe

(
max
t∈Y

|bTstL+
H/X0

bg|
rHg

)

By Proposition B.5.6,

∑
e∈Sg,i

(bTsxgL
+
Hbe)

2

rHe
≤ 2i+1

so

∑
e∈EH(X0)

max
t∈Y

(bTstL
+
Hbe)

2

(bTstL
+
Hbst)r

H
e

≤ 6ξbuckets

log rmax∑
i=log(rmin/m)

∑
g∈EH(X0,Y )

(
max
t∈Y

|bTstL+
H/X0

bg|
rHg

)

≤ 6ξbuckets

log rmax∑
i=log(rmin/m)

∑
g∈EH(X0,Y )

bTg L
+
H/X0

bg

rHg

= 6ξ2
buckets∆

G0(X0, Y )

as desired.
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Other preliminaries

Proposition 4.10.11. Consider two disjoint sets of vertices X and Y in a graph G. Let
G′ = G/(X ∪ Y ), with x and y the identifications of X and Y respectively. Let Z be the set
of vertices v with electrical potential pv ≤ γ for some γ ∈ (0, 1) with boundary conditions
px = 0 and py = 1. Then

∆G(Z, Y ) ≤ 1

1− γ
∆G(X, Y )

where z is the identification of Z in G/Z.

Proof. Let Hz = Schur(G/Z, {z} ∪ Y ). By definition,

∆G(Z, Y ) =
∑
v∈Y

bTzvL
+
G/Zbzv

rHzzv

By Rayleigh monotonicity and the fact that X ⊆ Z,

bTzvL
+
G/Zbzv ≤ bTxvL

+
G/Xbxv

By Proposition B.5.1 applied to U = Z and G′,

rHzzv ≥
1

1− γ
rHxxv

since the conductance in the Schur complement for a vertex v ∈ Y is proportional to the
incoming flow by Proposition 4.9.2. Substituting these inequalities and using the definition
of ∆G(X, Y ) gives the desired result.

Proposition 4.10.20. Consider two disjoint sets of vertices X and Y in a graph G. Let
G′ = G/(X, Y ), with x and y the identifications of X and Y respectively. Let A and B be
sets of edges for which both endpoints have normalized L+

G′bxy potential at most γ and at
least 1− γ respectively for some γ ∈ (0, 1/2). Arbitrarily contract and delete edges in A and
B in G to obtain the graph H. Then

cH(X, Y ) ≤ 1

(1− γ)2
cG(X, Y )

Proof. Apply Proposition B.5.2 twice, first with Z ← A and second with Z ← B. Do this
for all w ∈ X ∪ Y . Each application increases the X − Y conductance by at most a factor
of 1/(1− γ), proving the desired result.
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B.5.2 Objectives that are stable thanks to stable oracles

Before proving these stability propositions, we prove one fact that is common to all of them:
that splitting can be done in the same direction (parallel or series) for all of the graphs Ik:

Proposition B.5.7. Consider some k ∈ {0, 1, . . . , K − 1} and any e 6∈ {f0, f1, . . . , fk−1}.
Let (I ′′0 , {e(0), e(1)})← Split(I0, e) and obtain I ′′k ← I ′′k−1[[fk−1]]. Then,

• (Splitting later) I ′′k is equivalent in distribution to the graph obtained by splitting e in
Ik in the same direction as e was split in I0 to obtain I ′′0

• (Leverage score bounds) With high probability,

1/8 ≤ levI′′k /(S,S′)(e
(0)) ≤ levI′′k \D(e(0)) ≤ 7/8

Proof. Splitting later. Effective resistances are electrical functions, so order of splitting
does not matter.

Leverage score bounds. By the “Bounded leverage score difference” condition in
Definition 4.10.7, the “Leverage score stability” guarantees in Definition 4.10.7, and the
triangle inequality,

|levIk\D(e)− levI0(e)| ≤ 3/16

and

|levIk/(S,S′)(e)− levI0(e)| ≤ 3/16

If levI0(e) ≥ 1/2, then e is split in parallel in I0 to obtain I ′′0 . Furthermore, levIk/(S,S′)(e) ≥
1/2 − 3/16 > 1/4. This means that 1/2 ≥ levI′′k /(S,S′)(e

(0)) ≥ (1/4)/2 = 1/8 since

levI′′k /(S,S′)(e
(0)) = levIk/(S,S′)(e)/2. By Rayleigh monotonicity, levI′′k \D(e) ≥ levI′′k /(S,S′)(e) ≥

1/8. As a result, 1/2 ≥ levI′′k \D(e(0)) ≥ 1/8 as well.
If levI0(e) ≤ 1/2, then e is split in series in I0 to obtain I ′′0 . Furthermore, levIk\D(e) ≤

1/2 + 3/16 ≤ 3/4. This means that 1/2 ≤ levI′′k \D(e(0)) ≤ (1/2)(3/4) + 1/2 = 7/8 since

levI′′k \D(e(0)) ≤ (1/2)levIk\D(e) + 1/2. By Rayleigh monotonicity, levI′′k /(S,S′)(e) ≤ 7/8. As

a result, 1/2 ≤ levI′′k /(S,S′)(e
(0)) ≤ 7/8 as well.

This completes the desired result in both cases.

Now, we proceed with the proofs of the stability propositions:

Proposition 4.10.16 (Stability with respect to ∆). For all k ∈ {0, 1, . . . , K(|W |)− 1}, the
set Zk is a (Õ(ρ), Õ(ρ∆k/p), 0)-stable subset of W for the electrical functions

δS,S′(H \D)

and
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δS′,S(H \D)

of H with high probability.

Proof of Proposition 4.10.16. We focus on δS,S′(H \D), as the argument for δS′,S(H \D) is
the same, with S and S ′ swapped.

Well-definedness. Recall that δS,S′(H \D) is an electrical function of H since δS,S′(H \D)
is preserved under Schur complementation of vertices besides the ones referenced in the
summand of δS,S′(H \D). Therefore, stability is well-defined.

Degree of midpoints. Let I ′′k be the graph obtained from Ik by splitting all edges of W \
{f0, f1, . . . , fk−1} in series. By the “Midpoint potential stability” guarantee of Oracle, the
midpoints of these edges are contained in the sets US, US′ ⊆ V (I ′′k ) defined to be the sets of
vertices with s = 0 − s′ = 1 normalized potential less than 1 − p/2 and greater than p/2
respectively. By Proposition 4.10.11,

∆I′′k \D(US, S
′) ≤ 2∆Ik\D(S, S ′)/p

and

∆I′′k \D(US′ , S) ≤ 2∆Ik\D(S ′, S)/p

Lipschitz contractions. For simplicity of notation in the following proof, let Ik denote
the graph in which the edge fk has been split and let fk denote an arbitrary copy. By
Sherman-Morrison,



APPENDIX B. RANDOM SPANNING TREE APPENDIX 292

δS,S′((Ik \D)/fk)− δS,S′(Ik \D)

=
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw −

(bTswL
+
(Ik\D)/Sbfk)

2

bTfkL
+
(Ik\D)/Sbfk

)
(
bTss′L

+
(Ik\D)/(S,S′)be

re
−

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

(bTfkL
+
(Ik\D)/(S,S′)bfk)re

)

−
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)(bTss′L+
(Ik\D)/(S,S′)be

re

)

= −
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

bTfkL
+
(Ik\D)/Sbfk

)(
bTss′L

+
(Ik\D)/(S,S′)be

re

)

−
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)((bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

(bTfkL
+
(Ik\D)/(S,S′)bfk)re

)

+
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

bTfkL
+
(Ik\D)/Sbfk

)(
(bTss′L

+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

(bTfkL
+
(Ik\D)/(S,S′)bfk)re

)

Therefore, by Proposition B.5.7, Rayleigh monotonicity, and the fact that the total energy
is an upper bound on the energy of an edge,

|δS,S′((Ik \D)/fk)− δS,S′(Ik \D)|

≤ 8
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk

)(
bTss′L

+
(Ik\D)/(S,S′)be

re

)

+ 8
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)( |bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)be|

rfkre

)

+ 64
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)( |bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)be|

rfkre

)

By the “S − S ′ normalized degree change stability” guarantees of Oracle,
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|δS,S′((Ik \D)/fk)− δS,S′(Ik \D)| ≤ 8ρ

|W |
δS,S′(I \D) +

8ρ

|W |
δS,S′(I \D) +

64ρ

|W |
δS,S′(I \D)

≤ 80ρ

|W |
δS,S′(I \D)

as desired.
Lipschitz deletions. This bound is very similar to the contraction case. By Sherman-

Morrison,

δS,S′((Ik \D)\fk)− δS,S′(Ik \D)

=
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw +

(bTswL
+
(Ik\D)/Sbfk)

2

rfk − bTfkL
+
(Ik\D)/Sbfk

)
(
bTss′L

+
(Ik\D)/(S,S′)be

re
+

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

(rfk − bTfkL
+
(Ik\D)/(S,S′)bfk)re

)

−
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)(bTss′L+
(Ik\D)/(S,S′)be

re

)

=
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk − bTfkL
+
(Ik\D)/Sbfk

)(
bTss′L

+
(Ik\D)/(S,S′)be

re

)

+
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)((bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

(rfk − bTfkL
+
(Ik\D)/(S,S′)bfk)re

)

+
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk − bTfkL
+
(Ik\D)/Sbfk

)(
(bTss′L

+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

(rfk − bTfkL
+
(Ik\D)/(S,S′)bfk)re

)

Therefore, by Proposition B.5.7, Rayleigh monotonicity, and the fact that the total energy
is an upper bound on the energy of an edge,
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|δS,S′((Ik \D)\fk)− δS,S′(Ik \D)|

≤ 8
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk

)(
bTss′L

+
(Ik\D)/(S,S′)be

re

)

+ 8
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)( |bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)be|

rfkre

)

+ 64
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)( |bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)be|

rfkre

)

By the “S − S ′ normalized degree change stability” guarantees of Oracle,

|δS,S′((Ik \D)\fk)− δS,S′(Ik \D)| ≤ 8ρ

|W |
δS,S′(I \D) +

8ρ

|W |
δS,S′(I \D) +

64ρ

|W |
δS,S′(I \D)

≤ 80ρ

|W |
δS,S′(I \D)

as desired.
Change in expectation. Write down the change in the expectation:

EH′∼Ik[fk][δS,S′(H
′ \D)|fk]− δS,S′(Ik \D)

= levcngIk→(Ik\D)/S(fk)
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk

)(
bTss′L

+
(Ik\D)/(S,S′)be

re

)

levcngIk→(Ik\D)/(S,S′)(fk)
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)((bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

rfkre

)

+

(
levIk(fk)

lev(Ik\D)/S(fk)lev(Ik\D)/(S,S′)(fk)
+

1− levIk(fk)

(1− lev(Ik\D)/S(fk))(1− lev(Ik\D)/(S,S′)(fk))

)
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk

)(
(bTss′L

+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)be)

rfkre

)

By Proposition B.5.7,
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|EH′∼Ik[fk][δS,S′(H
′ \D)|fk]− δS,S′(Ik \D)|

≤ |levcngIk→(Ik\D)/S(fk)|
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk

)(
bTss′L

+
(Ik\D)/(S,S′)be

re

)

+ |levcngIk→(Ik\D)/(S,S′)(fk)|
∑
w∈S′

∑
e∈∂Ikw

(
bTswL

+
(Ik\D)/Sbsw

)( |bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)be|

rfkre

)

+ 128
∑
w∈S′

∑
e∈∂Ikw

(
(bTswL

+
(Ik\D)/Sbfk)

2

rfk

)(
|bTss′L+

(Ik\D)/(S,S′)bfk ||bTfkL
+
(Ik\D)/(S,S′)be|

rfkre

)

Let αfk = maxw∈S′
(bTswL

+
(Ik\D)/S

bfk )2

(bTswL
+
(Ik\D)/S

bsw)rfk
. By the “S−S ′-normalized degree change stability”

guarantees of Oracle,

|EH′∼Ik[fk][δS,S′(H
′ \D)|fk]− δS,S′(Ik \D)| ≤ |levcngIk→(Ik\D)/S(fk)|

(
ρ

|W |
δS,S′(I \D)

)
+
(
|levcngIk→(Ik\D)/(S,S′)(fk)|+ 128αfk

)( ρ

|W |
δS,S′(I \D)

)
Now, we exploit the fact that fk is chosen randomly from all remaining edges in W .

K ≤ |W |/4, so there are always at least |W |/4 remaining edges in W by the “Size of Z”
guarantee. By Lemma 4.10.12 applied twice, 4.10.13 applied once, and 4.10.14 (for αfk)
applied to the graph (Ik \D)/S with X ← US and Y ← S ′,

|EH′∼Ik[fk][δS,S′(H
′ \D)]− δS,S′(Ik \D)|

≤ Efk

[
|EH′∼Ik[fk][δS,S′(H

′ \D)|fk]− δS,S′(Ik \D)|
]

≤ 2

|W |
∑
fk∈W

(
|levcngIk→(Ik\D)/S(fk)|+ |levcngIk→(Ik\D)/(S,S′)(fk)|+ 128αfk

)( ρ

|W |
δS,S′(I \D)

)

≤ 2ρ(2∆I′′k \D(US, S
′) + 2∆I′′k \D(US′ , S) + 2|D|+ 128∆I′′k \D(US, S

′))

|W |2
δS,S′(I \D)

Applying the result of the “Degree of midpoints” part shows that

|EH′∼Ik[fk][δS,S′(H
′ \D)]− δS,S′(Ik \D)| ≤ 520ρ∆k

p|W |2
δS,S′(I \D)

as desired.
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Proposition 4.10.17 (Stability with respect to sums of deferred potentials). For all k ∈
{0, 1, . . . , K(|W |)− 1}, the set Zk is a (Õ(ρ), Õ(ρ∆k/p), rmin/n

4)-stable subset of W for the
electrical function

 ∑
{u,v}∈A

bTss′L
+
(H\D)/(S,S′)(bsu + bsv)

+

 ∑
{u,v}∈B

bTss′L
+
(H\D)/(S,S′)(bus′ + bvs′)


of H with high probability.

Proof of Proposition 4.10.17. Well-definedness. The function given is an electrical function
of H.

Degree of midpoints. Same as in the proof of Proposition 4.10.17.
Lipschitz contractions. As in the previous stability proof, let Ik denote the graph after

splitting an edge, one of whose copies is fk. By Sherman-Morrison, the triangle inequality,
Proposition B.5.7 with Rayleigh monotonicity, and the “Deferred endpoint potential change
stability” guarantee of Oracle in that order,
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∣∣∣∣∣
 ∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)/fk

(bsu + bsv)

+

 ∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)/fk

(bus′ + bvs′)


−

 ∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)(bsu + bsv)

−
 ∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)(bus′ + bvs′)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
{u,v}∈A

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)(bsu + bsv))

bTfkL
+
(Ik\D)/(S,S′)bfk

+
∑
{u,v}∈B

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)(bus′ + bvs′))

bTfkL
+
(Ik\D)/(S,S′)bfk

∣∣∣∣∣
≤

∑
{u,v}∈A

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bsu + bsv)|

bTfkL
+
(Ik\D)/(S,S′)bfk

+
∑
{u,v}∈B

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bus′ + bvs′)|

bTfkL
+
(Ik\D)/(S,S′)bfk

≤ 8
∑
{u,v}∈A

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bsu + bsv)|

rfk

+ 8
∑
{u,v}∈B

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bus′ + bvs′)|

rfk

≤ 8ρ

|W |

 ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)

+
8rmin
n4

as desired.
Lipschitz deletions. This part is similar to the contraction part. By Sherman-Morrison,

the triangle inequality, Proposition B.5.7 with Rayleigh monotonicity, and the “Deferred
endpoint potential change stability” guarantee of Oracle in that order,
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∣∣∣∣∣
 ∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)\fk(bsu + bsv)

+

 ∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)\fk(bus′ + bvs′)


−

 ∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)(bsu + bsv)

−
 ∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)(bus′ + bvs′)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
{u,v}∈A

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)(bsu + bsv))

rfk − bTfkL
+
(Ik\D)/(S,S′)bfk

+
∑
{u,v}∈B

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)(bus′ + bvs′))

rfk − bTfkL
+
(Ik\D)/(S,S′)bfk

∣∣∣∣∣
≤

∑
{u,v}∈A

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bsu + bsv)|

rfk − bTfkL
+
(Ik\D)/(S,S′)bfk

+
∑
{u,v}∈B

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bus′ + bvs′)|

rfk − bTfkL
+
(Ik\D)/(S,S′)bfk

≤ 8
∑
{u,v}∈A

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bsu + bsv)|

rfk

+ 8
∑
{u,v}∈B

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bus′ + bvs′)|

rfk

≤ 8ρ

|W |

 ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)

+
8rmin
n4

as desired.
Change in expectation. Compute the expected change using Sherman-Morrison:
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EH′∼Ik[fk]

 ∑
{u,v}∈A

bTss′L
+
(H′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(H′\D)/(S,S′)(bus′ + bvs′)

∣∣∣∣∣fk


−
∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)(bsu + bsv)−

∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)(bus′ + bvs′)

= levcngIk→(Ik\D)/(S,S′)(fk)

( ∑
{u,v}∈A

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)(bsu + bsv))

rfk

+
∑
{u,v}∈B

(bTss′L
+
(Ik\D)/(S,S′)bfk)(b

T
fk
L+

(Ik\D)/(S,S′)(bus′ + bvs′))

rfk

)

By the “Deferred endpoint potential change stability” guarantee,

∣∣∣∣∣EH′∼Ik[fk]

 ∑
{u,v}∈A

bTss′L
+
(H′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(H′\D)/(S,S′)(bus′ + bvs′)

∣∣∣∣∣fk


−
∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)(bsu + bsv)−

∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)(bus′ + bvs′)

∣∣∣∣∣
≤ |levcngIk→(Ik\D)/(S,S′)(fk)|

( ∑
{u,v}∈A

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bsu + bsv)|

rfk

+
∑
{u,v}∈B

|bTss′L+
(Ik\D)/(S,S′)bfk ||bTfkL

+
(Ik\D)/(S,S′)(bus′ + bvs′)|

rfk

)

≤ |levcngIk→(Ik\D)/(S,S′)(fk)|

(
ρ

|W |

( ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv)

+
∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)

)
+
rmin
n4

)

By Lemmas 4.10.12 and 4.10.13 and the “Size of Z” guarantee,
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∣∣∣∣∣EH′∼Ik[fk]

[ ∑
{u,v}∈A

bTss′L
+
(H′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(H′\D)/(S,S′)(bus′ + bvs′)

−
∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)(bsu + bsv)−

∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)(bus′ + bvs′)

]∣∣∣∣∣
≤ Efk

[∣∣∣∣∣EH′∼Ik[fk]

[ ∑
{u,v}∈A

bTss′L
+
(H′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(H′\D)/(S,S′)(bus′ + bvs′)

−
∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)(bsu + bsv)−

∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)(bus′ + bvs′)

∣∣∣∣∣fk
]∣∣∣∣∣
]

≤ 2

|W |

(∑
fk∈W

|levcngIk→(Ik\D)/(S,S′)(fk)|

)(
ρ

|W |

( ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv)

+
∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)

)
+
rmin
n4

)

≤ 2

|W |

(
∆I′′k \D(US, S

′) + ∆I′′k \D(US′ , S) + |D|
)( ρ

|W |

( ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv)

+
∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)

)
+
rmin
n4

)

By “Degree of midpoints,” ∆I′′k \D(US, S
′) + ∆I′′k \D(US′ , S) + |D| ≤ (2/p)∆k, so

∣∣∣∣∣EH′∼Ik[fk]

[ ∑
{u,v}∈A

bTss′L
+
(H′\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(H′\D)/(S,S′)(bus′ + bvs′)

−
∑
{u,v}∈A

bTss′L
+
(Ik\D)/(S,S′)(bsu + bsv)−

∑
{u,v}∈B

bTss′L
+
(Ik\D)/(S,S′)(bus′ + bvs′)

]∣∣∣∣∣
≤ 4ρ∆k

p|W |2

 ∑
{u,v}∈A

bTss′L
+
(I\D)/(S,S′)(bsu + bsv) +

∑
{u,v}∈B

bTss′L
+
(I\D)/(S,S′)(bus′ + bvs′)

+
rmin
n4

as desired.
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Proposition 4.10.18 (Stability with respect to the main objective). For all k ∈ {0, 1, . . . , K(|W |)−
1}, the set Zk is a (Õ(ρ), Õ(ρ∆k/p), 0)-stable subset of W for the electrical function

bTss′L
+
(H\D)/(S,S′)bss′

of H with high probability.

Proof of Proposition 4.10.18. Well-definedness. bTss′LH\Dbss′ is an electrical function of H.
Degree of midpoints. Same as in the proof of Proposition 4.10.17.
Lipschitz contractions. As in the previous stability proofs, let Ik denote the graph

after splitting an edge, one of whose copies is fk. By Sherman-Morrison, Proposition B.5.7
with Rayleigh monotonicity, and the “Main objective change stability” guarantee of Oracle
in that order,

|bTss′L+
(Ik\D)/(S,S′)/fk

bss′ − bTss′L+
(Ik\D)/(S,S′)bss′| =

(bTss′L
+
(Ik\D)/(S,S′)bfk)

2

bTfkL
+
(Ik\D)/(S,S′)bfk

≤ 8
(bTss′L

+
(Ik\D)/(S,S′)bfk)

2

rfk

≤ 8ρ

|W |
bTss′L

+
(I\D)/(S,S′)bss′

as desired.
Lipschitz deletions. This is similar to the contraction proof. By Sherman-Morrison,

Proposition B.5.7 with Rayleigh monotonicity, and the “Main objective change stability”
guarantee of Oracle in that order,

|bTss′L+
(Ik\D)/(S,S′)\fkbss′ − b

T
ss′L

+
(Ik\D)/(S,S′)bss′ | =

(bTss′L
+
(Ik\D)/(S,S′)bfk)

2

rfk − bTfkL
+
(Ik\D)/(S,S′)bfk

≤ 8
(bTss′L

+
(Ik\D)/(S,S′)bfk)

2

rfk

≤ 8ρ

|W |
bTss′L

+
(I\D)/(S,S′)bss′

as desired.
Change in expectation. The change in expectation conditioned on a choice of fk can

be written as
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EH′∼Ik[fk][b
T
ss′L

+
(H′\D)/(S,S′)bss′ |fk]− b

T
ss′L

+
(Ik\D)/(S,S′)bss′ = levcngIk→(Ik\D)/(S,S′)(fk)

(bTss′L
+
(Ik\D)/(S,S′)bfk)

2

rfk

Therefore, by Lemma 4.10.12 applied twice, Lemma 4.10.13 applied once, and the “Size
of Z” guarantee,

|EH′∼Ik[fk][b
T
ss′L

+
(H′\D)/(S,S′)bss′ ]− b

T
ss′L

+
(Ik\D)/(S,S′)bss′ |

≤ Efk

[
|EH′∼Ik[fk][b

T
ss′L

+
(H′\D)/(S,S′)bss′ |fk]− b

T
ss′L

+
(Ik\D)/(S,S′)bss′ |

]
≤ 2

|Z|
∑
fk∈W

|levcngIk→(Ik\D)/(S,S′)(fk)|
(bTss′L

+
(Ik\D)/(S,S′)bfk)

2

rfk

≤ 4ρ

|W |2
(∆I′′k \D(US, S

′) + ∆I′′k \D(US′ , S) + |D|)bTss′L+
(I\D)/(S,S′)bss′

By “Degree of midpoints,”

|EH′∼Ik[fk][b
T
ss′L

+
(H′\D)/(S,S′)bss′ ]− b

T
ss′L

+
(Ik\D)/(S,S′)bss′ | ≤

4ρ∆k

p|W |2
bTss′L

+
(Ik\D)/(S,S′)bss′

as desired.

B.6 Deferred proofs for Section 4.11

B.6.1 Fast stability concentration inequalities

Proposition 4.11.1. Let {M (k)}k ∈ Rn×n be a sequence of symmetric, nonnegative random
matrices, {Z(k)}k ∈ {0, 1}n, and S(k) ⊆ [n] with the following properties:

• For all i ∈ [n],
∑n

j=1,j 6=iM
(0)
ij ≤ σ where σ ≤ σ0. Furthermore, S(0) = ∅.

• The random variables {Z(k)}k are defined by making Z(k+1) the indicator of a uniformly
random choice w(k+1) ∈ [n] \ S(k). Let S(k+1) := S(k) ∪ {w(k+1)}.

• For all i, j ∈ [n] and k, M
(k+1)
ij ≤M

(k)
ij + γ

∑n
l=1M

(k)
il Z

(k+1)
l M

(k)
lj .
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With probability at least 1− 1/n8, ∑
j 6=i,j /∈S(k)

M
(k)
ij ≤ σ1

for all i /∈ S(k) and all k ≤ n/2.

Proof of Proposition 4.11.1. Inductively assume that for all i /∈ S(k) and for all k ≤ n/2,∑
j 6=i,j /∈S(k) M

(k)
ij ≤ σ1. We now use Theorem 4.9.11 to validate this assumption. The third

given condition along with the inductive assumption shows that

∑
j 6=i,j /∈S(k+1)

M
(k+1)
ij ≤

 ∑
j 6=i,j /∈S(k+1)

M
(k)
ij

+ γ

 n∑
l=1

M
(k)
il Z

(k+1)
l

 ∑
j 6=i,j /∈S(k+1)

M
(k)
lj


=

 ∑
j 6=i,j /∈S(k+1)

M
(k)
ij

+ γ

 n∑
l=1

M
(k)
il Z

(k+1)
l

 ∑
j 6=i,j 6=w(k+1),j /∈S(k)

M
(k)
lj


=

 ∑
j 6=i,j /∈S(k+1)

M
(k)
ij

+ γ

 n∑
l=1

M
(k)
il Z

(k+1)
l

 ∑
j 6=i,j 6=l,j /∈S(k)

M
(k)
lj


≤

 ∑
j 6=i,j /∈S(k)

M
(k)
ij

+ γσ1

(
n∑
l=1

M
(k)
il Z

(k+1)
l

)

for i /∈ S(k+1). To apply Theorem 4.9.11, we need bounds on the mean, variance, and
maximum deviation of each increment. We start with the mean:

E

 ∑
j 6=i,j /∈S(k+1)

M
(k+1)
ij | S(k), i /∈ S(k+1)

 ≤ ∑
j 6=i,j /∈S(k)

M
(k)
ij + γσ1E

[
n∑
l=1

M
(k)
il Z

(k+1)
l | S(k), i /∈ S(k+1)

]

≤
∑

j 6=i,j /∈S(k)

M
(k)
ij + γσ1E

 ∑
l 6=i,l /∈S(k)

M
(k)
il Z

(k+1)
l | S(k), i /∈ S(k+1)


=

∑
j 6=i,j /∈S(k)

M
(k)
ij + γσ1

∑
l 6=i,l /∈S(k)

M
(k)
il E

[
Z

(k+1)
l | S(k), i /∈ S(k+1)

]
=

(
1 +

γσ1

n− k − 1

) ∑
j 6=i,j /∈S(k)

M
(k)
ij

≤
∑

j 6=i,j /∈S(k)

M
(k)
ij +

2γσ2
1

n
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Next, we bound the variance:

Var

 ∑
j 6=i,j /∈S(k+1)

M
(k+1)
ij | S(k), i /∈ S(k+1)

 = Var

 ∑
j 6=i,j /∈S(k+1)

M
(k+1)
ij −

∑
j 6=i,j /∈S(k)

M
(k)
ij | S(k), i /∈ S(k+1)


≤ E

 ∑
j 6=i,j /∈S(k+1)

M
(k+1)
ij −

∑
j 6=i,j /∈S(k)

M
(k)
ij

2

| S(k), i /∈ S(k+1)


≤ γ2σ2

1E

 ∑
l 6=i,l /∈S(k)

M
(k)
il Z

(k+1)
l

2

| S(k), i /∈ S(k+1)


= γ2σ2

1E

 ∑
l 6=i,l /∈S(k)

(M
(k)
il )2Z

(k+1)
l | S(k), i /∈ S(k+1)


≤ γ2σ2

1

n− k − 1

∑
l 6=i,l /∈S(k)

(M
(k)
il )2

≤ 2γ2σ4
1

n

Finally, we bound the maximum change:

∑
j 6=i,j /∈S(k+1)

M
(k+1)
ij −

∑
j 6=i,j /∈S(k)

M
(k)
ij ≤ γσ1

(
n∑
l=1

M
(k)
il Z

(k+1)
l

)

≤ γσ1

 ∑
l 6=i,l /∈S(k)

M
(k)
il


≤ γσ2

1

conditioned on i /∈ S(k+1). Applying Theorem 4.9.11 to the random variables {
∑

j 6=i,j /∈S(k) M
(k)
ij }k

before the stopping time {k : i ∈ S(k)} shows that
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Pr

 ∑
j 6=i,j /∈S(k)

M
(k)
ij − E

 ∑
j 6=i,j /∈S(k)

M
(k)
ij | i /∈ S(k)

 ≥ λ | i /∈ S(k)


≤ exp

(
− λ2

(n/2)(2γ2σ4
1/n) + (λ/3)γσ2

1

)
≤ exp

(
− λ2

γ2σ4
1 + (λ/3)γσ2

1

)

given the inductive assumption and k ≤ n/2. Substituting λ = (8 log n)γσ2
1 ≤ σ1/4 gives

a probability bound of 1/n8. Now, we just have to bound the change in the expectation. Do
this by summing up increments:

E

 ∑
j 6=i,j /∈S(k)

M
(k)
ij | i /∈ S(k)

−∑
j 6=i

M
(0)
ij =

k−1∑
r=0

E

 ∑
j 6=i,j /∈S(r+1)

M
(r+1)
ij −

∑
j 6=i,j /∈S(r)

M
(r)
ij | i /∈ S(k)


=

k−1∑
r=0

E

 ∑
j 6=i,j /∈S(r+1)

M
(r+1)
ij −

∑
j 6=i,j /∈S(r)

M
(r)
ij | i /∈ S(r+1)


=

k−1∑
r=0

ES(r)

Ew(r+1)

 ∑
j 6=i,j /∈S(r+1)

M
(r+1)
ij −

∑
j 6=i,j /∈S(r)

M
(r)
ij | i /∈ S(r+1), S(r)


≤ 2kγσ2

1/n

≤ γσ2
1

≤ σ1/4

By the first given condition and the fact that σ0 ≤ σ1/2,∑
j 6=i,j /∈S(k)

M
(k)
ij ≤ σ1/4 + σ1/4 + σ1/2 ≤ σ1

with probability at least 1 − 1/n8. This completes the verification of the inductive hy-
pothesis and the desired result.

Proposition 4.11.2. Let {M (k)}k ∈ Rn×n be a sequence of symmetric, nonnegative random
matrices, {v(k)}k ∈ Rn be a sequence of nonnegative random vectors, {Z(k)}k ∈ {0, 1}n, and
{S(k)}k ⊆ [n] with the following properties:
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• For all i ∈ [n] and all k,
∑

j 6=i,j /∈S(k) M
(k)
ij ≤ σ1.

• The random variables {Z(k)}k are defined by making Z(k+1) the indicator of a uniformly
random choice w(k+1) ∈ [n] \ S(k). Let S(k+1) := S(k) ∪ {w(k+1)}.

• For all i ∈ [n], v
(0)
i ≤ τ .

• For all i ∈ [n] and k, v
(k+1)
i ≤ v

(k)
i + γ

∑n
l=1M

(k)
il Z

(k+1)
l (v

(k)
l + v

(k)
i ).

With probability at least 1− 1/n8,

v
(k)
i ≤ τ1

for all i /∈ S(k) and all k ≤ n/2.

Proof of Proposition 4.11.2. Inductively assume that for all i /∈ S(k) and for all k ≤ n/2,

v
(k)
i ≤ τ1. We now use Theorem 4.9.11 to validate this assumption. The fourth given

condition along with the inductive assumption shows that

v
(k+1)
i ≤ v

(k)
i + γ

(
n∑
l=1

M
(k)
il Z

(k+1)
l (v

(k)
l + v

(k)
i )

)

≤ v
(k)
i + 2γτ1

(
n∑
l=1

M
(k)
il Z

(k+1)
l

)

for i /∈ S(k+1). To apply Theorem 4.9.11, we need bounds on the mean, variance, and
maximum deviation of each increment. We start with the mean:

E
[
v

(k+1)
i | S(k), i /∈ S(k+1)

]
≤ v

(k)
i + 2γτ1E

[
n∑
l=1

M
(k)
il Z

(k+1)
l | S(k), i /∈ S(k+1)

]

≤ v
(k)
i + 2γτ1E

 ∑
l 6=i,l /∈S(k)

M
(k)
il Z

(k+1)
l | S(k), i /∈ S(k+1)


= v

(k)
i + 2γτ1

∑
l 6=i,l /∈S(k)

M
(k)
il E

[
Z

(k+1)
l | S(k), i /∈ S(k+1)

]
≤ v

(k)
i +

4γτ1σ1

n

Next, we bound the variance:
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Var
(
v

(k+1)
i | S(k), i /∈ S(k+1)

)
= Var

(
v

(k+1)
i − v(k)

i | S(k), i /∈ S(k+1)
)

≤ E

[(
v

(k+1)
i − v(k)

i

)2

| S(k), i /∈ S(k+1)

]

≤ 4γ2τ 2
1 E

 ∑
l 6=i,l /∈S(k)

M
(k)
il Z

(k+1)
l

2

| S(k), i /∈ S(k+1)


= 4γ2τ 2

1 E

 ∑
l 6=i,l /∈S(k)

(M
(k)
il )2Z

(k+1)
l | S(k), i /∈ S(k+1)


≤ 4γ2τ 2

1

n− k − 1

∑
l 6=i,l /∈S(k)

(M
(k)
il )2

≤ 8γ2τ 2
1σ

2
1

n

Finally, we bound the maximum change:

v
(k+1)
i − v(k)

i ≤ 2γτ1

(
n∑
l=1

M
(k)
il Z

(k+1)
l

)

≤ 2γτ1

 ∑
l 6=i,l /∈S(k)

M
(k)
il


≤ 2γτ1σ1

conditioned on i /∈ S(k+1). Applying Theorem 4.9.11 to the random variables {v(k)
i }k

before the stopping time {k : i ∈ S(k)} shows that

Pr
[
v

(k)
i − E

[
v

(k)
i | i /∈ S(k)

]
≥ λ | i /∈ S(k)

]
≤ exp

(
− λ2

(n/2)(8γ2σ2
1τ

2
1 /n) + (λ/3)2γσ1τ1

)
≤ exp

(
− λ2

4γ2σ2
1τ

2
1 + (λ/3)2γσ1τ1

)

given the inductive assumption and k ≤ n/2. Substituting λ = (16 log n)γσ1τ1 ≤ τ1/4
gives a probability bound of 1/n8. Now, we just have to bound the change in the expectation.
Do this by summing up increments:
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E
[
v

(k)
i | i /∈ S(k)

]
− v(0)

i =
k−1∑
r=0

E
[
v

(r+1)
i − v(r)

i | i /∈ S(k)
]

=
k−1∑
r=0

E
[
v

(r+1)
i − v(r)

i | i /∈ S(r+1)
]

=
k−1∑
r=0

ES(r)

[
Ew(r+1)

[
v

(r+1)
i − v(r)

i | S(r), i /∈ S(r+1)
]]

≤ 4kγσ1τ1/n

≤ 2γσ1τ1

≤ τ1/4

By the first given condition and the fact that τ ≤ τ1/2,

v
(k)
i ≤ τ1/4 + τ1/4 + τ1/2 ≤ τ1

with probability at least 1 − 1/n8. This completes the verification of the inductive hy-
pothesis and the desired result.

Proposition 4.11.5. Consider a random sequence {v(k)}k≥0 generated as follows. Given
v(k),

• Pick {u(k)
i }

`k
i=1 and {w(k)

i }
`k
i=1, with

∑`k
i=1 u

(k)
i w

(k)
i ≤ ηv(k)

• Let Z(k+1) ∈ {0, 1}`k denote the indicator of a uniformly random choice over [`k]

• Pick v(k+1) ≤ v(k) + γ
∑`k

i=1 u
(k)
i Z

(k+1)
i w

(k)
i

Let m0 = mink `k and M0 = maxk `k. Then with probability at least 1− 2τ ,

v(k′) ≤ (2γη)ρv(0)

for all k′ ≤ m0 min( 1
(log(M2

0 /τ))η2γ2
, 1

200ηγ2 log(M2
0 /τ)

(τ/M2
0 )1/ρ)

Proof. Let K = m0 min( 1
(log(M2

0 /τ))η2γ2
, 1

200ηγ2 log(M2
0 /τ)

(τ/M2
0 )1/ρ). Let {ki}i be the (random

variable) subsequence of superscripts for which v(ki) − v(ki−1) > v(ki−1)

100 log(M2
0 /τ)

, with k0 := 0.

For all k ∈ [ki−1, ki − 1], by Theorem 4.9.11,

Pr[v(k) − v(ki−1) ≥ λ] ≤ e
− λ2

Kη2γ2(v
(ki−1))2/m0+λv

(ki−1)/(100 log(M2
0/τ))
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so each such interval can only increase v(k) by a factor of 2 with probability at least
1 − τ/(M2

0 ). Therefore, to show the desired concentration bound, we just need to bound

the number of kis. For any k ∈ [ki−1, ki], only 100 log(M2
0/τ)ηγ2 different u

(k)
j w

(k)
j products

can be greater than v(k−1)/(200γ log(M2
0/τ)) ≤ v(ki−1)/(100γ log(M2

0/τ)). Therefore, the

probability that vk − vk−1 ≥ v(ki−1)

100 log(M2
0 /τ)

is at most

200 log(M2
0/τ)ηγ2

m0

This means that the probability that more than ρ kis is at most

K∑
a=(ρ+1)

(
K

a

)(
200 log(M2

0/τ)ηγ2

m0

)a
≤ 2Kρ

(
200 log(M2

0/τ)ηγ2

m0

)ρ
≤ 2τ/M2

0

For each i, we know that

v(ki) ≤ ηγv(ki−1)

With probability at least 1 − 2τ
M2

0
, there are at most ρ is, as discussed above. The

value can increase by a factor of at most a (2γη)ρ factor in total with probability at least
1−M2

0
2τ
M2

0
= 1− 2τ , as desired.

Proposition 4.11.6. For any graph J with S, S ′ ⊆ V (J) and A,B,D,X ⊆ E(J), the
families of functions

• F0 := ({g(0)
e (H)}e∈X , φ(0))

• F1,s := ({g(1),X∩E(H),s
e (H)}e∈X , φ(1))

• F1,s′ := ({g(1),X∩E(H),s′
e (H)}e∈X , φ(1))

• F2 := ({g(2)
e (H)}e∈X , φ(2))

• F3,s := ({g(3),s
e (H)}e∈X , φ(3))

• F3,s′ := ({g(3),s′
e (H)}e∈X , φ(3))

• F4,s := ({g(4),s
e (H)}e∈X , φ(4),s)

• F4,s′ := ({g(4),s′
e (H)}e∈X , φ(4),s′)
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are flexible for the graph J .

Proof. Consider any minor H of J and consider some edge f ∈ X ∩ E(H) as described
in Definition 4.11.3. Fix an edge e ∈ X ∩ E(H). Throughout all proofs, we focus on the
contraction case, as the deletion case is exactly the same except with levφ(H)(f) replaced
with 1− levφ(H)(f).

g
(0)
e flexiblity. By Sherman-Morrison (Propositions 4.9.4 and 4.9.5) and the triangle

inequality,

g(0)
e (H/f) =

|bTss′L+
(H/f\D)/(S,S′)be|√

re

≤
|bTss′L+

(H\D)/(S,S′)be|√
re

+
|bTss′L+

(H\D)/(S,S′)bf ||bTf L
+
(H\D)/(S,S′)be|

lev(H\D)/(S,S′)(f)rf
√
re

= g(0)
e (H) +

1

levφ(0)(H)(f)

|bTe L+
φ(0)(H)

bf |
√
re
√
rf

g
(0)
f (H)

as desired.
g

(1),X∩E(H),s
e and g

(1),X∩E(H),s′
e flexibility. The proof for g

(1),X,s′
e is the same as the proof

for g
(1),X,s
e with s, S and s′, S ′ swapped. Therefore, we focus on g

(1),X,s
e . By Sherman-Morrison

and the triangle inequality,

g(1),X∩E(H/f),s
e (H/f) =

∑
{u,v}∈(X∩E(H/f))\{e}

|bTe L+
(H/f\D)/(S,S′)(bsu + bsv)/2|

√
re

=
∑

{u,v}∈(X∩E(H))\{e,f}

|bTe L+
(H/f\D)/(S,S′)(bsu + bsv)/2|

√
re

≤
∑

{u,v}∈(X∩E(H))\{e,f}

(
|bTe L+

(H\D)/(S,S′)(bsu + bsv)/2|
√
re

+
|bTe L+

(H\D)/(S,S′)bf ||bTf L
+
(H\D)/(S,S′)(bsu + bsv)/2|

lev(H\D)/(S,S′)(f)rf
√
re

)

≤ g(1),X∩E(H),s
e (H) +

1

levφ(1)(H)(f)

|bTe L+
φ(1)(H)

bf |
√
re
√
rf

g
(1),X∩E(H),s
f (H)

as desired.
g

(2)
e flexibility. By Sherman-Morrison and the triangle inequality,
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g(2)
e (H/f) =

∑
{u,v}∈A

|bTe L+
(H/f\D)/(S,S′)(bsu + bsv)|

√
re

+
∑
{u,v}∈B

|bTe L+
(H/f\D)/(S,S′)(bus′ + bvs′)|

√
re

≤ g(2)
e (H) +

∑
{u,v}∈A

|bTe L+
(H\D)/(S,S′)bf ||bTf L

+
(H\D)/(S,S′)(bsu + bsv)|

lev(H\D)/(S,S′)(f)rf
√
re

+
∑
{u,v}∈B

|bTe L+
(H\D)/(S,S′)bf ||bTf L

+
(H\D)/(S,S′)(bus′ + bvs′)|

lev(H\D)/(S,S′)(f)rf
√
re

= g(2)
e (H) +

1

levφ(2)(H)(f)

|bTe L+
φ(2)(H)

bf |
√
re
√
rf

g
(2)
f (H)

as desired.
g

(3),s
e and g

(3),s′
e flexibility. We focus on g

(3),s
e , as g

(3),s′
e is the same except that s′, S ′ is

swapped with s, S. By Sherman-Morrison and the triangle inequality,

g(3),s
e (H/f) =

∑
w∈S′

bTswL
+
(J\D)/Sbsw

∑
e′∈∂Hw

|bTe L+
(H/f\D)/(S,S′)be′|√

rere′

≤ g(3),s
e (H) +

∑
w∈S′

bTswL
+
(J\D)/Sbsw

∑
e′∈∂Hw

|bTe L+
(H\D)/(S,S′)bf ||bTf L

+
(H\D)/(S,S′)be′ |√

relev(H\D)/(S,S′)(f)rfre′

= g(3),s
e (H) +

1

levφ(3)(H)(f)

|bTe L+
φ(3)(H)

bf |
√
re
√
rf

g
(3),s
f (H)

as desired.
g

(4),s
e and g

(4),s′
e flexibility. We focus on g

(4),s
e , as g

(4),s′
e is the same except that s′, S ′ is

swapped with s, S. By Sherman-Morrison and the triangle inequality,
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g(4),s
e (H/f) =

∑
w∈S′

(
|bTswL+

(H/f\D)/Sbe|√
re

)2 ∑
e′∈∂Jw

bTss′L
+
(J\D)/(S,S′)be′

re′

≤
∑
w∈S′

(
|bTswL+

(H\D)/Sbe|√
re

+
|bTswL+

(H\D)/Sbf ||bTf L
+
(H\D)/Sbe|

lev(H\D)/S(f)rf
√
re

)2 ∑
e′∈∂Jw

bTss′L
+
(J\D)/(S,S′)be′

re′

= g(4),s
e (H) +

|bTf L+
(H\D)/Sbe|

lev(H\D)/S(f)
√
rf
√
re

∑
w∈S′

(
2
|bTswL+

(H\D)/Sbe||bTswL
+
(H\D)/Sbf |√

re
√
rf

+

(
|bTswL+

(H\D)/Sbf |√
rf

)2 |bTf L+
(H\D)/Sbe|

lev(H\D)/S(f)
√
rf
√
re

) ∑
e′∈∂Jw

bTss′L
+
(J\D)/(S,S′)be′

re′

≤ g(4),s
e (H) +

3|bTf L+
φ(4),s(H)

be|
(levφ(4),s(H)(f))2√rf

√
re

(g(4),s
e (H) + g

(4),s
f (H))

where the last inequality follows from AM-GM and
|bTe L

+
(H\D)/S

bf |
√
re
√
rf

≤ 1. This is the desired

result.

B.7 Parameters

Throughout this paper, there are many parameters and constants that are hidden in mo(1)

and αo(1) dependencies. For any values of σ0 and σ1, our main algorithm takes

f(σ0, σ1)m1+1/σ1α1/(σ0+1)

time, where f(σ0, σ1) ≤ 2
√

lognσ
100σ0
1 . Setting σ0 = σ1 = (log log n)/(400 log log log n)

yields an algorithm with runtime mo(1)m1+(log log logn)/(400 log logn)α1/(log logn) = m1+o(1)αo(1), as
desired.

To establish this runtime, we need bounds on the values of each of the following param-
eters that do not depend on m1/σ1 or α1/(σ0+1):

• The conductivity parameter ζ

• The modifiedness parameter τ

• The boundedness parameter κ

• The number of clans `



313

• The carving parameter µcarve = (2000µapp)σ
4σ0
1

• Smaller parameters:

– The appendix bounding parameter µapp = 2100(logn)3/4

– The fixing bounding parameter µcon = 2100
√

logn

– The empire radius bounding parameter µrad = 21000(logn)3/4

– Lemma 4.4.18 parameter: µmod = 200µconµappµcarve

The parameter µapp is used for simplicity to bound all mo(1)αo(1) terms that appear in the
appendix. µcon is used in the “Size” bound of Lemma 4.8.2. The carving parameter µcarve

arises from growing a ball around each Qi in the conditioning digraph with radius σi1 ≤ σσ01 .
By the “Temporary condition” of edges in conditioning digraphs, a part Q with an edge
from P is only 8µapp times farther from Qi than P is, so all parts within distance σσ01 in the

conditioning digraph must be within distance (8µapp)σ
σ0
1 αi/(σ0+1)rmin ≤ µcarveα

i/(σ0+1)rmin.
For more details, see Section 4.7.

The conductivity, modifiedness, boundedness, and number of clan parameters increase
during each iteration of the while loop in ExactTree. We designate maximum values ζmax,
τmax, κmax, and `max for each. ` does not depend on ζ, τ , and κ because it only increases
by more than a (logm)-factor in RebuildEmpire, which increases it by a factor of µapp.
κ increases by at most a factor of ` ≤ `max during each iteration. τ and ζ depend on
one another. τ additively increases by τµapp + ζµcarveµapp during each iteration, while ζ
multiplicatively increases by a constant factor and additively increases by `µapp. Since the
while loop in ExactTree only executes for σσ01 iterations, values of

• ζmax = ((logm)µapp)(2σ1)8σ0

• τmax = ((logm)µapp)(2σ1)8σ0

• κmax = ((logm)µapp)(2σ1)4σ0

• `max = ((logm)µapp)(2σ1)2σ0

suffice. Therefore, the runtime of the partial sampling step (the bottleneck) is at most

2
√

lognσ
100σ0
1 m1+1/σ1α1/(σ0+1) ≤ m1+o(1)αo(1)

as desired.
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B.9 Almost-linear time, ε-approximate random

spanning tree generation for arbitrary weights

In this section, we obtain a m1+o(1)ε−o(1)-time algorithm for generating an ε-approximate
random spanning tree. Specifically, we output each spanning tree according to a distribution
with total variation distance at most ε from the real one.

We do this by reducing the problem to our main result; an m1+o(1)α1/(σ0+1)-time algorithm
for generating an exact random spanning tree. The reduction crudely buckets edges by their
resistance and computes connected components of low-resistance edges. Deleting edges with
very high resistances does not affect the marginal of the random spanning tree distribution
with respect to low-resistance edges very much. Therefore, sampling a random spanning tree
in the graph with high-resistance edges deleted yields an ε-approximation random tree for
that marginal in the entire graph.

To make this approach take m1+o(1)ε−o(1) time, we just need to make sure that condition-
ing on a connected component F of low-resistance edges does not take much longer longer
than O(|F |mo(1)) time. In other words, at most O(|F |mo(1)) medium-resistance edges should
exist. This can be assured using ball growing on

√
σ0 different scales. This results in a

graph being conditioned on with α ≤ m10
√
σ0 and size at most |F |m1/

√
σ0 , where F is the set

being conditioned on. Therefore, to condition on |F | edges, the algorithm only needs to do
|F |1+o(1)m1/

√
σ0m10

√
σ0/(σ0+1) work, as desired.
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Figure B.9.1: The first iteration of the while loop of the ApxTree algorithm. The amount of
work done during each iteration is not much larger than the amount of progress (reduction
in graph size) made.
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Now, we implement this approach as follows:

Algorithm 37: ApxTree(G)

1 ρ← (m/ε)10

2 Treturn ← ∅
// can compute connected components of all Gis in near-linear time with

union-find

3 Gi ← the subgraph of G consisting of edges with resistance at most ρirmin
4 i∗ ← 0
5 while E(G) 6= ∅ do
6 while |E(Gi∗+1)| > m1/

√
σ0|E(Gi∗)| do

7 i∗ ← i∗ + 1

8 end
9 foreach connected component C of Gi∗+1 do

10 T ← ExactTree(Gi∗+1[C])
11 contract edges in G in the intersection of T with E(Gi∗) and add these edges

to Treturn
12 delete edges from G that are in E(Gi∗) but not T

13 end

14 end
15 return Treturn

The correctness of this algorithm relies on the following claim:

Proposition B.9.1. Consider a graph I and an edge e ∈ E(I). Let I ′ be the subgraph of I
of edges with resistance at most ρrIe . Then

ReffI(e) ≤ ReffI′(e) ≤ (1 + 2ε/m9)ReffI(e)

Proof. The lower bound follows immediately from Rayleigh monotonicity, so we focus on the
upper bound. Let f be the unit electrical flow between the endpoints of e. It has energy
ReffI′(e). Each edge g ∈ E(I) \ E(I ′) has

fg ≤
bTe L

+
I be
rIg

≤ rIe/(ρr
I
e) ≤ ε/m10

Therefore, deleting edges in I \ I ′ and removing the associated flow results in a flow
between the endpoints of e with energy at most bTe L

+
I be that ships at least 1−m(ε/m10) =

1− ε/m9 units of flow. Scaling the flow up by 1/(1− ε/m9) yields the desired result.

Theorem 4.1.2. Given a weighted graph G and ε ∈ (0, 1), a random spanning tree T of G
can be sampled from a distribution with total variation distance at most ε from the uniform
distribution in time m1+o(1)ε−o(1) time.
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Proof of Theorem 4.1.2 given that ExactTree satisfies Theorem 4.1.1. Correctness. At each
step, the algorithm contracts a forest in G, so it maintains the fact that G is connected. Since
the algorithm terminates only when E(G) = ∅, Treturn is a tree. We now compute the total
variation distance between the output distribution and the real spanning tree distribution
for G.

To do this, we set up a hybrid argument. Let (ei)
m
i=1 be an ordering of the edges in G in

increasing order of resistance. Notice that the subset E(Gj) ⊆ E(G) is a prefix of this list
for all j, which means that conditioning on a Gj eliminates a prefix of (ei)

m
i=1.

For k ∈ {0, 1, . . . ,m}, let Dk denote the distribution over spanning trees of G obtained by
sampling a tree T using ApxTree, conditioning on its intersection with the set {e1, e2, . . . , ek}
to obtain a graph G′, and sampling the rest of T using the real uniform random spanning tree
distribution of the graph G′. D0 is the uniform distribution over spanning trees of G, while
Dm is the distribution over trees output by ApxTree. Therefore, to complete the correctness
proof, we just need to show that the total variation distance between D0 and Dm is at most ε.
We do this by bounding the total variation distance between Dk and Dk+1 for all k ≤ m− 1.

Consider a spanning tree T ′ of G. We now compute its probability mass in the dis-
tributions Dk and Dk+1. Consider the i∗ in the ApxTree algorithm for which ek+1 ∈
E(Gi∗) \ E(Gi∗prev), where i∗prev is the previous value for which ApxTree conditions on Gi∗prev

in Lines 11 and 12. Line 10 extends the partial sample from Gi∗prev to Gi∗ by sampling from
the true uniform distribution of Gi∗+1 conditioned on the partial sample for Gi∗prev matching
T ′. By Theorem 4.3.8, one could equivalently sample from this distribution by sampling
edges with probability equal to their leverage score in Gi∗+1 conditioned on the samples for
the previous edges. Applying this reasoning shows that

Pr
Ta∼Dk

[Ta = T ′] = Pr
Tb∼ApxTree(G)

[E(Tb) ∩ {ei}ki=1 = E(T ′) ∩ {ei}ki=1]

Pr
Tc∼Hk

[E(Tc) ∩ {ek+1} = E(T ′) ∩ {ek+1}]

Pr
Td∼Hk+1

[E(Td) ∩ {ei}mi=k+2 = E(T ′) ∩ {ei}mi=k+2]

and that

Pr
Ta∼Dk+1

[Ta = T ′] = Pr
Tb∼ApxTree(G)

[E(Tb) ∩ {ei}ki=1 = E(T ′) ∩ {ei}ki=1]

Pr
Tc∼H′k

[E(Tc) ∩ {ek+1} = E(T ′) ∩ {ek+1}]

Pr
Td∼Hk+1

[E(Td) ∩ {ei}mi=k+2 = E(T ′) ∩ {ei}mi=k+2]

whereHk is the graph obtained by conditioning on the partial sample of T ′ in {e1, e2, . . . , ek}
and H ′k is obtained from Hk by removing all edges of Hk that are not in Gi∗+1. By defi-
nition of Gi∗+1 and the fact that ek ∈ E(Gi∗), H

′
k contains all edges in Hk with resistance
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at most ρrek+1
. Therefore, by Proposition B.9.1 applied after using Theorem 4.3.8 to write

probabilities as leverage and nonleverage scores,

| Pr
Tc∼Hk

[E(Tc)∩{ek+1} = E(T ′)∩{ek+1}]− Pr
Tc∼H′k

[E(Tc)∩{ek+1} = E(T ′)∩{ek+1}]| ≤ 2ε/m9

Therefore, the total variation distance between Dk and Dk+1 is

∑
spanning trees T ′ of G

| Pr
Ta∼Dk

[Ta = T ′]− Pr
Ta∼Dk

[Ta = T ′]|

=
∑

spanning trees T ′ of G

(
| Pr
Tc∼Hk

[E(Tc) ∩ {ek+1} = E(T ′) ∩ {ek+1}]− Pr
Tc∼H′k

[E(Tc) ∩ {ek+1} = E(T ′) ∩ {ek+1}]|

Pr
Tb∼ApxTree(G)

[E(Tb) ∩ {ei}ki=1 = E(T ′) ∩ {ei}ki=1]

Pr
Td∼Hk+1

[E(Td) ∩ {ei}mi=k+2 = E(T ′) ∩ {ei}mi=k+2]

)

≤ 2ε

m9

∑
spanning trees T ′ of G

(
Pr

Tb∼ApxTree(G)
[E(Tb) ∩ {ei}ki=1 = E(T ′) ∩ {ei}ki=1]

Pr
Td∼Hk+1

[E(Td) ∩ {ei}mi=k+2 = E(T ′) ∩ {ei}mi=k+2]

)

≤ 4ε

m9

∑
restrictions of spanning trees T ′ of G to {ei}ki=1

(
Pr

Tb∼ApxTree(G)
[E(Tb) ∩ {ei}ki=1 = E(T ′) ∩ {ei}ki=1]

)

≤ 4ε

m9

Therefore, the total variation distance between D0 and Dm is at most m(4ε/m9) ≤ ε, as
desired.

Runtime. When the algorithm samples a tree in Gi∗+1, it contracts or deletes (removes)
all edges in Gi∗ . Line 6 ensures that |E(Gi∗+1)| ≤ m1/

√
σ0|E(Gi∗)| whenever conditioning

occurs. Furthermore, since Gi ⊆ Gi+1 for all i, the innermost while loop only executes
√
σ0

times for each iteration of the outer while loop. This means that Gi∗+1 has β ≤ ρ
√
σ0 since

all lower edges where in a prior Gi∗ . By Theorem 4.1.1, ExactTree takes at most

|E(Gi∗+1)|1+o(1)(ρ
√
σ0)1/σ0 ≤ |E(Gi∗)|(m/ε)o(1)+11/

√
σ0

time. Since the Gi∗s that are conditioned on each time are edge-disjoint (as they
are contracted/deleted immediately), the total size of the Gi∗s over the course of the al-
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gorithm is m, which means that the total runtime of the outer while loop is at most
m1+o(1)+11/

√
σ0ε−o(1) = m1+o(1)ε−o(1), as desired.
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Appendix C

Spectral Subspace Sparsification
Appendix

C.1 Bounds on eigenvalues of Laplacians and SDDM

matrices

We first give upper bounds on the traces of the inverses of Laplacians and their submatrices.

Lemma C.1.1. For any Laplacian LG and S ⊂ V (G),

Tr
(
L+
G

)
≤ n2/wmin, (C.1)

Tr
(
(LG)−1

S,S

)
≤ n2/wmin. (C.2)

Proof of Lemma C.1.1. Let T := V (G) \ S. The first upper bound follows by

Tr
(
L+
G

)
=

1

n

∑
u,v∈V

bTu,vL
+
Gbu,v ≤

1

n
(n3 1

wmin

) ≤ n2

wmin

. (C.3)

The second upper bound follows by

Tr
(
(LG)−1

S,S

)
=
∑
u∈S

bTu,TL
+
G/T bu,T ≤ n · n

wmin

≤ n2

wmin

. (C.4)

The first inequalities of (C.3) and (C.4) both follow from the fact that the effective resistance
is at most the shortest path.

Lemma 5.2.7. For any Laplacian LG and S ⊂ V (G),

λ2(LG) ≥ wmin/n
2, (5.1)

λmin ((LG)S,S) ≥ wmin/n
2, (5.2)

λmax ((LG)S,S) ≤ λmax(LG) ≤ nwmax. (5.3)
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Proof of Lemma 5.2.7. For the upper bounds, we have

λmax ((LG)S,S) ≤ λmax (L) ≤ λmax (wmaxLKn) ≤ nwmax,

where the first inequality follows from Cauchy interlacing, and Kn denotes the complete
graph of n vertices.

For the lower bounds, we have

λ2(LG) ≥ 1/Tr
(
L+
G

)
≥ wmin/n

2,

λmin (LS,S) ≥ 1/Tr
(
(LG)−1

S,S

)
≥ wmin/n

2.

C.2 Bounds on 2-norms of some useful matrices

Lemma 5.2.8. The following upper bounds on the largest singular values/eigenvalues hold:

σmax(W
1/2
G BG) ≤ (nwmax)1/2, (5.4)

λmax(SC(LG, S)) ≤ nwmax, (5.5)

σmax((LG)S,T ) = σmax((LG)T,S) ≤ nwmax, (5.6)

where T := V (G) \ S.

Proof of Lemma 5.2.8. The largest singular value of W
1/2
G BG follows by

σmax(W
1/2
G BG) ≤ (λmax(LG))1/2 ≤ (nwmax)1/2 by (5.3).

The largest eigenvalue of Schur complements follows by

λmax(SC(LG, S)) ≤ λmax((LG)S,S) ≤ nwmax by (5.3).

The largest singular value of (LG)S,T follows by

σmax((LG)S,T ) ≤
(
λmax

(
(LG)TS,T (LG)T,S

))1/2

≤
(
nwmax · λmax

(
(LG)TS,T (LG)−1

T,T (LG)T,S
))1/2

by (5.3)

≤ (nwmax · λmax ((LG)S,S))1/2 since SC(LG, S) is positive semi-definite

≤nwmax by (5.3).
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C.3 Bounds on errors of LaplSolve using `2 norms

Lemma 5.2.10. For any Laplacian LG, vectors x, x̃ ∈ Rn both orthogal to 1, and real number
ε > 0 satifiying

‖x− x̃‖LG ≤ ε ‖x‖LG ,

the following statement holds:

‖x− x̃‖ ≤ εn1.5

(
wmax

wmin

)1/2

‖x‖ .

Proof of Lemma 5.2.10. The error follows by

‖x− x̃‖ ≤nw−1/2
min ‖x− x̃‖LG by (5.1)

≤nw−1/2
min ε ‖x‖LG ≤ n1.5

(
wmax

wmin

)1/2

by (5.3)

Lemma 5.2.11. For any Laplacian LG, S ⊂ V , vectors x, x̃ ∈ R|S|, and real number ε > 0
satifiying

‖x− x̃‖M ≤ ε ‖x‖M ,

where M := (LG)S,S, the following statement holds:

‖x− x̃‖ ≤ εn1.5

(
wmax

wmin

)1/2

‖x‖ .

Proof of Lemma 5.2.11. The error follows by

‖x− x̃‖ ≤nw−1/2
min ‖x− x̃‖M by (5.2)

≤nw−1/2
min ε ‖x‖M ≤ n1.5

(
wmax

wmin

)1/2

by (5.3)

C.4 Split subroutines

Proposition 5.3.4. There is a linear-time algorithm (I,P)← Split(H) that, given a graph
H, produces a graph I with V (H) ⊆ V (I) and a set of pairs of edges P with the following
additional guarantees:
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• (Electrical equivalence) For all x ∈ RV (I) that are supported on V (H), xTL+
I x =

xTHL
+
HxH .

• (Bounded leverage scores) For all e ∈ E(I), levI(e) ∈ [3/16, 13/16]

• (P description) Every edge in I is in exactly one pair in P. Furthermore, there is a
bijection between pairs (e0, e1) ∈ P and edges e ∈ E(H) for which either (a) e0, e1 and
e have the same endpoint pair or (b) e0 = {u,w}, e1 = {w, v}, and e = {u,w} for
some degree 2 vertex w.

Algorithm 38: Split(H)

Input: a graph H
Output: a graph I with a pair of edges for each edge in H and a set of paired edges

in P
1 I ← H
2 P ← ∅
3 foreach edge e ∈ E(H) do
4 if 1/16-JL-approximation to levH(e) ≥ 1/2 then
5 Replace e = {u, v} ∈ E(I) with two edges e0 = {u, v} and e1 = {u, v} with

re0 = re1 = 2re
6 Add the pair (e0, e1) to P
7 else
8 Add a vertex w to V (I)
9 Replace e = {u, v} ∈ E(I) with two edges e0 = {u,w} and e1 = {w, v} with

re0 = re1 = re/2
10 Add the pair (e0, e1) to P
11 end

12 end
13 return (I,P)

Proof. Electrical equivalence. Two parallel edges with resistance 2re are electrically
equivalent to one edge with resistance re. Two edges with resistance re/2 in series are
equivalent to one edge with resistance re. Therefore, both ways of replacing edges in H with
pairs of edges in I result in an electrically equivalent graph.

Bounded leverage scores. For an edge e that is replaced with two series edges e0 and
e1,

levI(e0) = levI(e1) =
1

2
+

levH(e)

2
∈ [1/2, 3/4]

since levH(e) ∈ [0, 1/2(1 + 1/16)]. For an edge e that is replaced with two parallel edges e0

and e1,
levI(e0) = levI(e1) = levH(e)/2 ∈ [1/4, 1/2]
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since levH(e) ∈ [1/2(1 − 1/16), 1]. Since all edges in I result from one of these operations,
they all have leverage score in [3/16, 13/16], as desired.
P description. (a) describes edges resulting from parallel replacements, while (b) de-

scribes edges reesulting from series replacements.
Runtime. Estimating the leverage scores takes near-linear time [90]. Besides this, the

algorithm just does linear scans of the graph. Therefore, it takes near-linear time.

Proposition 5.3.5. There is a linear-time algorithm H ← Unsplit(I,P) that, given a
graph I and a set of pairs P of edges in I, produces a minor H with V (H) ⊆ V (I) and the
following additional guarantees:

• (Electrical equivalence) For all x ∈ RV (I) that are supported on V (H), xTL+
I x =

xTHL
+
HxH .

• (Edges of H) There is a surjective map φ : E(I) → E(H) from non-self-loop,non-
leaf edges of I such that for any pair (e0, e1) ∈ P, φ(e0) = φ(e1). Furthermore, for
each e ∈ E(H), either (a) φ−1(e) = e, (b) φ−1(e) = {e0, e1}, with (e0, e1) ∈ P and
e0, e1 having the same endpoints as e or (c) φ−1(e) = {e0, e1}, with (e0, e1) ∈ P and
e0 = {u,w}, e1 = {w, v}, and e = {u, v} for a degree 2 vertex w.

Algorithm 39: Unsplit(I,P)

Input: a graph I and a set of nonintersecting pairs of edges P
Output: a graph H with each pair unsplit to a single edge

1 H ← I
2 foreach pair (e0, e1) ∈ P do
3 if e0 and e1 have the same endpoints {u, v} and e0, e1 ∈ E(I) then
4 Replace e0 and e1 in H with one edge e = {u, v} with re = 1/(1/re0 + 1/re1)
5 else if e0 = {u,w}, e1 = {w, v}, w has degree 2, and e0, e1 ∈ E(I) then
6 Replace e0 and e1 in H with one edge e = {u, v} with re = re0 + re1
7 end

8 end

Proof. Electrical equivalence. Two parallel edges with resistance re0 and re1 are electri-
cally equivalent to one edge with resistance 1/(1/re0 + 1/re1). Two edges with resistance re0
and re1 in series are equivalent to one edge with resistance re0 + re1 . Therefore, both ways of
replacing pairs of edges in I with single edges in H result in an electrically equivalent graph.

Edges of H. Since the pairs in P do not intersect, the map φ(ei) = e that maps an edge
ei, i ∈ {0, 1} to the e as described in the foreach loop is well-defined. Since each (e0, e1) ∈ P
pair is assigned to the same edge e, φ(e0) = φ(e1) = e. Each edge in the output graph H
originates from the initialization of H to I, the if statement, or the else statement. These
are type (a),(b), and (c) edges respectively. Therefore, φ satisfies the required conditions.
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Runtime. The algorithm just requires a constant number of linear scans over the graph.
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