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Maintaining an in-focus image over long time

scales is an essential and non-trivial task for a vari-

ety of microscopy applications. Here, we describe

a fast and robust auto-focusing method that is

compatible with a wide range of existing micro-

scopes. It requires only the addition of one or a

few o↵-axis illumination sources (e.g. LEDs), and

can predict the focus correction from a single im-

age with this illumination. We designed a neural

network architecture, the fully connected Fourier

neural network (FCFNN), that exploits an under-

standing of the physics of the illumination in or-

der to make accurate predictions with 2-3 orders

of magnitude fewer learned parameters and less

memory usage than existing state-of-the-art ar-

chitectures, allowing it to be trained without any

specialized hardware. We provide an open-source

implementation of our method, in order to enable

fast and inexpensive autofocus compatible with a

variety of microscopes.

Many biological experiments involve imaging samples
in a microscope over long time periods or large spatial
scales, making it di�cult to keep the sample in focus.
For example, when observing a sample over time peri-
ods of hours or days, thermal fluctuations can induce fo-
cus drift [8]. Or, when scanning and stitching together
many fields-of-view (FoV) to form a high-content high-
resolution image, a sample that is not su�ciently flat
necessitates refocusing at each position [28]. Since it is
often experimentally impractical or cumbersome to man-
ually maintain focus, an automatic focusing mechanism
is essential.

A variety of solutions have been developed for auto-
focus. Broadly, these methods can be divided into two
classes: hardware-based schemes that attempt to directly
measure the distance from the objective lens to the sam-
ple [1, 2, 7, 4, 29], and software-based methods that take
one or more out-of-focus images and use them to deter-

mine the optimal focal position [19, 27, 11, 10]. The for-
mer usually require hardware modifications to the micro-
scope (e.g. an infrared laser interferometry setup, addi-
tional cameras or optical elements), which can be expen-
sive and place constraints on other aspects of the imag-
ing system. Software-based methods, on the other hand,
can be slow or inaccurate. For example, a software-based
method might require a full focal stack, then use some
measure of image sharpness to compute the ideal focal
plane [19]. More advanced methods attempt to reduce
the number of images needed to compute the correct fo-
cus [27], or use just a single out-of-focus image [11, 10].
However, existing single-shot autofocus methods either
rely on nontrivial hardware modifications such additional
lenses and sensors [10] or are limited in their application
to specialized regimes (i.e. can only correct defocus in
one direction within a certain range) [11].

Here, we demonstrate a new computational imaging-
based single-shot autofocus method that does not suf-
fer from the limitations of previous methods. The only
hardware modification it requires is the addition of one
or more o↵-axis LEDs as an illumination source, from
which we correct defocus based on a single out-of-focus
image. Alternately, it can be used with no hardware
modification on existing coded-illumination setups, which
have been demonstrated for super-resolution [30, 14, 22],
quantitative phase [30, 23, 14], and multi-contrast mi-
croscopy [31, 12].

The central idea of our method is that a neural network
can be trained to predict how far out of focus a microscope
is, based on a single image taken at arbitrary defocus un-
der spatially coherent illumination. A related idea has
recently been used to achieve fast, post-experimental dig-
ital refocusing in digital holography [25, 18]. Our work
addresses autofocusing in more general microscope sys-
tems, with both incoherent and coherent illumination.
Intuitively, we believe this works because coherent illumi-
nation yields images with sharp features even when the

1



sample is out of focus. Thus, there is su�cient informa-
tion in the out-of-focus image that an appropriate neural
network can learn a function that maps these features to
the correct defocus distance, regardless of the structural
details of the sample. To test this idea we collected data
using a Zeiss Axio Observer microscope (20⇥, 0.5 NA)
with the illumination source replaced by a programmable
quasi-dome LED array [16]. The LED array provides a
flexible means of source patterning, but is not necessary
to implement this technique (see Note S1).

Though our experimental focus prediction requires only
one image, we do need to collect focal stacks for training
and validation. We use Micro-Magellan [17] for software
control of the microscope, collecting focal stacks over 60
µm with 1 µm spacing, distributed symmetrically around
the true focal plane. For each part of the sample, we
collect focal stacks with two di↵erent types of illumina-
tion: spatially coherent (i.e. a single LED) and (nearly)
spatially incoherent (i.e. many LEDs at once).

The incoherent focal stack is used for computing the
ground truth focal position, since the reduced coherence
results in sharp images only when the sample is in fo-
cus. Sharpness can be quantified for each image in the
stack by summing the high-frequency content of its radi-
ally averaged log power spectrum. The maximum of the
resultant curve was chosen as the ground truth focal po-
sition for the stack (Fig. 1a, left). Because this ground
truth value is calculated by a deterministic algorithm, this
paradigm scales well to large amounts of training data.
For transparent samples, the incoherent image stack was
captured with asymmetric illumination in order to create
phase contrast [13]. In our case, this was achieved by
using the LED array to project a half annulus source pat-
tern [23]; however, any asymmetric source pattern should
su�ce.

The coherent focal stack is used one image at a time as
the input to the network, which is trained to predict the
ground truth focal position (Fig. 1). Since the network
only takes a single image as its input, each image in the
stack represents a separate training example. In our case,
the coherent focal stack was captured by illuminating the
sample with a single o↵-axis LED. In the case of arbitrary
illumination control (e.g. with an LED array) di↵erent il-
lumination angles or patterns may perform di↵erently for
a given amount of training data. Supplementary Fig. S1
compares performance for varying single-LED illumina-
tion angles as well as multi-LED patterns. For simplicity,
here we consider only the case of a single LED positioned
at an angle of 24 degrees relative the optical axis.

Our neural network architecture for predicting defocus
(described in detail in Note S3), which we call the fully
connected Fourier neural network (FCFNN), di↵ers sub-
stantially from the convolutional neural networks (CNNs)
typically used in image processing tasks [18, 25, 26] (Note
S4). We reasoned that singly-scattered light would con-
tain the most useful information for defocus prediction,
and thus we designed the FCFNN to exclude parts of the
captured image’s Fourier transform that are outside the
single-scattering region for o↵-axis illumination (Fig. S2).

This results in 2-3 orders of magnitude fewer free parame-
ters and memory usage during training than state-of-the-
art CNNs (Table S1). Hence, our network can be trained
on a desktop CPU in a few hours with no specialized com-
puting hardware, making our method more reproducible,
without sacrificing quality.
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Figure 1: Training and defocus prediction. a)
Training data consists of two focal stacks for each part of
the sample, one with incoherent (phase contrast) illumi-
nation, and one with o↵-axis coherent illumination. Left:
The high spatial frequency part of each image’s power
spectrum from the incoherent stack is used to compute
a ground truth focal position. Right: For each coherent
image in the stack, the central pixels from the magnitude
of its Fourier transform are used as input to a neural net-
work that is trained to predict defocus. The full set of
training examples is generated by repeating this process
for each of the coherent images in the stack. b) After
training, experiments need only collect a single coherent
image, which is fed through the same pipeline to predict
defocus. The microscope’s focus can then be adjusted to
correct defocus.

Briefly, the FCFNN (Fig. 1a, right) begins with a sin-
gle coherent image. This image is Fourier transformed,
and the magnitude of the complex-valued pixels in the
central part of the Fourier transform are reshaped into a
single vector, which is used as the input to a trainable
fully connected neural network. After the network has
been trained, it can be used to correct defocus during an
experiment by capturing a single image at an arbitrary de-
focus under the same coherent illumination. The network
predicts defocus distance, then the microscope moves to
the correct focal position (Fig. 1b).

Training with 440 focal stacks took 1.5 hours on a desk-
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Figure 2: Performance vs. amount of training

data. Defocus prediction performance (measured by val-
idation RMSE) improves as a function of the number of
focal stacks used during the training phase of the method.

top CPU or 30 minutes on a GeForce GTX 1080 Ti GPU,
in addition to 2 minutes per focal stack for pre-computing
ground truth focal planes and Fourier transforms. A sin-
gle prediction from a 2048x2048 image takes ⇠50 ms on a
desktop CPU. We were able to train FCFNNs capable of
predicting defocus with root-mean-squared error (RMSE)
smaller than the axial thickness of the sample (cells). Fig-
ure 2 shows how this performance varies based on the
number of focal stacks used to train the network, where
each focal stack contained 60 planes spaced 1 µm apart,
distributed symmetrically around the true focal plane.
Note that this curve could be quite di↵erent depending
on the sample type and quality of training data.

To test the performance of our method across di↵er-
ent samples, we collected data from two di↵erent sample
types (Fig. 3a): white blood cells attached to coverglass,
and an unstained 5 µm thick mounted histology tissue
section. When the network is trained on images of cells,
then tested on di↵erent images of cells, it performs very
well (Fig. 3b). However, when the network is trained on
images of cells, then tested on a di↵erent sample type
(tissue), it performs poorly (Fig. 3c). Hence, the method
does not inherently generalize to new sample types. To
solve this problem, we diversify the training data. We
add a smaller amount of additional training data from
the new sample type (here 130 focal stacks of tissue data,
in addition to the 440 stacks of cell data it was originally
trained on). With this training, the network performs
well on both tissue and cell samples. Hence, our method
can generalize to other sample types, without sacrificing
performance on the original sample type (Fig. 3d). The
best performing neural networks in other domains are typ-
ically trained on large and varied datasets [9]. Thus, if
the FCFNN is trained on defocus data from a variety of
sample types, it should generalize to new types more eas-
ily.

Empirically, we discovered that discarding the phase
of the Fourier transform and using only the magnitude
as the input to the network dramatically boosted perfor-
mance. To illustrate, Fig. 4a compares networks trained
using the Fourier transform magnitude as input vs. those
trained on the argument of the Fourier transform phase.
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Figure 3: Generalization to new sample types. a)
Representative images of cells and tissue section samples.
b) A network trained on focal stacks of cells predicts de-
focus well in other cell samples, c) but fails at predicting
defocus in tissue sections. d) After adding limited ad-
ditional training data on tissue section samples, however,
the network can learn to predict defocus well in both sam-
ple types.

Not only were networks using magnitude able to better fit
the training data, they also generalized better to a valida-
tion set. This suggests useful information for predicting
defocus in a coherent intensity image is relatively more
concentrated in the magnitude compared to the phase of
its Fourier transform. We speculate that this is because
the phase of the intensity image generally relates more
to spatial position of features (which is unimportant for
focus prediction), whereas the magnitude contains more
information about how they are transformed by the imag-
ing system.

In order to understand what features of the images the
network learns to make predictions from, we compute a
saliency map for a network trained using the entire un-
cropped Fourier transform, shown in Fig. 4b. The saliency
map attempts to identify which parts of the input the net-
work is using to make decisions, by visualizing the gra-
dient of a single unit within the neural network with re-
spect to the input [20]. The idea is that the output unit is
more sensitive to features with a large gradient and thus
these have a greater influence on prediction. In our case,
the gradient of the output (i.e. the defocus prediction)
was computed with respect to the the Fourier transform
magnitude. Averaging the magnitude of the gradient im-
age over many examples clearly shows that the network
recognizes specific parts of the the overlapping two-circle
structure (Fig. 4b) that is typical for an image formed by
coherent o↵-axis illumination (Fig. S2) [5]. In particular,
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the regions at the edges of the circles have an especially
large gradient. These areas correspond to the highest an-
gles of light collected by the objective lens. Intuitively,
this makes sense because changing the focus will lead to
proportionally greater changes in the light collected at the
highest angles (Fig. 4b).
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Figure 4: Understanding how the network pre-

dicts defocus. a) A network trained on the magnitude
of the Fourier transform of the input image performs bet-
ter than one trained on the argument of the phase of the
Fourier transform. b) Left: a saliency map (the magni-
tude of the defocus prediction’s gradient with respect to
the Fourier transform magnitude) shows the edges of the
object spectrum have the strongest influence on defocus
predictions. Right: edges correspond to high-angle scat-
tered light, which may not be captured o↵-focus, provid-
ing significant changes in the input image with defocus.

To summarize, we have demonstrated a method for
training and using neural networks for single-shot autofo-
cus, with analysis of design principles and practical trade-
o↵s. The method works with di↵erent sample types and is
simple to implement on a conventional transmitted light
microscope, requiring only the addition of o↵-axis illumi-
nation and no specialized hardware for training the neural
network. We introduced the FCFNN, a neural network
architecture that incorporates knowledge of the physics
of the imaging system into its design, thereby making it
orders of magnitude more e�cient in terms of parameter
number and memory requirements during training than
general state-of-the-art approaches for image processing.

See Supplement 1 for supporting content. The
code needed to implement this technique and repro-
duce all figures in this manuscript can be found in the
Jupyter notebook: 1. H. Pinkard, ”Single-shot aut-
ofocus microscopy using deep learning–code,” (2019),
https://doi.org/10.6084/m9.figshare.7453436.v1. Due to
its large size, the corresponding data is available upon

request.
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Note S1: Practical aspects of im-
plementing on a new microscope

Hardware/Illumination In order to generate data
using our method, the microscope must be able to image
samples with two di↵erent contrast modalities: one with
spatially incoherent illumination for computing ground
truth focal position from image blur, and a second co-
herent or nearly coherent illumination (i.e. one or a few
LEDs) as input to the neural network. The incoherent
illumination can be accomplished with the regular bright-
field illumination of a transmitted light microscope in the
case of samples that absorb light. In the case of transpar-
ent phase-only samples (like the ones used in our experi-
ments), incoherent phase contrast can be created by using
any asymmetric illumination pattern. We achieved this
by using a half-annulus pattern on a programmable LED
illuminator, but this specific pattern is not necessary. The
same e↵ect can be achieved by blocking out half of the illu-
mination aperture of a microscope condenser with a piece
of cardboard[13] or other means of achieving asymmetric
illumination. The asymmetric incoherent illumination is
only needed for the generation of training data, so it does
not need to be permanent.

For the spatially coherent illumination, a single LED
pointed at the sample from an oblique angle (i.e. not
directly above) generates su�cient contrast, as shown in
the main paper. However, our experiments with di↵erent
multi-LED patterns (see note S2) indicate that a series
of LEDs arranged in a line might be even better for this
purpose.

Software Our implementation used a stack of open
source acquisition control software based on Micro-
Manager [6] and the plugin for high-throughput mi-
croscopy, Micro-Magellan [17]. Both are agnostic to
specific hardware, and can thus be implemented on
any microscope to easily collect training data. Auto-
mated LED illumination in Micro-Manager can be con-
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figured using a simple circuit connected to an Arduino
and the Micro-Manager device adapter to control digi-
tal IO. Large numbers of focal stacks can be collected
in an automated way using the 3D imaging capabili-
ties of Micro-Magellan, and a Python reader for Micro-
Magellan data allows for easy integration of data into
deep learning frameworks. Examples of this can be seen
in the Jupyter notebook: 1. H. Pinkard, ”Single-shot
autofocus microscopy using deep learning–code,” (2019),
https://doi.org/10.6084/m9.figshare.7453436.v1.

Other imaging geometries Although we have
demonstrated this technique on a transmitted light micro-
scope with LED illumination, in theory there is no reason
why it couldn’t be applied to other coherent illuminations
and geometries. For example, using a laser instead of an
LED as a coherent illumination source should be possi-
ble with minimal modification. We’ve also demonstrated
the technique using relatively thin samples. Autofocus-
ing methods like ours are generally not directly applicable
to thick samples, since it is di�cult to define the ground
truth focal plane of a thick sample in a transmitted light
configuration. However, in principle it is possible that
these methods could be used in a reflected light geome-
try, where the ”true” focal plane corresponds to the top
of the sample.

Note S2: Choosing an illumina-
tion pattern

Although the network is capable of learning to predict
defocus from images taken under the illumination of a
single o↵-axis LED, as shown in the main paper, di↵erent
angles or combinations of angles of illumination might
contain more useful information for prediction. Better
performance can make the prediction task more accurate,
easier and able to be learned with less training data. Since
our experimental setup uses a programmable LED array
quasi-dome as an illumination source [16], we can choose
the source patterns at will to test this. First, restricting
the analysis to one LED at a time, we tested how the
angle of the single-LED illumination a↵ects performance
(Fig. S1a). We found that performance improves with
increasing angle of illumination, up to a point where per-
formance rapidly degrades. This drop-o↵ occurs in the
’darkfield’ region (where the illumination angle is larger
than the objective’s NA), likely due to the low signal-
to-noise ratio (SNR) of the higher-angle darkfield images
(see inset images in Fig. S1a). This drop in SNR could
plausibly be caused by either a decrease in the number
of photons hitting the sample from higher-angle LEDs,
or a drop in the content of the sample itself at higher
frequencies. To rule out the first possibility, we compen-
sated for the expected number of photons incident on a
unit area of the sample, which is expected to fall o↵ ap-
proximately proportional to 1

cos(✓) , where ✓ is the angle of

illumination relative to the optical axis [15]. The dataset

used here increases exposure time in proportion to cos(✓)
in order to compensate for this. Thus, the degradation
of performance at high angles is most likely due to the
amount of high frequency content in the sample itself at
these angles and therefore might be sample-specific.
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Figure S1: Illumination design. a) Increasing the nu-
merical aperture (NA) (i.e. angle relative to the optical
axis) of single-LED illumination increases the accuracy of
defocus predictions, up to a point at which it degrades.
b) Diagram of LED placements in NA space for our LED
quasi-dome. c) Defocus prediction performance for di↵er-
ent illumination patterns. Patterns with multiple LEDs
in an asymmetric line show the lowest error.

Next, we tested 18 di↵erent single or multi-LED
source patterns chosen from within the distribution of
x and y axis-aligned LEDs available on our quasi-dome
(Fig. S1b,c). Since the light from any two LEDs is mutu-
ally incoherent, single-LED images can be added digitally
to synthesize the image that would have been produced
with multiple-LED illumination. This enabled us to com-
putationally experiment with di↵erent illumination types
on the same sample. Figure S1c shows the defocus predic-
tion performance of various patterns of illumination. The
best performing patterns were those that contained mul-
tiple LEDs arranged in a line. Given that specific parts
of the Fourier transform contain important information
for defocus prediction and that these areas will move to
di↵erent parts of Fourier space with di↵erent angles of
illumination, we speculate that the line of LEDs helps
to spread relevant information for defocus prediction into
di↵erent parts of the spectrum. Although this analysis
demonstrates more and higher angle LED patterns seem
to yield superior performance, there are potential caveats:
In the former case, it could fail to hold when applied to
a denser sample (i.e. not a sparse distribution of cells).
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In the latter, there is the cost of the increase in exposure
time needed to acquire such images.

Note S3: Fully connected
Fourier neural network archi-
tecture

Objective 
lens

Objective 
lens

Slightly off-axis

Far off-axis

Fourier transforms
Regions to use as neural 

network input

Objective 
lens

network input

Figure S2: Fourier Transform regions to use as

network input. O↵-axis illumination with a coherent
point source at an angle within the numerical aperture
of the collection objective produces a characteristic two-
circle structure in the log magnitude of the Fourier trans-
form of the captured image. As the angle of illumination
increases, these circles move further apart. Information
about single-scattering events is confined within these cir-
cles. The blue regions represent the pixels that should be
cropped out and fed into the neural network architecture.

The fully connected Fourier neural network (FCFNN)
begins with a single coherent intensity image captured
by the microscope. This image is Fourier transformed,
and the magnitude of the complex-valued pixels in the
central part of the Fourier transform are reshaped into a
single vector. The useful part of the Fourier transform
is directly related to the angle of coherent illumination
(Fig. S2). A coherent illumination source such as an LED
that is within the range of brightfield angles for the given
objective (i.e. at an angle less than the maximum cap-
tured angle as determined the objective’s NA) will display
a characteristic 2-circle structure in its Fourier transform
magnitude. The two circles contain information corre-
sponding to the singly-scattered light from the sample
and move farther apart as the angle of the illumination
increases. The neural network input should consist of
half of the pixels in which these circles lie, because as the
saliency map in Fig. 4b of the main text demonstrates,
they contain the useful information for predicting defo-
cus. Only half the pixels are needed because the Fourier
transform of a real-valued input (i.e. an intensity image)

has symmetric magnitudes, so the other half contain re-
dundant information. These circles move with changing
illumination angle, so they angle of illumination and rel-
evant pixels must be selected together.

After cropping out the relevant pixels and reshaping
them into a vector, the vector is normalized to have unit
mean in order to account for di↵erences in illumination
brightness, and it is then used as the input layer of a
neural network trained in TensorFlow [3]. The learnable
part of the FCFNN consists of a series of small (100 unit)
fully connected layers, followed by a single scalar output
(the defocus prediction).

We experimented with several hyperparameters and
regularization methods to improve performance on our
training data. The most successful of these were: 1)
Changing the number and width of the fully connected
layers. We started small and increased both until this
ceased to improve performance, which occurred with 10
fully connected layers of 100 units each. 2) Applying
dropout [21] to the vectorized Fourier transform input
layer (but not other layers) to prevent overfitting to spe-
cific parts of the Fourier transform. 3) Dividing the in-
put image into patches and averaging the predictions over
each patch. This gave best performance when we divided
the 2048x2048 image into 1024x1024 patches. 4) Using
only the central part of the Fourier transform magnitude
as an input vector. We manually tested how much of the
edges to crop out. 5) Early stopping - when loss on a
held out validation set ceased to improve - helped test
performance.

In general, we observed better performance training on
noisier and more varied inputs (i.e. cells at di↵erent den-
sities, particularly lower densities, and di↵erent exposure
times). This is consistent with other results in deep learn-
ing, where adding noise to training data improves perfor-
mance [24].

Note S4: Comparison of
FCFNNs and CNNs

The FCFNN di↵ers substantially from the convolutional
neural networks (CNNs) used as the state-of-the-art in
image processing tasks. Typically, to solve a many-to-
one regression task of predicting a scalar from an image,
as in the defocus prediction problem here, CNNs first use
a series of convolutional blocks with learnable weights to
learn to extract relevant features from the image and then
often will pass those features through a series of fully con-
nected layers to generate a scalar prediction [9]. Here, we
have replaced the feature learning part of the network
with a deterministic feature extraction module that uses
only the physically-relevant parts of the Fourier Trans-
form.

Deterministically downsampling images into feature
vectors early in the network reduces the required num-
ber of learnable weights and the memory used by the
backpropagation algorithm to compute gradients during
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Table S1: Comparison of number of learnable

weights and memory usage

ArchitectureImage
size

# of learn-
able weights

memory per
training ex-
ample (MB or
KB)

FCFNN
(ours)

1024x1024 6.3x106 18 KB

CNN
(Ren et.
al[18])

1000x1000 2.5x108 111 MB

FCFNN
(ours)

1000x1000 6.0x106 17 KB

CNN
(Yang et.
al [26])

84x84 2.9x107 1.3 MB

FCFNN
(ours)

84x84 3.6x104 3 KB

training by 2-3 orders of magnitude. Table S1 shows a
comparison between our FCFNN and two CNNs used for
comparable tasks. The architecture used by Ren et al.
is used for post-acquisition defocus predicition in digital
holograpy and the architecture of Yang et al. is used
for post-acquisition classification of images as in-focus or
out-of-focus. Both use the conventional CNN paradigm
of a series of convolutional blocks followed by one or more
fully connected layers.

Similar to CNNs, our FCFNN can also incorporate in-
formation from di↵erent parts of the full image. CNNs
do this with a series of convolutional blocks that gradu-
ally expand the size of the receptive fields. The FCFNN
does this inherently by use of the Fourier transform. Each
pixel in the Fourier transform corresponds to a sinusoid of
a certain frequency and orientation in the original image,
so its magnitude draws information from every pixel.
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