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Abstract 

Reconfigurable Micromechanical Filters 

By 

Jalal Naghsh Nilchi 

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor Clark T.-C. Nguyen, Chair 

 

Power consumption, form factor and more importantly cost, are major challenges for today’s 

wireless communication systems that hinder realization of the Internet of the Things and beyond, 

e.g., the Trillion Sensor vision. This dissertation explores micromechanical methods that enable 

RF channel-selection to simplify receiver architectures and considerably reduce their power 

consumption. 

In particular, strong interfering signals picked up by the antenna impose strict requirements 

on system nonlinearity and dynamic range, which translate to higher power consumption in the 

RF front-end and the baseband circuitry. Removal of these unwanted signals relaxes dynamic 

range requirements and reduces power consumption. Rejection of all interferers, if possible, could 

potentially lift any nonlinearity requirements on the receiver and considerably reduce power 

consumption. This work first investigates the requirements for RF channel selection, then 

demonstrates that capacitive-gap transduced micromechanical resonators possess the high quality 

factor and strong electromechanical coupling needed for successful demonstration of channel 

selection at RF. 

This dissertation specifically focuses on clamped-clamped beam (CC-beam) 

micromechanical resonators as building blocks for channel-select filters. Here, a small-signal 

equivalent model developed for a general parallel-plate capacitive transducer and then refined for 

CC-beam resonators predicts very strong electromechanical coupling. Experimental 

measurements on the fabricated CC-beam resonators confirm these predictions and demonstrate 

coupling strengths greater than 10%. CC-beam resonators with such a strong coupling and 

equipped with inherent high quality factor enabled by capacitive transducers are a suitable choice 

for realization of narrow-bandwidth filters at HF, as confirmed by experimental results. 

The filter design procedure presented in this dissertation and refinements to narrow 

mechanical coupling beam modeling pave the way for better understanding of mechanical circuits 

and comprehensive study of filter transfer function. This dissertation illustrates the importance of 
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coupling beam design for the optimum filter realization. The refinements to coupling beam 

formulation also expands our understanding of extensional- and flexural-mode beams, and 

demonstrate the creation and manipulation of system poles by coupling beam design. 

Taking advantage of different theories presented and developed here, the 3rd- and 4th-order 

micromechanical filters of this work exploit bridging between non-adjacent resonators to insert 

and control transfer function loss poles that sharpen passband-to-stopband roll-off. Measurement 

of these filters demonstrates very sharp roll-offs, as evidenced by 20dB shape factors as small as 

1.84 for filters with narrow bandwidths of 0.1% to 0.3%, centered at 8MHz. The high-Q CC-beam 

resonators constituting the filters enable insertion loss of only 1dB in a properly terminated filter. 

RF channel selection eliminates unwanted signals sufficiently to relax the nonlinearity 

requirements on the following stages. Consequently, the micromechanical filter becomes a 

significant contributor to the nonlinear performance of the overall system. This work investigates 

different nonlinear phenomena in capacitive-gap transducers and predicts nonlinear performance 

sufficient for today’s wireless system requirements. Experimental measurements on bridged filters 

confirms these expectations. Specifically, a 4th-order bridged filter has a third-order intercept point 

(IIP3) of +31.8dBm, which translates to an ample dynamic range of 88dB. 

To fully harness the strong electromechanical coupling and high quality factor offered by 

CC-beam resonators, this dissertation demonstrates a 7th-order bridged micromechanical filter 

with very sharp passband-to-stopband roll-off, marked by a 20dB shape factor of 1.45, the best 

shape factor reported so far for any on-chip channel-select filter. This high-order filter with 

+31.4dBm of IIP3 for 200kHz tone spacing offers the essential framework for the realization of 

channel selection and the receiver performance enhancement it promises. 

Finally, this work addresses concerns on the electromechanical coupling strength of 

capacitive resonators at higher frequencies. The specialized fabrication processes herein to (1) 

deposit low-stress polysilicon layers, (2) etch the polysilicon structure with sufficiently smooth 

sidewalls, and (3) deposit a conformal and uniform thin oxide layer, enable capacitive-gap 

transducers with gap spacings as small as 13.2nm. Such a small gap spacing delivers strong 

electromechanical coupling greater than 1.6% in a 60-MHz wine-glass disk resonator.
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Chapter 1 INTRODUCTION 
Wireless communication is an indispensable feature of the modern life which has 

revolutionized different aspects of our lives by the provision of fast and reliable connection 

everywhere at any time [1]. This revolution has broadened the expectations of the societies and 

right now, every one of us expect to have easy access to fast and stable connection: to check the 

live traffic to our destinations, to unlock the front door for our forgetful roommates, to inspect the 

soil dampness and water the garden, etc [2]. Such a connected world, with trillions of sensors to 

collect useful information and massive wireless networks to provide data to people, has been a 

game changer and not only has made our life easier, but also has enabled new products and services 

and accelerated technological innovations [2]. 

Implementation of such a massive connected world, and the Autonomous Swarms [3] and 

the TerraSwarms of the future [2], demands for reliable wireless communication, since the 

application of wired networks in this scale is impractical and unachievable. Application of wireless 

networks provides us with undisputed advantages and conveniences, like mobility and roaming, 

immense increase in the number of the users and accessibility, far-reaching coverage even over 

hard-to-reach area, and flexibility [1]. However, the adaptation of wireless networks at such a 

substantial scale requires addressing of its challenges, namely: shared spectrum and power 

consumption. 

i) The wireless spectrum is a very limited resource that should be shared between many 

different networks and users [4]. This limitation asks for tight regulation and ongoing 

inspections to enforce the regulations and make sure different networks and various 

standards do not interfere with each other and degrade the overall system 

performance [1]. The demand for higher data rate and more autonomous networks 

around us makes the frequency spectrum even more crowded, with different bands 

adjacent to each other, or even coexist on the same frequency range. 

The performance of wireless networks in such a congested and busy frequency 

spectrum (c.f. Figure 1.1) heavily depends on the level of filtering offered in the 

transceiver. The RF filter in the receiver path eliminates some of the strong 

interfering signals, while the transmitter antenna prevents your transceiver to 

broadcast strong interferers in adjacent bands/channels (c.f. Figure 1.2). However, 

this traditional method of static spectrum allocation to different users cannot keep up 

with the number of users with growing bandwidth request. There are numerous 

efforts to address this problem: application of different spread spectrum coding 

techniques such as code-division multiple access CDMA [5], efficient exploitation 

of available spectrum by cognitive radios [4] [6] or carrier aggregation [7].  

ii) Realization of a connected world by implementation of trillions of sensors raises 

questions on the power consumption of such a massive network. On the other hand, 
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there is no feasible engineering way to power up these networks through wire 

connections, and hence, the autonomous networks can only rely on batteries or 

energy harvesting methods as their energy sources. Therefore, there have been 

substantial efforts to decrease the power consumption of each wireless node [8], 

improve the battery capacity per weight and volume [9], and increase the available 

power of different energy harvesting methods [10].  

The power consumption breakdown of commercially-available sensor nodes [11] 

[12], shown in Figure 1.3, reveals that wireless transceivers consume considerable 

portion of battery energy and hence, this work tries to reduce the receiver power 

consumption by the application of channel-select filters in the receiver front-ends. 

1.1 CONVENTIONAL WIRELESS TRANSCEIVER 

ARCHITECTURES 

A wireless transceiver should transmit and receive signals over the specified frequency band, 

avoiding strong broadcast outside the allocated bands and rejecting the incoming interferers. As 

shown in Figure 1.2, a frequency-division duplexing FDD system [13] [14] achieve these purposes 

by separate frond-end filters in receive and transmit paths. The transmit filter shapes the power 

amplifier output signal and prevent transmission in other frequencies, while the receive filter 

improves the receiver chain performance by rejecting the interfering signals. Since numerous 

factors, such as distance to the base station, surrounding objects, weather, etc., affect the incoming 

signal power, the receiver dynamic range is not predetermined and the transceiver should be able 

to detect the desired signal in different condition, with orders of magnitude difference in the 

incoming signal power [1]. As a result, communication standards define the worst-case scenario 

in which the transceivers should successfully perceive the incoming signals; for example, 3G GSM 

standard [15] asks for the receivers to detect signals in vicinity of interferers with 100dB difference 

in power, i.e. 10 orders of magnitude difference in the power level. On the other hand, the 

minimum detectable signal requirement set by the communication standards imposes more 

restrictions on the receiver noise figure. Hence, the receiver filter design is more challenging and 

comprises of various optimizations and tradeoffs to achieve the requirements. 

 

Figure 1.1: A simple version of frequency allocation illustrates the crowded wireless spectrum. 
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1.1.1 THE SUPERHETERODYNE RECEIVER 

ARCHITECTURE 

The superheterodyne receiver architecture [16] was the most popular receiver architecture 

due to its distinctive advantages. A superheterodyne receiver, like the one shown in Figure 1.4, 

down converts the input RF signal to the intermediate frequency (IF) range, where highly-selective 

filters are conveniently implementable. The IF channel-select filters relax the dynamic range 

requirements on the baseband circuitry by efficiently rejecting the adjacent channels and any 

interfering signals. Since the implementation of these channel-select filters has been only feasible 

at lower frequencies, it is imperative for the receiver to mix down the high-frequency input signals 

and then perform the channel selection. 

 

Figure 1.2: Simplified schematic of a conventional FDD transceiver that identifies the transmitter and 

receiver chains. 

 

Figure 1.3: the power consumption breakdown of commercially-available wireless sensor nodes illustrates 

the importance and necessity of power reduction in the transceiver. 
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Figure 1.4 describes a widely-used superheterodyne receiver. The RF band-select filter at 

the antenna port attenuates RF signals out of the designated receiver frequency band, usually from 

other communication standards. The band-select filter also limits the thermal noise power at the 

receiver input. To enhance the noise performance of the receiver chain and to amplify the input 

signal power, the following low-noise amplifier (LNA) stage provides signal amplification with 

minimum added noise. The overall noise figure of a cascaded system like the superheterodyne 

receiver of Figure 1.4 greatly depends on the gain and noise performances of the first few stages, 

as given in equation 1.1 [17]. While the filter and LNA noise figures affect the system noise figure 

directly, the LNA gain scales down the effect of the following stage noise figure. Therefore, a 

receiver with small noise figure asks for large LNA gain and as small as possible values for the 

RF filter and LNA noise figures. (Equation 1.1 assumes the filter stages have power gain very 

close to unity, i.e. very small insertion loss. Also, the noise figures and power gains should be in 

linear scale.) 

𝐹 = 𝐹𝑅𝐹 +
𝐹𝐿𝑁𝐴 − 1

𝐺𝑅𝐹
+

𝐹𝐼𝑅 − 1

𝐺𝑅𝐹 ∙ 𝐺𝐿𝑁𝐴
+

𝐹𝑀𝑖𝑥𝑒𝑟 − 1

𝐺𝑅𝐹 ∙ 𝐺𝐿𝑁𝐴 ∙ 𝐺𝐼𝑅
+

𝐹𝐼𝐹 − 1

𝐺𝑅𝐹 ∙ 𝐺𝐿𝑁𝐴 ∙ 𝐺𝐼𝑅 ∙ 𝐺𝑀𝑖𝑥𝑒𝑟
+⋯ 

𝐹 ≅ 𝐹𝑅𝐹 + (𝐹𝐿𝑁𝐴 − 1) +
𝐹𝐼𝑅 − 1

𝐺𝐿𝑁𝐴
+
𝐹𝑀𝑖𝑥𝑒𝑟 − 1

𝐺𝐿𝑁𝐴
+

𝐹𝐼𝐹 − 1

𝐺𝐿𝑁𝐴 ∙ 𝐺𝑀𝑖𝑥𝑒𝑟
+⋯ 

 

(1.1) 

Equation 1.1 emphasizes on the importance of RF filters with very small insertion loss and 

also gives the reason why channel selection has not been possible at RF. For a passive component, 

i.e. a device with power gain smaller than unity, like the RF band-select filter, the noise figure is 

equal to the insertion loss and therefore, the RF filter insertion loss directly affects the system noise 

figure. On the other hand, the quality factor of the constituent components in the filters relative to 

the filter percent bandwidth determines the filter insertion loss, as explained in details in Chapter 

 

Figure 1.4: Schematic description of a conventional superheterodyne receiver with highlighted off-chip 

components. The interface to many off-chip components imposes further bottlenecks on the receiver design. 
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3. This criterion means that the channel-select filter realization at the receiver front-ends entails 

resonators with quality factor as high as 30,000, while the current resonator technologies such as 

FBAR [18] and SAW [19], fall short of such high Q requirements. Recent efforts on the capacitive 

transducers [20] have been able to demonstrate resonators with high quality factors at GHz 

frequencies, sufficient for the realization of channel selection at these frequencies. 

The following mixer converts down the filtered RF input signal to IF frequencies using a 

local oscillator (LO) signal [17]. A voltage controlled oscillator (VCO) within the feedback loop 

of a phase-locked loop (PLL) generates the LO signal referenced to an exceptionally-stable 

oscillator. Quartz crystal oscillators are the prevailing choice for the reference oscillators, since 

they can provide a reference signal robust against aging and temperature changes. The PLL block 

can translate the fixed reference signal to any required frequency and provide flexible and wide 

tuning range for the LO frequency. 

The LO frequency can be either higher or lower than the RF input frequency, as in equation 

1.2, since the mixer is only responsive to the difference between the RF and LO frequencies and 

not the absolute values. This implies that for either choice of LO frequency, there will be an image 

frequency in the input spectrum that the mixer translates it exactly to the output IF frequency, 

which will degrade the desired signal. The common approach to prevent the image problem is to 

implement another filter at image frequency fImage of equation 1.3, between the LNA and the mixer. 

Equation 1.3 suggests that the image channels are only 2fIF away from the desired frequency fRF, 

which imposes tradeoffs between the choice of IF frequency and filter realization. Lower IF 

frequency means that channel-select filters have larger percent bandwidth and low-Q resonators 

have sufficient for the successful realization. However, this choice places the image frequency 

much closer the desired RF and toughens the realization of image reject (IR) filter, since the IR 

filter should provide sufficient attenuation at frequencies very close to the RF filter passband. This 

again emphasizes on the importance of frequency-selectivity performance and roll-off of RF 

filters. Optimum choice of IF frequency compromises between the IR and IF filters performance 

to ensure sufficient attenuation at image frequencies, while the IF filter insertion loss is in an 

acceptable range. 

𝑓𝐿𝑂 = 𝑓𝑅𝐹 ∓ 𝑓𝐼𝐹 (1.2) 

𝑓𝐼𝑚𝑎𝑔𝑒 = 𝑓𝑅𝐹 ∓ 2 × 𝑓𝐼𝐹 (1.3) 

The IF filter relaxes the dynamic range requirements of the baseband circuitry by rejecting 

any channel other than the desired one. Therefore, the IF filters should have small bandwidth and 

offer fast roll-off to provide sufficient attenuation at adjacent channels. On the other hand, since 

the communication system chooses different channels for different users over time, the heterodyne 

receivers should be capable of perceiving any channel in the band. A fixed LO system requires 

different IF filters for different channels, which increases the system footprint. Alternatively, to 

fix the IF frequency and use only one IF filter, the local oscillator should offer a wide tuning range. 
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The PLL implementation of the LO in Figure 1.4 grants the required tuning range, but at the 

expense of considerable power consumption. The baseband circuitry can easily process the IF 

signal after channel selection and demodulate and recover the transmitted data. 

In conclusion, the heterodyne receiver of Figure 1.4 utilizes several off-chip frequency-

selective components to offer a robust connection: (1) band-select filters at the receiver front-end, 

(2) stable reference oscillators for LO generation, (3) image reject filters, (4) IF filters. This level 

of frequency selection grants a reliable connection even in the presence of strong interfering 

signals, although at the cost of system complexity and cost, especially since these components are 

all off-chip. 

Possible channel selection at the front-end could considerably reduce the system complexity 

and cost, since there would be no need for IR or IF filters and a fixed LO would be sufficient to 

translate the RF input signal to IF. 

1.1.2 THE DIRECT-CONVERSION RECEIVER 

ARCHITECTURE 

The introduction of intermediate frequency IF in the heterodyne architecture accomplished 

a robust receiver, but by using too many off-chip components that increases the design complexity 

and the assembly time and downgrades the yield, which all translates to the increase in cost. Direct-

conversion receivers [21], like the one shown in Figure 1.5, try to solve these obstacles by down 

converting the RF input directly to the baseband and hence, remove the need for image rejection 

and IF filters. Elimination of these filters removes the design constraints on the LNA and the mixer 

due to the interface to off-chip components and relaxes the design requirements considerably. 

The band-select filter at the receiver front-end of Figure 1.5 is the only off-chip component 

to block the interfering signals. The LNA provides considerable power gain with minimum added 

noise, to improve the receiver chain noise figure, as explained in the previous section. The IQ 

mixer then directly down converts the RF input signal to the baseband by, and the low pass (LP) 

filters clean out the mixer output above the baseband frequency. On-chip RC filters are capable of 

the LP filter realization, since the LP filters are at very low frequencies and not required to have 

very sharp response. 

The direct-conversion architecture of Figure 1.5 with the minimum number of off-chip 

components is well-suited for the multi-mode transceiver systems of today’s wireless system [22]. 

However, the direct conversion to the baseband imposes major design challenges due to more 

sensitivity to: (1) DC offset, (2) mismatch between I and Q, (3) LO leakage and (4) the flicker 

noise. The recent advances in RFIC technology and signal processing were the key to address these 

issues and make the direct-conversion one of the most common receiver architecture design used 

today. 
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In conclusion, the direct-conversion architecture reduces the wireless transceiver footprints 

by eliminating off-chips IR and IF filters and eases off the IC design constraints by discarding the 

interface requirements to off-chip components after the LNA. However, the elimination of these 

frequency-selective components increases the dynamic range requirements on the baseband 

circuitry, which translates to higher power consumption. 

1.2 RF CHANNEL-SELECTING RECEIVERS 

As mentioned in the previous sections, higher level of frequency selection in the heterodyne 

architecture relaxes the dynamic range requirements and reduces the power consumption, but at 

the expenses of more off-chip components. On the other hand, the simplicity of direct-conversion 

architecture makes it a suitable choice for the current multi-mode wireless systems, but sets higher 

requirements on the dynamic range. Realization of channel selection at RF can break this tradeoff 

and offer the necessary frequency selection without the need for several off-chip filters [23]. 

The receiver antenna picks up a very colorful spectrum and the receiver chain should be able 

to detect and demodulate the desired RF signal among these other unwanted signals, as shown in 

Figure 1.6. The desired RF signal is usually much weaker than the other interferers, since the base 

station is often far from the receiver, while other wireless systems close by might create the 

interfering signals. The difference between the power level of the desired signal and the strongest 

interferer roughly determines the system dynamic range and as the required dynamic range 

increases, so does the receiver power consumption. In other words, the strongest unwanted signal 

determines the system dynamic range and required system linearity, which directly translates to 

 

Figure 1.5: Schematic description of a conventional direct-conversion receiver diagram. The highlighted 

elements indicate off-chip components that pose a bottleneck for miniaturization. 
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the system power consumption. Therefore, elimination of strong interfering signals lowers the 

dynamic range requirements and power consumptions. While the conventional band-select 

architecture of Figure 1.6 helps the power consumption reduction, the proposed RF channel-

selection receiver of Figure 1.6 offers the ultimate power reduction by rejecting all unwanted 

signals and removing the burden of the dynamic range from the following stages. 

Realization of channel selection at RF cleans out the input RF signal and hence, the receiver 

chain does not have to deal with any interfering signal. This considerably reduce the requirements 

on the linearity of the following integrated circuits and enables significant power reduction.  The 

proposed channel-select architecture of Figure 1.6 employs the abundance of high-Q 

micromechanical circuits to realize RF channel selection [23] and stable LO synthesizer [24], as 

shown in Figure 1.7. This architecture takes advantages of low-cost surface and bulk 

micromachine processes [25] to realize the filter bank at the RF front-end, without the drawbacks 

of conventional bulky filters. 

1.3 BASICS OF THE MICROMECHANICAL FILTER DESIGN 

Figure 1.8 presents the frequency response of a typical bandpass filters and highlights the 

important filter specifications [26]. Group delay, defined as the derivative of the phase response, 

is a measure of time delay for different frequency component of the incoming signal and it should 

be flat for an ideal filter. The group delay is inversely proportional to the filter bandwidth and its 

fluctuations depend on the filter type and order [27]. A bandpass filter should provide sufficient 

rejection outside the determined frequency range, i.e. large stopband rejection, with minimum 

 

Figure 1.6: The antenna picks up a very colorful spectrum and strong interferers poses very high 

requirements on the receiver dynamic range. A conventional band-select filter reduced the dynamic range 

requirements, while the proposed channel-select filter relaxes the dynamic range requirements by rejecting 

all unwanted signals.  
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attenuation over the passband, i.e. small insertion loss. Different attenuation and group delay over 

the passband distort the transmitted symbol and introduce error during the demodulation [13] and 

hence, the in-band ripple and group delay should be as small as possible. Fast passband-to-

stopband roll-off ensures sufficient rejection at adjacent channels and enables efficient spectrum 

utilization. 

Micromechanical resonators, either capacitive or piezoelectric, are the only choice capable 

of providing high quality factor required by channel selection. There are different topologies to 

harness this high-Q for channel-select filter realization [28] [29]. This work employs 

mechanically-coupled cascaded capacitive resonators, as shown in Figure 1.9, to form a 

mechanical circuit and achieve the desired frequency selection. The constituent high-Q capacitive 

resonators of Figure 1.9 provide the fundamental resonating elements at the filter center frequency 

that effectively reject out-of-band signals. The mechanical design of coupling beams makes the 

essential filter bandwidth by distributing resonator center frequencies over the passband (c.f. 

Chapter 3). The termination resistors RQ at the filter input and output load the quality factor of the 

resonators in order to flatten the jagged passband and minimize the in-band ripple [26]. The filter 

performance heavily depends on the constituent resonator characterizations and hence, the 

following sections briefly describes the basic resonator requirements to meet the design goals 

described earlier. 

 

Figure 1.7: The proposed channel-select filter bank offers the advantages of channel-selection at RF, 

interfacing to only one single MEMS chip. Sine CAD design determines the frequency characteristics of 

the capacitive resonators, a simple micromachining process is sufficient for realization of channel-select 

filters at different frequencies. 
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1.3.1 RESONATOR QUALITY FACTOR 

The filter insertion loss is primarily determined by the quality factor ratio between the 

unloaded resonator Qo and the filter Qf, as given by the equation 1.4, explained in more details in 

Chapter 3. Here, the filter quality factor is the inverse of the filter fractional bandwidth presented 

in equation 1.5. This equation suggests that to minimize the insertion loss, the resonator unloaded 

quality factor should be much higher than the filter quality factor. Therefore, realization of 

channel-select filter at the front-ends, i.e. very large Qf, requires constituent resonators with much 

higher quality factor, compared to a band-select filter. 

 

Figure 1.8: (a) Schematic description of (a) transmission amplitude, (b) phase, and (c) group delay response 

metrics used to specify a bandpass filter. 
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𝐼. 𝐿. ∝
𝑄𝑓

𝑄𝑜
  (1.4) 

𝑄𝑓 =
1

𝑃𝐵𝑊
=

𝑓𝑜
𝐵𝑊3𝑑𝐵

  (1.5) 

Figure 1.10 presents the importance of the resonator Q for channel selection. The simulated 

wide-bandwidth band-select filter only requires quality factor of 1,000 to achieve insertion loss 

smaller than 1dB, while the narrow channel-select filter demands quality factor of more than 

30,000. 

1.3.2 RESONATOR ELECTROMECHANICAL 

COUPLING 

The resonator electromechanical coupling (Cx/Co), where the Cx is the resonator motional 

capacitance and Co is the transducer static capacitance given in Figure 1.9, provides a powerful 

tool to gauge the resonator performance and determine the maximum filter bandwidth it can 

 

Figure 1.9: (a) Schematic description of general implementation topology of a band-pass filter consisting 

of a chain of discrete resonator tanks linked with coupling elements. (b) Electrical equivalent circuit 

representation of the generic filter. 

 

Figure 1.10: Simulated frequency spectrum for a 3rd order filter with (a) 2.8% bandwidth for a wideband 

band-select application, and (b) 0.02% bandwidth for a narrow band channel-select application for varying 

resonator tank Q’s. 
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support without introduction of any distortion in the passband (c.f. Chapter 3). To realize a filter 

with flat passband and small in-band distortion, the constituent resonator (Cx/Co) should be larger 

than the filter fractional bandwidth PBW, given in equation 1.5.  

Figure 1.11 illustrates the effect of resonator (Cx/Co) on the filter passband, where weak 

electromechanical coupling prevents ideal termination of the filter and introduces unacceptable 

distortion in the filter response. Narrow channel-select filters with fractional bandwidth of 0.1% 

or smaller does not demand very high (Cx/Co), however, a filter bank comprises of several channel-

select filters in parallel, as proposed in Figure 1.7, requires strong electromechanical coupling for 

proper termination of each filter [23]. 

1.3.3 RESONATOR IMPEDANCE 

Although the resonator quality factor Q and electromechanical coupling (Cx/Co) are 

primarily set by the resonator technology, the resonator impedance Xo given in equation 1.6 is a 

design parameter and is determined by the resonator area Ao. Here, ωo, ε and do are filter center 

frequency, permittivity and the gap spacing, respectively. The resonator impedance and therefore, 

the resonator area are the design parameters to achieve the desired termination resistance RQ, as 

given by equation 1.7 (c.f. Chapter 3). The communication standard sets the desired termination 

resistance RQ and filter quality factor Qf and the resonator electromechanical coupling (Cx/Co) is 

determined primarily by the resonator technology. 

𝑋𝑜 =
1

𝜔𝑜𝐶𝑜
=

𝑑𝑜
𝜔𝑜𝜀

∙
1

𝐴𝑜
  (1.6) 

𝑅𝑄 = (
𝑄𝑜

𝑄𝑓
− 1)𝑅𝑥 ≅

1

𝑄𝑓
∙

1

(
𝐶𝑥
𝐶𝑜
)
∙
1

𝑋𝑜
  (1.7) 

 

Figure 1.11: Simulated frequency response of a three-resonator RF channel-select filter with 1% fractional 

bandwidth for different resonator electromechanical coupling (Cx/Co). 
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1.4  REVIEW OF RF CHANNEL-SELECT FILTERS 

Equipped by the potential benefits of an RF channel-select receiver, numerous researchers 

have tried to realize RF channel selection to improve the system robustness and reliability and 

reduce the power consumptions [30]. These studies employ various resonator technologies such 

as capacitive [31] [32], piezoelectric [33] [34] [35] [36] and internal dielectric [37] [38]. To fully 

exploit the advantages of channel selection, the proposed resonator technology should provide 

different advantages, such as: 

i) High quality factor: Q’s of 10,000 or more is necessary for the filter realization with 

small insertion loss. 

 

Figure 1.12: Previous works on capacitive transduced vibrating disks (a) and rings (b) exemplifies the high-

Q of capacitive resonators at 300MHz and 3GHz respectively. (c) Piezoelectric vibrating rings offer strong 

coupling and small motional resistance, but with low Q. 

[Akgul, 2011]

Q=71,400
f0~300MHz
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[Naing, 2012]

Q=,300
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ii) Strong electromechanical coupling: Resonator (Cx/Co) much larger than the filter 

fractional bandwidth ensures perfect termination and distortion-free passband. 

Furthermore, strong coupling provides higher stopband rejection. 

iii) Small footprint and CAD-amenable design: The application of channel selection at 

the RF demands realization of filter banks at the front-end to ensure full coverage of 

the spectrum. As a result, each filter should occupy small area and CAD design 

specifies the filter performance, especially the center frequency, to attain many 

different frequencies on a single chip with no need for complicated fabrication 

processes [39]. 

iv) Nonlinearity: The channel selection relaxes the nonlinearity requirements on the 

following stages, consequently, the filter nonlinear performance becomes the 

dominant factor in the overall system nonlinearity. 

Figure 1.12 compares the performance of capacitive and piezoelectric resonators designed 

for channel-selection application. The capacitive ring resonator [40] and disk resonator [41] 

provide the high quality factor required by the channel selection at UHF and VHF. Capacitive 

resonator quality factor exceeds 150,000 at 60MHz [42] and reaches more than 50,000 at 3GHz 

[40]. Such high Q necessary for the low-IL filter is only offered by capacitive transduction. 

However, these capacitive resonators fall short in provision of very strong electromechanical 

coupling, contrary to the theoretical predictions. Application of high-k materials in the gap spacing  

 

Figure 1.13: Previous vibrating channel-select filter work using piezoelectric actuation. 

[Yen, 2010] [Zuo, 2007]
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[43] [44]enhances the resonator (Cx/Co), but this work will demonstrate the true power of sub-

20nm gap spacing to provide sufficient electromechanical coupling. 

In comparison, the piezoelectric resonators offer strong coupling on the order of 1-10% [45], 

but often suffer from quality factor smaller than 3,000. On the other hand, piezoelectric 

transduction does not offer sufficient tuning range, which is very important for the realization of 

narrow filters (c.f. Chapter 3). However, piezo actuation easily grants wide-band filters, where Q’s 

of only 500 to 1,000 is enough for realization of low-IL filters [14] [46]. Figure 1.13 presents two 

channel-select filters at 270MHz [33] and 735MHz [34] realized by piezoelectric resonators. As 

expected from the theory, these filters have unacceptably-high insertion loss due to the limitation 

of the piezoelectric resonator quality factor. 

The capacitive micromechanical filters of Figure 1.14 at 163MHz [47] and 223MHz [48] 

achieve channel-selective bandwidth of 0.06% and 0.09%, respectively, with small insertion loss 

of 2.7dB. Such a small insertion loss is the direct consequence of application of high-Q capacitive 

resonators as the building block of these mechanical circuits. This work expands on the 

achievements of these capacitive channel-select filters to improve the filter roll-off by 

manipulating the transfer function loss poles through unconventional bridging scheme [47] [49]. 

 

Figure 1.14: Previous work on capacitive actuated vibrating disk channel-select filters. 

[Li, 2004] [Akgul, 2014]
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1.5 DISSERTATION OVERVIEW 

This work focuses on channel-select filters at HF (3-30MHz) and attempts to improve the 

filter performance by strategic mechanical bridging between non-adjacent resonators. To do so, 

Chapter 2 introduces the high-Q micromechanical clamped-clamped beam (CC-beam) resonators 

that form the building block of such a filter. This chapter provides basics of the micromechanical 

resonators and capacitive transduction and then specializes the developed theory for the CC-beam 

resonators. The CC-beam resonators presented in this chapter offer quality factor of 15,100 and 

electromechanical coupling of more than 10%, all necessary for the successful demonstration of 

channel-select filters. 

Chapter 3 employs these CC-beam resonators in a mechanical circuit to shape the desired 

transfer function. This chapter illustrates the formation of the transfer function poles by proper 

design of mechanical coupling beams and derives all the necessary expressions to investigate the 

effects of the resonator specifications on the filter performance. 

Since the mechanical coupling beams play a vital role in the micromechanical filter design, 

Chapter 4 investigates the mechanical design of narrow coupling beams, for both extensional and 

flexural modes. This chapter provides new formulation for the mechanically coupled resonators 

and further expands our understandings on the coupling beam behaviors. 

Equipped by the filter design procedure of Chapter 3 and the coupling beam characteristics 

of Chapter 4, Chapter 5 exploits strategic bridging between non-adjacent resonators to insert and 

manipulate loss poles in the filter transfer function and improve the filter passband-to-stopband 

roll-off. The third- and fourth-order micromechanical filters presented in this chapter deliver small 

percent bandwidth of 0.1% to 0.3% with insertion loss of only 1dB. These filters have very sharp 

roll-off characterized by 20dB shape factor of 1.84. 

Chapter 6 investigates the nonlinearity sources in the capacitive transducers and offer 

insightful expressions on the micromechanical resonator and filter nonlinearity. These expressions 

suggest capacitive transducers should be able to provide sufficient nonlinear performances, 

required by the today’s communication systems. The measured nonlinear performances of the 

filters presented in Chapter 5 confirm the findings of the developed theory. 

To fully exploit the strong electromechanical coupling of CC-beam resonators, Chapter 7 

demonstrates a seventh-order bridged micromechanical filter with remarkable roll-off marked by 

20dB shape factor as small as 1.45, which is the best 20dB shape factor reported so far for any 

channel-select filter.  

Lastly, Chapter 8 demonstrates a capacitive transducer with only 13.2nm of gap spacing 

between the structure and the electrode. Such a small gap spacing provides strong 

electromechanical coupling (Cx/Co) of 1.6%, that enables the realization of high-order 

micromechanical filters at higher frequency.  
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Chapter 2 MICROMECHANICAL 

RESONATORS 
This chapter presents the fundamental operation and basic equations governing clamped-

clamped beam (CC-beam) resonators. A high-quality micromechanical resonator, like the CC-

beam used in this work, is the building block of selective high-rejection micromechanical filters. 

These resonators [50] outperform other competing technologies such as LC-tanks [51], bulk 

acoustic wave (BAW) resonators [52], and surface acoustic wave (SAW) resonators [53] in terms 

of quality factor and hence, can provide the extreme selectivity required by channel-select filters, 

while introducing very small insertion loss. Since the velocity of acoustic waves are orders of 

magnitude smaller than the velocity of electromagnetic waves, and therefore, the acoustic 

wavelength is much larger for a given frequency, lumped element model is still a valid 

approximation to model the behavior of these resonators. This chapter presents the lumped element 

model for the main mode shape of the CC-beams and defines the effective stiffness, effective mass, 

electromechanical coupling, motional resistance, etc.  

2.1 LUMPED ELEMENT MODEL 

A single degree of freedom (SDF) mass-spring-damper system can model the mechanical 

vibration and capture the important frequency behavior of a micromechanical resonator without 

any need to use distributed model, since the acoustic waves has much larger wavelength than 

electromagnetic waves, for a given frequency [54]. Figure 2.1 shows two micromechanical 

resonators with their approximate dimension, the 40μm-long CC-beam has center frequency 

around 10MHz [55] and the contour-mode disk resonator with radius of 2.6μm has been used in 

1GHz application [56]. The simple lumped element model of Figure 2.1 (c) can model both 

resonators and predict their behavior with excellent accuracy. The sinusoidal force F(t) acting on 

the lumped mass m induces mechanical motion in the SDF system, described by equation 2.1 [54]: 

𝑚𝑟

𝑑2𝑥(𝑡)

𝑑𝑡2
 + 𝑏𝑟

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑟𝑥(𝑡) = 𝐹𝑒𝑗𝜔𝑡  (2.1) 

where ω is the angular frequency. This equation can be simplified to equation 2.2 in the steady 

state with the general solution given in equation 2.3: 

−𝑚𝑟𝜔
2𝑋 + 𝑏𝑟𝑗𝜔𝑋 + 𝑘𝑟𝑋 = 𝐹  (2.2) 

𝑋 =
𝐹

𝑘𝑟 −𝑚𝑟𝜔
2 + 𝑏𝑟𝑗𝜔

  (2.3) 

where X and F are the phasors of mechanical motion and applied force, respectively. 
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Figure 2.1 (d) shows the magnitude and phase response of a general SDF system. The SDF 

response has a pole at natural resonance frequency ωnom, defined in equation 2.4, and the resonator 

displacement at this frequency is Q times the displacement at zero frequency, as quality factor Q 

defined in the equation 2.5. Quality factor Q is a merit of energy dissipated in the resonator in one 

cycle relative to the stored energy in the system and determines the 3dB bandwidth of the 

resonator. Hence, the resonator response can be rearranged into the general form given in the 

equation 2.6. 

𝜔𝑛𝑜𝑚 = √
𝑘𝑟
𝑚𝑟

   (2.4) 

𝑄 =
𝑘𝑟

𝑏𝑟𝜔𝑜
=
𝑚𝑟𝜔𝑜

𝑏𝑟
=
√𝑘𝑟𝑚𝑟

𝑏𝑟
  (2.5) 

𝑋 =
𝐹

𝑘𝑟
∙

1

1 − (
𝜔
𝜔𝑜

)
2
+

𝑗
𝑄
(
𝜔
𝜔𝑜

)
 

|𝑋| =
𝐹

𝑘𝑟
∙

1

√(1 − (
𝜔
𝜔𝑜

)
2

)
2

+ (
𝜔

𝑄𝜔𝑜
)
2

 

∡𝑋 = −arctan(

𝜔
𝑄𝜔𝑜

1 − (
𝜔
𝜔𝑜

)
2) 

 (2.6) 

The frequency response of the mechanical SDF system, given in the equation 2.3 and 2.6, 

bears a resemblance to the electrical response of a series RLC tank circuit (Figure 2.1) as given in 

equation 2.7. The equivalency process described in equation 2.8 models a mass-spring-damper 

system as a series RLC tank circuit to harness the powerful computing and optimization 

capabilities developed for electrical circuits [57]. 

𝑖𝑥 =
𝑣𝑥

𝑗𝜔𝑙𝑥 + 𝑟𝑥 +
1

𝑗𝜔𝑐𝑥

= 𝑗𝜔𝑐𝑥𝑣𝑥 ∙
1

1 − (
𝜔
𝜔𝑜

)
2
+

𝑗
𝑄
(
𝜔
𝜔𝑜

)
 

 (2.7) 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ↔ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑓𝑜𝑟𝑐𝑒 ↔ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 

𝑚𝑎𝑠𝑠 ↔ 𝑖𝑛𝑑𝑐𝑢𝑡𝑎𝑛𝑐𝑒 

𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 ↔
1

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒
 

𝑑𝑎𝑚𝑝𝑛𝑒𝑠𝑠 ↔ 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑗𝜔𝑋 ↔ 𝑖𝑥 

𝐹 ↔ 𝑣𝑥 

𝑚𝑟 ↔ 𝑙𝑥 

𝑘𝑟 ↔
1

𝑐𝑥
 

𝑏𝑟 ↔ 𝑟𝑥 

 (2.8) 
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To convert incoming RF power to mechanical force applied to the resonator, various 

electromechanical transduction techniques, such as capacitive [58], piezo-electric [59], piezo-

resistive [60], thermal [61], etc., can be used. Since capacitive transduction, simplified in Figure 

2.2, is the only technique that can provide quality factor in the order of 10,000 or more required 

by channel-select filter, this work employs gap-closing capacitive micromechanical resonators to 

develop frequency-selective filters.  

The applied voltage to the capacitive transducer of Figure 2.2 induces electric field between 

the two parallel plates and the change in the stored energy in the electric field determines the 

applied forces on both plates, as given by equation 2.9. The applied force makes the suspended 

plate of the gap-closing transducer of Figure 2.2 move from the stationary position and changes 

the gap spacing between the two parallel plates. Neglecting the fringe capacitance, equations 2.10 

and 2.11 provide the expressions for the change in the capacitance and the applied force in a gap-

closing transducer with electrode area A and stationary gap spacing of do, respectively [57]. 

𝐹(𝑡) =
1

2
Δ𝑉2

𝑑𝐶

𝑑𝑥
=
1

2
(𝑉𝑃 + 𝑣𝑥 cos(𝜔𝑡))

2
𝑑𝐶

𝑑𝑥
  (2.9) 

 

Figure 2.1: (a) Illustration of a clamped-clamped beam resonator centered at 10MHz and (b) a contour-

mode disk resonator designed at 1GHz, with nominal dimension. Both resonators can be modeled by (c) 

lumped mechanical or (d) lumped electrical elements. The displacement of the micromechanical resonators 

of (a) and (b) follows the biquad transfer function of (2.6) shown in plots (e) and (f). 
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𝑑𝐶

𝑑𝑥
=

𝑑

𝑑𝑥
(

𝜀𝐴

𝑑𝑜 − 𝑥
) =

𝜀𝐴

(𝑑𝑜 − 𝑥)2
=
𝜀𝐴

𝑑𝑜
2

1

(1 −
𝑥
𝑑𝑜
)
2 ≅

𝜀𝐴

𝑑𝑜
2
(1 + 2

𝑥

𝑑𝑜
+ 3(

𝑥

𝑑𝑜
)
2

+⋯) 
 (2.10) 

𝐹(𝑡) ≅
1

2
(𝑉𝑃

2 + 2𝑉𝑃𝑣𝑥 cos(𝜔𝑡) + 𝑣𝑥
2 cos2(𝜔𝑡))

𝜀𝐴

𝑑𝑜
2
(1 + 2

𝑥

𝑑𝑜
+ 3(

𝑥

𝑑𝑜
)
2

+⋯) 

𝐹(𝑡) ≅
1

2
𝑉𝑃
2
𝜀𝐴

𝑑𝑜
2
+ (𝑉𝑃

𝜀𝐴

𝑑𝑜
2
) 𝑣𝑥 cos(𝜔𝑡) + 𝑉𝑃

2
𝜀𝐴

𝑑𝑜
3 𝑥 +⋯ 

 (2.11) 

The first two terms of equation 2.11 are the constant and main sinusoidal mechanical force 

on the plates and determine the average and time-varying change in the gap spacing, respectively. 

The third term in the force expression depends on the displacement and follows hook’s law. Hence, 

it will act as a spring force in the equation 2.2 and is known as electrical stiffness. Since this term 

subtracts from the resonator stiffness, it softens the system and lowers the resonance frequency, as 

suggested by the equations 2.13. The higher order terms contribute to the nonlinearity of the 

transducers and we will investigate their effect on device performance in Chapter 5. 

𝑘𝑒 = 𝑉𝑃
2
𝜀𝐴

𝑑𝑜
3  (2.12) 

𝜔𝑜 = √
𝑘

𝑚𝑟
= √

𝑘𝑟 − 𝑘𝑒
𝑚𝑟

= 𝜔𝑛𝑜𝑚√1 −
𝑘𝑒
𝑘𝑟

≅ 𝜔𝑛𝑜𝑚 (1 −
1

2
∙
𝑘𝑒
𝑘𝑟
)  (2.13) 

The change in the stored charge in the capacitor determines the input current into the 

transducer, as in equation 2.14. Equation 2.14 reduces to equation 2.15 in the steady state, which 

demonstrates that the input current iin includes two terms: the first term ico models the current of a 

static capacitor and the second term ix depends on the velocity of the resonator.  

 

Figure 2.2: (a) Illustration of a parallel-plate capacitive transducer. The application of voltage bias source 

VP and time-varying voltage vin makes the suspended electrode vibrate around its stationary position by 

inducing time-varying electrostatic field. 
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𝑖𝑖𝑛(𝑡) =
𝑑𝑄

𝑑𝑡
=
𝑑(𝐶 Δ𝑉)

𝑑𝑡
= 𝐶

𝑑Δ𝑉

𝑑𝑡
+ Δ𝑉

𝑑𝐶

𝑑𝑡
= 𝐶

𝑑Δ𝑉

𝑑𝑡
+ Δ𝑉

𝑑𝐶

𝑑𝑥

𝑑𝑥

𝑑𝑡
  (2.14) 

𝑖𝑖𝑛 = 𝑗𝜔𝐶𝑣𝑥 + 𝑉𝑃
𝑑𝐶

𝑑𝑥
𝑗𝜔𝑋 ≅ 𝑗𝜔𝐶𝑣𝑥 + (𝑉𝑃

𝜀𝐴

𝑑𝑜
2
) 𝑗𝜔𝑋 = 𝑖𝐶𝑜 + 𝑖𝑥  (2.15) 

Since the capacitive electromechanical transduction is a lossless process (the dielectric loss 

is negligible), an equivalent ideal transformer suits as the equivalent small signal electrical lumped 

model, as suggested by equation 2.16 and shown in the Figure 2.3. In this figure, the static capacitor 

Co models the iCo and the transformer forms the capacitive transducer equivalent model. The 

transformer ratio ηe, defined in equation 2.16, converts the small signal voltage to applied 

mechanical force. 

[
𝐹

𝑗𝜔𝑋
] = [

𝜂𝑒 0

0
1

𝜂𝑒

] [
𝑣𝑥
𝑖𝑥
] , 𝜂𝑒 = 𝑉𝑃

𝜀𝐴

𝑑𝑜
2
  (2.16) 

The total resonator stiffness determines the value of the equivalent capacitor cx = 1/(kr -ke) in 

the Figure 2.3 which can be decomposed into two capacitors in series cx = 1/kr and ce = -1/ke, as 

shown in Figure 2.3. Here, cx models the resonator mechanical stiffness and ce predicts the change 

in the frequency by electrical stiffness. Further investigation of ce, as shown in equation 2.17, 

suggests that moving the ce to the other side of the transformer and replacing it with a series 

capacitor with negative capacitance value equal to the static capacitance of the transducer Co 

simplifies this model, as shown in Figure 2.3 (c) [62]. 

𝑐𝑒 =
−1

𝑘𝑒
= −

𝑑𝑜
3

𝜀𝐴𝑉𝑃
2 = −

𝜀𝐴

𝑑𝑜
(

𝑑𝑜
2

𝜀𝐴 𝑉𝑃
)

2

=
−𝐶𝑜
𝜂𝑒
2

  (2.17) 

The gap closing transducer has a very nonlinear characteristic, as suggested in equations 2.9-

2.11. Applied voltage exerts mechanical force on the suspended electrode and makes it move closer 

to the other electrode. This decrease in the gap spacing increases dC/dx and boosts the applied 

force even further and reduces the gap more. The spring force can counter this positive feedback 

between applied force and the gap spacing and makes the gap to reach a steady state position, if 

the suspended electrode does not pass one third of initial gap spacing [57]. The voltage 

corresponding to this displacement is called pull-in voltage and applying any voltage larger than 

 

Figure 2.3: The development of electrical equivalent circuit: (a) the transformer models the transduction 

between input voltage and applied mechanical force, (b) Co represents the transducer intrinsic capacitance 

at the input, and (c) the negative capacitance at the input models the electrical stiffness and the change in 

the resonance frequency by bias voltage. 

            
                  

    

−  

      

(a) (b) (c)
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that makes the positive feedback strong enough, so that the suspended electrode catastrophically 

collapses to the other electrode. In other word, the electrical stiffness at pull-in voltage is equal to 

the mechanical stiffness and the system does not have any restoring force and is completely 

unstable. Equation 2.18 provides the expression for the pull-in voltage of a parallel plate capacitive 

transducer: 

𝑉𝑝𝑢𝑙𝑙−𝑖𝑛 = √
8

27
∙
𝑘𝑟𝑑𝑜

3

𝜀𝐴
   (2.18) 

Figure 2.4 presents the final electrical equivalent circuit of any micromechanical resonator. 

The series RLC components form the familiar equivalent circuit used for Quartz [63] or Piezo [64] 

resonators, if transferred to the left side of the transformer. Equation 2.19 provides the expressions 

for the lumped elements Lx, Cx, Co, and Rx. Figure 2.4 (b) shows the magnitude and phase of the 

input admittance of the derived model. The admittance has maximum where the series branch 

(including Lx, Cx and Rx) is in resonance and hence, called the series resonance frequency. When 

the parallel resonant tank (including Lx, Cx, Co, Rx) is at resonance, the admittance reaches its 

minimum. In other word, the motional current from the resonator and the electrical current from 

the static capacitor are equal in magnitude and completely out of phase, therefore the output current 

is minimum and impedance is at maximum. The separation of series and parallel resonance 

frequencies, fs and fp, is a very important filter design parameter and determines the maximum 

resonator tunability and maximum achievable filter bandwidth. The analytical solution of fs and fp 

shows that the ratio (Cx/Co), called electromechanical coupling strength, determines the separation 

between fs and fp. Here Cx and Co are motional and static capacitance of the transducer, given by 

equations 2.8-2.16. The electromechanical coupling strength (Cx/Co) represents the efficiency of 

 

Figure 2.4: (a) Electrical equivalent circuit of a micromechanical resonator and (b) the equivalent circuit 

referred to the input. The input admittance of the micromechanical resonator shows the low-impedance 

series resonance and the high-impedance parallel resonance (c) with 180degrees of change in the phase (d). 

The resonator acts as an inductor between series and parallel resonances and a capacitor everywhere else. 
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energy conversion between electrical and mechanical domains. You might notice that the 

electromechanical coupling strength given in equation 2.20 is the same as the change in the 

resonance frequency of equation 2.13 due to electrical stiffness softening. In other word, 

transducer with stronger electromechanical coupling has larger tuning range, as suggested by 2.21. 

𝐿𝑥 =
𝑙𝑥
𝜂𝑒
2
= 𝑚𝑟

𝑑𝑜
4

(𝜀𝐴𝑉𝑃)
2
 

𝐶𝑥 = 𝑐𝑥𝜂𝑒
2 =

1

𝑘𝑟

(𝜀𝐴𝑉𝑃)
2

𝑑𝑜
4

 

𝑅𝑥 =
𝑟𝑥
𝜂𝑒
2
=
𝑚𝑟𝜔𝑜

𝑄𝜂𝑒
2
=
𝑚𝑟𝜔𝑜

𝑄

𝑑𝑜
4

(𝜀𝐴𝑉𝑃)
2
 

𝐶𝑜 =
𝜀𝐴

𝑑𝑜
 

 (2.19) 

𝐶𝑥
𝐶𝑜

=
1

𝑘𝑟

𝜀𝐴𝑉𝑃
2

𝑑𝑜
3   (2.20) 

𝜔𝑜 = 𝜔𝑛𝑜𝑚√1 −
𝑘𝑒
𝑘𝑟

= 𝜔𝑛𝑜𝑚√1 −
𝐶𝑥
𝐶𝑜

  (2.21) 

2.2 CLAMPED-CLAMPED BEAM RESONATORS 

Clamped-clamped beam (CC-beams) resonators [50] comprise of a long narrow beam 

anchored at both ends and suspended above the input electrode by gap spacing do, as shown in 

Figure 2.5. CC-beams were among the first resonators implemented in micro-size and used in 

frequency control and time-keeping applications, from kHz [50] [65] to 1GHz [66], as well as 

various sensors. This is indeed due to several exceptional characteristics of these resonators which 

made them attractive to the researchers across different fields: 

 Simple processing: A simple three-mask surface micromachining process can realize 

CC-beams, as explained in the Section 2.3. This means low-cost fast-turnout process, 

invaluable to the fast-paced fields.  

 Easy excitation: an electrode underneath the beam can efficiently excite the 

fundamental mode, without any need for complex electrode processing or choice of 

material. 

 Spurious-free excitation: due to strong coupling of electric field to the fundamental 

mechanical mode, spurious modes do not get excited and wideband response is 

spurious free. 

 High Q: CC-beams can provide high quality factor, in the order of 10,000 or more, 

up to VHF. Note that the CC-beam quality factor drops by frequency, as the anchor 

loss becomes dominant. 

 Strong coupling: theoretically, CC-beams have strong electromechanical coupling 

strength on the order of 10%, up to VHF. 

 Tunability: a set of separate electrodes underneath the CC-beam, as shown in Figure 

2.5, can tune the resonance frequency of the resonator, with no need to change the 
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bias voltage VP and therefore, no compromise in the main resonator parameters, such 

as Cx, Rx, etc. 

 Low-velocity coupling: the mechanical coupling beams between CC-beams can be 

places anywhere along the beam length. Different joint location changes the effective 

stiffness and manipulates the system bandwidth (c.f. Chapter 3) 

The application of fixed boundary condition at both ends into the Euler–Lagrange wave 

equation [54] determines the resonance frequency and results in the mode shape of equation 2.22 

for the eigenvalue frequency of 2.23. Here, E and ρ are the Young modulus and the density of the 

material, respectively, and h and Lr are the thickness and length of the resonator, as shown in 

Figure 2.5. Note that the resonance frequency of a CC-beam does not depend on the width and this 

approximation is valid if the beam length is much larger than the width and the acoustic wave 

propagation is essentially a one-dimensional problem. The Figure 2.5 presents the analytical 

solution and the FEM simulation of the fundamental mode shape. The results of the previous 

section assumed that different parts of the resonator have the same displacement and velocity, 

however, this mode shape shows that the displacement of a CC-beam is a function of the location 

and therefore, we must modify those findings accordingly. 

𝑋𝑚𝑜𝑑𝑒(𝑦) = −1.01781 {cos (4.73
𝑦

𝐿𝑟
) − cosh (4.73

𝑦

𝐿𝑟
)}

+ {sin (4.73
𝑦

𝐿𝑟
) − sinh (4.73

𝑦

𝐿𝑟
)} 

 (2.22) 

𝑓𝑛𝑜𝑚 = 1.03√
𝐸

𝜌
∙
ℎ

𝐿𝑟
2
   (2.23) 

 

Figure 2.5: (a) An illustration of a general beam with fixed boundary condition on both ends and (b) a 

schematic of the CC-beam resonator of this work. The center electrode carries the main signal, while two 

small electrodes on both sides are used for fine tuning of the transfer function. (c) and (d) presents the CC-

beam analytical mode shape and FEM simulation. 
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Although the resonator displacement and velocity are a function of location, the stored 

energy in the resonator is a universal parameter and should not depend on the location of interest. 

This argument suggest that also effective mass and effective stiffness of the resonator should be 

functions of the location to provide the constant stored energy in the resonator. The resonator 

velocity in the steady state is given in equation 2.24. The resonator total kinetic energy is the sum 

of kinetic energy in each infinitely-small differential volume of the resonator, as shown in equation 

2.25. Since the CC-beam resonator is much longer than it is wide, the wave propagation is 

effectively a one-dimensional problem and the integration to find the total kinetic energy is only 

necessary in y-direction. For wide or thick resonators, the wave equation should be solved in 2D 

or 3D and the corresponding integration will be over a surface or volume, respectively. The 

effective mass models the resonator behavior in a given location and hence, it should predict the 

same amount of stored energy, independent of the point of interest. This argument suggests the 

expression of equation 2.26 for the resonator effective mass. This equation reduces to familiar 

expression ρWrLrh for a constant mode shape: the integration simply considers the contribution of 

the beam mass in different location in the total resonator response. Note the difference between 

the effective mass and the differential mass at a given location, while the differential mass is a 

physical parameter at that point and determines the amount of stored energy there, the effective 

mass is a merely modeling parameter and represents the total amount of the energy stored in the 

whole resonator. 

𝑉(𝑦) = 𝑗𝜔𝑋𝑚𝑜𝑑𝑒(𝑦)  (2.24) 

𝑑𝐾𝐸(𝑦′) =
1

2
𝑑𝑚(𝑦′)|𝑉(𝑦′)|2 =

1

2
(𝜌𝑊𝑟ℎ𝑑𝑦′)(𝜔

2𝑋𝑚𝑜𝑑𝑒
2 (𝑦′)) 

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑑𝐾𝐸(𝑦′)
𝐿𝑟

0

=
1

2
𝜌𝑊𝑟ℎ𝜔

2∫ 𝑋𝑚𝑜𝑑𝑒
2 (𝑦′)𝑑𝑦′

𝐿𝑟

0

 

 (2.25) 

1

2
𝑚𝑟(𝑦)|𝑉(𝑦)|

2 = 𝐾𝐸𝑡𝑜𝑡𝑎𝑙 

𝑚𝑟(𝑦) =
2𝐾𝐸𝑡𝑜𝑡𝑎𝑙

𝜔2𝑋𝑚𝑜𝑑𝑒
2 (𝑦)

= 𝜌𝑊𝑟ℎ
∫ 𝑋𝑚𝑜𝑑𝑒

2 (𝑦′)𝑑𝑦′
𝐿𝑟
0

𝑋𝑚𝑜𝑑𝑒
2 (𝑦)

 

 

 (2.26) 

The same analysis for potential energy can provide analytical expression for the effective 

stiffness. However, equation 2.4 provides simpler framework for the calculation of effective 

stiffness, as articulated in equation 2.27. It is a convention to report the effective mass and stiffness 

at the maximum displacement location. Maximum displacement of the CC-beam fundamental 

mode happens at the center of the resonator and equation 2.28 provides the corresponding effective 

mass mre and effective stiffness kre. 

𝑘𝑟(𝑦) = 𝜔𝑜
2𝑚𝑟(𝑦) = 41.883 × 𝐸𝑊𝑟

ℎ3

𝐿𝑟
4

∫ 𝑋𝑚𝑜𝑑𝑒
2 (𝑦′)𝑑𝑦′

𝐿𝑟
0

𝑋𝑚𝑜𝑑𝑒
2 (𝑦)

  (2.27) 
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𝑚𝑟𝑒 = 𝑚𝑟 (
𝐿𝑟
2
) = 𝜌𝑊𝑟ℎ

∫ 𝑋𝑚𝑜𝑑𝑒
2 (𝑦′)𝑑𝑦′

𝐿𝑟
0

2.613
 

𝑘𝑟𝑒 = 𝑘𝑟 (
𝐿𝑟
2
) = 41.883 × 𝐸𝑊𝑟

ℎ3

𝐿𝑟
4

∫ 𝑋𝑚𝑜𝑑𝑒
2 (𝑦′)𝑑𝑦′

𝐿𝑟
0

2.613
 

 (2.28) 

The applied bias voltage to the resonator applies a constant mechanical force to the 

suspended electrode and hence, bends the beam from the rest position and change the gap spacing. 

Since the performance of capacitive transducers is a strong function of the gap spacing, thorough 

investigation of the gap spacing due to beam bending is very important. Each differential slice of 

the capacitive transducer of Figure 2.5 applies some mechanical force on the suspended electrode 

and make it bend, determined by the gap at that location and the bias voltage. The total beam 

deformation will be the sum of these differential bending, applying the linear superposition 

assumption. The following assumptions can simplify this complicated static problem into a simple 

spring-force question: 

 The static mode shape Xstatic is the same as the fundamental mode shape Xmode of 2.22. 

 The parallel plate capacitor is a valid approximation for the electric field in each 

differential slice. 

 The force from each differential slice bend the beam according to fundamental mode 

shape and hence, the problem simplifies into the identifying the maximum deflection 

at the beam center due to each differential force. 

 The deflection at a given location is determined by the mechanical force and the 

effective stiffness at that location. 

Equation 2.29 determines the deflection at y’ due the electrostatic force of differential slice 

at y’. Note that the gap spacing in this equation is d(y’) and has to be found and is not equal to the 

initial gap spacing do. The deflection at point y’ can be transferred to the beam center if divided by 

the mode shape at that point Xmode(y’), as shown in equation 2.30. The expression of equation 2.30 

is the amplitude of deflection at the beam center due to the applied force at y’ and hence, should 

be multiplied by Xmode(y) to provide the expression for the deflection along the beam. Integrating 

over the electrode width provides the total deflection in the resonator due to the applied voltage, 

as presented in the equation 2.31. This equation is transcendental and self-recursive and does not 

have closed-form analytical solution. 

𝛿(𝑦′, 𝑦′) =
1

2

𝑉𝑃
2𝜀𝑊𝑟𝑑𝑦′

𝑘𝑟(𝑦
′){𝑑(𝑦′)}2

  (2.29) 

𝛿 (
𝐿𝑟
2
, 𝑦′) =

1

2

𝑉𝑃
2𝜀𝑊𝑟𝑑𝑦′

𝑘𝑟(𝑦
′){𝑑(𝑦′)}2

1

𝑋𝑚𝑜𝑑𝑒(𝑦
′)

  (2.30) 
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𝑑(𝑦) = 𝑑𝑜 −∫ 𝛿 (
𝐿𝑟
2
, 𝑦′) 𝑋𝑚𝑜𝑑𝑒(𝑦)

𝐿𝑒2

𝐿𝑒1

= 𝑑𝑜 −
1

2
𝑉𝑃
2𝜀𝑊𝑟∫

1

𝑘𝑟(𝑦
′){𝑑(𝑦′)}2

𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝑦
′)
𝑑𝑦′

𝐿𝑒2

𝐿𝑒1

 

 (2.31) 

The same argument and assumptions can provide accurate expression for the electrical 

stiffness of the CC-beam, including beam deflection under bias voltage VP. The contribution to the 

change in the resonance frequency from the differential slice at y’ is given in the expression 2.32. 

Total electrical stiffness in the transducer will be the integration over the electrode width, presented 

in equation 2.33. Here, kr(y’) acts as a weighting function, suggesting that the electrical stiffness 

near the anchor points where effective stiffness is extremely large, is negligible. 

𝑑𝑘𝑒(𝑦
′)

𝑘𝑟(𝑦
′)

= 𝑉𝑃
2
𝜀𝑊𝑟𝑑𝑦

′

{𝑑(𝑦′)}3
1

𝑘𝑟(𝑦
′)

  (2.32) 

𝑘𝑒 = (−𝑉𝑃
2𝜀𝑊𝑟∫

1

{𝑑(𝑦′)}3
𝑘𝑟𝑒

𝑘𝑟(𝑦
′)
𝑑𝑦′

𝐿𝑒2

𝐿𝑒1

)  (2.33) 

Electrical stiffness softens the resonator and reduce the effective stiffness, therefore, the 

stiffness term in the equation 2.31 should be kr(y’)-ke to capture this effect. On the other hand, 

calculation of electrical stiffness requires the gap spacing as a function of the location. Hence, 

equations 2.31 and 2.33 are mutually coupled and must be solved numerically together. Figure 2.6 

provides an efficient recursive algorithm to solve this set of equations numerically. Initially it 

assumes there is no deflection in the beam and calculates the electrical stiffness and then use these 

numbers to calculate the deflection in the beam. This algorithm diverges at the pull-in voltage or 

beyond that and serves as an indication of the pull-in phenomena for the complex structures. 

The transformer ratio ηe is the link between electrical and mechanical domain and thorough 

investigation of its dependence on beam mode shape is of utmost importance. Since considering 

the beam deflection in the equation 2.1 is not straightforward, it is more convenient to find ηe from 

equation 2.19. The input current into the device for a given input voltage at the resonance 

frequency determines the motional resistance Rx. Then, equation 2.19 can provide the expression 

for ηe. The electrostatic force of the differential slice at y’ cause small displacement in the resonator 

at y’, which can be converted to displacement at any point by using the same assumptions of the 

previous section. Equations 2.34 and 2.35 provide the displacement at y’ and anywhere along the 

resonator, respectively, due to the force at y’. The total displacement is the sum of displacement 

from each differential segment along the electrode, as given in equation 2.36. 

𝑑𝑋(𝑦′, 𝑦′) =
𝑄𝐹(𝑦′)

𝑘𝑟(𝑦
′)

=
𝑄

𝑘𝑟(𝑦
′)

𝑉𝑃𝜀𝑊𝑟𝑑𝑦
′

{𝑑(𝑦′)}2
𝑣𝑖  (2.34) 

𝑑𝑋(𝑦, 𝑦′) =
𝑄

𝑘𝑟(𝑦
′)

𝑉𝑃𝜀𝑊𝑟𝑑𝑦′

{𝑑(𝑦′)}2
𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝑦
′)
𝑣𝑖  (2.35) 
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𝑋(𝑦) = ∫ 𝑑𝑋(𝑦, 𝑦′)
𝐿𝑒2

𝐿𝑒1

= ∫ (
𝑄

𝑘𝑟(𝑦
′)

𝑉𝑃𝜀𝑊𝑟

{𝑑(𝑦′)}2
𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝑦
′)
𝑣𝑖)𝑑𝑦′

𝐿𝑒2

𝐿𝑒1

  (2.36) 

The displacement transfer function of equation 2.36, induces motional current ix, as shown 

in equation 2.15. Equation 2.37 presents the output motional current from the differential slice at 

y and the total output current is the sum of currents from each segment, given in equation 2.38. 

Since the resonator impedance is purely resistive at resonance, it represents the motional resistance 

Rx, as expressed in equation 2.39. Equation 2.18 can be used to factor out ηe and provides the 

analytical expression, given in equation 2.40. The double integration in the equation 2.40 

originates from the coupling between electrical and mechanical domain; (1) applied voltage 

induces mechanical force, which makes the beam to move, (2) displacement of the suspended 

beam changes the transducer capacitance and generates output current. 

𝑑𝑖𝑥(𝑦) =
𝜔𝑜𝑉𝑃𝜀𝑊𝑟𝑑𝑦

{𝑑(𝑦)}2
𝑋(𝑦)  (2.37) 

𝑖𝑥 = ∫ 𝑑𝑖𝑥(𝑦)
𝐿𝑒2

𝐿𝑒1

= ∫ (
𝜔𝑜𝑉𝑃𝜀𝑊𝑟

{𝑑(𝑦)}2
{∫ (

𝑄

𝑘𝑟(𝑦
′)

𝑉𝑃𝜀𝑊𝑟

{𝑑(𝑦′)}2
𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝑦
′)
𝑣𝑖)𝑑𝑦′

𝐿𝑒2

𝐿𝑒1

})𝑑𝑦
𝐿𝑒2

𝐿𝑒1

  (2.38) 

1

𝑅𝑥
= (

𝑖𝑥
𝑣𝑖
) = ∫ ∫ (

𝜔𝑜𝑄

𝑘𝑟(𝑦
′)

(𝑉𝑃𝜀𝑊𝑟)
2

{𝑑(𝑦)}2{𝑑(𝑦′)}2
𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝑦
′)
)

𝐿𝑒2

𝐿𝑒1

𝑑𝑦′𝑑𝑦
𝐿𝑒2

𝐿𝑒1

  (2.39) 

𝜂𝑒 = √
𝑘𝑟𝑒

𝜔𝑜𝑄𝑅𝑥
= √∫ ∫ (

𝑘𝑟𝑒
𝑘𝑟(𝑦

′)
∙

(𝑉𝑃𝜀𝑊𝑟)
2

{𝑑(𝑦)}2{𝑑(𝑦′)}2
∙
𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝑦
′)
)

𝐿𝑒2

𝐿𝑒1

𝑑𝑦′𝑑𝑦
𝐿𝑒2

𝐿𝑒1

 

𝜂𝑒 = 𝑉𝑃𝜀𝑊𝑟∫ (
1

{𝑑(𝑦)}2
∙

𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝐿𝑟/2)
) 𝑑𝑦

𝐿𝑒2

𝐿𝑒1

 

 (2.40) 

Similar arguments can provide an expression for the electromechanical coupling ηet of tuning 

electrodes, shown in Figure 2.5. The main electrode still drives the fundamental mode and 

therefore, X/vi transfer function includes integration from Le1 to Le2. On the other hand, the tuning 

electrodes generate the output current and the integration will be from Let1 to Let2, shown in 

equation 2.41. 

 
Figure 2.6: The flow chart used to calculate the accurate transformer ratio, gap spacing and electrical 

stiffness of the CC-beam resonator by considering the effects of the mode shape and beam bending due to 

the bias voltage. 
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𝜂𝑒𝑡 = √∫ (
𝑋𝑚𝑜𝑑𝑒(𝑦)

{𝑑(𝑦)}2
)𝑑𝑦

𝐿𝑒𝑡2

𝐿𝑒𝑡1

∫ (
𝑘𝑟𝑒

𝑘𝑟(𝑦
′)
∙
(𝑉𝑃𝜀𝑊𝑟)

2

{𝑑(𝑦′)}2
∙

1

𝑋𝑚𝑜𝑑𝑒(𝑦
′)
) 𝑑𝑦′

𝐿𝑒2

𝐿𝑒1

 

𝜂𝑒𝑡 = 𝑉𝑃𝜀𝑊𝑟√∫ (
1

{𝑑(𝑦)}2
∙

𝑋𝑚𝑜𝑑𝑒(𝑦)

𝑋𝑚𝑜𝑑𝑒(𝐿𝑟/2)
) 𝑑𝑦

𝐿𝑒𝑡2

𝐿𝑒𝑡1

∫ (
1

{𝑑(𝑦′)}2
∙
𝑋𝑚𝑜𝑑𝑒(𝑦

′)

𝑋𝑚𝑜𝑑𝑒(𝐿𝑟/2)
) 𝑑𝑦′

𝐿𝑒2

𝐿𝑒1

 

 (2.41) 

The set of equations 2.23, 27, 28, 30, 33, 40 and 41 forms the general framework to 

thoroughly investigate and predict the frequency behavior of any CC-beam resonator and can 

provide the corresponding equations for other types of resonators. However, these equations are 

dependent on heavy numerical recursive solutions and are not suitable for implementation in the 

circuit simulators, such as Keysight ADS, for circuit analysis and optimizations. Since the initial 

resonator and filter design is based on the linear performance of the device under small input 

power, we can assume the beam deflection is negligible compared to initial gap do and then, 

simplify these equations. Also, referring to electrode width in terms of the ratio of the beam length 

it covers simplifies the equations and make the integration independent of resonator length. 

Equation 2.42 and 2.43 provide expressions for the electrode width, assuming there is no gap 

between the electrodes and electrodes cover the whole beam length, as suggested by equation 2.44. 

Equation 2.45 provides the mode shape for the normalized values of y to Lr. The simplified 

expressions for the electromechanical coupling ηe and ηet are given in equation 2.44 and 2.45, 

respectively. 

𝑊𝑒 = 𝛼𝑒𝐿𝑟 , 𝐿𝑒 =
𝐿𝑟 −𝑊𝑒

2
= 𝐿𝑟 (

1 − 𝛼𝑒
2

) , 𝐿𝑒2 =
𝐿𝑟 +𝑊𝑒

2
= 𝐿𝑟 (

1 + 𝛼𝑒
2

)  (2.42) 

𝑊𝑒𝑡 = 𝛼𝑒𝑡𝐿𝑟 , 𝐿𝑒𝑡 = 0, 𝐿𝑒𝑡2 = 𝑊𝑒𝑡 = 𝛼𝑒𝑡𝐿𝑟  (2.43) 

𝛼𝑒 + 2𝛼𝑒𝑡 = 1  (2.44) 

𝑋̃𝑚𝑜𝑑𝑒(𝑦) = −1.01781{cos(4.73𝑦) − cosh(4.73𝑦)} + {sin(4.73𝑦) − sinh(4.73𝑦)}  (2.45) 

𝜂𝑒 =
𝑉𝑃𝜀𝑊𝑟𝐿𝑟

𝑑𝑜
2

∫ (
𝑋̃𝑚𝑜𝑑𝑒(𝑦)

𝑋̃𝑚𝑜𝑑𝑒(1/2)
)𝑑𝑦

  𝛼𝑒
2

 −𝛼𝑒
2

  (2.46) 

𝜂𝑒𝑡 =
𝑉𝑃𝜀𝑊𝑟𝐿𝑟

𝑑𝑜
2

√∫ (
𝑋̃𝑚𝑜𝑑𝑒(𝑦)

𝑋̃𝑚𝑜𝑑𝑒(1/2)
) 𝑑𝑦

𝛼𝑒𝑡

0

∫ (
𝑋̃𝑚𝑜𝑑𝑒(𝑦′)

𝑋̃𝑚𝑜𝑑𝑒(1/2)
)𝑑𝑦′

  𝛼𝑒
2

 −𝛼𝑒
2

  (2.47) 

equations 2.48 and 2.49 provide the motional resistance Rx and electromechanical coupling 

strength (Cx/Co) of a CC-beam resonator, respectively, based on the simplification of the previous 

section. As these equations suggest, the motional resistance Rx and electromechanical coupling 

(Cx/Co) improves by increasing bias voltage VP and reducing gap spacing do. Particularly, they are 
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very strong functions of the gap and gap spacing is a powerful knob to control the resonator 

performance. Equations 2.49 also suggests that coupling and motional resistance decreases by the 

resonance frequency and the appropriate choice of gap spacing and biasing voltage should 

compensate the degradation in the performance. The choice of electrode width αe also changes the 

resonator performance, as shown in Figure 2.7. Although Rx decrease monotonically by increase 

in the electrode width, the electromechanical coupling reaches its maximum when the electrode 

covers 60% of the beam length. This optimum point is since the beam displacement near the anchor 

point is much smaller than the center and the contribution of this section to the motional 

capacitance Cx is negligible, while the contribution to the static capacitance Co is the same. On the 

other hand, the choice of αe determines the maximum transformer ratio ηet of the tuning electrodes, 

as predicted by equation 2.44 and 2.47 and shown in Figure 2.7 (c). Considering different tradeoffs, 

this work adopts αe of 49% and αet of 19.36%. 

𝑅𝑥 =
𝑘𝑟𝑒

𝑄𝜔𝑜𝜂𝑒
2
=
𝜔𝑜

𝑄
∙
𝜌

𝜀2
∙
𝑑𝑜
4

𝑉𝑃
2 ∙

ℎ

𝑊𝑟𝐿𝑟
∙

∫ 𝑋̃2
𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦

 

0

(∫ 𝑋̃𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦
  𝛼𝑒
2

 −𝛼𝑒
2

)

2    (2.48) 

 

Figure 2.7: (a) The electromechanical coupling (Cx/Co) as a function of normalized electrode width αe. The 

coupling has maximum at αe =0.6, since the resonator displacement near the anchor points is small and does 

not contribute to the output current, while the static capacitance linearly increases by the electrode width 

(b). The choice of electrode width should consider the amount of required tuning (c) and the resonator 

motional resistance (d). Wide electrode decreases the motional resistance in the expense of smaller tuning 

range. The optimum choice depends on the tradeoffs between (Cx/Co), tuning range and Rx. 
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𝐶𝑥
𝐶𝑜

=
𝜂𝑒
2

𝑘𝑟𝑒𝐶𝑜
=

1

𝜔𝑜
2
∙
𝜀

𝜌
∙
𝑉𝑃
2

𝑑𝑜
3 ∙

1

ℎ𝛼𝑒
∙

(∫ 𝑋̃𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦
  𝛼𝑒
2

 −𝛼𝑒
2

)

2

∫ 𝑋̃2
𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦

 

0

 
 (2.49) 

There is an upper limit on the bias voltage to avoid catastrophic collapse of suspended 

electrode, as suggested by equation 2.18 and repeated in equation 2.50 for the CC-beam. Assuming 

the bias voltage is a fraction of the pull-in voltage, then equations 2.48 and 2.49 can be reorganized 

into equations 2.52 and 2.53 in order to capture all the limitations of CC-beam resonators. Equation 

2.52 shows that in contrary to the common belief, capacitive resonator motional resistance 

decreases by frequency for a given thickness, assuming no degradation in the quality factor. More 

interestingly, equation 2.53 suggests that the electromechanical coupling strength is independent 

of CC-beam dimension and resonance frequency, and it is only determined by how close the bias 

voltage is to the fundamental limit and what the electrode covers what percentage of the beam. 

𝑉𝑝𝑢𝑙𝑙−𝑖𝑛
2 =

𝜔𝑜
2𝜌ℎ𝑑𝑜

3

𝜀
∙

∫ 𝑋̃2
𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦

 

0

∫ 𝑋̃2
𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦

  
𝛼𝑒
2

 −
𝛼𝑒
2

 
 (2.50) 

𝑉𝑃 = 𝛼𝑉𝑉𝑝𝑢𝑙𝑙−𝑖𝑛  (2.51) 

𝑅𝑥 =
1

𝛼𝑉
2 ∙

1

𝜔𝑜𝑄𝜀
∙
𝑑𝑜
𝑊𝑟𝐿𝑟

∙

∫ 𝑋̃2
𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦

  
𝛼𝑒
2

 −
𝛼𝑒
2

(∫ 𝑋̃𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦
  

𝛼𝑒
2

 −
𝛼𝑒
2

)

2   

𝑅𝑥 =
1

2.544
∙

1

𝑄𝜀𝛼𝑉
2√𝜔𝑜

∙
𝑑𝑜

𝑊𝑟√ℎ
∙

∫ 𝑋̃2
𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦

  
𝛼𝑒
2

 −
𝛼𝑒
2

(∫ 𝑋̃𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦
  

𝛼𝑒
2

 −
𝛼𝑒
2

)

2 

 (2.52) 

𝐶𝑥
𝐶𝑜

=
𝛼𝑉
2

𝛼𝑒
∙

(∫ 𝑋̃𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦
  

𝛼𝑒
2

 −
𝛼𝑒
2

)

2

∫ 𝑋̃2
𝑚𝑜𝑑𝑒(𝑦)𝑑𝑦

  
𝛼𝑒
2

 −
𝛼𝑒
2

  (2.53) 

 

Table 2.1 captures the design procedure presented here alongside the relevant governing 

equations with appropriate approximation for the choice of αe of this work. 
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Table 2.1: Resonator Design Summary 
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2.3 EXPERIMENTAL RESULTS 
CC-beam resonators were fabricated using a previously described vertical gap surface-micromachining 

process [55], summarized by the process cross-sections in Figure 2.8, with some modifications to 

incorporate a damascene process to enable a thick, low resistance interconnect layer. Fabrication starts with 

deposition of 2μm-thick silicon dioxide and 400nm-thick silicon nitride on the silicon substrate to 

electrically isolate different interconnects. Then 1.5μm-thick oxide is deposited and patterned using a 

Table 2.2: Resonator Data Summary 

 

 

Parameters Simulation Measurement Units

Young’s Modulus, E 150 150 GPa

Density, r 2,300 2,300 kg/m3

Length, Lr 40 40.8 mm

Width, Wr 8 8 mm

Thickness, h 2 1.985 mm

Electrode-to-Resonator Gap, do 150 140 nm

Resonant Frequency, fnom 9.141 8.720 MHz

DC-Bias Voltage, VP 5 5 V

Resonant Frequency, fo 9.121 8.694 MHz

Quality Factor, Q 10,000 15,100 —

Effective Mass, mr 582.9 x10-15 590.2x10-15 kg

Effective Stiffness, km 1.923x103 1.771x103 N/m

Effective Stiffness, kr 1.914x103 1.761x103 N/m

Effective Damping, cr 3.34x10-9 2.13x10-9 Ns/m

Input Electrode Width, We 20 20 mm

Tuning Electrode Width, Wt 7.9 7.9 mm

Electromech. Coupling, ηe 320x10-9 386.5x10-9 C/m

Electromech. Coupling, ηt 17.5x10-9 20.1x10-9 C/m

Equivalent Resistance, Rx 30.67 14.29 kW

Equivalent Inductance, Lx 5.35 3.95 H

Equivalent Capacitance, Cx 0.056 0.084 fF

Static Overlap Capacitance, Co 16.9 18.1 fF

Electromech. Coupling, Cx/Co 0.331 0.464 %

Interconnect 

Poly Silicon

Structure 

Poly Silicon

Output 

Electrode

Tuning 

Electrode

Bias 

Line

Table 1: Resonator Data Summary

 

Figure 2.9: SEM photograph of a released CC-

beam resonator. 
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Electrode-to-Resonator Gap, do 150 140 nm

Resonant Frequency, fnom 9.141 8.720 MHz

DC-Bias Voltage, VP 5 5 V

Resonant Frequency, fo 9.121 8.694 MHz

Quality Factor, Q 10,000 15,100 —

Effective Mass, mr 582.9 x10-15 590.2x10-15 kg

Effective Stiffness, km 1.923x103 1.771x103 N/m

Effective Stiffness, kr 1.914x103 1.761x103 N/m

Effective Damping, cr 3.34x10-9 2.13x10-9 Ns/m

Input Electrode Width, We 20 20 mm

Tuning Electrode Width, Wt 7.9 7.9 mm

Electromech. Coupling, ηe 320x10-9 386.5x10-9 C/m

Electromech. Coupling, ηt 17.5x10-9 20.1x10-9 C/m

Equivalent Resistance, Rx 30.67 14.29 kW

Equivalent Inductance, Lx 5.35 3.95 H

Equivalent Capacitance, Cx 0.056 0.084 fF

Static Overlap Capacitance, Co 16.9 18.1 fF

Electromech. Coupling, Cx/Co 0.331 0.464 %

Interconnect 

Poly Silicon

Structure 

Poly Silicon

Output 

Electrode

Tuning 

Electrode

Bias 

Line

Table 1: Resonator Data Summary

 

Figure 2.8: (a)-(d) Cross-sections of the fabrication process flow used for the third- and forth-order bridged 

filter of this work. 

Poly Int.Oxide Sac. Ox.Nitride Poly Str.

(a) (b)

(c) (d)
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negative interconnect mask to form a mold for the interconnect. Deposition of 2μm-thick insitu-doped 

polysilicon and polishing down to the oxide yields to the thick interconnects of Figure 2.8 (a). This 

damascene process removes all the structure topography, allowing for more precise definition of resonator 

center frequency. Next, 150nm of sacrificial oxide is deposited and patterned to open anchor vias, as shown 

in Figure 2.8(b), followed by successive depositions of 2μm-thick structural phosphorous-doped-

polysilicon and 500nm of oxide hard mask material, respectively. Patterning via the filter structure mask 

and etching then yields Figure 2.8 (c). A wet dip in hydrofluoric acid then releases devices, leaving free 

standing structures, such as shown in Figure 2.8(d).  

Figure 2.9 presents the SEM of a released CC-beam micromechanical resonator and Table 

2.2 summarizes the resonator designed dimensions and extracted characteristics of this work. 

Figure 2.10 (a) presents the measurement circuitry used to characterized the released CC-

beam resonator. This pseudo-two port configuration allows transmission measurement for the 

frequency characterization of the device, instead of reflection measurement offered by one-port. 

Figure 2.10 (b) shows the frequency response of the CC-beam at 5V, demonstrating the strong 

peak and good rejection a CC-beams can offer. This resonator has quality factor of 15,100 

extracted by fitting to a Lorentzian function. As suggested by equation 2.48, the motional 

 

Figure 2.10: (a) Illustration of a CC-beam resonator in a typical pseudo two-port operation scheme and (b) 

its measured frequency response at 5V. (c) The increase in the bias voltage VP shifts the resonance 

frequency due to electrical stiffness and improves the insertion loss. (d) Wideband measurement of the 

resonator shows a spurious-free frequency response. 
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resistance of the resonator should decrease by bias voltage square and hence, the insertion loss 

decreases accordingly, confirmed by the graphs of Figure 2.10 (c). Figure 2.10 (d) demonstrate the 

wideband performance of the resonator and as mentioned in the previous section, the configuration 

for the CC-beam fundamental mode excitation does not excite spurious modes and the wideband 

respond is extremely clean.  

Figure 2.11 (a), derived from Figure 2.10 (c), presents the resonance frequency of the 

resonator for different bias voltage VP. The stiffness softening due to electrical stiffness shifts the 

resonance to lower frequency, as suggested by equation 2.333. The fo-VP plot is a unique feature 

of the capacitive resonator: the extrapolated resonance frequency at zero volt determines the 

resonator dimension and the graph curvature is distinctive to the gap spacing. This resonator has 

gap spacing of 142nm and beam height of 1.84μm, as reported in Table 2.2. However, the resonator 

insertion loss and the motional resistance, shown in Figure 2.11 (b), do not follow the equation 

2.48 at higher bias voltages and seem to plateau at 1kΩ. This saturation in the motional resistance 

is due to finite conductivity of the interconnect layer. Modified lumped model in Figure 2.11 (c) 

with 500Ω series resistance with each line creates more realistic model and predicts the behavior 

of the Figure 2.11 (b) very well. This series resistance also loads the original quality factor of the 

resonator, as suggested by equation 2.54. Here, γ includes all the design and material parameters.  

𝑄𝐿𝑜𝑎𝑑𝑒𝑑 =
𝜔𝑜𝐿𝑥

𝑅𝑥 + 2𝑅𝑃
=

𝑄𝑜

1 +
2𝑅𝑃
𝑅𝑥

=
𝑄𝑜

1 + 𝛾𝑉𝑃
2 

 (2.54) 

 

Figure 2.11: (a) The CC-beam resonance frequency and (b) insertion loss as a function of bias voltage VP. 

The measured insertion loss is higher than the value predicted by the developed model, since the model 

does not take the series interconnect resistance into account. (c) Electrical equivalent circuit with 

corresponding series resistance at each port. 
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The same pseudo two-port measurement circuitry determined the electromechanical 

coupling strength (Cx/Co) of another released CC-beam resonator. Initially, the gap spacing was 

extracted from the fo-VP plot, shown in Figure 2.12 (a, b), and found to be 220nm. This gap spacing 

should support (Cx/Co) of 2.9% at 20V of bias voltage, according to the equation 2.49. Figure 2.12 

(c) presents the measured coupling strength (Cx/Co) of this resonator based on the series and 

parallel frequencies, provided in equation 2.19, and as expected, this resonator can provide 

coupling on the order of 10% and more, which outperforms any competing technologies at these 

frequencies. The combination of high quality factor and strong coupling makes CC-beam 

resonators an excellent choice for realization of front-end filters or high-precision oscillators at 

HF. The product of these two parameters, k2
eff .Q, is usually used to evaluate the performance of 

 

Figure 2.12: (a) The frequency response of a CC-beam resonator for different bias voltages. (b) The 

resonator center frequency for different bias voltage, derived from (a), which translates to gap spacing of 

220nm. (c) The electromechanical coupling strength (Cx/Co) derived from series and parallel resonance 

frequencies, as a function of bias voltage. This resonator offers (Cx/Co) of 9%, matched to the prediction of 

the analytical equations. 
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resonators and compare different technologies. The CC-beam resonator of this work with k2
eff .Q 

of 1,350 at 31V outperforms other competing technologies. 

𝑘𝑒𝑓𝑓
2 ∙ 𝑄𝑜 ≅ 1.2 (

𝐶𝑥
𝐶𝑜
)𝑄𝑜  (2.55) 
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Chapter 3 MECHANICALLY-COUPLED 

MICROMECHANICAL FILTERS 
This chapter introduces the basics of filter synthesis and design and discusses the importance 

of different filter specification and the formal procedure to achieve those goals. Selective low-

insertion loss filters are required for both transmitter and receiver systems, to prevent transmitting 

high-power signals into other users’ channels and to improve the sensitivity and range of the 

receiver. Current technologies exploit band-select BAW [14] or SAW [53] filters to filter out out-

of-band interferers. The capacitive micromechanical resonators can provide channel-level filtering 

due to their extraordinary quality factor and coupling. The implementation of such a channel-select 

filter can further improve transceiver performance and greatly reduce the power consumption. This 

chapter introduces the design of channel-select filters by mechanical coupling of identical 

resonators and presents the design procedures and measurement results of a 2nd-order filter. 

Moreover, the micromechanical filters presented here can be monotonically integrated with 

standard CMOS process to improve the performance and reduce the cost [67]. 

3.1 FILTER SPECIFICATIONS AND RESONATOR 

REQUIREMENTS 

A micromechanical resonator such as the one presented in the previous chapter has a biquad 

frequency response and although very useful in frequency-selection application [25], the offered 

bandwidth is not sufficient for any data-transfer application. Addition of more poles on the s-plane 

of the system eigenvalues can flatten the passband and achieve the desired bandwidth, as shown 

in Figure 3.1. A proper design of a third-order filter, such as one shown in Figure 3.1 (c), should 

achieve small insertion loss, large out-of-band rejection, and desired 3dB bandwidth, all by proper 

placement of the system poles. A selective filter also should have sharp passband-to-stopband roll-

off, characterized by 20dB shape factor defined by equation 3.1. 20dB shape factor will be unity 

for the ideal brick-wall filter and is larger than one for any other implementations. Group delay 

models the dispersion behavior of the system and determines the system delay for different 

frequencies. Therefore, flat and minimum group delay design might be very important, depending 

on the application and system requirements. 

𝑆𝐹20𝑑𝐵 =
𝐵𝑊20𝑑𝐵

𝐵𝑊3𝑑𝐵
  (3.1) 

There are various techniques to implement the system pole configuration shown in Figure 

3.1 (d). This work adopts the mechanically-coupled cascaded-resonator technique which uses 
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several identical resonators coupled via mechanical beams to achieve the required filter response. 

This technique offers numerous advantages: 

 All the resonating tanks have the same resonance frequency (i.e. dimension) and 

there is no need for very good absolute processing tolerances to determine the 

resonance frequency of each tank. Surface micromachining techniques have 

excellent relative local tolerances and hence, the resonance frequency of all the tanks 

will be identical, even though they might be off the initial designed value [68]. 

 

Figure 3.1: A single micromechanical resonator (a) and a third-order micromechanical filter (b) and their 

corresponding poles and zeros on the complex plane (b, d), transmission magnitude (e, f), phase (g, h) and 

group delay (i, j). 
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 The filter bandwidth is determined by mechanical design of coupling beams and not 

affected by electrical circuits [55]. 

 All the signal processing is happening in the mechanical domain and the system is 

less susceptible to the capacitive, inductive or resistive parasitic components. 

 You can eliminate feedthrough path by non-conductive coupling beams, while the 

main signal in mechanical domain can pass through. Therefore, the out-of-band 

rejection can be improved even more. 

3.1.1 QUALITY FACTOR REQUIREMENTS 

The insertion loss is the most important specification of a front-end filter; it directly affects 

the efficiency of the transmitter and the power consumption of the power amplifier and also 

determines the receiver sensitivity and changes the signal-to-noise ratio and increases the receiver 

noise figure instantly.  

The insertion loss of a filter realized by any techniques is primarily determined by the quality 

factor of each resonating tank and the filter percent bandwidth, as shown in equation 3.2. Here, Qo 

is the unloaded quality factor of the identical resonating tanks and Qf is a measure of filter 

bandwidth in comparison to its center frequency. This equation suggests that to realize a channel-

select filter with small percent bandwidth, one needs resonating tanks with higher quality factor to 

minimize the insertion loss. Figure 3.3 presents a channel-select and a band-select filter with 

 

Figure 3.2: (a) Schematic description of general implementation topology of a bandpass filter consisting of 

a chain of discrete resonator tanks linked with coupling elements. (b) Electrical equivalent circuit 

representation of the generic filter network with LCR tanks representing the resonator elements and shunt 

capacitors modeling the coupling between adjacent resonators. (c) The two mode peaks that ensue from the 

coupled high Q resonators. (d) Terminated filter response after proper termination. 

-80

-60

-40

-20

0

T
ra

n
s
m

is
s
io

n
 

[d
B

]

Frequency
-80

-60

-40

-20

0

T
ra

n
s
m

is
s
io

n
 

[d
B

]

Frequency

ResonatorTransducer Resonator Transducer

Coupling Beam

3dB BW

Center Freq Center Freq

2 Distinct 

Peaks

Flat 

Passband

Resonator #1 Resonator #2

(a)

(b)

(c) (d)



41 

 

different resonator Qo. As shown in this figure, a 2.8%-wide band-select filter only requires Qo of 

1000 to achieve insertion loss of 0.5dB, while a 0.02%-wide channel-select filter needs quality 

factor higher than 30,000 to obtain 1dB insertion loss. This highlights the importance of high 

quality factor for implementing RF channel-select filters, while the conventional band-select filters 

used in today’s wireless handsets can perform with Qo as low as 1000, or so. 

𝐼𝐿 ∝
1

𝑄𝑜 ∙ 𝑃𝐵𝑊
=

𝑄𝑓

𝑄𝑟𝑒𝑠
 

𝑃𝐵𝑊 =
1

𝑄𝑓
=
𝐵𝑊

𝑓𝑜
 

(3.2 ) 

3.1.2 ELECTROMECHANICAL COUPLING STRENGTH 

REQUIREMENTS 

The electromechanical coupling strength (Cx/Co) is a measure of the ratio of motional current 

at the output relative to the electrical feedthrough current via capacitive coupling and determines 

the proper termination resistance at the filter outputs and the maximum achievable out-of-band 

rejection; the stronger coupling the smaller required RQ and the higher stopband rejection. Here, 

the termination resistance RQ at the filter output loads the quality factor of the constituent 

resonators and flatten the rigged passband. 

Hypothetically, if the resonating tanks of Figure 3.2 did not have any shunt capacitance Co, 

there was no limit on the termination resistance and only the mechanical response of the system 

limits the stopband rejection. On the other hand, any transducer, capacitive or piezoelectric, has 

finite capacitance at the input, inherent to the fundamental operation of that transducer. The static 

capacitance Co forms a lowpass filter at the input and output of the filter, with corner frequency 

given in equation 3.3, which attenuates the frequency components of the motional current above 

 

Figure 3.3: Simulation of a band-select filter (left) and a channel-select filter (right) with different 

constituent resonator unloaded quality factor. 
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fFOM. To avoid any distortion in the signal within the bandpass frequency of the filter, the corner 

frequency of this lowpass filter fFOM should be much higher than the filter center frequency. 

Equation 3.4 translates this requirements into resonator specifications and shows that the resonator 

electromechanical coupling (Cx/Co) should be higher than the filter percent bandwidth. The 

expression used to evaluate RQ will be explained in the following Section. 

𝑓𝐹𝑂𝑀 =
1

2𝜋𝑅𝑄𝐶𝑜
=
𝜔𝑜𝑄𝑓𝐶𝑥
2𝜋𝐶𝑜

 

𝑅𝑄 =
1

𝜔𝑜𝐶𝑥𝑄𝑓
 

(3.3) 

𝑓𝐹𝑂𝑀  𝑓𝑜,
𝐶𝑥
𝐶𝑜

 
1

𝑄𝑓
,

𝐶𝑥
𝐶𝑜

 𝑃𝐵𝑊 (3.4) 

Figure 3.4 demonstrates the effect of electromechanical coupling (Cx/Co) on the filter 

passband response. As suggested by equation 3.4, a wider filter requires stronger coupling for 

proper termination and minimum distortion in the filter response. The simulated 1% filter of Figure 

3.4 (b) needs coupling of 1.5% or more, while the channel-select filter with 0.02% fractional 

 

Figure 3.4: (a) Simulation of a third-order Chebyshev micromechanical filter and the low-pass filter formed 

at the filter input and output by intrinsic capacitance Co and termination resistance RQ, (b) terminated filters 

with different constituent resonator electromechanical coupling strength (Cx/Co), (c) minimum coupling 

required for proper filter termination as a function of (c) filter bandwidth and (d) filter order. 
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bandwidth requires only 0.03%. The simulated third-order Chebyshev filter of this figure needs 

the coupling at least 1.5 times larger than fractional bandwidth to achieve in-band distortion 

smaller than 1dB. 

3.1.3 REQUIREMENTS ON THE FABRICATION 

TOLERANCE  

The resonating tanks of a cascaded filter, such as one shown in Figure 3.2, have identical 

resonance frequencies and then the mechanical coupling beam will make the system poles 

described in Figure 3.1 (d). The resonance frequency of a capacitive micromechanical resonator, 

like the CC-beam described in Chapter 2, is determined primarily by material properties, Young 

modulus and density, and physical dimensions, such as length and height for a CC-beam. Any 

mismatch in the resonance frequency of the constituent resonators of Figure 3.2 result in the 

distortion in the passband, since the system poles on the s-plane are off the designed location. This 

mismatch can be due to the fabrication tolerances across the wafer after photolithography or 

etching steps. For example, different exposure across the wafer can cause the anchor openings to 

be smaller or larger than the designed value and therefore, change the resonance frequency of the 

CC-beam resonator according to equation 2.23. The simulation results of Figure 3.5 suggest that 

the mismatch between resonator center frequencies should not exceed the fractional bandwidth of 

the filter to keep the distortion in an acceptable range. This requirement does not limit the 

implementation of band-select filters, since the fabrication variations in a modern facility is usually 

much better than the 3-6% fractional bandwidth of a band-select filter. On the other hand, this 

requirement dictates the variation on the order of 0.01% or so for a channel-select filter, which is 

not easily achievable and increases the fabrication costs dramatically. This tight variation 

 

Figure 3.5: The filter response of Figure 3.2 relies on the identical resonance frequencies of constituent 

resonators. Small mismatch between the resonators introduces large distortion in the filter passband. 
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requirement and cost consideration were one of the most important obstacles for the 

implementation of channel-select filters in consumer’s electronics. Some researchers have 

suggested different post-processing trimming techniques to compensate for the fabrication 

variations, though in expense of time and cost. Fortunately, the CC-beam resonators used in this 

work have wide tuning range via electrical stiffness, as discussed in Section 2.2. The tunability of 

individual resonators in a filter bank was the key to the success of this work and will be discussed 

in more details in the following chapters. 

3.2 LUMPED ELECTRICAL AND MECHANICAL MODELS OF 

THE MICROMECHANICAL FILTER 

The micromechanical filters of this work are much like the filter configuration of Figure 3.2 

and use high-quality resonating tanks, described in Chapter 2, mechanically coupled via flexural 

coupling beams. Figure 3.6 presents a 2nd-order filter comprising of two identical CC-beam 

resonators and a flexural coupling beam. The length of the coupling beam is usually the quarter of 

the acoustic wavelength at the frequency of interest. This quarter-wavelength design makes the 

filter response more robust against fabrication tolerances and helps the balanced distribution of 

coupling mass and stiffness between two resonators. The design of coupling beam will be covered 

in more details in the following chapter.  Three springs attached to the resonating tanks in the 

mechanical domain, shown in Figure 3.6 (b), or equivalently three capacitors shown in Figure 3.6 

(c) model the quarter-wavelength coupling beam. The coupling length Ls should satisfy H6 = 0 for 

quarter-wavelength design. Here, Is, Ws, and h are the coupling beam moment of inertia, width and 

height and ρ, E are material density and Young modulus, respectively. 

𝐻6 = sinh𝛼 cos 𝛼 + cosh 𝛼 sin 𝛼 = 0 (3.5) 

 

Figure 3.6: (a) Illustration of a 2CC-beam filter with biasing and tuning circuitry, (b) mechanical equivalent 

model of the 2nd-order filter coupled by quarter-wavelength coupling beams, (c) and its electrical equivalent 

circuit. The model includes ideal transformers to model the tuning electrodes, as well as the main 

input/output electrodes. 
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𝛼4 =
𝜌

𝐸
∙
𝑊𝑠ℎ𝐿𝑠

4

𝐼𝑠
∙ 𝜔2 = 12

𝜌

𝐸
∙
𝐿𝑠
4

ℎ2
∙ 𝜔2, 𝐼𝑠 =

𝑊𝑠ℎ
3

12
 

𝑘𝑠 =
𝐸𝐼𝑠𝛼

3(sin 𝛼 + sinh𝛼)

𝐿𝑠
3(cos 𝛼 cosh 𝛼 − 1)

 

𝑐𝑠 =
1

𝑘𝑠
 

(3.6) 

The mechanical system of Figure 3.6 (b) has two distinct mass with corresponding 

displacement amplitude and hence, has two degrees of freedom. Equations 3.7 formulate the 

steady-state response of this system for the applied force at the input. Since the system has two 

degrees of freedom, it will have two distinct eigenvalues and corresponding eigenvectors, as 

presented in equation 3.8. This calculation of eigenvalues assumes the loss in the system is very 

small and the resonating tanks have high quality factor. Equation 3.8 implies that the resonators 

are vibrating in phase at the first eigenvalue and out of phase at the second one and the resonators 

have equal displacement amplitude in both eigenvectors. These are direct consequences of quarter-

wavelength coupling beam design. Assuming the coupling beam is much smaller than the main 

resonators and consequently, it is more compliant, equation 3.9 can approximate the eigenvalue 

resonance frequencies to find the fractional bandwidth Δω/ωo. This equation suggests that the 

separation between the resonance frequencies depends on the ratio between the resonator and 

coupling beam stiffness values and these two resonances are equally spaced around the center 

frequency of the resonating tanks ωo. Therefore, the mechanical design of the system determines 

the system bandwidth; for a channel-select filter with tiny fractional bandwidth the resonator 

should be much stiffer than the coupling beam. 

{
−𝑚𝜔2𝑋 + 𝑏𝑗𝜔𝑋 + 𝑘𝑋 − 𝑘𝑠𝑋2 = 𝐹 
−𝑚𝜔2𝑋2 + 𝑏𝑗𝜔𝑋2 + 𝑘𝑋2 − 𝑘𝑠𝑋 = 0

 

[
𝑘 − 𝑚𝜔2 + 𝑏𝑗𝜔 −𝑘𝑠

−𝑘𝑠 𝑘 −𝑚𝜔2 + 𝑏𝑗𝜔
] [
𝑋 
𝑋2
] = [

𝐹 
0
] 

[
𝑋 /𝐹 
𝑋2/𝐹 

] =
1

(𝑘 − 𝑚𝜔2 + 𝑏𝑗𝜔)2 − 𝑘𝑠
2
[
𝑘 − 𝑚𝜔2 + 𝑏𝑗𝜔

𝑘𝑆
] 

[
𝑋 /𝐹 
𝑋2/𝐹 

] =
1

([𝑘 − 𝑘𝑠] − 𝑚𝜔2 + 𝑏𝑗𝜔)([𝑘 + 𝑘𝑠] − 𝑚𝜔2 + 𝑏𝑗𝜔)
[
𝑘 − 𝑚𝜔2 + 𝑏𝑗𝜔

𝑘𝑆
] 

(3.7) 

𝜔𝑜 
2 =

𝑘 − 𝑘𝑠
𝑚

, [
𝑋 /𝐹 
𝑋2/𝐹 

] ≅
1

2𝑏𝑗𝜔
[
+1
+1

]  

𝜔𝑜2
2 =

𝑘 + 𝑘𝑠
𝑚

, [
𝑋 /𝐹 
𝑋2/𝐹 

] ≅
1

2𝑏𝑗𝜔
[
−1
+1

]  

(3.8) 

𝜔𝑜 = √
𝑘 − 𝑘𝑠
𝑚

= 𝜔𝑜√1 −
𝑘𝑠
𝑘
≅ 𝜔𝑜 (1 −

1

2
∙
𝑘𝑠
𝑘
) (3.9) 
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𝜔𝑜2 = √
𝑘 + 𝑘𝑠
𝑚

= 𝜔𝑜√1 +
𝑘𝑠
𝑘
≅ 𝜔𝑜 (1 +

1

2
∙
𝑘𝑠
𝑘
) 

Δω

𝜔𝑜
=
𝜔𝑜2 − 𝜔𝑜 

𝜔𝑜
=
𝑘𝑠
𝑘

 

The analysis of electrical lumped model in Figure 3.6 (c) results in the same conclusions. 

Investigation of the impedance Z, admittance Y, or other metrics for any types of input or output 

can determine the circuit eigenvalues. Here, the study of system impedance for short-circuited 

input and output simplifies the analysis due to the high-level of symmetry in the system. Due to 

this symmetry, the motional current in each mesh should be equal. If the motional currents are in 

phase, the net current through the center branch is zero and can act as a short circuit, shown in 

Figure 3.7 (b). At this mode, the coupling beam effectively reduces the effective stiffness of each 

resonating tanks and reduces the resonance frequency. On the other hand, if the motional currents 

in both meshes are out of phase, the current in the center branch is twice the current in each mesh. 

Hence, by splitting the coupling capacitance Cs into two parallel capacitors with twice the 

 

Figure 3.7: (a) Simplified 2nd-order filter with grounded input and output. The system has two distinct mode 

shapes: (1) when the current in both branches are equal and in phase, therefore there is no current through 

Cs and the center point is effectively ground; (2) when both currents are equal and in opposite directions. 
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capacitance value, the meshes can be separated as shown in Figure 3.7 (c). Equation 3.10 states 

the resonance frequencies of the series RLC tanks of each mode. This analysis shows the 

eigenvalues are spaced equally on both side of the resonator fo and the ratio between resonator and 

coupling beam motional capacitance determines the fractional bandwidth. 

𝜔𝑜 = √
1

𝐿𝑥(𝐶𝑥||−𝐶𝑠)
= √

𝐶𝑠 − 𝐶𝑥
𝐿𝑥𝐶𝑥𝐶𝑠

= 𝜔𝑜√1 −
𝐶𝑥
𝐶𝑠

≅ 𝜔𝑜 (1 −
1

2
∙
𝐶𝑥
𝐶𝑠
) 

𝜔𝑜2 = √
1

𝐿𝑥(𝐶𝑥||𝐶𝑠)
= √

𝐶𝑠 + 𝐶𝑥
𝐿𝑥𝐶𝑥𝐶𝑠

= 𝜔𝑜√1 +
𝐶𝑥
𝐶𝑠

≅ 𝜔𝑜 (1 +
1

2
∙
𝐶𝑥
𝐶𝑠
) 

Δω

𝜔𝑜
=
𝜔𝑜2 − 𝜔𝑜 

𝜔𝑜
=
𝐶𝑥
𝐶𝑠

 

(3.10) 

3.2.1 LOW-VELOCITY COUPLING 

Equations 3.9 and 3.10 suggest that a channel-select filter with tiny fractional bandwidth 

requires the resonator to be much stiffer than the coupling beam and the desired system bandwidth 

determines this ratio. Equation 3.11 presents the coupling beam stiffness at the filter center 

frequency fo. Since the material properties and device height are determined by the resonator 

design and quarter-wavelength design fixes α, the coupling beam width is the only design 

parameter to engineer the coupling beam stiffness and filter fractional bandwidth. However, the 

practical fabrication consideration limits the minimum achievable width. As a result, the resonator 

stiffness serves as the other design parameter to control the fractional bandwidth. But the resonator 

stiffness determines the system pole locations and hence, the filter design comprise the tradeoff 

between different specifications. 

𝑘𝑠 = (
𝐸𝜌3

12
)

 /4

∙
(sin 𝛼 + sinh𝛼)

(cos 𝛼 cosh𝛼 − 1)
∙ (ℎ𝜔𝑜)

3/2 ∙ 𝑊𝑠 

𝑘𝑠 = 8.846 ∙
(sin 𝛼 + sinh𝛼)

(cos 𝛼 cosh𝛼 − 1)
∙ 𝐸𝑊𝑠 (

ℎ

𝐿𝑟
)
3

 

(3.11) 

On the other hand, equation 2.27 suggests that a CC-beam resonator has different effective 

stiffness along the beam length and has a minimum at the beam center where the displacement 

amplitude is maximum and then approaches to infinity near the anchor points where the resonator 

displacement is very small, as shown in Figure 3.8 (b). The stiffness ratio in the equation 3.9 is 

essentially between the coupling beam stiffness and the effective stiffness of the resonator at the 

joint location. Therefore, the joint location lc is a powerful design parameter to determine the filter 

fractional bandwidth, as presented in Figure 3.8 (c). The choice of coupling location is referred to 

as low-velocity coupling and can decouple the system pole design from the filter bandwidth and 

provides another degree of freedom for proper filter design. 



48 

 

The RLC resonating tanks in Figure 3.6 are typically modeled at the center of the CC-beam 

with equivalent values given in equations 2.28 and therefore, the current in each meshes is 

equivalent to resonator velocity at the beam center. An ideal transformer can provide the velocity 

conversion from the beam center to the coupling location lc. Equation 3.11 provide the expression 

for the required velocity conversion. Figure 3.8 (d) presents the simulated fractional bandwidth as 

a function of coupling location and illustrates the need for near-anchor attachment of the coupling 

beam to achieve channel selection. 

𝑖 (
𝐿𝑟
2
) = 𝜂𝑐𝑖(𝑙𝑐) 

𝜂𝑐 =
𝑖 (
𝐿𝑟
2
)

𝑖(𝑙𝑐)
=
𝑋 (

𝐿𝑟
2
)

𝑋(𝑙𝑐)
= √

𝑘𝑟(𝑙𝑐)

𝑘𝑟 (
𝐿𝑟
2
)
= √

𝑘𝑟(𝑙𝑐)

𝑘𝑟𝑒
 

(3.12) 

Note that the equations 3.9-10 are derived without any restriction on the filter type and 

system pole locations. Equation 3.9 should be modified to equation 3.13 to include the required 

pole distribution for different filter types to achieve a given filter bandwidth. Here, ki is the 

normalized coupling coefficient and depends on the filter type (i.e. Butterworth, Chebyshev, etc.). 

The normalized coupling coefficients are tabulated in filter synthesis cook books [27]. 

Δω

𝜔𝑜
=

1

𝑘𝑖
∙
𝑘𝑠
𝑘𝑟𝑐

 (3.13) 

 

Figure 3.8: (a) The relative position of the quarter-wavelength coupling beam to the resonator length, (b) 

normalized resonator mode shape alongside the beam length, (c) the resonator effective stiffness normalized 

to the stiffness at the center, (d) the eigenmode separation as a function of the relative coupling beam 

position. 
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3.2.2 TERMINATION RESISTANCE 

The micromechanical 2nd-order filter of Figure 3.6 comprises of micromechanical resonators 

with quality factor as high as 10,000 or more. Such a high-quality factor makes the corresponding 

eigenvalue transfer functions extremely frequency selective and the final filter transfer function 

has substantial and unacceptable ripple in the passband. Note that the phase difference between 

two eigenmodes are essential to achieve the final filter response; both eigenmodes are in phase 

 

Figure 3.9: Formation of 2nd-order filter response from the two mode shapes of figure 3.6. Filter including 

high-Q resonators on the left and controlled-Q resonator on the right. Magnitude and phase of the mode 

shape response and the final filter response are shown in (a-b) and (c-d) respectively. Addition and 

subtraction of the displacement where the mode shapes are in phase and out of phase, result in the smaller 

insertion loss in the passband and larger stopband rejection. Proper Q-control via termination resistance is 

required for flat passband response. 
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within the passband and hence, their amplitudes add constructively, while they are out of phase 

outside the passband and subtract from each other, as shown in Figure 3.9. 

To minimize the passband ripple, the eigenmode amplitudes at the center frequency fo should 

be half of their maximum amplitude, at fo1 and fo2. This argument suggests that the quality factor 

Q of the constituent resonator should be loaded such that each eigenmode has the same bandwidth 

as the filter [26]. In other word, the loaded quality factor QL of the input and output resonators 

should be the same as filter quality factor Qf. Equation 3.14 provides the expression for the required 

termination resistance RQ. Note that this argument has ignored the filter type and the expression 

3.14 should be modified to equation 3.15 to account for requirements of different filter types. Here, 

qn is a modification factor that depends on the filter type and can be found in filter synthesis 

cookbooks [27]. Figure 3.9 shows the formation of the flat-passband filter response by proper 

termination. 

𝑄𝐿 = 𝑄 (
𝑅𝑥

𝑅𝑥 + 𝑅𝑄
) =

𝜔𝑜

Δ𝜔
= 𝑄𝑓 → 𝑅𝑄 = 𝑅𝑥 (

𝑄

𝑄𝑓
− 1) (3.14) 

𝑅𝑄 = 𝑅𝑥 (
𝑄

𝑞𝑛𝑄𝑓
− 1) (3.15) 

The simple electrical circuit of Figure 3.10 approximates the filter transfer function within 

the passband by its motional resistances. This circuit can estimate the filter insertion loss, as shown 

in equation 3.16. This equation implies that to achieve a filter with small insertion loss, the 

unloaded quality factor of the constituent resonators Qo should be much larger than the filter 

quality factor Qf. For instance, to maintain the insertion loss smaller than 1dB, the resonator quality 

factor should be 10x the filter quality factor, as shown in Figure 3.10 (b). This expression provides 

further explanation why channel-select filter with very small fractional bandwidth and large Qf, 

require high-quality factor resonators. 

The required termination resistance of a filter with small insertion loss can be approximated 

by the equation 3.17: (1) the first term in this equation is determined by the filter specifications 

and the application of interest, (2) the second term is the resonator electromechanical coupling 

strength and is mainly determined by the technology, (3) the third term is the native impedance of 

 

Figure 3.10: (a) Electrical equivalent circuit of a 2nd-order filter, approximated at the passband. (b) Filter 

insertion loss as a function of the resonator unloaded quality factor Qo, relative to the filter quality factor 

Qf. 
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the resonator define as the impedance of the static capacitance at the filter center frequency 

Zo=1/ωoCo. For a given application and resonator technology, the native impedance is the only 

design parameter to achieve a desired termination resistance and depends on the resonator area. 

Resonator width Wr determines the native impedance of a CC-beam resonator, since the resonator 

length Lr and gap spacing do are determined by center frequency and the fabrication limits. Note 

that the resonator quality factor Q does not affect the termination resistance, only the passband 

insertion loss. 

𝐼𝐿 = −20 log (
𝑅𝑄

𝑅𝑄 + 𝑅𝑥
) = 20 log (1 +

𝑅𝑥
𝑅𝑄

) = 20 log(
1

1 −
𝑞𝑛𝑄𝑓

𝑄

) (3.16) 

𝑅𝑄 =
1

𝜔𝑜𝑄𝐶𝑥
(

𝑄

𝑞𝑛𝑄𝑓
− 1) ≅

1

𝑞𝑛𝑄𝑓
∙

1

(
𝐶𝑥
𝐶𝑜
)
∙

1

𝜔𝑜𝐶𝑜
  (3.17) 

3.2.3 RESONATOR ELECTRICAL TUNING 

The realization of channel-select filter with tiny fractional bandwidth asks for fabrication 

variation beyond the capability of current surface micromachining techniques, as explained in 

section 3.1.3. The inherent electrical tuning capability of capacitive resonators by electrical 

stiffness provides a solution to compensate the fabrication tolerances without any need for post-

fabrication processes such as laser trimming [69], selective etching [70], selective deposition [71], 

etc. Hence, it is of utmost importance to accurately model the electrical tuning and confirm the 

sufficiency of tuning range provided by tuning electrodes to overcome any fabrication variations. 

Figure 3.11 presents the complete lumped electrical circuit to accurately model and design a 

micromechanical filter, like the one in Figure 3.6. Note that both terminals of tuning transformers 

are grounded, since they are connected to constant DC voltage sources, VP and VT. 

 

Figure 3.11: Complete electrical circuit modeling the 2nd-order CC-beam filter.  
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Table 3.1 captures the design procedure presented here alongside the relevant governing 

equations with appropriate approximation. 

3.3 EXPERIMENTAL RESULTS 

The procedure of Table 3.1 has been used to design a channel-select filter with 0.15% 

fractional bandwidth at 10MHz. Table 3.2 summarizes the designed and simulated parameters and 

dimensions of this filter and the damascene fabrication process of Figure 2.8 were used to make 

it. Figure 3.12 shows the SEM picture of a released device with the proper measurement circuitry. 

Since the designed termination resistance of this filter is different than 50Ω termination of 

commercial vector network analyzers (VNA), on-chip resistors should be used to properly 

terminate the filter. However, simple on-chip resistors in series with the VNA, as shown in Figure 

3.12 (b), will form a resistor divider at the output and degrade the performance excessively. The 

trans-impedance amplifier of Figure 3.12 (c) or the unity buffer of Figure 3.12 (d) can provide 

proper filter termination and impedance matching at the same time and prohibit any performance 

degradation. In a real-world application, the stage following the filter, such as a low-noise 

amplifier LNA, will deliver the termination resistance and there will be no need for external 

resistors or any amplifiers. 

Table 3.1: Summary of micromechanical filter design procedure 

Given/Set Values Procedure/Objective 
Relevant Design Equations for a Given 

Parameter 

Filter Schematic: 

 
 

 

 

Given and Set Values: 

1. Resonator dimensions and equivalent lumped 

mechanical/electrical parameters from Table2.1. 

2. Filter type such as Inverse Chebyshev response in 

this example. 

3. Normalized filter coupling coefficients ksij and 

loaded qi of Inverse Chebyshev response from 

filter cookbooks [27]. 

4. Set designed filter bandwidth BW. 

5. Filter coupling locations lci.  

6. Choose proper Wsij for coupling beam. 

Obtain lumped equivalent 

mechanical parameters for 

CC-beam resonator. 

Use Table 2:1 to obtain mre, kre, and cre. 

Find filter coupling 

coefficients ksija, ksijb, and ksijc 

where i and j denote adjacent 

resonators. 

Determine dimensions Wsij 

and Lsij for filter coupling 

beams. 

𝑘𝑠 = 𝜂𝑐
2𝑘𝑟𝑒 (

𝐵𝑊

𝑓𝑜
) 𝑘𝑞 

where kre is the resonator effective stiffness at the 

center and ηc is the low-velocity transformation. 

Solve equation 3.5 for λ/4 coupling (1st root) to find 

Ls. 

Use equation 3.11 for ks and optimize the solution 

for Ws and the low-velocity transformation ηc.  

Obtain mechanical response 

using the model of fig***. 

Use Figure 3.6 (b) to plot mechanical frequency 

response 

Determine equivalent circuit 

parameters for CC-beam 

resonator and 

coupling/bridging beams. 

Use equations 2.19 to determine the equivalent 

electrical model shown in Figure 3.11. 

𝑐𝑠 =
1

𝑘𝑠
 

Determine the termination 

resistance RQ. 

𝑅𝑄 = (
𝑄

𝑞𝑖𝑄𝑓𝑙𝑡𝑟

− 1)𝑅𝑥 

Where Rx is the resonator motional impedance, Q is 

the unloaded resonator quality factor, and 

Qfltr=f0/BW. 

Determine filter insertion IL. 𝐼𝐿 = 20 log (1 +
𝑅𝑄

𝑅𝑥

) 

Obtain electrical frequency 

response using the model of 

Figure 3.11. 

Insert all the required parameters of Figure 3.11 and 

use any circuit simulator to simulate filter frequency 

response such as Figure 3.9 
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Figure 3.13 presents the measured frequency performance of this 2nd-order channel-select 

filter. The filter is centered at 8.6MHz and has tiny fractional bandwidth of 0.15%. The in-band 

insertion loss is 1dB achieved by 10kΩ termination resistance. This filter has out-of-band rejection 

of 42dB and 20dB shape factor of 2.56. 

The channel-select filter of Figure 3.13 were initially designed to be centered at 10MHz, for 

a 2.2μm-thick structural poly process. However, the final deposited polysilicon was only 1.8μm 

thick and therefore, the micromechanical resonators and filters were centered at 8.6MHz. The 

different structural thickness changed the center frequency, but it did not affect the quarter-

wavelength design. In-depth investigation of equation 3.4 reveals that parameter α only depends 

on the resonator length and not on the coupling beam height or width, hence, the required coupling 

beam length for quarter-wavelength design does not change by the structure height. On the other 

hand, the coupling beam stiffness ks changes by the structure height as suggested by equation 3.11, 

but the dependency on the height is the same as the resonator stiffness kre (equation 2.28) and 

hence, the change in the structure height does not affect the fractional bandwidth neither. 

𝐻6 = sinh𝛼 cos 𝛼 + cosh 𝛼 sin 𝛼 = 0 (3.18) 

 

Figure 3.12: (a) SEM photo of the released 2nd-order CC-beam filter and the measurement circuitry: on-

chip resistor in series with the VNA (b), trans-impedance buffer (c), unity-gain buffer (d). Application of 

(b) will degrade the output signal due to the formation of the voltage divider at the output. Any RQ larger 

than 50 requires output buffers offered in (c) or (d). 
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𝛼 = √
𝜌

𝐸
∙
𝑊𝑠ℎ𝐿𝑠

4

𝐼𝑠
∙ 𝜔𝑜

2
4

= 4.735 (
𝐿𝑠
𝐿𝑟
) 

3.3.1 OUT-OF-BAND REJECTION LIMITS 

Comparison of the experimental frequency response of Figure 3.13 to the simulation results 

of Figure 3.11 shows that the filter out-of-band rejection far from the center frequency does not 

follow the prediction of neither electrical nor mechanical lumped models and the rejection is very 

limited. The lumped models presented in Figure 3.6 and Figure 3.11 neglect the electrical 

feedthrough in the filter structure: there is a capacitive coupling between the input and output 

electrodes and resonators and the coupling beams provide the resistive paths from the input to the 

output electrodes, as shown in Figure 3.14. This electrical feedthrough path limits the out-of-band 

rejection to the feedforward signal through the capacitive-resistive path. The constant bias voltage 

source VP should ground the capacitor Co terminal and short the feedforward path to ground, as 

shown in Figure 3.11, but the bias line has finite resistance and it is not a perfect short to ground. 

The electrical model of Figure 3.14 modifies the one in Figure 3.11 to account for the finite 

resistance of the bias line. This modification does not change the filter passband response, since 

the feedthrough signal power is orders of magnitudes weaker than the motional signal. However, 

this feedforward path dominates the filter response far-from the center frequency, and hence, sets 

the limits on the out-of-band rejection. Figure 3.14 (d) presents the effective electrical model far 

from the center frequency and Figure 3.14 (b) shows the simulation results of the out-of-band 

rejection for different values of feedthrough capacitance and resistances. Equation 3.19 provides 

the expression for out-of-band rejection derived from the model of Figure 3.14 (e). 

𝑅𝑒𝑗 = 20 log |
𝑅𝑄
2 + 𝑅 

2 + 2(𝑅𝑄𝑅 + 𝑅𝑄𝑅2 + 𝑅 𝑅2) + (𝑅𝑄 + 𝑅 + 𝑅2 +
1

𝑗𝜔𝑜𝐶𝑜
)

1
𝑗𝜔𝑜𝐶𝑜

2𝑅2𝑅𝑄
| (3.19) 

 

Figure 3.13: The frequency response of the 2CC resonator of Figure 3.12. 
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Equation 3.17 suggests how rejection can be improved, considering that Co and RQ are 

determined by the filter design procedures and have finite values: 

i) Ideal Interconnect: 

An ideal bias line with very small resistance, i.e. Rb2 ≈ 0, can improve the rejection by 

shorting the electrical feedforward signal to small-signal ground. A highly-doped thick-poly 

interconnect can reduce the resistance of the bias line. On the other hand, implementation of metal 

interconnect can eliminate the rejection problem, at the cost of fabrication complexity and galvanic 

issues in the release process. 

ii) Non-Conductive Coupling Beams: 

The capacitors in the model of Figure 3.14 presented for the out-of-band rejection are 

inherent to the working principles of capacitive transducers and not eliminable. On the other hand, 

the resistive path through the coupling beams is not deep-rooted in the capacitive transduction and 

hence, replacing the coupling beams with non-conductive material, i.e. Rb3→∞, can break the 

resistive path and improve the out-of-band rejection. The implementation of this non-conductive 

coupling beam was not investigated in this work and can be the subject of further study. 

iii) Differential Mechanical Circuits: 

 

Figure 3.14: (a) Illustration of the parasitic capacitance and resistance in the system which limits the filter 

wideband rejection. (b) Simulation of stopband rejection as a function of parasitic capacitance and filter 

termination resistance RQ. (c) The overall filter electrical equivalent circuit of the filter including the 

parasitic elements and (d) the simplified equivalent circuit outside the passband, for stopband rejection 

simulation.  
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A mechanical circuit with differential input and output can theoretically cancel out all the 

feedthrough signal due to the phase difference in different paths. Differential mechanical filters 

such as the one implemented in [48], improved the out-of-band rejection up to 10-20dB. The 

implementation of differential filters was not investigated in this work and can be the topic of 

further study. 

 

 

 

 

 

  

Table 3.2: Filter Data Summary 

Parameter 
2CC Design Units 

Design/Sim. Meas.  

Center Frequency, fo 8.469 8.081 MHz 

Resonator Q 10,000 15,100 — 

Bandwidth, BW 11.1 10.7 kHz 

Percent Bandwidth, (BW/fo) 0.131 0.132 % 

Filter DC-Bias, VP 30 21 V 

Loaded qi
* 1.0 -- — 

Normalized Filter Coupling Coef., k 0.674 -- — 

Filter Coupling Beam Length, Ls 22.3 -- μm 

Filter Coupling Beam Width, Ws 0.75 -- μm 

Coupling/Bridging Beam Thickness, h 2 1.985 μm 

Resonator Mass @ I/O, mre 5.829x10-13 5.902x10-13 kg 

Resonator Stiffness @ I/O, kre 1.923x103 1.772x103 N/m 

Resonator Damping @ I/O, cre 3.036x10-9 1.841x10-9 Ns/m 

Filter Coupling Location, lc 4.1, 3.6 4.5, 4.0 μm 

Coupling Beam Stiffness, ksa -109.56 87.72 N/m 

Coupling Beam Stiffness, ksc 109.56 103.09 N/m 

Filter Coupling Capacitance, csa -0.0091 -0.0114 F 

Filter Coupling Capacitance, csc 0.0091 0.0097 F 

Mechanical Transformer Turn Ratio at lc, ηc 8.03, 10.18 7.04, 8.071 C/m 

Equivalent Inductance, lx 5.829x10-13 5.902x10-13 H 

Equivalent Capacitance, cx 4.323x10-4 5.644x10-4 F 

Equivalent Resistance, rx 3.036x10-9 1.841x10-9 Ω 

Electromechanical Coupling Coefficient, ηe 1.833x10-6 1.409x10-6 C/m 

Calculated Equivalent Resistance, Rx 0.904 1.018 kΩ 

Calculated Equivalent Inductance, Lx 0.173 0.297 H 

Calculated Equivalent Capacitance, Cx 2.12 1.257 fF 

Static Overlap Capacitance, Co 9.44 10.12 fF 

Electromechanical Coupling Cx/Co 22.5 12.42 % 

Termination Resistance, RQ 11 12 kΩ 

Insertion Loss, IL 0.3 1.2 dB 

20 dB Shape Factor 2.07 2.08 — 

Stopband Rejection, SR 90 40 dB 

Loss Pole position, |floss pole – fo|/fo 0.369 0.297 % 
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Chapter 4 MECHANICAL COUPLING BEAMS 
The cascaded filter design procedure presented in Chapter 3 elaborated on the importance of 

the mechanical beam design. While the constituent micromechanical resonators determine the 

filter center frequency, the design of mechanical coupling beams determine the filter bandwidth 

and more importantly, the filter type. Moreover, coupling beams with length equivalent to the half-

wavelength are frequently used to couple identical resonators in order to increase the resonator 

area and reduce the effective motional resistance in filter or oscillator applications. Therefore, 

more detailed and thorough understanding of the coupling beam frequency behavior and its impact 

on the system poles is necessary. This chapter introduces the extensional and flexural beam 

mechanical model and provides accurate analytical solutions in comparison to the conventional 

approximate solutions. 

4.1 COUPLING BEAM MECHANICAL MODEL 

The design of coupling beams of Figure 4.1 is complicated, since beside the effective 

stiffness, they have finite effective mass that have to be considered. The coupling beam mass is 

not negligible, especially for the micromechanical system where the static mass of coupling beams 

is in the same order as the resonator static mass and if neglected, can introduce unwanted distortion 

in the passband. A simple mass-spring model, like the one in Figure 4.2, does not accurately 

represent the narrow long coupling beams used often in micromechanical filters, since the phase 

at both side of the beam is significantly different and this model does not capture the phase 

difference. A long coupling beam at high frequency, such as the extensional and flexural beams 

shown in Figure 4.1, can be modeled by an acoustic transmission line, an equivalent concept to 

the electromagnetic transmission line, in order to precisely capture the important phase difference 

at both ends [72]. 

A distributed mechanical system can model the acoustic transmission line, in comparison to 

electromagnetic transmission line. A distributed system such as the one shown in Figure 4.2 (b) 

determines the frequency response and phase difference, but it is impractical for the filter design 

and optimization procedure. From the filter design perspective, the details of acoustic wave phase 

and amplitude alongside the coupling beam is extraneous and a simple model that can predict the 

phase and amplitude of the force and velocity at one end relative to the other one is sufficient. 

Analytical solution to the Euler–Lagrange wave propagation equation provides the ABCD matrix 

model for an acoustic transmission line, equivalent to EM, given in equation 4.1.  

[
𝑓 
𝑥̇ 
] = [

𝐴 𝐵
𝐶 𝐷

] [
𝑓2
𝑥̇2
] (4.1) 

The expression in equation 4.2 and 4.3 presents the solution for the extensional and flexural 

coupling beams of Figure 4.2. Here, β, vp and Zo are the acoustic wavenumber, velocity and 
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impedance, ρ and E are material density and Young modulus, Ws, h and Ls are coupling beam 

width, height and length, respectively. 

[
𝑓 
𝑥̇ 
] = [

cos(𝛽𝐿𝑠) 𝑗𝑍𝑜 sin(𝛽𝐿𝑠)
𝑗

𝑍𝑜
sin(𝛽𝐿𝑠) cos(𝛽𝐿𝑠)

] [
𝑓2
𝑥̇2
] 

𝛽 =
𝜔

𝑣𝑃
=

𝜔

√
𝐸
𝜌

, 𝑍𝑜 = 𝑊𝑠ℎ √𝐸𝜌 

(4.2) 

 

Figure 4.1: (a) Illustration of an extensional-mode coupling beam and (b) the in-phase and (c) out-of-phase 

modes of a 2 contour-mode disk system. The coupling beam has average displacement when vibrating in 

phase, while it is expanding and contracting around the center in the out-of-phase mode. (d) Schematic of 

a flexural-mode coupling beam and the applied forces, (e) the in-phase mode shape of a 2 CC-beam system, 

and (f) the out-of-phase mode shape. The in-phase coupling beam has average vertical displacement and 

has a nodal point at the center when in out-of-phase mode. 
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[
𝑓 
𝑥̇ 
] =

[
 
 
 
 

𝐻6

𝐻7
−
2𝐸𝐼𝑠𝛼

3𝐻 

𝑗𝜔𝐿𝑠
3𝐻7

−
𝑗𝜔𝐿𝑠

3𝐻3

𝐸𝐼𝑠𝛼
3𝐻7

𝐻6

𝐻7 ]
 
 
 
 

[
𝑓2
𝑥̇2
] 

𝛼4 = 𝐿𝑠
4 (

𝜌𝑊𝑠ℎ𝜔
2

𝐸𝐼𝑠
) , 𝐼𝑠 =

1

12
𝑊𝑠ℎ

3 

𝐻 = sinh𝛼 ∙ sin 𝛼 , 𝐻3 = cosh𝛼 ∙ cos 𝛼 − 1 

𝐻6 = sinh𝛼 ∙ cos 𝛼 + cosh𝛼 ∙ sin 𝛼 , 𝐻7 = sin𝛼 + sinh𝛼 

(4.3) 

The determinant of ABCD matrices in equations 4.2 and 4.3 is equal to one, and hence, a T 

network of mechanical impedances can represent them, as shown in Figure 4.2, in analogy to EM 

transmission line. The ABCD matrix of this T network is given in equation 4.4 and by comparison 

to coupling beam ABCD matrices, different impedances can be found. Figure 4.2 presents the 

lumped mechanical model of a 2nd-order mass-spring system with a T network representing the 

coupling beam. Equation 4.5 provide the effective stiffness values of the T network. Equation 4.6 

provides the steady-state matrix representation of the mechanical system of Figure 4.2 and the two 

eigenvalues of the system are given in the equation 4.7. Note that the stiffness terms ksa and ksc in 

the system pole expressions, i.e. equation 4.7, are also frequency dependent. 

[
𝑓 
𝑥̇ 
] =

1

𝑍𝑐
[
𝑍𝑎 + 𝑍𝑏 𝑍𝑎𝑍𝑏 + 𝑍𝑏𝑍𝑐 + 𝑍𝑐𝑍𝑎

1 𝑍𝑏 + 𝑍𝑐
] [
𝑓2
𝑥̇2
] 

𝑍𝑎 =
𝐴 − 1

𝐶
, 𝑍𝑏 =

𝐷 − 1

𝐶
=
𝐴 − 1

𝐶
, 𝑍𝑐 =

1

𝐶
 

(4.4) 

𝑘𝑠𝑎
𝑗𝜔

= 𝑍𝑎 = 𝑍𝑏,
𝑘𝑠𝑐
𝑗𝜔

= 𝑍𝑐 (4.5) 

[
(𝑘𝑟𝑒 + 𝑘𝑠𝑎 + 𝑘𝑠𝑐) − 𝑚𝑟𝑒𝜔

2 −𝑘𝑠𝑐
−𝑘𝑠𝑐 (𝑘𝑟𝑒 + 𝑘𝑠𝑎 + 𝑘𝑠𝑐) − 𝑚𝑟𝑒𝜔

2] [
𝑋 
𝑋2
] = [

𝐹 
𝐹2
] (4.6) 

1st Eigenvalue: 𝑚𝑟𝑒𝜔
2 − (𝑘𝑟𝑒 + 𝑘𝑠𝑎) = 0 

2nd Eigenvalue: 𝑚𝑟𝑒𝜔
2 − (𝑘𝑟𝑒 + 𝑘𝑠𝑎 + 2𝑘𝑠𝑐) = 0 

(4.7) 

4.2 EXTENSIONAL-MODE COUPLING BEAM 

Comparison of equation 4.5 and 4.2 can provide the effective stiffness values ksa and ksc for 

an extensional coupling beam and is given in equation 4.8. Substituting these terms in equation 

4.7 delivers the system eigenvalue expressions, given in equation 4.9. Note that these expressions 

have nonlinear trigonometric dependencies on the frequency, which should not be ignored in the 

general case. For any given coupling beam length Ls, each eigenvalue expression has infinite 

solutions, though the solutions far from the resonator center frequency do not contribute to the 

system passband and can be neglected. Figure 4.3 presents the solutions of these equations for 

different coupling beam length, calculated for a disk resonator centered at 132MHz. The system 

bandwidth shown in Figure 4.3 (c) is defined as the frequency difference between two nearest 
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modes. The acoustic wave at 132MHz has wavelength of 61μm for the given material properties 

and as evident from this figure, the system bandwidth has minima at (2n+1)λ/4 equivalent length 

and maxima at nλ/2. The detailed description of maximum and minimum bandwidth will be 

presented in the following sections. 

𝑘𝑠𝑎 = −𝜔𝑍𝑜 tan (
1

2
𝛽𝐿𝑠) = −𝜔𝑍𝑜 tan (

1

2

𝜔𝐿𝑠
𝑣𝑃

) 

𝑘𝑠𝑐 = 𝜔𝑍𝑜 csc(𝛽𝐿𝑠) = 𝜔𝑍𝑜 csc (
𝜔𝐿𝑠
𝑣𝑃

) 

(4.8) 

1st Eigenvalue: 

𝑚𝑟𝑒𝜔
2 − 𝑘𝑟𝑒 + 𝜔𝑍𝑜 tan (

1

2

𝜔𝐿𝑠
𝑣𝑃

) = 0 

2nd Eigenvalue: 

𝑚𝑟𝑒𝜔
2 − 𝑘𝑟𝑒 − 𝜔𝑍𝑜 cot (

1

2

𝜔𝐿𝑠
𝑣𝑃

) = 0 

(4.9) 

 

The conventional approach to solve this system of equations used to be approximating the 

frequency term in the trigonometric functions by resonator center frequency ωo, so the equations 

have closed-form solutions given in equation 4.10. Figure 4.3 (b, d, f) show the system poles for 

different coupling beam length. These figures highlight the differences between the solutions of 

equation 4.9 and 4.10: (1) the approximate solution fails to recognize infinite solutions for a given 

coupling length and only provide two, (2) the system bandwidth approaches infinity at nλ/2. Figure 

4.4 presents the system bandwidth derived from the both approaches described above and reveals 

the error in the approximation method: around the (2n+1)λ/4 coupling length, there are two 

eigenvalues close to the center frequency and hence, the solutions from the approximation method 

are very close to the exact solutions. On the other hand, the eigenvalues are far from each other at 

 

Figure 4.2: (a) Lumped and (b) distributed mechanical models of coupling beams. Lumped mechanical 

model does not capture the wave propagation and phase difference across the coupling beam. The 

distributed model can be represented by a transmission line in mechanical (c) or electrical domain (d). 
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nλ/2 and hence, the approximation method does not work and sets one of the system eigenvalues 

at infinity, making the bandwidth approaching the infinity. 

 

Figure 4.3: The eigenvalues of a 2nd-order system with extensional-mode coupling beam (a-d) and the 

corresponding system bandwidth (e, f). The solution to the equations 4.9 and 4.10 are presented in (a, c, e) 

and (b, d, f), respectively. Both equations predict similar bandwidth near quarter-wavelength, but deviate 

near half-wavelength. Equation 4.9 has multiple solutions for any given length, while equation 4.10 

provides only two. 
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𝜔 = √
1

𝑚𝑟𝑒
(𝑘𝑟𝑒 − 𝜔𝑜𝑍𝑜 tan (

1

2

𝜔𝑜𝐿𝑠
𝑣𝑃

)) 

𝜔2 = √
1

𝑚𝑟𝑒
(𝑘𝑟𝑒 +𝜔𝑜𝑍𝑜 cot (

1

2

𝜔𝑜𝐿𝑠
𝑣𝑃

)) 

(4.10) 

4.2.1 QUARTER-WAVELENGTH EXTENSIONAL 

BEAM 

As mentioned in the previous section, the system bandwidth has a minimum when the 

coupling beam length is equivalent to a quarter-wavelength transmission line, (2n+1)λ/4. The 

investigation of equation 4.7 and 4.8 can provide the mathematical foundation for this result. The 

difference between the both eigenvalues is due to the ksc term and minimizing this term gives the 

smallest system bandwidth. ksc effective stiffness is minimize whenever sin(βLs)=1 or 

Ls=(2n+1)λ/4. Equation 4.11 and 4.12 provide the system poles and the ABCD matrix for such a 

coupling length. Here, both poles are close to center frequency and hence ω1≈ωo and ω2≈ωo have 

been used to derive the final expressions. Quarter-wavelength design sets the poles equally spaced 

from the resonator center frequency and the ABCD matrix is similar to the quarter-wavelength EM 

transmission line, i.e. provides the impedance transformation given in equation 4.13. Moreover, 

the system bandwidth has the least dependency on the coupling beam length around quarter-

wavelength points and hence, the design encompassing these coupling lengths are more robust 

against process variation. 

𝜔 

𝜔𝑜
= √1 + (

𝜔𝑜𝑍𝑜
2𝑘𝑟𝑒

)
2

−
𝜔𝑜𝑍𝑜
2𝑘𝑟𝑒

≅ 1 −
𝜔𝑜𝑍𝑜
2𝑘𝑟𝑒

 

𝜔2

𝜔𝑜
= √1 + (

𝜔𝑜𝑍𝑜
2𝑘𝑟𝑒

)
2

+
𝜔𝑜𝑍𝑜
2𝑘𝑟𝑒

≅ 1 +
𝜔𝑜𝑍𝑜
2𝑘𝑟𝑒

 

(4.11) 

[
𝑓 
𝑥̇ 
] = [

0 𝑗𝑍𝑜
𝑗

𝑍𝑜
0
] [
𝑓2
𝑥̇2
] (4.12) 

𝑍𝑖𝑛 =
𝑍𝑜
2

𝑍𝐿
 (4.13) 

4.2.2 HALF-WAVELENGTH EXTENSIONAL BEAM 

The system bandwidth of Figure 4.3 has a maximum for coupling lengths equivalent to nλ/2, 

since sin(βLs)=0 and ksc approaches infinity. Equation 4.14 defines the equivalent length defined 

at the resonator center frequency an equation 4.15 provides the characteristic expressions for the 
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eigenvalue calculation. Although this equation does not have analytical solutions, but it has two 

solutions of interest: ω2=ωo for odd values of n and ω1=ωo for even values of n, as shown in 

equation 4.16. This equation suggests for half-wavelength coupling beams one of the system 

eigenvalues will be exactly equal to the resonator center frequency and the coupling beam pushes 

the other eigenvalue far from the center frequency, depending on the value of Zo and kre. However, 

the other eigenvalue will not be at infinity, as expected from the approximation method of equation 

4.10. The frequency behavior of the coupling beam can explain the finite value of this mode: the 

length of coupling beam is equivalent to half-wavelength at a certain frequency and as the other 

mode is getting further and further from fo, the coupling length does not behave as a half 

wavelength transmission line anymore. Equations 4.17 and 4.18 provide the ABCD matrix and 

impedance transformation of the half-wavelength extensional coupling beam. Note that these two 

equations are only valid for the mode exactly at ωo. Equation 4.18 suggests that half-wavelength 

coupling does not contribute to the impedance of the system and hence, it is widely used for 

arraying identical resonators to achieve low-Rx mechanical system, with no introduction of new 

modes into the system response. 

sin(𝛽𝐿𝑠)]@𝜔𝑜
= 0 →

𝜔𝑜𝐿𝑠
𝑣𝑃

= 𝑛𝜋 (4.14) 

 

Figure 4.4: (a) FEM simulation of a 2nd-order system including contour mode disks and half-wavelength 

extensional coupling beams. (b) Comparison of solutions to equations 4.9 and 4.10 to FEM simulations. (c) 

Equation 4.10 prediction deviate from equation 4.9 and FEM simulations. 
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(
𝜔 

𝜔𝑜
)
2

+ (
𝜔 

𝜔𝑜
)
𝜔𝑜𝑍𝑜
𝑘𝑟𝑒

tan (
𝑛𝜋

2

𝜔 

𝜔𝑜
) − 1 = 0 

(
𝜔2

𝜔𝑜
)
2

− (
𝜔2

𝜔𝑜
)
𝜔𝑜𝑍𝑜
𝑘𝑟𝑒

cot (
𝑛𝜋

2

𝜔 

𝜔𝑜
) − 1 = 0 

(4.15) 

𝑜𝑑𝑑 𝑛  {(
𝜔 

𝜔𝑜
)
2

+ (
𝜔 

𝜔𝑜
)
𝜔𝑜𝑍𝑜
𝑘𝑟𝑒

tan (
𝑛𝜋

2

𝜔 

𝜔𝑜
) − 1 = 0

𝜔2 = 𝜔𝑜

  

 

𝑒𝑣𝑒𝑛 𝑛  {

𝜔 = 𝜔𝑜

(
𝜔2

𝜔𝑜
)
2

− (
𝜔2

𝜔𝑜
)
𝜔𝑜𝑍𝑜
𝑘𝑟𝑒

𝑐𝑜𝑡 (
𝑛𝜋

2

𝜔 

𝜔𝑜
) − 1 = 0

 

(4.16) 

[
𝑓 
𝑥̇ 
] = [

1 0
0 1

] [
𝑓2
𝑥̇2
] (4.17) 

𝑍𝑖𝑛 = 𝑍𝐿 (4.18) 

4.3 FLEXURAL-MODE COUPLING BEAM 

Comparison of the flexural beam ABCD matrix given in equation 4.3 and effective stiffness 

expressions of equation 4.4 and 4.5 delivers the corresponding stiffness expressions of equation 

4.19. These effective stiffness expressions provide the eigenvalue problems, given in equation 

4.20. Note that the terms α, H3, H6 and H7 are also frequency dependent and should not be 

considered a constant value. The eigenvalue expressions of equation 4.19 have infinite solutions 

for any given coupling length Ls, as shown in Figure 4.5. This figure presents the eigenvalues of 

the system for a CC-beam resonator at 10MHz.  

𝑘𝑠𝑎 = 𝐸𝐼𝑠 (
𝛼

𝐿𝑠
)
3𝐻7 −𝐻6

𝐻3
 

𝑘𝑠𝑐 = −𝐸𝐼𝑠 (
𝛼

𝐿𝑠
)
3𝐻7

𝐻3
 

𝛼4 = 𝐿𝑠
4 (

𝜌𝑊𝑠ℎ

𝐸𝐼𝑠
)𝜔2 

(4.19) 

1st Eigenvalue:  

𝑚𝑟𝑒𝜔
2 − 𝑘𝑟𝑒 − 𝐸𝐼𝑠 (

𝛼

𝐿𝑠
)
3𝐻7 − 𝐻6

𝐻3
= 0 

2nd Eigenvalue:  

𝑚𝑟𝑒𝜔
2 − 𝑘𝑟𝑒 + 𝐸𝐼𝑠 (

𝛼

𝐿𝑠
)
3𝐻7 + 𝐻6

𝐻3
= 0 

(4.20) 

The substitution of ω by ωo can transform the transcendental equations of 4.20 into a 2nd-

order polynomial problem given in 4.21, as done conventionally by designers. This approximation 

is only valid when both poles are very close to ωo, i.e. the quarter-wavelength design, but fails 

severely around maximum bandwidth, as shown in Figure 4.6. 
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Figure 4.5: The eigenvalues of a 2nd-order system with flexural-mode coupling beam (a-d) and the 

corresponding system bandwidth (e, f). The solution to the equations 4.19 and 4.20 are presented in (a, c, 

e) and (b, d, f), respectively. Both equations predict similar bandwidth near quarter-wavelength, but deviate 

near half-wavelength. In contrast to extensional mode, the minimum bandwidth does not happen at quarter-

wavelength and the system eigenvalue is not equal to fo at half-wavelength. 
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𝛼𝑜
4 = 𝐿𝑠

4 (
𝜌𝑊𝑠ℎ

𝐸𝐼𝑠
)𝜔𝑜

2 

1st Eigenvalue:  

𝑚𝑟𝑒𝜔
2 − 𝑘𝑟𝑒 − 𝐸𝐼𝑠 (

𝛼𝑜
𝐿𝑠
)
3𝐻7 − 𝐻6

𝐻3
= 0 

2nd Eigenvalue:  

𝑚𝑟𝑒𝜔
2 − 𝑘𝑟𝑒 + 𝐸𝐼𝑠 (

𝛼𝑜
𝐿𝑠
)
3𝐻7 + 𝐻6

𝐻3
= 0 

(4.21) 

4.3.1 QUARTER-WAVELENGTH FLEXURAL BEAM 

In analogy to electromagnetic transmission line, the ABCD matrix main diagonal elements 

will be zero at quarter-wavelength equivalent length. This requires H6=0 and the solutions of this 

equation corresponding α and coupling length Ls equivalent to quarter wavelength, as shown in 

equation 4.22. Other than zero which is the trivial solution of this equation, the first, second and 

third solutions of this equations provides the corresponding coupling length for λ/4, 3λ/4, and 5λ/4, 

respectively. Equation 4.23 provides the system poles for quarter-wavelength design. As evident 

from this equation and shown in the Figure 4.5, the eigenvalues are symmetric around resonator 

center frequency ωo. 

 

𝐻6 = sinh𝛼 ∙ cos 𝛼 + cosh𝛼 ∙ sin 𝛼 = 0 → 𝛼 = 0, 2.365, 5.498, 8.639,…  (4.22) 

(
𝜔 

𝜔𝑜
)
2

= √1 +
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3𝐻7

𝐻3
≅ 1 +

1

2

𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3𝐻7

𝐻3
 

(
𝜔2

𝜔𝑜
)
2

= √1 −
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3𝐻7

𝐻3
≅ 1 −

1

2

𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3𝐻7

𝐻3
 

(4.23) 

4.3.2 HALF-WAVELENGTH FLEXURAL BEAM 

The definition of half wavelength for a flexural beam is not straightforward. As shown in 

the previous section, the ABCD matrix of a half-wavelength design is an identity matrix. On the 

other hand, the elements B and C in the flexural beam ABCD matrix have different dependencies 

on α and coupling length Ls and hence, there is no choice of coupling length that could make both 

terms equal to zero, as shown in equation 4.24. Note that since H3 appears in the eigenvalue 

expressions of equation 4.20, and makes the effective beam stiffness approach infinity when H3=0, 

it is expected that H3 determines the half-wavelength design. 

𝐵 = 0 → 𝐻 = sinh𝛼 ∙ sin 𝛼 = 0 → 𝛼 = 0, 3.142, 6.283, 9.425,…  

𝐶 = 0 → 𝐻3 = cosh𝛼 ∙ cos 𝛼 − 1 = 0 → 𝛼 = 0, 4.730, 7.853, 10.996,…  
(4.24) 
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i) Case for H3=0 

When the element C in the ABCD matrix is zero, it increases the effective stiffness vastly 

and hence, attempts to pull the system poles apart from each other and set one of them at infinity. 

The constraint H3=0 given in equation 4.24 determines the corresponding α and coupling length 

Ls. Using trigonometric formulas and some algebraic manipulation can simplify the eigenvalue 

problems of equation 4.20 for λ/2 and λ equivalent length, as shown in equation 4.25. Note that the 

roots of equation H3=0 given in equation 4.24 should not be used to determine the 1st eigenvalue 

of λ/2 or 2nd eigenvalue of λ equivalent length, since the roots of this equations are very far from 

the resonator center frequency ωo and the coupling beam is not equivalent to half wavelength at 

those frequencies. Therefore, the exact equations given in 4.20 should be solved to find the 

corresponding eigenvalue. If the coupling beam was half-wavelength equivalent for all the 

frequencies, that would have pushed one of the poles to infinity, as expected from the 

approximation method. 

Although the solutions of H3=0 set the poles furthest from each other and determine the 

maximum for system bandwidth, they are not quite similar to half-wavelength behavior in 

electromagnetics. As explained earlier, these solutions do not change the ABCD matrix into 

identity matrix and none of the solutions of the eigenvalue problem is exactly at resonator center 

frequency ωo, as observed in extensional coupling beam. Hence, application of half-wavelength 

 

Figure 4.6: (a) FEM simulation of a 2nd-order system including CC-beam resonators and half-wavelength 

flexural coupling beam. (b) Comparison of solutions to equations 4.19 and 4.20 to FEM simulations. (c) 

Equation 4.20 prediction deviate from equation 4.19 and FEM simulations. 
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flexural coupling beam in resonator arrays to make the structure stiffer and motional resistance 

smaller should be with careful investigation and thorough analysis. 

𝐿𝑠]@𝜔𝑜
≡
𝜆

2
,
3𝜆

2
,… ,

(2𝑛 + 1)𝜆

2
 𝐿𝑠]@𝜔𝑜

≡ 𝜆, 2𝜆, … , 𝑛𝜆 

(4.25) 

1st Eigenvalue:  

(
𝜔 

𝜔𝑜
)
2

− 1 −
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3𝐻7 − 𝐻6

𝐻3
= 0 

 

2nd Eigenvalue: 𝛼 = 4.730, 10.996,…  

(
𝜔2

𝜔𝑜
)
2

− 1 +
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3

= 0 

1st Eigenvalue: 𝛼 = 7.853, 14.137,… 

(
𝜔 

𝜔𝑜
)
2

− 1 −
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3

= 0 

 

2nd Eigenvalue: 

(
𝜔2

𝜔𝑜
)
2

− 1 +
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝛼

𝐿𝑠
)
3𝐻7 + 𝐻6

𝐻3
= 0 

 

ii) Case for H1=0 

For the values of α=nπ, the element B of the ABCD matrix will vanishes to zero, however 

the corresponding coupling beam length is not equivalent to any special cases in the 

electromagnetic transmission line. This constraint simplifies the expressions for the Hi terms, as 

shown in equation 4.20 and the eigenvalue problems, as in equation 4.21. Since the hyperbolic 

functions in these expressions approaches unity very fast (equation 4.22), the eigenvalue 

expressions of 4.21 can be simplified even further, as presented in equation 4.27. This equation 

suggests that for the case H1=0, one of the eigenvalues is exactly at resonator center frequency and 

the other one is particularly close to the ωo, since the coupling beam effective stiffness is minimum. 

Exceptionally, the minimum bandwidth of the flexural coupling beam occurs at a length Ls other 

than equivalent quarter wavelength, and the system has a pole equal to ωo, at a coupling length 

other than the equivalent half wavelength. 

[
𝑓 
𝑥̇ 
] = [

(−1)𝑛 0

−
𝑗𝜔𝐿𝑠

3𝐻3

𝐸𝐼𝑠𝛼
3𝐻7

(−1)𝑛
] [
𝑓2
𝑥̇2
] 

𝛼 = 𝑛𝜋 → {
𝐻 = 0, 𝐻3 = (−1)𝑛 cosh(𝑛𝜋) − 1

𝐻6 = (−1)𝑛 sinh(𝑛𝜋) , 𝐻7 = sinh(𝑛𝜋)
 

 

(4.26) 

𝑒𝑣𝑒𝑛 𝑛 𝑜𝑑𝑑 𝑛 

(4.27) 

1st Eigenvalue:  

(
𝜔 

𝜔𝑜
)
2

− 1 = 0 

2nd Eigenvalue:  

(
𝜔2

𝜔𝑜
)
2

− 1 +
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝑛𝜋

𝐿𝑠
)
3 2 sinh(𝑛𝜋)

cosh(𝑛𝜋) − 1
= 0 

1st Eigenvalue:  

(
𝜔 

𝜔𝑜
)
2

− 1 +
𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝑛𝜋

𝐿𝑠
)
3 2 sinh(𝑛𝜋)

cosh(𝑛𝜋) + 1
= 0 

2nd Eigenvalue:  

(
𝜔2

𝜔𝑜
)
2

− 1 = 0 
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sinh(𝑛𝜋)

cosh(𝑛𝜋) ± 1
≅ 1, 𝑓𝑜𝑟 𝑛 = 1,2,3, … (4.28) 

 

1st Eigenvalue:  

(
𝜔 

𝜔𝑜
)
2

− 1 = 0 

2nd Eigenvalue:  

(
𝜔2

𝜔𝑜
)
2

− 1 +
2𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝑛𝜋

𝐿𝑠
)
3

= 0 

 

1st Eigenvalue:  

(
𝜔 

𝜔𝑜
)
2

− 1 +
2𝐸𝐼𝑠
𝑘𝑟𝑒

(
𝑛𝜋

𝐿𝑠
)
3

= 0 

2nd Eigenvalue:  

(
𝜔2

𝜔𝑜
)
2

− 1 = 0 

(4.29) 

4.3.3 GENERAL MODEL FOR FLEXURAL COUPLING 

BEAM 

A flexural coupling beam, like the one Figure 4.1, might have torsional displacement, beside 

the main displacement in the z-direction. Figure 4.7 presents the general displacement of a flexural 

beam. Therefore, a flexural coupling beam conveys rotation θ, angular velocity dθ/dt and bending 

moment M, in addition to linear displacement x, velocity v, and force F. The general equation 

describing flexural-mode coupling is very complicated, since it includes all these parameters, i.e. 

angular velocity dθ/dt, bending moment M, linear velocity v, and force F, and model how they 

interact with each other. Equation 4.30 presents the ABCD matrix for a thin flexural beam. The 

derivatives of the resonator displacement mode shape, such as one in equation 2.21, provide the 

expressions for the angular velocity and the bending moments. 

[
 
 
 
 
 
 
 
𝐹  
 
𝑀  
 
𝑣  
 
𝜃 ̇ ]
 
 
 
 
 
 
 

=
1

2

[
 
 
 
 
 
 
 
 
 𝐻9 −

𝛼

𝐿𝑠
𝐻8

𝐿𝑠
𝛼
𝐻7 𝐻9

−
𝐸𝐼𝑠𝛼

3

𝑗𝜔𝐿𝑠
3 𝐻7 −

𝐸𝐼𝑠𝛼
2

𝑗𝜔𝐿𝑠
2
𝐻 0

𝐸𝐼𝑠𝛼
2

𝑗𝜔𝐿𝑠
2
𝐻 0 −

𝐸𝐼𝑠𝛼

𝑗𝜔𝐿𝑠
𝐻8

𝑗𝜔𝐿𝑠
3

𝐸𝐼𝑠𝛼
3
𝐻8

𝑗𝜔𝐿𝑠
2

𝐸𝐼𝑠𝛼
2
𝐻 0

−
𝑗𝜔𝐿𝑠

2

𝐸𝐼𝑠𝛼
2
𝐻 0

𝑗𝜔𝐿𝑠
𝐸𝐼𝑠𝛼

𝐻7

𝐻9        −
𝐿𝑠
𝛼
𝐻7

𝛼

𝐿𝑠
𝐻8        𝐻9

]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝐹2 
 
𝑀2 
 
𝑣2 
 
𝜃2̇ ]

 
 
 
 
 
 
 

 (4.30) 

This work exploits low-velocity coupling, i.e. the flexural coupling beams are attached to 

the main resonators close to the anchor points where the resonator displacement and rotation is 

very small. Therefore, the simplified ABCD matrix of equation 4.3 provides accurate model for 

the filter design procedure. Implementation of wide-bandwidth filters with coupling location close 

to the resonator center point requires thorough analysis and investigation of torsional stiffness on 

the filter response. 
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4.4 EXPERIMENTAL RESULTS 

Figure 4.8 presents the SEM images of the fabricated mechanical structures of Figure 4.1 in 

order to characterize extensional and flexural coupling beams. The constituent contour-mode disk 

resonators of Figure 4.8 (a) have radius of 20µm and are centered at 132MHz. The CC-beam 

resonators in the array of Figure 4.8 (b) are 40µm long and have resonance frequency of 8.2MHz. 

Numerous copies of the disk and CC-beam structures with different coupling length laid out to 

investigate the demonstrated analysis of extensional and flexural coupling beams, respectively. 

The process flow of Chapter 2 was used to fabricate the CC-beam mechanical structure and a 

conventional 5-mask process described in detail in [50] were adopted to fabricate the disk arrays. 

Figure 4.8 (c) presents the wideband frequency response of a disk array with 30µm long 

extensional coupling beam. As suggested by the analysis of section 4.2, the system has more than 

two eigenvalues. Figure 4.8 (e) shows the measured bandwidth of the system as a function of the 

coupling length. The two-disk array bandwidth has minimum and maximum at the coupling length 

equivalent to quarter and have wavelength, respectively. However, the half-wavelength bandwidth 

is finite and the system poles are not at infinity, in contrast to conventional model. The theory 

presented in the section 4.2 matches the behavior of the system, as shown in the Figure 4.8 (e). 

Figure 4.8 (d) presents the frequency response of a CC-beam array with coupling length of 40μm 

which clearly shows the three resonance frequencies of the system, although the coupling beam is 

equivalent to half wavelength. Figure 4.8 (f) shows the bandwidth of the resonator array for 

different flexural coupling beam length. As expected, the minimum bandwidth does not happen at 

quarter wavelength and also the bandwidth is not infinity at half wavelength equivalent coupling 

beam. 

 

Figure 4.7: (a) Illustration of a 2 CC-beam mechanical system with flexural-mode coupling beams attached 

at high-velocity point. (b) The phase difference in the CC-beam displacements twists the coupling beam 

and induces rotation. 
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Figure 4.8: SEM photographs of a contour-mode disk resonator array (a) and a CC-beam resonator array 

(b) fabricated to test the models developed in this chapter. The frequency response of the disk array with 

half-wavelength extensional-mode coupling beam (c) and CC-beam array with flexural-mode coupling 

beam (d), show the three distinct resonance peaks near fo, as predicted by the developed models. The 

corresponding system bandwidth as a function of the coupling beam length for the disk array (e) and the 

CC-beam array (f). 
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Chapter 5 BRIDGED MICROMECHANICAL 

FILTERS 
This chapter presents the bridging technique to control the filter frequency response. The 

bridging between non-adjacent resonators introduces transmission zeros in the filter frequency 

response and is able to manipulate the filter passband-to-stopband roll-off via the relative distance 

of the loss poles to passband [47] [73]. The optimum design of the non-adjacent bridging can 

sharpen the roll-off and improve the filter 20dB shape factor. The high-order micromechanical 

filters demonstrated in this chapter exploit this technique to achieve 20dB shape factor of 1.84, 

with small insertion loss of 1dB. The introduced loss poles provide extra 10dB rejection at the 

adjacent channels to further relieve the nonlinearity requirements on the following stages, such as 

LNAs. 

5.1 FILTER TYPES AND TRANSMISSION ZEROS 

The micromechanical filters presented in Chapter 3 consist of several identical 

micromechanical resonators coupled via thin extensional- or flexural-mode beams. This 

mechanical coupling makes a system with several degrees of freedom and hence, splits the system 

eigenmodes around the resonator center frequency fo, as explained in details in Chapter 4. This 

filter design procedure is capable of implementing any all-pole filter type, such as Butterworth, 

Chebyshev, or Gaussian by proper choice of normalized coupling coefficient ki. However, this 

technique does not produce any transfer function zeros, as confirmed by the system transfer 

function derived in Chapter 3 and 4, and hence, is not capable of prototyping other filter types such 

as Inverse Chebyshev or Elliptic. These filter types are of interest due to the fast passband-to-

stopband roll-off offered by the placement of loss poles, i.e. transfer function zeros, very close to 

the passband, as shown in Figure 5.1. 

The series and parallel resonances of the constituent resonators of a conventional ladder filter 

structure generate the transmission zeros required for the Inverse Chebyshev prototype [26]. 

However, the coupled mechanical structure of this work does all the signal processing in the 

mechanical domain and hence, the series and parallel resonances could not generate any 

transmission zeros. In order to introduce and manipulate loss poles, this work adopts simple and 

well-known trick in signal processing: if there are two feedforward paths from the system input to 

the output with different phase, i.e. time delay, the system transfer function will have a zero, as 

shown in Figure 5.2. Therefore, the filters of this work exploits bridging between non-adjacent 

resonators, i.e. the input and output resonators, to implement the second feedforward path from 

the input to the output, shown in the Figure 5.3. 



73 

 

Figure 5.4 presents the frequency shaping characteristics that each presented 

micromechanical filter generates. For comparison, Figure 5.4 presents a conventional non-bridged 

design, again, alongside its frequency shaping characteristic. As shown, each of these filters 

consists of several CC-beam resonators coupled mechanically by soft flexural-mode beams, all 

suspended 140nm above the substrate. Conducting strips underlie the central region of each end 

resonator serve as capacitive transducer electrodes positioned to induce resonator vibration in a 

direction perpendicular to the substrate. Of the three different designs in Figure 5.4, (a), (c) and 

(d) are three-resonator filters, while (b) and (d) are four-resonator filters. 

Figure 5.4 also presents the circuit needed to operate any one of the filters in Figure 5.4. 

Here, a dc-bias VP is applied to the suspended filter structure, and an ac input voltage vi is applied 

through a properly-valued input termination resistor RQ to the input electrode. This combined input 

generates an electrical force between the input electrode and the conductive resonator that induces 

vibration of the input resonator when the frequency of vi is within the passband of the mechanical 

filter. This vibrational energy is imparted to the center and output resonators via the coupling 

springs, causing them to vibrate as well. Vibration of the output resonator creates a dc-biased, time 

varying capacitor between the conductive resonator and output electrode, which sources a motional 

output current io. The motional current is then directed to the output termination resistor RQ, which 

converts the current to an output voltage and loads the Q of the output resonator so as to flatten 

the jagged passband (to be described later via Figure 5.17) of the mechanical system into the 

desired flat passband, shown in Figure 5.4 (f, g, h). 

 

Figure 5.1: The frequency response and system pole and zero placement on the s-plane for (a) Butterworth, 

(b) Chebyshev, (c) Gaussian, (d) Inverse Chebyshev, and (e) Elliptic filters. The transmission zeros placed 

very close to the passband sharpen the roll-off for an Inverse Chebyshev or Elliptic filter. 
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Since it is the output resonator that delivers the final electrical output signal in this filter, the 

key to attaining a desired frequency shaping response is to control the mechanical inputs imparted 

to the output resonator by the coupling beam(s) attached to it. Before this work [47] [73], all 

previous deterministically designed micromechanical filters [55] [28] utilized only coupling 

between adjacent resonators, shown in Figure 5.4 (a) and (b), meaning that only one coupling beam 

controlled the motion of the output resonator, resulting in frequency characteristics with monotonic 

stopbands, as shown in Figure 5.4 (f, g, h). In contrast, the bridged filters of this work employ a 

more general coupling scheme, where non-adjacent resonators are now linked. As shown, non-

adjacent resonator coupling is achieved by offsetting the inner resonators from the outer ones to 

allow direct mechanical coupling of outer resonators in the same structural layer (i.e., without the 

need for a third layer of polysilicon). As depicted in Figure 5.4, some of the filter variants use 

angled adjacent-resonator coupling beams in order to minimize the length of the non-adjacent 

resonator coupler. For example, by using angled adjacent-resonator couplers, the design of (c) can 

use a quarter-wavelength (λ/4) non-adjacent resonator coupler, whereas the straight adjacent-

resonator coupler design of (d) must use a three-quarter-wavelength (3λ/4) coupler. Even with an 

angled coupler, the 4-resonator filter design of (e) still requires a 3λ/4 non-adjacent resonator 

coupling beam. 

In each filter structure, the new non-adjacent resonator linkage introduces a feedforward path 

that generates loss poles in the filter transfer function, leading to a faster roll-off from passband to 

stopband, as shown in Figure 5.4, which plots the expected frequency characteristics 

 

Figure 5.2: A system comprising two 

feedforward paths from the input to the 

output with different time delay, or 

equivalently with different poles in the 

transfer functions, has a loss pole in the 

system overall transfer function. The 

loss pole will be generated even if each 

feedforward path transfer function does 

not have any zeros. 
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Figure 5.3: Schematics for the three bridged micromechanical 

filter designs realized in this work. (a) 3CC filter with λ/4 

bridging beam design (3CC λ/4). (b) 3CC filter with 3λ/4 

bridging beam design (3CC 3λ/4). (c) 4CC filter with 3λ/4 

bridging beam design (4CC 3λ/4).  
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corresponding to the different filter structures at the top of Figure 5.3. Here, loss poles are seen to 

occur either above or below the passband of a 3 CC-beam bridged filter design, depending upon 

whether its coupling beam dimensions correspond to a quarter-wavelength or to three-quarter-

wavelengths, respectively. The 4 CC-beam bridged filter design, on the other hand, achieves two 

loss poles on each side of its passband with a symmetrical frequency response. In all cases, the 

loss poles provide sharper passband-to-stopband roll-offs and greater stopband rejection in their 

respective filter transfer functions. 

5.2 BRIDGED FILTER DESIGN CONCEPT 

Generating a loss pole in a mechanical filter’s passband essentially amounts to minimizing 

(or zeroing out, if possible) the velocity of the resonator(s) that feed the output electrode. One way 

to achieve this (employed here) is to couple more than one force into the output resonator and 

design the phase difference such that the forces maintain the desired passband response, but cancel 

one another at the desired loss pole frequency, which is generally outside the passband. This can 

 

Figure 5.4: Conventional monotonic third-order (a) and fourth-order (b) CC-beam filters compromising 

identical resonators coupled with quarter-wavelength beams. Modified filter design introducing bridging 

between non-adjacent resonators to create and control transfer function loss poles along with required 

measurement circuitry (c-e). λ/4 bridging of 3CC filter (c) will introduce loss pole above the passband (f), 

while 3λ/4 3CC filter (d) has loss pole below the passband (g). The 4CC 3λ/4 bridged filter (e) has 

symmetric frequency response with loss poles on both side (h). The loss pole improves passband-to-

stopband roll-off and reduces 20dB shape factor defined as BW20dB/BW3dB. 
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be accomplished in the mechanical domain by attaching two coupling beams to the output 

resonator that generate (or at least do not disturb) the desired passband response, but that apply 

forces with opposite phase when the input frequency is at the desired loss pole location. To 

illustrate that this is exactly what a bridged filter does, Figure 5.5 presents the (unterminated) 

mechanical frequency response of the Figure 5.3 (b) filter with finite element mode shape 

simulations at the filter pole and loss pole locations, clearly showing displacement of the output 

resonator at the filter pole (i.e., peak) locations, but none at the loss pole frequency. 

In the actual implementation, each coupling beam connects the output resonator and an 

intermediate resonator, which means each beam can be thought of as belonging to its own sub-

filter (within the whole filter structure). The response of the output resonator can then be seen as 

a superposition of the responses of the sub-filters. 

The physical implementation of the above is perhaps best illustrated by examining more 

closely the hierarchical structure of the filter of Figure 5.3 (b). Pursuant to this, Figure 5.6 again 

presents mode shapes at various locations on the mechanical frequency response, but this time 

splits up the filter of Figure 5.3 (b) into two main functional blocks, each comprising a non-bridged 

filter in its own right, one using two clamped-clamped beam (CC-beam) resonators and coupled 

by the 3λ/4 bridging beam; the other using three CC-beam resonators, each coupled by adjacent 

λ/4 beams; and each to be called 2CC 3λ/4 and 3CC λ/4 monotonic filters, respectively, as 

shorthand for the remainder of the paper.  Here, the resonators are labeled with numbers to better 

indicate that resonators 1 and 3 are shared between the two sub-filter structures. 

Figure 5.7 plots the magnitude and phase of the force-to-velocity transfer functions for the 

two sub-filters on the same plot, assuming each filter is driven at resonator #1 (i.e., the input 

 

Figure 5.5: Harmonic analysis via ANSYS for a 3CC 3λ/4 bridged μmechanical filter of Figure 5.3 (b). A 

unity mechanical force is applied to the input resonator and the output resonator displacement is probed. 
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resonator) and sensed at resonator #3 (i.e., the output resonator). The motion of the output 

resonator #3 is the most important among all the resonators as it delivers the output current and 

the total filter response. As shown in Figure 5.7, the response of the two sub-filters are out of phase 

below the center frequency fo, and in phase above it. This means that the forces imparted to the 

output resonators by the coupling beams of the respective 2CC 3λ/4 and 3CC λ/4 sub-filters will 

oppose one another when coupled to the same output resonator in the final filter. The mode shapes 

at various frequencies shown in Figure 5.6 further confirm the relative phasing between sub-filter 

output resonators. In particular, at the point below the filter center frequency where the magnitudes 

of the sub-filter force-to-velocity transfer functions are equal, the mode shapes of the sub-filters 

are such that their resonator #3 motions are equal and opposite. Thus, when superposed in the 

complete filter structure, their motions cancel completely, and the little or no motion of the output 

resonator (i.e., resonator #3) leads to little or no current generation between resonator #3 and the 

output electrode, hence a loss pole in the overall filter transfer function. 

 

Figure 5.6: ANSYS-simulated mode shapes of 3CC- and 2CC-beam filters with λ/4 and 3λ/4 filter couplers, 

respectively, showing the amplitude subtraction below the passband due to the 180º out-of-phase motions 

of resonator #3 and the amplitude addition above the passband since both of resonator #3 vibrate in-phase. 

D
is

p
la

c
e

m
e

n
t

Frequency

3CC  / 

2CC   / 

Bridged

Loss Pole due to 

Out-of-Phase 

Subtraction

1

2
3

1

3

2CC 2nd Mode

 /  Coup. 

Beam

  /  Coup. 

Beam

  /  Coup. 

BeamμMechanical 

Resonator

In-Phase

Addition

3CC 2nd Mode 3CC 3rd Mode3CC 1st Mode

2CC 1st Mode

μMechanical 

Resonator
1

3

1

2
3

1

2
3

Out-of-Phase

Subtraction

 /  Coup. 

Beam

 

Figure 5.7: (a) Phase relationships between resonators in 3- and 2-resonator coupled systems where λ/4 and 

3λ/4 filter couplers are used, respectively. (b) Frequency transfer functions of 2- (blue dash line) and 3-

resonator filters (red dot line), together with the expected 3-resonator bridged filters (black solid line), 

clearly show the superposition in the end resonators of the first two filters to generate the loss pole below 

the passband to achieve 3CC 3λ/4 bridged filter response. 
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As shown in Figure 5.7, above the filter center frequency, the responses of its two- and three-

resonator sub-filter constituents are in phase, therefore, add to each other at the corresponding 

frequencies. Thus, no loss pole is formed, and the addition actually hurts the rejection at upper 

passband frequencies, but achieves the expected behavior for a bandpass filter with a single lower 

passband loss pole. As with previous filters, the jagged passband response seen in Figure 5.6 can 

be flattened (or reduced to a desired ripple) by terminating the filter with the correct value of 

impedance, as shown in Figure 5.17. 

To observe the loss pole effect of the bridged filter shown in Figure 5.3 (b), Figure 5.5 finally 

presents the force-to-displacement frequency response of the output resonator for a 3CC 3λ/4 

bridged filter using ANSYS, clearly showing the loss pole below the passband. For this simulation, 

a unit mechanical force is applied on the input resonator of the bridged filter and the harmonic 

analysis obtains the displacement of the output resonator at the center. As mentioned above, the 

three mode shapes of the monotonic 3CC λ/4 filter of Figure 5.4 (a) form the passband, while the 

output resonator is stationary at the loss pole frequency due to the cancellation of induced 

displacement from parallel paths. 

As is evident from the analysis of third-order filter with 3λ/4 bridging beam, the formation 

of the transfer function loss pole is the result of phase difference between the two parallel paths 

from the input to the output. This phase difference depends on the bridging beam lengths as well 

as the order of the main filter [15]. For instance, the second-order filter with three-quarter-

wavelength (3λ/4) bridge has an out-of-phase mode shape at lower frequencies compare to the in-

phase mode shape (Figure 5.6) resulting in the loss poles below the filter passband. On the other 

hand, the in-phase mode shape of a second-order filter with a λ/4 bridging beam happens at lower 

frequencies compared to the out-of-phase one, as shown in Figure 5.8, expecting the loss pole to 

 

Figure 5.8: ANSYS-simulated mode shapes of 3CC- and 2CC-beam filters both with λ/4 filter couplers, 

showing the amplitude addition above the pass-band due to the in-phase motions of resonator #3 and the 

amplitude subtraction above the passband since both of resonator #3 vibrate 180º out-of-phase. The 

mechanical frequency response of the 2CC λ/4, 3CC λ/4 and 3CC λ/4 bridged filters shown on the right 

illustrate the loss pole generation furthermore. 
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happen above the passband. Hence, the design of the bridging beam (i.e., phase shift element) can 

precisely control the amplitude addition or subtraction between two or more filter structures. 

Figure 5.8 and Figure 5.9 present the operation of a three clamped-clamped beam filter with 

quarter-wavelength (i.e., λ/4) bridging beam, such as in Figure 5.3 (a), to achieve a loss pole above 

its passband. In normal operation of a non-bridged three-resonator filter, such as in Figure 5.4 (a), 

with all quarter-wavelength filter couplers (i.e., 3CC λ/4 monotonic filter), the electrostatic force 

from the capacitive transduction drives #1 (input) resonator, and the overall response consists of 

mechanical modes depicting in the Figure 5.8, where the #3 (output) resonator vibrates in-phase 

with #1 resonator at first and third mode. In contrast, in a two-resonator filter with quarter-

wavelength coupler (i.e., 2CC λ/4 monotonic filter), output (#3) resonator vibrates in-phase and 

out-of-phase with the input (#1) resonator at the first and second mode, respectively. Hence, based 

on the linear vibration theory, the superimposed displacement of the output (#3) resonator 

diminishes at the frequencies above the passband and enhances below the passband. The phase 

response of Figure 5.9 illustrates the loss pole formation by signal cancellation due to the out-of-

phase dis-placements of parallel paths. 

Figure 5.4 (h) presents the frequency response of a four clamped-clamped beam bridged 

filter with 3λ/4 bridging beam and two loss poles below and above the passband, which yields to 

 

Figure 5.9: (a) Phase relationships between 

resonators in 3- and 2-resonator coupled systems via 

all λ/4 filter couplers. (b) Frequency transfer 

functions of 2- (blue dash line) and 3-resonator filters 

(red dot line), together with the expected 3-resonator 

bridged filters (black solid line), clearly show the 

superposition in the end resonators of the first two 

filters to generate the loss pole above the passband to 

achieve 3CC λ/4 bridged filter response. 

-140

-100

-60

-20

M
a
g

n
it

u
d
e
 [
d

B
]

-450

-270

-90

90

8.09 8.15 8.21

P
h

a
s

e
 [

o
]

Frequency [MHz]

Out of 

PhaseIn Phase

3CC  / 

2CC  / 

Bridged

2CC  / Filter3CC  / Filter

M
o

d
e
 2

2

3

1

M
o

d
e
 3

2

31

M
o

d
e
 1

2 31

M
o

d
e
 1

31

M
o

d
e
 2

3

1

Subtraction

Addition

b)a)

 

Figure 5.10: (a) Phase relationships between 

resonators in 4- and 2-resonator coupled systems 

where λ/4 and 3λ/4 filter couplers are used, 

respectively. (b) Frequency transfer functions of 2- 

(blue dash line) and 4-resonator filters (red dot line), 

together with the expected 4-resonator bridged filters 

(black solid line), clearly show the superposition in 

the end resonators of the first two filters to generate 

the loss poles below and above the passband to 

achieve 4CC 3λ/4 bridged filter response. 

-630

-450

-270

-90

90

8.09 8.15 8.21

P
h

a
s

e
 [

o
]

Frequency [MHz]

Out of 

Phase

2CC   / Filter4CC  / Filter

M
o

d
e

 2

31

M
o

d
e

 1

3

1

Subtraction

Subtraction

M
o

d
e

 2

2

4

1

3

M
o

d
e

 3

2

41

3

M
o

d
e

 4

2 4

1 3

M
o

d
e

 1

2 41 3

-130

-105

-80

-55

-30

M
a
g

n
it

u
d
e
 [
d

B
]

4CC  / 

2CC   / 

Bridged

Out of 

Phase

b)a)



80 

 

symmetric frequency characteristic. Figure 5.10 explains the formation of these two loss poles via 

the mode shapes and phase difference of the parallel paths. The monotonic fourth-order filter of 

Figure 5.4 (b) has four distinct mode shapes shown in Figure 5.10, where the output (#4) resonator 

is in-phase with the input (#1) resonator at the first and second mode shape, and vibrates out-of-

phase at the second and fourth mode shapes. On the other hand, the output resonator of the second-

order filter with 3λ/4 coupling vibrates out-of-phase and in-phase with the input resonator at the 

first and second modes, respectively. Hence, the displacement of the output (#4) resonator cancels 

out on both side of the passband due to this out-of-phase displacement. The phase responses of 

fourth- and second-order filters, shown in Figure 5.10, demonstrate the loss pole formation clearly. 

The small vibration amplitude compared to the gap spacing allows the superposition of the motions 

from both monotonic filters by simple application of linear algebra, not only providing a 

straightforward analysis but facilitating the design of all the bridged filters in this work. 

5.3 BRIDGED FILTER DESIGN AND MODELING 

Due to the good matching tolerance, but poor absolute tolerance, of the planar fabrication 

technology used to construct the subject micromechanical filters, it is advantageous to design 

filters so that their constituent resonators have identical un-coupled frequencies, and then just let 

the coupling beams pull their frequencies apart to generate a passband [12], as explained in details 

in Chapters 3 and 4. In such a design, the center frequency of the filter is determined primarily by 

the (identical) resonance frequencies of its constituent resonators, while the bandwidth (i.e. the 

spacing between modes) is determined largely by the ratio of the stiffness of its coupling springs 

to the effective stiffness of the CC-beam resonator. Figure 5.5 presents finite element simulations 

depicting the mode shapes corresponding to each of the three mode frequencies of the filter in 

Figure 5.3 (b). For the coupled three-resonator system of Figure 5.3 (b), the frequency of each 

vibration mode corresponds to a distinct peak in the force-to-displacement frequency characteristic 

and to a distinct, physical mode shape of the coupled mechanical system as shown in Figure 5.5. 

In the lowest frequency mode, all resonators vibrate in phase; in the middle frequency mode, the 

center resonator ideally remains motionless, while the end resonators vibrate 180° out of phase; 

and finally, in the highest frequency mode, each resonator is phase-shifted 180° from its adjacent 

neighbor. Without proper impedance matching, the complete mechanical filter exhibits the jagged 

passband seen in the mechanical simulations of Figure 5.14 which will be described later. Proper 

impedance matching (described in Chapter 4) in the form of termination resistors designed to lower 

the Q’s of the input and output resonators by specific amounts are required to flatten the passband 

and achieve a more recognizable filter characteristic, such as in Fig. 5.4. 

For mass balance reasons, as well as achieving a more robust design against fabrication 

tolerances [12], a filter design with identical resonators is best achieved using coupling beams with 

dimensions that correspond to single- or multiple-quarter-wavelengths at the filter center 

frequency. Thus, as mentioned earlier, each of the three bridged filter designs implemented here, 
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and shown in Figure 5.1, utilizes quarter-wavelength (λ/4) couplers between adjacent resonators, 

and either λ/4 or 3λ/4 (for longer distances) coupling beams to connect non-adjacent resonators. 

The design variations include  

i) A 3 CC-beam filter using a λ/4 bridging beam (3CC λ/4 bridged filter of Figure 5.4 

(c)) with a loss pole above the passband as shown in Figure 5.4 (f). 

ii) A 3 CC-beam filter using a 3λ/4 bridging beam (3CC 3λ/4 bridged filter of Figure 

5.4 (d)) with a loss pole below the passband as shown in Figure 5.4 (g). 

iii) A 4 CC-beam filter using a 3λ/4 bridging beam (4CC 3λ/4 bridged filter of Figure 

5.4 (e)) with two loss poles as shown in Figure 5.4 (h). 

Although employing identical resonators and quarter-wavelength coupling beams are 

beneficial, it exerts geometrical restrictions on the bridged filter design, as mentioned in the 

previous section. For instance, there are two quarter-wavelength coupling beams and one CC-beam 

resonator between input (#1) and output (#3) resonator of a third-order monotonic filter (Figure 

5.4 (a)), while the λ/4 bridging requires only a quarter-wavelength distance between the input and 

output resonators. Hence, to accommodate differences in coupling beam path lengths in designs 

(a) and (c), angled beams are utilized to preserve λ/4 adjacent-resonator coupling. Since the 

analytical model of a flexural coupling beam in [15] and low-velocity coupling technique of [72] 

are derived for the right-angled attachment of the coupling beam, bridged filter design with angled 

coupling beam requires more careful study. 

Extensive finite element simulations by CoventorWare showed very little deviation from the 

standard model for the design parameters of this work. Particularly, the quarter-wavelength design 

of the coupling beams makes the filter composition more robust to the attachment angles. In 

addition, the coupling at low velocity point where the effective stiffness of the resonator is 

considerably large, masks small deviations in the coupling beam stiffness. Any future designs 

either for wide-bandwidth filters (coupling at high-velocity point) or employing other coupling 

lengths (other than quarter-wavelength) will require extra and thorough investigations of the 

coupling design. 

Simple mechanical models for the filters of Figure 5.3 can be attained by first recognizing 

that each filter is merely a multi-degree of freedom mechanical system that can be equated in 

narrow frequency bands to a lumped parameter mechanical circuit, as explained in detail in 

Chapter 4. The conventional monotonic mechanical filters such as 4-resonator and 2-resonator 

filters can be modeled as 4-degree and 2-degree of freedom mechanical systems shown in Figure 

5.11 (b) and (c), respectively, where each mass-spring-damper system represents a resonator, while 

each coupling beam, including the bridging beam, corresponds to a π-network of mechanical 

springs. Then, the actual filter structure of Figure 5.3 (c), which is the superposition of filter 

structures in Figure 5.11 (b) and (c), can be explicitly equated to the equivalent mechanical circuit 
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shown in Figure 5.11 (a) with the same equivalent lumped values. The bridging beam connecting 

the input and output resonators provides a feedforward path that generates the desired loss poles. 

The lumped mechanical model of Figure 5.11 (and those of the other designs in Figure 5.3) 

has the equation of motion given in 5.1, where [M], [C], and [K] are the mass, damping, and 

stiffness matrices, respectively, x is the displacement vector of the resonators, and F is the 

electrostatic force applied to the input resonator, as described in Chapter 2. For mechanically 

coupled systems like the one in Figure 5.11, each matrix in (5.1) can be expressed in a specific 

form as 5.2 and 5.3 where F1 is the only electrostatic force applied to the input resonator of this 

mechanical system and is generated by the dc bias voltage VP and ac signal source vi. All the 

mechanical coupling beams connecting adjacent and non-adjacent resonators in any filter of Figure 

5.3 are designed to be equivalent to the quarter-wavelength. Chapter 4 meticulously presented the 

flexural-mode beams and showed that ksa=-ksc for any quarter wavelength design. Therefore, the 

diagonal elements of the [K] matrix can be simplified as kii=kre, assuming identical resonator 

stiffness. Since all the resonators are identical and have the same effective mass, stiffness and 

resonance frequency, the eigenmode problem in 5.1, 5.2, and 5.3 can be simplified to equation 5.4, 

where ωo and kre are resonator center frequency and effective stiffness, respectively. The damping 

coefficient [C] has been neglected in this equation, since the resonators have very high Q and the 

damping does not affect the resonance frequency. This equation emphasizes on the fact that the 

system eigenvalues will be centered around resonator resonance frequency and the ratio of 

coupling beam effective stiffness ksc and resonator effective stiffness kre determines their relative 

distance to ωo. 

[𝑀]𝑥̈ + [𝐶]𝑥̇ + [𝐾]𝑥 = 𝐹 (5.1) 

[𝑀] = [

𝑚𝑟𝑒 0 0 0
0 𝑚𝑟𝑒2 0 0
0 0 𝑚𝑟𝑒3 0
0 0 0 𝑚𝑟𝑒4

] , [𝐶] = [

𝑐𝑟𝑒 0 0 0
0 𝑐𝑟𝑒2 0 0
0 0 𝑐𝑟𝑒3 0
0 0 0 𝑐𝑟𝑒4

] 

[𝐾] = [

𝑘  𝑘 2 𝑘 3 𝑘 4
𝑘2 𝑘22 𝑘23 𝑘24
𝑘3 𝑘32 𝑘33 𝑘34
𝑘4 𝑘42 𝑘43 𝑘44

] 

(5.2) 

𝑘  = 𝑘𝑟𝑒 + 𝑘𝑠 2𝑎 + 𝑘𝑠 2𝑐 + 𝑘𝑠𝐵𝑎 + 𝑘𝑠𝐵𝑐 

𝑘22 = 𝑘𝑟𝑒2 + 𝑘𝑠 2𝑎 + 𝑘𝑠 2𝑐 + 𝑘𝑠23𝑎 + 𝑘𝑠23𝑐 

𝑘33 = 𝑘𝑟𝑒3 + 𝑘𝑠23𝑎 + 𝑘𝑠23𝑐 + 𝑘𝑠34𝑎 + 𝑘𝑠34𝑐 

𝑘44 = 𝑘𝑟𝑒4 + 𝑘𝑠34𝑎 + 𝑘𝑠34𝑐 + 𝑘𝑠𝐵𝑎 + 𝑘𝑠𝐵𝑐 

𝑘 2 = 𝑘2 = −𝑘𝑠 2𝑐 , 𝑘23 = 𝑘32 = −𝑘𝑠23𝑐 

𝑘34 = 𝑘43 = −𝑘𝑠34𝑐 , 𝑘 4 = 𝑘4 = −𝑘𝑠𝐵𝑐 

𝑘 3 = 𝑘3 = 𝑘24 = 𝑘42 = 0 

𝑥 = [𝑥 𝑥2 𝑥3 𝑥4] , 𝐹 = [𝐹 0 0 0]  

(5.3) 
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)
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]
 
 
 
 
 
 
 
 

[

𝑋 
𝑋2
𝑋3
𝑋4

] = [

1
0
0
0

]𝐹  (5.4) 

Solution of (5.1) provides the force-to-displacement transfer function (i.e., X/F) for each 

resonator of a given filter. Here, it can be shown mathematically that the bridged filter structure of 

Figure 5.11 (a) is the superposition of monotonic filter structures in Figure 5.11 (b) and (c): where 

(X4/F1)4CC and (X4/F1)2CC present the force-to-displacement transfer functions of the 4CC and 2CC 

monotonic filters shown in Figure 5.11 (b) and (c), respectively. Generation of the loss pole is due 

to the signal cancellation (i.e., (5.5) = 0) between two parallel paths, therefore, the frequency of 

 

Figure 5.12: Simulated frequency response spectra 

for the equivalent lumped mechanical models of Fig. 

10 (a) for different bandwidth ratio R. The width and 

coupling location of the bridging beam control the 

loss pole frequency. As the bandwidth ratio R 

increases, the loss poles move further from the 

passband (b). 
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Figure 5.11: Equivalent lumped mechanical model 

for a bridged 4 CC-beam μmechanical filter (a). 

Equivalent lumped mechanical models for (b) 4CC-

beam and (c) 2CC-beam μmechanical filters. Here, 

each λ/4 or 3λ/4 coupling spring is represented by a 

set of three springs: one positive adjoining spring, 

and two negative grounded springs, so as to simulate 

the canceling effect of quarter-wavelength design. 
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the loss pole can be obtained by solving equation 5.6. Equation 5.7 and 5.8 provide the eigenvalue 

equation of the 4CC and 2CC monotonic filter of Figure 5.11 (b) and (c). Note that to capture the 

effect of the low-velocity coupling, the resonator effective stiffness should be calculated at the 

coupling location and therefore, the resonator effective stiffness kre in the equation of motion in 

5.4 has been modified to ηc
2kre. The velocity transform ratio ηc transfers the resonator effective 

stiffness from the center to the coupling location, as suggested in Chapter 3 and also given in 

equation 5.9. 

The solution to 5.6 and the relative position of the loss pole to the filter center frequency 

depends on the ratio of 4CC and 2CC filter bandwidth, as shown in Figure 5.12. As mentioned 

earlier, the separation of modes in a mechanically-coupled system, which is proportional to the 

filter bandwidth, depends on the ratio between the resonator effective stiffness at the coupling 

location ηc
2kre and the coupling beam stiffness ksc. Equation 5.7 shows that the filter bandwidth 

and passband composition determine the required coupling stiffness, and the coupling stiffness 

sets the problem of optimum design for coupling beam width and the joint location, while the 

resonator dimensions and coupling beam lengths are determined by the filter center frequency and 

the choice of structure thickness, as explained in more detailed in Chapter 2 and 3. Similar 

approaches apply to the 3CC bridged filters in Figure 5.3 (a) and (b) to determine their loss pole. 

(
𝑋4
𝐹 
)
4𝐶𝐶−𝐵𝑟𝑖𝑑𝑔𝑒𝑑

= (
𝑋4
𝐹 
)
4𝐶𝐶

+ (
𝑋4
𝐹 
)
2𝐶𝐶

 (5.5) 

(
𝑋4
𝐹 
)
4𝐶𝐶

= −(
𝑋4
𝐹 
)
2𝐶𝐶

 (5.6) 

As previously stated, the relative distance of the loss pole from the filter center frequency 

depends on the ratio of 4CC and 2CC filter bandwidth R=BW4CC/BW2CC. The width Wsij and the 

joint location lc1-3 of coupling beams between adjacent resonators determines the overall filter 

passband composition and therefore BW4CC. Consequently, bandwidth of second-order filter 

BW2CC, and therefore the stiffness of the bridging beam is the only design variable for loss pole 

optimization, i.e. the loss pole frequency is determined by WsB and lcB. 

𝑘𝑟𝑒

[
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𝑋3
𝑋4

]

4𝐶𝐶

= [

1
0
0
0

]𝐹  (5.7) 
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𝑋4
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2𝐶𝐶

= [
1
0
] 𝐹  (5.8) 

𝜂𝑐 = √
𝑘𝑟(𝑙𝑐)

𝑘𝑟𝑒
 =

𝑋𝑚𝑜𝑑𝑒 (
𝐿𝑟
2
)

𝑋𝑚𝑜𝑑𝑒(𝑙𝑐)
 (5.9) 

Figure 5.12 (a) presents the output resonator displacement of the 4CC bridged filter for 

different bandwidth ratio R, acquired by varying the coupling location lcB. As the bandwidth ratio 

R decreases, the loss poles move closer to the passband and make the passband-to-stopband roll-

off steeper. However, as the loss poles approach the passband, they compromise the out-of-band 

rejection and also affect the passband poles and introduce ripples in the passband. On the other 

hand, the larger the bandwidth ratio R, the further the loss poles are from the passband, until they 

do not affect the passband-to-stopband roll-off anymore. The optimum design of loss pole location 

requires careful examination of constraints set by the application and different trade-offs between 

out-of-band rejection, passband-to-stopband roll-off, passband composition and ripples, etc. 

Figure 5.13 presents simulated frequency characteristics for each of the bridged filter designs 

explored in this work using their lumped parameter mechanical models as the one shown in Figure 

5.11. Among the three design variations, the 4CC 3λ/4 design demonstrates the best filter shape 

factor and the largest stopband rejection, albeit the use of more mechanical links and resonators. 

Figure 5.14 presents the simulated pole/zero plot for the input-to-output resonator transfer function 

 

Figure 5.14: Pole/zero, i.e. root locus, plot of a 

transfer function derived from the mechanical 

vibration model of the output resonator in a 4CC 3λ/4 

bridged μmechanical filter. 
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Figure 5.13: Simulated frequency response spectra 

for the equivalent lumped mechanical models for 

each of the filters of Fig. 1. 
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for the 4CC 3λ/4 bridged filter of Figure 5.3 (b) and modeled by 5.1, along with the actual transfer 

function plot. Here, the poles correspond to the mode shapes that combine to form the passband 

of this bridged filter, while the zeros generate the notch profile in its frequency response. The 

mechanical passband response is jagged at this point, but will be flattened out into an eventual 

filter passband by properly terminating the input and output resonators. The number of mechanical 

resonance modes with closely spaced frequencies is equal to the number of resonators used in the 

filter. 

5.4 ELECTRICAL EQUIVALENT CIRCUIT 

Although the described mechanical circuit model is helpful in gaining an analytical 

understanding of bridged filter operation, an electrical equivalent circuit model would give more 

insight on design verification and evaluation in actual communication systems, since it would 

allow the use of the abundant and well-developed electrical circuit simulators in existence, such 

as Keysight ADS [19]. The electrical equivalent circuit can be derived by mere analogy to the 

mechanical circuit of Chapter 2 and 3, where each mass is replaced by an inductor, each spring by 

a capacitor, and each damper by a resistor. 

Using this approach, Figure 5.15 presents the electrical equivalent circuit for the 3CC λ/4 

design of Figure 5.3 (a). As shown, each resonator originally represented by a mass-spring-damper 

is now modeled by an LCR circuit. The coupling beams are mechanical transmission lines, which 

are equated to T networks of energy storage elements by a combination of positive and negative 

valued capacitors to emphasize the quarter-wavelength cancellation nature of the coupling beams, 

 

Figure 5.15: Equivalent electrical circuit for a 3CC-beam μmechanical bridged filter. Resonators and 

coupling beams are presented as LCR tanks and transmission line T-network model, respectively. 

Transformers with turn ratio ηe model the capacitive transducers (main and tuning electrode) and with turn 

ratio ηc represents low-velocity coupling. The negative capacitors at the input/output transducers model 

electrical stiffness and its voltage dependency accurately. 
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as described in Chapter 4. Note that Figure 5.15 clearly shows the bridging connection as a 

feedforward path in the electrical domain. 

The frequency response of the mechanical circuit of Figure 5.13 has jagged passband due to 

the high quality factor Q of the constituent resonator tanks and it does not satisfy the frequency 

selection requirement expected from a filter. Hence, termination resistors shown in Figure 5.15 are 

required to load the Q’s of the input and output resonators and form the desired passband shown 

in Figure 5.16. The value of the required termination resistor depends on the filter quality factor 

Qf=fo/BW, resonator electromechanical coupling coefficient Cx/Co and the resonator static 

reactance ωoCo, as developed in equation 3.15 and repeated in 5.10. Here qi is a normalized 

parameter and depends on the filter type and order and can be looked up from a filter cookbook 

[20]. Desired value of termination resistance RQ can be obtained by the optimum design of gap 

spacing do and bias voltage VP, and resonator area A=WrLr. 

𝑅𝑄 = 𝑅𝑥 (
𝑄

𝑞𝑛𝑄𝑓
− 1) ≅

1

𝑞𝑛𝑄𝑓
∙

1

(
𝐶𝑥
𝐶𝑜
)
∙

1

𝜔𝑜𝐶𝑜
 (5.10) 

Figure 5.16 demonstrates the properly terminated frequency characteristics of the bridged 

filters of Figure 5.1 (a-c), matching the expected frequency characteristics for each of the three 

designs. As shown, the 3CC design has one loss pole, which occurs above the passband when a 

λ/4 bridging beam is used, and below when a 3λ/4 is used. The 4CC design achieves two loss poles 

with a 3λ/4 bridging beam. As advertised, the frequency responses are similar to those of the 

mechanical simulations of Figure 5.13, except these show flat passbands and the actual (small) 

filter insertion loss, since they are properly terminated with RQ. Like the response in mechanical 

 

Figure 5.16: ADS-simulated frequency characteristics for the bridged 3CC λ/4, 3CC 3λ/4, and 4CC 3λ/4 

micromechanical filters of Figure 5.3 all properly terminated, and using electrical equivalent circuits based 

on the topology of Figure 5.15. 
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domain, the 4CC 3λ/4 design exhibits the best filter shape factor among the three, although it has 

slightly larger insertion loss. 

5.5 BRIDGED FILTER DESIGN EXAMPLE 

Synthesis techniques for coupled resonator filters are well-established, and normalized 

values for their transfer function coefficients are readily available from data tabulated in filter 

cookbooks [20]. To better outline the exact design procedure, Table 5.1 presents a step-by-step 

summary of the design procedure for a 4CC 3λ/4 bridged micromechanical filter and specifies all 

needed dimensions and equations. Since the constituent resonator of a bridged filter is chosen 

Table 5.1: 4CC 3λ/4 Bridged Filter Design (Using CC-Beams) Equation Summary. 

Given/Set Values Procedure/Objective 
Relevant Design Equations for a Given 

Parameter 

Bridged Filter Schematic: 

 
 

 

 

Given and Set Values: 

7. Resonator dimensions and equivalent lumped 

mechanical/electrical parameters from Table 2.2. 

8. Filter type such as Inverse Chebyshev response in 

this example. 

9. Normalized filter coupling coefficients ksij and 

loaded qi of Inverse Chebyshev response from 

filter cookbooks [27]. 

10. Set designed filter bandwidth BW. 

11. Filter coupling/bridging locations lci.  

12. Choose proper Wsij for bridging beam. 

Obtain lumped equivalent 

mechanical parameters for 

CC-beam resonator. 

Use Table 2.1 to obtain mre, kre, and cre. 

Find filter coupling 

coefficients ksija, ksijb, and 

ksijc where i and j denote 

adjacent resonators. 

Determine dimensions Wsij 

and Lsij for filter coupling 

beams. 

𝑘𝑠𝑖𝑗 = 𝜂𝑐𝑖𝑗
2 𝑘𝑟𝑒 (

𝐵𝑊

𝑓𝑜
) 𝑘𝑖𝑗 (T5. 1) 

where kre is the resonator effective stiffness at the 

center and ηc is the low-velocity transformation. 

ksija = ksijb = -ksijc= -ksij (T5. 2) 

Solve equation 4.22 for λ/4 coupling (1st root) using 

α to find Lsij. 

Use equation 4.19 for ksa and optimize the solution 

for Wsij and the low-velocity transformation ηci.  

Determine dimension Lsb for 

bridging beam. 

Find bridging coupling 

coefficients ksa, ksb, and ksc. 

Repeat (T5.2) again but choose 2nd root to obtain α 

for 3λ/4 coupling and solve for LsB 

Obtain ksBa, ksBb, and ksBc for optimum placement of 

the loss pole and solve for WsB and ηcB. 

Obtain mechanical response 

(the model of Figure 5.11) 

Use 5.1-5.9 to plot mechanical frequency response 

such as Figure 5.12. 

Determine equivalent circuit 

parameters for CC-beam 

resonator and coupling / 

bridging beams. 

Use equations 2.19 to determine the equivalent 

electrical model shown in Figure 5.15. 

 
(T5. 3) 

Design for the optimum 

value of the termination 

resistance RQ, resonator 

desing paramter, and  the 

required area of the 

input/output resonators. 

Iterate these steps to achieve 

the desired values. 

𝑅𝑄 = 𝑅𝑥 (
𝑄

𝑞𝑛𝑄𝑓

− 1) ≅
1

𝑞𝑛𝑄𝑓

∙
1

(
𝐶𝑥
𝐶𝑜
)
∙

1

𝜔𝑜𝐶𝑜
 

Where Rx is the resonator motional 

impedance, Q is the unloaded resonator 

quality factor, and Qf=f0/BW, Cx/Co is the 

resonator electromechanical coupling 

strength, Co is the input/output static 

capacitance and ωo is the resonator center 

frequency. 

(T5. 4) 

Determine filter insertion IL. 

𝐼𝐿 = 20 log (
𝑅𝑄 + 𝑅𝑥

𝑅𝑄

) 

𝐼𝐿 = 20 log(
1

1 −
𝑞𝑛𝑄𝑓

𝑄

) 

(T5. 5) 

Obtain electrical frequency 

response using the model of 

Figure 5.15 

Insert all the required parameters of Figure 5.15 and 

use any circuit simulator to simulate filter frequency 

response such as Figure 5.16. 

 

 

    

   

    

   

   

   

      

      

   

   

Res.
4

Res.
1

Res.
2

Res.
3

Anchor
Points

     =      = −     =
 

    



89 

 

corresponding to Table 2.1, resonator dimensions, material properties, electrode-to-resonator gap 

spacing do, center frequency fo, equivalent lumped mechanical/electrical parameters, and shunt 

capacitance Co are determined before implementing filter modeling. Next, specific type of 

bandpass filters, such as Butterworth, Chebyshev, linear phase, Gaussian, or Legendre, can be 

chosen with desired passband ripple in [27]. In this work, pseudo-Inverse Chebyshev filter 

response with designated filter bandwidth BW is utilized to enhance filter shape factor but, on the 

other hand, suffer relatively larger passband ripples. The normalized coupling coefficients kij and 

loaded q’s (i.e., qi) of a designated bandpass filter can be found from filter cookbook [27] and here 

tabulated in Table 5.2. The normalized coupling coefficients kij now can be denormalized into filter 

coupling coefficients using (T5.1) while the coupling spring constants ksija, ksijb, and ksijc are 

determined via (T5.2) as well due to quarter wavelength design. The quarter-wavelength design 

presented in Chapter 4 determines the coupling beam length Lsij between adjacent resonators. The 

choice of coupling beam width Wsij and joint location lc1-3 is an optimization problem to achieve 

normalized coupling stiffness ksij, while considering fabrication constraints. 

The bridging beam between the non-adjacent resonators is equivalent to three-quarter 

wavelength and the second root of equation 4.21 (i.e. H6=0) determines the length LsB of the 

bridging beam. The mechanical frequency characteristic of Figure 5.15 can be simulated using 

5.1-5.4 with abovementioned parameters. Finally, the optimum design of bridging beam width WsB 

and its location lcB determines the loss pole location and filter roll-off. 

To achieve terminated frequency response of a given bridged filter, all the electrical 

parameters of Figure 5.15 are required to attain flat passband and real insertion loss as shown 

Figure 5.16. Therefore, equivalent circuit parameters of the constituent resonator of a bridged filter 

are calculated from Table 2.1 and Table 5.2. The mechanical transformer turns ratio ηci coupling 

and bridging locations lci, can be obtained from 5.16 while electromechanical coupling coefficient 

ηe are attained via 2.46 The desired termination resistance RQ determines the optimum choice of 

gap spacing do for a certain bias voltage VP. Finally, the frequency response of such a bridged filter 

can be simulated using model of Figure 5.15 applied into any circuit simulator, like Keysight ADS 

[74], to obtain flattened passband and real insertion loss. 

5.6 FABRICATION AND EXPERIMENTAL RESULTS 

The designed filter of Figure 5.3 were fabricated by the three-mask surface micromachining 

process described in Chapter 2. Figure 5.17-Figure 5.19 present SEM’s for fabricated versions of 

each design. 

Figure 5.20 presents two measurement setups to properly terminate the filter response. Since 

the filters of this work require termination resistance of 10kΩ, the available 50Ω-matched network 

analyzer cannot provide required loading and therefore, off-chip resistors RQ, shown in Figure 

5.20, are essential. But having a series resistance at the output of the filter buries the output signal 



90 

 

because of the voltage divider formed between RQ and 50Ω internal impedance of the network 

analyzer. Having a unity-gain trans-impedance amplifier (Figure 5.20 (a)) or a buffer (Figure 5.20 

(b)) at the output of the filter can eliminate that voltage divider and acts as an active matching 

network. The virtual ground of the amplifier inverting terminal effectively nulls out parasitic shunt 

capacitance, greatly improving the measurable bandwidth of the trans-impedance amplifier (Figure 

5.20 (a)). Both measurement circuitries have been used to characterize the filter responses in this 

work and no perceivable difference was observed. 

Figure 5.21-Figure 5.23 present 

frequency characteristics for each design, 

measured under 1mTorr vacuum using a 

 

Figure 5.17: Scanning electron micrograph (SEM) of a 

released 3CC λ/4 bridged micromechanical filter. Each 

constituent resonator in the filter has its own tuning 

electrode to maximize the tuning range of the final 

filter transfer function. 
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Figure 5.18: Scanning electron micrograph (SEM) 

of a 3CC 3λ/4bridged μmechanical filter, depicting 

λ/4 coupling beams and 3λ/4 bridging beam. 
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Figure 5.19: Scanning electron micrograph (SEM) of 

a 4CC 3λ/4 bridged μmechanical filter with separate 

tuning electrode underneath each resonator. 
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Figure 5.20: Test setup with trans-impedance (a) and 

unity buffer (b) illustrating the filter termination 

scheme, showing detail connections of operational 

amplifier circuit and measurement instrumentation 

for a bridged filter. 
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custom-built vacuum chamber together with a network analyzer, and using the indicated bias 

configurations of Figure 5.20, where VP is applied to the filter structure, and VTi are tuning voltages 

of individual resonators. Since the main electrodes of the resonator #2 in 3CC filter and of the 

resonators #2 and #3 in 4CC filter do not act as input/output transducers, they have been used as 

extra tuning pad with indicated voltage sources VBi.  

As shown in Figure 5.21, the 3CC λ/4 design achieves an insertion loss of only 1.2 dB for a 

0.13% bandwidth centered at 8.08 MHz, with 

40 dB of stopband rejection, and a (notch) loss 

pole above the passband, as expected, 

achieving 20-dB shape factor of 2.08, much 

better than achieved previously in [12], and also 

providing extra 12 dB rejection. From Figure 

5.22, the 3CC 3λ/4 design achieves an insertion 

loss of 1 dB for a 0.12% bandwidth centered at 

8.18 MHz, with a loss pole be-low the passband 

and a shape factor of 2.03. Figure 5.23 

characterized the 4CC 3λ/4 design which 

achieves an insertion loss of 1 dB for a 0.32% 

bandwidth centered at 8.074 MHz, with 40 dB 

stopband rejection and a shape factor of 1.84. 

 

 

Figure 5.21: Measured frequency characteristic for 

3CC λ/4 bridged micromechanical filter of Figure 

5.17. 
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Figure 5.22: Measured frequency characteristic for 

3CC 3λ/4 bridged micromechanical filter of Figure 

5.18. 
 

 

Figure 5.23: Measured frequency characteristic for 

the 4CC 3λ/4 bridged micromechanical filter of 

Figure 5.19. 
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The narrow-band filters presented so far are capable of exclusively selecting a channel within 

a desired band. However, in any practical application, the receiver should be able to communicate 

via any designated channel (Figure 5.24 (a)). A RF switch followed by a filter bank [21] like the 

one shown in Figure 5.24 (b) is capable of selecting any desired channel, though in expense of a 

huge footprint. Recently, application of tunable filters (Figure 5.24 (c)) have been the subject of 

extensive research and various methods have 

been developed, usually in expense of extra 

fabrication steps, large footprints or including 

off-chip components [75]. The voltage-

dependent electrical stiffness [62] provides 

tuning capability for capacitive transducers free 

of charge and the tuning electrodes underneath 

each constituent resonators of this work offer 

tuning capability for individual poles and zeros 

of the filter transfer function. Figure 5.24 (d) 

presents the tuning capability of the 3CC 3λ/4 

bridged filter of this work. The bias voltage VP 

shifts the filter center frequency and then tuning 

voltages VT1-3 and VB2 minimize any passband 

ripple by tuning individual resonators. This 

filter has remarkable tuning resolution of 

80kHz/V, which translates to tuning range of 

1%/V. 

 

 

 
Figure 5.24: The receiver should be able to select 

between different channels available in the band (a). 

Combination of a RF switch and a filter bank (b) is 

capable of choosing appropriate channels, in expense 

of big foot-print, while a tunable filter provides 

selectivity and flexibility (c). Intrinsic tuning 

capability of capacitive transducers offers the 

ultimate solution (d). The bias voltage changes the 

center frequency and the tuning voltages correct any 

passband ripple (e). 
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Table 5.2: Bridged Filter Design Summary 

Parameter 
3CC λ/4 Design 3CC 3λ/4 Design 4CC 3λ/4 Design Units 

Design/Sim. Meas. Design/Sim. Meas. Design/Sim. Meas.  

Center Frequency, fo 8.469 8.081 8.469 8.180 8.469 8.074 MHz 

Resonator Q 10,000 15,100 10,000 15,100 10,000 15,100 — 

Bandwidth, BW 11.1 10.7 11.1 10.2 27.3 26 kHz 

Percent Bandwidth, (BW/fo) 0.131 0.132 0.131 0.125 0.322 0.322 % 

Filter DC-Bias, VP 30 21 30 20 30 22.5 V 

Loaded qi
* 1.0 -- 1.0 -- 0.7654 -- — 

Normalized Filter Coupling Coef., k12
* 0.674 -- 0.674 -- 0.597 -- — 

Normalized Filter Coupling Coef., k23
* 0.419 -- 0.419 -- 0.431 -- — 

Normalized Filter Coupling Coef., k34
* -- -- -- -- 0.465 -- — 

Filter Coupling Beam Length, Ls12, Ls23, Ls34 22.3 -- 22.3 -- 22.3 -- μm 

Bridging Beam Length, Ls13, Ls14 22.3 -- 51.8 -- 51.8 -- μm 

Filter Coupling Beam Width, Ws12, Ws23, Ws34 0.75 -- 0.75 -- 0.75 -- μm 

Bridging Beam Width, Wsb 0.75 -- 0.75 -- 0.75 -- μm 

Coupling/Bridging Beam Thickness, h 2 1.985 2 1.985 2 1.985 μm 

Resonator Mass @ I/O, mre 5.829x10-13 5.902x10-13 5.829x10-13 5.902x10-13 5.829x10-13 5.902x10-13 kg 

Resonator Stiffness @ I/O, kre 1.923x103 1.772x103 1.923x103 1.772x103 1.923x103 1.772x103 N/m 

Resonator Damping @ I/O, cre 3.036x10-9 1.841x10-9 3.036x10-9 1.841x10-9 3.036x10-9 1.841x10-9 Ns/m 

Filter Coupling Location, lc1-3 4.1, 3.6 4.5, 4.0 4.1, 3.6 4.5, 4.0 5.1, 4.65, 4.75 5.5, 5.05, 5.15 μm 

Bridging Location, lcb 2.2 2.6 2.2 2.6 2.3 2.7 μm 

Coupling Beam Stiffness, ks12a, ks23a, ks34a -109.56 87.72 -109.56 87.72 -109.56 87.72 N/m 

Coupling Beam Stiffness, ks12c, ks23c, ks34c 109.56 103.09 109.56 103.09 109.56 103.09 N/m 

Bridging Beam Stiffness, ksb -109.56 87.72 125.68 214.42 125.68 214.42 N/m 

Bridging Beam Stiffness, ksb 109.56 103.09 -125.68 -155.09 -125.68 -155.09 N/m 

Filter Coupling Capacitance, cs12a, cs23a, cs34a -0.0091 -0.0114 -0.0091 -0.0114 -0.0091 -0.0114 F 

Filter Coupling Capacitance, cs12c, cs23c, cs34c 0.0091 0.0097 0.0091 0.0097 0.0091 0.0097 F 

Bridging Capacitance, csb -0.009 -0.0114 0.008 0.0047 0.008 0.0047 F 

Bridging Capacitance, csb 0.009 0.0097 -0.008 -0.0064 -0.008 -0.0064 F 

Mechanical Transformer Turn Ratio at lc1-3, ηc1-3 8.03, 10.18 7.04, 8.071 8.03, 10.18 7.04, 8.071 5.44, 6.40, 6.16 4.93, 5.73, 5.54 C/m 

Mechanical Transformer Turn Ratio at lcb, ηcb 25.65 19.39 25.65 19.39 23.57 18.06 C/m 

Equivalent Inductance, lx 5.829x10-13 5.902x10-13 5.829x10-13 5.902x10-13 5.829x10-13 5.902x10-13 H 

Equivalent Capacitance, cx 4.323x10-4 5.644x10-4 4.323x10-4 5.644x10-4 4.323x10-4 5.644x10-4 F 

Equivalent Resistance, rx 3.036x10-9 1.841x10-9 3.036x10-9 1.841x10-9 3.036x10-9 1.841x10-9 Ω 

Electromechanical Coupling Coefficient, ηe 1.833x10-6 1.409x10-6 1.833x10-6 1.330x10-6 1.833x10-6 1.532x10-6 C/m 

Calculated Equivalent Resistance, Rx 0.904 1.018 0.904 1.151 0.904 0.852 kΩ 

Calculated Equivalent Inductance, Lx 0.173 0.297 0.173 0.334 0.173 0.25 H 

Calculated Equivalent Capacitance, Cx 2.12 1.257 2.12 1.105 2.12 1.52 fF 

Static Overlap Capacitance, Co 9.44 10.12 9.44 10.12 9.44 10.12 fF 

Electromechanical Coupling Cx/Co 22.5 12.42 22.5 10.92 22.5 15.0 % 

Termination Resistance, RQ 11 12 11 10 22 20 kΩ 

Insertion Loss, IL 0.3 1.2 0.3 1.0 0.3 1.0 dB 

20 dB Shape Factor 2.07 2.08 2.07 2.03 1.42 1.84 — 

Stopband Rejection, SR 90 40 90 40 90 40 dB 

Loss Pole position, |floss pole – fo|/fo 0.369 0.297 0.354 0.367 0.406, 0.411 0.421, 0.396 % 
 

*From filter cookbooks [27]. 
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Chapter 6 NONLINEARITY IN 

MICROMECHANICAL RESONATORS AND 

FILTERS 
Channel-select filters like those presented in Chapter 5, capable of rejecting all interferer 

signals relax the dynamic range requirements on subsequent stages, e.g., the LNA and the mixer, 

thereby greatly reduce the receiver power consumption. However, the degree of interferer 

suppression depends strongly on the linearity of the filter, which if not sufficiently linear, can also 

generate intermodulation spurs even after rejecting interferers.  

Pursuant to determining the linearity of high-order capacitive-gap micromechanical filters, 

this chapter represents a complete analytical formulation for the IIP3 of such devices and then 

verifies the formulation via experimental measurement on the 3rd- and 4th-order bridged filters. 

With IIP3 on the order of 36dBm for 400-kHz tone separations, these filters possess sufficient 

linearity for a large range of HF RF front-end or IF applications.  

6.1 SYSTEM NONLINEARITY 

The general filter design procedure developed so far presumes the micromechanical filters 

as a linear system, i.e. the output of the system is a mere scaled version of the input at exactly the 

given tone, shown in Figure 6.1 (a). However, any practical system entails some nonlinearity and 

this nonlinearity is most conveniently modeled by a Taylor series given in equation 6.1, where x 

and y are input and output and ais describe system behavior [17]. In general, the system input is 

not a pure sinusoidal signal at a given frequency, and hence, the system response to a general input 

such as the one given in equation 6.2 is required for complete understanding of the system. Here, 

two interferer signals at frequencies ω1 and ω2 add to the desired signal at frequency ωo. 

𝑦 = 𝑎𝑜 + 𝑎 𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 +⋯ (6.1) 

𝑥 = 𝑆𝑜 cos(𝜔𝑜𝑡) + 𝑆 cos(𝜔 𝑡) + 𝑆2 cos(𝜔2𝑡) (6.2) 

When this signal passes through a nonlinear transfer function of the form in (6.1), the output 

includes not only a scaled version of the input, but also spurious signals at frequencies not present 

in the original input. Specifically, inserting (2) into (1), harmonics as well as inter-modulation 

components arise: 

i. The odd-order nonlinearities contribute to the DC offset at the output, which affect 

the operational point of the following stages. In a capacitive transducer, these terms 

modify the bias voltage VP and therefore, the system performance such as center 
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frequency fo or electromechanical coupling strength (Cx/Co) might change by strong 

input signal. 

ii. Third-order nonlinearity also modifies the main output terms and effectively changes 

the system linear gain a1. In most practical cases, a1a3<0 and therefore, the system 

gain reduces at large input power. 

iii. Second-order intermodulation between input tones produces very low frequency 

terms at the output and causes the slow-varying fluctuations at the output. 

iv. Harmonics of the input tones at nωi, although are at much higher frequencies and can 

be filtered out easily, but they might cause unwanted oscillation in the following 

stages and more importantly, they might affect other systems operating at or near 

those frequencies. 

v. Third-order intermodulation produces output tones very close to the desired 

frequency ωo. Specially, if the tones are spaced equally, i.e. ω1-ωo= ω2-ω1=±Δω, then 

2ω1-ω2=ωo and the intermodulation tone is exactly at the desired frequency 

disturbing the desired signal detection. The intermodulation term can be considered 

as noise at the output degrading the system signal-to-noise ratio SNR. The 

intermodulation term can completely mask the desired signal, for strong enough 

tones at the input. 

 

 

Figure  

Figure 6.1: (a) Perspective-view schematics for the three bridged micromechanical filter designs used in 

this work to measure nonlinearity in capacitive-gap filters and their frequency characteristics. (b) Two-tone 

experiment setup showing needed biasing, excitation, and sensing circuits along with CC beam dimensions. 

Tones are spaced equally from each other and from the center frequency of the filter. 
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𝑦 = 𝑎𝑜 +
𝑎2
2
{𝑆𝑜

2 + 𝑆 
2 + 𝑆2

2} + ⋯ i 

(6.3) 

+𝑎 {𝑆𝑜 cos(𝜔𝑜𝑡) + 𝑆 cos(𝜔 𝑡) + 𝑆2 cos(𝜔2𝑡)} +
3

4
𝑎3𝑆𝑜 cos(𝜔𝑜𝑡) + ⋯ ii 

+𝑎2{𝑆𝑜𝑆 cos((𝜔𝑜 − 𝜔 )𝑡) + 𝑆𝑜𝑆2 cos((𝜔𝑜 − 𝜔2)𝑡) + ⋯} iii 

+
𝑎2
2
{𝑆𝑜

2 cos(2𝜔𝑜𝑡) + ⋯} +
𝑎3
2
{𝑆𝑜

3 cos(3𝜔𝑜𝑡) + ⋯} +⋯ iv 

+
3

4
𝑎3{𝑆 

2𝑆2 cos((2𝜔 − 𝜔2)𝑡) + 𝑆 
2𝑆2 cos((2𝜔 + 𝜔2)𝑡)} + ⋯ v 

These five terms summarize different consequences of the system nonlinearity on the system 

performance and characteristic and advocate the need to reduce the nonlinear coefficients a2 and 

a3 to suppress the undesired effects. Particularly, intermodulation between two equispaced input 

tones can produce output terms at frequencies near the desired signal, which is not distinguishable 

from the desired tone at all. This third-order intermodulation component, IM3, can directly impact 

the signal-to-noise ratio of the desired channel and eventually mask the channel completely, if the 

system nonlinearity is too large. Hence, IM3 distortion must be constrained below a minimum 

acceptable value. 

Since the intermodulation term grows by the input power cube while the linear term grows 

proportional to the input power, their extrapolated lines intercept at some point, as shown in Figure 

6.1. The third-order input intercept point (IIP3), the common measure of the third order 

nonlinearity, is defined as the input power level at which the extrapolated intermodulation 

component has the same power as the fundamental output, when all the input tones have equal 

power level. In general, a larger IIP3 indicates smaller nonlinearity (or better linearity) in a given 

system, as suggested by equation 6.4, and hence smaller intermodulation component generation, 

which is a design goal of communication systems. 

𝑎 𝑆𝑜 =
3

4
𝑎3𝑆𝑜

3 → 𝑆𝑜 = √
4

3
∙ |
𝑎 
𝑎3
| (6.4) 

As shown in Figure 6.2, while a micromechanical channel-select filter attenuates out-of-

channel interferer signals, its nonlinearity can still result in intermodulation components at its 

output that corrupt the desired signal, which motivates the necessity to design for maximum filter 

IIP3. Note that interferer signals for a channel-select filter are outside the filter pass-band. 

6.2 CAPACITIVE-GAP TRANSDUCER NONLINEARITY 

Nonlinearity in either resonator stiffness [76] or capacitive-gap transduction [77] is often the 

most important contributors to filter nonlinearity. The former becomes significant when large 
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displacement induces non-negligible internal strain in the resonator, which manifests as a stiffness 

nonlinearity. Since interferer signals are out-of-channel for a channel-select filter, the induced 

displacement is generally very small, so the stiffness nonlinearity is negligible. Therefore, 

transducer nonlinearity which translates to input force nonlinearity generates the intermodulation 

term of a channel-select filter.  

The parallel-plate capacitor described in Chapter 2 can simplify the derivation of the 

micromechanical resonator nonlinear terms. The findings of this section will be expanded for the 

micromechanical filters in the following sections.  

The transducer takes as input a dc voltage VP applied to one electrode and an ac excitation 

voltage vi applied to the other. The free electrode moves in response to the force F generated by 

the input voltage combination following a biquad frequency response of Figure 6.3, where the 

electrode effective stiffness kre and quality factor Q determine the maximum displacement 

according to equation 6.4 and 6.5, where ωo is the resonance frequency. The mechanical force F 

is due to the electrostatic actuation and the equation 6.6 provides the linear displacement-to-

voltage transfer function for a single tone input at frequency ω and amplitude of Vo. Here, ηe is the 

electromechanical coupling introduced in Chapter 2. 

𝑋

𝐹
(𝜔) =

1

𝑘𝑟𝑒
Θ(𝜔) (6.5) 

Θ(𝜔) =
1

1 − (
𝜔
𝜔𝑜

)
2
+

𝑗𝜔
𝑄𝜔𝑜

 
(6.6) 

𝑋

𝑉𝑜
(𝜔) =

𝜂𝑒
𝑘𝑟𝑒

Θ(𝜔) (6.7) 

The nonlinearity in the transduction force is due to the nonlinear nature of the gap-closing 

capacitive transducers, like the one shown in Figure 6.3. Equation 6.7 provides the total actuation 

 

Figure 6.2: While a channel-select filter attenuates out-of-band interferer signals, filter nonlinearity can still 

produce a troublesome intermodulation component at the output, especially if interferers are ∆ω and 2∆ω 

away from desired signal, for which the IM3 component will be exactly at ωo and can deteriorate receiver 

signal-to-noise ratio, SNR. 
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force Ftot that drives the resonator to move a displacement x and clearly shows the nonlinear 

dependency of the actuation force Ftot on the input voltage vi and the resonator displacement x. For 

purposes of IIP3 determination, the input voltage comprises the sum of two out-of-band signals 

with equal amplitude Vo. Without loss of generality, we can assume ω1 and ω2 are chosen such 

that 2ω1-ω2=ωo, as in equation 6.9. Application of this input voltage induces small resonator 

displacement X1 and X2 at the corresponding frequencies which can be found from equation 6.6. 

Nonlinear interaction between these displacements and the input voltages produces a displacement 

spur at ωo via third-order intermodulation terms, as discussed in the previous section and shown 

in Figure 6.4. Hence, the total resulting resonator displacement takes the form given in equation 

6.10, where the amplitude of the displacement at ωo to be determined later. The phase terms ϕ1 

and ϕ2 are necessary for the general equation of motion that includes the damping term bre, and if 

ω1 and ω2 are far enough from the center frequency ωo, they can be approximated by 0 or -π, for 

ω1,ω2<ωo and ω1,ω2>ωo respectively. Equation 6.11 provides the displacement expression for the 

latter case, assuming high-Q micromechanical resonators and defining Θ1= Θ(ω1) and Θ2=Θ(ω2). 

𝐹𝑡𝑜𝑡 =
1

2
(𝑉𝑃 − 𝑣𝑖)

2
𝑑𝐶

𝑑𝑥
=
1

2
(𝑉𝑃 − 𝑣𝑖)

2
𝑑

𝑑𝑥
(

𝜀𝐴

𝑑𝑜 − 𝑥
) 

𝐹𝑡𝑜𝑡 =
1

2
(𝑉𝑃 − 𝑣𝑖)

2
𝑑

𝑑𝑥
(𝐶𝑜 (1 −

𝑥

𝑑𝑜
)
− 

) 

𝐹𝑡𝑜𝑡 =
1

2
(𝑉𝑃 − 𝑣𝑖)

2
𝐶𝑜
𝑑𝑜

(1 +
2𝑥

𝑑𝑜
+
3𝑥2

𝑑𝑜
2
+
4𝑥3

𝑑𝑜
3 +⋯) 

 

(6.8) 

𝑣𝑖 = 𝑣 + 𝑣2 = 𝑉𝑜 cos(𝜔 𝑡) + 𝑉𝑜 cos(𝜔2𝑡) (6.9) 

𝜔 = 𝜔𝑜 + Δ𝜔, 𝜔2 = 𝜔𝑜 + 2Δ𝜔 (6.10) 

 

Figure 6.3: Simplified schematic of a parallel-plate capacitive-gap transducer. The moving plate with 

effective stiffness and mass of kre and mre, respectively, produces the bandpass biquad frequency response 

shown on the right. 
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𝑥 = 𝑥𝑜 + 𝑥 + 𝑥2 = 𝑋𝑜 cos(𝜔𝑜𝑡 + 𝜙𝑜) + 𝑋 cos(𝜔 𝑡 + 𝜙 ) + 𝑋2 cos(𝜔2𝑡 + 𝜙2) 

𝑋 =
𝜂𝑒𝑉𝑜
𝑘𝑟𝑒

|Θ(𝜔 )| =
𝜂𝑒𝑉𝑜
𝑘𝑟𝑒

|Θ |, 𝑋2 =
𝜂𝑒𝑉𝑜
𝑘𝑟𝑒

|Θ(𝜔2)| =
𝜂𝑒𝑉𝑜
𝑘𝑟𝑒

|Θ2| 
(6.11) 

𝜙𝑜 =
𝜋

2
, 𝜙 = 𝜙2 = −𝜋 

𝑥 = 𝑥𝑜 + 𝑥 + 𝑥2 ≅ 𝑋𝑜 sin(𝜔𝑜𝑡) − 𝑋 cos(𝜔 𝑡) − 𝑋2 cos(𝜔2𝑡) 

𝑋 =
𝜂𝑒𝑉𝑜
𝑘𝑟𝑒

|Θ |, 𝑋2 =
𝜂𝑒𝑉𝑜
𝑘𝑟𝑒

|Θ2| 

(6.12) 

Substituting equations 6.8 and 6.10 into the actuation force expression of equation 6.7 

determines the displacement amplitude at the resonance frequency ωo due to third-order 

intermodulation of two off-resonance signals at ω1 and ω2. As suggested by equation 6.7, third-

order intermodulation can be originated from different interactions between input voltages vi and 

resonator displacement x. Equation 6.12 provides all the possible combination of vis and xis that 

generate third-order intermodulation at ωo assuming the condition of equation 6.9. Since the input 

voltage vi and the associated displacement x is relatively small, equation 6.13 neglects all higher 

order terms of equation 6.12, without introducing substantial error in the calculation. Substituting 

the displacement term from the equation 6.11, equation 6.14 presents the third-order 

intermodulation force that induces displacement resonator at ωo. Here, A is the capacitor area 

defined by A=WrWe from Figure 6.3. Further investigation of this equation suggests that it can be 

simplified by application of electromechanical coupling strength (Cx/Co), as shown in equation 

6.15. Since the coupling strength is usually on the order of a few % or less, the last term will 

dominate the expression in the parenthesis. 

𝐹𝐼𝑀3 =
𝐶𝑜
2𝑑𝑜

(

 
 
 
 
 
𝑉𝑃
2 (

12

𝑑𝑜
3 𝑥 

2𝑥2) + 𝑉𝑝𝑣 (
12

𝑑𝑜
2
𝑥 𝑥2) + 𝑉𝑝𝑣2 (

6

𝑑𝑜
2
𝑥 
2)                   

+𝑣 
2 (

2

𝑑𝑜
𝑥2 +

4

𝑑𝑜
3
(𝑥2

3 + 3𝑥𝑜
2𝑥2 + 3𝑥 

2𝑥2)) + 𝑣2
2 (

12

𝑑𝑜
3 𝑥 

2𝑥2)

+𝑣 𝑣2 (
4

𝑑𝑜
𝑥 +

8

𝑑𝑜
3
(𝑥 

3 + 3𝑥𝑜
2𝑥 + 3𝑥 𝑥2

2)) + ⋯                  
)

 
 
 
 
 

 (6.13) 

𝐹𝐼𝑀3 =
𝐶𝑜
2𝑑𝑜

(

 
 
𝑉𝑃
2 (

12

𝑑𝑜
3 𝑥 

2𝑥2) + 𝑉𝑝𝑣 (
12

𝑑𝑜
2
𝑥 𝑥2) + 𝑉𝑝𝑣2 (

6

𝑑𝑜
2
𝑥 
2)

+𝑣 
2 (

2

𝑑𝑜
𝑥2) + 𝑣 𝑣2 (

4

𝑑𝑜
𝑥 )

)

 
 

 (6.14) 

𝐹𝐼𝑀3 = 𝑉𝑜
3
𝑉𝑃(𝜀𝐴)

2

4𝑑𝑜
5𝑘𝑟𝑒

(
6
𝑉𝑃
4(𝜀𝐴)2

𝑑𝑜
6𝑘𝑟𝑒

2
|Θ |

2|Θ2| − 3
𝑉𝑃
2𝜀𝐴

𝑑𝑜
3𝑘𝑟𝑒

(2|Θ ||Θ2| + |Θ |
2)

+(2|Θ | + |Θ2|)

) (6.15) 
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𝐹𝐼𝑀3 = 𝑉𝑜
3
𝑉𝑃(𝜀𝐴)

2

4𝑑𝑜
5𝑘𝑟𝑒

(
6(

𝐶𝑥
𝐶𝑜
)
2

|Θ |
2|Θ2| − 3 (

𝐶𝑥
𝐶𝑜
) (2|Θ ||Θ2| + |Θ |

2)

+(2|Θ | + |Θ2|)

) (6.16) 

The third-order input intercept point (IIP3) is defined as the input power for which the third-

order modulation IM3 term is equal to the fundamental term. Assuming the nonlinearity associated 

with current generation at the output transducer is negligible compared to those associated with 

force generation at the input transducer, equating FIM3 (6.15) to the fundamental force Ffund (6.16) 

when exciting the resonator at ωo, and then solving for Vo, yields the expression for input voltage 

VIIP3, as given in (6.17). Recognizing that the linear force component is the corresponding input 

power, IIP3, then takes the form given in equation 6.18 where RT is the total resistance in the 

system, seen at the input, dominated by the resonator motional resistance Rx. substituting for the 

motional resistance, equation 6.19 delivers the IIP3 point of a capacitive micromechanical 

resonator. Note that this expression is linear, while IIP3 is usually been reported in dBm by proper 

conversion. 

𝐹𝑓𝑢𝑛𝑑 = 𝑉𝑃𝑉𝑜
𝜀𝐴

𝑑𝑜
2
 (6.17) 

𝑉𝐼𝐼𝑃3
2 =

4𝑑𝑜
3𝑘𝑟𝑒
𝜀𝐴

(6
𝑉𝑃
4(𝜀𝐴)2

𝑑𝑜
6𝑘𝑟𝑒

2
|Θ |

2|Θ2| + 3
𝑉𝑃
2𝜀𝐴

𝑑𝑜
3𝑘𝑟𝑒

(2|Θ ||Θ2| + |Θ |
2) + (2|Θ | + |Θ2|))

 
(6.18) 

𝑉𝐼𝐼𝑃3
2 =

4𝑑𝑜
3𝑘𝑟𝑒
𝜀𝐴

(6 (
𝐶𝑥
𝐶𝑜
)
2

|Θ |
2|Θ2| + 3 (

𝐶𝑥
𝐶𝑜
) (2|Θ ||Θ2| + |Θ |

2) + (2|Θ | + |Θ2|))

 
(6.19) 

 

Figure 6.4: Simulated frequency response spectra for an (a) unterminated and (b) terminated third-order 

filter alongside those for the three constituent resonators. Loading of resonator Q by termination reduces 

in-band displacement, but also reduces out-of-band attenuation. Still, the terminated filter provides more 

out-of-band rejection than a stand-alone resonator, which increases IIP3. 

M
e

c
h

a
n

ic
a
l

S
ig

n
a
l 
P

o
w

e
r

Freq.
  

  
  

  

  

  

  

Induced 

Displacement 
at   and   

Displacement at 

Resonance

µMechanical 

Resonator

E
le

c
tr

ic
a
l 

S
ig

n
a
l
P

o
w

e
r

Freq.

Out-of-Band

Interferers

  

  
  

  

  

  

  

µMechanical 

Resonator Freq. 
Characteristic



101 

 

𝐼𝐼𝑃3 =
𝑉𝐼𝐼𝑃3
2

2𝑅 
≅
𝑉𝐼𝐼𝑃3
2

2𝑅𝑥
 (6.20) 

𝐼𝐼𝑃3 =
2𝑄𝜔𝑜 ∙

𝑉𝑃
2𝜀𝐴
𝑑𝑜

(6
𝑉𝑃
4(𝜀𝐴)2

𝑑𝑜
6𝑘𝑟𝑒

2
|Θ |

2|Θ2| + 3
𝑉𝑃
2𝜀𝐴

𝑑𝑜
3𝑘𝑟𝑒

(2|Θ ||Θ2| + |Θ |
2) + (2|Θ | + |Θ2|))

 
(6.21) 

𝐼𝐼𝑃3 =
2𝑄𝜔𝑜 ∙

𝑉𝑃
2𝜀𝐴
𝑑𝑜

(6 (
𝐶𝑥
𝐶𝑜
)
2

|Θ |
2|Θ2| + 3 (

𝐶𝑥
𝐶𝑜
) (2|Θ ||Θ2| + |Θ |

2) + (2|Θ | + |Θ2|))

 
(6.22) 

A careful examination of equation (6.20 and 6.21) shows that IIP3 is dependent on not only 

material properties, but also resonator and electrode geometry. In particular, IIP3 increases with 

VP, A and do and it is not strongly dependent on kre. The resonator quality factor affects the IIP3 in 

two ways: (1) higher Q devices rejects out-of-band signal more effectively and therefore suppress 

Θ1 and Θ2, (2) the motional resistance of the resonator decreases by Q and hence, for a given VIIP3, 

it improves IIP3. Note that equation 6.19 is valid for a resonator with motional resistance much 

larger than the system impedance. If Rx is on the same order as the 50Ω system impedance, this 

equation should be modified to include the matching at the input and resonator loading by the 

system impedance. 

Figure 6.5 presents different dependencies of IIP3 (equation 6.20) and VIIP3 (equation 6.17) 

on different design parameters. As expected, VIIP3 is not a strong function of quality factor Q, while 

IIP3 improves by Q due to decrease in the resonator motional resistance Rx, as shown in Figure 

6.5 (a). Figure 6.5 (b) the complex dependency of IIP3 on the transducer gap spacing: IIP3 

monotonically decreases by gap spacing for large bias voltages while it improves by the gap 

spacing for the small VP. The resonator coupling (Cx/Co) is considerably large for large VP and 

small gap spacing and therefore, the first term in the denominator of 6.20 and 6.21 dominates. In 

this case, IIP3 is proportional to do5 and small gap spacing degrades the nonlinearity. On the other 

hand, for small voltages the last term in the denominator dominates and hence, IIIP3 is inversely 

proportional to do and small gap spacing improves the linearity. Note that for small gap, smaller 

bias voltage is required to achieve strong electromechanical coupling and hence, reducing the gap 

spacing improves the linearity of the system while providing better performance. Wider resonators 

linearly increase the capacitor’s area A and also the resonator effective stiffness (equation 2.22). 

Therefore, VIIP3 does not change by the resonator width while IIP3 improves by Wr due to the 

reduction in the resonator motional resistance Rx, as shown in Figure 6.5. 

Figure 6.5 (c) provides more insights into the tradeoff between the gap spacing, the bias 

voltage VP and the resonator linearity IIP3. Although IIP3 increases monotonically with VP for 
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large gaps, there is an optimum bias voltage for small gap resonators. For small VP and do the IIP3 

increases by VP
2. On the other hand, as VP increases and the first denominator term of 6.20 grows 

and dominates the denominator and as a result, IIP3 decreases by 1/ VP
2.  

 

Figure 6.5: The third-order intermodulation point IIP3 and VIIP3 as a function of (a) resonator quality factor 

Q, (b) transducer gap spacing do, (c) resonator width Wr, (d) transducer bias voltage VP, (e) resonator center 

frequency fo, (f) the tone spacing Δf/fo. The parameters used in all the simulations are: Q=10k, Δf/fo=1%, 

fo=13MHz, kre=12kN/m, do=100nm, We=20um, Wr=8um, VP=20V (unless specified otherwise). 
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As suggested by equation 6.20 and shown in Figure 6.5 (e), IIP3 improves linearly by the 

resonator center frequency. Although not evident from equation 6.17, VIIP3 increases with the 

center frequency, as the resonator becomes stiffer at higher frequencies. For this simulation, the 

resonator height was constant and the resonator length determines the center frequency. As the 

interferer signals move further from the center frequency, the micromechanical resonator provides 

more attenuation and hence, reduces the induced displacement, as suggested by equation 6.5 as 

shown in Figure 6.5 (f). 

6.3 FILTER CONSIDERATION IN IIP3 CALCULATION 

Although the parallel-plate approximation is still valid for a capacitive-gap micromechanical 

filter as shown in Figure 6.6, the IIP3 expression requires two major modifications to account for 

the following. 

6.3.1 TOTAL RESISTANCE  

Proper termination is essential to minimize in-channel ripple and attain a flat passband. 

Before termination, the resonator Q’s are too large and the filter passband consists of distinct 

peaks, as shown in Figure 6.7 (a). The termination resistance needed to flatten the passband of a 

filter with center frequency fo, bandwidth B, and small insertion loss is: 

 

 

Figure 6.6: Schematic description of IM3 generation by two interferer signals going through a filter transfer 

function. The interaction between out-of-band motion induced by these interferers and input voltage can 

intro-duce an in-band input force and corresponding displacement. The un-desirable IM3 displacement 

results even with no input at resonance. 
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𝑅𝑄 = (
𝑄

𝑞𝑖𝑄𝑓
− 1)𝑅𝑥 ≅

𝑄

𝑞𝑖𝑄𝑓
𝑅𝑥 =

𝑘𝑟𝑒
𝑞𝑖𝑄𝑓𝜂𝑒

2𝜔𝑜
 

𝑅𝑥 =
𝑘𝑟𝑒

𝑄𝜂𝑒
2𝜔𝑜

 

(6.23) 

where Qf=fo/B is the filter fractional bandwidth. In contrast to the single resonator case, these 

termination resistors RQ dominate the resistance in the system, so RT∼RQ in equation (16) when 

calculating the IIP3 of filters. This argument suggests that the resonator quality factor in the 

equation 6.20 and 6.21 should be replaced by the expression qiQf (i.e. the product of the filter 

fractional bandwidth and the filter normalization factor. 

6.3.2 HIGH-ORDER MECHANICAL SYSTEM: 

The equation of motion (6.5) describes only single resonators, whereas the micromechanical 

filters of this work comprise several resonators linked by coupling beams, as explained in previous 

chapters. Solving the complete mechanical system yields transfer functions listed in filter cook 

books, such as [27]. For example, the transfer function of a second-order filter coupled by quarter-

wavelength coupling beams takes the form given in equations 6.18 and 6.19. Here, PBW is the filter 

fractional bandwidth. Note that terminating the filter with RQ loads the quality factors of the 

constituent resonators, which is why Qf appears in (6.19) instead of the resonator quality factor Q. 

The loading effect reduces resonator displacement at resonance (Xo ∝ Q/kre) and reduces out-of-

band rejection leading to larger out-of-band displacements X1 and X2. However, compared with a 

similarly terminated stand-alone resonator, the high-order transfer function of a multi-resonator 

filter shown in Figure 6.7 provides a larger out-of-band attenuation that reduces out-of-band 

displacement, decreasing IM3, hence improving IIP3. 

 

Figure 6.7: Simulated frequency response spectra for an (a) unterminated and (b) terminated third-order 

filter alongside those for the three constituent resonators. Loading of resonator Q by termination reduces 

in-band displacement, but also reduces out-of-band attenuation. Still, the terminated filter provides more 

out-of-band rejection than a stand-alone resonator, which increases IIP3. 
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𝑋

𝐹
(𝜔) =

1

𝑘𝑟𝑒
Θ(𝜔) (6.24) 

Θ(𝜔) ≅
𝑃𝐵𝑊

(1 −
(𝜔 𝜔𝑜 )

2

1 + 𝑃𝐵𝑊
+
𝑗(𝜔 𝜔𝑜 )

𝑄𝑓
)(1 −

(𝜔 𝜔𝑜 )
2

1 − 𝑃𝐵𝑊
+
𝑗(𝜔 𝜔𝑜 )

𝑄𝑓
)

 

𝑃𝐵𝑊 =
𝐵𝑊

𝑓𝑜
, 𝑄𝑓 =

𝑓𝑜
𝐵𝑊

 

(6.25) 

6.4 COMPLETE FORMULATION FOR IIP3 

While the parallel-plate capacitor approximation provides an analytical solution and design 

insight for the effect of third-order nonlinearities, it neglects phenomena such as beam bending 

due to dc-bias voltage and location-dependent effective stiffness. This can introduce errors in the 

IIP3 calculation. 

VP-induced beam bending results in Co and do that are not constant, but rather functions of 

location on the y-axis given by d(y) in equation 2.22. On the other hand, the effective resonator 

stiffness is also location dependent and changes according to the mode shape at the point of 

interest. For similar reasons, X1 and X2 vary along the beam length (the y-axis in Figure 6.8), 

approaching zero near the anchors. In general, with knowledge of the peak displacement (at the 

beam midpoint) governed by the resonator lumped model, displacements at other beam locations 

follow from the resonator mode shape. To correctly determine the total actuation force Ftot, the 

differential intermodulation force components dFIM3 in infinitesimal regions dy at locations y 

should be integrated over the entire beam length.  

Since effective stiffness increases dramatically moving away from the beam center, 

displacement is a strong function of location. This phenomenon can result in a VIIP3 value twice as 

large as that derived using a simple parallel-plate approximation. Including these modifications is 

essential to better explain the experimental results. 

 

Figure 6.8: The accurate modeling of the resonator nonlinearity requires considering the resonator mode 

shape and location-dependent effective stiffness. The third-order intermodulation force dFIM3 should be 

calculated from the electrostatic force dFe over the infinitesimal length dy and then integrated over the 

electrode width, from Le1 to Le2. 

𝐿𝑒2

𝑑𝑦
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6.5 MEASUREMENT RESULTS 

Figure 6.9 (a) shows the pseudo 2-port setup used for the nonlinearity measurement on the 

CC-beam resonator of Chapter 2. The power combiner at the input couples the two signals at ω1 

and ω2 from different sources and then a bias-T feeds the input signal to the beam structure. As 

expected from the equation 6.3, the intermodulation term grows with the input power cube, while 

the fundamental signal grows linearly, and the intersection determines the third-order intercept 

point. Figure 6.9 (b) and (c) present the intermodulation measurement for bias voltages of 5V and 

7.5V, respectively. The resonator bias at 5V shows IIP3 of 19.6dBm, 31.16dBm, and 34.57dBm 

for tone spacing of 0.2%, 1% and 5%, respectively. The same resonator shows IIP3 of 4.71dBm, 

20.91dBm and 32.7dBm when biased at 7.5V. Figure 6.9 (c) summarizes the IIP3 measurements 

for different tone spacing, showing the suppression of nonlinearity term as the interfering signals 

move further from the center frequency. 

 

Figure 6.9: (a) The pseudo-2 port setup for resonator nonlinearity measurement. (b) Third-order input 

intercept point IIP3 measurements of the CC-beam micromechanical resonator at bias voltage of (c) 5V 

and (d) 7.5V for different tone spacing. (d) measured IIP3 versus percent tone separation (Δω/ωo) for a 

terminated 3CC-λ/4 filter. 
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Figure 6.10 (a) shows the nonlinearity measurement setup for the CC-beam bridged filters 

presented in Chapter 5, and also presents IIP3 measurements on (b) a 3CC-3λ/4 bridged filter and 

(c) a 4CC-3λ/4 bridged filter. Here, a spectrum analyzer measured the output power response to 

two-tone inputs with frequency spacings like those pictured in Figure 6.1. These filters show (b) 

an IIP3 of 17dBm for a tone separation of 125kHz; and in (c), IIP3’s of 22.7dBm and 27dBm for 

tone separations of 80 and 160kHz, respectively. 

The expression for out-of-band spurious-free dynamic range takes the form [17] of equation 

6.20 for a system limited by the thermal noise. Here, SNRmin is the minimum signal-to-noise ratio 

 

Figure 6.10: (a) Third-order input intercept point IIP3 measurement setup for 3CC-3λ/4 bridged filter. (b) 

3CC-3λ/4 and (c) 4CC-3λ/4 bridged micromechanical filter nonlinearity measurement. 
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Figure 6.11:: (a) Two-tone measurement with tone separations of 80, 160 and 400kHz and (b) measured 

IIP3 versus percent tone separation (Δω/ωo) for a terminated 3CC-λ/4 filter. 
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required by the system to detect and demodulate the desired signal. Assuming SNRmin =10dB, these 

IIP3s correspond to SFDR’s of 89.94dB for the 3CC-3λ/4 bridged filter with 125kHz tone 

separation; and 91dB and 93.9dB for the 4CC-3λ/4 bridged filter with 80 and 160kHz tone 

separations, respectively 

𝑆𝐹𝐷𝑅 =
2

3
(
 
 
 
 𝐼𝐼𝑃3 + 174𝑑𝐵𝑚 − 𝐼𝐿 − 10 log 0(𝐵𝑊) ) − 𝑆𝑁𝑅𝑚𝑖𝑛 (6.26) 

Figure 6.11 presents IIP3 measurements on a 3CC-λ/4 bridged micromechanical filter. 

Specifically, (a) shows two-tone measurements for different tone spacings, while (b) plots 

measured IIP3 as a function of percent tone spacing (Δω/ωo). As expected, as out-of-band 

interferers move further away from the center frequency, induced displacements X1 and X2 

decrease and IIP3 increases. This filter achieves IIP3 of 11dBm, 22dBm and 36dBm 

corresponding to SFDR’s of 85.67dB, 93dB and 102.34dB for tone separations of 80, 160 and 

400kHz, respectively. These IIP3s are more than 30dBm higher than previous marks for single 

resonators. 
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Chapter 7 7TH-ORDER SHARP-ROLL-OFF 

BRIDGED MICROMECHANICAL FILTERS 
The bridging technique established in the previous chapters empowered the demonstration 

of 3rd- and 4th-order micromechanical filter with sharp passband-to-stopband roll-off. However, 

there is no reason for this technique to be limited to the presented filter types, and to the offered 

bridging scheme between the input and the output resonators. To demonstrate the capability of this 

technique to provide desired filter transfer function, this chapter introduces a seventh-order 

micromechanical filter with the steepest roll-off among the reported MEMS-based filters at HF. 

This shape factor arises from not only the sheer order of the filter, governed by seven coupled 

clamped-clamped beam resonators, but also from strategic bridging of its non-adjacent 1st, 4th, and 

7th resonators to generate loss poles that further steepen the roll-off from passband to stopband. 

The steepness of this filter’s roll-off greatly increases the density of available channels in HF radios 

for military and Ham applications, as well as future sensor network applications enabled by these 

results.  

The availability of high-order filters in millimeter sizes at HF, if possible, would likely spur 

vibrant activity in not only military and Ham radios, but also in a much bigger ultra-low power 

sensor network arena, especially if dense packing of channels becomes possible. 

7.1 HIGH-ORDER FILTERS 

Application of small frequency filters with millimeter dimensions, like the ones introduced 

in the previous chapters, lowers the power consumption of any receiver front-end due to their 

ability to remove unwanted interfering signals. On the other hand, piezo-based filters of similar 

size are more difficult to construct for the much lower HF range, spanning frequencies from 3-

30MHz, since wavelengths (acoustic or electrical) are much larger at these frequencies. To further 

 

Figure 7.1: The required attenuation at the adjacent channel determines the minimum guard band necessary 

for the system. A system with sharp roll-off filters (b) increases the spectrum utilization efficiency, 

compared to a system with large passband to stopband roll-off (a). 
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complicate matters, the piezoelectric technologies normally employed for GHz filters lack the 

electromechanical coupling strength to support high-order filters at HF [34] [35] [36] [78]. 

Application of filters with sharper roll-off increases the spectrum utilization efficiency. Any 

telecommunication standard puts limits on the minimum filter attenuation at the adjacent channel 

(or band) to prevent crosstalk between different channels (or bands) and avoid jamming by nearby 

 

Figure 7.2: (a) Higher-order filters provide sharper roll-off and larger stopband rejection (b), quantified as 

the 20dB shape factor defined by BW20dB/BW3dB (c). However, higher order filters have slightly larger 

insertion loss (d) and require larger Cx/Co for proper termination (e). 
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transceivers. Due to theoretical and practical limitation, no filter can provide brick wall frequency 

response and hence, it is essential to allow guard bands between adjacent channels (or bands) to 

achieve the required attenuation, as shown in Figure 7.1 (a). Utilization of filters with sharp 

passband-to-stopband roll-off can decrease the required guard band and noticeably improve the 

spectrum utilization efficiency, as presented in Figure 7.1 (b). 

Increasing the order filter, i.e. having more resonant tank in the mechanical system, improves 

the out-of-band rejection and steepens the passband-to-stopband roll-off, as shown in Figure 7.2 

(a). Each stage of resonating tank adds to the attenuation of the out-of-band signal and hence, 

increase the overall filter rejection, as shown in (b). Here, the typical filter rejection is measured 

at two different distances from the passband corners: a bandwidth away and twice the filter 

bandwidth from the filter edge. This increase in the rejection also boosts the filter roll-off; higher 

out-of-band rejection and similar in-band attenuation suggests faster roll-off from passband to 

stopband. The 20dB shape factor defined in equation 7.1 quantifies the filter roll-off by comparing 

the filter bandwidth at 3dB and 20dB attenuation. An ideal brick-wall filter response would have 

shape factor of unity. Figure 7.2 (c) shows the improvement in the shape factor by the increase in 

the filter order. However, increasing the number of resonating tanks in the system implies more 

loss in the system and slightly increase in the filter in-band insertion loss, as shown in (d). Also, 

higher-order filter requires constituent resonators with stronger electromechanical coupling Cx/Co 

for proper filter termination, shown in (e). 

20𝑑𝐵 𝑆ℎ𝑎𝑝𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐵𝑊20𝑑𝐵

𝐵𝑊3𝑑𝐵
 (7.1) 

7.2 ELECTROMECHANICAL COUPLING REQUIREMENTS 

Attaining a channel-selecting response requires not only constituent resonators with high Q 

to reduce in-band insertion loss, but also resonators with high electromechanical coupling to push 

the corner frequency of the low-pass RC filters formed at the input and output well beyond the 

filter center frequency, as explained in Chapter 3. The electromechanical coupling strength (Cx/Co) 

of the input and output resonators depends on their static capacitance Co and the effective stiffness 

of the system, as in equation 7.2. However, mechanical coupling of the identical resonators 

changes the effective stiffness of the system. 

 

Figure 7.3: The mechanical lumped-element model of (a) a quarter-wavelength second-order 

micromechanical filter and (b) a single resonator. 
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Equation 7.3 provides the equation of a motion for a generic second-order filter, such as one 

shown in the Figure 7.3 (a), coupled mechanically by quarter-wavelength coupling beams. Here, 

the resonator effective stiffness kre and effective mass mre determines the resonator center 

frequency ωo and the normalized coupling beam effective stiffness ksc/kre governs the system 

bandwidth ω1 and ω2. Equation 7.5 presents the displacement of the constituent resonators at the 

system eigenvalues and shows that a given force makes induces displacement exactly half the 

displacement of a single resonator, given in equation 7.6. 

The smaller resonator displacement suggests that the second-order system is effectively 

twice stiffer than a single resonator and therefore, for a given input/output transducer parameters, 

i.e. static capacitance Co and transformer ratio ηe, a second-order filter has half the 

electromechanical coupling strength (Cx/Co) of a single resonator. This argument suggests that for 

the proper filter termination, the constituent resonator of higher order system should have stronger 

coupling coefficient compared to a lower order system, as shown in figure 7.2 (e). 
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Figure 7.4: Electromechanical coupling for VP=5V and do=150nm, b) resonator pull-in voltage, and c) 

electromechanical coupling for VP=αV.VPull-in, all versus CC-beam resonance frequency. 
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The CC-beam introduced in Chapter 2 is capable of providing strong electromechanical 

coupling coefficient in the order of 10% or more, predicted by equation 2.22 and demonstrated by 

the measurements of Figure 2.22. The expression for coupling coefficients of capacitive 

transducers repeated in equation 7.7 advises that there are quite a few knobs to improve the 

coupling, such as bias voltage VP and gap spacing do, and suggests that the coupling drops rapidly 

by the center frequency ωo (Figure 7.4 (a)). However, the resonator pull-in voltage, which sets the 

upper limit on the bias voltage, also increases by the frequency. Therefore, if one lifts the constant 

VP restriction, then the drop in (Cx/Co) becomes much more gradual, or even disappears. Use of 

VPull-in in yields (Cx/Co) curves like those in Figure 7.4 (c), which are now flat with frequency, with 

large values >15% across the plotted frequency range. Whether or not a voltage as high as 600V 

for 50MHz is practical in a real application, 25V at 10 MHz is practical. So, if not at GHz 

frequency, capacitive-gap transducers easily best AlN piezoelectric transducers in the HF range 

[45], and by rather large margins, e.g., 16.7% vs. 1%. Armed with this insight, the filter design of 

this work employs capacitive-gap transducers with resonator-to-electrode gap spacing of 137nm, 

which with a dc bias of 22.5V applied to the beams achieves a very large (Cx/Co)~17% to 

implement high-order micromechanical filters. 
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7.3 MICROMECHANICAL FILTER DESIGN 

Figure 7.5 presents the perspective view schematic of the seventh-order micromechanical 

filter of this work. As shown, this filter comprises seven clamped-clamped beam (CC-beam) 

flexural-mode resonators linked by numerous quarter-wavelength flexural-mode coupling beams 

to generate a 7-pole filter response. The feedforward path between the input and output resonators 

of this filter is more complicated than the simple bridging technique used in Chapter 5. The 

bridging scheme used in this filter couples the 1st, 4th and 7th resonators by two three quarter-

wavelength bridging beams, as shown in Figure 7.5. This bridging technique results in the third-
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order CC-beam filter as the feedforward path from the input to the output. There are two main 

reasons for adopting this bridging technique: 

i) Since the main filter path comprises of 6 quarter-wavelength coupling beams, a 

single bridging between the 1st and 7th resonators would require bridging beam 

equivalent to 5λ/4 or even 7λ/4, due to geometrical restrictions. Such a long narrow 

beam would set unreasonable limitations on the maximum intrinsic stress in the 

structural layer to avoid buckling. 

ii) The bridging path of this filter is a third-order CC-beam filter, and compared to the 

second-order feedforward path described in previous chapters, introduces two more 

transmission zeros and therefore, improves the roll-off further. 

The synthesis of this filter follows the procedure presented in the Chapter 5. The 7th-order 

CC-beam filter, compromising all the CC-beam resonators and quarter-wavelength coupling 

beams, determines the filter passband and overall filter frequency response, while the 3rd-order 

filter of the parallel path, encompassing the 1st, 4th and 7th CC-beam resonators and two three 

quarter-wavelength bridging beams, governs the loss pole location. 

Figure 7.6 displays the simplified mechanical model of the 7 CC-beam filter and its 

corresponding eigenmodes. Since there are seven resonating tanks in the system, there will be 

seven distinct eigenmodes, as shown in this figure, with in-phase (red), out-of-phase (blue) and 

stationary (black) resonators. All the resonators are in-phase with the input resonator at the first 

mode, while they are out-of-phase to their adjacent resonators in the highest mode. These seven 

mode shapes correspond to seven peaks in the frequency response, as shown in the Figure 7.8 (c), 

and will form the filter passband by proper termination. 

 

 

Figure 7.5: Perspective-view schematic for the 7th-order µmechanical filter with bridging between the 1st, 

4th and 5th resonators. Tuning electrodes under each resonator allow precise placement of poles and zeros 

to achieve a sharp passband-to-stopband roll-off . 
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The 3 CC-beam filter of the feedforward path, shown in Figure 7.7, includes three identical 

resonators coupled by 3λ/4 bridging beams. This third-order system has three distinct eigenmodes 

as shown in this figure. However, since the bridging beams are equivalent to three quarter-

wavelength, the all in-phase eigenmode occurs at higher frequency compared to all out-of-phase 

one. Comparison of these eigenmodes with the main filter seven mode shapes shown in Figure 7.6, 

 

Figure 7.6: A simplified mass-spring model of the 7th-order filter shown in the figure 7.5. The high-order 

system has seven distinct mechanical mode shapes, as shown here. The resonators in red and blue are in-

phase and out-of-phase with the input resonator, respectively. The ones in back are stationary. 
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confirms that the intermediate resonators have opposite displacement below and above the 

passband which is the basis of loss pole formation in the bridged filter. 

Figure 7.8 expands on the investigation of the loss pole formation. As depicted in (c), the 

output resonator of the 7 CC-beam filter has equal displacement to the 3 CC-beam filter at two 

points on both side of the passband. Since the induced displacement from the two paths are out of 

phase, as shown in (d), the overall system transfer function will have loss poles on both side of the 

filter passband, as shown in (e). Further investigation of the bridged filter phase response shown 

in (f) reveals that there are 360o change in the phase at the loss pole frequencies, which corresponds 

to two overlaying transfer function zeros at the same frequency. The extra transmission zeros are 

due to the strategic bridging exploited in this filter that has higher order filter as the feedforward 

path and improves the filter roll-off furthermore. 

The bridging technique described here provides a seven-order micromechanical filter with 

two transmission zeros on each side of the filter passband to achieve a filter frequency response 

with the fastest passband-to-stopband roll-off demonstrated in this frequency range. 

7.4 TUNING VIA ELECTRICAL STIFFNESS 

Achieving very sharp roll-off along with small insertion loss and small in-band ripple 

requires precise placement of poles and especially zeros. Although the matching tolerance of 

surface micromachining technology is reasonably good [7], it is not sufficient for filters with 

percent bandwidths below 0.5%. Fortunately, capacitive-gap transducers offer frequency tuning 

via voltage-controlled electrical stiffness, as governed by equation 7.9 borrowed from the Chapter 

2. Here, αe=We/Lr is the percentage of the beam length covered by the main electrode. 
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(7.9) 

This equation predicts a large tuning range on the order of 200ppm for a 1V change in bias 

voltage for the CC-beam design used here. This tuning capability outright enables the high-order 

narrow-band capacitive-gap filter of this work, as without tuning, poles and zeros will miss their 

 

Figure 7.7: The mode shapes of the third-order CC-beam filter in the feedforward path. 
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marks for such a small filter bandwidth. As shown in Figure 7.5, tuning electrodes underlie all 

seven resonators to achieve maximum tuning ability. In order to maximize the overall tuning 

capability, the main electrodes of the intermediate constituent resonators were also used as extra 

tuning pads. 

7.5 ELECTRICAL EQUIVALENT CIRCUIT 

Figure 7.9 presents the complete electrical equivalent circuit of the 7th-order bridged 

micromechanical filter of Figure 7.5. A RLC resonating tank and a capacitor T-circuit represent 

each CC-beam resonator and flexural coupling beam. Transformers and negative capacitors at their 

input model the tuning via electrical stiffness. Velocity transformer ratios, ηcis, are design 

parameter to achieve desired filter response. Equations 7.10 and 7.11 provide the expression for 

the transducer transformer ratio and static capacitance, used in the equivalent circuit of Figure 7.9. 

 

Figure 7.8: Unterminated 3rd-order, 7th-order, and bridged 7th-order filter magnitude and phase frequency 

responses, illustrating the formation of loss poles in the resonance frequency. 

6
5

2

1

4

3

7

-190

-150

-110

-70

-30

7.8 7.9 8 8.1 8.2

M
a
g

n
it

u
d

e
 [
d

B
]

Frequency [MHz]

-1170

-990

-810

-630

-450

-270

-90

90

7.8 7.9 8 8.1 8.2

P
h

a
s
e

 [
o
]

Frequency [MHz]

-190

-150

-110

-70

-30

7.8 7.9 8 8.1 8.2

M
a
g

n
it

u
d

e
 [
d

B
]

Frequency [MHz]

-990

-810

-630

-450

-270

-90

90

270

7.8 7.9 8 8.1 8.2

P
h

a
s
e

 [
o
]

Frequency [MHz]

6
5

2

1

4

3

7

3CC 3 /4

7CC  /4

3CC 3 /4

7CC  /4
Out of 

Phase

Out of 

Phase

360o change 

in the phase

360o

360o

Transmission 

zeros due to 
bridging

λ/4 Coupling 

Beams

μMechanical 

Resonators

3λ/4 Bridging 

Beams

(c)

(d)

(a)

(e)

(f)

(b)



118 

 

 

𝜂𝑒𝑖 =
|𝑉𝑃 − 𝑉𝐵𝑖|𝜀𝑊𝑟𝐿𝑟

𝑑𝑜
2

∫ (
𝑋̃𝑚𝑜𝑑𝑒(𝑦)

𝑋̃𝑚𝑜𝑑𝑒(1/2)
)𝑑𝑦

  
𝛼𝑒
2

 −
𝛼𝑒
2

 (7.10) 

 

Figure 7.9: The equivalent electrical circuit of the 7th-order bridged micromechanical filter, shown in figure 

7.5. Beside the tuning electrodes underneath each resonator (highlighted in green), the main electrodes of 

the intermediate resonators (highlighted in purple) have been used as extra tuning pads to increase the 

overall tuning capability. 
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𝐶𝑜 = 𝛼𝑒
𝜀𝑊𝑟𝐿𝑟
𝑑𝑜

 

𝜂𝑒 𝑖 =
|𝑉𝑃 − 𝑉 𝑖|𝜀𝑊𝑟𝐿𝑟

𝑑𝑜
2

√2∫ (
𝑋̃𝑚𝑜𝑑𝑒(𝑦)

𝑋̃𝑚𝑜𝑑𝑒(1/2)
)𝑑𝑦

 −
𝛼𝑒
2

0

∫ (
𝑋̃𝑚𝑜𝑑𝑒(𝑦′)

𝑋̃𝑚𝑜𝑑𝑒(1/2)
)𝑑𝑦′

  
𝛼𝑒
2

 −
𝛼𝑒
2

 

𝐶𝑜 = (1 − 𝛼𝑒)
𝜀𝑊𝑟𝐿𝑟
𝑑𝑜

 

(7.11) 

7.6 EXPERIMENTAL RESULTS 

The 7th-order bridged filter was fabricated using a vertical gap surface-micromachining 

technology described in the previous chapters. Figure 7.10 (a) shows SEM graph of a released 

bridged micromechanical filters, clearly showing the coupling and bridging beams between the 

constituent resonators. As mentioned in Chapter 5, the proper termination and measurement of this 

filters require a buffer, trans-impedance or unity gain, shown in Figure 7.10 (b) 

Figure 7.11 presents the frequency response of the 7th-order bridged Chebyshev filter of 

Figure 7.5 terminated by 20kΩ board-level resistors, frequency-tuned using dc-bias voltages under 

3V, and measured under 1mTorr in a custom-built vacuum chamber. Without suitable tuning via 

electrical stiffness, the transmission poles and zeros fail to distribute as designed originally, due to 

the very tight requirement on the process variation. The required termination resistance Rq depends 

on the filter percent bandwidth and the motional resistance Rx of the constituent resonators, as 

derived in Chapter 4. Although use of wider resonators, or arrays of them, could reduce the needed 

Rq, this might not be advisable given the advantages of high-impedance in emerging low-power 

nano-scale wire-less communication systems. 

 

Figure 7.10: (a) SEM graph of a released 7th-order bridged filter and (b) the measurement circuitry used 

for proper termination and tuning of the filter response. 
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As shown, the filter achieves an impressive insertion loss of 1.6dB with less than 0.5dB of 

in-band ripple for a 0.3% bandwidth centered at 8.06MHz. Here, low-resistance interconnects 

helped to reduce the insertion loss of the properly-terminated filter. This filter response exhibits 

40dB of out-of-band rejection and a 20dB shape factor of 1.45, which bests the previous mark of 

1.86 for a similar frequency MEMS-based filter [35]. Such a sharp roll-off provides excellent 

rejection of adjacent channels, which could then pack with higher density. The tiny shape factor 

confirms both the utility of high filter or-der and the efficacy of non-adjacent resonator bridging. 

Figure 7.12 presents the measured phase and group delay responses of the terminated filter, 

showing over 1260o of phase change consistent with the order of the filter and a group delay ripple 

of 0.5ms. This value is commensurate with the needs of narrowband communication receivers, 

which unlike wideband ones, can tolerate larger group delays without degradation in system 

characteristics, e.g., bit error rate. 

To further demonstrate the remarkable performance of this filter, Figure 7.13 provides the 

two-tone measurement done on the terminated filter of Figure 7.5. This filter has third-order 

intercept point IIP3 of 25dBm and 37.7dBm for tone spacing of 160kHz and 400kHz respectively. 

 

Figure 7.11: Measured frequency characteristic for the 7th -order bridged micromechanical filter of Fig. 

7.5. The inset zooms in on the filter passband. 

 

Figure 7.12: Measured phase response (left) and group delay response (right) for the terminated filter of 

Fig. 7.5. 
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This IIP3 corresponds to the dynamic range of 92.36dB and 100.83dB, respectively, for a system 

with 10dB of minimum SNR requirement. 

Figure 7.14 compares the frequency response of the filter presented in this chapter to a 

conventional microwave filter currently being used in Ham Radio applications. The filter of Figure 

7.11 provides the frequency selection required for channel selection and power reduction, not to 

mention the distinguished size differences, as shown in the inset of this figure. 

Table 5.2 summarizes the filter design parameters and measurement results. 

 

 

  

 

Figure 7.14: Measured frequency characteristic for the 7th -order bridged micromechanical filter of Figure 

7.5 compared to a conventional microwave filter. The inset shows the generic dimension of microwave 

filters at these frequencies.  

50cm

 

Figure 7.13: Two-tone measurement of the filter nonlinearity (left) and the corresponding third-order 

intercept point IIP3 as a function of relative tone spacing (right). 
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Table 7.1: Bridged Filter Design Summary 

Parameter 
7CC 3λ/4 Design Units 

Design/Sim. Meas.  

Center Frequency, fo 8.469 8.074 MHz 

Resonator Q 10,000 15,100 — 

Bandwidth, BW 27.3 24.3 kHz 

Percent Bandwidth, (BW/fo) 0.322 0.3 % 

Filter DC-Bias, VP 30 22.5 V 

Loaded qi
* 0.7654 -- — 

Normalized Filter Coupling Coef., k12
*, k67 0.597 -- — 

Normalized Filter Coupling Coef., k23
*, k56 0.431 -- — 

Normalized Filter Coupling Coef., k34
*, k45 0.465 -- — 

Filter Coupling Beam Length 

Ls12, Ls23, Ls34, Ls45, Ls56, Ls67 
22.3 -- μm 

Bridging Beam Length, Ls14, Ls47 51.8 -- μm 

Filter Coupling Beam Width 

Ws12, Ws23, Ws34, Ws45, Ws56, Ws67 
0.75 -- μm 

Bridging Beam Width, WsB 0.75 -- μm 

Coupling/Bridging Beam Thickness, h 2 1.985 μm 

Resonator Mass @ I/O, mre 5.829x10-13 5.902x10-13 kg 

Resonator Stiffness @ I/O, kre 1.923x103 1.772x103 N/m 

Resonator Damping @ I/O, cre 3.036x10-9 1.841x10-9 Ns/m 

Filter Coupling Location, lc1-3 

lc4= lc3, lc5=lc2, lc6=lc1 
5.1, 4.65, 4.75 5.5, 5.05, 5.15 μm 

Bridging Location, lcB 2.3 2.7 μm 

Coupling Beam Stiffness 

ks12a, ks23a, ks34a, ks45a, ks56a, ks67a 
-109.56 87.72 N/m 

Coupling Beam Stiffness 

ks12c, ks23c, ks34c, ks45c, ks56c, ks67c 
109.56 103.09 N/m 

Bridging Beam Stiffness, ksB 125.68 214.42 N/m 

Bridging Beam Stiffness, ksB -125.68 -155.09 N/m 

Filter Coupling Capacitance 

cs12a, cs23a, cs34a, cs45a, cs56a, cs67a 
-0.0091 -0.0114 F 

Filter Coupling Capacitance 

cs12c, cs23c, cs34c, cs45c, cs56c, cs67c 
0.0091 0.0097 F 

Bridging Capacitance, csB 0.008 0.0047 F 

Bridging Capacitance, csB -0.008 -0.0064 F 

Mechanical Transformer Turn Ratio at lc1-3, ηc1-3 

ηc4=ηc3, ηc5=ηc2, ηc6=ηc1 
5.44, 6.40, 6.16 4.93, 5.73, 5.54 C/m 

Mechanical Transformer Turn Ratio at lcB, ηcB 23.57 18.06 C/m 

Equivalent Inductance, lx 5.829x10-13 5.902x10-13 H 

Equivalent Capacitance, cx 4.323x10-4 5.644x10-4 F 

Equivalent Resistance, rx 3.036x10-9 1.841x10-9 Ω 

Electromechanical Coupling Coefficient, ηe 1.833x10-6 1.532x10-6 C/m 

Calculated Equivalent Resistance, Rx 0.904 0.852 kΩ 

Calculated Equivalent Inductance, Lx 0.173 0.25 H 

Calculated Equivalent Capacitance, Cx 2.12 1.52 fF 

Static Overlap Capacitance, Co 9.44 10.12 fF 

Electromechanical Coupling Cx/Co 22.5 15.0 % 

Termination Resistance, RQ 22 20 kΩ 

Insertion Loss, IL 0.3 1.6 dB 

20 dB Shape Factor 1.42 1.45 — 

Stopband Rejection, SR 90 40 dB 
*From filter cookbooks. 
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Chapter 8 STRONG-COUPLING SUB-20NM-

GAP CAPACITIVE RESONATORS 
The sharp roll-off filters presented in the previous chapters were realized at high frequency 

(HF) spectrum, i.e. 3MHz to 30MHz, suitable for long-range low-data rate applications such as 

Ham radio and wireless sensor networks. Implementation of capacitive filters at higher frequencies 

and also in high-data rate applications requires demonstration of capacitive resonators with 

simultaneous strong electromechanical coupling and high quality factor at the frequencies of 

interest. This might seem a challenging task, since the capacitive resonator coupling (Cx/Co) 

decreases by the resonance frequency square, as given in equation 2.22. This work attempts to 

correct the common misbelief that capacitive resonators lack the coupling strength required for 

high-frequency application. 

Electrode-to-resonator gaps as small as 13.2nm achieved on a 59.5-MHz capacitive-gap 

transduced disk resonator of this work have now enabled a measured electromechanical coupling 

strength (Cx/Co) greater than 1.62% at a bias volt-age of only 5.5V while retaining an unloaded Q 

of 29,640, for a kt
2Q product of 576 that sets the record at VHF. Several key discoveries contribute 

to this successful demonstration, including a modified polysilicon etch recipe that enables 

considerably smoother etch sidewalls than previously achievable, allowing more uniform sidewall 

sacrificial layer deposition and preventing structure pull-in by removing asperities and their 

associated strong electric fields. This combination of high (Cx/Co) and Q stands to reduce power 

consumption in low-noise oscillators, improve sensitivity for zero-quiescent all-mechanical 

receivers, and expand the range of filters accessible to capacitive-gap transduced resonators to 

more mainstream wireless communication applications with much improved insertion loss 

performance. 

8.1 HIGH-FREQUENCY CAPACITIVE RESONATORS 

Capacitive-gap transduced resonators are well known to provide high on-chip Q’s, with 

values reaching 150,000 at VHF [79] and 40,000 at 3GHz [40]. Q’s this high enable 0.1% 

bandwidth channel-select filters with low insertion loss and high rejection [3] for ultra-low power 

transceivers [24]; as well as low-power, low-noise oscillators with best-in-class figure of merits 

on the order of -225dB. Other characteristics that distinguish these resonators over alternatives 

Table 8.1: Comparison between contour-mode AlN, quartz and capacitive technologies at VHF. 

 𝑓𝑜 [𝑀𝐻𝑧] 𝐶𝑥/𝐶𝑜 [ ] 𝑅𝑥 [Ω] 𝑄 𝑘𝑡
2𝑄 𝐴𝑟𝑒𝑎 [𝜇𝑚]2 

Contour Mode AlN [45] 85 0.86 125 2,100 22 10,000 

Quartz [83] 149 0.48 460 10,000 58 21,200 

This Work 60 1.62 54 29,640 576 3,200 
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include designable spurious mode suppression [48] and a voltage-controlled on/off self-switching 

capability [23] that allows realization of switchable filter [80] or oscillator [81] banks without the 

performance hit from series switches. At HF (from 3-30 MHz), capacitive-gap transduced 

resonators also post strong electromechanical coupling, up to 30%, as demonstrated in the previous 

chapters.  

Despite these advantages, capacitive-gap transduced micromechanical resonators still 

struggle to realize the needed (Cx/Co) values applicable to wider bandwidth filters centered at VHF 

or higher frequency, such as the 3% band-width ones used in existing smartphones. Higher (Cx/Co) 

than the 0.1% attained in [48] are desirable for higher order channel-select filters using more than 

two resonator array-composites. For example, a 3-resonator filter works best with (Cx/Co) ~ 0.25%; 

a 4-resonator with ~0.56%. To satisfy such (Cx/Co) needs, recent efforts employ piezoelectric 

materials, but with significant reduction in Q and consequent increase in undesirable insertion loss 

to 8dB for 0.27% bandwidth, which is not acceptable right after the antenna in an RF front-end 

[29]. 

Alas, the path to higher (Cx/Co) for higher Q capacitive-gap transduced devices is quite clear: 

Simply reduce the electrode-to-resonator capacitive gap [39]. As suggested by the simulation 

results of Fig. 2, a single wineglass disk resonator of Fig. 1 can achieve a (Cx/Co) stronger than 1% 

and a motional impedance smaller than 100Ω by employing a 25nm gap spacing with a bias voltage 

VP of 10V. Further reducing the gap to 10nm accompanied by 58V of VP achieves a coupling 

strength of 6% at GHz frequency. 

Although gap reduction via ALD partial-gap filling [44], [82] down to an effective 37nm 

confirmed the possibility of higher (Cx/Co) ~0.58% for capacitive-gap transduced resonators, this 

 

Figure 8.1: (a) Illustration of a wine-glass disk resonator in a typical two port operation scheme. (b) Mode 

shape and quasi nodal points where the supports attach. (c) Electrical equivalent LCR circuit. 
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is a far cry from what is possible. Indeed, one must ask the question, “What is the gap spacing 

limit?” 

Pursuant to answering this question, this work demonstrates electrode-to-resonator gaps as 

small as 13.2nm achieved on a 59.5-MHz capacitive-gap transduced disk resonator that yield a 

measured electromechanical coupling strength (Cx/Co) greater than 1.62% at a bias voltage of only 

5.5V, which together with an unloaded Q of 29,640 achieves a kt
2Q product of 576 that far exceeds 

that of competitors [83], as shown in Table 8.1. This combination of high (Cx/Co) and Q not only 

cuts a path towards power reduction for low-noise oscillators and higher sensitivity for zero-

quiescent all-mechanical receivers [45] [84], but also expands the range of filters accessible to 

capacitive-gap transduced resonators to more mainstream wireless communication applications. 

8.2 ELECTROMECHANICAL COUPLING (CX/CO) 

The electromechanical coupling factor (Cx/Co) gauges the efficiency of energy transfer 

between electrical and mechanical domains. It sets the upper bound on the percent bandwidth of a 

micromechanical filter [49], the tuning range of a capacitive-gap transduced resonator’s center 

frequency [62], the sensitivity of capacitive microphones, and the efficiency of CMUT devices 

[85]. The electromechanical coupling factor for the capacitive-gap transduced wine-glass resonator 

shown in Fig. 8.1, defined as the mechanical energy relative to the total energy, takes the form of 

equation 8.1, adopting the governing equations from [50] and following the procedure described 

in Chapter 2 for CC-beam resonator. Here, εo, VP, do, ωo, R, ρ, θe, Rm(r) are vacuum permittivity, 

bias voltage, gap spacing, the disk radian resonance frequency, radius, density, electrode angle (cf. 

Fig. 1), and resonance mode shape function [19], respectively. 

𝐶𝑥
𝐶𝑜

= 𝜀𝑜 ∙
𝑉𝑃
2

𝑑𝑜
3 ∙

𝑅

2𝜋𝜌𝜔𝑜
2
∙
sin2(𝜃𝑒)

𝜃𝑒
∙

𝑅𝑚
2 (𝑅)

∫ 𝑅𝑚
2 (𝑟)𝑟𝑑𝑟

𝑅

0

  (8.1) 

 

Figure 8.2: Simulated plots of (a) electromechanical coupling strength (Cx/Co) and (b) motional resistance 

Rx versus electrode-to-resonator gap spacing do and bias voltage VP for a 2µm-thick 60-MHz wineglass disk 

resonator with Q=70,000. 
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This expression makes very clear the importance of achieving a small electrode-to-resonator 

gap do for maxi-mum (Cx/Co), where a third power dependence makes gap spacing the strongest 

control knob by far. Note that (8.1) correctly predicts that capacitive-gap transducers with gaps of 

100nm already exhibit coupling strengths that outperform AlN piezoelectrics at HF (up to 

30MHz), as presented in the previous chapters. To outperform AlN above VHF, smaller gaps are 

needed. For example, at GHz frequencies gaps below 20nm are desirable. 

8.3 LIMITATIONS ON THE BIAS VOLTAGE 

Shrinking the transducer gap spacing in order to provide stronger coupling arises questions 

on the maximum bias voltage that such a small gap can endure before any catastrophic breakdown. 

This concern amplifies for gaps smaller than 20nm, where a bias voltage of 20V results in the 

enormous electric field of 10MV/cm in the transducer. This electric field suffices to breakdown 

most of the insulator materials used in semiconductor industry. Since the capacitive transducer of 

this work employs vacuum in the gap, the dielectric breakdown will not limit the bias voltage 

applied to the transducer. Therefore, the bias voltage is constrained by (1) electrostatic pull-in and 

(2) quantum effects, i.e. tunneling currents. 

8.3.1 ELECTROSTATIC PULL-IN 

The electric field in the gap exerts electrostatic force on the electrodes and attracts the 

suspended electrode towards the stationary electrode, as described in Chapter 2. Due to the 

symmetry of the wineglass disk resonator of Figure 8.1, the electrostatic forces on the disk are 

balanced and cancel out each other. Therefore, the disk resonator does not have any gross 

displacement towards any electrodes. However, as the bias voltage increases and the electrostatic 

force grows, it makes the disk and the portions of the electrodes that are not anchored expand and 

move towards each other, and eventually collapse, as shown in Figure 8.3 (a). 

Figure 8.3 (b) presents the pull-in voltage of the disk resonator of Figure 8.1 for different 

gap spacing. The decrease in the gap spacing between electrodes boosts the electric field and the 

electrostatic force on the resonator, hence, reducing the pull-in voltage. Identical gap spacing 

between the disk resonator and all the four electrodes is the underlying assumption of the pull-in 

voltage function shown in Figure 8.3 (b). Nonuniform gap spacing disturbs the balance between 

the four electrostatic forces on the disk and makes the resonator drift toward the closer electrodes, 

as shown in figure (c), and therefore, reducing the pull-in voltage. Figure 8.3 (d) presents the 

change in the pull-in voltage as the function of nonuniformity in the gap spacing. For example, if 

the gap spacing for the two electrodes on the left side is 10% smaller, the pull-in voltage drops 

40% due to this nonuniformity. 
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The pull-in voltage presented in the Figure 8.3 are strongly design dependent and one can 

optimize the resonator and the electrodes geometry to improve the pull-in voltage. For example, 

investigation of the electrostatic pull-in for a resonator with 10nm gap spacing revealed the fact 

that the pull-in occurred at the electrode corners, as shown in Figure 8.4 (a). Modifications in the 

resonator (1) to remove the weak electrode corners and (2) to widen the anchors for stronger 

support, improved the pull-in voltage 3x to 30V, as shown in Figure 8.4 (b). 

 

Figure 8.3: (a) The electrostatic simulation for the pull-in of the wineglass disk resonator of Figure 8.1, (b) 

the resonator pull-in voltage as the function of the gap spacing, (c) the electrostatic pull-in simulation for 

the nonuniform gap spacing, (d) the decrease in the pull-in voltage as the function of gap spacing 

nonuniformity. 
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Figure 8.4: (a) Electrostatic pull-in of 10nm-gap resonator, and (b) improvement in the pull-in voltage by 

removing the electrode corners and making anchors wider for stronger support. 
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8.3.2 QUANTUM TUNNELING 

Application of gap spacing on the order of 20nm and smaller brings up the prospect of 

encountering quantum effects, such as direct tunneling or Fowler-Nordheim tunneling. Extremely 

small gaps allow penetration of electron wave function and therefore, electron tunneling through 

a potential barrier, such as the vacuum gap between two electrodes of the resonator described here. 

Figure 8.5 (a) illustrates the direct tunneling mechanism for a simplified metal-dielectric-metal 

system and equation 8.2 provides the Schuegraf’s approximation [86] for direct tunneling current 

density. Here, q, ħ, m* ϕb,and VB are electron electric charge, reduce Plank’s constant, effective 

electron mass, electrode’s work function and applied voltages, respectively. Fe is the average 

electric field across the gap which can be approximated by VB/do. This equation suggests direct 

tunneling is negligible for any gap spacing larger than 3nm. 

𝐽𝐷 =
𝑞3

16𝜋2ℏ𝜙𝑏
∙

1

(1 − √1 −
𝑞𝑉𝐵
𝜙𝑏

)

2 ∙ 𝐹𝑒
2 

∙ 𝑒𝑥𝑝 (−
4

3
∙
√2𝑚∗𝜙𝑏

 .5

ℏ𝑞
∙
1

𝐹𝑒
∙ {1 − (1 −

𝑞𝑉𝐵
𝜙𝑏

)
 .5

})   

(8.2) 

As the applied bias voltage increases, the electric field across the gap intensifies and bends 

the energy bands, as shown in the simplified schematic of Figure 8.5 (b). This band bending 

effectively reduces the width of the potential barrier and increases the tunneling current, known as 

Fowler-Nordheim tunneling. Figure 8.5 (c) presents the Fowler-Nordheim tunneling current 

 

Figure 8.5: Simplified energy band configuration for (a) direct and (b) Fowler-Nordheim tunneling 

mechanisms. (c) The Fowler-Nordheim tunneling current density as a function of applied voltage for 

different gap spacing. 
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density as a function of bias voltage for different gap spacing, based on the equation of 8.3 [87]. 

This figure shows that bias voltage of 3.5V across 1nm gap introduces tunneling current density 

less than 1nA/μm2. This voltage corresponds to the electric field magnitude of 35V/cm, which is 

the electric field required to introduce this current in any given gap, as equation 8.3 is only a 

function of the electric field, not the gap and the bias voltage. 

𝐽𝐹𝑁 =
𝑞3

16𝜋2ℏ𝜙𝑏
∙ 𝐹𝑒

2 ∙ 𝑒𝑥𝑝 (−
4

3

√2𝑚∗𝜙𝑏
 .5

ℏ𝑞
∙
1

𝐹𝑒
) (8.3) 

8.4 NANOSCALE GAP SPACING 

Inevitably, benefits afforded by scaling generally come with consequences. In particular, a 

shrinking electrode-to-resonator gap invites numerous possible issues, including 

i) Asperities in the gap sharp enough to concentrate electric fields to the point of 

breakdown (c.f. Figure 8.10). 

ii) Asperities that reduce the effective gap distance, disturbing the force balance on 

opposite sides of the disk, and thereby lowering the pull-in voltage. 

iii) Compressive film stress caused by slower shrinkage of the disk with decreasing 

temperature relative to the substrate that effectively stretches the disk edges into 

contact with the surrounding electrode (c.f. Figure 8.9). 

iv) Obstructions in the gap, e.g., from condensation. 

Each of the above, of course, are interrelated. In particular, compressive stress issues amplify 

if there are asperities, which arguably puts surface roughness among the most disruptive issues. 

Recognizing this, the fabrication process to achieve sub-20nm gaps puts particular importance on 

attaining as smooth and straight sidewalls as possible. 

 

Figure 8.6: Fabrication process yielding tiny-gap resonators. 
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Figure 8.6 summarizes the fabrication process yielding the Figure 8.1 disk resonator. The 

process begins with blanket LPCVD depositions of oxide and nitride to form an isolation layer, 

followed by LPCVD oxide deposition and patterning to form a mold into which doped polysilicon 

is deposited then CMP’ed down to yield thick, low-resistance interconnect, as shown in (a). The 

resultant flat surface after CMP’ing facilitates subsequent blanket LPCVD of bottom sacrificial 

oxide, structural polysilicon, and top oxide hard mask, the last two of which are patterned and 

etched to delineate the disk. It is of utmost importance to minimize the residual stress in the 

deposited polysilicon layer. The 64μm-wide resonator will be suspended 20nm or less away from 

the electrodes and any residual stress or stress gradient in the structure make the structure shorten 

to the electrodes, as shown in Figure 8.7. To suppress this issue, this work studied the polysilicon 

residual stress for different deposition temperatures and annealing time and temperatures, as shown 

in Figure 8.8. The process of this work employs polySi deposited at 590oC and annealed at 1000oC 

for 30min to achieve very low residual stress (5MPa) and zero stress gradient, both much smaller 

than the critical values of 60MPa and 50MPa/µm, respectively, that could otherwise cause shorts. 

It is here where the carefully designed etch recipe summarized in Figure 8.9 makes all the 

difference in the ability to achieve sub-20nm gaps. Specifically, the HBr-based polySi etch is 

anisotropic and yields a smoother sidewall than a Cl2-based etch, since the etch rate depends less 

on the silicon crystalline orientation and polySi grain boundaries. 

 

Figure 8.8: (a) The polysilicon residual stress as a function of deposition temperature, for different 

annealing time at 1000oC. (b) The resonator quality factor degradation with annealing time for different 

deposition temperature. 
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Figure 8.7: Illustration depicting how residual stress can cause shorts between disk and electrode when the 

gap becomes very small. 
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The smooth sidewalls devoid of asperities larger than 10nm high now facilitate deposition 

of the gap-setting side-wall sacrificial oxide down to 10nm via LPCVD at 930oC. Deposition of 

such a thin layer using LPCVD is a challenging task. The CVD process deposits scarce oxide 

patches across the wafer based on the local condition on the wafer and CVD nucleation 

requirement. As the deposition continues, this nonuniform layer grows into a uniform conformal 

layer, as shown in Figure 8.10. To achieve the uniform layer, this works modified the LPCVD 

oxide deposition recipe: (1) higher deposition temperature to increase the mobility of the oxide 

patches on the surface, and (2) lower deposition pressure and gas flows to slow down the 

deposition process and provide the time required by the CVD process to form the uniform layer. 

In the future attempts, utilization of atomic layer deposition (ALD) system which can precisely 

control the layer thickness down to atomic monolayers can alleviate the need for high-temperature 

oxide deposition and also provide much better dielectric layer uniformity across the wafer. 

Patterning and etching of electrode anchors follows the oxide deposition to yield the cross-

section of Figure 8.6 (b). Subsequent polySi deposition and doping, followed by CMP and 

 

Figure 8.9: Practical considerations indicated at top right demand polySi sidewall smoothness on the same 

order or smaller than the sidewall sacrificial film thickness. The LAM TCP 9400SE etcher recipe 

summarized in the table achieves a very smooth surface, shown in the SEM above. Here, step #1 breaks 

through any native oxide, then successive cycles of processing/cooling of step #2 etch the polySi. 
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electrode patterning and etching then yield the planarized cross-section of (c). Finally, wet-etching 

in 49% HF yields the released resonator of (d). 

Fig. 8.11 presents the SEM micrograph of a released wine-glass disk resonator with zoom-

in on the electrode-to-resonator overlap. Here, the smooth-sidewall structure achieved by the Fig. 

8.9 etch recipe contrasts sharply with the much rougher electrode etch done via a conventional 

SF6-based chemistry aimed more at higher polysilicon-to-oxide selectivity. 

8.5 EXPERIMENTAL RESULTS 

Fig. 8.12 presents the vacuum-measured frequency response of the fabricated wineglass disk 

of Fig. 8.1 for various bias voltages VP. The unloaded Q of this resonator is 29,640, measurable at 

10µTorr and with small VP. As VP increases, Rx shrinks to only 54Ω at VP=5.5V, which is 

considerably smaller than the 750Ω interconnect resistance (cf. Fig. 8.11 (b)), allowing the latter 

to load the overall Q down to 2,500, as predicted by the equivalent circuit of Figure 8.11 (c). Thus, 

preservation of the unloaded resonator Q of 29,640 in future devices calls for much lower 

interconnect resistance, perhaps provided by metals. 

Replotting the data of Fig. 8.12 as frequency versus VP yields Fig. 8.13 (a), from which 

curve-fitting [17] accurately extracts a remarkable 13.2nm electrode-to-resonator gap spacing. As 

evident from this figure, the 59.5MHz-wineglass resonator has more than 1MHz of tuning range 

for only 5.5V of biasing voltage, all consistent with the expected increase in electrical stiffness 

with decreasing gap spacing. The electrical stiffness at 5.5V is 23.4kN/m, which is 3.05% of the 

disk’s 766.5kN/m mechanical stiffness. 

 

Figure 8.11: (a) SEM of a released wineglass disk resonator with zoom-in to highlight the smooth structure 

etch compared to the standard high-selectivity electrode etch. (b) Trace resistance on the input/output path 

as well as the bias path can load the resonator and degrade its quality factor Q. 
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The electromechanical coupling factor (Cx/Co) was extracted from measured frequency 

response curves using the expression given in equation 8.4, derived from the electrical circuit of 

Fig. 8.1 (c). Here, fs and fp are the series and parallel resonance frequencies, respectively, of the 

one-port measurement. Fig. 8.13 (b) plots (Cx/Co) versus bias voltage, showing an impressive 

(Cx/Co) of 1.6% at 5.5V bias, which matches the prediction of (8.1) using the measured gap 

spacing. 

𝐶𝑥
𝐶𝑜

=
𝑓𝑝
2 − 𝑓𝑠

2

𝑓𝑠
2

× 100 (8.4) 

Figure 8.13 (c) puts the achieved electromechanical coupling strength in perspective by 

comparing the small gap device to a resonator with 85nm gap spacings. The large gap device 

biased at even 30V cannot provide the coupling strength of the small gap device at 2.5V. At equal 

electric field across the gap, the 13nm-gap device offers 5.6 times stronger coupling, compared to 

the 85nm-gap device, as expected form equation 8.1. Figure 8.13 (d) shows electromechanical 

coupling strength for devices with different gap spacing, confirming the predictions of the equation 

8.1 and advertising the controllability of the process for a desired coupling strength. 

To address concerns about the linearity of a capacitive-gap transducer with such a tiny gap, 

the two-tone nonlinearity measurement summarized in Fig. 8.13 (e) and (f) reveals third-order 

intercept points (IIP3’s) of +23dBm and +29dBm for tone spacings of 580kHz and 3MHz, 

respectively, both already adequate for today’s cellular handsets, and if even needed, with room 

for improvement via mechanical coupled arraying. 

 

Figure 8.12: Measured frequency response of the WG disk resonator for various VP’s. With 3.0V bias, the 

unloaded Q is 29,640 with a motional resistance of 200Ω. The Q decreases at higher voltages when the 

motional resistance of the device becomes significantly smaller than that of the polySi interconnect, 

suggesting that metal interconnect be used in future devices to prevent this Q reduction. 
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The histogram of the gap spacing distribution across a die is given in Figure 8.14 (a). The 

process described in this chapter has average thickness of 15nm and standard deviation of 2nm. 

The application of ALD system to deliver the gap spacing can potentially reduce the deviation to 

 

Figure 8.13: 10µTorr-vacuum-measured (a) resonance frequency and (b) electromechanical coupling 

(Cx/Co) for a 13.2nm-gap WG disk determined using series fs and parallel fp resonance frequencies, both 

plotted against bias voltage VP. (c) and (d) show the coupling strength of wineglass disk resonators with 

different gap spacing. (e) Two-tone nonlinearity measurement of the 13.2nm-gap WG disk and (f) plot of 

IIP3 versus tone offset from the center frequency. 
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sub-Angstrom due to the immense controllability of the process. The change in the ambient 

temperature shifts the resonance frequency by modification of material properties and the 

resonator’s dimensions, as shown in Figure 8.14 (b). However, the temperature fluctuation does 

not change the transducer performance and electromechanical coupling strength, as shown in 

Figure 8.14 (c). The robust transducer performance against temperature fluctuations is due to the 

similarity between the material properties of the deposited polysilicon layers and the silicon 

substrate. Adaptation of this work for non-homogenous structures, e.g. diamond disk resonators 

on the silicon substrate, requires careful investigation and optimization of the process. 

The ambient pressure is one of the main factors limiting the quality factor of the capacitive 

resonators, as shown in Figure 8.14 (d). As the pressure increases, the total energy leaked to the 

gas molecules soars and consequently, the resonator quality factor decreases. However, the small-

gap device shows less degradation in the quality factor Q for a given ambient pressure, compared 

to a 50nm-gap resonator, as shown in figure (e). Therefore, the 13nm-gap resonator does not 

require high-vacuum hermetic packaging which will simplify the packaging process and reduces 

the overall cost.  

 

Figure 8.14: (a) The histogram of gap spacing distribution across a die. (b) Resonance frequency and (c) 

relative change in the resonance frequency of the wineglass disk as a function of bias voltage measured at 

different temperature. (d) The resonator quality factor and (e) the relative change in the Q as a function of 

ambient pressure for the 13nm-gap device and a 50nm-gap resonator. 

0

1

2

3

4

8 12 16 20 24

C
o

u
n

t 
(H

is
to

g
ra

m
)

Gap Spacing [nm]

58.3

58.4

58.5

58.6

58.7

0 2 4 6

C
e

n
te

r 
F

re
q

 [
M

H
z]

Bias Voltage [V]

290K

330K

360K

-160

-120

-80

-40

0

0 2 4 6

Δ
f 
[k

H
z
]

Bias Voltage [V]

360K

330K

290K

-100

-80

-60

-40

-20

0

0.01 0.1 1 10 100 1000

Δ
Q

 [
%

]

Pressure [Torr]

WGD, 50nm
Qo=45k

WGD, 13nm
Qo=32k

0

10

20

30

40

50

0.01 0.1 1 10 100 1000

Q
 [
x
1
0
0
0
]

Pressure [Torr]

Mean=15nm
Std Dev=2nm

WGD, 50nm
Qo=45k

WGD, 13nm
Qo=32k

(a)

(d)

(b)

(e)

(c)



136 

 

Chapter 9 CONCLUSION 
This dissertation explored the advantages of the application of capacitive-gap 

micromechanical resonators and filters in the wireless communication systems. This thesis focused 

on the novel methods to improve the performance of capacitive channel-select filters and pave the 

way for high frequency realization. The theory and the models developed in this thesis accurately 

predicted the small-signal and also nonlinear performances of capacitive transducers and offered 

a coherent system for implementation in any circuit analysis tools. 

9.1 ACHIEVEMENTS 

The transcendental expressions developed in Chapter 2 to describe the parallel-plate 

capacitive transducer of a clamped-clamped beam resonator predicted the strong 

electromechanical coupling of this resonators at HF. Combination of strong coupling and high 

quality factor makes CC-beam resonators an excellent choice to achieve channel selection required 

to decrease the receiver power consumption. Investigation of fabricated CC-beam resonators 

confirmed the theoretical predictions and RF measurements showed strong electromechanical 

coupling (Cx/Co) of more than 10% and quality factor of 15,100. This CC-beam resonator exceeds 

the performance of any competing technologies and forms the framework for the successful 

demonstration of channel select filters. The simplification assumptions of this chapter provide 

excellent approximations to the transcendental expressions to be used in any circuit simulator and 

optimizer. 

The filter design procedure of Chapter 3 provides powerful insight into the filter design, and 

the various tradeoffs between filter specifications and resonator characteristics. The mechanical 

and electrical equivalent circuits of this chapter demonstrated the formation of system poles around 

the filter center frequency by mechanical coupling of identical resonators and highlighted the 

importance of the mechanical design of narrow coupling beams. Consequently, Chapter 4 explored 

the narrow coupling beam design and offered new formulation and further understandings of 

extensional- and flexural-mode coupling beams. 

Armed by the findings of previous chapters on resonator, filter and coupling beam design, 

Chapter 5 attempted to achieve channel-select filters and offer a new method to improve the 

performance of the existing filters. This chapter presented a non-conventional strategic bridging 

between non-adjacent resonators of 3rd- and 4th-order filters to insert and manipulate transmission 

loss poles in the filter transfer function. Precise placement of these generated loss poles improved 

the passband-to-stopband roll-off of the aforementioned filters, characterized by 20dB shape factor 

as small as 1.84 for channel-select filters with 0.1% to 0.3% fractional bandwidth and small 

insertion loss of only 1dB. 
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Chapter 6 investigated the nonlinearity sources of a capacitive transducer and the developed 

expressions predicted acceptable nonlinearity performance for capacitive resonators and filters. 

The proposed channel-select receiver of this work relieves the dynamic range requirements on the 

integrated circuit stages by eliminating all interfering signal. Therefore, the nonlinear 

characteristics of the channel-select filters are of utmost important. Two-tone measurements on 

the fabricated bridged filters confirmed the theoretical predictions and showed nonlinear 

performances sufficient for today’s wireless applications. These filters demonstrated third-order 

intercept point IIP3 of up to 36dBm, equivalent to dynamic range of 90.5dB. 

To further take advantage of the strong electromechanical coupling high quality factor the 

CC-beam resonators offer, Chapter 7 presented a seventh-order bridged micromechanical filter 

with remarkable roll-off, characterized by 20dB shape factor of 1.45. This channel-select filter 

with 0.3% fractional bandwidth had only 1.6dB of insertion loss, necessary for realization of 

receiver with very small noise figure. Two-tone measurement on this filter showed 31.4dBm of 

IIP3. The presented high-order filter of this chapter with such an excellent performance forms the 

essential framework for the application of capacitive channel-select filters in the receiver front-

ends. 

To pave the way for further research on channel-select filters at higher frequencies, Chapter 

8 attempted to address the erroneous common belief that capacitive transducers fall short of the 

provision of strong electromechanical coupling at higher frequencies. The specially-designed 

fabrication processes of this chapter to (1) deposit low-stress polysilicon layers, (2) etch the 

polysilicon structure with smooth sidewall, and (3) deposit a conformal and uniform thin oxide 

layer, empowered the realization of sub-20nm gap transducers. The presented wineglass disk 

resonator with gap spacing of only 13.2nm delivered strong electromechanical coupling of 1.6%, 

the strongest coupling recorded so far for capacitive resonators at VHF. 

9.2 FUTURE RESEARCH DIRECTIONS 

The findings of this dissertation showed the advantages of channel selection and further 

enhanced the performances of capacitive resonators and filters. 

The bridged micromechanical filter design procedure developed in this dissertation for CC-

beam resonators can also be implemented for other types of micromechanical resonators at higher 

frequencies to boost the passband-to-stopband roll-off and provide extra rejection at the adjacent 

channels. The bridging technique is also capable of reducing the system footprint: sharper roll-off 

and higher stopband rejection mean a filter with lower order and smaller number of resonators can 

satisfy the desired performances. 

The presented sub-20nm gap capacitive transducer cultivates more correct expectations for 

the efficacy of small gaps. The combination of high (Cx/Co) and Q, which has long been a primary 

driver for RF MEMS research, stands to not only cut VHF low noise oscillator power consumption 



138 

 

to sub-μW levels and improve sensitivity for zero-quiescent all-mechanical receivers, but creates 

opportunities to apply MEMS resonator technology to the highly profitable and lucrative RF filter 

market for smartphones, where gaps of 10nm with higher bias voltage should allow the 6% 

(Cx/Co)’s at GHz frequencies needed for such filters. 
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