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Abstract

A Hierarchical Approach to the Design and Optimization of Photonics

by

Andrew S Michaels

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Eli Yablonovitch, Chair

Over the last two decades, silicon photonics has rapidly matured, leading to
a growing interest in building large complex systems consisting of thousands of
integrated optical components. A direct consequence of this push towards large
scale integration is the need for high efficiency silicon photonic building blocks.

In this work, we present a concrete path towards realizing these essential pho-
tonic building blocks. The foundation of our approach to designing photonic com-
ponents is gradient-based shape optimization, which employs boundary smoothing
based on high numerical precision polygons. In addition to helping us calculate ac-
curate device sensitivities, this method affords us a great amount of flexibility when
representing device geometries and enables us to incorporate design constraints
directly into optimizations in a simple and intuitive way.

Our approach to gradient-based optimization shares an important similarity to
other forms of shape and topology optimization employed in the nanophotonics
community: on its own, it is not a complete solution to designing high performance
and robust devices. Due to the inherently non-convex nature of electromagnetic
optimization problems, we cannot expect convex optimization to universally yield
good devices without outside input. In order to overcome this obstacle, we have
systematized the process of providing “outside input” through our hierarchical ap-
proach to design and optimization. Using a strategic combination of simple physical
analysis to find good starting geometries and optimization with both coarse and fine
parameterizations, we show that efficient and robust devices can be designed with
minimal guesswork.

Using this hierarchical approach, we demonstrate how a variety of silicon pho-
tonic components can be designed with superior performance. In particular, we
design three port splitters, broadband four port splitters, fabrication-insensitive
waveguide crossings, and a variety of efficient grating couplers which set a new
standard for device performance. These components form the foundation for an
optimized silicon photonic component library which will be important for demand-
ing applications of the future.
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Chapter 1

Introduction

As integrated photonics has matured, we have witnessed a growing desire for more
compact and efficient passive optical components. At the same time, our ability to
satisfy these demands by using either analytic methods or by tuning only a small set
of device parameters is becoming increasingly difficult. To combat this trend, more
sophisticated numerical optimization methods have been proposed.

Numerical optimization represents a significant departure from more conven-
tional design methodologies. Whereas designing an electromagnetic device “by
hand" involves intuiting the final device geometry based on well understood physics,
optimization largely abstracts the design process into a search problem. In optimiza-
tion, we answer the question: how do we modify our current design to improve its
performance? Given some metric for performance and a description of the anatomy
of the device, repeatedly answering this question yields a general way of designing
electromagnetic devices which works for both simple and complex geometries alike.

Of the various optimization methods which are applicable to electromagnetics,
gradient-based shape and topology optimization are particularly promising as they
enable us to efficiently design devices with an almost arbitrary number of degrees of
freedom. In both methods, a figure of merit is defined which quantifies the perfor-
mance of the device, and then its gradient is computed in order to determine how
the device should be modified. In the case of shape optimization, the boundaries
between different materials composing an initial structure are modified in order to
minimize the figure of merit [1]. Topology optimization operates in a similar man-
ner; however, fewer constraints are placed on how the structure can evolve and in
particular how its topology may be modified (e.g., the creation or elimination of
holes) [2].

Shape and topology optimization have found extensive application in structural
mechanics, and work on both methods dates back more than 30 years [1–4]. De-
spite the maturity of this field, less application of these methods has found its way
into the optics and photonics community. Early work on gradient-based optimiza-
tion of microwave devices [5, 6] demonstrated application of shape optimization
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to electromagnetics. This work was followed by the application of topology opti-
mization to photonic crystals [7] and later to a greater variety of passive photonic
components [8]. Within the last five years, however, the photonics community has
witnessed a steady rise in interest in these optimization techniques as demonstrated
by the numerous optimizations of efficient splitters, couplers, etc [9–18].

A large portion of this prior work has focused on implementing topology opti-
mization techniques and has emphasized problems in which the design space con-
sists of thousands or even millions of parameters. In particular, the idea of choosing
the permittivity at each point in a discretized domain as independent design vari-
ables has gained popularity. While this “grayscale" approach has proven useful for
generating solutions without requiring significant intuition about the appearance
of the final structure, it suffers a few disadvantages. First, in order to ensure that
the device can be fabricated, a final post-processing step is often required to con-
vert a grayscale material distribution to a binary material distribution [19]. As a
result, the final solution may not be truly optimal or may require additional shape
optimization steps. Next, these grayscale methods tend to produce structures with
the same characteristic geometry consisting of holes and islands. This geometry
may not be well matched to all problems; for example there are many problems in
which either the geometry of the structure is constrained in some way (for exam-
ple, a one dimensional grating coupler consisting of strictly rectangular segments)
or for which topological changes are unnecessary. Finally, topology optimization
inherently leverages a huge number of degrees of freedom. While this is generally
viewed as a strength, it can be a double-edged sword, and there are many problems
that may benefit from a smaller set of design parameters.

Shape optimization serves as a remedy to these problems. Shape optimization
can be used to fine-tune the result of the topology optimization. For design prob-
lems in which the general shape of the structure is known beforehand, shape op-
timization alone is a natural fit. Shape optimization has an additional benefit in
that it gives us considerable freedom over the choice of design space—we are free
to choose arbitrary parameters, such as the length of a rectangle or the positions of
polygon vertices, depending on the requirements of the problem.

In the first half of this work, we review the foundations of gradient-based opti-
mization for electromagnetics and highlight some of the important caveats which
are relevant to both shape and topology optimization. We then introduce an in-
tuitive approach to shape optimization based on boundary smoothing techniques
which is compatible with most design problems in electromagnetics.

Depending on the specific device we design, one implementation of shape or
topology optimization may have advantages over another. Ultimately, however,
gradient-based optimization is merely a tool, and the way in which we use that
tool has tremendous influence on the final results we are able to achieve. Even in
the simplest optimizations, we have to make at least three important choices which
impact the final outcome: how device performance is defined, how the geometry is
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defined, and the initial state of that geometry. From the standpoint of engineering
a good device, it is essential that we approach this decision-making process in a
systematic way.

In the latter half of this work, we introduce a hierarchical approach to design and
optimization which systematizes the process of shape optimization. This approach
relies on a strong physical understanding of Maxwell’s equations to choose initial
conditions for optimizations and leverages both small and large design spaces to
ensure that high quality devices are generated. Based on this methodology, we
demonstrate how a wide variety of important components in silicon photonics can
be designed with record high efficiencies. Although we focus on silicon photonics,
the same methods can be applied to many different electromagnetic platforms.

1.1 How to Read This Manuscript

This thesis is roughly divided into two parts. The first half of the document is ded-
icated to reviewing the optimization methods which underpin the work discussed
in the second half of the thesis. This second half focuses on how to apply these
optimization methods in order to design efficient nanophotonic components and
presents a number of examples in silicon photonics.

If you would like a tutorial on the optimization methods, skim through Chapter
2 and Chapter 3. If you want a tutorial on how to apply existing optimization tools
to nanophotonic components, skip ahead to Chapter 4. If you are only interested
in efficient silicon photonic component designs, skip ahead to Chapter 5 and skim
over the figures.
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Chapter 2

Gradient-Based Shape Optimization
of Electromagnetic Devices

Optimization (or “inverse design”) of an electromagnetic device involves modifying
an initial design in order to maximize (or minimize) a figure of merit which de-
scribes the device’s performance. In order to modify the design, we specify design
parameters which define the shapes of material boundaries and hence the struc-
ture of the device. There are many strategies for choosing the values of our de-
sign parameters in order to maximize our figure of merit; of particular interest are
gradient-based minimization techniques which are very efficient at finding local op-
tima assuming we can inexpensively compute the gradients of our figure of merit
(i.e. the derivative of the figure of merit with respect to each design parameter).
The simplest way to do this is by a brute force approach in which each design
parameter is independently varied and a separate simulation is run in order to de-
termine how the figure of merit changes. If M design variables specify the shape of
the device, then this method requires M + 1 simulations per gradient calculation,
which quickly becomes impractical for even modest values of M .

It turns out that through clever application of the chain rule, we can find the
gradient of our figure of merit using only two simulations. This process is called the
adjoint method or the adjoint variable method and has found widespread application
in many fields, including electromagnetics [4–8,10–12,15–23]. In this chapter, we
present a detailed derivation of the adjoint method and discuss how it can be used
to compute accurate sensitivities of electromagnetic structures. Furthermore, we
highlight the important caveats of the method and present examples to demonstrate
how the methods can be applied to the optimization of nanophotonic devices.
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2.1 Calculating Gradients with the Adjoint Method

Typically when “optimizing” an electromagnetic device, our goal is to minimize a
figure of merit F (E,H) which depends on the electric (E) and magnetic (H) fields
in some region of space. The fields are found by solving Maxwell’s equations,

∇× E− iωµH = M (2.1)
∇×H + iωεE = J (2.2)

which we have chosen to write in their time harmonic form as it simplifies the
process of computing gradients. As is the case with most linear partial differential
equations, we can discretize these equations on a rectangular grid and rewrite them
in matrix form as

A~x = ~b (2.3)

where A is a matrix containing the discretized curls and the permittivity and per-
meability at each point in the discretized space, ~x is a vector containing the electric
and magnetic fields at all points in space, and~b contains the inhomogeneous electric
and magnetic current density at all points in space. Depending on how unknowns
are ordered when assembling the discretized system of equations, A, ~x, and~b might
take the form

A =

(
iωε(r) ∇×
∇× −iωµ(r)

)
, ~x =

(
~E
~H

)
, ~b =

(
~J
~M

)
(2.4)

where ~E, ~H, ~J , and ~M are N×1 vectors containing the discretized field and current
density values. In our discretized world, our figure of merit becomes a function of
~x = [ ~E, ~H]T which we write as F (~x).

If we had direct control over the electric and magnetic fields in ~x, finding the
gradient of F (~x) would require only simple differentiation with respect to ~E and ~H.
Instead of directly controlling ~E and ~H, we have control over the permittivity and
permeability defined everywhere in space. In many cases, defining material distri-
bution explicitly is not desirable; instead it is often convenient to define the bound-
aries of different material regions by using a structured set of design parameters
(like the dimensions of shapes, the positions of shapes, the coordinates of polygon
vertices, etc). If we write this set of design variables as ~p = [p1, p2, · · · , pM ]T , then
the gradient we are interested in is the set of derivatives of F with respect to each
pi, i.e.

~∇pF =

[
dF

dp1

,
dF

dp2

, · · · , dF
dpM

]
(2.5)
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To find these derivatives, we begin by applying chain rule when differentiating
F (~x). Consider the i’th derivative for the simple case in which F is an explicit
function of the electric and magnetic fields only:

dF

dpi
=
∂F

∂~x

∂~x

∂pi
+
∂F

∂~x∗
∂~x∗

∂pi

= 2Re
{
∂F

∂~x

∂~x

∂pi

}
(2.6)

Because the fields in ~x are complex valued, we must be careful when taking their
derivatives, hence the appearance of the 2Re{· · · }1.

Notice that the derivative ∂F/∂~x is already known since the figure of merit is an
explicit function of the electric and magnetic fields. The second term in Eq. (2.6),
∂~x/∂pi, remains to be found. We accomplish this by directly differentiating our
system of equations given in Equation (2.3) with respect to pi and left multiplying
by A−1, which yields

∂

∂pi
(A~x) =

∂~b

∂pi

⇒ A
∂~x

∂pi
=

∂~b

∂pi
− ∂A

∂pi
~x

⇒ ∂~x

∂pi
= A−1

(
∂~b

∂pi
− ∂A

∂pi
~x

)
. (2.7)

Notice that the Maxwell operator A contains the distribution of permittivity and
permeability in the system which is directly controlled by the design parameters
~p. Therefore, ∂A/∂pi is known or assumed to at least be easily computable. The
derivative of the current sources with respect to the design parameters, ∂~b/∂pi, can
be calculated, although in most cases we will assume that the inputs to the system
are fixed and this term will be zero. In this case, Equation (2.7) becomes

∂~x

∂pi
= −A−1 ∂A

∂pi
~x . (2.8)

1The appearance of the second derivative with respect to the complex conjugate x∗ is a conse-
quence of chain rule for Wirtinger derivatives. Because F (~x) and pi are both real-valued, we see
that the second term is the complex conjugate of the first, i.e.,(

∂F

∂~x

∂~x

∂pi

)∗

=
∂F

∂~x∗
∂~x∗

∂pi
.

This results in the appearance of the 2Re{· · · }.

https://en.wikipedia.org/wiki/Wirtinger_derivatives#Chain_rule
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Substituting this expression for ∂~x/∂pi in Equation (2.6), we find an expression
for the i’th derivative of F in terms of known quantities:

dF

dpi
= −2Re

{
∂F

∂~x
A−1 ∂A

∂pi
~x

}
(2.9)

This expression can be written in a more enlightening way by introducing a new
vector given by

~yT =
∂F

∂~x
A−1 (2.10)

which we can rewrite in the form “A~x = ~b" by right multiplying by A and taking the
transpose of both sides:

AT~y =

(
∂F

∂~x

)T
(2.11)

Solving this expression for y is similar to solving Maxwell’s equations where ∂F/∂~x
acts as the current sources. In general, the discretized Maxwell’s equations are not
symmetric, and therefore the forward and adjoint equations are not identical. Sub-
stituting Equation (2.10) into (2.9), we obtain a final expression for the derivative
of our function F with respect to the design variables of the system:

dF

dpi
= −2Re

{
~yT
∂A

∂pi
~x

}
. (2.12)

In order to solve for all M derivatives of F with respect to every pi, we need
to compute the physical electric and magnetic fields represented by ~x as well as a
second set of non-physical “adjoint” fields represented by ~y. We can intuitively think
about these adjoint fields as the fields that are produced by injecting the desired
output fields (which arise from adjoint current sources ∂F/∂~x) into the system
and running the whole system backwards. Solving for ~x and ~y each correspond
to a single “forward” and “adjoint” simulation, respectively, and thus solving for
the gradient of F requires two simulations, independent of the number of design
variables. This is the great advantage of the adjoint method.

In addition to the forward and adjoint simulations, an essential component of
the adjoint method is the accurate calculation of ∂A/∂pi which contains the infor-
mation about how the distribution of materials in the system is controlled by the
design parameters ~p. In particular, the discretized equations which are assembled
into A can be ordered such that the permittivity and permeability values are con-
tained in the diagonal blocks of A as indicated by Equation (2.4). Typically, when
working on a rectangular grid (as we do in this manuscript), the discretization of
the problem will remain unchanged as the design variables are modified. If this
is true then the off-diagonal blocks of the system matrix will not change with re-
spect to changes to the design variables and hence the off-diagonal blocks of dA/dpi
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will be zero. This leaves only the diagonal blocks which contain the derivatives of
the permittivity and permeability tensors at each point in space. In this case, the
derivatives of the figure of merit are greatly simplified to

dF

dpk
= −2Re

{
iω ~ET

adj
∂ε

∂pk
~E − iω ~HT

adj
∂µ

∂pk
~H

}
= 2ω Im

{
~ET

adj
∂ε

∂pk
~E − ~HT

adj
∂µ

∂pk
~H

}
(2.13)

where the field quantities with the subscript “adj" are contained in ~y = [ ~Eadj, ~Hadj]
T .

Based on this, calculating the gradient of our figure of merit using the adjoint
method consists of computing forward fields, adjoint fields, and material gradi-
ents. Assuming we can calculate these three quantities, the adjoint method gives us
a very efficient way to calculate the gradient of our figure of merit with respect to
any number of variables.

These gradients are an essential component in both shape and topology opti-
mization. As far as the adjoint method is concerned, the primary distinction be-
tween different forms of shape and topology optimization lies in the details of how
ε(~p) and µ(~p), and hence their derivatives ∂ε/∂pi and ∂µ/∂pi, are defined. In this
work, we focus on shape optimization. This means that our design variables typi-
cally define the boundaries of regions of different ε and µ. The derivatives, mean-
while, relate changes in boundary positions to local changes in the permittivity and
permeability. Handling these derivatives in careful way is essential to successful
application of the adjoint method.

2.1.1 Including Explicit Dependence on the Design Parameters

Up until now, we have considered only figures of merit which depend exclusively on
the electric and magnetic fields. In many cases, however, it will be advantageous to
have the figure of merit include an explicit dependence on the design variables. In
these cases, our definition of the derivative of our figure of merit will need to change
slightly. Specifically, we must modify Equation (2.6) such that it is consistent with
the definition of total derivatives:

dF

dpi
= 2Re

{
∂F

∂~x

∂~x

∂pi

}
+
∂F

∂pi
(2.14)

Here, the partial derivative ∂F/∂pi is the derivative with respect to pi, holding ~x and
pj 6=i constant. Based on this simple modification, our expression for the gradient
computed using the adjoint method becomes

dF

dpi
= −2Re

{
~yT
∂A

∂pi
~x

}
+
∂F

∂pi
. (2.15)
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The addition of an explicit dependence on the design variables to our figure of
merit results in an additional additive term to our gradient and does not require
modification of the adjoint method itself. In appendix A, we demonstrate how this
explicit dependence can be used to easily impose design constraints.

2.1.2 Discretizing and Differentiating Figures of Merit

The goal of gradient-based optimization is to minimize (or maximize) a figure of
merit which describes a device’s performance by changing the set of design param-
eters which define the shape of the device. Typically, this figure of merit will be
contain a spatial integral of the electric and magnetic field, i.e., it will have the
form

F (E,H) =

∫
D

dDf(E,H) (2.16)

where D is some 1D, 2D, or 3D domain and dD is the differential of that domain.
Before computing its gradient using the adjoint method, we need to make two
modifications to our figure of merit. First, we need to represent it in a discretized
domain which is conducive to numerical computation. Second, we need to take its
derivative with respect to the field components which serves as the adjoint simula-
tion sources.

In this work, we primarily work with finite difference methods which represent
the fields on a rectangular grid. This makes it relatively straightforward to rewrite
our integrals as discrete sums. For example, our integral expression in Equation
(2.16) can be rewritten on a rectangular grid using a Riemann sum as

F (~E, ~H) =
∑
q

∆Df(Eq,Hq) (2.17)

where ∆D is the spacing between field values in our grid and q denotes a spatial
index. Furthermore, we have switched to vector notation to emphasize that the
electric and magnetic fields are discretized on the rectangular grid and are now
stored as vectors of discrete values. Depending on the dimensionality, the sum and
indexing will change. In particular, in 1D, 2D, and 3D, the sums become:

1D :
∑
q

∆D →
∑
k

∆x and q → k

2D : →
∑
j

∑
k

∆x∆y and q → jk

3D : →
∑
i

∑
j

∑
k

∆x∆y∆z and q → ijk

(2.18)
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Having written our integral figure of merit as a discrete sum, taking its derivative
with respect to the field components is relatively straight forward. Consider, for
example, taking the derivative of Equation (2.17) with respect to Ex

m:

∂F

∂Ex
m

=
∂

∂Ex
m

∑
q

∆Df(Eq,Hq)

=
∑
q

∆D
∂f(Eq,Hq)

∂Ex
m

=
∑
q

∆D
∂f(Em,Hm)

∂Ex
m

δqm

= ∆D
∂f(Em,Hm)

∂Ex
m

(2.19)

The derivative of our figure of merit with respect to the field components is simply
the derivative of the integrand times the differential ∆D. It is important to note
that this is only true when m corresponds to an index contained within the sum.
For all m not contained in the sum, ∂F/∂Ex

m = 0.
For most figures of merit that we are interested in, the process of calculating

them numerically and differentiating them for use with the adjoint method will
follow this blue print. Even when working with more sophisticated functions which
involve products and quotients of integrated quantities, we can always follow this
process of discretizing the integral and then differentiating.

2.1.3 Accounting for Spatial Interpolation

When solving Maxwell’s equations using finite difference methods, we typically rep-
resent the electric and magnetic fields on a staggered grid. This means that the
different field components that we solve for are not known at the same exact point
in space. In order to properly calculate quantities like power and energy density
which combine multiple field components, it becomes necessary to interpolate the
field values such that every field component is known at the same points.

This process of interpolating the fields modifies our figure of merit. As a result,
we need to be careful to account for the modification when computing the adjoint
sources. As an example, let us consider the case of representing 2D TM fields on the
staggered rectangular grid as depicted in Figure 2.12. For this field configuration,
we could define a set of linearly spatially-interpolated field values given by

2In this depiction, we do not use the half-step index numbering scheme as is frequently used with
Yee cells/staggered grids. Instead, we group sets of Hz, Ex, and Ey and assign them the index (i, j).
This is purely subjective and should not influence the results of this section.
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Hz

Ex

Ey

(j,k)

Figure 2.1: Example of a staggered grid used to represent 2D TM fields. Each (Yee) cell
contains the three field components. This staggered grid ensures numerical stability.

H̃z
j,k = Hz

j,k (2.20)

Ẽx
j,k =

1

2

(
Ex
j,k + Ex

j+1,k

)
(2.21)

Ẽy
j,k =

1

2

(
Ey
j,k + Ex

j,k+1

)
(2.22)

where �̃ refers to interpolated quantities, and the electric field components, Ex
j,k

and Ey
j,k, are interpolated at the position of Hz

j,k. In terms of these interpolated
quantities, our figure of merit given in Equation (2.17) becomes

F (
~̃
E,

~̃
H) =

∑
D

∆Df(Ẽq, H̃q) . (2.23)

In order to apply the adjoint method to this new figure of merit, we need to calculate
its derivative with respect to the uninterpolated field components (since ~x contains
the uninterpolated values). In order to calculate these derivatives, we proceed
exactly as we did in order to arrive at Equation (2.19). Let’s consider first the
simpler derivative with respect to Hz

m,n which is given by

∂F

∂Hz
m,n

=
∑
j

∑
k

∆x∆y
∂f(Ẽj,k, H̃j,k)

∂Hz
m,n

. (2.24)

Notice that in this case, the figure of merit is written explicitly in terms of the
interpolated fields. As such, we would like to be able to express the derivative of F
in terms of the derivative of f with respect to the interpolated fields. We accomplish
this by applying chain rule:

∂F

∂Hz
m,n

=
∑
j

∑
k

∆x∆y
∂f(Ẽj,k, H̃j,k)

∂H̃z
j,k

∂H̃z
j,k

∂Hz
n,m

(2.25)
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Recalling that H̃z
j,k = Hz

j,k, we find that ∂H̃z
j,k/∂H

z
m,n = δjmδkn and hence

∂F

∂Hz
j,k

= ∆x∆y
∂f(Ẽj,k, H̃j,k)

∂H̃z
j,k

(2.26)

From this we see that the derivative of our figure of merit with respect to Hz
j,k is

identical to the “naive" derivative with respect to the interpolated field.
This is not the case, on the other hand, for the derivative of F with respect to

Ex
j,k and Ey

j,k. Let us consider the former derivative. Just as we did in Equation
(2.25), we differentiate with respect to Ex

m,n and apply chain which yields

∂F

∂Ex
m,n

=
∑
j

∑
k

∆x∆y
∂f(Ẽj,k, H̃j,k)

∂Ẽx
j,k

∂Ẽx
j,k

∂Ex
m,n

. (2.27)

In this case, Ẽx
j,k 6= Ex

j,k and so we must proceed cautiously. Consider the derivative
of the interpolated Ẽx

j,k with respect to the uninterpolated Ex
m,n:

∂Ẽx
j,k

∂Ex
m,n

=
∂

∂Ex
m,n

1

2

(
Ex
j,k + Ex

j+1,k

)
=

1

2

(
∂Ex

j,k

∂Ex
m,n

+
∂Ex

j+1,k

∂Ex
m,n

)
=

1

2
(δj,mδk,n + δj+1,mδk,n) (2.28)

Substituting this result into Equation (2.27), yields for the derivative with respect
to Ex

j,k

∂F

∂Ex
j,k

= ∆x∆y
1

2

(
∂f(Ẽj,k, H̃j,k)

∂Ẽx
j,k

+
∂f(Ẽj,k, H̃j,k)

∂Ẽx
j−1,k

)
(2.29)

where we have sneakily selected out the terms from the sum which correspond to
the Kronecker delta functions in Equation (2.28). Notice that this expression is
really just the average of two derivatives of the full figure of merit with respect to
the interpolated fields, i.e.,

∂F

∂Ex
j,k

=
1

2

(
∂F

∂Ẽx
j,k

+
∂F

∂Ẽx
j−1,k

)
. (2.30)

From this, it follow that in order to calculate the derivative of our figure of merit
with respect to the uninterpolated fields (which is the adjoint source), we can sim-
ply calculate the “naive" derivative with respect to the interpolated fields and then
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average the spatially-adjacent derivatives! This provides us with an easy way to
account for spatial interpolation of the fields in our adjoint source calculation.

This holds true for the derivative with respect to Ey
j,k,

∂F

∂Ey
j,k

=
1

2

(
∂F

∂Ẽy
j,k

+
∂F

∂Ẽy
j,k−1

)
. (2.31)

and a similar process can be followed for figures of merit which depend on 2D TE
fields and 3D fields. In this sense, these results are very general and should be used
when calculating adjoint sources to ensure that the resulting gradients account for
the numerical details of the simulation.

2.1.4 Keys to Computing Accurate Gradients

Based on Equations (2.13), it is apparent that if we are able to calculate the forward
fields, the adjoint fields, and the material gradients, then we should be able to effi-
ciently calculate the gradient of our figure of merit. There are, however, a number
of numerical pitfalls associated with implementing the adjoint method that we must
be aware of. Not accounting for these details can negatively impact the accuracy of
our gradients, and as a result, significantly impact the optimization process.

First, we must take care to ensure that all calculations (forward simulation, ad-
joint simulation, and material gradients) are consistent with one another. Any post
processing of the fields generated by the forward simulation must be accounted for
in the adjoint simulation. The most common example of this is (spatial or spec-
tral) field interpolation: if our figure of merit is computed using interpolated field
values (which is necessary when using finite-difference methods), it is important
that the derivative of our figure of merit ∂F/∂~x account for the interpolation. Since
this derivative serves as the source to the adjoint simulation, inconsistencies in the
definition of ~x will lead to errors in the adjoint field.

In addition to field interpolation, it is important that our material gradients are
computed in a way that is consistent with how the forward simulator handles its ma-
terial distributions. Although this may seem trivial, guaranteeing this consistency
can prove difficult when working with third party solvers which are effectively black
boxes.

The material gradients pose an additional challenge. When working with fi-
nite difference methods (FDTD or FDFD) as is common in the nanophotonics com-
munity, simulations are constrained to represent data on a rectangular grid. This
rectangular grid is typically not conducive to making smooth modifications to the
material boundaries. Without this smooth behavior, the material distributions are
not differentiable and hence ∂εj/∂pk and ∂µj/∂pk are ill-defined. In such cases,
these derivatives can be approximated [10], however, such approximations may be
prone to producing gradient errors in some applications.
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Finally, the process of computing adjoint fields itself poses some challenges.
Mathematically, the adjoint simulation, ATy = (∂F/∂~x)T , consists of solving a
transposed version Maxwell’s equations. If we solve Maxwell’s equations using an
explicit matrix method like the finite difference frequency domain method or finite
element method, the system matrix A can be transposed, and therefore running the
adjoint simulation is straightforward. If, however, we prefer to use an alternative
matrix-free method like the finite difference time domain method (which is typically
faster and more scalable for dielectric structures), the adjoint simulation is more dif-
ficult to implement. In this case, we have two options: either we can work directly
in the time domain as in [19, 24], requiring slight modification to the underlying
equations, or we can work with the frequency domain fields (acquired, for exam-
ple, using a Fourier transform) and assume that the forward and adjoint simulations
solve an identical set of equations (with different sources). In both cases, we typi-
cally assume that the systems of equations that we solve are symmetric, which is not
strictly true when working with non-diagonally anisotropic materials, non-uniform
grids, perfectly matched layers (PML), and non-absorbing boundary conditions. In
order to ensure that the gradients computed are accurate, we therefore either need
to correctly account for anisotropies, non-uniform grids, and boundary conditions
in our adjoint simulation (which may require modification to the FDTD equations)
or avoid them altogether. In practice, perfectly matched layers do not significantly
diminish gradient accuracy as long as all relevant calculations are restricted to do-
mains which do not overlap the PML domains.

As long as we account for the nuances of the adjoint method, we can efficiently
calculate gradients with high accuracy. In the following sections, we will explore
some of the more important caveats we have just introduced, and in section 2.3 we
will demonstrate the impact of neglecting these details.

Starting Structure

Forward Sim. Adjoint Sim.

Optimized Structure

in outdesignable

Minimization Process

optimal
design

boundary
derivative

Update Design in out

Figure 2.2: Overview of how the adjoint method fits into shape optimization.



CHAPTER 2 — GRADIENT-BASED OPTIMIZATION OF EM DEVICES 15

2.1.5 Using the Adjoint Method for Shape Optimization

The adjoint method serves a single purpose: to calculate gradients of a function
which depends implicitly on a larger set of variables. On their own, these gradi-
ents, which are also aptly referred to as “device sensitivities," are a useful mea-
sure of how sensitive a device’s performance is to changes in its anatomy. Their
true power, however, is unlocked when supplied to a gradient-based minimization
method. These methods use the gradient information in order to rapidly search
for a minimum of the function (i.e., out figure of merit), which corresponds to an
optimal device. Many such methods exist; in this work, we primarily employ the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm which works reliably in a
wide range of problems.

The general process for using the adjoint method in shape optimization is shown
in Figure 2.2. We begin with some initial design for our device and define design
parameters (i.e., a list of numbers) which control the shape of the initial device’s
boundaries. The goal of the optimization is to alter these design parameters in
order to minimize our figure of merit. This process is iterative. First, we run a for-
ward simulation of the device in order to calculate the current value of our figure of
merit. The fields obtained from this forward simulation are then used to calculate
the adjoint simulation sources. We then run the adjoint simulation to obtain the
adjoint fields. After both sets of fields are known, we compute the derivative of the
material distributions (typically just the permittivity distribution) with respect to
each of the design variables. In many cases, the process for calculating these mate-
rial derivatives involves perturbing the boundary in different ways and calculating
how the permittivity distribution changes. Multiplying the adjoint field, forward
field, and each of the material derivatives yields the gradient of our figure of merit
with respect to the design variables. This gradient is then used by the minimiza-
tion algorithm to update the design variables, yielding an improved device. The
gradient-fueled update process is then repeated (potentially tens or hundreds of
times) until we determine that the optimization has converged. The set of design
parameters that achieve this minimum describes the optimized device geometry.

2.2 Shape Optimization Based on Boundary
Smoothing

One of the key steps in computing device sensitivities is to calculate the material
gradients. This becomes a challenge when combining shape optimization with finite
difference methods which operate on rectangular grids. When trying to represent
an abrupt interface between two materials, we inevitably run into the problem of
staircasing: representing curved or diagonal boundaries between two different ma-
terials on a rectangular grid results in a jagged interface which conforms to the
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Continuous Representation Equivalent Smoothed Grid

+ =

P
erm

ittivity

Figure 2.3: Visual depiction of boundary smoothing process. Internally, all material bound-
aries of the system are represented using polygons which are defined in a continuous do-
main. These shapes are then mapped onto a rectangular grid by computing the average
value of permittivities and permeabilities which overlap with each cell in the grid. This
mapping is achieved by computing the overlap area between grid cells and material do-
mains.

underlying grid. In addition to compromising simulation accuracy, the rectangu-
lar nature of the grid poses significant challenges to calculating sensitivities since
perturbations smaller than a grid cell are not possible.

A considerable amount of work has been done to improve the treatment of non-
rectangular boundaries with finite difference methods for the purpose of improving
simulation accuracy. In particular, modification of the FDTD equations have been
successfully employed in order to improve the simulation accuracy [25, 26] and
the introduction of effective permittivity at material interfaces [27–30] has been
demonstrated to improve simulation accuracy in many situations. In many of these
works, the process of computing effective intermediate material values, which we
refer to as “boundary smoothing,” relies on the calculation of a volume-averaged
permittivity/permeability. Despite the central role this averaging plays, compara-
tively little work has been done on computing these averages in a way that produces
effective material values that change smoothly with respect to underlying material
boundaries. If this smooth behavior is achieved, this method of smoothing material
interfaces becomes a powerful tool for shape optimization.

In order to demonstrate precisely this, we have implemented a simple form of
boundary smoothing using weighted averages which is depicted in Figure 2.3. In a
given grid cell, the effective permittivity in a 2D domain is given by
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Figure 2.4: Demonstration of boundary smoothing for a 0.5 µm diameter dielectric circle.
(a) shows the relative permittivity of the smoothed grid computed for the circle on an
intentionally coarse grid in order to clearly show the averaging which occurs at the circle’s
boundary. (b) shows the difference in permittivity between the grid shown in (a) and the
grid corresponding to the same circle which has been shifted in the y direction by 10−12 µm.
The difference in permittivity is correspondingly small, highlighting the continuous nature
of our boundary smoothing.

〈ε(i, j)〉 =
1

∆x∆y

∑
k

Ckεk(i, j) (2.32)

where Ck is the overlap area between the k’th material domain and the grid cell at
location i, j and ∆x and ∆y are the grid cell width and height, respectively. For the
purpose of computing derivatives, it is essential that Ck be computable with high
precision. We accomplish this by representing all boundaries in the system as piece-
wise linear functions (i.e., polygons) and then computing intersections between
the material domains and the grid-cells that intersect the boundaries of those do-
mains. Because these piecewise linear functions are stored with very high (or even
arbitrary) numerical precision, infinitesimal modifications to the boundaries are
reflected by infinitesimal modifications to the local effective permittivity and per-
meabilities on the grid. This process is contingent on our ability to efficiently find
polygon intersections. Fortunately, this has long been a topic of great importance
in computational geometry [31]. Due to the maturity of this field, efficient algo-
rithms for finding the intersection between polygons are readily available, making
this simple form of boundary smoothing relatively straightforward to implement.

A demonstration of this process is depicted in Figure 2.4. In Figure 2.4(a), the
smoothed permittivity for a 0.5 µm diameter circle is shown on an intentionally
coarse grid. As a result of the smoothing process, the grid cells at the boundary
of the circle are filled with an effective permittivity whose value is between the
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permittivity inside of the circle and the permittivity surrounding the circle. We
then test the continuous nature of this smoothing by displacing the circle in the y
direction by 10−12 µm. The change in the permittivity as a result of this displacement
is shown in Figure 2.4(b). The small size of the displacement is reflected by the
correspondingly small change in permittivity in the grid cells at the circle’s outer
boundary.

Figure 2.4 demonstrates that we can make infinitesimal changes to boundaries
represented on a rectangular grid. These infinitesimal changes translate into the
smooth changes in quantities calculated using the simulated fields in response to
changes to the simulated structure. This behavior is demonstrated in greater de-
tail in Figure 2.5 which plots the scattering cross section of an infinite dielectric
cylinder as a function of the radius of the cylinder. In both plots, the cross sec-
tion is calculated using FDTD with a grid spacing of 30 nm. The cylinder in these
simulations is represented using our boundary smoothing which is compared to a
strictly binary Manhattan representation of the cylinder as well as to the theoret-
ical value for the scattering cross section. Notice that in the left plot, the cross
section of the smoothed cylinder varies smoothly over the full range of radii which
spans two grid cells, closely matching the theoretical behavior. The Manhattan
representation, meanwhile, varies in a jagged way with changing radius. This be-
havior is made more apparent by zooming in on a small range of radii (which spans
much less than one grid cell) as shown in the left plot of Figure 2.5. Unlike the
Manhattan representation which decreases in discontinuous steps, the cross section
computed using our smoothed representation decreases smoothly, closely matching
the theoretical cross section. This behavior is essential to the calculation of accurate
gradients of a figure of merit.

With continuous boundary smoothing at our disposal, the derivatives ∂A/∂pi
are easily computed using finite differences. One at a time, each design variable of
the system pi is perturbed by a small amount (e.g., 10−8×∆x) and the diagonals of
a new matrix A(pi + ∆p) is computed. The derivative is then given approximately
by

∂A

∂pi
≈ A(pi + ∆p)− A(pi)

∆p
(2.33)

which is accurate so long as ∆p is sufficiently small, regardless of how coarse or
fine the spatial discretization of the underlying simulation is. Note that although it
is possible to compute this derivative (semi-) analytically without relying on finite
differences, it turns out that approximating the derivative using finite differences is
no more computationally intensive and has practical implementation benefits3

3In order to calculate the derivative analytically, we would apply chain rule:

dA

dpi
=

∂A

∂Ck

∂Ck

∂x

∂x

∂pi
+

∂A

∂Ck

∂Ck

∂y

∂y

∂pi
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Figure 2.5: Demonstration of boundary smoothing applied to the calculation of the scat-
tering cross section of an infinite dielectric cylinder (in 2D). The scattering cross sections
computed using boundary smoothing (blue curve) and without using boundary smoothing
(red curve) are compared to the theoretical value for a range of cylinder radii. On the left,
the cylinder radius is varied by an amount equal to twice the grid spacing (30 nm). On
the right, the radius is varied over a range much smaller than a single grid step. In both
cases the cross-section of the grid-smoothed-cylinder evolves smoothly with changing radius
while cross section of the cylinder represented on a strictly binary grid exhibits a step-like
behavior. The smooth change in the cross section of the boundary-smoothed-cylinder is
highly desirable when calculating sensitivities.

It is interesting to note that our boundary smoothing method is conceptually
similar to a variety of different “fictitious domain methods” which are regularly em-
ployed in the field of structural engineering [32]. In particular, the volume-based
material averaging we use is analogous to the “ersatz approach” to the level set
method employed by Allaire et al [4] which has since been applied to other topology
optimization methods (e.g., the method of moving morphable components [33]).
However, in comparison to this level set approach, our method is in many ways eas-
ier to grasp conceptually and its implementation is comparatively straightforward.
Furthermore, by representing the material values explicitly as polygons (which is
supported by most if not all layout tools), translating our designs from a simulated
to fabricated structure requires no addition effort. An additional consequence of
this explicit polygon representation is the ease with which fabrication constraints
may be incorporated into the optimization as we demonstrate in later chapters and
discuss in detail in Appendix A. Finally, our boundary smoothing technique provides
us with great flexibility in how we manipulate structures: it works equally well for

where Ck is the volume fraction, x is the x coordinate of each vertex in the polygon and y is the
y coordinate of each vertex in the polygon. In many cases, ∂x/∂pi and ∂y/∂pi may be tedious to
implement. Computing the derivatives using finite differences avoids this issue all together.
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geometries which are heavily constrained (e.g., grating couplers which consist of an
arrangement of different sized rectangles) as it does for geometries which evolve in
a more “free form” manner (as is typically observed with level set methods). This
combination of simplicity and flexibility makes our method an attractive alternative
to other fictitious domain methods for electromagnetic optimization.

For these reasons, boundary smoothing provides a very flexible foundation for
shape optimization. In the remainder of this work, we will demonstrate how shape
optimization based on boundary smoothing can be used to optimize a wide range
of devices in nanophotonics.

2.3 A Simple Example

In order to demonstrate the application of the adjoint method and highlight some
of the key details discussed in this chapter, let us consider the problem of optimiz-
ing the simple 90◦ waveguide bend depicted in Figure 2.6. In this optimization, we
excite the fundamental mode of a horizontal silicon waveguide and attempt to max-
imize the power which remains in the wavguide after passing through the bend by
varying the inner and outer radii of the bend. In order to choose these radii, we will
compute the gradient of our figure of merit (the output power) using the adjoint
method, and then supply that gradient to the BFGS minimization algorithm. This
example is intentionally simplistic as it allows us to work through the full optimiza-
tion problem without having to deal with excessive and opaque math. In chapters
4 and 5, we will apply these same methods to more interesting 3D problems.

For the purpose of this example, we approximate a three dimensional silicon
strip waveguide in two dimensions using the effective index method. Under this
approximation, for a wavelength of 1550 nm, the refractive index of the waveguide
is set to 2.8 (corresponding to an approximate waveguide thickness of 220 nm) and
the the cladding index is set to 1.44 (corresponding to silicon dioxide). At the input
and output, the waveguide has a fixed width of 500 nm, however this width may
change in the bend region depending on the inner and outer bend radii. The 500 nm
input waveguide is excited with its fundamental TM mode with a wavelength of
1550 nm. In order to achieve reasonable accuracy, a grid spacing of 30 nm is used
during optimization. For the purpose of exploring the accuracy of our gradients, we
will also consider other grid resolutions.

Our first step in optimizing the waveguide bend is to define the figure of merit
that will guide us to the optimal design. In this case, we want to maximize the
power which remains in the waveguide after the bend. A simple function which
captures this is the power flux through a cross section of the waveguide, which is
given by
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Figure 2.6: Problem setup for a simple demonstration of gradient-based optimization of a
90◦ silicon waveguide bend. The fundamental TM mode of a silicon waveguide (reduced
to 2D using the effective index method) is injected in the top left of the simulation region
(labeled “source plane"). The waveguide is bent 90◦ and the power leaving in the waveguide
at the bottom of the simulation region is measured. The inner and outer radius of bend are
chosen by the optimization in order to maximize the amount of power flowing through the
“FOM plane."
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(2.34)

where Psrc is the total optical power injected into the simulation and ` is the line
labeled “FOM plane" in Figure 2.6. Since we are simulating the TM fields, only the
Ex, Ey, and Hz are relevant, and hence our figure of merit contains only Ex and Hz

which are relevant to power flowing in the ŷ direction.
In our figure of merit, we normalize the power flux with respect to the “source

power." For the purposes of this example, we will calculate this source power in the
first simulation and assume it remains constant for the rest of the optimization. In
reality, due to the finite extent of the source, the source power can fluctuate by small
amounts from one simulation to the next as the structure and fields change. If we
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want to normalize with respect to the source power calculated for each simulation
(which will yield the most accurate results), it is important that we account for
this normalization in the derivatives of our figure of merit. These derivatives are
discussed in detail in Appendix A.

Although we have defined our figure of merit, we still need to rewrite it in terms
of the discretized fields. As described in the previous section, we can write our
figure of merit as a function of the discretized fields by converting the integral to a
sum over index field values:

F ( ~Ex, ~Ey, ~Hz) = − 1

Psrc

kf∑
k=k0

∆x
1

2
Re
{
Ẽx
j0,k × H̃z∗

j0,k

}
(2.35)

Here, the vector notation indicates that the fields are stored as vectors of discrete
values, Ẽ and H̃ are the spatially-interpolated fields given in Equation (2.20) and
Equation (2.21), k0 to kf is the range of indices along the x direction of the sum,
and j0 is the y index of the line where the function is evaluated.

Having expressed our figure of merit in terms of the discretized fields, we can
now calculate the adjoint source ∂F/∂~x. In this case, because we are working
with the TM fields, the derivative of our figure of merit with respect to the field
components will have the form

∂F

∂~x
=

[
∂F

∂ ~Ex
,
∂F

∂ ~Ey
,
∂F

∂ ~Hz

]
(2.36)

The derivatives with respect to the individual field components are relatively straight-
forward to derive. In particular, we find that the derivatives with respect to the
interpolated field components are (see Appendix A.1.1 for details)
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= − 1
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= − 1
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(2.37)

where the Kronecker deltas indicate that the derivatives are only non-zero for the
indices contained within the “FOM plane." These derivatives are with respect to the
interpolated fields, however we need the derivatives with respect to the uninterpo-
lated fields (i.e. the field values stored in ~Ex, ~Ey, and ~Hz). These derivatives are
easily acquired by noting that under our chosen interpolation scheme, H̃z

j,k = Hz
j,k

and the derivative with respect to Ex
j,k can be obtained by applying Equation (2.30).
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Figure 2.7: Plots of the forward (left) and adjoint (right) fields for the initial waveguide
bend. In both cases the Re{Hz} component is plotted and overlaid with the outline of the
bent waveguide. In the case of the forward simulation, the fields are injected in the top left
and propagate “clockwise”. In the case of the adjoint simulation, the fields are injected in
the bottom right and propagate “counter-clockwise.”

These derivatives define the source used for the adjoint simulation as discussed
in section 2.1. As such, we are now in a position to simulate both the forward and
adjoint fields. For this two dimensional example, we simulate the structure using
the finite difference frequency domain (FDFD) method4 which sets up and solves
Maxwell’s equations explicitly in the form A~x = ~b. This makes it straightforward to
calculate the adjoint fields since A is explicitly defined.

The simulated forward and adjoint fields are shown in Figure 2.7. In the case
of the forward fields, light is injected in the top left and a significant amount of
power is scattered at the 90◦ bend as indicated by the easily visible field propagating
outside of the waveguide towards the right boundary of the simulation. In the
case of the adjoint simulation, it appears as if the light is injected at the output
waveguide towards the bend. Just as with the forward simulation, the adjoint fields
are scattered by the bend. This example gives us an intuitive sense of what the
adjoint fields mean: approximately, they are the fields that result from injecting the
desired fields at the output of the system, and running the whole system backwards.
This analogy works well when the figure of merit is a relatively simple quantity like
power flux or energy density.

The forward and adjoint fields shown in Figure 2.7 are two of the three com-

4The solvers we employ for both 2D and 3D problems are discussed in detail in Chapter 3.
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ponents in Equation (2.13) needed to calculate the gradient of our figure of merit
using the adjoint method. The remaining component is the material gradient ∂~ε/∂~p.
To ensure that the waveguide permittivity distribution changes smoothly with re-
spect to changes in the bend radii, we represent the waveguide using a polygon with
200 points in the inner and outer arcs and generate the permittivity distribution us-
ing our boundary smoothing methods discussed in section 2.2. Any modifications
we make to the underlying polygon (like changes to the bend radii) will be re-
flected in continuous changes to material distribution, allowing us to approximate
the material gradients using Equation (2.33).

At this point, we are able to compute the gradient of our figure of merit,

∇F =

[
∂F

∂Rin

,
∂F

∂Rout

]
(2.38)

which in this problem is the derivative with respect to the inner and outer bend
radii. In order to evaluate the accuracy of the gradient computed using the ad-
joint method, we compare it to the gradient computed using a brute force finite
difference, i.e.,

∂F

∂Rin

≈ F (Rin + ∆R,Rout)− F (Rin, Rout)

∆R
∂F

∂Rout

≈ F (Rin, Rout + ∆R)− F (Rin, Rout)

∆R

and estimate the error in our calculation with

error =
|∇AMF −∇FDF |

|∇FDF |
(2.39)

where AM and FD refer to “adjoint method” and “finite differences”. Figure 2.8 (a)
shows the error in the gradient of our figure of merit as a function of the step size
∆p used in the calculation of ∂A/∂pi for a range of different grid resolutions. As
desired, for small ∆p, the gradient calculated using the adjoint method is excep-
tionally accurate, with error dropping below 10−6, at which point numerical error
begins to dominate (as reflected by the noise that appears for very small ∆p). This
demonstrates that our methods are capable of computing gradients both efficiently
and with high accuracy.

In this simple example, there is little apparent correlation between gradient
accuracy and grid resolution. We believe this to be due to the fact that changes in
the design variables result in changes to the structure which are significantly larger
than a single grid cell. In cases in which changes to the design parameter result in
changes in only one or a few grid cells, we have observed [34] that the minimum
error in the gradient has a polynomial dependence on the grid cell size.
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Figure 2.8: Plots of the error in the gradient computed using the adjoint method for the
example waveguide bend. (a) Plot of the error in the gradient as a function of the step
size ∆p used in the calculation of ∂A/∂pi. (b) Plot of the error in the gradient vs grid
resolution when spatial interpolation of the field is not accounted for in the adjoint source.
(c) Plot of the error in the gradient vs grid resolution when non-constant source power is
not accounted for in the adjoint source.

This simple example gives us an opportunity to explore some of the pitfalls of
the adjoint method that we discussed earlier in this chapter. In particular, it is in-
teresting to evaluate how much of an impact spatial interpolation has on gradient
accuracy. Figure 2.8 (b) shows the error in the gradient as function of grid resolu-
tion when we do not account for spatial interpolation in the definition of the adjoint
source (in other words, we compute the adjoint source assuming the interpolated
and uninterpolated fields are the same). The error in the gradient as a result of
this mistake is increased by at least five orders of magnitude as shown by the hor-
izontal dashed line in Figure 2.8 (a). As the grid spacing is decreased (more grid
cells per wavelength), this error steadily drops. This makes sense since the distinc-
tion between interpolated and uninterpolated field disappears as we tend towards
a continuous (non-discretized) system. Unfortunately, in order to achieve a suffi-
ciently accurate gradient for the purpose of optimization, we would need to use an
unreasonably high resolution grid. As such, accounting for the exact form of spatial
interpolation used by the Maxwell solver is essential to gradient accuracy.

A second potential source of error concerns the source power normalization. In
this simple example, we used the same constant value for the source power through-
out our optimization. In reality, the source power in the simulation changes by a
small amount as the structure itself changes. When optimizing very high efficiency
components, it is important that we normalize our figure of merit with respect to
the source power computed for each separate simulation. This introduces an ex-



CHAPTER 2 — GRADIENT-BASED OPTIMIZATION OF EM DEVICES 26

FOM = 0.946
      η = 0.983

1 μm

Figure 2.9: (left) The plot of the figure of merit (blue line) and coupling efficiency (red
curve) of the bent waveguide as a function of iteration of the optimization. (right) Plot of
the real part of the magnetic field corresponding to the optimized bent waveguide. The
figure of merit for this optimized bend is 94.6% while the coupling efficiency is 98.3%.

plicit dependence of the source power on the electric and magnetic fields of the
system, and therefore we must account for that dependence when differentiating
our figure of merit and evaluating the adjoint source; not doing so will introduce
unwanted errors in our gradients. Figure 2.8 (c) shows the error in the gradient as
a function of grid resolution in the case where we normalize our figure of merit with
respect to the actual source power of each simulation, but assume the source power
is constant when computing the adjoint source. As shown by the dashed light blue
line in Figure 2.8 (a), this increases the minimum error by at least two orders of
magnitude. In some problems, we have observed this error to be even higher to the
point that it impacts the optimization. For this reason, it is important that we know
exactly how the source power is computed by our Maxwell solver and account for
it in the derivative of our figure of merit with respect to the fields.

With these different sources of error in mind, we have verified that the gradients
of our figure of merit of our simple waveguide bend problem are accurate. All that
remains is to optimize the waveguide bend. To do this, we feed the computed
gradient into a minimization algorithm. In particular, we use an off-the-shelf BFGS
implementation which yields consistently fast convergence. Recall that our goal
in this optimization is to maximize the transmitted power through our waveguide
bend. We accomplish this by minimizing the negative of Equation (2.35).

The improvement in the figure of merit during the optimization is shown on
the left side of Figure 2.9. Because the waveguide bend is defined using only two
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design variables, convergence to the final value of the figure of merit is very rapid,
requiring only nine iterations (which takes about 20 seconds on a 14 core Intel
Xeon processor). In this optimization, the figure of merit improves from 0.433
to 0.946, indicating that the optimization has more than doubled the fraction of
power transmitted through the bend. This improvement is further reflected by the
mode matched coupling efficiency, shown by the red curve in Figure 2.9, which is
improved to over 98%.

The optimized structure which achieves this result is depicted on the right side
of Figure 2.9. Intuitively, the radius of the bend has increased significantly in order
to reduce the amount of power leaked from the waveguide. In practice, we would
expect the optimization to make the bend radius as large as possible. Because we
are constrained to a fixed simulation domain, we set a bound of 3µm on the max-
imum bend radius. The outer bend radius of the optimized structure is increased
to 3µm. Interestingly, the inner radius of the optimized structure is not chosen
to maintain a fixed waveguide width. Instead, the bend radius is smaller than we
might expect, causing the waveguide to narrow slightly in the bend region. One
explanation for this is that the slight narrowing into and out of the bend results in
a better overlap between the modes in the different sections of the bend. This indi-
cates that a simple bent waveguide can be improved by choosing bend radii which
narrow the waveguide slightly.

This highlights a great strength of gradient-based optimization: it allows us to
design more efficient devices than our intuition would typically allow. Our success
in achieving this depends strongly on our ability to compute accurate gradients in
an efficient manner. In this example, we have demonstrated that as long as we are
careful to execute each step of the adjoint method correctly, we can successfully
calculate gradients efficiently and with the desired accuracy. This process with
minimal modification serves as an effective foundation for most optimizations of
nanophotonic structures that we have pursued and that we will discuss in later
chapters.
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Chapter 3

Developing an Optimization
Toolchain

Successful application of gradient-based optimization using the adjoint method
hinges on our ability to execute forward and adjoint simulations and compute mate-
rial gradients in a way that is self consistent. Accomplishing this using commercial
or other third party Maxwell solvers for which the internals of the software are not
well understood can be difficult.

In order to test and demonstrate the methods we have developed, a large portion
of our work has been dedicated to building a complete toolchain for electromag-
netic device optimization. The fruit of these efforts is an open source toolbox called
EMopt [35] which provides all of the core components needed to simulate and op-
timize a diverse set of electromagnetic devices as depicted in Figure 3.1. EMopt
provides stand-alone two dimensional and three dimensional Maxwell solvers, 1D
and 2D mode solvers, an easily extensible adjoint method implementation, a bound-
ary smoothing implementation, and a variety of tools like common figure of merit
definitions and tools for aiding in the creation of complex geometries. As evidence
of EMopt’s capabilities, all optimized structures in this work have been generated
using EMopt alone.

Optimizing electromagnetic devices, particularly in three dimensions, is a very
computationally intensive task. In order to maximize performance, EMopt employs
parallelism from the ground up based on the Message Passing Interface (MPI). This
allows EMopt to run on any number of cores, whether it is 16 cores in a single
server or 256 cores distributed across multiple servers connected by infiniband in-
terconnects.

In order to further optimize performance, many of the core components of
EMopt are written in C++. Higher level operations and all interaction with the
toolbox, meanwhile, is performed using the python programming language (EMopt
itself is wrapped as a python module). This allows the user to rapidly setup and
debug optimizations while still benefiting from the raw performance of compiled
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EMopt: Open source toolkit for optimizing electromagnetic devices
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Figure 3.1: Graphical overview of the open source EMopt software toolbox. EMopt provides
all of the simulators, mode solvers, adjoint method implementation, and geometry tools
needed to optimize most complex electromagnetic structures.

languages.
In this chapter, we will present a brief overview of the functionality of each

of the core components of EMopt, and highlight some of the details of our imple-
mentations which are important to the adjoint method. The code (and supporting
documentation) relevant to each section is available in [35].

3.1 Maxwell Solvers

Perhaps the most important and most complex parts of EMopt are its Maxwell
solvers. In order to simulate and optimize electromagnetic devices, it is important
that we have an efficient simulator. To this end, EMopt provides a variety of dif-
ferent options. In two dimensions, EMopt implements a transverse magnetic finite
difference frequency domain (FDFD) solver and a transverse electric FDFD solver.
In three dimensions, EMopt implements a preconditioned iterative FDFD solver as
well as a finite difference time domain (FDTD) solver.

In general, for 3D problems, EMopt’s FDTD solver is faster, more memory effi-
cient, and scales to larger numbers of cores better than its FDFD counterpart. For
the majority of problems, the FDTD solver is preferred. In two dimensions, EMopts
FDFD solvers based on LU factorization are fast and appropriate for most problems.

3.1.1 Finite Difference Frequency Domain Solvers

Perhaps the easiest Maxwell solver to implement is the finite difference frequency
domain (FDFD) method [36–39]. FDFD involves discretizing the time-harmonic
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Maxwell’s equations on a rectangular grid using centered finite differences, assem-
bling the resulting discretized equations in a matrix equation of the form A~x = ~b,
and then solving that system of equations using either a direct solver or precondi-
tioned iterative solver.

In EMopt, a non-dimensionalized form of Maxwell’s equations is used. This al-
lows us to work in any length unit we choose and eliminates fundamental constants.
In particular, the equations we solve are

∇×H + iεrE = J (3.1)
∇× E− iµrH = M (3.2)

which are derived in Appendix B. In these equations, E, H, J, and M are the
electric field, magnetic field, electric current density, and magnetic current den-
sity. The magnetic current density, though not observed in nature, is included to
symmetrize the equations and enables us to inject power unidirectionally. Note
that εr and µr are the unitless complex relative permittivity and permeability at the
desired frequency. In order to define the frequency of the excitation, we specify
the corresponding vacuum wavelength which is then accounted for in the non-
dimensionalization of the equations. All subsequent physical lengths that we work
with have the same units as the defined wavelength1.

The FDFD method solves these equations by discretizing them on a rectangular
grid. Unlike some implementations of the method [37, 39], we do not eliminate
H from the equations, instead choosing to keep both Faraday’s and Ampere’s law
separate2. In order to discretize these equations, it is convenient to first expand the
curls and write six coupled equations:

∂Hz

∂y
− ∂Hy

∂z
+ iεxrEx = Jx

∂Ez
∂y
− ∂Ey

∂z
− iµxrEx = Mx

∂Hx

∂z
− ∂Hz

∂x
+ iεyrEy = Jy

∂Ex
∂z
− ∂Ez

∂x
− iµyrEy = My

∂Hy

∂x
− ∂Hx

∂y
+ iεzrEz = Jz

∂Ey
∂x
− ∂Ex

∂y
− iµzrEz = Mz

(3.3)

Notice that here we have assumed that the permittivity and permeability are actu-
ally diagonally anisotropic. This adds no additional complexity to the equations and

1This means that if we want to excite our simulation with a source whose vacuum wavelength
is 1.55µm and we want to define the structures in our simulation in units of micron, we would set
λ = 1.55. If we then set some length L = 1.0, then L corresponds to a length of 1µm.

2Elimination of the magnetic field appears to be, at least in part, done to mimic the common
variational formulation of Maxwell’s equations used in finite element analysis. In our experience,
not combining the equations actually yields a matrix with lower condition number and a similar
number of non zero matrix elements.
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Figure 3.2: Three dimensional Yee cell configuration used in our finite difference frequency
domain and finite difference time domain solvers.

generalizes them to a small degree. In these equations, the fields are continuous
functions of x, y, and z. Numerically, however, we will express the fields on a set of
six staggered grids. One “grid cell" (also known as a Yee cell) which makes up these
staggered grids is depicted in Figure 3.2. This staggering lends itself to computing
centered finite differences of the fields and also ensures numerical stability.

Based on this choice of grid cell layout, we can discretize the spatial derivatives
in Equation (3.3) using centered finite differences. Assuming the location of each
field component is described by three spatial indices i, j, k corresponding to the z,
y, and x axes, respectively, the new discretized equations are given by
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where ∆x is the grid spacing along the x direction, ∆y is the grid spacing along the
y direction, and ∆z is the grid spacing along the z direction. These equations are
equally valid at every index in our 3D grid, with the exception of grid cells which lie
along the simulation boundaries. Depending on our boundary conditions, certain
field components in the derivative terms will be zero or multiplied by a constant.
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To solve these equations, we first assemble them in a large sparse matrix equa-
tion, 

iεx 0 0 0 −Dz− Dy−

0 iεy 0 Dz− 0 −Dx−

0 0 iεz −Dy− Dx− 0

0 −Dz+ Dy+ −iµx 0 0

Dz+ 0 −Dz+ 0 −iµy 0

−Dy+ Dx+ 0 0 0 −iµz





~Ex

~Ey

~Ez

~Hx

~Hy

~Hz


=



~Jx

~Jy

~Jz

~Mx

~My

~Mz


(3.10)

which has the form A~x = ~b. Here, the blocks matrices Di± correspond to the
derivatives of E and H, and the ± subscript refers to the difference in how the
electric and magnetic fields are indexed in the derivative terms. The vector ~x is
assembled from stacking field vectors, where each field vector contains the the field
component values at every point in the grid. The source vector ~b is defined in a
similar way. Notice that based on our previous discretized Equations (3.4)-(3.9),
our matrix A has only five non zero elements per row.

With the matrix built, we can solve for the unknown field values contained in
~x. To do so, EMopt employs the PETSc library [40] which provides parallelized
direct and iterative solvers for large sparse systems. In 3D, a direct solver based
on LU factorization is impractical due to fill-in (which is on the order of 100 for
these equations). Instead, we employ a preconditioned Krylov subspace method. At
the time of writing this manuscript, we use a multigrid preconditioner [41] which
uses a preconditioned GMRES solver for its smoothers and uses LU decomposition
at the coarsest level. As the preconditioner for the smoothers, we multiply by the
conjugate transpose of our matrix. The largest eigenvalues of the product A∗A
are real valued and tightly clustered, leading to an accelerated convergence of the
iterative Krylov subspace solvers.

Our discussion up until now has focused on the full three dimensional form of
Maxwell’s equations. EMopt also implements 2D FDFD solvers for both transverse
electric and transverse magnetic fields. The process for setting up and solving the
2D equations is nearly identical to the 3D equations. In 2D, EMopt assumes that the
structure is infinitely extruded in the z direction. This means that all ∂/∂z terms in
Equation (3.3) are zero. This leads to two independent sets of coupled equations
given by:
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∂Hz

∂y
+ iεrEx = Jx

∂Ez
∂y
− iµrHx = Mx

−∂Hz

∂x
+ iεrEy = Jy −∂Ez

∂x
− iµrHy = My

∂Ey
∂x
− ∂Ex

∂y
− iµrHz = Mz

∂Hy

∂x
− ∂Hx

∂y
+ iεrEz = Jz

(3.11)

The equations on the left correspond to the transverse magnetic (TM) equations
while the fields on the right correspond to the transverse electric (TE) equations. In
EMopt, these equations are discretized on a grid resembling Figure 2.1, assembled
into a matrix, and solved using the PETSc library.

Unlike in 3D, the 2D matrix exhibits minimal fill-in (. 10) during LU factoriza-
tion. This combined with the fact that the 2D matrices are significantly smaller in
general makes direct solvers based on LU factorization an excellent choice for solv-
ing the system of equations. Specifically, EMopt uses MUMPS [42,43] for its 2D TE
and TM Maxwell solvers.

Using a direct solver based on LU factorization has a significant benefit from
the standpoint of implementing the adjoint method. Running a forward simulation
involves solving A~x = LU~x = ~b, where L and U are the factored lower and upper
triangular matrices. Running an adjoint simulation, meanwhile, involves solving
AT~y = ~c. Notice that AT = (LU)T = UTLT . This tells us that the L and U factors
we computed during the forward simulation can be reused for the adjoint simu-
lation. For the forward and adjoint simulations, the LU factorization is the most
computationally expensive operation; once these factors are known, the fields are
found using inexpensive forward and back substitution. As a result, when solving
our 2D system of equations using LU factorization, the adjoint simulation is effec-
tively for free. This can lead to a nearly two times improvement in speed when
running two dimensional optimizations.

3.1.2 Finite Difference Time Domain Solver

The finite difference frequency domain, while fast and acceptably memory efficient
in 2D, does not scale well in 3D. In our experience, problems which have more than
∼ 1253 grid elements become slow enough that FDFD ceases to be an attractive
method. This makes it largely incompatible with a lot of interesting problems in
nanophotonics where devices can be more than 10µm long and require relatively
fine grid spacing to get accurate results.

To get around this issue, EMopt implements a simple finite difference time do-
main (FDTD) solver which is popular in the electromagnetics community [44, 45].
For even modest sized problems, FDTD is typically faster and less memory than
FDFD. This is a direct result of the fact that in FDFD we not only need to store a copy
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of the fields (~x), we also need to store a matrix which contains five non zero values
per field value3. The gap in memory requirements between FDFD and FDTD is fur-
ther widened when using Krylov subspace methods which require storing additional
basis vectors which have the same length as the field vector ~x. In FDTD, nominally
we only need to store the fields and material distributions, which is equivalent to
storing a two copies of ~x. In terms of computational complexity, FDTD executes a
single “matrix-vector multiplication” per time step. Iterative matrix solvers, on the
other hand, require at least one matrix-vector product and multiple vector-vector
products per iteration (in the case of Krylov subspace methods, many matrix-vector
products may be required). Furthermore, compared to published results on precon-
ditioned FDFD solvers [39], we have found that FDTD requires nearly an order of
magnitude fewer iterations (i.e., time steps) in some examples.

In our implementation of FDTD, the electric and magnetic field are solved on a
uniform rectangular grid4 consisting of the Yee cells shown in Figure 3.2. A key ben-
efit of the FDTD algorithm is that it is easily parallelizable and scales very well on
distributed computing architectures. In our implementation, the 3D grid is broken
up into rectangular “chunks" which are distributed across multiple cores/processors
with the help of MPI and PETSc. This allows the solver to scale from a single ma-
chine to a computing cluster with ease.

A key differentiating factor of our FDTD implementation is that it simulations
are driven by a ramped continuous wave (CW) source. This allows us to operate
the simulator as a frequency-domain solver which solves for the fields at any de-
sired frequency. This ultimately makes our FDTD simulator compatible with the
same frequency-domain adjoint method implementation as the FDFD solvers with-
out modification.

Because we are using a ramped CW source, we do not need to calculate the
frequency response of the fields using a discrete Fourier transform as is typically
done. Instead, we assume a sinusoidal time-dependence of the fields, i.e.,

E(t) = A sin(ωt+ ϕ) + b (3.12)

and solve for the field amplitudes A and phase ϕ at each point in the grid. In
order to find the amplitude and phase, we record the fields in the system at three
distinct time points (ideally separated by an odd multiple of a quarter of period of
the oscillation):

3Technically, we could implement a matrix-free iterative solver. This would eliminate the need to
explicitly store matrix elements, thereby reducing the memory footprint as well as speeding up each
iteration of the solver.

4A uniform grid is necessary in order to ensure that the system of equations is approximately
symmetric, which is important when using the FDTD solver to compute gradients with the adjoint
method.
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E(t1) = A sin(ωt1 + ϕ) + b (3.13)
E(t2) = A sin(ωt2 + ϕ) + b (3.14)
E(t3) = A sin(ωt3 + ϕ) + b (3.15)

These field samples and the assumed sinusoidal time dependence form a system of
three equations with three unknowns. Solving for the unknowns of this system is
relatively straightforward. First, the phase of the field is given by

tanϕ =
E21 [sinωt3 − sinωt2]− E32 [sinωt2 − ω sinωt1]

E32 [cosωt2 − cosωt1]− E21 [cosωt3 − cosωt2]
(3.16)

where E21 = E(t2) − E(t1) and E32 = E(t3) − E(t2). Once the phase is known, we
can find the amplitude of the field, which is given by

A =
E32

cos(ϕ) [sinωt2 − sinωt1] + sin(ϕ) [cosωt2 − cosωt1]
(3.17)

Given this amplitude and phase, the complex field at each point in the simulation
domain is given by

Ẽmnp = Amnpe
iϕmnp (3.18)

where m, n, and p are the spatial indices of the grid. This method of calculating the
frequency domain fields has the benefit that it does not impact the runtime of the
simulator significantly since no additional computation has to be performed during
the time stepping process. Furthermore, this process is easily extended to multiple
wavelength sources, as is described in appendix C.

3.1.3 Mode Solvers

In addition to Maxwell solvers, EMopt implements both 1D and 2D waveguide mode
solvers. Waveguide modes are useful both as simulation source and as reference
fields in figures of merits used in optimizations.

The process EMopt follows to solve for waveguide modes is as follows. First, the
waveguide mode is assumed to propagate in the +z direction and have the spatial
dependence:

E(x, y, z) = Em(x, y)eikzz (3.19)

H(x, y, z) = Hm(x, y)eikzz (3.20)
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where Em(x, y) and Hm(x, y) are the transverse mode profiles and kz is the effective
wavenumber. Next, we plug this result into Equation (3.3) while simultaneously
setting the current sources to zero and dropping the m subscript for convenience.
This yields a new eigenvalue problem given by

∂Hz

∂y
+ iεxrEx = ikzHy

∂Ez
∂y
− iµxrEx = ikzEy

−∂Hz

∂x
+ iεyrEy = −ikzHx −∂Ez

∂x
− iµyrEy = −ikzEx

∂Hy

∂x
− ∂Hx

∂y
+ iεzrEz = 0

∂Ey
∂x
− ∂Ex

∂y
− iµzrEz = 0

(3.21)

Just as with the FDFD method, we can discretize these equations on a staggered
grid and assemble the resulting equations into a matrix. The resulting matrix equa-
tions takes the form A~x = kzB~x which is a generalized eigenvalue problem. Here,
the matrix B is diagonal and filled with either i, −i, or 0 (in the diagonal blocks
corresponding to Ez and Hz). In order to solve this sparse generalized eigenvalue
problem with parallelism, EMopt uses the SLEPc library [46] and MUMPS.

EMopt also implements 1D TE and TM mode solvers for 2D waveguiding sys-
tems. These mode solvers are implemented in an analogous way to the 2D mode
solver.

3.2 General Adjoint Method Implementation

EMopt’s primary goal is to provide us with a way to efficiently calculate accurate
sensitivities of electromagnetic structures (i.e. gradients of a figure of merit with
respect to some set of design parameters which define the device’s shape). In or-
der to calculate these sensitivities, EMopt implements a general form of the adjoint
method which can be applied to almost any shape optimization problem in electro-
magnetics.

The process EMopt follows is depicted in Figure 3.3. After the structure has been
defined and the simulation setup, a forward simulation is run using one of EMopt’s
solvers. Next, EMopt calculates the user-defined figure of merit. The derivative of
that figure of merit with respect to the fields is then computed based on the user-
defined derivative. This derivative serves as the source current density distribution
for an adjoint simulation which is performed using one of EMopt’s aforementioned
solvers.

With the forward and adjoint fields computed, EMopt moves on to calculating
the material gradients, which are approximated using finite differences. One at
a time, the design variables of the system are perturbed. For each perturbation,
the permittivity and permeability distributions are updated based on a user-defined
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Figure 3.3: Flowchart showing a general adjoint method implementation for shape op-
timization. By approximating the material gradient using finite differences, the gradient
of the figure of merit is easily computed for arbitrary parameterizations. The bold red
outlined boxes denote steps in the process that leverage parallel computing for improved
performance.

mapping (i.e., the user defines how the geometry of the system should change
when the design variables change). Based on the updated material distributions
and the original unperturbed material distributions which were computed prior
to running the forward simulation, the material gradients are computed. These
material gradients are then used to calculate the derivative of the figure of merit
with respect to the i’th design variable using Equation (2.15).

By computing the material derivatives using finite differences, it is straightfor-
ward to calculate gradients with respect to arbitrary parameterizations5. Further-
more, because the unperturbed material distributions must be calculated in order
to simulate the structure, computing derivatives using finite differences incurs no
additional cost compared to an analytic approach. In order to further speed up
this calculation, for each perturbed parameter, only a small part of the full material
distribution is updated. This is possible because in most parameterizations, each
design parameter has a localized effect on the distribution of permittivity in the
system.

Throughout this flexible implementation of the adjoint method, EMopt employs
parallelism in order speed up the calculations. In particular, the red boxes in Figure
3.3 indicate parts of the process which are parallelized. Not only are the Maxwell

5 This is compared to an analytic implementation which would require that the user provide
analytic derivatives of the underlying shape properties with respect to the parameterization. When
working with polygons as we primarily do in this work, this means calculating the derivatives of the
x and y coordinates of the polygon vertices with respect to the design parameters. In many cases,
this is a tedious process which can be accomplished much more easily using a finite difference
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solvers parallelized, but so are the material derivative and gradient calculations.

3.3 Grid Smoothing Implementation

The primary focus of EMopt at this time is shape optimization. EMopt must there-
fore ensure that gradients computed with respect to changes in shape boundaries
are accurate. To accomplish this, EMopt implements the boundary smoothing meth-
ods discussed in Section 2.2 based on high numerical precision polygons.

The specific approach that EMopt implements in two dimensions6 is depicted in
Figure 3.4 and detailed in Algorithm 1. First, the finite difference grid is divided up
into grid cells Gij which are centered at the field components and have width ∆x
and height ∆y (equal to the grid spacing along x and y). Next, the geometry of the
system is defined using a set of polygons S which are filled with different material
values and ordered according to a layer number which defines which shapes appear
on top of others. For each grid cell Gij, the intersection between the grid cell and
the top-most overlapping polygon is computed. The permittivity of the current grid
cell is then updated based on the overlapping area and the total area of the grid
cell. This process is then repeated, replacing the grid cell Gij with the difference
between the grid cell and the overlapping polygon. The calculation of the effective
permittivity of each grid cell is complete when the area of the remaining portion
of the grid cell is zero or if no overlapping polygons remain. The end result of this
process resembles the examples presented in Section 2.2.

The performance of this method depends on a number of factors. Because the
primary operation in computing smoothed boundaries is the polygon intersection
and difference operations, the specific implementations of these operations has a
strong impact on the overall speed of the algorithm. Fortunately, a number of high
quality computational geometry libraries (notably CGAL and Boost.Geometry) exist
which provide high performance implementations of the required geometric opera-
tions. Furthermore, because the calculation of the effective permittivity in each grid
cell is independent of the other grid cells, the algorithm is easily parallelized, lead-
ing to a near linear improvement in performance when run on multiple processors.

6In 3D, EMopt defines the geometry as slabs which are stacked in the z direction. In each slab,
the 2D grid smoothing process is applied.
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Figure 3.4: Graphical explanation of the grid smoothing algorithm based on high precision
polygons. All shapes and geometry is represented using layered polygons. The intersection
between a grid cell and the top-level shape is computed and then subtracted from the grid
cell polygon. This process is repeated for each overlapping shape in the system until the
grid cell polygon is entirely subtracted or no more shapes exist. The areas of the overlap
polygons computed in each step serve as the weights in the calculation of the average
permittivity.

Algorithm 1: Polygon-based boundary smoothing
Data: S ← Ordered set of polygons,

G← Set of grid cells which define FDFD/FDTD grid
Result: ε← Permittivities associated with the set of grid cellsG
ε0 ← 1;
for each individual grid cell Gij in G and εij in ε do

Aij ← Area of Gij;
εij ← 0;
P ← Gij;
for each polygon Sk in S do

ei ← Permittivity inside polygonSk;
ak ← Area of intersection Sk ∩ P ;
εij ← εij + akei/Aij;
P ← P − S1;
if Area of P = 0 then

break;
end if

end for
εij ← Pε0/Aij;

end for
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Chapter 4

Hierarchical Design and
Optimization Approach

Shape and topology optimization methods, although demonstrated to be very pow-
erful tools, often suffer a glaring flaw: they are inherently local optimization tech-
niques. Consequently, it is difficult to make any guarantee that a design “discov-
ered” by the optimization method will end up meeting a desired specification. This
behavior becomes particularly evident when designing high performance devices
whose insertion losses drop below 0.1 dB. In such cases, it becomes increasingly
important that we choose a starting point for the optimization which will lead to a
final design with the desired high performance.

In spite of its importance, work on shape and topology optimization in nanopho-
tonics has largely overlooked this process. In many works [10,15,16,47–50] start-
ing structures with seemingly (or even intentionally) arbitrary size and shape are
chosen. These choices, while successful in seeding optimizations which yield dras-
tic improvements in the figure of merit, often fail in producing final devices which
significantly out perform their hand-designed counterparts (if at all).

In this chapter, we will introduce a hierarchical design methodology which
largely eliminates guesswork from the process of designing and optimizing photonic
devices. In our approach, which is depicted in Figure 4.1, we first specify an initial
device topology based on a simple physical analysis of the problem. Next, using this
starting structure we run a coarse optimization with only small set of design param-
eters which allows us to rapidly improve the general shape of the device. Finally,
with the coarse optimization result as a starting point, we run a final refinement op-
timization with a large number of degrees of freedoms and constraints. Following
this systematic approach to inverse design, one can design photonic components
whose performance often far exceeds anything we could design by hand.
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Figure 4.1: Graphical overview of our hierarchical approach to design and optimization
of electromagnetic structures. Our systematic approach involves defining the problem we
are solving, developing a device topology based on physical intuition, coarsely optimizing
this starting topology to improve its performance, and then refining the coarsely optimized
structure with a second optimization that incorporates constraints. The end result is a
device with high performance that can be fabricated.

4.1 Physics-Defined Topology

The starting structure that we use to initialize an optimization is important for a
variety of reasons. In addition to influencing which local optimum we fall into, it
can place important constraints on the quality of the available local minima and
even restrict the quality of the global optimum. The reason for this lies in the fact
that we typically choose and fix the inputs and output of our device at the beginning
of the design process. If we choose a starting structure with a certain size, then the
final optimized structure will fit roughly within the same footprint. As a result,
choosing a starting structure that is too small or too large to achieve the desired
functionality can lead to a final result that is worse than we might desire.

The impact of the starting structure on the final optimized device is made par-
ticularly apparent in the work by Su et al. [50]. Using randomized initial struc-
tures as a starting point, the authors optimize hundreds of grating couplers. Of
the optimized results, only a very small number of devices achieve a high coupling
efficiency; the rest of the optimized structures exhibit lower performance which in-
dicates that the corresponding optimizations fell into lower quality local optima.
This observed sensitivity to initial conditions may give the impression that the task
of optimizing a device is imprecise and riddle with guesswork. Fortunately, we have
recourse: our strong physical intuition and understanding of Maxwell’s equations.
By leveraging what knowledge we have of wave mechanics, in many (if not all)
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cases, we can devise physically-motivated starting structures which lead to efficient
optimized devices. In some sense, this is not unlike choosing a circuit topology
when designing electrical circuits: when designing a circuit, we choose a topology
that we know will accomplish our goal and then we fine tune our circuit by selecting
appropriate values for its constituent components.

We refer to this physically-motivated starting structure as the physics-defined
topology. For many components in silicon photonics, a usable topology can be de-
vised relatively easily by applying numerous techniques such as modal analysis.

+

k0 k2

110 nm

SiO2

+

input
output 

220 nmSilicon

1 μm

Figure 4.2: (left) Diagram of the physical principles which govern a multimode interference-
based 3 dB coupler. (right) Plot of a slice of the simulated electric field of a 3 dB coupler
based on the topology depicted on the left. The simulation of this structure whose cross
section is depicted in the bottom left is performed for a free space wavelength of 1310 nm.

As an example, let us consider the canonical problem of designing a three port
3 dB coupler. The goal of a 3 dB coupler is to split power from an input waveguide
equally between two output waveguides. One way of achieving this functionality
is to take advantage of modal dispersion in a multimode waveguide [51] which
is depicted on the left hand side of Figure 4.2. A narrower waveguide connected
to a wider multimode waveguide will excite the symmetric modes of that wider
waveguide. If the multimode waveguide is not too wide, the majority of the power
will reside in the first two even modes of the waveguide. These two modes, with
wavenumbers k0 and k2 respectively, co-propagate and their relative phase differ-
ence,

∆ϕ = (k0 − k2)∆z (4.1)

increases with distance ∆z. Notice that if these two modes propagate over a suffi-
cient distance, the relative phase difference of the two modes will become π, leading
to a cancellation of the field in the middle of the multimode waveguide and a con-
centration of the field at the outer edges of the waveguide. This effect occurs over
a distance
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∆ϕ = π ⇒ ∆z =
π

k0 − k2

⇒ ∆z =
λ

2 (n0 − n2)
(4.2)

where λ is the free-space wavelength and n0 and n2 are the effective indices of the
two modes. With the field evenly split and concentrated near the outer edges of the
waveguide, we can terminate the multimode waveguide and place two narrower
output waveguides to capture the divided optical power as depicted in Figure 4.2.

This simple approach translates into a relatively well performing initial struc-
ture. To demonstrate this, we simulate an O-band (center wavelength of 1310 nm)
3 dB coupler. The 3 dB coupler is defined in a 220 nm thick top silicon layer with
a 110 nm deep partial etch as depicted in the bottom left of Figure 4.2. Based on
our previously devised topology, the coupler consists of a wide rectangular sec-
tion which is fed by a narrower input waveguide and connected to two narrower
output waveguides. The structure is symmetric to ensure even coupling to the
output waveguides. The width of the multimode coupling region is chosen to be
1.75µm wide (somewhat arbitrarily to be large enough to span the two 500 nm out-
put waveguides which are separated by 500 nm). The effective indices for the first
two even modes of this waveguide are 2.965 and 2.800, respectively. Based on
these effective indices, the desired coupler length is ∼3.94µm.

The field simulated for this structure is shown on the right side of Figure 4.2.
Despite the simplicity of this approach, the chosen topology yields device with a
reasonably high coupling efficiency of 93.3 % (−0.301 dB). This gives us some con-
fidence that the overall size of the device and the chosen positions of the inputs and
outputs are sufficient for obtaining a high efficiency device.

This example demonstrates the general thought process one can follow to de-
velop a topology for many silicon photonic components. In fact, the same logic and
calculation can be applied to many other devices like waveguide crossings, 4 port
3 dB couplers, polarization splitters, etc which we will explore in the next chapter.
Other devices, however, may require a different approach to discovering an effec-
tive topology; one such example is grating couplers which we also demonstrate in
the next chapter. While developing the topology for an electromagnetic device may
not always be as simple as this 3 dB coupler, we should nonetheless be able to ap-
ply our intuition of electromagnetics to come up with something which is superior
to random guesses. To this end, the large amount of literature on electromagnetic
device design is tremendously useful.
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4.2 Coarse Optimization

One of the primary goals of defining a physically-inspired device topology is to en-
sure that the inputs and outputs of the system are situated such that high efficiency
designs exist within the design space. In many cases, the analysis we follow to
develop this topology neglects many of the finer details of these inputs and out-
puts. For example, in our 3 dB coupler example, the input and output waveguide
widths were chosen to be 500 nm to match a fairly standard waveguide width. Fur-
thermore, the separation of the output waveguides was chosen to approximately
match the intensity distribution formed by the beating modes within the larger
multimode waveguide section of the device. In reality, these abrupt transitions
from input waveguide to multimode waveguide to output waveguides are unlikely
to be optimal. We thus find ourselves with an opportunity to apply the optimization
techniques we developed in earlier chapters.

While we may be tempted to throw the full power of inverse design with many
degrees of freedom at the problem, it is important that we proceed in a strate-
gic manner. There are a few reasons for this. Typically when we run shape (or
topology) optimizations with large numbers of degrees of freedom, we impose con-
straints to prevent features from developing which we are unable to fabricate. The
combination of large numbers of degrees of freedom and constraints significantly
increases the complexity of the design problem leading to a larger number of local
optima and a slower evolution towards the final optimized structure. This in turn
makes it more difficult to make large modifications to the structure like displacing
a boundary of the structure over ∼micron scale distances.

In order to mitigate these issues, it is instead desirable to run an initial coarse
optimization without constraints and a smaller number of design variables (∼10).
By running an optimization on a coarsely parameterized structure, we are able to
rapidly improve the the general shape (and in particular the positions and sizes of
the inputs and outputs) of the device. Convergence is typically significantly faster
for simpler design spaces, and thus the coarse optimization provides us with the
means to quickly verify the quality of our topology and also evaluate the likelihood
that the design process will lead to an efficient device. Furthermore, the result of
the coarse optimization serves as an excellent starting point for a final optimization
which includes more degrees of freedom and fabrication constraints.

In order to demonstrate the coarse optimization, let us continue with our ex-
ample of designing a 3 dB coupler. In this example, we choose the coarse parame-
terization to be the coordinates of the points which define the splitter as depicted
by the green dots in Figure 4.3. In total there are seven points and hence four-
teen design parameters. This choice of parameterization allows the optimization
to manipulate the input and output waveguides and also to modify the size of the
multimode waveguide section.

The figure of merit used for this optimization is the coupling efficiency into the
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1 μm

Figure 4.3: (left) Plots of the magnitude of the electric field of the initial structure and the
final optimized structure are overlaid with the boundaries of the corresponding structures.
The green vertices correspond to the designable points of the optimization. (right) The plot
of the figure of merit as a function of iteration of the optimization. The figure of merit in
the coarse optimization is simply the coupling efficiency to the desired output mode.

fundamental supermode of the two output waveguides (given by Equation (A.25))
which corresponds to equal splitting of optical power. All simulations are performed
for a wavelength of 1310 nm with O-band operation in mind. The grid used has a
step size of 30 nm which provides a good trade-off between simulation speed and
moderate simulation accuracy. The optimization is terminated after 40 iterations at
which point the figure of merit does not change appreciably.

In this optimization, we use the L-BFGS-B minimization algorithm which we
have found to produce the most rapid convergence. The progression of the figure
of merit during the coarse optimization is shown on the right side of Figure 4.3.
Beginning with a value of 0.30 dB, the insertion loss is quickly improved during
optimization, reaching a very low value of only 0.020 dB by the end of the optimiza-
tion. This whole process took just over 30 minutes on a small cluster consisting of
16 Intel Xeon E5-2670 CPUs1 (totaling 128 cores).

4.3 Refinement Optimization

Although the coarse optimization is successful in producing a structure with high
coupling efficiency, the structure itself is not entirely practical as it contains sharp

1At the time of authoring this manuscript, these processors were 7 years old. Newer processors
with increased clock speed, cache, and bus speed will likely significantly outperform these numbers.
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corners that are difficult to fabricate. Simply rounding off these sharp corners will
inevitably result in a sub-optimal design. In order to circumvent this issue, we can
run a second refinement optimization which includes more degrees of freedom and
fabrication constraints. By adding more degrees of freedom, we are able to smooth
out the corners in the structure. This smoothness is enforced by fabrication con-
straints which prevent features which are too small or too sharp from forming. The
addition of these degrees of freedom has the added benefit that it affords us more
flexibility in the shape of the device, allowing us to further improve its performance.

The goal of the refinement optimization is to produce a structure which can be
fabricated and which meets a desired level of performance. Typically, this means
that in addition to boosting the number of designable degrees of freedom in the
device, we also impose a range of constraints. For waveguiding devices, the most
common constraint is a radius of curvature constraint which limits the formation
of small features. Depending on the device, a minimum gap size or minimum line
width constraint may also be imposed. Choosing such constraints is an extremely
important part of the refinement optimization and can have a strong impact on the
final performance of the optimized device, the manufacturability of the device, and
the time it takes to run the optimization.

To demonstrate this, let us continuing with our 3 dB coupler example. For the
refinement optimization, we choose the figure of merit to be the coupling efficiency
into the fundamental supermode of the two output waveguides plus two additional
penalty functions which impose a radius of curvature constraint and a minimum
gap size constraint for the output waveguides. This figure of merit is given by

F (E,H, ~p) = η(E,H)− Proc(~p)− Pgap(~p) (4.3)

where E and H are the electric and magnetic fields and ~p is the set of design param-
eters. The individual functions η, Proc, and Pgap are discussed in detail in Appendix
A. In this example, we choose a minimum radius of curvature of 120 nm and a min-
imum gap size of 200 nm to make the device compatible with readily available deep
UV lithography. By imposing the radius of curvature and gap constraints using a
penalty function, the constraints become part of the optimization. This ensures that
the structure we end up with is optimal given these constraints.

It is important to note that if we used the structure generated by the coarse op-
timization without modification, the sharp corners would significantly violate the
radius of curvature constraint. This would cause the corresponding penalty func-
tion to dominate the figure of merit. As a result, the refinement optimization would
attempt to reduce the impact of the penalty function by rounding out the structure,
a process which can lead to very slow convergence and is susceptible to falling into
undesirable local optima. To avoid this, we can manually round off the corners of
the coarse optimized structure (using a fillet operation) and then use this modi-
fied structure as the starting point for the refinement optimization. By doing so,
we ensure that the radius of curvature (and gap) constraint is initially satisfied. In
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Figure 4.4: Plots of the initial rounded structure and final optimized structure for the refine-
ment phase of the design process. The inset in the top right shows a section of the polygon
which defines the boundary of the structure. In all three plots, the electric field amplitude
is overlaid with an outline of the device boundaries.

this case, the penalty function acts as a barrier preventing the optimization from
entering regions of the design space which cannot be fabricated. Although this pro-
cess may lead to an initial drop in device performance, the subsequent refinement
optimization can make up for the lost performance.

The rounded 3 dB coupler used as the starting point for the refinement opti-
mization is depicted in the top left of Figure 4.4. In order to represent boundaries
with rounded features, we increase the number of points in the polygon which de-
fines the coupler geometry as shown in the inset in Figure 4.4. These additional
points serve as the (significantly augmented) design space for the refinement op-
timization and enable the coupler to take on a more sophisticated shape than was
possible with the coarse optimization. This is reflected in the optimized structure
depicted in the bottom of Figure 4.4. This optimization is allowed to run for a
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Figure 4.5: (left) The figure of merit is plotted after each iteration showing its improvement
during the refinement optimization. (right) Plots of the O-band coupling efficiency and
reflection for the final optimized device.

total 100 iterations which yields a satisfactory improvement in performance in a
modest amount of time (a little under 9 hours when run on 128 cores of our Intel
Xeon-based cluster). Over the course of the the refinement optimization, the figure
of merit improves from −0.065 dB to under −0.02 dB as shown in the left plot of
Figure 4.5. Although a few hundredths of a dB improvement may seem small, three
of the final optimized devices could be cascaded together and still maintain lower
loss than the starting structure.

Not only is the transmission at the design wavelength high, the coupling effi-
ciency is maintained over a broad range of wavelengths as shown in Figure 4.5.
The optimized coupler achieves an insertion loss lower than 0.04 dB over the en-
tire O-band (1260 nm to 1360 nm). This performance exceeds other published re-
sults for both hand designed and numerically optimized three port 3 dB couplers
[10, 52–57]. Furthermore, the back reflection into the input waveguide is lower
than −40 dB over the full wavelength as shown in 4.5. Although not included ex-
plicitly in the figure of merit, any reflected power detracts from the fraction of
power leaving in the desired output mode. As a result, the optimization will natu-
rally try to eliminate reflections.

It is interesting to note that in addition to larger modifications to the gen-
eral shape of the device (which is particularly visible at the joining of the input
waveguide to the multimode section), the refinement optimization introduced some
smaller amplitude ripples in the structure. These ripples are direct consequence of
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the wave nature of the device. From the formulation of the adjoint method, we
know that the gradient of the figure of merit depends explicitly on a product in-
volving two sets of (approximately) electromagnetic fields. In the presence of re-
flections, the amplitude of these fields will oscillate with a spatial frequency which
is approximately equal to the wavelength of light in the material which makes up
the device. In the case of this silicon 3 dB coupler, these amplitude variations have
an expected periodicity of ∼350 nm. This very closely matches the periodicity of
the ripples we see in the optimized structure. While we might be concerned that
these ripples could increase the sensitivity of the structure to any variations which
occur during fabrication, it is important to note that these ripples still satisfy the
fabrication constraints that we impose. Furthermore, the amplitude of these ripples
are very small (on the order of 30 nm or smaller) and we have observed that they
tend to form later in the optimization when changes to the figure of merit are very
small. As such, we do not expect the ripples to significantly increase the sensitivity
of the optimized structure to fabrication variations. To a certain degree, this idea is
reinforced by the coupler’s very broadband performance.

The final structure produced by the refinement optimization not only achieves
high efficiency, but it does so while satisfying the radius of curvature constraint and
gap size constraint that we imposed on the structure. As a result, we expect the sim-
ulated device to translate well to experiment with minimal additional loss. Notice
that even if we modified our constraints (for example, if we improved our fabrica-
tion process and could hit smaller feature sizes), we only need to rerun our refine-
ment optimization. To a certain degree, the device topology and coarse structure
is independent of the particular constraints we impose. This presents an additional
advantage of our hierarchical approach to nanophotonic design in that it allows us
to more easily design component libraries which are compatible with a wider range
of lithography requirements.
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4.4 Putting it all together: Hierarchical Design and
Optimization

The superior performance of the optimized three port 3 dB coupler is a direct con-
sequence of our systematic approach to the design process. First, by establishing a
physically-motivated starting structure, we ensured that the device was sufficiently
large and the inputs and outputs of the system are appropriately placed such that
a high coupling efficiency exists within the design space. Next, by running an op-
timization with a coarse parameterization and without constraints, we are able to
rapidly improve the device performance by changing its general shape. Because the
set of design parameters is smaller, the corresponding design space is less complex
and as a result we find falling into undesirable local optima less likely. Finally, using
the result of the coarse optimization as a starting point, we run a third refinement
optimization in which we impose various constraints (e.g. fabrication constraints).
During this final optimization, we leverage a larger set of design variables in order
to allow the structure to take on a more sophisticated shape. We refer to this whole
process as hierarchical design and optimization.
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Chapter 5

Application to Silicon Photonics
In recent years, there has been a trend towards designing relatively large-scale sil-
icon photonic systems. For example, integrated beam steering for LiDAR [58–60],
optical switches [61–64], and optical computing platforms [65–67] require thou-
sands of silicon photonic components. When cascading large numbers of compo-
nents together as is common in these applications, the efficiency of each individual
component becomes increasingly important. Typical silicon photonic components
are often too lossy or, in the case of devices which rely on adiabatic transitions,
are too large for the given application. This situation is further exacerbated when
the platform demands a larger operational bandwidth or a greater insensitivity to
fabrication variations.

The hierarchical approach to photonic design that we introduced in Chapter 4
presents a promising strategy for designing silicon photonic components which de-
mand such a high level of performance. In this chapter, we will apply these methods
to a variety of devices which form the backbone for many silicon photonic systems.
In particular, we will apply our methods in order to optimize broadband four port
3 dB couplers, fabrication tolerant waveguide crossings, and efficient grating cou-
plers. In each case, we will develop a physically-inspired topology for the device,
parameterize it, and run coarse and refinement optimizations. The end results of
these optimizations are high performance components which can be fabricated with
deep UV lithography.

In the majority of these examples, we employ the silicon photonic platform de-
picted in Figure 4.2 which consists of a 220 nm top silicon layer and is patterned
with a 110 nm shallow etch and a 220 nm deep etch. The devices are clad top and
bottom with silicon dioxide. This partially-etched platform has a few advantages.
First, it is compatible with lower-loss ridge waveguides. Next, the thicknesses are
commonly employed in the nanophotonics community. Finally, the lower index con-
trast of this partially-etch platform makes for a harder optimization problem, which
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highlights the power of our tools and methodology1.

5.1 Four Port 3 dB Coupler

A key component in many integrated photonic systems is the four port 3 dB coupler
(or 2×2 splitter). This four port splitter takes light from either of its two input
waveguides and splits the optical power evenly between its two ouput waveguides.
Because the device has an inherent asymmetric operation, it is more difficult to
design compared to the three port optical splitter that we used as a guiding example
in chapter 4.

Just as with its three port counterpart, multimode interference effects provide us
with a good topology for the four port 3 dB coupler. Specifically, our device topology
consists of a larger multimode waveguide with two symmetrically situated narrower
waveguides connected at its input and two symmetrically situated waveguides con-
nected at its output. Light incident on the multimode waveguide from one of the
two input waveguides will excite higher order modes which copropagate; based on
the relative phases of these higher order modes, the field can be effectively split
between two output waveguides [51].

For the purpose of choosing the approximate dimensions of our initial design, it
is convenient to consider the first three modes of the multimode waveguide section
of the device (so long as the device is not too wide, the majority of the input power
will reside in these first three modes). Assuming the device lies along the z-axis,
the electric field inside the multimode waveguide is given approximately by

E(x, y, z) = E0(x, y)e−ik0z + E1(x, y)e−ik1z + E2(x, y)e−ik2z + . . .

= e−ik0z
[
E0(x, y) + E1(x, y)ei(k0−k1)z + E2(x, y)ei(k0−k2)z + . . .

]
(5.1)

where E0(x, y), E1(x, y), and E2(x, y) are the lateral field profiles of the first three
modes depicted in Figure 5.1 and k0, k1, and k2 are their effective wavenumbers.
It is important to note that the fundamental and second order modes have even
symmetry while the first order mode has odd symmetry. If we add the fundamental
mode and second order mode with the correct phase, we produce a symmetric field
with two positive lobes. If we add this resulting field to the first order (odd) mode
of the multimode waveguide, we can concentrate the optical power in the top half
of the multimode waveguide. This field combination roughly corresponds to the
input of the multimode waveguide which is excited by one of the input waveguides
as depicted in the left half of Figure 5.1.

1This is in contrast to some past work on optimizing nanophotonics has focused on designing
devices made from fully-etched silicon with air cladding [12, 47] which maximizes the refractive
index contrast.
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Figure 5.1: Graphical explanation of the basic operating principle of the four port 3 dB
coupler. Light from either of the two input waveguides primarily excites the first three
modes of a multimode waveguide. These modes copropagate and their relative phases
change. After traveling a certain distance, the relative phases of these modes change such
that the field distribution in the waveguide splits evenly towards the outer edges of the
multimode waveguide. Truncating the multimode waveguide at this length and connecting
it to two output waveguides results in splitting of the input light between the two output
waveguides.

As the three modes copropagate, the relative phases between the modes will
evolve. Based on Equation 5.1, the relative phase between the fundamental and
second order mode is ϕ20 = (k0 − k2) z and the phase between the fundamental and
first order mode is ϕ10 = (k0 − k1) z. Notice that if we were to add the even sym-
metry field profile generated by adding the fundamental and second order mode to
the odd-symmetry first order mode with a π/2 phase difference, the resulting dis-
tribution of power inside the multimode waveguide will split evenly away from its
center. This condition occurs when the waveguide has a length such that ϕ20 = 2πp
and ϕ10 = (2q + 1)π/2 where p and q are integers. These relative phase shifts corre-
spond to waveguide lengths of

2πp = (k0 − k2)L2π ⇒ L2π =
2πp

k0 − k2

⇒ L2π =
pλ

n0 − n2

(5.2)

and

(2q + 1)
π

2
= (k0 − k1)Lπ/2 ⇒ Lπ/2 =

(2q + 1)π
2

k0 − k1

⇒ Lπ/2 =
(2q + 1)λ

4(n0 − n1)
(5.3)

where n0, n1, and n2 are the effective indices of the three modes and λ is the
free-space wavelength. Ideally, we would like to find values for p and q such that
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Figure 5.2: Coarse parameterization of the four port 3 dB coupler. In total, the splitter
structure is defined using six design parameters during the coarse optimization. These
paramters control the input and output waveguide parameters as well as the width and
length of the multimode waveguide section.

L2π = Lπ/2. Because the effective indices are typically irrational numbers, however,
this condition is not strictly possible to satisfy. Fortunately, we can choose p and q
such that L2π ≈ Lπ/2. The result approximate length is the length of the multimode
waveguide which makes up our four port splitter. At the output of the multimode
waveguide, we place two symmetrically situated single mode waveguides. The
evenly split fields within the multimode waveguide couple into these two output
waveguides.

Our ultimate goal is to design a four port splitter which maintains high coupling
efficiency and even splitting over the whole O-band. As such, we choose initial
dimensions which are suited to operation at 1310 nm. For the purpose of this op-
timization, the splitter is defined in a 220 nm thick silicon with a 110 nm etch. The
input and output waveguides are chosen to be 500 nm wide and are separated by
500 nm. The multimode waveguide section of the device is chosen to be 1.75µm
which yields a device with a modest footprint which can be accurately simulated in
a reasonable amount of time. Based on these parameters and the expressions given
in Equations (5.2) and (5.3), we find that L2π ≈ Lπ/2 ≈15.8µm.

The starting structure produced by this simple analysis and its simulated electric
field is plotted in the top of Figure 5.5. Although the fields are fairly effectively cou-
pled into the output waveguides, there is visible imbalance in the fraction of power
exiting in the top and bottom waveguides. This is likely a result of a few different
factors. First, our analysis considered only the first three modes of the multimode
waveguide section. In reality, higher order modes exist and will contribute to the
fields in the device in a way that we did not account for. Furthermore, our analy-
sis largely neglected the exact size and position of the inputs and outputs, both of
which have a large impact on the overall performance on the device. Despite these
non-idealities which hinder the performance of the starting structure, we nonethe-
less can be reasonably confident that the device is of an appropriate size and shape
that will enable efficient 3 dB splitting.

In order to improve this initial design, adherent to our hierarchical approach,
we run a coarse optimization of the structure. In this coarse optimization, we de-
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Figure 5.3: Plots of magnitude and phase of the reference Ey used in the calculation of the
figure of merit for the four port 3 dB coupler.

coarse 
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spread of coupling efficiency
for 1285 nm - 1335 nm

Figure 5.4: Plot of the figure of merit vs iteration for the four port 3 dB coupler. The
first 35 iterations plotted correspond to a coarse optimization of the structure while the
latter 100 iterations correspond to a multiwavelength refinement optimization. The red
shaded region represents the range of coupling efficiencies computed over the 1285 nm
to 1335 nm wavelength range. As desired, the optimization both improves the average
coupling efficiency over this band, but also narrows the range of efficiencies, indicating that
the device has been made more broadband.

fine the structure using the six degrees of freedom shown in Figure 5.2. In order
to ensure that the device works for both input ports identically, we force it to be
symmetric about the xz plane. The figure of merit for this optimization is the cou-
pling efficiency into the desired output field at 1310 nm which consists of the sum of
the first two super modes of the two-output-waveguide system with a relative π/2
phase shift applied between the modes (depicted in Figure 5.3). This coupling effi-
ciency is approximated2 using the mode match expression given by Equation (A.25)
derived in Appendix A. Finally, all simulations during the coarse optimization make

2It is important to note that the mode match expression derived in chapter A is not an exact
measure of coupling efficiency when the reference fields consist of more than a single mode (i.e.,
one with multiple wave vectors). Nonetheless, the mode match is still a good approximation of the
overlap of the simulated and desired fields.
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use of a 40 nm grid spacing which speeds up the process significantly at the expense
of a minor reduction in simulation accuracy. As with our three port splitter, the
structure is optimized using the L-BFGS-B minimization algorithm.

The coarse optimization is allowed to run until the figure of merit has converged
(defined in this case as when the figure of merit changes by less than 1×10−5) which
takes 35 iterations. The evolution of the figure of merit during the coarse is plot-
ted in Figure 5.4. Due to the relatively small number of parameters, the coupling
efficiency of the structure increases rapidly from it’s initial value of −1.75 dB to
nearly −0.25 dB in only two iterations. During the remainder of the optimization,
the device is fine tuned until it achieves final coupling efficiency of only −0.176 dB.

The result of this optimized structure is shown in the middle of Figure 5.5.
Visually, it is evident that the majority of the optical power leaves the device in the
output waveguides and the field is evenly split between the two output waveguides.

Initial Structure

Coarse Optimization (iteration 35)

Refinement Optimization (iteration 135)

2 μm

Figure 5.5: Plot of the electric fields of the initial, coarse optimized, and refinement opti-
mized four port 3 dB coupler. The outline of the optimized structure is overlaid on top of
the field plots, showing the evolution of the device as a result of the optimization process.

With the coarse optimization complete, we next move on to the refinement op-
timization. This refinement optimization has two goals. First, it should produce
an optimal structure that does not contain any sharp corners or small features that
cannot be resolved using deep UV lithography. Second, it should ensure the the
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power leaving the two output ports is as balanced (close to 50/50) as possible over
the full O-band.

This latter goal, in particular, requires some additional attention. Naively, we
might expect that simply maximizing the coupling efficiency at a few wavelengths
spread over the O-band would be enough to ensure even splitting. Unfortunately,
this turns out to not be the case. The reason for this lies in the fact that we will
inherently be operating near a maximum in the mode match equation which oc-
curs when the power is exactly equally split between the two output waveguides.
Because we are near a maximum, modest changes in the relative power in the two
waveguides lead to only small changes in the overlap integral. In practice, the rela-
tive power in the two outputs needs to change by more than a percent or two before
the mode match figure of merit starts to decrease significantly.

One way to get around this issue is to apply a penalty to the figure of merit
which increase when the outputs become imbalanced. A simple form of this penalty
function is to calculate the overlap with the set of fields which are orthogonal to the
desired set of output fields. This function will have a minimum at the point in
the design space where the overlap with the desired fields is maximized and the
outputs are balanced. Deviating from this point causes the function to increase and
thus more heavily penalize the figure of merit. With this in mind, our complete
figure of merit for the refinement optimization is

F (E,H, ~p) =
1

Nλ

∑
λ

[η(Eλ,Hλ)− αηortho(Eλ,Hλ)− Proc(~p)] (5.4)

where η is the mode match calculated with respect to the desired and orthogonal
fields, Proc(~p) is the radius of curvature penalty function, λ denotes the simulation
wavelength, Nλ is the total number of wavelengths, and α is sets the weight of the
penalty function. In this case, we use α = 5 × 103 (in general the exact value does
not significantly impact the final result). It is interesting to note that this average
figure of merit has similar behavior to a minimax figure of merit when working high
efficiency devices since the maximum coupling efficiency possible is equal to one.

In this optimization, we will cooptimize our splitter at three different wave-
lengths spanning a 50 nm range: 1285 nm, 1310 nm, and 1335 nm (we could opti-
mize over a larger bandwidth, however this can lead to difficulties in maintaining
a balanced 50/50 output). For all three wavelengths, the structure is identical and
a maximum 120 nm radius of curvature is enforced. The forward and adjoint simu-
lations of the structure are carried out using our 3D FDTD solver with a simulation
domain size of 23.8µm by 5.25µm by 2µm and a uniform grid spacing of 30 nm.
Given the size of the simulation domain, this grid spacing gives a good trade off
between speed and accuracy. The final results presented later in this section are
produced using higher resolution simulations which have a 20 nm grid spacing to
ensure higher accuracy.

The optimization is run for a total of 100 iterations (which took a little over
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2 days on 256 cores of our Intel Xeon based cluster) at which point the figure of
merit ceases to increase appreciably. The evolution of the figure of merit during the
optimization is shown in the right portion of Figure 5.4. Initially, the figure of merit
is significantly lower than the final coarse optimization result. This is primarily
a consequence of the orthogonal field mode match constraint which reduces the
figure of merit when the power in the two output waveguides is not balanced. The
red shaded region shows the range of coupling efficiencies computed for the three
wavelengths which make up the figure of merit, indicating that the actual coupling
efficiency still starts out reasonably high. As desired, the figure of merit rapidly
improves during the optimization. This improvement in the figure of merit directly
corresponds to an improvement in the broadband performance of the device which
is reflected by red shaded region which shifts towards 0 dB and narrows.
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Figure 5.6: Plot of the optimized four port 3 dB coupler performance. In the top, the
transmission into the two output is plotted versus wavelength. In the bottom, the splitting
ratio (defined as the fraction of output power in each output waveguide) is plotted versus
wavelength. The black dashed line corresponds to 50%, which is the desired splitting ratio.

The performance of the final optimized structure is shown in Figure 5.6. As
desired, the total excess loss remains low over the full O-band, reaching a maximum
value of 0.41 dB at 1260 nm. This is further reflected in a 0.1 dB bandwidth of 61 nm.
In addition to low excess loss, a splitting ratio very close to 50% is achieved over a
broad range of wavelengths as shown in the bottom half of Figure 5.6. Specifically,
the relative fraction of output power in either of the two waveguides deviates from
50% by no more than a few hundredths of a decibel over the full O-band.
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These results are superior to previously reported on multimode interference and
directional coupler designs [16,68–71] and are consistent with adabatic-transition-
based designs [72–76] which are typically an order of magnitude (or more) larger
than our design. Such high performance makes these optimized 2×2 splitters ideal
for large scale integrated photonics applications which demand splitters that are
low loss without sacrificing large amounts of die area.

5.2 Fabrication-Tolerant Waveguide Crossing

One of the great advantages of optical waveguides compared to conventional elec-
trical interconnects is that they can intersect each other with minimal crosstalk.
This functionality turns out to be essential to many silicon photonic integrated cir-
cuits which are only able to leverage a single layer of silicon. In large systems in
particular, a single waveguide may have to pass through many waveguide crossings.
In such cases, it is essential that the waveguide crossings be very low loss over the
relevant bandwidth, even in the presence of any fabrication errors.

In this section, we will design a waveguide crossing which is tolerant to fabri-
cation variations. In particular, we will optimize a crossing which maintains excep-
tionally low insertion loss over the full O-band even when subject to ±10% thick-
ness variations in the top silicon layer. Our starting point for this optimization is a
standard waveguide crossing design based on multimode interference effects. The
topology we choose, depicted in Figure 5.7, consists of a narrow input waveguide
which abruptly tapers into a large multimode waveguide. Light in the fundamental
mode of the input waveguide is coupled primarily into the first two even modes of
the multimode waveguide. These two modes co-propagate and their relative phase
evolves according to Equation 4.2. Over a distance

∆z =
λ

n0 − n2

(5.5)

the relative phase between the two modes becomes equal to 2π. At this distance,
the modes interfere such that the field focuses towards the center of the multimode
waveguide (effectively imaging the input waveguide mode). If we make the total
length of the crossing waveguide (including tapers) twice this length, i.e.

Lcrossing =
2λ

n0 − n2

(5.6)

and place a second narrow waveguide at its output, the field will focus a second
time and couple effectively into the output waveguide. At the first focal point, we
can place an identical perpendicular intersecting waveguide which will minimally
influence the propagation of light in the horizontal multimode waveguide as a result
of the focusing effect (so long as the tapers are larger than half of the multimode
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waveguide width). With a bit of fine tuning, this configuration produces a very
effective waveguide crossing with minimal loss and crosstalk.
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Figure 5.7: Graphical explanation of the basic operating principle of a waveguide crossing.
Light from the fundamental mode of an input waveguide is coupled primarily into the first
two even modes of a wider multimode waveguide. These two modes coopropagate and
interfere to form a focusing intensity pattern near the center of the crossing waveguide.
This focusing effect allows the light to diffract through an intersecting waveguide with
minimal disruption.

As with the previous examples, we will be working with a nominal silicon thick-
ness of 220 nm and the crossing will be defined using a 110 nm partial etch. For
our starting structure, we use a 1.7µm wide multimode waveguide which, based on
Equation (5.6), corresponds to a crossing length of 15µm. In order to ensure that
the focusing distance within the crossing waveguide is sufficiently long, we make
the input and output taper lengths equal to the width of the multimode waveguide
(1.7µm). These tapers connect the multimode crossing waveguide to the input and
output waveguides which are 500 nm in order to remain consistent with the previ-
ous examples. The simulated fields of this starting structure are shown in the top of
Figure 5.11. As desired, the power is effectively coupled from the input to output
waveguide with little visible light coupling into the perpendicular waveguide.

Unfortunately, it turns out that this standard waveguide crossing design is nei-
ther very broadband nor insensitive to fabrication variations. Our goal in running
the coarse and refinement optimizations is thus to improve its performance when
subject to such variations, and in particular, significant silicon thickness variations.
In order to do so, our figure of merit for the coarse optimization will be the average
(mode matched) transmission into the output waveguide at 1310 nm for three dif-
ferent top silicon thicknesses corresponding to the desired thickness, a 10% increase
in thickness, and a 10% decrease in thickness:

F (E,H) =
1

3
[η0%(E,H) + η+10%(E,H) + η−10%(E,H)] (5.7)

These thickness variations are depicted in Figure 5.8. For each thickness, we define
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the crossing structure using the same 110 nm partial etch depth 3.
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Figure 5.8: Diagrams of the thickness variations included in the optimization of a waveguide
crossing. The three cases depicted correspond to 0%, +10%, and -10% thickness variations
in the top silicon thickness. In all three cases, the etch depth is kept fixed at 110 nm.
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Figure 5.9: Parameterization of the waveguide crossing for the coarse optimization. The
design parameters are the taper length, crossing length, final widths of the taper, and width
of the crossing waveguide at the waveguide intersection. The structure is forced to be
symmetric about both the x and y axes.

For the purpose of the coarse optimization, we parameterize the structure using
only four degrees of freedom. These design parameters, as shown in Figure 5.9,
are the length of the input and output tapers, the length of the crossing waveguide,
and width of the crossing waveguide at the end of the taper, and the width of the
crossing waveguide at the waveguide intersection.

The structure itself is simulated on a uniform 40 nm grid for the sake of speed.
The optimization is performed using the L-BFGS-B minimization algorithm and is
allowed to iterate until the figure of merit changes by less than 10−6. The pro-
gression of the figure of merit is plotted in Figure 5.10. The blue trace shows the
value of the figure of merit while the red shaded region shows the range of trans-
missions calculated for the ±10% thickness variations. Despite having only four
degrees of freedom to manipulate, the optimization is able to rapidly improve the
average transmission to −0.0269 dB and the total variation is drastically reduced to
only 0.0102 dB at 1310 nm.

3in practice, we have found that the performance is much less sensitive to the etch depth than
the total silicon thickness
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Figure 5.10: Plot of the figure of merit vs iteration for the fabrication tolerant waveguide
crossing. The first 24 iterations plotted correspond to a coarse optimization of the structure
while the latter 26 iterations correspond to the refinement optimization. The red shaded
region represents the range of coupling efficiencies computed for the device when subject to
±10% thickness variations. As desired, the optimization both improves the average coupling
efficiency over this band, but also narrows the range of efficiencies, indicating that the
device has been made more tolerant to fabrication variations.

The structure produced by this coarse optimization and its simulated electric
field is shown in the middle of Figure 5.11. Interestingly, the optimized structure
has a bow tie shape with a much longer input taper. From the standpoint of reduc-
ing sensitivity to fabrication variations, a structure with more gradual transitions is
intuitive.

Although this coarsely optimized structure already achieves exceptional perfor-
mance, there is nevertheless room for improvement. Furthermore, the coarse result
contains sharp corners that need to be corrected. As with our previous examples,
this is easily accomplished using a refinement optimization. To initialize this refine-
ment optimization, we use the coarse optimization result with rounded corners and
an increased number of vertices (one point every 40 nm). The positions of these
vertices are the design parameters of the optimization. The figure of merit of the
optimization is the same as the coarse optimization with the addition of a radius of
curvature penalty term, i.e.,

F (E,H, ~p) =
1

3
[η0%(E,H) + η+10%(E,H) + η−10%(E,H)]− Proc(~p) (5.8)

where Proc(~p) is derived in Appendix A.2.2. Finally, all simulations in this final
optimization use a 22 nm grid spacing to ensure that the results are accurate. This
optimization is run until the value of this figure of merit decreases by less than 10−6.
The change in the figure of merit during this phase of the optimization is plotted in
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the right half Figure 5.10 and the final result is shown at the bottom of Figure 5.11.
Despite the fact that we modified the coarse optimized structure by rounding off
its corners, the initial drop in performance at the start of the refinement optimiza-
tion is very small. This is explained by the fact that our coarse optimized design is
designed to be very insensitive to thickness variations, and we expect this insensi-
tivity to apply to other small non-thickness-related changes to the structure as well.
Furthermore, the figure of merit appears to change minimally during the coarse
of the refinement optimization. Although seemingly small, the minimum coupling
efficiency improves from −0.0410 dB to −0.0292 dB which is approximately a 30%
improvement. This means that 30% more crossings can be used along a path for
the same amount of loss which is not insignificant.

Initial Structure

Refinement Optimization (iter. 51)

Coarse Optimization (iter. 25)

2 μm

Figure 5.11: Plots of the (top) starting waveguide crossing structure, (middle) result of the
coarse optimization, and (bottom) result of the refinement optimization. In all three cases,
the fields are shown for 1310 nm. In all three plots, the magnitude of the electric field taken
from a slice running through the center of the device is overlayed with an outline of the
structure.

Compared to the initial maximum loss of more than 0.5 dB, the final optimized
result is both highly efficient and exceptionally insensitive to thickness variations.
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Figure 5.12: Plots of the performance of the optimized waveguide crossing (right) com-
pared to a “typical” waveguide crossing (left). When subject to ±10% SOI thickness vari-
ations, the optimized design maintains a maximum loss across the O-band which is nearly
10 times smaller than a typical waveguide crossing.

This improved tolerance to variations is a direct consequence of the improved band-
width of the optimized structure which is made apparent in Figure 5.12. In the bot-
tom left, the transmission of a typical hand-designed waveguide crossing is plotted
versus wavelength. A crossing with the desired silicon thickness achieves a high
peak coupling efficiency above −0.01 dB, however this performance quickly drops
to nearly −0.2 dB at the edges of the O-band. This limited bandwidth translates to
significant reductions in efficiency when the silicon thickness varies; when subject
to a ten percent increase in thickness, the spectrum of the crossing shifts signif-
icantly causing the transmission to drop below −0.8 dB at 1260 nm. Even at the
center wavelength of 1310 nm, the transmission drops below −0.4 dB when subject
to a ten percent thickness increase, eliminating its usefulness.

Our optimized design, has significantly improved performance across the O-
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band, both with and without thickness variations. The transmission of our opti-
mized design is plotted in the bottom right of Figure 5.12 and shares the same y
axis as the hand-designed crossing plotted on the left. Immediately apparent, the
sensitivity to wavelength and silicon thickness variations is reduced by roughly an
order of magnitude. The plot in the top of Figure 5.12 shows a zoomed in version
of the transmission of the optimized structure. Across the entire O-band when sub-
ject to plus or minus ten percent variations in the silicon thickness, our optimized
design achieves better than −0.075 dB. At the ideal thickness, the optimized design
achieves better −0.036 dB over the entire O-band.

This broadband behavior and insensitivity to fabrication variations comes only
at the expense of a small reduction in peak coupling efficiency (−0.0065 dB to
−0.019 dB). Compared to previously published results, our optimized crossing has
either comparable or higher peak coupling efficiency and significantly higher band-
width [77–83]. To our knowledge, our optimized crossing has achieves better per-
formance when subject to variations than any previously reported design.

It is worth noting that this record result is effectively achieved using only 4 de-
sign parameters. This is at odds with much of the work on shape and topology
optimization in nanophotonics which often associate larger numbers of design vari-
ables with an improved ability to design devices. We attribute this discrepancy to
the fact that we carefully chose a physically-motivated topology. By doing so, the
general shape of the device was already very conducive to achieving the desired
waveguide crossing behavior. Only a small set of design parameters which preserve
this general topology was therefore needed to fine tune the device. This highlights
the strength of our hierarchical approach to design and optimization.

5.3 Single Polarization Grating Coupler

One of the most important components in silicon photonics is the optical coupler
which enables us to couple light into and out of silicon photonic chips. Optical cou-
plers used in silicon photonics typically come in one of two varieties: edge couplers
and vertical grating couplers. Grating couplers in particular present a number of
advantages over alternative coupling methods [84] by providing a flexible means of
interfacing high-index-contrast integrated optical devices with the outside world.

In general, a grating coupler consists of a high index waveguiding slab with
either partially- or fully-etched periodic corrugations which cause light to scatter
out of the slab at a desired angle. By correctly choosing the positions and sizes of
these corrugations, we can shape the beam of light generated by the grating such
that it is well matched to an optical fiber (or some other desired output mode).
Due to the inherently large number of degrees of freedom in a grating coupler and
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Figure 5.13: Phased array interpretation of grating couplers. A grating coupler can be
thought of as a collection of independent scatterers which give rise to waves propagating
away from the grating. The relative phases of these scatterers is given by the phase of a
guided mode propagating within the grating. The scattered waves constructively interfere
to form a beam propagating at an angle.

the degree to which they are coupled together4, designing grating couplers using
more traditional methods has proven difficult. Fortunately, hierarchical design and
optimization presents us with a new and highly effective strategy for designing
efficient grating couplers.

5.3.1 The Foundations of a Good Grating Coupler

Before diving into grating optimization, it is important that we understand how
grating couplers work and what drives their overall performance. Typically, the
goal of a grating coupler is to couple as much light as possible into a desired output
mode. In most cases, this output mode will be an optical fiber, although in some
applications, we may wish to couple into some other mode or field. In either case,
the coupling efficiency of the grating coupler depends on four contributing factors:
mode match, directionality, back reflection, and incomplete scattering. Mathemati-
cally, this can be summarized as

ηgrating = η
MM
D(1−R)(1− T ) (5.9)

where η
MM

is the mode match efficiency, D is the directionality, R is the back reflec-
tion of the grating coupler, and T is the fraction of power not scattered by the grat-
ing. In this section, we will review these contributions to grating coupler efficiency
and discuss how we can control them. This knowledge serves as the foundation of
our hierarchical approach to grating coupler design.
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Grating Scattering Angle

Perhaps the most important characteristic of a grating coupler is the angle at which
it scatters light. If this angle is not matched with the desired output mode, then
coupling will be severely diminished.

To understand how grating couplers produce coherent beams which propagate
at a well defined angle, we can think of the grating as a phased array of indepen-
dent scatterers as depicted in Figure 5.13. As a guided wave within the grating
encounters an etched slot, the discontinuity gives rise to a scattered wave which
we can model as emanating from the center of the slot. The phase of this scat-
tered wave is equal to the phase of the guided wave at the time it encounters the
slot. Similarly, the amplitude of that wave will be proportional to the amplitude of
the guided wave. Multiple scattered waves produced by a series of periodic etched
slots propagate through the cladding medium and interfere to form a coherent beam
with wavefronts that move at a well-defined angle (indicated by the dashed lines in
Figure 5.13).

The angle of the generated beam depends on the relative phase that a guided
wave accumulates when moving between two slots in the grating. An expression
for this phase can be derived based on simple geometric arguments (see Appendix
D.1). Assuming the slots are periodic, then the phase and emission angle are related
by

ϕin(Λ)− 2πm = kcΛ sin θ (5.10)

where ϕin is the phase of the wave as it propagates through one period of the
grating, kc is the wavenumber of the cladding medium, Λ is the periodicity of the
grating, θ is the scattering angle, and m is the integer diffraction order (which we
typically choose to be ±1). The phase ϕin is a function of the period of the grating
as well as the effective indices of the slabs which make up the grating. Based on the
exact topology of the grating coupler, we can use this expression to select a period
of the grating which will produce a beam at the desired angle. This is a key step in
grating coupler design.

It is important to note that grating couplers are not strictly characterized by a
single angle. Because grating couplers couple light into finite width beams, they
actually have an angular spectrum which is centered around the scattering angle
of the grating coupler. In most cases, we attempt to couple light into single mode
optical fibers which are relatively wide compared to the wavelength of light. As a
result, corresponding angular spectrum is quite narrow (and as a result coupling
efficiency will be very sensitive to fiber angle). In contrast, for some applications, it
may be desirable to couple light into a wider angular spectrum. In such cases, it is
important that we design our grating coupler to couple light into a narrower beam.

4In other words, we cannot easily break up the design problem into many smaller design prob-
lems with only one or two variables
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Figure 5.14: Diagrams of uniform and chirped partially-etched grating couplers. In both
cases, a waveguide has slots etched into its top surface which scatter light. By engineering
the periodicity of these slots, the scattered light constructively interferes to form a beam
propagating at a desired angle. If the size of these etched slots is uniform (top), then the
intensity of the scattered light will decay along the length of the grating coupler. If, on the
other hand, the slot width and period is chirped, the scattered field’s intensity profile can
be controlled.

Doing so can be accomplished by either making the grating coupler itself smaller,
or by properly engineering the periodicity of the grating. This latter technique is
akin to mode matching which we discuss next.

Mode Matching

Choosing the scattering angle is the first step towards accomplishing the broader
goal of mode matching. In order to effectively couple light into a desired output
mode, the grating coupler must generate a field—both amplitude and phase—that
matches that mode. Based on the scattering angle analysis, we know that the phase
of the generated field is directly related to the phase of the guided mode propagat-
ing within the grating coupler. Based on this, we can deduce that the exact phase
of the scattered field can be manipulated by manipulating the per-period phase of
the grating.

The amplitude or intensity profile of the scattered field, on the otherhand, de-
pends on more than the periodicity of the grating. Recall that in our simple model,
we posited that the discontinuity introduced by the etched slots gave rise to the
scattered waves. If these etched slots have a uniform width over the length of the
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grating, then each slot will scatter a fixed fraction of optical power out of the grat-
ing. In other words, the power scattered, Pi, by the ith slot of the grating is given
by

Pi = αPg (5.11)

where Pg is the guided power in the grating. The constant of proportionality α
is determined primarily by the size (width and depth) of the slot5. Notice that the
power in the grating decays according to the same constant of proportionality. After
the i− 1 th slot, the power in the grating is Pg = (1− α)i−1P0 where P0 is the total
power entering the grating coupler. The power scattered by the ith slot is therefore

Pi = α(1− α)i−1P0 (5.12)

Based on this, the scattered light will have an exponentially decaying intensity pro-
file [85] along the length of the grating as depicted in the top of Figure 5.14. In
most cases in silicon photonics, grating couplers are used to couple light into and
out of single-mode optical fibers whose guided mode is not well matched this expo-
nential field profile. Instead, it is thus desirable to design the grating corrugations
to scatter light into a Gaussian mode, which approximately matches the mode of a
single mode fiber.

In order to do this, we must chirp the widths and periodicity of the etched slots
which form the grating coupler as depicted in the bottom of Figure 5.14. With
the right grating apodization (as this chirp is often called), we can generate beams
which which are well matched to the mode of optical fibers. This process of mode
matching is essential to designing grating couplers with high efficiencies and is a
prime candidate for optimization.

Grating Directionality

In addition to mode matching, grating coupler efficiency is additionally limited by
its directionality. The directionality refers to the fraction of light which is scattered
in the desired direction (any light not going into the desired mode is loss). In the
case of the partially-etched grating couplers depicted in Figure 5.14, this direction-
ality is largely defined by the thickness of the waveguiding slab and the depth of
the etched grooves [86,87].

5The dependence of the scattering strength of the slot width is not monotonic. Instead, the
scattering strength peaks when it is equal to 50% of the grating period. This makes sense if we
think about the grating as a series of discontinuities which scatter light. When the slot becomes
larger than one half of the period, then the unetched portion of the grating acts as the primary
discontinuity. In the limit that the etch width approaches the period of the grating, the scattering
will cease altogether. For this reason, we often define the slot widths using duty factor which is the
fraction of the total grating period which is unetched. The scattering is therefore minimized when
the duty factor is equal to 0% or 100% and maximized when the duty factor equals 50%
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Figure 5.15: Depiction of the simplified layered medium model for grating couplers. In
order to estimate the directionality of a grating coupler, we approximate it as a stack of
homogenous slabs. The slab corresponding to the etched portion of the grating has an
average refractive index based on the duty factor and contains a plane wave source which
injects optical power into the stack. The directionality is given by the fraction of total
injected power which leaves in the top cladding.

One way of understanding this relationship is to model the grating as a stack of
homogenous slabs as depicted in Figure 5.15. In this model, we divide the cross
section of the grating into multiple homogenous layers. The layer corresponding
to the etched portion of the grating is assigned a weighted average refractive index
based on the duty factor of the grating (e.g., in the case of a 50% duty factor, the
refractive index would be the average of high index and cladding materials). In
the center of this layer, we place a plane wave source which uniformly emits plane
waves in the upward and downward directions. Based on the refractive indices and
thicknesses of the layers, these plane waves will interfere within the stack, leading
to a certain amount of power leaving the top and bottom of the stack. The fraction
of power leaving out of the top of the stack, Pup/(Pup + Pdown), is the directionality
of the grating. This model, which is a simple extension of matrix methods6, is an
indispensable tool for understanding the limits in efficiency that can be achieved by
typical grating couplers.

Beyond thickness and etch depth, the directionality can be further improved in
a variety of ways as depicted in Figure 5.16. In particular, employing multiple etch
depths, multiple silicon layers, or adding anti-reflection layers above the grating or
reflectors below the grating have been proven to be effective. The former methods
rely on constructing two arrays of scatterers which produce waves that destructively
interfere below the grating in order to maximize the light coming out of the top
of the grating. The latter two methods take advantage of interference within the

6The process involves “solving" the wave equation in each layer of the stack, which admits plane
waves as a solution. Based on these general plane wave solutions, the boundary conditions for the
electric and magnetic field are then enforced at each interface in the stack. This leads to a series of
2× 2 matrices which can be multiplied together and inverted in order to find the amplitudes of the
fields leaving the top and bottom of the stack. The application of matrix methods to grating couplers
is a bit unique in that the source of the fields is located inside the stack instead of the source being
a plane wave incident on the stack as is typically done.
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Figure 5.16: Ways of enhancing grating coupler directionality. In the left half, two layer
gratings and dual-etch gratings rely on destructive interference of downward scattered
waves to enhance the directionality. In the right half, reflectors or anti-reflectors lever-
age interference within the multilayer stack that defines the grating coupler to improve
directionality.

layered stack that composes the grating to maximize light scattered out the top of
the grating. In this work, we will take a detailed look at two layer gratings as they
are a particularly promising solution for high efficiency vertical optical couplers.

Grating Back Reflection

A side effect of using discontinuities to scatter light is that they also produce back
reflections into the input waveguide. In addition to reducing the power coming out
of the grating coupler, these back reflections also pose an issue to system stability7.

The fraction of power reflected is strongly tied to the scattering angle. To see
why, consider Equation (5.10) when θ = 0. In this case, the grating equation
becomes

ϕin(Λ) = 2πm . (5.13)

In other words, in order to scatter light at zero degrees (perfectly vertically), the
phase accumulated by a wave guided by the grating between two adjacent slots
is a multiple of 2π! This means that all waves reflected by the grating slots will
constructively interfere, which will inevitably lead to a very strong back reflection
coming out of the grating.

In order to get around this issue, we often design gratings to scatter at a small
angle (∼ 10◦). This results in a per-period phase which is a little larger than 2π,
limiting constructing interference of the large ensemble of reflected waves. From
the standpoint of packaging, this is not necessarily the most convenient constraint.
Fortunately, as we will find out later in this chapter, we can use sophisticated struc-
tures like two layer gratings to simultaneously emit vertically and cancel out the
reflected waves.

7For example, if a grating is directly coupled to a laser cavity, any reflection back into the laser
can affect its operation.
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5.3.2 General Design Approach

As with the devices treated previously in this work, we will tackle grating coupler
design using our hierarchical approach. Our starting point is therefore to devise a
physics-defined topology. Based on our previous discussion, the bare minimum for
a good starting structure is one that scatters light at the desired angle. Furthermore,
if we have control over the thicknesses of the grating, our starting structure should
also maximize directionality. This ensures that we are starting with a “good" grating
coupler.

In addition to starting with the correct angle, it turns out to be imperative that
our initial topology have a large duty factor (small slots), and hence scatter light
very gradually. This is a direct consequence of the fact that we typically want to
couple light into a Gaussian beam which has a smooth and gradually changing
intensity profile. Large slots would lead to a large discontinuity at the beginning of
the grating coupler which would cause a strong spike in scattered light. This does
not match the gradually increasing tails of a Gaussian beam well and can make
the optimization susceptible to falling into local optima. Conversely, by starting
with a large duty factor, we introduce a minimal discontinuity between the input
waveguide and grating. This is well matched to the gradual tails of the Gaussian
and yields consistently good optimized results.

After defining the initial topology, which consists of a high duty factor grating
with the right scattering angle, we run a coarse optimization of the structure. In
most cases, the silicon platform we use constrains us to a specific set of silicon
thicknesses and etch depths. In this case, the goal of the optimizations will primar-
ily be to define the grating chirp which maximizes the mode match with respect to
a Gaussian mode and which minimizes reflections. Once again, the gradual nature
of the Gaussian mode into which we couple light gives us clues about the type of
parameterization to choose. In particular, it is desirable to choose a parameteriza-
tion which guarantees that the grating period and etch width evolves smoothly and
gradually over the length of the grating, since any sudden changes are unlikely to
produce a field profile which matches the desired beam shape. For this purpose,
a truncated Fourier series is well suited as it is guaranteed to be smooth and does
not blow up at the ends as is the case with other expansions (like Taylor series). In
particular, we define the grating period as

Λ(n) = a0 +
M∑
m=1

am sin
(π

2

m

N
n
)

+
M∑
m=1

bm cos
(π

2

m

N
n
)

(5.14)

where am and bm serve as design parameters and n is an index assigned to each
period of the grating (the first period is n = 0, the second is n = 1, etc). The etched
slot widths (or duty factor) can be parameterized using an identical function. Notice
that by tuning the number of Fourier terms, we can directly control how quickly the
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Figure 5.17: Starting geometry and problem setup for partially-etch grating coupler opti-
mization. The starting structure consists of a uniform grating coupler with large duty factor
and a grating period chosen to scatter light at the desired angle.

periods and slot widths can change along the length of the grating.
A natural shortcoming of this parameterization and the fact that we want to

couple into a Gaussian beam which decays to zero in its tails is the inevitable for-
mation of slots with near zero widths at the beginning of the grating. These small
widths cannot typically be resolved using deep UV lithography, and therefore it is
important that we introduce a linewidth constraint into our optimization. This is
the purpose of the refinement optimization.

A good way to accomplish this is to start with the coarse optimized design and
re-parameterize the grating in terms of the individual periods and slot widths. We
can then introduce a penalty term in our figure of merit based on Equation (A.35)
which discourages slots with widths between 0 and some minimum line width (neg-
ative widths are acceptable as they correspond to adjacent grating teeth merging).
Typically, we tune the strength and sharpness of this penalty gradually over two or
three separate short refinement optimizations in order to avoid getting stuck in a
local optima which does not satisfy the constraint.

By following this general process, we have had great success optimizing a wide
range of grating couplers including more common partially-etched grating couplers,
dual etch grating couplers, hybrid silicon-silicon nitride grating couplers, two layer
grating couplers, etc. In the remaining sections of this chapter, we will demonstrate
this methodology by optimizing a two different grating couplers.

5.3.3 Partial Etch Grating Coupler

The most common type of single polarization grating coupler consists of a waveg-
uide slab with partially etched grooves. In this section, we will optimize a grating
coupler which is defined in 220 nm thick SOI, with an 80 nm etch depth and a 2µm
thick buried oxide (BOX) layer. The grating will be optimized for C-band operation,
targeting a center wavelength of 1550 nm.

The starting topology for our grating optimization is shown in Figure 5.17. The
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structure consists of 32 identical etched slots whose widths correspond to a duty
factor of 80%8 In order to find the period and slot width, we apply Equation (5.10).
The period accumulated by a guided wave in the grating over one period is

ϕin = kftDΛ + kpe(1−D)Λ (5.15)

where kft = 2πnft/λ is the effective wavenumber of the full thickness silicon, kpe =
2πnpe/λ is the effective wavenumber of the partially etched silicon, and D is the
duty factor (in this case, D = 0.8). Substituting this expression into Equation (5.10)
and solving for the grating period yields

Λ =
mλ

nftD + npe(1−D)− nc sin θ
(5.16)

where nft is the effective index for full thickness silicon, npe is the effective index for
partial etch silicon, and nc is the refractive of the cladding medium. Based on our
chosen top silicon thickness, etch depth, and duty factor, the period of our starting
structure is 618 nm, and the slot width is 124 nm.

For the sake of time, we simulate the grating in two dimensions, which is a
reasonably good approximation since grating couplers are typically much wider
than they are thick. In order to ensure sufficient simulation accuracy, we use a grid
spacing of 20 nm9.

In total, we perform three optimization in order to optimize this grating coupler.
In the first optimization, we parameterize the period and slot width using Equation
(5.14) with 6 sin and cos coefficients and also allow the starting position of the
grating to change. This means that our first (coarse) optimization has a total of 25
design parameters. The figure of merit for this optimization is simply the coupling
efficiency computed using Equation (A.25) with respect to a 10.4µm mode field
diameter Gaussian mode which is tilted at eight degrees, which approximates the
mode of an SMF-28 fiber.

The optimization is performed using the BFGS minimization algorithm and is al-
lowed to run until the figure of merit changes by less than 10−5. This process takes
39 iterations (or about 17 minutes on 14 cores of our Intel Xeon based server) as
shown in the left portion of Figure 5.18, improving the initial low coupling effi-
ciency of nearly −6 dB to −1.89 dB. The result of this coarse optimization is shown
in Figure 5.19 which plots the field overlayed with the optimized geometry. As de-
sired, the generated field closely matches the desired Gaussian beam, deviating only
near the end of the grating. It is important to note that the expected directionality
for this grating is around 67% (−1.74 dB) based on our homogeneous slab model,
implying that our optimized design is likely at the limit of performance given the

8A good rule of thumb is to choose an initial duty factor between 65% and 90%. Duty factors
outside of this range tend to drive the optimization into local optimas which have low efficiencies.

9In many cases, we could work with a coarses grid without significantly impacting the calculated
coupling efficiency. The back reflection, however, tends to be very sensitive to the grid spacing.
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Figure 5.18: Evolution of the figure of merit during the coarse and refinement optimizations
of a partially-etched grating coupler. The final performance is slightly lower than that of
the coarse optimized design as a result of the minimum feature size constraint.
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Figure 5.19: Simulated field of the coarse optimized partially-etched grating coupler. In the
bottom, Re{Ez} is overlayed with the outline of the optimized grating geometry. At the top,
a slice of the electric field taken from the dotted line is overlayed with the desired electric
field profile. As intended, the simulated field of the optimized grating closely matches the
desired field profile.

constrained silicon thickness and etch depth. This demonstrates just how powerful
our optimization method is.

The period and duty factor of this optimized design is plotted in Figure 5.20. As
desired, the parameterization has forced the grating apodization to remain smooth.
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Figure 5.20: Final grating chirp (period and duty factor vs position along the grating) of
the coarse optimized partially-etch grating coupler. The evolution of the period and duty
factor is smooth as a result of the underlying Fourier series parameterization.

It is interesting to note that the optimized duty factor approaches zero at the begin-
ning of the grating, and the first slot in the grating is only 15 nm wide. This is not
achievable using deep UV lithography.

In order to account for this, we run additional optimizations which incorporate
line width constraints. For these constrained optimizations, we make each slot
width and pitch a separate design variable and add a penalty term to the figure of
merit. In particular, the new penalized figure of merit has the form

F (E,H, ~p) = η(E,H)− αPLW(~p) (5.17)

where η(E,H) is the coupling efficiency with respect to the same 10.4µm Gaussian
mode, PLW(~p) is a penalty function based on Equation (A.35), and α is the weighting
of the penalty function. In this case, α = 0.02 and two optimizations with this figure
of merit are performed in succession10 for a minimum line width of 90 nm. In the
first optimization, the penalty function has very gradual transitions from low to
high (the transition occurs nominally over a distance equal to 40 nm). In the second
optimization, the transition is made very steep to ensure that the penalty function
is more strictly enforced.

It is interesting to note that the optimization maintains a high performance by
eliminating the first five grating slots and by modulating the remaining grating slot
widths and periods in a slightly more complicated way as shown in Figure 5.22.
The period chirp of the optimized result in particular, is unintuitive. We believe the
oscillation in the period towards the beginning of the grating is in part an “attempt"
to reduce reflection back into the input waveguide. This back reflection is plot-
ted versus wavelength for both the unconstrained coarse optimization result and
line-width-constrained refinement optimization result in Figure 5.23. Although not

10In many cases, three optimizations with a more gradual turn on of the penalty function may
work better. This will depend on the specific grating you are trying to optimize.
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Figure 5.21: Simulated field of the refinement optimized partially-etched grating coupler.
In the bottom, Re{Ez} is overlaid with the outline of the optimized grating geometry. At the
top, a slice of the electric field taken from the dotted line in the bottom plot is overlaid with
the desired electric field profile. In spite of imposing a minimum feature size constraint, the
scattered field still closely matches the desired field.

Period

Duty Factor

Figure 5.22: Final grating chirp (period and duty factor vs position along the grating) of the
refinement optimized partially-etch grating coupler. The evolution of the period and duty
factor is no longer smooth due to the tooth-wise parameterization.

explicitly included in the figure of merit, the optimization is successful in produc-
ing designs with unprecedentedly low back reflections. This makes intuitive sense,
however, as any reflection will reduce the coupling efficiency. These results achieve
back reflections comparable to so called “reflectionless" grating couplers [88] over
the C-band without sacrificing significant coupling efficiency as is the case in those
designs.

In addition to achieving low back reflection, the optimized design achieves band-
widths that are on par with other published grating couplers as shown by the C-
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Figure 5.23: Plot of the (top) coupling efficiency and (bottom) back reflection of an op-
timized partially-etched grating coupler. The optimized grating with constrained features
sizes predictably achieves a slightly lower peak performance compared to the unconstrained
design. Both constrained and unconstrained designs achieve exceptionally low back reflec-
tions, which is a hallmark of our approach to design and optimization.

band coupling efficiency plotted in the top of Figure 5.23. In particular the opti-
mized design achieves a 1 dB bandwidth of approximately 40 nm.

These results demonstrate how effectively inverse design techniques can be ap-
plied to grating couplers which have historically been among the most difficult sili-
con photonics components to design. In particular, we see here that grating couplers
compatible with deep UV lithography can be designed without sacrificing significant
performance. This proves that inverse design is poised to become an essential tool
in the silicon photonic designer’s toolbox.

5.3.4 Dual Layer Grating Couplers

In the previous grating coupler optimization, the final performance of the grating
coupler is largely limited by its inherent directionality. In order to get around these
limitations, two layer grating couplers [89,90] have been proposed. When designed
properly, these two-layer gratings act as a phased array of scatterers which couple
light out of the waveguide with a high directionality as depicted in the left half of
Fig. 5.24.

A guided wave propagating from left to right along the grating will encounter
grooves in the top and bottom surfaces of the grating which couple some of the
propagating power into free-space modes. The grating achieves high directionality
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Figure 5.24: Description of the operation of two-layer grating couplers. The two-layer grat-
ing resembles two fully-etched grating couplers which have been stacked one on top of the
other with the top layer shifted forward by a small amount relative to the bottom layer.
When each grating layer is one quarter of a wavelength thick and the spacing between
grooves in each layer is a quarter wavelength, then constructive interference in the up-
wards direction and destructive interference in the downwards direction can be achieved.
Furthermore, under these conditions, waves reflected back into the input of the grating
destructively interfere leading to an inherently low back reflection.

if three conditions are satisfied. First, the horizontal separation between grooves
in the top and bottom layer is chosen such that the guided mode accumulates a
phase shift of π/2 as it propagates from a groove in the bottom layer to its adja-
cent top layer groove. Second, the thicknesses of the top and bottom layers and
etch depths of the grating are chosen such that a wave scattered out of a bottom
groove acquires an additional π/2 phase shift relative to a wave scattered out of a
top groove. Third, the scattering strength of the two layers should be equal. The
resulting structure will produce scattered waves which interfere constructively in
the upwards direction and destructively in the downwards direction. In addition
to enabling a directionality of nearly 100%, the relative shift between the top and
bottom layers produces two sets of reflected guided waves within the grating which
are π out of phase as depicted in the right half of Fig. 5.24. These waves destruc-
tively interfere, resulting in an exceptionally low back reflection, even for perfectly
vertical coupling.

Two layer gratings provide the additional degrees of freedom needed to simulta-
neously control the upward scattered waves, downward scattered waves, and back
reflected waves. The addition of these degrees of freedom, however, adds addi-
tional complexity to the design problem, almost necessitating that we apply our
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inverse design. As with the previous partially-etched grating coupler example, we
will apply our hierarchical approach to design two layer grating couplers which
couple light perfectly vertically with unmatched coupling efficiency. The process is
very similar to the optimization of the partially-etched grating with the exception
that the two separate layers lead to twice as many degrees of freedom.

The starting structure for the optimization is shown in Fig. 5.25 and consists
of a uniform two-layer silicon grating clad both on top and underneath with sili-
con dioxide. The grating structure is excited by the fundamental TE mode of the
waveguide shown at the left edge of Fig. 5.25 at a wavelength of 1550 nm. In
the following optimizations, we only consider this single wavelength (although the
same method could be applied to a broadband figure of merit if desired). Given this
wavelength, we choose the layer thicknesses to be 110 nm to produce the desired
π/2 phase shift between the top and bottom layer, resulting in a total film thickness
of 220 nm. Based on our previous reasoning, we choose a starting duty factor of
80%, a grating period of 586 nm, and a shift between the top and bottom layers of
160 nm to ensure that the starting efficiency is reasonably high, which in this case
was 48%. Finally, a total of 26 grating periods are used, which we found sufficient
for scattering all of the light out of the grating.

This initial structure is modified using our gradient-based optimization meth-
ods in order to maximize the efficiency with which the grating couples light into
a 10.4µm mode field diameter Gaussian beam corresponding to the approximate
mode of a single mode fiber which is situated 2µm above the grating and oriented
normally11 to its top surface. The figure of merit is therefore the the mode match
with respect to the desired Gaussian beam.

The optimization process is executed until the figure of merit changes by less
than 10−5, which takes 67 iterations of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
minimization algorithm (requiring 166 simulations in total and about 30 minutes
on 14 processors). The corresponding optimized structure and simulated electric
field is displayed in Fig. 5.26. As desired, light is coupled vertically and downwards
coupling is almost entirely suppressed. The wavefronts, furthermore, are very flat
and well-behaved; the quality of this generated beam is reflected by a record chip-
to-fiber coupling efficiency of 99.2% (−0.035 dB). This coupling efficiency is signif-
icantly higher than previously reported values [90] and does not rely on coupling
to narrow mode field diameter fibers or steep emission angles as in previous related
work [89].

The mode matching capabilities of the optimized grating are more quantitatively
demonstrated by the slices of Ez shown in Fig. 5.27. As is readily apparent, the
magnitude of the simulated electric field very closely matches the desired Gaussian
field profile, with the exception of some weak rippling. We attribute this rippling to

11Scattering light perfectly vertically is typically very difficult due to the increased back reflections.
The anti-reflection nature of these two layer gratings enable us to couple perfectly vertically with
high efficiency.
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Figure 5.25: Plot of the initial starting geometry used in the optimization of a two layer
SiO2-clad silicon grating coupler. A uniform grating with a duty factor of 80% and a period
of 586 nm is chosen for both the top and bottom layers. This choice of period and duty
factor results in a nearly vertical beam with a high directionality.

the inherently discrete rectangular etches of the grating. This has a minimal impact
on the overall efficiency, which is demonstrated by the calculated mode match of
over 99%. As with the electric field amplitude, the simulated phase is very flat
over the majority of the beam’s width, deviating only near the edges of the beam.
This deviation does not lead to an appreciable decrease in efficiency since the field
amplitude is nearly zero far away from the beam’s center where the phase begins
to fluctuate. In addition to mode matching, the back reflection of waveguide mode
incident on the grating coupler is suppressed by −43 dB for our optimized design.

The unprecedented efficiency of this optimized grating is a direct consequence
of the chirping of the grating period and duty factor visible in the insets of Fig. 5.26
which is plotted as a function of grating index (position along the grating) in Fig.
5.28. The optimal chirp function for the duty factor (upon which the scattering
strength of the grating depends most strongly) of the top layer roughly matches
the behavior of the theoretical scattering parameter for an ideal grating coupler
matched to a Gaussian field profile [91]. The chirp function of the bottom layer’s
duty factor, meanwhile, deviates from this ideal behavior, highlighting the strength
of our optimization methods: its ability to design structures that would otherwise
be difficult or impossible to design “by hand.”

Figure 5.28 also highlights the primary shortcoming of these optimization re-
sults: the optimal design contains duty factors that approach 100%. This means
that the optimal structure contains features that are as small as a few nanome-
ters wide and hence cannot be fabricated using available deep UV lithography. We



CHAPTER 5 — APPLICATION TO SILICON PHOTONICS 82

Figure 5.26: Optimization results for our perfectly vertical two layer grating coupler. The
real part of Ez, which has been overlaid with an outline of the optimized refractive index,
shows perfectly vertical emission with an extremely high directionality and flat wavefronts.
This optimized structure is very well mode-matched to the mode of a 10µm mode field
diameter single mode fiber located 2µm above the grating surface which is reflected by a
chip-to-fiber efficiency of 99.2% (−0.035 dB).

Figure 5.27: Plots comparing the simulated electric field amplitude (top) and phase (bot-
tom) of the optimal grating coupler design to the desired amplitude and phase. The visible
deviation in the simulated phase is inconsequential as it occurs only when the field ampli-
tude is very small.

overcome this by running additional refinement optimizations which introduce a
minimum feature size constraint directly into the optimization and use our uncon-
strained design as a starting point for those subsequent optimizations.

In order to accomplish this, we modify our original figure of merit such that the
efficiency of the grating is penalized when small features form. The new figure of
merit is given by
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Figure 5.28: Plot of the chirp functions for the optimized two-layer grating. The blue curves
show the the period as a function of the position (index) along the grating. The red curves,
meanwhile, show the duty factor along the grating. In both sets of curves, the solid trace
corresponds to the top layer while the dotted curve corresponds to the bottom layer of the
grating.

F (E,H,p) = η(E,H)− fpenalty(p) (5.18)

where F (E,H, ~p) is our new constrained figure of merit, ~p is the set of design vari-
ables (i.e. grating dimensions), η(E,H) is the mode match efficiency given by Equa-
tion (A.25), and fpenalty(~p) is a function of the design variables based on Equation
(A.35) which penalizes the efficiency when the feature sizes of the grating are too
small. Because this penalization process operates on each individual gap and tooth
in the grating, we no longer use a Fourier series parameterization in subsequent
optimizations, but instead opt for parameterization in which each gap and tooth
dimension is a separate independent design variable. Since we begin with an op-
timized design with a smooth chirp function, there is less danger of falling into a
non-robust local optimum. Finally, in order to control the influence of this penalty
function, we adjust its maximum value and the steepness of its edges.

For the purpose of exploring the impact of minimum feature size on grating
coupler efficiency, we ran a series of refinement optimizations for a specific set of
minimum feature sizes. Beginning with the previous optimized structure shown
in Fig. 5.26, we introduce a penalty function which is very weakly weighted and
then gradually increase its strength in a series of separate optimizations. In total
we perform three optimizations per minimum feature size, strictly enforcing the
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Figure 5.29: Plot of the coupling efficiency for perfectly vertical grating couplers optimized
with a minimum feature size constraint. Using the “ideal” optimized result as a starting
point, additional constrained optimizations are performed in order to design gratings that
can be fabricated with lithography that has a limited resolution.

minimum feature size before running the third optimization.
The result of this process, which we performed for a set of minimum feature sizes

between 0 nm and 180 nm, is shown in Fig. 5.29. Using constrained optimization,
we are able to maintain exceptionally high efficiencies out to more practical feature
sizes. Of particular interest is the 65 nm constraint which, due to the maturity
of the 65 nm CMOS platform, shows future promise for silicon photonics. For a
minimum feature size of 65 nm, we have achieved an optimized efficiency of 96.9%
(−0.137 dB). Furthermore, better than −0.5 dB is achievable out to a minimum
feature size of over 130 nm, roughly corresponding to lithography technologies that
have already been used in commercial nanophotonic settings [84]. As the minimum
feature size is further increased, the efficiency of the optimized design begins to fall
off quickly. This is a direct consequence of our inability to match to the gradually
changing tails of the Gaussian mode. These results are very promising for both
current and future applications, especially considering that such structures have
already been fabricated using an existing CMOS process [89] which is capable of
resolving the feature sizes we have considered.

In addition to maintaining a high efficiency at the design wavelength, our feature-
size-constrained designs also maintain a reasonable bandwidth. Figure 5.30 shows
the coupling efficiency plotted as a function of wavelength for the “ideal” uncon-
strained design and the 65 nm design. In both cases, the 1 dB bandwidth is about
24 nm. This is partially due to the number of periods in the grating: in general,
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Figure 5.30: Plots of the coupling efficiency (top) and back reflection (bottom) as a function
of wavelength for the ideal optimized result (blue dashed line) and the 65 nm constrained
minimum feature size result (red solid line). Both cases achieve a high peak coupling
efficiency at 1550 nm as well as a modest 1 dB bandwidth of 24 nm. The reflection in both
cases is exceptionally low, reaching below −40 dB at 1550 nm.

the more periods a grating has, the narrower its bandwidth will be. The number of
grating periods used was kept the same, independent of the minimum feature size.
If necessary for a given application, this bandwidth could be increased by coupling
into a fiber with a smaller mode field diameter which would allow us to reduce the
number of periods within the grating. In addition to the number of grating peri-
ods, the insertion loss bandwidth is also reduced some as a result of the narrower
wavelength response of the back reflection plotted in the bottom of Fig. 5.30.

Depending on the application, the reflective properties of the grating may be
very important. In the case of both our unconstrained and constrained designs, the
back reflection into the input waveguide is exceptionally low at the design wave-
length. At 1550 nm, the unconstrained and constrained designs achieve reflections
of −43 dB and −41 dB, respectively. Although not explicitly part of the figure of
merit used during optimization, reducing reflection is important to improving the
overall insertion loss of the device. It is thus not unexpected that the optimal so-
lution has a very low reflectivity. It is worth noting that while the reflection is so
low at the design wavelength, it increases very quickly as the wavelength deviates
from 1550 nm, as indicated by the −20 dB bandwidth of only 8 nm. In situations in
which low reflection is required, the usable bandwidth of the device may be signif-
icantly smaller than the 1 dB insertion loss bandwidth. This is in part due to our
choice to emit vertically, which likely increases the sensitivity of the back reflection
to variations in wavelength. If a more broadband back reflection and coupling effi-
ciency is required, gratings designed to couple light at a small angle could be used.
Designing such gratings is a minor modification to the process we have presented
here.

In our previous discussion, we considered only the chip-to-fiber coupler case.
Depending on the application, the fiber-to-chip coupling case may be equally im-
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portant. Unfortunately, it is not immediately apparent that the two cases should
act in a reciprocal way. In order to get a sense of how well our designs perform
in he fiber-to-chip coupling case, we have performed additional simulations of the
structure at the design wavelength of 1550 nm. In these simulations, the grating is
excited by a 10.4µm mode field diameter Gaussian beam and the coupling efficiency
into the grating coupler waveguide as well as the back reflection into the input fiber
are calculated. In the case of our unconstrained design, we found that the coupling
efficiency was identical to the chip-to-fiber case shown previously while the back
reflection into the fiber was slightly reduced to −44 dB. In the case of our 65 nm
constrained design, the coupling efficiency was once again the same as the chip-to-
fiber case shown previously, while the back reflection was minimally increased to
−37 dB (which is still uniquely low).
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Chapter 6

Towards an Optimized Silicon
Photonic Component Library

Over the last two decades, silicon photonics has rapidly matured, leading to a grow-
ing interest in building large complex systems consisting of thousands of silicon
photonic components. A direct consequence of this push towards large scale inte-
gration is the need for high efficiency silicon photonic building blocks.

In this work, we have presented a concrete path towards realizing those essen-
tial silicon photonic building blocks. The foundation of our approach to designing
silicon photonic components is gradient-based shape optimization. A key enabling
aspect of our formulation of shape optimization is boundary smoothing based on
high numerical precision polygons. In addition to helping us calculate accurate
device sensitivities, this method affords us a great amount of flexibility when repre-
senting device geometries and enables us to incorporate design constraints directly
into optimizations in a simple and intuitive way.

Our approach to gradient-based optimization shares an important similarity to
other forms of shape and topology optimization employed in the nanophotonics
community: on its own, it is not a complete solution to designing high performance
and robust devices. Due to the inherently non-convex nature of electromagnetic
optimization problems, we cannot expect convex optimization to universally yield
good devices without outside input. In order to directly tackle this problem, we
have systematized the process of providing “outside input" through our hierarchi-
cal approach to design and optimization. Using a strategic combination of simple
physical analysis to find good starting geometries, optimization with coarse param-
eterizations, and constrained optimization with fine parameterizations, we have
shown that efficient and robust devices can be designed with minimal guesswork.

Using our hierarchical approach, we have demonstrated how a variety of silicon
photonic components can be designed with superior performance. These demon-
strations represent an important step towards realizing an optimized silicon photon-
ics component library. Nonetheless, numerous silicon photonics components remain
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Figure 6.1: Overview of already optimized silicon photonic components and components
which could benefit from optimization in the future.

which will benefit from hierarchical design and optimization (see Figure 6.1). Based
on the growing demand for efficient silicon photonic components and the ability of
shape optimization to meet those demands, we expect to see these methods play
an important role in a number of rising applications and industries that leverage
silicon photonics.
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Appendix A

Figures of Merit

In this chapter, we will review a variety of common figures of merit and derive the
derivatives needed for the adjoint method. In most optimizations that we concern
ourselves with in this dissertation, the figures of merit are built up from functions
which can be separated into two categories: functions of the fields and explicit
functions of the design parameters. The former set of functions are typically used
to describe the performance of a device while the latter functions are typically used
as penalties which constrain the device in some way. The way in which we leverage
these different types of functions can have a large impact both on the final result
we obtain from the optimization as well as the path the optimization takes to get to
that final result. As such, carefully constructing a figure of merit is an essential step
in setting up an optimization.

A.1 Functions of the Fields

The primary purpose of a figure of merit is to quantify the performance of a device.
The performance of an electromagnetic device is typically expressed as a function
of the electric and magnetic fields of the device. For example, our figure of merit
may measure propagating power or stored energy density, both of which can be
expressed as explicit functions of the electric and magnetic fields.

In this section, we will introduce a variety of different functions of the electric
and magnetic fields that we frequently use in figures of merit when optimizing elec-
tromagnetic devices. In each case, we will derive the relevant physical equations
and then follow the process described in Section 2.1.2 to derive the corresponding
derivatives, ∂F/∂~x, that we need in order to apply the adjoint method. The end re-
sults of these derivations can be used with the adjoint method to calculate gradients
efficiently and accurately.
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A.1.1 Power Transmission

In some optimizations, it is desirable to optimize the total power flowing through
a plane. In most cases, we work with the frequency domain fields and thus we are
concerned with the time-averaged power. In this case, the power is defined by the
flux of the time-averaged Poynting vector and has the functional form

PT =

∫∫
A

dA n̂ · 1

2
Re
{
E×H∗

}
(A.1)

Here the integral is taken over a planar surface A whose normal direction is n̂.
Numerically, the simplest way to approximate this integral is using a Riemann sum:

PT =
∑
i

∑
j

∆A n̂ · 1

2
Re
{
Eij ×H∗ij

}
(A.2)

where ∆A is the area occupied by a single field "sample" (which is related to how
the fields are discretized). In order to differentiate this function with respect to the
fields, it is useful to first explicitly write out the cross product and also expand the
Re{. . .} in terms of the Poynting vector and its complex conjugate:

PT =
∑
i

∑
j
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4
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)
− ny (ExH

∗
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(
ExH

∗
y − EyH∗x + E∗xHy − E∗yHx

) ]
ij

(A.3)

where we the ij on the square bracket means that everything within the square
brackets is evaluated at spatial index i, j. By explicitly writing the power flux as a
function of the individual field components, we have made the process of calculat-
ing its derivative with respect to each field component relatively straightforward.
In this case, the derivatives are

∂PT
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4
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4
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∗
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(A.4)

In most cases of interest, this plane will align with a Cartesian direction; As a
result, n̂ will equal either x̂, ŷ, or ẑ and the integral will be performed over the
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corresponding Cartesian plane. This greatly simplifies the integrand derivatives as
well. For example, if the normal direction of our integral plane lies along the x̂
direction, then the derivatives in Equation (A.4) simplify to

∂PT
∂Ex,ij

= 0

∂PT
∂Ey,ij

=
∆A

4
H∗z,ij

∂PT
∂Ez,ij

=
∆A

4
H∗y,ij

∂PT
∂Hx,ij

= 0

∂PT
∂Hy,ij

= −∆A

4
E∗z,ij

∂PT
∂Hz,ij

=
∆A

4
nxE

∗
y,ij

(A.5)

A.1.2 Power Absorbed

Another common function of the electric and magnetic fields is the power absorbed
by a lossy medium. From Poynting’s theorem, we know that the electromagnetic
power absorbed by a non-dispersive1 isotropic lossy material is given by

Pabs =
1

2

∫∫∫
V

dV J · E∗ =
1

2

∫∫∫
V

dV σE · E∗ (A.6)

where σ is conductivity of the medium and V is the volume in which the absorbed
power is calculated. You may be used to seeing an alternative form of this expres-
sion in which the absorbed power per unit volume is given by 1

2
Re{iωε̃E ·E∗} where

ε̃ is the complex permittivity. These two expressions are made equivalent by noting
that the imaginary part of the permittivity can be written in terms of the conduc-
tivity as ε′′ = σ/ω (see Appendix B for a short derivation). Numerically, we can
approximate this continuous expression as

Pabs =
1

2

∑
i

∑
j

∑
k

∆V σijkEijk · E∗ijk (A.7)

where the fields are now distributed on a grid with indices ijk. This expression is
relatively straightforward to differentiate with respect to the fields:

1For dispersive materials, the power stored in the fields and power absorbed from the fields is
modified slightly. This modification only superficially modifies the results in this section.
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The power absorbed is a bit of a unique function in that it contains a direct de-
pendence not only on the fields, but also on the design parameters. This is because
the conductivity may be an explicit function of the design variables. As such, in
order to calculate the gradient of a function involving power absorbed using the
adjoint method, we will also need to compute the derivative of this function with
respect to the design variables, i.e.,

∂Pabs

∂~p
=

1

2

∑
i

∑
j

∑
k

∆V
∂σijk
∂~p

Eijk · E∗ijk . (A.9)

It is important to account for this derivative when implementing a figure of merit
which contains the absorbed power.

A.1.3 Source Power Normalization

In many optimizations in nanophotonics, we seek to maximize or minimize a func-
tion which is normalized with respect to the total source power injected into the
system. For example, when optimizing a waveguiding device, we typically seek
to maximize the efficiency of the device which is defined as the fraction of input
power which leaves in the desired output mode. In such devices, we might expect
the source power to be independent of changes in the structure and thus assume
that it is just a constant multiplicative factor in our figure of merit. In reality, the
finite extent of our source current distribution can lead to small changes in source
power in response to changes in the permittivity distribution. These small changes
in source power can lead to potentially significant inaccuracies in the gradient if we
do not properly account for the source power in our adjoint source. We can account
for changes in the source power by treating it as function of the fields and taking
derivatives as we would any other figure of merit.

Based on Poynting’s theorem, the power injected into a system is given by
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∫∫∫
V

dV σE · E∗

= PT + Pabs

(A.10)

where V is a volume which fully encompasses the source current distributions and
∂V is the surface of that volume. When numerically representing the fields on a
rectangular grid, this expression can be rewritten once again in terms of Riemann
sums as shown in Equations (A.2) and (A.7). In this case, the volume is a rect-
angular prism defined by three ranges of indices, [i1, i2], [j1, j2], and [k1, k2]. The
surface of this volume is defined by six planes with unit normals pointing along the
three Cartesian directions (in each case, one in the positive direction and one in the
negative direction).

Typically, a power-normalized figure of merit will take the form

F (~E, ~H) =
f(~E, ~H)

Psrc

=
f(~E, ~H)

PT + Pabs

(A.11)

where f(~E, ~H) is a function with units of power and where we use the vector symbol
to denote that the fields are not only vector fields with x̂, ŷ and ẑ components but
also defined numerically as a set of vectors ~Ex, ~Ey, etc. We take the derivative of
this function by applying the quotient rule as we would any other derivative:

∂F

∂Ex,ijk
=

1

(PT + Psrc)2

[
∂f

∂Ex,ijk
(PT + Pabs)− (

∂PT
∂Ex,ijk

+
∂Pabs

∂Ex,ijk
)f

]
(A.12)

The derivatives with respect to the remaining field components have an identi-
cal form. In this expression, we assume ∂f/∂Ex,ijk is known. The derivatives
∂PT/∂Ex,ijk and ∂Pabs/∂Ex,ijk are given by Equations (A.4) and (A.8), respectively.
In the next section, we will discuss a very common example of power-normalized
functions which relies on this derivative.

A.1.4 Mode Match Transmission

Mode overlap, or mode-matched efficiency, refers to the fraction of power in an
incident field which resides in a desired mode of the system. Computing the mode
overlap is essential to determining the efficiency of many optical devices and is
therefore highly relevant to shape optimization. In this section, we will derive the
mode match integral and its derivatives.

Our first step determining the mode-matched efficiency is to express our input
field as a sum of the allowed propagating modes of the system. Specifically, the
basis we will use consists of the electric and magnetic fields of both forward and
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backward traveling waves. We begin by writing the electric field as a sum of these
basis functions,

E = Efwd + Eback (A.13)

=
∑
m

(
ameikmz + bme−ikmz

)
Em (A.14)

where the two terms in parentheses correspond to the forward and backward com-
ponents and are given separately by

Efwd =
∑
m

ameikmzEm (A.15)

Eback =
∑
m

bme−ikmzEm . (A.16)

In the expressions above, Em is the electric field profile of the mth mode of the
system. The magnetic field, meanwhile, can be written in a similar form. Applying
Faraday’s Law and assuming harmonic time dependence of the electric field, the
magnetic field can be written as an expansion of the forward and backward wave

H = Hfwd + Hback (A.17)

=
∑
m

(
ameikmz − bme−ikmz

)
Hm (A.18)

Notice in Eq. (A.18), that the backward propagating term is preceded by a
negative sign. This arises out of the requirement that power flow in the negative
direction (and hence the Poynting vector, Em×Hm point in the negative direction).
In both Eq. (A.18) and (A.14), we have chosen to write the fields as a sum of the
forward and backward traveling waves. In general, given an arbitrary field, we will
not know the forward and backward traveling components but only their sum. Our
goal now is to develop the machinery needed to separate the different forward and
backward traveling modes which compose an arbitrary field.

This is equivalent to finding the coefficients am and bm. To do so, we must take
advantage of the orthogonality condition of our electromagnetic basis which arises
as a result of Lorentz reciprocity and is given by [92]∫∫

A

dA · Em ×H∗n∫∫
A

dA · Em ×H∗m

= δmn (A.19)
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where δmn is the Kronecker delta. We apply this orthogonality condition by com-
puting the surface integral of E ×H∗m and rearranging terms yields an expression
relating am and bm to the electric field and mth mode

ameikmz + bme−ikmz =

∫∫
A

dA · E×H∗m

Sm
(A.20)

where Sm is related to the power propagating in the mth mode

Sm =

∫∫
A

dA · Em ×Hm
∗ . (A.21)

A second expression for am and bm can be found by computing the surface integral
of Em ×H∗ which yields

ameikmz − bme−ikmz =

∫∫
A

dA · E∗m ×H

S∗m
. (A.22)

With two equations and two unknowns, we are now able to solve for the coeffi-
cients. Adding the two equations produces an expression for am

am =
1

2
e−ikmz


∫∫
A

dA · E×H∗m

Sm
+

∫∫
A

dA · E∗m ×H

S∗m

 (A.23)

while subtracting them yields and expression for bm. Using these equations, decom-
posing a field E and H into the modes of the system is a straightforward calculation.
Mode matching requires that we take this one step further and determine how much
power is propagating in a desired mode. To find this, we compute the power propa-
gating through a plane in the forward wave, i.e. Pfwd = 1

2
Re{

∫∫
dA · Efwd ×H∗fwd}.

This calculation results in a sum whose terms correspond to the power propagating
in each mode. This power is more conveniently expressed as a fraction of the total
power propagating in the field:

ηfwd
m =

Pm
Pin

∣∣∣∣
fwd

= |am|2
Re {Sm}

Re
{∫∫
A

dA · E×H∗
} . (A.24)

Eq. (A.24) describes the fraction of power in an incident field that is propagating
in a desired mode of the system. In most cases, it is desirable to know the fraction
of total injected power which is contained in a desired mode. In order to get this,
we simply substitute Pin for the source power Psrc,



APPENDIX A — FIGURES OF MERIT 96

ηfwd
m = |am|2

Pm
Psrc

. (A.25)

where Pm = 1
2
Re{Sm} is the power in the source fields.

This expression can be further simplified by noticing that in most problems, a
backward traveling wave is not present at the output of the system. In this case, bm
equals zero and as a result∫∫

A

dA · E×H∗m

Sm
=

∫∫
A

dA · E∗m ×H

S∗m
(A.26)

Taking this into account allows us to simplify Eq. (A.24) to

ηm =

1
2
Re
{∫∫
A

dA · Em ×H∗m

}
1
2
Re
{∫∫
A

dA · E×H∗
}

∣∣∣∣∫∫
A

dA · E×H∗m

∣∣∣∣2∣∣∣∣∫∫
A

dA · Em ×H∗m

∣∣∣∣2 (A.27)

where Em and Hm are the field profiles of the desired mode. This equation is the
most general form of the mode-matched efficiency. We can further simplify the
expression by noting that for a guided or free space mode, the integral

∫∫
A

dA ·Em×

H∗m is real valued. In this case we can cancel the first term in the numerator and
we find that the mode overlap is given by

ηm,guided =
1

4PmPin

∣∣∣∣∣∣
∫∫
A

dA · E×H∗m

∣∣∣∣∣∣
2

(A.28)

where we have chosen to write

Pm =
1

2
Re


∫∫
A

dA · Em ×H∗m


Pin =

1

2
Re


∫∫
A

dA · E×H∗


which describe the power in the incident field and the power in the desired mode
(neither of which are guaranteed to be normalized to unity power).

For the sake of flexibility, we will typically employ the more general Equation
(A.25) in our figures of merit. The derivatives with respect to the different field
components are a bit messy. To keep things organized, it is convenient to write
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the derivatives in terms of derivatives of the quantities am and Psrc. Given a field
component ψ ∈ {Ex, Ey, Ez, Hx, Hy, Hz}, the derivative of the mode match equation
is

∂ηfwd
m

∂ψ
= Pm

∂am
∂ψ
a∗mPsrc − ∂Psrc

∂ψ
|am|2

P 2
src

(A.29)

where we have used the fact that ∂a∗m/∂ψ = 0 for all of the field components (which
depends only on E∗ and H∗). Before calculating the derivatives of am, we first need
to express am in terms of discrete sums that we can calculate numerically. Once
again, for simplicity we use a Riemann sum:

am =
1

2
e−ikmz


∑
i

∑
j

∆A · Eij ×H∗m,ij

Sm
+

∑
i

∑
j

∆A · E∗m ×H

S∗m

 (A.30)

The derivatives of this function with respect to the different field components are
given by

∂am
∂Ex,ij

=
1

2Sm
e−ikmz(−nyH∗m,z,ij + nzH

∗
m,y,ij)

∂am
∂Ey,ij

=
1

2Sm
e−ikmz(nxH

∗
m,z,ij + nzH

∗
m,x,ij)

∂am
∂Ez,ij

=
1

2Sm
e−ikmz(nxH

∗
m,y,ij + nyH

∗
m,x,ij)

∂am
∂Hx,ij

=
1

2S∗m
e−ikmz(nyE

∗
m,z,ij − nzE∗m,y,ij)

∂am
∂Hy,ij

=
1

2S∗m
e−ikmz(−nxE∗m,z,ij + nzE

∗
m,x,ij)

∂am
∂Hz,ij

=
1

2S∗m
e−ikmz(nxE

∗
m,y,ij − nyE∗m,x,ij)

(A.31)

where nx, ny, and nz are the components of the unit normal vector n̂ of the in-
tegration surface. The derivative of the source power, meanwhile, is discussed in
detail in the previous section. Plugging these results into Equation (A.29) yields the
desired derivatives with respect to the fields.

A.2 Penalty Functions

In this work, we primarily focus on shape optimization, choosing to represent ma-
terial boundaries using polygons. Polygons are very flexible as they allow us to rep-
resent almost arbitrary shapes (as long as we have enough points in that polygon)
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and are relatively easy to work with. Furthermore, because polygons are inherently
geometric, it is very easy to constrain their shapes and sizes. Such constraints are
an essential part of designing devices which can be fabricated.

An easy way to implement these constraints is to introduce a penalty function to
the figure of merit. Penalty functions are additions to the figure of merit, i.e.,

F (~E, ~H, ~p) = f(~E, ~H) + P(~E, ~H, ~p) (A.32)

which either increase or decrease its value when certain criteria are or are not met.
For example, if we wish to maximize our figure of merit which is the coupling effi-
ciency to a desired output mode, we could add a penalty function which is negative
when a constraint is violated. This would cause the figure of merit to decrease,
forcing the optimization to navigate towards a different region of the design space.

This method of imposing constraints on our devices has the great advantage
that the constraints are directly incorporated into the optimization. The disadvan-
tage of these penalty functions, on the other hand, is that they do not guarantee
that the constraints are exactly satisfied. In practice, however, by weighting the
penalty functions sufficiently, we can be reasonably certain that the constraints are
not violated.

In this section, we will review common penalty functions which are explicit
functions of the design variables. In each case, we will derive the function and,
when practical, its derivatives.

A.2.1 Threshold Functions

A key component in most penalty functions is a threshold. This threshold is typically
implemented using two different functions: a step function or a rect function. In
cases in which a single “less than" or “greater than" constraint is required, we can
use a step function which is zero below a threshold value and equal to one above
a threshold value. In case where a “greater than X and less than Y" constraint is
required, we can use a rect function which is equal to one between two threshold
values and zero everywhere else.

In order to use threshold-based penalty function in our figures of merit, we
need analytic and smooth approximations of the step and rect functions and their
derivatives. These can be accomplished in a variety of ways. In our case, we will
draw inspiration from the Fermi-Dirac distribution which is effectively an analytic
approximation of a step function. In particular, we can define a step function as

H(x) =
1

1 + e−kx
(A.33)

where k determines the steepness of the step. Notice that as x→∞ H(x)→ 1 and
as x→ −∞H(x)→ 0 which is the desired behavior. The derivative of this function,
meanwhile, is
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Figure A.1: Plot of examples of analytic approximation of a step and rect function (top) and
their first derivatives (bottom).

dH

dx
=

ke−kx

(1 + e−kx)2
(A.34)

By controlling the value of k we can control how steep the step function is and how
sharp its first derivative is. Typically, when incorporating thresholds into our figure
of merit, we want to avoid making the step too sharp as it can lead to convergence
issues, especially if the threshold is initially violated.

In order to implement an analytic approximation of the rect function, we can
simply add two step functions,

u (x) = H(x+
1

2
)−H(x− 1

2
) (A.35)

which defines a rect function with a width of 1. Similarly, we can write the deriva-
tive of the rect function in terms of the derivatives of the step function:

du
dx

=
dH

dx

∣∣∣∣
x+1/2

− dH

dx

∣∣∣∣
x−1/2

(A.36)

Examples of the step and rect functions and their first derivatives are shown in
Figure A.1. In both cases, k = 70 which leads to a relatively sharp step. As de-
sired, the functions and their derivatives remain smooth, which is essential to the
optimization process.
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(x2,y2) (x3,y3)

x(t), y(t)

Figure A.2: Diagram showing the process of calculating the approximate radius of curvature
of a polygon. A parametric quadratic curve is fit to sets of three points. The curvature of this
parametric curve is solved for and used to represent the approximate radius of curvature of
the polygon.

A.2.2 Radius of Curvature

One of the most important class of constraints when optimizing nanophotonic de-
vices is feature size constraints. In general, when fabricating nanophotonic com-
ponents at any scale, we use deep UV lithography which cannot produce infinites-
imally small structures. In order to ensure that the devices we design can be fab-
ricated, it is thus essential that we impose constraints which limit the formation of
device features that are too small. One common example of this constraint is the
radius of curvature constraint which limits the curvature of the boundaries of our
structure.

It turns out to be relatively straightforward to impose radius of curvature con-
straints in optimization problems in which boundaries are defined using polygons.
We do this by calculating an approximate curvature at each point in the polygon
and then applying a smooth analytic thresholding function described in the previ-
ous section which reduces the figure of merit when the radius of curvature is below
the chosen minimum value. This soft constraint does not guarantee that the ap-
proximate radius of curvature at every point in the polygon will be larger than the
minimum value, however in practice the penalty can be made significant enough
that small curvature will not appear.

In general, the curvature of a polygon is ill-defined since it is made up of straight
segments. However, intuitively we know that with a sufficient number of points, a
polygon can resemble a smooth curve. We should thus be able to define an effective
radius of curvature that reflects the apparent smoothness. We accomplish this by
fitting higher order polynomials to sets of points in the polygon and then calculating
the curvature of those curves at each point as depicted in Figure A.2. An easy
implementation of this idea is to fit quadratic parametric curves to sets of three
points and compute the curvature at the middle point. These parametric curves
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take the form

x(t) = at2 + bt+ c (A.37)
y(t) = dt2 + et+ f (A.38)

where a-f are coefficients that we need to solve for using the coordinates of the
points in the polygon. For simplicity, we choose the t to range from 0 at (x1, y1), to
0.5 at (x2, y2), and terminate at 1.0 at (x3, y3). Based on this choice, it is relatively
easy to solve for the coefficients:

a =
1

4

[
x1 +

1

2
(x3 − x1)− x2

]
b = x3 − x1 − a
c = x1

d =
1

4

[
y1 +

1

2
(y3 − y1)− y2

]
e = y3 − y1 − d
f = y1

(A.39)

Given a solution to the parametric curve which fits three points of the polygon, we
can approximate the radius of curvature of the polygon of the middle point (x2, y2)
by evaluating the radius of curvature of the quadratic curve. The radius of curvature
of an arbitrary parametric curve is given by

R =
(x′2 + y′2)

3/2

x′y′′ − y′x′′
(A.40)

where x′ and x′′ denote the first and second derivatives of x with respect to t.
Differentiating the equations in (A.38), we find that the radius of curvature at the
middle point is

R2 ≈
[(a+ b)2 + (d+ e)2]

3/2

2d(a+ b)− 2a(d+ e)
(A.41)

We can repeat this same process for every point in the polygon by letting x1 = xi−1,
x2 = xi, and x3 = xi+1 where i is the index of each point in the polygon.

The radius of curvature of a circle calculated using this process is shown in
Figure A.3. When the circle is defined using fewer points, there is some visible
error in the estimated radius of curvature, which is to be expected. As the number
of points increases, the radius converges quickly to the desired value. It is important
to note that this process generally underestimates the radius of curvature. From the
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Figure A.3: Plot of the estimated radius of curvature of a circle with a radius of 1 (arb.
units) versus the number of points used to represent the circle (normalized with respect to
the radius of the circle). Even for smaller numbers of points, the error is reasonably low
and in general the radius is underestimated (which is preferred for the purpose of imposing
optimization constraints).

standpoint of imposing minimum radius of curvature constraints, this is preferable
to an overestimate.

With the radius of curvature now known, we can construct a penalty function
which reduces the figure of merit when the radius of curvature falls below the min-
imum value by applying a thresholding function that we discussed in the previous
section. Note that the estimated radius of curvature in Equation (A.41) can go neg-
ative. As a result, it is best to use a smooth rect function to define a positive and
negative threshold. In particular, given a minimum radius of curvature Rmin, our
penalty function will be

Proc(~p) = −αroc

∑
i

u
(
Ri(~p)

2Rmin

)
(A.42)

where Ri(~p) is the radius of curvature at each point in the polygon and αroc is the
minimum radius of curvature. Notice that if the estimated radius of curvature at
a point in the polygon is between −Rmin and Rmin, Equation (A.42) will drop to
−αroc. Adding this function to a figure of merit will penalize that figure of merit
when bumps in the boundary become too sharp, as desired. In many cases, the
field-dependent part of the figure of merit will relate to an efficiency and hence
its value will range from 0 to 1. With this in mind, we can typically set the value
of αroc to around 0.01, which is equivalent to penalizing the figure of merit by 1%
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efficiency for each point which violates the radius of curvature constraint. If a figure
of merit is not a measure of efficiency, however, choosing this value appropriately
may take some experimentation.

In addition to defining the penalty function, we also need its derivative. In this
case, the derivative is rather messy and laborious to compute. Fortunately, we can
can compute it using symbolic math libraries like sympy2 which will automatically
generate the code needed for the calculation. This reduces the likelihood of human
error.

A.2.3 Minimum Bridge and Gap Size

Due to the finite resolution of existing fabrication methods in nanophotonics, it is
often desirable to limit the sizes of bridges and gaps in a structure. Similar to the
radius of curvature, we can limit these sizes by imposing a penalty function which
consists of a threshold applied to a calculated gap width or bridge width at each
point in the polygon.

The process of calculating these widths is relatively straightforward for struc-
tures defined using polygons. First, we will calculate the approximate normal di-
rection at a point in the polygon. Next, we will calculate the distance from that
point to any other boundaries of the polygon (or other polygons) which intersect a
line extending from that point along its normal direction. These distances are the
bridge and gap widths.

Our first step is to calculate the normal direction at each point in the polygon.
Let the vertex of interest be (x2, y2) and its adjacent points be (x1, y1) and (x3, y3)
which are arranged in a counter-clockwise manner. The normal direction for this
point is approximately equal to

n̂2 =
1√

(x3 − x1)2 + (y3 − y1)2
[−(y3 − y1)x̂+ (x3 − x1)ŷ] (A.43)

= nxx̂+ nyŷ

Having found the normal direction at our vertex of interest, it is straightforward to
define the line which extends along the vertex’s normal direction and intersects the
vertex

x(t) = nxt+ x2 (A.44)
y(t) = nyt+ y2 (A.45)

which we refer to as the “normal line." Here, we have chosen to write the line
parametrically in terms of the parameter t. At t = 0, this line intersects the point

2https://www.sympy.org/en/index.html

https://www.sympy.org/en/index.html
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Figure A.4: Demonstration of gap and bridge width calculation for polygons. The gap and
bridge widths are calculated for a selected set of points (red dots) in a polygon (blue lines
and dots). These widths are marked using the red arrows and the accompanying numerical
values.

(x2, y2). Our goal now is to determine where else in this polygon the line intersects.
To do so, we consider each pair of adjacent points in our polygon and for that pair,
we find the parametric line which connects the two points. Given two points (xj, yj)
and (xj+1, yj+1), the parametric line connecting them is given by

xj(u) = ∆xju+ xj0 (A.46)
yj(u) = ∆yju+ yj0 (A.47)

where ∆xj = xj+1−xj and ∆yj = yj+1− yj. Notice that the line extends from point
j to point j + 1 as u ranges from 0 to 1. This makes it very easy to determine if
our normal line intersects this line between the two points. In order to find where
the normal line intersects the parametric lines connecting each pair of points in the
polygon, we simply equate x(t) = xj(u) and y(t) = yj(u) and solve for t and u. Do
this, we find that

t =
∆xj(y2 − yj0)−∆yj(x2 − xj0)

∆yjnx −∆xjny
(A.48)

and

u =
nx(yj0 − y2)− ny(xj0 − x2)

ny∆xj − nx∆yj
. (A.49)

Calculating u, we can determine if the normal line intersects the line segment con-
necting the two other points of the polygon. If the two lines do intersect, we can
find the distance between our vertex of interest and the intersection:
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dj =
√

[xj(u)− x(t)]2 + [yj(u)− y(t)]2 (A.50)

This gives us the width of the gap or bridge in our structure. In order to determine
whether the feature is a gap or bridge, we need only look at the sign of t. If t
is positive, then the line exits the polygon before intersecting another edge of the
polygon. This means that the distance in Equation (A.50) corresponds to a gap. If
the sign of t is negative, this means that the normal line crosses through the interior
of the polygon, and therefore the distance corresponds to a gap.

A demonstration of this process is shown in Figure A.4. The red dots correspond
to the points at which the gap and bridge widths are evaluated. The method is
proves very robust and yields consistent results for every point in the polygon.

With the gap and bridge widths calculated, we can define a minimum gap/bridge
width penalty function. We want our penalty function to reduce the figure of merit
when the gap/bridge width dj drops below a minimum width dmin. To accomplish
this, we use our analytic step function approximation,

Pgb(~p) = −αgb

∑
j

H(dmin − dj) (A.51)

where gb refers to“gap and bridge” and αgb is the weight of the penalty function.
As we have defined the process, the end result is unfortunately not differentiable

in some cases, which makes it potentially dangerous to use in an optimization. In
particular, if an edge is displaced such that it intersects a new normal line, the func-
tion will be discontinuous. This is a result of how we filtered the edge intersections
based on the value of u. To get around this, we can instead calculate the distance
to every edge line irrespective of whether or not the normal line intersects between
the two points that define each edge. Next, we modify the penalty function to
effectively “ignore" contributions which have u < 0 and u > 1:

Pgb(~p) = −αgb

∑
j

H(dmin − dj) u (uj − 1/2) (A.52)

Here uj is the parameter given in Equation (A.49). Notice that when uj is not
between 0 and 1, the distance does not contribute to the penalty function as desired.
This function is differentiable in all cases except when a normal line and edge start
out parallel but are modified such that they are no longer parallel. In this case,
however, the H(dmin − dj) value should remain remain near 0 for even modest
changes to the edge. As a result, the function should be nearly differentiable even
in this edge case.
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Appendix B

Nondimensionalized Maxwell’s
Equations

Normally, the magnitude of E and H differ by orders of magnitude. This difference
can lead to poor conditioning of the discretized system of equations which are used
to numerically solve Maxwell’s equations using frequency domain methods. As a
result, it is computationally advantageous to work with a dimensionless version of
Maxwell’s equations whose corresponding electric and magnetic fields are similar in
magnitude. Even when solving Maxwell’s equations using matrix-free method like
the finite difference time domain method, the dimensionless equations can simplify
the process of setting up and running simulations. In this section, we will briefly
derive a dimensionless form of Maxwell’s equations.

To derive the nondimensionalized Maxwell’s equations, we begin with the di-
mensionalized time-dependent Maxwell’s Equations,

∇× E +
∂B

∂t
= M (B.1)

∇×H− ∂D

∂t
− σE = J (B.2)

where M is the magnetic current density which we have included in order to sym-
metrize the equations. For the sake of simplicity, let us consider the specific case
in which the material properties are non-dispersive. In this case, we can rewrite
Maxwell’s Equations as

∇× E + µ
∂H

∂t
= M (B.3)

∇×H− ε∂E
∂t
− σE = J (B.4)
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In order to rewrite these equations in a dimensionless form, we first write nondi-
mensionalized forms of the variables in terms of the original dimensional variables.
We do this by separating the dimensional quantities into a constant factor which has
units and a second unitless quantity that possesses any spatial or time dependence.
These dimensionless quantities are:

r = r0r
′

t = t
′

ω0
E = E0E

′
H = H0H

′

J = J0J
′

M = M0M
′

µ = µ0µr ε = ε0εr
(B.5)

Here, E0, H0, M0, J0, r0, and ω0 are the as-of-yet unknown normalization factors.
The constants µ0 and ε0, meanwhile, are the vacuum permeability and permittiv-
ity and are known. Substituting these new dimensionless quantities into Equation
(B.4) yields:

E0

r0

∇′ × E
′ − µ0µrH0ω0

∂H
′

∂t′
= M0M

′
(B.6)

H0

r0

∇′ ×H
′
+ ε0εrE0ω0

∂E
′

∂t′
− σE0E

′
= J0J

′
(B.7)

Next, we isolate the curl quantities by multiply across by E0/r0 in the top equation
and H0/r0 in the bottom equation, which produces

∇′ × E
′ − µ0µrH0r0ω0

E0

∂H
′

∂t′
=
M0r0

E0

M
′

(B.8)

∇′ ×H
′
+
ε0εrE0r0ω0

H0

∂E
′

∂t′
− σE0r0

H0

E
′
=
J0r0

H0

J
′

(B.9)

Notice that these isolated curl quantities are now dimensionless since they are made
up of our new dimensionless quantities. It follows that the constant coefficients of
the remaining terms are also unitless. Furthermore, because we have yet to assign
values to any of the normalization factors, we are free to assign an arbitrary value
to these coefficients. For convenience, we make them all equal to one, i.e.,

µ0H0r0ω0

E0

=
µ0E0r0ω0

H0

=
r0M0

E0

=
r0J0

H0

= 1 (B.10)

This leaves use with four equations for the normalization factors but a total of six
unknowns. This tells us that we are free to arbitrarily choose the values of two
of the unknowns and the remaining unknowns will fall out of these expressions.
For convenience, we will choose to set ω0 = c/k0 where c is the speed of light and
k0 = 2π/λ0 where λ0 is a characteristic wavelength of the problem we are trying
to solve. Furthermore, we will assume E0 has a pre-defined value which ultimately
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will specify the amount of power in the system. Based on these two choices, the
remaining quantities are given by

r0 =
1

√
ε0µ0ω

=
λ0

2π
(B.11)

H0 =

√
ε0

µ0

E0 =
E0

η0

(B.12)

M0 =
√
ε0µ0ω0E0 (B.13)

J0 = ε0ω0E0 (B.14)

where η0 is the impedance of free space. Notice that there is one quantity we have
not yet dealt with: the conductivity. A convenient way of handling this is to relate
it back to the imaginary part of the permittivity using the Maxwell-Ampere law
assuming a harmonic time dependence (E ∼ exp(−iω0t)):

∇×H = σE− iω0εE

= −iω0(ε− i σ
ω0

)E

= −iω0ε0(εr − i
σ

ε0ω0

)E (B.15)

We can interpret this quantity in parentheses as the relative complex permittivity,
i.e.,

ε̃r = ε
′

r − iε
′′

r = εr − i
σ

ε0ω0

. (B.16)

Based on this, we can redefine the conductivity in terms of the imaginary part of
the relative permittivity:

σ = ω0ε0ε
′′

r (B.17)

Substituting this result along with our normalization factors into Equations (B.8)
and (B.9), we can write down the nondimensionalized Maxwell’s equations:

∇′ × E
′
+ µr

∂H
′

∂t′
= M

′
(B.18)

∇′ ×H
′ − ε′′rE− ε

′

r

∂E
′

∂t′
= J

′
(B.19)

Given solution to the dimensionless E
′ and H

′, we can define a mapping between
these dimensionless quantities and the “real world” dimensional quantities:
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E = E0E
′

(B.20)

H =

√
ε0

µ0

E0H
′

(B.21)

J = ε0ωE0J
′

(B.22)

M =
√
ε0µ0ωE0M

′
(B.23)

It is worth noting that in many situations we only care about computing normalized
powers. In such cases, the dimensionless quantities are sufficient on their own.

In some cases (for example when numerically solving the equations in two
dimensions) it is convenient to work with the time-harmonic form of Equations
(B.18) and (B.19). These equations are easily acquired by assuming the electric and
magnetic fields have a time dependence given by exp(−iω0t) = exp(−iω0t

′
/ω0) =

exp(−it′). In this case, we find that the non-dimensional time-harmonic form of
Maxwell’s equations are simply:

∇′ × E
′ − iµrH

′
= M

′
(B.24)

∇′ ×H
′
+ iεrE

′
= J

′
(B.25)

This resembles the normal form of the time-harmonic Maxwell’s equations with the
exception that there is no ω0ε0 multiplying E and H.
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Appendix C

Extending CW-FDTD Method to
Multiple Wavelengths

In our formulation of the finite difference time domain method, we excite the sim-
ulation using a ramped continuous wave source (i.e., single wavelength) and then
extract the amplitude and phase of the oscillating fields once they have stabalized
by fitting the field at each point in the domain with a sinusoid. This process can
easily be extended to multiple simultaneous wavelengths.

Our starting point is to rewrite Equations (3.13)-(3.15) to include multiple si-
nusoids corresponding to a sum of multiple ramped CW sources:

E(t1) = A1 sin(ω1t1 + ϕ1) + A2 sin(ω2t1 + ϕ2) + · · ·+ c (C.1)
E(t2) = A1 sin(ω1t2 + ϕ1) + A2 sin(ω2t2 + ϕ2) + · · ·+ c (C.2)
E(t3) = A1 sin(ω1t3 + ϕ1) + A3 sin(ω2t3 + ϕ2) + · · ·+ c (C.3)
· · · (C.4)

E(tM) = A1 sin(ωM tM + ϕ1) + A3 sin(ωM tM + ϕ2) + · · ·+ c (C.5)

As it is written, we have a nonlinear equation of M = 2Nλ + 1 variables (where Nλ

is the number of sources driving the fields). In order to make this problem easier to
solve, it is convenient to rewrite the sinusoidal terms as a sum of sin and cos, i.e.,
Aj sin(ωjti+ϕj) = Aj cos(ωjti)+Bj sin(ωjti). With this modification, we can rewrite
our previous field expressions as

~E = A1
~I1 + A2

~I2 + · · ·+B1
~Q1 +B2

~Q2 + · · ·+ ~c (C.6)

where ~Ij = [cosωjt1, cosωjt2, · · · ]T is the “in phase" vector and ~Q = [sinωjt1, sinωjt2, · · · ]T
is the “quadrature” vector. We can rewrite this expression in terms of matrices as,

~E = I ~A+Q~B + ~c (C.7)
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where ~A = [A1, A2, · · · ]T , ~B = [B1, B2, · · · ]T , and I and Q are rectangular matrices
with size M × Nλ whose columns are the ~Ij ’s and ~Qj ’s, respectively. To further
simplify this problem, let us combine the matrices I and Q into a single matrix D =
[IQ~1] and also combine the vectors ~A, ~B, ~c into a single vector F = [ ~AT , ~BT ,~cT ]T .
Doing so yields the simple matrix equation:

~E = D~F (C.8)

In order to solve for the amplitude and phase of the field, all we need to do is solve
for the vector ~F ,

~F = D−1 ~E (C.9)

For even large numbers of wavelengths (∼10), this system of equations is small and
quick to solve, making it an effective way to perform multi-wavelength simulations.
Furthermore, notice that D is identical for every single point in the simulation do-
main, while ~E changes for each point. If we factorize D using LU decomposition,
then the process of solving for F for each field value requires that we only solve a
simple forward and back substitution, which is computationally inexpensive.

Overall, the computational complexity of this method is low. Given Nλ wave-
lengths, the simulation time will grow as O(2Nλ + C) where C will typically be
at least an order of magnitude larger than most Nλ of interest. This means that
the simulation time typically will not increase significantly as more wavelengths
are added to the simulation. Conversely, the storage requirements will grow as
O(2Nλ + 1) and the time it takes to compute the final frequency-domain fields will
grow as O(N2

λ). For large numbers of wavelengths, the memory requirements may
become a bottleneck, however for Nλ ≤ 10, this method should be quite effective.
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Appendix D

Grating Coupler Derivations

D.1 The Grating Equation

Perhaps the most important tool in designing a basic grating coupler is the grating
equation. In its most common 1D form,

kin(Λ)− 2πm

Λ
= kc sin θ (D.1)

the grating equation gives the relationship between the periodicity Λ of the grating
coupler and its scattering angle θ. With this equation, we are able to design simpler
uniform grating couplers which serve as an excellent starting points for optimiza-
tions.

The origin of this relationship is easily explained using the simple geometric
arguments presented in Figure D.1. As a wave guided by the grating encounters an
etched groove, light is scattered, giving rise to a plane wave which propagates at
an angle away from the grating coupler. The phase accumulated by a guided wave
over one period of the grating is equal to

ϕg = kinΛ (D.2)

where kin is the effective wavenumber of the guided wave and Λ is the period of
the grating. In the time it takes for this guided wave to propagate from one groove
to the next, the wave scattered from the previous groove picks up a phase

ϕc = kcΛ sin θ (D.3)

where θ is the angle of the scatter waved with respect to the surface normal of
the grating coupler. Notice that all of these scattered waves will constructively
interfere if they are in phase. This is equivalent to saying the phase accumulated
by a scattered wave is within a factor of 2π of the phase accumulated by the guided
wave in one period of the grating, i.e.,
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kc

θ

n1

nc Λ

kin

φg = kinΛ

φc = kc Λ sinθ
θ

Figure D.1: Diagram of phase matching of scattered waves in 1D grating couplers. Each
groove of the grating gives rise to a scattered plane wave. If the periodicity of the grooves
is just right, the phase of each scattered wave along the grating will be in phase with the
previous scattered wave.

ϕc + 2πm = ϕg (D.4)

where m is an integer. Geometrically, we see that ϕc = kcΛ sin θ. It follows that

kcΛ sin θ + 2πm = kinΛ (D.5)

Dividing by Λ and rearranging terms yields

kin −
2πm

Λ
= kc sin θ (D.6)

which is the familiar 1D grating equation (or phase matching condition). Notice
that the integer m in this equation gives the diffraction order. If the grating period
is sufficiently long, then multiple diffraction angles can satisfy the phase matching
condition (corresponding to different values for m). In general this is not desirable.

D.2 Focusing Grating Couplers

In reality, grating couplers are never truly one dimensional. Instead, a linear grating
coupler can be defined using a wide (> 10µm) slab which behaves like a 1D grating.
In order to couple light into this wide slab, very long (greater than 100µm) tapers
are typically required to ensure that light is only coupled into the fundamental mode
of the slab. If we make these tapers too short, the wavefront of the guided field will
begin to curve, which will result in a scattered field with a spread of undesired wave
vectors (i.e., the generated scattered field will not have the desired flat wavefront).

In order to get around this issue and reduce the overall footprint of the grating
coupler, we can use shorter tapers and curve the etched grating lines such that the
scattered field has only the single desired wave vector. Choosing the correct shape
of the grating coupler slots, however, is no longer as simple as applying the phase
matching process we introduced in the previous section.
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Instead, we need a more general wave vector matching condition that applies to
two dimensional structures, which we will derive now. Our starting point for this
derivation is the scalar wave equation,

∇2E(r) + k2
0n(r)2E(r) = 0 (D.7)

where E(r) is the scalar electric field, n(r) is the spatially-dependent refractive in-
dex, and k0 = 2π/λ is the wavenumber in vacuum. Note that this is only technically
valid if the refractive index varies only weakly. While the derivation relies on this as-
sumption, the end result works reasonably well for mediums with more significant
refractive index variations.

For the sake of simplicity, let us assume that the square of the refractive index
consists of a constant value which is modulated by a small amount, i.e.,

n2(r) = n2
g + ∆n2(r) . (D.8)

As a result of this small modulation in refractive index, the electric field will also
be perturbed with respect to the fields in a homogeneous medium with refractive
index ng. To account for this, let us assume that the electric field takes the form

E(r) = Eg(r) + ∆E(r) (D.9)

where Eg(r) is the electric field of a homogeneous medium and ∆E(r) is the pertur-
bation to that electric field due to the modulation in refractive index. Substituting
these expressions for n(r) and E(r) into Equation (D.7), yields

∇2 [Eg(r) + ∆E(r)] + k2
0

[
n2
g + ∆n2(r)

]
[Eg(r) + ∆E(r)] = 0 . (D.10)

If the modulation to the refractive index is sufficiently small, then any products
containing multiple ∆ terms can be neglected. In this case, we have

∇2∆E(r) + k2
0∆n2(r)Eg(r) + k2

0n
2
g∆E(r) +∇2Eg(r) + k2

0n
2
gE

2
g (r) = 0 . (D.11)

Notice that the right-most terms are simply the homogeneous wave equation. We
know that these two terms add to zero. Canceling these terms and moving things
around, we arrive at our perturbed scalar wave equation:

∇2∆E(r) + k2
0n

2
g∆E(r) = −k2

0∆n2(r)Eg(r) (D.12)

This tells us that the perturbation to the electric field is the solution to the wave
equation in a homogeneous medium which is excited by a source given by the
product of the refractive index modulation and homogeneous electric field!
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Our next step is to “solve" this equation. To do so, let us first recall that the
solution to the scalar wave equation in a homogeneous medium is a plane wave. In
other words, the unperturbed field Eg(r) takes the form

Eg(r) = a0e
ikin·r (D.13)

where a0 is the amplitude of the wave and kin is its wave vector. Because the homo-
geneous field is a plane wave, it is convenient to also represent the perturbed field
and modulation to the refractive index using a sum of plane waves. In particular,
let us write the perturbed electric field and modulation to the refractive index as
Fourier transforms, i.e.,

∆E(r) =

∫
dkB(k)eik·r (D.14)

and

∆n2(r) =

∫
dkN(k)eik·r (D.15)

where the limits of integration are assumed to be the same in both cases. Although
not yet apparent, we stand to learn a lot by solving for the coefficients B(k) and
N(k). We accomplish this by substituting these definitions into Equation (D.12),
which yields

∇2

∫
dkB(k)eik·r + k2

0n
2
g

∫
dkB(k)eik·r = −k2

0a0e
ikin·r

∫
dkN(k)eik·r (D.16)

Since the integrals are over k, we are free to move spatially-dependent quantities
inside the integrals. Doing so yields a slightly simpler expression:

∫
dk
[
∇2B(k)eik·r + k2

0n
2
gB(k)eik·r

]
= −k2

0a0

∫
dkN(k− kin)eik·r (D.17)

where in the integral on the right hand side we have also made the substitution
k → k − kin. Notice that up until this point, we have placed no constraints on
the limits of the integrals in Equation (D.14) and Equation (D.15) except that they
must be the same. Equation (D.17) must therefore hold regardless of the limits of
integration. According to the fundamental theorem of calculus, it follows that the
integrands must be equal as well, i.e.,

∇2B(k)eik·r + k2
0n

2
gB(k)eik·r = −k2

0a0N(k− kin)eik·r (D.18)

Notice that ∇2eik·r = −|k|2eik·r. Using this observation, we can solve Equation
(D.18) for B(k):
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B(k) =
−k2

0a0N(k− kin)

k2
0n

2
g − |k|2

(D.19)

This expression effectively gives us the amplitude of plane waves which sum to
form the perturbed electric field. Notice that if the modulation to the refractive
index contains a spatial frequency k∆n (i.e., N(k∆n) 6= 0), then the electric field
will contain a wave vector k = k∆n + kin with a corresponding non-zero amplitude.

It is important to note that this applies only to fields which exist within the pe-
riodically modulated medium. In the case of grating couplers, which we can model
as a fixed effective index with a finite-thickness periodic modulation, the field out-
side of the grating coupler is not constrained to this relationship. Nonetheless, any
fields that exist outside of the grating coupler must satisfy boundary conditions at
the grating coupler surface. This is equivalent to saying that the in-plane component
of the wave vector of the scattered fields (defined as the plane containing k∆n and kin)
must match the wave vector of the perturbed fields that we just found. In other words,
the in-plane component of the scattered wave vector must satisfy the condition

k‖ = kin + k∆n (D.20)

If the grating has a periodicity of Λ and the direction of modulation is k̂g, then this
expression can be rewritten in a slightly more enlightening way as

k‖ = kin +
2πm

Λ
k̂g (D.21)

where m is an integer. Note that the magnitude of the whole scattered wave vector
outside of the grating coupler must also have a magnitude according to the medium
its in, i.e.

|k| =
√
|k‖|2 + |k⊥|2 =

2πnc
λ

(D.22)

where nc is the refractive index of the cladding outside of the grating coupler and
λ is the vacuum wavelength.

Equations (D.20) and (D.21) are the most general forms of the grating coupler
equation. When working with either 1D linear grating couplers or 2D grating cou-
plers, these results can be reduced to more useful expressions.

In the case of the non-uniform 2D gratings, our first step in rewriting this equa-
tion in a more enlightening way is to note that as long as the grating does not
change too rapidly, then we can treat it as being locally periodic. In this case, the
wave vectors in Equation (D.21) are spatially dependent, i.e.,

k‖(x, y) = kin(x, y) +
2πm

Λ
k̂g(x, y) (D.23)
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Figure D.2: Diagram of the wave vectors in a focusing grating coupler. Light entering a
focusing grating diffracts as it propagates towards the grating line. This leads to different
wave vectors kin at different points along the grating lines. The grating lines are curved
such that the in-plane component of the wave vector of the scattered light always points
along the x̂ direction.

where we assume the grating is in the x, y plane. If the input wave vectors are
known and the desired output wave vectors are specified, then the normal direction
of the grating lines can be found by solving for k̂g(x, y). Doing so will yield a shape
for our non-uniform grating coupler.

A special type of non-uniform gratings which is of particular interest in silicon
photonics is the focusing grating. The focusing grating, depicted in Figure D.2,
consists of a wedge with relatively steep angles which has a curved grating etched
into it. Light entering this wedge from the input waveguide will diffract, causing
the wavefronts to curve. By curving the grating lines, we can compensate for the
curved wavefront in order to scatter into a beam with a single in-plane wavevector
component (were we to use straight grating lines, the scattered light would have a
curved wavefront which is not well matched to an optical fiber).

For the sake of simplicity, let us assume that the wavefront of the light in the
wedge slab has a circular wavefront. In this case, the incident wavevector has the
simple spatial dependence given by

kin(ϕin) = kin cosϕinx̂+ kin sinϕinŷ (D.24)

where ϕin is labeled in Figure D.2. Furthermore, the goal of focusing gratings is
typically to couple light into an optical fiber which is tiled at an angle with respect
to the z axis and lies within the xz plane. In this case, the in-plane part of the
scattered wave vector has a single component in the x direction. In particular,
the in-plane wave vector has the form k‖ = x̂ks sin θout where θout is the angle of
the fiber with respect to the z axis. Based on these assumptions, we can rewrite
Equation (D.23) in terms of its x̂ and ŷ components as
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Figure D.3: Simple geometric arguments used for simplifying focusing grating equation.

ks sin θ = kin cosϕin +
2πm

Λ
kgx (D.25)

0 = kin sinϕin +
2πm

Λ
kgy (D.26)

where kgx and kgy are defined such that k̂g = kgxx̂ + kgyŷ. Determining the shape
of our focusing grating is equivalent to finding its period and the trajectories of
the individual grating lines. In order to find the period in terms of convenient
quantities, we can square and add Equations (D.25) and (D.26) which yields

Λ =
mλ√

n2
s + n2

in sin2 ϕin − 2nsnin cosϕin sin θout

(D.27)

where λ is the vacuum wavelength, ns is the refractive index of the cladding, and
nin is the effective index of the incident guided wave within the grating. Notice
that if we set ϕin = 0, this expression reduces to the period obtained using the 1D
grating equation.

With the period known, we can now solve for the trajectories of the grating lines.
To do so, we first solve for the normal direction of the grating lines, k̂g, which is

kgx =
nin cosϕin − ns sin θout√

n2
s + n2

in sin2 ϕin − 2nsnin cosϕin sin θout

(D.28)

kgy = − nin sinϕin√
n2
s + n2

in sin2 ϕin − 2nsnin cosϕin sin θout

(D.29)

These two equations define the normal direction of the non-uniform grating lines,
which is enough to define the shape of the focusing grating. In particular, we can
define the tangent vector T̂g = −kgyx̂+kgxŷ of the grating lines. In order to construct
the grating lines, we can use a simple iterative process based on these spatially-
dependent tangent vectors:
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xg(t+ 1) = xg(t)− kgy∆t
yg(t+ 1) = yg(t) + kgx∆t

(D.30)

where xg(t) and yg(t) are parametric function which describe the positions of points
which lie along the grating lines. Starting with some initial position (x0, y0), we can
use this expression to draw grating lines.

A more common expression for the shapes of the grating lines, however, can be
derived using a few simple geometric arguments. Consider Figure D.3 which shows
an incident “ray" on the grating which has traveled a distance r. Geometrically,
we see that the period and the distance this ray travels between two period of the
grating are related by the equations

Λ = ∆r cos(ϕg − ϕin)

⇒ Λ = ∆r (cosϕg cosϕin + sinϕg sinϕin) (D.31)

where we have defined a new angle ϕg which describes the normal direction of the
grating lines, i.e., k̂g = cosϕgx̂ + sinϕgŷ. Substituting in Equations (D.27), (D.28),
and (D.29), we find that distance ∆r is given by

∆r =
mλ

nin − ns sin θout cosϕin

(D.32)

Notice because Λ and ∆r are proportional, this expression holds for any multiple of
the grating period. Based on this, we can write an arbitrary radial position of the
grating lines r = q∆r as

r =
qmλ

nin − ns sin θout cosϕin

(D.33)

where q is a real number. This expression defines ellipses for the focusing grating
lines and is consistent with other expressions presented in the literature [93]. In
general, however, Equation (D.30) may be easier to use.
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[49] J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint
couplers between arbitrary nanophotonic waveguide modes,” Optics Express,
vol. 20, pp. 7221–7236, Mar. 2012.

[50] L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković,
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