
Efficient Sampling of SAT and SMT Solutions for Testing
and Verification

Rafael Dutra

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-167
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-167.html

December 3, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Research partially funded by Brazilian Science Without Borders CAPES
13245/13-9; NSF grants CCF-1423645, CCF-1409872 and CNS-1817122;
DARPA CRAFT HR0011-16-C-0052; Intel Science and Technology Center for
Agile Design; ARPA-E U.S. DoE Award Number DE-AR0000849; ASPIRE Lab
industrial sponsors and affiliates Intel, Google, HPE, Huawei, LGE, Nokia,
NVIDIA, Oracle, and Samsung; and ADEPT Lab industrial sponsors and
affiliates Intel, Google, Siemens, SK Hynix, Apple, Futurewei, and Seagate.

Efficient Sampling of SAT and SMT Solutions for Testing and Verification

by

Rafael Tupynambá Dutra

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Koushik Sen, Chair
Adjunct Assistant Professor Jonathan Bachrach

Professor Sanjit Seshia
Professor Theodore Slaman

Fall 2019

Efficient Sampling of SAT and SMT Solutions for Testing and Verification

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License

by
Rafael Tupynambá Dutra

2019

To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

1

Abstract

Efficient Sampling of SAT and SMT Solutions for Testing and Verification

by

Rafael Tupynambá Dutra

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

The problem of generating a large number of diverse solutions to a logical constraint has
important applications in testing, verification, and synthesis for both software and hardware.
The solutions generated could be used as inputs that exercise some target functionality in
a program or as random stimuli to a hardware module. This sampling of solutions can be
combined with techniques such as fuzz testing, symbolic execution, and constrained-random
verification to uncover bugs and vulnerabilities in real programs and hardware designs. Stim-
ulus generation, in particular, is an essential part of hardware verification, being at the core
of widely applied constrained-random verification techniques. For all these applications,
the generation of multiple solutions instead of a single solution can lead to better coverage
and higher probability of finding bugs. However, generating such solutions efficiently, while
achieving a good coverage of the constraint space, is still a challenge today. Moreover, the
problem is amplified when the constraints are complex formulas involving several different
theories and when the application requires more refined coverage criteria from the solutions.

This work presents three novel techniques developed to tackle the problem of efficient sam-
pling of solutions to logical constraints. They allow the efficient generation of millions of so-
lutions with only tens of queries to a constraint solver, being orders of magnitude faster than
previous state-of-the-art samplers. First, a technique called QuickSampler, for sampling
of solutions to Boolean (SAT) constraints, with the goal of achieving a close to uniform dis-
tribution. Second, a technique called SMTSampler, which is designed to sample solutions
to large and complex Satisfiability Modulo Theories (SMT) constraints and aims at provid-
ing a good coverage of the constraint itself. Third, a technique called GuidedSampler,
which enables coverage-guided sampling of SMT constraints, by shaping the distribution of
solutions in a problem-specific basis.

The QuickSampler algorithm takes as input a Boolean constraint and uses only a small
number of calls to a constraint solver in order to produce millions of samples in a few
seconds or minutes. The samples satisfy the constraints with high probability (i.e., 75%),

2

and the invalid samples can be easily filtered out in a post-processing step. Our evaluation
of QuickSampler on large real-world benchmarks shows that it can produce unique valid
solutions orders of magnitude faster than other state-of-the-art sampling tools. We have
also empirically verified that the distribution of solutions is close to uniform, which was our
target distribution.

SMTSampler is an extension of the technique that allows efficient sampling of solutions
from Satisfiability Modulo Theories (SMT) constraints. This is important, since many con-
straints found in practical applications are more naturally represented by SMT formulas
that include theories such as arrays and bit-vectors. By working over SMT formulas di-
rectly, without encoding them into Boolean (SAT) constraints, SMTSampler is able to
sample solutions more efficiently, and also achieve a better coverage of the constraint space.
In our evaluation, we have also defined a new notion of coverage that better captures the di-
versity of SMT solutions, and have shown that SMTSampler helps improve this coverage.
SMTSampler works similarly to QuickSampler, leveraging a small number of calls to a
constraint solver in order to generate up to millions of stimuli. However, SMTSampler can
sample random solutions from large and complex SMT formulas with bit-vectors, arrays,
and uninterpreted functions. It also checks all samples for validity, only outputting valid
and unique solutions to the formula. Our evaluation on hundreds of benchmarks from SMT-
LIB shows that SMTSampler can handle a larger class of SMT problems, outperforming
QuickSampler in the number of samples produced and the coverage of the constraint
space.

GuidedSampler is an extension of SMTSampler that allows coverage-guided sampling of
SMT solutions, by letting the user specify a desired set of coverage points that will shape the
distribution of solutions. This is important because most current sampling techniques lack
a problem-specific notion of coverage, considering only general goals such as uniform distri-
bution, as in QuickSampler, or the coverage of the SMT formula, as in SMTSampler.
However, many applications would benefit from a more specific coverage definition, for exam-
ple, based on coverage points specified by the hardware designer. Our tool GuidedSampler
enables this greater flexibility by using the specified coverage points to guide the sampling
algorithm into generating solutions from diverse coverage classes. And even for applications
where a general notion of coverage suffices, our evaluation shows that the coverage-guided
sampling approach is more effective at achieving this desired coverage. GuidedSampler
is thus able to efficiently generate high-quality stimuli for constrained-random verification,
by sampling solutions to SMT constraints that also cover a large number of user-defined
coverage classes.

i

To my grandfather, Geraldo Aurélio Cordeiro Tupynambá, who first taught me how to use
a computer. He is an extremely intelligent and wise man, but also a good and generous

person, who cares about the well-being of others. He has given me great advice, including
on the choice of university and advisor for the PhD program.

One day when I was on the 7th grade, I had taken an exam for the Brazilian Mathematical
Olympiad and was still struggling with one of the problems1. He read the problem and

immediately came up with this beautiful construction, which was better than anything I
had done in several hours. At this point I already realized how brilliant he was.

Just recently he said to my grandmother that it was silly for me to be doing a PhD in
Computer Science, since I “already know everything about computing”. That is far from

true2, but I appreciate his confidence in me.

1XXV Brazilian Mathematical Olympiad 2003, Level 1, Phase 3, Problem 3.
2And it was much further from true when I started the PhD.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Sampling from Logical Constraints . 1
1.2 Sampling from SAT Constraints with QuickSampler 2
1.3 Sampling from SMT Constraints with SMTSampler 4
1.4 Coverage-guided Sampling with GuidedSampler 6
1.5 Outline . 7

2 Background 8
2.1 SAT Constraints . 8
2.2 Independent Support . 9
2.3 SMT Constraints . 10
2.4 Eager vs. Lazy SMT Solvers . 12
2.5 MAX-SAT and MAX-SMT . 12
2.6 Weighted Sampling . 13

3 Sampling from SAT and SMT Constraints 14
3.1 QuickSampler Technique . 14
3.2 SMTSampler Technique . 20

4 Coverage-guided Sampling 28
4.1 Formulation of Coverage-guided Sampling 28
4.2 GuidedSampler Algorithm . 29

5 Evaluation 35
5.1 QuickSampler Evaluation . 35
5.2 SMTSampler Evaluation . 46
5.3 GuidedSampler Evaluation . 51

iii

6 Related Work 60
6.1 Sampling from SAT Constraints . 60
6.2 Sampling from SMT Constraints . 61
6.3 Weighted Sampling . 62

7 Conclusion 63
7.1 Summary of Contributions . 63
7.2 Future Work . 65

Bibliography 69

A Academic Genealogy 75

B Author’s Biography 81

iv

List of Figures

3.1 Combining two mutations over Boolean variables. 14
3.2 Eager combination of mutations. 19
3.3 Combining two mutations over v ∈ BV [8]. 26

4.1 Combining two mutations, with coverage predicates. 33

5.1 Average time per valid sample. 41
5.2 Average time per valid sample, including time to check validity. 42
5.3 Unique solutions produced over same amount of time. 42
5.4 Histograms comparing the distribution of solutions. 44
5.5 s820a 7 4 unique solutions. 45
5.6 enqueueSeqSK.sk 10 42 unique solutions. 46
5.7 Speed comparison between the different approaches. 50
5.8 Coverage comparison between the different approaches. 51
5.9 Unique classes covered: GuidedSampler vs. baselines. 56
5.10 Unique classes over time for one benchmark (with random predicates). 58
5.11 Uniformity over coverage classes for one benchmark (with random predicates). . 58

v

List of Tables

2.1 Types of SMT variables. 11

3.1 Example of SMT conditions to be flipped. 25

5.1 Correctness statistics for one epoch of QuickSampler. 37
5.2 Benchmarks for evaluation of QuickSampler. 39
5.3 Comparison of SAT sampling algorithms. 40
5.4 Mean ratio of sampling speeds across all benchmarks. 41
5.5 Chi-squared uniformity test. 44
5.6 Z3 tactics for conversion into SAT. 47
5.7 Average benchmark statistics for SMTSampler. 49
5.8 SMTSampler results over the benchmarks. 50
5.9 Average benchmark statistics for GuidedSampler. 54
5.10 Average number of unique coverage classes (using random predicates). 55
5.11 Mean ratios of the unique coverage classes reached and uniformity metric. . . . 57

vi

Acknowledgments

I would like to thank my aunt and my parents for visiting me in Berkeley, my mom for the
endless support, my grandmother and the whole family and friends for their warm reception
every time I went home, and my uncle Guilherme for first introducing me to programming
in C and GNU/Linux. I especially want to thank my boyfriend and friends I met in Berkeley
for making my life here so special, and the volleyball team at Cal for helping me live healthier
and happier.

For the insightful discussions and feedback, I want to thank the colleagues in my research
group Wontae Choi, Liang Gong, Ben Mehne, Rohan Padhye, Caroline Lemieux, Kevin
Läufer, Rohan Bavishi, Ed Younis and Azad. I especially thank the committee members for
their feedback on my thesis proposal during the qualifying examination, as well as the help
in reviewing the dissertation. Special thanks to my advisor Koushik Sen for always believing
in me and supporting me through all those years, even at times when I did not believe in
myself. Thanks to presidents Lula and Dilma for the substantial investments in education
that brought me to where I am today, and also to Koushik, Jonathan, the ASPIRE Lab, the
ADEPT Lab, and the EECS Department for generously supplementing my funding.

Research partially funded by Brazilian Science Without Borders CAPES 13245/13-9;
NSF grants CCF-1423645, CCF-1409872 and CNS-1817122; DARPA CRAFT HR0011-16-C-
0052; Intel Science and Technology Center for Agile Design; the Advanced Research Projects
Agency-Energy (ARPA-E), U.S. Department of Energy, Award Number DE-AR0000849;
ASPIRE Lab industrial sponsors and affiliates Intel, Google, HPE, Huawei, LGE, Nokia,
NVIDIA, Oracle, and Samsung; and ADEPT Lab industrial sponsors and affiliates Intel,
Google, Siemens, SK Hynix, Apple, Futurewei, and Seagate. Any opinions, findings, conclu-
sions, or recommendations in this work are solely those of the authors and do not necessarily
reflect the position or the policy of the sponsors.

1

Chapter 1

Introduction

This chapter provides an introduction to the problems of sampling from logical constraints
and coverage-guided sampling, with some motivation and important applications provided
in Section 1.1. Sections 1.2, 1.3 and 1.4 then introduce our work in sampling from Boolean
satisfiability (SAT) [49] constraints, satisfiability modulo theories (SMT) [8] constraints, and
coverage-guided sampling [27].

1.1 Sampling from Logical Constraints

Given logical constraints, the problem of generating a set of random solutions to the con-
straints is important both in software and hardware testing and verification. For instance,
conventional symbolic execution [43, 23] and dynamic symbolic execution techniques [33, 66,
15, 14, 22, 48, 72, 3, 59, 2, 42, 64, 4, 62, 65, 34, 70, 5] generate a path constraint for each
prefix of feasible execution paths in a program and use an SMT-solver to generate a solution
for each such constraint. However, in practice, these techniques face scalability problems
because the number of paths for any reasonable program is astronomically large. Instead
of generating a single solution for the path constraint of a path prefix, one could generate
multiple solutions to randomly test multiple paths having the same prefix. We call this
approach constraint-based fuzzing. If multiple solutions could be generated efficiently, this
would significantly speedup symbolic execution and reap the benefits of random testing [75,
76, 10, 38, 39, 57, 32], by mitigating the computational cost associated with the symbolic
execution and constraint solving of those paths.

Those dynamic symbolic execution techniques, originally developed for software testing,
have also been applied to hardware, where they are known as symbolic simulation [12, 13].
They can be applied both at the level of Verilog or a higher-level HDL, such as Chisel [6].
Symbolic simulation executes the hardware with the inputs replaced by fresh symbolic vari-
ables and collects constraints that need to be satisfied to reach a certain execution path.
Such path constraints can then be solved to generate inputs for the circuit that will exercise
the target path. If a coverage point of interest can be specified by a path constraint, gen-

CHAPTER 1. INTRODUCTION 2

erating random stimuli that satisfy this constraint will allow a thorough exploration of the
coverage point.

Also in the context of hardware verification, a similar idea of constrained-random verifi-
cation (CRV) [55] has already been proposed to generate high-quality inputs for hardware
designs. In CRV, verification engineers specify preconditions required by the hardware and
other constraints based on domain-specific knowledge [77, 54]. Multiple random inputs satis-
fying the constraints are then generated using a stimulus generator that can sample random
solutions from a constraint. Those inputs are used to drive the design under test, in an
attempt to cover the design space and trigger faults. CRV is a very successful technique,
being one of the most widely used verification techniques in industry.

Random sampling could also have applications in synthesis problems. For instance, in
counterexample-guided inductive synthesis (CEGIS) [69], a verifier is responsible for checking
the candidate expressions produced by the learner and producing counterexamples for invalid
candidates. If, instead of producing a single counterexample, the verifier could sample a
diverse set of counterexamples, this could help the learner in finding a valid candidate faster.

All of those applications highlight the wide importance of the problem of sampling a
diverse set of solutions to logical constraints. However, despite its importance, performing
this sampling efficiently is still a challenging problem today [17]. There are approaches
which can provably sample according to a desired distribution [20, 36], but are expensive to
run when a large number of samples is required. Other approaches use heuristics for faster
sampling [73], but that can make the samples biased towards one portion of the sampling
space.

We tackle this problem by developing new sampling algorithms based on a novel idea of
combining mutations that can be applied to one solution in order to generate other solutions
to the constraint. We have identified a common structure in real-world constraints that
enables the combination of multiple such mutations in order to generate millions of new
solutions. This allowed us to develop a technique QuickSampler which applies this idea to
the generation of solutions to Boolean constraints, as well as a technique SMTSampler that
extends it to higher-level SMT formulas. Finally, our technique GuidedSampler enables
greater control of the distribution of solutions by the specification of coverage predicates.
Our experimental evaluation over hundreds of benchmarks shows that our techniques can be
orders of magnitude faster than previous sampling approaches.

1.2 Sampling from SAT Constraints with

QuickSampler

We now discuss our work on QuickSampler to sample solutions to SAT constraints. We
first chose to work over Boolean satisfiability (SAT) [49] problems because they are con-
ceptually simpler, and constraints from higher level domains, such as bit-vectors or other
satisfiability modulo theories (SMT) problems, could be mapped into SAT with an appro-

CHAPTER 1. INTRODUCTION 3

priate encoding. Our goal is to efficiently generate lots of random satisfying assignments to
SAT formulas, also known as SAT witnesses. We specify the desired distribution of solu-
tions as the uniform distribution, since we do not assume any problem-specific distribution
is provided.

For simplicity, we do not check the generated samples for validity during the sampling
phase, but we allow a post-processing step that can check each sample and filter out the
invalid ones. For some application domains, such as testing, it might also be acceptable if
a small fraction of the samples are not valid solutions, so the post-processing step can be
optional. Our original application for the technique was in software and hardware testing,
but the technique is very general, and could be applied to any scenario where SAT solutions
are required. For this testing domain, the most important metric is the number of unique
valid solutions generated over time. That is because each unique valid input can help cover
new portions of the program and find previously unseen bugs, while repeated samples do
not increase coverage.

With that in mind, we have designed QuickSampler, a new technique for efficient
sampling. QuickSampler uses a small number of constraint solver calls to generate a large
number of samples. QuickSampler works as follows. First, it finds a random assignment to
the variables of the Boolean formula (i.e., the constraint). Such an assignment may not satisfy
the formula. QuickSampler then uses a MAX-SAT solver to find a solution of the formula
that is close to the random satisfying assignment. It then flips the value of each variable
in the solution and again uses MAX-SAT to find another close solution of the formula.
The difference between the original solution and the modified solution is called an atomic
mutation. For each variable in the formula, this generates at most one atomic mutation.
A small bounded number of such atomic mutations are then combined and applied to the
original solution to generate a potentially new solution. We found that such combinations
of small atomic mutations often results in new valid random solutions. This is because each
atomic mutation identifies a small set of variables that are tightly coupled with each other,
whereas the variables from two different atomic mutations are often independent. Therefore,
if two such atomic mutations are combined and applied to the original solution, then the
resulting solution will often satisfy the formula. The entire process is repeated several times.
Since QuickSampler creates lots of solutions by simply combining atomic mutations, it
avoids making frequent solver calls (which is often the bottleneck). This in turn results in
quick generation of lots of random solutions.

We have implemented QuickSampler as an open-source tool. We use Z3 [26] to solve
MAX-SAT queries. The samples generated by QuickSampler are not guaranteed to satisfy
a given formula, but our experiments show that they are valid solutions in our benchmarks
with high probability (i.e., ≥ 0.75). QuickSampler also produces unique valid solutions
orders of magnitude (i.e., ≥ 1000×) faster than other state-of-the-art samplers, while gener-
ating a distribution of samples which is still close to uniform. For applications which require
only valid solutions, it is also possible to use our technique, by simply checking the samples
for validity and filtering out the invalid ones. Our evaluation shows that QuickSampler is
still faster than the other samplers, even when including this additional checking.

CHAPTER 1. INTRODUCTION 4

The main contributions of QuickSampler are:

• New technique implemented as an open source tool1 for efficient sampling from SAT
formulas.

• Novel approach that is able to produce millions of solutions from only tens of solver
calls.

• Evaluation against state-of-the-art techniques on a large set of complex benchmarks,
showing that it is orders of magnitude faster than previous approaches, while producing
a distribution which is still relatively close to uniform.

Other research groups have already leveraged QuickSampler for applications such as
bug synthesis [61] and testing of configurable systems [60], showing a good potential for the
applicability of the technique.

1.3 Sampling from SMT Constraints with

SMTSampler

While QuickSampler works well over Boolean constraints, many constraints obtained
from practical applications are more naturally expressed as Satisfiability Modulo Theo-
ries (SMT) [8] formulas. For example, constraints obtained from symbolic execution or
constrained-random verification (CRV) typically use bit-vectors to represent finite-precision
integer arithmetic and arrays to represent memory access. Such constraints are also getting
more complex, as they are increasingly being synthesized by automated formal methods,
for example by generating constraints from a high-level specification of the hardware inter-
faces [58].

Sampling from such SMT constraints using QuickSampler poses some challenges. It
is often possible to transform such constraints into SAT problems. However, this conversion
loses the high-level structure of the SMT formulas, which could be used for faster solving and
to help generate more diverse solutions. To address those challenges, we have developed a
new technique SMTSampler that can sample solutions directly from Satisfiability Modulo
Theories (SMT) [8] constraints that include high-level theories such as bit-vectors, arrays
and uninterpreted functions.

The problem of finding one solution to SMT constraints is well studied, with off-the-shelf
constraint solvers available [26]. SMT-LIB [7] provides a formal language and theories for
specifying the constraints, as well as a large set of industrial benchmarks for evaluation.
However, the problem of generating multiple diverse solutions from one SMT constraint is
much less studied in literature.

One big challenge to generating random stimuli from such constraints is that they can be
quite complex, involving linear and non-linear arithmetic over a large number of bit-vectors,

1Available at https://github.com/RafaelTupynamba/quicksampler/.

https://github.com/RafaelTupynamba/quicksampler/

CHAPTER 1. INTRODUCTION 5

arrays and uninterpreted functions. When solutions are sparse and non-linearly distributed,
traditional techniques such as MCMC samplers do not perform well, while techniques that
use constraint solvers to obtain each solution become too expensive.

Another challenge is making sure the solutions are diverse and cover a large portion of
the solution space. A good stimulus generator should avoid generating solutions which are
only trivially different, because those are less likely to trigger new behaviors in the circuit.
For example, if we have a constraint of the form x > 5 ∨ φ, where x is a 32-bit integer and
φ is a complex SMT formula possibly involving x and other variables, there are billions of
possible values for x which satisfy this constraint by simply satisfying the sub formula x > 5.
However, producing billions of solutions which only differ in the value of x while ignoring
other variables will likely not lead to new coverage and faults.

We developed a technique SMTSampler which can efficiently sample millions of solu-
tions from an SMT formula. SMTSampler works similarly to QuickSampler, by comput-
ing simple atomic mutations that can be applied to a satisfying assignment while preserving
the satisfiability of the formula. Those mutations represent minimal sets of bits that can be
flipped from the SMT variables of the formula to transform one solution into another solu-
tion to the formula. However, unlike QuickSampler, SMTSampler works directly over
SMT formulas including theories of bit-vectors, arrays and uninterpreted functions. We de-
fine atomic mutations for variables of each of those types, along with operations to combine
them. We show that this approach can still produce valid solutions with high probability,
even for large and complex SMT formulas. Another improvement over QuickSampler is
that we collect as many atomic mutations as possible and then adaptively combine subsets
of those mutations together, while avoiding invalid samples and enabling the generation of
a large number of valid solutions to the formula. Our evaluation shows that SMTSampler
can typically generate millions of solutions, using only hundreds of calls to the constraint
solver.

In order to evaluate the coverage of the constraint space, we define a metric for the
internal coverage of an SMT formula. The metric is defined by regarding the formula as a
circuit, so that it can serve as a proxy for the coverage that would be obtained in the design
under test. Our experiments show that working over the SMT formula directly generally
also improves this coverage.

The main contributions of SMTSampler are:

• Develop a technique SMTSampler and implement it in an open source tool2 for
efficient sampling from SMT formulas.

• Evaluate SMTSampler on a large set of complex benchmarks from SMT-LIB, com-
paring it against the baseline approach of converting the formula into SAT.

• Define a metric for internal coverage of SMT formulas and use it in evaluating different
sampling approaches.

2Available at https://github.com/RafaelTupynamba/SMTSampler/.

https://github.com/RafaelTupynamba/SMTSampler/

CHAPTER 1. INTRODUCTION 6

The SMTSampler technique is already being used by a hardware verification group at
Stanford for the purpose of constrained-random verification.

1.4 Coverage-guided Sampling with GuidedSampler

While we noticed that working over SMT formulas directly lead to increased coverage in
SMTSampler, the distribution of solutions was still far from ideal. The generated samples
could still be too biased and uninteresting. We address this limitation in GuidedSampler
by allowing user-specified coverage points to guide the distribution of solutions. For example,
consider our example constraint of the form x > 5 ∨ φ, where x is a 32-bit integer and φ
is a complex SMT formula, possibly involving x and other variables. SMTSampler might
be able to cover both disjuncts, but still be more biased towards one over the other. For
example, 97% of the solutions it generates might satisfy only the first disjunct x > 5, while
2% satisfy only the second disjunct φ and 1% satisfy both disjuncts. If there exists a bug
which can only be triggered by some inputs which satisfy both disjuncts, SMTSampler
might not generate enough inputs to find the bug. A better distribution of solutions would
be if, for example, 1/3 of the inputs satisfied only the first disjunct, 1/3 satisfied only the
second and 1/3 satisfied both.

In addition, general notions of coverage, such as uniform distribution [31, 17, 29], or
internal coverage of an SMT formula [28], may not be the most appropriate for a particular
problem. For example, when testing a hardware design that implements a finite-state ma-
chine, a better metric for coverage would be making sure all relevant states and transitions
are reached. QuickSampler or SMTSampler, on the other hand, might be too frequently
generating solutions from the most common state. Even in scenarios where a general notion
of coverage is suitable, our evaluation shows that existing sampling algorithms are not always
optimal in maximizing this coverage.

To address these challenges, we formulate the problem of coverage-guided sampling, where
the user can specify not only the constraint that must be satisfied, but also any number of
coverage predicates that will be used to guide the distribution of solutions. Each coverage
predicate partitions the set of solutions in two regions, determined by whether the predicate
evaluates to True or False for each solution. Taking into account all n coverage predicates,
the set of solutions is partitioned in up to 2n different regions, which we call coverage classes.
Our goal in coverage-guided sampling is to sample from each coverage class with equal weight.

We developed a technique, called GuidedSampler, which dynamically guides the search
of new solutions, by using the coverage predicates to generate solutions from different cov-
erage classes. Similarly to SMTSampler, it requires only a small number of calls to an
off-the-shelf constraint solver in order to generate millions of solutions. GuidedSampler
starts by finding one base solution from a random coverage class. Then, it finds some sim-
ple mutations that can be applied to this solution in order to generate another solution
from a neighboring coverage class. It then combines multiple of those mutations together
to generate new solutions from previously unseen coverage classes. Our evaluation shows

CHAPTER 1. INTRODUCTION 7

that GuidedSampler outperforms existing techniques in the number of coverage classes
reached, both when using general coverage predicates and also problem-specific coverage
predicates.

The main contributions of GuidedSampler are:

• Formally specify the problem of coverage-guided sampling.

• Develop a technique GuidedSampler and implement it in an open-source tool3 for
efficient coverage-guided sampling from SMT formulas.

• Evaluate GuidedSampler against existing techniques on a large set of complex bench-
marks from SMT-LIB, both using a general notion of internal coverage of SMT formulas
and a problem-specific coverage notion based on random predicates.

1.5 Outline

The dissertation is organized as follows. First, Chapter 2 presents background knowledge in
SAT and SMT constraints and solvers, as well as weighted sampling. Chapter 3 describes
in detail the QuickSampler [29] and SMTSampler [28] algorithms we developed for
efficient sampling of SAT and SMT constraints. Then, Chapter 4 describes our coverage-
guided sampling algorithm GuidedSampler [27]. Chapter 5 presents the experimental
evaluation of our new techniques. Finally, Chapter 6 discusses related work in sampling
from logical constraints, and Chapter 7 concludes the dissertation and proposes interesting
directions for future work.

3Available at https://github.com/RafaelTupynamba/GuidedSampler/.

https://github.com/RafaelTupynamba/GuidedSampler/

8

Chapter 2

Background

This chapter presents some background information about sampling from logical constraints
which will be used in the following chapters.

2.1 SAT Constraints

A SAT constraint is defined as a Boolean formula, which is a logical formula where all the
variables are of type Boolean, evaluating to either True or False (also denoted by 1 or 0).
We denote by Vars [φ] the set of variables in the formula φ. SAT formulas are commonly
expressed using the logical operators ∧,∨,¬. A literal li is either a variable xi or its negation
¬xi. A SAT formula is said to be in Conjunctive Normal Form (CNF) if it is expressed as a
conjunction of disjunctions of literals, i.e., it is a formula of the form

φ = C1 ∧ C2 ∧ · · · ∧ Cn

where each of the Ci is a disjunction of literals

Ci = l1 ∨ l2 ∨ · · · ∨ lki

Each Ci is called a clause of the formula φ. One example formula in CNF format is the
following:

(x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) (2.1)

SAT formulas obtained from practical applications are commonly expressed in CNF for-
mat and some SAT solvers require CNF formulas as inputs. The benchmarks we used for
evaluation of QuickSampler are provided in CNF format. However, QuickSampler can
also work directly over any SAT formulas without requiring conversion into CNF.

A solution to the formula, also called satisfying assignment or SAT witness, is an as-
signment σ to all the Boolean variables of the formula that makes it evaluate to True. We
represent by σJvK the value assigned to variable v in σ. For example, one solution to the
example formula (2.1) would be the assignment σ to the variables in Vars [φ] = {x, y, z} that

CHAPTER 2. BACKGROUND 9

satisfies σJxK = True, σJyK = False and σJzK = False. We denote by φ[σ] the Boolean value
resulting from evaluating φ under the assignment σ. The solutions to φ are the assignments
σ such that φ[σ] is True. We denote by Sols [φ] the set of solutions to the formula. This
formula φ has a total of |Sols [φ]| = 4 solutions, so a perfect uniform sampler for this formula
would return each possible solution with probability 25%.

2.2 Independent Support

An independent support of a formula φ is a subset of the variables S ⊆ Vars [φ] which com-
pletely determines all the assignments to a formula. More specifically, given an assignment
of values to the variables in the independent support S, there is at most one completion of
this assignment to the remaining variables which satisfies the formula. For example, consider
the XOR formula

φ = x⊕ y = (x ∧ ¬y) ∨ (¬x ∧ y) = (x ∨ y) ∧ (¬x ∨ ¬y)

We can say that the set S = {x} is an independent support for the formula. After the
value of x has been assigned, there is always at most one possible solution to the formula (in
this case, exactly one). We can think of all the variables that do not belong to S as being
dependent on the variables in S. In this case, for example, we need to have y = ¬x for the
formula to be satisfied. Note that the independent support is not unique. For this example
formula, S = {y} would also be a valid independent support.

Knowing an independent support is helpful in reducing the number of variables to which
we need to assign values. That is because it is enough for the sampling algorithm to as-
sign values only to the variables in the independent support, since all other variables can be
computed from those. In many cases, an independent support arises naturally from the appli-
cation. For example, when the Tseytin transformation is used to transform a combinatorial
logic circuit into a Boolean formula in conjunctive normal form (CNF), auxiliary variables
are introduced for all intermediate wires in the circuit. All of those auxiliary variables can
be uniquely determined given the inputs to the circuit, so the inputs form an independent
support. In cases when an independent support is not known for a formula, there are also
methods to compute a minimal independent support for it [40].

The benchmarks we used for the evaluation of QuickSampler included information
about the independent support. Many of those benchmarks had been converted into CNF
format through the Tseytin transformation, so an independent support was readily available.
Knowing an independent support S allows QuickSampler to only assign values to the
variables in S. For fairness, in our evaluation we compare QuickSampler to other sampler
which also leverage the information about the independent support and only assign values
to the variables in S.

Relying on an independent support could be seen as a limitation of QuickSampler,
since its performance will be degraded if no independent support is provided or computed,
as it will have to assign values to all the variables in the formula. However, we have shown

CHAPTER 2. BACKGROUND 10

in our SMTSampler work that this can be overcome with simple algorithmic changes to
the technique. SMTSampler successfully adapts our QuickSampler sampling algorithm
to sample solutions to large and complex SMT formulas, where we need to assign values to
hundreds of bit-vectors or Boolean variables (up to tens of thousands of bits in total). Our
evaluation shows that SMTSampler can efficiently sample from those large and complex
SMT formulas. It is also worth noting that in case we are given a very large SAT formula
without any independent support information, it is possible to use a method that computes
a minimal independent support for the formula [40]. Additionally, many of the large SAT
formulas found in practice are obtained from a transformation that naturally produces an
independent support. So it would be easy to leverage this information in sampling. How-
ever, our evaluation of SMTSampler shows that it is generally more efficient to sample
over the original high-level formula directly, instead of converting it into a low-level SAT
representation.

2.3 SMT Constraints

SMTSampler and GuidedSampler work over constraints coming from a subset of Satis-
fiability Modulo Theories (SMT) [8] formulas. More specifically, the constraints considered
are in the QF AUFBV logic of SMT, which are quantifier-free formulas over the theories of
bit-vectors, bit-vector arrays, and uninterpreted functions. We define the set of variables in
the formula φ as Vars [φ] = Bool∪BV ∪Array∪UF , where Bool , BV , Array , and UF are the
sets of variables of type Boolean, bit-vector, array, and uninterpreted function1, respectively.

The SAT formulas can then be considered as a subset of the SMT formulas which only
have variables of type Boolean. All SAT formulas can be represented using only operators
from combinatorial logic, such as ∧,∨,¬. The SMT formulas, on the other hand, are logical
formulas with terms (variables, constant symbols and function symbols) originated not only
from the SAT logic, but also from different theories. For example, the formula

select(a, 011) + v > 0110

contains an array variable a and a bit-vector variable v, two bit-vector constants 011 and
0110, an array function select , a bit-vector function +, and a bit-vector predicate >.

One of the theories that is commonly used in an SMT formula is the theory of fixed-size
bit-vectors. Here, we denote by BV [n] the sort of bit-vectors of size n. The theory of bit-
vectors includes the customary arithmetical and logical operations on bit-vectors, such as
additions, comparisons and bit-wise operations.

1Technically, UF should be a set of sets, each one for each uninterpreted function type. But in this work
we will just use UF to collect all the variables which are not of the previous types Bool , BV , Array , which
will be collectively labeled uninterpreted functions.

CHAPTER 2. BACKGROUND 11

Table 2.1: Types of SMT variables.

Type Example Value

b ∈ Bool σJbK = False
v ∈ BV σJvK = 01100111

a ∈ Array σJaK[x] =

0110, if x = 001

1001, if x = 011

0101, if x = 101

0010, otherwise

f ∈ UF σJfK(x, y) =

10, if x = 0 ∧ y = 10

01, if x = 1 ∧ y = 00

11, otherwise

Another theory common in SMT formulas is the theory of arrays, which consists of two
functions select and store that satisfy the usual axiom

select(store(a, x, y), x′) =

{
y, if x′ = x

select(a, x′), otherwise

Here, x, x′ ∈ BV [sx] are bit-vectors of a certain size sx and y ∈ BV [sy] is a bit-vector
with a possibly different size sy. Here, a is an array of domain BV [sx] and range BV [sy].
The function select returns the value at a given index from the array, while store produces
an array with a new value assigned to the given index.

The theory of uninterpreted functions is a free theory, so it does not add any new axioms.
Nothing is known a priori about the result of applying such a function to its arguments. For
example, if f is a unary uninterpreted function, we only know that we must have f(x) = f(y)
if x = y.

Table 2.1 shows example values for variables of each type, as possible values that could
be assigned in a given solution σ. Again, we denote by σJvK the concrete assignment to v
under σ.

Variables in BV are fixed-size bit-vectors, such as the variable v ∈ BV [8]. Arrays
must have bit-vector domains and ranges, such as the array a, with domain BV [3] and
range BV [4]. Uninterpreted functions can have any arity. The example shows the function
f : BV [1] × BV [2] → BV [2], of arity 2. A concrete instance α = σJaK for an array a is
constructed by defining its value for a finite set of indices I(α) and defining a default value

CHAPTER 2. BACKGROUND 12

d(α) for all other indices. In the example shown, I(α) = {001, 011, 101} and d(α) = 0010.
Typically, only a small number of indices will be relevant when solving a constraint, even for
array domains such as BV [64], which allows 264 possible indices. An analogous construction
is used for uninterpreted functions, where its value is defined for a finite set of argument
tuples.

2.4 Eager vs. Lazy SMT Solvers

Two main themes in SMT solving are the eager [67] and lazy [63] approaches. Different
solvers might implement one or the other, or even use a combination of eager and lazy
techniques. Either approach might be more advantageous, depending on the theories and
properties of the benchmarks [37].

The eager approach consists of eagerly encoding the high-level theories into a low-level
Boolean representation and then using a traditional SAT solver to solve the Boolean con-
straint, generally by using a DPLL-style algorithm [25] for CNF formulas. For example, one
possible encoding of bit-vector variables can be obtained by bit-blasting each variable into
the individual bits that compose it. Other encodings are also possible and could be more
efficient depending on the application. Once a solution to the SAT formula is obtained, it can
then be converted back to a solution to the original SMT formula, by using the appropriate
mapping between the SAT variables and SMT variables.

The lazy approach, on the other hand, works over the original SMT formula with high-
level theories by using both a SAT solver and theory solvers in cooperation [63]. The SAT
solver can provide assignments to the Boolean terms that would make the formula true and
the theory solvers can check if those assignments are feasible by checking if there is a solution
to the theory variables that generates the desired terms. Over time, each solver can provide
information to the other solvers to help the search process.

Our techniques SMTSampler and GuidedSampler work directly over the SMT con-
straints, so they do not mandate a particular encoding into SAT. They can then be used
with any desired SMT solving approach: eager, lazy or a hybrid.

2.5 MAX-SAT and MAX-SMT

Our techniques use MAX-SAT or MAX-SMT [56] problems, which are optimization problems
over a set of hard constraints and soft constraints, as defined below.

Definition 2.5.1. Maximum Satisfiability Problem (MAX-SAT). Given a set of SAT formu-
las {φ1, φ2, . . . , φm}, known as hard constraints, and a set of SAT formulas {ψ1, ψ2, . . . , ψn},
known as soft constraints, all over the same variables V = Vars [φi] = Vars [ψj], the MAX-
SAT problem

MAX-SAT({φ1, φ2, . . . , φm}, {ψ1, ψ2, . . . , ψn})

CHAPTER 2. BACKGROUND 13

is the problem of finding an assignment σ to the variables in V which satisfies all the hard
constraints φi and the maximum possible number of soft constraints ψj.

The MAX-SMT problem has the same definition, except that the hard constraints φi
and soft constraints ψj are allowed to be arbitrary SMT formulas including the supported
theories. Whenever the conjunction of hard constraints φ1 ∧ φ2 ∧ · · · ∧ φm is satisfiable,
the MAX-SAT or MAX-SMT problem has a solution, and different algorithms have been
proposed to efficiently solve the optimization problem and maximize the number of soft
constraints satisfied [52].

Our techniques do not require any particular MAX-SAT solving algorithm. The solver
we used, Z3 [26], already includes four different options of algorithms to solve MAX-SAT
optimization problems [9].

2.6 Weighted Sampling

A natural generalization of the uniform sampling of solutions is the problem of weighted
sampling, where a more general probability distribution is specified for the generated samples.
In its most general form, we could specify a weight function W : Sols [φ] → [0, 1] such that
each solution σ ∈ Sols [φ] should be sampled with probability W (σ).

In practice, more constrained weight functions can be defined that take one of some
particular forms. One possibility is literal-weighted sampling [36], where a weight is assigned
to each literal, so that the weight of a solution is the product of the weights of the literals
that compose it. For example, for a given variable x, one could assign a weight of 75%
to literal x and 25% to literal ¬x. This way, solutions where x = True are 3 times more
favorable than solutions where x = False. Literal-weighted distributions cannot specify all
possible weight functions, but are powerful enough for some practical applications.

For our work on GuidedSampler, we define another distribution of solutions designed
for coverage-guided sampling. Here, we assume that we are provided a set of coverage points,
which are predicates ψ1, ψ2, . . . , ψn on the variables of the formula that can be used to guide
the sampling algorithm. They can specify, for example, conditions that should be reached
during the verification of a hardware design. Given a set of n coverage points, they divide
the solution space Sols [φ] into at most 2n coverage classes, according to the evaluation of
the predicates for each solution. For example, one class of solutions could be the one where
predicate ψ1 evaluates to True and predicate ψ2 evaluates to False. The goal of coverage-
guided sampling, which will be presented formally in Chapter 4, is to give equal weight
to the different coverage classes in sampling. This coverage-guided distribution also cannot
represent all possible general weight functions, but it can be especially useful for applications
which already provide coverage points. It is also possible to specify coverage points from
the constraint itself, as sub-formulas of the formula φ. We show that this can be used as a
general way to generate diverse solutions to SMT formulas.

14

Chapter 3

Sampling from SAT and SMT
Constraints

In this chapter we introduce our techniques QuickSampler [29] and SMTSampler [28]
for efficient sampling of solutions to SAT and SMT constraints.

3.1 QuickSampler Technique

Given a Boolean formula φ, the goal of QuickSampler is to generate unique solutions
of φ efficiently. Another goal of QuickSampler is to make sure that solutions of φ are
sampled almost uniformly at random. The key idea behind QuickSampler is to make a
small number of solver calls to generate a large number of potentially unique solutions of
φ. The core algorithm behind QuickSampler works as follows. QuickSampler assumes
that we are given an initial random solution σ (i.e., a satisfying assignment to φ). In our
algorithm, this base solution σ is computed as the closest solution to a random assignment

σ : 0 1 0 0 0 1 0 1 1 0 1 1

δa : 1 0 0 0 1 1 0 0 0 0 0 0

σa = σ ⊕ δa : 1 1 0 0 1 0 0 1 1 0 1 1

δb : 0 1 0 0 0 1 1 0 1 0 0 0

σb = σ ⊕ δb : 0 0 0 0 0 0 1 1 0 0 1 1

(δa ∨ δb) : 1 1 0 0 1 1 1 0 1 0 0 0

σ̃ = σ ⊕ (δa ∨ δb) : 1 0 0 0 1 0 1 1 0 0 1 1

Figure 3.1: Combining two mutations over Boolean variables.

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 15

σ′, as will be described later. Solution σ can be represented as a vector of 1s and 0s, where
each location corresponds to a Boolean variable in φ and the value at that location in the
vector denotes the value assigned to this variable in the solution σ. Let Bool be the set of
all Boolean variables in φ. For example, in Figure 3.1 we show a possible vector σ, in a case
where the number of variables is |Bool | = 12.

For each variable v ∈ Bool , QuickSampler finds a solution σv such that σv and σ are
minimally different and σvJvK 6= σJvK, where σJvK is the value of the variable v in the solution
σ. Note that such a solution may not exist for all variables in Bool . The diff between σ and
σv, which we will denote using δv and which is the XOR of σ and σv, is called an atomic
mutation of σ. That is δv = σv⊕σ. In the example from Figure 3.1, if the first variable of the
formula is a, we might find a new solution σa which has the first bit flipped (corresponding
to variable a) and additionally other two bits flipped. The corresponding atomic mutation
δa is also shown in Figure 3.1. Similarly, if the second variable of the formula is b, we might
find a new solution σb as shown in Figure 3.1, which has the second bit (corresponding to
variable b) flipped, but also other 3 bits flipped. The corresponding atomic mutation δb is
again shown in Figure 3.1.

By definition, the atomic mutation δv always ensures that at least δvJvK is one, i.e., σ and
σv at least differ in the value of the variable v and difference in the values of the remaining
variables is minimal. We will later explain how a MAX-SAT query to a SAT solver can be
used to find σv given φ, σ, and v. Given σ, QuickSampler first computes the set of all
atomic mutations by going over all the variables v ∈ Bool . Let us denote the set of all such
atomic mutations by ∆1

σ. Note that given σ and δv, we can compute σv as δv ⊕ σ.
After computing ∆1

σ, QuickSampler computes sets of composite mutations ∆k
σ for

k > 1, where ∆k
σ contains the bit-wise OR of all sets of k distinct mutations in ∆1

σ. For
example, if δa and δb are two mutations in ∆1

σ such that a 6= b, then δa ∨ δb is a mutation
present in ∆2

σ. (Since each of δa and δb are bit-vectors, δa∨ δb is computed by taking bit-wise
OR of the two bit-vectors.) For example, after computing the atomic mutations δa, δb ∈ ∆1

σ

from Figure 3.1, the combined mutation δa ∨ δb is added to ∆2
σ. If we apply the combined

mutation to σ, by computing σ ⊕ (δa ∨ δb) we obtain a new assignment σ̃, as in Figure 3.1.
Note that σ̃ differs from σ on all the bits set in either of the two atomic mutations δa and δb.

This new assignment σ̃ is not guaranteed to be a valid solution, but we have found that
it has a high probability of being valid in real benchmarks1. This is because the differences
δa and δb consist of a minimal set of bits which can be flipped while still preserving the
satisfiability of the formula. So the bits in δa are likely to be closely related to each other
by some clauses in the formula. Such clauses remain true when those bits are flipped all
together, but are not true when a smaller number of bits is flipped. It is likely that those
clauses would still be satisfied in σ ⊕ (δa ∨ δb), where we flip all the bits from δa in addition
to the bits from δb.

In general, each mutation δ present in ∆k
σ denotes a composite mutation and can be

1Our heuristic to generate samples exploits the clause structure found in real-world benchmarks. We
expect it to perform poorly if applied to a randomly-generated SAT formula.

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 16

XORed with σ to get an assignment σ̃ to the variables in φ. Such an assignment may or may
not be a solution of φ. Surprisingly, in our experiments we found that for small values of k
(i.e., k ≤ 6), more than 73% of such assignments obtained by XORing are actual solutions
of φ. Let us denote the assignments obtained by applying all the mutations present in ∆k

σ

to σ by Σk
σ, i.e.,

Σk
σ =

{
δ ⊕ σ | δ ∈ ∆k

σ

}
We let Σσ = ∪1≤k≤6Σk

σ. We found experimentally that over all benchmarks, 75% of the
assignments in Σσ are solutions of φ.

We now make a few interesting and important observations about the set of assignments
Σσ. QuickSampler needs to make solver calls only to compute ∆1

σ. Moreover, it is not al-
ways necessary to make a solver call while computing the elements of ∆1

σ—if QuickSampler
flips the bit corresponding to the variable v in σ and discovers that the resulting bit-vector
is a satisfying assignment to φ, then QuickSampler can skip the solver call for δv. For the
computation of all other Σk

σ with k > 1, QuickSampler needs no solver calls because each
element in Σk

σ is obtained by applying at most k bit-wise Boolean operations. An assignment
in Σk

σ may or may not be a solution to the formula, however checking its validity is fast and
takes linear time in the size of φ. In summary, QuickSampler can potentially make solver
calls for the computation of Σ1

σ, but it makes no solver calls to compute the remaining sets
Σk
σ. Another observation is that size of Σk

σ could grow exponentially with k. This allows
QuickSampler to rapidly generate lots of unique solutions of φ by making very few solver
calls. From only |Bool | calls to the constraint solver, we can produce a large number of
assignments in Σσ, and a significant fraction (i.e., 75%) of those have been empirically found
to be solutions of φ. This forms the crux of QuickSampler’s core algorithm for sampling.

Given a random solution σ, we described how QuickSampler generates lots of solutions
that are small mutations of σ. We next describe how we generate a random solution σ.
QuickSampler first chooses a random assignment σ′ by picking the values of variables in
Bool uniformly at random. Then it uses a MAX-SAT query to find a closest solution σ to the
random assignment σ′. We picked this strategy to make sampling of solutions more uniform.
Overall, QuickSampler execution is divided into epochs. In each epoch, QuickSampler
generates a random solution σ using the method described above. Then it computes Σσ and
outputs the elements of Σσ. QuickSampler repeats this process in a loop until it has run
out of time budget or it has finished generating a user-specified number of solutions.

Now we describe how MAX-SAT queries can be used to obtain the random solution
σ and also to obtain the solutions σv for each variable v. As presented in Section 2.5,
the maximum satisfiability problem, or MAX-SAT, is defined as follows: given a set of
hard constraints and a set of soft constraints, find a solution which satisfies all the hard
constraints and additionally satisfies the maximum possible number of soft constraints. In
order to compute the random solution σ, we just need to specify one hard constraint that
the formula φ must be satisfied and |Bool | soft constraints indicating that the values of each
variable v should preferably be equal to their respective values in the random assignment
σ′, i.e., ∀u ∈ Bool : σJuK = σ′JuK. In order to compute each solution σv, we specify two

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 17

hard constraints and |Bool | − 1 soft constraints. The hard constraints are that the formula
φ must be satisfied and that the value of variable v must be flipped, i.e., σvJvK 6= σJvK. The
soft constraints are that the values of other variables should preferably remain the same, or
∀u ∈ Bool\{v} : σvJuK = σJuK.

QuickSampler Algorithm

Algorithm 1 shows the complete QuickSampler algorithm in pseudocode. In the main
QuickSampler function, for each epoch, we generate the random assignment σ′ and find
the closest solution σ. Then, function sample is responsible for obtaining new samples
from the base solution σ. It first outputs solution σ. Then, in a loop, it uses MAX-SAT
solver calls to try to flip each of the variables v. Whenever it finds a previously unseen
neighboring solution σb, QuickSampler outputs it and tries to combine its corresponding
atomic mutation δb with the previously seen atomic mutations δa, outputting a large number
of newly generated samples. The combine function implements the procedure described in
Figure 3.1 to combine the atomic mutations corresponding to σa and σb, generating a new
sample σ̃. If desirable, the output function can verify if the samples are valid or not and
filter out the invalid ones before outputting them. It could also check for uniqueness of
samples among all epochs, avoiding any repetition of samples.

We now describe Algorithm 1 in more detail. Our sampling algorithm is divided in epochs,
with each epoch being associated with a base solution σ. The main sampling function
QuickSampler(φ, S) works by repeatedly calling sample(σ, φ, S, unsatVars) to perform
one epoch of sampling. For each epoch, we choose a base solution σ as follows. First, we
choose a random assignment σ′ of variables in S, covering the whole space uniformly. Then,
function getConditions(φ, σ′, S) is used to collect the set Cσ′ = {v = σ′JvK | v ∈ S} of
conditions of the form v = σ′JvK which are true for assignment σ′. Finally, we use a MAX-
SAT query to find the closest solution σ to this random assignment. This strategy is chosen
to make the sampling more uniform, allowing the whole space of assignments to be explored.

Function sample(σ, φ, S, unsatVars) implements one epoch of the sampling algorithm
as follows. First, we output the base solution σ. We again use getConditions(φ, σ, S)
to collect the set Cσ = {v = σJvK | v ∈ S} of conditions which are true for assignment σ.
Then, for each variable v in the independent support S, we use a MAX-SAT query to find
a new solution σb which is as close as possible to σ, but has the value of v flipped. Those
neighboring solutions correspond to atomic mutations which can be combined to generate
new samples. We use the set neighbors to collect those neighboring solutions. Through
the whole epoch, we keep a map mutations (implemented as a hash table) which collects
all samples produced so far, mapping them to the number of atomic mutations which were
combined to produce them.

Whenever a new neighboring solution σb is found, we output it and create a map
newMutations of new samples which were discovered using σb. We add σb to newMutations
as a new sample of level 1 and, for every sample σa of level l < 6 in mutations , we combine
σa with σb, generating a new sample σ̃. If σ̃ is a previously unknown sample (not present

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 18

Algorithm 1 QuickSampler Algorithm.

1: function QuickSampler(φ, S)
2: unsatVars ← {}
3: while not done do
4: σ′ ← generateRandomAssignment(φ, S)
5: Cσ′ ← getConditions(φ, σ′, S)
6: σ ← MAX-SAT({φ}, Cσ′)
7: if not σ then break
8: sample(σ, φ, S, unsatVars)

9:

10: function sample(σ, φ, S, unsatVars)
11: output({σ})
12: Cσ ← getConditions(φ, σ, S)
13: neighbors ← {}
14: mutations ← new map(assignment → int)
15: for v in S where v 6∈ unsatVars do
16: σb ← MAX-SAT({φ, v 6= σJvK}, Cσ\{v = σJvK})
17: if σb then
18: if σb 6∈ neighbors then
19: neighbors ← neighbors ∪ {σb}
20: newMutations ← new map(assignment → int)
21: newMutations [σb] = 1
22: output({σb})
23: for σa in mutations where mutations [σa] < 6 do
24: σ̃ ← combine(σ, σa, σb, S)
25: if σ̃ 6∈ mutations .keys() ∪ newMutations .keys() then
26: newMutations [σ̃] = mutations [σa] + 1
27: output({σ̃})
28: for σ̃ in newMutations .keys() do
29: mutations [σ̃]← newMutations [σ̃]

30: else
31: unsatVars ← unsatVars ∪ {v}
32:

33: function combine(σ, σa, σb, S)
34: σ̃ ← new assignment()
35: for v in S do
36: δa ← σJvK⊕ σaJvK
37: δb ← σJvK⊕ σbJvK
38: σ̃JvK← σJvK⊕ (δa ∨ δb)
39: return σ̃

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 19

σa

1

σb

1

2

σc

1

2

3

2

Figure 3.2: Eager combination of mutations.

in mutations or newMutations), we output it and add it to newMutations as a new sample
of level l + 1. Finally, the samples from newMutations are merged into mutations . This
algorithm allows the generation of samples of level at most 6. We do not further com-
bine mutations of level 6 with new atomic mutations because the chances that the resulting
samples will satisfy the formula might be too low.

We next describe some important optimizations incorporated into the QuickSampler
algorithm, namely the eager generation of samples, the use of the independent support of
the formula, and the removal of unsatisfiable variables.

Eager Generation of Samples

In QuickSampler, we have decided to compute the combined mutations as soon as a new
atomic mutation is known because this way our algorithm can output new samples earlier,
without waiting for the completion of several MAX-SAT calls. On the largest benchmarks,
each solver call can be slow to complete, so it may be better to output all possible samples
we can from the solver calls which are already completed. We also found it essential to avoid
duplicates within one epoch, by keeping track of currently known mutations . Otherwise, we
would output too many repeated samples and perform unnecessary work computing them.

Figure 3.2 displays this eager generation. Each circle represents one mutation and inside
it we indicate the number of atomic mutations used to generate it. When solution σa is
returned by the solver, we learn one atomic mutation δa, represented by the first circle in
the figure. Then, as soon as solution σb becomes available, we learn the atomic mutation
δb and also combine it with δa to generate a mutation in ∆2

σ. Then, as soon as solution σc

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 20

becomes available, we learn the mutation δc and combine it with the three previously known
mutations in order to generate three new mutations. This is implemented as the nested loop
in line 23 of Algorithm 1. Whenever a new neighboring solution σb is found, it is immediately
combined with the previously known samples σa from the current epoch.

In conjunction with this eager generation of mutations, we also eliminate duplicate mu-
tations in the current sampling epoch. This is done by checking in line 18 of Algorithm 1 if
the new neighboring solution σb has already been found in the current epoch and checking
in line 25 if the newly generated sample σ̃ was already seen in the current epoch.

Independent Support

Similarly to UniGen2 [17], we can restrict our sampler to only operate over the variables
in an independent support S of the formula, instead of generating assignments to all the
variables in Bool . As described in Section 2.2, the independent support is a subset of
variables which completely determines all the assignments to a formula. More specifically,
given an assignment of values to the variables in the independent support S, there is at most
one completion of this assignment to the remaining variables which satisfies the formula.
So we can think of all other variables being dependent on the variables in the independent
support. Knowing an independent support is helpful in reducing the number of variables for
which we need to assign values.

In Algorithm 1, we only need to loop over the variables of the independent support S in
line 15. Also when combining mutations in function combine, we only need to assign values
to the variables in S.

Unsatisfiable Variables

If one MAX-SAT query MAX-SAT({φ, v 6= σJvK}, Cσ) for variable v returns no solutions,
we learn that v can only have one value in this formula. When this happens in the first epoch,
we record the variable v in a set unsatVars of unsatisfiable variables. Then, we do not try
to flip the value of v again in other epochs. We found that, over all benchmarks, on average
6% of the variables from the independent support were added to the set unsatVars . This
means that, after the first epoch, all subsequent epochs can work over a reduced sampling
set and avoid unnecessary solver calls.

3.2 SMTSampler Technique

We now describe SMTSampler, our extension of the QuickSampler technique to work
over SMT formulas. One approach that could be used to sample solutions from an SMT
formula is to first convert it into a SAT constraint. Then, an existing SAT sampler such as
QuickSampler could be used to sample solutions from the SAT formula. Such solutions
can then be converted back into solutions to the original SMT constraint. This is an eager

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 21

strategy of SMT encoding into SAT. However, our experiments show that working over
the SMT constraint directly enables greater efficiency in sampling and better coverage of
the constraint space for most benchmarks. That is why we developed SMTSampler, a
technique to sample solutions from the SMT formula directly, without requiring a conversion
into SAT. This enables the constraint solver to use any preferred encoding and solving
strategy, without mandating one particular SAT encoding. This way, we can take advantage
of lazy SMT approaches and more efficient encoding to capture bit-vector equivalences, bit-
vector operations and array operations.

Just like QuickSampler, SMTSampler uses a small number of calls to an off-the-
shelf constraint solver in order to generate a large number of solutions. The core idea is
still learning interesting ways that the solutions of a formula can be modified minimally to
generate new solutions (atomic mutations). We define a combination function which can be
used to merge the effects of several distinct atomic mutations over SMT variables of type
Boolean, bit-vector, array and uninterpreted function. It generates a compound mutation
and applies it to the original solution, producing a possibly new solution. The combination
function can be leveraged to generate millions of samples from just a few hundreds of atomic
mutations. The samples generated by the combination function are assignments which may
or may not satisfy the formula. However, our experiments show that they have a high
probability of satisfying the formula, even on large and complex industrial benchmarks.
Moreover, unlike QuickSampler, SMTSampler checks each generated sample for validity
and only outputs valid solutions.

SMTSampler works similarly to QuickSampler, except for the following differences.
First and foremost, since we want to sample directly from SMT formulas, the combination
function that combines mutations to generate new samples had to be extended to work over
variables of type bit-vector, array and uninterpreted function. Second, SMTSampler only
outputs valid solutions and it replaced the eager generation of samples in QuickSampler by
a new strategy of adaptive generation of samples based on accuracy. This change was required
because the simpler approach of outputting samples without checking them for validity was
producing valid samples with very low probability for large and complex SMT formulas.
By checking all samples for validity, only using valid samples in the combination function
to generate new samples, and finishing a sampling epoch early when accuracy becomes too
low, SMTSampler was able to match the high accuracy of QuickSampler (75%) for its
generated samples, even on large and complex SMT benchmarks. Finally, one last change
that was required in SMTSampler was the use of timeouts for scalability reasons. We
established a limit on the amount of time that can be spent computing neighboring solutions
in one single epoch. That is because some benchmarks have a very large number of variables
and it is not feasible to try to flip each bit in the base solution. We also applied a timeout
of 5 seconds for each MAX-SMT solver call because some MAX-SMT constraints were too
expensive to solve.

Next we present the full details of the algorithm. First, we describe the main sampling
procedure of SMTSampler. Next, we explain how one base solution is chosen for each
epoch, and how we discover a set of neighboring solutions to the base solution. Finally, we

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 22

describe how those solutions are used to generate new samples.

SMTSampler Algorithm

Algorithm 2 SMTSampler algorithm.

1: function SMTSampler(φ)
2: while not done do
3: σ′ ← generateRandomAssignment(φ)
4: Cσ′ ← getConditions(φ, σ′)
5: σ ← MAX-SMT({φ}, Cσ′)
6: output({σ})
7: Σ1

σ ← computeNeighboringSolutions(φ, σ)
8: output(Σ1

σ)
9: α← 1, k ← 1,Σσ ← Σ1

σ

10: while α ≥ αmin ∧ k < 6 do
11: (Σk+1

σ , α,Σσ)← combineMutations(Σk
σ,Σ

1
σ,Σσ, φ)

12: output(Σk+1
σ)

13: k ← k + 1

14:

15: function computeNeighboringSolutions(φ, σ)
16: Cσ ← getConditions(φ, σ)
17: Σ1

σ ← {}
18: for c in Cσ do
19: σ̃ ← MAX-SMT({φ, ¬c}, Cσ\{c})
20: if σ̃ then
21: Σ1

σ ← Σ1
σ ∪ {σ̃}

22: return Σ1
σ

23:

24: function combineMutations(Σk
σ,Σ

1
σ,Σσ, φ)

25: valid ← 0, checks ← 0
26: for (σa, σb) in Σk

σ × Σ1
σ do

27: σ̃ ← Ψσ(σa, σb)
28: if σ̃ 6∈ Σσ then
29: Σσ ← Σσ ∪ {σ̃}
30: checks ← checks + 1
31: if φ[σ̃] then
32: Σk+1

σ ← Σk+1
σ ∪ {σ̃}

33: valid ← valid + 1

34: return (Σk+1
σ , valid/checks ,Σσ)

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 23

Algorithm 2 presents the main SMTSampler procedure, which takes as input an SMT
formula φ. Just like QuickSampler, the SMTSampler algorithm works over several
epochs. In each epoch, we first sample one initial base solution σ. This is done by generating
a random assignment σ′ to the variables of the formula in line 3 and then using MAX-SMT
to obtain the solution σ which is closest to σ′ in line 5. Then, in line 7, we use the function
computeNeighboringSolutions to compute a set Σ1

σ of neighboring solutions for σ. This
function will also be described later.

As in QuickSampler, the core idea in SMTSampler is the combination of mutations
to generate new samples. We define a combination function Ψ : X ×X ×X → X, where X
is the space of all possible assignments to the variables Vars [φ] in the formula. We denote by
Ψσ(σa, σb) the application of the combination function to the base solution σ and two other
solutions σa and σb. Intuitively, the combination function Ψ computes the mutations which
can be applied to σ to generate σa and σb, then merges those two mutations together to
produce a new assignment. In QuickSampler, the combination function would be defined
as

Ψσ(σa, σb)JvK = σJvK⊕ ((σJvK⊕ σaJvK) ∨ (σJvK⊕ σbJvK))

For SMTSampler, we provide a natural extension of this definition that can handle bit-
vectors, arrays and uninterpreted functions. The assignment returned by Ψ is not guaranteed
to satisfy the formula, but in practice it is a solution with high probability. This is because
the atomic mutations capture the minimal changes that preserve the satisfiability of the
formula, and we designed Ψ to combine those changes in an additive way. The full definition
of Ψ will be presented later.

We next describe how function combineMutations uses Ψ to generate new samples.
We denote by Σ1

σ the set of neighboring solutions to σ obtained from computeNeigh-
boringSolutions. Starting from Σ1

σ, our goal is to compute sets Σk
σ which will contain

solutions generated by combining k atomic mutations, for 1 ≤ k ≤ 6. Throughout the cur-
rent epoch, we maintain a set Σσ of samples which were computed so far, both valid and
invalid. Initially, Σσ = Σ1

σ. There is no need to check the elements of Σ1
σ, since we know

they are valid samples, as they were obtained directly from the constraint solver.
Now assume that we already constructed a set Σk

σ. We can inductively build the set
Σk+1
σ as follows. For each pair of samples σa ∈ Σk

σ and σb ∈ Σ1
σ, we apply the combination

function Ψ to generate a new sample σ̃ = Ψσ(σa, σb). If σ̃ is an element of Σσ, it has already
been checked and is discarded. Otherwise, we add it to Σσ and check if it is a solution to
the formula. This checking is relatively fast, as it only needs to evaluate the formula using
the assignments in σ̃. If σ̃ is a solution, it is then added to Σk+1

σ .
Note that, unlike QuickSampler, in SMTSampler we do not use a strategy of eager

generation of samples. Instead, we compute the sets Σ1
σ,Σ

2
σ, . . . in order. We chose this

approach because it allows an adaptive generation of samples based on accuracy. During the
construction of Σk+1

σ from Σk
σ, we keep statistics on which fraction α of the checked samples

were valid. If this fraction is below a certain threshold αmin, such as 0.1, we do not generate

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 24

Σk+2
σ and instead just proceed to the next epoch. This adaptive generation of samples allows

us to avoid trying out too many invalid samples.
All the samples which are ultimately output by SMTSampler are the ones in ∪0≤k≤6Σk

σ,
where we define Σ0

σ = {σ}. Those are all solutions to the formula, as the ones which were
produced by the combination function for 2 ≤ k ≤ 6 have been checked for validity. We
have found that this adaptive generation of samples is essential in some SMT formulas to
avoid the generation of large number of invalid samples. We always use valid solutions as
arguments to the combination function, which enables it to generate valid solutions with
high probability.

Computing the Base Solution

The initial base solution σ for each epoch is computed similarly to QuickSampler. We
first generate a random assignment σ′ by choosing values to the Boolean and bit-vector
variables in the formula uniformly at random. We do not assign values to the arrays and
uninterpreted functions in σ′, because we do not know initially which indices will be relevant
for those variables. After generating σ′, we choose σ as a solution which is as close as
possible to σ′. This is done to explore as much of the solution space as possible, generating
base solutions σ from different parts of the space.

The problem of finding a solution σ which is as close as possible to σ′ can be encoded as
a MAX-SMT optimization problem to be solved by the constraint solver. We add one hard
constraint stating that the formula φ must be satisfied. For each bit-vector variable v, we
add one soft constraint v = σ′JvK stating that the v should have the same value that it had
in σ′. Analogously, we add one soft constraint b = σ′JbK for each Boolean variable b.

Computing Atomic Mutations

After generating a base solution σ, we first compute a set of neighboring solutions of the
base solution σ, before combining mutations to generate new samples. This is a different
strategy from QuickSampler, which would eagerly combine mutations as new neighboring
solutions are computed. In function computeNeighboringSolutions, the first step is
collecting the set of conditions Cσ which are true for σ. Then, MAX-SMT queries are used to
produce new neighboring solutions. Each MAX-SMT query attempts to flip one condition,
while maintaining the remaining conditions valid, if possible. We specify a maximum time
budget allowed for this phase, such as 20 minutes, which is one third of the total time budget
of one hour. If the time budget is enough to solve queries flipping each of the conditions
in Cσ, then all those queries will be made. Otherwise, we select randomly and uniformly
a maximum subset of the conditions to be flipped and solved in MAX-SMT queries within
the time limit. This is also essential for the large and complex SMT formulas handled by
SMTSampler. When the number of variables hits hundreds or thousands, it often becomes
infeasible to try to flip the values of each of them individually in MAX-SMT queries.

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 25

Table 3.1: Example of SMT conditions to be flipped.

Type Example Condition

b ∈ Bool b = False
v ∈ BV extract(v, 5) = 1
a ∈ Array extract(a[011], 3) = 1
f ∈ UF extract(f(0, 10), 1) = 0

Constructing Cσ. Function getConditions produces Cσ by collecting conditions for
each variable in the formula. Table 3.1 shows one example condition for each of the variables
types. Those are conditions that are valid for the example values from Table 2.1. Here,
extract is a function that takes a bit-vector v and an integer index i and returns the value
of the bit at index i in v.

The conditions are generated as follows. For each Boolean variable, we add one condition
b = σJbK asserting that the variable has the same value as in the base solution. For each
bit-vector variable, we add one condition for each of its bits. The condition is of the form
extract(v, i) = extract(σJvK, i), asserting that, when extracting the given bit from the bit-
vector, we obtain the same value that would be obtained from the base solution.

For each array a, we look at each of the indices I (σJaK) assigned in the concrete instance
of the array σJaK. For each such index x, we consider the concrete bit-vector σJaK[x] returned
by the array on such index, and we add one condition for each bit in this bit-vector, such as
extract (a[x], i) = extract (σJaK[x], i). The procedure for uninterpreted functions is analogous.
For each argument tuple that is assigned a value in the base solution, we recursively add
conditions according to the value type.

Computing Σ1
σ. Just like in QuickSampler, we compute neighboring solutions by pick-

ing one condition c ∈ Cσ and using a MAX-SMT solver call MAX-SMT({φ, ¬c}, Cσ\{c})
to flip this condition, while keeping the remaining conditions as soft constraints.

One challenge in solving the MAX-SMT optimization problems is that they are expen-
sive when the number of soft constraints is too large. For this reason, as an alternative,
SMTSampler also allows the strategy of specifying only one soft constraint per bit-vector
variable, instead of one for each bit in a bit-vector. For example, one would specify one
condition as v = 00100111, instead of 8 different conditions such as extract(v, 0) = 0 and
extract(v, 1) = 0. We evaluate this strategy in addition to our original strategy in Section 5.2.
This alternative approach only changes the soft constraints that are added to the MAX-SMT
query. For the hard constraint ¬c, we chose to always use conditions on the individual bits
of each bit-vector, because we found that this is important to generate a larger number of
atomic mutations and consequently a larger number of samples.

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 26

v : 1 1 0 0 0 1 0 1

δa = v ⊕ va : 1 0 0 0 0 1 1 0

va : 0 1 0 0 0 0 1 1

δb = v ⊕ vb : 0 0 0 1 0 1 0 0

vb : 1 1 0 1 0 0 0 1

(δa ∨ δb) : 1 0 0 1 0 1 1 0

ψv(va, vb) = v ⊕ (δa ∨ δb) : 0 1 0 1 0 0 1 1

Figure 3.3: Combining two mutations over v ∈ BV [8].

Combining Mutations

Now we define the combination function Ψ which is used to generate new samples. Assume
that we already know the base solution σ and two additional solutions to the formula σa
and σb, which are close to σ. Those additional solutions can be obtained by calling com-
puteNeighboringSolutions or they could be already generated by an application of the
Ψ function.

The combination function Ψ, which combines entire solutions, is constructed by defining
a method ψ to combine the values of each of the variables in the formula. We define

Ψσ(σa, σb)JvK = ψσJvK (σaJvK, σbJvK)

This means that, in order to produce the assignment Ψσ(σa, σb), we simply use ψ to
combine the assignments for each variable v ∈ Vars [φ].

Next, we define how the combination method ψ is applied to each of the variable types.
We first present the procedure for bit-vector variables and then generalize it to the other
types. Let u ∈ BV be a bit-vector variable in the formula. We use the notations v, va, vb to
represent the values assigned to variable u in each of the solutions σ, σa, σb, i.e., we define
v = σJuK, va = σaJuK, vb = σbJuK.

Consider the bit-vectors presented in Figure 3.3. Just like in QuickSampler, we define
the differences δa = v ⊕ va and δb = v ⊕ vb computed by a bit-wise XOR. Those differences
δa and δb indicate exactly which bits differ between the base value and each of the additional
values. One can think of those differences as mutations that can be applied to the base value
in order to produce a different value. For example, we can compute va as v ⊕ δa, where
the XOR operator is used to apply mutation δa to v. For bit-vectors, we define a combined
mutation through the OR operator, producing (δa ∨ δb). This resulting mutation can be
applied to the base value v, producing a new value v ⊕ (δa ∨ δb). Thus, for bit-vectors, ψ is
defined as

ψv(va, vb) = v ⊕ ((v ⊕ va) ∨ (v ⊕ vb))

CHAPTER 3. SAMPLING FROM SAT AND SMT CONSTRAINTS 27

For Boolean values, we use the same technique: ψb(ba, bb) = b⊕ ((b⊕ ba)∨ (b⊕ bb)). This
way, Boolean values behave the same as bit-vectors of size 1.

Now we define how to apply the combination method ψ to a base array α = σJaK and
two neighboring arrays αa = σaJaK and αb = σbJaK. Remember that our array models only
define explicit values for a finite set of indices. Assume that array α has explicitly defined
values for indices in the set I(α), and a default value d(α) for all other indices. Arrays αa
and αb are constructed analogously, with possibly different sets of assigned indices I(αa) and
I(αb). We define the combination function for arrays as

ψα(αa, αb)[x] =

{
ψα[x] (αa[x], αb[x]) , if x ∈ I(α) ∪ I(αa) ∪ I(αb)

ψd(α) (d(αa), d(αb)) , otherwise

This means that the assigned indices of the generated array will be I = I(α) ∪ I(αa) ∪
I(αb), the union of the assigned indices of each of the three arrays. If x ∈ I, then x may or
may not have a non-default value assigned for each of the three arrays, while if x 6∈ I, we know
that x has a default value assigned for all the arrays. This definition keeps the generated
array model ψα(αa, αb) simple, with explicitly defined values only for the set of indices I.
For uninterpreted functions, the combination function is defined analogously, with the set of
assigned argument tuples being the union of the assigned tuples for the base solution and
the two neighboring solutions. This completes the definition of ψ and, consequently, Ψ.

The definition of Ψσ(σa, σb) is a natural extension from the original QuickSampler
case, which only applied to Boolean variables. It obtains the mutation that generates σa
from σ and the mutation that generates σb from σ and then combines those two mutations
in an additive way. If σa and σb are neighboring solutions obtained from a MAX-SMT query,
those mutations are atomic mutations, which represent a minimal set of bits that can be
flipped and still preserve the satisfiability of the formula. Therefore, it is likely that there
exist some clauses in the formula which establish a strong dependence between those bits.
Since in the resulting sample we flip the bits which were flipped by either of the two atomic
mutations, it is likely that such clauses would still be satisfied. Our experiments demonstrate
that this combination of mutations is effective at generating diverse solutions, not only for
SAT formulas, but also for such complex SMT formulas.

We note that the combination functions are commutative and associative with respect
to the atomic mutations applied. More explicitly, we have Ψσ(σa, σb) = Ψσ(σb, σa) and
Ψσ (Ψσ(σa, σb), σc) = Ψσ (σa,Ψσ(σb, σc)). In SMTSampler, the samples generated in Σk

σ

can be seen as the combination of k atomic mutations.

28

Chapter 4

Coverage-guided Sampling

In this chapter we formalize the problem of coverage-guided sampling and introduce our
technique GuidedSampler [27], which is an extension of SMTSampler (presented in
Section 3.2) designed to tackle this problem.

4.1 Formulation of Coverage-guided Sampling

In the following definitions, let φ be a satisfiable SMT formula (i.e., Sols [φ] 6= ∅) over
variables V = Vars [φ] and let ψ1, ψ2, . . . , ψn be n SMT formulas which only include variables
from V (i.e., Vars [ψi] ⊆ V). The formulas ψi represent the coverage predicates of interest.

Definition 4.1.1. Coverage class. Each vector of Boolean values b = (b1, b2, . . . , bn) ∈ Bn
defines one coverage class Gb of formula φ over the coverage predicates ψ1, ψ2, . . . , ψn, as
follows:

Gb = {σ ∈ Sols [φ] | ψi[σ] = bi, i ∈ {1, 2, . . . , n}}

That is, the set of solutions to φ that satisfy ψi[σ] = bi for each predicate defines a class
of solutions of φ. Some of those classes might be empty, if they include no solutions to φ.
Let N be the number of non-empty coverage classes, N = |{b ∈ Bn | Gb 6= ∅}|. For each
assignment σ to the variables of φ, its coverage class is defined as

G[σ] = G(ψ1[σ],ψ2[σ],...,ψn[σ])

For our example formula φ = b ∨ (x+ 2 > y), if we have coverage predicates ψ1 = b and
ψ2 = x+ 2 > y, then G(False,False) = ∅ and there are only N = 3 non-empty coverage classes.

Definition 4.1.2. Ideal coverage-guided sampler. An ideal coverage-guided sampler for
formula φ with coverage predicates ψ1, ψ2, . . . , ψn is a random process that returns each
possible solution σ ∈ Sols [φ] with probability

P (σ) =
1

N · |G[σ]|

CHAPTER 4. COVERAGE-GUIDED SAMPLING 29

What this means is that we want to give equal weight to each of the non-empty coverage
classes. Every non-empty coverage class should have the same probability 1/N of being
sampled. Within each individual coverage class, all solutions should be sampled uniformly.

If we could enumerate all solutions to the constraint φ, an ideal coverage-guided sampler
could be constructed as follows.
(1) First, pick one non-empty coverage class uniformly.
(2) Then, uniformly pick one solution from that class.

However, for most practical problems, the number of solutions and coverage classes is
astronomically large. Our goal is to devise an efficient algorithm that can approximate an
ideal coverage-guided sampler.

4.2 GuidedSampler Algorithm

Just like SMTSampler, GuidedSampler also uses the core idea of computing mutations
that can be applied to one solution in order to generate other solutions to the formula. We
again define atomic mutations as the minimal changes between one solution and another
neighboring solution to the formula. We similarly define a combination function which can
be used to merge the effects of several distinct atomic mutations. This function generates
a compound mutation and applies it to the original solution, producing a possibly new
solution. While the initial computation of atomic mutations requires expensive solver calls,
the combination function does not, making it very efficient. This efficient combination of
solutions can be leveraged to generate millions of samples from just a few hundreds of atomic
mutations. The samples generated by the combination function are assignments which satisfy
the formula high probability, even on large and complex industrial benchmarks.

The main new contribution of GuidedSampler is that we explicitly try to generate
new solutions that belong to different coverage classes. This is achieved by three new
modifications to the SMTSampler algorithm that enable it to reach new classes of so-
lutions and also avoid sampling from the same repeated classes. Those modifications allow
GuidedSampler to implement coverage-guided sampling, where the distribution of solu-
tions generated is guided by the coverage predicates specified by the user.

Next we present the full details of the algorithm. First, we describe the main sampling
procedure of GuidedSampler. Next, we explain how one base solution is chosen for each
epoch, and how we discover a set of neighboring solutions to the base solution. Finally, we
describe how those neighboring solutions are used to generate new samples.

Main GuidedSampler Algorithm

Algorithm 3 presents the main GuidedSampler procedure, which takes as input an SMT
formula φ and n coverage predicates ψ1, ψ2, . . . , ψn. The main algorithm is based on our prior
tool SMTSampler. However, we added 3 important modifications to this base technique

CHAPTER 4. COVERAGE-GUIDED SAMPLING 30

Algorithm 3 GuidedSampler(φ, {ψ1, ψ2, . . . , ψn}).
1: function GuidedSampler
2: while not done do
3: (b1, b2, . . . , bn)← generateRandomClass(n)
4: Sb ← {ψ1 = b1, ψ2 = b2, . . . , ψn = bn}
5: σ′ ← generateRandomAssignment(φ)
6: Cσ′ ← getConditions(φ, σ′)
7: σ ← MAX-SMT({φ}, Sb ∪ Cσ′)
8: output({σ})
9: (Σ1

σ,Γσ)← computeNeighboringSolutions(σ)
10: output(Σ1

σ)
11: α← 1, k ← 1,Σσ ← Σ1

σ

12: while α ≥ αmin ∧ k < 6 do
13: (Σk+1

σ , α,Σσ,Γσ)← combineMutations(Σk
σ,Σ

1
σ,Σσ,Γσ)

14: output(Σk+1
σ)

15: k ← k + 1

16: function computeNeighboringSolutions(σ)
17: (b1, b2, . . . , bn)← (ψ1[σ], ψ2[σ], . . . , ψn[σ])
18: Sb ← {ψ1 = b1, ψ2 = b2, . . . , ψn = bn}
19: Cσ ← getConditions(φ, σ)
20: Σ1

σ ← {},Γσ ← {}
21: for c in Sb do
22: σ̃ ← MAX-SMT({φ, ¬c}, Cσ ∪ Sb\{c})
23: if σ̃ ∧ G[σ̃] 6∈ Γσ then
24: Γσ ← Γσ ∪G[σ̃]

25: Σ1
σ ← Σ1

σ ∪ {σ̃}
26: return (Σ1

σ,Γσ)

27: function combineMutations(Σk
σ,Σ

1
σ,Σσ,Γσ)

28: valid ← 0, checks ← 0
29: for (σa, σb) in Σk

σ × Σ1
σ do

30: σ̃ ← Ψσ(σa, σb)
31: if σ̃ 6∈ Σσ then
32: Σσ ← Σσ ∪ {σ̃}
33: checks ← checks + 1
34: if φ[σ̃] ∧ G[σ̃] 6∈ Γσ then
35: Γσ ← Γσ ∪G[σ̃]

36: Σk+1
σ ← Σk+1

σ ∪ {σ̃}
37: valid ← valid + 1

38: return (Σk+1
σ , valid/checks ,Σσ,Γσ)

CHAPTER 4. COVERAGE-GUIDED SAMPLING 31

to allow coverage-guided sampling based on the coverage predicates (changes are underlined
in Algorithm 3):

M1 Generate neighboring solutions from a neighboring coverage class, by flipping the values
of coverage predicates in function computeNeighboringSolutions.

M2 Discard solutions that belong to a previously seen coverage class in the current epoch
(lines 23 and 34).

M3 Randomize the coverage class of the initial base solution σ (lines 3-7), instead of gen-
erating σ based only on the random assignment σ′.

Next, we explain the algorithm in detail. The GuidedSampler algorithm works over
several epochs. In each epoch, we start by generating an initial random solution σ to the
formula, which we call a base solution. This is done by generating a random coverage class
Gb, as well as a random assignment σ′ to the variables of the formula in lines 3-6 and using
a MAX-SMT [56] solver call to obtain a solution σ which is closest to Gb and to σ′ in line 7.
The details of this procedure will be presented later. Then, in line 9, we use the function
computeNeighboringSolutions to compute a set Σ1

σ of neighboring solutions to σ that
belong to different coverage classes than σ. This function will also be described later.

For combining mutations, we leverage the same combination function Ψ constructed in
Section 3.2 for SMTSampler. Again, the combination function is defined as Ψ : X ×X ×
X → X, where X is the space of all possible assignments to the variables in V = Vars [φ].
We denote by Ψσ(σa, σb) the application of the combination function to the base solution σ
and two other solutions σa and σb. Intuitively, the combination function Ψ computes the
mutations which can be applied to σ to generate σa and σb, then merges those two mutations
together to produce a new assignment. The assignment returned by Ψ is not guaranteed to
satisfy the formula, but in practice it is a solution with high probability. This is because the
atomic mutations capture the minimal changes that preserve the satisfiability of the formula,
and we designed Ψ to combine those changes in an additive way.

We next describe how function combineMutations called by GuidedSampler in
line 13 uses Ψ to generate new samples. We denote by Σ1

σ the set of neighboring solutions
to σ obtained from computeNeighboringSolutions. Starting from Σ1

σ, our goal is to
compute sets Σk

σ which will contain solutions generated by combining k atomic mutations,
for 1 ≤ k ≤ 6. Throughout the current epoch, we maintain a set Σσ of samples which were
computed so far, both valid and invalid. Initially, Σσ = Σ1

σ. We also maintain a set Γσ of all
the coverage classes for which we have generated a solution in the current epoch.

Now assume that we already constructed a set Σk
σ. We can inductively build the set

Σk+1
σ as follows. For each pair of samples σa ∈ Σk

σ and σb ∈ Σ1
σ, we apply the combination

function Ψ to generate a new sample σ̃ = Ψσ(σa, σb). If σ̃ is an element of Σσ, it has already
been checked and is discarded. Otherwise, we add it to Σσ and check if it is a solution to
the formula. Following our modification M2, we also check if its coverage class G[σ̃] is one
for which we have already found a solution in the current epoch. Those checks are fast, as

CHAPTER 4. COVERAGE-GUIDED SAMPLING 32

they only need to evaluate the formulas using the assignments in σ̃. If σ̃ is a solution from
a previously unseen class, it is then added to Σk+1

σ .
Just like SMTSampler, during the construction of Σk+1

σ from Σk
σ, we also keep statistics

on which fraction α of the checked samples were valid. This allows stopping the combination
earlier when we detect that the algorithm is generating too many invalid samples. The
samples ultimately output by GuidedSampler are the ones in ∪0≤k≤6Σk

σ, where we define
Σ0
σ = {σ}. Those are all solutions to the formula, as the ones which were produced by the

combination function for 2 ≤ k ≤ 6 have been checked for validity.

Computing the Base Solution

Now, we describe how the initial base solution σ is obtained. We first generate a random
coverage class Gb by picking n random Boolean values b = (b1, b2, . . . , bn). We also generate
a random assignment σ′ by choosing values to the Boolean and bit-vector variables in the
formula uniformly at random. After choosing Gb and σ′, we want to find a solution σ which
is as close as possible to the coverage class Gb and to the random assignment σ′. This is
done to explore as much of the coverage classes and the solution space as possible.

The problem of finding a solution σ which is as close as possible to Gb and σ′ can be
encoded as a MAX-SMT [56] optimization problem to be solved by the constraint solver. We
add one hard constraint stating that the formula φ must be satisfied. We also add two sets
of soft constraints, Sb and Cσ′ . For each coverage predicate, we add one soft constraint to Sb
saying that the predicate ψi should be equal to the random Boolean bi. For each bit-vector
or Boolean variable v ∈ Vars [φ], we add one soft constraint to Cσ′ stating that variable v
should have the same value that it has in σ′.

Computing Atomic Mutations

After generating a base solution σ, we compute neighboring solutions of the base solution σ,
so that their atomic mutations can be combined to generate new samples. When doing so, we
want to generate neighboring solutions that are from different classes than the base solution
σ. We want our neighboring solutions to flip the value of some coverage predicates. The
first step is collecting a set of conditions Sb which are true about the coverage predicates
for the base solution σ. Then, MAX-SMT queries are used to produce new neighboring
solutions. Each MAX-SMT query attempts to flip one of those conditions, while maintaining
the remaining conditions valid, if possible. We also add soft constraints for the variables in
φ, saying that those variables should keep the same value they had in the base solution, if
possible. This is done because we want the neighboring solution to be as close as possible to
the original base solution, so that the atomic mutations are small and simple. We found that
this is essential for having a good probability of generating valid samples when combining
mutations.

CHAPTER 4. COVERAGE-GUIDED SAMPLING 33

Constructing Sb. The definition of Sb is the same that we presented before, for the com-
putation of the base solution. For each coverage predicate, we add one condition to Sb
saying that this predicate has the same value it had in the base solution σ. Then, in our
MAX-SMT queries, we will try to flip one of those conditions, while maintaining as many
as possible of the other conditions in Sb true. The goal is that the neighboring solution
produced should come from a neighboring coverage class, that only flips a minimal number
of coverage predicates.

Constructing Cσ. Function getConditions produces Cσ by collecting conditions for
each variable in the formula. The conditions can be, for example, extract(v, 5) = 1, saying
that the bit of index 5 in the bit-vector v has value 1. Those are the same conditions
generated by SMTSampler using its default strategy (SMTbit). For each bit inside each
variable in the formula, we add a condition asserting that this bit has the same value as in
the base solution.

Computing Σ1
σ. After collecting the conditions in Sb and Cσ, we want to compute neigh-

boring solutions by picking one condition c ∈ Sb and using the constraint solver to find a
solution to φ ∧ ¬c. However, the neighboring solution should be as similar as possible to σ.
We express such constraint by requiring that the new solution should satisfy the maximum
possible number of the remaining conditions in Sb\{c} and Cσ. Those requirements can be
specified as a MAX-SMT optimization problem. We specify two hard constraints {φ,¬c},
stating that we want a solution to φ that does not satisfy c. And we also specify as soft
constraints the conditions in Sb\{c} and in Cσ.

Combining Mutations

Bits Predicates

v : 1 1 0 0 0 1 0 1 0 1 0

va : 0 1 0 0 0 0 1 1 1 1 0

vb : 1 1 0 1 0 0 0 1 0 0 1

δa = v ⊕ va : 1 0 0 0 0 1 1 0 1 0 0

δb = v ⊕ vb : 0 0 0 1 0 1 0 0 0 1 1

(δa ∨ δb) : 1 0 0 1 0 1 1 0 1 1 1

ψv(va, vb) = v ⊕ (δa ∨ δb) : 0 1 0 1 0 0 1 1 1 0 1

Figure 4.1: Combining two mutations over bit-vectors of size 8. We also list values for 3
coverage predicates ψ1, ψ2, ψ3.

CHAPTER 4. COVERAGE-GUIDED SAMPLING 34

The combination function Ψ which is used to produce new samples is the same as in
SMTSampler. Our experiments demonstrate that this combination of mutations is effective
at generating valid samples, even for large and complex SMT formulas. We also found that
the coverage predicates tend to follow the same pattern. That is, when we compute the value
of a coverage predicate ψi on the resulting sample, most of the time it will be the same value
that would result from combining mutations of the predicate values. Figure 4.1 shows an
example of the combination method used to combine mutations over a bit-vector variable of
8 bits. As shown in the last 3 columns of Figure 4.1, the predicates in this case follow the
same rule. This helps our algorithm generate solutions from new diverse coverage classes.

35

Chapter 5

Evaluation

This chapter presents a detailed experimental evaluation of our new techniques. In Sec-
tion 5.1, we evaluate QuickSampler in terms of the correctness of samples generated, its
performance in comparison with previous state-of-the-art techniques and the uniformity of
the solutions. In Section 5.2, we evaluate SMTSampler in comparison to the baseline
approach of converting the formula into SAT, both in terms of the number of unique solu-
tions generated and the coverage of the SMT formula. Finally, in Section 5.3, we evaluate
GuidedSampler against SMTSampler and other baseline techniques, in terms of the
number of unique coverage classes reached and the uniformity of solutions over the coverage
classes.

5.1 QuickSampler Evaluation

We have implemented1 QuickSampler in C++, using Z3 [26] as the underlying solver.
QuickSampler uses the Z3 optimization subsystem νZ [9] in order to solve the MAX-SAT
queries. We also use the push() and pop() interfaces to efficiently add and remove constraints
from a single solving context.

QuickSampler takes as input a SAT formula in conjunctive normal form (CNF), rep-
resented in the DIMACS file format. The formula includes a list of variables which compose
its independent support.

Our implementation outputs the samples generated to a file without checking if they
are valid solutions. If desirable, it is possible to add a posterior check which verifies if the
samples are valid or not (and possibly filters out the invalid ones). We also do not check
for duplicates, which can appear between different epochs in the sampling algorithm. This
global check for uniqueness could also be added, but it would require an additional time
and memory overhead. Some applications might prefer not to keep all generated samples in
memory, and allow the generation of repeated samples instead.

1The source code is available at https://github.com/RafaelTupynamba/quicksampler.

https://github.com/RafaelTupynamba/quicksampler

CHAPTER 5. EVALUATION 36

We have implemented an offline analysis to check if the samples are valid and generate
histograms that count how many times each solution has been sampled. We record the
time taken by the sample generation and also the time taken by the checking phase. The
checking phase is not heavily optimized and for most benchmarks it was more expensive
than the sampling phase. We believe there is still room for improvement in the checking
phase, since all it needs to do is to propagate the values of the independent support to the
remaining variables and check if all clauses are satisfied.

Experiments

We evaluate QuickSampler by comparing against two state-of-the-art samplers, namely
UniGen2 [17] and SearchTreeSampler [31]. UniGen2 provides strong uniformity guar-
antees, by using hash functions composed of XOR constraints in order to partition the search
space into similar-sized bins.

SearchTreeSampler, on the other hand, uses the SAT solver to find pseudosolutions
(partial assignments to the first few variables) and progressively augments the pseudoso-
lutions into real solutions. SearchTreeSampler is only approximately uniform. The
uniformity can be increased with a higher number of samples per level k, but at a cost of
also increasing the number of solver calls required. In our experiments, we used the default
value of k = 50.

Both QuickSampler and UniGen2 can leverage the knowledge of an independent
support of the formula to improve sampling performance. So in order to make for a fair
comparison, we modified SearchTreeSampler to use this additional information. We
reorder the variables of the formula in order to place first the ones which are part of the
independent support. And we additionally tell SearchTreeSampler to finish sampling
after processing those variables and output pseudosolutions (assignments to the variables of
the independent support) that it has produced so far. Since an assignment to the independent
support can only be completed to one solution, there is no need to find assignments to the
remaining variables.

For the evaluation, we use the set of benchmarks from the UniGen2 paper [17] avail-
able online2. From the benchmarks listed in [17], we found 173 on the online repository.
The benchmarks include bit-blasted versions of SMT-LIB benchmarks, ISCAS89 circuits
augmented with parity conditions on randomly chosen subsets of outputs and next-state
variables, problems arising from automated program synthesis and constraints arising in
bounded model checking. Thus, they are representative of the kinds of constraints that
might appear in SMT formulas for software testing or circuit constraints for hardware.

On 10 benchmarks3, UniGen2 reported an error because the specified independent sup-

2Benchmarks and source code for UniGen2 were obtained from https://bitbucket.org/kuldeepmeel/

unigen.
3GuidanceService2.sk 2 27, GuidanceService.sk 4 27, IssueServiceImpl.sk 8 30, PhaseService.sk 14 27,

ActivityService.sk 11 27, IterationService.sk 12 27, ActivityService2.sk 10 27, ConcreteActivitySer-
vice.sk 13 28, NotificationServiceImpl2.sk 10 36, LoginService.sk 20 34.

https://bitbucket.org/kuldeepmeel/unigen
https://bitbucket.org/kuldeepmeel/unigen

CHAPTER 5. EVALUATION 37

Table 5.1: Correctness statistics for the samples produced in one epoch of QuickSampler
(average among all benchmarks).

Atomic mutations Total Valid %

0 1 1 100%
1 32 32 100%
2 511 492 96%
3 5619 5208 93%
4 47493 42179 89%
5 346367 282860 82%
6 2143385 1571553 73%

Total 2543409 1902325 75%

port is not really an independent support for the formula. In all those benchmarks, we
verified that the number of solutions computed by the exact model counter sharpSAT [71] is
larger than 2|S|, which should not happen if S is a real independent support for the formula.
So we decided to exclude those benchmarks from our results. The results in this section
include the remaining 163 benchmarks.

On 3 benchmarks, UniGen2 could not estimate the number of solutions: on par-
ity.sk 11 11, UniGen2 raised a floating-point exception and on isolateRightmost.sk 7 481
and listReverse.sk 11 43, the ApproxMC [19] model counter used by UniGen2 couldn’t fin-
ish even in 40 hours. On 2 benchmarks, UniGen2 estimated the number of solutions but
couldn’t produce any samples: on doublyLinkedList.sk 8 37 it timed out and on diagSten-
cilClean.sk 41 36 it ran out of memory.

The experiments were conducted on a 12-core, 3.50GHz Intel Core i7-5930K CPU. For
each benchmark, each of the algorithms was given one core and 1.5 GB of memory. For
QuickSampler and SearchTreeSampler, we allowed a maximum timeout of 1 hour, or
2 hours on the hardest benchmarks. We also stopped the sampling after a large number of
samples had been produced (at least 10 million samples).

For UniGen2, we requested the generation of 1000 samples for most benchmarks, allow-
ing up to 20 hours to produce them. On the hardest benchmarks, we reduced the number
of requested samples to 500. For all the benchmarks in which UniGen2 failed to produce
any samples, it times out after 20 hours even when the number of requested samples was 1.

Correctness of Samples

On Table 5.1, we list the average number of samples produced and how many of those were
valid, on one epoch of the sampling algorithm. The results were averaged across all 163
benchmarks. They are classified according to the number of individual atomic mutations

CHAPTER 5. EVALUATION 38

which compose the mutation. The base solution used in the epoch is the one with 0 atomic
mutations and the neighbors of the base solution obtained when flipping each bit correspond
to 1 atomic mutation. Those are always valid solutions to the formula, since they are obtained
as the result of solver calls.

From 2 to 6 atomic mutations, we see that the fraction of valid solutions decreases from
96% to 73%. And overall, 75% of all samples produced were valid, when we allow a maximum
of 6 atomic mutations. Table 5.1 shows that, by adjusting this maximum, we can change the
accuracy of the sampling. For example, with a maximum of 5 atomic mutations instead of 6,
the fraction of valid samples would increase to 83%. However, there would be a substantial
decrease in the quantity of samples produced. We have chosen to use the maximum number
of 6 atomic mutations to allow the generation of millions of samples, while still having a
reasonably good accuracy of 75%.

If n is the number of atomic mutations, the number of mutations of level 6 can go up to(
n

6

)
, a sixth-degree polynomial in n. This explains why we can generate millions of samples

from only tens of atomic mutations.

Performance Comparison

We define tq, ts, tu to be the average times taken by QuickSampler, SearchTreeSampler
and UniGen2, respectively to produce a valid sample. tq was computed as tq = Tq/(sq · p),
where Tq is the total execution time, sq is the total number of samples produced and p is
the fraction of samples which are valid for QuickSampler. We additionally define t∗q to be
the estimated time per valid sample that QuickSampler would require if it also checked
all samples for validity. t∗q was computed as t∗q = (Tq +Tc)/(sq · p), where Tc is the total time
taken to check the validity of all sq produced samples.

Table 5.2 shows the benchmarks used for the evaluation of QuickSampler. We have
included the largest benchmarks (more than 4000 variables), the benchmarks which were
listed as representative benchmarks in [17] and the benchmarks used for uniformity plots,
which will be presented later. This includes the benchmarks which QuickSampler or
SearchTreeSampler found hard.

The first group of columns in Table 5.2 shows basic information about the benchmarks:
size of the independent support, number of variables, clauses and solutions. The number of
solutions was obtained from UniGen2. On most benchmarks, an exact number of solutions
is known, while for some we only know an approximation (represented with ≈) and on
some UniGen2 failed completely to compute the number of solutions. The second group of
columns shows some results for QuickSampler: the number of epochs completed, number
of MAX-SAT solver calls, number of samples generated and fraction of samples which are
valid.

In Table 5.3, we show a performance comparison between the different techniques on the
same set of benchmarks. For QuickSampler, we repeat the information about the number
of samples generated and fraction of samples which are valid, and additionally include the

CHAPTER 5. EVALUATION 39

Table 5.2: Benchmarks for evaluation of QuickSampler.

QuickSampler
Benchmark |S| Vars Clauses Solutions Epochs Calls Samples Valid

blasted case47 28 118 328 262144 244 6616 10010929 0.564
blasted case110 17 287 1263 16384 1387 22208 10001202 0.822
s820a 7 4 23 616 1703 591872 128 3093 10002673 0.770
s820a 15 7 23 685 1987 722944 114 2759 10014350 0.674
s1238a 3 2 32 686 1850 2466250752 9 328 10140047 0.936
s1196a 3 2 32 690 1805 1038090240 11 393 10077447 0.803
s832a 15 7 23 693 2017 3713024 83 2014 10017640 0.818
blasted case 1 b12 2 45 827 2725 274877906944 1 89 10021799 0.739
blasted squaring16 72 1627 5835 1865275930882 0 65 10304220 0.209
blasted squaring7 72 1628 5837 274408144896 0 68 11344920 0.112
70.sk 3 40 40 4670 15864 8589934592 8 304 10134785 1.000
ProcessBean.sk 8 64 64 4768 14458 ≈7009386627072 1 86 10011221 0.906
56.sk 6 38 38 4842 17828 3690987520 9 334 10049283 0.930
35.sk 3 52 52 4915 10547 4398046511104 2 95 10717156 1.000
80.sk 2 48 48 4969 17060 1099511627776 2 126 10252598 1.000
7.sk 4 50 50 6683 24816 2199023255552 2 124 10139607 1.000
doublyLinkedList.sk 8 37 37 6890 26918 2038431744 106 3425 10003513 0.267
19.sk 3 48 48 6993 23867 2959802892288 1 89 10198861 0.937
29.sk 3 45 45 8866 31557 347892350976 2 120 10045170 0.855
isolateRightmost.sk 7 481 481 10057 35275 - 0 59 11191269 0.878
17.sk 3 45 45 10090 27056 274877906944 3 157 10181716 1.000
81.sk 5 51 51 10775 38006 18141941858304 1 52 11099585 0.867
LoginService2.sk 23 36* 36 11511 41411 ≈163840 272 6019 10001533 0.724
sort.sk 8 52 52 12125 49611 ≈88046829568 2 105 10563617 0.625
parity.sk 11 11* 11 13116 47506 - 68 615 3833 0.809
77.sk 3 44 44 14535 27573 18253611008 6 249 10014904 0.966
20.sk 1 51 51 15475 60994 37108517437440 1 52 11126152 0.910
enqueueSeqSK.sk 10 42 42 16466 58515 ≈3355443200 4 207 10008980 0.762
karatsuba.sk 7 41* 41 19594 82417 ≈1245184 2 86 670641 0.088
diagStencilClean.sk 41 36* 36 378131 2110471 ≈13 5 66 87 0.701
tutorial3.sk 4 31* 31 486193 2598178 ≈49283072 6 193 2114947 0.798

average times per valid sample tq and t∗q, in microseconds. The third and fourth groups of
columns present results for SearchTreeSampler and UniGen2: the number of samples
produced and the average time per sample, taken in comparison with the QuickSampler
time tq.

The mean value for some ratios of interest is shown on Table 5.4. For example, ts/tq ≈
102.5±0.8. This was computed by taking the average and the standard deviation of log10(ts/tq)
across all benchmarks.

Figure 5.1 shows a comparison of the average time per valid sample on all benchmarks,
against SearchTreeSampler and UniGen2. As reported in Table 5.4, QuickSampler
was on average 2.5 orders of magnitude faster than SearchTreeSampler and 4.7 or-
ders of magnitude faster than UniGen2. Overall, QuickSampler was only slower than
SearchTreeSampler on the benchmark diagStencilClean.sk 41 36, with ts/tq = 6.6·10−5.
We believe QuickSampler did not do well on diagStencilClean.sk 41 36 because the Z3
solver used in our implementation did not perform well on this formula. In comparison,
MiniSAT, the solver used by SearchTreeSampler, was much faster on this benchmark.

CHAPTER 5. EVALUATION 40

Table 5.3: Comparison of SAT sampling algorithms.

QuickSampler SearchTreeSampler UniGen2
Benchmark Samples Valid tq (µs) t∗q (µs) Samples ts/tq Samples tu/tq

blasted case47 10010929 0.564 7.5 26 11694350 41.3 3932170 426
blasted case110 10001202 0.822 28.3 29 8502350 14.9 245762 34
s820a 7 4 10002673 0.770 5.9 34 4007950 151.6 2959363 802
s820a 15 7 10014350 0.674 9.0 66 3875900 103.2 3614721 674
s1238a 3 2 10140047 0.936 2.7 211 1917850 707.2 1001 60515
s1196a 3 2 10077447 0.803 3.2 246 1848850 609.1 1001 60320
s832a 15 7 10017640 0.818 6.4 100 2742600 204.4 1001 3803
blasted case 1 b12 2 10021799 0.739 2.9 305 1001600 1235.7 1001 71769
blasted squaring16 10304220 0.209 15.8 1961 285450 799.7 1001 215680
blasted squaring7 11344920 0.112 32.1 3788 255750 438.1 1001 22186
70.sk 3 40 10134785 1.000 5.8 1236 4091950 151.2 1001 109854
ProcessBean.sk 8 64 10011221 0.906 4.1 1294 297900 2932.3 1001 179418
56.sk 6 38 10049283 0.930 5.3 694 1685350 406.3 1001 71623
35.sk 3 52 10717156 1.000 2.3 229 2348300 664.6 1001 435883
80.sk 2 48 10252598 1.000 4.0 1399 2572650 350.5 1001 103909
7.sk 4 50 10139607 1.000 4.9 1778 1717250 429.5 1001 296687
doublyLinkedList.sk 8 37 10003513 0.267 678.4 6308 231850 22.9 0 -
19.sk 3 48 10198861 0.937 4.1 2010 756400 1156.1 1001 814253
29.sk 3 45 10045170 0.855 6.7 2772 215450 2483.0 1001 1995316
isolateRightmost.sk 7 481 11191269 0.878 11.3 3293 6000 52789.2 0 -
17.sk 3 45 10181716 1.000 5.7 2374 1600150 392.8 1001 3207452
81.sk 5 51 11099585 0.867 4.0 3863 75850 11859.7 1001 1035125
LoginService2.sk 23 36* 10001533 0.724 680.3 3212 1593200 14.8 778250 34
sort.sk 8 52 10563617 0.625 31.1 7354 30650 3775.2 1001 155253
parity.sk 11 11* 3833 0.809 2322699.9 3535813 462 3.2 0 -
77.sk 3 44 10014904 0.966 5.8 1580 1478300 420.4 1001 2552683
20.sk 1 51 11126152 0.910 4.0 3751 84250 10695.1 1001 2360454
enqueueSeqSK.sk 10 42 10008980 0.762 34.8 21412 29450 3512.4 1001 30830
karatsuba.sk 7 41* 670641 0.088 125504.0 203615 50 1116.2 1001 61
diagStencilClean.sk 41 36* 87 0.701 120336466 120397476 908868 0.000066 0 -
tutorial3.sk 4 31* 2114947 0.798 4281.2 362747 1200 693.2 506 18783

The opposite effect can be seen, for example, on parity.sk 11 11, where MiniSAT was only
able to complete a small number of solver calls.

Next we present graphs of the same metrics, but now also taking into account the time
that would be required for QuickSampler to check if the samples are valid. This should
only be needed if the application cannot deal with invalid samples. Figures 5.2a and 5.2b
show the comparison with SearchTreeSampler and UniGen2, respectively. We see
that QuickSampler is still 1 order of magnitude faster than SearchTreeSampler and
3.2 orders of magnitude faster than UniGen2, even when including this checking time.
QuickSampler was only slower than SearchTreeSampler on three benchmarks, where
the ratio ts/t

∗
q was 0.95 for 17.sk 3 45, 0.71 for 70.sk 3 40 and 6.6 · 10−5 for diagStencil-

Clean.sk 41 36.
Those results show clearly that QuickSampler is capable of generating valid solutions

orders of magnitude faster than the other techniques. However, we believe that an even
more important metric is the number of unique valid solutions generated over time, since
repeated solutions do not help uncover new behavior in the test program. So we performed

CHAPTER 5. EVALUATION 41

0 20 40 60 80 100 120 140 160
10−5

10−3

10−1

101

103

105

Benchmarks

ts
tq

(a) SearchTreeSampler/QuickSampler.

0 20 40 60 80 100 120 140 160
101

102

103

104

105

106

107

108

Benchmarks

tu
tq

(b) UniGen2/QuickSampler.

Figure 5.1: Average time per valid sample.

Table 5.4: Mean ratio of sampling speeds across all benchmarks.

Ratio Mean

ts/tq 102.5±0.8

tu/tq 104.7±1.0

ts/t
∗
q 101.0±0.5

tu/t
∗
q 103.2±0.7

uq/us 102.3±0.7

uq/uu 104.4±1.1

an experiment to evaluate the number of unique valid solutions generated.
All three algorithms were allowed to run until they produced 10 million samples or reached

1 hour of execution. If their execution times are Tq, Ts, Tu, we define T = min{Tq, Ts, Tu}
and look at the number of unique valid solutions that each algorithm could produce in
time T and represent those numbers as uq, us, uu. We found out that on most benchmarks
QuickSampler was able to produce 10 million samples before 1 hour and it was the fastest
algorithm to finish. So the uniqueness comparison is performed at time Tq. On six bench-
marks, neither of the algorithms could produce 10 million samples before 1 hour, so the
uniqueness comparison is performed at 1 hour. The names of those benchmarks are marked
with an asterisk in Table 5.3.

Figure 5.3a compares QuickSampler and SearchTreeSampler on the number of

CHAPTER 5. EVALUATION 42

0 20 40 60 80 100 120 140 160

10−4

10−2

100

102

Benchmarks

ts
t∗q

(a) SearchTreeSampler/QuickSampler.

0 20 40 60 80 100 120 140 160

101

102

103

104

105

106

Benchmarks

tu
t∗q

(b) UniGen2/QuickSampler.

Figure 5.2: Average time per valid sample, including time to check validity.

0 20 40 60 80 100 120 140 160

100

101

102

103

104

Benchmarks

uq
us

(a) QuickSampler/SearchTreeSampler.

0 20 40 60 80 100 120 140 160

10−1

101

103

105

Benchmarks

uq
uu

(b) QuickSampler/UniGen2.

Figure 5.3: Unique solutions produced over same amount of time.

CHAPTER 5. EVALUATION 43

unique solutions produced. On average, QuickSampler produces 2.3 orders of magnitude
more unique solutions, as seen in Table 5.4. On only one benchmark it was lower (karat-
suba.sk 7 41, with uq/us = 0.76).

In Figure 5.3b, we present the ratio of unique solutions between QuickSampler and
UniGen2. Again, the ratio was lower only on karatsuba.sk 7 41, with uq/uu = 0.08. On
average, uq was 4.4 orders of magnitude higher than uu. We found that QuickSampler
performed poorly on karatsuba.sk 7 41 because it had not completed one sampling epoch
within the first hour of execution, and most of the samples are generated towards the end
of the sampling epoch. However, within 2 hours, QuickSampler was able to complete 2
sampling epochs, generating a vastly larger amount of samples, as reported in Table 5.3.

Uniformity of Coverage

The previous results show that QuickSampler can produce unique valid solutions very
fast, which was our primary goal. But we would still like to check if the distribution of
samples produced is similar to uniform, because we don’t want to be missing a large portion
of the solution space, while focusing on a very biased subset of solutions. We have designed
QuickSampler to start from a random point in the space of possible variable assignments
in order to make our coverage more uniform. This also guarantees that any solution has a
positive probability of being output by our algorithm.

In order to empirically evaluate the uniformity of QuickSampler, we compare its dis-
tribution of solutions with the ones from the two other samplers SearchTreeSampler,
UniGen2 as well as a distribution from a perfect uniform sampler. Only the valid samples
are considered in this analysis. We compare on the benchmarks for which the number of
samples generated by UniGen2 in a time limit of 10 hours was at least five times the total
number of solutions. It is important for statistical significance that each solution be sampled
on average at least five times. For each of the benchmarks, let sq, ss, su be the number of
valid samples generated by each algorithm and s = min{sq, ss, su}. We subsample uniformly
s samples from the valid samples produced by each algorithm, and we also generate s sam-
ples from a perfectly uniform distribution, using the total number of solutions provided by
UniGen2.

Figure 5.4 show the results of the comparison on all benchmarks for which the number
of generated samples s can be at least five times the number of solutions before the timeout
is reached. The x-axis represents the number of times each solution has been sampled and
the y-axis represents the quantity of solutions which have been sampled x times. We can
see that SearchTreeSampler and UniGen2 are usually indistinguishable from uniform,
but QuickSampler is also very close to uniform behavior.

We have also applied Pearson’s chi-squared test to the s samples obtained from each algo-
rithm. We compute the χ2 statistic and the corresponding p-value using the known number
of solutions to the formula. Here, we reject the null hypothesis that the distribution is uni-
form if the p-value is lower than the confidence level of 0.05. This gives a bound on the type
I error rate (i.e., the probability that a uniform distribution is mistakenly rejected as non-

CHAPTER 5. EVALUATION 44

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25 30 35 40 45

O
c
c
u
rr

e
n
c
e
s

Solution Count

blasted_case47

QuickSampler
SearchTreeSampler

UniGen2
uniform

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35

O
c
c
u
rr

e
n
c
e
s

Solution Count

blasted_case110

QuickSampler
STS

UniGen2
uniform

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5 10 15 20 25

O
c
c
u
rr

e
n
c
e
s

Solution Count

s820a_7_4

QuickSampler
SearchTreeSampler

UniGen2
uniform

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30

O
c
c
u
rr

e
n
c
e
s

Solution Count

s820a_15_7

QuickSampler
SearchTreeSampler

UniGen2
uniform

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25

O
c
c
u
rr

e
n
c
e
s

Solution Count

LoginService2.sk_23_36

QuickSampler
SearchTreeSampler

UniGen2
uniform

Figure 5.4: Histograms comparing the distribution of solutions.

Table 5.5: Chi-squared uniformity test.

Not Rejected Rejected

QuickSampler 149 11
SearchTreeSampler 153 7
UniGen2 155 5

CHAPTER 5. EVALUATION 45

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25 30 35 40 45 50

U
n
iq

u
e
 s

o
lu

ti
o
n
s

Time (s)

s820a_7_4

QuickSampler
SearchTreeSampler

UniGen2

Figure 5.5: s820a 7 4 unique solutions.

uniform)4. Table 5.5 show the results of applying this test to the 160 benchmarks for which
we know an estimate of the number of solutions. We can see that SearchTreeSampler
and UniGen2 are more uniform, but QuickSampler is still close to uniform on most
benchmarks. However, this result should be taken with care, since the uniformity test is not
very reliable on benchmarks where QuickSampler completed a small number of epochs or
when the number of produced samples is too low.

Besides analyzing the uniformity of the distribution, we also measured the number of
unique valid solutions generated. This is arguably more important than the histograms of
solution counts, because we want unique solutions to increase coverage in testing.

We computed the number u of unique valid solutions generated by QuickSampler and
also the number ū of unique solutions that should be generated if the sampling was perfectly
uniform. We record the ratio u/ū for all benchmarks for which we have an estimate of the
number of solutions. The ratio u/ū had an average value of 0.981, with standard deviation
of 0.052. Besides one benchmark (doublyLinkedList.sk 8 37, with value 0.41), all other
benchmarks had u/ū > 0.87. In comparison, for SearchTreeSampler, the average was
0.996 and standard deviation 0.038. SearchTreeSampler also performed the worst on
the benchmark doublyLinkedList.sk 8 37, with value 0.538, and all other benchmarks having
u/ū > 0.92. UniGen2 obtained an average of 1.000 and a standard deviation of 0.002, with
a minimum value of 0.999. On doublyLinkedList.sk 8 37, UniGen2 timed out, so we cannot
compare on this benchmark.

We also present plots of the number of unique solutions produced over time, for two
representative benchmarks. In Figure 5.5 we show the graph for benchmark s820a 7 4,
where the number of samples produced is larger than the total number of solutions. We

4We could not perform power analysis to estimate the type II error rate because that would require a
specific alternative hypothesis and we did not see any natural alternative hypothesis for the distribution of
samples.

CHAPTER 5. EVALUATION 46

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250 300

U
n
iq

u
e
 s

o
lu

ti
o
n
s

Time (s)

enqueueSeqSK.sk_10_42

QuickSampler
SearchTreeSampler

UniGen2

Figure 5.6: enqueueSeqSK.sk 10 42 unique solutions.

see that the number of unique solutions grows very fast initially, and then stabilizes as we
approach complete coverage of all solutions. SearchTreeSampler and UniGen2, on the
other hand, produce solutions at a much slower rate. In Figure 5.6 we show benchmark
enqueueSeqSK.sk 10 42, where the number of valid samples produced is much smaller than
the total number of solutions. We can see that QuickSampler is able to generate unique
solutions orders of magnitude faster than SearchTreeSampler and UniGen2. We also
notice a distinctive step pattern in the graph. This happens because we produce the largest
number of samples at the end of each sampling epoch, when the collection of known mutations
is the largest.

In summary, we see that SearchTreeSampler and UniGen2 are a bit closer to uni-
form sampling, but QuickSampler is still very close. In almost all cases the number of
unique solutions generated was very close to the number that would be expected if the sam-
pling was uniform, and we are able to produce new unique solutions at a faster rate than
the other techniques.

5.2 SMTSampler Evaluation

We now present the evaluation of SMTSampler, focusing on the advantages of working
over high-level SMT constraints directly, instead of converting them to SAT. We have imple-
mented SMTSampler as an open source tool5 in C++. We used Z3 [26] as the constraint
solver, which natively supports MAX-SMT queries. Each benchmark is run in one core, with
a maximum virtual memory of 4 GB and a time budget of 1 hour. We stop each execution
after generating 1 million solutions or reaching the timeout of 1 hour, whichever occurs first.
The experiments were run on a machine with a 64-core Intel Xeon CPU E5-4640 and 264

5The source code is available at https://github.com/RafaelTupynamba/SMTSampler.

https://github.com/RafaelTupynamba/SMTSampler

CHAPTER 5. EVALUATION 47

Table 5.6: Z3 tactics for conversion into SAT.

Tactic Description

simplify Simplify the formula
bvarray2uf Encode arrays as UFs
ackermannize bv Apply Ackermann’s encoding to UFs
bit-blast Bit-blast the bit-vector variables

GB of memory. For each epoch, we establish a maximum time budget of 20 minutes for
the generation of all neighboring solutions. We also set a timeout of 5 seconds for each
individual MAX-SMT solver call. If the call cannot be completed in 5 seconds, we remove
the MAX-SMT soft constraints and retry the call with only the hard constraints (such as
the condition to flip one bit in a bit-vector) for 5 more seconds. This allows us to still make
progress and obtain some solutions in case the MAX-SMT problems are too expensive.

We compare two versions of SMTSampler. The first, abbreviated SMTbv, uses one soft
constraint per bit-vector. The second, abbreviated SMTbit, uses soft constraints for each bit
inside a bit-vector. As a baseline, we use a technique abbreviated SAT, which works by bit-
blasting the SMT formula to convert it into a SAT formula and then sampling solutions from
the SAT formula. This would be similar to applying the QuickSampler to the problem,
although still taking advantage of our adaptive combination of mutations. The goal is to
evaluate the advantage of operating directly over high-level SMT formulas, as opposed to
bit-blasting. We did not compare against techniques such as the MCMC-based approach
from Ambigen [45] because those are only applicable over constraints which are linear on
each variable and would not be able to handle the general SMT-LIB benchmarks. Moreover,
experimental evaluation of QuickSampler showed that QuickSampler is 1000× faster
than MCMC-based approaches on SAT problems. SMTSampler focuses on enabling the
sampling of solutions from complex SMT formulas, which are generally non-linear.

For the baseline bit-blasting approach, the expand select store rewriter option is used
to replace select(store(. . .), . . .) patterns by if-then-else terms. In addition, the Z3 tactics
from Table 5.6 are applied to encode arrays as uninterpreted functions, apply Ackermann’s
encoding to those functions, and bit-blast bit-vectors. In our experiments, we chose not to
encode the SAT problem into conjunctive normal form (CNF) because we found that this
conversion lead to slower solving due to the introduced auxiliary variables. Our conversion
approach enables the conversion of most benchmarks into SAT, as long as they do not use
the theory of arrays with extensionality, including equality comparisons between arrays.

Coverage Metric

When sampling from SMT formulas, we noticed that the number of unique solutions gener-
ated is an incomplete metric for coverage. Sometimes, it is easy to sample a large number

CHAPTER 5. EVALUATION 48

of solutions which are only trivially different and thus not interesting inputs for verification.
For example, if a bit-vector variable x of size 32 in a formula is only constrained by a con-
dition such as x > 5, there are billions of values for x that would satisfy this constraint.
However, enumerating all those possibilities would probably not generate interesting inputs
and a better strategy would be mutating other variables in the formula.

To better evaluate the coverage of the constraint space, we propose the use of a different
coverage metric. We notice that the SMT formula has an abstract syntax tree (AST) struc-
ture where internal nodes better consolidate higher-level information than the leaf variable
nodes. Thus, as a coverage metric we use coverage statistics about the internal nodes of
the formula. For each internal node of type Boolean, we remember whether this node ever
received the values of True or False in the generated solutions. Additionally, for internal
nodes of type bit-vector, we remember if each of its bits ever received the values 1 or 0 in
the generated solutions. The coverage metric is the number of such internal Booleans and
bits which received both possible values among the set of generated solutions.

This metric can be thought of as a measure of the coverage of a circuit that evaluates the
constraint. One could synthesize a circuit that takes as inputs assignments to the variables
of the formula and produces a Boolean output of True or False indicating whether the
formula is satisfied. The values computed by the internal nodes of the formula correspond
to the intermediate values computed by the internal wires of this circuit. In this sense, the
coverage metric we defined is equivalent to the coverage of internal wires in this circuit, when
it is exercised by the generated solutions. Therefore, we use this metric as a proxy for the
coverage that could be obtained when executing the design under test with the generated
stimuli.

Experimental Results

Our benchmarks are obtained from SMT-LIB [7], specifically the problems in the logic
QF AUFBV and its sub-logics, such as QF ABV, and QF BV. The benchmarks include
problems from the verification of hardware and software, bounded model checking, symbolic
execution, static analysis and others.

We have tried all techniques on benchmarks from each directory available from those
logics of SMT-LIB. Some directories had benchmarks which were inadequate for the problem,
so we discarded them from the results. Those are cases where the formula is unsatisfiable, or
the number of unique solutions that can be produced is less than 100, or where no coverage
can be obtained. We ran the experiments over the remaining 22 directories, by randomly
choosing 15 benchmarks from each, when there were at least 15 benchmarks available. A total
of 274 benchmarks were chosen by following this procedure. From those, we excluded the
benchmarks for which none of the techniques were able to produce more than one solution,
leaving a final set of 213 benchmarks.

Table 5.7 shows the directories of benchmarks used, along with average statistics from
the benchmarks in each directory. We first list the number n of benchmarks which were
used from each directory. All other values in the table are averages computed over those n

CHAPTER 5. EVALUATION 49

Table 5.7: Average benchmark statistics for SMTSampler.

Benchmarks n nodes |Array| |BV | |Bool | bits |UF |

QF AUFBV/ecc 4 291 1 42 12 2785 1
QF ABV/bmc-arrays 3 855 1 1 0 53 0
QF ABV/stp samples 15 1139 1 24 0 192 0
QF ABV/dwp formulas 5 613 3 32 0 428 0
QF ABV/egt 15 90 1 0 0 0 0
QF ABV/bench ab 15 317 1 0 0 6 0
QF ABV/platania/...member 12 4152 36 463 0 14816 0
QF BV/bmc-bv 10 782 0 13 0 422 0
QF BV/bmc-bv-svcomp14 8 7518 0 205 1055 7607 0
QF BV/spear/zebra v0.95a 9 571 0 185 0 2012 0
QF BV/RWS 9 1086 0 21 0 3628 0
QF BV/gulwani-pldi08 5 1146 0 130 0 950 0
QF BV/stp samples 14 793 0 22 0 200 0
QF BV/brummayerbiere2 3 632 0 2 0 149 0
QF BV/tacas07 3 8812 0 345 588 16620 0
QF BV/bench ab 13 23 0 2 0 41 0
QF BV/sage/app2 13 240 0 25 0 211 0
QF BV/sage/app9 8 271 0 35 0 391 0
QF BV/sage/app8 15 978 0 93 0 1047 0
QF BV/sage/app5 12 269 0 29 0 355 0
QF BV/sage/app1 10 117 0 21 0 271 0
QF BV/sage/app12 12 247 0 31 0 358 0

benchmarks in a directory. We list the number of internal nodes in the SMT formula, as a
measure of the benchmark size. We also list the number of variables from each type Array ,
BV , Bool , UF . The ‘bits’ column represents the total number of bits in all the bit-vector
and Boolean variables in the formula.

Then Table 5.8 presents average results from the experiments with the three techniques.
First, we list the number of unique solutions produced, then the ratio of unique solutions
over time and, finally, the total coverage obtained. Those values are also averages over
the n benchmarks in each directory. When computing the rate of unique solutions over
time, we only include the time spent executing Z3 API calls. This is to ensure that the
result is fair and not influenced by our implementation of the methods to store, process and
combine solutions. In those Z3 API calls we include the time for solving constraints, checking
the validity of solutions and converting solutions from SAT into SMT format. We do not
include the time spent computing the coverage achieved by the solutions, as the coverage
computation is done only for evaluation and is not required to apply the techniques.

Overall, we see that the SMT-based techniques tend to perform better than the bit-
blasting approach. For a more thorough evaluation, we present graphs representing the rate
of solution generation and the coverage on all 213 benchmarks.

Figure 5.7 compares the rate of generation of unique solutions between the SMT-based
techniques and the SAT technique. The rates are defined as the number of unique solutions
produced divided by the time spent in calls to the Z3 APIs. The y-axis represents the
logarithm in base 10 of these rates for both techniques. Higher bars indicate that the SMT-

CHAPTER 5. EVALUATION 50

Table 5.8: SMTSampler results over the benchmarks.

Unique solutions Unique solutions / second Coverage
Benchmarks SMTbv SMTbit SAT SMTbv SMTbit SAT SMTbv SMTbit SAT

QF AUFBV/ecc 209535 26860 49087 579 748 680 407 856 596
QF ABV/bmc-arrays 807570 1229174 1096836 1347 1757 1085 3090 3480 3134
QF ABV/stp samples 258440 437702 287537 179 309 220 4484 4768 4035
QF ABV/dwp formulas 898530 1300388 319558 746 989 259 1276 1016 377
QF ABV/egt 769975 916283 1333783 879 1093 2114 138 136 140
QF ABV/bench ab 181716 341169 689368 761 1295 2621 129 129 114
QF ABV/platania/..member 2085 113046 0 558 515 0 83 44 0
QF BV/bmc-bv 439867 1250125 297913 6161 7011 5604 98 94 95
QF BV/bmc-bv-svcomp14 40809 5915 131089 194 212 153 3081 3108 3655
QF BV/spear/zebra v0.95a 196822 18633 35 858 1319 216 530 534 28
QF BV/RWS 4776 476 201 31 71 23 4766 4766 2517
QF BV/gulwani-pldi08 167745 153184 127868 268 305 279 2113 2150 2107
QF BV/stp samples 505214 501507 438752 375 373 399 1426 1331 969
QF BV/brummayerbiere2 263405 531815 712535 362 625 857 224 187 224
QF BV/tacas07 33928 2444 28465 165 183 112 1520 12535 4781
QF BV/bench ab 1109129 3385658 2783503 7797 10677 10143 11 11 10
QF BV/sage/app2 218827 213889 217598 162 159 180 861 289 433
QF BV/sage/app9 1137172 1984923 1495072 1301 1616 1595 466 464 465
QF BV/sage/app8 389719 543033 260763 202 375 317 1515 1523 1506
QF BV/sage/app5 1146022 1397666 1008205 1351 1638 1657 391 205 261
QF BV/sage/app1 243452 509655 527177 1171 2421 2362 281 294 267
QF BV/sage/app12 470245 847513 334077 1168 1322 844 313 298 201

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

lo
g

1
0
(R

a
te

S
M

T
b
v
/R

a
te

S
A
T
)

Benchmarks

Unique Solutions per Time: SMTbv vs. SAT

log10(RateSMTbv/RateSAT)

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

lo
g

1
0
(R

a
te

S
M

T
b
it
/R

a
te

S
A
T
)

Benchmarks

Unique Solutions per Time: SMTbit vs. SAT

log10(RateSMTbit/RateSAT)

Figure 5.7: Speed comparison between the different approaches.

based approach performed better than the SAT-based approach on that benchmark. For
23 benchmarks, the SAT approach was unable to produce any solutions because of a solver
timeout. In these cases, the logarithm would be +∞. Those are represented by bars that
reach the top of the graph.

Figure 5.7 shows that, in general, the approaches that work over SMT formulas can
generate more unique solutions in a given time budget, compared to bit-blasting. There were
some benchmarks for which the SAT approach was able to generate more samples, such as
some benchmarks from QF ABV/egt and QF ABV/bench ab. Analyzing those benchmarks,

CHAPTER 5. EVALUATION 51

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(C

o
v

S
M

T
b
v
/C

o
v

S
A
T
)

Benchmarks

Coverage: SMTbv vs. SAT

log10(CovSMTbv/CovSAT)

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(C

o
v

S
M

T
b
it
/C

o
v

S
A
T
)

Benchmarks

Coverage: SMTbit vs. SAT

log10(CovSMTbit/CovSAT)

Figure 5.8: Coverage comparison between the different approaches.

we found that they were mostly composed of Boolean operations from combinatorial logic,
with very few bit-vector operations. It is natural that, in those cases, a SAT representation
for the formula is more efficient and can be solved faster.

However, we also noticed that for many of those formulas, the larger number of solu-
tions produced by SAT did not give any increase in the coverage metric. This reinforces
our hypothesis that the speed to generate unique solutions is an incomplete metric, and
we should also be analyzing the coverage obtained by the different approaches. Figure 5.8
presents the graphs comparing the coverage obtained by the SMT-based approaches and
the SAT-based approach. Here, we see even more noticeable differences in favor of the
SMT-based approaches, especially SMTbit. On the benchmarks from QF ABV/bmc-arrays,
QF ABV/dwp formulas, QF BV/stp samples and QF BV/tacas07, for example, those ap-
proaches obtained significantly more coverage than SAT.

Overall, we see that the SMT-based approaches proposed by SMTSampler perform
better than the baseline bit-blasting approach. They are more robust, being able to produce
solutions and obtain coverage on a larger range of benchmarks, while also obtaining a higher
constraint coverage and generating solutions at a higher speed in most cases. Between the
two SMT-based approaches, we could not identify a clear winner. We noticed that the fine-
grain soft constraints from SMTbit approach can help obtain more precise atomic mutations
and produce higher coverage. However, SMTbv tends to be more robust on formulas where
the MAX-SMT queries are harder to solve, since it uses a smaller number of soft constraints.

5.3 GuidedSampler Evaluation

We now present our evaluation of GuidedSampler, our coverage-guided sampler. We have
implemented GuidedSampler as an open-source tool6 in C++, using Z3 [26] as the con-
straint solver. Z3 has native support for the MAX-SMT queries [9] that are required by

6The source code is available at https://github.com/RafaelTupynamba/GuidedSampler.

https://github.com/RafaelTupynamba/GuidedSampler

CHAPTER 5. EVALUATION 52

GuidedSampler. For evaluation, we have used 213 benchmarks from the QF AUFBV
logic of SMT-LIB [7], and its sub-logics, such as QF ABV and QF BV. The benchmarks
come from 22 different families, which will be presented in Table 5.9. They are the same
benchmarks which were used for the evaluation of SMTSampler, and include a diverse set
of complex, non-linear constraints. We used a time budget of 30 minutes for each sampling
experiment.

Coverage Predicates

We performed two sets of experiments, varying the way coverage predicates are generated.
The goal is to evaluate the technique both using a general notion of coverage that stems
from the formula itself and also a problem-specific notion of coverage, which can be quite
different from the original constraint.

The first set of experiments uses internal predicates, which are subparts of the formula
itself. Considering the representation of the formula φ as an abstract syntax tree (AST),
we look at the internal nodes of type bit-vector or Boolean. For example, in the formula
φ = φ1 ∨ φ2, two of the internal nodes are the disjuncts φ1 and φ2. We sample solutions to
φ using a generic sampler, SMTSampler, and collect coverage statistics on those Boolean
nodes and individual bits inside the bit-vector nodes. We identify a subset of those internal
nodes that have exhibited diverse and independent coverage behaviors and choose the sub-
formulas represented by those nodes as the coverage predicates. For example, in the formula
φ = φ1 ∨ φ2, we could pick φ1 and φ2 to be two of the coverage predicates, and choose
additional predicates as subparts of φ1 and φ2. This is intended to represent a generic
coverage notion based on the formula itself. The number of predicates collected varies from
only a couple on some benchmarks up to hundreds of predicates on others.

The second set of experiments uses random predicates, which are randomly generated
constraints involving the variables in Vars [φ]. The coverage predicates are randomly sampled
from a context-free grammar that includes all arithmetical, logical and bit-wise operations
from SMT-LIB, as well as the variables from Vars [φ]. We generate from 16 to 48 predicates
for each benchmark, with each predicate having on average a depth of 4 operations (i.e.,
any path from the root to a leaf in the formula AST has 4 operations on average). These
random predicates are intended to represent a problem-specific measure of coverage, as they
are independent of the original formula.

Approaches

In our evaluation, we compare the following seven approaches for coverage-guided sampling.

BC: Blocking coverage classes. This baseline approach consists of computing a solution
σ0 to φ and then adding a new blocking clause (ψ1 6= ψ1[σ0] ∨ ψ2 6= ψ2[σ0] ∨ · · · ∨ ψn 6= ψn[σ0])
to the formula that guarantees that future solutions will not come from the coverage class
G[σ0]. We then compute a new solution σ1 and add a new blocking clause that blocks

CHAPTER 5. EVALUATION 53

coverage class G[σ1], and so on. At most one solution can be obtained from each coverage
class.

BH: Baseline with hard constraints. This simple baseline approach consists of choos-
ing n random Boolean values b = (b1, b2, . . . , bn) that define a coverage class and trying to
find one solution from that class. We then use the SMT solver to generate one solution to
φ∧(ψ1 = b1)∧(ψ2 = b2)∧· · ·∧(ψn = bn), where the predicates are added as hard constraints.
Then repeat the process for different random vectors b. No solution is generated for a given
b if class Gb is empty.

BS: Baseline with soft constraints. This baseline approach consists of choosing n
random Boolean values b = (b1, b2, . . . , bn) that define a coverage class and trying to find the
solution closest to that class. We use the query MAX-SMT({φ}, Sb), where the predicates
are added as soft constraints Sb = {ψ1 = b1, ψ2 = b2, . . . , ψn = bn}. Then repeat the process
for different random vectors b. Each MAX-SMT call is guaranteed to eventually find a
solution if φ is satisfiable, but the optimization problems can be expensive.

S0: SMTSampler. This baseline approach consists of applying SMTSampler to sample
solutions to formula φ. The coverage predicates are not used.

S1 = S0 + M1. This approach includes our modification M1, defined in Section 4.2,
which consists of flipping the values of coverage predicates to generate neighboring solutions
in function computeNeighboringSolutions. This ensures neighboring solutions come
from neighboring coverage classes.

S2 = S0+M1+M2. This approach includes modifications M1 and also M2, which consists
of discarding solutions from repeated coverage classes in lines 23 and 34 in Algorithm 3. A
coverage class is considered repeated if we have already generated a solution from that class
in the current epoch of the algorithm.

S3 = S0 + M1 + M2 + M3: GuidedSampler. This is the GuidedSampler approach,
including modifications M1, M2 and also M3, which randomizes the coverage class of the
initial base solution in lines 3-7 of Algorithm 3.

Evaluating Diversity of Classes

We first evaluate the number of coverage classes reached by our sampling approaches. For
most benchmarks, the total number of non-empty coverage classes is large, so a good
coverage-guided sampler must find solutions from a large number of classes during the fixed
time budget of 30 minutes and not keep visiting the same few classes multiple times.

CHAPTER 5. EVALUATION 54

Table 5.9: Average benchmark statistics for GuidedSampler.

Benchmarks n nodes |Array | |BV | |Bool | bits preds

QF AUFBV/ecc 4 179 0 27 7 1931 12
QF ABV/bmc-arrays 3 855 1 1 0 53 82
QF ABV/stp samples 15 1139 1 24 0 192 58
QF ABV/dwp formulas 5 613 3 32 0 428 38
QF ABV/egt 15 90 1 0 0 0 5
QF ABV/bench ab 15 314 1 0 0 2 3
QF ABV/platania/...member 12 595 10 89 0 2856 2
QF BV/bmc-bv 10 256 0 4 0 134 6
QF BV/bmc-bv-svcomp14 8 7518 0 205 1055 7607 223
QF BV/spear/zebra v0.95a 9 571 0 185 0 2012 21
QF BV/RWS 9 1086 0 21 0 3628 95
QF BV/gulwani-pldi08 5 1146 0 130 0 950 185
QF BV/stp samples 14 793 0 22 0 200 10
QF BV/brummayerbiere2 3 632 0 2 0 149 27
QF BV/tacas07 3 8812 0 345 588 16620 91
QF BV/bench ab 13 21 0 1 0 24 1
QF BV/sage/app2 13 231 0 24 0 206 7
QF BV/sage/app9 8 271 0 35 0 391 17
QF BV/sage/app8 15 978 0 93 0 1047 31
QF BV/sage/app5 12 268 0 29 0 354 3
QF BV/sage/app1 10 115 0 20 0 268 5
QF BV/sage/app12 12 247 0 31 0 358 5

Table 5.9 shows average statistics about the benchmarks. For each benchmark family, the
column n lists the number of benchmarks used from that family. All the following columns
present average numbers among all benchmarks in that family. First, we list the number of
internal nodes in the SMT formula and the number of variables of type array, bit-vector and
Boolean. The ‘bits’ column presents the total number of bits in the bit-vector and Boolean
variables in the formula, and the ‘preds’ column represents the number of coverage predicates
in the experiments that used internal predicates.

Table 5.10 shows experimental results using random predicates. We list, for each of the
seven approaches, the total number of unique coverage classes found in the time budget. The
numbers are also averages over the n benchmarks in each family. We only show the results for
experiments with random predicates, but the results with internal predicates were similar.
From Table 5.10, we can see that the GuidedSampler approach S3 was able to find the
largest number of classes for most benchmarks. S2 tends to be the second best approach,
with S1 being the third best one. This shows the effectiveness of our modifications M1, M2
and M3 in helping find more coverage classes. On only three benchmark families S0 or BC
performed better. We found that this happened because the MAX-SMT queries were too
complex for those benchmarks and were frequently timing out.

The following are average statistics of GuidedSampler for internal predicates (random
predicates in parentheses). The percentage of time spent in Z3 API calls was 82% (88%).
The percentage of candidate solutions that turned out to be real solutions to the formula
was 76% (75%). The percentage of solutions which were unique (distinct solutions) was 65%

CHAPTER 5. EVALUATION 55

Table 5.10: Average number of unique coverage classes (using random predicates).

Benchmarks BC BH BS S0 S1 S2 S3

QF AUFBV/ecc 1829 188 854 6579 826 969 11377
QF ABV/bmc-arrays 1263 44 660 1337 19003 19374 19122
QF ABV/stp samples 39750 9831 15082 11360 97511 679380 744289
QF ABV/dwp formulas 8162 7028 5688 404 2641 4227 31735
QF ABV/egt 16276 8656 30984 16432 15561 49864 480017
QF ABV/bench ab 2254 151 3406 3118 2765 2530 6000
QF ABV/platania/no init multi member 1344 15 0 399 83 84 235161
QF BV/bmc-bv 724 19 122 437 201 200 208
QF BV/bmc-bv-svcomp14 4352 178 2866 2004 16363 19503 23861
QF BV/spear/zebra v0.95a 3896 50 2797 618 8135 9622 7384
QF BV/RWS 2 0 0 187 84 80 53
QF BV/gulwani-pldi08 4991 130 2524 9605 499158 566758 622999
QF BV/stp samples 34669 18015 81052 5387 431305 908703 1068203
QF BV/brummayerbiere2 5 0 5 7 9 9 10
QF BV/tacas07 5 0 0 53 51 58 78
QF BV/bench ab 158 2 134 99 153 149 152
QF BV/sage/app2 12639 19501 20581 1583 769464 1004453 1035877
QF BV/sage/app9 4910 1940 8829 13025 180458 257994 318534
QF BV/sage/app8 14451 1312 20627 14635 209286 269363 328543
QF BV/sage/app5 15344 1577 23736 6428 300547 437180 628252
QF BV/sage/app1 6307 346 5731 3458 19765 20768 21473
QF BV/sage/app12 8650 4371 9065 11766 330629 608030 683599

(94%). Finally, the percentage of unique solutions which were from unique coverage classes
(distinct classes) was 46% (54%).

Figure 5.9 shows a more thorough comparison of the number of coverage classes found
across all benchmarks. We define NX as the number of unique coverage classes for which a
solution was found using approach X during our time budget. The graphs in Figure 5.9 show
the ratio of classes found NS3/NX between approach S3 and each of the baseline approaches
X, in a logarithmic scale. Whenever no solutions were generated by one approach, the
logarithm would evaluate the +∞ or −∞. This is represented on the graphs by bars that
reach the top or the bottom of the graph.

Figure 5.9 includes results using both internal predicates and random predicates. From
the graphs, we can see that the GuidedSampler approach S3 is vastly superior to the
baseline approaches on most benchmarks. Baselines BC, BH and BS tend to be expensive
because they all require one new solver call for each new solution that is generated. In BC,
the solver calls are also increasingly more expensive, as the formula grows larger with the
addition of more blocking clauses. Baseline BH frequently tries to find solutions from empty
classes, leading to unsatisfiable queries to the SMT solver. Baseline BS makes MAX-SMT
queries which are satisfiable, but still expensive to solve. BS does not scale well because
it still requires one MAX-SMT query for each new solution generated. The SMTSampler
approach S0 mitigates this cost by using a small number of MAX-SMT queries to learn
atomic mutations and then quickly combines those mutations to generate a large number
of solutions. However, S0 ignores the coverage predicates, so it frequently keeps generating

CHAPTER 5. EVALUATION 56

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(N

S
3
/N

B
C
)

Benchmarks

Unique Classes: S3 vs. BC (internal predicates)

log10(NS3/NBC)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

lo
g

1
0
(N

S
3
/N

B
C
)

Benchmarks

Unique Classes: S3 vs. BC (random predicates)

log10(NS3/NBC)

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(N

S
3
/N

B
H
)

Benchmarks

Unique Classes: S3 vs. BH (internal predicates)

log10(NS3/NBH)

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

lo
g

1
0
(N

S
3
/N

B
H
)

Benchmarks

Unique Classes: S3 vs. BH (random predicates)

log10(NS3/NBH)

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(N

S
3
/N

B
S
)

Benchmarks

Unique Classes: S3 vs. BS (internal predicates)

log10(NS3/NBS)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250

lo
g

1
0
(N

S
3
/N

B
S
)

Benchmarks

Unique Classes: S3 vs. BS (random predicates)

log10(NS3/NBS)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160 180 200

lo
g

1
0
(N

S
3
/N

S
0
)

Benchmarks

Unique Classes: S3 vs. S0 (internal predicates)

log10(NS3/NS0)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250

lo
g

1
0
(N

S
3
/N

S
0
)

Benchmarks

Unique Classes: S3 vs. S0 (random predicates)

log10(NS3/NS0)

Figure 5.9: Unique classes covered: GuidedSampler vs. baselines.

CHAPTER 5. EVALUATION 57

Table 5.11: Mean ratios of the unique coverage classes reached NX and mean values of the
uniformity metric HX for all approaches.

Expression Internal Predicates Random Predicates
mean [low − high] mean [low − high]

NS3/NBC 3.4 [0.45− 26] 4.2 [0.44− 40]
NS3/NBH 2.6 [0.23− 28] 38 [1.5− 1018]
NS3/NBS 2.5 [0.34− 19] 4.1 [0.52− 31]
NS3/NS0 3.4 [0.60− 19] 5.4 [0.49− 60]
NS3/NS1 1.1 [0.56− 2.2] 1.7 [0.54− 5.2]
NS3/NS2 1.08 [0.64− 1.8] 1.3 [0.54− 3.2]

HBC 1.0 [1.0− 1.0] 1.0 [1.0− 1.0]
HBH 1.3 [0.93− 1.8] 1.2 [0.85− 1.7]
HBS 1.3 [0.77− 2.1] 2.2 [1.2− 3.9]
HS0 14 [1.5− 129] 19 [2.8− 130]
HS1 2.7 [0.70− 10] 8.5 [1.7− 42]
HS2 1.4 [0.86− 2.2] 3.1 [1.4− 6.9]
HS3 1.3 [0.83− 2.1] 2.9 [1.3− 6.2]

solutions from the same few classes.
Table 5.11 shows mean values for the ratios NS3/NX, in the format 10µ [10µ−σ − 10µ+σ],

where µ and σ are the average and standard deviation of log10(NS3/NX) across all bench-
marks. The numbers show that S1, S2 and S3 can find a much larger number of classes
when compared to S0. This demonstrates that M1 is the most important of our modifi-
cations. M1 ensures that the atomic mutations flip only a small number of the coverage
predicates, so those mutations can be combined and generate solutions from more diverse
classes. The modifications M2 and M3 also contribute to a small increase in the number of
visited classes.

In Figure 5.10, we can see an example of the number of unique classes visited over time,
for one representative benchmark. The GuidedSampler approach S3 is the quickest to
discover new classes, followed closely by approaches S2 and S1. We can also see that in
this case the baseline approaches S0, BS, BH and BC can find a much smaller number of
classes.

Evaluating Uniformity over Coverage Classes

In addition to looking at the number of classes covered, we also analyze the distribution of
solutions among those classes. This is important, since a good coverage-guided sampler needs
to sample from all the coverage classes with equal weight. Figure 5.11 shows the fraction of

CHAPTER 5. EVALUATION 58

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

U
n
iq

u
e
 C

la
s
s
e
s

Time (s)

QF_BV/gulwani-pldi08/simplePostAndPre.phx

S3
S2
S1
S0
BS
BH
BC

Figure 5.10: Unique classes over time for one benchmark (with random predicates).

1.0*10-6

1.0*10-5

1.0*10-4

1.0*10-3

1.0*10-2

1.0*10-1

1.0*100

 0 500 1000 1500 2000 2500 3000

F
ra

c
ti

o
n
 o

f
S
o
lu

ti
o
n
s
 p

e
r

C
la

s
s

Coverage Classes

QF_BV/gulwani-pldi08/simplePostAndPre.phx

BC
BH
BS
S0
S1
S2
S3

Figure 5.11: Uniformity of solutions over coverage classes for one benchmark (with random
predicates).

CHAPTER 5. EVALUATION 59

solutions generated from each coverage class for the same benchmark of Figure 5.10. S0 is
the most biased sampler, with the most frequent class being covered by 58% of the solutions.
BC, BH and BS are very uniform, but could only reach less than 1100 classes. Our approach
S3 is very close to uniform, with its line at the bottom of the graph, extending to the right
until 115196 classes (not shown).

If S solutions are generated, covering N distinct classes, we expect each of those classes
to be covered by approximately S/N solutions. So as a first order estimate on how biased
the distribution is, we look at the number M of solutions found in the most frequent class.
We define H = M/(S/N) as a measure of how far the frequency M is from the expected
frequency S/N . The closer H is to 1, the more uniform is the distribution of solutions found
among those classes.

Table 5.11 displays mean values of H across all benchmarks. Approach BC is guaranteed
to have HBC = 1, since each coverage class can only be sampled once. As expected, the
baseline approaches BH and BS are also very uniform, since each new solution is generated
inside or near a random coverage class. S0 is the most biased approach, often sampling a
large number of solutions from a single class (in average, 14 or 19 times more often than
it should). From the table, we see that our modifications M1 and M2 are essential for
producing a more uniform distribution over the coverage classes, almost as uniform as the
one from BH and BS, with HS3 ≈ 1.3 for internal predicates and HS3 ≈ 2.9 for random
predicates. Those values show that in GuidedSampler the most frequent class is typically
only oversampled by a factor of 3× or less.

60

Chapter 6

Related Work

This chapter discusses the related work in sampling from SAT and SMT constraints, as well
as weighted sampling.

6.1 Sampling from SAT Constraints

There are several different techniques used to tackle the problem of sampling solutions to
Boolean constraints [50]. The problem of sampling SAT witnesses is also closely related
to the problem of counting the number of solutions, which has #P -complete complexity.
Several sampling techniques can be applied to model counting or use some form of model
counting internally [74, 31, 51].

One class of sampling methods is based on Markov Chain Monte Carlo (MCMC) al-
gorithms [44, 45]. These include simulated annealing and Metropolis-Hastings which are
used to generate samples from a probability space. Those MCMC methods are guaranteed
to eventually converge to the desired distribution (such as uniform sampling). However,
this convergence is slow in practice for real-world problems, so the algorithms typically em-
ploy heuristics which make the sampling more biased [73, 44]. For example, [73] combines
Metropolis steps with random walk steps through the assignments to the variables of the
formula. In comparison, our techniques do not need to wait for a convergence time and try
to cover the entire search space by finding solutions closest to randomly selected points.

One similar line of work attempts to modify the SAT solver search heuristics in order
to generate a more diverse set of solutions [53]. However, this diverse sampling does not
specify a desired distribution of solutions, such as uniform distribution, or the coverage of
internal nodes of the formula, or a coverage-guided distribution. Our techniques do not
modify the inner search strategies of SAT solvers, but instead uses the SAT solvers as an
oracle to answer MAX-SAT queries.

SearchTreeSampler [31] seems to be the closest technique to QuickSampler in
literature, by also using a SAT solver as an oracle. One difference is SearchTreeSampler
performs simple satisfiability queries instead of the MAX-SAT queries by QuickSampler.

CHAPTER 6. RELATED WORK 61

SearchTreeSampler works by exploring the tree of variable assignments in a breadth-
first way, generating pseudosolutions, which are partial assignments to the variables that can
be completed to a full solution. SearchTreeSampler uses a parameter k which specifies
the number of samples computed per level in the tree and can be used to trade-off uniformity
and number of solver calls required. On the other hand, QuickSampler uses a different
strategy to cover the search space, and also generates a vastly larger number of samples per
solver call, by combining learned mutations.

A different class of algorithms is based on universal hashing [30, 51] and can provide
strong guarantees of uniformity. These techniques work by adding additional constraints
to the formula (known as hash functions) in order to partition the search space uniformly.
Those hash functions are typically formed by computing the XOR of a random subset of
variables [35]. UniGen [20] and UniGen2 [17] are examples of this class, with the latter
also employing parallelism to improve performance. In comparison, QuickSampler does
not attempt to be perfectly uniform, but only close to uniform in practice. QuickSampler
primarily aims for efficiency, using solver calls which are much less expensive to solve than
the XOR constraints of hash functions, and generating a large number of samples per solver
call.

6.2 Sampling from SMT Constraints

As we have described, there is a large body of work in sampling solutions to Boolean satisfi-
ability (SAT) formulas [50]. In principle, methods to sample solutions to SAT formulas can
also be applied to SMT, as there are techniques for eager encoding of SMT formulas into
SAT. However, one limitation of this conversion is the loss of the higher-level structure of
the formula, which could be leveraged to generate samples more efficiently and also to ensure
the samples are diverse. In SMTSampler, we have found that working at the SMT level
without converting the formula into SAT leads to a larger number and diversity of samples.

For example, Markov Chain Monte Carlo (MCMC) methods [44, 45] could be adapted
to work over SMT constraints. MCMC is the basis of most constrained-random verification
techniques [45, 55, 77, 44]. MCMC techniques are typically effective for linear constraints,
where the space of solutions is composed of polytopes which can be efficiently covered with
random walks [44]. However, they are not so effective on arbitrary non-linear constraints,
that lead to a more sparse distribution of solutions. SMTSampler and GuidedSampler,
on the other hand, are designed to be applied to arbitrary, complex non-linear constraints.

A different strategy that can also be adapted to the SMT domain is using a constraint
solver to produce each sample. The internal search heuristics of the solver can be mod-
ified to generate more diverse samples [53]. An important limitation of this approach is
that it requires one constraint solver call per each sample produced, which is expensive.
SMTSampler, on the other hand, generates several samples per solver call.

On the more theoretical side, one could also consider adapting universal hashing tech-
niques, such as UniGen [20] and UniGen2 [17], to work over SMT formulas. Those tech-

CHAPTER 6. RELATED WORK 62

niques can sample solutions from SAT formulas with a provably uniform distribution. How-
ever, these techniques are expensive, as they require solving constraints which include com-
plex hash functions that are hard to solve. In addition, the goal of sampling uniformly from
the solution space does not necessarily lead to the best coverage of the constraint space for
SMT constraints. We designed SMTSampler and GuidedSampler with the goal of effi-
ciently generating solutions that cover well the constraint space of large and complex SMT
formulas.

Following the universal hashing approach, SMTApproxMC [18] is an approximate model
counter for SMT formulas. It is applicable only to formulas in the bit-vector theory and
works similarly to UniGen [20] and UniGen2 [17], but using different hash functions that
work at the word level. Although SMTApproxMC is a model counter, it could be adapted to
work as a random sampler of bit-vector solutions, by outputting the solutions in a given cell,
after the solution space is uniformly partitioned into cells. In contrast to SMTApproxMC,
SMTSampler is designed to be more efficient and to also work over more general SMT
formulas containing the theories of arrays, uninterpreted functions and bit-vectors.

6.3 Weighted Sampling

As discussed above, there is a large number of techniques dedicated to sampling solutions to
logical constraints, especially for Boolean (SAT) constraints [50]. For example, techniques
may be based on model counting [31], Markov Chain Monte Carlo (MCMC) [73, 45, 44],
SAT solver search heuristics [53], combination of mutations [29, 28] and universal hashing [30,
51]. However, most sampling techniques have a general goal about the desired distribution
of solutions, such as uniform distribution [20, 17], not allowing more specific notions of
coverage.

Some of the above techniques, such as MCMC, can be adapted to the context of weighted
sampling. However, they frequently fail to converge to the desired distribution in prac-
tice. There are techniques that can sample from a literal-weighted distribution [16], such as
WAPS [36], however, not all distributions can be specified by assigning weights to literals
in the formula. GuidedSampler, on the other hand, allows the desired distribution to be
specified by coverage points, which are typically already present in testing and verification
applications. GuidedSampler also enables sampling directly from SMT formulas, without
a SAT conversion.

63

Chapter 7

Conclusion

This final chapter presents the summary of our contributions, as well as several ideas for
future work.

7.1 Summary of Contributions

In this dissertation, we presented three novel techniques for efficient sampling of solutions
to logical constraints.

1. QuickSampler, a technique to sample solutions to SAT constraints, targeting a near
uniform distribution.

2. SMTSampler, a technique to sample solutions to SMT constraints, targeting a good
coverage of the constraint space defined by the SMT formula.

3. GuidedSampler, a technique for coverage-guided sampling of SMT solutions, where
the distribution is guided by coverage points specified by the user.

Our techniques are publicly available as free and open-source tools, distributed under
the BSD 3-Clause License. They allow the efficient generation of millions of solutions from
only tens of queries to a constraint solver. They have been evaluated on large and complex
benchmarks that come from real-world applications and have already started being used by
other research groups [61, 60].

QuickSampler

QuickSampler is a new technique to sample solutions to Boolean constraints, with applica-
tions in constrained-random verification, symbolic execution and fuzz testing. By leveraging
a small number of MAX-SAT solver calls, QuickSampler can generate millions of samples.
QuickSampler works by computing some simple patterns of bit-flips, called atomic muta-
tions, which can be applied to known solutions to generate another solution to the formula.

CHAPTER 7. CONCLUSION 64

It produces samples by combining k such atomic mutations together, for each k ≤ 6. Those
samples are not guaranteed to be solutions for the formula, but they were solutions with
high probability on hundreds of SAT benchmarks.

Our experiments show that the produced samples are valid with an average probability
of 75% on a set of large, real-world benchmarks. Moreover, QuickSampler is more than 2
orders of magnitude faster at producing valid samples, when compared to other state-of-the-
art samplers. It is also more than 2 orders of magnitude faster at producing unique valid
samples, which is specially important to increase testing coverage. We have also verified
that QuickSampler is still 1 order of magnitude faster even when it takes the additional
time to verify that the generated solutions are valid. Finally, the distribution of samples
produced is close to uniform on most of the benchmarks.

SMTSampler

SMTSampler is a new technique for efficient stimulus generation from SMT constraints.
It has a goal of generating solutions that maximize the internal coverage of the constraint.
SMTSampler leverages the same idea of computing atomic mutations and combining them
to generate samples. However, SMTSampler is adapted to work over the higher-level theo-
ries of bit-vectors, arrays, and uninterpreted functions, producing and combining mutations
over those data types directly. This leads to more efficient solving, while also eliminating the
cost to convert the SMT formula into SAT. We show in our experimental evaluation that on
most benchmark programs SMTSampler outperforms a näıve approach that converts an
SMT formula to SAT and then applies QuickSampler. Moreover, unlike QuickSampler,
SMTSampler only outputs valid samples and adaptively increases the number k of atomic
mutations combined based on the accuracy in the samples that are tried. Our evaluation
over a large set of industrial SMT benchmarks shows that working over SMT solutions allows
SMTSampler to be effective on a larger set of formulas, generate more unique samples and
obtain a better coverage of the constraint space.

GuidedSampler

Finally, we introduced the problem of coverage-guided sampling, to allow shaping the distri-
bution of SMT solutions via user-specified coverage predicates. GuidedSampler is a novel
technique developed for coverage-guided sampling of SMT solutions. GuidedSampler ex-
tends SMTSampler with 3 important modifications to allow coverage-guided sampling
based on arbitrary coverage predicates. Our modifications use information about the cover-
age class of the solutions in order to guide the search into exploring new classes of solutions
and avoid sampling from the same repeated classes. Our experimental evaluation shows
that GuidedSampler is able to reach 2.5× to 38× more coverage classes than the baseline
approaches, while having a distribution over coverage classes that is close to uniform. The
approach works well for both internal coverage predicates based on the formula itself and
also for random coverage predicates, showing a good potential for applicability in a diverse

CHAPTER 7. CONCLUSION 65

range of applications. Even for applications where a general notion of coverage is suitable,
our evaluation shows that GuidedSampler can outperform SMTSampler in achieving
this coverage.

7.2 Future Work

Our novel idea of computing atomic mutations and combining them to efficiently generate
new samples has shown great promise as a practical technique for constraint sampling. It
is able to efficiently generate millions of diverse solutions to large and complex constraints,
and can also be adapted to different target distributions. We now list some interesting
future research directions, including new applications, a better understanding of the under-
lying structure and guarantees, new ideas for improved performance, and the exploration of
coverage-guided sampling.

Applications

One important research direction is in evaluating different applications for the sampling tech-
niques. Our techniques could be used to find bugs and security vulnerabilities in both hard-
ware and software. They could be combined with existing testing and verification techniques
for improved efficiency and scalability. And they could even be applied to new domains, such
as synthesis problems. We present below some research ideas in different applications.

Symbolic Execution and Fuzzing. Conventional symbolic execution [43, 23] and dy-
namic symbolic execution techniques [33, 66, 15, 14, 22, 48, 72, 3, 59, 2, 42, 64, 4, 62, 65,
34, 70, 5] are well-established techniques used in the testing of software, but which have
also been applied to the testing of firmware [21] and even hardware designs written in the
Chisel hardware description language [6]. They work by computing a path constraint for
each prefix of feasible execution paths in a program and using an SMT solver to generate
a solution for each such constraint. However, in practice, these techniques face scalability
problems because the number of paths for any reasonable program is astronomically large.
Instead of generating a single solution for the path constraint of a path prefix, one could
generate multiple solutions with SMTSampler to randomly test multiple paths having the
same prefix. We call this approach constraint-based fuzzing. If multiple solutions could be
generated efficiently, this would significantly speedup symbolic execution and reap the ben-
efits of random testing [75, 76, 10, 38, 39, 57, 32]. This approach can be applied both to
software and hardware designs. We have previously implemented one prototype symbolic ex-
ecution engine for Chisel designs, by leveraging an interpreter for the FIRRTL intermediate
language [41]. However, our symbolic execution engine faced scalability problems on large,
complex circuits. We hope that, by using the SMTSampler approach, we will be able to
better leverage the SMT solvers, obtaining many solutions that can increase coverage with
a small number of solver calls. This was, in fact, the initial motivation for the design of our

CHAPTER 7. CONCLUSION 66

sampling techniques. We also plan to apply this idea to software testing, in a new approach
combining the KLEE [15] symbolic execution engine and AFL [76] fuzz testing tool.

Constrained-Random Verification (CRV). For hardware testing, constrained-random
verification (CRV) [55] is heavily used in industry to generate high-quality inputs for hard-
ware designs. In CRV, verification engineers specify preconditions required by the hardware
and other constraints based on domain-specific knowledge [77, 54]. Multiple random inputs
satisfying the constraints are then generated using a constraint solver that can sample ran-
dom solutions from a constraint. For this approach, we could leverage high-level designs
written in Chisel. One idea is to formally specify the interfaces, such as TileLink [24], used
to connect different modules in a circuit. After those constraints are specified as SMT for-
mulas, we can use the SMTSampler technique to generate a large number of valid inputs
that exercise a given module. Another future direction is in adapting our sampling technique
to be applied to SystemVerilog constraints, since SystemVerilog is the most common format
used in industry for logical constraints in hardware circuits.

Other SMT Theories. One additional extension is supporting other SMT theories besides
bit-vectors, arrays and uninterpreted functions. We could identify which additional theories
are important for practical applications and see if our mutation combination function can
be adapted to work over variables from the new theories.

Counterexample-Guided Inductive Synthesis (CEGIS). CEGIS [68] is an approach
for synthesis consisting of a learner algorithm which generates candidate expressions and
a verifier which checks them for correctness and produces counterexamples for invalid can-
didates. The counterexamples are then used as feedback for the learner to produce new
candidates. This CEGIS loop is used, for example, in the enumerative approach to Syntax-
Guided Synthesis (SyGuS) [1], the problem of synthesizing an expression constrained by a
formal syntactic grammar. In a typical CEGIS loop, the verifier uses a constraint solver to
generate one counterexample for each invalid candidate it receives. However, the counterex-
ample may not be general enough to exclude a large class of invalid expressions, which will
lead to the repetition of several loop iterations. We believe our sampling technique could be
a good enhancement to CEGIS. By generating several diverse counterexamples, the verifier
can provide more information to the learner so that it can make more progress on its own,
limiting the number of calls to the verifier.

Understanding and Guarantees

Another important direction of research is in getting a deeper understanding of the com-
bination of mutations. We have some intuitive understanding as to why our algorithms
generate valid samples with high probability, but more work should be done into identify-
ing and measuring the root causes for this accuracy. One direction we plan to pursue is in

CHAPTER 7. CONCLUSION 67

statistically analyzing the structure of the clauses that are present in our benchmarks and
dependencies between different variables. We could obtain distributions for the number of
bits that are flipped by each atomic mutation, the intersection of bits flipped by different
mutations, the number of clauses affected by each of these bits and their structure. It is also
important to look at the relationships between variables inside and outside the independent
support of the formula for our Boolean benchmarks. In addition, for GuidedSampler we
should make further measurements to explain why the coverage predicates tend to follow the
same mutation pattern as the regular Boolean and bit-vector variables of the formula when
applying our mutation strategy.

Another important goal is to characterize the structure of the benchmarks for which our
mutation strategy provides high accuracy. We have surprisingly found that our techniques
work well over a very diverse range of benchmarks coming from several different domains in
SMT-LIB. However, we believe our mutation combination would not have a high accuracy
over randomly generated benchmarks. So there should be some common structure that
is present in benchmarks from practical applications that makes them susceptible to the
application of our sampling techniques. Understanding this structure could lead into further
insights as to what problems would be good applications for the techniques.

These efforts in better understanding the techniques might also provide stronger guar-
antees on the effectiveness of the techniques. We could search for statistical or theoretical
guarantees on the probability of producing valid samples and the distribution of samples
that is generated. Such guarantees would provide a greater confidence when applying the
techniques to current and new domains.

Algorithmic Improvements

Future research can also look into new ways to improve the efficiency and scalability of our
sampling techniques. We list some interesting ideas of algorithmic improvements below.

Solver Internals. One idea in this space is to modify the internal search heuristics of
SAT and SMT solvers, instead of treating the solvers as a black-box. We could study, for
example, if different SAT polarity choices could improve our sampling algorithms. One
could also apply different solving strategies or use other existing solvers for efficiency. For
example, the Boolector [11] solver is reported to be more efficient than Z3 [26] in dealing
with bit-vector constraints, so it might be a better choice for a large class of benchmarks. A
better study of how lazy and eager approaches interplay with SMTSampler would also be
interesting.

MAX-SAT Algorithm. The MAX-SAT optimizing solver is where our techniques spend
most of their time. Therefore, an improvement to the MAX-SAT algorithm could lead
to a significant speedup in the generation of samples. One simple direction is to try out
different MAX-SAT algorithms and check which one performs better for our problems. One

CHAPTER 7. CONCLUSION 68

particularly interesting approach is to use a MAX-SAT algorithm which is anytime [52],
meaning that it can be stopped at any point in time and will output the best solution found
so far. This is a nice approach for dealing with MAX-SAT and MAX-SMT problems which
are too large to solve, since we could still obtain a good quality solution in our time budget
and make progress, even if it may not be the optimal solution. Along the same line, we
could also study whether this optimality is actually required, or whether our combination
of mutations would still obtain a high accuracy when the neighboring solutions are not the
closest ones to the base solution.

Efficient SMT Evaluator. Another algorithmic improvement would be in utilizing a
technique such as SMT-JIT [46] for efficient evaluation of SMT formulas. SMT-JIT is a just-
in-time compiler which can compile formulas from the QF AUFBV logic of SMT into efficient
LLVM [47] and machine code. SMTSampler and GuidedSampler could leverage SMT-
JIT in the checking phase to very efficiently check if a candidate solution actually satisfies
the formula and to compute its coverage class. In addition, a very significant speedup might
be obtained if we can leverage the efficient SMT evaluator in the MAX-SAT algorithm. This
might require making some adaptations to the current MAX-SAT algorithm.

Coverage-guided Sampling

Finally, one important direction is in further exploration of the problem of coverage-guided
sampling. In our technique GuidedSampler, we assumed that coverage predicates are
provided by the user. We then focused on the problem of sampling from different coverage
classes with equal weight. However, a crucial problem is studying how to choose coverage
predicates that lead to a good ‘quality’ in the partitioning of the solution space. We devised
one such strategy, internal predicates, based on our prior experience with SMTSampler,
in attempting to obtain a good coverage of the formula itself. But the exploration of more
strategies to create coverage predicates still merits more research, and it might require some
more application-specific experience.

69

Bibliography

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. “Syntax-guided synthesis”. In: Formal Methods in
Computer-Aided Design (FMCAD), 2013. IEEE. 2013, pp. 1–8.

[2] Saswat Anand and Mary Jean Harrold. “Heap cloning: Enabling dynamic symbolic
execution of java programs”. In: ASE. 2011, pp. 33–42.

[3] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. “JPF-SE: a symbolic execu-
tion extension to Java PathFinder”. In: TACAS’07. 2007.

[4] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and
Michael D. Ernst. “Finding bugs in dynamic web applications”. In: ISSTA’08. 2008.

[5] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. “En-
hancing Symbolic Execution with Veritesting”. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014,
pp. 1083–1094. isbn: 978-1-4503-2756-5.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović. “Chisel: constructing hardware in
a scala embedded language”. In: Proceedings of the 49th Annual Design Automation
Conference. ACM. 2012, pp. 1216–1225.

[7] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org. 2016.

[8] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. “Satisfiabil-
ity Modulo Theories”. In: Handbook of Satisfiability. Ed. by Armin Biere, Hans van
Maaren, and Toby Walsh. Vol. 4. IOS Press, 2009. Chap. 8.

[9] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. “νZ-An Optimizing SMT
Solver.” In: TACAS. Vol. 15. 2015, pp. 194–199.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-based greybox
fuzzing as markov chain”. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2016, pp. 1032–1043.

BIBLIOGRAPHY 70

[11] Robert Brummayer and Armin Biere. “Boolector: An efficient SMT solver for bit-
vectors and arrays”. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2009, pp. 174–177.

[12] Randal E Bryant. “Symbolic simulation—techniques and applications”. In: Proceedings
of the 27th ACM/IEEE Design Automation Conference. ACM. 1991, pp. 517–521.

[13] Randal E Bryant, Shuvendu K Lahiri, and Sanjit A Seshia. “Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions and uninterpreted
functions”. In: International Conference on Computer Aided Verification. Springer.
2002, pp. 78–92.

[14] Jacob Burnim and Koushik Sen. “Heuristics for Scalable Dynamic Test Generation”.
In: ASE’08. Sept. 2008.

[15] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and Au-
tomatic Generation of High-Coverage Tests for Complex Systems Programs”. In:
OSDI’08. Dec. 2008.

[16] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and
Moshe Y. Vardi. “Distribution-Aware Sampling and Weighted Model Counting for
SAT”. In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI). July
2014.

[17] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and Moshe
Y Vardi. “On Parallel Scalable Uniform SAT Witness Generation.” In: TACAS. 2015,
pp. 304–319.

[18] Supratik Chakraborty, Kuldeep S Meel, Rakesh Mistry, and Moshe Y Vardi. “Ap-
proximate Probabilistic Inference via Word-Level Counting.” In: AAAI. Vol. 16. 2016,
pp. 3218–3224.

[19] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. “A scalable approximate
model counter”. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2013, pp. 200–216.

[20] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. “Balancing scalability
and uniformity in SAT witness generator”. In: Design Automation Conference (DAC),
2014 51st ACM/EDAC/IEEE. IEEE. 2014, pp. 1–6.

[21] Bo Chen, Christopher Havlicek, Zhenkun Yang, Kai Cong, Raghudeep Kannavara, and
Fei Xie. “CRETE: A Versatile Binary-Level Concolic Testing Framework”. In: Inter-
national Conference on Fundamental Approaches to Software Engineering. Springer,
Cham. 2018, pp. 281–298.

[22] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “The S2E Platform:
Design, Implementation, and Applications”. In: ACM Trans. Comput. Syst. 30.1
(2012), p. 2.

BIBLIOGRAPHY 71

[23] Lori A. Clarke. “A program testing system”. In: Proc. of the 1976 annual conference.
1976, pp. 488–491.

[24] Henry M Cook, Andrew S Waterman, and Yunsup Lee. “TileLink cache coherence
protocol implementation”. In: White Paper (2015).

[25] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem-proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

[26] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems (2008), pp. 337–340.

[27] Rafael Dutra, Jonathan Bachrach, and Koushik Sen. “GuidedSampler: Coverage-
guided Sampling of SMT Solutions”. In: Formal Methods in Computer-Aided Design
(FMCAD), 2019. IEEE. 2019.

[28] Rafael Dutra, Jonathan Bachrach, and Koushik Sen. “SMTSampler: Efficient Stimu-
lus Generation from Complex SMT Constraints”. In: 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE. 2018.

[29] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. “Efficient Sam-
pling of SAT Solutions for Testing”. In: 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering (ICSE). IEEE. 2018, pp. 549–559.

[30] Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. “Embed and
project: Discrete sampling with universal hashing”. In: Advances in Neural Information
Processing Systems. 2013, pp. 2085–2093.

[31] Stefano Ermon, Carla P Gomes, and Bart Selman. “Uniform solution sampling using a
constraint solver as an oracle”. In: Conference on Uncertainty in Artificial Intelligence
(2012).

[32] Gordon Fraser and Andrea Arcuri. “EvoSuite: automatic test suite generation for
object-oriented software”. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering. ESEC/FSE
’11. Szeged, Hungary: ACM, 2011, pp. 416–419. isbn: 978-1-4503-0443-6.

[33] P. Godefroid, N. Klarlund, and K. Sen. “DART: Directed Automated Random Test-
ing”. In: PLDI’05. June 2005.

[34] P. Godefroid, M.Y. Levin, and D. Molnar. “Automated Whitebox Fuzz Testing”. In:
NDSS’08. Feb. 2008.

[35] Carla P Gomes, Ashish Sabharwal, and Bart Selman. “Near-uniform sampling of com-
binatorial spaces using XOR constraints”. In: Advances In Neural Information Pro-
cessing Systems. 2007, pp. 481–488.

[36] Rahul Gupta, Shubham Sharma, Subhajit Roy, and Kuldeep S. Meel. “WAPS:
Weighted and Projected Sampling”. In: Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Apr. 2019.

BIBLIOGRAPHY 72

[37] Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark Barrett, and Cesare Tinelli.
“A tale of two solvers: Eager and lazy approaches to bit-vectors”. In: International
Conference on Computer Aided Verification. Springer. 2014, pp. 680–695.

[38] Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with Code Fragments”.
In: Proceedings of the 21st USENIX Conference on Security Symposium. Security’12.
Bellevue, WA: USENIX Association, 2012, pp. 38–38.

[39] Allen D. Householder and Jonathan M. Foote. Probability-Based Parameter Selection
for Black-Box Fuzz Testing. Tech. rep. Carnegie Mellon University Software Engineer-
ing Institute, Aug. 2012.

[40] Alexander Ivrii, Sharad Malik, Kuldeep S Meel, and Moshe Y Vardi. “On comput-
ing minimal independent support and its applications to sampling and counting”. In:
Constraints 21.1 (2016), pp. 41–58.

[41] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-
yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al. “Reusability is
FIRRTL ground: Hardware construction languages, compiler frameworks, and trans-
formations”. In: Proceedings of the 36th International Conference on Computer-Aided
Design. IEEE Press. 2017, pp. 209–216.

[42] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. “jFuzz: A
Concolic Whitebox Fuzzer for Java”. In: In NFM’09. Apr. 2009.

[43] James C. King. “Symbolic execution and program testing”. In: Commun. ACM 19 (7
July 1976), pp. 385–394. issn: 0001-0782.

[44] Nathan Boyd Kitchen. Markov Chain Monte Carlo Stimulus Generation for Con-
strained Random Simulation. University of California, Berkeley, 2010.

[45] Nathan Kitchen and Andreas Kuehlmann. “Stimulus generation for constrained ran-
dom simulation”. In: Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM Inter-
national Conference on. IEEE. 2007, pp. 258–265.

[46] Jakub Kuderski. SMT-JIT: A toy Just-In-Time Compiler for evaluating SMT formulas
(QF AUFBV). https://github.com/kuhar/smt-jit. Accessed November 13, 2019.

[47] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis and Transformation”. In: CGO’04. Mar. 2004.

[48] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. “KLOVER: A Symbolic Ex-
ecution and Automatic Test Generation Tool for C++ Programs”. In: CAV. 2011,
pp. 609–615.

[49] Sharad Malik and Lintao Zhang. “Boolean satisfiability from theoretical hardness to
practical success”. In: Communications of the ACM 52.8 (2009), pp. 76–82.

[50] Kuldeep S Meel. “Constrained Counting and Sampling: Bridging the Gap between
Theory and Practice”. PhD thesis. Rice University, 2017.

https://github.com/kuhar/smt-jit

BIBLIOGRAPHY 73

[51] Kuldeep S Meel, Moshe Y Vardi, Supratik Chakraborty, Daniel J Fremont, Sanjit A
Seshia, Dror Fried, Alexander Ivrii, and Sharad Malik. “Constrained Sampling and
Counting: Universal Hashing Meets SAT Solving.” In: AAAI Workshop: Beyond NP.
2016.

[52] Alexander Nadel. “Anytime Weighted MaxSAT with Improved Polarity Selection and
Bit-Vector Optimization”. In: Formal Methods in Computer-Aided Design (FMCAD),
2019. IEEE. 2019.

[53] Alexander Nadel. “Generating Diverse Solutions in SAT.” In: SAT. Springer. 2011,
pp. 287–301.

[54] Reuven Naveh and Amit Metodi. “Beyond feasibility: CP usage in constrained-random
functional hardware verification”. In: International Conference on Principles and Prac-
tice of Constraint Programming. Springer. 2013, pp. 823–831.

[55] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan s Marcu,
and Gil Shurek. “Constraint-based random stimuli generation for hardware verifica-
tion”. In: AI magazine 28.3 (2007), p. 13.

[56] Robert Nieuwenhuis and Albert Oliveras. “On SAT modulo theories and optimiza-
tion problems”. In: International conference on theory and applications of satisfiability
testing. Springer. 2006, pp. 156–169.

[57] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. “Feedback-
directed random test generation”. In: ICSE’07, Proceedings of the 29th International
Conference on Software Engineering. Minneapolis, MN, USA, May 2007, pp. 75–84.

[58] O Padon, KL McMillan, A Panda, M Sagiv, and S Shoham. “Ivy: interactive verifica-
tion of parameterized systems via effectively propositional reasoning”. In: PLDI. ACM
(2016).

[59] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person, and M.
Pape. “Combining Unit-level Symbolic Execution and System-level Concrete Execution
for Testing NASA Software”. In: ISSTA’08. July 2008.

[60] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime Cordy.
“Uniform sampling of sat solutions for configurable systems: Are we there yet?” In:
2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST).
IEEE. 2019, pp. 240–251.

[61] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. “Bug synthesis:
Challenging bug-finding tools with deep faults”. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM. 2018, pp. 224–234.

[62] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and
Dawn Song. “A Symbolic Execution Framework for JavaScript”. In: Proceedings of the
2010 IEEE Symposium on Security and Privacy. SP ’10. IEEE, 2010, pp. 513–528.

BIBLIOGRAPHY 74

[63] Roberto Sebastiani. “Lazy satisfiability modulo theories”. In: Journal on Satisfiability,
Boolean Modeling and Computation 3 (2007), pp. 141–224.

[64] Koushik Sen and Gul Agha. “CUTE and jCUTE : Concolic Unit Testing and Explicit
Path Model-Checking Tools”. In: CAV’06. 2006.

[65] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. “Jalangi: A
Selective Record-Replay and Dynamic Analysis Framework for JavaScript”. In: ES-
EC/FSE’13. To appear. Aug. 2013.

[66] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing Engine
for C”. In: ESEC/FSE’05. Sept. 2005.

[67] Sanjit A. Seshia. “Adaptive Eager Boolean Encoding for Arithmetic Reasoning in
Verification”. PhD thesis. Carnegie Mellon University, May 2005.

[68] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bod́ık, and Kemal Ebcioğlu. “Pro-
gramming by sketching for bit-streaming programs”. In: ACM SIGPLAN Notices.
Vol. 40. 6. ACM. 2005, pp. 281–294.

[69] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. “Combinatorial sketching for finite programs”. In: ACM Sigplan Notices
41.11 (2006), pp. 404–415.

[70] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. “BitBlaze:
A New Approach to Computer Security via Binary Analysis”. In: ICISS’08. Dec. 2008.

[71] Marc Thurley. “sharpSAT-counting models with advanced component caching and
implicit BCP”. In: SAT 4121 (2006), pp. 424–429.

[72] Nikolai Tillmann and Jonathan de Halleux. “Pex - White Box Test Generation for
.NET”. In: TAP’08. Apr. 2008.

[73] Wei Wei, Jordan Erenrich, and Bart Selman. “Towards efficient sampling: Exploiting
random walk strategies”. In: AAAI. Vol. 4. 2004, pp. 670–676.

[74] Wei Wei and Bart Selman. “A new approach to model counting”. In: SAT. Springer.
2005, pp. 324–339.

[75] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and Understanding
Bugs in C Compilers”. In: Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’11. San Jose, California,
USA: ACM, 2011, pp. 283–294. isbn: 978-1-4503-0663-8.

[76] Micha l Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl. Accessed
October 1, 2016.

[77] Yanni Zhao, Jinian Bian, Shujun Deng, and Zhiqiu Kong. “Random stimulus gener-
ation with self-tuning”. In: Computer Supported Cooperative Work in Design, 2009.
CSCWD 2009. 13th International Conference on. IEEE. 2009, pp. 62–65.

http://lcamtuf.coredump.cx/afl

75

Appendix A

Academic Genealogy

Thanks to the Mathematics Genealogy Project1, Wikipedia2 and some help from Rohan
Padhye3, I reconstructed these two lines from my academic genealogy. The Mathematics
Genealogy Project is a service of North Dakota State University and the American Mathe-
matical Society. Full genealogical tree available at https://people.eecs.berkeley.edu/

~rtd/genealogy.pdf.
I was honored to find that my academic genealogical tree includes giants of mathematics

and physics Gauss, Isaac Newton, Kepler, Galileo, Tycho Brahe and Copernicus. It includes
pioneers in concolic testing (Koushik Sen), the actor model of computation (Carl Hewitt
and Gul Agha), genetic algorithms (John Henry Holland4), constructionism and artificial
intelligence (Papert), the first Turing-complete electronic computer (Arthur Burks), popu-
lation genetics (G. H. Hardy), experimental psychology (Wundt and Edward B. Titchener),
control systems theory (Edward Routh), matrix multiplication and abstract groups (Arthur
Cayley), short-period comets (Johann Franz Encke), modern geology (Adam Sedgwick5), gal-
vanometers (Johann Schweigger), planet Uranus (Johann Elert Bode), electrostatic printing
(Georg Christoph Lichtenberg6), reactive water turbines (Johann Andreas Segner), numeri-
cal integration (Roger Cotes), infinitesimal calculus (Isaac Barrow), pressure measurement
(Evangelista Torricelli), acoustics (Mersenne), refraction (Willebrord Snellius), modern em-
bryology (Hieronymus Fabricius), condoms (Falloppio), modern human anatomy (Vesalius
and Realdo Colombo), astronomical rings (Gemma Frisius), the Gymnasium system of sec-
ondary education (Johannes Sturm), solving cubic equations (Niccolò Fontana Tartaglia),
accounting (Pacioli7), scientific printing press (Regiomontanus), harmonic series (Oresme),
trigonometry (Nasir al-Din al-Tusi), and algebraic geometry (Sharaf al-Dı̄n al-

·
Tūs̄ı).

1https://www.genealogy.math.ndsu.nodak.edu/.
2https://www.wikipedia.org/.
3https://people.eecs.berkeley.edu/~rohanpadhye/.
4One of the first people in the world to receive a Ph.D. in what might be called a “Computer Science”

program in 1959 (officially “Communication Sciences Program” and “Logic of Computers Group”).
5Also Charles Darwin’s advisor.
6Also creator of A4 paper size system (unfortunately not adopted by this dissertation).
7Also a teacher of Leonardo da Vinci.

https://people.eecs.berkeley.edu/~rtd/genealogy.pdf
https://people.eecs.berkeley.edu/~rtd/genealogy.pdf
https://www.genealogy.math.ndsu.nodak.edu/
https://www.wikipedia.org/
https://people.eecs.berkeley.edu/~rohanpadhye/

APPENDIX A. ACADEMIC GENEALOGY 76

Additionally, the genealogical tree also includes Christian humanist philosopher Erasmus,
some prominent Lutheran reformers (Melanchthon and others), a leader and reformer of the
Church of England (Thomas Cranmer), an Eastern Orthodox saint (Gregory Palamas), a
Roman Catholic cardinal bishop (Bessarion), and two chief ministers to the Byzantine em-
peror (Demetrios Kydones and Theodore Metochites), as well as Leonardo da Vinci’s teacher
John Argyropoulos, Gottfried Leibniz’s father (Friedrich Leibniz), and Charles Darwin’s son
(George Darwin).

APPENDIX A. ACADEMIC GENEALOGY 77

Rafael Tupynambá Dutra University of California, Berkeley 2019

Koushik Sen University of Illinois at Urbana-Champaign 2006

Gul Agha University of Michigan 1985

John Henry Holland University of Michigan 1959

Arthur Burks University of Michigan 1941

Cooper Harold Langford Harvard University 1924

Edwin Boring Cornell University 1914

Edward B. Titchener Universität Leipzig 1892

Eilhard Wiedemann Universität Leipzig 1872

Karl Christian Bruhns Friedrich-Wilhelms-Universität zu Berlin 1856

Johann Franz Encke Universität Göttingen 1825

Carl Friedrich Gauss Universität Helmstedt 1799

Johann Friedrich Pfaff Universität Göttingen 1786

Abraham Gotthelf Kästner Universität Leipzig 1739

Christian August Hausen Universität Wittenberg 1713

Johann Andreas Planer Universität Wittenberg 1686

Georg Pasch Universität Wittenberg 1683

Michael Walther der Jüngere Universität Wittenberg 1687

Johannes Andreas Quenstedt Universität Wittenberg 1644

Christoph Notnagel Universität Wittenberg 1630

Ambrosius Rhode Universität Wittenberg 1610

Johannes Kepler Tübinger Stift 1591

Tycho Brahe Universität Wittenberg 1565

Caspar Peucer Universität Wittenberg 1545

Georg Joachim Rheticus Universität Wittenberg 1535

Nicolaus Copernicus Università di Bologna 1499

Domenico Maria Novara da Ferrara Università degli Studi di Firenze 1483

Regiomontanus Universität Wien 1457

Basilios Bessarion Mystras 1436

Gemistus Pletho Mystras 1393

Demetrios Kydones Thessaloniki c.1365

Neilos Kabasilas Thessaloniki 1363

Gregory Palamas Constantinople c.1336

Theodore Metochites Constantinople 1315

Manuel Bryennios Constantinople c.1300

Gregory Choniades Ilkhans Court at Tabriz 1296

Shams al-Dı̄n al-Bukhār̄ı Maragheh Observatory c.1260

Nasir al-Din al-Tusi Maragheh Observatory c.1230

Kamal al-Din ibn Yunus Persia c.1200

Sharaf al-Dı̄n al-
·
Tūs̄ı Persia c.1175

https://people.eecs.berkeley.edu/~rtd/
https://en.wikipedia.org/wiki/Brazil
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=254439
https://people.eecs.berkeley.edu/~ksen/
https://en.wikipedia.org/wiki/India
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=174839
https://en.wikipedia.org/wiki/Gul_Agha_(computer_scientist)
https://en.wikipedia.org/wiki/Pakistan
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=41364
https://en.wikipedia.org/wiki/John_Henry_Holland
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=5064
https://en.wikipedia.org/wiki/Arthur_Burks
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=91923
https://en.wikipedia.org/wiki/Cooper_Harold_Langford
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=111540
https://en.wikipedia.org/wiki/Edwin_Boring
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=132996
https://en.wikipedia.org/wiki/Edward_B._Titchener
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://en.wikipedia.org/wiki/German_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=133027
https://en.wikipedia.org/wiki/Eilhard_Wiedemann
https://en.wikipedia.org/wiki/Kingdom_of_Prussia
https://en.wikipedia.org/wiki/German_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=51429
https://en.wikipedia.org/wiki/Karl_Christian_Bruhns
https://en.wikipedia.org/wiki/Duchy_of_Holstein
https://en.wikipedia.org/wiki/Kingdom_of_Prussia
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=65029
https://en.wikipedia.org/wiki/Johann_Franz_Encke
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Kingdom_of_Hanover
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=62547
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=18231
https://en.wikipedia.org/wiki/Johann_Friedrich_Pfaff
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=18230
https://en.wikipedia.org/wiki/Abraham_Gotthelf_K%C3%A4stner
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=66476
https://en.wikipedia.org/wiki/Christian_August_Hausen
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=57670
https://pt.wikipedia.org/wiki/Johann_Andreas_Planer
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=128986
https://de.wikipedia.org/wiki/Georg_Pasch
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=128046
https://de.wikipedia.org/wiki/Michael_Walther_der_J%C3%BCngere
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=127962
https://en.wikipedia.org/wiki/Johannes_Andreas_Quenstedt
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=127956
https://de.wikipedia.org/wiki/Christoph_Notnagel
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=127724
https://de.wikipedia.org/wiki/Ambrosius_Rhode
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=127606
https://en.wikipedia.org/wiki/Johannes_Kepler
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=127098
https://en.wikipedia.org/wiki/Tycho_Brahe
https://en.wikipedia.org/wiki/Denmark
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=125379
https://en.wikipedia.org/wiki/Caspar_Peucer
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=126875
https://en.wikipedia.org/wiki/Georg_Joachim_Rheticus
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=126827
https://en.wikipedia.org/wiki/Nicolaus_Copernicus
https://en.wikipedia.org/wiki/Kingdom_of_Poland_(1385%E2%80%931569)
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=126177
https://en.wikipedia.org/wiki/Domenico_Maria_Novara_da_Ferrara
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=126112
https://en.wikipedia.org/wiki/Regiomontanus
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=126109
https://en.wikipedia.org/wiki/Basilios_Bessarion
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Byzantine_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=131561
https://en.wikipedia.org/wiki/Gemistus_Pletho
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Byzantine_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=131575
https://en.wikipedia.org/wiki/Demetrios_Kydones
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Byzantine_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=134780
https://en.wikipedia.org/wiki/Neilos_Kabasilas
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Byzantine_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=146365
https://en.wikipedia.org/wiki/Gregory_Palamas
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Byzantine_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=176844
https://en.wikipedia.org/wiki/Theodore_Metochites
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Byzantine_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=184631
https://en.wikipedia.org/wiki/Manuel_Bryennios
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Byzantine_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=184632
https://en.wikipedia.org/wiki/Gregory_Choniades
https://en.wikipedia.org/wiki/Byzantine_Empire
https://en.wikipedia.org/wiki/Mongol_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=201288
https://islamsci.mcgill.ca/RASI/BEA/Shams_al-Din_al-Bukhari_BEA.htm
https://en.wikipedia.org/wiki/Mongol_Empire
https://en.wikipedia.org/wiki/Mongol_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=204293
https://en.wikipedia.org/wiki/Nasir_al-Din_al-Tusi
https://en.wikipedia.org/wiki/Khwarazmian_dynasty
https://en.wikipedia.org/wiki/Khwarazmian_dynasty
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=217509
https://www.wikidata.org/wiki/Q26215542
https://en.wikipedia.org/wiki/Khwarazmian_dynasty
https://en.wikipedia.org/wiki/Khwarazmian_dynasty
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=223724
https://en.wikipedia.org/wiki/Sharaf_al-D%C4%ABn_al-%E1%B9%AC%C5%ABs%C4%AB
https://en.wikipedia.org/wiki/Khwarazmian_dynasty
https://en.wikipedia.org/wiki/Khwarazmian_dynasty
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=230926

APPENDIX A. ACADEMIC GENEALOGY 78

Rafael Tupynambá Dutra Computer Scientist, Mathematician, Engineer

Koushik Sen Computer Scientist

Gul Agha Computer Scientist

John Henry Holland Psychologist, Electrical Engineer and Computer Scientist

Arthur Burks Mathematician, Physicist, Philosopher and Computer Scientist

Cooper Harold Langford Analytic Philosopher and Mathematical Logician

Edwin Boring Experimental Psychologist and Historian of Psychology

Edward B. Titchener Psychologist

Eilhard Wiedemann Physicist and Historian of Science

Karl Christian Bruhns Astronomer

Johann Franz Encke Astronomer

Carl Friedrich Gauss Mathematician and Physicist

Johann Friedrich Pfaff Mathematician and Astronomer

Abraham Gotthelf Kästner Mathematician, Epigrammatist, Philosopher, Logician, Jurist and Physicist

Christian August Hausen Mathematician and Physicist

Johann Andreas Planer Mathematician and Philosopher

Georg Pasch Logician and Protestant Theologian

Michael Walther der Jüngere Mathematician and Lutheran Theologian

Johannes Andreas Quenstedt Lutheran Dogmatician, Geographer, Philosopher, Logician and Theologian

Christoph Notnagel Mathematician and Astronomer

Ambrosius Rhode Mathematician, Astronomer and Physician

Johannes Kepler Astronomer, Mathematician, Astrologer and Physicist

Tycho Brahe Nobleman, Astronomer, Astrologer, Alchemist and Writer

Caspar Peucer Reformer, Physician, Mathematician and Astronomer

Georg Joachim Rheticus
Mathematician, Astronomer, Cartographer, Navigational-instrument Maker,

Medical Practitioner and Teacher

Nicolaus Copernicus
Polymath, Mathematician, Astronomer, Physician, Classics Scholar, Trans-

lator, Governor, Diplomat, Economist and Canon Lawyer

Domenico Maria Novara da Ferrara Mathematician and Astronomer

Regiomontanus Mathematician and Astronomer

Basilios Bessarion Roman Catholic Cardinal Bishop

Gemistus Pletho Philosopher

Demetrios Kydones Theologian, Translator, Writer and Influential Statesman

Neilos Kabasilas Palamite Theologian

Gregory Palamas Theologian and Ecclesiastical Figure

Theodore Metochites Statesman, Author, Gentleman Philosopher and Patron of the Arts

Manuel Bryennios Astronomer, Mathematician and Musical Theorist

Gregory Choniades Astronomer

Shams al-Dı̄n al-Bukhār̄ı Mathematician and Astronomer

Nasir al-Din al-Tusi Polymath, Architect, Philosopher, Physician, Scientist and Theologian

Kamal al-Din ibn Yunus Mathematician, Chemist and Jurist

Sharaf al-Dı̄n al-
·
Tūs̄ı Mathematician and Astronomer

https://people.eecs.berkeley.edu/~rtd/
https://people.eecs.berkeley.edu/~ksen/
https://en.wikipedia.org/wiki/Gul_Agha_(computer_scientist)
https://en.wikipedia.org/wiki/John_Henry_Holland
https://en.wikipedia.org/wiki/Arthur_Burks
https://en.wikipedia.org/wiki/Cooper_Harold_Langford
https://en.wikipedia.org/wiki/Edwin_Boring
https://en.wikipedia.org/wiki/Edward_B._Titchener
https://en.wikipedia.org/wiki/Eilhard_Wiedemann
https://en.wikipedia.org/wiki/Karl_Christian_Bruhns
https://en.wikipedia.org/wiki/Johann_Franz_Encke
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Johann_Friedrich_Pfaff
https://en.wikipedia.org/wiki/Abraham_Gotthelf_K%C3%A4stner
https://en.wikipedia.org/wiki/Christian_August_Hausen
https://pt.wikipedia.org/wiki/Johann_Andreas_Planer
https://de.wikipedia.org/wiki/Georg_Pasch
https://de.wikipedia.org/wiki/Michael_Walther_der_J%C3%BCngere
https://en.wikipedia.org/wiki/Johannes_Andreas_Quenstedt
https://de.wikipedia.org/wiki/Christoph_Notnagel
https://de.wikipedia.org/wiki/Ambrosius_Rhode
https://en.wikipedia.org/wiki/Johannes_Kepler
https://en.wikipedia.org/wiki/Tycho_Brahe
https://en.wikipedia.org/wiki/Caspar_Peucer
https://en.wikipedia.org/wiki/Georg_Joachim_Rheticus
https://en.wikipedia.org/wiki/Nicolaus_Copernicus
https://en.wikipedia.org/wiki/Domenico_Maria_Novara_da_Ferrara
https://en.wikipedia.org/wiki/Regiomontanus
https://en.wikipedia.org/wiki/Basilios_Bessarion
https://en.wikipedia.org/wiki/Gemistus_Pletho
https://en.wikipedia.org/wiki/Demetrios_Kydones
https://en.wikipedia.org/wiki/Neilos_Kabasilas
https://en.wikipedia.org/wiki/Gregory_Palamas
https://en.wikipedia.org/wiki/Theodore_Metochites
https://en.wikipedia.org/wiki/Manuel_Bryennios
https://en.wikipedia.org/wiki/Gregory_Choniades
https://islamsci.mcgill.ca/RASI/BEA/Shams_al-Din_al-Bukhari_BEA.htm
https://en.wikipedia.org/wiki/Nasir_al-Din_al-Tusi
https://www.wikidata.org/wiki/Q26215542
https://en.wikipedia.org/wiki/Sharaf_al-D%C4%ABn_al-%E1%B9%AC%C5%ABs%C4%AB

APPENDIX A. ACADEMIC GENEALOGY 79

Rafael Tupynambá Dutra University of California, Berkeley 2019

Koushik Sen University of Illinois at Urbana-Champaign 2006

Gul Agha University of Michigan 1985

Carl Hewitt Massachusetts Institute of Technology 1971

Seymour Papert University of Cambridge 1959

Frank Smithies University of Cambridge 1937

G. H. Hardy University of Cambridge 1903

E. T. Whittaker University of Cambridge 1895

George Darwin University of Cambridge 1871

Edward Routh University of Cambridge 1857

Isaac Todhunter University of Cambridge 1848

William Hopkins University of Cambridge 1830

Adam Sedgwick University of Cambridge 1811

Thomas Jones University of Cambridge 1782

Thomas Postlethwaite University of Cambridge 1756

Stephen Whisson University of Cambridge 1742

Walter Taylor University of Cambridge 1723

Robert Smith University of Cambridge 1715

Roger Cotes University of Cambridge 1706

Isaac Newton University of Cambridge 1668

Isaac Barrow University of Cambridge 1652

Vincenzo Viviani Università di Pisa 1642

Evangelista Torricelli Università degli Studi di Roma La Sapienza c.1641

Benedetto Castelli Università degli Studi di Padova 1610

Galileo Galilei Università di Pisa 1585

Ostilio Ricci Università di Brescia c.1570

Niccolò Fontana Tartaglia Università degli Studi di Padova c.1516

https://people.eecs.berkeley.edu/~rtd/
https://en.wikipedia.org/wiki/Brazil
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=254439
https://people.eecs.berkeley.edu/~ksen/
https://en.wikipedia.org/wiki/India
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=174839
https://en.wikipedia.org/wiki/Gul_Agha_(computer_scientist)
https://en.wikipedia.org/wiki/Pakistan
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=41364
https://en.wikipedia.org/wiki/Carl_Hewitt
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=61061
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/Union_of_South_Africa
https://en.wikipedia.org/wiki/United_Kingdom
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=20656
https://en.wikipedia.org/wiki/Frank_Smithies
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://en.wikipedia.org/wiki/United_Kingdom
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=18538
https://en.wikipedia.org/wiki/G._H._Hardy
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=17806
https://en.wikipedia.org/wiki/E._T._Whittaker
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=18571
https://en.wikipedia.org/wiki/George_Darwin
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=17467
https://en.wikipedia.org/wiki/Edward_Routh
https://en.wikipedia.org/wiki/Lower_Canada
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=101929
https://en.wikipedia.org/wiki/Isaac_Todhunter
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=129420
https://en.wikipedia.org/wiki/William_Hopkins
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=42016
https://en.wikipedia.org/wiki/Adam_Sedgwick
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://en.wikipedia.org/wiki/United_Kingdom_of_Great_Britain_and_Ireland
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=102043
https://en.wikipedia.org/wiki/Thomas_Jones_(mathematician)
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=102036
https://en.wikipedia.org/wiki/Thomas_Postlethwaite
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=133301
https://en.wikipedia.org/wiki/Stephen_Whisson
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=133367
https://en.wikipedia.org/wiki/Walter_Taylor_(mathematician)
https://en.wikipedia.org/wiki/Kingdom_of_England
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=133368
https://en.wikipedia.org/wiki/Robert_Smith_(mathematician)
https://en.wikipedia.org/wiki/Kingdom_of_England
https://en.wikipedia.org/wiki/Kingdom_of_Great_Britain
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=103068
https://en.wikipedia.org/wiki/Roger_Cotes
https://en.wikipedia.org/wiki/Kingdom_of_England
https://en.wikipedia.org/wiki/Kingdom_of_England
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=103067
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Kingdom_of_England
https://en.wikipedia.org/wiki/Kingdom_of_England
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=74313
https://en.wikipedia.org/wiki/Isaac_Barrow
https://en.wikipedia.org/wiki/Kingdom_of_England
https://en.wikipedia.org/wiki/Kingdom_of_England
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=67643
https://en.wikipedia.org/wiki/Vincenzo_Viviani
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=133302
https://en.wikipedia.org/wiki/Evangelista_Torricelli
https://en.wikipedia.org/wiki/Papal_States
https://en.wikipedia.org/wiki/Papal_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=154455
https://en.wikipedia.org/wiki/Benedetto_Castelli
https://en.wikipedia.org/wiki/Papal_States
https://en.wikipedia.org/wiki/Republic_of_Venice
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=136575
https://en.wikipedia.org/wiki/Galileo_Galilei
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://en.wikipedia.org/wiki/Holy_Roman_Empire
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=134975
https://en.wikipedia.org/wiki/Ostilio_Ricci
https://en.wikipedia.org/wiki/Papal_States
https://en.wikipedia.org/wiki/Papal_States
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=136245
https://en.wikipedia.org/wiki/Niccol%C3%B2_Fontana_Tartaglia
https://en.wikipedia.org/wiki/Republic_of_Venice
https://en.wikipedia.org/wiki/Republic_of_Venice
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=136514

APPENDIX A. ACADEMIC GENEALOGY 80

Rafael Tupynambá Dutra Computer Scientist, Mathematician, Engineer

Koushik Sen Computer Scientist

Gul Agha Computer Scientist

Carl Hewitt Computer Scientist, Mathematician and Logician

Seymour Papert Mathematician, Computer Scientist, Educator and Cognitive Scientist

Frank Smithies Mathematician

G. H. Hardy Mathematician

E. T. Whittaker Mathematician and Mathematical Physicist

George Darwin Barrister, Astronomer and Mathematician

Edward Routh Mathematician and Mathematical Physicist

Isaac Todhunter Mathematician

William Hopkins Mathematician and Geologist

Adam Sedgwick Geologist and Priest

Thomas Jones Mathematician

Thomas Postlethwaite Clergyman and Mathematician

Stephen Whisson Mathematician

Walter Taylor Mathematician and Classicist

Robert Smith Mathematician

Roger Cotes Mathematician

Isaac Newton
Natural Philosopher, Mathematician, Physicist, Astronomer, Theologian,

Author, Economist, Alchemist and Biblical Chronologist

Isaac Barrow Christian Theologian, Mathematician and Physicist

Vincenzo Viviani Mathematician and Physicist

Evangelista Torricelli Physicist and Mathematician

Benedetto Castelli Mathematician

Galileo Galilei
Polymath, Astronomer, Physicist, Engineer, Natural Philosopher and

Mathematician

Ostilio Ricci Mathematician

Niccolò Fontana Tartaglia Mathematician, Engineer, Topographic Surveyor and Bookkeeper

https://people.eecs.berkeley.edu/~rtd/
https://people.eecs.berkeley.edu/~ksen/
https://en.wikipedia.org/wiki/Gul_Agha_(computer_scientist)
https://en.wikipedia.org/wiki/Carl_Hewitt
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/Frank_Smithies
https://en.wikipedia.org/wiki/G._H._Hardy
https://en.wikipedia.org/wiki/E._T._Whittaker
https://en.wikipedia.org/wiki/George_Darwin
https://en.wikipedia.org/wiki/Edward_Routh
https://en.wikipedia.org/wiki/Isaac_Todhunter
https://en.wikipedia.org/wiki/William_Hopkins
https://en.wikipedia.org/wiki/Adam_Sedgwick
https://en.wikipedia.org/wiki/Thomas_Jones_(mathematician)
https://en.wikipedia.org/wiki/Thomas_Postlethwaite
https://en.wikipedia.org/wiki/Stephen_Whisson
https://en.wikipedia.org/wiki/Walter_Taylor_(mathematician)
https://en.wikipedia.org/wiki/Robert_Smith_(mathematician)
https://en.wikipedia.org/wiki/Roger_Cotes
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Isaac_Barrow
https://en.wikipedia.org/wiki/Vincenzo_Viviani
https://en.wikipedia.org/wiki/Evangelista_Torricelli
https://en.wikipedia.org/wiki/Benedetto_Castelli
https://en.wikipedia.org/wiki/Galileo_Galilei
https://en.wikipedia.org/wiki/Ostilio_Ricci
https://en.wikipedia.org/wiki/Niccol%C3%B2_Fontana_Tartaglia

81

Appendix B

Author’s Biography

Rafael has participated in math olympiads since 12 years old, having obtained 22 medals,
including 2 medals at the International Mathematical Olympiad (IMO). He has also received
3 gold medals at the Brazilian Physics Olympiad. Rafael got his Bachelor in Automation and
Control Engineering from UFMG (2014), where he was admitted in 2009 with the highest
score among all 63249 applicants. Due to his experience with math olympiads, he had the
opportunity to concurrently obtain a Master in Mathematics degree from UFMG (2014).
He also studied abroad at the University of Melbourne for one year (2012-2013). Rafael is
completing his PhD in Computer Science at UC Berkeley (2019) advised by Koushik Sen,
in the major area of Programming Systems, minor area of Security and outside minor of
Mathematical Logic. After failing his first attempt at the preliminary examination in Pro-
gramming Systems for the PhD, he apparently studied hard enough for the second attempt
to be awarded the Tong Leong Lim Pre-Doctoral Prize for outstanding performance. In
2017, he participated as a coordinator of the International Mathematical Olympiad in Brazil
and was lucky to have the joy of solving Problem 3, the hardest problem in the history of
the IMO at the time. Rafael has one year of teaching experience, including one term as an
acting instructor for Computer Security. He has not held a real job so far, but completed
internships at Top Free Games, Google and Intel.

	Contents
	List of Figures
	List of Tables
	Introduction
	Sampling from Logical Constraints
	Sampling from SAT Constraints with QuickSampler
	Sampling from SMT Constraints with SMTSampler
	Coverage-guided Sampling with GuidedSampler
	Outline

	Background
	SAT Constraints
	Independent Support
	SMT Constraints
	Eager vs. Lazy SMT Solvers
	MAX-SAT and MAX-SMT
	Weighted Sampling

	Sampling from SAT and SMT Constraints
	QuickSampler Technique
	SMTSampler Technique

	Coverage-guided Sampling
	Formulation of Coverage-guided Sampling
	GuidedSampler Algorithm

	Evaluation
	QuickSampler Evaluation
	SMTSampler Evaluation
	GuidedSampler Evaluation

	Related Work
	Sampling from SAT Constraints
	Sampling from SMT Constraints
	Weighted Sampling

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Academic Genealogy
	Author's Biography

