
Machine Learning: Why Do Simple Algorithms Work So
Well?

Chi Jin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-53
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-53.html

May 17, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Machine Learning:
Why Do Simple Algorithms Work So Well?

by

Chi Jin

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Chair
Professor Peter L. Bartlett

Associate Professor Aditya Guntuboyina

Spring 2019

Machine Learning:
Why Do Simple Algorithms Work So Well?

Copyright 2019
by

Chi Jin

1

Abstract

Machine Learning:
Why Do Simple Algorithms Work So Well?

by

Chi Jin

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

While state-of-the-art machine learning models are deep, large-scale, sequential and
highly nonconvex, the backbone of modern learning algorithms are simple algorithms such
as stochastic gradient descent, gradient descent with momentum or Q-learning (in the case
of reinforcement learning tasks). A basic question endures—why do simple algorithms work
so well even in these challenging settings?

To answer above question, this thesis focuses on four concrete and fundamental questions:

1. In nonconvex optimization, can (stochastic) gradient descent or its variants escape
saddle points efficiently?

2. Is gradient descent with momentum provably faster than gradient descent in the general
nonconvex setting?

3. In nonconvex-nonconcave minmax optimization, what is a proper definition of local
optima and is gradient descent ascent game-theoretically meaningful?

4. In reinforcement learning, is Q-learning sample efficient?

This thesis provides the first line of provably positive answers to all above questions. In par-
ticular, this thesis will show that although the standard versions of these classical algorithms
do not enjoy good theoretical properties in the worst case, simple modifications are sufficient
to grant them desirable behaviors, which explain the underlying mechanisms behind their
favorable performance in practice.

i

To Jiaqi, Kelvin and my parents.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Overview 1
1.1 Machine Learning and Simple Algorithms . 1
1.2 Types of Theoretical Guarantees . 3
1.3 Organization . 5

I Nonconvex Optimization 6

2 Escaping Saddle Points by Gradient Descent 7
2.1 Introduction . 7
2.2 Preliminaries . 11
2.3 Common Landscape of Nonconvex Applications in Machine Learning 14
2.4 Main Results . 15
2.5 Conclusion . 19
2.6 Proofs for Non-stochastic Setting . 21
2.7 Proofs for Stochastic Setting . 26
2.8 Tables of Related Work . 34
2.9 Concentration Inequalities . 35

3 Escaping Saddle Points Faster using Momentum 38
3.1 Introduction . 38
3.2 Preliminaries . 43
3.3 Main Result . 44
3.4 Overview of Analysis . 46
3.5 Conclusions . 50
3.6 Proof of Hamiltonian Lemmas . 51
3.7 Proof of Main Result . 54

iii

3.8 Auxiliary Lemma . 69

II Minmax Optimization 84

4 On Stable Limit Points of Gradient Descent Ascent 85
4.1 Introduction . 85
4.2 Preliminaries . 88
4.3 What is the Right Objective? . 91
4.4 Main Results . 93
4.5 Conclusion . 99
4.6 Proofs for Reduction from Mixed Strategy Nash to Minmax Points 99
4.7 Proofs for Properties of Local Minmax Points 101
4.8 Proofs for Limit Points of Gradient Descent Ascent 103
4.9 Proofs for Gradient Descent with Max-oracle 108

III Reinforcement Learning 110

5 On Sample Efficiency of Q-learning 111
5.1 Introduction . 111
5.2 Preliminary . 115
5.3 Main Results . 116
5.4 Proof for Q-learning with UCB-Hoeffding . 119
5.5 Explanation for Q-Learning with ε-Greedy 124
5.6 Proof of Lemma 5.4.1 . 125
5.7 Proof for Q-learning with UCB-Bernstein . 126
5.8 Proof of Lower Bound . 137

Bibliography 139

iv

List of Figures

1.1 Image Classification and Deep Neural Networks 2
1.2 Types of theoretical guarantees and their relevance to practice. 4

2.1 Pertubation ball in 3D and “thin pancake” shape stuck region 25
2.2 Pertubation ball in 2D and “narrow band” stuck region under gradient flow . . . 25

4.1 Left: f(x, y) = x2−y2 where (0, 0) is both local Nash and local minmax. Right:
f(x, y) = −x2 + 5xy − y2 where (0, 0) is not local Nash but local minmax with
h(δ) = δ. 94

4.2 Left: f(x, y) = 0.2xy − cos(y), the global minmax points (0,−π) and (0, π) are
not stationary. Right: The relations among local Nash equilibria, local minmax
points, local maxmin points and linearly stable points of γ-GDA, and ∞-GDA
(up to degenerate points). 95

5.1 Illustration of {αi1000}1000
i=1 for learning rates αt = H+1

H+t
, 1
t

and 1√
t

when H = 10. . 120

v

List of Tables

2.1 A high level summary of the results of this work and their comparison to prior
state of the art for GD and SGD algorithms. This table only highlights the
dependences on d and ε. 9

2.2 A summary of related work on first-order algorithms to find second-order station-
ary points in non-stochastic setting. This table only highlights the dependences
on d and ε. † denotes the follow up work. 34

2.3 A summary of related work on first-order algorithms to find second-order station-
ary points in stochastic setting. This table only highlights the dependences on d
and ε. ∗ denotes independent work. 35

3.1 Complexity of finding stationary points. Õ(·) ignores polylog factors in d and ε. 41

5.1 Regret comparisons for RL algorithms on episodic MDP. T = KH is totally
number of steps, H is the number of steps per episode, S is the number of
states, and A is the number of actions. For clarity, this table is presented for
T ≥ poly(S,A,H), omitting low order terms. 114

vi

Acknowledgments

I would like to give my foremost thanks to my advisor Michael I. Jordan. Throughout my
years at Berkeley, he demonstrated me not only how to do first-class research, but also how
to be a respectful academic figure as well as a caring advisor. His pioneering vision over the
entire field inspires me to think out of the box, and to attack new challenging problems. His
modest viewpoints and encouraging words guide me through the most difficult time in my
Ph.D. I am fortunate to be in his group—a highly collaborative environment with diverse
interests. It not only gives me a general awareness of the field, but also provides me sufficient
freedom to pursue my own interests. I could not have wished for a better advisor.

I am especially grateful to Rong Ge, Praneeth Netrapalli and Sham M. Kakade, who are
my wonderful long-term collaborators and have a remarkable influence on my entire Ph.D.
path. My journey in nonconvex optimization starts with a long-distance collaboration with
Rong, and then a summer internship mentored by Sham at Microsoft Research New England,
where both Praneeth and Rong were postdoctoral researchers there. Through collaboration
with them, I learned a wide range of ideas, intuitions and powerful technics. This grants
me an incredible amount of technical strength for solving challenging problems, which is
invaluable for my entire career.

I also want to express my sincere gratitude to Prateek Jain and Sebastian Bubeck, who
generously provide me advices and guidance through different stages of my Ph.D. In addition,
I would like to thank Zeyuan Allen-Zhu, who contributed significantly to the work in the
last part of this thesis. The collaboration experience with him is truly a pleasure. He has
demonstrated me how to be a passionate and smart person, but at the same time work
tremendously hard.

I would like to thank Peter Bartlett and Adytia Guntuboyina for being on my thesis
committee. Peter provided me many helpful advices and feedbacks during my first year.
Adytia taught me a lot of useful statistics, and I had a wonderful experience serving as his
teaching assistant. I am also grateful to Martin Wainwright and Prasad Raghavendra for
being on my Qual Exam committee and providing many helpful discussions.

There are also several peer fellows who have substantial impact on my Ph.D. life. Other
than being great collaborators, they are also my personal best friends. Nilesh Tripuraneni
taught me a lot about the American tradition, culture and politics, and patiently helped me
improve my English writings; Yuchen Zhang provided me various guidance during my first
three years; Yuansi Chen and I share many precious memories of teaming up for esports;
and Yian Ma convinced me the charm of outdoor activities.

In addition to all people mentioned above, I am fortunate to have many amazing col-
laborators: Lydia Liu, Darren Lin, Mitchell Stern, Jeff Regier, Nicolas Flammarion, Bin
Yu, Simon Du, Jason Lee, Barnabas Poczos, Aarti Singh, Sivaraman Balakrishnan, Aaron
Sidford, Cameron Musco, Furong Huang, and Yang Yuan. It was really a great pleasure to
work with you all. I must also sincerely thank many other my peer fellows at Berkeley, too
many to list here, for making my time at Berkeley some of the best in my life.

vii

I also own credit to Liwei Wang, my undergraduate thesis advisor. As an undergraduate
student in physics, it is him who introduced me to machine learning. I am also especially
grateful to many members in Liwei’s group—Chicheng Zhang, Hongyi Zhang, Ziteng Wang,
Kai Fan, Hongyuan You, Songbai Yan, etc. We read through various books and lecture
notes together when I had very limited knowledge about machine learning. Without them,
I would never have been able to start my graduate study in this area.

Finally, my heartfelt gratitude goes to my family. I am especially grateful to my love and
wonderful wife Jiaqi Xiao, for all the sweet time we have been through together, as well as
for the all the sacrifice she made for us to live together. We are fortunate to have our lovely
son—baby Kelvin Jin. Observing how he learns from the unknown world is a great fun, and
often inspires me view learning from different perspectives. I also thank my parents and my
parents-in-law for their tremendous support and for taking good care of baby Kelvin.

1

Chapter 1

Overview

While the empirical performance of large-scale machine learning models has seen rapid
progress in recent years, the community also witnessed a growing divergence between what
we do in practice and what we understand. On one hand, large-scale, highly nonconvex,
deep models are routinely trained using simple algorithms on structured data that is poten-
tially temporally correlated. On the other hand, a basic question remains—why do simple
algorithms work in these challenging settings? Lacking this understanding makes it hard for
practitioners to judge the scope and limits of existing methods. This also makes the design
of more powerful algorithms and models difficult. Addressing these issues is vital to sustain
the rapid progress of the field.

1.1 Machine Learning and Simple Algorithms

In a high level, modern machine learning tasks can be divided into two categories—pattern
recognition and decision making. In this section, we will overview the major machine learning
frameworks for tasks in both categories, and the corresponding simple algorithms to solve
them. These algorithms are not only widely used in practice but also frequently reported to
achieve state-of-the-art performances.

Pattern Recognition

Pattern Recognition (PR) is the process of automated recognition of underlying patterns
by analyzing data using learning algorithms. It dates back to roots in statistics and signal
processing in the 1950s and 1960s, and has been the focus of machine learning for the past
decades. With the success of deep learning, the field witnessed several major breakthroughs
in solving PR tasks especially in image classification (e.g. Krizhevsky, Sutskever, and Hinton,
2012; He et al., 2016), speed recognition (e.g. Hochreiter and Schmidhuber, 1997), etc.

Take image classification as an example. Given a dataset of millions of images and their
corresponding labels, the popular modern approach feeds those images into a gigantic deep

CHAPTER 1. OVERVIEW 2

Figure 1.1: Image Classification and Deep Neural Networks

neural network of millions of parameters. Then, we can formulate a loss function which
measure the discrepancy between the true labels of the image, and the outputs of the neural
network. The process of learning is to find the optimal set of parameters which minimize
the loss.

In an abstract level, this is an optimization problem, where we want to find a parameter
x, to minimize a target function f : X → R:

min
x
f(x)

Compared to the classical optimization literature, one major difference here is that f need
not to be convex, i.e. this is nonconvex optimization. In fact, most deep neural network
architectures render highly nonconvex objectives. It is NP-hard to find a global optimum of
a nonconvex function in general.

One of the most popular algorithms in this setting is Gradient Descent (GD) or its
stochastic variant—Stochastic Gradient Descent (SGD). SGD is reported to perform better
than several carefully designed adaptive algorithms (Wilson et al., 2017), and to achieve
state-of-the-art performance in many applications. One big mystery here is why SGD per-
forms so well in many practical applications despite their objective functions being noncon-
vex.

Decision Making

Decision making, in addition to possibly identifying the underlying patterns, uses data to
make informed decisions that affect the real world. Modern applications in decision making
not only involve the standard single-agent one-time decision making, but also involve more
sophisticated multi-agent decision making and sequential decision making.

Multi-agent decision making typically involves multiple agents making decisions to
collaborate or compete with each other. Distributed control, multi-agent robotic system
and many interdisciplinary applications in economy and machine learning all fall into this
category. This thesis will focus on a basic setting in this category—a setting in which two
agents compete against each other with a zero-sum reward. This special setting also plays an

CHAPTER 1. OVERVIEW 3

important role in several subfields of modern machine learning such as Generative Adversarial
Network (GAN) (Goodfellow et al., 2014) and adversarial training (Madry et al., 2017).

A standard formulation for this two-player zero-sum setting is the minmax optimization
problem where there is a utility function f : X × Y → R. The value of f(x,y) denotes the
gain of the y player, as well as the loss of the x player. That is, they are trying to solve the
following minmax problem.

min
x

max
y

f(x,y)

Since most models for GAN and adversarial training use neural networks, the function f
is typically neither convex in x nor concave in y, and therefore classical theories for convex-
concave functions do not apply here. A basic and popular algorithm in this setting is Gradient
Descent Ascent (GDA) which simultaneously performs or alternates between gradient descent
on x and gradient ascent on y. Nonconvex-nonconcave minmax optimization is challenging,
and much less understood than nonconvex optimization. Even the basic question of “what
GDA is converging to” remains open.

Sequential decision making is a process of making multiple decisions in a sequence.
After making each decision, the agent will receive feedback which allows her to better adjust
her strategy for later decisions. This type of decision making frequently appears in bidding
and advertising, personalized recommendation, games, and robotics.

A common framework to solve these problems is Reinforcement Learning (RL), where
these problems are usually modeled as a Markov Decision Process (MDP, see Section 5.2).
A majority of practical algorithms are variants of two classical algorithms—policy gradients
and Q-learning (Watkins, 1989).

One big challenge in RL is the sample efficiency: for difficult tasks, descent machine
learning models would already require more than millions of high-quality samples to train.
These samples can be either expensive or very time-consuming to collect. A line of recent
research tried to design better algorithms that utilize samples more efficiently. However,
an even more fundamental question remains: is Q-learning—one of the most classical RL
algorithms—sample-efficient?

1.2 Types of Theoretical Guarantees

As machine learning lies in the intersection of computer science and statistics, there are two
complexities that are crucial for machine learning algorithms: (1) iteration complexity for
computational efficiency; (2) sample complexity for statistical efficiency.

Iteration complexity or more formally query complexity, is a rigorous way in optimiza-
tion to measure the computational efficiency of an algorithm. In the case of this paper, we
assume there is an gradient oracle such that whenever an algorithm queries a single point

CHAPTER 1. OVERVIEW 4

asymptotics

polynomial complexity

sharp rates

match
lower bounds

co
m

pl
ic

at
ed

A
lg

or
it
h
m

si
m

pl
e

im
practical

A
ssu

m
p
tion

m
inim

al

Figure 1.2: Types of theoretical guarantees and their relevance to practice.

x, the oracle will return its gradient ∇f(x). A standard theoretical guarantee bounds the
number of queries needed to find a point of interests.

Sample complexity describes how many samples or data points an algorithm requires to
learn well, such as to find a good classifier or a reasonable policy. For a particular algorithm,
its sample complexity can be very different from its iteration complexity, as it is possible
to collect a small amount of data but perform a computational-intensive subroutine (may
even cost exponential time) in analyzing them. However, for many online algorithms such
as Q-learning where they collect only one sample per iteration, the sample complexity and
the iteration complexity are roughly the same.

Other than the difference in bounding the iteration complexity or the sample complexity,
there is also a hierarchy of results based on how strong or how relevant to practice they are
(see Figure 1.2).

At the bottom of the pyramid are the asymptotics which are the important first steps in
understanding the behavior of the algorithm when the number of samples and runtime go to
infinity. However, this type of guarantees falls short of predicting whether the algorithm is
useful in practice. For instance, grid search can approximately solve any bounded nonconvex
problem in exponential time, and thus owns a desirable asymptotic behavior. However, we
know grid search is not a practial algorithm, as we cannot afford the exponential time in
practice.

The first step to move beyond the asymptotics is to provide polynomial iteration or
sample complexity guarantees. However, in modern machine learning, the ambient dimension
of a neural network can be extremely large (on the order of a million). There, quadratic
or linear dependence, although both are polynomial, can mean a tremendous difference in
practice. This makes a quest for a theory to provide not only polynomial guarantees but
also sharp dependence on problem parameters. Finally, at the very top of the pyramid are

CHAPTER 1. OVERVIEW 5

the guarantees which match the fundamental limits of the problem that no algorithms can
surpass.

Last but not least, when theoretical performances are similar, practitioners usually favor
simple and general purposed algorithms over those complicated algorithms that are heavily
modified for theoretical proofs. A theory with minimal assumptions would also be more
relevant than a theory that makes many impractical assumptions.

This thesis aims to provide the theoretical guarantees which give sharp rates with minimal
assumptions for simple algorithms that are widely used in practice.

1.3 Organization

This thesis is centered around four concrete questions in answering the general basic question—
in modern machine learning, why do simple algorithms work so well?

We start with nonconvex optimization in Part I, and ask whether (stochastic) gradient
descent or its variants can escape saddle points efficiently. Chapter 2 provided the first, sharp
(i.e., almost dimension-free) guarantee on how fast (stochastic) gradient descent escapes from
saddle points; showing saddle points are of little practical concern even in large-scale models.
This chapter is based on joint work with Rong Ge, Praneeth Netrapalli, Sham M. Kakade,
and Michael I. Jordan (Jin et al., 2017; Jin et al., 2019b). The thesis then proceeds to the
next question “Is gradient descent with momentum provably faster than gradient descent in
the general nonconvex setting?” Chapter 3 rigorously explained the advantages of adding
momentum in nonconvex scenarios. This chapter is based on the joint work with Praneeth
Netrapalli and Michael I. Jordan (Jin, Netrapalli, and Jordan, 2017).

Part II studies minmax optimization problem in the nonconvex-nonconcave setting. Un-
like nonconvex optimization, very basic questions remain open for nonconvex-nonconcave
minmax optimization, including what the proper notion of local optimality is and what the
game-theoretical meaning of gradient descent ascent is. Chapter 4 defines a new notion
of local optimality, and provides the first full characterization of the stable limit points of
gradient descent ascent using this new notion. This chapter is based on a joint work with
Praneeth Netrapalli and Michael I. Jordan (Jin, Netrapalli, and Jordan, 2019).

Finally, the central topic of Part III is reinforcement learning. One fundamental question
there is whether the basic algorithm Q-learning is sample efficient. It remained unsolved
even in the basic scenario with finitely many states and actions. Chapter 5 provides the
first positive answer in this scenario. We showed that when paired with properly designed
exploration strategies, Q-learning is sample efficient. Our analysis is the first to establish a
near-optimal regret in the model-free setting. This is based on the joint work with Zeyuan
Allen-Zhu, Sebastian Bubeck, and Michael I. Jordan (Jin et al., 2018).

6

Part I

Nonconvex Optimization

7

Chapter 2

Escaping Saddle Points by Gradient
Descent

Gradient descent (GD) and stochastic gradient descent (SGD) are the most popular workhorses
for solving nonconvex optimization problems arising in several fields, most notably in large
scale machine learning. Traditional analyses of GD and SGD in this setting show that both
algorithms converge to stationary points efficiently. Unfortunately however, they do not rule
out convergence to saddle points. On the other hand, for several important machine learning
problems, recent works have shown the importance of converging to local minima rather than
saddle points. The main contribution of this work is to show that, perturbed versions of GD
and SGD escape saddle points and converge to second-order local minima in essentially the
same time they take to converge to stationary points, with only extra logarithmic factors.

2.1 Introduction

Nonconvex optimization problems are ubiquitous in several fields of engineering such as
control theory (Bertsekas, 1995), signal processing (Oppenheim and Schafer, 1989), machine
learning (Bishop, 2006), etc. Gradient descent (GD) (Cauchy, 1847) and its variants such as
stochastic gradient descent (SGD) (Robbins and Monro, 1951) are some of the most widely
used algorithms for solving these problems in practice. There are two key reasons for the
wide usage of GD and SGD in solving these nonconvex problems—(a) each step of GD and
SGD can usually be implemented in time linear in the dimension (thus suitable for solving
high dimensional problems) and (b) in many applications, they are observed to converge to
good solutions in a few steps. Contrast this with the fact that solving general nonconvex
problems is NP-hard in the worst case, it leaves a basic question—how does GD manage to
converge to good solutions efficiently.

Traditional analyses of GD only show its efficient convergence to first-order stationary
points (i.e., points where the gradient ∇f(x) = 0) in general (Nesterov, 1998). First-
order stationary points can be local minima, local maxima or even saddle points, where

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 8

an enormous number of them are highly suboptimal. However, a recent series of works,
some theoretical and some empirical, have uncovered a nice structure in several problems of
practical interest that sheds light on this surprising behavior of GD. These works show that
even though these nonconvex problems have a large number of bad saddle points, all local
minima are good. More precisely, they show that, for a large class of interesting nonconvex
problems, second-order stationarity (i.e., ∇f(x) = 0 and ∇2f(x) � 0)—a weaker notion of
local optimality which only excludes saddle points with strictly negative curvatures—already
guarantees (approximate) global optimality: Choromanska et al. (2014) presents such a result
for learning multi-layer neural networks, Bandeira, Boumal, and Voroninski (2016) and Mei
et al. (2017) for synchronization and MaxCut, Boumal, Voroninski, and Bandeira (2016)
for smooth semidefinite programs, Bhojanapalli, Neyshabur, and Srebro (2016) for matrix
sensing, Ge, Lee, and Ma (2016) for matrix completion, and Ge, Jin, and Zheng (2017) for
robust PCA. This motivates the quest to find second-order stationary points, as a natural
second-order surrogates for local minima.

Recent work (Lee et al., 2016) shows that GD, under random initialization or with per-
turbations, converges to second-order stationary points with probability one. (Ge et al.,
2015) further makes this result quantitative by bounding the number of iterations taken by
a perturbed version of GD for finding an ε-second-order stationary point (‖∇f(x)‖ ≤ ε and
∇2f(x) � −

√
εI) by poly(d, ε−1). While these convergence results are inspiring, the number

of steps required is still significantly larger than the number of steps for GD to find first-order
stationary points, which is O(ε−2) independent of dimension d. The additional polynomial
dependence on d is particularly undersirable for high dimensional applications for which GD
methods are most interesting and useful. This leads to the following question on efficiency:

Can GD and SGD escape saddle points and find second-order stationary point
efficiently?

More precisely, we are interested if this efficiency can be competitive to the efficiency
of GD and SGD in finding a first-order stationary point, which only takes a dimension-free
number of iterations.

This work provides the first provable positive answer to the above question. It shows
that, rather surprisingly, with small perturbations, GD and SGD escape saddle points and
find second-order stationary points in essentially the same time they take to find first-order
stationary points. More concretely, we show that the overheads are only logarithmic factors
in the first two cases, and a linear factor in d in the third case:

• Perturbed gradient descent (PGD) finds ε-second-order stationary point in Õ(ε−2) it-
erations, where Õ(·) hides only absolute constants and ploylogarithmic factors. Com-
pared to the O(ε−2) iterations required by GD in finding first-order stationary points
(Nesterov, 1998), this involves only additional polylogarithmic factors in d.

• In the stochastic setting where stochastic gradients are Lipschitz, perturbed stochastic
gradient descent (PSGD) finds ε-second-order stationary points in Õ(ε−4) iterations.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 9

Setting Algorithm Iterations Guarantees

Non-
stochastic

GD (Nesterov, 2000) O(ε−2) first-order stationary point

PGD Õ(ε−2) second-order stationary point

Stochastic

SGD (Ghadimi and Lan,
2013)

O(ε−4) first-order stationary point

PSGD (with Assumption C) Õ(ε−4) second-order stationary point

PSGD (no Assumption C) Õ(dε−4) second-order stationary point

Table 2.1: A high level summary of the results of this work and their comparison to prior
state of the art for GD and SGD algorithms. This table only highlights the dependences on
d and ε.

Compared to the O(ε−4) iterations required by SGD in finding first-order stationary
points (Ghadimi and Lan, 2013), this again incurs overhead that is only polylogarithmic
in d.

• When stochastic gradients are not Lipschitz, PSGD finds ε-second-order stationary
point in Õ(dε−4) iterations – this involves only an additional linear factor in d.

Related Work

In this section we review the related works which provide convergence guarantees to find
second-order stationary points. See also Appendix 2.8 for tables of comparison of our work
to existing works.

Non-stochastic settings. Classical algorithms for finding second-order stationary points
require access to exact Hessian information, and are thus second-order algorithms. Some of
the most well known algorithms here are cubic regularization method (Nesterov and Polyak,
2006) and trust region methods (Curtis, Robinson, and Samadi, 2014), both of which require
O(ε−1.5) gradient and Hessian queries. However, owing to the size of Hessian matrices which
scales quadratically with respect to dimension, these methods are computational intensive
per iteration especially for high dimensional problems. This has motivated researchers to
focus on first order methods, which only utilize gradient information and therefore are much
cheaper per iteration.

Among first-order algorithms, Carmon et al. (2016) and Agarwal et al. (2017) design
double-loop algorithms which require Hessian-vector product oracles, and obtain convergence
rates of Õ(ε−1.75) gradient queries. This line of algorithms is carefully designed for analysis

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 10

purposes. They are relatively diffcult to implement, thus less appealing in practice. On the
other hand, simple single-loop algorithms, such as gradient descent are still challenging to
understand and analyze as we can no longer artificially change the algorithm to control its
behavior. Ge et al. (2015) and Levy (2016) studied simple variants of gradient descent, but
require poly(d) gradient queries to find second-order stationary points. This work is the
first to show that a simple perturbed version of GD escapes saddle points and finds second-
order stationary points in Õ(ε−2) gradient queries, only paying overhead of logarithmic
factors compared to the rate of finding first-order stationary point. As a followup work,
Jin, Netrapalli, and Jordan (2017) show that a perturbed version of celebrated Nesterov’s
accelerated gradient descent (Nesterov, 1983) enjoys a faster convergence rate of Õ(ε−1.75).

Stochastic setting with Lipschitz stochastic gradient. In this setting, the algorithm
only has access to stochastic gradients. Most existing works assume that the stochastic
gradients themselves are Lipschitz (or equivalently that the stochastic functions are gradient-
Lipschitz, see Assumption C). Under this assumption, and an additional Hessian-vector
product oracle, (Allen-Zhu, 2018; Zhou, Xu, and Gu, 2018; Tripuraneni et al., 2018) designed
algorithms that have an iteration complexity of Õ(ε−3.5). (Xu, Rong, and Yang, 2018; Allen-
Zhu and Li, 2017) obtain similar results without the requirement for Hessian-vector product
oracle. The sharpest rates in this category are by (Fang et al., 2018; Zhou and Gu, 2019),
which show that the iteration complexity can be further reduced to Õ(ε−3). Again, this
line of works consists of double-loop algorithms, and are relatively diffcult to implement in
practice.

Among single-loop algorithms that are simple variants of SGD, (Ge et al., 2015) pro-
vides the first polynomial result showing noisy gradient descent finds second-order station-
ary points in d4poly(ε−1) iterations. (Daneshmand et al., 2018) designs a new algorithm
CNC-SGD and shows that assuming the variance of stochastic gradient along the escaping
direction of saddle points is at least γ for all saddle points, then CNC-SGD finds SOSPs
in Õ(γ−4ε−5) iterations. We note that in general, γ scales as 1/d, which gives complex-
ity Õ(d4ε−5). Our work is the first result showing that a simple perturbed version of SGD
achieves the convergence rate of Õ(ε−4), which matches the speed of SGD to find a first-order
stationary point up to polylogarithmic factors in dimension. Concurrent to this work, (Fang,
Lin, and Zhang, 2019) analyzes SGD with averaging over last few iterates, and obtains a
faster convergence rate Õ(ε−3.5).

Stochastic setting (general). Significantly less amount of prior works provide results in
the general setting where stochastic gradients are no longer guaranteed to be Lipschitz. In
fact, only the results of Ge et al. (2015) and Daneshmand et al. (2018) apply here, and both
of them require at least Ω(d4) gradient queries to find second-order stationary points. Our
work is the first result in this setting achieving linear dimension dependence.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 11

Other settings. Finally, there are also several recent results in the setting where objective
function can be written as a finite sum of individual functions, we refer readers to Reddi
et al. (2017) and Allen-Zhu and Li (2017) and the references therein for further reading.

Chapter Organization

In Section 2.2, we review the preliminaries. In Section 2.3, we discuss the landscape of a wide
class of nonconvex problems in machine learning, demonstrating how second-order station-
arity already ensures approximate global optimality via a simple example. In Section 2.4, we
state the algorithms and present our main results for perturbed GD and SGD. In Section 2.6,
we present our proof for non-stochastic case (perturbed GD), which illustrates some of our
key ideas. The proof for stochastic setting is presented in the appendix. We conclude in
Section 2.5, with discussions on several related topics.

2.2 Preliminaries

In this section, we will first introduce our notation, and then present definitions, assumptions
and existing results in nonconvex optimization, in both deterministic and stochastic settings.

Notation

We use bold upper-case letters A,B to denote matrices and bold lower-case letters x,y to
denote vectors. For vectors we use ‖·‖ to denote the `2-norm, and for matrices we use ‖·‖ and
‖·‖F to denote spectral (or operator) norm and Frobenius norm respectively. We use λmin(·)
to denote the smallest eigenvalue of a matrix. For a function f : Rd → R, we use ∇f and
∇2f to denote its gradient and Hessian, and f ? to denote the global minimum of function
f . We use notation O(·),Θ(·),Ω(·) to hide only absolute constants which do not depend on
any problem parameter, and notation Õ(·), Θ̃(·), Ω̃(·) to hide only absolute constants and
factors that are ploy-logarithmically dependent on all problem parameters.

Nonconvex Optimization and Gradient Descent

In this work, we are interested in solving general unconstrained optimization problems

min
x∈Rd

f(x),

where f is a smooth function which can be nonconvex. More concretely, we assume that
f has Lipschitz gradients and Lipschitz Hessians, which ensures both gradient and Hessian
can not change too rapidly.

Definition 2.2.1. A differentiable function f is `-gradient Lipschitz (or `-smooth) if:

‖∇f(x1)−∇f(x2)‖ ≤ `‖x1 − x2‖ ∀ x1,x2.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 12

Definition 2.2.2. A twice-differentiable function f is ρ-Hessian Lipschitz if:

‖∇2f(x1)−∇2f(x2)‖ ≤ ρ‖x1 − x2‖ ∀ x1,x2.

Assumption A. Function f is `-gradient Lipschitz and ρ-Hessian Lipschitz.

One of the most classical algorithms in optimization is Gradient Descent (GD), whose
update takes following form with learning rate η:

xt+1 = xt − η∇f(xt) (2.1)

Since finding a global optimum for general nonconvex function is NP-hard, most classical
results turn to analyze convergence to a local surrogate—first-order stationary points.

Definition 2.2.3. For differentiable function f , x is a (first-order) stationary point if
∇f(x) = 0.

Definition 2.2.4. For differentiable function f , x is a ε-(first-order) stationary point if
‖∇f(x)‖ ≤ ε.

It is well known that gradient descent converges to first-order stationary points in a
number of iterations that is independent of dimension; this is referred to as “dimension-free
optimization” in literature.

Theorem 2.2.5 ((Nesterov, 1998)). For any ε > 0, assume function f(·) is `-gradient Lip-
schitz, and let learning rate η = 1/`. Then, gradient descent Eq.(2.1) will visit ε-stationary
point at least once in the following number of iterations:

`(f(x0)− f ?)
ε2

Note that in the above results, the last iterate is not guaranteed to be a stationary point.
However, it is not hard to figure out which iterate is the stationary point by calculating the
norm of gradient at every iteration.

A first-order stationary point can be a local minimum, a local maximum or even a saddle
point:

Definition 2.2.6. For differentiable function f , a stationary point x is a

• local minimum, if there exists δ > 0 so that f(x) ≤ f(y) for any y with ‖y − x‖ ≤ δ.

• local maximum, if there exists δ > 0 so that f(x) ≥ f(y) for any y with ‖y − x‖ ≤ δ.

• saddle point, otherwise.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 13

For minimization problems, both saddle points and local maxima are clearly undesirable,
and we abuse nomenclature to call both of them “saddle points” in this work. Unfortunately,
distinguishing saddle points versus local minima for smooth functions is still NP-hard in
general (Nesterov, 2000). To avoid these hardness results, this work focuses on escaping a
subclass of saddle points.

Definition 2.2.7. For twice-differentiable function f , x is a strict saddle point if x is a
stationary point and λmin(∇2f(x)) < 0.

A generic saddle point must satisfy that λmin(∇2f(x)) ≤ 0. Being “strict” simply rules
out the case where λmin(∇2f(x)) = 0. Equivalently, this defines a more suitable goal: to
find those stationary points that are not strict saddle points.

Definition 2.2.8. For twice-differentiable function f(·), x is a second-order stationary
point if:

∇f(x) = 0, and ∇2f(x) � 0.

Definition 2.2.9. For a ρ-Hessian Lipschitz function f(·), x is an ε-second-order sta-
tionary point if:

‖∇f(x)‖ ≤ ε and ∇2f(x) � −√ρε · I.

Definition 2.2.9 is a ε-robust version of Definition 2.2.4. Definition 2.2.9 uses the Hes-
sian Lipschitz parameter ρ to help match the units of gradient and Hessian, following the
convention of Nesterov and Polyak (2006).

Although second-order stationarity is only a necessary condition for being a local mini-
mum, a line of recent analyses shows that for many popular applications in machine learning,
all ε-second-order stationary points are approximate global minima, thus finding second-order
stationary points is sufficient for solving those problems. See Section 2.3 for more details.

Stochastic Approximation

We also consider the stochastic approximation setting, where we may not access exact ∇f(·)
directly. Instead for any point x, a gradient query will return a stochastic gradient g(x; θ),
where θ is a random variable drawn from a distribution D. The key property satisfied by
stochastic gradients g(·; ·) is that ∇f(x) = Eθ∼D [g(x; θ)], i.e. the expection of stochastic
gradient equals true gradient. In short, the update of Stochastic Gradient Descent (SGD)
is:

Sample θt ∼ D, xt+1 = xt − η∇g(xt; θt) (2.2)

Other than being an unbiased estimator of true gradient, another standard assumption
on the stochastic gradients is that their variance is bounded by some number σ2, i.e.

Eθ∼D
[
‖g(x, θ)−∇f(x)‖2

]
≤ σ2

When we are interested in high probability bounds, one often makes the stronger assumption
on tail distribution of stochasticity.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 14

Assumption B. For any x ∈ Rd, stochastic gradient g(x; θ) with θ ∼ D satisfies:

Eg(x; θ) = ∇f(x), P (‖g(x; θ)−∇f(x)‖ ≥ t) ≤ 2 exp(−t2/(2σ2)), ∀t ∈ R

We note this assumption is more general than the standard notion of sub-Gassuain ran-
dom vector which assumes E exp(〈v,X−EX〉) ≤ exp(σ2‖v‖2/d) for any v ∈ Rd. The latter
one requires distribution to be “isotropic” while our assumption does not. By Lemma 2.9.2
we know that both bounded random vector, and standard sub-Gaussian random vector are
special cases of our assumption.

Again, prior works show that stochastic gradient descent also converges to first-order
stationary points in a number of iterations that are independent of dimension.

Theorem 2.2.10 ((Ghadimi and Lan, 2013)). For any ε, δ > 0, assume function f is `-
gradient Lipschitz, stochastic gradient g satisfies Assumption B, and let learning rate η =
Θ̃(`−1(1+σ2/ε2)−1). Then, with probability at least 1−δ, stochastic gradient descent Eq.(2.2)
will visit ε-stationary point at least once in the following number of iterations:

Õ
(
`(f(x0)− f ?)

ε2

(
1 +

σ2

ε2

))

2.3 Common Landscape of Nonconvex Applications

in Machine Learning

In this section, we illustrate the importance of second-order stationary points—for a wide
class of nonconvex applications in machine learning and signal processing, all second-order
stationary points are global minima.

These applications include tensor decomposition (Ge et al., 2015), dictionary learning
(Sun, Qu, and Wright, 2016b), phase retrieval (Sun, Qu, and Wright, 2016a), synchronization
and MaxCut (Bandeira, Boumal, and Voroninski, 2016; Mei et al., 2017), smooth semidefinite
programs (Boumal, Voroninski, and Bandeira, 2016), and many problems related to low-rank
matrix factorization, such as matrix sensing (Bhojanapalli, Neyshabur, and Srebro, 2016),
matrix completion (Ge, Lee, and Ma, 2016) and robust PCA (Ge, Jin, and Zheng, 2017).

The above works show that, by adding appropriate regularization terms, and under mild
conditions, there are two geometric properties satisfied by the corresponding objective func-
tions (a) all local minima are global minima. There might be multiple local minima due to
permutation, but they are all equally good; (b) all saddle points have at least one direction
with strictly negative curvature, thus are strict saddle points. Finally, we observe:

Fact 2.3.1. If a function f satisfies (a) all local minima are global minima; (b) all saddle
points (including local maxima) are strict saddle points, then all second-order stationary
points are global minima.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 15

This implies that the core problem for these nonconvex applications is to find second-
order stationary points efficiently. If we can prove that some simple variants of GD and
SGD converges to second-order stationary points efficiently, then we immediately establish
global convergence results for all the above applications (i.e. convergence from arbitrary
initialization), and in fact do so efficiently.

In the rest of this section, we illustrate the above common geometric properties via a
simple example of finding top eigenvector. Given a positive semidefinite matrix M ∈ Rd×d,
consider the following objective:

min
x∈Rd

f(x) =
1

2
‖xx> −M‖2

F, (2.3)

Denote the eigenvalues and eigenvectors of M as (λi,vi) for i = 1, . . . , d, and assume there
is a gap between the first and second eigenvalues, i.e. λ1 > λ2 ≥ λ3 ≥ . . . ≥ λd ≥ 0. In this
case, the global optimal solutions are x = ±

√
λ1v1 giving the top eigenvector direction.

However, the objective function (2.3) is nonconvex in x. In order to directly optimize
over objective via gradient methods, we need to analyze the global landscape of objective
function (2.3). Its gradient and Hessian are of the form:

∇f(x) =(xx> −M)x

∇2f(x) =‖x‖2I + 2xx> −M

Therefore, all the stationary points satisfy the equation Mx = ‖x‖2x. That is, they are 0
and ±

√
λivi for i = 1, . . . , d. We already know ±

√
λ1v1 are global minima, thus are also

local minima, they are equivalent up to a sign difference. For all remaining stationary points
x†, we note that their Hessian always has strict negative curvature along v1 direction, i.e.
v>1 ∇2f(x†)v1 ≤ λ2 − λ1 < 0. Thus they are strict saddle points. So far, we have proved all
the preconditions of Fact 2.3.1, which enables us to conclude:

Proposition 2.3.2. Assume M is a positive semidefinite matrix with top two eigenvalues
λ1 > λ2 ≥ 0, then for the objective Eq.(2.3) of finding the top eigenvector, all second-order
stationary points are global optima.

Further analysis can be done to establish the ε-robust version of the Proposition 2.3.2.
Informally, it can be shown that under technical conditions, for polynomially small ε, all
ε-second-order stationary point are close to global optima. We refer the readers to (Ge, Jin,
and Zheng, 2017) for the formal statement.

To summarize the discussion, in order to solve a wide class of nonconvex problems, it
suffices to establish algorithmic results that find ε-second-order stationary points efficiently.

2.4 Main Results

In this section, we present our main results on the efficiency of simple variants of GD and
SGD to escape saddle points and find second-order stationary points. We first study the

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 16

Algorithm 1 Perturbed Gradient Descent (PGD)

Input: x0, learning rate η, perturbation radius r.
for t = 0, 1, . . . , do

xt+1 ← xt − η(∇f(xt) + ξt), ξt ∼ N (0, (r2/d)I)

case where the exact gradients are accessible, and present the result for Perturbed GD. In
Section 2.4, we study the stochastic setting, and present the results for Perturbed SGD and
its mini-batch version.

When exact gradients are available, GD is the simplest algorithm to run in this setting.
However, according to its update rule Eq.(2.1), GD only moves its iterates when gradient is
non-zero. That is, GD will natually get stuck at saddle points if initialized there. A simple
fix to this problem is to inject certain randomness to the iterates. Therefore, this work
considers a perturbed version of gradient descent (Algorithm 1).

At each iteration, Algorithm 1 is almost the same as gradient descent, except it adds
a small isotropic random Gaussian perturbation to the gradient. The perturbation ξt is
sampled from a zero-mean Gaussian with covariance (r2/d)I so that E‖ξt‖2 = r2. We
note that Algorithm 1 simplifies the preliminary version in (Jin et al., 2017) which adds
perturbation more carefully only when certain conditions hold.

We are now ready to present our main result, which claims that if we pick r = Θ̃(ε) in
Algorithm 1, PGD will find ε-second-order stationary point in a number of iterations that is
only polylogarithmic in dimension.

Theorem 2.4.1. For any ε, δ > 0, assume function f(·) satisfies Assumption A, and we run
PGD (Algorithm 1) with parameter η = Θ̃(1/`), r = Θ̃(ε). Then, with probability at least
1− δ, PGD will visit ε−second-order stationary point at least once in the following number
of iterations:

Õ
(
`(f(x0)− f ?)

ε2

)
where Õ, Θ̃ hides poly-logarithmic factors in d, `, ρ, 1/ε, 1/δ and ∆f := f(x0)− f ?.

Remark 2.4.2 (Output a second-order stationary point). In order to output an ε-second-
order stationary point, it can be shown by minorly adjusting the proof that, if we run PGD
for double that number of iterations in Theorem 2.4.1, one half of the iterates will be ε-
second-order stationary points. Then, if we output one iterate uniformly at random, with at
least a constant probability, it will be an ε-second-order stationary point.

Remark 2.4.3 (Alternative distributions of perturbations). We note that the distribution
of perturbations is not necessarily Gaussian as in Algorithm 1. The key properties needed
for the perturbation distributions are (a) light tail distribution for concentration, (b) at least
a small amount of variance in every direction.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 17

Algorithm 2 Perturbed Stochastic Gradient Descent (PSGD)

Input: x0, learning rate η, perturbation radius r.
for t = 0, 1, . . . , do

sample θt ∼ D
xt+1 ← xt − η(g(xt; θt) + ξt), ξt ∼ N (0, (r2/d)I)

Comparing Theorem 2.4.1 to classical result Theorem 2.2.5, our result shows that rather
surprisingly, perturbed gradient descent finds second-order stationary points in almost the
same time as gradient descent finds first-order stationary points, up to only logarithmic
factors. Therefore, escaping strict saddle points is a very easy task even in terms of efficiency.

We also note that comparing to Theorem 2.2.5, Theorem 2.4.1 also makes an additional
assumption on Hessian Lipschitz, which is essential in separating strict saddle points from
second-order stationary points.

Stochastic Setting

Recall in the stochastic approximation setting, exact gradients ∇f(·) are no longer available,
and the algorithms are given stochastic gradients g(·; θ) such that ∇f(x) = Eθ∼D [g(x; θ)].

In many applications in machine learning, the stochastic gradient g is often realized as
gradient of a stochastic function g(·; θ) = ∇f(·; θ) where the stochastic function itself can
have good smoothness property. That is, the stochastic gradient can be Lipschitz.

Assumption C. For any θ ∈ supp(D), g(·; θ) is ˜̀-Lipschitz, i.e.

‖g(x1; θ)− g(x2; θ)‖ ≤ ˜̀‖x1 − x2‖ ∀ x1,x2.

Most prior works heavily rely on this assumption. Intuitively, in the special case of
g(·; θ) = ∇f(·; θ) for some twice-differentiable stochastic function f(·; θ), Assumption C
ensures the spectral norm of Hessian of stochastic function f(·; θ) to be bounded by ˜̀ for all
θ. Therefore, the stochastic Hessian also enjoys good concentration properties, which helps
algorithms to find points with second-order characterization. In contrast, when Assumption
C no longer holds, the problem of finding second-order stationary points becomes much
more challenging without the concentration of stochastic Hessian. For the sake of clean
presentation, this work treats the general case where Assumption C does not hold by taking
˜̀= +∞.

We are now ready to present our main result which guarantees the efficiency of PSGD
(Algorithm 2) in finding a second-order stationary point. The parameter choice of Algorithm
2 is given by:

η = Θ̃(
1

` ·N
), r = Θ̃(ε

√
N), where N = 1 + min

{
σ2

ε2
+

˜̀2

`
√
ρε
,
σ2d

ε2

}
(2.4)

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 18

Algorithm 3 Mini-batch Perturbed Stochastic Gradient Descent (Mini-batch PSGD)

Input: x0, learning rate η, perturbation radius r.
for t = 0, 1, . . . , do

sample {θ(1)
t , · · · θ(m)

t } ∼ D
gt(xt)←

∑m
i=1 g(xt; θ

(i)
t)/m

xt+1 ← xt − η(gt(xt) + ξt), ξt ∼ N (0, (r2/d)I)

Theorem 2.4.4. For any ε, δ > 0, if function f satisfies Assumption A, and stochastic
gradient g satisfies Assumption B (and C optionally), and we run PSGD (Algorithm 2) with
parameter (η, r) chosen as Eq.(2.4). Then, with probability at least 1 − δ, PSGD will visit
ε−second-order stationary point at least once in the following number of iterations:

Õ

(
`(f(x0)− f ?)

ε2
·N
)

We note Remark 2.4.2 on how to output a second-order stationary point and Remark
2.4.3 on alterative distribution of perturbations can also be directly applied to Theorem
2.4.4.

Theorem 2.4.4 summarize the results for both scenarios with or without Assumption C.
In case where stochastic gradients are Lipschitz (i.e. Assumption C is valid), for sufficiently
small ε where σ2/ε2 ≥ ˜̀2/(`

√
ρε), we have N ≈ 1 + σ2/ε2. Our results then show that

perturbed SGD finds second-order stationary points in Õ(ε−4) iterations, which matches
Theorem 2.2.10 up to logarithmic factors.

In the general case where Assumption C does not hold (˜̀=∞), we have N = 1+σ2d/ε2,
and Theorem 2.4.4 guarantees that PSGD finds ε-second-order stationary point in Õ(dε−4)
iterations. Comparing to Theorem 2.2.10, this pays an additional factor linear in dimension
d.

Finally, Theorem 2.4.4 can be easily extended to the minibatch setting, with parameters
chosen as:

η = Θ̃(
1

` ·M
), r = Θ̃(ε

√
M), where M = 1 +

1

m
min

{
σ2

ε2
+

˜̀2

`
√
ρε
,
σ2d

ε2

}
(2.5)

Theorem 2.4.5 (Mini-batch Version). For any ε, δ,m > 0, if function f satisfies Assump-
tion A, and stochastic gradient g satisfies Assumption B, (and C optionally), and we run
mini-batch PSGD (Algorithm 3) with parameter (η, r) chosen as Eq.(2.5). Then, with prob-
ability at least 1− δ, mini-batch PSGD will visit an ε−second-order stationary point at least
once in the following number of iterations:

Õ

(
`(f(x0)− f ?)

ε2
·M
)

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 19

Theorem 2.4.5 says that if the minibatch size m is not too large i.e., m ≤ N, where N
is defined in Eq.(2.4), then mini-batch PSGD will reduce the number of iterations linearly,
while not increasing the total number of stochastic gradient queries.

2.5 Conclusion

In this work, we show simple perturbed versions of GD and SGD escape saddle points
and find second-order stationary points in essentially the same time GD and SGD take to
find first-order stationary points. The overheads are only logarithmic factors in the non-
stochastic setting, and the stochastic setting with Lipschitz stochastic gradient. In the
general stochastic setting, the overhead is a linear factor in d.

Combined with previous landscape results on a wide class of nonconvex optimization in
machine learning and signal processing, that all second-order stationary points are global
optima, our results directly provide efficient guarantees for solving those nonconvex problem
via simple local search approaches. We now discuss several possible future directions, and
on connections to other fields.

Optimal rates for finding second-order stationary points According to Carmon et
al. (2017b), GD achieves the optimal rate for finding stationary point for gradient Lipschitz
functions. However, we note the results of this work assume, in addition, Lipschitz Hessian.
This additional smooth structure of the function allows for more sophisticated algorithms
to exploit it and achieve faster convergence rate. Therefore, GD and SGD or their variants
themselves are no longer optimal algorithms.

The main focus of this work is to provide sharp guarantees to variants of the simplest
algorithms in optimization—GD and SGD. Optimality is a separate topic worth further
investigation. To find second-order stationary points of functions with Lipschitz gradient
and Hessian via first-order algorithms, the best known gradient query complexity so far is
Õ(ε−1.75) achieved by Carmon et al. (2016), Agarwal et al. (2017), and Jin, Netrapalli, and
Jordan (2017), while the existing lower bound is Ω(ε−12/7) by Carmon et al. (2017c) with
only a small gap of ε1/28. We also note that the current lower bound is restricted to only
deterministic algorithms, thus does not apply to most existing algorithms for escaping saddle
points as they are all randomized algorithms. For stochastic setting with Lipschitz stochastic
gradient, the best query complexity of stochastic gradients is Õ(ε−3) achieved by Fang et al.
(2018) and Zhou and Gu (2019), while the lower bound remains open. See Appendix 2.8 for
more comparison of exisiting works.

Escaping high-order saddle points. In this work, we study escaping strict saddle point
and finding second-order stationary point. One can equivalently define n-th order stationary
points as points which satisfies the KKT-necessary conditions for being local minima up to
n-th order derivatives. It becomes more challenging to find n-th order stationary points as

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 20

n increases, since it requires escaping higher-order saddle points. In terms of efficiency, Nes-
terov (2000) rules out the possibility of efficient algorithms for finding n-th order stationary
points for all n ≥ 4, as the problem in general is NP-hard. Anandkumar and Ge (2016)
present a third-order algorithm to find third-order stationary point in polynomial time. It
remains open whether simple variants of GD can also find third-order stationary point effi-
ciently. It is unlikely that the overhead will still be small or only logarithmic factors in this
case. Another related question is to identify applications where third-order stationarity is
needed beyond second-order stationarity to achieve global optimality.

Connection to gradient Langevin dynamics. A closely related algorithm in Bayesian
statistics is the Langevin Monte Carlo (LMC) algorithm (Roberts and Tweedie, 1996), which
performs the following iterative update:

xt+1 = xt − η(∇f(xt) +
√

2/(ηβ)wt) where wt ∼ N (0, I).

Here β is known as the inverse temperature. When learning rate η → 0, the distribution of
LMC iterates is known to converge to a stationary distribution µ(x) ∝ e−βf(x) (Roberts and
Tweedie, 1996).

While the LMC algorithm looks essentially the same to perturbed gradient descent con-
sidered in this work, there are two key differences on the standard settings between the two
communities:

• Goal: While the focus of our work is to find a second order stationary point, the goal
of LMC algorithm is to quickly converge to the stationary distribution (i.e., to mix
rapidly).

• Scaling of Noise: The scaling of perturbation in this work is much smaller than the
one considered in the standard LMC literature. Running our algorithm is equivalent
to running LMC with temperature β−1 ∝ d−1. In this low temperature or small noise
regime, the algorithm can no longer mix efficiently for smooth nonconvex function, as
it takes Ω(ed) steps in the worst case (Bovier et al., 2004). However, with this small
amount of noise, the algorithm can still perform local search efficiently, and find a
second-order stationary point in a small number of iterations as shown in Theorem
2.4.1.

Finally we note that a recent result (Zhang, Liang, and Charikar, 2017) studied, instead
of mixing time, the time LMC takes to hit a second-order stationary point. The runtime is
no longer exponential, but is still polynomially dependent on dimension d with large degree.

On the Necessity of Adding Perturbations. In this work, we discuss algorithms adding
perturbations to every iteration of GD or SGD to escape saddle points efficiently. As an al-
ternative, one can also simply run GD with random initialization, and try to escape saddle

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 21

Algorithm 4 Perturbed Gradient Descent (Variant)

Input: x0, learning rate η, perturbation radius r, time interval T , tolerance ε.
tperturb = 0
for t = 0, 1, . . . , T do

if ‖∇f(xt)‖ ≤ ε and t− tperturb > T then
xt ← xt − ηξt, (ξt ∼ Uniform(B0(r))); tperturb ← t

xt+1 ← xt − η∇f(xt)

points using only the randomness within the initialzation. Although this alternative algo-
rithm exhibits asymptotic convergence (Lee et al., 2016), it does not yield efficient conver-
gence in general. Du et al. (2017) shows that even with fairly natural random initialization
schemes and non-pathological functions, GD with only random initialization can be signifi-
cantly slowed by saddle points, taking exponential time to escape them.

2.6 Proofs for Non-stochastic Setting

In this section, we present our proof for the iteration complexity of PGD to find a second-
order stationary point. While gradients are exact in Algorithm 1, the addition of perturbation
in each step makes the algorithms stochastic in nature, and makes the analysis involves many
concetrations inequalities and stochastic analysis. In order to illustrate the proof ideas and
make the proof transparent, we present instead a proof for the iteration complexity of a
variant of PGD (Algorithm 4), which is less stochastic. We leave the formal proof of Theorem
2.4.1 as a direct corollary of Theorem 2.4.4 by setting σ = 0.

Algorithm 4 adds perturbation only when the norm of gradient at current iterate is small,
and the algorithm has not added perturbation in previous T iterations. Similar guarantees
as Theorem 2.4.1 can be shown for this version of PGD as follows:

Theorem 2.6.1. There is an absolute constant c such that the following holds: for any
ε, δ > 0, if f satisfies Assumption A, let ∆f := f(x0) − f ? and we run PGD (Variant)
(Algorithm 4) with parameters η, r,T chosen as Eq.(2.6) with ι = c · log(d`∆f/(ρεδ)), then
with probability at least 1 − δ, in the following number of iterations, at least one half of
iterations of PGD (Variant) will be ε−second order stationary points.

Õ

(
`∆f

ε2

)
,

In order to prove this theorem, we first specify our choice of hyperparameter η, r,T , and
two quantities F ,S which are frequently used:

η =
1

`
, r =

ε

400ι3
, T =

`
√
ρε
· ι, F =

1

50ι3

√
ε3

ρ
, S =

1

4ι

√
ε

ρ
(2.6)

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 22

Our high-level proof strategy is to prove by contradiction: when the current iterate is not
ε-second order stationary point, it must either have a large gradient or a strictly negative
Hessian, and we prove that in either case, PGD must decrease a large amount of function
value in a reasonable number of iterations. Finally since the function value can not decrease
more than f(x0)− f ?, we know that the total number of iterates that are not ε-second order
stationary points can not be very large.

First, we show the decreasing speed when gradient is large.

Lemma 2.6.2 (Descent Lemma). If f(·) satisfies Assumption A and η ≤ 1/`, then the
gradient descent sequence {xt} satisfies:

f(xt+1)− f(xt) ≤ −η‖∇f(xt)‖2/2

Proof. According to the `-gradient Lipschitz assumption, we have:

f(xt+1) ≤f(xt) + 〈∇f(xt),xt+1 − xt〉+
`

2
‖xt+1 − xt‖2

=f(xt)− η‖∇f(xt)‖2 +
η2`

2
‖∇f(xt)‖2 ≤ f(xt)−

η

2
‖∇f(xt)‖2

Next is our key lemma, which shows if the starting point has strictly negative Hessian,
then adding a perturbation and following by gradient descent will decrease a large amount
of function value in T iterations.

Lemma 2.6.3 (Escaping Saddle). Assume f(·) satisfies Assumption A and x̃ satisfies
‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −√ρε. Then let x0 = x̃ + ηξ (ξ ∼ Uniform(B0(r)))
and run gradient descent starting from x0, we have

P(f(xT)− f(x̃) ≤ −F/2) ≥ 1− `
√
d

√
ρε
· ι228−ι,

where xT is the T th gradient descent iterate starting from x0.

In order to prove this, we need to prove two lemmas, and the major simplification over (Jin
et al., 2017) comes from the following lemma which says that if function value does not
decrease too much over t iterations, then all the iterates {xτ}tτ=0 will remain in a small
neighborhood of x0.

Lemma 2.6.4 (Improve or Localize). Under the setting of Lemma 2.6.2, for any t ≥ τ > 0:

‖xτ − x0‖ ≤
√

2ηt(f(x0)− f(xt))

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 23

Proof. Recall gradient update xt+1 = xt − η∇f(xt), then for any τ ≤ t:

‖xτ − x0‖ ≤
t∑

τ=1

‖xτ − xτ−1‖
(1)

≤ [t
t∑

τ=1

‖xτ − xτ−1‖2]
1
2

=[η2t

t∑
τ=1

‖∇f(xτ−1)‖2]
1
2

(2)

≤
√

2ηt(f(x0)− f(xt))

where step (1) uses Cauchy-Schwartz inequality, and step (2) is due to Lemma 2.6.2.

Second, we show that the stuck region (where GD will get stuck in a small local neigh-
borhood for at least T iterations if initialized there) is thin. We show this by tracking any
pair of points that differ only in escaping direction, and are at least ω far apart. We show
that, out of the two GD sequences that initialized at these two points, at least one sequence
is guaranteed to escape the saddle point with high probability, so the stuck region along
escaping direction has width at most ω.

Lemma 2.6.5 (Coupling Sequence). Suppose f(·) satisfies Assumption A and x̃ satisfies
λmin(∇2f(x̃)) ≤ −√ρε. Let {xt}, {x′t} be two gradient descent sequences which satisfy: (1)
max{‖x0 − x̃‖, ‖x′0 − x̃‖} ≤ ηr; (2) x0 − x′0 = ηr0e1, where e1 is the minimum eigenvector
direction of ∇2f(x̃) and r0 > ω := 22−ι`S . Then:

min{f(xT)− f(x0), f(x′T)− f(x′0)} ≤ −F .

Proof. Assume the contrary, that is min{f(xT) − f(x0), f(x′T) − f(x′0)} > −F . Lemma
2.6.4 implies localization of both sequences around x̃, that is for any t ≤ T

max{‖xt − x̃‖, ‖x′t − x̃‖} ≤max{‖xt − x0‖, ‖x′t − x′0‖}+ max{‖x0 − x̃‖, ‖x′0 − x̃‖}
≤
√

2ηT F + ηr ≤ S (2.7)

where the last step is due to our choice of η, r,T ,F ,S as in Eq.(2.6), and `/
√
ρε ≥ 1.1 On

the other hand, we can write the update equations for the difference x̂t := xt − x′t as:

x̂t+1 =x̂t − η[∇f(xt)−∇f(x′t)] = (I− ηH)x̂t − η∆tx̂t

= (I− ηH)t+1x̂0︸ ︷︷ ︸
p(t+1)

− η
t∑

τ=0

(I− ηH)t−τ∆τ x̂τ︸ ︷︷ ︸
q(t+1)

where H = ∇2f(x̃) and ∆t =
∫ 1

0
[∇2f(x′t + θ(xt − x′t) − H]dθ. We note p(t) is the leading

term which is due to initial difference x̂0, and q(t) is the error term which is the result of

1We note that when `/
√
ρε < 1, ε-second-order stationary points are equivalent to ε-first-order stationary

points due to function f being `-gradient Lipschitz. In this case, the problem of finding ε-second-order
stationary points becomes very easy.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 24

that function f is not quadratic. Now we use induction to show that the error term is always
small compared to the leading term. That is:

‖q(t)‖ ≤ ‖p(t)‖/2, t ∈ [T]

The claim is true for the base case t = 0 as ‖q(0)‖ = 0 ≤ ‖x̂0‖/2 = ‖p(0)‖/2. Now suppose
the induction claim is true till t, we prove it is true for t + 1. Denote λmin(∇2f(x0)) = −γ.
First, note x̂0 is in the minimum eigenvector direction of ∇2f(x0). Thus for any τ ≤ t, we
have:

‖x̂τ‖ ≤ ‖p(τ)‖+ ‖q(τ)‖ ≤ 2‖p(τ)‖ = 2‖(I− ηH)τ x̂0‖ = 2(1 + ηγ)τηr0

By Hessian Lipschitz, we have ‖∆t‖ ≤ ρmax{‖xt − x̃‖, ‖x′t − x̃‖} ≤ ρS , therefore:

‖q(t+ 1)‖ =‖η
t∑

τ=0

(I− ηH)t−τ∆τ x̂τ‖ ≤ ηρS
t∑

τ=0

‖(I− ηH)t−τ‖‖x̂τ‖

≤2ηρS
t∑

τ=0

(1 + ηγ)tηr0 ≤ 2ηρS T (1 + ηγ)tηr0 ≤ 2ηρS T ‖p(t+ 1)‖

where the second last inequality used t + 1 ≤ T . By our choice of hyperparameter as in
Eq.(2.6), we have 2ηρS T ≤ 1/2, which finishes the proof for induction.

Finally, the induction claim implies:

max{‖xT − x0‖, ‖x′T − x0‖} ≥
1

2
‖x̂(T)‖ ≥ 1

2
[‖p(T)‖ − ‖q(T)‖] ≥ 1

4
[‖p(T)‖

=
(1 + ηγ)T ηr0

4

(1)

≥ 2ι−2ηr0 > S

where step (1) uses the fact (1+x)1/x ≥ 2 for any x ∈ (0, 1]. This contradicts the localization
fact Eq.(2.7), which finishes the proof.

Equipped with Lemma 2.6.4 and Lemma 2.6.5, now we are ready to prove the Lemma
2.6.3.

Proof of Lemma 2.6.3. Recall x0 ∼ Uniform(Bx̃(ηr)). We call Bx̃(ηr) the perturbation ball,
and define stuck region within it to be the set of points starting from which GD requires
more than T steps to escape:

Xstuck := {x ∈ Bx̃(ηr) | {xt} is GD sequence with x0 = x, and f(xT)− f(x0) > −F}.

See Figure 2.1 and Figure 2.2 for illustrations. Although the shape of stuck region can be
very complicated, according to Lemma 2.6.5, we know the width of Xstuck along e1 direction
is at most ηω. That is, Vol(Xstuck) ≤ Vol(Bd−1

0 (ηr))ηω. Therefore:

P(x0 ∈ Xstuck) =
Vol(Xstuck)

Vol(Bdx̃(ηr))
≤ ηω × Vol(Bd−1

0 (ηr))

Vol(Bd0(ηr))
=

ω

r
√
π

Γ(d
2

+ 1)

Γ(d
2

+ 1
2
)
≤ ω

r
·
√
d

π
≤ `
√
d

√
ρε
· ι228−ι

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 25

Figure 2.1: Pertubation ball in 3D and
“thin pancake” shape stuck region

0

Figure 2.2: Pertubation ball in 2D and
“narrow band” stuck region under gradi-
ent flow

On the event that x0 6∈ Xstuck, according to our parameter choice Eq.(2.6), we have:

f(xT)− f(x̃) = [f(xT)− f(x0)] + [f(x0)− f(x̃)] ≤ −F + εηr +
`η2r2

2
≤ −F/2.

This finishes the proof.

With Lemma 2.6.2 and Lemma 2.6.3, it is not hard to finally prove Theorem 2.6.1.

Proof of Theorem 2.6.1. First, we set total iterations T to be:

T = 8 max

{
(f(x0)− f ?)T

F
,
(f(x0)− f ?)

ηε2

}
= O

(
`(f(x0)− f ?)

ε2
· ι4
)

Next, we choose ι = c · log(
d`∆f

ρεδ
) with large enough absolute constant c so that:

(T`
√
d/
√
ρε) · ι228−ι ≤ δ.

Then, we argue with probability 1 − δ, algorithm 4 will add perturbation at most T/(4T)
times. This is because otherwise, we can use Lemma 2.6.3 every time we add perturbation,
and:

f(xT) ≤ f(x0)− TF/(4T) < f ?

which can not happen. Finally, excluding those iterations that are within T steps after
adding perturbations, we still have 3T/4 steps left. They are either large gradient steps

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 26

‖∇f(xt)‖ ≥ ε or ε-second order stationary points. Within them, we know large gradient
steps can not be more than T/4. Because again otherwise, by Lemma 2.6.2:

f(xT) ≤ f(x0)− Tηε2/4 < f ?

which again can not happen. Therefore, we conclude at least T/2 iterations must be ε−second
order stationary points.

2.7 Proofs for Stochastic Setting

In this section, we provide proofs for our main results—Theorem 2.4.4 and Theorem 2.4.5.
Theorem 2.4.1 can be proved as a special case of Theorem 2.4.4 by taking σ = 0.

Notation

Recall the update equation of Algorithm 2 is xt+1 ← xt − η(g(xt; θt) + ξt) where ξt ∼
N (0, (r2/d)I). Across this section, we denote ζt := g(xt; θt)−∇f(xt), as the noise part within
the stochastic gradient. For simplicity, we also denote ζ̃t := ζt+ξt, which is the summation of
noise in stochastic gradient and the injected perturbation, and σ̃2 := σ2+r2. Then the update
equation can be rewrite as xt+1 ← xt−η(∇f(xt)+ζ̃t). We also denote Ft = σ(ζ0, ξ0, . . . , ζt, ξt)
be the corresponding filteration up to time step t. We choose parameters in Algorithm 2 as
follows:

η =
1

ι9 · `N
, r = ι · ε

√
N, T :=

ι

η
√
ρε
, F :=

1

ι5

√
ε3

ρ
, S :=

2

ι2

√
ε

ρ
(2.8)

where N and log factor ι are defined as:

N = 1 + min

{
σ2

ε2
+

˜̀2

`
√
ρε
,
σ2d

ε2

}
, ι = µ · log

(
d`∆fN

ρεδ

)
Here, µ is a sufficiently large absolute constant to be determined later. Also we note c in
this sections are absolute constant that does not depend on the choice of µ. The value of c
may change from line to line.

Descent Lemma

We first prove that the change in the function value can be always decomposed as the decrease
due to the magnitudes of gradients, and the possible increase due to randomness in both
stochastic gradients and perturbations.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 27

Lemma 2.7.1 (Descent Lemma). There exists absolute constant c, under Assumption A,
B, for any fixed t, t0, ι > 0, if η ≤ 1/`, then with at least 1 − 4e−ι probability, the sequence
PSGD(η, r) (Algorithm 2) satisfies: (denote σ̃2 = σ2 + r2)

f(xt0+t)− f(xt0) ≤ −
η

8

t−1∑
i=0

‖∇f(xt0+i)‖2 + c · ησ̃2(η`t+ ι)

Proof. Since Algorithm 2 is Markovian, the operations in each iterations does not depend
on time step t. Thus, it suffices to prove Lemma 2.7.1 for special case t0 = 0. Recall the
update equation:

xt+1 ← xt − η(∇f(xt) + ζ̃t)

where ζ̃t = ζt+ξt. By assumption, we know ζt|Ft−1 is zero-mean nSG(σ). Also ξt|Ft−1 comes
from N (0, (r2/d)I), and thus by Lemma 2.9.2 is zero-mean nSG(c · r) for some absolute
constant c. By Taylor expansion, `-gradient Lipschitz and η ≤ 1/`, we know:

f(xt+1) ≤f(xt) + 〈∇f(xt),xt+1 − xt〉+
`

2
‖xt+1 − xt‖2

≤f(xt)− η〈∇f(xt),∇f(xt) + ζ̃t〉+
η2`

2

[
3

2
‖∇f(xt)‖2 + 3‖ζ̃t‖2

]
≤f(xt)−

η

4
‖∇f(xt)‖2 − η〈∇f(xt), ζ̃t〉+

3

2
η2`‖ζ̃t‖2

Summing over the inequality above, we have following:

f(xt)− f(x0) ≤ −η
4

t−1∑
i=0

‖∇f(xi)‖2 − η
t−1∑
i=0

〈∇f(xi), ζ̃i〉+
3

2
η2`

t−1∑
i=0

‖ζ̃i‖2 (2.9)

For the second term in RHS, applying Lemma 2.9.8, there exists an absolute constant c,
with probability 1− 2e−ι:

−η
t−1∑
i=0

〈∇f(xi), ζ̃i〉 ≤
η

8

t−1∑
i=0

‖∇f(xi)‖2 + cησ̃2ι

For the third term in RHS of Eq.(2.9), applying Lemma 2.9.7, with probability 1− 2e−ι:

3

2
η2`

t−1∑
i=0

‖ζ̃i‖2 ≤ 3η2`

t−1∑
i=0

(‖ζi‖2 + ‖ξi‖2) ≤ cη2`σ̃2(t+ ι)

Substituting both above inequality into Eq.(2.9), and note the fact η ≤ 1/`, we have with
probability 1− 4e−ι:

f(xt)− f(x0) ≤ −η
8

t−1∑
i=0

‖∇f(xi)‖2 + cησ̃2(η`t+ ι)

This finishes the proof.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 28

The descent lemma enables as to show following Improve or Localize phenomena for
perturbed SGD. That is, with high probability over a small number of iterations, either the
function value decrease significantly, or the iterates stay within a small local region.

Lemma 2.7.2 (Improve or Localize). Under the same setting of Lemma 2.7.1, with at least
1− 8dt · e−ι probability, the sequence PSGD(η, r) (Algorithm 2) satisfies:

∀τ ≤ t : ‖xt0+τ − xt0‖2 ≤ cηt · [f(xt0)− f(xt0+τ) + ησ̃2(η`t+ ι)]

Proof. By similar arguement as in proof of Lemma 2.7.1, it suffices to prove Lemma 2.7.2 in
special case t0 = 0. According to Lemma 2.7.1, with probability 1− 4e−ι, for some absolute
constant c:

t−1∑
i=0

‖∇f(xi)‖2 ≤ 8

η
[f(x0)− f(xt)] + cσ̃2(η`t+ ι)

Therefore, for any fixed τ ≤ t, with probability 1− 8d · e−ι,:

‖xτ − x0‖2 =η2‖
τ−1∑
i=0

(∇f(xi) + ζ̃i)‖2 ≤ 2η2

[
‖
τ−1∑
i=0

∇f(xi)‖2 + ‖
τ−1∑
i=0

ζ̃i‖2

]
(1)

≤2η2t
τ−1∑
i=0

‖∇f(xi)‖2 + cη2σ̃2tι ≤ 2η2t
t−1∑
i=0

‖∇f(xi)‖2 + cη2σ̃2tι

≤cηt[f(x0)− f(xt) + ησ̃2(η`t+ ι)]

Where in step (1) we use Cauchy-Schwartz inequality and Lemma 2.9.5. Finally, applying
union bound for all τ ≤ t, we finishes the proof.

Escaping Saddle Points

Descent Lemma 2.7.1 shows that large gradients contribute to the fast decrease of the func-
tion value. In this subsection, we will show that starting in the vicinity of strict saddle
points will also enable PSGD to decrease the function value rapidly. Concretely, this entire
subsection will be devoted to prove following lemma:

Lemma 2.7.3 (Escaping Saddle Point). There exists absolute constant cmax, under As-
sumption A, B, for any fixed t0 > 0, ι > cmax log(`

√
d/(ρε)), if η, r,F ,T are chosen as in

Eq.(2.8), and xt0 satisfies ‖∇f(xt0)‖ ≤ ε and λmin(∇2f(xt0)) ≤ −
√
ρε, then the sequence

PSGD(η, r) (Algorithm 2) satisfies:

P(f(xt0+T)− f(xt0) ≤ 0.1F) ≥ 1− 4e−ι and

P(f(xt0+T)− f(xt0) ≤ −F) ≥ 1/3− 5dT 2 · log(S
√
d/(ηr))e−ι

Since Algorithm 2 is Markovian, the operations in each iterations does not depend on
time step t. Thus, it suffices to prove Lemma 2.7.3 for special case t0 = 0. To prove this
lemma, we first need to introduce the concept of coupling sequence.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 29

Notation: Across this subsection, we let H := ∇2f(x0), and e1 be the minimum eigendi-
rection of H, and γ := λmin(H). We also let P−1 be the projection to subspace complement
to e1.

To prove the lemma, we introduce an important concept—coupling sequence.

Definition 2.7.4 (Coupling Sequence). Consider two sequences {xi} and {x′i} as two seper-
ate runs of PSGD (algorithm 2) both starting from x0. They are coupled if both sequences
share the same randomness P−1ξτ and θτ , while in e1 direction e>1 ξτ = −e>1 ξ

′
τ .

The first thing we can show is that if function values of both sequences do not have
sufficient decreases, then both sequences are localized in a small ball around x0 within T
iterations.

Lemma 2.7.5 (Localization of coupling sequence). Under the notation of Lemma 2.7.6,
then:

P(min{f(xT)− f(x0),f(x′T)− f(x0)} ≤ −F , or

∀t ≤ T : max{‖xt − x0‖2, ‖x′t − x0‖2} ≤ S 2) ≥ 1− 16dT · e−ι

Proof. This lemma follows from applying Lemma 2.7.2 on both sequences and union bound.

The overall proof strategy for Lemma 2.7.3 is to show localization happens with a very
small chance, thus at least one of the sequence must have sufficient descent. In order to
prove so, we study the dynamics of the difference of the coupling sequence.

Lemma 2.7.6 (Dynamics of the difference of coupling sequence). Consider coupling sequence
{xi} and {x′i} as in Definition 2.7.4 and let x̂t := xi−x′i. Then x̂t = −qh(t)−qsg(t)−qp(t),
where:

qh(t) := η

t−1∑
τ=0

(I−ηH)t−1−τ∆τ x̂τ , qsg(t) := η

t−1∑
τ=0

(I−ηH)t−1−τ ζ̂τ , qp(t) := η

t−1∑
τ=0

(I−ηH)t−1−τ ξ̂τ

Here ∆t :=
∫ 1

0
∇2f(ψxt + (1− ψ)x′t)dψ −H, and ζ̂τ := ζτ − ζ ′τ , ξ̂τ := ξτ − ξ′τ .

Proof. Recall ζi = g(xi; θi)−∇f(xi), thus, we have update formula:

xt+1 = xt − η(g(xt; θt) + ξt) = xt − η(∇f(xt) + ζt + ξt)

Taking the difference between {xi} and {x′i}:

x̂t+1 =xt+1 − x′t+1 = x̂t − η(∇f(xt)−∇f(x′t) + ζt − ζ ′t + (ξt − ξ′t))
=x̂t − η[(H + ∆t)x̂t + ζ̂t + ξ̂t] = (I− ηH)x̂t − η[∆tx̂t + ζ̂t + e1e

>
1 ξ̂t]

=− η
∑
τ=0

t(I − ηH)t−τ (∆τ x̂τ + ζ̂τ + ξ̂τ))

where ∆t :=
∫ 1

0
∇2f(ψxt + (1− ψ)x′t)dψ −H. This finishes the proof.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 30

In high level, we will show with constant probability, qp(t) is the dominating term which
controls the major behavior of the dynamics, and qh(t), qsg(t) will stay small compared to
qp(t). To achieve this, we prove following three lemmas.

Lemma 2.7.7. Denote α(t) :=
[∑t−1

τ=0(1 + ηγ)2(t−1−τ)
] 1

2 ; β(t) := (1 + ηγ)t/
√

2ηγ. If ηγ ∈
[0, 1], then (1) α(t) ≤ β(t) for any t ∈ N; (2) α(t) ≥ β(t)/

√
3 for t ≥ ln(2)/(ηγ).

Proof. By summation formula of geometric sequence:

α2(t) :=
t−1∑
τ=0

(1 + ηγ)2(t−1−τ) =
(1 + ηγ)2t − 1

2ηγ + (ηγ)2

Thus, the claim α(t) ≤ β(t) for any t ∈ N immediately follows. On the other hand, note
for t ≥ ln(2)/(ηγ), we have (1 + ηγ)2t ≥ 22 ln 2 ≥ 2, where the second claim follows by
calculations.

Lemma 2.7.8. Under the notation of Lemma 2.7.6 and Lemma 2.7.7, let −γ := λmin(H),
then ∀t > 0:

P(‖qp(t)‖ ≤
cβ(t)ηr√

d
·
√
ι) ≥ 1− 2e−ι

P(‖qp(T)‖ ≥ β(T)ηr

10
√
d

) ≥ 2

3

Proof. Note ξ̂τ is one dimensional Gaussian with standard deviation 2r/
√
d along e1 direc-

tion. As a immediate result, η
∑t

τ=0(I−ηH)t−τ ξ̂τ also satisfies one dimensional Gaussian dis-
tribution since summation of Gaussian is again Gaussian. Finally note e1 is an eigendirection
ofH with corresponding eigenvalue−γ, and by Lemma 2.7.7 that α(t) ≤ β(t). Then, the first
inequality immediately follows from the standard concentration inequality for Gaussian; the
second inequality follows from the fact if Z ∼ N (0, σ2) then P(|Z| ≤ λσ) ≤ 2λ/

√
2π ≤ λ.

Lemma 2.7.9. There exists absolute constant cmax, for any ι ≥ cmax, under the notation of
Lemma 2.7.6 and Lemma 2.7.7, let −γ := λmin(H), we have:

P(min{f(xT)− f(x0),f(x′T)− f(x0)} ≤ −F , or

∀t ≤ T : ‖qh(t) + qsg(t)‖ ≤
β(t)ηr

20
√
d

) ≥ 1− 10dT 2 · log(
S
√
d

ηr
)e−ι

Proof. For simplicity we denote E to be the event {∀τ ≤ t : max{‖xτ − x0‖2, ‖x′τ − x0‖2} ≤
S 2}. We use induction to prove following claims for any t ∈ [0,T]:

P(E ⇒ ∀τ ≤ t : ‖qh(τ) + qsg(τ)‖ ≤ β(τ)ηr

20
√
d

) ≥ 1− 10dT t · log(
S
√
d

ηr
)e−ι

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 31

Then Lemma 2.7.9 directly follow from combining Lemma 2.7.5 and this induction claim.
Clearly for the base case t = 0, the claim trivially holds as qsg(0) = qh(0) = 0. Suppose

the claim holds for t, then by Lemma 2.7.8, with probability at least 1− 2T e−ι, we have for
any τ ≤ t:

‖x̂τ‖ ≤ η‖qh(τ) + qsg(τ)‖+ η‖qp(τ)‖ ≤ cβ(τ)ηr√
d
·
√
ι

Then, under the condition max{‖xτ − x0‖2, ‖x′τ − x0‖2} ≤ S 2, by Hessian Lipschitz, we

have ‖∆τ‖ = ‖
∫ 1

0
∇2f(ψxτ + (1− ψ)x′τ)dψ −H‖ ≤ ρmax{‖xτ − x0‖, ‖x′τ − x0‖} ≤ ρS .

This gives bounds on qh(t+ 1) terms as:

‖qh(t+ 1)‖ ≤ η

t∑
τ=0

(1 + ηγ)t−τρS ‖x̂τ‖ ≤ ηρS T
cβ(t)ηr√

d
≤ β(t)ηr

40
√
d

where the last step is due to ηρS T = 1/ι by Eq.(2.8). By picking ι larger than absolute
constant 40c, then we have cηρS T ≤ 1/40.

Also, recall ζ̂τ |Fτ−1 is the summation of one nSG(σ) random vector and one nSG(c · r)
random vector, by Lemma 2.9.5, we know with probability at least 1− 4de−ι:

‖qsg(t+ 1)‖ ≤ cβ(t+ 1)ησ
√
ι

On the other hand, when assumption C is avaliable, we also have ζ̂τ |Fτ−1 ∼ nSG(˜̀‖x̂τ‖),
by applying Lemma 2.9.6 with B = α2(t) · η2 ˜̀2S 2; b = α2(t) · η2 ˜̀2 · η2r2/d, we know with
probability at least 1− 4d · log(S

√
d/(ηr)) · e−ι:

‖qsg(t+ 1)‖ ≤ cη ˜̀

√√√√ t∑
τ=0

(1 + ηγ)2(t−τ) ·max{‖x̂τ‖2,
η2r2

d
}ι ≤ η ˜̀

√
T · cβ(t)ηr√

d
·
√
ι (2.10)

Finally, combine both cases, and by our choice of learning rate η, r as in Eq.(2.8) with ι large
enough:

‖qsg(t+ 1)‖ ≤ c
β(t)ηr√

d
·min{η ˜̀

√
T ι,

σ
√
dι

r
} ≤ β(t)r

40
√
d

and the induction follows by triangular inequality and union bound.

Now, we are ready to prove the Lemma 2.7.3, which is the focus of this subsection.

Proof of Lemma 2.7.3. We first prove the first claim P(f(xT) − f(x0) ≤ 0.1F) ≥ 1 −
4e−ι. This is essentially because our choice of learning rate and Lemma 2.7.1, we have with
probability 1− 4e−ι:

f(xT)− f(x0) ≤ cησ̃2(η`T + ι) ≤ 0.1F

where the last step is because of our choice of parameters as Eq.(2.8), we have cησ̃2(η`T +
ι) ≤ 2cF/ι and by picking ι larger than absolute constant 20c.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 32

For the second claim P(f(xT) − f(x0) ≤ −F) ≥ 1/3 − 5dT 2 · log(S
√
d/(ηr))e−ι. We

consider coupling sequences {xi} and {x′i} as defined in Definition 2.7.4. We note Lemma
2.7.8 and Lemma 2.7.9, we know with probability at least 2/3− 10dT 2 · log(S

√
d/(ηr))e−ι,

if min{f(xT) − f(x0), f(x′T) − f(x0)} > −F , i.e. both sequences stuck around the saddle
point, then we have:

‖qp(T)‖ ≥ β(T)ηr

10
√
d
, ‖qh(T) + qsg(T)‖ ≤ β(T)ηr

20
√
d

By Lemma 2.7.6, when ι ≥ c · log(`
√
d/(ρε)) with large absolute constant c, we have:

max{‖xT − x0‖, ‖x′T − x0‖} ≥
1

2
‖x̂(T)‖ ≥ 1

2
[‖qp(T)‖ − ‖qh(T) + qsg(T)‖]

≥β(T)ηr

40
√
d

=
(1 + ηγ)T ηr

40
√

2ηγd
≤ 2ιηr

80
√
η`d

> S

which contradicts with Lemma 2.7.5. Therefore, we can conclude that P(min{f(xT) −
f(x0), f(x′T) − f(x0)} ≤ −F) ≥ 2/3 − 10dT 2 · log(S

√
d/(ηr))e−ι. We also know the

marginal distribution of xT and x′T is the same, thus they have same probability to escape
saddle point. That is:

P(f(xT)− f(x0) ≤ −F) ≥1

2
P(min{f(xT)− f(x0), f(x′T)− f(x0)} ≤ −F)

≥1/3− 5dT 2 · log(S
√
d/(ηr))e−ι

This finishes the proof.

Proof of Theorem 2.4.4

Lemma 2.7.1 and Lemma 2.7.3 describe the speed of decrease in the function values when
either large gradients or strictly negative curvatures are present. Combining them gives the
proof for our main theorem.

Proof of Theorem 2.4.4. First, we set total iterations T to be:

T = 100 max

{
(f(x0)− f ?)T

F
,
(f(x0)− f ?)

ηε2

}
= O

(
`(f(x0)− f ?)

ε2
·N · ι9

)
We will show that the following two claims hold simultaneously with 1− δ probability:

1. at most T/4 iterates has large gradient, i.e. ‖∇f(xt)‖ ≥ ε;

2. at most T/4 iterates are close to saddle points, i.e. ‖∇f(xt)‖ ≤ ε and λmin(∇2f(xt)) ≤
−√ρε.

Therefore, at least T/2 iterates are ε-second order stationary point. We prove two claims
separately.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 33

Claim 1. Suppose within T steps, we have more than T/4 iterates that gradient is large
(i.e. ‖∇f(xt)‖ ≥ ε). Recall by Lemma 2.7.1 we have with probability 1− 4e−ι:

f(xT)− f(x0) ≤ −η
8

T−1∑
i=0

‖∇f(xi)‖2 + cησ̃2(η`T + ι) ≤ −η
[
Tε2

32
− σ̃2(η`T + ι)

]
we note by our choice of η, r, T and picking ι larger than some absolute constant, we have
Tε2/32− σ̃2(η`T + ι) ≥ Tε2/64, and thus f(xT) ≤ f(x0)− Tηε2/64 < f ? which can not be
achieved.

Claim 2. We first define the stopping time which are the starting time we can apply
Lemma 2.7.3:

z1 = inf{τ | ‖∇f(xτ)‖ ≤ ε and λmin(f(xτ)) ≤ −
√
ρε}

zi = inf{τ | τ > zi−1 + T and ‖∇f(xτ)‖ ≤ ε and λmin(f(xτ)) ≤ −
√
ρε}, ∀i > 1

Clearly, zi is a stopping time, and is the i-th time in the sequence that we can apply Lemma
2.7.3. We also let M be a stochastic variable where M = max{i|zi + T ≤ T}. Therefore,
we can decompose the decrease f(xT)− f(x0) as follows:

f(xT)− f(x0) =
M∑
i=1

[f(xzi+T)− f(xzi)]︸ ︷︷ ︸
T1

+ [f(xT)− f(xzM)] + [f(xz1)− f(x0)] +
M−1∑
i=1

[f(xzi+1
)− f(xzi+T)]︸ ︷︷ ︸

T2

For the first term T1, by Lemma 2.7.3 and supermartingale concentration inequality, for each
fixed m ≤ T :

P

(
m∑
i=1

[f(xzi+T)− f(xzi)] ≤ −(0.9m− c
√
m · ι)F

)
≥ 1− 5dT 2T · log(S

√
d/(ηr))e−ι

Since random variable M ≤ T/T ≤ T , by union bound, we know with probability 1 −
5dT 2T 2 · log(S

√
d/(ηr))e−ι:

T1 ≤ −(0.9M − c
√
M · ι)F

For the second term, by union bound on Lemma 2.7.1 for all 0 ≤ t1, t2 ≤ T , with probability
1− 4T 2e−ι:

T2 ≤ c · ησ̃2(η`T + 2Mι)

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 34

Algorithm Iterations Simplicity

Noisy GD (Ge et al., 2015) d4poly(ε−1)

single-loop
Normalized GD (Levy, 2016) O(d3 · poly(ε−1))

PGD (this work) Õ(ε−2)

†Perturbed AGD (Jin, Netrapalli,
and Jordan, 2017)

Õ(ε−1.75)

FastCubic (Agarwal et al., 2017) Õ(ε−1.75)

double-loopCarmon et al. (2016) Õ(ε−1.75)

Carmon and Duchi (2016) Õ(ε−2)

Table 2.2: A summary of related work on first-order algorithms to find second-order station-
ary points in non-stochastic setting. This table only highlights the dependences on d and ε.
† denotes the follow up work.

Therefore, in sum if within T steps, we have more than T/4 saddle points, then M ≥ T/4T ,
and with probaility 1− 10dT 2T 2 · log(S

√
d/(ηr))e−ι:

f(xT)− f(x0) ≤ −(0.9M − c
√
M · ι)F + c · ησ̃2(η`T + 2Mι) ≤ −0.4MF ≤ −0.4TF/T

This will gives f(xT) ≤ f(x0)− 0.4TF/T < f ? which can not be achieved.

Finally, it is not hard to verify, by choose ι = c · log
(
d`∆fN

ρεδ

)
with absolute constant c

large enough, we can make both claims hold with probability 1− δ.

Proof of Theorem 2.4.5

Our proofs for PSGD easily generalize to the mini-batch setting.

Proof of Theorem 2.4.5. The proof is essentially the same as the proof of Theorem 2.4.4.
The only difference is that, up to a log factor, mini-batch PSGD reduces variance σ2 and
˜̀2‖x̂τ‖2 in Eq.(2.10) by a factor of m, where m is the size of mini-batch.

2.8 Tables of Related Work

In Table 2.2 and Table 2.3, we present the full comparison of our results with other related
works in both non-stochastic and stochastic settings. See Section 2.1 for the full text de-
scriptions. We note our algorithms are simple variants of standard GD and SGD, which are
the simplest among all the algorithms listed in the table.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 35

Algorithm

Iterations
(with

Assumption
C)

Iterations
(no

Assumption
C)

Simplicity

Noisy GD (Ge et al., 2015) d4poly(ε−1) d4poly(ε−1)

single-loop
CNC-SGD (Daneshmand et al., 2018) Õ(d4ε−5) Õ(d4ε−5)

PSGD (this work) Õ(ε−4) Õ(dε−4)

∗SGD with averaging (Fang, Lin, and
Zhang, 2019)

Õ(ε−3.5) ×

Natasha 2 (Allen-Zhu, 2018) Õ(ε−3.5) ×

double-loop
Stochastic Cubic (Tripuraneni et al.,

2018)
Õ(ε−3.5) ×

SPIDER (Fang et al., 2018) Õ(ε−3) ×

SRVRC (Zhou and Gu, 2019) Õ(ε−3) ×

Table 2.3: A summary of related work on first-order algorithms to find second-order station-
ary points in stochastic setting. This table only highlights the dependences on d and ε. ∗

denotes independent work.

2.9 Concentration Inequalities

In this section, we present the concentration inequalities required for this work. Please refer
to the technical note (Jin et al., 2019a) for the proofs of Lemmas 2.9.2, 2.9.3, 2.9.5 and 2.9.6.

Recall the definition of norm-subGaussian random vector.

Definition 2.9.1. A random vector X ∈ Rd is norm-subGaussian (or nSG(σ)), if there
exists σ so that:

P (‖X− EX‖ ≥ t) ≤ 2e−
t2

2σ2 , ∀t ∈ R

We first note bounded random vector and subGaussian random vector are two special
case of norm-subGaussian random vector.

Lemma 2.9.2. There exists absolute constant c so that following random vectors are all
nSG(c · σ).

1. A bounded random vector X ∈ Rd so that ‖X‖ ≤ σ.

2. A random vector X ∈ Rd, where X = ξe1 and random variable ξ ∈ R is σ-subGaussian.

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 36

3. A random vector X ∈ Rd that is (σ/
√
d)-subGaussian.

Second, we have if X is norm-subGaussian, then its norm square is subExponential, and
its component along a single direction is subGaussian.

Lemma 2.9.3. There is an absolute constant c so that if random vector X ∈ Rd is zero-
mean nSG(σ), then ‖X‖2 is c · σ2-subExponential, and for any fixed unit vector v ∈ Sd−1,
〈v,X〉 is c · σ-subGaussian.

For concentration, we are interested in the properties of norm-subGaussian martingale
difference sequences. Concretely, they are sequences satisfying following conditions.

Condition 2.9.4. Let random vectors X1, . . . ,Xn ∈ Rd, and corresponding filtrations Fi =
σ(X1, . . . ,Xi) for i ∈ [n] satisfy that Xi|Fi−1 is zero-mean nSG(σi) with σi ∈ Fi−1. i.e.,

E[Xi|Fi−1] = 0, P (‖Xi‖ ≥ t|Fi−1) ≤ 2e
− t2

2σ2
i , ∀t ∈ R,∀i ∈ [n].

Similar to subGaussian random variables, we can also prove Hoeffding type inequality
for norm-subGaussian random vector which is tight up to a log(d) factor.

Lemma 2.9.5 (Hoeffding type inequality for norm-subGaussian). There exists an absolute
constant c, assume X1, . . . ,Xn ∈ Rd satisfy condition 2.9.4 with fixed {σi}, then for any
ι > 0, with probability at least 1− 2d · e−ι:

‖
n∑
i=1

Xi‖ ≤ c ·

√√√√ n∑
i=1

σ2
i · ι

In case of {σi} also being random, we have the following.

Lemma 2.9.6. There exists an absolute constant c, assume X1, . . . ,Xn ∈ Rd satisfy condi-
tion 2.9.4, then for any ι > 0, and B > b > 0, with probability at least 1− 2d log(B/b) · e−ι:

n∑
i=1

σ2
i ≥ B or ‖

n∑
i=1

Xi‖ ≤ c ·

√√√√max{
n∑
i=1

σ2
i , b} · ι

Finally, we can also provide concentration inequalities for the sum of norm square of
norm-subGaussian random vectors, and for the sum of inner product of norm-subGaussian
random vectors with another set of random vectors.

Lemma 2.9.7. Assume X1, . . . ,Xn ∈ Rd satisfy Condition 2.9.4 with fixed σ1 = . . . = σn =
σ, then there exists absolute constant c, for any ι > 0, with probability at least 1− e−ι:

n∑
i=1

‖Xi‖2 ≤ c · σ2 (n+ ι)

CHAPTER 2. ESCAPING SADDLE POINTS BY GRADIENT DESCENT 37

Proof. Note there exists an absolute contant c such that E[‖Xi‖2|Fi−1] ≤ c·σ2, and ‖Xi‖2|Fi−1

is c · σ2-subExponential. This lemma directly follows from standard Bernstein type concen-
tration inequalities for subExponential random variables.

Lemma 2.9.8. There exists absolute constant c, assume X1, . . . ,Xn ∈ Rd satisfy Condition
2.9.4 and random vectors {ui} satisfy ui ∈ Fi−1 for all i ∈ [n], then for any ι > 0, λ > 0,
with probability at least 1− e−ι:∑

i

〈ui,Xi〉 ≤ c · λ
∑
i

‖ui‖2σ2
i +

1

λ
· ι

Proof. For any i ∈ [n] and fixed λ > 0, since ui ∈ Fi−1, according to Lemma 2.9.3, there
exists constant c so that 〈ui,Xi〉|Fi−1 is c · ‖ui‖σi-subGaussian. Thus:

E[eλ〈ui,Xi〉|Fi−1] ≤ ec·λ
2‖ui‖2σ2

i

Therefore, consider following quantity:

Ee
∑t
i=1(λ〈ui,Xi〉−c·λ2‖ui‖2σ2

i) =E
[
e
∑t−1
i=1 λ〈ui,Xi〉−c·

∑t
i=1 λ

2‖ui‖2σ2
i · E

(
eλ〈ut,Xt〉|Ft−1

)]
≤E

[
e
∑t−1
i=1 λ〈ui,Xi〉−c·

∑t
i=1 λ

2‖ui‖2σ2
i · ec·λ2‖ut‖2σ2

t

]
=Ee

∑t−1
i=1(λ〈ui,Xi〉−c·λ2‖ui‖2σ2

i) ≤ 1

Finally, by Markov’s inequality, for any t > 0:

P

(
t∑
i=1

(λ〈ui,Xi〉 − c · λ2‖ui‖2σ2
i) ≥ t

)
≤P
(
e
∑t
i=1(λ〈ui,Xi〉−c·λ2‖ui‖2σ2

i) ≥ et
)

≤e−tEe
∑t
i=1(λ〈ui,Xi〉−c·λ2‖ui‖2σ2

i) ≤ e−t

This finishes the proof.

38

Chapter 3

Escaping Saddle Points Faster using
Momentum

Nesterov’s accelerated gradient descent (AGD), an instance of the general family of “mo-
mentum methods,” provably achieves faster convergence rate than gradient descent (GD)
in the convex setting. However, whether these methods are superior to GD in the non-
convex setting remains open. This work studies a simple variant of AGD, and shows that
it escapes saddle points and finds a second-order stationary point in Õ(1/ε7/4) iterations,
faster than the Õ(1/ε2) iterations required by GD. To the best of our knowledge, this is the
first Hessian-free algorithm to find a second-order stationary point faster than GD, and also
the first single-loop algorithm with a faster rate than GD even in the setting of finding a
first-order stationary point. Our analysis is based on two key ideas: (1) the use of a simple
Hamiltonian function, inspired by a continuous-time perspective, which AGD monotonically
decreases per step even for nonconvex functions, and (2) a novel framework called improve
or localize, which is useful for tracking the long-term behavior of gradient-based optimiza-
tion algorithms. We believe that these techniques may deepen our understanding of both
acceleration algorithms and nonconvex optimization.

3.1 Introduction

Nonconvex optimization problems are ubiquitous in modern machine learning. While it is
NP-hard to find global minima of a nonconvex function in the worst case, in the setting of
machine learning it has proved useful to consider a less stringent notion of success, namely
that of convergence to a first-order stationary point (where ∇f(x) = 0). Gradient descent
(GD), a simple and fundamental optimization algorithm that has proved its value in large-
scale machine learning, is known to find an ε-first-order stationary point (where ‖∇f(x)‖ ≤ ε)
inO(1/ε2) iterations (Nesterov, 1998), and this rate is sharp (Cartis, Gould, and Toint, 2010).
Such results, however, do not seem to address the practical success of gradient descent; first-
order stationarity includes local minima, saddle points or even local maxima, and a mere

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 39

guarantee of convergence to such points seems unsatisfying. Indeed, architectures such as
deep neural networks induce optimization surfaces that can be teeming with such highly
suboptimal saddle points (Dauphin et al., 2014). It is important to study to what extent
gradient descent avoids such points, particular in the high-dimensional setting in which the
directions of escape from saddle points may be few.

This work focuses on convergence to a second-order stationary point (where ∇f(x) = 0
and ∇2f(x) � 0). Second-order stationarity rules out many common types of saddle points
(strict saddle points where λmin(∇2f(x)) < 0), allowing only local minima and higher-order
saddle points. A significant body of recent work, some theoretical and some empirical, shows
that for a large class of well-studied machine learning problems, neither higher-order sad-
dle points nor spurious local minima exist. That is, all second-order stationary points are
(approximate) global minima for these problems. Choromanska et al. (2014) and Kawaguchi
(2016) present such a result for learning multi-layer neural networks, Bandeira, Boumal, and
Voroninski (2016) and Mei et al. (2017) for synchronization and MaxCut, Boumal, Voronin-
ski, and Bandeira (2016) for smooth semidefinite programs, Bhojanapalli, Neyshabur, and
Srebro (2016) for matrix sensing, Ge, Lee, and Ma (2016) for matrix completion, and Ge,
Jin, and Zheng (2017) for robust PCA. These results strongly motivate the quest for efficient
algorithms to find second-order stationary points.

Hessian-based algorithms can explicitly compute curvatures and thereby avoid saddle
points (e.g., (Nesterov and Polyak, 2006; Curtis, Robinson, and Samadi, 2014)), but these
algorithms are computationally infeasible in the high-dimensional regime. GD, by contrast,
is known to get stuck at strict saddle points Nesterov, 1998, Section 1.2.3. Recent work has
reconciled this conundrum in favor of GD; (Jin et al., 2017), building on earlier work of (Ge
et al., 2015), show that a perturbed version of GD converges to an ε-relaxed version of a
second-order stationary point (see Definition 2.2.9) in Õ(1/ε2) iterations. That is, perturbed
GD in fact finds second-order stationary points as fast as standard GD finds first-order
stationary point, up to logarithmic factors in dimension.

On the other hand, GD is known to be suboptimal in the convex case. In a celebrated
work, Nesterov (1983) showed that an accelerated version of gradient descent (AGD) finds
an ε-suboptimal point (see Section 3.2) in O(1/

√
ε) steps, while gradient descent takes O(1/ε)

steps. The basic idea of acceleration has been used to design faster algorithms for a range
of other convex optimization problems (Beck and Teboulle, 2009; Nesterov, 2012; Lee and
Sidford, 2013; Shalev-Shwartz and Zhang, 2014). We will refer to this general family as
“momentum-based methods.”

Such results have focused on the convex setting. It is open as to whether momentum-
based methods yield faster rates in the nonconvex setting, specifically when we consider
the convergence criterion of second-order stationarity. We are thus led to ask the following
question:

Do momentum-based methods yield faster convergence than GD in the
presence of saddle points?

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 40

Algorithm 5 Nesterov’s Accelerated Gradient Descent (x0, η, θ)

1: v0 ← 0
2: for t = 0, 1, . . . , do
3: yt ← xt + (1− θ)vt
4: xt+1 ← yt − η∇f(yt)
5: vt+1 ← xt+1 − xt

Algorithm 6 Perturbed Accelerated Gradient Descent (x0, η, θ, γ, s, r,T)

1: v0 ← 0
2: for t = 0, 1, . . . , do
3: if ‖∇f(xt)‖ ≤ ε and no perturbation in last T steps then
4: xt ← xt + ξt ξt ∼ Unif (B0(r))
5: yt ← xt + (1− θ)vt
6: xt+1 ← yt − η∇f(yt)
7: vt+1 ← xt+1 − xt
8: if f(xt) ≤ f(yt) + 〈∇f(yt),xt − yt〉 − γ

2
‖xt − yt‖2 then

9: (xt+1,vt+1)← Negative-Curvature-Exploitation(xt,vt, s)

This work answers this question in the affirmative. We present a simple momentum-based
algorithm (PAGD for “perturbed AGD”) that finds an ε-second order stationary point in
Õ(1/ε7/4) iterations, faster than the Õ(1/ε2) iterations required by GD. The pseudocode of
our algorithm is presented in Algorithm 6.1 PAGD adds two algorithmic features to AGD (Al-
gorithm 5):

• Perturbation (Lines 3-4): when the gradient is small, we add a small perturbation
sampled uniformly from a d-dimensional ball with radius r. The homogeneous nature
of this perturbation mitigates our lack of knowledge of the curvature tensor at or near
saddle points.

• Negative Curvature Exploitation (NCE, Lines 8-9; pseudocode in Algorithm 7): when
the function becomes “too nonconvex” along yt to xt, we reset the momentum and
decide whether to exploit negative curvature depending on the magnitude of the current
momentum vt.

We note that both components are straightforward to implement and increase computation
by a constant factor. The perturbation idea follows from (Ge et al., 2015) and (Jin et al.,
2017), while NCE is inspired by (Carmon et al., 2017a). To the best of our knowledge,
PAGD is the first Hessian-free algorithm to find a second-order stationary point in Õ(1/ε7/4)
steps. Note also that PAGD is a “single-loop algorithm,” meaning that it does not require

1See Section 3.3 for values of various parameters.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 41

Guarantees Oracle Algorithm Iterations Simplicity

First-order
Stationary
Point

Gradient

GD (Nesterov, 1998) O(1/ε2) Single-loop

AGD (Ghadimi and Lan, 2016) O(1/ε2) Single-loop

(Carmon et al., 2017a) Õ(1/ε7/4) Nested-loop

Second-order
Stationary
Point

Hessian
-vector

Carmon et al. (2016) Õ(1/ε7/4) Nested-loop

Agarwal et al. (2017) Õ(1/ε7/4) Nested-loop

Gradient

Noisy GD (Ge et al., 2015) O(poly(d/ε)) Single-loop

Perturbed GD (Jin et al., 2017) Õ(1/ε2) Single-loop

Perturbed AGD [This Work] Õ(1/ε7/4) Single-loop

Table 3.1: Complexity of finding stationary points. Õ(·) ignores polylog factors in d and ε.

an inner loop of optimization of a surrogate function. It is the first single-loop algorithm to
achieve a Õ(1/ε7/4) rate even in the setting of finding a first-order stationary point.

Related Work

In this section, we review related work from the perspective of both nonconvex optimization
and momentum/acceleration. For clarity of presentation, when discussing rates, we focus
on the dependence on the accuracy ε and the dimension d while assuming all other problem
parameters are constant. Table 3.1 presents a comparison of the current work with previous
work.

Convergence to first-order stationary points: Traditional analyses in this case as-
sume only Lipschitz gradients (see Definition 2.2.1). (Nesterov, 1998) shows that GD finds
an ε-first-order stationary point inO(1/ε2) steps. (Ghadimi and Lan, 2016) guarantee that AGD also

converges in Õ(1/ε2) steps. Under the additional assumption of Lipschitz Hessians (see Def-
inition 2.2.2), Carmon et al. (2017a) develop a new algorithm that converges in O(1/ε7/4)
steps. Their algorithm is a nested-loop algorithm, where the outer loop adds a proximal
term to reduce the nonconvex problem to a convex subproblem. A key novelty in their
algorithm is the idea of “negative curvature exploitation,” which inspired a similar step in
our algorithm. In addition to the qualitative and quantitative differences between (Carmon
et al., 2017a) and the current work, as summarized in Table 3.1, we note that while (Carmon
et al., 2017a) analyze AGD applied to convex subproblems, we analyze AGD applied directly
to nonconvex functions through a novel Hamiltonian framework.

Convergence to second-order stationary points: All results in this setting assume
Lipschitz conditions for both the gradient and Hessian. Classical approaches, such as cubic
regularization (Nesterov and Polyak, 2006) and trust region algorithms (Curtis, Robinson,

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 42

and Samadi, 2014), require access to Hessians, and are known to find ε-second-order sta-
tionary points in O(1/ε1.5) steps. However, the requirement of these algorithms to form the
Hessian makes them infeasible for high-dimensional problems. A second set of algorithms
utilize only Hessian-vector products instead of the explicit Hessian; in many applications
such products can be computed efficiently. Rates of Õ(1/ε7/4) have been established for such
algorithms (Carmon et al., 2016; Agarwal et al., 2017; Royer and Wright, 2017). Finally, in
the realm of purely gradient-based algorithms, Ge et al. (2015) present the first polynomial

guarantees for a perturbed version of GD, and Jin et al. (2017) sharpen it to Õ(1/ε2). For
the special case of quadratic functions, (O’Neill and Wright, 2017) analyze the behavior
of AGD around critical points and show that it escapes saddle points faster than GD. We
note that the current work is the first achieving a rate of Õ(1/ε7/4) for general nonconvex
functions.

Acceleration: There is also a rich literature that aims to understand momentum meth-
ods; e.g., Allen-Zhu and Orecchia (2014) view AGD as a linear coupling of GD and mirror de-
scent, Su, Boyd, and Candes (2016) and Wibisono, Wilson, and Jordan (2016) view AGD as
a second-order differential equation, and Bubeck, Lee, and Singh (2015) view AGD from a
geometric perspective. Most of this work is tailored to the convex setting, and it is unclear
and nontrivial to generalize the results to a nonconvex setting. There are also several works
that study AGD with relaxed versions of convexity—see Necoara, Nesterov, and Glineur
(2015) and Li and Lin (2017) and references therein for overviews of these results.

Main Techniques

Our results rely on the following three key ideas. To the best of our knowledge, the first two
are novel, while the third one was delineated in Jin et al. (2017).

Hamiltonian: A major challenge in analyzing momentum-based algorithms is that the
objective function does not decrease monotonically as is the case for GD. To overcome this
in the convex setting, several Lyapunov functions have been proposed (Wilson, Recht, and
Jordan, 2016). However these Lyapunov functions involve the global minimum x?, which
cannot be computed by the algorithm, and is thus of limited value in the nonconvex setting.
A key technical contribution of this work is the design of a function which is both computable
and tracks the progress of AGD. The function takes the form of a Hamiltonian:

Et := f(xt) +
1

2η
‖vt‖2; (3.1)

i.e., a sum of potential energy and kinetic energy terms. It is monotonically decreasing in
the continuous-time setting. This is not the case in general in the discrete-time setting, a
fact which requires us to incorporate the NCE step.

Improve or localize: Another key technical contribution of this work is in formalizing
a simple but powerful framework for analyzing nonconvex optimization algorithms. This
framework requires us to show that for a given algorithm, either the algorithm makes signif-
icant progress or the iterates do not move much. We call this the improve-or-localize phe-

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 43

nomenon. For instance, when progress is measured by function value, it is easy to show that
for GD, with proper choice of learning rate, we have:

1

2η

t−1∑
τ=0

‖xτ+1 − xτ‖2 ≤ f(x0)− f(xt).

For AGD, a similar lemma can be shown by replacing the objective function with the Hamil-
tonian (see Lemma 3.4.1). Once this phenomenon is established, we can conclude that
if an algorithm does not make much progress, it is localized to a small ball, and we can
then approximate the objective function by either a linear or a quadratic function (depend-
ing on smoothness assumptions) in this small local region. Moreover, an upper bound on∑t−1

τ=0 ‖xτ+1 − xτ‖2 lets us conclude that iterates do not oscillate much in this local region
(oscillation is a unique phenomenon of momentum algorithms as can be seen even in the
convex setting). This gives us better control of approximation error.

Coupling sequences for escaping saddle points: When an algorithm arrives in the
neighborhood of a strict saddle point, where λmin(∇2f(x)) < 0, all we know is that there
exists a direction of escape (the direction of the minimum eigenvector of ∇2f(x)); denote it
by eesc. To avoid such points, the algorithm randomly perturbs the current iterate uniformly
in a small ball, and runs AGD starting from this point x̃0. As in (Jin et al., 2017), we can
divide this ball into a “stuck region,” Xstuck, starting from which AGD does not escape the
saddle quickly, and its complement from which AGD escapes quickly. In order to show quick
escape from a saddle point, we must show that the volume of Xstuck is very small compared to
that of the ball. Though Xstuck may be without an analytical form, one can control the rate
of escape by studying two AGD sequences that start from two realizations of perturbation,
x̃0 and x̃′0, which are separated along eesc by a small distance r0. In this case, at least one of
the sequences escapes the saddle point quickly, which proves that the width of Xstuck along
eesc can not be greater than r0, and hence Xstuck has small volume.

3.2 Preliminaries

In this section, we will review some well-known results on GD and AGD in the strongly
convex setting, and existing results on convergence of GD to second-order stationary points.

Notation

Bold upper-case letters (A,B) denote matrices and bold lower-case letters (x,y) denote
vectors. For vectors ‖·‖ denotes the `2-norm. For matrices, ‖·‖ denotes the spectral norm
and λmin(·) denotes the minimum eigenvalue. For f : Rd → R, ∇f(·) and ∇2f(·) denote its
gradient and Hessian respectively, and f ? denotes its global minimum. We use O(·),Θ(·),Ω(·)
to hide absolute constants, and Õ(·), Θ̃(·), Ω̃(·) to hide absolute constants and polylog factors
for all problem parameters.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 44

Algorithm 7 Negative Curvature Exploitation(xt,vt, s)

1: if ‖vt‖ ≥ s then
2: xt+1 ← xt;
3: else
4: δ = s · vt/‖vt‖
5: xt+1 ← argminx∈{xt+δ,xt−δ} f(x)
6: return (xt+1, 0)

Convex Setting

To minimize a function f(·), GD performs the following sequence of steps:

xt+1 = xt − η∇f(xt).

The suboptimality of GD and the improvement achieved by AGD can be clearly illustrated
for the case of smooth and strongly convex functions.

Definition 3.2.1. A twice-differentiable function f(·) is α-strongly convex if λmin(∇2f(x)) ≥
α, ∀ x.

Let f ∗ := miny f(y). A point x is said to be ε-suboptimal if f(x) ≤ f ∗ + ε. The
following theorem gives the convergence rate of GD and AGD for smooth and strongly
convex functions.

Theorem 3.2.2 ((Nesterov, 2004)). Assume that the function f(·) is `-gradient Lipschitz
and α-strongly convex. Then, for any ε > 0, the iteration complexities to find an ε-suboptimal
point are as follows:

• GD with η = 1/`: O((`/α) · log((f(x0)− f ∗)/ε))

• AGD (Algorithm 5) with η = 1/` and θ =
√
α/`: O(

√
`/α · log((f(x0)− f ∗)/ε)).

The number of iterations of GD depends linearly on the ratio `/α, which is called the
condition number of f(·) since αI � ∇2f(x) � `I. Clearly ` ≥ α and hence condition number
is always at least one. Denoting the condition number by κ, we highlight two important
aspects of AGD: (1) the momentum parameter satisfies θ = 1/

√
κ and (2) AGD improves

upon GD by a factor of
√
κ.

3.3 Main Result

In this section, we present our algorithm and main result. As mentioned in Section 3.1,
the algorithm we propose is essentially AGD with two key differences (see Algorithm 6):
perturbation and negative curvature exploitation (NCE). A perturbation is added when the

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 45

gradient is small (to escape saddle points), and no more frequently than once in T steps. The
perturbation ξt is sampled uniformly from a d-dimensional ball with radius r. The specific
choices of gap and uniform distribution are for technical convenience (they are sufficient for
our theoretical result but not necessary).

NCE (Algorithm 7) is explicitly designed to guarantee decrease of the Hamiltonian (3.1).
When it is triggered, i.e., when

f(xt) ≤ f(yt) + 〈∇f(yt),xt − yt〉 −
γ

2
‖xt − yt‖2 (3.2)

the function has a large negative curvature between the current iterates xt and yt. In this
case, if the momentum vt is small, then yt and xt are close, so the large negative curvature
also carries over to the Hessian at xt due to the Lipschitz property. Assaying two points
along ±(yt−xt) around xt gives one point that is negatively aligned with∇f(xt) and yields a
decreasing function value and Hamiltonian. If the momentum vt is large, negative curvature
can no longer be exploited, but fortunately resetting the momentum to zero kills the second
term in (3.1), significantly decreasing the Hamiltonian.

Setting of hyperparameters: Let ε be the target accuracy for a second-order stationary
point, let ` and ρ be gradient/Hessian-Lipschitz parameters, and let c, χ be absolute constant
and log factor to be specified later. Let κ := `/

√
ρε, and set

η =
1

4`
, θ =

1

4
√
κ
, γ =

θ2

η
, s =

γ

4ρ
, T =

√
κ · χc, r = ηε · χ−5c−8. (3.3)

The following theorem is the main result of this work.

Theorem 3.3.1. Assume that the function f(·) is `-smooth and ρ-Hessian Lipschitz. There
exists an absolute constant cmax such that for any δ > 0, ε ≤ `2

ρ
, ∆f ≥ f(x0) − f ?, if

χ = max{1, log
d`∆f

ρεδ
}, c ≥ cmax and such that if we run PAGD (Algorithm 6) with choice of

parameters according to (3.3), then with probability at least 1− δ, one of the iterates xt will
be an ε-second order stationary point in the following number of iterations:

O

(
`1/2ρ1/4(f(x0)− f ∗)

ε7/4
log6

(
d`∆f

ρεδ

))
Theorem 3.3.1 says that when PAGD is run for the designated number of steps (which is
poly-logarithmic in dimension), at least one of the iterates is an ε-second-order stationary
point. We focus on the case of small ε (i.e., ε ≤ `2/ρ) so that the Hessian requirement
for the ε-second-order stationary point (λmin(∇2f(x)) ≥ −√ρε) is nontrivial. Note that
‖∇2f(x)‖ ≤ ` implies κ = `/

√
ρε, which can be viewed as a condition number, akin to that

in convex setting. Comparing Theorem 3.3.1 with Theorem 2.6.1, PAGD, with a momentum
parameter θ = Θ(1/

√
κ), achieves Θ̃(

√
κ) better iteration complexity compared to PGD.

Output ε-second order stationary point: Although Theorem 3.3.1 only guarantees that
one of the iterates is an ε-second order stationary point, it is straightforward to identify

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 46

one of them by adding a proper termination condition: once the gradient is small and
satisfies the pre-condition to add a perturbation, we can keep track of the point xt0 prior to
adding perturbation, and compare the Hamiltonian at t0 with the one T steps after. If the
Hamiltonian decreases by F = Θ̃(

√
ε3/ρ), then the algorithm has made progress, otherwise

xt0 is an ε-second-order stationary point according to Lemma 3.4.6. Doing so will add a
hyperparameter (threshold F) but does not increase complexity.

3.4 Overview of Analysis

In this section, we will present an overview of the proof of Theorem 3.3.1. Section 3.4 presents
the Hamiltonian for AGD and its key property of monotonic decrease. This leads to Sec-
tion 3.4 where the improve-or-localize lemma is stated, as well as the main intuition behind
acceleration. Section 3.4 demonstrates how to apply these tools to prove Theorem 3.3.1.
Complete details can be found in the appendix.

Hamiltonian

While GD guarantees decrease of function value in every step (even for nonconvex problems),
the biggest stumbling block to analyzing AGD is that it is less clear how to keep track of
“progress.” Known Lyapunov functions for AGD (Wilson, Recht, and Jordan, 2016) are
restricted to the convex setting and furthermore are not computable by the algorithm (as
they depend on x?).

To deepen the understanding of AGD in a nonconvex setting, we inspect it from a dy-
namical systems perspective, where we fix the ratio θ̃ = θ/

√
η to be a constant, while letting

η → 0. This leads to an ODE which is the continuous limit of AGD (Su, Boyd, and Candes,
2016):

ẍ + θ̃ẋ +∇f(x) = 0, (3.4)

where ẍ and ẋ are derivatives with respect to time t. This equation is a second-order
dynamical equation with dissipative forces −θ̃ẋ. Integrating both sides, we obtain:

f(x(t2)) +
1

2
ẋ(t2)2 = f(x(t1)) +

1

2
ẋ(t1)2 − θ̃

∫ t2

t1

ẋ(t)2dt. (3.5)

Using physical language, f(x) is a potential energy while ẋ2/2 is a kinetic energy, and
the sum is a Hamiltonian. The integral shows that the Hamiltonian decreases monotonically
with time t, and the decrease is given by the dissipation term θ̃

∫ t2
t1

ẋ(t)2dt. Note that (3.5)
holds regardless of the convexity of f(·). This monotonic decrease of the Hamiltonian can in
fact be extended to the discretized version of AGD when the function is convex, or mildly
nonconvex:

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 47

Lemma 3.4.1 (Hamiltonian decreases monotonically). Assume that the function f(·) is `-
smooth, the learning rate η ≤ 1

2`
, and θ ∈ [2ηγ, 1

2
] in AGD (Algorithm 5). Then, for every

iteration t where (3.2) does not hold, we have:

f(xt+1) +
1

2η
‖vt+1‖2 ≤ f(xt) +

1

2η
‖vt‖2 − θ

2η
‖vt‖2 − η

4
‖∇f(yt)‖2. (3.6)

Denote the discrete Hamiltonian as Et := f(xt) + 1
2η
‖vt‖2, and note that in AGD,

vt = xt − xt−1. Lemma 3.4.1 tolerates nonconvexity with curvature at most γ = Θ(θ/η).
Unfortunately, when the function becomes too nonconvex in certain regions (so that (3.2)
holds), the analogy between the continuous and discretized versions breaks and (3.6) no
longer holds. In fact, standard AGD can even increase the Hamiltonian in this regime
(see Appendix 3.6 for more details). This motivates us to modify the algorithm by adding
the NCE step, which addresses this issue. We have the following result:

Lemma 3.4.2. Assume that f(·) is `-smooth and ρ-Hessian Lipschitz. For every iteration
t of Algorithm 6 where (3.2) holds (thus running NCE), we have:

Et+1 ≤ Et −min{ s
2

2η
,
1

2
(γ − 2ρs)s2}.

Lemmas 3.4.1 and 3.4.2 jointly assert that the Hamiltonian decreases monotonically in
all situations, and are the main tools in the proof of Theorem 3.3.1. They not only give us
a way of tracking progress, but also quantitatively measure the amount of progress.

Improve or Localize

One significant challenge in the analysis of gradient-based algorithms for nonconvex optima-
tion is that many phenomena—for instance the accumulation of momentum and the escape
from saddle points via perturbation—are multiple-step behaviors; they do not happen in each
step. We address this issue by developing a general technique for analyzing the long-term
behavior of such algorithms.

In our case, to track the long-term behavior of AGD, one key observation from Lemma 3.4.1
is that the amount of progress actually relates to movement of the iterates, which leads to
the following improve-or-localize lemma:

Corollary 3.4.3 (Improve or localize). Under the same setting as in Lemma 3.4.1, if (3.2)
does not hold for all steps in [t, t+ T], we have:

t+T∑
τ=t+1

‖xτ − xτ−1‖2 ≤ 2η

θ
(Et − Et+T).

Corollary 3.4.3 says that the algorithm either makes progress in terms of the Hamiltonian,
or the iterates do not move much. In the second case, Corollary 3.4.3 allows us to approximate
the dynamics of {xτ}t+Tτ=t with a quadratic approximation of f(·).

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 48

The acceleration phenomenon is rooted in and can be seen clearly for a quadratic, where
the function can be decomposed into eigen-directions. Consider an eigen-direction with
eigenvalue λ, and linear term g (i.e., in this direction f(x) = λ

2
x2 + gx). The GD update

becomes xτ+1 = (1 − ηλ)xτ − ηg, with µGD(λ) := 1 − ηλ determining the rate of GD. The
update of AGD is (xτ+1, xτ) = (xτ , xτ−1)A> − (ηg, 0) with matrix A defined as follows:

A :=

(2− θ)(1− ηλ) −(1− θ)(1− ηλ)

1 0

 .

The rate of AGD is determined by largest eigenvalue of matrix A, which is denoted by
µAGD(λ). Recall the choice of parameter (3.3), and divide the eigen-directions into the
following three categories.

• Strongly convex directions λ ∈ [
√
ρε, `]: the slowest case is λ =

√
ρε, where

µGD(λ) = 1−Θ(1/κ) while µAGD(λ) = 1−Θ(1/
√
κ), which results in AGD converging

faster than GD.

• Flat directions λ ∈ [−√ρε,√ρε]: the representative case is λ = 0 where AGD update
becomes xτ+1− xτ = (1− θ)(xτ − xτ−1)− ηg. For τ ≤ 1/θ, we have |xt+τ − xt| = Θ(τ)
for GD while |xt+τ−xt| = Θ(τ 2) for AGD, which results in AGD moving along negative
gradient directions faster than GD.

• Strongly nonconvex directions λ ∈ [−`,−√ρε]: similar to the strongly convex
case, the slowest rate is for λ = −√ρε where µGD(λ) = 1 + Θ(1/κ) while µAGD(λ) =
1 + Θ(1/

√
κ), which results in AGD escaping saddle point faster than GD.

Finally, the approximation error (from a quadratic) is also under control in this frame-
work. With appropriate choice of T and threshold for Et − Et+T in Corollary 3.4.3, by
the Cauchy-Swartz inequality we can restrict iterates {xτ}t+Tτ=t to all lie within a local ball
around xt with radius

√
ε/ρ, where both the gradient and Hessian of f(·) and its quadratic

approximation f̃t(x) = f(xt) + 〈∇f(xt),x− xt〉+ 1
2
(x− xt)

>∇2f(xt)(x− xt) are close:

Fact 3.4.4. Assume f(·) is ρ-Hessian Lipschitz, then for all x so that ‖x− xt‖ ≤
√
ε/ρ,

we have ‖∇f(x)−∇f̃t(x)‖ ≤ ε and ‖∇2f(x)−∇2f̃t(x)‖ = ‖∇2f(x)−∇2f(xt)‖ ≤
√
ρε.

Main Framework

For simplicity of presentation, recall T :=
√
κ · χc = Θ̃(

√
κ) and denote F :=

√
ε3/ρ ·

χ−5c−7 = Θ̃(
√
ε3/ρ), where c is sufficiently large constant as in Theorem 3.3.1. Our over-

all proof strategy will be to show the following “average descent claim”: Algorithm 6 de-
creases the Hamiltonian by F in every set of T iterations as long as it does not reach an ε-
second-order stationary point. Since the Hamiltonian cannot decrease more than E0−E? =

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 49

f(x0)−f ?, this immediately shows that it has to reach an ε-second-order stationary point in
O((f(x0)− f ?)T /F) steps, proving Theorem 3.3.1.

It can be verified by the choice of parameters (3.3) and Lemma 3.4.1 that whenever (3.2)
holds so that NCE is triggered, the Hamiltonian decreases by at least F in one step. So,
if NCE step is performed even once in each round of T steps, we achieve enough average
decrease. The troublesome case is when in some time interval of T steps starting with xt,
only AGD steps are performed without NCE. If xt is not an ε-second order stationary point,
either the gradient is large or the Hessian has a large negative direction. We prove the
average decrease claim by considering these two cases.

Lemma 3.4.5 (Large gradient). Consider the setting of Theorem 3.3.1. If ‖∇f(xτ)‖ ≥ ε
for all τ ∈ [t, t+ T], then by running Algorithm 6 we have Et+T − Et ≤ −F .

Lemma 3.4.6 (Negative curvature). Consider the setting of Theorem 3.3.1. If ‖∇f(xt)‖ ≤
ε, λmin(∇2f(xt)) < −

√
ρε, and perturbation has not been added in iterations τ ∈ [t− T , t),

then by running Algorithm 6, we have Et+T − Et ≤ −F with high probability.

We note that an important aspect of these two lemmas is that the Hamiltonian de-
creases by Ω(F) in T = Θ̃(

√
κ) steps, which is faster compared to PGD which decreases

the function value by Ω(F) in T 2 = Θ̃(κ) steps (Jin et al., 2017). That is, the accel-
eration phenomenon in PAGD happens in both cases. We also stress that under both of
these settings, PAGD cannot achieve Ω(F/T) decrease in each step—it has to accumulate
momentum over time to achieve Ω(F/T) amortized decrease.

Large Gradient Scenario

For AGD, gradient and momentum interact, and both play important roles in the dynamics.
Fortunately, according to Lemma 3.4.1, the Hamiltonian decreases sufficiently whenever the
momentum vt is large; so it is sufficient to discuss the case where the momentum is small.

One difficulty in proving Lemma 3.4.5 lies in the difficulty of enforcing the precondition
that gradients of all iterates are large even with quadratic approximation. Intuitively we
hope that the large initial gradient ‖∇f(xt)‖ ≥ ε suffices to give a sufficient decrease of
the Hamiltonian. Unfortunately, this is not true. Let S be the subspace of eigenvectors of
∇2f(xt) with eigenvalues in [

√
ρε, `], consisting of all the strongly convex directions, and

let Sc be the orthogonal subspace. It turns out that the initial gradient component in S is
not very helpful in decreasing the Hamiltonian since AGD rapidly decreases the gradient in
these directions. We instead prove Lemma 3.4.5 in two steps.

Lemma 3.4.7. (informal) If vt is small, ‖∇f(xt)‖ not too large and Et+T /2 − Et ≥ −F ,
then for all τ ∈ [t+ T /4, t+ T /2] we have ‖PS∇f(xτ)‖ ≤ ε/2.

Lemma 3.4.8. (informal) If vt is small and ‖PSc∇f(xt)‖ ≥ ε/2, then we have Et+T /4−Et ≤
−F .

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 50

See the formal versions, Lemma 3.7.5 and Lemma 3.7.6, for more details. We see that if
the Hamiltonian does not decrease much (and so is localized in a small ball), the gradient
in the strongly convex subspace ‖PS∇f(xτ)‖ vanishes in T /4 steps by Lemma 3.4.7. Since
the hypothesis of Lemma 3.4.5 guarantees a large gradient for all of the T steps, this means
that ‖PSc∇f(xt)‖ is large after T /4 steps, thereby decreasing the Hamiltonian in the next
T /4 steps (by Lemma 3.4.8).

Negative Curvature Scenario

In this section, we will show that the volume of the set around a strict saddle point from which
AGD does not escape quickly is very small (Lemma 3.4.6). We do this using the coupling
mechanism introduced in (Jin et al., 2017), which gives a fine-grained understanding of the
geometry around saddle points. More concretely, letting the perturbation radius r = Θ̃(ε/`)
as specified in (3.3), we show the following lemma.

Lemma 3.4.9. (informal) Suppose ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −√ρε. Let x0,x
′
0 be

at distance at most r from x̃, and x0 − x′0 = r0e1 where e1 is the minimum eigen-direction
of ∇2f(x̃) and r0 ≥ δr/

√
d. Then for AGD starting at (x0,v) and (x′0,v), we have:

min{ET − Ẽ, E ′T − Ẽ} ≤ −F ,

where Ẽ, ET and E ′T are the Hamiltonians at (x̃,v), (xT ,vT) and (x′T ,v
′
T) respectively.

See the formal version in Lemma 3.7.7. We note δ in above Lemma is a small number
characterize the failure probability of the algorithm (as defined in Theorem 3.3.1), and T
has logarithmic dependence on δ according to (3.3). Lemma 3.4.9 says that around any
strict saddle, for any two points that are separated along the smallest eigen-direction by at
least δr/

√
d, PAGD, starting from at least one of those points, decreases the Hamiltonian,

and hence escapes the strict saddle. This implies that the width of the region starting from
where AGD is stuck has width at most δr/

√
d, and thus has small volume.

3.5 Conclusions

In this work, we show that a variant of AGD can escape saddle points faster than GD,
demonstrating that momentum techniques can indeed accelerate convergence even for non-
convex optimization. Our algorithm finds an ε-second order stationary point in Õ(1/ε7/4)

iterations, faster than the Õ(1/ε2) iterations taken by GD. This is the first algorithm that is
both Hessian-free and single-loop that achieves this rate. Our analysis relies on novel tech-
niques that lead to a better understanding of momentum techniques as well as nonconvex
optimization.

The results here also give rise to several questions. The first concerns lower bounds;
is the rate of Õ(1/ε7/4) that we have established here optimal for gradient-based methods

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 51

under the setting of gradient and Hessian-Lipschitz? We believe this upper bound is very
likely sharp up to log factors, and developing a tight algorithm-independent lower bound
will be necessary to settle this question. The second is whether the negative-curvature-
exploitation component of our algorithm is actually necessary for the fast rate. To attempt
to answer this question, we may either explore other ways to track the progress of standard
AGD (other than the particular Hamiltonian that we have presented here), or consider other
discretizations of the ODE (3.4) so that the property (3.5) is preserved even for the most
nonconvex region. A final direction for future research is the extension of our results to the
finite-sum setting and the stochastic setting.

3.6 Proof of Hamiltonian Lemmas

In this section, we prove Lemma 3.4.1, Lemma 3.4.2 and Corollary 3.4.3, which are presented
in Section 3.4 and Section 3.4. In section 3.6 we also give an example where standard AGD
with negative curvature exploitation can increase the Hamiltonian.

Recall that we define the Hamiltonian as Et := f(xt) + 1
2η
‖vt‖2, where, for AGD, we

define vt = xt − xt−1. The first lemma shows that this Hamiltonian decreases in every step
of AGD for mildly nonconvex functions.

Lemma 3.6.1 (Hamiltonian decreases monotonically). Assume that the function f(·) is `-
smooth and set the learning rate to be η ≤ 1

2`
, θ ∈ [2ηγ, 1

2
] in AGD (Algorithm 5). Then,

for every iteration t where (3.2) does not hold, we have:

Et+1 ≤ Et −
θ

2η
‖vt‖2 − η

4
‖∇f(yt)‖2.

Proof. Recall that the update equation of accelerated gradient descent has following form:

xt+1 ← yt − η∇f(yt)

yt+1 ← xt+1 + (1− θ)(xt+1 − xt).

By smoothness, with η ≤ 1
2`

:

f(xt+1) ≤ f(yt)− η‖∇f(yt)‖2 +
`η2

2
‖∇f(yt)‖2 ≤ f(yt)−

3η

4
‖∇f(yt)‖2, (3.7)

assuming that the precondition (3.2) does not hold:

f(xt) ≥ f(yt) + 〈∇f(yt),xt − yt〉 −
γ

2
‖yt − xt‖2, (3.8)

and given the following update equation:

‖xt+1 − xt‖2 =‖yt − xt − η∇f(yt)‖2

=
[
(1− θ)2‖xt − xt−1‖2 − 2η〈∇f(yt),yt − xt〉+ η2‖∇f(yt)‖2

]
, (3.9)

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 52

we have:

f(xt+1) +
1

2η
‖xt+1 − xt‖2 ≤f(xt) + 〈∇f(yt),yt − xt〉 −

3η

4
‖∇f(yt)‖2

+
1 + ηγ

2η
(1− θ)2‖xt − xt−1‖2 − 〈∇f(yt),yt − xt〉+

η

2
‖∇f(yt)‖2

≤f(xt) +
1

2η
‖xt − xt−1‖2 − 2θ − θ2 − ηγ(1− θ)2

2η
‖vt‖2 − η

4
‖∇f(yt)‖2

≤f(xt) +
1

2η
‖xt − xt−1‖2 − θ

2η
‖vt‖2 − η

4
‖∇f(yt)‖2.

The last inequality uses the fact that θ ∈ [2ηγ, 1
2
] so that θ2 ≤ θ

2
and ηγ ≤ θ

2
. We substitute

in the definition of vt and Et to finish the proof.

We see from this proof that (3.8) relies on approximate convexity of f(·), which explains
why in all existing proofs, the convexity between xt and yt is so important. A perhaps
surprising fact to note is that the above proof can in fact go through even with mild non-
convexity (captured in line 8 of Algorithm 6). Thus, high nonconvexity is the problematic
situation. To overcome this, we need to slightly modify AGD so that the Hamiltonian is
decreasing. This is formalized in the following lemma.

Lemma 3.6.1. Assume that f(·) is `-smooth and ρ-Hessian Lipschitz. For every iteration
t of Algorithm 6 where (3.2) holds (thus running NCE), we have:

Et+1 ≤ Et −min{ s
2

2η
,
1

2
(γ − 2ρs)s2}.

Proof. When we perform an NCE step, we know that (3.2) holds. In the first case (‖vt‖ ≥ s),
we set xt+1 = xt and set the momentum vt+1 to zero, which gives:

Et+1 = f(xt+1) = f(xt) = Et −
1

2η
‖vt‖2 ≤ Et −

s2

2η
.

In the second case (‖vt‖ ≤ s), expanding in a Taylor series with Lagrange remainder, we
have:

f(xt) = f(yt) + 〈∇f(yt),xt − yt〉+
1

2
(xt − yt)

>∇2f(ζt)(xt − yt),

where ζt = φxt + (1− φ)yt and φ ∈ [0, 1]. Due to the certificate (3.2) we have

1

2
(xt − yt)

>∇2f(ζt)(xt − yt) ≤ −
γ

2
‖xt − yt‖2.

On the other hand, clearly min{〈∇f(xt), δ〉, 〈∇f(xt),−δ〉} ≤ 0. WLOG, suppose 〈∇f(xt), δ〉 ≤
0, then, by definition of xt+1, we have:

f(xt+1) ≤ f(xt + δ) = f(xt) + 〈∇f(xt), δ〉+
1

2
δ>∇2f(ζ ′t)δ ≤ f(xt) +

1

2
δ>∇2f(ζ ′t)δ,

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 53

where ζ ′t = xt + φ′δ and φ′ ∈ [0, 1]. Since ‖ζt − ζ ′t‖ ≤ 2s, δ also lines up with yt − xt:

δ>∇2f(ζ ′t)δ ≤ δ>∇2f(ζt)δ + ‖∇2f(ζ ′t)−∇2f(ζt)‖‖δ‖2 ≤ −γ‖δ‖2 + 2ρs‖δ‖2.

Therefore, this gives

Et+1 = f(xt+1) ≤ f(xt)−
1

2
(γ − ρs)s2 ≤ Et −

1

2
(γ − 2ρs)s2,

which finishes the proof.

The Hamiltonian decrease has an important consequence: if the Hamiltonian does not
decrease much, then all the iterates are localized in a small ball around the starting point.
Moreover, the iterates do not oscillate much in this ball. We called this the improve-or-
localize phenomenon.

Corollary 3.6.1 (Improve or localize). Under the same setting as in Lemma 3.4.1, if (3.2)
does not hold for all steps in [t, t+ T], we have:

t+T∑
τ=t+1

‖xτ − xτ−1‖2 ≤ 2η

θ
(Et − Et+T).

Proof. The proof follows immediately from telescoping the argument of Lemma 3.4.1.

AGD can increase the Hamiltonian under nonconvexity

In the previous section, we proved Lemma 3.4.1 which requires θ ≥ 2ηγ, that is, γ ≤ θ/(2η).
In this section, we show Lemma 3.4.1 is almost tight in the sense that when γ ≥ 4θ/η in
(3.2), we have:

f(xt) ≤ f(yt) + 〈∇f(yt),xt − yt〉 −
γ

2
‖xt − yt‖2.

Monotonic decrease of the Hamiltonian may no longer hold, indeed, AGD can increase the
Hamiltonian for those steps.

Consider a simple one-dimensional example, f(x) = −1
2
γx2, where (3.2) always holds.

Define the initial condition x0 = −1, v0 = 1/(1 − θ). By update equation in Algorithm 5,
the next iterate will be x1 = y0 = 0, and v1 = x1−x0 = 1. By the definition of Hamiltonian,
we have

E0 =f(x0) +
1

2η
|v0|2 = −γ

2
+

1

2η(1− θ)2

E1 =f(x1) +
1

2η
|v1|2 =

1

2η
,

since θ ≤ 1/4. It is not hard to verify that whenever γ ≥ 4θ/η, we will have E1 ≥ E0; that
is, the Hamiltonian increases in this step.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 54

This fact implies that when we pick a large learning rate η and small momentum parame-
ter θ (both are essential for acceleration), standard AGD does not decrease the Hamiltonian
in a very nonconvex region. We need another mechanism such as NCE to fix the monotoni-
cally decreasing property.

3.7 Proof of Main Result

In this section, we set up the machinery needed to prove our main result, Theorem 3.3.1.
We first present the generic setup, then, as in Section 3.4, we split the proof into two cases,
one where gradient is large and the other where the Hessian has negative curvature. In the
end, we put everything together and prove Theorem 3.3.1.

To simplify the proof, we introduce some notation for this section, and state a convention
regarding absolute constants. Recall the choice of parameters in Eq.(3.3):

η =
1

4`
, θ =

1

4
√
κ
, γ =

θ2

η
=

√
ρε

4
, s =

γ

4ρ
=

1

16

√
ε

ρ
, r = ηε · χ−5c−8,

where κ = √̀
ρε
, χ = max{1, log

d`∆f

ρεδ
}, and c is a sufficiently large constant as stated in the

precondition of Theorem 3.3.1. Throughout this section, we also always denote

T :=
√
κ · χc, F :=

√
ε3

ρ
· χ−5c−7, S :=

√
2ηT F

θ
=

√
2ε

ρ
· χ−2c−3, M :=

ε
√
κ

`
c−1,

which represent the special units for time, the Hamiltonian, the parameter space and the
momentum. All the lemmas in this section hold when the constant c is picked to be suf-
ficiently large. To avoid ambiguity, throughout this section O(·),Ω(·),Θ(·) notation only
hides an absolute constant which is independent of the choice of sufficiently large
constant c, which is defined in the precondition of Theorem 3.3.1. That is, we will always
make c dependence explicit in O(·),Ω(·),Θ(·) notation. Therefore, for a quantity like O(c−1),
we can always pick c large enough so that it cancels out the absolute constant in the O(·)
notation, and make O(c−1) smaller than any fixed required constant.

Common setup

Our general strategy in the proof is to show that if none of the iterates xt is a SOSP, then in
all T steps, the Hamiltonian always decreases by at least F . This gives an average decrease
of F/T . In this section, we establish some facts which will be used throughout the entire
proof, including the decrease of the Hamiltonian in NCE step, the update of AGD in matrix
form, and upper bounds on approximation error for a local quadratic approximation.

The first lemma shows if negative curvature exploitation is used, then in a single step,
the Hamiltonian will decrease by F .

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 55

Lemma 3.7.1. Under the same setting as Theorem 3.3.1, for every iteration t of Algorithm 6
where (3.2) holds (thus running NCE), we have:

Et+1 − Et ≤ −2F .

Proof. It is also easy to check that the precondition of Lemma 3.4.2 holds, and by the
particular choice of parameters in Theorem 3.3.1, we have:

min{ s
2

2η
,
1

2
(γ − 2ρs)s2} ≥ Ω(F c7) ≥ 2F ,

where the last inequality is by picking c in Theorem 3.3.1 large enough, which finishes the
proof.

Therefore, whenever NCE is called, the decrease of the Hamiltonian is already sufficient.
We thus only need to focus on AGD steps. The next lemma derives a general expression for
xt after an AGD update, which is very useful in multiple-step analysis. The general form
is expressed with respect to a reference point 0, which can be any arbitrary point (in many
cases we choose it to be x0).

Lemma 3.7.2. Let 0 be an origin (which can be fixed at an arbitrary point). Let H =
∇2f(0). Then an AGD (Algorithm 5) update can be written as:xt+1

xt

 = At

x1

x0

− η t∑
τ=1

At−τ

∇f(0) + δτ

0

 , (3.10)

where δτ = ∇f(yτ)−∇f(0)−Hyτ , and

A =

(2− θ)(I− ηH) −(1− θ)(I− ηH)

I 0

 .

Proof. Substituting for (yt,vt) in Algorithm 5, we have a recursive equation for xt:

xt+1 = (2− θ)xt − (1− θ)xt−1 − η∇f((2− θ)xt − (1− θ)xt−1). (3.11)

By definition of δτ , we also have:

∇f(yτ) = ∇f(0) +Hyτ + δτ .

Therefore, in matrix form, we have:xt+1

xt

 =

(2− θ)(I− ηH) −(1− θ)(I− ηH)

I 0

 xt

xt−1

− η
∇f(0) + δt

0


=At

x1

x0

− η t∑
τ=1

At−τ

∇f(0) + δτ

0

 ,

which finishes the proof.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 56

Clearly A in Lemma 3.7.2 is a 2d × 2d matrix, and if we expand A according to the

eigenvector directions of

H 0

0 H

, A can be reorganized as a block-diagonal matrix con-

sisting of d 2× 2 matrices. Let the jth eigenvalue of H be denoted λj, and denote Aj as the
jth 2× 2 matrix with corresponding eigendirections:

Aj =

(2− θ)(1− ηλj) −(1− θ)(1− ηλj)

1 0

 . (3.12)

We note that the choice of reference point 0 is mainly to simplify mathmatical expressions
involving xt − 0.

Lemma 3.7.2 can be viewed as update from a quadratic expansion around origin 0, and δτ
is the approximation error which marks the difference between true function and its quadratic
approximation. The next lemma shows that when sequence x0, · · · ,xt are all close to 0, then
the approximation error is under control:

Proposition 3.7.3. Using the notation of Lemma 3.7.2, if for any τ ≤ t, we have ‖xτ‖ ≤ R,
then for any τ ≤ t, we also have

1. ‖δτ‖ ≤ O(ρR2);

2. ‖δτ − δτ−1‖ ≤ O(ρR)(‖xt − xτ−1‖+ ‖xτ−1 − xτ−2‖);

3.
∑t

τ=1 ‖δτ − δτ−1‖2 ≤ O(ρ2R2)
∑t

τ=1 ‖xτ − xτ−1‖2.

Proof. Let ∆τ =
∫ 1

0
(∇2f(φyτ)−H)dφ. The first inequality is true because δτ = ∆τyτ , thus:

‖δτ‖ =‖∆τyτ‖ ≤ ‖∆τ‖‖yτ‖ = ‖
∫ 1

0

(∇2f(φyτ)−H)dφ‖‖yτ‖

≤
∫ 1

0

‖(∇2f(φyτ)−H)‖dφ · ‖yτ‖ ≤ ρ‖yτ‖2 ≤ ρ‖(2− θ)xτ − (1− θ)xτ−1‖2 ≤ O(ρR2).

For the second inequality, we have:

δτ − δτ−1 = ∇f(yτ)−∇f(yτ−1)−H(yτ − yτ−1) = ∆′τ (yτ − yτ−1),

where ∆′τ =
∫ 1

0
(∇2f(yτ−1 + φ(yτ − yτ−1)) − H)dφ. As in the proof of the first inequality,

we have:

‖δτ − δτ−1‖ ≤‖∆′τ‖‖yτ − yτ−1‖ = ‖
∫ 1

0

(∇2f(yτ−1 + φ(yτ − yτ−1))−H)dφ‖‖yτ − yτ−1‖

≤ρmax{‖yτ‖, ‖yτ−1‖}‖yτ − yτ−1‖ ≤ O(ρR)(‖xτ − xτ−1‖+ ‖xτ−1 − xτ−2‖).

Finally, since (‖xτ − xτ−1‖+‖xτ−1 − xτ−2‖)2 ≤ 2(‖xτ − xτ−1‖2 +‖xτ−1 − xτ−2‖2), the third
inequality is immediately implied by the second inequality.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 57

Proof for large-gradient scenario

We prove Lemma 3.4.5 in this subsection. Throughout this subsection, we let S be the
subspace with eigenvalues in (θ2/[η(2 − θ)2], `], and let Sc be the complementary subspace.
Also let PS and PSc be the corresponding projections. We note θ2/[η(2 − θ)2] = Θ(

√
ρε),

and this particular choice lies at the boundary between the real eigenvalues and complex
eigenvalues of the matrix Aj, as shown in Lemma 3.8.3.

The first lemma shows that if momentum or gradient is very large, then the Hamiltonian
already has sufficient decrease on average.

Lemma 3.7.4. Under the setting of Theorem 3.3.1, if ‖vt‖ ≥M or ‖∇f(xt)‖ ≥ 2`M , and
at time step t only AGD is used without NCE or perturbation, then:

Et+1 − Et ≤ −4F/T .

Proof. When ‖vt‖ ≥ ε
√
κ

10`
, by Lemma 3.4.1, we have:

Et+1 − Et ≤ −
θ

2η
‖vt‖2 ≤ −Ω

(
`√
κ

ε2κ

`2
c−2

)
= −Ω

(
ε2
√
κ

2`
c−2

)
≤ −Ω(

F

T
c6) ≤ −4F

T
.

The last step is by picking c to be a large enough constant. When ‖vt‖ ≤M but ‖∇f(xt)‖ ≥
2`M , by the gradient Lipschitz assumption, we have:

‖∇f(yt)‖ ≥ ‖∇f(xt)‖ − (1− θ)`‖vt‖ ≥ `M .

Similarly, by Lemma 3.4.1, we have:

Et+1 − Et ≤ −
η

4
‖∇f(yt)‖2 ≤ −Ω(

ε2κ

`
c−2) ≤ −Ω(

F

T
c6) ≤ −4F

T
.

Again the last step is by picking c to be a large enough constant, which finishes the proof.

Next, we show that if the initial momentum is small, but the initial gradient on the non-
convex subspace Sc is large enough, then within O(T) steps, the Hamiltonian will decrease
by at least F .

Lemma 3.7.5 (Formal Version of Lemma 3.4.8). Under the setting of Theorem 3.3.1, if
‖PSc∇f(x0)‖ ≥ ε

2
, ‖v0‖ ≤M , v>0 [P>S ∇2f(x0)PS]v0 ≤ 2

√
ρεM 2, and for t ∈ [0,T /4] only

AGD steps are used without NCE or perturbation, then:

ET /4 − E0 ≤ −F .

Proof. The high-level plan is a proof by contradiction. We first assume that the energy
doesn’t decrease very much; that is, ET /4 − E0 ≥ −F for a small enough constant µ.
By Corollary 3.4.3 and the Cauchy-Swartz inequality, this immediately implies that for all

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 58

t ≤ T , we have ‖xt − x0‖ ≤
√

2ηT F/(4θ) = S /2. In the rest of the proof we will show
that this leads to a contradiction.

Given initial x0 and v0, we define x−1 = x0 − v0. Without loss of generality, set x0 as
the origin 0. Using the notation and results of Lemma 3.7.2, we have the following update
equation:  xt

xt−1

 =At

 0

−v0

− η t−1∑
τ=0

At−1−τ

∇f(0) + δτ

0

 .

Consider the j-th eigen-direction of H = ∇2f(0), recall the definition of the 2 × 2 block
matrix Aj as in (3.12), and denote

(a
(j)
t , − b(j)

t) =
(

1 0
)

At
j.

Then we have for the j-th eigen-direction:

x
(j)
t =b

(j)
t v

(j)
0 − η

t−1∑
τ=0

a
(j)
t−1−τ (∇f(0)(j) + δ(j)

τ)

=− η

[
t−1∑
τ=0

a(j)
τ

](
∇f(0)(j) +

t−1∑
τ=0

p(j)
τ δ(j)

τ + q
(j)
t v

(j)
0

)
,

where

p(j)
τ =

a
(j)
t−1−τ∑t−1
τ=0 a

(j)
τ

and q
(j)
t = − b

(j)
t

η
∑t−1

τ=0 a
(j)
τ

.

Clearly
∑t−1

τ=0 p
(j)
τ = 1. For j ∈ Sc, by Lemma 3.8.7, we know

∑t−1
τ=0 a

(j)
τ ≥ Ω(1

θ2
). We can

thus further write the above equation as:

x
(j)
t = −η

[
t−1∑
τ=0

a(j)
τ

](
∇f(0)(j) + δ̃(j) + ṽ(j)

)
,

where δ̃(j) =
∑t−1

τ=0 p
(j)
τ δ

(j)
τ and ṽ(j) = q

(j)
t v

(j)
0 , coming from the Hessian Lipschitz assumption

and the initial momentum respectively. For the remaining part, we would like to bound
‖PSc δ̃‖ and ‖PScṽ‖, and show that both of them are small compared to ‖PSc∇f(x0)‖.

First, for the ‖PSc δ̃‖ term, we know by definition of the subspace Sc, and given that both

eigenvalues of Aj are real and positive according to Lemma 3.8.3, such that p
(j)
τ is positive

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 59

by Lemma 3.8.1, we have for any j ∈ Sc:

|δ̃(j)| =|
t−1∑
τ=0

p(j)
τ δ(j)

τ | ≤
t−1∑
τ=0

p(j)
τ (|δ(j)

0 |+ |δ(j)
τ − δ

(j)
0 |)

≤

[
t−1∑
τ=0

p(j)
τ

](
|δ(j)

0 |+
t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|

)
≤ |δ(j)

0 |+
t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|.

By the Cauchy-Swartz inequality, this gives:

‖PSc δ̃‖2 =
∑
j∈Sc
|δ̃(j)|2 ≤

∑
j∈Sc

(|δ(j)
0 |+

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|)2 ≤ 2

[∑
j∈Sc
|δ(j)

0 |2 +
∑
j∈Sc

(
t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|)2

]

≤2

[∑
j∈Sc
|δ(j)

0 |2 + t
∑
j∈Sc

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|2

]
≤ 2‖δ0‖2 + 2t

t−1∑
τ=1

‖δτ − δτ−1‖2.

Recall that for t ≤ T , we have ‖xt‖ ≤ S /2. By Proposition 3.7.3, we know: ‖δ0‖ ≤
O(ρS 2), and by Corollary 3.4.3 and Proposition 3.7.3:

t
t−1∑
τ=1

‖δτ − δτ−1‖2 ≤ O(ρ2S 2)t
t−1∑
τ=1

‖xτ − xτ−1‖2 ≤ O(ρ2S 4).

This gives ‖PSc δ̃‖ ≤ O(ρS 2) ≤ O(ε · c−6) ≤ ε/10.

Next we consider the ‖PScṽ‖ term. By Lemma 3.8.7, we have

−ηq(j)
t =

bt∑t−1
τ=0 aτ

≤ O(1) max{θ,
√
η|λj|}.

This gives:

‖PScṽ‖2 =
∑
j∈Sc

[q
(j)
t v

(j)
0]2 ≤ O(1)

∑
j∈Sc

max{η|λj|, θ2}
η2

[v
(j)
0]2. (3.13)

Recall that we have assumed by way of contradiction that ET /4 − E0 ≤ −F . By the
precondition that NCE is not used at t = 0, due to the certificate (3.2), we have:

1

2
v>0 ∇2f(ζ0)v0 ≥ −

γ

2
‖v0‖2 = −

√
ρε

8
‖v0‖2,

where ζ0 = φx0+(1−φ)y0 and φ ∈ [0, 1]. Noting that we fix x0 as the origin 0, by the Hessian
Lipschitz property, it is easy to show that ‖∇2f(ζ0)−H‖ ≤ ρ‖y0‖ ≤ ρ‖v0‖ ≤ ρM ≤ √ρε.
This gives:

v0Hv0 ≥ −2
√
ρε‖v0‖2.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 60

Again letting λj denote the eigenvalues of H, rearranging the above sum give:∑
j:λj≤0

|λj|[v(j)
0]2 ≤O(

√
ρε)‖v0‖2 +

∑
j:λj>0

λj[v
(j)
0]2

≤O(
√
ρε)‖v0‖2 +

∑
j:λj>θ2/η(2−θ)2

λj[v
(j)
0]2 ≤ O(

√
ρε)‖v0‖2 + v>0 [P>S HPS]v0.

The second inequality uses the fact that θ2/η(2 − θ)2 ≤ O(
√
ρε). Substituting into (3.13)

gives:

‖PScṽ‖2 ≤ O(
1

η
)
[√
ρε‖v0‖2 + v>0 [P>S HPS]v0

]
≤ O(`

√
ρεM 2) = O(ε2c−2) ≤ ε2/100.

Finally, putting all pieces together, we have:

‖xt‖ ≥‖PScxt‖ ≥ η

[
min
j∈Sc

t−1∑
τ=0

a(j)
τ

]
‖PSc(∇f(0) + δ̃ + ṽ)‖

≥Ω(
η

θ2
)
[
‖PSc∇f(0)‖ − ‖PSc δ̃‖ − ‖PScṽ)‖

]
≥ Ω(

ηε

θ2
) ≥ Ω(S c3) ≥ S

which contradicts the fact ‖xt‖ that remains inside the ball around 0 with radius S /2.

The next lemma shows that if the initial momentum and gradient are reasonably small,
and the Hamitonian does not have sufficient decrease over the next T iterations, then
both the gradient and momentum of the strongly convex component S will vanish in T /4
iterations.

Lemma 3.7.6 (Formal Version of Lemma 3.4.7). Under the setting of Theorem 3.3.1, sup-
pose ‖v0‖ ≤M and ‖∇f(x0)‖ ≤ 2`M , ET /2 − E0 ≥ −F , and for t ∈ [0,T /2] only AGD
steps are used, without NCE or perturbation. Then ∀ t ∈ [T /4,T /2]:

‖PS∇f(xt)‖ ≤
ε

2
and v>t [P>S ∇2f(x0)PS]vt ≤

√
ρεM 2.

Proof. Since ET − E0 ≥ −F , by Corollary 3.4.3 and the Cauchy-Swartz inequality, we see
that for all t ≤ T we have ‖xt − x0‖ ≤

√
2ηT F/θ = S .

Given initial x0 and v0, we define x−1 = x0 − v0. Without loss of generality, setting x0

as the origin 0, by the notation and results of Lemma 3.7.2, we have the update equation: xt

xt−1

 =At

 0

−v0

− η t−1∑
τ=0

At−1−τ

∇f(0) + δτ

0

 . (3.14)

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 61

First we prove the upper bound on the gradient: ∀ t ∈ [T /4,T], we have ‖PS∇f(xt)‖ ≤
ε
2
. Let ∆t =

∫ 1

0
(∇2f(φxt)−H)dφ. According to (3.14), we have:

∇f(xt) =∇f(0) + (H + ∆t)xt

=

I− ηH
(
I 0

) t−1∑
τ=0

At−1−τ

I

0

∇f(0)

︸ ︷︷ ︸
g1

+H
(
I 0

)
At

 0

−v0


︸ ︷︷ ︸

g2

− ηH
(
I 0

) t−1∑
τ=0

At−1−τ

δt
0


︸ ︷︷ ︸

g3

+ ∆txt︸︷︷︸
g4

.

We will upper bound four terms g1,g2,g3,g4 separately. Clearly, for the last term g4, we
have:

‖g4‖ ≤ ρ‖xt‖2 ≤ O(ρS 2) = O(εc−6) ≤ ε/8.

Next, we show that the first two terms g1,g2 become very small for t ∈ [T /4,T]. Consider
coordinate j ∈ S and the 2× 2 block matrix Aj. By Lemma 3.8.2 we have:

1− ηλj
(

1 0
) t−1∑
τ=0

At−1−τ
j

1

0

 =
(

1 0
)

At
j

1

1

 .

Denote:
(a

(j)
t , − b(j)

t) =
(

1 0
)

At
j.

By Lemma 3.8.9, we know:

max
j∈S

{
|a(j)
t |, |b

(j)
t |
}
≤ (t+ 1)(1− θ)

t
2 .

This immediately gives when t ≥ T /4 = Ω(c
θ

log 1
θ
) for c sufficiently large:

‖PSg1‖2 =
∑
j∈S

|(a(j)
t − b

(j)
t)∇f(0)(j)|2 ≤ (t+ 1)2(1− θ)t‖∇f(0)‖2 ≤ ε2/64

‖PSg2‖2 =
∑
j∈S

|λjb(j)
t v

(j)
0 |2 ≤ `2(t+ 1)2(1− θ)t‖v0‖2 ≤ ε2/64.

Finally, for g3, by Lemma 3.8.11, for all j ∈ S, we have

|g(j)
3 | =

∣∣∣∣∣ηλj
t−1∑
τ=0

a(j)
τ δt−1−τ

∣∣∣∣∣ ≤ |δ(j)
t−1|+

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 62

By Proposition 3.7.3, this gives:

‖PSg3‖2 ≤ 2‖δt−1‖2 + 2t
t−1∑
τ=1

‖δτ − δτ−1‖2 ≤ O(ρ2S 4) ≤ O(ε2 · c−12) ≤ ε2/64.

In sum, this gives for any fixed t ∈ [T /4,T]:

‖PS∇f(xt)‖ ≤ ‖PSg1‖+ ‖PSg2‖+ ‖PSg3‖+ ‖g4‖ ≤
ε

2
.

We now provide a similar argument to prove the upper bound for the momentum. That
is, ∀ t ∈ [T /4,T], we show v>t [P>S ∇2f(x0)PS]vt ≤

√
ρεM 2. According to (3.14), we have:

vt =
(

1 −1
) xt

xt−1

 =
(

1 −1
)

At

 0

−v0


︸ ︷︷ ︸

m1

− η
(

1 −1
) t−1∑
τ=0

At−1−τ

∇f(0)

0


︸ ︷︷ ︸

m2

− η
(

1 −1
) t−1∑
τ=0

At−1−τ

δτ
0


︸ ︷︷ ︸

m3

.

Consider the j-th eigendirection, so that j ∈ S, and recall the 2 × 2 block matrix Aj.
Denoting

(a
(j)
t , − b(j)

t) =
(

1 0
)

At
j,

by Lemma 3.8.1 and 3.8.9, we have for t ≥ T /4 = Ω(c
θ

log 1
θ
) with c sufficiently large:

‖[P>S ∇2f(x0)PS]
1
2m1‖2 =

∑
j∈S

|λ
1
2
j (b

(j)
t −b

(j)
t−1)v

(j)
0 |2 ≤ `(t+1)2(1−θ)t‖v0‖2 ≤ O(

ε2

`
c−3) ≤ 1

3

√
ρεM 2.

On the other hand, by Lemma 3.8.2, we have:∣∣∣∣∣∣ηλj
(

1 −1
) t−1∑
τ=0

At−1−τ
j

1

0

∣∣∣∣∣∣ =

∣∣∣∣∣∣ηλj
(

1 0
) t−1∑
τ=0

(At−1−τ
j −At−2−τ

j)

1

0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(

1 0
)

(At
j −At−1

j)

1

1

∣∣∣∣∣∣ .
This gives, for t ≥ T /4 = Ω(c

θ
log 1

θ
), and for c sufficiently large:

‖[P>S ∇2f(x0)PS]
1
2m2‖2 =

∑
j∈S

|λ−
1
2

j (a
(j)
t − a

(j)
t−1 − b

(j)
t + b

(j)
t−1)∇f(0)(j)|2

≤O(
1
√
ρε

)(t+ 1)2(1− θ)t‖∇f(0)‖2 ≤ O(
ε2

`
c−3) ≤ 1

3

√
ρεM 2.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 63

Finally, for any j ∈ S, by Lemma 3.8.11, we have:

|(H
1
2m3)(j)| = |ηλ

1
2
j

t−1∑
τ=0

(aτ − aτ−1)δt−1−τ | ≤
√
η

[∑
|δ(j)
t−1|+

t−1∑
τ=1

|δ(j)
τ − δ

(j)
τ−1|

]
.

Again by Proposition 3.7.3:

‖[P>S ∇2f(x0)PS]
1
2m3‖2 = η

[
2‖δt−1‖2 + 2t

t−1∑
τ=1

‖δτ − δτ−1‖2

]
≤ O(ηρ2S 4) ≤ O(

ε2

`
c−6) ≤ 1

3

√
ρεM 2.

Putting everything together, we have:

v>t [P>S ∇2f(x0)PS]vt ≤‖[P>S ∇2f(x0)PS]
1
2m1‖2 + ‖[P>S ∇2f(x0)PS]

1
2m2‖2

+ ‖[P>S ∇2f(x0)PS]
1
2m3‖2 ≤ √ρεM 2.

This finishes the proof.

Finally, we are ready to prove the main lemma of this subsection (Lemma 3.4.5), which
claims that if gradients in T iterations are always large, then the Hamiltonian will decrease
sufficiently within a small number of steps.

Lemma 3.7.7 (Large gradient). Consider the setting of Theorem 3.3.1. If ‖∇f(xτ)‖ ≥ ε
for all τ ∈ [0,T], then by running Algorithm 6 we have ET − E0 ≤ −F .

Proof. Since ‖∇f(xτ)‖ ≥ ε for all τ ∈ [0,T], according to Algorithm 6, the precondition
to add perturbation never holds, so Algorithm will not add any perturbation in these T
iterations.

Next, suppose there is at least one iteration where NCE is used. Then by Lemma 3.7.1,
we know that that step alone gives F decrease in the Hamiltonian. According to Lemma
3.4.1 and Lemma 3.7.1 we know that without perturbation, the Hamiltonian decreases mono-
tonically in the remaining steps. This means whenever at least one NCE step is performed,
Lemma 3.4.5 immediately holds.

For the remainder of the proof, we can restrict the discussion to the case where NCE is
never performed in steps τ ∈ [0,T]. Letting

τ1 = arg min
t∈[0,T]

{t |‖vt‖ ≤M and ‖∇f(xt)‖ ≤ 2`M } ,

we know in case τ1 ≥ T
4

, that Lemma 3.7.4 ensures ET − E0 ≤ ET
4
− E0 ≤ −F . Thus,

we only need to discuss the case τ1 ≤ T
4

. Again, if Eτ1+T /2 − Eτ1 ≤ −F , Lemma 3.4.5
immediately holds. For the remaining case, Eτ1+T /2 − Eτ1 ≤ −F , we apply Lemma 3.7.6
starting at τ1, and obtain

‖PS∇f(xt)‖ ≤
ε

2
and v>t [P>S ∇2f(xτ1)PS]vt ≤

√
ρεM 2. ∀t ∈ [τ1 +

T

4
, τ1 +

T

2
].

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 64

Letting:
τ2 = arg min

t∈[τ1+ T
4
,T]
{t |‖vt‖ ≤M } ,

by Lemma 3.7.4 we again know we only need to discuss the case where τ2 ≤ τ1 + T
2

;
otherwise, we already guarantee sufficient decrease in the Hamiltonian. Then, we clearly
have ‖PS∇f(xτ2)‖ ≤ ε

2
, also by the precondition of Lemma 3.4.5, we know ‖∇f(xτ2)‖ ≥ ε,

thus ‖PSc∇f(xτ2)‖ ≥ ε
2
. On the other hand, since if the Hamiltonian does not decrease

enough, Eτ2 − E0 ≥ −F , by Lemma 3.4.3, we have ‖xτ1 − xτ2‖ ≤ 2S , by the Hessian
Lipschitz property, which gives:

v>τ2 [P
>
S ∇2f(xτ2)PS]vτ2 ≤ v>τ2 [P

>
S ∇2f(xτ1)PS]vτ2+‖∇2f(xτ1)−∇2f(xτ2)‖‖vτ2‖2 ≤ 2

√
ρεM 2.

Now xτ2 satisfies all the preconditions of Lemma 3.7.5, and by applying Lemma 3.7.5 we
finish the proof.

Proof for negative-curvature scenario

We prove Lemma 3.4.6 in this section. We consider two trajectories, starting at x0 and x′0,
with v0 = v′0, where w0 = x0− x′0 = r0e1, where e1 is the minimum eigenvector direction of
H, and where r0 is not too small. We show that at least one of the trajectories will escape
saddle points efficiently.

Lemma 3.7.7 (Formal Version of Lemma 3.4.9). Under the same setting as Theorem 3.3.1,
suppose ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −√ρε. Let x0 and x′0 be at distance at most r
from x̃. Let x0−x′0 = r0 ·e1 and let v0 = v′0 = ṽ where e1 is the minimum eigen-direction of
∇2f(x̃). Let r0 ≥ δF

2∆f
· r√

d
. Then, running AGD starting at (x0,v0) and (x′0,v

′
0) respectively,

we have:

min{ET − Ẽ, E ′T − Ẽ} ≤ −F ,

where Ẽ, ET and E ′T are the Hamiltonians at (x̃, ṽ), (xT ,vT) and (x′T ,v
′
T) respectively.

Proof. Assume none of the two sequences decrease the Hamiltonian fast enough; that is,

min{ET − E0, E
′
T − E ′0} ≥ −2F ,

where E0 and E ′0 are the Hamiltonians at (x0,v0) and (x′0,v
′
0). Then, by Corollary 3.4.3

and the Cauchy-Swartz inequality, we have for any t ≤ T :

max{‖xt − x̃‖, ‖x′t − x̃‖} ≤ r + max{‖xt − x0‖, ‖x′t − x′0‖} ≤ r +
√

4ηT F/θ ≤ 2S .

Fix the origin 0 at x̃ and let H be the Hessian at x̃. Recall that the update equation of
AGD (Algorithm 5) can be re-written as:

xt+1 =(2− θ)xt − (1− θ)xt−1 − η∇f((2− θ)xt − (1− θ)xt−1)

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 65

Taking the difference of two AGD sequences starting from x0,x
′
0, and let wt = xt − x′t, we

have:

wt+1 =(2− θ)wt − (1− θ)wt−1 − η∇f(yt) + η∇f(y′t)

=(2− θ)(I − ηH− η∆t)wt − (1− θ)(I − ηH− η∆t)wt−1,

where ∆t =
∫ 1

0
(∇2f(φyt + (1− φ)y′t)−H)dφ. In the last step, we used

∇f(yt)−∇f(y′t) = (H + ∆t)(yt − y′t) = (H + ∆t)[(2− θ)wt − (1− θ)wt−1].

We thus obtain the update of the wt sequence in matrix form:wt+1

wt

 =

(2− θ)(I− ηH) −(1− θ)(I− ηH)

I 0

 wt

wt−1


− η

(2− θ)∆twt − (1− θ)∆twt−1

0


=A

 wt

wt−1

− η
δt

0

 = At+1

 w0

w−1

− η t∑
τ=0

At−τ

δτ
0

 , (3.15)

where δt = (2 − θ)∆twt − (1 − θ)∆twt−1. Since v0 = v′0, we have w−1 = w0, and ‖∆t‖ ≤
ρmax{‖xt − x̃‖, ‖x′t − x̃‖} ≤ 2ρS , as well as ‖δτ‖ ≤ 6ρS (‖wτ‖ + ‖wτ−1‖). According to
(3.15):

wt =
(
I 0

)
At

w0

w0

− η (I 0
) t−1∑
τ=0

At−1−τ

δτ
0

 .

Intuitively, we want to say that the first term dominates. Technically, we will set up an
induction based on the following fact:

‖η
(
I, 0
) t−1∑
τ=0

At−1−τ

δτ
0

‖ ≤ 1

2
‖
(
I, 0
)

At

w0

w0

‖.
It is easy to check the base case holds for t = 0. Then, assume that for all time steps less

than or equal to t, the induction assumption hold. We have:

‖wt‖ ≤‖
(
I 0

)
At

w0

w0

‖+ ‖η
(
I 0

) t−1∑
τ=0

At−1−τ

δτ
0

‖
≤2‖

(
I 0

)
At

w0

w0

‖,

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 66

which gives:

‖δt‖ ≤O(ρS)(‖wt‖+ ‖wt−1‖) ≤ O(ρS)

‖(I 0
)

At

w0

w0

‖+ ‖
(
I 0

)
At−1

w0

w0

‖


≤O(ρS)‖
(
I 0

)
At

w0

w0

‖,
where in the last inequality, we used Lemma 3.8.15 for monotonicity in t.

To prove that the induction assumption holds for t+ 1 we compute:

‖η
(
I, 0
) t∑
τ=0

At−τ

δτ
0

‖ ≤η t∑
τ=0

‖
(
I, 0
)

At−τ

I

0

‖‖δτ‖
≤O(ηρS)

t∑
τ=0

‖
(
I, 0
)

At−τ

I

0

‖‖(I 0
)

Aτ

w0

w0

‖. (3.16)

By the precondition we have λmin(H) ≤ −√ρε. Without loss of generality, assume that
the minimum eigenvector direction of H is along he first coordinate e1, and denote the
corresponding 2× 2 matrix as A1 (as in the convention of (3.12). Let:

(a
(1)
t , − b(1)

t) =
(

1 0
)

At
1.

We then see that (1) w0 is along the e1 direction, and (2) according to Lemma 3.8.14, the

matrix
(
I, 0
)

At−τ

I

0

 is a diagonal matrix, where the spectral norm is achieved along the

first coordinate which corresponds to the eigenvalue λmin(H). Therefore, using Equation
(3.16), we have:

‖η
(
I, 0
) t∑
τ=0

At−τ

δτ
0

‖ ≤O(ηρS)
t∑

τ=0

a
(1)
t−τ (a

(1)
τ − b(1)

τ)‖w0‖

≤O(ηρS)
t∑

τ=0

[
2

θ
+ (t+ 1)]|a(1)

t+1 − b
(1)
t+1|‖w0‖

≤O(ηρS T 2)‖
(
I, 0
)

At+1

w0

w0

‖,

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 67

where, in the second to last step, we used Lemma 3.8.13, and in the last step we used
1/θ ≤ T . Finally, O(ηρS T 2) ≤ O(c−1) ≤ 1/2 by choosing a sufficiently large constant c.
Therefore, we have proved the induction, which gives us:

‖wt‖ =‖
(
I 0

)
At

w0

w0

‖ − ‖η (I 0
) t−1∑
τ=0

At−1−τ

δτ
0

‖ ≥ 1

2
‖
(
I 0

)
At

w0

w0

‖.
Noting that λmin(H) ≤ −√ρε, by applying Lemma 3.8.15 we have

1

2
‖
(
I 0

)
At

w0

w0

‖ ≥ θ

4
(1 + Ω(θ))tr0,

which grows exponentially. Therefore, for r0 ≥ δF
2∆f
· r√

d
, and T = Ω(1

θ
· χc) where χ =

max{1, log
d`∆f

ρεδ
}, where the constant c is sufficiently large, we have

‖xT − x′T ‖ = ‖wT ‖ ≥
θ

4
(1 + Ω(θ))T r0 ≥ 4S ,

which contradicts the fact that:

∀t ≤ T ,max{‖xt − x̃‖, ‖x′t − x̃‖} ≤ O(S).

This means our assumption is wrong, and we can therefore conclude:

min{ET − E0, E
′
T − E ′0} ≤ −2F .

On the other hand, by the precondition on x̃ and the gradient Lipschitz property, we have:

max{E0 − Ẽ, E ′0 − Ẽ} ≤ εr +
`r2

2
≤ F ,

where the last step is due to our choice of r = ηε · χ−5c−8 in (3.3). Combining these two
facts:

min{ET − Ẽ, E ′T − Ẽ} ≤ min{ET − E0, E
′
T − E ′0}+ max{E0 − Ẽ, E ′0 − Ẽ} ≤ −F ,

which finishes the proof.

We are now ready to prove the main lemma in this subsection, which states with that
random perturbation, PAGD will escape saddle points efficiently with high probability.

Lemma 3.7.8 (Negative curvature). Consider the setting of Theorem 3.3.1. If ‖∇f(x0)‖ ≤
ε, λmin(∇2f(x0)) < −√ρε, and a perturbation has not been added in iterations τ ∈ [−T , 0),
then, by running Algorithm 6, we have ET − E0 ≤ −F with probability at least 1− δF

2∆f
.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 68

Proof. Since a perturbation has not been added in iterations τ ∈ [−T , 0), according to
PAGD (Algorithm 6), we add perturbation at t = 0, the Hamiltonian will increase by at
most:

∆E ≤ εr +
`r2

2
≤ F ,

where the last step is due to our choice of r = ηε ·χ−5c−8 in (3.3) with constant c sufficiently
large. Again by Algorithm 6, a perturbation will never be added in the remaining iterations,
and by Lemma 3.4.1 and Lemma 3.7.1 we know the Hamiltonian always decreases for the
remaining steps. Therefore, if at least one NCE step is performed in iteration τ ∈ [0,T], by
Lemma 3.7.1 we will decrease 2F in that NCE step, and at most increase by F due to the
perturbation. This immediately gives ET − E0 ≤ −F .

Therefore, we only need to focus on the case where NCE is never used in iterations
τ ∈ [0,T]. Let Bx0(r) denote the ball with radius r around x0. According to algorithm
6, we know the iterate after adding perturbation to x0 is uniformly sampled from the ball
Bx0(r). Let Xstuck ⊂ Bx0(r) be the region where AGD is stuck (does not decrease the
Hamiltonian F in T steps). Formally, for any point x ∈ Xstuck, let x1, · · · ,xT be the AGD
sequence starting at (x,v0), then ET −E0 ≥ −F . By Lemma 3.7.7, Xstuck can have at most
width r0 = δF

2∆f
· r√

d
along the minimum eigenvalue direction. Therefore,

Vol(Xstuck)

Vol(B(d)
x0 (r))

≤ r0 × Vol(B(d−1)
0 (r))

Vol(B(d)
0 (r))

=
r0

r
√
π

Γ(d
2

+ 1)

Γ(d
2

+ 1
2
)
≤ r0

r
√
π
·
√
d

2
+

1

2
≤ δF

2∆f

.

Thus, with probability at least 1− δF
∆f

, the perturbation will end up outside of Xstuck, which

give ET − E0 ≤ −F . This finishes the proof.

Proof of Theorem 3.3.1

Our main result is now easily obtained from Lemma 3.4.5 and Lemma 3.4.6.

Proof of Theorem 3.3.1. Suppose we never encounter any ε-second-order stationary point.
Consider the set T = {τ |τ ∈ [0,T] and ‖∇f(xτ)‖ ≤ ε}, and two cases: (1) T = ∅, in which
case we know all gradients are large and by Lemma 3.4.5 we have ET −E0 ≤ −F ; (2) T 6= ∅.
In this case, define τ ′ = minT; i.e., the earliest iteration where the gradient is small. Since by
assumption, x′τ is not an ε-second-order stationary point, this gives ∇2f(xτ ′) ≤ −

√
ρε, and

by Lemma 3.4.6, we can conclude Eτ ′+T −E0 ≤ Eτ ′+T −Eτ ′ ≤ −F . Clearly τ ′+ T ≤ 2T .
That is, in either case, we will decrease the Hamiltonian by F in at most 2T steps.

Then, for the the first case, we can repeat this argument starting at iteration T , and
for the second case, we can repeat the argument starting at iteration τ ′ + T . Therefore,
we will continue to obtain a decrease of the Hamiltonian by an average of F/(2T) per
step. Since the function f is lower bounded, we know the Hamiltonian can not decrease

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 69

beyond E0 − E? = f(x0) − f ?, which means that in 2(f(x0)−f?)T
F

steps, we must encounter
an ε-second-order stationary point at least once.

Finally, in 2(f(x0)−f?)T
F

steps, we will call Lemma 3.4.6 at most
2∆f

F
times, and since

Lemma 3.4.6 holds with probability 1− δF
2∆f

, by a union bound, we know that the argument

above is true with probability at least:

1− δF

2∆f

· 2∆f

F
= 1− δ,

which finishes the proof.

3.8 Auxiliary Lemma

In this section, we present some auxiliary lemmas which are used in proving Lemma 3.7.5,
Lemma 3.7.6 and Lemma 3.7.7. These deal with the large-gradient scenario (nonconvex
component), the large-gradient scenario (strongly convex component), and the negative cur-
vature scenario, respectively.

The first two lemmas establish some facts about powers of the structured matrices arising
in AGD.

Lemma 3.8.1. Let the 2× 2 matrix A have following form, for arbitrary a, b ∈ R:

A =

a b

1 0

 .

Letting µ1, µ2 denote the two eigenvalues of A (can be repeated or complex eigenvalues), then,
for any t ∈ N: (

1 0
)

At =

(
t∑
i=0

µi1µ
t−i
2 , −µ1µ2

t−1∑
i=0

µi1µ
t−1−i
2

)
(

0 1
)

At =
(

1 0
)

At−1.

Proof. When the eigenvalues µ1 and µ2 are distinct, the matrix A can be rewritten asµ1 + µ2 −µ1µ2

1 0

, and it is easy to check that the two eigenvectors have the form

µ1

1


and

µ2

1

. Therefore, we can write the eigen-decomposition as:

A =
1

µ1 − µ2

µ1 µ2

1 1

µ1 0

0 µ2

 1 −µ2

−1 µ1

 ,

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 70

and the tth power has the general form:

At =
1

µ1 − µ2

µ1 µ2

1 1

µt1 0

0 µt2

 1 −µ2

−1 µ1



When there are two repeated eigenvalue µ1, the matrix

a b

1 0

 can be rewritten as2µ1 −µ2
1

1 0

. It is easy to check that A has the following Jordan normal form:

A = −

µ1 µ1 + 1

1 1

µ1 1

0 µ1

 1 −(µ1 + 1)

−1 µ1

 ,

which yields:

At = −

µ1 µ1 + 1

1 1

µt1 tµt−1
1

0 µt1

 1 −(µ1 + 1)

−1 µ1

 .

The remainder of the proof follows from simple linear algebra calculations for both cases.

Lemma 3.8.2. Under the same setting as Lemma 3.8.1, for any t ∈ N:

(µ1 − 1)(µ2 − 1)
(

1 0
) t−1∑
τ=0

Aτ

1

0

 = 1−
(

1 0
)

At

1

1

 .

Proof. When µ1 and µ2 are distinct, we have:(
1 0

)
At =

(
µt+1

1 − µt+1
2

µ1 − µ2

, −µ1µ2(µt1 − µt2)

µ1 − µ2

)
.

When µ1, µ2 are repeated, we have:(
1 0

)
At =

(
(t+ 1)µt1, −tµt+1

1

)
.

The remainder of the proof follows from Lemma 3.8.4 and linear algebra.

The next lemma tells us when the eigenvalues of the AGD matrix are real and when they
are complex.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 71

Lemma 3.8.3. Let θ ∈ (0, 1
4
], x ∈ [−1

4
, 1

4
] and define the 2× 2 matrix A as follows:

A =

(2− θ)(1− x) −(1− θ)(1− x)

1 0


Then the two eigenvalues µ1 and µ2 of A are solutions of the following equation:

µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

Moreover, when x ∈ [−1
4
, θ2

(2−θ)2], µ1 and µ2 are real numbers, and when x ∈ (θ2

(2−θ)2 ,
1
4
], µ1

and µ2 are conjugate complex numbers.

Proof. An eigenvalue µ of the matrix A must satisfy the following equation:

det(A− µI) = µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

The discriminant is equal to

∆ =(2− θ)2(1− x)2 − 4(1− θ)(1− x)

=(1− x)(θ2 − (2− θ2)x).

Then µ1 and µ2 are real if and only if ∆ ≥ 0, which finishes the proof.

Finally, we need a simple lemma for geometric sums.

Lemma 3.8.4. For any λ > 0 and fixed t, we have:

t−1∑
τ=0

(τ + 1)λτ =
1− λt

(1− λ)2
− tλt

1− λ
.

Proof. Consider the truncated geometric series:

t−1∑
τ=0

λτ =
1− λt

1− λ
.

Taking derivatives, we have:

t−1∑
τ=0

(τ + 1)λτ =
d

dλ

t−1∑
τ=0

λτ+1 =
d

dλ

[
λ · 1− λt

1− λ

]
=

1− λt

(1− λ)2
− tλt

1− λ
.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 72

Large-gradient scenario (nonconvex component)

All the lemmas in this section are concerned with the behavior of the AGD matrix for eigen-
directions of the Hessian with eigenvalues being negative or small and positive, as used in
proving Lemma 3.7.5. The following lemma bounds the smallest eigenvalue of the AGD ma-
trix for those directions.

Lemma 3.8.5. Under the same setting as Lemma 3.8.3, and for x ∈ [−1
4
, θ2

(2−θ)2], where
µ1 ≥ µ2, we have:

µ2 ≤ 1− 1

2
max{θ,

√
|x|}.

Proof. The eigenvalues satisfy:

det(A− µI) = µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

Let µ = 1 + u. We have

(1 + u)2 − (2− θ)(1− x)(1 + u) + (1− θ)(1− x) = 0

⇒ u2 + ((1− x)θ + 2x)u+ x = 0.

Let f(u) = u2 + θu + 2xu − xθu + x. To prove µ2(A) ≤ 1 −
√
|x|

2
when x ∈ [−1

4
,−θ2], we

only need to verify f(−
√
|x|

2
) ≤ 0:

f(−
√
|x|
2

) =
|x|
4
−
θ
√
|x|

2
+ |x|

√
|x| −

|x|
√
|x|θ

2
− |x|

≤|x|
√
|x|(1− θ

2
)− 3|x|

4
≤ 0

The last inequality follows because |x| ≤ 1
4

by assumption.
For x ∈ [−θ2, 0], we have:

f(−θ
2

) =
θ2

4
− θ2

2
− xθ +

xθ2

2
+ x = −θ

2

4
+ x(1− θ) +

xθ2

2
≤ 0.

On the other hand, when x ∈ [0, θ2/(2−θ)2], both eigenvalues are still real, and the midpoint
of the two roots is:

u1 + u2

2
= −(1− x)θ + 2x

2
= −θ + (2− θ)x

2
≤ −θ

2
.

Combining the two cases, we have shown that when x ∈ [−θ2, θ2/(2− θ)2] we have µ2(A) ≤
1− θ

2
.

In summary, we have proved that

µ2(A) ≤

{
1−
√
|x|

2
, x ∈ [−1

4
,−θ2]

1− θ
2
. x ∈ [−θ2, θ2/(2− θ)2],

which finishes the proof.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 73

In the same setting as above, the following lemma bounds the largest eigenvalue.

Lemma 3.8.6. Under the same setting as Lemma 3.8.3, and with x ∈ [−1
4
, θ2

(2−θ)2], and
letting µ1 ≥ µ2, we have:

µ1 ≤ 1 + 2 min{|x|
θ
,
√
|x|}.

Proof. By Lemma 3.8.3 and Vieta’s formula we have:

(µ1 − 1)(µ2 − 1) = µ1µ2 − (µ1 + µ2) + 1 = x.

An application of Lemma 3.8.5 finishes the proof.

The following lemma establishes some properties of the powers of the AGD matrix.

Lemma 3.8.7. Consider the same setting as Lemma 3.8.3, and let x ∈ [−1
4
, θ2

(2−θ)2]. Denote:

(at, − bt) =
(

1 0
)

At.

Then, for any t ≥ 2
θ

+ 1, we have:

t−1∑
τ=0

aτ ≥Ω(
1

θ2
)

1

bt

(
t−1∑
τ=0

aτ

)
≥Ω(1) min

{
1

θ
,

1√
|x|

}
.

Proof. We prove the two inequalities seperately.
First Inequality: By Lemma 3.8.1:

t∑
τ=0

(
1 0

)
Aτ

1

0

 =
t∑

τ=0

τ∑
i=0

µτ−i1 µi2 =
t∑

τ=0

(µ1µ2)
τ
2

τ∑
i=0

(
µ1

µ2

)
τ
2
−i

≥
t∑

τ=0

[(1− θ)(1− x)]
τ
2 · τ

2

The last inequality holds because in
∑τ

i=0(µ1
µ2

)
τ
2
−i at least τ

2
terms are greater than one.

Finally, since x ≤ θ2/(2− θ)2 ≤ θ2 ≤ θ, we have 1− x ≥ 1− θ, thus:

t∑
τ=0

[(1− θ)(1− x)]
τ
2 · τ

2
≥

t∑
τ=0

(1− θ)τ · τ
2
≥

1/θ∑
τ=0

(1− θ)τ · τ
2

≥(1− θ)
1
θ

1/θ∑
τ=0

τ

2
≥ Ω(

1

θ2
),

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 74

which finishes the proof.
Second Inequality: Without loss of generality, assume µ1 ≥ µ2. Again by Lemma 3.8.1:∑t−1

τ=0 aτ
bt

=

∑t−1
τ=0

∑τ
i=0 µ

i
1µ

τ−i
2

µ1µ2

∑t−1
i=0 µ

i
1µ

t−1−i
2

=
1

µ1µ2

t−1∑
τ=0

∑τ
i=0 µ

i
1µ

τ−i
2∑t−1

i=0 µ
i
1µ

t−1−i
2

≥ 1

µ1µ2

t−1∑
τ=(t−1)/2

∑τ
i=0 µ

i
1µ

τ−i
2∑t−1

i=0 µ
i
1µ

t−1−i
2

≥ 1

µ1µ2

t−1∑
τ=(t−1)/2

1

2µt−1−τ
1

=
1

2µ1µ2

[
1 +

1

µ1

+ · · ·+ 1

µ
(t−1)/2
1

]
≥ 1

2µ1µ2

[
1 +

1

µ1

+ · · ·+ 1

µ
1/θ
1

]
.

The second-to-last inequality holds because it is easy to check

2µt−1−τ
1

τ∑
i=0

µi1µ
τ−i
2 ≥

t−1∑
i=0

µi1µ
t−1−i
2 ,

for any τ ≥ (t− 1)/2. Finally, by Lemma 3.8.6, we have

µ1 ≤ 1 + 2 min{|x|
θ
,
√
|x|}.

Since µ1 = Θ(1), µ2 = Θ(1), we have that when |x| ≤ θ2,∑t−1
τ=0 aτ
bt

≥ Ω(1)

[
1 +

1

µ1

+ · · ·+ 1

µ
1/θ
1

]
≥ Ω(1) · 1

θ
· 1

(1 + θ)
1
θ

≥ Ω(
1

θ
).

When |x| > θ2, we have:∑t−1
τ=0 aτ
bt

≥ Ω(1)

[
1 +

1

µ1

+ · · ·+ 1

µ
1/θ
1

]
= Ω(1)

1− 1

µ
1/θ+1
1

1− 1
µ1

= Ω(
1

µ1 − 1
) = Ω(

1√
|x|

).

Combining the two cases finishes the proof.

Large-gradient scenario (strongly convex component)

All the lemmas in this section are concerned with the behavior of the AGD matrix for eigen-
directions of the Hessian with eigenvalues being large and positive, as used in proving Lemma
3.7.6. The following lemma gives eigenvalues of the AGD matrix for those directions.

Lemma 3.8.8. Under the same setting as Lemma 3.8.3, and with x ∈ (θ2

(2−θ)2 ,
1
4
], we have

µ1 = reiφ and µ2 = re−iφ, where:

r =
√

(1− θ)(1− x), sinφ =
√

((2− θ)2x− θ2)(1− x)/2r.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 75

Proof. By Lemma 3.8.3, we know that µ1 and µ2 are two solutions of

µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

This gives r2 = µ1µ2 = (1− θ)(1− x). On the other hand, discriminant is equal to

∆ =(2− θ)2(1− x)2 − 4(1− θ)(1− x)

=(1− x)(θ2 − (2− θ2)x).

Since Im(µ1) = r sinφ =
√
−∆
2

, the proof is finished.

Under the same setting as above, the following lemma delineates some properties of
powers of the AGD matrix.

Lemma 3.8.9. Under the same setting as in Lemma 3.8.3, and with x ∈ (θ2

(2−θ)2 ,
1
4
], denote:

(at, − bt) =
(

1 0
)

At.

Then, for any t ≥ 0, we have:

max{|at|, |bt|} ≤ (t+ 1)(1− θ)
t
2 .

Proof. By Lemma 3.8.1 and Lemma 3.8.8, using | · | to denote the magnitude of a complex
number, we have:

|at| =

∣∣∣∣∣
t∑
i=0

µi1µ
t−i
2

∣∣∣∣∣ ≤
t∑
i=0

|µi1µt−i2 | = (t+ 1)rt ≤ (t+ 1)(1− θ)
t
2

|bt| =

∣∣∣∣∣µ1µ2

t−1∑
i=0

µi1µ
t−1−i
2

∣∣∣∣∣ ≤
t−1∑
i=0

|µi+1
1 µt−i2 | ≤ trt+1 ≤ t(1− θ)

t+1
2 .

Reorganizing these two equations finishes the proof.

The following is a technical lemma which is useful in bounding the change in the Hessian
by the amount of oscillation in the iterates.

Lemma 3.8.10. Under the same setting as Lemma 3.8.8, for any T ≥ 0, any sequence {εt},
and any ϕ0 ∈ [0, 2π]:

T∑
t=0

rt sin(φt+ ϕ0)εt ≤ O(
1

sinφ
)

(
|ε0|+

T∑
t=1

|εt − εt−1|

)
.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 76

Proof. Let τ = b2π/φc be the approximate period, and J = bT/τc be the number of periods
that exist within time T . Then, we can group the summation by each period:

T∑
t=0

rt sin(φt)εt =
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)εt


=

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)[εjτ + (εt − εjτ)]


≤

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)

 εjτ︸ ︷︷ ︸
Term 1

+
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt|εt − εjτ |


︸ ︷︷ ︸

Term 2

.

We prove the lemma by bounding the first term and the second term on the right-hand-side
of this equation separately.
Term 2: Since r ≤ 1, it is not hard to see:

Term 2 =
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt|εt − εjτ |


≤

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt

min{(j+1)τ−1,T}∑
t=jτ+1

|εt − εt−1|


≤τ

J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ+1

|εt − εt−1|

 ≤ τ
T∑
t=1

|εt − εt−1|.

Term 1: We first study the inner-loop factor,
∑(j+1)τ−1

t=jτ rt sin(φt). Letting ψ = 2π − τφ be
the offset for each approximate period, we have that for any j < J :∣∣∣∣∣∣

(j+1)τ−1∑
t=jτ

rt sin(φt+ ϕ0)

∣∣∣∣∣∣ =

∣∣∣∣∣Im
[
τ−1∑
t=0

rjτ+tei·[φ(jτ+t)+ϕ0]

]∣∣∣∣∣
≤rjτ‖

τ−1∑
t=0

rtei·φt‖ ≤ rjτ‖1− rτei·(2π−ψ)

1− rei·φ
‖

=rjτ

√
(1− rτ cosψ)2 + (rτ sinψ)2

(1− r cosφ)2 + (r sinφ)2
.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 77

Combined with the fact that for all y ∈ [0, 1] we have e−3y ≤ 1 − y ≤ e−y, we obtain the
following:

1− rτ = 1− [(1− θ)(1− x)]
τ
2 = 1− e−Θ((θ+x)τ) = Θ((θ + x)τ) = Θ

(
(θ + x)

φ

)
(3.17)

Also, for any a, b ∈ [0, 1], we have (1− ab)2 ≤ (1−min{a, b})2 ≤ (1− a2)2 + (1− b2)2, and
by definition of τ , we immediately have ψ ≤ φ. This yields:

(1− rτ cosψ)2 + (rτ sinψ)2

(1− r cosφ)2 + (r sinφ)2
≤2(1− r2τ)2 + 2(1− cos2 ψ)2 + (rτ sinψ)2

(r sinφ)2

≤O
(

1

sin2 φ

)[
(θ + x)2

φ2
+ sin4 φ+ sin2 φ

]
≤ O

(
(θ + x)2

sin4 φ

)
The second last inequality used the fact that r = Θ(1) (although note rτ is not Θ(1)). The
last inequality is true since by Lemma 3.8.8, we know (θ + x)/ sin2 φ ≥ Ω(1). This gives:∣∣∣∣∣∣

(j+1)τ−1∑
t=jτ

rt sin(φt+ ϕ0)

∣∣∣∣∣∣ ≤ rjτ · θ + x

sin2 φ
,

and therefore, we can now bound the first term:

Term 1 =
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)εjτ =
J∑
j=0

min{(j+1)τ−1,T}∑
t=jτ

rt sin(φt+ ϕ0)

 (ε0 + εjτ − ε0)

≤O(1)
J−1∑
j=0

[
rjτ

θ + x

sin2 φ

]
(|ε0|+ |εjτ − ε0|) +

T∑
t=Jτ

(|ε0|+ |εJτ − ε0|)

≤O(1)

[
1

1− rτ
θ + x

sin2 φ
+ τ

]
·

[
|ε0|+

T∑
t=1

|εt − εt−1|

]
≤
[
O(

1

sinφ
) + τ

]
·

[
|ε0|+

T∑
t=1

|εt − εt−1|

]
.

The second-to-last inequality used Eq.(3.17). In conclusion, since τ ≤ 2π
φ
≤ 2π

sinφ
, we have:

T∑
t=0

rt sin(φt+ ϕ0)εt ≤Term 1 + Term 2 ≤
[
O(

1

sinφ
) + 2τ

]
·

[
|ε0|+

T∑
t=1

|εt − εt−1|

]

≤O
(

1

sinφ

)[
|ε0|+

T∑
t=1

|εt − εt−1|

]
.

The following lemma combines the previous two lemmas to bound the approximation error
in the quadratic.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 78

Lemma 3.8.11. Under the same setting as Lemma 3.8.3, and with x ∈ (θ2

(2−θ)2 ,
1
4
], denote:

(at, − bt) =
(

1 0
)

At.

Then, for any sequence {ετ}, any t ≥ Ω(1
θ
), we have:

t−1∑
τ=0

aτετ ≤O(
1

x
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
t−1∑
τ=0

(aτ − aτ−1)ετ ≤O(
1√
x

)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Proof. We prove the two inequalities separately.
First Inequality: Since x ∈ (θ2

(2−θ)2 ,
1
4
], we further split the analysis into two cases:

Case x ∈ (θ2

(2−θ)2 ,
2θ2

(2−θ)2]: By Lemma 3.8.1, we can expand dthe left-hand-side as:

t−1∑
τ=0

aτ ετ ≤
t−1∑
τ=0

|aτ |(|ε0|+ |ετ − ε0|) ≤

[
t−1∑
τ=0

|aτ |

](
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Noting that in this case x = Θ(θ2), by Lemma 3.8.9 and Lemma 3.8.4, we have for t ≥ O(1/θ):

t−1∑
τ=0

|aτ | ≤
t−1∑
τ=0

(τ + 1)(1− θ)
τ
2 ≤ O(

1

θ2
) = O(

1

x
).

Case x ∈ (2θ2

(2−θ)2 ,
1
4
]: Again, we expand the left-hand-side as:

t−1∑
τ=0

aτ ετ =
t−1∑
τ=0

µτ+1
1 − µτ+1

2

µ1 − µ2

ετ =
t−1∑
τ=0

rτ+1 sin[(τ + 1)φ]

r sin[φ]
ετ .

Noting in this case that x = Θ(sin2 φ) by Lemma 3.8.8, then by Lemma 3.8.10 we have:

t−1∑
τ=0

aτ ετ ≤ O(
1

sin2 φ
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
≤ O(

1

x
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Second Inequality: Using Lemma 3.8.1, we know:

aτ − aτ−1 =
(µτ+1

1 − µτ+1
2)− (µτ1 − µτ2)

µ1 − µ2

=
rτ+1 sin[(τ + 1)φ]− rτ sin[τφ]

r sin[φ]

=
rτ sin[τφ](r cosφ− 1) + rτ+1 cos[τφ] sinφ

r sin[φ]

=
r cosφ− 1

r sinφ
· rτ sin[τφ] + rτ cos[τφ],

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 79

where we note r = Θ(1) and the coefficient of the first term is upper bounded by the
following: ∣∣∣∣r cosφ− 1

r sinφ

∣∣∣∣ ≤ (1− cos2 φ) + (1− r2)

r sinφ
≤ O

(
θ + x

sinφ

)
.

As in the proof of the first inequality, we split the analysis into two cases:
Case x ∈ (θ2

(2−θ)2 ,
2θ2

(2−θ)2]: Again, we use

t−1∑
τ=0

(aτ−aτ−1)ετ ≤
t−1∑
τ=0

|aτ−aτ−1|(|ε0|+|ετ−ε0|) ≤

[
t−1∑
τ=0

|aτ − aτ−1|

](
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Noting x = Θ(θ2), again by Lemma 3.8.4 and | sin τφ
sinφ
| ≤ τ , we have:[

t−1∑
τ=0

|aτ − aτ−1|

]
≤ O(θ + x)

t−1∑
τ=0

τ(1− θ)
τ
2 +

t−1∑
τ=0

(1− θ)
τ
2 ≤ O(

1

θ
) = O(

1√
x

).

Case x ∈ (2θ2

(2−θ)2 ,
1
4
]: From the above derivation, we have:

t−1∑
τ=0

(aτ − aτ−1)ετ =
r cosφ− 1

r sinφ

t−1∑
τ=0

rτ sin[τφ]ετ +
t−1∑
τ=0

rτ cos[τφ]ετ .

According to Lemma 3.8.8, in this case x = Θ(sin2 φ), r = Θ(1) and since Ω(θ2) ≤ x ≤ O(1),
we have: ∣∣∣∣r cosφ− 1

r sinφ

∣∣∣∣ ≤ O

(
θ + x

sinφ

)
≤ O

(
θ + x√
x

)
≤ O(1).

Combined with Lemma 3.8.10, this gives:

t−1∑
τ=0

(aτ − aτ−1)ετ ≤ O(
1

sinφ
)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
≤ O(

1√
x

)

(
|ε0|+

t−1∑
τ=1

|ετ − ετ−1|

)
.

Putting all the pieces together finishes the proof.

Negative-curvature scenario

In this section, we will prove the auxiliary lemmas required for proving Lemma 3.7.7.
The first lemma lower bounds the largest eigenvalue of the AGD matrix for eigen-

directions whose eigenvalues are negative.

Lemma 3.8.12. Under the same setting as Lemma 3.8.3, and with x ∈ [−1
4
, 0], and µ1 ≥ µ2,

we have:

µ1 ≥ 1 +
1

2
min{|x|

θ
,
√
|x|}.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 80

Proof. The eigenvalues satisfy:

det(A− µI) = µ2 − (2− θ)(1− x)µ+ (1− θ)(1− x) = 0.

Let µ = 1 + u. We have

(1 + u)2 − (2− θ)(1− x)(1 + u) + (1− θ)(1− x) = 0

⇒ u2 + ((1− x)θ + 2x)u+ x = 0.

Let f(u) = u2 + θu + 2xu − xθu + x. To prove µ1(A) ≥ 1 +

√
|x|

2
when x ∈ [−1

4
,−θ2], we

only need to verify f(

√
|x|

2
) ≤ 0:

f(

√
|x|
2

) =
|x|
4

+
θ
√
|x|

2
− |x|

√
|x|+

|x|
√
|x|θ

2
− |x|

≤
θ
√
|x|

2
− 3|x|

4
− |x|

√
|x|(1− θ

2
) ≤ 0

The last inequality holds because θ ≤
√
|x| in this case.

For x ∈ [−θ2, 0], we have:

f(
|x|
2θ

) =
|x|2

4θ2
+
|x|
2
− |x|

2

θ
+
|x|2

2
− |x| = |x|

2

4θ2
− |x|

2
− |x|2(

1

θ
− 1

2
) ≤ 0,

where the last inequality is due to θ2 ≥ |x|.
In summary, we have proved

µ1(A) ≥

{
1 +

√
|x|

2
, x ∈ [−1

4
,−θ2]

1 + |x|
2θ
. x ∈ [−θ2, 0],

which finishes the proof.

The next lemma is a technical lemma on large powers.

Lemma 3.8.13. Under the same setting as Lemma 3.8.3, and with x ∈ [−1
4
, 0], denote

(at, − bt) =
(

1 0
)

At.

Then, for any 0 ≤ τ ≤ t, we have

|a(1)
t−τ ||a(1)

τ − b(1)
τ | ≤ [

2

θ
+ (t+ 1)]|a(1)

t+1 − b
(1)
t+1|.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 81

Proof. Let µ1 and µ2 be the two eigenvalues of the matrix A, where µ1 ≥ µ2. Since x ∈
[−1

4
, 0], according to Lemma 3.8.3 and Lemma 3.8.5, we have 0 ≤ µ2 ≤ 1− θ

2
≤ 1 ≤ µ1, and

thus expanding both sides using Lemma 3.8.1 yields:

LHS =

[
t−τ∑
i=0

µt−τ−i1 µi2

][
(1− µ2)

(
τ−1∑
i=0

µτ−i1 µi2

)
+ µτ2

]

=

[
t−τ∑
i=0

µt−τ−i1 µi2

]
(1− µ2)

(
τ−1∑
i=0

µτ−i1 µi2

)
+

[
t−τ∑
i=0

µt−τ−i1 µi2

]
µτ2

≤(t− τ + 1)µt−τ1 (1− µ2)

(
τ−1∑
i=0

µτ−i1 µi2

)
+

[
t−τ∑
i=0

µt−τ−i1 µi2

]

≤(t+ 1)(1− µ2)

(
τ−1∑
i=0

µt+1−i
1 µi2

)
+

2

θ
(1− µ2)

[
t−τ∑
i=0

µt+1−i
1 µi2

]

≤[
2

θ
+ (t+ 1)]

[
(1− µ2)

t∑
i=0

µt+1−i
1 µi2 + µt+1

2

]
= RHS,

which finishes the proof.

The following lemma gives properties of the (1, 1) element of large powers of the AGD matrix.

Lemma 3.8.14. Let the 2 × 2 matrix A(x) be defined as follows and let x ∈ [−1
4
, 0] and

θ ∈ (0, 1
4
].

A(x) =

(2− θ)(1− x) −(1− θ)(1− x)

1 0

 .

For any fixed t > 0, letting g(x) =

∣∣∣∣∣∣
(

1 0
)

[A(x)]t

1

0

∣∣∣∣∣∣, then we have:

1. g(x) is a monotonically decreasing function for x ∈ [−1, θ2/(2− θ)2].

2. For any x ∈ [θ2/(2− θ)2, 1], we have g(x) ≤ g(θ2/(2− θ)2).

Proof. For x ∈ [−1, θ2/(2 − θ)2], we know that A(x) has two real eigenvalues µ1(x) and
µ2(x), Without loss of generality, we can assume µ1(x) ≥ µ2(x). By Lemma 3.8.1, we know:

g(x) =

∣∣∣∣∣∣
(

1 0
)

[A(x)]t

1

0

∣∣∣∣∣∣ =
t∑
i=0

[µ1(x)]i[µ2(x)]t−i = [µ1(x)µ2(x)]
t
2

t∑
i=0

[
µ1(x)

µ2(x)

] t
2
−i

.

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 82

By Lemma 3.8.3 and Vieta’s formulas, we know that [µ1(x)µ2(x)]
t
2 = [(1 − θ)(1 − x)]

t
2 is

monotonically decreasing in x. On the other hand, we have that:

µ1(x)

µ2(x)
+
µ2(x)

µ1(x)
+ 2 =

[µ1(x) + µ2(x)]2

µ1(x)µ2(x)
=

(2− θ)2(1− x)

1− θ

is monotonically decreasing in x, implying that
∑t

i=0

[
µ1(x)
µ2(x)

] t
2
−i

is monotonically decreasing

in x. Since both terms are positive, this implies the product is also monotonically decreasing
in x, which finishes the proof of the first part.

For x ∈ [θ2/(2− θ)2, 1], the two eigenvalues µ1(x) and µ2(x) are conjugate, and we have:

[µ1(x)µ2(x)]
t
2 = [(1− θ)(1− x)]

t
2 ≤ [µ1(θ2/(2− θ)2)µ2(θ2/(2− θ)2)]

t
2

which yields:

t∑
i=0

[
µ1(x)

µ2(x)

] t
2
−i

≤ ‖
t∑
i=0

[
µ1(x)

µ2(x)

] t
2
−i

‖ ≤
t∑
i=0

‖µ1(x)

µ2(x)
‖
t
2
−i = t+ 1 =

t∑
i=0

[
µ1(θ2/(2− θ)2)

µ2(θ2/(2− θ)2)

] t
2
−i

,

and this finishes the proof of the second part.

The following lemma gives properties of the sum of the first row of large powers of the AGD ma-
trix.

Lemma 3.8.15. Under the same setting as Lemma 3.8.3, and with x ∈ [−1
4
, 0], denote

(at, − bt) =
(

1 0
)

At.

Then we have
|at+1 − bt+1| ≥ |at − bt|

and

|at − bt| ≥
θ

2

(
1 +

1

2
min{|x|

θ
,
√
|x|}

)t
.

Proof. Since x < 0, we know that A has two distinct real eigenvalues. Let µ1 and µ2 be the
two eigenvalues of A. For the first inequality, by Lemma 3.8.1, we only need to prove:

µt+1
1 − µt+1

2 − µ1µ2(µt1 − µt2) ≥ µt1 − µt2 − µ1µ2(µt−1
1 − µt−1

2).

Taking the difference of the LHS and RHS, we have:

µt+1
1 − µt+1

2 − µ1µ2(µt1 − µt2)− (µt1 − µt2) + µ1µ2(µt−1
1 − µt−1

2)

=µt1(µ1 − µ1µ2 − 1 + µ2)− µt2(µ2 − µ1µ2 − 1 + µ1)

=(µt1 − µt2)(µ1 − 1)(1− µ2).

CHAPTER 3. ESCAPING SADDLE POINTS FASTER USING MOMENTUM 83

According to Lemma 3.8.3 and Lemma 3.8.5, µ1 ≥ 1 ≥ µ2 ≥ 0, which finishes the proof of
the first claim.

For the second inequality, again by Lemma 3.8.1, since both µ1 and µ2 are positive, we
have:

at − bt =
t∑
i=0

µi1µ
t−i
2 − µ1µ2

t−1∑
i=0

µi1µ
t−1−i
2 ≥ (1− µ2)

t∑
i=0

µi1µ
t−i
2 ≥ (1− µ2)µt1.

By Lemma 3.8.5 we have 1− µ2 ≥ θ
2
, By Lemma 3.8.12 we know µ1 ≥ 1 + 1

2
min{ |x|

θ
,
√
|x|}.

Combining these facts finishes the proof.

84

Part II

Minmax Optimization

85

Chapter 4

On Stable Limit Points of Gradient
Descent Ascent

Minmax optimization, especially in its general nonconvex-nonconcave formulation, has found
extensive applications in modern machine learning frameworks such as generative adversarial
networks (GAN), adversarial training and multi-agent reinforcement learning. Gradient-
based algorithms, in particular gradient descent ascent (GDA), are widely used in practice
to solve these problems. Despite the practical popularity of GDA, however, its theoretical
behavior has been considered highly undesirable. Indeed, apart from possiblity of non-
convergence, recent results (Daskalakis and Panageas, 2018; Mazumdar and Ratliff, 2018;
Adolphs et al., 2018) show that even when GDA converges, its stable limit points can be
points that are not local Nash equilibria, thus not game-theoretically meaningful.

In this work, we initiate a discussion on the proper optimality measures for minmax
optimization, and introduce a new notion of local optimality—local minmax—as a more
suitable alternative to the notion of local Nash equilibrium. We establish favorable properties
of local minmax points, and show, most importantly, that as the ratio of the ascent step size
to the descent step size goes to infinity, stable limit points of GDA are exactly local minmax
points up to some degenerate points, demonstrating that all stable limit points of GDA have
a game-theoretic meaning for minmax problems.

4.1 Introduction

Minmax optimization refers to problems of the form minx maxy f(x,y). Such problems
arise in a number of fields, including mathematics, biology, social science, and particularly
economics (Myerson, 2013). Due to the wide range of applications of these problems and
their rich mathematical structure, they have been studied for several decades in the setting
of zero-sum games. In the last few years, minmax optimization has also found signifi-
cant applications in machine learning, in settings such as generative adversarial networks
(GAN) (Goodfellow et al., 2014), adversarial training (Madry et al., 2017) and multi-agent

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 86

reinforcement learning (Omidshafiei et al., 2017). In practice, these minmax problems are
often solved using gradient based algorithms, especially gradient descent ascent (GDA), an
algorithm that alternates between a gradient descent step for x and some number of gradient
ascent steps for y.

Such gradient-based algorithms have been well studied for convex-concave games, where
f(·, ·) is a convex function of x for any fixed y and a concave function of y for any fixed
x. In this case, it can be shown that the average of iterates of GDA converges to a Nash
equilibrium; i.e., a point (x∗,y∗) such that f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗) for every x
and y (Bubeck, 2015; Hazan, 2016). In the convex-concave setting, it turns out that Nash
equilibria and global optima are equivalent: (x∗,y∗) is a Nash equilibrium if and only if
f(x∗,y∗) = minx maxy f(x,y). Most of the minmax problems arising in modern machine
learning applications do not, however, have this simple convex-concave structure.

Given the widespread usage of GDA in practice, it is natural to ask about its properties
when applied to general nonconvex-nonconcave settings. It turns out that this question is
extremely challenging—GDA dynamics do not monotonically decrease any known potential
function and GDA may not converge in general (Daskalakis et al., 2017). Worse still, even
when GDA converges, recent results suggest that it has some undesirable properties. Specif-
ically, (Daskalakis and Panageas, 2018), (Mazumdar and Ratliff, 2018), and (Adolphs et al.,
2018) show that some of the stable limit points of GDA may not be Nash equilibria. This
suggests that they may have nothing to do with the minmax problem being solved. This
raises the following question:

Is GDA an appropriate algorithm for solving general minmax problems?

This work provides a positive theoretical answer to this queestion in the general nonconvex-
nonconcave setting. Critical to our perspective is a new notion of local optimality—local min-
max, which we propose as a more useful alternative than local Nash equilibrium for a range
of problems. We show that, as the ratio of the ascent step size to the descent step size goes
to infinity, the stable limit points of GDA are identical to local minmax points up to some
degenerate points. Therefore, almost all stable limit points of GDA are game-theoretically
meaningful for minmax problems.

Our contributions

The main contributions of the work are as follows:

• We initiate a discussion on the proper optimality measures for minmax optimization,
distinguishing among pure strategy Nash equilibria, global minmax points and mixed
strategy Nash equilibria. We show that the latter two are well-defined and of practical
relevance. We further show a reduction from the problem of finding mixed strategy
Nash equilibira to the problem of finding global minmax points for Lipschitz games,
demonstrating the central importance of finding global minmax points.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 87

• We define a new notion of local optimality—local minmax—as a natural local surrogate
for global minmaxity. We explain its relation to local Nash equilibria and global min-
max points, and we establish its first- and second-order characterizations. It is worth
noting that minmax optimization exhibits unique properties compared to nonconvex
optimization in that global minmax points can be neither local minmax nor stationary
(see Proposition 4.4.2).

• We analyze the asymptotic behavior of GDA, and show that as the ratio of the ascent
step size to the descent step size goes to infinity, stable limit points of GDA are exactly
local minmax points up to some degenerate points, demonstrating that almost all stable
limit points of GDA have a game-theoretic meaning for minmax problems.

• We also consider the minmax problem with an approximate oracle for the maximization
over y. We show that gradient descent with inner maximization (over y) finds a point
that is close to an approximate stationary point of φ(x) := maxy f(x,y).

Chapter organization In Section 4.1, we review additional related work. Section 4.2
presents preliminaries. In Section 4.3, we discuss the right objective for general nonconvex-
nonconcave minmax optimization. Section 4.4 presents our main results on a new notion
of local optimality, the limit points of GDA and gradient descent with a maximization
oracle. We conclude in Section 4.5. Due to space constraints, all proofs are presented in the
appendix.

Related Work

GDA dynamics: There have been several lines of work studying GDA dynamics for minmax
optimization. Cherukuri, Gharesifard, and Cortes (2017) investigate GDA dynamics under
some strong conditions and show that it converges locally to Nash equilibria. Heusel et al.
(2017) and Nagarajan and Kolter (2017) similarly impose strong assumptions in the setting
of the training of GANs and show that under these conditions Nash equilibria are stable fixed
points of GDA. Gidel et al. (2018) investigate the effect of simultaneous versus alternating
gradient updates as well as the effect of momentum on the convergence in bilinear games.
The most closely related analyses to ours are Mazumdar and Ratliff (2018) and Daskalakis
and Panageas (2018). While Daskalakis and Panageas (2018) study minmax optimization (or
zero-sum games), Mazumdar and Ratliff (2018) studies a much more general setting of non-
zero-sum games and multi-player games. Both of these works show that the stable limit
points of GDA are not necessarily Nash equilibria. Adolphs et al. (2018) and Mazumdar,
Jordan, and Sastry (2019) propose Hessian-based algorithms whose stable fixed points are
exactly Nash equilibria. We note that all the works in this setting use Nash equilibrium as
the notion of goodness.

General minmax optimization in machine learning: There have also been several
other recent works on minmax optimization that study algorithms other than GDA. Rafique

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 88

et al. (2018) consider nonconvex but concave minmax problems where for any x, f(x, ·) is
a concave function. In this case, they analyze an algorithm combining approximate maxi-
mization over y and a proximal gradient method for x to show convergence to stationary
points. Lin et al. (2018) consider a special case of the nonconvex-nonconcave minmax prob-
lem, where the function f(·, ·) satisfies a variational inequality. In this setting, they consider a
proximal algorithm that requires the solving of certain strong variational inequality problems
in each step and show its convergence to stationary points. Hsieh, Liu, and Cevher (2018)
propose proximal methods that asymptotically converge to a mixed Nash equilibrium; i.e.,
a distribution rather than a point.

No regret dynamics for minmax optimization: Online learning/no regret dynamics
have also been used to design algorithms for minmax optimization. All of these results
require, however, access to oracles which solve the minimization and maximization problems
separately, keeping the other variable fixed and outputting a mixed Nash equilibrium (see,
e.g., Feige, Mansour, and Schapire, 2015; Chen et al., 2017; Grnarova et al., 2017; Gonen
and Hazan, 2018). Finding the global minmax point even with access to these oracles is NP
hard (Chen et al., 2017).

Nonconvex optimization: Gradient-based methods are also widely used for solving
nonconvex optimization problems in practice. There has been a significant amount of recent
work on understanding simple gradient-based algorithms such as gradient descent in this
setting. Since finding global minima is already NP hard, many works focus on obtaining
convergence to second-order stationary points. Lee et al. (2016) and Panageas and Piliouras
(2016) show that gradient descent converges to only these points with probability one. Ge
et al. (2015) and Jin et al. (2017) show that with a small amount of randomness gradient
descent also converges to second-order stationary points and give nonasymptotic rates of
convergence.

4.2 Preliminaries

In this section, we will first introduce our notation, and then present definitions and results
for minmax optimization, zero-sum games, and general game-theoretic dynamics that are
relevant to our work.

Notation

We use bold upper-case letters A,B to denote matrices and bold lower-case letters x,y to
denote vectors. For vectors we use ‖·‖ to denote the `2-norm, and for matrices we use ‖·‖
and ρ(·) to denote spectral (or operator) norm and spectral radius (largest absolute value
of eigenvalues) respectively. Note that these two are in general different for asymmetric
matrices. For a function f : Rd → R, we use ∇f and ∇2f to denote its gradient and
Hessian. For functions of two vector arguments, f : Rd1 × Rd2 → R , we use ∇xf , ∇yf and
∇2

xxf , ∇2
xyf , ∇2

yyf to denote its partial gradient and partial Hessian. We also use O(·) and

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 89

o(·) notation as follows: f(δ) = O(δ) means lim supδ→0 |f(δ)/δ| ≤ C for some large absolute
constant C, and g(δ) = o(δ) means limδ→0 |g(δ)/δ| = 0. For complex numbers, we use <(·)
to denote its real part, and | · | to denote its modulus. We also use P(·), operating over a
set, to denote the collection of all probability measures over the set.

Minmax optimization and zero-sum games

In this work, we consider general minmax optimization problems. Given a function f :
X × Y → R, where X ⊂ Rd1 and Y ⊂ Rd2 , the objective is to solve:

min
x∈X

max
y∈Y

f(x,y). (4.1)

While classical theory mostly studied the convex-concave case where f(·,y) is convex for
any fixed y and f(x, ·) is concave for any fixed x, this work considers the general case, where
both f(x, ·) and f(·,y) can be nonconvex and nonconcave. Optimality in this setting is
defined as follows:

Definition 4.2.1. (x?,y?) is a global minmax point, if for any (x,y) in X ×Y we have:

f(x?,y) ≤ f(x?,y?) ≤ max
y′∈Y

f(x,y′).

The minmax problem (4.1) has been extensively studied in the game theory literature
under the name of “zero-sum game.” Here, two players play a competitive game with the
first player playing x ∈ X , and then the second player playing y ∈ Y . f(x,y) is the payoff
function which represents the value lost by the first player (which is in turn gained by the
second player). In this setting the standard notion of equilibrium is the following:

Definition 4.2.2. (x?,y?) is a (pure strategy) Nash equilibrium of f , if for any (x,y)
in X × Y :

f(x?,y) ≤ f(x?,y?) ≤ f(x,y?).

Pure strategy Nash equilibria play an essential role in convex-concave games since for
those games, pure strategy Nash equilibria always exist, and are also global minmax points (Bubeck,
2015).

When we move to the nonconvex-nonconcave setting, these nice properties of pure strat-
egy Nash equilibria no longer hold. Moreover, the problem of finding global solutions in this
setting is NP hard in general. Therefore, previous work has consider local alternatives see,
e.g., Mazumdar and Ratliff, 2018; Daskalakis and Panageas, 2018:

Definition 4.2.3. (x?,y?) is a local (pure strategy) Nash equilirium of f , if there
exists δ > 0 such that for any (x,y) satisfying ‖x− x?‖ ≤ δ and ‖y − y?‖ ≤ δ we have:

f(x?,y) ≤ f(x?,y?) ≤ f(x,y?).

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 90

We can characterize local pure strategy Nash equilibria via first-order and second-order
conditions.

Proposition 4.2.4 (First-order Necessary Condition). Assuming f is differentiable, any
local Nash equilibrium satisfies ∇xf(x,y) = 0 and ∇yf(x,y) = 0.

Proposition 4.2.5 (Second-order Necessary Condition). Assuming f is twice-differentiable,
any local Nash equilibrium satisfies ∇2

yyf(x,y) � 0, and ∇2
xxf(x,y) � 0.

Proposition 4.2.6 (Second-order Sufficient Condition). Assuming f is twice-differentiable,
any stationary point (i.e., ∇f = 0) satisfying the following condition is a local Nash equilib-
rium:

∇2
yyf(x,y) ≺ 0, and ∇2

xxf(x,y) � 0. (4.2)

We also call a stationary point satisfying (4.2) a strict local Nash equilibrium.

In contrast to pure strategies where each player plays a single action, game theorists have
also considered mixed strategies where each player is allowed to play a randomized action
sampled from a probability measure µ ∈ P(X) or ν ∈ P(Y). Then, the payoff function
becomes an expected value Ex∼µ,y∼νf(x,y). This corresponds to the scenario where the
second player knows the strategy (distribution) of the first player, but does not know the
random action he plays. In this setting we define mixed strategy Nash equilibria:

Definition 4.2.7. A probability measure (µ?, ν?) is a mixed strategy Nash equilibrium
of f , if for any measure (µ, ν) in P(X)× P(Y), we have

Ex∼µ?,y∼νf(x,y) ≤ Ex∼µ?,y∼ν?f(x,y) ≤ Ex∼µ,y∼ν?f(x,y).

Dynamical systems

One of the most popular algorithms for solving minmax problems is Gradient Descent Ascent
(GDA). We outline the algorithm in Algorithm 8, with updates written in a general form
zt+1 = w(zt), where w : Rd → Rd is a vector function. One notable distinction from
standard gradient descent is that w(·) may not be a gradient field (i.e., the gradient of a
scalar function φ(·)), and so the Jacobian matrix J := ∂w/∂z may be asymmetric. This
results in the possibility of the dynamics zt+1 = w(zt) converging to a limit cycle instead of a
single point. Nevertheless, we can still define fixed points and stability for general dynamics.

Definition 4.2.8. z? is a fixed point if z? = w(z?).

Definition 4.2.9 (Linear Stability). For a differentiable dynamical system w, a fixed point
z? is a linearly stable point of w if its Jacobian matrix J(z?) := (∂w/∂z)(z?) has spectral
radius ρ(J(z?)) ≤ 1. We also say that a fixed point z? is a strict linearly stable point if
ρ(J(z?)) < 1 and a strict linearly unstable point if ρ(J(z?)) > 1.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 91

Intuitively, linear stability captures whether under the dynamics zt+1 = w(zt) a flow that
starts at point that is infinitesimally close to z? will remain in a small neighborhood around
z?.

4.3 What is the Right Objective?

We have introduced three notions of optimality in minmax games: global minmax points
(Definition 4.2.1), pure strategy Nash equilibria (Definition 4.2.2) and mixed strategy Nash
equilibria (Definition 4.2.7). For convex-concave games, these three notions are essentially
identical. However, for nonconvex-nonconcave games, they are all different in general. So,
what is the right objective to pursue in this general setting?

Pure strategy Nash equilibrium First, we note that pure strategy Nash equilibria may
not exist in nonconvex-nonconcave settings.

Proposition 4.3.1. There exists a twice-differentiable function f , where pure strategy Nash
equilibria (either local or global) do not exist.

Proof. Consider a two-dimensional function f(x, y) = sin(x + y). We have ∇f(x, y) =
(cos(x + y), cos(x + y)). Assuming (x, y) is a local pure strategy Nash equilibrium, by
Proposition 4.2.4 it must also be a stationary point; that is, x + y = (k + 1/2)π for k ∈ Z.
It is easy to verify, for odd k, ∇2

xxf(x, y) = ∇2
yyf(x, y) = 1 > 0; for even k, ∇2

xxf(x, y) =
∇2
yyf(x, y) = −1 < 0. By Proposition 4.2.5, none of the stationary points is a local pure

strategy Nash equilibrium.

Apart from the existence issue, the property that x? is optimal for f(·,y?) is not mean-
ingful in applications such as adversarial training, which translates to the property that the
classifier needs to be optimal with respect to a fixed corruption.

Global minmax point On the other hand, global minmax points, a simple but less
mentioned notion of optimality, always exist.

Proposition 4.3.2. Assume that function f : X × Y → R is continuous, and assume that
X ⊂ Rd1, Y ⊂ Rd2 are compact. Then the global minmax point (Definition 4.2.1) of f always
exists.

Proposition 4.3.2 is a simple consequence of the extreme-value theorem. Compared to
pure strategy Nash equilibria, the notion of global minmax is typically important in the
setting where our goal is to find the best x? subject to adversarial perturbation of y rather
than an x which is optimal for a fixed y?. Indeed, both GANs and adversarial training
actually fall in this category, where our primary goal is to find the best generator subject
to an adversarial discriminator, and to find the best robust classifier subject to adversarial
corruption.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 92

Mixed strategy Nash equilibrium Finally, when each agent is allowed to play a random
action according to some distribution, such as in the setting of multi-agent reinforcement
learning, mixed strategy Nash equilibria are a valid notion of optimality. The existence of
mixed strategy Nash equilibrium can be traced back to von (Neumann, 1928). Here we cite
a generalized version for continuous games.

Proposition 4.3.3 ((Glicksberg, 1952)). Assume that the function f : X × Y → R is
continuous and that X ⊂ Rd1, Y ⊂ Rd2 are compact. Then

min
µ∈P(X)

max
ν∈P(Y)

E(µ,ν)f(x,y) = max
ν∈P(Y)

min
µ∈P(X)

E(µ,ν)f(x,y).

Let µ? be the minimum for the minmax problem, and let ν? be the maximum for the maxmin
problem. Then (µ?, ν?) is a mixed strategy Nash equilibrium.

In conclusion, both global minmax points and mixed strategy Nash equilibria are well-
defined objectives, and of practical interest. For a specific application, which notion is more
suitable depends on whether randomized actions are allowed or of interest.

Reduction from mixed strategy nash equilibria to minmax points

We concluded in the last section that both global minmax points and mixed strategy Nash
equilibria (or mixed strategies, for short) are of practical interest. However, finding mixed
strategy equilibria requires optimizing over a space of probability measures, which is infinite
dimensional, making the problem computational infeasible in general. In this section, we
show instead how to find approximate mixed strategy Nash equilibria for Lipschitz games.
We show that it is sufficient to find a global minmax point of a problem with polynomially
large dimension.

Definition 4.3.4. Let (µ?, ν?) be a mixed strategy Nash equilibrium. A probability measure
(µ†, ν†) is an ε-approximate mixed strategy Nash equilibrium if:

∀ν ′ ∈ P(Y), E(µ†,ν′)f(x,y) ≤ E(µ?,ν?)f(x,y) + ε

∀µ′ ∈ P(Y), E(µ′,ν†)f(x,y) ≥ E(µ?,ν?)f(x,y)− ε.

Theorem 4.3.5. Assume that function f is L-Lipschitz, and the diameters of X and Y are
at most D. Let (µ?, ν?) be a mixed strategy Nash equilibrium. Then there exists an absolute
constant c, for any ε > 0, such that if N ≥ c · d2(LD/ε)2 log(LD/ε), we have:

min
(x1,...,xN)∈XN

max
y∈Y

1

N

N∑
i=1

f(xi,y) ≤ E(µ?,ν?)f(x,y) + ε.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 93

Intuitively, Theorem 4.3.5 holds because function f is Lipschitz, Y is a bounded domain,
and thus we can establish uniform convergence of the expectation of f(·,y) to its average
over N samples for all y ∈ Y simultaneously. A similar argument was made in (Arora et al.,
2017).

Theorem 4.3.5 implies that in order to find a approximate mixed strategy Nash equilib-
rium, we can solve a large minmax problem with objective F (X,y) :=

∑N
i=1 f(xi,y)/N . The

global minmax solution X? = (x?1, . . . ,x
?
n) gives a empirical distribution µ̂? =

∑N
i=1 δ(x −

x?i)/N , where δ(·) is the Dirac delta function. By symmetry, we can also solve the maxmin
problem to find ν̂?. Since optimal pure strategies are always as good as optimal mixed
strategies for the second player, we know (µ̂?, ν̂?) is an ε-approximate mixed strategy Nash
equilibrium. That is, approximate mixed strategy Nash can be found by finding two global
minmax points.

4.4 Main Results

In the previous section, we concluded that the central question in minmax optimization is
to find a global minmax point. However, the problem of finding global minmax points is
in general NP hard. In this section, we present our main results, suggesting possible ways
of circumventing this NP-hardness challenge. In Section 4.4, we develop a new notion of
local surrogacy for global minmax points which we refer to as local minmax points, and we
study their properties. In Section 4.4, we establish relations between stable fixed points of
GDA and local minmax points. In Section 4.4, we study the behavior of gradient descent
with an approximate maximization oracle for y and show that it converges to approximately
stationary points of maxy f(·,y).

Local minmax points

While most previous work (Daskalakis and Panageas, 2018; Mazumdar and Ratliff, 2018) has
focused on local Nash equilibria (Definition 4.2.3), which are local surrogates for pure strategy
Nash equilibria, we propose a new notion—local minmax—as a natural local surrogate for
global minmaxity. To the best of our knowledge, this notion has not been considered before.

Definition 4.4.1. A point (x?,y?) is said to be a local minmax point of f , if there exists
δ0 > 0 and a continuous function h satisfying h(δ) → 0 as δ → 0, such that for any δ ≤ δ0,
and any (x,y) satisfying ‖x− x?‖ ≤ δ and ‖y − y?‖ ≤ δ, we have

f(x?,y) ≤ f(x?,y?) ≤ max
y′:‖y′−y?‖≤h(δ)

f(x,y′). (4.3)

A notion of local maxmin point can be defined similarly. Local minmax points are
different from local Nash equilibria since local minmax points only require x? to be the
minimum of a local max function maxy′:‖y′−y?‖≤h(δ) f(·,y′), while local Nash equilibria require
x∗ to be the local minimum after fixing y∗ (see Figure 4.1). The local radius h(δ) over which

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 94

Figure 4.1: Left: f(x, y) = x2−y2 where (0, 0) is both local Nash and local minmax. Right:
f(x, y) = −x2 + 5xy − y2 where (0, 0) is not local Nash but local minmax with h(δ) = δ.

the maximum is taken needs to decrease to zero as δ approaches zero. We note that our
definition does not control the relative rate at which h(δ) and δ go to zero; indeed, it is
allowed that limδ→0 h(δ)/δ =∞.

We would like to highlight an interesting fact: in minmax optimization, global minmax
can be neither local minmax nor stationary points (and thus not local Nash equilibria). This
is in contrast to the well-known fact in nonconvex optimization where global minima are
always local minima.

Proposition 4.4.2. The global minmax point can be neither local minmax nor a stationary
point.

See Figure 4.2 for an illustration and Appendix 4.7 for the proof. The proposition is a
natural consequece of the definitions where global minmax points are obtained as a mini-
mum of a global maximum function while local minmax points are the minimum of a local
maximum function. This also illustrates that minmax optimization is a challenging task,
and worthy of independent study, beyond nonconvex optimization.

Nevertheless, global minmax points can be guaranteed to be local minmax if the problem
has some structure. For instance, this is true when f is strongly-concave in y, or more
generally when f satisfies the following properties that have been established to hold in
several popular machine learning problems (Ge, Jin, and Zheng, 2017; Boumal, Voroninski,
and Bandeira, 2016):

Theorem 4.4.3. Assume that f is twice differentiable, and for any fixed x, the function
f(x, ·) is strongly concave in the neighborhood of local maxima and satisfies the assumption
that all local maxima are global maxima. Then the global minmax point of f(·, ·) is also a
local minmax point.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 95

γ-GDA

Local

Minmax

(∞-GDA)

Local

Maxmin

Local

Nash

Figure 4.2: Left: f(x, y) = 0.2xy − cos(y), the global minmax points (0,−π) and (0, π)
are not stationary. Right: The relations among local Nash equilibria, local minmax points,
local maxmin points and linearly stable points of γ-GDA, and ∞-GDA (up to degenerate
points).

We consider local minmax as a more suitable notion of local optimality than local Nash
equilibrium for minmax optimization. First, local minmaxity is a strictly relaxed notion of
local Nash equilibrium, and it alleviates the non-existence issue for local Nash equilibria.

Proposition 4.4.4. Any local pure strategy Nash equilibrium is a local minmax point.

Second, local minmax points enjoy simple first-order and second-order characterizations.

Proposition 4.4.5 (First-order Necessary Condition). Assuming that f is continuously
differentiable, then any local minmax point (x,y) satisfies ∇xf(x,y) = 0 and ∇yf(x,y) = 0.

Proposition 4.4.6 (Second-order Necessary Condition). Assuming that f is twice differen-
tiable, then (x,y) is a local minmax point implies that ∇2

yyf(x,y) � 0, and for any v satisfy-
ing ∇2

yxf(x,y)·v ∈ column span(∇2
yyf(x,y)) that v>[∇2

xxf−∇2
xyf(∇2

yyf)†∇2
yxf](x,y)·v ≥

0. (Here † denotes Moore-Penrose inverse.)

Proposition 4.4.7 (Second-order Sufficient Condition). Assume that f is twice differen-
tiable. Any stationary point (x,y) satisfying ∇2

yyf(x,y) ≺ 0 and

[∇2
xxf −∇2

xyf(∇2
yyf)−1∇2

yxf](x,y) � 0 (4.4)

is a local minmax point. We call stationary points satisfying (4.4) strict local minmax points.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 96

Algorithm 8 Gradient Descent Ascent (γ-GDA)

Input: (x0,y0), step size η, ratio γ.
for t = 0, 1, . . . , do

xt+1 ← xt − (η/γ)∇xf(xt,yt).
yt+1 ← yt + η∇yf(xt,yt).

We note that if ∇2
yyf(x,y) is non-degenerate, then the second-order necessary condition

(Proposition 4.4.6) becomes ∇2
yyf(x,y) ≺ 0 and [∇2

xxf − ∇2
xyf(∇2

yyf)−1∇2
yxf](x,y) � 0,

which is identical to the sufficient condition Eq.(4.4) up to an equals sign.
Comparing Eq. (4.4) to the second-order sufficient condition for local Nash equilibrium

in Eq. (4.2), we see that local minmax requires the Shur complement to be positive definite
instead of requiring ∇2

xxf(x,y) to be positive definite. Contrary to local Nash equilibria,
this characterization of local minmax not only takes into account the interaction term ∇2

xyf
between x and y, but also reflects the order of minmax vs maxmin.

Limit points of gradient descent ascent

In this section, we consider the asymptotic behavior of Gradient Descent Ascent (GDA). As
shown in the pseudo-code in Algorithm 8, GDA simultaneously performs gradient descent
on x and gradient ascent on y. We consider the general form where the step size for x can
be different from the step size for y by a ratio γ, and denoted this algorithm by γ-GDA.
When the step size η is small, this is essentially equivalent to gradient descent with multiple
steps of gradient ascent where γ indicates how many gradient ascent steps are performed for
one gradient descent step.

To study the limiting behavior, we primarily focus on linearly stable points of γ-GDA,
since with random initialization, γ-GDA will almost surely escape strict linearly unstable
points.

Theorem 4.4.8 ((Daskalakis and Panageas, 2018)). For any γ > 1, assuming the function
f is `-gradient Lipschitz, and the step size η ≤ 1/`, then the set of initial points x0 so that
γ-GDA converges to its strict linear unstable point is of Lebesgue measure zero.

We further simplifiy the problem by considering the limiting case where the step size
η → 0, which corresponds to γ-GDA flow

dx

dt
= −1

γ
∇xf(x,y)

dy

dt
= ∇yf(x,y).

The strict linearly stable points of the γ-GDA flow have a very simple second-order charac-
terization.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 97

Proposition 4.4.9. (x,y) is a strict linearly stable point of γ-GDA if and only if for all the
eigenvalues {λi} of following Jacobian matrix,

Jγ =

−(1/γ)∇2
xxf(x,y) −(1/γ)∇2

xyf(x,y)

∇2
yxf(x,y) ∇2

yyf(x,y),


their real part <(λi) < 0 for any i.

In the remainder of this section, we assume that f is a twice-differentiable function, and
we use Local Nash to represent the set of strict local Nash equilibria, Local Minmax for the
set of strict local minmax points, Local Maxmin for the set of strict local maxmin points,
and γ−GDA for the set of strict linearly stable points of the γ-GDA flow. Our goal is
to understand the relationships between these sets. Daskalakis and Panageas (2018) and
Mazumdar and Ratliff (2018) provided a relation between Local Nash and 1−GDA which can
be generalized to γ−GDA as follows.

Proposition 4.4.10 ((Daskalakis and Panageas, 2018)). For any fixed γ, for any twice-
differentiable f , Local Nash ⊂ γ−GDA, but there exist twice-differentiable f such that γ−GDA 6⊂
Local Nash.

That is, if γ-GDA converges, it may converge to points not in Local Nash . This raises
a basic question as to what those additional stable limit points of γ−GDA are. Are they
meaningful? This work answers this question through the lens of Local Minmax . Although
for fixed γ, the set γ−GDA does not have a simple relation with Local Minmax , it turns out
that an important relationship arises when γ goes to ∞. To describe the limit behavior of
the set γ−GDA when γ →∞ we define two set-theoretic limits:

∞−GDA := lim sup
γ→∞

γ−GDA = ∩γ0>0 ∪γ>γ0 γ−GDA

∞−GDA := lim inf
γ→∞

γ−GDA = ∪γ0>0 ∩γ>γ0 γ−GDA.

The relations between γ−GDA and Local Minmax are given as follows:

Proposition 4.4.11. For any fixed γ, there exists twice-differentiable f such that Local Minmax 6⊂
γ−GDA; there also exists twice-differentiable f such that γ−GDA 6⊂ Local Minmax∪Local Maxmin.

Theorem 4.4.12 (Main Theorem). For any twice-differentiable f , Local Minmax ⊂ ∞−GDA ⊂
∞−GDA ⊂ Local Minmax ∪ {(x,y)|(x,y) is stationary and ∇2

yyf(x,y) is degenerate}.

That is, ∞−GDA = Local Minmax up to some degenerate points. Intuitively, when γ is
large, γ-GDA can move a long distance in y while only making very small changes in x. As
γ → ∞, γ-GDA can approximately find the local maximum of f(x + δx, ·), subject to any
small change in δx; therefore, stable limit points are indeed local minmax.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 98

Algorithm 9 Gradient Descent with Max-oracle

Input: x0, step size η.
for t = 0, 1, . . . , T do

find yt so that f(xt,yt) ≥ maxy f(xt,y)− ε.
xt+1 ← xt − η∇xf(xt,yt).

Pick t uniformly at random from {0, · · · , T}.
return x̄← xt.

Algorithmically, one can view∞−GDA as a set that discribes the strict linear stable limit
points for GDA with γ very slowly increasing with respect to t, and eventually going to ∞.
To the best of our knowledge, this is the first result showing that all stable limit points of
GDA are meaningful and locally optimal up to some degenerate points.

Gradient descent with max-oracle

In this section, we consider solving the minmax problem when we have access to an oracle
for approximate inner maximization; i.e., for any x, we have access to an oracle that outputs
a ŷ such that f(x, ŷ) ≥ maxy f(x,y) − ε. A natural algorithm to consider in this setting
is to alternate between gradient descent on x and a (approximate) maximization step on y.
The pseudocode is presented in Algorithm 9.

It can be shown that Algorithm 9 indeed converges (in contrast with GDA which can
converge to limit cycles). Moreover, the limit points of Algorithm 9 satisfy a nice property—
they turn out to be approximately stationary points of φ(x) := maxy f(x,y). For a smooth
function, “approximately stationary point” means that the norm of gradient is small. How-
ever, even when f(·, ·) is smooth (up to whatever order), φ(·) as defined above need not be
differentiable. The norm of subgradient can be a discontinuous function which is an unde-
sirable measure for closeness to stationarity. Fortunately, however, and `-gradient Lipschitz
of f(·, ·) imply that φ(·) is `-weakly convex (Rafique et al., 2018); i.e., φ(x) + (`/2)‖x‖2 is
convex. In such settings, the approximate stationarity of φ(·) can be measured by the norm
of gradient of its Moreau envelope φλ(·).

φλ(x) := min
x′

φ(x′) +
1

2λ
‖x− x′‖2. (4.5)

Here λ < 1/`. The Moreau envelope satisfies the following two important properties if
λ < 1/`. Let x̂ = argminx′ φ(x′) + (1/2λ)‖x− x′‖2, then:

‖x̂− x‖ = λ‖∇φλ(x)‖, and min
g∈∂φ(x̂)

‖g‖ ≤ ‖∇φλ(x)‖,

where ∂ denotes the subdifferential of a weakly convex function. A proof of this fact can
be found in (Rockafellar, 2015). Therefore, ‖∇φλ(x)‖ being small means that x is close to
a point x̂ that is approximately stationary. We now present the convergence guarantee for
Algorithm 9.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 99

Theorem 4.4.13. Suppose f is `-smooth and L-Lipschitz and define φ(·) := maxy f(·,y).
Then the output x̄ of GD with Max-oracle (Algorithm 9) with step size η = γ/

√
T + 1 will

satisfy

E
[
‖∇φ1/2`(x̄)‖2

]
≤ 2 ·

(
φ1/2`(x0)−minφ(x)

)
+ `L2γ2

γ
√
T + 1

+ 4`ε,

where φ1/2` is the Moreau envelope (4.5) of φ.

The proof of Theorem 4.4.13 is similar to the convergence analysis for nonsmooth weakly-
convex functions (Davis and Drusvyatskiy, 2018), except here the max-oracle has error ε.
Theorem 4.4.13 claims, other than an additive error 4`ε as a result of the oracle solving the
maximum approximately, that the remaining term decreases at a rate of 1/

√
T .

4.5 Conclusion

In this work, we consider general nonconvex-nonconcave minmax optimization. While gra-
dient descent ascent (GDA) is widely used in practice for such problems, previous results
suggest that GDA has undesirable limiting behavior, questioning GDA’s relevance for this
problem. We formulate a new notion of local optimum for minmax problems, which we
refer to as local minmax, and show that it is more suitable for many learning problems than
standard notions such as local Nash equilibrium. We establish that as the ratio of the ascent
step size to the descent step size in GDA goes to infinity, all strict stable limit points are
equivalent to local minmax points except for degenerate points. This yields a game-theoretic
meaning for all stable limit points of GDA. We also consider the minmax problem when we
have access to an approximate inner maximization. In this setting, we analyze gradient de-
scent with maximization and show that it finds a point close to an approximate stationary
point.

4.6 Proofs for Reduction from Mixed Strategy Nash

to Minmax Points

In this section we prove Theorem 4.3.5 in Section 4.3.

Theorem 4.3.5. Assume that function f is L-Lipschitz, and the diameters of X and Y are
at most D. Let (µ?, ν?) be a mixed strategy Nash equilibrium. Then there exists an absolute
constant c, for any ε > 0, such that if N ≥ c · d2(LD/ε)2 log(LD/ε), we have:

min
(x1,...,xN)∈XN

max
y∈Y

1

N

N∑
i=1

f(xi,y) ≤ E(µ?,ν?)f(x,y) + ε.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 100

Proof. Note that WLOG, the second player can always play pure strategy. That is,

min
µ∈P(X)

max
ν∈P(Y)

Ex∼µ,y∼νf(x,y) = min
µ∈P(X)

max
y∈Y

Ex∼µf(x,y)

Therefore, we only need to solve the problem of RHS. Suppose the minimum over P(X)
is achieved at µ?. First, sample (x1, . . . ,xN) i.i.d from µ?, and note maxx1,x2∈X |f(x1,y) −
f(x2,y)| ≤ LD for any fixed y. Therefore by Hoeffding inequality, for any fixed y:

P

(
1

N

N∑
i=1

f(xi,y)− Ex∼µ?f(x,y) ≥ t

)
≤ e

− Nt2

(LD)2

Let Ȳ be a minimal ε/(2L)-covering over Y . We know the covering number |Ȳ| ≤ (2DL/ε)d.
Thus by union bound:

P

(
∀y ∈ Ȳ , 1

N

N∑
i=1

f(xi,y)− Ex∼µ?f(x,y) ≥ t

)
≤ e

d log 2DL
ε
− Nt2

(LD)2

Pick t = ε/2 and N ≥ c · d(LD/ε)2 log(LD/ε) for some large absolute constant c, we have:

P

(
∀y ∈ Ȳ , 1

N

N∑
i=1

f(xi,y)− Ex∼µ?f(x,y) ≥ ε

2

)
≤ 1

2

Let y? = arg maxy
1
N

∑N
i=1 f(xi,y), by definition of covering, we can always find a y′ ∈ Ȳ so

that ‖y? − y′‖ ≤ ε/(4L). Thus, with probability at least 1/2:

max
y

1

N

N∑
i=1

f(xi,y)−max
y

Ex∼µ?f(x,y) =
1

N

N∑
i=1

f(xi,y
?)−max

y
Ex∼µ?f(x,y)

≤

[
1

N

N∑
i=1

f(xi,y
?)− 1

N

N∑
i=1

f(xi,y
′)

]
+

[
1

N

N∑
i=1

f(xi,y
′)− Ex∼µ?f(x,y′)

]
+ [Ex∼µ?f(x,y′)−max

y
Ex∼µ?f(x,y)] ≤ ε/2 + ε/2 + 0 ≤ ε

That is, with probability at least 1/2:

max
y∈Y

1

N

N∑
i=1

f(xi,y) ≤ min
µ∈P(X)

max
y∈Y

Ex∼µf(x,y) + ε

This implies:

min
(x1,...,xN)∈XN

max
y∈Y

1

N

N∑
i=1

f(xi,y) ≤ min
µ∈P(X)

max
y∈Y

Ex∼µf(x,y) + ε

Combine with Proposition 4.3.3, we finish the proof.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 101

4.7 Proofs for Properties of Local Minmax Points

In this section, we prove the propositions and theorems presented in Section 4.4.

Proposition 4.4.2. The global minmax point can be neither local minmax nor a stationary
point.

Proof. Consider function f(x, y) = 0.2xy − cos(y) in region [−1, 1] × [−2π, 2π] as shown
in Figure 4.2. Clearly, the gradient is equal to (0.2y, 0.2x + sin(y)). And for any fixed x,
there are only two maxima y?(x) satisfying 0.2x+ sin(y?) = 0 where y?1(x) ∈ (−3π/2,−π/2)
and y?2(x) ∈ (π/2, 3π/2). On the other hand, f(x, y?1(x)) is monotonically decreasing with
respect to x, while f(x, y?2(x)) is monotonically increasing, with f(0, y?1(0)) = f(0, y?2(0)) by
symmetry. It is not hard to check y?1(0) = −π and y?2(0) = π. Therefore, (0,−π) and (0, π)
are two global solutions of minmax problem. However, the gradients at both points are not
0, thus they are not stationary points. By Proposition 4.4.5 they are also not local minmax
points.

Theorem 4.4.3. Assume that f is twice differentiable, and for any fixed x, the function
f(x, ·) is strongly concave in the neighborhood of local maxima and satisfies the assumption
that all local maxima are global maxima. Then the global minmax point of f(·, ·) is also a
local minmax point.

Proof. Denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y), C := ∇2
xyf(x,y), gx := ∇xf(x,y) and

gy := ∇yf(x,y). Let (x,y) be a global minmax point. Since y is the global argmax of
f(x, ·) and locally strongly concave, we know gy = 0 and B ≺ 0. Let us now consider a
second-order Taylor approximation of f around (x,y).

f(x + δx,y + δy) = f(x,y) + g>x δx +
1

2
δ>x Aδx + δ>x Cδy +

1

2
δ>y Bδy + o(‖δx‖2 + ‖δy‖2)

Since by hypothesis, B ≺ 0, we see that when ‖δx‖ is sufficiently small, there is a unique
δ?y(δx) so that y + δ?y(δx) is a local maximum of f(x + δx, ·), where δ?y(δx) = −B−1C>δx +
o(‖δx‖). It is clear that ‖δ?y(δx)‖ ≤ (‖B−1C>‖ + 1)‖δx‖ for sufficiently small ‖δx‖. Let
h(δ) = (‖B−1C>‖+ 1)δ, we know for small enough δ:

f(x + δx,y + δ?y(δx)) = max
‖δy‖≤h(δ)

f(x + δx,y + δy)

Finally, since by assumption for any f(x, ·) all local maxima are global maxima and x is the
global min of maxy f(x,y), we know:

f(x,y) ≤ max
y′

f(x + δx,y
′) = f(x + δx,y + δ?y(δx)) = max

‖δy‖≤h(δ)
f(x + δx,y + δy)

which finishes the proof.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 102

Proposition 4.4.4. Any local pure strategy Nash equilibrium is a local minmax point.

Proof. Let h be the constant function h(δ) = 0 for any δ. Suppose (x?,y?) is a local pure
strategy Nash equilibrium, by definition it implies the existence of δ0, so that for any δ ≤ δ0,
and any (x,y) satisfying ‖x− x?‖ ≤ δ and ‖y − y?‖ ≤ δ:

f2(x?,y) ≤ f2(x?,y?) ≤ f(x,y?) ≤ max
y′:‖y′−y?‖≤h(δ)

f2(x,y′).

which finishes the proof.

Proposition 4.4.5 (First-order Necessary Condition). Assuming that f is continuously
differentiable, then any local minmax point (x,y) satisfies ∇xf(x,y) = 0 and ∇yf(x,y) = 0.

Proof. Since y is the local maximum of f(x, ·), it implies∇yf(x,y) = 0. Denote local optima
δ?y(δx) := argmax‖δy‖≤h(δ) f(x + δx,y + δy). By definition we know, ‖δ?y(δx)‖ ≤ h(δ)→ 0 as
δ → 0. Thus

0 ≤f(x + δx,y + δ?y(δx))− f(x,y)

=f(x + δx,y + δ?y(δx))− f(x,y + δ?y(δx)) + f(x,y + δ?y(δx))− f(x,y)

≤f(x + δx,y + δ?y(δx))− f(x,y + δ?y(δx))

=∇xf(x,y + δ?y(δx))>δx + o(‖δx‖) = ∇xf(x,y)>δx + o(‖δx‖)

holds for any small δx, which implies ∇xf(x,y) = 0.

Proposition 4.4.6 (Second-order Necessary Condition). Assuming that f is twice differen-
tiable, then (x,y) is a local minmax point implies that ∇2

yyf(x,y) � 0, and for any v satisfy-
ing ∇2

yxf(x,y)·v ∈ column span(∇2
yyf(x,y)) that v>[∇2

xxf−∇2
xyf(∇2

yyf)†∇2
yxf](x,y)·v ≥

0. (Here † denotes Moore-Penrose inverse.)

Proof. Denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y). Since y is the local

maximum of f(x, ·), it implies B � 0. On the other hand,

f(x + δx,y + δy) = f(x,y) +
1

2
δ>x Aδx + δ>x Cδy +

1

2
δ>y Bδy + o(‖δx‖2 + ‖δy‖2).

Since (x,y) is a local minmax point, by definition, there exists a function h such that Eq.(4.3)
holds. Denote h′(δ) = 2‖B−1C>‖δ. We note both h(δ) and h′(δ)→ 0 as δ → 0. For any δx
satisfying C>δx ∈ column span(B), it is not hard to verify that argmax‖δy‖≤max(h(δ),h′(δ)) f(x+

δx,y + δy) = −B†C>δx + o(‖δx‖). Since (x,y) is a local minmax point, we have

0 ≤ max
‖δy‖≤h(δ)

f(x + δx,y + δy)− f(x,y) ≤ max
‖δy‖≤max(h(δ),h′(δ))

f(x + δx,y + δy)− f(x,y)

=
1

2
δ>x (A−CB†C>)δx + o(‖δx‖2).

Above equation holds for any δx satisfying C>δx ∈ column span(B), which finishes the
proof.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 103

Proposition 4.4.7 (Second-order Sufficient Condition). Assume that f is twice differen-
tiable. Any stationary point (x,y) satisfying ∇2

yyf(x,y) ≺ 0 and

[∇2
xxf −∇2

xyf(∇2
yyf)−1∇2

yxf](x,y) � 0 (4.4)

is a local minmax point. We call stationary points satisfying (4.4) strict local minmax points.

Proof. Again denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y). Since (x,y)

is a stationary point, and B ≺ 0, it is clear that y is the local maximum of f(x, ·). On
the other hand, pick δ†y = B−1C>δx and let h(δ) = ‖B−1C>‖δ, we know when ‖δx‖ ≤ δ,
‖δ†y‖ ≤ h(δ), thus

max
‖δy‖≤h(δ)

f(x + δx,y + δy)− f(x,y) ≥f(x + δx,y + δ†y)− f(x,y)

=
1

2
δ>x (A−CB−1C>)δx + o(‖δx‖2) > 0

which finishes the proof.

4.8 Proofs for Limit Points of Gradient Descent

Ascent

In this section, we provides proofs for propositions and theorems presented in Section 4.4.

Proposition 4.4.9. (x,y) is a strict linearly stable point of γ-GDA if and only if for all the
eigenvalues {λi} of following Jacobian matrix,

Jγ =

−(1/γ)∇2
xxf(x,y) −(1/γ)∇2

xyf(x,y)

∇2
yxf(x,y) ∇2

yyf(x,y),


their real part <(λi) < 0 for any i.

Proof. Consider GDA dynamics with step size η, then the Jacobian matrix of this dynamic
system is I+ ηJγ whose eigenvalues are {1 + ηλi}. Therefore, (x,y) is a strict linearly stable
point if and only if ρ(I + ηJγ) < 1, that is |1 + ηλi| < 1 for all i. When taking η → 0, this
is equivalent to <(λi) < 0 for all i.

Proposition 4.4.10 ((Daskalakis and Panageas, 2018)). For any fixed γ, for any twice-
differentiable f , Local Nash ⊂ γ−GDA, but there exist twice-differentiable f such that γ−GDA 6⊂
Local Nash.

Proof. Daskalakis and Panageas (2018) showed the proposition holds for 1-GDA. For com-
pleteness, here we show how similar proof goes through for γ-GDA for general γ. Let ε = 1/γ,
and denote A := ∇2

xxf(x,y), B := ∇2
yyf(x,y) and C := ∇2

xyf(x,y).

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 104

To prove the statement localNash ⊂ γ−GDA, we note by definition, (x,y) is a strict linear
stable point of 1/ε-GDA if the real part of the eigenvalues of Jacobian matrix

Jε :=

−εA −εC

C> B


satisfy that <(λi) < 0 for all 1 ≤ i ≤ d1 + d2. We first note that:

J̃ε :=

 B
√
εC>

−
√
εC −εA

 = UJεU
−1, where U =

0
√
εI

I 0


Thus, the eigenvalues of J̃ε and Jε are the same. We can also decompose:

J̃ε = P + Q, where P :=

B

−εA

 ,Q :=

 0
√
εC>

−
√
εC 0


If (x,y) is a strict local pure strategy Nash equilibrium, then A � 0,B ≺ 0, then P is a
negative definite symmetric matrix, and Q is anti-symmetric matrix, i.e. Q = −Q>. For
any eigenvalue λ if J̃ε, assume w is the associated eigenvector. That is, J̃εw = λw, also let
w = x + iy where x and y are real vectors, and w̄ be the complex conjugate of vector w.
Then:

<(λ) =[w̄>J̃εw + w>J̃εw̄]/2 = [(x− iy)>J̃ε(x + iy) + (x + iy)>J̃ε(x− iy)]/2

=x>J̃εx + y>J̃εy = x>Px + y>Py + x>Qx + y>Qy

Since P is negative definite, that is x>Px + y>Py < 0. Meanwhile, since Q is antisymmtric
x>Qx = x>Q>x = 0 and y>Qy = y>Q>y = 0. This proves <(λ) < 0, that is (x,y) is a
strict linear stable point of 1/ε-GDA.

To prove the statement γ−GDA 6⊂ localNash , since ε is also fixed, we consider function
f(x, y) = x2 + 2

√
εxy + (ε/2)y2. It is easy to see (0, 0) is a fixed point of 1/ε-GDA, and

Hessian A = 2, B = ε, C = 2
√
ε. Thus the Jacobian matrix

Jε :=

−2ε −2ε3/2

2ε1/2 ε


has two eigenvalues ε(−1± i

√
7)/2. Therefore, <(λ1) = <(λ2) < 0, which implies (0, 0) is a

strict linear stable point. However B = ε > 0, thus it is not a strict local pure strategy Nash
equilibrium.

Proposition 4.4.11. For any fixed γ, there exists twice-differentiable f such that Local Minmax 6⊂
γ−GDA; there also exists twice-differentiable f such that γ−GDA 6⊂ Local Minmax∪Local Maxmin.

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 105

Proof. Let ε = 1/γ, and denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y).

To prove the first statement localminmax 6⊂ γ−GDA, since ε is also fixed, we consider
function f(x, y) = −x2 + 2

√
εxy − (ε/2)y2. It is easy to see (0, 0) is a fixed point of 1/ε-

GDA, and Hessian A = −2, B = −ε, C = 2
√
ε. It is easy to verify that B < 0 and

A − CB−1C = 2 > 0, thus (0, 0) is a local minmax point. However, inspect the Jacobian
matrix of 1/ε-GDA:

Jε :=

 2ε −2ε3/2

2ε1/2 −ε


We know the two eigenvalues are ε(1± i

√
7)/2. Therefore, <(λ1) = <(λ2) > 0, which implies

(0, 0) is not a strict linear stable point.
To prove the second statement γ−GDA 6⊂ localminmax ∪ localmaxmin , since ε is also fixed,

we consider function f(x,y) = x2
1 + 2

√
εx1y1 + (ε/2)y2

1 − x2
2/2 + 2

√
εx2y2− εy2

2. It is easy to
see (0,0) is a fixed point of 1/ε-GDA, and Hessian A = diag(2,−1),B = diag(ε,−2ε),C =
2
√
ε · diag(1, 1). Thus the Jacobian matrix

Jε :=


−2ε 0 −2ε3/2 0

0 ε 0 −2ε3/2

2ε1/2 0 ε 0

0 2ε1/2 0 −2ε


has four eigenvalues ε(−1 ± i

√
7)/2 (each with multiplicity of 2). Therefore, <(λi) < 0 for

1 ≤ i ≤ 4, which implies (0,0) is a strict linear stable point. However, B is not negative
definite, thus (0,0) is not a strict local minmax point; similarly, A is also not positive
definite, thus (0,0) is not a strict local maxmin point.

Theorem 4.4.12 (Main Theorem). For any twice-differentiable f , Local Minmax ⊂ ∞−GDA ⊂
∞−GDA ⊂ Local Minmax ∪ {(x,y)|(x,y) is stationary and ∇2

yyf(x,y) is degenerate}.

Proof. For simplicity, denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y). Let

ε = 1/γ. Consider sufficiently small ε (i.e. sufficiently large γ), we know the Jacobian J of
1/ε-GDA at (x,y) is:

Jε :=

−εA −εC

C> B


According to Lemma 4.8.1, for sufficient ε, Jε has d1 +d2 complex eigenvalues {λi}d1+d2

i=1 with
following form for sufficient small ε:

|λi + εµi| = o(ε) 1 ≤ i ≤ d1

|λi+d1 − νi| = o(1), 1 ≤ i ≤ d2 (4.6)

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 106

where {µi}d1i=1 and {νi}d2i=1 are the eigenvalues of matrices A−CB−1C> and B respectively.
Now we are ready to prove the three inclusion statement in Theorem 4.4.12 seperately.

First, for ∞−GDA ⊂ ∞−GDA always holds by their definitions.
Second, for Local Minmax ⊂ ∞−GDA statement, if (x,y) is strict local minmax point,

then by its definition:
B ≺ 0, and A−CB−1C> � 0

By Eq.(4.6) the eigenvalue structure of Jε, we know there exists sufficiently small ε0, so that
for any ε < ε0, the real part <(λi) < 0, i.e. (x,y) is a strict linear stable point of 1/ε−GDA.

Finally, for ∞−GDA ⊂ Local Minmax ∪ {(x,y)|(x,y) is stationary and B is degenerate}
statement, if (x,y) is strict linear stable point of 1/ε−GDA for a sufficiently small ε, then
for any i, the real part of eigenvalue of Jε: <(λi) < 0. By Eq.(4.6), if B is invertible, this
implies:

B ≺ 0, and A−CB−1C> � 0

Finally, suppose matrix A−CB−1C> has an eigenvalue 0. This means the existence of unit
vector w so that (A−CB−1C>)w = 0. It is not hard to verify then Jε ·(w,−B−1C>w)> = 0.
This implies Jε has a 0 eigen-value, which contradicts the fact that <(λi) < 0 for any i.
Therefore, we can conclude A−CB−1C> � 0, and (x,y) is a strict local minmax point.

Lemma 4.8.1. For any symmetric matrix A ∈ Rd1×d1, B ∈ Rd2×d2, and any rectangular
matrix C ∈ Rd1×d2, assume B is nondegenerate. Then, matrix−εA −εC

C> B


has d1 + d2 complex eigenvalues {λi}d1+d2

i=1 with following form for sufficient small ε:

|λi + εµi| = o(ε) 1 ≤ i ≤ d1

|λi+d1 − νi| = o(1), 1 ≤ i ≤ d2

where {µi}d1i=1 and {νi}d2i=1 are the eigenvalues of matrices A−CB−1C> and B respectively.

Proof. By definition of eigenvalues, {λi}d1+d2
i=1 are the roots of characteristic polynomial:

pε(λ) := det

λI + εA εC

−C> λI−B


We can expand this polynomial as:

pε(λ) = p0(λ) +

d1+d2∑
i=1

εipi(λ), p0(λ) = λd1 · det(λI−B).

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 107

Here, pi are polynomials of order at most d1 + d2. It is clear that the roots of p0 are 0 (with
multiplicity d1) and {νi}d2i=1. According to Lemma 4.8.2, we know the roots of pε satisfy:

|λi| = o(1) 1 ≤ i ≤ d1 (4.7)

|λi+d1 − νi| = o(1), 1 ≤ i ≤ d2

Since B is non-degenerate, we know when ε is small enough, λ1 . . . λd1 are very close to 0
while λd1+1 . . . λd1+d2 have modulus at least Ω(1). To provide the sign information of the
first d1 roots, we proceed to lower order characterization.

On the other hand, reparametrize λ = εθ, we have:

pε(εθ) = det

εθI + εA εC

−C> εθI−B

 = εd1det

θI + A C

−C> εθI−B


Therefore, we know qε(θ) := pε(εθ)/ε

d1 is still a polynomial, and has polynomial expan-
sion:

qε(θ) = q0(θ) +

d2∑
i=1

εiqi(λ), q0(θ) = det

θI + A C

−C> −B


It is also clear polynomial qε and pε have same roots up to ε scaling. Furthermore, we have
following factorization:θI + A C

−C> −B

 =

θI + A−CB−1C> C

0 −B

 I 0

B−1C> I


Since B is non-degenerate, we have det(B) 6= 0, and

q0(θ) = (−1)d2det(B)det(θI + A−CB−1C>)

q0 is d1-order polynomial having roots {µi}d1i=1, which are the eigenvalues of matrices A −
CB−1C>. According to Lemma 4.8.2, we know qε has at least d1 roots so that |θi+µi| ≤ o(1).
This implies d1 roots of pε so that:

|λi + εµi| = o(ε) 1 ≤ i ≤ d1

By Eq.(4.7), we know pε has exactly d1 roots which are of o(1) scaling. This finishes the
proof.

Lemma 4.8.2 (Continuity of roots of polynomials (Zedek, 1965)). Given a polynomial
pn(z) :=

∑n
k=0 akz

k, an 6= 0, an integer m ≥ n and a number ε > 0, there exists a number
δ > 0 such that whenever the m+ 1 complex numbers bk, 0 ≤ k ≤ m, satisfy the inequlities

|bk − ak| < δ for 0 ≤ k ≤ n, and |bk| < δ for n+ 1 ≤ k ≤ m

then the roots βk, 1 ≤ k ≤ m of the polynomial qm(z) :=
∑m

k=0 bkz
k can be labeled in such a

way as to satisfy with respect to the zeros αk, 1 ≤ k ≤ n of pn(z) the inequalities

|βk − αk| < ε for 1 ≤ k ≤ n, and |βk| > 1/ε for n+ 1 ≤ k ≤ m

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 108

4.9 Proofs for Gradient Descent with Max-oracle

In this section, we present the proof for Theorem 4.4.13 presented in Section 4.4.

Theorem 4.4.13. Suppose f is `-smooth and L-Lipschitz and define φ(·) := maxy f(·,y).
Then the output x̄ of GD with Max-oracle (Algorithm 9) with step size η = γ/

√
T + 1 will

satisfy

E
[
‖∇φ1/2`(x̄)‖2

]
≤ 2 ·

(
φ1/2`(x0)−minφ(x)

)
+ `L2γ2

γ
√
T + 1

+ 4`ε,

where φ1/2` is the Moreau envelope (4.5) of φ.

Proof. The proof of this theorem mostly follows the proof of Theorem 2.1 from (Davis and
Drusvyatskiy, 2018). The only difference is that yt in Algorithm 9 is only an approximate
maximizer and not exact maximizer. However, the proof goes through fairly easily with an
additional error term.

We first note an important equation for the gradient of Moreau envelope.

∇φλ(x) = λ−1

(
x− argmin

x̃

(
φ(x̃) +

1

2λ
‖x− x̃‖2

))
. (4.8)

We also observe that since f(·) is `-smooth and yt is an approximate maximizer for xt, we
have that any xt from Algorithm 9 and x̃ satisfy

φ(x̃) ≥ f(x̃,yt) ≥ f(xt,yt) + 〈∇xf(xt,yt), x̃− xt〉 −
`

2
‖x̃− xt‖2

≥ φ(xt)− ε+ 〈∇xf(xt,yt), x̃− xt〉 −
`

2
‖x̃− xt‖2. (4.9)

Let x̂t := argminx φ(x) + `‖x− xt‖2. We have:

φ1/2` (xt+1) ≤ φ(x̂t) + `‖xt+1 − x̂t‖2

≤ φ(x̂t) + `‖xt − η∇xf(xt,yt)− x̂t‖2

≤ φ(x̂t) + `‖xt − x̂t‖2 + 2`η〈∇xf(xt,yt), x̂t − xt〉+ η2`‖∇xf(xt,yt)‖2

≤ φ1/2`(xt) + 2η`〈∇xf(xt,yt), x̂t − xt〉+ η2`‖∇xf(xt,yt)‖2

≤ φ1/2`(xt) + 2η`

(
φ(x̂t)− φ(xt) + ε+

`

2
‖xt − x̂t‖2

)
+ η2`L2,

where the last line follows from (4.9). Taking a telescopic sum over t, we obtain

φ1/2`(xT) ≤ φ1/2`(x0) + 2η`
T∑
t=0

(
φ(x̂t)− φ(xt) + ε+

`

2
‖xt − x̂t‖2

)
+ η2`L2T

CHAPTER 4. ON STABLE LIMIT POINTS OF GRADIENT DESCENT ASCENT 109

Rearranging this, we obtain

1

T + 1

T∑
t=0

(
φ(xt)− φ(x̂t)−

`

2
‖xt − x̂t‖2

)
≤ ε+

φ1/2`(x0)−minx φ(x)

2η`T
+
ηL2

2
. (4.10)

Since φ(x) + `‖x− xt‖2 is `-strongly convex, we have

φ(xt)− φ(x̂t)−
`

2
‖xt − x̂t‖2

≥ φ(xt) + `‖xt − xt‖2 − φ(x̂t)− `‖x̂t − xt‖2 +
`

2
‖xt − x̂t‖2

=
(
φ(xt) + `‖xt − xt‖2 −min

x
φ(x) + `‖x− xt‖2

)
+
`

2
‖xt − x̂t‖2

≥ `‖xt − x̂t‖2 =
1

4`
‖∇φ1/2`(xt)‖2,

where we used (4.8) in the last step. Plugging this in (4.10) proves the result.

110

Part III

Reinforcement Learning

111

Chapter 5

On Sample Efficiency of Q-learning

Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly parameterize
and update value functions or policies without explicitly modeling the environment. They
are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than
model-based approaches. However, empirical work has suggested that model-free algorithms
may require more samples to learn (Deisenroth and Rasmussen, 2011; Schulman et al., 2015).
The theoretical question of “whether model-free algorithms can be made sample efficient”
is one of the most fundamental questions in RL, and remains unsolved even in the basic
scenario with finitely many states and actions.

We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves
regret Õ(

√
H3SAT), where S and A are the numbers of states and actions, H is the number

of steps per episode, and T is the total number of steps. This sample efficiency matches
the optimal regret that can be achieved by any model-based approach, up to a single

√
H

factor. To the best of our knowledge, this is the first analysis in the model-free setting that
establishes

√
T regret without requiring access to a “simulator.”

5.1 Introduction

Reinforcement Learning (RL) is a control-theoretic problem in which an agent tries to max-
imize its cumulative rewards via interacting with an unknown environment through time
(Sutton and Barto, 1998). There are two main approaches to RL: model-based and model-
free. Model-based algorithms make use of a model for the environment, forming a control
policy based on this learned model. Model-free approaches dispense with the model and
directly update the value function—the expected reward starting from each state, or the
policy—the mapping from states to their subsequent actions. There has been a long debate
on the relative pros and cons of the two approaches (Deisenroth and Rasmussen, 2011).

From the classical Q-learning algorithm (Watkins, 1989) to modern DQN (Mnih et al.,
2013), A3C (Mnih et al., 2016), TRPO (Schulman et al., 2015), and others, most state-of-
the-art RL has been in the model-free paradigm. Its pros—model-free algorithms are online,

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 112

require less space, and, most importantly, are more expressive since specifying the value
functions or policies is often more flexible than specifying the model for the environment—
arguably outweigh its cons relative to model-based approaches. These relative advantages
underly the significant successes of model-free algorithms in deep RL applications (Mnih
et al., 2013; Silver et al., 2016).

On the other hand it is believed that model-free algorithms suffer from a higher sam-
ple complexity compared to model-based approaches. This has been evidenced empirically
in (Deisenroth and Rasmussen, 2011; Schulman et al., 2015), and recent work has tried to
improve the sample efficiency of model-free algorithms by combining them with model-based
approaches (Nagabandi et al., 2017; Pong et al., 2018). There is, however, little theory to
support such blending, which requires a more quantitative understanding of relative sample
complexities. Indeed, the following basic theoretical questions remain open:

Can we design model-free algorithms that are sample efficient?
In particular, is Q-learning provably efficient?

The answers remain elusive even in the basic tabular setting where the number of states
and actions are finite. In this work, we attack this problem head-on in the setting of the
episodic Markov Decision Process (MDP) formalism (see Section ?? for a formal definition).
In this setting, an episode consists of a run of MDP dynamics for H steps, where the
agent aims to maximize total reward over multiple episodes. We do not assume access to a
“simulator” (which would allow us to query arbitrary state-action pairs of the MDP) and
the agent is not allowed to “reset” within each episode. This makes our setting sufficiently
challenging and realistic. In this setting, the standard Q-learning heuristic of incorporating
ε-greedy exploration appears to take exponentially many episodes to learn (Kearns and
Singh, 2002).

As seen in the literature on bandits, the key to achieving good sample efficiency generally
lies in managing the tradeoff between exploration and exploitation. One needs an efficient
strategy to explore the uncertain environment while maximizing reward. In the model-based
setting, a recent line of research has imported ideas from the bandit literature—including
the use of upper confidence bounds (UCB) and improved design of exploration bonuses—
and has obtained asymptotically optimal sample efficiency (Jaksch, Ortner, and Auer, 2010;
Agrawal and Jia, 2017; Azar, Osband, and Munos, 2017; Kakade, Wang, and Yang, 2018).
In contrast, the understanding of model-free algorithms is still very limited. To the best
of our knowledge, the only existing theoretical result on model-free RL that applies to the
episodic setting is for delayed Q-learning ; however, this algorithm is quite sample-inefficient
compared to model-based approaches (Strehl et al., 2006).

In this work, we answer the two aforementioned questions affirmatively. We show that
Q-learning, when equipped with a UCB exploration policy that incorporates estimates of the
confidence of Q values and assign exploration bonuses, achieves total regret Õ(

√
H3SAT).

Here, S and A are the numbers of states and actions, H is the number of steps per episode,
and T is the total number of steps. Up to a

√
H factor, our regret matches the information-

theoretic optimum, which can be achieved by model-based algorithms (Azar, Osband, and

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 113

Munos, 2017; Kakade, Wang, and Yang, 2018). Since our algorithm is just Q-learning, it is
online and does not store additional data besides the table of Q values (and a few integers per
entry of this table). Thus, it also enjoys a significant advantage over model-based algorithms
in terms of time and space complexities. To our best knowledge, this is the first sharp
analysis for model-free algorithms—featuring

√
T regret or equivalently O(1/ε2) samples for

ε-optimal policy—without requiring access to a “simulator.”
For practitioners, there are two key takeaways from our theoretical analysis:

1. The use of UCB exploration instead of ε-greedy exploration in the model-free setting
allows for better treatment of uncertainties for different states and actions.

2. It is essential to use a learning rate which is αt = O(H/t), instead of 1/t, when a
state-action pair is being updated for the t-th time. The former learning rate assigns
more weight to updates that are more recent, as opposed to assigning uniform weights
to all previous updates. This delicate choice of reweighting leads to the crucial dif-
ference between our sample-efficient guarantee versus earlier highly inefficient results
that require exponentially many samples in H.

Related Work

In this section, we focus our attention on theoretical results for the tabular MDP setting,
where the numbers of states and actions are finite. We acknowledge that there has been
much recent work in RL for continuous state spaces see, e.g., Jiang et al., 2016; Fazel et al.,
2018, but this setting is beyond our scope.

With simulator Some results assume access to a simulator (Koenig and Simmons, 1993)
(a.k.a., a generative model (Azar, Munos, and Kappen, 2012)), which is a strong oracle that
allows the algorithm to query arbitrary state-action pairs and return the reward and the
next state. The majority of these results focus on an infinite-horizon MDP with discounted
reward e.g., Even-Dar and Mansour, 2003; Azar et al., 2011; Lattimore and Hutter, 2012;
Azar, Munos, and Kappen, 2012; Sidford et al., 2018. When a simulator is available, model-
free algorithms (Azar et al., 2011) (variants of Q-learning) are known to be almost as sample
efficient as the best model-based algorithms (Azar, Munos, and Kappen, 2012). However,
the simulator setting is considered to much easier than standard RL, as it “does not require
exploration” (Azar et al., 2011). Indeed, a naive exploration strategy which queries all state-
action pairs uniformly at random already leads to the most efficient algorithm for finding

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 114

Algorithm Regret Time Space

Model-based

UCRL2 (Jaksch, Ortner,
and Auer, 2010) 1 at least Õ(

√
H4S2AT)

Ω(TS2A)

O(S2AH)Agrawal and Jia (2017) 1 at least Õ(
√
H3S2AT)

UCBVI (Azar, Osband,
and Munos, 2017) 2 Õ(

√
H2SAT)

Õ(TS2A)

vUCQ (Kakade, Wang,
and Yang, 2018) 2 Õ(

√
H2SAT)

Model-free

Q-learning (ε-greedy)
(Kearns and Singh, 2002)

(if 0 initialized)
Ω(min{T,AH/2})

O(T) O(SAH)
Delayed Q-learning

(Strehl et al., 2006) 3 ÕS,A,H(T 4/5)

Q-learning (UCB-H) Õ(
√
H4SAT)

Q-learning (UCB-B) Õ(
√
H3SAT)

lower bound Ω(
√
H2SAT) - -

Table 5.1: Regret comparisons for RL algorithms on episodic MDP. T = KH is totally
number of steps, H is the number of steps per episode, S is the number of states, and A is
the number of actions. For clarity, this table is presented for T ≥ poly(S,A,H), omitting
low order terms.

optimal policy (Azar, Munos, and Kappen, 2012).

Without simulator Reinforcement learning becomes much more challenging without the
presence of a simulator, and the choice of exploration policy can now determine the behavior
of the learning algorithm. For instance, Q-learning with ε-greedy may take exponentially

1Jaksch, Ortner, and Auer (2010) and Agrawal and Jia (2017) apply to the more general setting of
weakly communicating MDPs with S′ states and diameter D; our episodic MDP is a special case obtained
by augmenting the state space so that S′ = SH and D ≥ H.

2Azar, Osband, and Munos (2017) and Kakade, Wang, and Yang (2018) assume equal transition matrices
P1 = · · · = PH ; in the setting of this work P1, · · · ,PH can be entirely different. This adds a factor of

√
H to

their total regret.
3Strehl et al. (2006) applies to MDPs with S′ states and discount factor γ; our episodic MDP can be

converted to that case by setting S′ = SH and 1 − γ = 1/H. Their result only applies to the stochastic
setting where initial states xk1 come from a fixed distribution, and only gives a PAC guarantee. We have
translated it to a regret guarantee (see Section 5.3).

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 115

many episodes to learn the optimal policy (Kearns and Singh, 2002) (for the sake of com-
pleteness, we present this result in our episodic language in Appendix 5.5).

In the model-based setting, UCRL2 (Jaksch, Ortner, and Auer, 2010) and Agrawal and
Jia (2017) form estimates of the transition probabilities of the MDP using past samples,
and add upper-confidence bounds (UCB) to the estimated transition matrix. When apply-
ing their results to the episodic MDP scenario, their total regret is at least Õ(

√
H4S2AT)

and Õ(
√
H3S2AT) respectively.1 In contrast, the information-theoretic lower bound is

Õ(
√
H2SAT). The additional

√
S and

√
H factors were later removed by the UCBVI

algorithm (Azar, Osband, and Munos, 2017) which adds a UCB bonus directly to the Q
values instead of the estimated transition matrix.2 The vUCQ algorithm (Kakade, Wang,
and Yang, 2018) is similar to UCBVI but improves lower-order regret terms using variance
reduction.

We note that despite the sharp regret guarantees, all of the results in this line of research
require estimating and storing the entire transition matrix and thus suffer from unfavorable
time and space complexities compared to model-free algorithms.

In the model-free setting, Strehl et al. (2006) introduced delayed Q-learning, where, to
find an ε-optimal policy, the Q value for each state-action pair is updated only once every
m = Õ(1/ε2) times this pair is visited. In contrast to the incremental update of Q-learning,
delayed Q-learning always replaces old Q values with the average of the most recent m
experiences. When translated to the setting of this work, this gives Õ(T 4/5) total regret,
ignoring factors in S,A and H.3 This is quite suboptimal compared to the Õ(

√
T) regret

achieved by model-based algorithm.

5.2 Preliminary

We consider the setting of a tabular episodic Markov decision process, MDP(S,A, H,P, r),
where S is the set of states with |S| = S, A is the set of actions with |A| = A, H is
the number of steps in each episode, P is the transition matrix so that Ph(·|x, a) gives the
distribution over states if action a is taken for state x at step h ∈ [H], and rh : S×A → [0, 1]
is the deterministic reward function at step h.4

In each episode of this MDP, an initial state x1 is picked arbitrarily by an adversary.
Then, at each step h ∈ [H], the agent observes state xh ∈ S, picks an action ah ∈ A,
receives reward rh(xh, ah), and then transitions to a next state, xh+1, that is drawn from the
distribution Ph(·|xh, ah). The episode ends when xH+1 is reached.

A policy π of an agent is a collection of H functions
{
πh : S → A

}
h∈[H]

. We use

V π
h : S → R to denote the value function at step h under policy π, so that V π

h (x) gives the
expected sum of remaining rewards received under policy π, starting from xh = x, until the

4While we study deterministic reward functions for notational simplicity, our results generalize to ran-
domized reward functions. Also, we assume the reward is in [0, 1] without loss of generality.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 116

Algorithm 10 Q-learning with UCB-Hoeffding

1: initialize Qh(x, a)← H and Nh(x, a)← 0 for all (x, a, h) ∈ S ×A× [H].
2: for episode k = 1, . . . , K do
3: receive x1.
4: for step h = 1, . . . , H do
5: Take action ah ← argmaxa′ Qh(xh, a

′), and observe xh+1.
6: t = Nh(xh, ah)← Nh(xh, ah) + 1; bt ← c

√
H3ι/t.

7: Qh(xh, ah)← (1− αt)Qh(xh, ah) + αt[rh(xh, ah) + Vh+1(xh+1) + bt].
8: Vh(xh)← min{H,maxa′∈AQh(xh, a

′)}.

end of the episode. In symbols:

V π
h (x) := E

[∑H
h′=h rh′(xh′ , πh′(xh′))|xh = x

]
.

Accordingly, we also define Qπ
h : S × A → R to denote Q-value function at step h so that

Qπ
h(x, a) gives the expected sum of remaining rewards received under policy π, starting from

xh = x, ah = a, till the end of the episode. In symbols:

Qπ
h(x, a) := rh(x, a) + E[

∑H
h′=h+1 rh′(xh′ , πh′(xh′))|xh = x, ah = a] .

Since the state and action spaces, and the horizon, are all finite, there always exists (see,
e.g., (Azar, Osband, and Munos, 2017)) an optimal policy π? which gives the optimal value
V ?
h (x) = supπ V

π
h (x) for all x ∈ S and h ∈ [H]. For simplicity, we denote [PhVh+1](x, a) :=

Ex′∼P(·|x,a)Vh+1(x′). Recall the Bellman equation and the Bellman optimality equation:
V π
h (x) = Qπ

h(x, πh(x))

Qπ
h(x, a) := (rh + PhV π

h+1)(x, a)

V π
H+1(x) = 0 ∀x ∈ S

and


V ?
h (x) = maxa∈AQ

?
h(x, a)

Q?
h(x, a) := (rh + PhV ?

h+1)(x, a)

V ?
H+1(x) = 0 ∀x ∈ S .

(5.1)

The agent plays the game for K episodes k = 1, 2, . . . , K, and we let the adversary pick
a starting state xk1 for each episode k, and let the agent choose a policy πk before starting
the k-th episode. The total (expected) regret is then

Regret(K) =
∑K

k=1

[
V ?

1 (xk1)− V πk
1 (xk1)

]
.

5.3 Main Results

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 117

In this section, we present our main theoretical result—a sample complexity result for a
variant of Q-learning that incorporates UCB exploration. We also present a theorem that
establishes an information-theoretic lower bound for episodic MDP.

As seen in the bandit setting, the choice of exploration policy plays an essential role in the
efficiency of a learning algorithm. In episodic MDP, Q-learning with the commonly used ε-
greedy exploration strategy can be very inefficient: it can take exponentially many episodes
to learn (Kearns and Singh, 2002) (see also Appendix 5.5). In contrast, our algorithm
(Algorithm 10), which is Q-learning with an upper-confidence bound (UCB) exploration
strategy, will be seen to be efficient. This algorithm maintains Q values, Qh(x, a), for all
(x, a, h) ∈ S ×A× [H] and the corresponding V values Vh(x)← min{H,maxa′∈AQh(x, a

′)}.
If, at time step h ∈ [H], the state is x ∈ S, the algorithm takes the action a ∈ A that
maximizes the current estimate Qh(x, a), and is apprised of the next state x′ ∈ S. The
algorithm then updates the Q values:

Qh(x, a)← (1− αt)Qh(x, a) + αt[rh(x, a) + Vh+1(x′) + bt] ,

where t is the counter for how many times the algorithm has visited the state-action pair
(x, a) at step h, bt is the confidence bonus indicating how certain the algorithm is about
current state-action pair, and αt is a learning rate defined as follows:

αt :=
H + 1

H + t
. (5.2)

As mentioned in the introduction, our choice of learning rate αt scales as O(H/t) instead of
O(1/t)—this is crucial to obtain regret that is not exponential in H.

We present analyses for two different specifications of the upper confidence bonus bt in
this work:

Q-learning with Hoeffding-style bonus The first (and simpler) choice is bt = O(
√
H3ι/t).

(Here, and throughout this work, we use ι := log(SAT/p) to denote a log factor.) This choice
of bonus makes sense intuitively because: (1) Q-values are upper-bounded by H, and, ac-
cordingly, (2) Hoeffding-type martingale concentration inequalities imply that if we have
visited (x, a) for t times, then a confidence bound for the Q value scales as 1/

√
t. For this

reason, we call this choice UCB-Hoeffding (UCB-H). See Algorithm 10.

Theorem 5.3.1 (Hoeffding). There exists an absolute constant c > 0 such that, for any
p ∈ (0, 1), if we choose bt = c

√
H3ι/t, then with probability 1−p, the total regret of Q-learning

with UCB-Hoeffding (see Algorithm 10) is at most O(
√
H4SATι), where ι := log(SAT/p).

Theorem 5.3.1 shows, under a rather simple choice of exploration bonus, Q-learning can
be made very efficient, enjoying a Õ(

√
T) regret which is optimal in terms of dependence

on T . To the best of our knowledge, this is the first analysis of a model-free procedure that
features a

√
T regret without requiring access to a “simulator.”

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 118

Compared to the previous model-based results, Theorem 5.3.1 shows that the regret (or
equivalently the sample complexity; see discussion in Section 5.3) of this version of Q-learning
is as good as the best model-based one in terms of the dependency on the number of states
S, actions A and the total number of steps T . Although our regret slightly increases the
dependency on H, the algorithm is online and does not store additional data besides the
table of Q values (and a few integers per entry of this table). Thus, it enjoys an advantage
over model-based algorithms in time and space complexities, especially when the number of
states S is large.

Q-learning with Bernstein-style bonus Our second specification of bt makes use of a
Bernstein-style upper confidence bound. The key observation is that, although in the worst
case the value function is at most H for any state-action pair, if we sum up the “total variance
of the value function” for an entire episode, we obtain a factor of only O(H2) as opposed
to the naive O(H3) bound (see Lemma 5.7.6). This implies that the use of a Bernstein-
type martingale concentration result could be sharper than the Hoeffding-type bound by an
additional factor of H.5 (The idea of using Bernstein instead of Hoeffding for reinforcement
learning applications has appeared in previous work; see, e.g., (Azar, Munos, and Kappen,
2012; Azar, Munos, and Kappen, 2013; Lattimore and Hutter, 2012).)

Using Bernstein concentration requires us to design the bonus term bt more carefully,
as it now depends on the empirical variance of Vh+1(x′) where x′ is the next state over the
previous t visits of current state-action (x, a). This empirical variance can be computed in
an online fashion without increasing the space complexity of Q-learning. We defer the full
specification of bt to Algorithm 11 in Appendix 5.7. We now state the regret theorem for
this approach.

Theorem 5.3.2 (Bernstein). For any p ∈ (0, 1), one can specify bt so that with probability
1 − p, the total regret of Q-learning with UCB-Bernstein (see Algorithm 11) is at most
O(
√
H3SATι+

√
H9S3A3 · ι2).

Theorem 5.3.2 shows that for Q-learning with UCB-B exploration, the leading term in
regret (which scales as

√
T) improves by a factor of

√
H over UCB-H exploration, at the price

of using a more complicated exploration bonus design. The asymptotic regret of UCB-B is
now only one

√
H factor worse than the best regret achieved by model-based algorithms.

We also note that Theorem 5.3.2 has an additive term O(
√
H9S3A3 · ι2) in its regret,

which dominates the total regret when T is not very large compared with S,A and H. It
is not clear whether this lower-order term is essential, or is due to technical aspects of the
current analysis.

5Recall that for independent zero-mean random variables X1, . . . , XT satisfying |Xi| ≤ M , their sum-
mation does not exceed Õ(M

√
T) with high probability using Hoeffding concentration. If we have in hand

a better variance bound, this can be improved to Õ
(
M +

√∑
i E[Xi]2

)
using Bernstein concentration.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 119

Information-theoretical limit To demonstrate the sharpness of our results, we also note
an information-theoretic lower bound for the episodic MDP setting studied in this work:

Theorem 5.3.3. For the episodic MDP problem studied in this work, the expected regret for
any algorithm must be at least Ω(

√
H2SAT).

Theorem 5.3.3 (see Appendix 5.8 for details) shows that both variants of our algorithm
are nearly optimal, in the sense they differ from the optimal regret by a factor of H and√
H, respectively.

From Regret to PAC Guarantee

Recall that the probably approximately correct (PAC) learning setting for RL provides sam-
ple complexity guarantee to find a near-optimal policy (Kakade, 2003). In this setting, the
initial state x1 ∈ S is sampled from a fixed initial distribution, rather than being chosen
adversarially. Without loss of generality, we only discuss here the case in which x1 is fixed;
the general case reduces to this case by adding an additional time step at the beginning
of each episode. The PAC-learning question is “how many samples are needed to find an
ε-optimal policy π satisfying V ?

1 (x1)− V π
1 (x1) ≤ ε?”

Any algorithm with total regret sublinear in T yields a finite sample complexity in the
PAC setting. Indeed, suppose we have total regret

∑K
k=1 [V ?

1 (x1)− V πk
1 (x1)] ≤ C · T 1−α,

where α ∈ (0, 1) is a absolute constant, and C is independent of T . Then, by randomly select-
ing π = πk for k = 1, 2, . . . , K, we have V ?

1 (x1)−V π
1 (x1) ≤ 3CH ·T−α with probability at least

2/3. Therefore, for every ε ∈ (0, H], our Theorem 5.3.1 (for UCB-H) and Theorem 5.3.2 (for
UCB-B) also find ε-optimal policies in the PAC setting using Õ(H5SA/ε2) and Õ(H4SA/ε2)
samples respectively.

Conversely, any algorithm with finite sample complexity in the PAC setting translates
to sublinear total regret in non-adversarial case (assuming x1 is chosen from a fixed dis-
tribution). Suppose the algorithm finds ε-optimal policy π using T1 = C · ε−β samples
where β ≥ 1 is a constant. Then, we can use this π to play the game for another T − T1

steps, giving total regret T1 + ε(T − T1)/H. After balancing T and T1 optimally, this gives
Õ
(
C1+β · (T/H)β/(1+β)

)
total regret. For instance, Strehl et al. (2006) gives sampling com-

plexity ∝ 1/ε4 in the PAC setting, and this translates to ∝ T 4/5 total regret.

5.4 Proof for Q-learning with UCB-Hoeffding

In this section, we provide the full proof of Theorem 5.3.1. Intuitively, the episodic MDP with
H steps per epsiode can be viewed as a contextual bandit of H “layers.” The key challenge
here is to control the way error and confidence propagate through different “layers” in an
online fashion, where our specific choice of exploration bonus and learning rate make the
regret as sharp as possible.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 120

0

0.005

0.01

0.015

0 200 400 600 800 1000

(H+1)/(H+t) rate 1/t rate 1/sqrt(t) rate

Figure 5.1: Illustration of {αi1000}1000
i=1 for learning rates αt = H+1

H+t
, 1
t

and 1√
t

when H = 10.

Notation We denote by I[A] the indicator function for event A. We denote by (xkh, a
k
h)

the actual state-action pair observed and chosen at step h of episode k. We also denote by
Qk
h, V

k
h , N

k
h respectively the Qh, Vh, Nh functions at the beginning of episode k. Using this

notation, the update equation at episode k can be rewritten as follows, for every h ∈ [H]:

Qk+1
h (x, a) =

{
(1− αt)Qk

h(x, a) + αt[rh(x, a) + V k
h+1(xkh+1) + bt] if (x, a) = (xkh, a

k
h)

Qk
h(x, a) otherwise .

(5.3)

Accordingly,
V k
h (x)← min

{
H, max

a′∈A
Qk
h(x, a

′)
}
, ∀x ∈ S .

Recall that we have [PhVh+1](x, a) := Ex′∼Ph(·|x,a)Vh+1(x′). We also denote its empirical

counterpart of episode k as [P̂khVh+1](x, a) := Vh+1(xkh+1), which is defined only for (x, a) =
(xkh, a

k
h).

Recall that we have chosen the learning rate as αt := H+1
H+t

. For notational convenience,
we also introduce the following related quantities:

α0
t =

∏t
j=1(1− αj), αit = αi

∏t
j=i+1(1− αj) . (5.4)

It is easy to verify that (1)
∑t

i=1 α
i
t = 1 and α0

t = 0 for t ≥ 1; (2)
∑t

i=1 α
i
t = 0 and α0

t = 1
for t = 0.

Favoring Later Updates At any (x, a, h, k) ∈ S × A × [H] × [K], let t = Nk
h (x, a) and

suppose (x, a) was previously taken at step h of episodes k1, . . . , kt < k. By the update
equation (5.3) and the definition of αit in (5.4), we have:

Qk
h(x, a) = α0

tH +
t∑
i=1

αit
[
rh(x, a) + V ki

h+1(xkih+1) + bi
]
. (5.5)

According to (5.5), the Q value at episode k equals a weighted average of the V values
of the “next states” with weights α1

t , . . . , α
t
t. As one can see from Figure 5.1, our choice of

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 121

the learning rate αt = H+1
H+t

ensures that, approximately speaking, the last 1/H fraction of
the indices i is given non-negligible weights, whereas the first 1− 1/H fraction is forgotten.
This ensures that the information accumulates smoothly across the H layers of the MDP. If
one were to use αt = 1

t
instead, the weights α1

t , . . . , α
t
t would all equal 1/t, and using those

V values from earlier episodes would hurt the accuracy of the Q function. In contrast, if one
were to use αt = 1/

√
t instead, the weights α1

t , . . . , α
t
t would concentrate too much on the

most recent episodes, which would incur high variance.

Proof Details

We first present an auxiliary lemma which exhibits some important properties that result
from our choice of learning rate. The proof is based on simple manipulations on the definition
of αt, and is provided in Appendix 5.6.

Lemma 5.4.1. The following properties hold for αit:

1. 1√
t
≤
∑t

i=1
αit√
i
≤ 2√

t
for every t ≥ 1.

2. maxi∈[t] α
i
t ≤ 2H

t
and

∑t
i=1(αit)

2 ≤ 2H
t

for every t ≥ 1.

3.
∑∞

t=i α
i
t = 1 + 1

H
for every i ≥ 1.

We note that property (c) is especially important—as we will show later, each step in
one episode can blow up the regret by a multiplicative factor of

∑∞
t=i α

i
t. With our choice of

learning rate, we ensure that this blow-up is at most (1 + 1/H)H , which is a constant factor.
We now proceed to the formal proof. We start with a lemma that gives a recursive

formula for Q−Q?, as a weighted average of previous updates.

Lemma 5.4.2 (recursion on Q). For any (x, a, h) ∈ S × A × [H] and episode k ∈ [K], let
t = Nk

h (x, a) and suppose (x, a) was previously taken at step h of episodes k1, . . . , kt < k.
Then:

(Qk
h−Q?

h)(x, a) = α0
t (H−Q?

h(x, a))+
t∑
i=1

αit

[
(V ki

h+1 − V
?
h+1)(xkih+1) + [(P̂kih − Ph)V ?

h+1](x, a) + bi

]
.

Proof of Lemma 5.4.2. From the Bellman optimality equation, Q?
h(x, a) = (rh+PhV ?

h+1)(x, a),

our notation [P̂kih Vh+1](x, a) := Vh+1(xkih+1), and the fact that
∑t

i=0 α
i
t = 1, we have

Q?
h(x, a) = α0

tQ
?
h(x, a) +

t∑
i=1

αit

[
rh(x, a) +

(
Ph − P̂kih

)
V ?
h+1(x, a) + V ?

h+1(xkih+1)
]
.

Subtracting the formula (5.5) from this equation, we obtain Lemma 5.4.2.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 122

Next, using Lemma 5.4.2 and the Azuma-Hoeffding concentration bound, our next lemma
shows that Qk is always an upper bound on Q? at any episode k, and the difference between
Qk and Q? can be bounded by quantities from the next step.

Lemma 5.4.3 (bound onQk−Q?). There exists an absolute constant c > 0 such that, for any
p ∈ (0, 1), letting bt = c

√
H3ι/t, we have βt = 2

∑t
i=1 α

i
tbi ≤ 4c

√
H3ι/t and, with probability

at least 1− p, the following holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K]:

0 ≤ (Qk
h −Q?

h)(x, a) ≤ α0
tH +

t∑
i=1

αit(V
ki
h+1 − V

?
h+1)(xkih+1) + βt ,

where t = Nk
h (x, a) and k1, . . . , kt < k are the episodes where (x, a) was taken at step h.

Proof of Lemma 5.4.3. For each fixed (x, a, h) ∈ S × A × [H], let us denote k0 = 0, and
denote

ki = min
({
k ∈ [K] | k > ki−1 ∧ (xkh, a

k
h) = (x, a)

}
∪ {K + 1}

)
.

That is, ki is the episode of which (x, a) was taken at step h for the ith time (or ki = K + 1
if it is taken for fewer than i times). The random variable ki is clearly a stopping time.
Let Fi be the σ-field generated by all the random variables until episode ki, step h. Then,(
I[ki ≤ K] · [(P̂kih − Ph)V ?

h+1](x, a)
)τ
i=1

is a martingale difference sequence w.r.t the filtration
{Fi}i≥0. By Azuma-Hoeffding and a union bound, we have that with probability at least
1− p/(SAH):

∀τ ∈ [K] :

∣∣∣∣∣
τ∑
i=1

αiτ · I[ki ≤ K] · [(P̂kih − Ph)V ?
h+1](x, a)

∣∣∣∣∣ ≤ cH

2

√√√√ τ∑
i=1

(αiτ)
2 · ι ≤ c

√
H3ι

τ
,

(5.6)
for some absolute constant c. Because inequality (5.6) holds for all fixed τ ∈ [K] uniformly,
it also holds for τ = t = Nk

h (x, a) ≤ K, which is a random variable, where k ∈ [K]. Also
note I[ki ≤ K] = 1 for all i ≤ Nk

h (x, a). Putting everything together, and using a union
bound, we see that with least 1 − p probability, the following holds simultaneously for all
(x, a, h, k) ∈ S ×A× [H]× [K]:∣∣∣∣∣

t∑
i=1

αit[(P̂
ki
h − Ph)V ?

h+1](x, a)

∣∣∣∣∣ ≤ c

√
H3ι

t
where t = Nk

h (x, a) . (5.7)

On the other hand, if we choose bt = c
√
H3ι/t for the same constant c in Eq. (5.6), we have

βt/2 =
∑t

i=1 α
i
tbi ∈ [c

√
H3ι/t, 2c

√
H3ι/t

]
according to Lemma 1. Then the right-hand side

of Lemma 5.4.3 follows immediately from Lemma 5.4.2 and inequality (5.7). The left-hand
side also follows from Lemma 5.4.2 and Eq. (5.7) and induction on h = H,H − 1, . . . , 1.

We are now ready to prove Theorem 5.3.1. The proof decomposes the regret in a recursive
form, and carefully controls the error propagation with repeated usage of Lemma 5.4.3.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 123

Proof of Theorem 5.3.1. Denote by

δkh := (V k
h − V

πk
h)(xkh) and φkh := (V k

h − V ?
h)(xkh) .

By Lemma 5.4.3, we have that with 1 − p probability, Qk
h ≥ Q?

h and thus V k
h ≥ V ?

h . Thus,
the total regret can be upper bounded:

Regret(K) =
∑K

k=1(V ?
1 − V

πk
1)(xk1) ≤

∑K
k=1(V k

1 − V
πk

1)(xk1) =
∑K

k=1 δ
k
1 .

The main idea of the rest of the proof is to upper bound
∑K

k=1 δ
k
h by the next step∑K

k=1 δ
k
h+1, thus giving a recursive formula to calculate total regret. We can obtain such a

recursive formula by relating
∑K

k=1 δ
k
h to

∑K
k=1 φ

k
h.

For any fixed (k, h) ∈ [K]× [H], let t = Nk
h (xkh, a

k
h), and suppose (xkh, a

k
h) was previously

taken at step h of episodes k1, . . . , kt < k. Then we have:

δkh = (V k
h − V

πk
h)(xkh)

¬

≤ (Qk
h −Q

πk
h)(xkh, a

k
h)

= (Qk
h −Q?

h)(x
k
h, a

k
h) + (Q?

h −Q
πk
h)(xkh, a

k
h)

­

≤ α0
tH +

∑t
i=1 α

i
tφ
ki
h+1 + βt + [Ph(V ?

h+1 − V
πk
h+1)](xkh, a

k
h)

®
= α0

tH +
∑t

i=1 α
i
tφ
ki
h+1 + βt − φkh+1 + δkh+1 + ξkh+1 , (5.8)

where βt = 2
∑
αitbi ≤ O(1)

√
H3ι/t and ξkh+1 := [(Ph − P̂kh)(V ?

h+1 − V k
h+1)](xkh, a

k
h) is a

martingale difference sequence. Inequality ¬ holds because V k
h (xkh) ≤ maxa′∈AQ

k
h(x

k
h, a
′) =

Qk
h(x

k
h, a

k
h), and inequality ­ holds by Lemma 5.4.3 and the Bellman equation (5.1). Finally,

equality ® holds by definition δkh+1 − φkh+1 = (V ?
h+1 − V

πk
h+1)(xkh+1).

We turn to computing the summation
∑K

k=1 δ
k
h. Denoting by nkh = Nk

h (xkh, a
k
h), we have:

K∑
k=1

α0
nkh
H =

K∑
k=1

H · I[nkh = 0] ≤ SAH .

The key step is to upper bound the second term in (5.8), which is:

K∑
k=1

nkh∑
i=1

αinkh
φ
ki(x

k
h,a

k
h)

h+1 ,

where ki(x
k
h, a

k
h) is the episode in which (xkh, a

k
h) was taken at step h for the ith time. We

regroup the summands in a different way. For every k′ ∈ [K], the term φk
′

h+1 appears in the
summand with k > k′ if and only if (xkh, s

k
h) = (xk

′

h , s
k′

h). The first time it appears we have
nkh = nk

′

h + 1, the second time it appears we have nkh = nk
′

h + 2, and so on. Therefore

K∑
k=1

nkh∑
i=1

αinkh
φ
ki(x

k
h,a

k
h)

h+1 ≤
K∑
k′=1

φk
′

h+1

∞∑
t=nk

′
h +1

α
nk
′
h
t ≤

(
1 +

1

H

) K∑
k=1

φkh+1,

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 124

where the final inequality uses
∑∞

t=i α
i
t = 1 + 1

H
from Lemma 3. Plugging these back into

(5.8), we have:

K∑
k=1

δkh ≤ SAH +

(
1 +

1

H

) K∑
k=1

φkh+1 −
K∑
k=1

φkh+1 +
K∑
k=1

δkh+1 +
K∑
k=1

(βnkh + ξkh+1)

≤ SAH +

(
1 +

1

H

) K∑
k=1

δkh+1 +
K∑
k=1

(βnkh + ξkh+1) , (5.9)

where the final inequality uses φkh+1 ≤ δkh+1 (owing to the fact that V ? ≥ V πk). Recursing
the result for h = 1, 2, . . . , H, and using the fact δKH+1 ≡ 0, we have:

K∑
k=1

δk1 ≤ O
(
H2SA+

H∑
h=1

K∑
k=1

(βnkh + ξkh+1)
)
.

Finally, by the pigeonhole principle, for any h ∈ [H]:

K∑
k=1

βnkh ≤ O(1) ·
K∑
k=1

√
H3ι

nkh
= O(1) ·

∑
x,a

NK
h (x,a)∑
n=1

√
H3ι

n

¬

≤ O
(√

H3SAKι
)

= O
(√

H2SATι
)

(5.10)

where inequality ¬ is true because
∑

x,aN
K
h (x, a) = K and the left-hand side of ¬ is max-

imized when NK
h (x, a) = K/SA for all x, a. Also, by the AzumaHoeffding inequality, with

probability 1− p, we have:∣∣∣ H∑
h=1

K∑
k=1

ξkh+1

∣∣∣ =
∣∣∣ H∑
h=1

K∑
k=1

[(Ph − P̂kh)(V ?
h+1 − V k

h+1)](xkh, a
k
h)
∣∣∣ ≤ cH

√
Tι.

This establishes
∑K

k=1 δ
k
1 ≤ O

(
H2SA +

√
H4SATι

)
. We note that when T ≥

√
H4SATι,

we have
√
H4SATι ≥ H2SA, and when T ≤

√
H4SATι, we have

∑K
k=1 δ

k
1 ≤ HK = T ≤√

H4SATι. Therefore, we can remove the H2SA term in the regret upper bound.
In sum, we have

∑K
k=1 δ

k
1 ≤ O

(
H2SA +

√
H4SATι

)
, with probability at least 1 − 2p.

Rescaling p to p/2 finishes the proof.

5.5 Explanation for Q-Learning with ε-Greedy

We recall a construction of a hard instance for Q-learning, known as a “combination lock,”
and tracing back at least to Koenig and Simmons (1993). In our context of our episodic
MDP, this instance corresponds to the following MDP.

Consider a special state s? ∈ S where the adversary always picks x1 = s?. For steps
h = 1, 2, . . . , H/2, there is one special action a? ∈ A where the distribution Ph(·|s?, a?) is a

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 125

singleton and always leads to a next state xh+1 = s?. For any other state s ∈ S \ {s?}, or
any other action a ∈ A \ {a?}, the distribution Ph(·|s, a) is uniform over S \ {s?}. For steps
h = H/2 + 1, . . . , H, Ph(·|s, a) is always a singleton and leads to the next state xh+1 = s.
Finally, the reward function rh(s, a) = 0 for all s, a, h, except when s = s? and h > H/2, we
have rH(s?, a?) = 1. It is clear that the optimal policy gives reward H/2 (by always selecting
action a?).

For this MDP, for the Q-learning algorithm (or its Sarsa variant) with zero initialization,
unless the algorithm picks a path with prefix (x1, a1, x2, a2, . . . , xH/2, aH/2) = (s?, a?, . . . , s?, a?),
the reward value of the path is always zero and thus the algorithm will not change Qh(s, a) for
any s, a, h. In other words, all Q values remain at zero until the first time (s?, a?, . . . , s?, a?)
is visited. Unfortunately, this can happen with probability at most A−H/2, and therefore the
algorithm must suffer H/2 regret per round unless K ≥ Ω(AH/2).

5.6 Proof of Lemma 5.4.1

In this section, we derive three important properties implied by our choice of the learning
rate. Recall the notation from (5.2) and (5.4):

αt =
H + 1

H + t
, α0

t =
t∏

j=1

(1− αj), αit = αi

t∏
j=i+1

(1− αj) .

Lemma 5.4.1. The following properties hold for αit:

1. 1√
t
≤
∑t

i=1
αit√
i
≤ 2√

t
for every t ≥ 1.

2. maxi∈[t] α
i
t ≤ 2H

t
and

∑t
i=1(αit)

2 ≤ 2H
t

for every t ≥ 1.

3.
∑∞

t=i α
i
t = 1 + 1

H
for every i ≥ 1.

Proof of Lemma 5.4.1.

1. The proof is by induction on t. For the base case t = 1 we have
∑t

i=1
αit√
i

= α1
1 = 1 so the

statement holds. For t ≥ 2, by the relationship αit = (1−αt)αit−1 for i = 1, 2, . . . , t− 1
we have:

t∑
i=1

αit√
i

=
αt√
t

+ (1− αt)
t−1∑
i=1

αit−1√
i
.

On the one hand, by induction we have:

αt√
t

+ (1− αt)
t−1∑
i=1

αit−1√
i
≥ αt√

t
+

1− αt√
t− 1

≥ αt√
t

+
1− αt√

t
=

1√
t
.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 126

On the other hand, by induction we have:

αt√
t

+ (1− αt)
t−1∑
i=1

αit−1√
i
≤ αt√

t
+

2(1− αt)√
t− 1

=
H + 1√
t(H + t)

+
2
√
t− 1

H + t

≤ H + 1√
t(H + t)

+
2
√
t

H + t
=

2√
t

+
1√
t
· 1−H
t+H

≤ 2√
t
,

where the final inequality holds because H ≥ 1.

2. We have:

αit =
H + 1

i+H
·
(i

i+ 1 +H

i+ 1

i+ 2 +H
· · · t− 1

t+H

)
=
H + 1

t+H
·
(i

i+H

i+ 1

i+ 1 +H
· · · t− 1

t− 1 +H

)
≤ H + 1

t+H
≤ 2H

t
.

Therefore, we have proved maxi∈[t] α
i
t ≤ 2H/t. The second inequality,

∑t
i=1(αit)

2 ≤
2H/t, follows directly since

∑t
i=1(αit)

2 ≤ [maxi∈[t] α
i
t] ·
∑t

i=1 α
i
t and

∑t
i=1 α

i
t = 1.

3. We first note the following identity, which holds for all positive integers n and k with
n ≥ k:

n

k
= 1 +

n− k
n+ 1

+
n− k
n+ 1

n− k + 1

n+ 2
+
n− k
n+ 1

n− k + 1

n+ 2

n− k + 2

n+ 3
+ · · · . (5.11)

To verify (5.11), we write the terms of its right-hand side as x0 = 1, x1 = n−k
n+1

,

It is easy to verify by induction that n
k
−
∑t

i=0 xi = n−k
k

∏t
i=1

n−k+i
n+i

. This means

limt→∞
n
k
−
∑t

i=0 xi = 0 and this proves that (5.11) holds. Now, using (5.11) with
n = i+H and k = H, we have:

∞∑
t=i

αit =
H + 1

i+H
·
(
1 +

i

i+ 1 +H
+

i

i+ 1 +H

i+ 1

i+ 2 +H
+ · · ·

)
=
H + 1

i+H
· i+H

H
=
H + 1

H
.

5.7 Proof for Q-learning with UCB-Bernstein

In this section, we prove Theorem 5.3.2.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 127

Notation In addition to the notation of Section 5.4, we define a variance operator Vh:

[VhVh+1](x, a) := Varx′∼Ph(·|x,a)(Vh+1(x′)) = Ex′∼Ph(·|x,a)

[
Vh+1(x′)− [PhVh+1](x, a)

]2
We also consider an empirical version of variance that can be computed by the algorithm:
when (x, a) was taken at step h for t times at k1, · · · , kt episodes respectively:

Wt(x, a, h) :=
1

t

t∑
i=1

[
V ki
h+1(xkih+1)− 1

t

∑t
j=1 V

kj
h+1(x

kj
h+1)

]2

. (5.12)

In this section, we choose two constants c1, c2 > 0 and define

βt(x, a, h) := min
{
c1

(√H

t
· (Wt(x, a, h) +H)ι+

√
H7SA · ι

t

)
, c2

√
H3ι

t

}
, (5.13)

and accordingly,

b1(x, a, h) :=
β1(x, a, h)

2
bt(x, a, h) :=

βt(x, a, h)− (1− αt)βt−1(x, a, h)

2αt
. (5.14)

It is easy to verify that βt = 2
∑t

i=1 α
i
tbi for every t ≥ 1. We include in Algorithm 11 the

efficient implementation for calculating bt(x, a, h) in O(1) time per time step. Now we restate
Theorem 5.3.2.

Theorem 5.7.1. thm:bernstein[Bernstein, restated] There exist absolute constants c1, c2 > 0
such that, for any p ∈ (0, 1), if we choose bt according to (5.14), then with probability
1 − p, the total regret of Q-learning with UCB-Bernstein (see Algorithm 11) is at most
O(
√
H3SATι+

√
H9S3A3 · ι2).

Proof

We first note that the following recursion, obtained in the proof for the Hoeffding case (see
Lemma 5.4.2), still holds here:

Lemma 5.7.2 (recursion on Q). For any (x, a, h) ∈ S × A × [H] and episode k ∈ [K], let
t = Nk

h (x, a) and suppose (x, a) was previously taken at step h of episodes k1, . . . , kt < k,
then

(Qk
h −Q?

h)(x, a) = α0
t (H −Q?

h(x, a))

+
t∑
i=1

αit

[
(V ki

h+1 − V
?
h+1)(xkih+1) + [(P̂kih − Ph)V ?

h+1](x, a) + bi(x, a, h)
]
.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 128

Algorithm 11 Q-learning with UCB-Bernstein

1: for all (x, a, h) ∈ S ×A× [H] do
2: Qh(x, a)← H; Nh(x, a)← 0; µh(x, a)← 0; σh(x, a)← 0; β0(x, a, h)← 0.
3: for episode k = 1, . . . , K do
4: receive x1.
5: for step h = 1, . . . , H do
6: Take action ah ← argmaxa′ Qh(xh, a

′), and observe xh+1.
7: t = Nh(xh, ah)← Nh(xh, ah) + 1.
8: µh(xh, ah)← µh(xh, ah) + Vh+1(xh+1).

9: σh(xh, ah)← σh(xh, ah) +
(
Vh+1(xh+1)

)2
.

10: βt(xh, ah, h)← min
{
c1

(√
H
t
σh(xh,ah)−(µh(xh,ah))2

t
+H)ι+

√
H7SA·ι
t

)
, c2

√
H3ι
t

}
.

11: bt ← βt(xh,ah,h)−(1−αt)βt−1(xh,ah,h)
2αt

.
12: Qh(xh, ah)← (1− αt)Qh(xh, ah) + αt[rh(xh, ah) + Vh+1(xh+1) + bt].
13: Vh(xh)← min{H,maxa′∈AQh(xh, a

′)}.

Parallel to the Hoeffding case, we aim at proving an equivalent version of Lemma 5.4.3
that shows that Qk − Q? is (1) nonnegative and (2) bounded from above. However, unlike
the Hoeffding case, this new proof becomes very delicate.

We first provide a coarse upper bound on Qk−Q? that does not assert whether Qk−Q?

is nonnegative or not. This coarse upper bound only makes use of the fact that βt is at
most O(

√
H3ι/t), which was precisely how we have chosen βt in the Hoeffding case and in

Lemma 5.4.3.

Lemma 5.7.3 (coarse bound on Qk −Q?). There exists absolute constant c2 > 0 such that,

if βt(x, a, h) ≤ c2

√
H3ι
t

in (5.13), then, with probability at least 1− p, the following holds

∀(x, a, h, k) ∈ S ×A× [H]× [K] :

(V k
h − V ?

h)(xkh) ≤ α0
tH +

t∑
i=1

αit(V
ki
h+1 − V

?
h+1)(xkih+1) + 4c2

√
H3ι

t
, (5.15)

where t = Nk
h (x, a) and k1, . . . , kt < k are the episodes in which (x, a) was taken at step h.

Proof of Lemma 5.7.3. The result follows from Lemma 5.7.2 and the proof of Lemma 5.4.3.

In order to apply the Bernstein concentration inequality to the recursive formula in
Lemma 5.7.2, we need to estimate the variance of V ?. Unfortunately, V ? is unknown as its
variance. At the kth episode, we are only able to compute the “empirical” version of the
variance using V k, which is Wt as defined in (5.12).

Our next lemma shows that, if Qk′−Q? is nonnegative for all episodes k′ < k, the variance
of V ? (i.e., VhV

?
h+1(x, a)) and the “empirical” variance of V k are sufficiently close.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 129

Lemma 5.7.4. There exists an absolute constant c > 0 such that for any p ∈ (0, 1) and
k ∈ [K], with probability at least 1− p/K, if

(5.15) in Lemma 5.7.3 holds and (Qk′

h −Q?
h)(x, a) ≥ 0 for all k′ < k,

then for all (x, a, h) ∈ S ×A× [H]:

∣∣VhV
?
h+1(x, a)−Wt(x, a, h)

∣∣ ≤ c
(SA√H7ι

t
+

√
H7SAι

t

)
, where t = Nk

h (x, a) .

Proof of Lemma 5.7.4. For each fixed (x, a, h) ∈ S ×A× [H], let us denote k0 = 0, and:

ki = min
({
k ∈ [K] | k > ki−1 ∧ (xkh, a

k
h) = (x, a)

}
∪ {K + 1}

)
.

That is, ki is the episode if which (x, a) was taken at step h for the ith time, and it is clearly
a stopping time. Let Fi be the σ-field generated by all the random variables until episode
ki, step h. We also denote t = Nk

h (x, a).
To bridge the gap between VhV

?
h+1(x, a) and Wt(x, a, h), we consider following four quan-

tities:

[VhV
?
h+1](x, a) =Ex′∼Ph(·|x,a)

[
V ?
h+1(x′)− [PhV ?

h+1](x, a)
]2

=: P1

1

t

t∑
i=1

[
V ?
h+1(xkih+1)− [PhV ?

h+1](x, a)
]2

=: P2

1

t

t∑
i=1

[
V ?
h+1(xkih+1)− 1

t

∑t
j=1 V

?
h+1(x

kj
h+1)

]2

=: P3

Wt(x, a, h) =
1

t

t∑
i=1

[
V ki
h+1(xkih+1)− 1

t

∑t
j=1 V

kj
h+1(x

kj
h+1)

]2

=: P4 .

We shall bound the difference |P1 − P4| by |P1 − P2|+ |P2 − P3|+ |P3 − P4| via the triangle
inequality.

Bounding |P1 − P2|: We notice that for any fixed τ ∈ [k], by the Azuma-Hoeffding in-
equality, there exists a sufficiently large constant c > 0 such that, with probability at least
1− p/(2SAT):∣∣∣∣1τ

τ∑
i=1

I
[
ki ≤ k

]
·
[(
V ?
h+1(xkih+1)− [PhV ?

h+1](x, a)
)2 − [VhVh+1](x, a)

] ∣∣∣∣ ≤ cH2
√
ι/τ , (5.16)

since LHS is a martingale sequence with respect to the filtration {Fi}. Because Eq. (5.16)
holds for all fixed τ ∈ [k] uniformly, it also holds for τ = t = Nk

h (x, a) ≤ k which is a
random variable. Also note I[ki ≤ k] = 1 for all i ≤ Nk

h (x, a). Therefore, we can conclude
|P1 − P2| ≤ cH2

√
ι/t.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 130

Bounding |P2 − P3|: We calculate

|P2−P3| ≤
2H

t

t∑
i=1

∣∣∣[PhV ?
h+1](x, a)− 1

t

∑t
j=1 V

?
h+1(x

kj
h+1)

∣∣∣ = 2H
∣∣∣[PhV ?

h+1](x, a)− 1
t

∑t
j=1 V

?
h+1(x

kj
h+1)

∣∣∣ .
Again, for any fixed τ ∈ [k], by the Azuma-Hoeffding inequality, with probability 1 −
p/(2SAT): ∣∣∣∣1τ

τ∑
i=1

I
[
ki ≤ k

]
·
[
V ?
h+1(xkih+1)− PhV ?

h+1(x, a)
] ∣∣∣∣ ≤ cH

√
ι/τ . (5.17)

By the same argument as above, we also know that Eq. (5.16) holds for the random variable
τ = t = Nk

h (x, a) ≤ k, which implies |P2 − P3| ≤ 2cH2
√
ι/t.

Bounding |P3 − P4|: We calculate that

|P3 − P4| ≤
2H

t

t∑
i=1

∣∣∣V ki
h+1(xkih+1)− V ?

h+1(xkih+1)− 1
t

∑t
j=1

(
V
kj
h+1(x

kj
h+1)− V ?

h+1(x
kj
h+1)

)∣∣∣
≤ 4H

t

t∑
i=1

∣∣V ki
h+1(xkih+1)− V ?

h+1(xkih+1)
∣∣ ≤ 4H

t

t∑
i=1

(
V ki
h+1(xkih+1)− V ?

h+1(xkih+1)
)
,

where the last inequality uses V k′

h+1(x) ≥ V ?
h+1(x) for all x ∈ S and k′ < k, which follows

from our assumption (Qk′

h+1 −Q?
h+1)(x, a) ≥ 0 for all k′ < k.

We apply Lemma 5.7.8 (see Section 5.7 later) with a weight vector w such that wki = 1
t

for all i ∈ [t], but wk′ = 0 for all k′ 6∈ {k1, . . . , kt} (so ‖w‖1 = 1 and ‖w‖∞ = 1/t). This tells
us that

|P3 − P4| ≤
4H

t

t∑
i=1

(
V ki
h+1(xkih+1)− V ?

h+1(xkih+1)
)
≤ O

(SA√H7ι

t
+

√
H7SAι

t

)
.

Finally, by the triangle inequality
∣∣[VhV

?
h+1 −W k

h](x, a)
∣∣ ≤ |P1 − P2|+ |P2 − P3|+ |P3 − P4|,

and a union bound over (x, a, h) ∈ S ×A× [H], we finish the proof.

Now, equipped with Lemma 5.7.3 and Lemma 5.7.4, we can use induction and an Azuma-
Bernstein concentration argument to prove that Qk−Q? is nonnegative and upper bounded
by β. This gives an analog of Lemma 5.4.3 that we state here.

Lemma 5.7.5 (fine bound on Qk − Q?). For every p ∈ (0, 1), there exists an absolute
constant c1, c2 > 0 such that, under the choice of βt(x, a, h) in (5.13), with probability at
least 1− 2p, the following holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K]:

0 ≤ (Qk
h −Q?

h)(x, a) ≤ α0
tH +

t∑
i=1

αit(V
ki
h+1 − V

?
h+1)(xkih+1) + βt , (5.18)

where t = Nk
h (x, a) and k1, . . . , kt < k are the episodes in which (x, a) was taken at step h.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 131

Proof of Lemma 5.7.5. We first choose c2 > 0 large enough so that Lemma 5.7.3 holds with
probability at least 1− p.

For each fixed (x, a, h) ∈ S ×A× [H], let us denote k0 = 0, and:

ki = min
({
k ∈ [K] | k > ki−1 ∧ (xkh, a

k
h) = (x, a)

}
∪ {K + 1}

)
.

By the Azuma-Bernstein inequality, with probability at least 1 − p/(SAT), we have for all
τ ∈ [K]:∣∣∣∣∣
τ∑
i=1

αiτ I[ki ≤ K] · [(P̂kih − Ph)V ?
h+1](x, a)

∣∣∣∣∣ ≤ O(1) ·

√√√√ τ∑
i=1

(αiτ)
2[VhV ?

h+1](x, a)ι+ [max
i∈[τ]

αiτ]Hι


≤ O(1) ·

[√
H

τ
[VhV ?

h+1](x, a)ι+
H2

τ
ι

]
, (5.19)

where the last inequality is by Lemma 2. Since the inequality (5.19) holds for all fixed
τ ∈ [K] uniformly, it also holds for the random variable τ = t = Nk

h (x, a) ≤ K. By a union
bound, with probability at least 1− p, we have that for all (x, a, h, k) ∈ S ×A× [H]× [K]∣∣∣∣∣

t∑
i=1

αitI[ki ≤ K] · [(P̂kih − Ph)V ?
h+1](x, a)

∣∣∣∣∣ ≤ O(1) ·

[√
H

t
[VhV ?

h+1](x, a)ι+
H2

t
ι

]
, (5.20)

where t = Nk
h (x, a) and k1, . . . , kt < k are the episodes in which (x, a) was taken at step h.

We are now ready to prove (5.18). We do so by induction over k ∈ [K]. Clearly, the
statement is true for k = 1, so in the rest of the proof we assume (5.18) holds for all k′ < k.
We denote by k1, k2, . . . , kt < k all indices of previous episodes where (x, a) is taken at step
h. By Lemma 5.7.4, with probability 1− p/K, we have for all (x, a, h) ∈ S ×A× [H]:

∣∣[VhV
?
h+1(x, a)−Wt(x, a, h)

∣∣ ≤ O
(√SAH7ι

t
+
SA
√
H7ι

t

)
.

Therefore, putting this into (5.20), we have∣∣∣∣∣
t∑
i=1

αit[(P̂
ki
h − Ph)V ?

h+1](x, a)

∣∣∣∣∣ ¬

≤ O(1) ·

[√
H

t
(Wt(x, a, h) +H)ι+

√
H7SA · ι

t

]
­

≤ βt
2
,

where inequality ¬ uses
√

H7SAι
t
≤ H + H6SAι

t
, and inequality ­ is due to our choice of βt

in (5.13) and the sufficiently large choice of c1 > 0.
Finally, applying the above inequality to Lemma 5.7.2, we have for all (x, a, h) ∈ S ×

A× [H]

0 ≤ (Qk
h −Q?

h)(x, a)− α0
t (H −Q?

h(x, a))−
t∑
i=1

αit
[
(V ki

h+1 − V
?
h+1)(xkih+1)

]
≤ βt . (5.21)

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 132

This proves that (5.18) holds for k with probability at least 1−p/K. By induction, we know
(5.18) holds for all k ∈ [K] with probability at least 1 − p. Combining this with the 1 − p
probability event for (5.20), we finish the proof that Lemma 5.7.5 holds with probability at
least 1− 2p.

As mentioned in Section 5.3, the key reason why a Bernstein approach can improve by
a factor of

√
H is that, although the value function at each step is at most H, the “total

variance of the value function” for an entire episode is at most O(H2). Or more simply,
the total variance for all steps is at most O(HT). This is captured directly in the following
lemma.

Lemma 5.7.6. There exists an absolute constant c, such that with probability at least 1− p:

K∑
k=1

H∑
h=1

VhV
πk
h+1(xkh, a

k
h) ≤ c(HT +H3ι) .

Proof of Lemma 5.7.6. First, we note for any fixed policy π and initial state x1, suppose
(x2, · · · , xh) is a sequence generated by following policy π starting at x1, then

H2 ≥ E
[(∑H

h=1 r(xh, π(xh))
)
− V π

1 (x1)
]2

¬
= E

[∑H
h=1[r(xh, π(xh)) + V π

h+1(xh+1)− V π
h (xh)]

]2

­
= E

∑H
h=1

[
r(xh, π(xh)) + V π

h+1(xh+1)− V π
h (xh)

]2
= E

∑H
h=1 VhV

π
h+1(xh, π(xh)) ,

where equality ¬ is because V π
H+1 = 0, and equality ­ uses the independence due to the

Markov property. Therefore, letting Fk−1 be the σ-field generated by all the random variables
over the first k − 1 episodes, at the kth episode we have:

E
[
Xk

∣∣∣Fk−1

]
≤ H2 where Xk :=

∑H
h=1 VhV

πk
h+1(xkh, πk(x

k
h)) .

Also, note that |Xk| ≤ H3 and Var[Xk | Fk−1] ≤ H3E[Xk | Fk−1] ≤ H5. Therefore, by an
Azuma-Bernstein inequality on X1 + · · · + XK with respect to filtration {Fk}k≥0, we have
with probability at least 1− p,

K∑
k=1

H∑
h=1

VhV
πk
h+1(xkh, a

k
h) ≤

K∑
k=1

E
[
Xk | Fk−1

]
+O

(√
H5Kι+H3ι

)
≤ O(HT +H3ι) ,

where the last step is by ab ≤ a2 + b2.

Our last lemma shows that the “empirical” variance of V k (i.e., Wt(x, a, h)) is also upper
bounded by the variance VhV

πk
h+1(x, a) (which appeared in Lemma 5.7.6) plus some small

terms.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 133

Lemma 5.7.7. There exist absolute constants c1, c2, c > 0 such that, letting (x, a) = (xkh, a
k
h)

and t = nkh = Nk
h (x, a), we have that for all (k, h) ∈ [K]× [H], with probability at least 1−4p,

Wt(x, a, h) ≤ VhV
πk
h+1(x, a) + 2H(δkh+1 + ξkh+1) + c

(SA√H7ι

t
+

√
SAH7ι

t

)
,

where ξkh+1 := [(Ph − P̂kh)(V ?
h+1 − V k

h+1)](xkh, a
k
h) and δkh+1 := (V ?

h+1 − V k
h+1)(xkh+1).

Proof of Lemma 5.7.7. We first assume that Lemma 5.7.5 holds (which happens with proba-
bility at least 1−2p) and Lemma 5.7.3 holds (which happens with probability at least 1−p).
As a consequence, with probability at least 1 − p, Lemma 5.7.4 also holds for all k ∈ [K].
By the triangle inequality, we have:

Wt(x, a, h)− VhV
πk
h+1(x, a) ≤

∣∣[VhV
?
h+1 −Wt(x, a, h)

∣∣+
∣∣[VhV

?
h+1 − VhV

πk
h+1](x, a)

∣∣ ,
where the first term on the right-hand side is upper bounded by Lemma 5.7.4. For the second
term: ∣∣[VhV

?
h+1 − VhV

πk
h+1](x, a)

∣∣ ≤ 2H[Ph(V ?
h+1 − V

πk
h+1)](xkh, a

k
h) = 2H(ξkh+1 + δkh+1) .

Proof of Theorem 5.3.2

We are now ready to prove Theorem 5.3.2. Again, the proof decomposes the regret in a re-
cursive form, and carefully controls the error propagation via repeated usage of Lemma 5.7.5
and Lemma 5.7.7.

Proof of Theorem 5.3.2. We first assume that Lemma 5.7.6 holds (which happens with prob-
ability at least 1−4p) and Lemma 5.7.7 holds (which happens with probability at least 1−p).

By the same argument as in the proof of Theorem 5.3.1 (in particular, inequality (5.9))
we have:

K∑
k=1

δkh ≤
(

1 +
1

H

) K∑
k=1

δkh+1 + SAH +
K∑
k=1

(βnkh(xkh, a
k
h, h) + ξkh+1) ,

where ξkh+1 := [(Ph− P̂kh)(V ?
h+1−V k

h+1)](xkh, a
k
h) and δkh+1 := (V ?

h+1−V k
h+1)(xkh+1). As a result,

for any h ∈ H, by recursing the above formula for h, h+ 1, . . . , H, we have:

K∑
k=1

δkh ≤ SAH2 +
H∑

h′=h

K∑
k=1

(βnk
h′

(xkh′ , a
k
h′ , h

′) + ξkh′+1) (5.22)

By the Azuma-Hoeffding inequality, with probability 1− p, we have:

∀h ∈ [H] :
∣∣∣ H∑
h′=h

K∑
k=1

ξkh′+1

∣∣∣ =
∣∣∣ H∑
h′=h

K∑
k=1

[(Ph′ − P̂kh′)(V ?
h′+1 − V k

h′+1)](xkh′ , a
k
h′)
∣∣∣ ≤ O

(
H
√
Tι
)
.

(5.23)

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 134

Also, recall βt(x, a, h) ≤ c
√
H3ι/t so

∑K
k=1 βnkh ≤ O

(√
H2SATι

)
according to (5.10).

Putting these into (5.22), we derive that
∑K

k=1 δ
k
h ≤ O

(
SAH2 +

√
H4SATι

)
. Note when

T ≥
√
H4SATι, we have

√
H4SATι ≥ H2SA; when T ≤

√
H4SATι, we have

∑K
k=1 δ

k
h ≤

HK = T ≤
√
H4SATι. Therefore, we can simply write

K∑
k=1

δkh ≤ O
(√

H4SATι
)
. (5.24)

By our choice of βt, we have:

K∑
k=1

H∑
h=1

βnkh ≤ O(1) ·
K∑
k=1

H∑
h=1

[√
H

nkh
· (Wnkh

(x, a, h) +H) +

√
H7SA · ι
nkh

]
(5.25)

The summation of the second term in (5.25) is upper bounded by

K∑
k=1

H∑
h=1

√
H7SA · ι
nkh

≤
√
H9S3A3ι4 ,

because 1+ 1
2

+ 1
3

+ · · · ≤ ι. The summation of the first term in (5.25) can be upper bounded
by

K∑
k=1

H∑
h=1

√
H

nkh
· (Wnkh

(x, a, h) +H) ≤

√√√√(K∑
k=1

H∑
h=1

(Wnkh
(x, a, h) +H)

)(
K∑
k=1

H∑
h=1

H

nkh

)

≤

√√√√ K∑
k=1

H∑
h=1

Wnkh
(x, a, h) ·

√
H2SAι+

√
H3SATι . (5.26)

We calculate

K∑
k=1

H∑
h=1

Wnkh
(x, a, h)

¬

≤
K∑
k=1

H∑
h=1

[
VhV

πk
h+1(xkh, a

k
h) + 2H(δkh+1 + ξkh+1) +O

(SA√H7ι

nkh
+

√
SAH7ι

nkh

)]
­

≤
K∑
k=1

H∑
h=1

[
VhV

πk
h+1(xkh, a

k
h) + 2H(δkh+1 + ξkh+1)

]
+O

(
S2A2

√
H9ι3 + SA

√
H8Tι

)
®

≤ 2H
K∑
k=1

H∑
h=1

(δkh+1 + ξkh+1) +O
(
HT +H3ι+ S2A2

√
H9ι3 + SA

√
H8Tι

)
¯

≤ O
(√

H8SATι+HT +H3ι+ S2A2
√
H9ι3 + SA

√
H8Tι

)
≤ O

(
HT + S2A2H7ι+ S2A2

√
H9ι3

)
. (5.27)

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 135

Here, inequality ¬ uses Lemma 5.7.7; inequality ­ uses
∑K

k=1(nkh)
−1 ≤ SAι and

∑K
k=1(

√
nkh)
−1/2 ≤

O(
√
KSA); inequality ® uses Lemma 5.7.6; and inequality ¯ uses (5.23) and (5.24).

Putting (5.27) and (5.26) back to (5.25), we have

K∑
k=1

H∑
h=1

βnkh ≤ O
(√

H3SATι+
√
S3A3H9ι4

)
. (5.28)

Finally, putting this and (5.23) back to (5.22), we finish the proof that with probability at
least 1− 6p, for every h ∈ [H]

K∑
k=1

δkh ≤ O
(√

H3SATι+
√
S3A3H9ι4

)
.

Since we also have Regret(K) ≤
∑K

k=1 δ
k
1 as in the proof of Theorem 5.3.1, rescaling p to

p/6 finishes the proof.

Proof of Auxiliary Lemma

The next lemma shows how the weighted sum over (V k
h − V ?

h)(xkh) is upper bounded by the
infinity norm and the one-norm of the weights w. This lemma provides the key to prove
Lemma 5.7.4.

Lemma 5.7.8. Suppose (5.15) in Lemma 5.7.3 holds. For any h ∈ [H], let φkh := (V k
h −

V ?
h)(xkh), and letting w = (w1, . . . , wk) be a nonnegative weight vector, we have:

K∑
k=1

wkφ
k
h ≤ O

(
SA‖w‖∞

√
H5ι+

√
SA‖w‖1‖w‖∞H5ι

)
,

where φkh := (V k
h − V ?

h)(xkh).

Proof of Lemma 5.7.8. For any fixed (k, h) ∈ [K] × [H], let t = Nk
h (xkh, a

k
h), and suppose

(xkh, a
k
h) was previously taken at step h of episodes k1, . . . , kt < k. We then have, for some

absolute constant c:

φkh = (V k
h − V ?

h)(xkh)
¬

≤ (Qk
h −Q?

h)(x
k
h, a

k
h)

­

≤ α0
tH +

t∑
i=1

αitφ
ki
h+1 +O

(√H3ι

t

)
. (5.29)

Here, inequality ¬ holds from V k
h (xkh) ≤ maxa′∈AQ

k
h(x

k
h, a
′) = Qk

h(x
k
h, a

k
h) and the Bellman

optimality equation V ?
h (xkh) = maxa′∈AQ

?
h(x

k
h, a
′) ≥ Q?

h(x
k
h, a

k
h). Inequality ­ holds by the

assumption that (5.15) in Lemma 5.7.3 holds.

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 136

Next, let us compute the summation
∑K

k=1wkδ
k
h. Denoting nkh = Nk

h (xkh, a
k
h), we have:

K∑
k=1

wkα
0
nkh
H =

K∑
k=1

Hwk · I[nkh = 0] ≤ HSA‖w‖∞ ; and (5.30)

K∑
k=1

wk

√
H3ι

nkh

¬
= O(1) ·

∑
x,a

NK
h (x,a)∑
i=1

wki(x,a)

√
H3ι

i

­

≤ O
(
SA‖w‖∞ +

√
SA‖w‖1‖w‖∞

)
·
√
H3ι . (5.31)

Above,

• Equality ¬ is by reordering the indices k ∈ [K] so that the ones with the same (x, a) =
(xkh, a

k
h) are grouped together; and we denote by ki(x, a) = k where k is the ith episode

where (x, a) is taken at step h.

• Inequality ­ is because
∑

x,a

∑NK
h (x,a)

i=1 wki(x,a) = ‖w‖1. Therefore, the left-hand side of
­ is maximized when the weights are distributed to those indices i that have smaller
values:

∑
x,a

NK
h (x,a)∑
i=1

wki(x,a)

√
1

i
≤ ‖w‖1+

∑
x,a

⌊
‖w‖1

SA‖w‖∞

⌋∑
i=1

‖w‖∞

√
1

i
≤ O

(
SA‖w‖∞+

√
SA‖w‖1‖w‖∞

)
.

To bound the second term in (5.29), which is

K∑
k=1

wk

nkh∑
i=1

αinkh
φ
ki(x

k
h,a

k
h)

h+1 , (5.32)

we regroup the summands in (5.32) in a different way. For every k′ ∈ [K], we group all terms
φk
′

h+1 that appear in the inner summand of (5.32)—denoting their total weight by w′k′—and
write:

K∑
k=1

wk

nkh∑
i=1

αinkh
φ
ki(x

k
h,a

k
h)

h+1 =
K∑
k′=1

w′k′ · φk
′

h+1 . (5.33)

We make two key observations

• We have ‖w′‖1 ≤ ‖w‖1 because
∑t

i=1 α
i
t ≤ 1.

• For every k′ ∈ [K], we note that the term φk
′

h+1 only appears on the left-hand side of
(5.33) in episode k ≥ k′, where (xkh, s

k
h) = (xk

′

h , s
k′

h). Suppose it appears in episodes

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 137

k′1, k
′
2, Then, letting τ = nk

′

h , we have corresponding weight is wk′α
τ
τ , wk′1α

τ
τ+1, wk′2α

τ
τ+2 · · · .

Therefore, the total weight satisfies

w′k′ ≤ ‖w‖∞
∞∑

t=nk
′
h +1

α
nk
′
h
t ≤

(
1 +

1

H

)
‖w‖∞ ,

where the final inequality uses
∑∞

t=i α
i
t = 1 + 1

H
from Lemma 3.

Plugging (5.30), (5.31), and (5.33) back into (5.29), we have:

K∑
k=1

wkφ
k
h ≤ HSA‖w‖∞ +

K∑
k′=1

w′k′ · φk
′

h+1 +O
(
SA‖w‖∞ +

√
SA‖w‖1‖w‖∞

)
·
√
H3ι ,

with ‖w′‖∞ ≤ (1 + 1
H

)‖w‖∞ and ‖w′‖1 ≤ ‖w‖∞. Recursing this for h, h + 1, . . . , H, we
conclude that

K∑
k=1

wkφ
k
h ≤ O

(
SA‖w‖∞

√
H5ι+

√
SA‖w‖1‖w‖∞H5ι

)
.

5.8 Proof of Lower Bound

Recall that Jaksch, Ortner, and Auer (2010) showed that for any algorithm, there is an MDP
with diameter D, S states and A actions, such that the algorithm’s regret must be at least
Ω(
√
DSAT). The natural analogous notion of the diameter in the episodic setting is H, and

thus this suggests a lower bound in Ω(
√
HSAT), as presented in (Osband and Van Roy,

2016; Azar, Osband, and Munos, 2017).
We show that, in our episodic setting of this work, one can obtain a stronger lower bound:

Theorem 5.3.3. For the episodic MDP problem studied in this work, the expected regret for
any algorithm must be at least Ω(

√
H2SAT).

This result seemingly contradicts the O(
√
HSAT) regret bound of Azar, Osband, and

Munos (2017). There is no contradiction, however, because Azar, Osband, and Munos (2017)
assumes that the transition matrix Ph is the same at each step h ∈ [H]. On the contrary,
in this work we consider the more general setting where the transition matrices P1, . . . ,PH
are distinct for each step. Our setting can be viewed as a special case of the non-episodic
MDP studied by Jaksch, Ortner, and Auer (2010), obtained by augmenting the state space
to S ′ = S × [H].

Rather than providing a formal proof of Theorem 5.3.3 we give the intuition behind the
construction and its analysis. The formalization itself is an easy exercise following well-
known lower-bound techniques from the multi-armed bandit literature; see, e.g., (Bubeck

CHAPTER 5. ON SAMPLE EFFICIENCY OF Q-LEARNING 138

and Cesa-Bianchi, 2012). For the sake of simplicity, we consider A = 2 and S = 2 (again the
generalization to arbitrary A and S is routine).

We start by recalling the construction from Jaksch, Ortner, and Auer (2010), which we
will refer to as the “JAO MDP.” The reward does not depend on actions: state 1 always has
reward 1 and state 0 always has reward 0. From state 1, any action takes the agent to state
0 with probability δ, and to state 1 with probability 1− δ. In state 0, there is one action a?

takes the agent to state 1 with probability δ+ ε, and the other action a takes the agent to 1
with probability δ. A standard Markov chain exercise shows that the stationary distribution
of the optimal policy (that is, the one that in state 0 takes action a?) has a probability of
being in state 1 of

1
δ

1
δ

+ 1
δ+ε

=
δ + ε

2δ + ε
≥ 1

2
+

ε

6δ
for ε ≤ δ .

In contrast, acting sub-optimally (that is, taking action a in state 0) leads to a uniform
distribution over the two states, or equivalently a regret per time step of order ε/δ. Moreover,
in order to identify the two actions a, a? (each with probability δ and δ + ε), the number of
observations in state 0 needs to be at least Ω(δ/ε2). Thus, taking the latter quantity to be
T , one obtains the following lower bound on total regret:

T × Ω(ε/δ) = Ω(
√
T/δ) .

In the JAO MDP, the diameter is D = Θ(1/δ). This proves the
√
DT lower bound from

Jaksch, Ortner, and Auer (2010).
The natural analogue of the JAO MDP for the episodic setting is to put the JAO MDP in

“series” for H steps (in other words, one takes H steps in the JAO MDP and then restarts,
say starting in state 0). The main difference with the non-episodic version is that, in H
steps, one may not have time to mix, i.e., to reach the stationary distribution over the two
states. Using standard theory of Markov chains, one can show that the optimal policy on
this episodic MDP has a mixing time of Θ(1/δ). By choosing H to be slightly larger than
Θ(1/δ), we have a sufficient number of steps (in each episode) to mix, and thus the previous
non-episodic argument remains valid for the episodic case. This leads to a lower bound
Ω(
√
HT) for the episodic case, as illustrated by (Osband and Van Roy, 2016; Azar, Osband,

and Munos, 2017).
Finally, recall that in our episodic setting, the transition matrices P1, . . . ,PH may not

necessarily be the same. Therefore, we can further strengthen this lower bound to Ω(H
√
T)

in the following way.
Let us use H distinct JAO MDPs, each with a different optimal action a?h, when putting

them in series. In other words, for at least half of the steps h ∈ H, one has to identify the
correct action a?h for that specific step. (If not, the per-iteration regret will again be Ω(ε/δ).)
However the number of observations in that specific step h is only T/H, and thus one now
needs to take T/H = O(δ/ε2) (instead of T = Ω(δ/ε2) previously). This gives the claimed
Ω
(
H
√
T
)

lower bound.

139

Bibliography

[1] Leonard Adolphs et al. “Local Saddle Point Optimization: A Curvature Exploitation
Approach”. In: arXiv preprint arXiv:1805.05751 (2018).

[2] Naman Agarwal et al. “Finding approximate local minima faster than gradient de-
scent”. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing. ACM. 2017, pp. 1195–1199.

[3] Shipra Agrawal and Randy Jia. “Optimistic posterior sampling for reinforcement
learning: worst-case regret bounds”. In: Conference on Neural Information Processing
Systems. Curran Associates Inc. 2017, pp. 1184–1194.

[4] Zeyuan Allen-Zhu. “Natasha 2: Faster non-convex optimization than sgd”. In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 2680–2691.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. “Neon2: Finding Local Minima via First-Order
Oracles”. In: arXiv preprint arXiv:1711.06673 (2017).

[6] Zeyuan Allen-Zhu and Lorenzo Orecchia. “Linear coupling: An ultimate unification
of gradient and mirror descent”. In: arXiv preprint arXiv:1407.1537 (2014).

[7] Animashree Anandkumar and Rong Ge. “Efficient approaches for escaping higher
order saddle points in non-convex optimization”. In: Conference on learning theory.
2016, pp. 81–102.

[8] Sanjeev Arora et al. “Generalization and equilibrium in generative adversarial nets
(gans)”. In: arXiv preprint arXiv:1703.00573 (2017).

[9] Mohammad Azar, Rémi Munos, and Hilbert J. Kappen. “Minimax PAC bounds on
the sample complexity of reinforcement learning with a generative model”. In: Ma-
chine Learning 91.3 (2013), pp. 325–349.

[10] Mohammad Azar, Rémi Munos, and Hilbert J. Kappen. “On the sample complex-
ity of reinforcement learning with a generative model”. In: Proceedings of the 29th
International Conference on Machine Learning (ICML). 2012.

[11] Mohammad Azar, Ian Osband, and Rémi Munos. “Minimax Regret Bounds for Rein-
forcement Learning”. In: Proceedings of the 34th International Conference on Machine
Learning (ICML). 2017, pp. 263–272.

BIBLIOGRAPHY 140

[12] Mohammad Azar et al. “Speedy Q-learning”. In: Conference on Neural Information
Processing Systems. Curran Associates Inc. 2011, pp. 2411–2419.

[13] Afonso S Bandeira, Nicolas Boumal, and Vladislav Voroninski. “On the low-rank
approach for semidefinite programs arising in synchronization and community detec-
tion”. In: Conference on Learning Theory. 2016, pp. 361–382.

[14] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009), pp. 183–
202.

[15] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 1st. Athena Sci-
entific, 1995. isbn: 1886529124.

[16] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. “Global optimality of
local search for low rank matrix recovery”. In: Advances in Neural Information Pro-
cessing Systems. 2016, pp. 3873–3881.

[17] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738.

[18] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. “The non-convex Burer-
Monteiro approach works on smooth semidefinite programs”. In: Advances in Neural
Information Processing Systems. 2016, pp. 2757–2765.

[19] Anton Bovier et al. “Metastability in reversible diffusion processes I: Sharp asymp-
totics for capacities and exit times”. In: Journal of the European Mathematical Society
6.4 (2004), pp. 399–424.

[20] Sébastien Bubeck. “Convex optimization: Algorithms and complexity”. In: Founda-
tions and Trends R© in Machine Learning 8.3-4 (2015), pp. 231–357.

[21] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems”. In: Foundations and Trends in Machine
Learning 5.1 (2012), pp. 1–122.

[22] Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. “A geometric alternative to Nes-
terov’s accelerated gradient descent”. In: arXiv preprint arXiv:1506.08187 (2015).

[23] Yair Carmon and John C Duchi. “Gradient Descent Efficiently Finds the Cubic-
Regularized Non-Convex Newton Step”. In: arXiv preprint arXiv:1612.00547 (2016).

[24] Yair Carmon et al. “Accelerated Methods for Non-Convex Optimization”. In: arXiv
preprint arXiv:1611.00756 (2016).

[25] Yair Carmon et al. “Convex until Proven Guilty: Dimension-Free Acceleration of
Gradient Descent on Non-Convex Functions”. In: arXiv preprint arXiv:1705.02766
(2017).

[26] Yair Carmon et al. “Lower bounds for finding stationary points I”. In: arXiv preprint
arXiv:1710.11606 (2017).

BIBLIOGRAPHY 141

[27] Yair Carmon et al. “Lower Bounds for Finding Stationary Points II: First-Order
Methods”. In: arXiv preprint arXiv:1711.00841 (2017).

[28] Coralia Cartis, Nicholas Gould, and Ph L Toint. “On the complexity of steepest
descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained
optimization problems”. In: Siam journal on optimization 20.6 (2010), pp. 2833–
2852.

[29] Louis Augustin Cauchy. “Méthode générale pour la résolution des systémes d’équations
simultanees”. In: C. R. Acad. Sci. Paris (1847).

[30] Robert S Chen et al. “Robust optimization for non-convex objectives”. In: Advances
in Neural Information Processing Systems. 2017, pp. 4705–4714.

[31] Ashish Cherukuri, Bahman Gharesifard, and Jorge Cortes. “Saddle-point dynamics:
conditions for asymptotic stability of saddle points”. In: SIAM Journal on Control
and Optimization 55.1 (2017), pp. 486–511.

[32] Anna Choromanska et al. “The Loss Surface of Multilayer Networks”. In: arXiv:1412.0233
(2014).

[33] Frank E Curtis, Daniel P Robinson, and Mohammadreza Samadi. “A trust region
algorithm with a worst-case iteration complexity of O(ε−3/2) for nonconvex optimiza-
tion”. In: Mathematical Programming (2014), pp. 1–32.

[34] Hadi Daneshmand et al. “Escaping Saddles with Stochastic Gradients”. In: arXiv
preprint arXiv:1803.05999 (2018).

[35] Constantinos Daskalakis and Ioannis Panageas. “The Limit Points of (Optimistic)
Gradient Descent in Min-Max Optimization”. In: Advances in Neural Information
Processing Systems. 2018, pp. 9256–9266.

[36] Constantinos Daskalakis et al. “Training GANs with Optimism”. In: arXiv preprint
arXiv:1711.00141 (2017).

[37] Yann N Dauphin et al. “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization”. In: Advances in Neural Information Process-
ing Systems. 2014, pp. 2933–2941.

[38] Damek Davis and Dmitriy Drusvyatskiy. “Stochastic subgradient method converges

at the rate O(k
−1
4) on weakly convex functions”. In: arXiv preprint arXiv:1802.02988

(2018).

[39] Marc Deisenroth and Carl E Rasmussen. “PILCO: A model-based and data-efficient
approach to policy search”. In: Proceedings of the 28th International Conference on
machine learning (ICML). 2011, pp. 465–472.

[40] Simon S Du et al. “Gradient descent can take exponential time to escape saddle
points”. In: Advances in neural information processing systems. 2017, pp. 1067–1077.

BIBLIOGRAPHY 142

[41] Eyal Even-Dar and Yishay Mansour. “Learning rates for Q-learning”. In: Journal of
Machine Learning Research 5.Dec (2003), pp. 1–25.

[42] Cong Fang, Zhouchen Lin, and Tong Zhang. “Sharp Analysis for Nonconvex SGD
Escaping from Saddle Points”. In: arXiv preprint arXiv:1902.00247 (2019).

[43] Cong Fang et al. “Spider: Near-optimal non-convex optimization via stochastic path-
integrated differential estimator”. In: Advances in Neural Information Processing Sys-
tems. 2018, pp. 687–697.

[44] Maryam Fazel et al. “Global Convergence of Policy Gradient Methods for Linearized
Control Problems”. In: arXiv preprint arXiv:1801.05039 (2018).

[45] Uriel Feige, Yishay Mansour, and Robert Schapire. “Learning and inference in the
presence of corrupted inputs”. In: Conference on Learning Theory. 2015, pp. 637–657.

[46] Rong Ge, Chi Jin, and Yi Zheng. “No Spurious Local Minima in Nonconvex Low Rank
Problems: A Unified Geometric Analysis”. In: International Conference on Machine
Learning. 2017, pp. 1233–1242.

[47] Rong Ge, Jason D Lee, and Tengyu Ma. “Matrix completion has no spurious local
minimum”. In: Advances in Neural Information Processing Systems. 2016, pp. 2973–
2981.

[48] Rong Ge et al. “Escaping from saddle pointsonline stochastic gradient for tensor
decomposition”. In: Conference on Learning Theory. 2015, pp. 797–842.

[49] Saeed Ghadimi and Guanghui Lan. “Accelerated gradient methods for nonconvex non-
linear and stochastic programming”. In: Mathematical Programming 156.1-2 (2016),
pp. 59–99.

[50] Saeed Ghadimi and Guanghui Lan. “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming”. In: SIAM Journal on Optimization 23.4 (2013),
pp. 2341–2368.

[51] Gauthier Gidel et al. “Negative momentum for improved game dynamics”. In: arXiv
preprint arXiv:1807.04740 (2018).

[52] Irving L Glicksberg. “A further generalization of the Kakutani fixed point theorem,
with application to Nash equilibrium points”. In: Proceedings of the American Math-
ematical Society 3.1 (1952), pp. 170–174.

[53] Alon Gonen and Elad Hazan. “Learning in Non-convex Games with an Optimization
Oracle”. In: arXiv preprint arXiv:1810.07362 (2018).

[54] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems. 2014, pp. 2672–2680.

[55] Paulina Grnarova et al. “An online learning approach to generative adversarial net-
works”. In: arXiv preprint arXiv:1706.03269 (2017).

BIBLIOGRAPHY 143

[56] Elad Hazan. “Introduction to online convex optimization”. In: Foundations and Trends R©
in Optimization 2.3-4 (2016), pp. 157–325.

[57] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[58] Martin Heusel et al. “Gans trained by a two time-scale update rule converge to a local
nash equilibrium”. In: Advances in Neural Information Processing Systems. 2017,
pp. 6626–6637.

[59] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[60] Ya-Ping Hsieh, Chen Liu, and Volkan Cevher. “Finding Mixed Nash Equilibria of
Generative Adversarial Networks”. In: arXiv preprint arXiv:1811.02002 (2018).

[61] Thomas Jaksch, Ronald Ortner, and Peter Auer. “Near-optimal Regret Bounds for
Reinforcement Learning”. In: Journal of Machine Learning Research 11 (2010), pp. 1563–
1600.

[62] Nan Jiang et al. “Contextual Decision Processes with Low Bellman Rank are PAC-
Learnable”. In: arXiv preprint arXiv:1610.09512 (2016).

[63] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. “Accelerated gradient descent es-
capes saddle points faster than gradient descent”. In: arXiv preprint arXiv:1711.10456
(2017).

[64] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. “Minmax Optimization: Stable
Limit Points of Gradient Descent Ascent are Locally Optimal”. In: arXiv preprint
arXiv:1902.00618 (2019).

[65] Chi Jin et al. “A Short Note on Concentration Inequalities for Random Vectors with
SubGaussian Norm”. In: arXiv preprint arXiv:1902.03736 (2019).

[66] Chi Jin et al. “How to Escape Saddle Points Efficiently”. In: International Conference
on Machine Learning. 2017, pp. 1724–1732.

[67] Chi Jin et al. “Is q-learning provably efficient?” In: Advances in Neural Information
Processing Systems. 2018, pp. 4863–4873.

[68] Chi Jin et al. “Stochastic Gradient Descent Escapes Saddle Points Efficiently”. In:
arXiv preprint arXiv:1902.04811 (2019).

[69] Sham Kakade. “On the sample complexity of reinforcement learning”. PhD thesis.
University College London, England, 2003.

[70] Sham Kakade, Mengdi Wang, and Lin F Yang. “Variance Reduction Methods for
Sublinear Reinforcement Learning”. In: ArXiv e-prints abs/1802.09184 (Apr. 2018).

[71] Kenji Kawaguchi. “Deep learning without poor local minima”. In: Advances In Neural
Information Processing Systems. 2016, pp. 586–594.

BIBLIOGRAPHY 144

[72] Michael Kearns and Satinder Singh. “Near-optimal reinforcement learning in polyno-
mial time”. In: Machine Learning 49.2-3 (2002), pp. 209–232.

[73] Sven Koenig and Reid G Simmons. “Complexity analysis of real-time reinforcement
learning”. In: AAAI Conference on Artificial Intelligence. 1993, pp. 99–105.

[74] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[75] Tor Lattimore and Marcus Hutter. “PAC bounds for discounted MDPs”. In: Inter-
national Conference on Algorithmic Learning Theory. 2012, pp. 320–334.

[76] Jason D Lee et al. “Gradient descent only converges to minimizers”. In: Conference
on Learning Theory. 2016, pp. 1246–1257.

[77] Yin Tat Lee and Aaron Sidford. “Efficient accelerated coordinate descent methods and
faster algorithms for solving linear systems”. In: Foundations of Computer Science
(FOCS). IEEE. 2013, pp. 147–156.

[78] Kfir Y Levy. “The Power of Normalization: Faster Evasion of Saddle Points”. In:
arXiv preprint arXiv:1611.04831 (2016).

[79] Huan Li and Zhouchen Lin. “Provable Accelerated Gradient Method for Nonconvex
Low Rank Optimization”. In: arXiv preprint arXiv:1702.04959 (2017).

[80] Qihang Lin et al. “Solving Weakly-Convex-Weakly-Concave Saddle-Point Problems
as Weakly-Monotone Variational Inequality”. In: arXiv preprint arXiv:1810.10207
(2018).

[81] Aleksander Madry et al. “Towards deep learning models resistant to adversarial at-
tacks”. In: arXiv preprint arXiv:1706.06083 (2017).

[82] Eric Mazumdar and Lillian J Ratliff. “On the Convergence of Gradient-Based Learn-
ing in Continuous Games”. In: arXiv preprint arXiv:1804.05464 (2018).

[83] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. “On Finding Local Nash
Equilibria (and Only Local Nash Equilibria) in Zero-Sum Games”. In: arXiv preprint
arXiv:1901.00838 (2019).

[84] Song Mei et al. “Solving SDPs for synchronization and MaxCut problems via the
Grothendieck inequality”. In: Conference on Learning Theory (COLT). 2017, pp. 1476–
1515.

[85] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:
International Conference on Machine Learning (ICML). 2016, pp. 1928–1937.

[86] Volodymyr Mnih et al. “Playing Atari with deep reinforcement learning”. In: arXiv
preprint arXiv:1312.5602 (2013).

[87] Roger B Myerson. Game theory. Harvard university press, 2013.

BIBLIOGRAPHY 145

[88] Anusha Nagabandi et al. “Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning”. In: arXiv preprint arXiv:1708.02596 (2017).

[89] Vaishnavh Nagarajan and J Zico Kolter. “Gradient descent GAN optimization is lo-
cally stable”. In: Advances in Neural Information Processing Systems. 2017, pp. 5585–
5595.

[90] Ion Necoara, Yurii Nesterov, and Francois Glineur. “Linear convergence of first order
methods for non-strongly convex optimization”. In: arXiv preprint arXiv:1504.06298
(2015).

[91] Yurii Nesterov. “A method of solving a convex programming problem with conver-
gence rate O (1/k2)”. In: Soviet Mathematics Doklady 27 (1983), pp. 372–376.

[92] Yurii Nesterov. “Efficiency of coordinate descent methods on huge-scale optimization
problems”. In: SIAM Journal on Optimization 22.2 (2012), pp. 341–362.

[93] Yurii Nesterov. Introductory Lectures on Convex Optimization. Vol. 87. Springer Sci-
ence & Business Media, 2004.

[94] Yurii Nesterov. Introductory Lectures on Convex Programming Volume I: Basic course.
Springer, 1998.

[95] Yurii Nesterov. “Squared functional systems and optimization problems”. In: High
performance optimization. Springer, 2000, pp. 405–440.

[96] Yurii Nesterov and Boris T Polyak. “Cubic regularization of Newton method and its
global performance”. In: Mathematical Programming 108.1 (2006), pp. 177–205.

[97] J v Neumann. “Zur theorie der gesellschaftsspiele”. In: Mathematische annalen 100.1
(1928), pp. 295–320.

[98] Shayegan Omidshafiei et al. “Deep decentralized multi-task multi-agent reinforcement
learning under partial observability”. In: arXiv preprint arXiv:1703.06182 (2017).

[99] Michael O’Neill and Stephen J Wright. “Behavior of Accelerated Gradient Methods
Near Critical Points of Nonconvex Problems”. In: arXiv preprint arXiv:1706.07993
(2017).

[100] Alan V. Oppenheim and Ronald W. Schafer. Discrete-time Signal Processing. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1989. isbn: 0-13-216292-X.

[101] Ian Osband and Benjamin Van Roy. “On Lower Bounds for Regret in Reinforcement
Learning”. In: ArXiv e-prints abs/1608.02732 (Apr. 2016).

[102] Ioannis Panageas and Georgios Piliouras. “Gradient descent only converges to mini-
mizers: Non-isolated critical points and invariant regions”. In: arXiv preprint arXiv:1605.00405
(2016).

[103] Vitchyr Pong et al. “Temporal Difference Models: Model-Free Deep RL for Model-
Based Control”. In: arXiv preprint arXiv:1802.09081 (2018).

BIBLIOGRAPHY 146

[104] Hassan Rafique et al. “Non-convex min-max optimization: Provable algorithms and
applications in machine learning”. In: arXiv preprint arXiv:1810.02060 (2018).

[105] Sashank J Reddi et al. “A generic approach for escaping saddle points”. In: arXiv
preprint arXiv:1709.01434 (2017).

[106] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: The
annals of mathematical statistics (1951), pp. 400–407.

[107] Gareth O Roberts, Richard L Tweedie, et al. “Exponential convergence of Langevin
distributions and their discrete approximations”. In: Bernoulli 2.4 (1996), pp. 341–
363.

[108] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.

[109] Clément W Royer and Stephen J Wright. “Complexity analysis of second-order line-
search algorithms for smooth nonconvex optimization”. In: arXiv preprint arXiv:1706.03131
(2017).

[110] John Schulman et al. “Trust region policy optimization”. In: International Conference
on Machine Learning (ICML). 2015, pp. 1889–1897.

[111] Shai Shalev-Shwartz and Tong Zhang. “Accelerated proximal stochastic dual coordi-
nate ascent for regularized loss minimization”. In: International Conference on Ma-
chine Learning (ICML). 2014, pp. 64–72.

[112] Aaron Sidford et al. “Variance Reduced Value Iteration and Faster Algorithms for
Solving Markov Decision Processes”. In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2018, pp. 770–787.

[113] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587 (2016), pp. 484–489.

[114] Alexander L Strehl et al. “PAC model-free reinforcement learning”. In: Proceedings
of the 23rd International Conference on Machine Learning. ACM. 2006, pp. 881–888.

[115] Weijie Su, Stephen Boyd, and Emmanuel J Candes. “A differential equation for mod-
eling Nesterov’s accelerated gradient method: theory and insights”. In: Journal of
Machine Learning Research 17.153 (2016), pp. 1–43.

[116] Ju Sun, Qing Qu, and John Wright. “A geometric analysis of phase retrieval”. In:
Information Theory (ISIT), 2016 IEEE International Symposium on. IEEE. 2016,
pp. 2379–2383.

[117] Ju Sun, Qing Qu, and John Wright. “Complete dictionary recovery over the sphere I:
Overview and the geometric picture”. In: IEEE Transactions on Information Theory
(2016).

[118] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
MIT press Cambridge, 1998.

BIBLIOGRAPHY 147

[119] Nilesh Tripuraneni et al. “Stochastic cubic regularization for fast nonconvex opti-
mization”. In: Advances in Neural Information Processing Systems. 2018, pp. 2904–
2913.

[120] Christopher Watkins. “Learning from delayed rewards”. PhD thesis. King’s College,
Cambridge, 1989.

[121] A. Wibisono, Ashia C Wilson, and Michael I Jordan. “A variational perspective on
accelerated methods in optimization”. In: Proceedings of the National Academy of
Sciences 133 (2016), E7351–E7358.

[122] Ashia C Wilson, Benjamin Recht, and Michael I Jordan. “A Lyapunov analysis of
momentum methods in optimization”. In: arXiv preprint arXiv:1611.02635 (2016).

[123] Ashia C Wilson et al. “The marginal value of adaptive gradient methods in machine
learning”. In: Advances in Neural Information Processing Systems. 2017, pp. 4148–
4158.

[124] Yi Xu, Jing Rong, and Tianbao Yang. “First-order stochastic algorithms for escap-
ing from saddle points in almost linear time”. In: Advances in Neural Information
Processing Systems. 2018, pp. 5535–5545.

[125] Mishael Zedek. “Continuity and location of zeros of linear combinations of polyno-
mials”. In: Proceedings of the American Mathematical Society 16.1 (1965), pp. 78–
84.

[126] Yuchen Zhang, Percy Liang, and Moses Charikar. “A hitting time analysis of stochas-
tic gradient langevin dynamics”. In: arXiv preprint arXiv:1702.05575 (2017).

[127] Dongruo Zhou and Quanquan Gu. “Stochastic Recursive Variance-Reduced Cubic
Regularization Methods”. In: arXiv preprint arXiv:1901.11518 (2019).

[128] Dongruo Zhou, Pan Xu, and Quanquan Gu. “Finding local minima via stochastic
nested variance reduction”. In: arXiv preprint arXiv:1806.08782 (2018).

	Contents
	List of Figures
	List of Tables
	Overview
	Machine Learning and Simple Algorithms
	Types of Theoretical Guarantees
	Organization

	 Nonconvex Optimization
	Escaping Saddle Points by Gradient Descent
	Introduction
	Preliminaries
	Common Landscape of Nonconvex Applications in Machine Learning
	Main Results
	Conclusion
	Proofs for Non-stochastic Setting
	Proofs for Stochastic Setting
	Tables of Related Work
	Concentration Inequalities

	Escaping Saddle Points Faster using Momentum
	Introduction
	Preliminaries
	Main Result
	Overview of Analysis
	Conclusions
	Proof of Hamiltonian Lemmas
	Proof of Main Result
	Auxiliary Lemma

	 Minmax Optimization
	On Stable Limit Points of Gradient Descent Ascent
	Introduction
	Preliminaries
	What is the Right Objective?
	Main Results
	Conclusion
	Proofs for Reduction from Mixed Strategy Nash to Minmax Points
	Proofs for Properties of Local Minmax Points
	Proofs for Limit Points of Gradient Descent Ascent
	Proofs for Gradient Descent with Max-oracle

	 Reinforcement Learning
	On Sample Efficiency of Q-learning
	Introduction
	Preliminary
	Main Results
	Proof for Q-learning with UCB-Hoeffding
	Explanation for Q-Learning with -Greedy
	Proof of Lemma 5.4.1
	Proof for Q-learning with UCB-Bernstein
	Proof of Lower Bound

	Bibliography

