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Abstract

Nested-Parallelism PageRank on RISC-V Vector Multi-Processors

by

Alon Amid

Master of Sciences in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

Professor Krste Asanović, Co-chair

Graph processing kernels and sparse-representation linear algebra workloads such as PageRank are
increasingly used in machine learning and graph analytics contexts. While data-parallel process-
ing and chip-multiprocessors have both been used in recent years as complementary mitigations to
the slowing rate of single-thread performance improvements, they have been used together most
efficiently on dense data-structure representations as opposed to sparse representations. This work
presents nested-parallelism implementations of PageRank for RISC-V multi-processor Rocket chip
SoCs with vector architecture accelerators. These software implementations are used for hardware
and software design-space exploration using FPGA-accelerated simulation with multiple silicon-
proven multi-processor SoC configurations. The design space includes a variety of scalar cores,
vector accelerator cores, and cache parameters, as well as multiple software implementations with
tunable parallelism parameters. This report shows the benefits of the loop-raking vectorizing tech-
nique compared to an alternative vectoring technique, and presents up to a 14x run-time speedup
relative to a parallel-scalar implementation running on the same SoC configuration. A 25x speedup
is demonstrated in a dual-tile SoC with dual-lanes-per-tile vector accelerators, compared to a min-
imal scalar implementation, demonstrating the scalability of the proposed nested-parallelism tech-
niques.



i

Contents

Contents i

List of Tables iii

1 Background 1
1.1 Graph Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Sparse Matrix Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Graph Processing Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 GraphMat Graph Processing Framework . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Vector Machine Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Nested Parallelism Using Vector Architectures 10
2.1 Nested Parallelism in Graph Processing . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Parallel Techniques for Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . 11

3 Experimental Setup 21
3.1 Graph Processing Framework Infrastructure . . . . . . . . . . . . . . . . . . . . . 21
3.2 Agile Hardware Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Validation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Performance Evaluation and Design Space Exploration . . . . . . . . . . . . . . . 24

4 Evaluation and Design Space Exploration 25
4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 L2 Cache Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Total Number of Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Total Number of Vector Lanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Number of Tiles vs. Number of Vector Lanes . . . . . . . . . . . . . . . . . . . . 29
4.6 Packed-Stripmining vs. Loop-Raking . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Graph Size and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Vector Accelerator vs. Multi-Core Scalar Processors . . . . . . . . . . . . . . . . . 36



ii

4.9 Bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Related Hardware Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.11 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion 42

A Measurement Results 43

Bibliography 50



iii

List of Tables

4.1 Properties of Evaluation Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Simulated SoC Hardware Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.1 Measurements for the wikiVote Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Measurements for the roadNet-CA Graph . . . . . . . . . . . . . . . . . . . . . . . . 46
A.3 Measurements for the amazon0302 Graph . . . . . . . . . . . . . . . . . . . . . . . . 48



iv

Acknowledgments

I would like to thank Albert Ou and Colin Schmidt for their invaluable assistance and indispensable
expertise with the Hwacha vector accelerator architecture, micro-architecture, and supporting tool-
chain. I would also like to thank the DARPA CRAFT [53] and PERFECT [45] programs for
supporting this research. This work was partially funded by DARPA Award Number HR0011-12-
2-0016, and ADEPT/ASPIRE Lab industrial sponsors and affiliates Intel, HP, Huawei, NVIDIA,
and SK Hynix. Any opinions, findings, conclusions, or recommendations in this report are solely
those of the authors and do not necessarily reflect the position or the policy of the sponsors.



1

Chapter 1

Background

1.1 Graph Processing
Graph processing has been a topic of recent interest in high performance computing, systems, and
architecture research. While graph abstractions have long been of interest in mathematical and
numerical computing communities, the rise of data analytics and the big-data revolution have ex-
posed the various use-cases of graph processing to many additional domains. Computing statistical
properties of graphs is required for many scientific, data-analysis, and machine learning applica-
tions, including recommendation systems [9], fraud detection [4] and biochemical processes [51,
3].

Graphs are a popular way of representing mathematical problems and algorithms. Graph the-
ory is a continuously developing mathematical field, which includes several hard problems that
have challenged mathematicians and computer scientists for many years. Many of these problems
represent real-world problems such as the traveling-salesman problem [48], task-graph scheduling
[33], graph coloring, subgraph isomorphism, and others [16].

A common perception is that graph processing problems present irregular data layouts and a
high degree of implicit data-level parallelism, which make them a challenging form of research
in the computer science community. This is likely, since many graph problems require traversing
the graph, which can have an unpredictable structure. This perception has led to the grouping of
many of these problems under the ”graph processing” domain, and has led many researchers in this
domain to focus on optimizing memory bandwidth utilization. Some publications further identify
that graph-processing problems have additional common characteristics, such as little data-locality,
fine-granularity fixed memory accesses, and low arithmetic intensity [19]. However, one could
usually find several counter examples for each of these properties: most graph Triangle-Counting
kernel implementations do not have fixed-size fine-granularity memory accesses, while certain
implementations of PageRank may have high arithmetic intensity and high data-locality [14].

Nevertheless, there have been several new paradigm proposals and standardization attempts for
graph-related workloads. One such paradigm is vertex-programming [41]. This approach treats
every vertex as an individual entity with a set of incoming edges and outgoing edges. The program
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and algorithms are written from the point of view of a single vertex, and may continue running
indefinitely until convergence. This approach assumes that all vertices run the same program in
parallel. Further abstraction nicknamed the ”Gather-Apply-Scatter” interpretation [18] of vertex
programming adds additional structure to this approach, by assigning three stages (Gather, Apply,
and Scatter) to the vertex program. Another such paradigm is the linear-algebra based approach
for graph processing. This approach treats the graph representation as an adjacency matrix, and
defines various linear algebra operations that can be performed using this matrix. Once recent
attempt to standardize this approach is GraphBLAS [31]. GraphBLAS attempts to provide the
graph processing field a more structured-nature, by mapping common graph algorithms to sparse
linear algebra operations. This approach requires overloading the algebraic operators with specific
actions performed by the graph processing algorithm.

These programming paradigms attempt to assist with the previously mentioned graph process-
ing challenges of irregular structure and implicit data-parallelism. However, previous works by
both Beamer [10] and Eisenman [15] have found that in single-node server CPUs, memory band-
widths is not a bottleneck for graph processing. They found that server nodes do not saturate their
memory bandwidth as expected from graph workloads with irregular memory accesses. It is im-
portant to understand the context and reference point when analyzing these types of conclusions.
While server processors may indeed not saturate their memory bandwidth, this may not be the case
for other data-parallel processors such as GPUs. However, these accelerators and data-parallel
processors come at a cost - this can be the data-transfer cost between the host processor and the
discrete accelerator, or the energy efficiency cost of the accelerator itself. Therefore, it is worth
exploring methods of optimizing the compute-pipeline in server-class processors.

1.2 PageRank
One particular instance of a common graph processing kernel is PageRank [47]. PageRank is an
algorithm originally used by Google to measure the importance of websites, with the purpose of
ranking them. Each website is modeled as a node (or vertex) in a graph, and hyperlinks between
websites are modeled as edges in the graph. After running the PageRank algorithm, each vertex
(representing a website) is assigned a PageRank score, which allows it to be compared and ordered
against other websites, hence - creating a ranking. The PageRank score is effectively a probability
distribution that represents the likelihood of a random walker (or a random ”hyperlink clicker”) to
arrive at a particular vertex (or web page)

There are various methods for computing the probability distribution of this random walk.
In its most simplified form, the PageRank value of a vertex u (PR(u)) is computed by summing
the PageRank values of its neighbors (PR(v)) divided by the number of incoming edges to each
neighbor (Nv), and using a dampening factor (d):

PR(u) = (1−d)+d ∑
v∈Bu

PR(v)
Nv
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By viewing the PageRank problem as an irreducible Markov chain, this probability distribution
can be computed as an eigenvector problem or a homogeneous linear system [34, 20]. Using the
power method, this results in an iterative process of Sparse Matrix-Vector multiplication (SpMV)
operations. Each iteration computes its PageRank values by multiplying the transition probability
matrix with the previous iteration’s PageRank values. The transition probability matrix is in fact
the graph adjacency matrix, factored by a dampening factor and divided by the relevant vertex’s
degree (with several exceptions to guarantee that the matrix will be stochastic and irreducible).
The processes is repeated iteratively until the convergence of the PageRank vector. Convergence is
guaranteed due to the primitive properties of the PageRank transition probability matrix, which is
stochastic and irreducible, and therefore guarantees convergence to a unique dominant eigenvector.
In formal terms, if A is the adjacency matrix, P is the transition probability matrix, d is the damping
factor, N is the number of ongoing edges, |V | is the number of incoming edges, and y(k) is the
PageRank values vector at the k-th iteration, then the iterative SpMV formulation can be written
as:

P = A∗ 1
N

y(k) = d ∗P∗ y(k−1)+
(1−d)
|V |

While additional alternative methods haven been proposed for efficient PageRank computation
[34], this report will focus on the previously mentioned iterative SpMV method.

PageRank has evolved with many variations. For example, Personalized or Topic-Sensitive
PageRank [21] proposes multiple PageRank vectors with biases towards specific topics, while
Weighted-PageRank [58] accounts for both incoming link and outgoing links when computing the
PageRank value. Nevertheless, all variations follow the basic ideas of an iterative random-walk
process, in which iterative SpMV is the main component.

The use of iterative SpMV operations makes PageRank a useful and interesting benchmark. It
allows for an interesting application while extensively using and demonstrating the performance of
a primitive and elementary linear algebra operation. While other graph algorithms are commonly
formalized and represented as sparse linear algebra operations, PageRank is unique in that it uses a
simple SpMV, with no overloaded operators. This is unlike other graph processing kernels imple-
mented using a sparse linear algebra abstractions (such as those using GraphBLAS), which require
overloading the algebraic addition and multiplication operators.

The quantification of the importance of a node in a graph is a common problem. Hence, the
use of PageRank has naturally expanded beyond the ranking of web pages. It has been used for
urban planning [27], semantic analysis [50], and studying protein folding [24]. It is therefore not
a surprise that PageRank is a common benchmark for graph-processing optimizations in software
and hardware. PageRank will be the benchmark of choice for the purposes of this work as well.
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1.3 Sparse Matrix Representations
Graphs are commonly represented in the form a adjacency lists or adjacency matrices. Since most
real-world graphs are not fully connected, graphs represented using adjacency matrices usually
result in sparse adjacency matrices. Sparse matrices can be represented in memory using a variety
of formats. Unlike dense matrices, which are commonly represented as contiguous column-major
or row-major arrays, sparse matrices present an additional degree of information, which allows
for memory-efficient representations. To demonstrate some of the different popular sparse matrix
representation, the example matrix in figure 1.1 will be used throughout this section.

Figure 1.1: Example sparse matrix to be used throughout the explanation.

In the coordinate format (sometimes known as ”edge list” or COO), the non-zero elements
of the matrix are represented as a list triplets, each representing a row and column coordinate
in the matrix associated with a value. These triplets can be implemented using 3 arrays, each
one dedicated to a specific type, or as a single array of triplets - depending on memory locality
considerations. In COO format, the elements are not sorted by row, column or value.

Figure 1.2: Coordinate (COO) representation of the example matrix. Each non-zero values is
represented by corresponding elements of the two indices arrays and the values array.

Alternatively, formats such as Compressed Sparse Row (CSR) and the inverse equivalent Com-
pressed Sparse Column (CSC) provide improved element random access time complexity. In the
CSR format, sparse rows are compressed into a single array, while an array of row pointers allows
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for constant-time access to each row. Hence, 3 arrays overall are used for the CSR representation.
Similarly to the COO format, two of the arrays are used for values and column indices. However,
the third array consists of pointers to indices of the other two arrays, rather than the actual indices
of the columns.

Figure 1.3: CSR representation of the example matrix. The compressed rows are represented using
the column indices and values arrays.

In the equivalent CSC format, the sparse columns are compressed into a single array, while
an array of column pointers allows for constant-time access to each column. It is important to
note that The CSR and CSC formats have an access-time bias towards one direction of edges
(either incoming or outgoing, depending on the interpretation of the matrix). Therefore, some
graph processing implementations which require access to both incoming and outgoing edges of
a vertex may choose to implement both the CSR representation of the matrix as well as the CSC
representation of the matrix.

An additional sparse matrix representation, which is less common than the previously men-
tioned formats, is the Double Compressed Sparse Column (DCSC) [12] representation. This for-
mat is useful for the cases of hyper-sparse matrices, since it provides an additional level of com-
pression on the column indices (in addition to the row indices). Nevertheless, this additional level
of compression comes at the cost of an explicit column indices array, and an auxiliary column
pointers array to reduce access time complexity. It is clear that in our running-example matrix,
DCSC is not a memory-efficient representation as compared to CSC or COO. Nevertheless, many
graph adjacency matrices are indeed hyper-sparse, and therefore DCSC is a fitting representation
for those cases. Naturally, the inverse equivalent of this representation also exists, in the form of
DCSR (Double Compressed Sparse Row).

Depending on the characteristics of the non-zero values of the matrix, different sparse matrix
representation may be appropriate from space complexity perspective and access time complexity
perspective. This work will focus on the DCSC and DCSR formats.
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Figure 1.4: CSC representation of the example matrix. The compressed columns are represented
using the row indices and values arrays.

Figure 1.5: DCSC representation of the example matrix. The additional level of compression over
the CSC representation is provided by the additional column indices array and auxiliary array

1.4 Graph Processing Frameworks
Concurrent with the big-data revolution, a plethora of software frameworks have emerged for many
types of graph processing use-cases [54, 42]. These frameworks range from in-memory distributed
graph processing such as GraphX, Giraph and Pregel [17, 8, 41], to single node shared-memory
graph processing such as Ligra and GraphMat [55, 56], to single node graph processing with
secondary storage such as MOSAIC and X-Stream [40, 52].

Most frameworks provide novel contributions in the form of new abstractions, optimized ker-
nels, data-structure management techniques, and various distributed capabilities to improve the
performance of common graph-processing kernels such as Breadth-First-Search (BFS), PageR-
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ank, Connected-Components (CC), and Single-Source-Shortest-Path (SSSP). Some of these frame-
works have presented benchmark results on graphs with billions [55] and even a trillion edges [40]
on a single computing node.

While these achievements present important advances in software utilization of existing hard-
ware for graph processing, it is interesting to note that many of these publications were required
to benchmark these frameworks on synthetically generated graphs, due to the lack of public large-
scale data-sets. While each of these frameworks present impressive performance and scalability
in their domain, it is unclear which graph-processing-related application each of them addresses.
This adds to the interesting observation in [44] regarding the trade-off between the scalalbility of
these frameworks to their actual performance on various hardware platforms.

Nevertheless, these frameworks provide structured methods and abstractions for addressing
graph processing problems, and industrial publications indicate that they have been used in practice
in various settings. While the contributions of these frameworks to high-performance graph kernel
execution may be arguable, there is little doubt regarding their contribution to the increasing use
of graph processing algorithms, especially at scale. Therefore, they should be useful platforms to
be studied for architectural research purposes.

1.5 GraphMat Graph Processing Framework
GraphMat [56] is a graph processing framework that presents an interesting mix between graph
processing abstractions and performance optimization. GraphMat provides a hybrid approach in
which the algorithms and kernels are written using a user-facing vertex-centric API (with a struc-
ture similar to a Gather-Apply-Scatter paradigm), and those algorithms are then transformed and
applied as overloaded sparse linear algebra operations in the back-end of the framework. This pro-
vides the advantage of the simple and scalable vertex-programming abstraction that popularized
the early graph processing frameworks, while enabling a structured back-end that can be more
easily manipulated for architecture-specific performance optimization. Linear algebra operations
have been a historical target of many optimization libraries and techniques, and therefore mapping
to these operations has the potential for future use of some of these techniques.

GraphMat has been shown to have competitive performance with state-of-the-art shared mem-
ory graph processing framework, and it uses various libraries to extract parallelism through OpenMP
and MPI interfaces. It has also been used as a reference framework for other architecture-related
research works [19]

GraphMat uses the Double Compressed Sparse Column/Row (DCSC/DCSR) data structures
to represent its graphs. Unlike the more commonly used CSR/CSC data structure, DCSC/DCSR
provide two levels of indirection rather than only one. This feature is originally designed to reduce
memory access times under the assumption of real-world hyper-sparse graphs, but it also allows
more flexibility in experimenting with nested parallelism methods for the purposes of this work.
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1.6 Vector Machine Architectures
Data-parallel accelerators were previously mentioned to be one potential solution to the lack of
memory-bandwidth saturation in graph processing kernels presented in [10, 15]. Nevertheless,
there is a wide spectrum of data-parallel accelerator architectures, each accompanied by a set a
characteristics and constraints. The most commonly studied data-parallel architectures are packed-
SIMD, GPUs and vector architectures [22]. The packed-SIMD ISA extensions (such as Intel’s
AVX extensions) were highly influenced by their original hardware implementations, and there-
fore current implementations are many times limited by the original programming model which
encodes the register widths into the instructions [49]. This leads to algorithms and kernels that
must be designed and optimized around specific vector lengths, regardless of the program or data
characteristics. Nevertheless, the tight integration of many packed-SIMD units into modern pro-
cessors with a single shared memory address space can lead to quick performance improvements
through code changes. GPUs are designed as throughput processors that provide a large amount
of compute resources. However, many of these compute resources require lock-step coordina-
tion throughout the advancement of the program. When there is divergence in the program, this
results in under-utilized resources that still consume large amounts of energy. Furthermore, the
SIMT programming model exposed through CUDA for NVIDIA GPUs does not expose these
diverging constraints, which can lead to further energy-inefficiency with the use of GPUs as data-
parallel accelerators. Vector architectures use deeply-pipelined execution of many operations to
hide memory-access latency and increase throughput. Their programming model with vector-
length registers and predicate masks allows for efficient compilation which does not depend on the
vector-processor micro-architecture. vector processors can saturate memory-bandwidth easily, in
an energy-efficient manner, by providing an explicit programming model and using latency-hiding
techniques which do not require over-provisioning of resources.

Vector architectures were popular during the early age of super-computing, but have been
mostly abandoned in favor of out-of-order processing, multi-core processing, and discrete data-
parallel accelerators. However, with the increasing availability of on-chip transistor area and
DRAM bandwidth, vector processors have recently been reexplored alongside micro-processors.

The Hwacha micro-architecture [37] is a decoupled vector-machine implementation developed
in Berkeley, associated with the RISC-V and Rocket-Chip SoC generator [7] infrastructure. It is
an evolution of previous decoupled vector-fetch projects such as Maven [36], and uses the Hwacha
RISC-V non-standard ISA extension. Hwacha’s main micro-architectural features include a mas-
ter sequencer to control multi-lane operation, an expander to deconstruct instructions into micro-
operations, a vector run-ahead unit to take advantage of the decoupled interface, and a banked vec-
tor register file (figures 2 and 3 of [37]). The banked vector-register file allows systolic execution
of vector instructions using an SRAM array for low latency register-file access. Current implemen-
tations include 4-banked register files. The master sequencer tracks the dependency information
between different vector instructions, and the expander decomposes vector instruction into fine-
grained operations to be executed in different parts of the vector-machine. These elements allow
for the deep-pipeline and efficient utilization of the execution units. Hwacha can be integrated in
the Rocket-Chip SoC generator, and uses a similar TileLink based [13] cache-coherent memory
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system.
The Hwacha ISA extension provides instruction primitives historically associated with vec-

tor architecture. These include configuration instructions for the vector machine (vector regis-
ter lengths and element widths), vector arithmetic operations, vector memory operations, atomic
memory operations, and several other unique vector instructions. It includes separate scalar regis-
ter file, vector register file, and predicate mask register file. This requires explicit programming of
data movement between the scalar processors and the vector processors. It also allows for explicit
programming of the predicate mask operations. Hwacha also allows for mixed-precision arithmetic
operations, allowing higher performance and energy efficiency through software optimizations.

The Hwacha micro-architecture has been optimized for, and mostly been evaluated on, dense
linear algebra kernels such as general matrix multiplication (DGEMM). Specifically, It has not
been designed or optimized for sparse and irregular workloads. The properties of the Hwacha
vector architecture have not yet been explored using sparse linear algebra kernels. An evaluation of
the bottlenecks of sparse linear algebra workloads on this micro-architecture can provide additional
insight into future design choices.



10

Chapter 2

Nested Parallelism Using Vector
Architectures

2.1 Nested Parallelism in Graph Processing
Throughout this report, ”nested parallelism” is considered to be the use of multiple parallel execu-
tion methods in a hierarchical manner. Nested parallelism is used extensively in various software
libraries to maximize the amount of exploited parallelism given a set of execution resources. Fur-
thermore, it allows for tuning and finer-grained load-balancing between parallelizable elements
[23].

The ideas of exploiting nested parallelism in graph processing have shown encouraging results
in several previous attempts. Nested parallelism within a single GPU has been studied to effi-
ciently utilize GPU architectures for general data-parallel workloads [25, 43]. Nested parallelism
using multiple GPUs has been demonstrated on graph processing algorithms, but requires care-
ful dynamic load balancing due to the high cost of transferring data between host processors and
CPUs [26]. Nested parallelism in graph processing has also been explored using packed-SIMD
approaches with Intel AVX extensions and multi-core processors [39, 28].

Recent work by research groups at Cornell [32] provides significant contributions in the study
and taxonomy of loop-level parallelism through nested parallel hardware elements. Loop-task
parallel programs are a major use-case for nested-parallelism implementations. This work identi-
fied challenges in combining multi-threading and packed-SIMD abstractions for loop-task parallel
programs. This challenge is embodied through reduced programmer productivity, and marginal
speedups resulting from the combined parallel methods, as opposed to using each of the paral-
lelism techniques separately. This work also proposes a unique hardware-software interface to
expose loop-task level parallelism to a hardware loop-task-accelerator (LTA), with the goal of re-
solving these challenges. Using a software hint, the LTA can identify tasks, partition them into
micro-tasks, and group them into micro-threads based on the LTA’s lane-configuration and real-
time load. The rest of the LTA is designed similarly to historic vector machines architectures,
with a mix of coupled (chimes) and decoupled (lanes) elements. This work provides significant
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insights into the behavior of hardware-based loop-task-parallelism management, and the design
space between lock-step and decoupled hardware task execution.

The methods under investigation in this report attempt to find a middle-way between the pro-
posals presented in the aforementioned LTA work [32], and existing hardware and software infras-
tructure. It will explore the nested parallelism of chip multi-processors (CMPs) with decoupled
vector-fetch machines integrated into SoCs, based on the tape-out-proven Hwacha [37] micro-
architecture. This involves both hand-tuned optimization of the internal vector-architecture code
for the consideration of the particular sparse data-structures representations, as well as an addi-
tional layer of OpenMP for CMP multi-threading and load-balancing modeling and management.
To our knowledge, this nested-parallelism approach for PageRank has not been previously at-
tempted using vector architecture instructions sets and vector-machine micro-architectures.

Figure 2.1: Various SoC Configurations for Data-Parallel Workloads

2.2 Parallel Techniques for Sparse Matrices
Sparse matrices are commonly represented using multiple levels of indirection, making the ex-
ploitation of parallelism within a sparse matrix for linear algebra operations highly dependent
upon the data-structure representation. While some representations such as COO may allow
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embarrassingly-parallel execution at the cost of data-locality, other representations such as CSR/CSC
improve data-locality and constant-time accesses at the cost of creating dependencies between dif-
ferent parts of the data-structure (hence, reducing parallelism).

For the purposes of nested-parallelism experimentation, DCSC/DCSR representations are a
useful data structure, since they expose two levels of indirection, which provide a natural boundary
between two levels of parallelism. Therefore, the following examples and implementations will
focus on DCSC/DCSR matrix representations. The use of nested parallelism is equivalent between
DCSC and DCSR representation, and the choice of data-structure depends on the application use-
case. Therefore, the rest of this explanation will focus mostly on DCSC representation, while
maintaining generality for both cases.

The top level of the DCSC data structure can be thought of as a coarse-grain parallel layer.
This layer can be parallelized in multi-threaded hardware implementations using parallel hardware
threads. Specifically, this evaluation will use OpenMP threads to parallelize across CMP cores.
This is demonstrated on the example matrix for the DCSC case in figure 2.2

Figure 2.2: OpenMP thread assignments on the DCSC representation of the example matrix

Noticeably, each thread will in-fact process a sub-section of the matrix which is represented in
CSC format (with the additional column indices array). In the case of the first thread processing
our example matrix, the CSC matrix that will be processed in demonstrated in figure 2.3

The second level of our nested-parallelism scheme will therefore process the internal CSC
sub-matrices. Processing the CSC sub-matrix will be implemented using three different methods.
Due to the small size of the example matrix, the illustrations demonstrate the concept assuming
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Figure 2.3: Data processed by the first thread, which is in-fact a CSC representation of part of our
example matrix (with an additional column indices array)

a vector unit with a vector-length of two elements. However, for efficient use of vector-machines
these concepts should be applied with longer vector lengths.
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Simple Scalar Processing
In simple scalar processing, the DCSC data structure is traversed by following the pointers in their
original order. This implementation traverses the elements of the matrix in a column-major order.

for p in 0 to num_column_partitions
for j in col_starts[p] to col_starts[p+1]

col_index = col_indices[col_starts[p] + j]
for nz_idx in col_ptrs[j] to col_ptrs[j+1]

row_index = row_indices[nz_idx]
val = values[nz_idx]
do something with val, row_index and col_index

And specifically for SpMV:

for p in 0 to num_column_partitions
for j in col_starts[p] to col_starts[p+1]

col_index = col_indices[col_starts[p] + j]
for nz_idx in col_ptrs[j] to col_ptrs[j+1]

row_index = row_indices[nz_idx]
A_val = values[nz_idx]
X_val = x_vec[col_index]
Y_val = y_vec[row_index] + X_val*A_val
y_vec[row_index] = Y_val

Analogously, for the DCSR representation, the SpMV will be implemented as:

for p in 0 to num_row_partitions
for i in row_starts[p] to row_starts[p+1]

row_index = row_indices[row_starts[p] + i]
for nz_idx in row_ptrs[i] to row_ptrs[i+1]

col_index = col_indices[nz_idx]
A_val = values[nz_idx]
X_val = x_vec[col_index]
Y_val = y_vec[row_index] + X_val*A_val
y_vec[row_index] = Y_val

Virtual Processors View
A popular way of thinking of the parallel nature of vector machines is as multiple concurrent
”virtual processors” [60, 6]. Since a CSC matrix data-structure is composed of two arrays, the
virtual processors can operate in-parallel either on the pointers array, or on the values array. In
graph-processing terms, these two approaches have been described in [25] as the node-parallel
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approach and the edge-parallel approach. This work attempts to apply these approaches by com-
paring two vectorizing techniques: the first technique, nicknamed ”packed-stripmining”, attempts
parallel processing of the pointers array elements (node-centric). The second technique, known as
”loop-raking”, focuses on parallel processing of the values array (edge-centric). Note that ”packed
stripmining” and ”loop raking” are not complementary approaches used together, but rather alter-
native approaches to parallelizing the same problem across different parts of the data-structure.

Packed-Stripmining
Stripmining is a common technique for vectorization of dense loops using vector-length-agnostic
code. This means that the code is not aware of the size of the hardware vector registers during
compile-time. Therefore, a stripmining loop attempts to configure the maximum possible vec-
tor length, and treats the accommodated vector length as a variable. The stripmining loop then
”strips” a layer of the actual vector register length, and repeats the process for the remainder. Basic
stripmining is templated as follows:

source_addr = source_base_addr
dest_addr = dest_base_addr
req_vl = total_num_elements

stripmine: vl = set_vlr(req_vl)
...
load vl elements into vector register from source_addr
vector operations over vl elements
store vl elements from vector register to dest_addr
...
source_addr = source_addr + vl*(elem_size)
dest_addr = dest_addr + vl*(elem_size)
req_vl = req_vl - vl
if req_vl>0 then goto stripmine

However, as the template above demonstrates, stripmining works best on a continuous array
of elements in order to exploit parallelism efficiently. In the case of a CSC sparse matrix rep-
resentation, the imbalance of the number of non-zero elements in each sparse column of a CSC
matrix requires additional manipulation for efficient stripmining. The progress of the stripmin-
ing loop over the pointers array depends on the number of non-zero elements each pointer in the
pointers array is pointing to. This imbalance results in idle processing elements, waiting for the
”worst case” virtual processor to finish. A possible solution to this scenario is to pack only ”ac-
tive” (non-idle) pointers from the pointers array. We therefore introduce the ”Packed-Stripmining”
approach. The ”Packed-Stripmining” approach for CSC matrices ”packs” an array of unbalanced
column pointers into a dense array, at the cost of using control-flow within each iteration of the
stripmining loop. By re-packing the column-pointers every iteration of the vector-processing loop,
this ”pseudo-stripmining” loop can operate on the packed array as it would commonly operate in
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balanced dense scenarios. Figure 2.4 illustrates the traversal order of the virtual processors across
the CSC data-structure using this approach.

When composing together the thread-level parallelization level across DCSC partitions with the
vector-level parallelization approach within partitions, the implementation of nested-parallelism
SpMV on a DCSC representation using packed-stripmining would resemble the following tem-
plate:
for p in 0 to num_column_partitions
initialize packed_tracker[0:vector_length]
initialize packed_size_tracker[0:vector_length]
initialize packed_col_idx[0:vector_length]
initialize track_idx=row_starts[p]
initialize done=False
while done==False
for j in 0 to vector_length
nz_idx = packed_size_tracker[j] - packed_tracker[j]
col_index = packed_col_idx[j]
A_val = values[nz_idx]
row_index = row_indices[nz_idx]
X_val = x_vec[col_index]
Y_val = y_vec[row_index] + X_val*A_val
y_vec[row_index] = Y_val
packed_tracker[j]--

for j in 0 to vector_length
while (packed_tracker[j] <= 0 && track_idx < col_starts[p+1])
packed_col_idx[j] = col_idx[track_idx]
packed_tracker[j] = col_ptrs[track_idx+1] - col_ptrs[track_idx]
packed_size_tracker[j] = col_ptrs[track_idx+1]
track_idx++

if all elements in packed_tracker are 0, then done=True

Similarly, the implementation of nested-parallelism SpMV on a DCSR representation using
packed-stripmining will use the same concepts by swapping equivalent row and columns variables:
for p in 0 to num_row_partitions
initialize packed_tracker[0:vector_length]
initialize packed_size_tracker[0:vector_length]
initialize packed_row_idx[0:vector_length]
initialize track_idx=row_starts[p]
initialize done=False
while done==False
for j in 0 to vector_length
nz_idx = packed_size_tracker[j] - packed_tracker[j]
row_index = packed_row_idx[j]
A_val = values[nz_idx]
col_index = col_indices[nz_idx]
X_val = x_vec[col_index]
Y_val = y_vec[row_index] + X_val*A_val
y_vec[row_index] = Y_val
packed_tracker[j]--

for j in 0 to vector_length
while (packed_tracker[j] <= 0 && track_idx < row_starts[p+1])
packed_row_idx[j] = row_idx[track_idx]
packed_tracker[j] = row_ptrs[track_idx+1] - row_ptrs[track_idx]
packed_size_tracker[j] = row_ptrs[track_idx+1]
track_idx++

if all elements in packed_tracker are 0, then done=True

Note, that the packing stage itself (the second internal for loop) cannot be vectorized due to
the while loop which is nested within it. Conditional while loops break the vectorization (or
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result in an inefficient implementation), and therefore the packing process was separated from the
vectorized chunk.

Furthermore, while this approach is designed to ”fix” the problem of imbalances sparse matri-
ces (and transitively, imbalanced and power-law graphs), this approach still encounters a difficulty
if the imbalance is extreme (for example: one column has more elements than all other columns
combined), or if there is significant imbalance towards the last rows/columns of the matrix. Each
virtual-processor handles only one column (or ”vertex” in the case of a graph). Therefore, if all the
virtual-processors are done working, but there is one column with many elements that still need to
be processed, this column will only be processed by a single virtual-processor while leaving the
remaining virtual processors idle. This attribute likely has a negative impact on the performance
of this method on power-law graphs, since there is no guarantee of the location of the populous
vertices in power-law graphs.

Figure 2.4: Illustration of the first two iterations of a packed-stripmining traversal of the CSC
sparse matrix components from the first thread of the running example, using a hypothetical vector
register length of 2

Loop-Raking
The Loop Raking vectorizing approach was originally proposed for sorting algorithms [60]. The
raking access pattern is a common vector pattern used for two-dimensional data-structures [6]. It
has been commonly used in dense data-structure scenarios such as dense matrix multiplication
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and data compression. It allows contiguous elements to be processed by the same virtual proces-
sor, which may have implications regarding spatial data-locality, memory consistency and atomic
operations. In the raking access pattern, virtual-processors process array-elements in intervals of
array size/vector length.

This approach proposes a partial solution for the imbalance problems that appear in the packed-
stripmining approach. In loop-raking, all virtual processors can be utilized in every iteration of
the loop (with the possible exception of the last iteration). Since the vectorization is performed
across the values array rather than the pointers array, loop raking results in an inherently more
load-balanced scheme when performing an SpMV. Figure 2.5 illustrates the traversal order of the
virtual processors across the CSC data-structure. Nevertheless, checking row sizes and boundaries
is still required in order to have full information about each matrix element for the purposes of
linear algebra operations. Therefore, unlike the original loop-raking use-cases, a ”tracker” vector
register is still required in the sparse matrix case in order to maintain information about progress
through each column in a CSC structure. This tracker vector somewhat limits the possible load-
balancing, since the current implementation under evaluation in this work chooses to define the
rake interval as the size of the largest column. Therefore, while loop-raking resolves the utilization
problem of processing a large row at the tail-end of the matrix, it does not solve the problem of
an extremely large column which composes the majority of elements in the matrix (as may be the
case in a power-law graph).

When composing together the thread-level parallelization level across DCSC partitions with the
vector-level parallelization approach within partitions, the implementation of nested-parallelism
SpMV on a DCSC representation using loop-raking would resemble the following template:
for p in 0 to num_column_partitions
rake_interval = sizeof(A_val) / vector_length
initialize rake_col_ind[0:vector_length]
initialize rake_col_ind_ptr[0:vector_length]
initialize tracker[0:vector_length]
for offset in 0 to (nnz / vector_length)
rake_offset = col_ptrs[row_starts[p]] + offset
for j in 0 to vector_length
if tracker[j] == 0
rake_col_ind_ptr[j]++
rake_col_ind[j] = col_indices[rake_col_ind_ptr[j]]
tracker[j] = col_ptrs[rake_col_ind_ptr[j]+1]-col_ptrs[rake_col_ind_ptr[j]]

col_index = rake_col_ind[j]
nz_idx = rake_offset + j*rake_interval
A_val = values[nz_idx]
row_index = row_indices[nz_idx]
X_val = x_vec[col_index]
Y_val = y_vec[row_index] + X_val*A_val
y_vec[row_index] = Y_val
tracker[j]--
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Similarly, the implementation of nested-parallelism SpMV on a DCSR representation using
loop-raking will use the same concepts by swapping equivalent row and columns variables:
for p in 0 to num_row_partitions
rake_interval = sizeof(A_val) / vector_length
initialize rake_row_ind[0:vector_length]
initialize rake_row_ind_ptr[0:vector_length]
initialize tracker[0:vector_length]
for offset in 0 to (nnz / vector_length)
rake_offset = row_ptrs[row_starts[p]] + offset
for j in 0 to vector_length
if tracker[j] == 0
rake_row_ind_ptr[j]++
rake_row_ind[j] = row_indices[rake_row_ind_ptr[j]]
tracker[j] = row_ptrs[rake_row_ind_ptr[j]+1]-row_ptrs[rake_row_ind_ptr[j]]

row_index = rake_row_ind[j]
nz_idx = rake_offset + j*rake_interval
A_val = values[nz_idx]
col_index = col_indices[nz_idx]
X_val = x_vec[col_index]
Y_val = y_vec[row_index] + X_val*A_val
y_vec[row_index] = Y_val
tracker[j]--

Note that in the pseudo-code examples above, several checks for corner-cases are omitted
(padding, and checking edge conditions).

In the packed-stripmining approach, the ”virtual processors” process the packed array, and
perform checks to track the progress of elements in the non-zero elements array. This is as opposed
to the loop-raking approach, in which the ”virtual processors” process the non-zero elements array
(both the indices and the values), while performing checks to track the status of the pointers array.

Due to the increased use of constant-stride loads and stores, loop-raking allows a reduction
in the number scatter/gather operations, and it supports the systolic bank execution model. This
makes it a good fit to the nested-parallelism approach with vector-machines. However, given
Hwacha’s single address-generation unit per lane, non-unit-stride loads and stores are serialized in
a similar manner to scatter/gather operations.
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Figure 2.5: Illustration of the first two iterations of a loop-raking traversal of the CSC sparse matrix
components from the first thread of the running example, using a hypothetical vector register length
of 2
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Chapter 3

Experimental Setup

3.1 Graph Processing Framework Infrastructure
GraphMat [56] was chosen as the base graph-processing framework infrastructure in this work
for several reasons. GraphMat uses DCSC and DCSR data-structures to represent the graph adja-
cency matrices. Not many frameworks use this data-structure, which provides a natural boundary
between the external parallelism abstraction and the internal parallelism abstraction used in nested-
parallelism. Since common graph processing benchmark data-sets are usually provided in edge-list
format, the use of the GraphMat infrastructure abstracts away the complications of constructing the
efficient DCSC and DCSR graph representations out of these edge-list formats.

Additionally, the use of the linear-algebra representation in the back-end for the implementa-
tion of the graph-processing kernels provides a rigid structure. This means that the results and
conclusions of this work can likely be transferred to other graph processing kernels implemented
in GraphMat, since they all utilize similar ordering and execution patterns. Furthermore, the con-
clusions can potentially be generalized to other sparse linear algebra problems that are not related
to the graph-processing domain.

Finally, GraphMat uses bit-vectors in-order to help represent sparse vectors. The use of bit-
vector is very similar to the use of vector predicate registers in the Hwacha vector accelerator.
While the Hwacha architecture is not able to load bit-vectors directly into predicate registers, this
implementation is still helpful for it’s equivalent representation.

At the time of selection, GraphMat was one of the fastest shared-memory graph-processing
frameworks published in the academic community. It has been used for a variety of experiments
and workloads, including in the architecture research community [19], and has proven to be con-
sistently high-performing while maintaining it’s unique abstractions.

3.2 Agile Hardware Development
This work was performed as part of an attempt in implementing the Agile Hardware Development
approach described in [35]. It was done as part of the design process for a test SoC (named
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EAGLE), developed as part of the agile hardware development methodlogy research programs.
The nested-parallelism model described in this work is based on the micro-architecture of this
test SoC: a chip multi-processor (CMP) with eoght general purpose in-order scalar processors and
8 Hwacha vector-accelerators arranged into four clusters (each cluster consisting of two Rocket
cores and two Hwacha Vector Accelerators with a shared L2 cache) with a 3-level cache-hierarchy.

In accordance in the Agile Hardware development approach, these software benchmarks were
initially developed and verified using the Spike RISC-V ISA simulator, and then verified and evalu-
ated during design space exploration against the RTL design using the MIDAS and FireSim FPGA
simulation platforms. Nevertheless, due to a variety of technical and scheduling constraints, the
FPGA-based evaluation was performed only after the chip was taped-out, and therefore was not
able to contribute to the micro-architectural optimization of the chip as envisioned in the full agile
hardware development manifest. However, the conclusions of this work provide valuable insights
to micro-architectural choices for future chips.

3.3 Software Development
As PageRank can be implemented in its simplest form as an iterative SpMV, the experimentation
with PageRank did not require many of GraphMat’s advances features of transforming the vertex-
centric abstraction to the linear-algebra backend. Therefore, the first step in the development was
the isolation of the GraphMat execution kernel from the supporting transformation mechanism,
which will allow for focusing on the main PageRank kernel rather than the surrounding features
of the framework. This isolation was verified by running several benchmarks and comparing the
results with the full-featured GraphMat framework.

As a result of the isolation the GraphMat transformation mechanism, the main remaining fea-
tures of GraphMat are it’s graph data-structures and data-ingestion components. As mentioned
previously, many graph-processing frameworks maintain both a CSR and CSC representation of
the graph adjacency matrix and its transpose for fast access to both outgoing edges and incoming
edges [18]. Notably, the PageRank SpMV operates on the transpose of the graph adjacency matrix
due to it’s focus on incoming edges. Therefore, the vectorized SpMV implementation actually
operates on the DCSR representation of the transposed adjacency matrix, rather than the DCSC
representation of the original adjacency matrix. Luckily, as described throughout the previous
chapter, the DCSR SpMV implementations are analogous to the DCSC implementations, and only
require switching between the different array pointers.

Next, SpMV assembly kernels were written based on the structure of the GraphMat DCSR
data-structures. The kernels were initially tested as single iterations of SpMV. After verification of
successful single iterations, the additional elements of PageRank were added to the SpMV kernel
- division by vertex degree, etc. The final segment of the custom assembly code is a function that
applies the damping factors for the PageRank values, and checks for convergence of the PageRank
values.

The convergence check requires the PageRank values of all the vertices to be under a conver-
gence threshold. One challenge when writing the PageRank assembly kernel involved determining
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the PageRank convergence using vectorized vector-fetch code rather than using a scalar loop. This
convergence indication using a decoupled vector unit requires passing a signal or flag between the
vector-fetch unit and the scalar processor. Since there is no dedicated method for this type of op-
eration in the Hwacha vector architecture, this issue was mitigated by setting an index vector, and
using the vfirst instruction to return a non-zero value from the index vector if a value which
did not converge (otherwise a default value of 0 is returned). The result of vfirst is then stored
in a pre-determined shared memory location used to pass the value from the vector-fetch block
execution to the scalar processor for further processing.

From an optimization perspective, it is important to note that GraphMat represents the vertex
properties using an array of records, in which each record includes the vertex PageRank value
and the degree of the vertex (rather than an array of PageRank values and an additional array
of vertex degrees). This representation has an impact both on the number of instructions in the
assembly code, and on the spatial-locality of the memory accesses for the relevant values. This
representation was not changed in this work, in order to attempt to maintain the generality of the
results to other potential GraphMat workloads.

Finally, OpenMP pragmas were added around the external for loops that call the SpMV as-
sembly kernel in order to exploit the multi-level nested parallelism. OpenMP is a common method
for applications to exploit nested parallelism. However, it requires careful implementation [57].
The use of OpenMP required a full Linux stack, as opposed to the bare-metal testing that has been
traditionally attempted with the Hwacha RTL implementation. This could possibly expose issues
of memory consistency if threads running Hwacha vector-fetch code are preempted and replaced
with other threads running Hwacha vector-fetch code. Vector-fetch blocks currently do not support
precise exceptions and Linux context switching. This issue is avoided during testing and evalua-
tion by pinning threads to cores and not running more threads than the actual number of hardware
threads in the system.

3.4 Validation and Verification
Development and functional verification were performed using the Spike RISC-V ISA Simulator
with Hwacha vector extensions. Spike allows us to verify the functional correctness of the code,
under the mitigating assumptions of an IPC of 1, and single-cycle memory access latency.

Initial verification was performed by comparing the converged PageRank results between the
vectorized version and the simple scalar processed version (using the original GraphMat kernel).
This approach indeed worked well for verifying the packed-stripmining approach. However, this
trivial verification approach did not work for the loop-raking approach due to floating point round-
ing differences resulting from the different accumulation order used in the loop-raking approach
(compared to simple-scalar and packed-stripmining). Therefore, the loop-raking code was ver-
ified by identifying mismatched results, and verifying these results by re-ordering the partially-
accumulated temporary sums. These floating point mismatches proved to be an important consid-
eration when evaluating different vectorization techniques.
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3.5 Performance Evaluation and Design Space Exploration
Evaluation and design space exploration are based on the Rocket Chip SoC generator with the
Hwacha vector accelerator. The SoC setup includes configurations with single-core and dual-core
Rocket-Chip in-order cores, each accompanied by various configurations of single-lane or dual-
lane Hwacha vector accelerators. The SoC configurations included a memory hierarchy with 2
levels of cache, of which the vector-accelerator is connected directly to the L2 cache. The size of
the L2 cache is also a configurable parameter across the test configurations.

Performance evaluation was executed using FPGA-accelerated cycle-exact simulation on the
FireSim platform [29]. The FireSim platform allows for FPGA-accelerated cycle-exact simula-
tion on the public cloud using Amazon Web Services (AWS) EC2 FPGA instances. This FPGA-
accelerated simulation enables running application benchmarks on top of a fully functional Linux
system in a cycle-accurate simulation with only a 500x slow-down compared to real time execution
on actual taped-out silicon. Similar experiments would require multiple weeks using a standard
software RTL simulator. Furthermore, the FireSim framework also includes elaborate memory
models which can simulate a full DDR3 backing memory system and last-level caches (LLC)
with high accuracy timing models, while maintaining the performance level of FPGA-accelerated
simulation [11].

FPGA-accelerated simulation allows for the use of actual silicon-worthy RTL for design space
exploration, while still maintaining high simulation speed. The use of the production-quality
Hwacha RTL means that there is a single-source-of-truth for test-chip production as well as sim-
ulation. This single-source-of-truth allows for bridging the modeling gap between high level sim-
ulation and silicon implementation. High simulation speed is especially important for the nested-
parallelism experiments in this work, since the use of standard OpenMP programming interfaces
requires a full operating system with resource management capabilities (for example, Linux). Run-
ning the experiments used in this reports on standard RTL software simulation would take multiple
days to multiple weeks.

Since we use the actual processor and vector accelerator RTL to perform application-level
evaluation in FireSim (rather than high-level abstract processor models), this RTL-based evalu-
ation was able to expose Hwacha RTL bugs that were previously unknown due to un-exercised
codes paths involving predicated instructions and atomic memory operations. These bugs were
not represented in the functional ISA-level simulation model, and therefore required careful RTL
debugging procedures. These issues were identified and mitigated through both RTL fixes and as-
sembly kernel fixes. This demonstrates the importance of full-system level testing and evaluation
of hardware designs using a variety of target applications.

Finally, full Linux-based evaluation of the Hwacha micro-architecture faces difficulties involv-
ing Hwacha’s inability to recover from a page-fault within vector-fetch kernels. This means that
all memory accesses must be paged-in by the scalar processor before calling the vector-fetch code.
While this requirement can be mitigated in software, it may have a performance penalty which
needs to be considered.
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Chapter 4

Evaluation and Design Space Exploration

4.1 Evaluation
Performance was measured on three sample graphs (table 4.1), selected from the Stanford Network
Analysis Project [38]. The graphs were selected to represent different use-cases and characteristics,
while still maintaining a size which allows for testing at reasonable times across the design-space.
Other than the properties presented in table 4.1, some additional distinguishing characteristics
between the graphs includes the ratio of edges-per-vertex: the wikiVote graph has an average of 15
edges per vertex, while the roadNet-CA has an average of 1.5 edges per vertex and the amazon0302
graph has an average of 5 edges per vertex. It is possible that these properties may have an impact
on the performance of the packed-stripmining technique vs. the loop-raking technique.

Twelve different SoC hardware configurations were simulated, by varying the number of tiles,
the number of vector accelerator lanes per tile, and the size of the L2 cache, as specified in table
4.2 (Note that a tile consists of a scalar core and vector unit. The vector-lanes count is per-vector
unit). The simulations of all SoC configurations were run at a simulated SoC frequency of 1033
MHz. The backing-memory model used for the simulations was a DDR3 memory model with
speed-grade of 14-14-14. Figure 4.1 shows block diagrams of the evaluated SoC configurations.

Performance was also evaluated using an additional software parameter which controls the
number of DCSR partitions in relation to the number of hardware threads. This DCSR partition
factor is multiplied by the number of hardware threads to determine the number of overall DCSR

Table 4.1: Properties of Evaluation Graphs

Name Vertices Edges Description
wikiVote 7115 103689 Wikipedia who-votes-on-whom network

roadNet-CA 1965206 2766607 Road network of California
amazon0302 262111 1234877 Amazon product co-purchasing network from March 2 2003
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Table 4.2: Simulated SoC Hardware Configurations

Name Tiles Vector Lanes L2 Cache Size
T1L1C512 1 1 512 KB

T1L1C1024 1 1 1024 KB
T1L1C2048 1 1 2048 KB
T1L2C512 1 2 512 KB

T1L2C1024 1 2 1024 KB
T1L2C2048 1 2 2048 KB
T2L1C512 2 1 512 KB

T2L1C1024 2 1 1024 KB
T2L1C2048 2 1 2048 KB
T2L2C512 2 2 512 KB

T2L2C1024 2 2 1024 KB
T2L2C2048 2 2 2048 KB

partitions. For example, if the DCSR partition factor is 4, and the number of hardware threads is
2 (in a dual-tile configuration), then the graph DCSR representation will have 8 DCSR partitions.
Since the OpenMP external parallelization scheme parallelizes across cores using units of DCSR
partitions, increasing this factor increases the granularity of the dynamic allocation of partitions
between cores. However, while this factor increases the dynamic allocation of kernels to hard-
ware threads, it may also decrease vector lengths used in the vectorized code if a large number of
partitions results in smaller graph sections per-partition.

Run-time results measured using the FireSim cycle-exact FPGA-accelerated simulations can
be found in the appendix in tables A.1, A.2, A.3. The design space is analyzed using multiple cuts:
The benefits of multiple tiles vs. multiple vector lane (figures 4.4,4.5), the benefits of L2 cache size
compared to the number of tiles or vector lanes (figures 4.2, 4.3), and the effects of the software
DCSR partition factors (figures 4.6, 4.7, 4.8, 4.9). The entire design space is evaluated on both
nested-parallelism techniques presented previously (packed-stripmining and loop-raking).

The measurement results use relative-speedup and absolute-speedup as evaluation metrics. The
term ”relative speedup” is used to refer to the speedup of parallel-vectorized code relative to a
parallel-scalar code implementation on the same hardware configuration. As an example, for
a dual-tile with single vector-lane configuration such as T2L1C2048, the relative speedup of a
loop-raking kernel is scalar time T 2L1C2048

loop raking time T 2L1C2048 . The term ”absolute speedup” is used to refer to the
speedup of a kernel (scalar or vectorized) compared to the scalar implementation on the minimal
SoC configuration under evaluation (single scalar core, with an L2 cache size of 512 KB). As an
example, for a dual-tile with single vector-lane configuration such as T2L1C2048, the absolute
speedup of a loop-raking kernel is scalar time T 1L1C512

loop raking time T 2L12048 .
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Figure 4.1: SoC configurations under evaluation.
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The measured results present several interesting patterns. As mentioned previously, we attempt
to address two different speedups when analyzing the results: the overall-speedup compared to a
reference minimal scalar design (single-tile, L2 size of 512 KB), and relative-speedup compared
to an equivalent design without a vector accelerator (i.e. a dual-tile-single-lane design would be
compared against a scalar implementation of a dual-tile design with the same cache size)

4.2 L2 Cache Size
Unsurprisingly, different cache sizes have little to no effect on the performance of PageRank on all
graph types in the various hardware configurations. This behavior is consistent both when varying
the number of tiles and when varying the number of vector lanes. While the roadNet-CA and
amazon0302 graphs are larger graphs which cannot fit in any of the L2 cache size configurations,
the wikiVote graph is small enough to fit in all of the evaluated L2 cache configurations. Hence,
it is not surprising that we do not observe changes in behavior across the evaluated L2 cache sizes
for the wikiVote graph. At the same time, we also do not observe an improvement across different
cache sizes for the larger graphs. This behavior is somewhat expected of graph workloads, which
have been known to have poor spatial and temporal locality.

4.3 Total Number of Tiles
As expected, increasing the number of tiles improves the absolute performance of all graphs and
software configurations compared to a minimal single tile configuration. The scalar reference im-
plementation obtains near-linear scaling from a single tile to two tiles. However, when comparing
the relative-speedup of the vectorized kernels versus the reference scalar kernel (figure 4.5), it is
noticeable that the raking technique obtains a higher relative-speedup in the dual-tile case com-
pared to the single-tile case. On the other hand, the packed-stripmining approach obtains the same,
and sometimes even smaller, relative-speedup in the dual-tile case compared to the single-tile case.
When considering the absolute-speedup between the single-tile and dual-tile case 4.4), the loop-
raking technique obtains near-linear absolute scaling between one-tile to two-tiles, similar to the
scaling of the scalar implementation. The packed stripmining approach presents less consistent
scaling behavior, especially on the amazon0302 graph. We can conclude from these observations
that the loop-raking method is more scalable, in relation to the number of tiles, than the packed-
stripmining method.

4.4 Total Number of Vector Lanes
As expected, increasing the number vector lanes per tile generally improves the performance of
most graph and software configurations, compared to a single-lane or single-scalar-tile configura-
tions. Similarly to the multi-tile case, the loop-raking technique obtains a higher relative-speedup
in the dual-lane case compared to a single-lane case. However, this observation is less-informative



CHAPTER 4. EVALUATION AND DESIGN SPACE EXPLORATION 29

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

No
rm

al
ize

d 
Sp

ee
du

p

No
rm

al
ize

d 
Sp

ee
du

p

No
rm

al
ize

d 
Sp

ee
du

p

wikiVoteroadCA
amazon0302

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

No
rm

al
ize

d 
Sp

ee
du

p

wikiVoteroadCA
amazon0302

No
rm

al
ize

d 
Sp

ee
du

p

wikiVoteroadCA
amazon0302

No
rm

al
ize

d 
Sp

ee
du

p

Ti
le

s
2

1

L2 Cache Size (KB)
512 1024 2048

Tiles vs. L2 Cache Size Absolute Speedup

Scalar
Packed
Stripmining
Loop Raking

Figure 4.2: Tiles vs. L2 cache size comparison of average PageRank iteration speedup, normalized
to the run-time of a minimal scalar hardware configuration (Single tile, 512 KB L2 Cache). To
observe effects of number of lanes vs. L2 cache size, the results were cut with a single vector lane
and with a software DCSR partition factor of 1 partition-per-hardware-thread.

than in the dual-tile case, since the multi-lane scenario relative-speedup is equivalent to the multi-
lane absolute-speedup since there is only a single scalar core in both the single-lane and dual-lane
cases. The absolute-speedup between the single-lane configuration to the dual-lane configuration
does not scale as well as it did in the multi-tile comparison. For the packed-stripmining method,
an additional lane provides a minimal speedup gain. Furthermore, the packed-stripmining imple-
mentation actually exhibits a smaller speedup in the dual-lane configuration on the wikiVote graph
compared to the single-lane configuration. Nevertheless, it is clear than an additional lane indeed
provides additional significant speedup for the loop-raking method.

4.5 Number of Tiles vs. Number of Vector Lanes
Given the area and power cost of additional tiles and lanes, it is interesting to investigate the trade-
off between the two. We compare a single-tile-dual-lane design to a dual-tile-single-lane design.
Both designs have a total of two vector lanes (albeit, split between two tiles versus concentrated
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Figure 4.3: Vector lanes vs. L2 cache size comparison of average PageRank iteration speedup,
normalized to the run-time of a minimal scalar hardware configuration (Single tile, 512 KB L2
Cache). To observe effects of number of lanes vs. L2 cache size, the results were cut with a single
vector lane and with a software DCSR partition factor of 1 partition-per-hardware-thread.

in one tile), but the latter has an additional scalar control processor controlling the second vector
lane. While the area comparison is not exact, we know from previous test-chips which include
Rockets scalar processors and Hwacha vector accelerators [30] that the vector lanes dominate
the area compared to scalar cores. When observing the normalized speedups in figure 4.4, it is
clear that a dual-tile-single-lane design demonstrates a more significant speedup compared to the
minimal scalar single-tile scalar design on all of the evaluated graphs. Figures 4.8, 4.9 show
that these observations remain consistent across different software configurations as well. We
can therefore conclude that multi-tile-single-lane configurations are likely a better choice for a
PageRank workload (and perhaps sparse workloads in general) compared to single-tile-multi-lane
configurations. Nevertheless, these observations need to be supported by supplemental energy and
area simulations or measurements from a fabricated SoC.
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Figure 4.4: Tiles vs. vector lanes comparison of average PageRank iteration speedup, normalized
to the run-time of a minimal scalar hardware configuration (Single tile, 512 KB L2 Cache). To
observe effects of number of lanes vs. number of tiles, the results were cut with a cache-size of
2048KB and with a software DCSR partition factor of 1 partition-per-hardware-thread.

4.6 Packed-Stripmining vs. Loop-Raking
An initial observation of the measured results (figures 4.6, 4.7) shows that the best performing vec-
torized kernel depends on the choice of graph and the DCSR partitioning parameters. When ob-
serving the results with a DCSR partition factor of 1, we see that loop-raking outperforms packed-
stripmining for the wikiVote and amazon0302 graphs, but performs worse in the roadNet-CA
graph. However, further observation shows that the loop-raking speedup (both relative-speedup
and absolute-speedup) improves as the DCSR partition factor increases for the roadNet-CA and
amazon0302 graphs. Hence, for DCSR partition factors of 4, 8 and 16, loop-raking is able to
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Figure 4.5: Tiles vs. vector lanes comparison of vectorized PageRank speedup relative to the
scalar implementation on the equivalent SoC configuration. To observe effect of number of lanes
vs. number of tiles, the results were cut with a cache-size of 2048KB and with a software DCSR
partition factor of 1 partition-per-hardware-thread.

out-perform packed-stripmining for the roadNet-CA graph as well. Furthermore, the maximum
observed speedups obtained by loop-raking (both relative-speedups and absolute-speedups) are
significantly higher than the maximum observed speedups obtained by packed-stripmining (5.1x,
4.6x, 2.7x maximum relative speedups for the three graphs using packed-stripmining, vs. 7.3x,
9.2x, 13.9x maximum relative-speedups for the three graphs respectively using loop-raking). We
can therefore conclude that when tuned correctly, loop-raking is generally a better choice of vec-
torizing kernel.
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Figure 4.6: Software DCSR partitioning factor comparison of PageRank packed-stripmining
speedup relative to the scalar implementation on the equivalent SoC configuration. Presented are
results for the packed-stripmining vectorizing technique across four SoC configurations.

4.7 Graph Size and Structure
We analyze whether the size or characteristics of the graph structure have an impact on certain SoC
configurations or software configurations. It is clear from figures 4.6,4.7,4.8,4.9 that the wikiVote
graph presents a different behavior than the other two graphs under evaluation. As mentioned
previously, wikiVote is the smallest graph under evaluation, and it is small enough to fit in the L2
cache size of all of the tested SoC configurations. Therefore, it is not bound by off-chip memory
bandwidth, and it should be able to utilize all of the vector accelerator’s additional computational
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Figure 4.7: Software DCSR partitioning factor comparison of PageRank loop-raking speedup rel-
ative to the scalar implementation on the equivalent SoC configuration. Presented are results for
the loop-raking vectorizing technique across four SoC configuration.

resources. This is also supported by the measurements, in which the wikiVote graph is able to
utilize the additional computational resource and reach a relative-speedup of up to 14x, while the
larger graphs that do not fit in the L2 cache and require interaction with the off-chip memory
system are able to reach only up to a 9x relative-speedup with vectorized kernels.

The two larger graphs present better relative-speedups as the DCSR partition factor increases.
This is not surprising, since a higher DCSR partition factor allows for finer-grained load-balancing
of partitions between hardware threads. However, the DCSR partition factor was not expected
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to have an impact on the single-tile configurations, since those configurations have only a single
hardware thread. Furthermore, we also observe that the wikiVote graph presents smaller speedup
with the loop-raking kernel as the DCSR partition factor increases. This is in contrast to the larger
graphs which present higher speedup when the DCSR partition factor increases. In addition, when
using the packed-stripmining method, the wikiVote graph actually exhibits a relative-slowdown
when using higher DCSR partition factors. An initial suspicion in this case regards the vector
lengths and their impact of the vector unit utilization. As the DCSR partition factor increases, the
requested vector lengths decrease due to the smaller number of elements processed in each DCSR
partition. However, the number of vertices and edges in all 3 graphs is significantly higher than
the maximum vector length possible in both the loop-raking and packed-stripmining kernels under
the evaluated SoC configuration. Based on the number of vertices and edges each of the evaluation
graphs, we would expect that the active vector-length (AVL) for each configuration would be the
maximum vector length (MVL) allowed by the vector unit configuration (which is determined by
the number of vector registers required in the vectorized kernel). However, after further investi-
gation, we found that for the wikiVote graph, the active vector length is less than the maximum
vector length when the DCSR partition factors are 8 and 16 (for single-tile SoC configurations).
The explanation for this apparent-contradiction is that while the number of vertices is significantly
higher than MVL×num partitions, the de-facto compressed matrix size depends only on vertices
that have outgoing edges. While there are overall 8̃000 vertices in the graph, only 2̃300 vertices
have outgoing edges. Hence, in the cases of 8 and 16 partitions, (2300/num partitions) turns out
to be less than the maximum vector length allowed by the vector-unit register configuration. As
a result, the vector unit is not utilized to the fullest extent. This situation is further exacerbated
between the single-lane case and the dual-lane case: there is a smaller speedup for low DCSR par-
tition factors, and an increased slowdown for higher DCSR partition factors. This indeed helps to
provide an explanation for the behavior of the wikiVote graph results when using the loop-raking
method: In the T1L1C2048 we observe higher speedups as the number of DCSR partitions in-
creases until 8, 16 partitions in which we start observing smaller speedups. For the T1L2C2048,
we start observing the lower utilization of the vector units starting with lower DCSR partition fac-
tors due to the use of two lanes. For the T2L1C2048 and T2L2C2048 configuration we observe
the smaller speedup behavior in all DCSR partition factors since the actual number of partitions
is double the partition factor (since the number of DCSR partitions is the DCSR partition factor
times the number of hardware threads, hence resulting in double the number of DCSR partitions
for dual-tile configurations).

However, the vector unit utilization does not provide a full explanation for the slow-down ob-
served for the packed-stripmining measurements. It is important to note that the packed-stripmining
approach involves a re-packing phase that is performed by the scalar processor after each stripmin-
ing iteration on the vector unit. Hence, there is a trade-off between the overhead of re-packing, and
the benefits of the vector accelerator. Longer vector lengths enable better utilization of the vector
units, but incur longer re-packing phases in the scalar processor. This trade-off may explain the
behavior of packed-stripmining across different DCSR partition factors.

Nevertheless, to confirm these explanations regarding the run-time performance behaviors
across different DCSR partition factors, further introspection and investigation are required.



CHAPTER 4. EVALUATION AND DESIGN SPACE EXPLORATION 36

0

2

4

6

8

10

No
rm

al
ize

d 
Sp

ee
du

p

0

2

4

6

8

10

No
rm

al
ize

d 
Sp

ee
du

p

0

2

4

6

8

10

No
rm

al
ize

d 
Sp

ee
du

p

wikiVote roadCA amazon0302
0

2

4

6

8

10

No
rm

al
ize

d 
Sp

ee
du

p

T1
L1

C2
04

8
T1

L2
C2

04
8

T2
L1

C2
04

8
T2

L2
C2

04
8

DCSR Software Partition Factor Absolute Speedup - Packed-Stripmining

Partition Factor 1
Partition Factor 2
Partition Factor 4
Partition Factor 8
Partition Factor 16

Figure 4.8: Software DCSR partitioning factor comparison of PageRank packed-stripmining abso-
lute speedup compared to to the run-time of a minimal scalar hardware configuration (Single tile,
512 KB L2 Cache). Presented are results for the packed-stripmining vectorizing technique across
four SoC configurations.

4.8 Vector Accelerator vs. Multi-Core Scalar Processors
Another question of interest when addressing graph-processing and sparse workloads is regarding
the benefit of data-level parallelism versus task-level parallelism. This question can be projected
to the design space under evaluation by comparing the run-time of a scalar-parallel implemen-
tation to an equivalent vectorized implementation. It is important to note that while the scalar
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Figure 4.9: Software DCSR partitioning factor comparison of PageRank loop-raking absolute
speedup compared to to the run-time of a minimal scalar hardware configuration (Single tile, 512
KB L2 Cache). Presented are results for the loop-raking vectorizing technique across four SoC
configuration.

implementation in this evaluation has a parallel dimension across DCSR partitions, this is only
coarse-grained task-level parallelism. The internal loops of the scalar implementation were not
optimized for task-level parallelism. Nevertheless, we can attempt to perform a coarse-estimate by
observing the results of figure 4.4. We observe that the dual-tile configurations obtain a 2x speedup
when using the scalar implementations compared to the single-tile scalar implementations. At the
same time, we observe that a single-tile-single-lane vector accelerator obtains between 2.75-8.6x
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speedup compared to the scalar implementation.
When analyzing the benefits of adding a vector accelerator for a sparse workload as opposed

to adding a additional scalar cores, we must consider the number of additional functional units
contributed by a vector accelerator over a scalar core. The Hwacha vector accelerator has four
floating point functional units, while a Rocket scalar core has only one. We observe that the only
cases where the vector accelerator obtains an absolute speedup lower than 4x are for the wikiVote
graph in the packed-stripmining case, and for certain DCSR partition configurations of the CA-
roadNet graph in the loop-raking case. Hence, it is reasonable to concluded that with the correct
choice of software optimization, the vector accelerator can potentially achieve the desired speedup
(greater than 4x) in all of the evaluated scenarios, and therefore data-parallel vector accelerators
remain a valid choice for sparse and graph-processing workloads.

4.9 Bottlenecks
We attempt to analyze the potential performance bottleneck for the evaluated workloads. Hwacha
has only a single address generation unit per lane, which can serialize indexed and non-unit-strided
memory operations that are frequently used in sparse kernels. While the loop-raking kernel has a
higher count of non-unit-stride memory operations compared to the packed-stripmining kernel, it
is likely that the impact of this potential bottleneck is obfuscated by the scalar processing overhead
of the packed-stripmining re-packing phase.

The initialization overhead of both kernels was eliminated as a potential bottleneck. The ini-
tialization overhead of both kernels was measured and found to be negligible compared to the body
of the computation loops.

Further investigation of the reasons for the behavior of wikiVote require detailed Hwacha com-
mit logs. Due to the length of simulation, these are difficult to obtain using standard RTL software
simulation. However, new FPGA-based debugging features of the FireSim platform enable the
extraction of such logs through FPGA-accelerated simulation. This will allow for further intro-
spection and investigation for identifying the bottlenecks with higher confidence. After such an
investigation, potential micro-architectural features, such as additional address-generation units,
could be added to Hwacha to improve the run-time of sparse kernels using this vector architecture.

4.10 Related Hardware Improvements
In this work, a general-purpose vector accelerator was used to accelerate and improve the per-
formance of a graph processing kernel. However, as the field of domain-specific acceleration is
gaining momentum with the end of Dennard scaling and Moore’s law, graph processing has natu-
rally taken a significant spotlight as a domain-specific research agenda [46, 19, 1, 2].

The desired outcome in an ideal situation would be to find a domain-specific solution that fits
the entire ”graph processing” domain. However, it turns out that while graph processing problems
have common data-structures, the computation functions do not have many common traits. Fur-
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thermore, depending on the context, even the data-structure may not be a common characteristic:
a dynamically updated graph may be represented as adjacency lists, while a static graph may be
represented as a sparse matrix. Concretely, performing a Breadth First Search (BFS) to generate
a spanning tree from a static graph has very few similarities to performing topic modeling using
Latent Dirichlet Allocation (LDA) on a dynamic graph - not in data-structure, not in the amount of
computation, and not in the level of parallelism. Hence, attempting to generalize an entire domain
of graph processing problems into a single domain may not be beneficial for identifying possible
hardware acceleration avenues.

Given a specific graph problem (such as finding a shortest path on a static graph), fixed-function
hardware solutions such as [19, 46] can provide significant power and performance benefits. How-
ever, when the exploration within the graph processing domain is expanded beyond single fixed-
function problems, it is difficult to identify hardware acceleration features that encompass the
entire domain. One possible reason for this is that graph processing is characterized by data-
representation rather than by computation kernels. Hence, most domain-wide improvements for
graph processing have focused on the memory system - since they address the inherent property
of a graph which is its data structure. [59] and [2] have proposed dedicated prefetchers for graph
processing, while many of the proposals in [46] revolve around partitioning of the memory system.
Nevertheless, by refining the definition of the graph-processing problem domain, and identifying
sub-domains with particular representations and computation patterns, it may be possible to uti-
lize more general purpose vector accelerators with particular memory system improvements (such
as multiple address generation units) in order to meet the acceleration requirements for graph-
related problems. As such, large static problems such as PageRank may be categorized as one
sub-domain with a particular acceleration approach (perhaps a standard vector unit with memory
system improvements may be enough), while dynamic shortest-path problems may be categorized
differently and use a different representations and hardware acceleration semantics. Integration
of some of the micro-architectural features presented in fixed-function graph-processing acceler-
ators (such as prefetchers) into a general-purpose vector accelerator may provide the additional
desired performance for these sub-domains. It is important to note that increasing the memory
system’s address bandwidth is typically expensive, and therefore these types of features require
further investigation.

4.11 Generalization
This work examined the effect of explicit nested parallelization on PageRank. Since PageRank
is implemented using a simple SpMV kernel, it is able to utilize the advantages of basic ALU
primitives such as vectorized addition and multiplication. However, generalization attempts for
graph processing, such as the GraphBLAS standard [31], assume that the basic algebraic addition
and multiplication operations may be overloaded by alternative functions for the implementation
of other graph processing algorithms such as BFS, SSSP, or CC. These alternative functions may
include minimum/maximum, or other forms of reductions.

The RISC-V vector extension presents new challenges and opportunities in this context of
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vector instructions and their generalization. The most recent working draft of the vector extension
specification [5] provides an option for polymorphic vector instructions a custom vector data-types.
These polymorphic vector instructions may allow for different instruction semantics depending on
a currently configured type representation of the vector registers. Potential future extensions based
on this vector extension may allow for graph-specific representations which may provide an effi-
cient opening for the overloading of relevant instructions based on the GraphBLAS semantics. The
use of overloaded vector instructions will not necessarily reduce the burden from compilers and
hand-optimization of kernels, but it may allow for better generalizations, code generation, and inte-
gration with custom hardware based on common representations. Nevertheless, the RISC-V vector
extension working draft proposal does not come without it’s challenges to sparse and graph-related
workloads. The base vector extension proposal has defined only a single predicate vector register
(implemented as the least significant bit of each element of the first standard vector register). This
is a point of interest since predicated instructions are a significant factor in sparse vectorized work-
loads. The implications of this proposal may require additional instructions to compute and move
masks into this predicate register, which may generate additional register pressure.

4.12 Future Work
A common assumption in graph processing research is that the computation of the graph kernel is
the expensive computation component, and therefore it is the main problem that requires research
attention. This comes under the assumption that once a graph data-structure is constructed, it will
be used multiple times across various kernel, hence amortizing the cost of the data-structure con-
struction. This assumption indeed hold for most cases of a PageRank, since it is an iterative kernel,
and it takes many SpMV iterations for the kernel to converge. However, in some cases, the graph
construction time may be the significantly longer. The wikiVote PageRank converges in a relatively
small number of iterations (20-30). For the wikiVote graph on the T1L1C512 configuration, the
graph construction time was 1238 ms, while the overall PageRank computation time until conver-
gence was 615 ms for a scalar implementation and 71 ms for a loop-raking implementation. These
demonstrate that the graph construction time may be the bottleneck in cases of non-iterative graph
computation kernels. While compressed data-structure provide significant data-locality which im-
proves the kernel computation time, the graph-construction time may render this irrelevant if the
time to construct the optimized data-structure is not amortized. To provide a complete solution for
different types of non-iterative graph processing kernel, further work is required to optimized the
graph construction stage.

Additional hybrid vectorization approaches may help further mitigate load-balancing issues
in power-law graphs that the loop-raking technique is still susceptible too. A hybrid approach
may apply stripmining on large vertices, while using loop-taking for the reminder of the graph.
However, this type of hybrid approach requires sorting the vertices based on vertex degrees, and
therefore the sorting overhead must be studies against current loop-raking performance.

This evaluation in this work was limited by the size of the FireSim FPGA platforms. Hence,
it was not possible to evaluate SoC configurations of four tiles, four lanes or beyond. To further
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confirm of validate the results of this evaluation, we expect that the previously mentioned EAGLE
SoC will be a useful platform. The EAGLE SoC was designed based on a similar Rocket Chip
configuration consisting of eight tiles arranged in the form of four clusters, each cluster equivalent
to the dual-tile-single-lane configuration evaluated in this work. The EAGLE SoC will allow for
further evaluation and scaling of the results up to 8 tiles.

Finally, the root causes and reasons for the performance bottlenecks were not thoroughly con-
firmed given the possibilities of cycle-accurate evaluations. Further investigation of the bottle-
necks will allow for additional performance optimization through optimized software pipelining,
instruction ordering, and minor micro-architectural features. These optimizations can be achieved
through instruction commit-log analysis of the target kernel simulated on the SoC configurations.
Obtaining such commit-logs from software RTL simulation takes multiple weeks. Newly inte-
grated micro-architectural introspection features of FireSim FPGA-accelerated simulation enable
extracting these instruction commit logs within several hours. Extraction of these instructions and
analysis of the logs will allow for better understanding of the relevant bottlenecks, and mitigation
of those bottleneck through instruction ordering or micro-architectural features.
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Chapter 5

Conclusion

This work presents SW/HW co-design space exploration and evaluation of a nested-parallelism
PageRank graph processing kernel. The design space was evaluated using a variety of SoC con-
figurations of the a Rocket multi-processors with Hwacha vector accelerators and multiple soft-
ware configurations. This work demonstrated the benefits of the loop-raking vectorizing technique
compared to the packed-stripmining vectorizing technique for a sparse data-structure representa-
tion likely due to the overhead of additional re-packing in the scalar-processor and longer vector
lengths. Furthermore, this work demonstrated that using correct data-structure partitioning, the
loop-raking vectorizing technique can achieve up to 14x relative-speedup compared to equivalent
scalar implementations. A 25x speedup was demonstrated using dual-tile SoC with dual-lanes-per-
tile vector accelerators, compared to a minimal single-tile scalar implementation, demonstrating
the scalability of the proposed nested-parallelism techniques. The results of this design space ex-
ploration shed light on the preferred SoC configuration choice required for this type of vectorized
nested-parallel sparse workload: Given fixed-area constraints, a dual-tile-single-lane configuration
is a higher performing configuration compared to a single-tile-dual-lane configuration for nested-
parallel sparse workloads. This work also demonstrated an implementation of agile hardware de-
velopment methodologies with software development using functional simulators and design space
exploration using FPGA accelerated simulation for performance evaluation. Further work will in-
clude final evaluation using a fabricated SoC, and further micro-architectural optimization using
additional micro-architectural introspection features of FPGA-based performance evaluation tools.
The key contributions of this work include the evaluation and comparison of vectorization tech-
niques for an SpMV kernel on a novel vector architecture, as well as the evaluation methodology
for accurate design space exploration using system-level applications.
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Appendix A

Measurement Results

Table A.1: Measurements for the wikiVote Graph

Config DCSR
Partition
Factor

Scalar
SpMV
(ms)

Packed-
Strip.
SpMV
(ms)

Loop-
Raking
SpMV
(ms)

Scalar
PageRank
Average
Iteration
(ms)

Packed-
Strip.
PageRank
Average
Iteration
(ms)

Loop-
Raking
PageRank
Average
Iteration
(ms)

T1L1C512 1 27.22 10.12 3.21 29.30 10.66 3.42
T1L1C512 2 27.55 12.88 2.98 29.63 13.56 3.18
T1L1C512 4 27.00 19.15 2.84 28.97 20.08 3.04
T1L1C512 8 27.52 32.71 3.05 29.57 34.26 3.23
T1L1C512 16 27.40 43.53 3.42 29.11 45.16 3.55
T1L1C1024 1 27.16 10.11 3.20 29.11 10.64 3.41
T1L1C1024 2 27.50 12.87 2.97 29.45 13.54 3.16
T1L1C1024 4 26.96 19.12 2.83 28.79 20.05 3.02
T1L1C1024 8 27.47 32.70 3.05 29.40 34.22 3.21
T1L1C1024 16 27.32 43.55 3.41 28.93 45.13 3.50
T1L1C2048 1 27.17 10.11 3.19 29.10 10.63 3.40
T1L1C2048 2 27.51 12.86 2.96 29.44 13.53 3.16
T1L1C2048 4 26.96 19.12 2.83 28.78 20.04 3.03
T1L1C2048 8 27.46 32.72 3.05 29.38 34.22 3.20
T1L1C2048 16 27.35 43.53 3.43 28.91 45.12 3.50
T1L2C512 1 27.22 14.18 1.96 29.29 14.88 2.10
T1L2C512 2 27.53 20.89 2.03 29.62 21.92 2.16
T1L2C512 4 27.00 33.37 2.02 28.96 34.88 2.12
T1L2C512 8 27.51 49.41 2.38 29.57 51.71 2.49
T1L2C512 16 27.41 40.92 2.91 29.09 42.42 3.02
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T1L2C1024 1 27.16 14.16 1.95 29.11 14.86 2.09
T1L2C1024 2 27.51 20.87 2.01 29.45 21.89 2.14
T1L2C1024 4 26.96 33.34 2.00 28.79 34.85 2.10
T1L2C1024 8 27.47 49.41 2.37 29.40 51.68 2.45
T1L2C1024 16 27.34 40.95 2.94 28.92 42.38 2.97
T1L2C2048 1 27.17 14.16 1.96 29.10 14.86 2.09
T1L2C2048 2 27.51 20.88 2.02 29.44 21.89 2.14
T1L2C2048 4 26.96 33.35 2.00 28.78 34.84 2.10
T1L2C2048 8 27.46 49.43 2.39 29.39 51.67 2.45
T1L2C2048 16 27.36 40.94 2.94 28.92 42.38 2.97
T2L1C512 1 15.08 6.70 1.54 16.25 7.11 1.70
T2L1C512 2 13.61 10.96 1.49 14.72 11.55 1.65
T2L1C512 4 13.82 17.57 1.61 14.92 18.46 1.77
T2L1C512 8 13.73 22.36 1.77 14.72 23.26 1.91
T2L1C512 16 13.89 18.97 2.20 15.02 19.89 2.36
T2L1C1024 1 15.03 6.69 1.53 16.13 7.10 1.69
T2L1C1024 2 13.59 10.94 1.47 14.61 11.52 1.62
T2L1C1024 4 13.79 17.56 1.61 14.80 18.44 1.74
T2L1C1024 8 13.69 22.36 1.77 14.60 23.22 1.87
T2L1C1024 16 13.85 18.97 2.20 14.91 19.86 2.31
T2L1C2048 1 15.03 6.69 1.52 16.12 7.09 1.69
T2L1C2048 2 13.57 10.94 1.46 14.61 11.52 1.62
T2L1C2048 4 13.78 17.57 1.60 14.79 18.43 1.74
T2L1C2048 8 13.71 22.34 1.77 14.60 23.21 1.87
T2L1C2048 16 13.85 18.98 2.20 14.91 19.86 2.30
T2L2C512 1 15.05 11.35 1.10 16.25 11.95 1.22
T2L2C512 2 13.65 19.46 1.11 14.72 20.40 1.22
T2L2C512 4 13.82 26.11 1.25 14.91 27.35 1.37
T2L2C512 8 13.73 21.04 1.54 14.72 21.86 1.65
T2L2C512 16 13.89 17.99 2.02 15.02 18.83 2.16
T2L2C1024 1 15.04 11.32 1.09 16.17 11.91 1.18
T2L2C1024 2 13.59 19.46 1.10 14.61 20.37 1.19
T2L2C1024 4 13.80 26.11 1.23 14.80 27.33 1.34
T2L2C1024 8 13.69 21.04 1.54 14.60 21.82 1.61
T2L2C1024 16 13.84 17.97 2.02 14.91 18.78 2.11
T2L2C2048 1 15.05 11.32 1.09 16.11 11.93 1.19
T2L2C2048 2 13.57 19.47 1.09 14.61 20.37 1.19
T2L2C2048 4 13.78 26.12 1.25 14.79 27.32 1.34
T2L2C2048 8 13.70 21.04 1.53 14.60 21.81 1.60
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T2L2C2048 16 13.84 18.01 2.02 14.91 18.79 2.11
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Table A.2: Measurements for the roadNet-CA Graph

Config DCSR
Partition
Factor

Scalar
SpMV
(ms)

Packed-
Strip.
SpMV
(ms)

Loop-
Raking
SpMV
(ms)

Scalar
PageRank
Average
Iteration
(ms)

Packed-
Strip.
PageRank
Average
Iteration
(ms)

Loop-
Raking
PageRank
Average
Iteration
(ms)

T1L1C512 1 1891.68 528.95 907.47 2750.35 568.02 956.25
T1L1C512 2 1889.22 528.67 845.76 2750.18 567.32 892.77
T1L1C512 4 1889.52 527.86 731.75 2749.47 567.50 775.48
T1L1C512 8 1889.17 528.43 565.66 2790.97 567.69 605.80
T1L1C512 16 1889.23 528.90 517.23 2791.60 568.12 556.27
T1L1C1024 1 1887.72 529.22 893.77 2746.48 572.30 946.16
T1L1C1024 2 1885.51 529.18 833.52 2746.50 571.56 884.37
T1L1C1024 4 1885.57 528.23 724.15 2745.93 571.32 772.06
T1L1C1024 8 1886.48 529.49 559.69 2788.38 572.55 603.60
T1L1C1024 16 1885.16 529.36 512.85 2788.26 572.33 555.41
T1L1C2048 1 1884.31 530.35 888.14 2744.33 581.83 948.89
T1L1C2048 2 1883.41 530.69 829.14 2746.10 581.81 887.81
T1L1C2048 4 1883.75 530.09 720.32 2745.62 581.45 776.06
T1L1C2048 8 1883.73 531.19 556.22 2787.76 582.35 607.93
T1L1C2048 16 1883.22 530.95 510.18 2788.03 582.59 560.51
T1L2C512 1 1891.65 494.70 813.68 2750.27 528.05 855.00
T1L2C512 2 1889.10 494.45 703.09 2750.17 528.21 741.65
T1L2C512 4 1889.85 494.20 535.30 2750.81 527.53 569.29
T1L2C512 8 1889.22 494.46 427.88 2790.96 527.80 459.61
T1L2C512 16 1889.07 495.42 372.46 2791.69 529.38 403.41
T1L2C1024 1 1887.71 494.85 778.85 2746.42 532.30 823.62
T1L2C1024 2 1885.42 494.89 674.63 2746.50 532.45 717.30
T1L2C1024 4 1885.92 494.38 523.91 2747.24 531.57 562.23
T1L2C1024 8 1886.05 495.23 419.30 2788.39 532.76 455.14
T1L2C1024 16 1885.28 495.70 366.92 2788.27 533.57 401.65
T1L2C2048 1 1884.29 495.81 768.08 2744.27 541.60 821.60
T1L2C2048 2 1883.34 496.24 667.85 2746.11 542.41 718.03
T1L2C2048 4 1883.14 496.02 519.04 2746.29 541.54 565.05
T1L2C2048 8 1883.87 496.71 415.35 2787.75 542.59 459.05
T1L2C2048 16 1883.20 497.21 364.08 2788.04 543.41 406.45
T2L1C512 1 955.27 267.86 456.04 1392.49 299.77 493.50
T2L1C512 2 952.69 267.32 383.51 1384.66 299.23 422.35
T2L1C512 4 955.08 267.88 293.86 1371.93 299.91 326.19
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T2L1C512 8 951.12 266.94 263.33 1402.86 298.89 295.21
T2L1C512 16 951.18 267.64 233.25 1409.79 299.34 264.32
T2L1C1024 1 952.43 267.74 429.31 1387.03 303.34 469.45
T2L1C1024 2 948.89 267.14 369.16 1384.82 302.49 407.23
T2L1C1024 4 951.42 267.65 284.26 1377.51 303.22 320.85
T2L1C1024 8 948.41 267.01 258.00 1398.47 302.60 293.46
T2L1C1024 16 948.58 267.58 229.91 1407.56 303.17 264.57
T2L1C2048 1 950.74 268.24 422.73 1387.84 312.04 470.53
T2L1C2048 2 947.24 267.69 363.35 1382.88 311.08 409.11
T2L1C2048 4 949.72 268.41 280.52 1375.82 311.78 324.17
T2L1C2048 8 946.38 267.71 256.00 1397.97 311.25 299.22
T2L1C2048 16 947.50 268.16 228.83 1412.93 311.87 271.29
T2L2C512 1 955.02 251.11 455.59 1394.38 278.05 491.93
T2L2C512 2 952.66 250.73 310.44 1384.45 277.31 340.09
T2L2C512 4 954.73 251.35 237.25 1370.08 277.92 265.61
T2L2C512 8 951.23 250.76 200.16 1404.09 277.42 225.44
T2L2C512 16 951.26 251.61 165.77 1409.94 278.18 190.32
T2L2C1024 1 952.47 250.79 357.76 1386.58 281.58 391.85
T2L2C1024 2 948.92 250.09 269.76 1381.58 280.68 301.10
T2L2C1024 4 959.64 250.92 215.03 1377.49 281.27 245.01
T2L2C1024 8 948.29 250.52 186.18 1401.62 281.29 215.42
T2L2C1024 16 948.56 251.29 157.68 1407.61 282.03 186.11
T2L2C2048 1 950.67 251.20 343.34 1384.59 289.93 384.91
T2L2C2048 2 947.45 250.64 262.70 1379.84 289.12 301.51
T2L2C2048 4 949.73 251.49 209.88 1375.94 289.85 247.24
T2L2C2048 8 946.13 250.98 182.95 1397.51 289.54 219.68
T2L2C2048 16 947.54 251.93 156.03 1413.13 290.55 192.37
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Table A.3: Measurements for the amazon0302 Graph

Config DCSR
Partition
Factor

Scalar
SpMV
(ms)

Packed-
Strip.
SpMV
(ms)

Loop-
Raking
SpMV
(ms)

Scalar
PageRank
Average
Iteration
(ms)

Packed-
Strip.
PageRank
Average
Iteration
(ms)

Loop-
Raking
PageRank
Average
Iteration
(ms)

T1L1C512 1 417.86 116.30 119.14 526.73 122.73 125.76
T1L1C512 2 417.30 116.38 101.61 530.25 122.69 108.27
T1L1C512 4 417.10 117.58 92.03 525.98 124.10 97.74
T1L1C512 8 417.05 120.37 79.96 530.21 126.78 85.41
T1L1C512 16 417.12 128.23 70.88 530.37 135.07 76.03
T1L1C1024 1 409.85 115.94 116.82 518.51 122.59 123.56
T1L1C1024 2 409.27 115.95 99.73 522.04 122.62 106.90
T1L1C1024 4 409.09 117.19 90.94 517.79 123.97 96.94
T1L1C1024 8 409.23 119.97 79.28 522.07 126.67 85.00
T1L1C1024 16 409.14 127.87 70.40 522.16 134.94 75.85
T1L1C2048 1 403.03 115.78 115.80 511.33 122.80 122.81
T1L1C2048 2 402.51 115.84 99.05 514.89 122.85 106.51
T1L1C2048 4 402.36 117.09 90.48 510.63 124.18 96.85
T1L1C2048 8 402.49 119.82 79.01 514.90 126.87 85.08
T1L1C2048 16 402.35 127.72 70.21 515.02 135.14 76.01
T1L2C512 1 417.88 105.28 84.82 526.72 110.69 89.92
T1L2C512 2 417.25 105.77 71.45 530.25 111.08 76.05
T1L2C512 4 417.03 107.79 62.55 525.86 113.54 66.93
T1L2C512 8 417.00 113.67 55.65 530.22 119.40 59.81
T1L2C512 16 417.14 130.03 51.97 530.37 135.93 55.95
T1L2C1024 1 409.85 104.76 81.91 518.51 110.47 87.12
T1L2C1024 2 409.30 105.23 69.00 522.04 110.92 74.32
T1L2C1024 4 409.16 107.30 61.24 517.67 113.29 65.92
T1L2C1024 8 409.21 113.14 54.82 522.07 119.17 59.27
T1L2C1024 16 409.17 129.55 51.34 522.16 135.73 55.66
T1L2C2048 1 403.07 104.63 80.84 511.33 110.66 86.26
T1L2C2048 2 402.42 105.11 68.30 514.88 111.11 73.87
T1L2C2048 4 402.29 107.14 60.85 510.59 113.46 65.86
T1L2C2048 8 402.44 112.99 54.62 514.91 119.33 59.36
T1L2C2048 16 402.49 129.36 51.20 515.01 135.90 55.84
T2L1C512 1 261.11 71.73 63.40 316.54 76.89 68.20
T2L1C512 2 219.70 62.14 49.09 274.62 67.10 53.50
T2L1C512 4 211.82 60.81 41.21 269.52 65.69 45.57
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T2L1C512 8 212.39 66.33 36.25 267.99 71.32 40.55
T2L1C512 16 210.65 69.29 33.22 267.22 74.34 37.37
T2L1C1024 1 254.55 71.30 61.51 310.50 76.73 66.73
T2L1C1024 2 214.98 61.75 47.69 269.76 67.01 52.55
T2L1C1024 4 207.26 60.50 40.42 262.62 65.67 45.06
T2L1C1024 8 207.86 66.03 35.73 263.34 71.30 40.28
T2L1C1024 16 205.98 68.96 32.74 262.50 74.32 37.21
T2L1C2048 1 248.86 71.16 60.72 304.34 76.81 66.19
T2L1C2048 2 210.76 61.69 47.23 265.42 67.16 52.29
T2L1C2048 4 203.00 60.32 40.14 258.15 65.82 45.09
T2L1C2048 8 203.78 65.87 35.44 259.08 71.47 40.32
T2L1C2048 16 202.71 68.89 32.62 258.82 74.55 37.37
T2L2C512 1 260.32 65.09 45.71 316.42 69.36 49.33
T2L2C512 2 219.64 57.58 34.75 274.57 61.86 38.01
T2L2C512 4 211.88 57.48 29.97 267.40 61.66 33.26
T2L2C512 8 212.38 67.68 27.41 267.97 71.94 30.73
T2L2C512 16 210.70 76.56 26.62 267.20 81.22 29.95
T2L2C1024 1 254.42 64.41 42.03 310.51 68.95 46.05
T2L2C1024 2 214.86 57.02 32.29 269.73 61.49 36.18
T2L2C1024 4 207.18 56.95 28.24 262.63 61.43 31.91
T2L2C1024 8 207.56 67.23 26.17 263.33 71.77 29.83
T2L2C1024 16 206.11 76.12 25.33 262.48 81.11 28.98
T2L2C2048 1 248.50 64.23 41.00 304.35 68.94 45.27
T2L2C2048 2 210.61 56.88 31.74 265.21 61.54 35.77
T2L2C2048 4 202.82 56.82 27.78 257.95 61.61 31.79
T2L2C2048 8 203.80 67.07 25.90 259.11 71.98 29.87
T2L2C2048 16 202.26 75.93 25.12 258.82 81.22 29.11
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