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Abstract

Learning to Predict Human Behavior from Video
by
Panna Felsen
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science
University of California, Berkeley

Professor Jitendra Malik, Chair

In recent times, the field of computer vision has made great progress with recognizing and
tracking people and their activities in videos. However, for systems designed to interact dynam-
ically with humans, tracking and recognition are insufficient; the ability to predict behavior is
requisite. In this thesis, we introduce various general frameworks for predict human behavior at
three levels of granularity: events, motion, and dynamics. In Chapter 2, we present a system that
is capable of predicting future events. In Chapter 3, we present a system that is capable of person-
alized prediction of the future motion of multi-agent, adversarial interactions. Finally, in Chapter
4, we present a framework for learning a representation of human dynamics that we can: 1) use to
estimate the 3d pose and shape of people moving in videos, and 2) use to hallucinate the motion
surrounding a single-frame snapshot. We conclude with several promising future directions for
learning to predict human behavior from video.
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Chapter 1

Introduction

People are everywhere! There are roughly 7.7 billion people in the world, and by nature, human
beings are social, constantly interacting with each other. Humans are all the time anticipating
how others will react and respond to their own actions, and these anticipations help shape daily
interactions. Providing machines with the ability to understand and reason about human behavior
is arguably one of the most important, intriguing, and potentially useful challenges of modern
engineering. Applications are ubiquitous, including automating surveillance, helping care for the
elderly or disabled, self-driving cars, and providing sports coaching. As Kenneth Craik famously
wrote in 1943, an organism that carries a small-scale model of reality and its own possible actions
is better prepared to react to future situations.

To that end, in this thesis, we present methods for learning to predict a variety of human be-
haviors from video. Broadly, our predictions are at three levels of granularity: events, motion
trajectories, and dynamics. In general, structured environments, such as roads, subway stations,
airports, restaurants, gyms, and sports matches provide good settings for developing methods to
understand and predict human behavior. Their spatio-temporal data has many useful properties
that make them favorable settings for studying human behavior. Most importantly, behaviors in
these environments are well-defined.

In the first two parts of this thesis, we focus on the sports context. The sports setting is not at
all contrived. People all over the world like to watch, play, analyze, and predict sports matches.
Of the top ten most popular sports in the world, association football (soccer) is the most popular
with an estimated 3.5 billion fans. And, American football is the least popular with an estimated
only 400 million fans. Not to mention, over the last year, many states in the United States have
legalized online sports betting, so accurate sports predictions could become lucrative.

This vast interest in sports across the world has helped motivate research on sports analytics and
various sports-related computer vision problems. Prior to recent advances, and this was only within
the last twenty years, players were recruited for major league baseball according to how much they
looked like a baseball player. Scouts would often go with their gut feeling on a recruit, which
was primarily based on the players athleticism. The failure of Billy Beane to reach his predicted
potential, along with the limited budget of the Oakland As helped spark a revolution in baseball
analytics, where the As began recruiting players based on their ability to get on base. Instead of
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buying players, the As focused on buying runs. Their innovative strategy led to an historic twenty
consecutive wins in their 2002 season.

Until recently, most analyses of players and teams were based on easily-measurable statistics,
such as field goal percentage or number of assists. These statistics give a limited view of a players
game play. For example, in the 1995/96 NBA season, Michael Jordan scored 42.7% of his attempts
from three point range. A year later, he only scored 37.4%. Did he become a worse long-range
shooter? Or was he just more closely guarded, and hence taking more difficult shots? These are
questions that cannot be answered without more information, such as player trajectories.

Eight years ago, the NBA started recording player and ball point trajectories in an overhead,
court-space. The availability of player and ball tracking data has led to many new analyses. In-
cluding, identifying where on the court individual players are efficient shooters, methods for auto-
matically recognizing ball screens and the defenses response to a screen, automatic play retrieval,
and an imitation learning-based approach for developing coordinated movement policies for the
players on defense.

From a computer vision perspective, in sports videos, player detection and tracking has long
been a favorite and particularly challenging application domain, as players move quickly, un-
dergo frequent occlusions, and wear similar-looking uniforms. One of the classic tracking tech-
niques, mean shift tracking [28], was first demonstrated on American football players. Sports
have also been a popular setting for action recognition with datasets such as UCF 101 [115], UCF
Sports [109], Stanford Olympics [94]. More recently, attention has shifted to more fine-grained
tasks, such as recognizing specific basketball shots and identifying the key players performing
those shots [104], and social scene understanding [11].

Video analysis is an active research area. A large body of work has focused on action recogni-
tion [17, 141,73, 115, 19, 113], people and object tracking [121, 135, 142], forecasting pedestrian
trajectories [67, 70, 62, 66, 107] and anticipating future human activities [66, 68, 125, 151, 72, 52].
Other works have explored predicting future world states from single images [39, 128, 93], pre-
dicting pixel values of future frames [90, 105] and learning dynamical models of objects [39, 40].
These works primarily focus on single-agent events. Whereas, predicting events in sports requires
prediction in multi-agent environments that involve adversarial human-human interactions. Some
recent work has focused specifically on prediction in the sports context. For instance, [134] use
tracks of ball trajectories in tennis games to predict where the ball would be hit. While [143] intro-
duces a collaborative filtering-based method to predict whether a player will hold, pass, or shoot
the ball. And others propose the use of hidden conditional random fields for predicting which
player will receive the ball next in soccer games, using ground truth trajectories and an encoding
of the game state [133].

In many sports, the movement of the ball determines the game outcome. The team that scores
the most wins! The ball is the single most import object in play at any moment of a game. And
so, in our work, we initially focus directly on the most important question during the game: where
will the ball go next? Developing methods to address this question, and the more general question
of what event will happen next is the focus of Chapter 2. In Chapter 3, we present a system that
is capable of personalized prediction of the future motion of multi-agent, adversarial interactions,
again in the sports domain. Finally, in Chapter 4, we cast aside our structured sports environment,



CHAPTER 1. INTRODUCTION 3

and we present a framework for learning a representation of human dynamics in any video that we
can: 1) use to estimate the 3d pose and shape of people moving in videos, and 2) use to hallucinate
the motion surrounding a single-frame snapshot. There we demonstrate the value of pseudo-ground
truth labels derived from Internet videos. We conclude with several promising future directions for
learning to predict human behavior from video.



Chapter 2

Discrete Prediction: Predicting Events

The ability of an algorithm to recognize an event does not imply understanding. For example,
an algorithm may easily distinguish between a three point shot versus a layup event in basketball,
without truly needing to understand anything about the game of basketball itself, beyond of course
that there exist various shot types. While there is not one precise, agreed-upon definition for un-
derstanding, one way of measuring a system’s understanding is by evaluating its ability to predict
the future. In this chapter, we present various methods for predicting discrete events. We develop
these methods in the context of the sports domain, where vast amounts of data are available, and
the events are both many and well-defined.

2.1 Introduction

In 2002, Billy Beane defied conventional wisdom by performing meticulous statistical eval-
uations of undervalued players to assemble the Oakland Athletics baseball team on a negligible
budget. His team made history with a record-setting 20-game win streak, and this tremendous feat
is documented in the academy award nominated film Moneyball. Their success made an unprece-
dented case for competitive advantages gained by new analyses of individual players’ game play.
Now imagine if, in addition to knowing the shot success rate of Stephen Curry, the best basketball
shooter to date, it is also possible to predict that he is more likely to attempt a shot within zero,
one, and two seconds of a pass when his teammates are in a diamond, ring, and triangle formation,
respectively. Such predictions are invaluable to the defending team in planning strategy. Billy
Beane’s analysis revolutionized strategic thinking in baseball, and similarly, we believe statistical
methods for predicting player moves have the potential to impact how teams plan their strategies
of play.

Predicting player moves in sports videos is an instance of a much grander research agenda to
develop algorithms that can predict future events directly from visual inputs. The ability to forecast
is a key aspect of human intelligence. Kenneth Craik famously wrote in 1943, “If the organism

This chapter is based on joint work with Pulkit Agrawal and Jitendra Malik [35], presented primarily as it ap-
peared in the ICCV 2017 proceedings.
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carries a ‘small scale model’ of external reality and its own possible actions within its head, it
is able try out various alternatives, conclude which is the best of them, react to future situations
before they arise and in every way react in much fuller, safer and more competent manner to
emergencies which face it.” While there has been a lot of interest in this problem [66, 105, 125,
56, 90, 126, 3, 68, 40, 95, 149, 128, 129, 5], we lack a good benchmark for comparing different
forecasting algorithms.

For multiple reasons, it appears to us that team sports videos are a very good benchmark for
evaluating forecasting algorithms. Firstly, many human activities are social and team sports pro-
vide an opportunity to study forecasting in an adversarial multi-agent environment. Secondly,
team sports are composed of a large and diverse set of discrete events, such as passing, shooting,
dribbling, etc. The sequence of events reflects the game play strategies of the two teams, and thus
forecasting requires game specific knowledge combined with other visual cues, such as player pose
and game state. This implies that for any system to make accurate predictions directly from visual
imagery, it must distill game specific knowledge by crunching large amounts of data. Representing
such knowledge is a central problem in forecasting, which is put to test in this setup. Expert players
and coaches gain such knowledge via experience gathered over long periods of time. An additional
benefit of predicting discrete events is crisp and straightforward evaluation of the information of
interest that avoids the problems associated with evaluating pixel-level predictions.

In this work, we present a generic framework for predicting future events in team sports directly
from visual inputs, and we introduce water polo and basketball datasets for evaluation. These
datasets contain game stream accompanied by annotations of player tracks and seventeen different
events. The task of interest is: given a history of observations, predict what event will happen
immediately, after 1s, or after 2s. The seventeen events are answers to questions that are of great
interest in team sports such as - where will the ball go next? will the player score? will there be a
“screen” event? will there be a block? will there be a turnover? will there be a dribble? among
many others.

We construct two set of models - ones that forecast from the raw video stream without any
pre-processing and other that transform the raw video stream into an “overhead” representation
where the players and balls are represented as dots on the playing field prior to forecasting. Using
the water polo dataset as a case study, we present the entire system to convert images captured
from a single moving camera into the overhead representation which is then fed into the predictor.
We find that the overhead representation leads to more accurate predictions than raw image based
representation. The performance of our system is close to humans but worse than water polo
experts. We then apply the same set of forecasting techniques on a dataset of basketball games
and show that our system outperforms humans on forecasting events in basketball games. While
we present results on water polo and basketball, we make no game specific assumptions. The
techniques developed in this work apply to a wide number of other team sports such as hockey,
rugby, and soccer.
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2.2 Related Work

Video analysis is an active research area. A large body of work has focused on action recogni-
tion [17, 141, 73, 115, 19, 113], people and object tracking [121, 135, 142]. In contrast to these
works we are interested in the problem of forecasting. Predicting pedestrian trajectories [67, 70,
62, 66, 107] and anticipating future human activities [66, 68, 125, 151, 72, 52] has seen consid-
erable interest over the past few years. However, these works mostly consider predicting events
related to a single human, while we attempt to forecast events in multi-agent environments in-
volving adversarial human-human interaction. Other works have explored predicting future world
states from single images [39, 128, 93, 40], but have been limited to simulation environments or
involve a single agent. Predicting pixel values in future frames has also drawn considerable interest
[90, 105] but is limited to very short term predictions.

Sport Video Analysis: Traditional work in computer vision analyzing sports videos [13] has fo-
cused on either tracking players [14] or balls [87]. Another body of work assumes the annotations
of ball or player tracks to analyze game formations or skill level of individual players. For instance,
[134] use tracks of ball trajectories in tennis games to predict where the ball would be hit, [15]
analyze soccer matches using player tracks. [84] discover team formation and plays using player
role representation instead of player identity. More recently techniques such as [104] have looked
at the problem of identifying the key players and events in basketball game videos. Closest to our
work is the work of [133] that proposes the use of hidden conditional random fields for predicting
which player will receive the ball next in soccer games. They assume the knowledge of game state
such as attack, defense, counter attack, free kick etc. and assume that identity of players is known.
In contrast, we present a forecasting system that works directly from visual inputs. It either uses
images directly or converts them it into an overhead view representation using computer vision
techniques. We do not require any external annotations of the game state.

2.3 Datasets

We have focused our efforts on the most popular style of sport, team goal sports. We select
water polo and basketball as two canonical examples because together they capture many diverse
aspects of team goal sports: basketball is fast-moving and high-scoring like hurling and handball,
while water polo is low-scoring like soccer and has man-up situations like hockey and lacrosse.
Despite the different nuances of each team goal sport, they all share many common “events” during
game play. For example, players advance the ball toward the goal themselves in a drive, and
sometimes this results in a goal and other times in a block or a missed shot. Players pass the ball
to their teammates, and sometimes the defense intercepts the pass.

Water polo

A water polo game naturally partitions into a sequence of alternating team possessions. During
a possession, the attacking team’s field players primarily spend time in their front court, which
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Figure 2.1: Water polo dataset annotations. From single-camera video recordings of 5 water polo
games, we collected bounding box track annotations of dark, light, and red-cap player heads. We
also collected annotations of pool points marking the field of play: the 2m and 5m lines, the corner
of the field, and the points where the cage and lane line meet.

accounts for most of the interesting game play. The attacking team is required to take a shot within
30s, and failure to do so results in a furnover. Players of the two teams wear dark colored (typically
blue/black) and light colored (typically white) caps. In the remainder of the paper we use dark-cap
and light-cap to refer to two teams.

We collected a dataset of front court team possessions from video recordings of 5 water polo
games between Division I National Collegiate Athletic Association varsity teams. Similar to the
NBA for basketball, this represents the highest level of water polo play in the United States. We
chose to focus only on front court possessions, as most interesting events happen during this period.
The time intervals of the front court possessions were hand-marked by an expert water polo coach.
All the games, four of which are men’s games and the other a women’s game, are played at the
same outdoor pool on different days at times ranging from morning until night; the dataset exhibits
a large range of lighting conditions. The games were recorded with a single freely moving camera
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that pans between each side of the pool with resolution 720p at 25-30fps. Often the camera is
adjusted for a new front court possession, resulting in varied camera motions and zooms.

Player and Pool Track Annotations: Bounding box track annotations (Figure 2.1) of dark and
light-cap player heads, goalkeepers, and the head of the player in possession of the ball were
collected using the VATIC toolbox [124] and Amazon Mechanical Turk. Player possession is
defined to begin at the moment a player grasps the ball and ends at the moment that same player
passes/shoots the ball or another player steals the ball. Additional annotations of specific points
marking the field of play: the 5Sm line, the 2m line, the pool corner, and the cage posts were ob-
tained. These field markings provide necessary point correspondences between the image view and
overhead view of the game, which enable the computation of the player trajectories in the overhead
space from the player locations in the image view. For increased data diversity, annotations were
collected for 11 quarters of play from 20 quarters available in the 5 games.

Train/Test Splits: The splits were as follows - train: 7 quarters, randomly sampled from the first
4 games; validation: light-capped team front court possessions in all 4 quarters of the fifth game;
and rest: dark-capped team front court possessions in all 4 quarters of the fifth game. In total, each
split has 232, 134, and 171 respective examples of a player passing the ball in a team’s front court.
Human Benchmark: For a comparison with human-level accuracy, human annotators were shown
every test image taken just before a player loses possession of the ball and were asked to draw
a bounding box around the head of the player which they thought would possess the ball next.
Nine non-experts and four water polo experts were evaluated. Non-experts had never seen or
played a water polo game. In order to account for their inexperience, non-experts were provided
all examples used to train computer algorithms along with the ground-truth answer before being
asked to make predictions. The experts had all played competitive water polo for at least four
years. Expert and non-expert humans accurately predicted the next ball possessor 73% and 55.3%
of the time respectively.

Basketball

The dataset is comprised of ground truth (in contrast to water polo, where it is computed) 2D
player and ball trajectories, sampled at 25 Hz, in 82 regular-season NBA games obtained using the
STATS SportVU system [116], which is a calibrated six-camera setup in every NBA arena. The
data includes labels for 16 basketball events, including free throw, field goal, pass, dribble, (player)
possession, etc. The data distribution is illustrated in Figure 2.2. As expected, given the nature of
the game of basketball, the data is very imbalanced, with 48% of events as dribble, and only 0.24%
of events as time out.

Train/Test Splits: A total of roughly 300k labeled events were randomly split into 180&, 30k, and
90k examples for train, validation, and test sets.

Human Benchmark: A set of 18 annotators familiar with basketball were shown a series of fifteen
5-second clips of basketball data, ending with a labeled event. The ball and player trajectories
were removed from the final n seconds of the clip, and humans predicted the event at the end of
the blanked portion. For each n € {0.4, 1, 2}, each human labeled 5 examples randomly sampled
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Made Free Throw 2787
Missed Free Throw
Made Field Goal
Missed Field Goal
Offensive Rebound
Defensive Rebound
Turnover 229
Foul 3334
Timeout 710
Dribble 142821
Pass A6640
Possession 62636
Block £14
Assist 4126
Dirive 388
Screen 2049

)

Figure 2.2: Basketball event data distribution, of the 16 labeled events in the basketball dataset,
which has over 300k labeled events in total.

from a pool of 80 examples (5 examples of each of the 16 events). Humans were correct 13.5%,
20.6%, and 24.4% for n = 2, 1, and 0.4, respectively.

2.4 Methods: From Images to Overhead View

Representing game play with a 2D overhead view of the game, where players are represented as
dots at their (z, y) coordinate locations, is often used by coaches. It provides immediate insight into
player spacing, and distills player movement into a canonical, simple representation that is easy
to compare across many game plays. We construct the overhead representation by first detecting
players and the ball. Using knowledge of playing field dimensions and locations of few landmarks,
we estimate a homography to transform these detections into a canonical frame. We then link
players across frames using tracking. Each step of this process is detailed below.

Player Detection: We finetune a VGG-16 network [112] pre-trained on ImageNet for detecting
light and dark cap players using Fast R-CNN [44] and the annotations we collected described
in section 2.3. The performance of dark and light color cap person detectors was 73.4% and
60.4%, respectively. We attribute the worse performance of the light-color cap detector to a few
confounding factors: 1) many light-color caps were annotated, by one turker, with loose bounding
boxes, 2) overhead lights produce specularities, and 3) water splashes can appear visually similar
to light-color caps.

Player Tracking: We track by detection. The Hungarian matching algorithm [71] is used to link
Fast-RCNN player detections to form player tracks. The pairwise affinity between detections in
two sequential frames is a linear combination of Euclidean distance and bounding box overlap.
Overhead Projection: In the case of water polo (Figure 2.3) we used the annotations of 2m
and 5m lines, the pool corner, and the cage posts to estimate the homography between the current
image captured by the camera and a canonical 2D coordinate system representing the field of play
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image view overhead view

Figure 2.3: The image is converted into the overhead view by first estimating the homography
between the image a canonical model of the playing field using field markings such as 2m/5m
lines etc. The players are then detected and their locations are transformed using the estimated
homography.

using the normalized direct linear transformation (DLT) algorithm [49]. Next, we transform the
midpoint of bottom edge of the player bounding box into a (z, y) location in the canonical frame.
We use the bottom edge because that is the point of the player that is closest to the field of play,
which in turn is mapped to the canonical frame by the homography transformation.

2.5 Experiments

Predicting Future Ball Position

In team goal sports, the movement of the ball determines the game outcome, and hence, it is the
single most important object in play at any moment of the game. We, therefore, focus directly on
the most important question during the game: where will the ball go next? We study two slightly
different variants of this question: In the water polo dataset, we only consider the frame before
which the ball possessor is about to lose of the possession of the ball, and we try to predict which
player will be in possession of ball next. In the basketball domain, we have access to much more
data, and we additionally attempt the more general problem: where will the ball be in one or two
seconds in the future?

Water polo: Who will possess the ball next?

In the typical front court water polo scene, there are 6 field players on the attack, defended by
1 goalkeeper and 6 field players on the opposing team. For example, in Figure 2.3, the dark-cap
players are on the attack and the light-cap players are on defense. By definition, one of the attacking
team players is in possession of the ball. Our system takes as input the frame just before the player
loses ball possession by either making a pass to a teammate, shooting the ball, or committing a
turnover. The task is to predict which player will possess the ball next.
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Fji g (xy) of player with ball
Flza: (xy) of player

Fis 6 (xy) of nearest defender
Fp: same-team flag

Fy: || Fiz) — Fiuzll2

Fo: ||Fiz ) — Fis g)ll2

Figure 2.4: The features Fj;..q extracted from the 2D overhead view are used to train a random
forest to classify players as either receiving the ball next or not.

A random choice of player from either team would be correct roughly 1—12 ~ 8.3% of the time.
As aplayer is more likely to pass the ball to his teammate, a random choice of player from the same
team would be correct approximately 20% of the time (empirically validated on the test set). Such
random guesses are very naive. Players often tend to pass the ball to nearer teammates, as shorter
passes are easier to execute and minimize turnover risk. Predicting the nearest teammate as the
next possessor is correct 28.1% of the time. Players also tend to pass the ball to open teammates,
those who are not closely guarded by defenders. Predicting a pass to a teammate who is furthest
from his nearest defender (i.e. most open) has accuracy of 36.7%. These baselines are considerably
worse than an average human with no water polo expertise, who is correct 55.3% of the time.

In the next two sections, we describe how performance can be improved: (1) using additional
player features estimated from the overhead representation, and (2) automatically learning feature
representations directly from the input image. We operationalize these approaches in the following
way: Let there be K players each with feature vector F*(i € {1,2.., K}),letb € {1,2.., K} be a
discrete random variable that encodes the player in possession of the ball after a pass is made. The
goal is to find the player who is most likely to receive the ball, i.e., argmax; P(b = i| F*..FK),

Hand designed features from overhead view

When deciding where to pass the ball, players consider which teammates are in good position
to: score, advance the ball, and receive a pass. We formalize these insights and characterize each
player using a 9-D feature vector extracted from the overhead representation: the (x,y) player
coordinates, the (, y) coordinates of the nearest player on the opposite team, the (x, ) coordinates
of the player in possession of the ball, an indicator flag for whether the player is on the same team as
the player in possession of the ball, and the Euclidean distances of the player to the player with the
ball and to his nearest defender. This player-centric feature vector is illustrated in Figure 2.4. We
assume that features F''.. F'* are mutually independent, and therefore computing P (b = i| F1..F¥)
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Method Ground Truth Heads Detected Heads

Random, either team 95+22 92 +2.2

Random teammate 19.1 £ 3.1 17.0 £ 2.8

Nearest neighbor teammate 28.1 £34 222 +3.2

Most open teammate 36.7 £ 3.7 28.7+34

FI[8...9] 425+ 3.8 352+3.6

FI7...9 454 £ 34 384 1+ 4.0

FI[3...9 48.8 +4.3 44.1 + 3.7

FI1...9 47.1 £ 3.8 455 +£3.5

FCN, teammate 38.1 =3.5 352+ 3.6
Human, Non-Expert 553+£79 -
Human, Expert 73.1+2.0 -

Table 2.1: Each row reports accuracy of a different method for predicting which player will possess
the ball next. The first four methods are baselines. The intermediate rows provide an ablation
study of using various features defined above. The FCN is a deep learning based method and the
last two rows report human performance. Performance metrics are reported for two circumstances:
using ground truth player locations (column 1) and when detected instead of ground-truth locations
(column 2) are used.

reduces to estimating P(b = i|F").

We train a system to infer which player will possess the ball next in the following way: we
used the pipeline described in section 2.4 to convert the raw image into it’s corresponding overhead
representation. Next, feature vector of each player was computed from the overhead representation.
Finally, a random forest classifier was trained on these features using the training data to estimate
P(b = i|F"). Five-fold cross-validation was performed to chose the optimal depth and number of
trees. This system achieved a performance of 45.5% (see Table 2.1) and outperformed the baseline
methods on the testing set. Analysis of the results revealed that this method is biased towards
predicting the most open perimeter player as the one receiving the ball.

A common failure mode is predicting an open perimeter player, when he is not even facing
the player in possession of the ball. These mistakes are not surprising as the overhead view has
no access to visual appearance cues. Another possible reason for failures is that the pipeline for
converting image data into overhead representation is inaccurate. To tease this apart, we re-ran the
analysis using ground truth (instead of estimated) detections. As reported in Table 2.1, the accuracy
gap with and without using ground truth detection is within the error bar of the performance on the
testing set. This suggests that the pipeline for obtaining overhead representation is accurate and
further performance improvements will be gained by building better forecasting models.

Predicting directly from image space

While the overhead view provides a good representation for analyzing game play, it loses subtle
visual cues, such as the pose of the player and direction they are facing, that might be very relevant
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Figure 2.5: The FCN method takes the left image as input and predicts a heatmap (shown overlaid
on right) encoding probable ball locations after the ball is passed. The yellow, cyan and red squares
indicate the player with the ball, the ground truth player who actually receive the ball next, and the
player predicted to receive the ball by the FCN method respectively.

for forecasting. Instead of hand-designing such features, is it possible to automatically discover
features that are useful for predicting the next ball possession?

The set of features F'*..F* is represented by image I, and we compute P(b = i|l;) in the
following manner: Let [, p* be random variables denoting the future location of the ball and the
k" player respectively after the passed ball is received. Since only one player can receive the
ball, we assume that if the ball is at location [, it will be received by the player who has highest
probability of presence at [, (i.e. argmax; P(p* = 1,)). Let [{ denote the set of all locations at
which i = arg max;, P(p* = [,). With this,

lbelz
assuming conditional independence,

_ / Pt = /L) P(L|L) (2.2)
el

We model P(l,|I;) using a Fully convolutional neural network (FCN; [82]), that takes I; as
input and predicts a confidence mask of the same size as the image encoding P (| ;). The ground
truth value of mask is set to 1 in pixel locations corresponding to bounding box of the player who
receives the ball and zero otherwise. The player bounding box is a proxy for future ball location.
We finetuned ImageNet pre-trained VGG-16 network for this task.

As we only have 232 training examples, this vanilla system unsurprisingly did not perform well
and overfit very easily even with standard data augmentation techniques such as image cropping
and dropout regularization. One of our contributions is in showing that the performance can be
significantly improved (from 10% to 38.1%) by requiring the FCN system to output the location
of players in addition to which player will possess the ball next. Our hypothesis about why this
modifications helps is that forcing the CNN to predict player locations results in representations
that capture the important feature of player configurations and are thus more likely to generalize
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Non-expert Humans

Correct| Incorrect
Correct 32.8 15.8
Incorrect| 22.8 28.6

Random Forest

Table 2.2: Comparing agreement between the predictions of next ball possessor made by humans
and our best algorithm on the water polo data. Humans and the algorithm both make correct and
incorrect predictions on the same examples more often than not.

than other nuisance factors that the CNN can latch onto given the small size of the training set.
This finding is interesting because it suggests that it might be possible to learn even better features
by forecasting future player locations for which no additional annotation data is required once the
detection and tracking pipeline described in the previous sections is setup.

To estimate P(p* = [,|I;) we first detect all the players in image I; using the method described
in section 2.4. We assume that players will be at the same location after the pass is made. In order
to make the ball assignment among players to be mutually exclusive, we use the player locations to
perform a Voronoi decomposition of the playing field. Let c* be the voronoi cell corresponding to
the k™ player. P(p" = I;) is then to set to 7 if [, € c* and zero otherwise. We then use equation
(2) to compute P(b = i|l;).

This method performs comparably to the baseline that predicts the most open teammate. Vi-
sualization in Figure 2.5 shows a dominant pattern with FCN predictions: it consistently places
higher likelihood around the perimeter of team in possession of the ball. This is a very sensible
strategy to learn because players around the perimeter are often more open and statistical analysis
reveals that there are more passes between perimeter players. Given the limited amount of data, the
FCN based approach is unable to capture more nuanced aspects of player configurations or more
fine grained visual cues such as the player pose.

Comparison to Human Performance

Figure 2.6 compares the predictions of human non-experts against our best performing system.
Some common trends are: Non-experts are more likely to incorrectly predict players near the cage.
The random forest based method is biased towards predicting the most open perimeter player. A
common failure mode is predicting an open perimeter player, when he is not even facing the player
in possession of the ball. These mistakes are not surprising as the overhead view has no access to
visual appearance cues. We hope that in the future, when more data is available such features can
be learnt from the image space representation. Table 2.2 reports agreement statistics between the
predictions of our systems and non-expert humans. The fraction of agreement between humans
and our system is the highest (32.8% of examples). These numbers suggest that humans and our
system have similar biases and are accurate/prone to errors on similar examples.
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Figure 2.6: Sample predictions of our algorithm (black) and of water polo laymen (blue). The
player in possession of the ball is shown in yellow. A solid line indicates a correct prediction.
Row 1 shows examples where both were correct. Row 2 shows examples where the algorithm is
correct, but humans incorrect. Row 3 shows examples where humans are correct, but our algorithm
is incorrect. Finally, row 4 shows examples where both were incorrect, and red indicates the ground
truth.
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Method Error (1s in Future) Error (2s in Future)
Distance (%) Angle (°) Distance (%)  Angle (°)
Mean Median Mean Median Mean Median Mean Median

Last Position 11.7 104 - - 20.0 183 - -
Ball Velocity 100 100 893 88.7 100 100  88.8 859
CNN + LSTM 114 86 618 466 171 141 531 381

CNN (Early Fusion) 10.8 83 60.2 44.1 168 138 543 383

Table 2.3: The early fusion CNN outperforms Last Position and Ball Velocity baseline methods
and a late fusion CNN based approach in predicting (basket)ball position 1s and 2s in the future.
We report mean and median errors in the distance and angle of predicted ball positions.

Basketball: Where will the ball go?

As more data was available for basketball, we attacked the more general problem of predicting
where the ball will go next after one and two second respectively. We represented the overhead
view as 64x64x3 images where the three channels corresponded to location of players of team 1,
players of team 2 and the ball respectively. For capturing temporal context, we included 5 images
from the past taken at times {¢,t—1, ...t —4}s respectively. The task was to predict the ball location
at times {t + 1, ¢ + 2}s respectively. To account for multimodality in the output, we formulate this
as a classification problem with the zy plane discretized into 256 bins.

We experiment with two different CNN training strategies: (a) early fusion of the temporal
information by concatenating 5 images into a 15 channel image that was fed into a CNN or, (b)
late fusion by using a LSTM on the output of CNN feature representation of the 5 images. The
CNN architecture comprised of 4 convolutional layers containing 32 filters each of size 3x3, stride
2 and ReLU non-linearity. In case of early fusion, the output of the last convolutional layer was fed
into a 512-D fully connected layer which in turn fed into the prediction layer. In case of late fusion,
the output of the last convolutional layer was fed into a 512-D LSTM layer which in turn fed into
a prediction layer. The performance of these networks and some baseline methods is reported in
Table 2.3.

We consider two baselines - one which predicts that the ball at time ¢t 41, ¢4 2 will remain at the
same location as at time ¢ (i.e. Last position). This is a reasonable baseline because in many frames
the player is in possession of the ball and he does not move. The second baseline estimates the
ball velocity at time ¢ and uses it to forecast the future location. We report mean and median errors
in the distance and the angle of prediction. The distance between the ground truth and predicted
location is reported as the percentage of the length of the basketball court. The angular error is the
angle between the vector 1 pointing from current position to ground truth position in the future and
vector 2 pointing from current to predicted position. We find that the proposed methods outperform
the baseline and the early fusion method performs slightly better than the late fusion method. As
expected, the prediction errors in distance are larger when predicting for 2s as compared to 1s.
However, the errors in angle follow the reverse trend. One explanation is that in a shorter period,
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Method ‘ Dataset ‘ AT ‘ FT made FT miss FG made FG miss Off. reb. Def. reb. Turnover Foul Time Out Dribble Pass Poss. Block Assist Drive Screen ‘ mAP
Avg. Human H Is 100.0 0 60.0 12.5 11.1 16.7 0 0 333 66.7 0 0 0 0 0 28.6 | 20.6
Random Forest H Is 100.0 0 20.0 0 20.0 40.0 0 0 0 100.0 20.0 40.0 0 0 0 0 21.3
Image CNN A Is 46.0 203 39 4.8 2.0 5.5 0.9 1.6 0 61.7 165 229 09 1.8 1.6 3.7 11.9
Overhead CNN A 1s 62.2 22.7 38.6 16.4 94 439 1.8 52 3.5 76.1 255 376 0.8 34 1.6 13.1 | 22.6
Random Forest A Is 75.5 41.4 413 15.7 11.8 612 23 5.6 4.5 80.5 267 409 1.0 35 1.2 85 | 264
Avg. Human H 2s 333 20.0 14.3 0 0 0 0 0 375 75.0 0 0 0 0 16.7 200 | 135
Random Forest H 2s 100.0 0 0 0 20.0 40.0 0 0 0 100.0 0 20.0 0 0 0 0 17.5
Image CNN A 2s 325 7.8 1.9 2.5 0.9 2.7 0.5 0.8 0.2 53.8 147 199 0 0.6 0.6 2.9 8.8

Overhead CNN A 2s 39.8 19.0 7.3 6.9 3.8 12.9 15 22 1.6 710 183 253 04 2.7 1.1 5.8 13.7
Random Forest A 2s 66.9 29.7 11.8 7.3 5.0 354 1.5 2.6 2.7 764 214 302 03 2.5 0.9 5.0 18.7
Avg. Human H 40ms 28.6 28.6 83.3 0 50.0 0 0 0 0 250 57.1 143 0 0 20.0 833 | 244
Random Forest H 40ms | 100.0 0 40.0 80.0 40.0 100.0 0 20.0 0 100.0 60.0 1000 0O 0 0 80.0 | 45.0
Random Forest ‘ A ‘ 40ms ‘ 68.8 245 69.5 54.7 62.7 852 6.1 31.8 16.7 932 762 926 33 8.1 50 577 ‘ 473

Table 2.4: Prediction accuracy AT seconds in the future of 16 basketball events: free throw (FT)
made and missed, field goal (FG) made and missed, offensive (off) and defensive (def) rebound,
etc. Methods were evaluated on the full (A) test split of 90k events, as well as a smaller, 80-example
subset (H) for human performance evaluation and comparison.

the ball moves by small distances and therefore angle measures are not robust.

Transferring from Basketball to Water polo

Basketball and water polo are both team sports that require scoring baskets/goals. This sug-
gests that there maybe general game play strategies, e.g., pass to the most open player, that are
shared between these two games. If this is indeed the case then a model trained on one of these
sports should perform reasonably well on forecasting events in the other sport. In order to test
this hypothesis we trained a random forest model on the basketball data (the larger dataset) for
predicting which player will get the ball next using the same features as described in 2.5 and then
tested it on the water polo testing set.

The accuracy of this model on basketball itself was 69.9% and 36.8% on water polo. The
performance on water polo is worse than a model trained directly on water polo (which achieves
45.5%) but same as the most open teammate baseline with 36.7% accuracy (Table 2.1). One
explanation of these results is that differences in game strategies arise from the differences in game
rules, number of players, and field size. Therefore the basketball model is outperformed by a model
trained on water polo itself. However, the transfer performance is significantly better than chance
performance and nearest teammate baseline, suggesting that our method is capable of learning
game-independent ball passing strategies. A more detailed analysis of the error modes is provided
in the supplementary materials.

Predicting Events in Basketball

Predicting the ball location is just one out of many events of interest. For example, whether
a teammate would screen or whether dribble or a break would take place are of great interest in
basketball. In a manner similar to predicting where the ball will be at times {t + 1,¢ + 2}s, we
predict which out 16 events of interest will happen in the future.
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We evaluate random forest and neural network based approaches for this task. The input to the

random forest are the following hand designed features, extracted from the last visible frame:
player and ball coordinates and velocities, distances between each player and the ball, angles
between each player and the ball, the time remaining on the shot clock, the remaining game time in
the period, and the time since the most recent event for each event occurring in the visible history.
In total, we used 92 features. We tested two different neural networks - (a) Overhead CNN that
took as inputs the image representation of the overhead view (see Section 2.5) along with the hand
designed features described above and (b) Image CNN that took as input raw RGB images.
Network architecture: The input to the neural network was a tuple of the image representation
of the overhead view and the hand designed features. The image representation was input to
a CNN with stacked convolutional layers fed into a 256-D fully connected layer, and the hand
designed features were input directly to two stacked fully connected layers of dimension 512 and
256, respectively. The 256-D fully connected layer from the CNN and the 256-D fully connected
layer from the hand designed features were concatenated and input to the 16-D prediction layer.
The CNN architecture we used comprised of 4 convolutional layers containing 32, 64, 64, 32 filters,
respectively. The spatial extent of the filters was 3x3. A 3x3 max pooling layer was after the first
convolutional layer, and a 2x2 max pooling layer was after the second and fourth convolutional
layers. Rectified Linear Units (ReL.U) non-linearity was used after each convolutional layer. The
final convolutional layer was fed into a 256-D fully connected layer.
Training details: As shown in Figure 2.2, the basketball data is severely imbalanced. We ad-
dressed this imbalance by weighting the cross-entropy loss of the network with the inverse class-
proportion. We used a batch size of 128, and divided the class weights with a constant (16) that
gave the average class weight of 1 in a batch.

Table 2.4 reports the performance of humans and various methods described above at predicting
player moves 1s, 2s and 40ms in advance. The two test splits, “H” and “A” correspond to 80
examples on which humans were evaluated and a set 90K examples on which the algorithm was
evaluated. The purpose of reporting the accuracy when predicting 40ms in advance is to obtain
an upper bound on performance. The results reveal that random forest outperforms CNN based
approaches and both these approaches perform better than an average human. The Overhead CNN
outperforms the Image CNN suggesting that extracting features relevant for forecasting from raw
visuals is a hard problem. It is also noteworthy that humans are significantly better at identifying
Field Goals (i.e., FG made), but worse at identifying other events.

2.6 Discussion

In this work we present predicting next players’ moves in basketball and water polo as bench-
mark tasks for measuring performance of forecasting algorithms. Instead of forecasting activities
of a single human, sports require forecasting in adversarial multi-agent environments that are a
better reflection of the real world. As the events we predict are discrete, our benchmark allows for
a crisp and meaningful evaluation metric that is critical for measuring progress. We compare the
performance of two general systems for forecasting player moves: 1) a hand-engineered system
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that takes raw visuals as inputs, then transforms them into an overhead view for feature extraction,
and 2) an end-to-end neural network system. We find the hand-engineered system is close to (non-
expert) human performance in water polo and outperforms humans in basketball. In both cases it
outperforms the neural network system, which raises a very interesting question - what auxiliary
tasks/unsupervised feature learning mechanisms can be used to improve prediction performance.
We find that a system trained on basketball data generalizes to water polo data, showing that our
techniques are capable of extracting generic game strategies.
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Chapter 3

Continuous Prediction: Predicting 2D
Motion

In the previous chapter, we focused on methods for predicting discrete events in the context of
the sports domain. However, sports, and really life, is about more than just sequences of events. In
this chapter, we present methods for predicting human motion, again in the sports context, where
data is abundant. Learning to predict sports player motion is also very interesting behavior-wise
because by default many sports present a multi-agent, adversarial environment. Furthermore, with
different player positions, it also affords the ability to personalize prediction in a meaningful, and
interpretable way.

3.1 Introduction

Humans continuously anticipate the future states of their surroundings. Someone extending
a hand to another is likely initiating a handshake. A couple entering a restaurant is likely looking
for a table for two. A basketball player on defense is likely trying to stay between their opponent
and the basket. These predictions are critical for shaping our daily interactions, as they enable
humans to navigate crowds, score in sports matches, and generally follow social mores. As such,
computer vision systems that are successfully deployed to interact with humans must be capable
of forecasting human behavior.

In practice, deploying a computer vision system to make a fine-grain prediction is difficult.
Intuitively, people rely on context to make more accurate predictions. For example, a basketball
player may be known to stay back in the lane to help protect the rim. The ability to leverage specific
information, or personalize, should improve the prediction of fine-grained human behavior.

The primary challenge of personalizing prediction of multi-agent motion is to develop a repre-
sentation that is simultaneously robust to the number of possible permutations arising in a situation
and sufficiently fine-grained, so the output prediction is at the desired level of granularity. One typ-

This chapter is based on joint work with Patrick Lucey and Sujoy Ganguly [36], presented primarily as it
appeared in the ECCV 2018 proceedings.
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a) Input b) VAE baseline ¢) Our method

Figure 3.1: a) Given a 2D trajectory history of moving agents (solid lines), and the future mo-
tion of a subset of the agents (blue dashed lines); our prediction task b) is to generate the most
likely motion of the other agents (orange, purple dashed lines). Standard approaches are unable
to capture the influence of the group motion (triangles). ¢) Our method improves performance by
incorporating context-specific information (circles).

ically employees one of two approaches: i) bottom-up — where each trajectory has the same model
applied to it individually, or ii) top-down — where a group representation of all trajectories has one
model applied to it all at once. The data and target application mainly drive the choice of approach.
Typically, in settings with a variable number of agents, e.g., autonomous vehicles or surveillance,
one uses a bottom-up approach [76, 6, 58]. When the number of agents is fixed, e.g., sports, faces,
and body pose one prefers a top-down approach [4, 85, 54, 75].

While efficient for heavily structured problems, current top-down methods cannot incorporate
the necessary context to enable personalized prediction, and often require pre-computing some
heuristic group representation. Whereas, bottom-up approaches can personalize via a large re-
finement module [76]. In this paper, we show that by using a conditional variational autoencoder
(CVAE), we can create a generative model that simultaneously learns the latent representation of
multi-agent trajectories and can predict the agents’ context-specific motion.

Due to the vast amount of data available and its adversarial, multi-agent nature, we focus
on predicting the motion paths of basketball players. Specifically, we address the problem of
forecasting the motion paths of players during a game (Fig. 3.1a). We demonstrate the effectiveness
of our approach on a new basketball dataset consisting of sequences of play from over 1200 games,
which contains position data of players and the ball.

To understand the function of initial data representation, context, personalization of agent tra-
jectory prediction and generative modeling, we divide our problem into three parts. First, to under-
stand the role of data representation on prediction, we predict the offense given the motion history
of all players (Fig. 3.1b). By applying alignment to the multi-agent trajectories we minimize the
problem of permutation allowing our group representation of player motion to outperform the cur-
rent state of the art methods. Next, to understand the role of context, we compare the prediction of
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offensive agents given the motion of the defense, player and team identities. We use separate en-
coders for context and player/team identity which we connect to the variational layer, as opposed to
being used in a ranking and refinement layer, and thus act directly as conditionals. By conditioning
on context with alignment and identity, we can generate a very accurate, fine-grained, prediction
of any group of agents without the need for an additional refinement module (Fig 3.1c). Finally,
we tackle the challenge of forecasting the motion of subsets of players (a mixture of offense and
defense), given the motion of the other remaining players. Again we find that our CVAE far out-
performs the previous state of the art methods by a factor of two and that it can make reasonable
predictions given only the motion history and the player and team identities when predicting the
future motion of all ten players.

3.2 Related Work

Forecasting Multi-Agent Motion Lee et al. [76] provide an excellent review of recent path pre-
diction methods, in which they chronicle previous works that utilize classical methods, inverse
reinforcement learning, interactions, sequential prediction and deep generative models. For pre-
dicting multi-agent motion paths, there are two primary bodies of work: bottom-up and top-down
approaches.

Regarding bottom-up approaches, where the number of agents varies, Lee et al. [76] recently
proposed their DESIRE framework, which consisted of two main modules. First, they utilized a
CVAE-based RNN encoder-decoder which generated multiple plausible predictions. These pre-
dictions, along with context, were fed to a ranking and refinement module that assigns a reward
function. The predictions are then iteratively refined to obtain a maximum accumulated future
reward. They demonstrated the approach on data from autonomous vehicles and aerial drones and
outperformed other RNN-based methods [58]; however, in the absence of the refinement module,
the predictions were poor.

For predicting variable numbers of humans moving in crowded spaces, Alahi et al. [6] intro-
duced the idea of “Social LSTMs” which connected neighboring LSTMs in a social pooling layer.
The intuition behind this approach is that instead of utilizing all possible information in the scene,
the model only focuses on people who are near each other. The model will then learn that behav-
ior from data, which was shown to improve over traditional approaches which use hand-crafted
functions such as social forces [139]. Many authors have applied similar methods for multi-agent
tracking using trajectories [21, 132, 86].

Nearly all work that considers multiple agents via a top-down approach is concerned with mod-
eling behaviors in sports. Kim et al. [63] used the global motion of all players to predict the future
location of the ball in soccer. Chen et al. [27] used an occupancy map of noisy player detections
to predict the camera-motion of a basketball broadcast. Zheng et al. [147] used an image-based
representation of player positions over time to simulate the future location of a basketball. Lucey et
al. [85] learned role representations from raw positional data, while Le et al., [75] utilized a similar
representation with a deep neural network to imitate the motion paths of an entire soccer team.
Felsen et al. [35] used hand-crafted features to predict future events in water polo and basketball.
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Figure 3.2: Dataset Example plays from our basketball dataset, which contains 95,002 12-second
sequences of offense (color), defense (gray), and ball (orange) 2D overhead-view trajectories. The
identity, team, and canonical position of each player are known.

Lastly Su et al. [117] used ego-centric appearance and joint attention to model social dynamics and
predict the motion of basketball players. In this paper, we utilize the representation which most
closely resembles Le et al. [75], the CVAE approach utilized by [76], and a prediction task similar
to [117].

Personalization to Tracking Data Recommendation systems, which provide personalized pre-
dictions for various tasks often use matrix factorization techniques [69]. However, such techniques
operate under the assumption that one can decompose the data linearly, using hand-crafted features
to capture the non-linearities. However, in conjunction with deep models and the vast amount of vi-
sion data, recommendation engines based on vision data are starting to emerge. Recently, Deng et
al. [32] used a factorized variational autoencoder to model audience reaction to full-feature length
movies. Charles et al. [26] proposed using a CNN to personalize pose estimation to a person’s
appearance over time. Insafutdinov et al., [54] used a graph partitioning to group similar body-
parts to enable effective body-pose tracking. In all of these works, they use their deep networks to
find the low-dimensional embedding at the encoder state which they use to personalize their pre-
dictions. In this work, we followed a similar strategy but included the embedding in a variational
module.

Conditional Variational Autoencoders Variational Autoencoders [64] are similar to traditional
autoencoders, but have an added regularization of the latent space, which allows for the generation
of new examples in a variety of contexts [46, 18]. Since the task of fine-grained prediction is
naturally one in which history and context determine the future motions, we utilize a conditional
variational autoencoder (CVAE) [65, 114]. In computer vision, CVAEs have recently been used for
inpainting [97, 98], and for predicting the future motion of agents in complex scenes [76, 129]. In
this paper, we apply the idea of conditioning on the history and the surrounding context to predict
the personalized adversarial motion of multiple agents without ranking or refinement.
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3.3 Basketball Tracking Dataset

Team sports provide an ideal setting for evaluating personalized behavior models. Firstly, there
is a vast amount of labeled data in sports, including potentially thousands of data points for each
player. Furthermore, the behaviors in team sports are well-defined and complex, with multiple
agents simultaneously interacting collaboratively and adversarially. Therefore, sports tracking data
is a good compromise between completely unstructured tracking data (e.g., pedestrian motion
where the number of agents is unconstrained) and highly structured data (e.g., body pose or facial
tracking where the number of agents is both fixed and physically connected). To that end, we
present basketball as a canonical example of a team goal sport, and we introduce a new basketball
dataset.

Our proposed dataset is composed of 95,002 12-second sequences of the 2D basketball player

and ball overhead-view point trajectories from 1247 games in the 2015/16 NBA season. The tra-
jectories are obtained from the STAT'S in-venue system of six stationary, calibrated cameras, which
projects the 3D locations of players and the ball onto a 2D overhead view of the court. Fig. 3.2
visualizes two example sequences. Each sequence, sampled at 25 Hz, has the same team on of-
fense for the full duration, ends in either a shot, turnover or foul. By eliminating transition plays
where teams switch from defense to offense mid-sequence, we constrain the sequences to contain
persistent offense and defense. Each sequence is zero-centered to the court center and aligned, so
the offense always shoots toward the court’s right-side basket. In our experiments, we subsam-
ple the trajectory data at 5 Hz, thereby reducing the data dimensionality without compromising
information about quick changes of direction.
Personalization We label each sequence with its player identity, team, canonical position (i.e.,
point/shooting guard, small/power forward, center), and aligned position (Section 3.4). Only the
210 players with the most playing time across all sequences are assigned unique identities. The
remaining players are labeled by their canonical position, thus limiting the set of player identities.
Data splits The data is randomly split into train, validation, and test sets with 60708, 15244, and
19050 sequences in each respective split.

3.4 Methods

We frame the multi-agent trajectory prediction problem as follows: In a 2D environment, a

set A of interacting agents are observed over the time history [t¢, ¢,] to have trajectories Xgo’tq] =

{x[fotaly| . 4. The trajectory history of the i* agent is defined as X' = {zl0, zlot! ... gle},

where z! represents the 2D coordinates of the trajectory at time ¢. We wish to predict the subsequent
future motion, to time ¢, of a subset of agents P C A. In other words, our objective is to learn the

posterior distribution P(Ylgtq’tf ] |XX°’t‘I], O) of the future trajectory motion of the agents in subset
P, specifically Yﬁq’t” = {Yj(tq’tf]}wjep.

In addition to the observed trajectory history, we also condition our learned future trajectory
distribution on other available observations O. In particular, O may consist of: 1) the identities g
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Figure 3.3: Model architecture. The inputs to the i) trajectory encoder are the tracking history
of all players XKO’tq], the identity p, and the context Xg"’tf | The trajectory context ng’tf Vis i )
encoded as H¢. The one-hot-encoded player or team identity o is iii) encoded as H,. The iv) vari-
ational module predicts the mean 1, and standard deviation ., of the latent variable distribution
N(ps,X.). A random sample Z from N (p,, X.) is input to the decoder, along with the condition-
als H¢, H),, and the last one second of of player motions Xﬁq_f Petal They ) decoder then predicts
the future paths Y. At train time the KL divergence and L, loss are minimized.

of the agents in P, and 2) the future context C, represented by the future trajectories Xf(éq’tf -

{Xe(tq’tf]}MeK of agents in the set K C Ast. KUP = A, KNP = {}. One of the main
contributions of this work is how to include various types of information into O, and the influence

of each information type on the prediction accuracy of Ylﬁt”f } (Section 3.5).

The conditionals and inputs to our model are each encoded in their encoders. To learn the
posterior, we use a CVAE, which allows for the conditional generation of trajectories while mod-
eling the uncertainty of future prediction. In our case, the CVAE learns to approximate the
distribution P(Ylgtq’tf ] | XEO’tq], O) by introducing a random D,-dimensional latent variable z.
The CVAE enables solving one-to-many problems, such as prediction, by learning a distribution
Q(z=2z| XKO’tQ], O) that best reconstructs Y]gtq’tf !

Fig. 3.3 shows our overall model architecture, which is divided into the five modules: i) the
trajectory encoder with Xﬁjo’tﬂ and O as input, ii) the context encoder with ng’tf Fas input, 1ii)
the identity encoder with ¢ as input, iv) a variational module, and v) the trajectory decoder with
sampled latent variable Z and encoded conditionals as input. The input to the variational module
is the joint encoding of the trajectory history XEO’M with the context and identity. The trajectory
history, context, and identity serve as our conditionals in the CVAE, where the context and identity
are each separately encoded before being concatenated with Z as input to the decoder. The trajec-
tory history conditional ng_l’m for Z is the last one second of observed trajectory history of the
agents in P. This encourages the model predictions to be consistent with the observed history, as

our decoder outputs Xg"_l’t"] concatenated with Y,Et*tf !



CHAPTER 3. CONTINUOUS PREDICTION: PREDICTING 2D MOTION 26

Training phase
We have modeled the latent variable distribution as a normal distribution
Q 2=z Xi X{ o) = Q(z=2| H Ho, H))
~ N (1, 52). (3.1)
Therefore, at train time the variational module minimizes the Kullback-Leibler (KL) divergence
(Dgr) and the trajectory decoder minimizes Euclidean distance ”Y -Y Z For simplicity, let

Y = (X[ Y1) The total loss is

L= HY—YH2+5DKL<P\IQ>, (32)

where P <z | Xzo’tq], Xﬁq’m, g) = N(0,1) is a prior distribution and (3 is a weighting factor to
control the relative scale of the loss terms. We found that for 5 = 1, our model without the
conditionals (VAE) would roughly predict the mean trajectory, whereas when [ < 1 we were able
to predict input-dependent motion. In our proposed model, we observed that 5 = 1 performed as
well as 8 < 1, so in all our experiments except for the vanilla VAE, we use § = 1.

Testing phase

At test time, the input into the trajectory encoder is the trajectory history of all agents X E‘”tq},

the future trajectories of the agents not predicted X %’tf }, and the encoded agent identities p. The

variational module takes the encoded trajectory Hy, which is also conditioned on the context
ng’tf } and the player identities o, and returns a sample of the random latent variable Z. The

trajectory decoder then infers the tracks of the agents to be predicted Y}St‘“tf ] given a sampled 2,
the encoded context H¢, the encoded identities /,, and the final one second of trajectory history

for the agents to be predicted, ngfl’tq}.

Trajectory alignment

The network inputs are a concatenation of each 2D agent trajectories. For example, the input
XXO’tq] forms an |A| x (¢, - 5) x 2 array, where |.A| is the number of agents, t, - 5 is the total
number of temporal samples over ¢, seconds sampled at 5 Hz. One of the significant challenges
in encoding multi-agent trajectories is the presence of permutation disorder. In particular, when
we concatenate the trajectories of all agents in A to form X Eo’t“], we need to select a natural and
consistent ordering of the agents. If we concatenate them in a random order, then two similar
plays with similar trajectories will have considerably different representations. To minimize the

permutation disorder, we need an agent ordering that is consistent from one play to another.
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If we have a variable number of agents, it is natural to use an image-based representation of
the agent tracks. In our case, where we have a fixed number of agents, we instead align tracks
using a tree-based role alignment [110]. This alignment has recently been shown to minimize
reconstruction error; therefore it provides an optimal representation of the multi-agent trajectories.

In brief, the tree-based role alignment uses two alternating steps, i) an Expectation-Maximization
(EM) based alignment of agent positions to a template and ii) K-means clustering of the aligned
agent positions, where cluster centers form the templates for the next EM step. Alternating be-
tween EM and clustering leads to a splitting of leaf nodes in a tree until either there are fewer than
M frames in a cluster or the depth of the tree exceeds D). For our experiments we used D = 6
and trained separate trees for offense (M = 400) and defense (M = 4000). To learn a per-frame
alignment tree, we used 120K randomly sampled frames from 10 NBA games from the 2014/15
season.

Implementation details

Architecture All encoders consist of NV fully connected layers, where each layer has roughly half
the number of units as its input layer. We experimented with different input histories, prediction
horizons, and player representations, so we dynamically set the layer structure for each experi-
ment, while maintaining 64 and 16 units in the final layer of the trajectory and context encoders,
respectively. For the identity encoder, the final output size depended on the identity representation
o, which was either: 1) a (concatenated) one-hot encoding of the team(s) of the players in P (out-
put dimension 5 for single team and 16 for mixed), and 2) a (concatenated) one-hot encoding of

History (s) ‘ Horizon (s) ‘ ‘ Trajectory encoder ‘ Context encoder ‘ Latent dimension ‘ Decoder
1 4 200-100-64 200-100-64-32-16 32 200-300
2 4 200-100-64 200-100-64-32-16 32 200-300
4 4 400-200-100-64 | 400-200-100-64-32-16 32 200-300
6 4 600-400-200-100-64 | 600-300-150-64-32-16 32 200-300
8 4 600-400-200-100-64 | 600-300-150-64-32-16 32 200-300
4 1 400-200-100-64-32 | 400-200-100-64-32-16 16 115-120
4 2 400-200-100-64 | 400-200-100-64-32-16 32 140-180
4 4 400-200-100-64 | 400-200-100-64-32-16 32 200-300
4 6 400-200-100-64 | 400-200-100-64-32-16 32 150-280-420
4 8 400-200-100-64 | 400-200-100-64-32-16 32 150-300-540

Table 3.1: Fully connected layer dimensions for network architectures designed for offense predic-
tion as a function of history (Table 2 of the main paper) and horizon (Figure 7 of the main paper).
For these architectures, the team identity encoder has layers with dimension 20-10-5. Each layer
has elu activation, except the final layer in the decoder, which has sigmoid activation.
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each player identity in P.

Network architectures Table 3.1 provides the precise network architectures (described in Section
4.4 of the main paper) for the offense history (Table 2a of the main paper) and horizon (Table 2b
of the main paper) experiments with our best method- CVAE with role alignment and conditionals
consisting of 1s offense history, defense future context, and the team identity. The architectures for
defense and mixed prediction are similar. All layers are fully connected with elu activation, except
the last layer of every decoder, which has sigmoid activation. The player team encoder has layers
with dimension 20-10-5. The player identity encoder has layers with dimension 500-250-100-64-
32-16.

Learning At train time we minimize the loss via backpropagation with the ADAM optimizer, batch
size 256, initial learning rate 0.001, and 0.5 learning rate decay every 10 epochs of size 200K. We
also randomly sample the training set so that the number of times a sequence appears in an epoch
is proportional to the number of players it has with unique identity.

3.5 Experiments

We evaluate the effect on prediction performance of: 1) each information type input in our
proposed model architecture (Section 3.5); 2) the number and types of agents in the input and
output, i.e., offense only, defense only, and both offense and defense (Section 3.5); 3) the predicted
agents’ during-play role (Section 3.5); 4) the length of the history input (Section 3.5); and 5) the
length of the prediction horizon (Section 3.5).

Baselines Our baselines are: velocity-based extrapolation, nearest neighbor retrieval, vanilla and
Social LSTMs, and a VAE. Retrieval was performed using nearest neighbor search on the aligned
(Section 3.4) trajectory history of the agents we wish to predict, matching the evaluation track
histories to the training track histories based on minimum Euclidean distance. Then, we compare
the error of the future trajectories of the top-k results to the ground truth. We found that these
predictions are very poor, performing significantly worse than velocity-based extrapolation. Next,
we compared our performance with the previous state of the art recurrent prediction methods,
namely a vanilla LSTM and the Social LSTM. We found that the vanilla LSTM performed poorly
with around 25 ft error for 4 s prediction horizon. The inclusion of social pooling improved the
performance of the LSTM with 18 ft error for 4 s prediction horizon. However, the Social LSTM
still performed significantly worse than simple velocity extrapolation at time horizons less than
6 s. The poor performances of the vanilla LSTM method and the Social LSTM method agrees with
previous work on predicting basketball player trajectories conducted on a different data set [117].
As such, for most experiments, we use velocity-based extrapolation as our baseline, since it has
the best performance.

Performance metrics We report three metrics. First, the L, distance (ft) between predicted trajec-
tories and the ground truth, averaged over each time step for each agent. Second is the maximum
distance between the prediction and ground truth for an agent trajectory, averaged over all agent
trajectories. Last is the miss rate, calculated as the fraction of time the L, error exceeds 3 ft.
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Method || Alignment Conditional Error (Offense, 4 s in future)
History Context Identity || Avg dist [ft] / (Top-5) Max dist Miss rate

Velocity - - - - 7.77 14.45 82.18
Retrieval role - - - 11.41/(8.80) 28.57 86.77
VAE random - - - 7.10 19.24 74.90
VAE role - - - 6.85 18.84 72.78
CVAE random Is none none 6.90 18.98 73.83
CVAE random none encoded none 6.97 18.46 75.29
CVAE random none none team 7.05 19.25 74.15
CVAE random none none  player 7.02 19.17 75.15
CVAE random none encoded team 6.98 18.46 75.65
CVAE random ls none team 6.91 18.95 74.18
CVAE random Is encoded none 6.73 18.11 74.64
CVAE random 1s encoded team 6.76 18.15 74.97
CVAE random Is encoded player 6.64 18.00 74.29
CVAE position Is encoded team 6.09 16.87 70.37
CVAE role 1s encoded none 5.81 16.41 66.67
CVAE role 1s encoded team 5.80 16.45 66.39
CVAE role I's encoded player 5.96 17.03 67.07

Table 3.2: Offense prediction error for 4 s history and prediction horizon. We test three differ-
ent trajectory alignments 1) random, ii) canonical position, and iii) role. We also test 3 conditionals:
a) the previous one second of player motions (history), b) the next 4 s of the defensive motions
(context), and ¢) one-hot encoded player or team (identity). The miss rate is calculated with thresh-
old 3 feet.

What information gives us the best prediction?

In our proposed problem, there are four sources of information with the potential to improve
prediction: i) the trajectory history X K‘”tq} of all agents, ii) the future motion X ](?"tf Vof the players
not predicted, i.e., context, iii) the player/team identities, i.e., personalization and iv) the agent
alignment. The observed trajectory history serves as the input to the model and is fixed to 4 s. The
final 1 second of trajectory history of the players we predict, the context, and the identity are treated
as conditionals (Fig. 3.3), whereas the agent alignment enables efficient trajectory encoding. For
this section (Table 3.2), we only predict the offense, which avoids conflating the effect of agent
type with the effect of the information sources. We also fix the prediction horizon at 4 s.

To understand the influence of alignment alone, we compare the result of the baseline VAE
with random versus role aligned agents. In the absence of the alignment the VAE has moderate
performance, outperforming baselines. For example, in the first row of Fig. 3.4 the VAE captures
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(a) Velocity (b) VAE (c) CVAE (d) CVAE
random alignment role alignment

Figure 3.4: Offense player predictions. Given a 4 s trajectory history (gray) for all players (de-
fense not pictured), we predict (solid lines) the next 4 s of offense player motion. Dashed lines are
ground truth. Each row represents the same play, and each trajectory color corresponds to a player.
The color intensity is proportional to the likelihood. Column a) velocity-based extrapolation.
Column b) VAE with random trajectory alignment. Column ¢) CVAE with random trajectory
alignment and all conditionals (player ID). Column d) adding role alignment to the CVAE (team
ID).

co-movement of players (red and purple) that velocity-based extrapolation does not. However, the
VAE does not capture the two agents crossing.

To understand the influence of each conditional, we randomly order the input trajectories and
perform a set of ablation studies using a variety of conditions. We apply each conditional separately
to compare their individual effects on performance, including comparing the use of team versus
player identity.

Interestingly, the VAE and the CVAE using a single conditional perform similarly. However,
if we combine conditionals, we create an even stronger co-movement signal, e.g., red and purple
players in the first row in Fig. 3.4. Still, with all the conditionals and random agent ordering, we
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. ] Method-Align-P1. || Personnel || Error: Avg dist [ft] (4 s hist
Method-Align-Pl. || Personnel || Error: Avg dist [ft] choCATen cronne rror: Avg dist [ft] (4 s history)
1s 2s 45 6s 8s
1s 4s 8s Method: CVAE-role-team
Velocity offense 193 4.10 7.72 11.50 24.02 Mixt reHError Ave dist []
. 1Xtu] T AV, 1
Velocity offense ||7.74 7.72 174 CVAErand-ID || offense || 2.66 423 664 814 94l £
vl 4.1
CVAE-rand-ID offense ||7.06 6.64 6.86 CVAE-role-none || offense || 2.38 4.00 5.81 7.07 828 2V2 48:
CVAE-role-none offense 6.04 581 6.21 CVAE-role-team offense 235 395 580 7.08 8.07 3V3 5‘21
V. .
CVAE-role-team || offense [|6.05 5.80 6.16 ~ CVAE-oleteam |[ defense | 208 301 410 498 585 sog
CVAE-role-team H defense H4~23 410 431 Vanilla LSTM mix 5v5 || 10.44 18.29 25.36 28.07 29.56 5vS 5.74
VALl H el H575 1 s Social LSTM mix 5v5 || 523 11.08 17.95 20.88 22.38
rolesteam [} MIXOVS {575 5. : CVAE-role-team || mix 5v5 || 2.44 392 574 721 833
(a) observed history (b) prediction horizon (c) num. players

Table 3.3: Prediction error ablation. a) We vary the observed history for a 4 s prediction, and
observe that the optimal trajectory history is 4 s, though marginally so. b) We vary the prediction
horizon given a 4 s observed history, and observe that the prediction error monotonically increases
as a function of time horizon. c) We vary the number of players to predict for a 4 s horizon given a
4 s history, and observe an increase in average prediction error as we increase the number of agents
per team from 1 to 5. For all experiments, we conditioned on the previous 1 s, the future motion of
all agents not predicted, and the selected player or team identities. All errors are in feet.

fail to get the crossing of the trajectories.

When we both align and condition, we are able to correctly predict tracks crossing (red and
purple players first row in Fig. 3.4d). In particular, we see the greatest improvement in our predic-
tion by including the context, history, and team identity (bold in Table 3.2). These results imply
that alignment, context, and history contain complementary information. Though alignment and
conditioning improve our predictions, we struggle to predict sudden changes in movement (red
player in row 3 of Fig. 3.4d), and stationary players (green players in row 1 and blue player in row
3 of Fig. 3.4d).

The modest improvements found by including team identity vanish when we use multi-template
tree-based role alignment; implying that the alignment contains the added information provided by
conditioning on the team identity. In other words, the clusters in latent space that the variational
module finds with canonical alignment are team sensitive. This sensitivity to the team implies that
certain teams perform certain collective motions. However, after tree-alignment, this vanishes,
implying that the clusters found given optimal alignment exist below the level of player combina-
tions.

How many and which agents can we predict?

To evaluate how many and which agents we can predict, we split our prediction tasks into 1) exclu-
sively predicting all 5 offense agents (Section 3.5), ii) exclusively predicting all 5 defense agents,
and iii) predicting a mixture of offense and defense agents, from one of each (mix 1v1) to all 10
agents (mix 5v5).
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Defense only Predicting defense is more straightforward than our other tasks because the defense
reacts to the offense’s play. Thus, the offense motion encodes much of the information about the
defense motion. This is supported by the overall improvement in prediction for the defense as com-
pared to the offense (Table 3.3a and b). The trends in the effect of conditionals and alignment are
similar to the offense-only prediction results, indicating the value of information is similar regard-
less of adversary predicted. Therefore, we use role alignment and conditionals history, context,
and team identity in subsequent experiments.

Mixed offense and defense Our most challenging prediction task is to simultaneous predict the
motion of offense and defense. This is akin to asking: can we predict the motion of unobserved
agents given the motion of the remaining seen agents? In the most general case of trying to predict
all players, we found that the prediction performance splits the difference between the prediction
of the offense and defense alone (Table 3.3a).

Next, we investigated how many agents per team we could predict over a 4 s time horizon,
given a 4 s history (Table 3.3c). Surprisingly, we found relatively little performance degradation
when predicting the motion of all ten players (5v5) versus one player each (1v1) on offense and
defense (5.7 ft vs 4.2 ft). In the case of predicting all ten agents, the only conditionals are the
player or team identities and the previous 1 s of history. The input is the 4 s trajectory history.

How does personnel influence prediction?

Since alignment improved our prediction results, we investigated the per-role prediction error
(Fig. 3.5a) to uncover whether some roles are easier to predict than others. We found ~ 16%
difference in the per-role prediction error for predicting offense compared to defense only. How-
ever, the per role variation does not hold when predicting a mixture of agents, in which case the
prediction error of all agents increases.

How much history do we need?

Next, we tested the effect of the observed trajectory duration on prediction performance, that
is how the history length influences predictions. The conditionals are the previous 1 s of the
agents we are predicting, the future motion of players we are not predicting, and the team or
player identity. We varied the observed history from 1-8 s and predicted the subsequent 4 s. As
before, the defense is the easiest to predict, and multi-template role alignment with team identity
provides the best prediction performance (Table 3.3a). We find 4 s of history is barely optimal,
either because the player motions decorrelate at this time scale, or our encoder architecture cannot
recover correlations at longer timescales.

How far can we predict?

To evaluate how far in the future we can predict, we provided 4 s of history of all player motions
and predicted out to at most 8 s. Additionally, we provided the last 1 s of player motions and the
future of the un-predicted agents as a conditional. In Fig. 3.6 we can clearly see that as the we
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Figure 3.5: Prediction error ablation. For all experiments, we provided 4 s of history and con-
ditioned on the previous 1 second and the future of all agents not predicted. a) We evaluate the
per-role prediction error for a 4 s prediction horizon, given a 4 s observed history. Defense is eas-
ier to predict than offense, and although mixed (2v2) appears to have better overall prediction than
offense, per-role it is slightly worse, which makes sense because it’s a harder task. b) We visualize
the prediction errors as a function of horizon, given a 4 s observed trajectory history. The baselines
are velocity (for offense only), and vanilla LSTM and Social LSTM (for all 10 agents), which we
compare with our best method run on offense and defense only, as well as the mixture of all 10
agents. The precise values are reported in Table 3.3b.

T =1s T =2s T =4s T = 6s T = 8s

Figure 3.6: Prediction as a function of time horizon. We input the previous 4 s of every agent’s
motion (grey), and predict the offense player trajectories over horizon 7' s. The conditionals are
the future motion of the defense (not shown), the final one second of offense history, and team
identity. Each row represents a different example, and each color represents the player tree-based
role. Dashed lines are the ground truth.

to underestimate the curvature of motions (cyan in example 1, 7' = 6 s), or underestimate the
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complexity of motion (purple inrow 1,7 = 6 s and red inrow 2, 7" = 6 s).

As expected, the prediction error increases monotonically with the prediction time horizon
(Fig. 3.5b), and when we include team identity, the prediction error changes less with the time
horizon. Also, we see that the prediction error for the defensive is smaller than mixed offense and
defense or offense alone.

We also notice that we far outperform the current state of the art prediction methods (Fig. 3.5b).
It is remarkable that even when predicting the motion of all agents that our performance is three
times as good as the Social LSTM (for 4 s time horizon). Again, it is important to note that
the performance of the LSTM baselines agrees with previous results on a similar dataset [117].
Lastly, we note that the prediction of player trajectories presented by Shan et al. [117] which uses
far more information, specifically the egocentric appearance of all players produces a per player
average error of 11.8 ft (3.6 m). Though not directly comparable, this shows the power of our
proposed generative method: with less information, our method produces noticeably better results.

3.6 Discussion

We have shown that a generative method based on conditional variational autoencoder (CVAE)
is three times as accurate as the state of the art recurrent frameworks for the task of predicting
player trajectories in an adversarial team game. Furthermore, these predictions improve by condi-
tioning the predictions on the history and the context, i.e., the motion of agents not predicted and
their identity. Also, where available, further improvement in the quality of prediction can be found
by providing multi-template aligned data. By aligning and conditioning of context and history, we
can produce remarkably accurate, context-specific predictions without the need for ranking and
refinement modules. We also found that our predictions were sensitive to the player role, as deter-
mined during alignment. However, we did not find any additional improvement in prediction when
providing the player identity alone. The sensitivity to the player role, but not identity implies that
role contains the information held in identity alone. Therefore, more fine-grained personalization
may require additional player data, such as weight, height, age, minutes played.
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Chapter 4

Learning 3D Human Dynamics

In the previous two chapters, we focused on methods for prediction largely in an abstracted,
overhead representation of game play in sports. This representation captures well player spacing
and broad motion. However, with it, we lose all information about appearance, including pose and
the individual person dynamics, such as their gait. Furthermore, the overhead representation does
not necessarily generalize well; we may not always be able to estimate an overhead representation
of people interacting. This necessitates the ability to predict directly from the pixels, which in turn
means we need to be able to understand how people are moving in videos from looking at their
appearance. In this chapter, we present a framework for learning a representation of human motion
that we can: 1) use to estimate the 3d pose and shape of people moving in videos, and 2) use to
hallucinate the motion surrounding a single-frame snapshot.

4.1 Introduction

Consider the image of the baseball player mid-swing in Figure 4.1. Even though we only
see a flat two-dimensional picture, we can infer the player’s 3D pose, as we can easily imagine
how his knees bend and arms extend in space. Furthermore, we can also infer his motion in the
surrounding moments as he swings the bat through. We can do this because we have a mental
model of 3D human dynamics that we have acquired from observing many examples of people in
motion.

In this work, we present a computational framework that can similarly learn a model of 3D
human dynamics from video. Given a temporal sequence of images, we first extract per-image
features, and then train a simple 1D temporal encoder that learns a representation of 3D human
dynamics over a temporal context of image features. We force this representation to capture 3D
human dynamics by predicting not only the current 3D human pose and shape, but also changes
in pose in the nearby past and future frames. We transfer the learned 3D dynamics knowledge
to static images by learning a hallucinator that can hallucinate the temporal context representation

This chapter is based on joint work with Angjoo Kanazawa, Jason Y. Zhang, and Jitendra Malik [61], presented
primarily as it appeared in the CVPR 2019 proceedings.



CHAPTER 4. LEARNING 3D HUMAN DYNAMICS 36

Predictions

Different
Viewpoint

Figure 4.1: 3D motion prediction from a single image. We propose a method that, given a single image
of a person, predicts the 3D mesh of the person’s body and also hallucinates the future and past motion.
Our method can learn from videos with only 2D pose annotations in a semi-supervised manner. Note our
training set does not have any ground truth 3D pose sequences of batting motion. Our model also produces
smooth 3D predictions from video input.

from a single image feature. The hallucinator is trained in a self-supervised manner using the actual
output of the temporal encoder. Figure 4.2 illustrates the overview of our training procedure.

At test time, when the input is a video, the temporal encoder can be used to produce smooth 3D
predictions: having a temporal context reduces uncertainty and jitter in the 3D prediction inherent
in single-view approaches. The encoder provides the benefit of learned smoothing, which reduces
the acceleration error by 56% versus a comparable single-view approach on a recent dataset of 3D
humans in the wild. Our approach also obtains state-of-the-art 3D error on this dataset without any
fine-tuning. When the input is a single image, the hallucinator can predict the current 3D human
mesh as well as the change in 3D pose in nearby future and past frames, as illustrated in Figure 4.1.

We design our framework so that it can be trained on various types of supervision. A major
challenge in 3D human prediction from a video or an image is that 3D supervision is limited in
quantity and challenging to obtain at a large scale. Videos with 3D annotations are often captured
in a controlled environment, and models trained on these videos alone do not generalize to the
complexity of the real world. When 3D ground truth is not available, our model can be trained
with 2D pose annotations via the reprojection loss [136] and an adversarial prior that constrains
the 3D human pose to lie in the manifold of real human poses [60]. However, the amount of video
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labeled with ground truth 2D pose is still limited because ground truth annotations are costly to
acquire.

While annotated data is always limited, there are millions of videos uploaded daily on the
Internet. In this work we harvest this potentially unlimited source of unlabeled videos. We curate
two large-scale video datasets of humans and train on this data using pseudo-ground truth 2D pose
obtained from a state-of-the-art 2D pose detector [23]. Excitingly, our experiments indicate that
adding more videos with pseudo-ground truth 2D monotonically improves the model performance
both in term of 3D pose and 2D reprojection error: 3D pose error reduces by 9% and 2D pose
accuracy increases by 8%. Our approach falls in the category of omni-supervision [103], a subset
of semi-supervised learning where the learner exploits all data along with Internet-scale unlabeled
data. We distill the knowledge of an accurate 2D pose detector into our 3D predictors through
unlabeled video. While omni-supervision has been shown to improve 2D recognition problems, as
far as we know, our experiment is the first to show that training on pseudo-ground truth 2D pose
labels improves 3D prediction.

In summary, we propose a simple but effective temporal encoder that learns to capture 3D
human dynamics. The learned representation allows smooth 3D mesh predictions from video in a
feed-forward manner. The learned representation can be transferred to a static image, where from
a single image, we can predict the current 3D mesh as well as the change in 3D pose in nearby
frames. We further show that our model can leverage an Internet-scale source of unlabeled videos
using pseudo-ground truth 2D pose.

4.2 Related Work

3D pose and shape from a single image. Estimating 3D body pose and shape from a single image
is a fundamentally ambiguous task that most methods deal by using some model of human bodies
and priors. Seminal works in this area [45, 111, 2] rely on silhouette features or manual interaction
fromusers [111, 47, 148] to fit the parameters of a statistical body model. A fully automatic method
was proposed by Bogo [16], which fits the parametric SMPL [83] model to 2D joint locations
detected by an off-the-shelf 2D pose detector [102] with strong priors. Lassner [74] extend the
approach to fitting predicted silhouettes. [144] explore the multi-person setting. Very recently,
multiple approaches integrate the SMPL body model within a deep learning framework [120, 118,
99, 60, 96], where models are trained to directly infer the SMPL parameters. These methods vary
in the cues they use to infer the 3D pose and shape: RGB image [118, 60], RGB image and 2D
keypoints [120], keypoints and silhouettes [99], or keypoints and body part segmentations [96].
Methods that employ silhouettes obtain more accurate shapes, but require that the person is fully
visible and unoccluded in the image. Varol explore predicting a voxel representation of human
body [122]. In this work we go beyond these approaches by proposing a method that can predict
shape and pose from a single image, as well as how the body changes locally in time.

3D pose and shape from video. While there are more papers that utilize video, most rely on a
multi-view setup, which requires significant instrumentation. We focus on videos obtained from
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a monocular camera. Most approaches take a two-stage approach: first obtaining a single-view
3D reconstruction and then post-processing the result to be smooth via solving a constrained op-
timization problem [150, 131, 106, 108, 53, 91, 101]. Recent methods obtain accurate shapes
and textures of clothing by pre-capturing the actors and making use of silhouettes [119, 137, 48,
8]. While these approaches obtain far more accurate shape, reliance on the pre-scan and silhou-
ettes restricts these approaches to videos obtained in an interactive and controlled environments.
Our approach is complementary to these two-stage approaches, since all predictions can be post-
processed and refined. There are some recent works that output smooth 3D pose and shape: [120]
predicts SMPL parameters from two video frames by using optical flow, silhouettes, and keypoints
in a self-supervised manner. [7] exploits optical flow to obtain temporally coherent human poses.
[59] fits a body model to a sequence of 3D point clouds and 3D joints obtained from multi-view
stereo. Several approaches train LSTM models on various inputs such as image features [81], 2D
joints [51], or 3D joints [29] to obtain temporally coherent 3D joint outputs. More recently, TP-
Net [31] learns a fully convolutional network that smooths the predicted 3D joints. Concurrently
to ours, [100] use a fully convolutional network to predict 3D joints from 2D joint sequences. We
directly predict the 3D mesh outputs from 2D image sequences and can be trained with images
without any ground truth 3D annotation. Furthermore, our temporal encoder predicts the 3D pose
changes in nearby frames in addition to the current 3D pose. Our experiments indicate that the
prediction losses help the encoder to pay more attention to the dynamics information available in
the temporal window.

Learning motion dynamics. There are many methods that predict 2D future outputs from video
using pixels [37, 33], flow [129], or 2D pose [130]. Other methods predict 3D future from 3D
inputs [41, 57, 20, 80, 123]. In contrast, our work predicts future and past 3D pose from 2D inputs.
There are several approaches that predict future from a single image [127, 138, 25, 79, 42], but all
approaches predict future in 2D domains, while in this work we propose a framework that predicts
3D motions. Closest to our work is that of Chao [25], who forecast 2D pose and then estimate the
3D pose from the predicted 2D pose. In this work, we predict dynamics directly in the 3D space
and learn the 3D dynamics from video.

4.3 Approach

Our goal is to learn a representation of 3D human dynamics from video, from which we can
1) obtain smooth 3D prediction and 2) hallucinate 3D motion from static images. In particular,
we develop a framework that can learn 3D human dynamics from unlabeled, everyday videos of
people on the Internet. We first define the problem and discuss different tiers of data sources our
approach can learn from. We then present our framework that learns to encode 3D human motion
dynamics from videos. Finally, we discuss how to transfer this knowledge to static images such
that one can hallucinate short-term human dynamics from a static image. Figure 4.2 illustrates the
framework.
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Figure 4.2: Overview of the proposed framework. Given a temporal sequence of images, we first extract
per-image features ¢;. We train a temporal encoder fiovie that learns a representation of 3D human dynamics
®; over the temporal window centered at frame ¢, illustrated in the blue region. From ®;, we predict the 3D
human pose and shape Oy, as well as the change in pose in the nearby +At frames. The primary loss is 2D
reprojection error, with an adversarial prior to make sure that the recovered poses are valid. We incorporate
3D losses when 3D annotations are available. We also train a hallucinator £ that takes a single image feature
¢: and learns to hallucinate its temporal representation ®,. At test time, the hallucinator can be used to
predict dynamics from a single image.

Problem Setup

Our input is a video V' = {[;}L, of length T, where each frame is a bounding-box crop
centered around a detected person. We encode the tth image frame /; with a visual feature ¢,
obtained from a pretrained feature extractor. We train a function fi,vie that learns a representation
®, that encodes the 3D dynamics of a human body given a temporal context of image features
centered at frame ¢. Intuitively, @, is the representation of a “movie strip” of 3D human body in
motion at frame ¢. We also learn a hallucinator h : ¢, — ®;, whose goal is to hallucinate the movie
strip representation from a static image feature ¢,.

We ensure that the movie strip representation ®; captures the 3D human body dynamics by
predicting the 3D mesh of a human body from &, at different time steps. The 3D mesh of a human
body in an image is represented by 85 parameters, denoted by © = {3, 0,11}, which consists
of shape, pose, and camera parameters. We use the SMPL body model [83], which is a function
M(B,80) € RV*3 that outputs the N = 6890 vertices of a triangular mesh given the shape 3 and
pose 6. Shape parameters 3 € R!° define the linear coefficients of a low-dimensional statistical
shape model, and pose parameters & € R define the global rotation of the body and the 3D
relative rotations of the kinematic skeleton of 23 joints in axis-angle representation. Please see
[83] for more details. The mesh vertices define 3D locations of k joints X € RF¥3 = W M(3, 0)
via a pre-trained linear regressor W € R**¥_ We also solve for the weak-perspective camera
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II = [s,t,,t,] that projects the body into the image plane. We denote =z = II(X(3,8)) as the
projection of the 3D joints.

While this is a well-formed supervised learning task if the ground truth values were available
for every video, such 3D supervision is costly to obtain and not available in general. Acquiring 3D
supervision requires extensive instrumentation such as a motion capture (MoCap) rig, and these
videos captured in a controlled environment do not reflect the complexity of the real world. While
more practical solutions are being introduced [88], 3D supervision is not available for millions
of videos that are being uploaded daily on the Internet. In this work, we wish to harness this
potentially infinite data source of unlabeled video and propose a framework that can learn 3D
motion from pseudo-ground truth 2D pose predictions obtained from an off-the-shelf 2D pose
detector. Our approach can learn from three tiers of data sources at once: First, we use the MoCap
datasets {(V;, ©;, z;) } with full 3D supervision ©; for each video along with ground truth 2D pose
annotations for & joints x; = {x; € R**?}L_ in each frame. Second, we use datasets of videos in
the wild obtained from a monocular camera with human-annotated 2D pose: {(V;, x;)}. Third, we
also experiment with videos with pseudo-ground truth 2D pose: {(V;,Z;)}. See Table 4.1 for the
list of datasets and their details.

Learning 3D Human Dynamics from Video

A dynamics model of a 3D human body captures how the body changes in 3D over a small
change in time. Therefore, we formulate this problem as learning a temporal representation that
can simultaneously predict the current 3D body and pose changes in a short time period. To do
this, we learn a temporal encoder f,ovie and a 3D regressor f5p that predict the 3D human mesh
representation at the current frame, as well as delta 3D regressors fa; that predict how the 3D pose
changes in At time steps.

Temporal Encoder Our temporal encoder consists of several layers of a 1D fully convolutional
network f.vie that encodes a temporal window of image features centered at ¢ into a representation
®, that encapsulates the 3D dynamics. We use a fully convolutional model for its simplicity. Recent
literature also suggests that feed-forward convolutional models empirically out-perform recurrent
models while being parallelizable and easier to train with more stable gradients [12, 92]. Our
temporal convolution network has a ResNet [50] based architecture similar to [12, 1].

The output of the temporal convolution network is sent to a 3D regressor f3p : ¢; — ©; that
predicts the 3D human mesh representation at frame ¢. We use the same iterative 3D regressor
architecture proposed in [60]. Simply having a temporal context reduces ambiguity in 3D pose,
shape, and viewpoint, resulting in a temporally smooth 3D mesh reconstruction. In order to train
these modules from 2D pose annotations, we employ the reprojection loss [136] and the adversarial
prior proposed in [60] to constrain the output pose to lie in the space of possible human poses. The
3D losses are also used when 3D ground truth is available. Specifically, the loss for the current
frame consists of the reprojection loss on visible keypoints Lp = ||v;(z; — ;)| |3, where v; € RF*?
is the visibility indicator over each keypoint, the 3D loss if available, Lsp = ||©, — ©,2, and the
factorized adversarial prior of [60], which trains a discriminator Dj, for each joint rotation of the
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body model Lygy prior = 4 (Dr(©) — 1)?. In this work, we regularize the shape predictions using a
shape prior Lg prior [16]. Together the loss for frame ¢ consists of L; = Lop+ Lap~+Lady prior+ L3 prior-
Furthermore, each sequence is of the same person, so while the pose and camera may change every
frame, the shape remains constant. We express this constraint as a constant shape loss over each
sequence:

T—-1
Lconst shape — Z Hﬁt - ﬁt+1||~ (41)
t=1

Predicting Dynamics We enforce that the learned temporal representation captures the 3D hu-
man dynamics by predicting the 3D pose changes in a local time step +At. Since we are training
with videos, we readily have the 2D and/or 3D targets at nearby frames of ¢ to train the dynamics
predictors. Learning to predict 3D changes encourages the network to pay more attention to the
temporal cues, and our experiments show that adding this auxiliary loss improves the 3D prediction
results. Specifically, given a movie strip representation of the temporal context at frame ®;, our
goal is to learn a dynamics predictor fa,; that predicts the change in 3D parameters of the human
body at time ¢ + At.

In predicting dynamics, we only estimate the change in 3D pose parameters ¢, as the shape
should remain constant and the weak-perspective camera accounts for where the human is in the
detected bounding box. In particular, to improve the robustness of the current pose estimation
during training, we augment the image frames with random jitters in scale and translation which
emulates the noise in real human detectors. However, such noise should not be modeled by the
dynamics predictor.

For this task, we propose a dynamics predictor fa; that outputs the 72D change in 3D pose Af.
fat 1s a function that maps ®; and the predicted current pose 6; to the predicted change in pose
A0 for a specific time step At. The delta predictors are trained such that the predicted pose in the
new timestep 6, o, = 0; + Af minimizes the reprojection, 3D, and the adversarial prior losses at
time frame ¢ + At. We use the shape predicted in the current time ¢ to obtain the mesh for ¢ + At
frames. To compute the reprojection loss without predicted camera, we solve for the optimal scale
s and translation ¢ that aligns the orthographically projected 3D joints Zoy = X [:,: 2] with the
visible ground truth 2D joints z,:: min, p||(sZomn + t) — 4¢||2- A closed form solution exists for
this problem, and we use the optimal camera I1* = [s*, F*] to compute the reprojection error on
poses predicted at times ¢ = At. Our formulation factors away axes of variation, such as shape
and camera, so that the delta predictor focuses on learning the temporal evolution of 3D pose. In
summary, the overall objective for the temporal encoder is

Ltemporal = Z Lt + Z Lt-l—At + Lconst shape - (42)
t At

In this work we experiment with two At at {—5,5} frames, which amounts to £0.2 seconds for a
25 fps video.
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Hallucinating Motion from Static Images

Given the framework for learning a representation for 3D human dynamics, we now describe
how to transfer this knowledge to static images. The idea is to learn a hallucinator & : ¢, — D,
that maps a single-frame representation ¢; to its “movie strip” representation ®,. One advantage
of working with videos is that during training, the target representation ®, is readily available
for every frame ¢ from the temporal encoder. Thus, the hallucinator can be trained in a weakly-
supervised manner, minimizing the difference between the hallucinated movie strip and the actual
movie strip obtained from f,ovie: .

Ly = [|®; — &, |2- 4.3)

Furthermore, we pass the hallucinated movie strip to the f5p regressor to minimize the single-view
loss as well as the delta predictors fa;. This ensures that the hallucinated features are not only
similar to the actual movie strip but can also predict dynamics. All predictor weights are shared
among the actual and hallucinated representations.

In summary we jointly train the temporal encoder, hallucinator, and the delta 3D predictors
together with overall objective:

L = Luempora + Ltwt + Le(®1) + Y Ly ar(®y). (4.4)
At
See Figure 4.2 for the overview of our framework.

4.4 Learning from Unlabeled Video

Although our approach can be trained on 2D pose annotations, annotated data is always limited
— the annotation effort for labeling keypoints in videos is substantial. However, millions of videos
are uploaded to the Internet every day. On YouTube alone, 300 hours of video are uploaded every
minute [10].

Therefore, we curate two Internet-scraped datasets with pseudo-ground truth 2D pose obtained
by running OpenPose [23]. An added advantage of OpenPose is that it detects toe points, which
are not labeled in any of the video datasets with 2D ground truth. Our first dataset is VLOG-
people, a subset of the VLOG lifestyle dataset [38] on which OpenPose fires consistently. To get
a more diverse range of human dynamics, we collect another dataset, InstaVariety, from Instagram
using 84 hashtags such as #instruction, #swimming, and #dancing. A large proportion of the
videos we collected contain only one or two people moving with much of their bodies visible, so
OpenPose [22] produced reasonably good quality 2D annotations. For videos that contain multiple
people, we form our pseudo-ground truth by linking the per-frame skeletons from OpenPose using
the Hungarian algorithm-based tracker from Detect and Track [43]. A clear advantage of unlabeled
videos is that they can be easily collected at a significantly larger scale than videos with human-
annotated 2D pose. Altogether, our pseudo-ground truth data has over 28 hours of 2D-annotated
footage, compared to the 79 minutes of footage in the human-labeled datasets. See Table 4.1 for
the full dataset comparison.
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Annotation Type

Dataset Name Total Frames Total Length (min) Avg. Length (sec) GT 3D GT 2D In-the-wild
Human3.6M 581k 387 48 v v
Penn Action 77k 51 3 v v
NBA (Ours) 43k 28 3 v v
VLOG people (Ours) 353k 236 (4 hr) 8 v
InstaVariety (ours) 2.1M 1459 (1 day) 6 v

Table 4.1: Three tiers of video datasets. We jointly train on videos with: full ground truth 2D and 3D pose
supervision, only ground truth 2D supervision, and pseudo-ground truth 2D supervision. Note the difference
in scale for pseudo-ground truth datasets.

4.5 Experimental Setup

Architecture: We use Resnet-50 [50] pretrained on single-view 3D human pose and shape predic-
tion [60] as our feature extractor, where ¢; € R?%*® is the the average pooled features of the last
layer. Since training on video requires a large amount of memory, we precompute the image fea-
tures on each frame similarly to [1]. This allow us to train on 20 frames of video with mini-batch
size of 8 on a single 1080ti GPU. Our temporal encoder consists of 1D temporal convolutional
layers, where each layer is a residual block of two 1D convolutional layers of kernel width of 3
with group norm. We use three of these layers, producing an effective receptive field size of 13
frames. The final output of the temporal encoder has the same feature dimension as ¢. Our hal-
lucinator contains two fully-connected layers of size 2048 with skip connection. Please see the
supplementary material for more details.

Datasets: Human3.6M [55] is the only dataset with ground truth 3D annotations that we train on.
It consists of motion capture sequences of actors performing tasks in a controlled lab environment.
We follow the standard protocol [60] and train on 4 subjects (S1, S6, S7, S8) and test on 2 subjects
(S9, S11) with 1 subject (S5) as the validation set.

For in-the-wild video datasets with 2D ground truth pose annotations, we use the Penn Action
[146] dataset and our own NBA dataset. Penn Action consists of 15 sports actions, with 1257
training videos and 1068 test. We set aside 10% of the test set as validation. The NBA dataset con-
tains videos of basketball players attempting 3-point shots in 16 basketball games. Each sequence
contains one set of 2D annotations for a single player. We split the dataset into 562 training videos,
64 validation, and 151 test. Finally, we also experiment with the new pseudo-ground truth 2D
datasets (Section 4.4). See Table 4.1 for the summary of each dataset. Unless otherwise indicated,
all models are trained with Human3.6M, Penn Action, and NBA.

We evaluate our approach on the recent 3D Poses in the Wild dataset (3DPW) [88], which
contains 61 sequences (25 train, 25 test, 12 val) of indoor and outdoor activities. Portable IMUs
provide ground truth 3D annotations on challenging in-the-wild videos. To remain comparable to
existing methods, we do not train on 3DPW and only used it as a test set. For evaluations on all
datasets, we skip frames that have fewer than 6 visible keypoints.

As our goal is not human detection, we assume a temporal tube of human detections is avail-
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Figure 4.3: Qualitative results of our approach on sequences from Penn Action, NBA, and VLOG.
For each sequence, the top row shows the cropped input images, the middle row shows the pre-

dicted mesh, and the bottom row shows a different angle of the predicted mesh. Our method
produces smooth, temporally consistent predictions.
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able. We use ground truth 2D bounding boxes if available, and otherwise use the output of Open-
Pose to obtain a temporally smooth tube of human detections. All images are scaled to 224x224
where the humans are roughly scaled to be 150px in height.

4.6 Experiments

We first evaluate the efficacy of the learned temporal representation and compare the model
to local approaches that only use a single image. We also compare our approaches to state-of-
the-art 3D pose methods on 3DPW. We then evaluate the effectiveness of training on pseudo-
ground truth 2D poses. Finally, we quantitatively evaluate the dynamics prediction from a static
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Figure 4.4: Predicting 3D dynamics. In the top row, the boxed image is the single-frame input to
the hallucinator while the left and right images are the ground truth past and future respectively.
The second and third rows show two views of the predicted meshes for the past, present, and future
given the input image.

image on Human3.6M. We show qualitative results on video prediction in Figure 4.3 and static
image dynamics prediction in Figure 4.1 and 4.4. Please see the supplementary for more ablations,
metrics, and discussion of failure modes. In addition, a video with more of our results is available
at https://youtu.be/9fNKSZdsAGS.

Local vs Temporal Context

3DPW NBA Penn Action
PCK 1+ MPJPE | PA-MPJPE | Accel Error | PCK 1 Accel PCK 1 Accel
Single-view retrained [60] 84.1 130.0 76.7 374 559 1636 732 799
Context. no dynamics 82.6 139.2 78.4 15.2 642 46.6 712 293
Contextual 864 127.1 80.1 16.4 684 441 779 29.7

Table 4.2: Local vs temporal context. Our temporal encoder produces smoother predictions, significantly
lowering the acceleration error. We also find that training for dynamic prediction considerably improves 2D
keypoint estimation.

We first evaluate the proposed temporal encoder by comparing with a single-view approach
that only sees a local window of one frame. As the baseline for the local window, we use a model
similar to [60], re-trained on the same training data for a fair comparison. We also run an ablation
by training our model with our temporal encoder but without the dynamics predictions fa;.

In order to measure smooth predictions, we propose an acceleration error, which measures the
average difference between ground truth 3D acceleration and predicted 3D acceleration of each
joint in mm /s%. This can be computed on 3DPW where ground truth 3D joints are available. On
2D datasets, we simply report the acceleration in mm /s>
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3DPW H36M
MPJPE | PA-MPJPE | PA-MPJPE |
Martinez [89] - 157.0 47.7
SMPLity [16] 199.2 106.1 82.3
TP-Net [30] 163.7 92.3 36.3
Ours 1271 80.1 58.1
Ours + InstaVariety 116.5 72.6 56.9

Table 4.3: Comparison to state-of-the-art 3D pose reconstruction approaches. Our approach achieves state-
of-the-art performance on 3DPW. Good performance on Human3.6M does not always translate to good 3D
pose prediction on in-the-wild videos.

We also report other standard metrics. For 3DPW, we report the mean per joint position error
(MPJPE) and the MPJPE after Procrustes Alignment (PA-MPJPE). Both are measured in millime-
ters. On datasets with only 2D ground truth, we report accuracy in 2D pose via percentage of
correct keypoints [140] with o = 0.05.

We report the results on three datasets in Table 4.2. Overall, we find that our method produces
modest gains in 3D pose estimation, large gains in 2D, and a very significant improvement in accel-
eration error. The temporal context helps to resolve ambiguities, producing smoother, temporally
consistent results. Our ablation study shows that access to temporal context alone is not enough;
using the auxiliary dynamics loss is important to force the network to learn the dynamics of the
human.

Comparison to state-of-the-art approaches. In Table 4.3, we compare our approach to other
state-of-the-art methods. None of the approaches train on 3DPW. Note that Martinez [89] performs
well on the Human3.6M benchmark but achieves the worst performance on 3DPW, showing that
methods trained exclusively on Human3.6M do not generalize to in-the-wild images. We also
compare our approach to TP-Net, a recently-proposed semi-supervised approach that is trained on
Human3.6M and MPII 2D pose in-the-wild dataset [9]. TP-Net also learns a temporal smoothing
network supervised on Human3.6M. While this approach is highly competitive on Human3.6M,
our approach significantly out-performs TP-Net on in-the-wild video. We only compare feed-
forward approaches and not methods that smooth the 3D predictions via post-optimization. Such
post-processing methods are complementary to feed-forward approaches and would benefit any of
the approaches.

Training on pseudo-ground truth 2D pose

Here we report results of models trained on the two Internet-scale datasets we collected with
pseudo-ground truth 2D pose annotations (See Table 4.4). We find that the adding more data
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3DPW NBA Penn
PCK 1 MPJPE | PA-MPJPE | PCK 1 PCK 1
Ours 86.4  127.1 80.1 684 779
Ours + VLOG 91.7  126.7 77.7 68.2 78.6
Ours + InstaVariety 929 116.5 72.6 68.1 78.7

Table 4.4: Learning from unlabeled video via pseudo ground truth 2D pose. We collected our own 2D
pose datasets by running OpenPose on unlabeled video. Training with these pseudo-ground truth datasets
induces significant improvements across the board.

Past Current Future
PA-MPJPE | PA-MPJPE | PA-MPJPE |
N.N. 71.6 50.9 70.7
Const. 68.6 58.1 69.3
Ours 1 65.0 58.1 65.3
Ours 2 65.7 60.7 66.3

Table 4.5: Evaluation of dynamic prediction on Human3.6M. The Nearest Neighbors baseline uses the pose
in the training set with the lowest PA-MPJPE with the ground truth current pose to make past and future
predictions. The constant baseline uses the current prediction as the future and past predictions. Ours 1 is
the prediction model with Eq. 4.3, Ours 2 is that without Eq. 4.3.

monotonically improves the model performance both in terms of 3D pose and 2D pose repro-
jection error. Using the largest dataset, InstaVariety, 3D pose error reduces by 9% and 2D pose
accuracy increases by 8% on 3DPW. We see a small improvement or no change on 2D datasets.
It is encouraging to see that not just 2D but also 3D pose improves from pseudo-groundtruth 2D
pose annotations.

Predicting dynamics

We quantitatively evaluate our static image to 3D dynamics prediction. Since there are no other
methods that predict 3D poses from 2D images, we propose two baselines: a constant baseline that
outputs the current frame prediction for both past and future, and an Oracle Nearest Neighbors
baseline. We evaluate our method on Human3.6M and compare with both baselines in Table 4.5.

Clearly, predicting dynamics from a static image is a challenging task due to inherent ambi-
guities in pose and the stochasticity of motion. Our approach works well for ballistic motions in
which there is no ambiguity in the direction of the motion. When it’s not clear if the person is
going up or down our model learns to predict no change.
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4.7 Discussion

We propose an end-to-end model that learns a model of 3D human dynamics that can 1) ob-
tain smooth 3D prediction from video and 2) hallucinate 3D dynamics on single images at test
time. We train a simple but effective temporal encoder from which the current 3D human body as
well as how the 3D pose changes can be estimated. Our approach can be trained on videos with
2D pose annotations in a semi-supervised manner, and we show empirically that our model can
improve from training on an Internet-scale dataset with pseudo-groundtruth 2D poses. While we
show promising results, much more remains to be done in recovering 3D human body from video.
Upcoming challenges include dealing with occlusions and interactions between multiple people.

4.8 Supplementary

Model architecture

Temporal Encoder Figure 4.5 visualizes the architecture of our temporal encoder fovie. Each
1D convolution has temporal kernel size 3 and filter size 2048. For group norm, we use 32 groups
each with 64 channels. We repeat the residual block 3 times, which gives us a field of view of 13
frames.

GroupNorm

Figure 4.5: Architecture of the temporal encoder fiovie-

Hallucinator Our hallucinator consists of two fully-connected layers of 2048 neurons, whose
output gets added to the original ¢ as a skip connection.
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3D regressors Our f;p regresses the 85D O, vector in an iterative error feedback (IEF) loop
[24, 60], where the current estimates are progressively updated by the regressor. Specifically, the
regressor takes in the current image feature ¢; and current parameter estimate @? ), and outputs
corrections A@,Ej ). The current estimate gets updated by this correction @,Ej = A@gj )+ @ij ),
This loop is repeated 3 times. We initialize the @£0) to be the mean values ©, which we also update
as a learned parameter.

The regressor consists of two fully-connected layers, both with 1024 neurons, with a dropout
layer in between, followed by a final layer that outputs the 85D outputs. All weights are shared.

The dynamics predictors fia; has a similar form, except it only outputs the 72-D changes in
pose 6, and the initial estimate is set to the prediction of the current frame ¢, i.e. et(i)m = ¢;. Each
f+a: learns a separate set of weights.

Additional Ablations and Evaluations

In Table 4.6, we evaluate our method and comparable methods on 2D/3D pose and 3D shape
recovery. We provide another ablation of our approach where the constant shape loss (Eq. 1) is not
used (Ours — Const). In addition, we include full results from our ablation studies.

Shape Evaluation To measure shape predictions, we report Posed Mesh Error (Mesh Pos),
which computes the mean Euclidean distance between the predicted and ground truth 3D meshes.
Since this metric is affected by the quality of the pose predictions, we also report Unposed Mesh
Error (Mesh Unp), which computes the same but with a fixed T-pose to evaluate shape indepen-
dently of pose accuracy. Both metrics are in units of mm. Note that accurately capturing the shape
of the subject is challenging since only 4 ground truth shapes are available in Human3.6M when
training.

Failure Modes

While our experiments show promising results, there is still room for improvement.

Smoothing Overall, our method obtains smooth results, but it can struggle in challenging situ-
ations, such as person-to-person occlusions or fast motions. Additionally, extreme or rare poses
(e.g.stretching, ballet) are difficult to capture.

Dynamics Prediction Clearly, predicting the past and future dynamics from a single image is a
challenging problem. Even for us humans, from a single image alone, many motions are ambigu-
ous. Figure 4.6 visualizes a canonical example of such ambiguity, where it is unclear from the
input center image if she is about to raise her arms or lower them. In these cases, our model learns
to predict constant pose.

Furthermore, even the pose in a single image can be ambiguous, for example due to motion blur
in videos. Figure 4.7 illustrates a typical example, where the tennis player’s arm has disappeared
and therefore the model cannot discern whether the person is facing left or right. When the current
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3DPW H3.6M Penn Action
PCK T MPJPE | PA-MPIJPE | Accel Err | Mesh Pos | Mesh Unp | MPJPE | PA-MPJPE | Accel Err]  PCK T
Martinez [89] - - 157.0 - - - 62.9 47.7 - -
SMPLify [16] - 199.2 106.1 - 211.2 61.2 - 82.3 - -
TP-Net [31] - 163.7 92.3 - - - 52.1 36.3 - -
Ours 86.4 127.1 80.1 16.4 144.4 25.8 87.0 58.1 9.3 719
Ours + VLOG 91.7 126.7 71.7 15.7 147.4 29.7 85.9 58.3 9.3 78.6
Ours + InstaVariety 929 116.5 72.6 14.3 138.6 26.7 83.7 56.9 9.3 78.7
Single-view retrained [60] 84.1 130.0 76.7 374 144.9 24.4 94.0 59.3 239 732
Ours — Dynamics 82.6 139.2 78.4 15.2 155.2 24.8 88.6 58.3 9.1 71.2
Ours — Const 86.5 128.3 78.2 16.6 145.9 27.5 83.5 57.8 9.3 78.1

Table 4.6: Evaluation of baselines, ablations, and our proposed method on 2D and 3D keypoints and 3D
mesh. We compare with three other feed-forward methods that predict 3D joints. None of the models are
trained on 3DPW, all of the models are trained on H3.6M, and only our models are trained on Penn Action
(TP-Net also uses MPII 2D dataset). We show that training with pseudo-ground truth 2D annotations signif-
icantly improves 2D and 3D predictions on the in-the-wild video dataset 3DPW. Single-view is retrained on
our data. Ours — Dynamics is trained without the past and future regressors fia;. Ours — Const is trained

without L¢onst shape

frame prediction is poor, the resulting dynamics predictions are also not correct, since the dynamics
predictions are initialized from the pose of the current frame.
Note that incorporating temporal context resolves many of these static-image ambiguities.
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Figure 4.6: Ambiguous motion. Dynamic prediction is difficult from the center image alone, where
her arms may reasonably lift or lower in the future.
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Figure 4.7: Ambiguous pose. The tennis player’s pose in the input, center image is difficult to
disambiguate between hunched forward verses arched backward due to the motion blur. This
makes it challenging for our model to recover accurate dynamics predictions from the single image.
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Chapter 5

Conclusion

In this thesis, we have presented a number of advances towards learning to predict human
behavior. In particular, in Chapter 2, we presented methods for predicting future events. In Chapter
3, we presented methods for predicting how events will evolve, specifically by predicting human
motion. We further personalized predictions based on the identities of the moving agents. Both for
events and for motion prediction, we largely operated in an overhead view representation of sports
game play. In Chapter 4, we worked towards making predictions from appearance alone, where we
presented a framework for learning 3D human dynamics from video that is capable of outputting
smooth 3D predictions of a persons pose and shape in videos. And further, from a single image, it
can recover the current 3D pose and shape as well as its 3D motions in the immediate surrounding
moments. With these methods, there is still much room for improvement. Below we discuss some
of the challenges that remain, and some possible future directions.

Long-term prediction: Accurately predicting farther in the future is harder. While our pre-
dictions for player motion in Chapter 3 are somewhat long-term, extending up to 8 seconds, our
predictions in Chapter 4, for example, are only within an 11-frame window around a given snap-
shot. And, our event-based predictions are largely for the next future event. However, in any of
these cases, we could extend our model to include auto-regressive prediction for longer-term fore-
casting, as has been shown to be successful for generating long sequences of motion with [cite
the autoconditioning paper]. Only in Chapter 4, where our hallucinator relies on past and future
frames, would we need to adapt our model prior to incorporating an auto-regressive framework.
However, replacing our presented temporal encoder in Chapter 4 with a causal version, does enable
auto-regressive predictions of future 3D human motion.

Multi-modal prediction: Naturally, the future is uncertain. Capturing this uncertainty with
multi-modal predictions is an area of active research. In Chapter 3, we explicitly attempt to model
the distribution of future motion with a variational layer. However, while our predictions are quite
good, we are largely unsuccessful with capturing a variety of different possible futures. Recent
work from [77] introduces an alternative generative framework with demonstrated success with
image synthesis [78]. Adapting this method to our prediction tasks could enable multi-modal
predictions.

Multi-type prediction: In this work, we present distinct methods for predicting future events
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and future motion. However, in real life, events and motion are intertwined. Events provide a
coarse description for what occurs, whereas motion provides the information about how an event
occurs. Recent work shows promise with generating player trajectories using weakly supervised
macro intents [ 145], which capture activity information. While other recent work shows the benefit
of using motion prediction as an auxiliary task for learning to recognize actions in fly motion
trajectories [34].

Representation: The overhead representation of game play that we present in Chapter 2, and
subsequently rely on in Chapter 3, has the advantage of capturing well the player spacing and mo-
tion, which may be more difficult to capture directly from the pixels alone. However, the drawback
is that it loses all information about pose and appearance. Methods that jointly incorporate both of
these representations should be able to learn to take advantage of the benefits of each when making
predictions. For example, if we provide, as an additional feature to our random forest the oracle
(discretized) direction a player is facing, performance significantly improves. With four direction
bins, we can surpass non-expert performance and start to approach expert-level performance here
the prediction accuracy is in the low 60s.

Learning without ground truth supervision: In Chapter 4, we demonstrate noticeable per-
formance improvement by using pseudo-ground truth 2D pose labels from more than one day’s
worth of footage from Internet videos. While an obvious extension would be to incorporate more
and better data into learning (as pose detectors improve), another direction would be to incorpo-
rate pseudo-ground truth 3D data. For example, the OpenPose [22] authors have recently released
3D triangulation from multiple single views to estimate 3D pose in multi-view video footage. As
Human3.6m, the primary source of 3D ground truth data, is limited in its actions, this may be able
to provide 3D supervision for a wide variety of activities.
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