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Abstract

Local and Adaptive Image-to-Image Learning and Inference

by

Evan Gerard Shelhamer

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Much of the recent progress on visual processing has been driven by deep learning and its
bicameral heart of composition and end-to-end optimization. The machinery of convolutional
networks is now ubiquitous. Its di↵usion however was neither instantaneous nor e↵ortless.
To advance across the frontiers of vision, deep learning had to be equipped with the right
structures: the true, intrinsic structures of the visual world.

This thesis incorporates locality and scale structure into end-to-end learning for visual
recognition. Locality structure is key for addressing image-to-image tasks that take image
inputs and return image outputs. Scale structure is ubiquitous, and optimizing over it learns
the degree of locality for the task and data. Alongside structure, this thesis examines adaptive
computation to help cope with the variability of rich image-to-image prediction problems.
These directions are studied through the lens of local recognition tasks that require inference
of what and where.

Fully convolutional networks decompose image-to-image learning and inference into local
scopes. Factorizing these scopes into structured and free-form parts, and learning both,
optimizes their size and shape to control the degree of locality. Adaptive computation
across time, computing layers according to their rate of change, exploits temporal locality to
improve the e�ciency of video processing. Adaptive computation across tasks, extracting a
latent representation of local supervision, transcends locality to non-locally guide and correct
inference. Locality is the defining principle of our fully convolutional networks. Adaptivity
equips our networks to more fully engage with the vastness and variety of vision.
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Chapter 1

Introduction

There are many and various kinds of image, each with its own particulars. A wealth of
visual problems can be framed as image-to-image tasks, which take image inputs and return
image outputs, to map between di↵erent kinds of images. For instance, consider seman-
tic segmentation for categories, contours for grouping, intrinsic image decomposition for
shape/paint/light, optical flow for motion, stylization for appearance, and many more. Fig-
ure 1.1 illustrates a selection of such tasks. While there are plenty of specifics, there is
nevertheless common structure.

This thesis pursues a unified approach for learning image-to-image tasks end-to-end and
pixels-to-pixels by harnessing locality structure. We define, design, optimize, and analyze
purely local fully convolutional networks. Throughout we focus on semantic segmentation,
the assignment of a category to every pixel, as emblematic of the general image-to-image
problem. Learning engages with the blooming, buzzing confusion of the visual world by
data while locality defines the scope of this engagement by design. Decomposing the rep-
resentations and computations for vision into local modeling and processing is essential for
practicality (and respects the nature of reality). This thesis argues for the reconciliation of
learning and structure as a route to e↵ective and e�cient visual processing. We blur the line
between learning and structure to yield models that respect locality and decide its degree
by optimization. Incorporating structure in this fashion by composition, not substitution,
points out a path to learning and inferring more, not less.

First, in Chapter 2 we explain fully convolutional networks: machines for image-to-
image learning and inference that harness locality to decompose tasks into local scopes.
Clockwork convolutional networks (Chapter 3) adaptively compute layers according to their
rate of change to improve the e�ciency of video processing. Guided networks (Chapter 4)
extract a latent task representation from local supervision for non-local inference within
and across images with quick updates for real-time interaction. Composing free-form filters
with structured Gaussian filters, and learning both, optimizes over receptive size to decide
the degree of locality (Chapter 5). Finally, in Chapter 6 we consider directions for further
progress and the fuller understanding of fully convolutional networks. (In the appendices we
attend to two key prerequisites for this thesis: the brewing of Ca↵e and co↵ee.)
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(a) semantic segmentation (b) depth and normals (c) optical flow

(d) contours (e) colorization (f) stylization and translation

Figure 1.1: Image-to-image tasks are many and varied. While each kind of image and task
has its respective details, they all share certain structures, like locality and scale. The general
machinery of fully convolutional networks, the core subject of this thesis, serves as a unifying
framework that has been adopted and extended for the tasks highlighted here and more.
(Figures from [LSD15; EF15; Fis+15; XT15; ZIE16; Zhu+17]).

Summary of Open-Source Contributions
Code for the reproduction and extension of research in this thesis is free and open-source:

• https://caffe.berkeleyvision.org: Ca↵e is a deep learning framework made with
expression, speed, and modularity in mind [Jia+14]. The swell in deep learning was
propelled in part by a wave of open science and toolkits, including Ca↵e and its model
zoo. Leading the development of Ca↵e from version 0.1 to 1.0 was a significant e↵ort
and core part of the technical and social contributions of this thesis.

• https://fcn.berkeleyvision.org: reference implementation of the
fully convolutional networks in Chapter 2.

• https://github.com/shelhamer/clockwork-fcn: code and notebooks for the
clockwork convolutional networks in Chapter 3.

• https://github.com/shelhamer/revolver: code and notebooks for the
guided networks in Chapter 4.

• https://github.com/shelhamer/fog: code and notebooks for the
free-form and structured filtering in Chapter 5.

Further open-source contributions can be found at https://github.com/shelhamer.

https://caffe.berkeleyvision.org
https://fcn.berkeleyvision.org
https://github.com/shelhamer/clockwork-fcn
https://github.com/shelhamer/revolver
https://github.com/shelhamer/fog
https://github.com/shelhamer
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Chapter 2

Local Learning & Inference of
Image-to-Image Tasks

Convolutional networks are driving advances in recognition. Convnets are not only improving
for whole-image classification [KSH12; SZ15; Sze+15], but also making progress on local tasks
with structured output. These include advances in bounding box object detection [Ser+14;
Gir+15; He+14], part and keypoint prediction [Zha+14; LZD14], and local correspondence
[LZD14; FDB14].

The natural next step in the progression from coarse to fine inference is to make a predic-
tion at every pixel. Prior approaches have used convnets for semantic segmentation [Nin+05;
Cir+12; Far+13; PC14; Har+14; Gup+14; GL14], in which each pixel is labeled with the
class of its enclosing object or region, but with shortcomings that this work addresses.

We show that fully convolutional networks (FCNs) trained end-to-end, pixels-to-pixels on
semantic segmentation exceed the previous best results without further machinery. To our
knowledge, this is the first work to train FCNs end-to-end (1) for pixelwise prediction and (2)
from supervised pre-training. Fully convolutional versions of existing networks predict dense
outputs from arbitrary-sized inputs. Both learning and inference are performed whole-image-
at-a-time by dense feedforward computation and backpropagation. In-network upsampling
layers enable pixelwise prediction and learning in nets with subsampling.

This method is e�cient, both asymptotically and absolutely, and precludes the need for
the complications in other works. Patchwise training is common [Nin+05; Cir+12; Far+13;
PC14; GL14], but lacks the e�ciency of fully convolutional training. Our approach does
not make use of pre- and post-processing complications, including superpixels [Far+13;
Har+14], proposals [Har+14; Gup+14], or post-hoc refinement by random fields or local
classifiers [Far+13; Har+14]. Our model transfers recent success in classification [KSH12;
SZ15; Sze+15] to dense prediction by reinterpreting classification nets as fully convolutional
and fine-tuning from their learned representations. In contrast, previous works have applied
small convnets without supervised pre-training [Far+13; PC14; Nin+05].

Semantic segmentation faces an inherent tension between semantics and location: global
information resolves what while local information resolves where. What can be done to
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Figure 2.1: Fully convolutional networks can e�ciently learn to make dense predictions for
per-pixel tasks like semantic segmentation.

navigate this spectrum from location to semantics? How can local decisions respect global
structure? It is not immediately clear that deep networks for image classification yield
representations su�cient for accurate, pixelwise recognition.

We cast pre-trained networks into fully convolutional form, and augment them with a
skip architecture that takes advantage of the full feature spectrum. The skip architecture
fuses the feature hierarchy to combine deep, coarse, semantic information and shallow, fine,
appearance information (see Section 2.3.3 and Figure 2.3). In this light, deep feature hier-
archies encode location and semantics in a nonlinear local-to-global pyramid.

For a fuller understanding of fully convolutional networks, we then carry out further tun-
ing, analysis, and benchmark experiments. Alternative choices, ablations, and implemen-
tation details better cover the space of FCNs. Tuning optimization leads to more accurate
networks and a means to learn skip architectures all-at-once instead of in stages. Experiments
that mask foreground and background investigate the role of context and shape. Results on
the object and scene labeling of PASCAL-Context reinforce merging object segmentation
and scene parsing as unified pixelwise prediction.

In the next section, we review related work on deep classification nets, FCNs, recent
approaches to semantic segmentation using convnets, and extensions to FCNs. The following
sections explain FCN design, introduce our architecture with in-network upsampling and skip
layers, and describe our experimental framework. Next, we demonstrate improved accuracy
on PASCAL VOC 2011-2, NYUDv2, SIFT Flow, and PASCAL-Context. Finally, we analyze
design choices, examine what cues can be learned by an FCN, and calculate recognition
bounds for semantic segmentation.

2.1 Related Work

Our approach draws on recent successes of deep nets for image classification [KSH12; SZ15;
Sze+15] and transfer learning [Don+14; ZF14]. Transfer was first demonstrated on various
visual recognition tasks [Don+14; ZF14], then on detection, and on both instance and se-
mantic segmentation in hybrid proposal-classifier models [Gir+15; Har+14; Gup+14]. We
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now re-architect and fine-tune classification nets to direct, dense prediction of semantic seg-
mentation. We chart the space of FCNs and relate prior models both historical and recent.

Fully convolutional networks To our knowledge, the idea of extending a convnet
to arbitrary-sized inputs first appeared in Matan et al.[Mat+91], which extended the clas-
sic LeNet [LeC+98a] to recognize strings of digits. Because their net was limited to one-
dimensional input strings, Matan et al.used Viterbi decoding to obtain their outputs. Wolf
and Platt [WP94] expand convnet outputs to 2-dimensional maps of detection scores for
the four corners of postal address blocks. Both of these historical works do inference and
learning fully convolutionally for detection. Ning et al.[Nin+05] define a convnet for coarse
multiclass segmentation of C. elegans tissues with fully convolutional inference.

Fully convolutional computation has also been exploited in the present era of many-
layered nets. Sliding window detection by Sermanet et al.[Ser+14], semantic segmentation
by Pinheiro and Collobert [PC14], and image restoration by Eigen et al.[EKF13] do fully
convolutional inference. Fully convolutional training is rare, but used e↵ectively by Tompson
et al.[Tom+14] to learn an end-to-end part detector and spatial model for pose estimation,
although they do not exposit on or analyze this method.

Dense prediction with convnets Several recent works have applied convnets to dense
prediction problems, including semantic segmentation by Ning et al.[Nin+05], Farabet et
al.[Far+13], and Pinheiro and Collobert [PC14]; boundary prediction for electron microscopy
by Ciresan et al.[Cir+12] and for natural images by a hybrid convnet/nearest neighbor model
by Ganin and Lempitsky [GL14]; and image restoration and depth estimation by Eigen et
al.[EKF13; EPF14]. Common elements of these approaches include

• small models restricting capacity and receptive fields;

• patchwise training [Nin+05; Cir+12; Far+13; PC14; GL14];

• refinement by superpixel projection, random field regularization, filtering, or local clas-
sification [Far+13; Cir+12; GL14];

• “interlacing” to obtain dense output [Ser+14; PC14; GL14];

• multi-scale pyramid processing [Far+13; PC14; GL14];

• saturating tanh nonlinearities [Far+13; EKF13; PC14]; and

• ensembles [Cir+12; GL14],

whereas our method does without this machinery. However, we do study patchwise training
(Section 2.2.4) and “shift-and-stitch” dense output (Section 2.2.2) from the perspective of
FCNs. We also discuss in-network upsampling (Section 2.2.3), of which the fully connected
prediction by Eigen et al.[EPF14] is a special case.

Unlike these existing methods, we adapt and extend deep classification architectures,
using image classification as supervised pre-training, and fine-tune fully convolutionally to
learn simply and e�ciently from whole image inputs and whole image ground thruths.
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Hariharan et al.[Har+14] and Gupta et al.[Gup+14] likewise adapt deep classification nets
to semantic segmentation, but do so in hybrid proposal-classifier models. These approaches
fine-tune an R-CNN system [Gir+15] by sampling bounding boxes and/or region proposals
for detection, semantic segmentation, and instance segmentation. Neither method is learned
end-to-end. They achieve the previous best segmentation results on PASCAL VOC and
NYUDv2 respectively, so we directly compare our standalone, end-to-end FCN to their
semantic segmentation results in Section 3.4.

Combining feature hierarchies We fuse features across layers to define a nonlinear
local-to-global representation that we tune end-to-end. The Laplacian pyramid [BA83] is
a classic multi-scale representation made of fixed smoothing and di↵erencing. The jet of
Koenderink and van Doorn [KD87] is a rich, local feature defined by compositions of partial
derivatives. In the context of deep networks, Sermanet et al.[Ser+13] fuse intermediate
layers but discard resolution in doing so. In contemporary work Hariharan et al.[Har+15]
and Mostajabi et al.[MYS15] also fuse multiple layers but do not learn end-to-end and rely
on fixed bottom-up grouping.

FCN extensions Following the publication of fully convolutional networks [LSD15;
SLD17], FCNs have been extended to new tasks and data. Tasks include region proposals
[Ren+15], contour detection [XT15], depth regression [Liu+15], optical flow [Fis+15], and
weakly-supervised semantic segmentation [PKD15; Pap+15; DHS15a; HNH15].

In addition, new works have improved the FCNs presented here to further advance the
state-of-the-art in semantic segmentation. The DeepLab models [Che+15; Che+18a] raise
output resolution by dilated convolution and dense CRF inference. The joint CRFasRNN
[Zhe+15] model is an end-to-end integration of the CRF for further improvement. ParseNet
[LRB15] normalizes features for fusion and captures context with global pooling. The “decon-
volutional network” approach of [NHH15] restores resolution by proposals, stacks of learned
deconvolution, and unpooling. U-Net [RFB15] combines skip layers and learned deconvo-
lution for pixel labeling of microscopy images. The dilation architecture of [YK16] makes
thorough use of dilated convolution for pixel-precise output without a random field or skip
layers.

2.2 Fully Convolutional Networks

Each layer output in a convnet is a three-dimensional array of size h⇥ w ⇥ d, where h and
w are spatial dimensions, and d is the feature or channel dimension. The first layer is the
image, with pixel size h ⇥ w, and d channels. Locations in higher layers correspond to the
locations in the image they are path-connected to, which are called their receptive fields.

Convnets are inherently translation invariant. Their basic components (convolution,
pooling, and activation functions) operate on local input regions, and depend only on relative
spatial coordinates. Writing xij for the data vector at location (i, j) in a particular layer,
and yij for the following layer, these functions compute outputs yij by

yij = fks ({xsi+�i,sj+�j}0�i,�j<k)
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where k is called the kernel size, s is the stride or subsampling factor, and fks determines
the layer type: a matrix multiplication for convolution or average pooling, a spatial max for
max pooling, or an elementwise nonlinearity for an activation function, and so on for other
types of layers.

This functional form is maintained under composition, with kernel size and stride obeying
the transformation rule

fks � gk0s0 = (f � g)k0+(k�1)s0,ss0 .

While a general net computes a general nonlinear function, a net with only layers of this
form computes a nonlinear filter, which we call a deep filter or fully convolutional network.
An FCN naturally operates on an input of any size, and produces an output of corresponding
(possibly resampled) spatial dimensions.

A real-valued loss function composed with an FCN defines a task. If the loss function
is a sum over the spatial dimensions of the final layer, `(x; ✓) =

P
ij `

0(xij; ✓), its parameter
gradient will be a sum over the parameter gradients of each of its spatial components. Thus
stochastic gradient descent on ` computed on whole images will be the same as stochastic
gradient descent on `0, taking all of the final layer receptive fields as a minibatch.

When these receptive fields overlap significantly, both feedforward computation and back-
propagation are much more e�cient when computed layer-by-layer over an entire image
instead of independently patch-by-patch.

We next explain how to convert classification nets into fully convolutional nets that
produce coarse output maps. For pixelwise prediction, we need to connect these coarse
outputs back to the pixels. Section 2.2.2 describes a trick used for this purpose (e.g., by
“fast scanning” [Giu+13]). We explain this trick in terms of network modification. As an
e�cient, e↵ective alternative, we upsample in Section 2.2.3, reusing our implementation of
convolution. In Section 2.2.4 we consider training by patchwise sampling, and give evidence
in Section 2.3.4 that our whole image training is faster and equally e↵ective.

2.2.1 From Fully Connected to Fully Convolutional

Typical recognition nets, including LeNet [LeC+98a], AlexNet [KSH12], and its deeper suc-
cessors [SZ15; Sze+15], ostensibly take fixed-sized inputs and produce non-spatial outputs.
The fully connected layers of these nets have fixed dimensions and throw away spatial coor-
dinates. However, fully connected layers can also be viewed as convolutions with kernels that
cover their entire input regions. Doing so casts these nets into fully convolutional networks
that take input of any size and make spatial output maps. This transformation is illustrated
in Figure 2.2.

Furthermore, while the resulting maps are equivalent to the evaluation of the original
net on particular input patches, the computation is highly amortized over the overlapping
regions of those patches. For example, while AlexNet takes 1.2 ms (on a typical GPU) to
infer the classification scores of a 227 ⇥ 227 image, the fully convolutional net takes 22 ms
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Figure 2.2: Transforming fully connected layers into convolution layers enables a classification
net to output a spatial map. Adding di↵erentiable interpolation layers and a spatial loss (as
in Figure 4.1) produces an e�cient machine for end-to-end pixelwise learning.

to produce a 10 ⇥ 10 grid of outputs from a 500 ⇥ 500 image, which is more than 5 times
faster than the näıve approach1.

The spatial output maps of these convolutionalized models make them a natural choice
for dense problems like semantic segmentation. With ground truth available at every output
cell, both the forward and backward passes are straightforward, and both take advantage
of the inherent computational e�ciency (and aggressive optimization) of convolution. The
corresponding backward times for the AlexNet example are 2.4 ms for a single image and 37
ms for a fully convolutional 10 ⇥ 10 output map, resulting in a speedup similar to that of
the forward pass.

While our reinterpretation of classification nets as fully convolutional yields output maps
for inputs of any size, the output dimensions are typically reduced by subsampling. The
classification nets subsample to keep filters small and computational requirements reasonable.
This coarsens the output of a fully convolutional version of these nets, reducing it from the
size of the input by a factor equal to the pixel stride of the receptive fields of the output
units.

2.2.2 Shift-and-Stitch is Filter Dilation

Dense predictions can be obtained from coarse outputs by stitching together outputs from
shifted versions of the input. If the output is downsampled by a factor of f , shift the input
x pixels to the right and y pixels down, once for every (x, y) such that 0  x, y < f . Process
each of these f

2 inputs, and interlace the outputs so that the predictions correspond to the
pixels at the centers of their receptive fields.

Although this transformation näıvely increases the cost by a factor of f 2, there is a well-
known trick for e�ciently producing identical results [Giu+13; Ser+14]. (This trick is also

1Assuming e�cient batching of single image inputs. The classification scores for a single image by itself
take 5.4 ms to produce, which is nearly 25 times slower than the fully convolutional version.
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used in the algorithme à trous [Hol+89; Mal99] for wavelet transforms and related to the
Noble identities [Vai90] from signal processing.)

Consider a layer (convolution or pooling) with input stride s, and a subsequent convo-
lution layer with filter weights fij (eliding the irrelevant feature dimensions). Setting the
earlier layer’s input stride to one upsamples its output by a factor of s. However, convolving
the original filter with the upsampled output does not produce the same result as shift-and-
stitch, because the original filter only sees a reduced portion of its (now upsampled) input.
To produce the same result, dilate (or “rarefy”) the filter by forming

f
0
ij =

⇢
fi/s,j/s if s divides both i and j;
0 otherwise,

(with i and j zero-based). Reproducing the full net output of shift-and-stitch involves re-
peating this filter enlargement layer-by-layer until all subsampling is removed. (In practice,
this can be done e�ciently by processing subsampled versions of the upsampled input.)

Simply decreasing subsampling within a net is a tradeo↵: the filters see finer information,
but have smaller receptive fields and take longer to compute. This dilation trick is another
kind of tradeo↵: the output is denser without decreasing the receptive field sizes of the filters,
but the filters are prohibited from accessing information at a finer scale than their original
design.

Although we have done preliminary experiments with dilation, we do not use it in our
model. We find learning through upsampling, as described in the next section, to be e↵ective
and e�cient, especially when combined with the skip layer fusion described later on. For
further detail regarding dilation, refer to the dilated FCN of [YK16].

2.2.3 Upsampling is (Fractionally Strided) Convolution

Another way to connect coarse outputs to dense pixels is interpolation. For instance, simple
bilinear interpolation computes each output yij from the nearest four inputs by a linear map
that depends only on the relative positions of the input and output cells:

yij =
1X

↵,�=0

|1� ↵� {i/f}| |1� � � {i/j}| xbi/fc+↵,bj/fc+�,

where f is the upsampling factor, and {·} denotes the fractional part.
In a sense, upsampling with factor f is convolution with a fractional input stride of 1/f .

So long as f is integral, it’s natural to implement upsampling through “backward convolu-
tion” by reversing the forward and backward passes of more typical input-strided convolution.
Thus upsampling is performed in-network for end-to-end learning by backpropagation from
the pixelwise loss.

Per their use in deconvolution networks (esp. [ZF14]), these (convolution) layers are
sometimes referred to as deconvolution layers. Note that the convolution filter in such a layer
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need not be fixed (e.g., to bilinear upsampling), but can be learned. A stack of deconvolution
layers and activation functions can even learn a nonlinear upsampling.

In our experiments, we find that in-network upsampling is fast and e↵ective for learning
dense prediction.

2.2.4 Patchwise Training is Loss Sampling

In stochastic optimization, gradient computation is driven by the training distribution. Both
patchwise training and fully convolutional training can be made to produce any distribution
of the inputs, although their relative computational e�ciency depends on overlap and mini-
batch size. Whole image fully convolutional training is identical to patchwise training where
each batch consists of all the receptive fields of the output units for an image (or collection
of images). While this is more e�cient than uniform sampling of patches, it reduces the
number of possible batches. However, random sampling of patches within an image may
be easily recovered. Restricting the loss to a randomly sampled subset of its spatial terms
(or, equivalently applying a DropConnect mask [Wan+13] between the output and the loss)
excludes patches from the gradient.

If the kept patches still have significant overlap, fully convolutional computation will still
speed up training. If gradients are accumulated over multiple backward passes, batches can
include patches from several images. If inputs are shifted by values up to the output stride,
random selection of all possible patches is possible even though the output units lie on a
fixed, strided grid.

Sampling in patchwise training can correct class imbalance [Nin+05; Far+13; Cir+12]
and mitigate the spatial correlation of dense patches [PC14; Har+14]. In fully convolutional
training, class balance can also be achieved by weighting the loss, and loss sampling can be
used to address spatial correlation.

We explore training with sampling in Section 2.3.4, and do not find that it yields faster
or better convergence for dense prediction. Whole image training is e↵ective and e�cient.

2.3 Segmentation Architecture

We cast ILSVRC classifiers into FCNs and augment them for dense prediction with in-
network upsampling and a pixelwise loss. We train for segmentation by fine-tuning. Next,
we add skips between layers to fuse coarse, semantic and local, appearance information. This
skip architecture is learned end-to-end to refine the semantics and spatial precision of the
output.

For this investigation, we train and validate on the PASCAL VOC 2011 segmentation
challenge [Eve+10]. We train with a per-pixel softmax loss and validate with the standard
metric of mean pixel intersection over union, with the mean taken over all classes, including
background. The training ignores pixels that are masked out (as ambiguous or di�cult) in
the ground truth.
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Table 2.1: We adapt and extend three classification convnets. We compare performance by
mean intersection over union on the validation set of PASCAL VOC 2011 and by inference
time (averaged over 20 trials for a 500 ⇥ 500 input on an NVIDIA Titan X). We detail
the architecture of the adapted nets with regard to dense prediction: number of parameter
layers, receptive field size of output units, and the coarsest stride within the net. (These
numbers give the best performance obtained at a fixed learning rate, not best performance
possible.)

FCN-AlexNet FCN-VGG16 FCN-GoogLeNet3

mean IU 39.8 56.0 42.5
forward time 16 ms 100 ms 20 ms
conv. layers 8 16 22
parameters 57M 134M 6M
rf size 355 404 907
max stride 32 32 32

2.3.1 Pixel-to-Pixel Segmentation from Image Classification

We begin by convolutionalizing proven classification architectures from ILSVRC [Rus+15]
as in Section 2.2. We consider the AlexNet2 architecture [KSH12] that won ILSVRC12, as
well as the VGG nets [SZ15] and the GoogLeNet3 [Sze+15] which did exceptionally well in
ILSVRC14. We pick the VGG 16-layer net4, which we found to be equivalent to the 19-layer
net on this task. For GoogLeNet, we use only the final loss layer, and improve performance
by discarding the final average pooling layer. We decapitate each net by discarding the final
classifier layer, and convert all fully connected layers to convolutions. We append a 1 ⇥ 1
convolution with channel dimension 21 to predict scores for each of the PASCAL classes
(including background) at each of the coarse output locations, followed by a (backward)
convolution layer to bilinearly upsample the coarse outputs to pixelwise outputs as described
in Section 2.2.3. Table 2.1 compares the preliminary validation results along with the basic
characteristics of each net. We report the best results achieved after convergence at a fixed
learning rate (at least 175 epochs).

Our training for this comparison follows the practices for classification networks. We
train by SGD with momentum. Gradients are accumulated over 20 images. We set fixed
learning rates of 10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and FCN-GoogLeNet,
respectively, chosen by line search. We use momentum 0.9, weight decay of 5�4 or 2�4,
and doubled learning rate for biases. We zero-initialize the class scoring layer, as random
initialization yielded neither better performance nor faster convergence. Dropout is included

2Using the publicly available CaffeNet reference model.
3We use our own reimplementation of GoogLeNet. Ours is trained with less extensive data augmentation,

and gets 68.5% top-1 and 88.4% top-5 ILSVRC accuracy.
4Using the publicly available version from the Ca↵e model zoo.
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Table 2.2: Comparison of image-to-image optimization by gradient accumulation, online
learning, and “heavy” learning with high momentum. All methods are trained on a fixed
sequence of 100,000 images (sampled from a dataset of 8,498) to control for stochasticity
and equalize the number of gradient computations. The loss is not normalized so that every
pixel has the same weight no matter the batch and image dimensions. Scores are the best
achieved during training on a subset5 of PASCAL VOC 2011 segval. Learning is end-to-end
with FCN-VGG16.

batch
size mom.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-accum 20 0.9 86.0 66.5 51.9 76.5
FCN-online 1 0.9 89.3 76.2 60.7 81.8
FCN-heavy 1 0.99 90.5 76.5 63.6 83.5

where used in the original classifier nets (however, training without it made little to no
di↵erence).

Fine-tuning from classification to segmentation gives reasonable predictions from each
net. Even the worst model achieved ⇠ 75% of the previous best performance. FCN-VGG16
already appears to be better than previous methods at 56.0 mean IU on val, compared to 52.6
on test [Har+14]. Although VGG and GoogLeNet are similarly accurate as classifiers, our
FCN-GoogLeNet did not match FCN-VGG16. We select FCN-VGG16 as our base network.

2.3.2 Image-to-Image Learning

The image-to-image learning setting includes high e↵ective batch size and correlated inputs.
This optimization requires some attention to properly tune FCNs.

We begin with the loss. We do not normalize the loss, so that every pixel has the same
weight regardless of the batch and image dimensions. Thus we use a small learning rate
since the loss is summed spatially over all pixels.

We consider two regimes for batch size. In the first, gradients are accumulated over 20
images. Accumulation reduces the memory required and respects the di↵erent dimensions
of each input by reshaping the network. We picked this batch size empirically to result in
reasonable convergence. Learning in this way is similar to standard classification training:
each minibatch contains several images and has a varied distribution of class labels. The
nets compared in Table 2.1 are optimized in this fashion.

However, batching is not the only way to do image-wise learning. In the second regime,
batch size one is used for online learning. Properly tuned, online learning achieves higher
accuracy and faster convergence in both number of iterations and wall clock time. Addition-
ally, we try a higher momentum of 0.99, which increases the weight on recent gradients in a
similar way to batching. See Table 2.2 for the comparison of accumulation, online, and high
momentum or “heavy” learning (discussed further in Section 2.5.2).
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image pool4 pool5pool1 pool2 pool3conv1 conv2 conv3 conv4 conv5 conv6-7
32x upsampled

prediction (FCN-32s)

16x upsampled
prediction (FCN-16s)

8x upsampled
prediction (FCN-8s)
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2x pool4
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Figure 2.3: Our DAG nets learn to combine coarse, high layer information with fine, low
layer information. Pooling and prediction layers are shown as grids that reveal relative spatial
coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our
single-stream net, described in Section 2.3.1, upsamples stride 32 predictions back to pixels
in a single step. Second row (FCN-16s): Combining predictions from both the final layer
and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level
semantic information. Third row (FCN-8s): Additional predictions from pool3, at stride 8,
provide further precision.

2.3.3 Combining What and Where

We define a new fully convolutional net for segmentation that combines layers of the feature
hierarchy and refines the spatial precision of the output. See Figure 2.3.

While fully convolutionalized classifiers fine-tuned to semantic segmentation both recog-
nize and localize, as shown in Section 2.3.1, these networks can be improved to make direct
use of shallower, more local features. Even though these base networks score highly on the
standard metrics, their output is dissatisfyingly coarse (see Figure 2.4). The stride of the
network prediction limits the scale of detail in the upsampled output.

We address this by adding skips [Bis06] that fuse layer outputs, in particular to include
shallower layers with finer strides in prediction. This turns a line topology into a DAG: edges
skip ahead from shallower to deeper layers. It is natural to make more local predictions from
shallower layers since their receptive fields are smaller and see fewer pixels. Once augmented
with skips, the network makes and fuses predictions from several streams that are learned
jointly and end-to-end.

Combining fine layers and coarse layers lets the model make local predictions that respect
global structure. This crossing of layers and resolutions is a learned, nonlinear counterpart
to the multi-scale representation of the Laplacian pyramid [BA83]. By analogy to the jet of
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Koenderick and van Doorn [KD87], we call our feature hierarchy the deep jet.
Layer fusion is essentially an elementwise operation. However, the correspondence of

elements across layers is complicated by resampling and padding. Thus, in general, layers to
be fused must be aligned by scaling and cropping. We bring two layers into scale agreement
by upsampling the lower-resolution layer, doing so in-network as explained in Section 2.2.3.
Cropping removes any portion of the upsampled layer which extends beyond the other layer
due to padding. This results in layers of equal dimensions in exact alignment. The o↵set of
the cropped region depends on the resampling and padding parameters of all intermediate
layers. Determining the crop that results in exact correspondence can be intricate, but it
follows automatically from the network definition (and we include code for it in Ca↵e).

Having spatially aligned the layers, we next pick a fusion operation. We fuse features
by concatenation, and immediately follow with classification by a “score layer” consisting
of a 1⇥ 1 convolution. Rather than storing concatenated features in memory, we commute
the concatenation and subsequent classification (as both are linear). Thus, our skips are
implemented by first scoring each layer to be fused by 1 ⇥ 1 convolution, carrying out any
necessary interpolation and alignment, and then summing the scores. We also considered
max fusion, but found learning to be di�cult due to gradient switching. The score layer
parameters are zero-initialized when a skip is added, so that they do not interfere with
existing predictions of other streams. Once all layers have been fused, the final prediction is
then upsampled back to image resolution.

Skip Architectures for Segmentation We define a skip architecture to extend FCN-
VGG16 to a three-stream net with eight pixel stride shown in Figure 2.3. Adding a skip
from pool4 halves the stride by scoring from this stride sixteen layer. The 2⇥ interpolation
layer of the skip is initialized to bilinear interpolation, but is not fixed so that it can be
learned as described in Section 2.2.3. We call this two-stream net FCN-16s, and likewise
define FCN-8s by adding a further skip from pool3 to make stride eight predictions. (Note
that predicting at stride eight does not significantly limit the maximum achievable mean IU;
see Section 2.5.3.)

We experiment with both staged training and all-at-once training. In the staged version,
we learn the single-stream FCN-32s, then upgrade to the two-stream FCN-16s and continue
learning, and finally upgrade to the three-stream FCN-8s and finish learning. At each stage
the net is learned end-to-end, initialized with the parameters of the earlier net. The learning
rate is dropped 100⇥ from FCN-32s to FCN-16s and 100⇥ more from FCN-16s to FCN-8s,
which we found to be necessary for continued improvements.

Learning all-at-once rather than in stages gives nearly equivalent results, while training
is faster and less tedious. However, disparate feature scales make näıve training prone to
divergence. To remedy this we scale each stream by a fixed constant, for a similar in-network
e↵ect to the staged learning rate adjustments. These constants are picked to approximately
equalize average feature norms across streams. (Other normalization schemes should have
similar e↵ect.)

With FCN-16s validation score improves to 65.0 mean IU, and FCN-8s brings a minor
improvement to 65.5. At this point our fusion improvements have met diminishing returns,
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FCN-32s FCN-16s FCN-8s Ground truth

Figure 2.4: Refining fully convolutional networks by fusing information from layers with
di↵erent strides improves spatial detail. The first three images show the output from our 32,
16, and 8 pixel stride nets (see Figure 2.3).

so we do not continue fusing even shallower layers.
To identify the contribution of the skips we compare scoring from the intermediate layers

in isolation, which results in poor performance, or dropping the learning rate without adding
skips, which gives negligible improvement in score without refining the visual quality of
output. All skip comparisons are reported in Table 2.3. Figure 2.4 shows the progressively
finer structure of the output.

Table 2.3: Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval. Learning is
end-to-end with batch size one and high momentum, with the exception of the fixed variant
that fixes all features. Note that FCN-32s is FCN-VGG16, renamed to highlight stride, and
the FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6
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2.3.4 Experimental Framework

Fine-tuning We fine-tune all layers by backpropagation through the whole net. Fine-
tuning the output classifier alone yields only 73% of the full fine-tuning performance as
compared in Table 2.3. Fine-tuning in stages takes 36 hours on a single GPU. Learning
FCN-8s all-at-once takes half the time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmentation training set labels 1,112
images. Hariharan et al.[Har+11] collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system, SDS [Har+14]. This training
data improves the FCN-32s validation score5 from 57.7 to 63.6 mean IU and improves the
FCN-AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a natural choice for segmenting images
of any size into disjoint classes, so we train our nets with it. The softmax operation induces
competition between classes and promotes the most confident prediction, but it is not clear
that this is necessary or helpful. For comparison, we train with the sigmoid cross-entropy
loss and find that it gives similar results, even though it normalizes each class prediction
independently.

Patch sampling As explained in Section 2.2.4, our whole image training e↵ectively
batches each image into a regular grid of large, overlapping patches. By contrast, prior
work randomly samples patches over a full dataset [Nin+05; Cir+12; Far+13; PC14; GL14],
potentially resulting in higher variance batches that may accelerate convergence [LeC+98c].
We study this tradeo↵ by spatially sampling the loss in the manner described earlier, making
an independent choice to ignore each final layer cell with some probability 1 � p. To avoid
changing the e↵ective batch size, we simultaneously increase the number of images per
batch by a factor 1/p. Note that due to the e�ciency of convolution, this form of rejection
sampling is still faster than patchwise training for large enough values of p (e.g., at least for
p > 0.2 according to the numbers in Section 2.2.1). Figure 2.5 shows the e↵ect of this form
of sampling on convergence. We find that sampling does not have a significant e↵ect on
convergence rate compared to whole image training, but takes significantly more time due
to the larger number of images that need to be considered per batch. We therefore choose
unsampled, whole image training in our other experiments.

Class balancing Fully convolutional training can balance classes by weighting or sam-
pling the loss. Although our labels are mildly unbalanced (about 3/4 are background), we
find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input dimensions by backward con-
volution layers within the net. Final layer backward convolution weights are fixed to bilinear
interpolation, while intermediate upsampling layers are initialized to bilinear interpolation,
and then learned. This simple, end-to-end method is accurate and fast.

5There are training images from [Har+11] included in the PASCAL VOC 2011 val set, so we validate on
the non-intersecting set of 736 images.
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Figure 2.5: Training on whole images is just as e↵ective as sampling patches, but results in
faster (wall clock time) convergence by making more e�cient use of data. Left shows the
e↵ect of sampling on convergence rate for a fixed expected batch size, while right plots the
same by relative wall clock time.

Augmentation We tried augmenting the training data by randomly mirroring and
“jittering” the images by translating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with Ca↵e [Jia+14] on a single
NVIDIA Titan X. Our models and code are publicly available at http://fcn.berkeleyvision.
org.

2.4 Results

We test our FCN on semantic segmentation and scene parsing, exploring PASCAL VOC,
NYUDv2, SIFT Flow, and PASCAL-Context. Although these tasks have historically dis-
tinguished between objects and regions, we treat both uniformly as pixel prediction. We
evaluate our FCN skip architecture on each of these datasets, and then extend it to multi-
modal input for NYUDv2 and multi-task prediction for the semantic and geometric labels of
SIFT Flow. All experiments follow the same network architecture and optimization settings
decided on in Section 2.3.

Metrics We report metrics from common semantic segmentation and scene parsing
evaluations that are variations on pixel accuracy and region intersection over union (IU):

• pixel accuracy:
P

i nii/
P

i ti

• mean accuraccy: (1/ncl)
P

i nii/ti

http://fcn.berkeleyvision.org
http://fcn.berkeleyvision.org
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• mean IU: (1/ncl)
P

i nii/

⇣
ti +

P
j nji � nii

⌘

• frequency weighted IU: (
P

k tk)
�1P

i tinii/

⇣
ti +

P
j nji � nii

⌘

where nij is the number of pixels of class i predicted to belong to class j, there are ncl

di↵erent classes, and ti =
P

j nij is the total number of pixels of class i.
PASCAL VOC Table 2.4 gives the performance of our FCN-8s on the test sets of

PASCAL VOC 2011 and 2012, and compares it to the previous best, SDS [Har+14], and
the well-known R-CNN [Gir+15]. We achieve the best results on mean IU by 30% relative.
Inference time is reduced 114⇥ (convnet only, ignoring proposals and refinement) or 286⇥
(overall).

NYUDv2 [Sil+12] is an RGB-D dataset collected using the Microsoft Kinect. It has
1,449 RGB-D images, with pixelwise labels that have been coalesced into a 40 class semantic
segmentation task by Gupta et al.[GAM13]. We report results on the standard split of
795 training images and 654 testing images. Table 2.5 gives the performance of several net
variations. First we train our unmodified coarse model (FCN-32s) on RGB images. To add
depth information, we train on a model upgraded to take four-channel RGB-D input (early
fusion). This provides little benefit, perhaps due to similar number of parameters or the
di�culty of propagating meaningful gradients all the way through the net. Following the
success of Gupta et al.[Gup+14], we try the three-dimensional HHA encoding of depth and
train a net on just this information. To e↵ectively combine color and depth, we define a “late
fusion” of RGB and HHA that averages the final layer scores from both nets and learn the
resulting two-stream net end-to-end. This late fusion RGB-HHA net is the most accurate.

SIFT Flow is a dataset of 2,688 images with pixel labels for 33 semantic classes (“bridge”,
“mountain”, “sun”), as well as three geometric classes (“horizontal”, “vertical”, and “sky”).
An FCN can naturally learn a joint representation that simultaneously predicts both types
of labels. We learn a two-headed version of FCN-32/16/8s with semantic and geometric
prediction layers and losses. This net performs as well on both tasks as two independently
trained nets, while learning and inference are essentially as fast as each independent net by
itself. The results in Table 2.6, computed on the standard split into 2,488 training and 200
test images,6 show better performance on both tasks.

PASCAL-Context [Mot+14] provides whole scene annotations of PASCAL VOC 2010.
While there are 400+ classes, we follow the 59 class task defined by [Mot+14] that picks the
most frequent classes. We train and evaluate on the training and val sets respectively. In
Table 2.7 we compare to the previous best result on this task. FCN-8s scores 39.1 mean IU
for a relative improvement of more than 10%.

6Three of the SIFT Flow classes are not present in the test set. We made predictions across all 33 classes,
but only included classes actually present in the test set in our evaluation.
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Table 2.4: Our FCN gives a 30% relative improvement on the previous best PASCAL VOC
11/12 test results with faster inference and learning.

mean IU mean IU inference
VOC2011 test VOC2012 test time

R-CNN [Gir+15] 47.9 - -
SDS [Har+14] 52.6 51.6 ⇠ 50 s
FCN-8s 67.5 67.2 ⇠ 100 ms

Table 2.5: Results on NYUDv2. RGB-D is early-fusion of the RGB and depth channels
at the input. HHA is the depth embedding of [Gup+14] as horizontal disparity, height
above ground, and the angle of the local surface normal with the inferred gravity direction.
RGB-HHA is the jointly trained late fusion model that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al.[Gup+14] 60.3 - 28.6 47.0
FCN-32s RGB 61.8 44.7 31.6 46.0
FCN-32s RGB-D 62.1 44.8 31.7 46.3
FCN-32s HHA 58.3 35.7 25.2 41.7
FCN-32s RGB-HHA 65.3 44.0 33.3 48.6

Table 2.6: Results on SIFT Flow6 with semantics (center) and geometry (right). Farabet
is a multi-scale convnet trained on class-balanced or natural frequency samples. Pinheiro is
the multi-scale, recurrent convnet rCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al.[LYT11] 76.7 - - - -
Tighe et al.[TL10] transfer - - - - 90.8
Tighe et al.[TL13] SVM 75.6 41.1 - - -
Tighe et al.[TL13] SVM+MRF 78.6 39.2 - - -
Farabet et al.[Far+13] natural 72.3 50.8 - - -
Farabet et al.[Far+13] balanced 78.5 29.6 - - -
Pinheiro et al.[PC14] 77.7 29.8 - - -
FCN-8s 85.9 53.9 41.2 77.2 94.6
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Table 2.7: Results on PASCAL-Context for the 59 class task. dai2015convolutional is con-
volutional feature masking [DHS15b] and segment pursuit with the VGG net. O2P is the
second order pooling method [Car+12] as reported in the errata of [Mot+14].

59 class
pixel
acc.

mean
acc.

mean
IU

f.w.
IU

O2P - - 18.1 -
CFM - - 34.4 -
FCN-32s 65.5 49.1 36.7 50.9
FCN-16s 66.9 51.3 38.4 52.3
FCN-8s 67.5 52.3 39.1 53.0

Table 2.8: The role of foreground, background, and shape cues. All scores are the mean
intersection over union metric excluding background. The architecture and optimization are
fixed to those of FCN-32s (Reference) and only input masking di↵ers.

train test

FG BG FG BG mean IU

Reference keep keep keep keep 84.8
Reference-FG keep keep keep mask 81.0
Reference-BG keep keep mask keep 19.8
FG-only keep mask keep mask 76.1
BG-only mask keep mask keep 37.8
Shape mask mask mask mask 29.1

2.5 Analysis

We examine the learning and inference of fully convolutional networks. Masking experiments
investigate the role of context and shape by reducing the input to only foreground, only
background, or shape alone. Defining a “null” background model checks the necessity of
learning a background classifier for semantic segmentation. We detail an approximation
between momentum and batch size to further tune whole image learning. Finally, we measure
bounds on task accuracy for given output resolutions to show there is still much to improve.

2.5.1 Cues and Context

Given the large receptive field size of an FCN, it is natural to wonder about the relative
importance of foreground and background pixels in the prediction. Is foreground appearance
su�cient for inference, or does the context influence the output? Conversely, can a network
learn to recognize a class by its shape and context alone?
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FCN-8s SDS [Har+14] Ground Truth Image

Figure 2.6: Fully convolutional networks improve performance on PASCAL. The left column
shows the output of our most accurate net, FCN-8s. The second shows the output of the
previous best method by Hariharan et al.[Har+14]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row), and robustness to occluders
(third row). The fifth and sixth rows show failure cases: the net sees lifejackets in a boat as
people and confuses human hair with a dog.

Masking To explore these issues we experiment with masked versions of the standard
PASCAL VOC segmentation challenge. We both mask input to networks trained on normal
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PASCAL, and learn new networks on the masked PASCAL. See Table 2.8 for masked results.
Masking the foreground at inference time is catastrophic. However, masking the fore-

ground during learning yields a network capable of recognizing object segments without
observing a single pixel of the labeled class. Masking the background has little e↵ect overall
but does lead to class confusion in certain cases. When the background is masked during
both learning and inference, the network unsurprisingly achieves nearly perfect background
accuracy; however certain classes are more confused. All-in-all this suggests that FCNs do
incorporate context even though decisions are driven by foreground pixels.

To separate the contribution of shape, we learn a net restricted to the simple input of
foreground/background masks. The accuracy in this shape-only condition is lower than when
only the foreground is masked, suggesting that the net is capable of learning context to boost
recognition. Nonetheless, it is surprisingly accurate. See Figure 2.7.

Background modeling It is standard in detection and semantic segmentation to have
a background model. This model usually takes the same form as the models for the classes
of interest, but is supervised by negative instances. In our experiments we have followed
the same approach, learning parameters to score all classes including background. Is this
actually necessary, or do class models su�ce?

To investigate, we define a net with a “null” background model that gives a constant
score of zero. Instead of training with the softmax loss, which induces competition by
normalizing across classes, we train with the sigmoid cross-entropy loss, which independently
normalizes each score. For inference each pixel is assigned the highest scoring class. In
all other respects the experiment is identical to our FCN-32s on PASCAL VOC. The null
background net scores 1 point lower than the reference FCN-32s and a control FCN-32s
trained on all classes including background with the sigmoid cross-entropy loss. To put this
drop in perspective, note that discarding the background model in this way reduces the total
number of parameters by less than 0.1%. Nonetheless, this result suggests that learning a
dedicated background model for semantic segmentation is not vital.

2.5.2 Tuning Optimization Momentum and Batch Size

In comparing optimization schemes for FCNs, we find that “heavy” online learning with high
momentum trains more accurate models in less wall clock time (see Section 2.3.2). Here we
detail a relationship between momentum and batch size that motivates heavy learning.

By writing the updates computed by gradient accumulation as a non-recursive sum,
we will see that momentum and batch size can be approximately traded o↵, which suggests
alternative training parameters. Let gt be the step taken by minibatch SGD with momentum
at time t,

gt = �⌘
k�1X

i=0

r✓`(xkt+i; ✓t�1) + pgt�1,

where `(x; ✓) is the loss for example x and parameters ✓, p < 1 is the momentum, k is the
batch size, and ⌘ is the learning rate. Expanding this recurrence as an infinite sum with
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Image Ground Truth Output Input

Figure 2.7: FCNs learn to recognize by shape when deprived of other input detail. From left
to right: regular image (not seen by network), ground truth, output, mask input.
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geometric coe�cients, we have

gt = �⌘
1X

s=0

k�1X

i=0

p
sr✓`(xk(t�s)+i; ✓t�s).

In other words, each example is included in the sum with coe�cient p
bj/kc, where the in-

dex j orders the examples from most recently considered to least recently considered. Ap-
proximating this expression by dropping the floor, we see that learning with momentum p

and batch size k appears to be similar to learning with momentum p
0 and batch size k

0 if
p
(1/k) = p

0(1/k0). Note that this is not an exact equivalence: a smaller batch size results in
more frequent weight updates, and may make more learning progress for the same number
of gradient computations. For typical FCN values of momentum 0.9 and a batch size of 20
images, an approximately equivalent training regime uses momentum 0.9(1/20) ⇡ 0.99 and a
batch size of one, resulting in online learning. In practice, we find that online learning works
well and yields better FCN models in less wall clock time.

2.5.3 Oracle Accuracy for Intersection-over-Union

FCNs achieve good performance on the mean IU segmentation metric even with spatially
coarse semantic prediction. To better understand this metric and the limits of this approach
with respect to it, we compute approximate upper bounds on performance with prediction at
various resolutions. We do this by downsampling ground truth images and then upsampling
back to simulate the best results obtainable with a particular downsampling factor. The
following table gives the mean IU on a subset5 of PASCAL 2011 val for various downsampling
factors.

factor mean IU

128 50.9
64 73.3
32 86.1
16 92.8
8 96.4
4 98.5

Pixel-perfect prediction is clearly not necessary to achieve mean IU well above state-of-
the-art, and, conversely, mean IU is a not a good measure of fine localization accuracy. The
gaps between oracle and state-of-the-art accuracy at every stride suggest that recognition
and not resolution is the bottleneck for this metric.
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2.6 Conclusion

Fully convolutional networks are a rich class of models that address many pixelwise tasks.
FCNs for semantic segmentation dramatically improve accuracy by transferring pre-trained
classifier weights, fusing di↵erent layer representations, and learning end-to-end on whole
images. End-to-end, pixel-to-pixel operation simultaneously simplifies and speeds up learn-
ing and inference. All code for this paper is open source in Ca↵e, and all models are freely
available in the Ca↵e Model Zoo. Further works have demonstrated the generality of fully
convolutional networks for a variety of image-to-image tasks.
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Chapter 3

Adaptive Inference for E�cient Video
Processing

Semantic segmentation is a central visual recognition task. End-to-end convolutional network
approaches have made progress on the accuracy and execution time of still-image semantic
segmentation, but video semantic segmentation has received less attention. Potential ap-
plications include UAV navigation, autonomous driving, archival footage recognition, and
wearable computing. The computational demands of video processing are a challenge to the
simple application of image methods on every frame, while the temporal continuity of video
o↵ers an opportunity to reduce this computation.

Fully convolutional networks (FCNs) [SLD17; EF15; Fis+15] have been shown to obtain
remarkable results, but the execution time of repeated per-frame processing limits application
to video. Adapting these networks to make use of the temporal continuity of video reduces
inference computation while su↵ering minimal loss in recognition accuracy. The temporal
rate of change of features, or feature “velocity”, across frames varies from layer to layer. In
particular, deeper layers in the feature hierarchy change more slowly than shallower layers
over video sequences. We propose that network execution can be viewed as an aspect of
architecture and define the “clockwork” FCN (c.f. clockwork recurrent networks [Kou+14]).
Combining these two insights, we group the layers of the network into stages, and set separate
update rates for these levels of representation. The execution of a stage on a given frame
is determined by either a fixed clock rate (“fixed-rate”) or data-driven (“adaptive”). The
prediction for the current frame is then the fusion (via the skip layer architecture of the
FCN) of these computations on multiple frames, thus exploiting the lower resolution and
slower rate-of-change of deeper layers to share information across frames.

We demonstrate the e�cacy of the architecture for both fixed and adaptive schedules. We
show results on multiple datasets for a pipelining schedule designed to reduce latency for real-
time recognition as well as a fixed-rate schedule designed to reduce computation and hence
time and power. Next we learn the clock-rate adaptively from the data, and demonstrate
computational savings when little motion occurs in the video without sacrificing recognition
accuracy during dynamic scenes. We verify our approach on synthetic frame sequences made
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Video Frames 

Segmentation

time

Modular 
Network

Clock 
Fires

Executed 

Persisted 

Video Frames 

Segmentation

Figure 3.1: Our adaptive clockwork method illustrated with the famous The Horse in Mo-
tion [Muy82], captured by Eadweard Muybridge in 1878 at the Palo Alto racetrack. The
clock controls network execution: past the first stage, computation is scheduled only at the
time points indicated by the clock symbol. During static scenes cached representations per-
sist, while during dynamic scenes new computations are scheduled and output is combined
with cached representations.

from PASCAL VOC [Eve+10] and evaluate on videos from the NYUDv2 [Sil+12], YouTube-
Objects [Pre+12], and Cityscapes [Cor+16] datasets.

3.1 Related Work

We extend fully convolutional networks for image semantic segmentation to video semantic
segmentation. Convnets have been applied to video to learn spatiotemporal representations
for classification and detection but rarely for dense pixelwise, frame-by-frame inference.
Practicality requires network acceleration, but generic techniques do not exploit the structure
of video. There is a large body of work on video segmentation, but the focus has not been on
semantic segmentation, nor are methods computationally feasible beyond short video shots.

Fully Convolutional Networks A fully convolutional network (FCN) is a model de-
signed for pixelwise prediction [SLD17]. Every layer in an FCN computes a local operation,
such as convolution or pooling, on relative spatial coordinates. This locality makes the
network capable of handling inputs of any size while producing output of corresponding
dimensions. E�ciency is preserved by computing single, dense forward inference and back-
ward learning passes. Current classification architectures – AlexNet [KSH12], GoogLeNet
[Sze+15], and VGG [SZ15] – can be cast into corresponding fully convolutional forms. These
networks are learned end-to-end, are fast at inference and learning time, and can be gener-
alized with respect to di↵erent image-to-image tasks. FCNs yield state-of-the-art results for
semantic segmentation [SLD17], boundary prediction [XT15], and monocular depth estima-
tion [EF15]. While these tasks process each image in isolation, FCNs extend to video. As
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more and more visual data is captured as video, the baseline e�ciency of fully convolutional
computation will not su�ce.

Video Networks and Frame Selection Time can be incorporated into a network
by spatiotemporal filtering or recurrence. Spatiotemporal filtering, i.e. 3D convolution, can
capture motion for activity recognition [Ji+13; Kar+14]. For video classification, networks
can integrate over time by early, late, or slow fusion of frame features [Kar+14]. Recurrence
can capture long-term dynamics and propagate state across time, as in the popular long
short-term memory (LSTM) [HS97]. Joint convolutional-recurrent networks filter within
frames and recur across frames: the long-term recurrent convolutional network [Don+15]
fuses frame features by LSTM for activity recognition and captioning. Frame selection
reduces computation by focusing computational resources on important frames identified by
the model: space-time interest points [Lap05] are video keypoints engineered for sparsity,
and a whole frame selection and recognition policy can be learned end-to-end for activity
detection [Yeu+16]. These video recognition approaches do not address frame-by-frame,
pixelwise output. For optical flow, an intrinsically temporal task, a cross-frame FCN is
state-of-the-art among fast methods [Fis+15].

Network Acceleration Although FCNs are fast, video demands computation that is
faster still, particularly for real-time inference. The spatially dense operation of the FCN
amortizes the computation of overlapping receptive fields common to contemporary archi-
tectures. However, the standard FCN does nothing to temporally amortize the computation
of sequential inputs. Computational concerns can drive architectural choices. For instance,
GoogLeNet requires less computation and memory than VGG, although its segmentation
accuracy is worse [SLD17]. Careful but time-consuming model search can improve networks
within a fixed computational budget [HS15]. Methods to reduce computation and memory
include reduced precision by weight quantization [VSM11], low-rank approximations with
clustering, [Den+14], low-rank approximations with end-to-end tuning [JVZ14], and kernel
approximation methods like the fast food transformation [Yan+15]. None of these generic
acceleration techniques harness the frame-to-frame structure of video. The proposed clock-
work speed-up is orthogonal and compounds any reductions in absolute inference time. Our
clockwork insight holds for all layered architectures whatever the speed/quality operating
point chosen.

Semantic Segmentation Much work has been done to address the problem of seg-
mentation in video. However, the focus has not been on semantic segmentation. Instead
research has addressed spatio-temporal “supervoxels” [Gru+10; XC12], unsupervised and
motion-driven object segmentation [SM98; PF13; Fra+15], or weakly supervising the seg-
mentation of tagged videos [Har+12; Tan+13; Liu+14]. These methods are not suitable
for real-time or the complex multi-class, multi-object scenes encountered in semantic seg-
mentation settings. Fast Object Segmentation in Unconstrained Videos [PF13] infers only
figure-ground segmentation at 0.5s/frame with o✏ine computed optical flow and superpix-
els. Although its proposals have high recall, even when perfectly parallelized [Fra+15] this
method takes > 15s/frame and a separate recognition step is needed for semantic segmenta-
tion. In contrast the standard FCN computes a full semantic segmentation in 0.1s/frame.
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3.2 Fast Frames and Slow Semantics

Our approach is inspired by observing the time course of learned, hierarchical features over
video sequences. Drawing on the local-to-global idea of skip connections for fusing global,
deep layers with local, shallow layers, we reason that the semantic representation of deep
layers is relevant across frames whereas the shallow layers vary with more local, volatile
details. Persisting these features over time can be seen as a temporal skip connection.

Measuring the relative di↵erence of features across frames confirms the temporal coher-
ence of deeper layers. Consider a given score layer (a linear predictor of pixel class from
features), `, with outputs S` 2 [K⇥H⇥W ], where K is the number of categories and H, W
is the output dimensions for layer `. We can compute the di↵erence at time t with a score
map distance function dsm, chosen to be the hamming distance of one hot encodings.

dsm(S
t
`, S

t�1
` ) = dhamming(�(S

t
`),�(S

t�1
` ))

Table 3.1 reports the average of these temporal di↵erences for the score layers, as com-
puted over all videos in the YouTube-Objects dataset [Pre+12]. It is perhaps unsurprising
that the deepest score layer changes an order of magnitude less than the shallower layers
on average. We therefore hypothesize that caching deeper layer scores from past frames can
inform the inference of the current frame with relatively little reduction in accuracy.

The slower rate of change of deep layers can be attributed to architectural and learned
invariances. More pooling a↵ords more robustness to translation and noise, and learned
features may be tuned to the supervised classes instead of general appearance.

score layer temporal di↵erence depth semantic accuracy

pixels .26 ± .18 0 -
pool3 .11 ± .06 9 9.6%
pool4 .11 ± .06 13 20.7%
fc7 .02 ± .02 19 65.5%

Table 3.1: The average temporal di↵erence over all YouTube-Objects videos of the respective
pixelwise class score outputs from a spectrum of network layers. The deeper layers are more
stable across frames – that is, we observe supervised convnet features to be “slow” features
[WS02]. The temporal di↵erence is measured as the proportion of label changes in the
output. The layer depth counts the distance from the input in the number of parametric
and non-linear layers. Semantic accuracy is the intersection-over-union metric on PASCAL
VOC of our frame processing network fine-tuned for separate output predictions (Section
3.4).

While deeper layers are more stable than shallower layers, for videos with enough motion
the score maps throughout the network may change substantially. For example, in Figure 3.2
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Figure 3.2: The proportional di↵erence between adjacent frames of semantic predictions
from a mid-level layer (pool4, green) and the deepest layer (fc7, blue) are shown for the
first 75 frames of two videos. We see that for a video with lots of motion (left) the di↵erence
values are large while for a relatively static video (right) the di↵erence values are small. In
both cases, the di↵erences of the deeper fc7 are smaller than the di↵erences of the shallower
pool4. The “velocity” of deep features is slow relative to shallow features and most of all
the input. At the same time, the di↵erences between shallow and deep layers are dependent
since the features are compositional; this motivates our adaptive clock updates in Section
3.3.3

we show the di↵erences for the first 75 frames of a video with large motion (left) and with
small motion (right). We would like our network to adaptively update only when the deep-
est, most semantic layer (fc7) score map is likely to change. We notice that though the
intermediate layer (pool4) di↵erence is always larger than the deepest layer di↵erence for
any given frame, the pool4 di↵erences are much larger for the video with large motion than
for the video with relatively small motion. This observation forms the motivation for using
the intermediate di↵erences as an indicator to determine the firing of an adaptive clock.

3.3 A Clockwork Network

We adapt the fully convolutional network (FCN) approach for image-to-image mapping
[SLD17] to video frame processing. While it is straightforward to perform inference with a
still-image segmentation network on every video frame, this näıve computation is ine�cient.
Furthermore, disregarding the sequential nature of the input not only sacrifices e�ciency
but discards potential temporal recognition cues. The temporal coherence of video suggests
the persistence of visual features from prior frames to inform inference on the current frame.
To this end we define the clockwork FCN, inspired by the clockwork recurrent network
[Kou+14], to carry temporal information across frames. A generalized notion of clockwork
relates both of these networks.

We consider both throughput and latency in the execution of deep networks across video
sequences. The inference time of the regular FCN-8s at ⇠ 100ms per frame of size 500⇥ 500
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on a standard GPU can be too slow for video. We first define fixed clocks then extend
to adaptive and potentially learned clockwork to drive network processing. Whatever the
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Figure 3.3: The clockwork FCN with its stages and corresponding clocks.

task, any video network can be accelerated by our clockwork technique. A schematic of our
clockwork FCN is shown in Figure 3.3.

There are several choice points in defining a clockwork architecture. We define a novel,
generalized clockwork framework, which can purposely schedule deeper layers more slowly
than shallower layers. We form our modules by grouping the layers of a convnet to span
the feature hierarchy. Our networks persists both state and output across time steps. The
clockwork recurrent network of [Kou+14], designed for long-term dependency modeling of
time series, is an instance of our more general scheme for clockwork computation. The
di↵erences in architecture and outputs over time between clockwork recurrence and our
clockwork are shown in Figure 3.4.

While di↵erent, these nets can be expressed by generalized clockwork equations

y
(t)
H = fT

⇣
C

(t)
H � fH(y

(t�1)
H ) + C

(t)
I � fI(x

(t))
⌘

(3.1)

y
(t)
O = fO

⇣
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(t)
O � fH(y

(t)
H )

⌘
(3.2)

with the state update defined by Equation 3.1 and the output defined by Equation 3.2. The
data x

(t), hidden state y
(t)
H output y(t)O vary with time t. The functions fI , fH , fO, fT define

input, hidden state, output, and transition operations respectively and are fixed across time.
The input, hidden, and output clocks C

(t)
I , C

(t)
H , C

(t)
O modulate network operations by the

elementwise product� with the corresponding function evaluations. We recover the standard
recurrent network (SRN), clockwork recurrent network (clock RN), and our network (clock
FCN) in this family of equations. The settings of functions and clocks are collected in Table
3.2.
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network fI fH fO fT CI CH CO

SRN WI WH TanH TanH
clock RN WI WH TanH TanH C C C
clock FCN � I ReLU I C C

Table 3.2: The standard recurrent network (SRN), clockwork recurrent network (clock RN),
and our network (clock FCN) in generalized clockwork form. The recurrent networks have
learned hidden weights WH and non-linear transition functions fT , while clock FCN persists
state by the identity I. Both recurrent modules are flat with linear input weights WI , while
clock FCN modules have hierarchical features by layer composition �. The SRN has trivial
constant, all-ones clocks. The clock RN has a shared input, hidden, and output clock with
exponential rates. Our clock FCN has alternating input and hidden clocks C,C to compute
or cache and has a constant, all-ones output clock to fuse output on every frame.

Inspired by the clockwork RN, we investigate persisting features and scheduling layers
to process video with a semantic segmentation convnet. Recalling the lessened semantic
rate of deeper layers observed in Section 3.2, the skip layers in FCNs originally included to
preserve resolution by fusing outputs are repurposed for this staged computation. We cache
features and outputs over time at each step to harness the continuity of video. In contrast,
the clockwork RN persists state but output is only made according to the clock, and each
clockwork RN module is connected to itself and all slower modules across time whereas a
module in our network is only connected to itself across time.

3.3.1 Architecture as Execution Schedule

Clockwork architectures partition a network into modules or stages that are executed ac-
cording to di↵erent schedules. In the standard view, the execution of an architecture is an
all-or-nothing operation that follows from the definition of the network. Relaxing the strict
identification of architecture and execution instead opens up a range of potential sched-
ules. These schedules can be encompassed by the introduction of one first-class architectural
element: the clock.

A clock defines a dynamic cut in the computation graph of a network. As clocks mask
state in the representation, as detailed in Equations 3.1 and 3.2, clocks likewise mask exe-
cution in the computation. When a clock is on, its edges are intact and execution traverses
to the next nodes/modules. When a clock is o↵, its edges are cut and execution is blocked.
Alternatives such as computing the next stage or caching a past stage can be scheduled
by a paired clock C and counter-clock C with complementary sets of edges. Any layer (or
composition of layers) with binary output can serve as a clock. As a layer, a clock can be
fixed or learned. For instance, the following are simple clocks of the form f(x, t) for features
x and time t:
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Module 1
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Module 3

Input 1 Input 2 Input 3 Input 4 Input 1 Input 2 Input 3 Input 4

Clockwork RN Clockwork FCNrecurrent
feedforward

Figure 3.4: A comparison of the layer connectivity and time course of outputs in the clock-
work recurrent network [Kou+14] and in our clockwork FCN. Module color marks the time
step of evaluation, and blank modules are disconnected from the network output. The clock
RN is flat with respect to the input while our network has a hierarchical feature representa-
tion. Each clock RN module is temporally connected to itself and slower modules while in
our network each module is only temporally connected to itself. Features persist over time
in both architectures, but in our architecture they contribute to the network output at each
step.

• 1 to always execute

• t ⌘ 0 (mod 2) to execute every other time

• kxt � xt�1k > ✓ to execute for a di↵erence threshold

3.3.2 Pipelining and Fixed-Rate Clockwork

Having incorporated scheduling into the network with clocks, we can optimize the schedule
for various tasks by altering the clocks.

Pipelining To reduce latency for real-time recognition we pipeline the computation of
sequential frames analogously to instruction pipelining in processors. We instantiate a three-
stage pipeline, in which stage 1 reflects frame i, stage 2 frame i� 1, and stage 3 frame i� 2.
The total time to process the frame is the time of the longest stage, stage 1 in our pipeline,
plus the time for interpolating and fusing outputs. Our 3-stage pipeline FCN reduces latency
by 59%. A 2-stage variation further balances latency and accuracy.

Fixed-Rate To reduce overall computation we limit the execution rates of stages and
persist features across frames for skipped stages. Given the learned invariance and slow
semantics of deep layers observed in Section 3.2, the deeper layers can be executed at a lower
rate to save computation while other stages update. These clock rates are free parameters in
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the schedule for exchanging inference speed and accuracy. We again divide the network into
three stages, and compare rates for the stages. The exponential clockwork schedule is the
natural choice of halving the rate at each stage for more e�ciency. The alternating clockwork
schedule consolidates the earlier stages to execute these on every frame and executes the last
stage on every other frame for more accuracy. These di↵erent sets of rates cover part of the
accuracy/e�ciency spectrum.

The current stages are divided into the original score paths of the FCN-8s architecture,
but they need not be. One could prioritize latency, spatial refinement, or certain output
classes by rebalancing the computation. It is possible to partially compute a span of layers
and defer their full execution to a following stage; this can be accomplished by sparse evalu-
ation through dynamic striding and dilation [YK16]. In principle the stage progression can
be decided online in lieu of fixing a schedule for all inference. We turn to adaptive clockwork
for deciding execution.

3.3.3 Adaptive Clockwork

All of the clocks considered thus far have been fixed functions of time but not the data.
Setting these clocks gives rise to many schedules that can be tuned to a given task or video,
but this introduces a tedious dimension of model search. Much of the video captured in the
wild is static and dynamic in turn with a variable amount of motion and semantic progression
at any given time. Choosing many stages or a slow clock rate may reduce computation, but
will likewise result in a steep decline in accuracy for dynamic scenes. Conversely, faster
update rates or fewer stages may capture transitory details but will needlessly compute
and re-compute stable scenes. Adaptive clocks fire based on the input and network state,
resulting in a responsive schedule that varies with the dynamism of the scene. The clock
can fire according to any function of the input and network state. A di↵erence clock can fire
on the temporal di↵erence of a feature across frames. A confidence clock can fire on peaks
in the score map for a single frame. This approach extends inference from a pre-determined
architecture to a set of architectures to choose from for each frame, relying on the full FCN
for high accuracy in dynamic scenes while taking advantage of cached representations in
more static scenes.

threshold clock kxt � xt�1k > ✓ learned clock f✓(xt, xt�1)

The simplest adaptive clock is a threshold, but adaptive clocks could likewise be learned
(for example as a temporal convolution across frames). The threshold can be optimized for
a specific tradeo↵ along the accuracy/e�ciency curve. Given the hierarchical dependencies
of layers and the relative stability of deep features observed in Section 3.2, we threshold
di↵erences at a shallower stage for adaptive scheduling of deeper stages. The sensitivity of
the adaptive clock can even be set on unannotated video by thresholding the proportional
temporal di↵erence of output labels as in Table 3.1. Refer to Section 3.4.3 for the results of
threshold-adaptive clockwork with regard to clock rate and accuracy.
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3.4 Results

Our base network is FCN-8s, the fully convolutional network of [SLD17]. The architecture
is adapted from the VGG16 architecture [SZ15] and fine-tuned from ILSVRC pre-training.
The net is trained with batch size one, high momentum, and all skip layers at once.

In our experiments we report two common metrics for semantic segmentation that mea-
sure the region intersection over union (IU):

• mean IU: (1/ncl)
P

i nii/

⇣
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for nij the number of pixels of class i predicted to belong to class j, where there are ncl

di↵erent classes, and for ti =
P

j nij the total number of pixels of class i.
We evaluate our clockwork FCN on four video semantic segmentation datasets.

Synthetic sequences of translated scenes We first validate our method by evaluating
on synthetic videos of moving crops of PASCAL VOC images [Eve+10] in order to score on
a ground truth annotation at every frame. For source data, we select the 736 image subset of
the PASCAL VOC 2011 segmentation validation set used for FCN-8s validation in [SLD17].
Video frames are generated by sliding a crop window across the image by a predetermined
number of pixels, and generated translations are vertical or horizontal according to the
portrait or landscape aspect of the chosen image. Each synthetic video is six frames long.
For each seed image, a “fast” and “slow” video is made with 32 pixel and 16 pixel frame-to-
frame displacements respectively.

NYU-RGB clips The NYUDv2 dataset [Sil+12] collects short RGB-D clips and in-
cludes a segmentation benchmark with high-quality but temporally sparse pixel annotations
(every tenth video frame is labeled). We run on video from the “raw” clips subsampled 10X
and evaluate on every labeled frame. We consider RGB input alone as the depth frames of
the full clips are noisy and uncurated. Our pipelined and fixed-rate clockwork FCNs are run
on the entire clips and accuracy is reported for those frames included in the segmentation
test set.

Youtube-Objects The Youtube-Objects dataset [Pre+12] provides videos collected
from Youtube that contain objects from ten PASCAL classes. We restrict our attention to
a subset of the videos that have pixelwise annotations by [JG14] as the original annotations
include only initial frame bounding boxes. This subset was drawn from all object classes,
and contains 10,167 frames from 126 shots, for which every 10th frame is human-annotated.
We run on only annotated frames, e↵ectively 10X subsampling the video. We directly apply
our networks derived from PASCAL VOC supervision and do not fine-tune to the video
annotations.

Cityscapes The Cityscapes dataset [Cor+16] collects frames from video recorded at
17hz by a car-mounted camera while driving through German cities. While annotations are
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temporally sparse, the preceding and following input frames are provided. Our network is
learned on the train split and then all schedules are evaluated on val.

3.4.1 Pipelining Reduces Latency

16 pixel shift Time (% of full) Mean IU fwIU Mean IU-bdry fwIU-bdry

3-Stage Baseline 59% 9.2 52.6 6.1 9.4
3-Stage Pipeline 59% 56.0 76.5 44.6 42.9
2-Stage Baseline 77% 22.5 64.7 16.6 21.9
2-Stage Pipeline 77% 63.3 81.7 52.3 51.0

Frame Oracle 100% 65.9 83.6 57.0 56.3

32 pixel shift Time (% of full) Mean IU fwIU Mean IU-bdry fwIU-bdry

3-Stage Baseline 59% 9.2 52.6 6.0 9.4
3-Stage Pipeline 59% 45.5 67.4 37.7 36.0
2-Stage Baseline 77% 22.4 62.8 16.2 21.7
2-Stage Pipeline 77% 57.8 76.6 46.6 45.1

Frame Oracle 100% 65.6 82.6 55.8 55.3

Table 3.3: Pipelined segmentation of translated PASCAL sequences. Synthesized video of trans-
lating PASCAL scenes allows for assessment of the pipeline at every frame. The pipelined FCN
segments with higher accuracy in the same time envelope as the every-other-frame evaluation of
the full FCN. Metrics are computed on the standard masks and a 10-pixel band at boundaries.

Pipelined execution schedules reduce latency by producing an output each time the first
stage is computed. Later stages are persisted from previous frames and their outputs are
fused with the output of the first stage computed on the current frame. The number of
stages is determined by the number of clocks. We consider a full 3-stage pipeline and a
condensed 2-stage pipeline where the stages are defined by the modules in Figure 3.3. In
the pipelined schedule, all clock rates are set to 1, but clocks fire simultaneously to update
every stage in parallel. This is made possible by asynchrony in stage state, so that a later
stage is independent of the current frame but not past frames.

To assess our pipelined accuracy and speed, we compare to reference methods that bound
both recognition and time. A frame oracle evaluates the full FCN on every frame to give
the best achievable accuracy for the network independent of timing. As latency baselines for
our pipelines, we truncate the FCN to end at the given stage. Both of our staged, pipelined
schedules execute at lower latency than the oracle with better accuracy for fixed latency
than the baselines. We verify these results on synthetic PASCAL sequences as reported in
Table 3.3. Results on PASCAL, NYUD, and YouTube are reported in Table 3.4.

Our pipeline scheduled networks reduce latency with minimal accuracy loss relative to
the standard FCN run on each frame without time restriction. These quantitative results
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demonstrate that the deeper layer representations from previous frames contain useful infor-
mation that can be e↵ectively combined with low-level predictions for the current frame.

NYUD Youtube Pascal Shift 16

Schedule Time (% of full) Mean IU fwIU Mean IU fwIU Mean IU fwIU

3-Stage Baseline 59% 8.1 22.2 12.2 74.2 9.2 54.7
3-Stage Pipeline 59% 25.1 38.0 58.1 87.0 56.0 76.5
2-Stage Baseline 77% 16.5 32.1 21.5 7.8 22.5 64.7
2-Stage Pipeline 77% 26.4 39.5 64.0 89.2 63.3 81.7

Frame Oracle 100% 31.1 45.5 70.0 91.5 65.9 83.6

Table 3.4: Pipelined execution of semantic segmentation on three di↵erent datasets. Inference
approaches include pipelines of di↵erent lengths and a full FCN frame oracle. We also show base-
lines with comparable latency to the pipeline architectures. Our pipelined network o↵ers the best
accuracy of computationally comparable approaches running near frame rate. The loss in accuracy
relative to the frame oracle is less than the relative speed-up.

We show a qualitative result for our pipelined FCN on a sequence from the YouTube-
Objects dataset [Pre+12]. Figure 3.5 shows one example where our pipeline FCN is partic-
ularly useful. Our network quickly detects the occlusion of the car while the baseline lags
and does not immediately recognize the occlusion or reappearance.
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Figure 3.5: Pipelined vs. standard FCN on YouTube video. Our method is able to detect
the occlusion of the car as it is happening unlike the lagging baseline computed on every
other frame.
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3.4.2 Fixed-Rate Clockwork Raises Throughput

Fixed-rate clock schedules reduce overall computation relative to full, every frame evaluation
by assigning di↵erent update rates to each stage such that later stages are executed less often.
Rates can be set aggressively low for extreme e�ciency or conservatively high to maintain
accuracy while sparing computation. The exponential clockwork schedule executes the
first stage on every frame then updates following stages exponentially less often by halving
with each stage. The alternating clockwork schedule combines stages 2 and 3, executes
the first stage on every frame, then schedules the following combined stage every other frame.

A frame oracle that evaluates the full FCN on every frame is the reference model for accu-
racy. Evaluating the full FCN on every other frame is the reference model for computation.
Due to the distribution of execution time over stages, this is faster than either clockwork
schedule, though clockwork o↵ers higher accuracy. Alternating clockwork achieves higher
accuracy than the every other frame reference. See Table 3.5.

16 pixel shift Clock Rates Mean IU fwIU Mean IU-bdry fwIU-bdry

Skip Frame Baseline (2,2,2) 63.0 81.5 60.2 52.2
Exponential (1,2,4) 61.4 80.4 50.5 49.1
Alternating (1,1,2) 64.7 82.6 54.8 53.7

Frame Oracle (1,1,1) 65.9 83.6 57.0 56.3

32 pixel shift Clock Rates Mean IU fwIU Mean IU-bdry fwIU-bdry

Skip Frame Baseline (2,2,2) 59.5 77.9 49.4 48.2
Exponential (1,2,4) 55.5 74.7 46.3 44.8
Alternating (1,1,2) 61.9 79.6 51.7 50.6

Frame Oracle (1,1,1) 65.6 82.6 55.8 55.3

Table 3.5: Fixed-rate segmentation of translated PASCAL sequences. We evaluate the network
on synthesized video of translating PASCAL scenes to assess the e↵ect of persisting layer features
across frames. Metrics are computed on the standard masks and a 10-pixel band at boundaries.

NYUD Youtube Cityscapes

Schedule Mean IU fwIU Mean IU fwIU Mean IU fwIU

Skip Frame Baseline 27.7 41.3 65.6 89.7 62.1 87.4
Alternating 28.5 42.4 67.0 90.3 64.4 88.6
Adaptive 28.9 43.3 68.5 91.0 61.8 87.6

Frame Oracle 31.1 45.5 70.0 91.4 65.9 83.6

Table 3.6: Fixed-rate and adaptive clockwork FCN evaluation. We score our network on three
datasets with an alternating schedule that executes the later stage every other frame and an adaptive
schedule that executes according to a frame-by-frame threshold on the di↵erence in output. The
adaptative threshold is tuned to execute the full network on 50% of frames to equalize computation
between the alternating and adaptive schedules.
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θ = 0.10θ = 0.25

θ = 0.35

Method % Full Frames Mean IU

Adaptive [✓ = 0.10] 93% 70.0
Adaptive [✓ = 0.25] 52% 68.3
Adaptive [✓ = 0.35] 21% 59.0

Frame Oracle 100% 70.0

Figure 3.6: Adaptive Clockwork performance across the Youtube-Objects dataset. We ex-
amine various adaptive di↵erence thresholds ✓ and plot accuracy (mean IU) against the
percentage of frames that the adaptive clock chooses to fully compute. A few corresponding
thresholds are indicated.

Exponential clockwork shows degraded accuracy yet takes 1.5⇥ the computation of eval-
uation on every other frame, so we discard this fixed schedule in favor of adaptive clockwork.
Although exponential rates su�ce for the time series modeled by the clockwork recurrent
network [Kou+14], these rates deliver unsatisfactory results for the task of video semantic
segmentation. See Table 3.6 for alternating clockwork results on NYUD, YouTube-Objects,
and Cityscapes.

3.4.3 Adaptive Clockwork is E�cient and Accurate

The best clock schedule can be data-dependent and unknown before segmenting a video.
Therefore, we next evaluate our adaptive clock rate as described in Section 3.3.3. In this
case the adaptive clock only fully processes a frame if the relative di↵erence in pool4 score
is larger than some threshold ✓. This threshold may be interpreted as the the fraction of the
score map that must switch labels before the clock updates the upper layers of the network.
See Table 3.6 for adaptive clockwork results on NYUD, YouTube-Objects, and Cityscapes.

We experiment with varying thresholds on the Youtube-Objects dataset to measure accu-
racy and e�ciency. We pick thresholds in ✓ = [0.1, 0.5] as well as ✓ = 0.0 for unconditionally
updating on every frame.

In Figure 3.6 (left) we report mean IU accuracy as a function of our adaptive clock firing
rate; that is, the percentage of frames the clock decides to fully process in the network. The
thresholds which correspond to a few points on this curve are indicated with mean IU (right).
Notice that our adaptive clockwork is able to fully process only 52% of the frames while
su↵ering a minimal loss in mean IU (✓ = 0.25). This indicates that our adaptive clockwork
is capable of discovering semantically stationary scenes and saves significant computation by
only updating when the output score map is predicted to change.
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Adaptive  Clock Updates

Pixel Diff  Clock Updates

Ground Truth

Adaptive Clock 

Figure 3.7: An illustrative example of our adaptive clockwork method on a video from
Youtube-Objects. On the left, we compare clock updates over time (shown in black) of our
adaptive clock as well as a clock based on pixel di↵erences. Our adaptive clock updates the
full network on only 26% of the frames, determined by the threshold ✓ = 0.25 on the propor-
tional output label change across frames, while scheduling updates based on pixel di↵erence
alone results in updating 90% of the frames. On the right we show output segmentations
from the adaptive clockwork network as well as ground truth segments for select frames from
dynamic parts of the scene (second and third frames shown) and relatively static periods
(first and second frames shown).

For a closer inspection, we study one Youtube video in more depth in Figure 3.7. We first
visualize the clock updates for our adaptive method (top left) and for a simple pixel di↵erence
baseline (bottom left), where black indicates the clock is on and the corresponding frame is
fully computed. This video has significant change in certain sections (ex: at frame ⇠ 100
there is zoom and at ⇠ 350 there is motion) with long periods of relatively little motion (ex:
frames 110 � 130). While the pixel di↵erence metric is susceptible to the changes in minor
image statistics from frame to frame, resulting in very frequent updates, our method only
updates during periods of semantic change and can cache deep features with minimal loss in
segmentation accuracy: compare adaptive clock segmentations to ground truth (right).

3.5 Conclusion

Generalized clockwork architectures encompass many kinds of temporal networks, and in-
corporating execution into the architecture opens up many strategies for scheduling compu-
tation. We define a clockwork fully convolutional network for video semantic segmentation
in this framework. Motivated by the stability of deep features across sequential frames, our
network persists features across time in a temporal skip architecture. By exploring fixed and
adaptive schedules, we are able to tune processing for latency, overall computation time, and
recognition performance. With adaptive, data-driven clock rates the network is scheduled
online to segment dynamic and static scenes alike while maintaining accuracy. In this way
our adaptive clockwork network is a bridge between convnets and event-driven vision ar-
chitectures. The clockwork perspective on temporal networks suggests further architectural
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variations for spatiotemporal video processing.
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Chapter 4

Non-local Inference from Local
Supervision

Many tasks of scientific and practical interest require grouping pixels, such as cellular mi-
croscopy, medical imaging, and graphic design. Furthermore, a single image might need
to be segmented in several ways, for instance to first segment all people, then focus on a
single person, and finally pick out their face. Learning a particular type of segmentation, or
even extending an existing model to a new task like a new semantic class, generally requires
collecting and annotating a large amount of data and (re-)training a large model for many
iterations. Interactive segmentation with a supervisor in-the-loop can cope with less super-
vision, but requires at least a little annotation for each image, entailing significant e↵ort over
image collections or videos. Faced with endless varieties of segmentation and countless im-
ages, yet only so much expertise and time, a segmentor should be able to learn from varying
amounts of supervision and propagate that supervision to unlabeled pixels and images.

We frame these needs as the problem of guided segmentation: given supervision from
few or many images and pixels, collect and propagate this supervision to segment any given
images, and do so quickly and with generality across tasks. The amount of supervision may
vary widely, from a lone annotated pixel, millions of pixels in a fully annotated image, or even
more across a collection of images as in conventional supervised learning for segmentation.
The number of classes to be segmented may also vary depending on the task, such as when
segmenting categories like cats vs. dogs, or when segmenting instances to group individual
people. Guided segmentation extends few-shot learning to the structured output setting, and
the non-episodic accumulation of supervision as data is progressively annotated. Guided seg-
mentation broadens the scope of interactive segmentation by integrating supervision across
images and segmenting unannotated images.

As a first step towards solving this novel problem, we propose guided networks to extract
guidance, a latent task representation, from variable amounts of supervision (see Figure 4.1).
To do so we meta-learn how to extract and follow guidance by training episodically on tasks
synthesized from a large, fully annotated dataset. Once trained, our model can quickly and
cumulatively incorporate annotations to perform new tasks not seen during training. Guided
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Figure 4.1: A guide g extracts a latent task representation z from an annotated image (red)
for inference by f✓(x̄, z) on a di↵erent, unannotated image (blue).

networks reconcile static and interactive modes of inference: a guided model is both able
to make predictions on its own, like a fully supervised model, and to incorporate expert
supervision for defining new tasks or correcting errors, like an interactive model. Guidance,
unlike static model parameters, does not require optimization to update: it can be quickly
extended or corrected during inference. Unlike annotations, guidance is latent and low-
dimensional: it can be collected and propagated across images and episodes for inference
without the supervisor in-the-loop as needed by interactive models.

We evaluate our method on a variety of challenging segmentation problems in Section
5.4: interactive image segmentation, semantic segmentation, video object segmentation, and
real-time interactive video segmentation, as shown in 4.2. We further perform novel ex-
ploratory experiments aimed at understanding the characteristics and limits of guidance.
We compare guidance with standard supervised learning across the few-shot and many-shot
extremes of support size to identify the boundary between few-shot and many-shot learning
for segmentation. We demonstrate that in some cases, our model can generalize to guide
tasks at a di↵erent level of granularity, such as meta-learning from instance supervision and
then guiding semantic segmentation of categories.

4.1 Related Work

Guided segmentation extends few-shot learning to structured output models, statistically
dependent data, and variable supervision in amount of annotation (shot) and numbers of
classes (way). Guided segmentation spans di↵erent kinds of segmentation as special cases
determined by the supervision that constitutes a task, such as a collection of category masks
for semantic segmentation, sparse positive and negative pixels in an image for interactive
segmentation, or a partial annotation of an object on the first frame of a clip for video object
segmentation.

Few-shot learning Few-shot learning [FFFP06; LST15] holds the promise of data
e�ciency: in the extreme case, one-shot learning requires only a single annotation of a
new concept. The present wave of methods [KZS15; San+16; Vin+16; WH16; Ber+16;
FAL17; RL17; SSZ17] frame it as direct optimization for the few-shot setting: they synthesize
episodes by sampling supports and queries, define a task loss, and learn a task model for
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Figure 4.2: Guided segmentation groups di↵erent kinds of segmentation in one problem
statement.

inference of the queries given the support supervision. While these works address a setting
with a fixed, small number of examples and classes at meta-test time, we explore settings
where the number of annotations and classes is flexible.

Our approach is most closely related to episodically optimized metric learning approaches.
We design a novel, e�cient segmentation architecture for metric learning, inspired by Siamese
networks [CHL05; HCL06] and few-shot metric methods [KZS15; Vin+16; SSZ17] that learn
a distance to retrieve support annotations for the query. In contrast to existing meta-
learning schemes, we examine how a meta-learned model generalizes across task families
with a nested structure, such as performing semantic segmentation after meta-learning on
instance segmentation tasks.

Segmentation There are many kinds of segmentation, and many current directions
for deep learning techniques [GG+17]. We take up semantic [Eve+10; LYT11], interac-
tive [KWT88; BJ01], and semi-supervised video object segmentation [PT+17] as challenge
problems for our unified view with guidance. See Fig. 4.2 for summaries of these tasks.

For semantic segmentation [Sha+17] proposes a one-shot segmentor (OSLSM), which re-
quires few but densely annotated images, and must independently infer one annotation and
class at a time. Our guided segmentor can segment from sparsely annotated pixels and per-
form multi-way inference. For video object segmentation one-shot video object segmentation
(OSVOS) by [Cae+17] achieve high accuracy by fine-tuning during inference, but this online
optimization is too costly in time and fails with sparse annotations. Our guided segmentor is
feed-forward, hence quick, and segments more accurately from extremely sparse annotations.
[Che+18b] impressively achieve state-of-the-art accuracy and real-time, interactive video ob-
ject segmentation by replacing online optimization with o✏ine metric learning and nearest
neighbor inference on a deep, spatiotemporal embedding; however, they focus exclusively on
video segmentation. We consider a variety of segmentation tasks, and investigate how guid-
ance transfers across semantic and instance tasks and how it scales with more annotation.
For interactive segmentation, [Xu+16; Man+18] learn state-of-the-art interactive object seg-
mentation, and [Man+18] only needs four annotations per object. However, these purely
interactive methods infer each task in isolation and cannot pool supervision across tasks and
images without optimization, while our guided segmentor quickly propagates supervision
non-locally between images.
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4.2 Guided Segmentation

Akin to few-shot learning, we divide the input into an annotated support, which supervises
the task to be done, and an unannotated query on which to do the task. The common setting
in which the support contains K distinct classes and S examples of each is referred to as
K-way, S-shot learning [LST15; FFFP06; Vin+16]. For guided segmentation tasks we add
a further pixel dimension to this setting, as we must now consider the number of support
pixel annotations for each image, as well as the number of annotated support images. We
denote the number of annotated pixels per image as P , and consider the settings of (S, P )-
shot learning for various S and P . In particular, we focus on sparse annotations where P

is small, as these are more practical to collect, and merely require the annotator to point
to the segment(s) of interest. This type of data collection is more e�cient than collecting
dense masks by at least an order of magnitude [Bea+16]. Since segmentation commonly
has imbalanced classes and sparse annotations, we consider mixed-shot and semi-supervised
supports where the shot varies by class and some points are unlabeled. This is in contrast
to the standard few-shot assumption of class-balanced supports.

We define a guided segmentation task as the set of input-output pairs (Ti,Yi) sampled
from a task distribution P , adopting and extending the notation of [GB18]. The task inputs
are

T =
�
{(x1, L1), . . . (xS, LS)} [ {x̄1, . . . , x̄Q} ; xs, x̄q ⇠ Pl(RN)

 

Ls = {(pj, lj) : j 2 {1 . . P}, l 2 {1 . . K} [ {?}}

where S is the number of annotated support images xs, Q is the number of unannotated
query images x̄q, and Ls are the support annotations. The annotations are sets of point-label
pairs (p, l) with |Ls| = P per image, where every label l is one of the K classes or unknown
(?). The task outputs, that is the targets for the support-defined segmentation task on the
queries, are

Y = (y1, . . . , yQ), yq = {(pj, lj) : pj 2 x̄q}

Our model handles general way K, but for exposition we focus on binary tasks with K = 2,
or L = (+,�). We let Q = 1 throughout as inference of each query is independent in our
model.

4.3 Guided Networks

Our approach to guided segmentation has two parts: (1) extracting a task representation
from the semi-supervised, structured support and (2) segmenting the query given the task
representation. We define the task representation as z = g(x,+,�), and the query segmen-
tation guided by that representation as ŷ = f(x̄, z). The design of the task representation
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Figure 4.3: Extracting a task representation or “guidance” from the support. (a) Early fusion
simply concatenates the image and annotations. (b) Our late fusion factorizes into image
and annotation streams, improves accuracy, and updates quickly given new annotations.
(c) Globalizing the task representation propagates appearance non-locally: a single bird is
annotated in this example, but global guidance causes all the similar-looking birds to be
segmented (red) regardless of location.

z and its encoder g is crucial for guided segmentation to handle the hierarchical structure
of images and pixels, the high and variable dimensions of images and their pixelwise anno-
tations, the semi-supervised nature of support with many unannotated pixels, and skewed
support distributions.

We examine how to best design the guide g and inference f as deep networks. Our method
is one part architecture and one part optimization. For architecture, we define branched fully
convolutional networks, with a guide branch for extracting the task representation from
the support with a novel late fusion technique (Section 4.3.1), and an inference branch for
segmenting queries given the guidance (Section 4.3.2). For optimization, we adapt episodic
meta-learning to image-to-image learning for structured output (Section 4.3.3), and increase
the diversity of episodes past existing practice by sampling within and across segmentation
task families like categories and instances.

4.3.1 Guidance: from Supervision to Latent Task Representation

The task representation z must fuse the visual information from the image with the annota-
tions in order to determine what should be segmented in the query. As images with (partial)
segmentations, our support is statistically dependent because pixels are spatially correlated,
semi-supervised because the full supervision is arduous to annotate, and high dimensional
and class-skewed because scenes are sizable and complicated. For simplicity, we first consider
a binary task with (1, P )-shot support consisting of one image with an arbitrary number of
annotated pixels P , and then extend to multi-way tasks and general (S, P )-shot support. To
begin we decompose the support encoder g(xs,+s,�s) across receptive fields indexed by i

for local task representations zi = g(xsi,+si,�si); this is the same independence assumption
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made by existing fully convolutional approaches to structured output. See Figure 4.3 for an
overview and our novel late global fusion technique.

Early Fusion (prior work) Stacking the image and annotations channel-wise at the
input makes zsi = gearly(x,+,�) = �S(x�+��) with a support feature extractor �S. This
early fusion strategy, employed by [Xu+16], gives end-to-end learning full control of how to
fuse. Masking the image by the positive pixels [Sha+17; Yoo+17] instead forces invariance
to context, potentially speeding up learning, but precludes learning from the background
and disturbs input statistics. All early fusion techniques su↵er from an inherent modeling
issue: incompatibility of the support and query representations. Stacking requires distinct
�S,�Q while masking disturbs the input distribution. Early fusion is slow, since changes in
annotations trigger a full pass through the network, and only one task can be inferred at a
time, limiting existing interactive and few-shot segmentors alike [Xu+16; Man+18; Sha+17].

Late Fusion (ours) We resolve the learning and inference issues of early fusion by
factorizing features and annotations in the guide architecture as zsi = glate(x,+,�) =
 (�(x̄),m(+),m(�)). We first extract visual features from the image alone by �(x), map the
annotations into masks in the feature layer coordinates m(+),m(�), and then fuse both by
 chosen to be element-wise product. This factorization into visual and annotation branches
defines the spatial relationship between image and annotations, improving learning sample
e�ciency and inference computation time. Fixing m to interpolation and  to multiplica-
tion, the task representation can be updated quickly by only recomputing the masking and
not features �. See Figure 4.3 (center). We do not model a distribution over z, although this
is a possible extension of our work for regularization or sampling diverse segmentations.

Our late fusion architecture can now share the feature extractor � for joint optimization
through the support and query. Sharing improves learning e�ciency with convergence in
fewer iterations and task accuracy with 60% relative improvement for video object segmen-
tation. Late fusion reduces inference time, as only the masking needs to be recomputed to
incorporate new annotations, making it capable of real-time interactive video segmentation.
Optimization-based methods [Cae+17] need seconds or minutes to update.

Locality We are generally interested in segmentation tasks that are determined by visual
characteristics and not absolute location in space or time, i.e. the task is to group pixels of
an object and not pixels in the bottom-left of an image. When the support and query images
di↵er, there is no known spatial correspondence, and the only mapping between support and
query should be through features. To fit the architecture to this task structure, we merge
the local task representations by mP ({zsi : 8i}) for all positions i. Choosing global pooling
for mP globalizes the task by discarding the spatial dimensions. The pooling step can be
done by averaging, our choice, or other reductions. The e↵ect of pooling in an image with
multiple visually similar objects is shown in Figure 4.3 (right).

Multi-Shot and Multi-Way The full (S, P )-shot setting requires summarizing the en-
tire support with a variable number of images with varying amounts of pixelwise annotations.
Note in this case that the annotations might be divided across the support, for instance one
frame of a video may only have positives while a di↵erent frame has only negatives, so S-shot
cannot always be reduced to 1-shot, as done in prior work [Sha+17]. We form the full task
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Figure 4.4: Optimization for guided segmentation. (a) Synthesizing tasks from densely
annotated segmentation data. (b) One task update: episodic training reduces to supervised
learning.

representation zS = mS({z1, . . . , zS}) simply and di↵erentiably by averaging the shot-wise
representations zs. While we have considered binary tasks thus far, we extend guidance to
multi-way inference do in our experiments. We construct a separate guide for each class,
averaging across all shots containing annotations for that class. Note that all the guides
share � for e�ciency and di↵er only in the masking.

4.3.2 Guiding Inference by Metric Learning

Inference in a static segmentation model is simply ŷ = f✓(x̄) for output y, parameters ✓,
and input x̄. Guided inference is a function ŷ = f(x̄, z) of the query given the guidance
extracted from the support. We further structure inference by f(�(x̄), z), where � is a fully
convolutional encoder from input pixels to visual features.

Multiple forms of conditioning are possible and have been explored for low-dimensional
classification and regression problems by the few-shot learning literature. In preliminary
experiments we consider parameter regression, nearest neighbor and prototype retrieval, and
metric learning on fused features. We select metric learning with feature fusion because it is
simple and robust to optimize. Note that feature fusion is similar to siamese architectures,
but we directly optimize the classification loss rather than a contrastive loss.

In particular we fuse features by mf = �(x)� tile(z) which concatenates the guide with
the query features, while tiling z to the spatial dimensions of the query. The fused query-
support feature is then scored by a small convolutional network f✓ that can be interpreted
as a learned distance metric for retrieval from support to query. For multi-way guidance,
the fusions of the query and each guide are batched for parallel inference.

4.3.3 Episodic Optimization and Task Distributions

We distinguish between optimizing the parameters of the model during training (learning)
and adapting the model during inference (guidance). Thus during training, we wish to “learn
to guide.” In standard supervised learning, the model parameters ✓ are optimized according
to the loss between prediction ŷ = f✓(x) and target y. We reduce the problem of learning
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to guide to supervised learning by jointly optimizing the parameters of the guidance branch
g and the segmentation branch f according to the loss between f✓(x̄, z) and query target y,
see Figure 4.4.

For clarity, we distinguish between tasks, a given support and query for segmentation,
and task distributions that define a kind of segmentation problem. For example, semantic
segmentation is a task distribution while segmenting birds (a semantic class) is a task. We
train a guided network for each task distribution by optimizing episodically on sampled
tasks. The supports and queries that comprise an episode are synthesized from a fully
labeled dataset. We first sample a task, then a subset of images containing that task which
we divide into support and query. During training, the target for the query image is available,
while for testing it is not. We binarize support and query annotations to encode the task,
and spatially sample support annotations for sparsity.

Given inputs and targets, we train the network with the pixelwise cross-entropy loss
between the predicted and target segmentation of the query. See Sections ?? and ?? for
more details on data processing and network optimization respectively.

After learning, the model parameters are fixed, and task inference is determined by
guidance. While we evaluate for varying support size S, as described in 4.3.2, we train
with S = 1 for e�ciency while sampling P ⇠ Uniform(1, 100). Once learned, our guided
networks can operate at di↵erent (S, P ) shots to address sparse and dense pixelwise annota-
tions with the same model, unlike existing methods that train for particular shot and way.
In our experiments, we train with tasks sampled from a single task distribution, but co- or
cross-supervision of distributions is possible. Intriguingly, we see some transfer between dis-
tributions when evaluating a guided network on a di↵erent distribution than it was trained
on in Section 4.4.3.

4.4 Results

We evaluate our guided segmentor on a variety of problems that are representative of seg-
mentation as a whole: interactive segmentation, semantic segmentation, and video object
segmentation. These are conventionally regarded as separate problems, but we demonstrate
that each can be viewed as an instantiation of guided segmentation. As a further demon-
stration of our method, we present results for real-time, interactive video segmentation from
dot annotations. To better understand the characteristics of guidance, we experiment with
cross-task supervision in Section 4.4.2 and guiding with large-scale supports in Section 4.4.3.

To standardize evaluation we select one metric for all tasks: the intersection-over-union
(IU) of the positives averaged across all tasks and masks. This choice allows us to compare
scores across the di↵erent kinds of segmentation we consider without skew from varying
numbers of classes or images. Note that this metric is not equivalent to the mean IU across
classes that is commonly reported for semantic segmentation. Please refer to Section ?? for
more detail.
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Figure 4.5: (left) Interactive segmentation of objects in images. (right) Guided semantic
segmentation of held-out classes: we are state-of-the-art with only two points and competitive
with full annotations.

We include fine-tuning and foreground-background segmentation as baselines for all prob-
lems. Fine-tuning simply attempts to optimize the model on the support. Foreground-
background verifies that methods are learning to co-vary their output with the support
supervision and sets an accuracy floor.

The backbone of our networks is VGG-16 [SZ15], pre-trained on ILSVRC [Rus+15],
and cast into fully convolutional form [SLD17]. This choice is made for fair comparison
with existing works across our challenge tasks of semantic, interactive, and video object
segmentation without confounds of architecture, pre-training data, and so forth.

4.4.1 Guided Interactive/Video Object/Semantic Segmentation

Interactive Image Segmentation We recover this problem as a special case of guided
segmentation when the support and query images are identical. We evaluate on PASCAL
VOC [pascal] and compare to deep interactive object selection (DIOS) [Xu+16], because it
is state-of-the-art and shares our focus on learning for label e�ciency and generality. Our
approach di↵ers in support encoding: DIOS fuses early while we fuse late and globally. Our
guided segmentor is more accurate with extreme sparsity and intrinsically faster to update,
as DIOS must do a full forward pass. See Figure 4.5 (left). From this result we decide on
late-global guidance throughout.

Video Object Segmentation We evaluate our guided segmentor on the DAVIS 2017
benchmark [PT+17] of 2–3 second videos. For this problem, the object indicated by the fully
annotated first frame must be segmented across the video. We then extend the benchmark
to sparse annotations to gauge how methods degrade. We compare to OSVOS [Cae+17],
a state-of-the-art online optimization method that fine-tunes on the annotated frame and
then segments the video frame-by-frame. While [Che+18b] presents impressive results on
this task and on real-time interactive video segmentation without optimization, their scope is
limited to video, and they employ orthogonal improvements that make comparison di�cult.
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Figure 4.6: (left) Accuracy-time evaluation for sparse and dense video object segmenta-
tion on DAVIS’17 val. (right) Real-time interactive video segmentation on simulated dot
interactions.

We were unable to reproduce their results in our own experimental framework. See Figure
4.6 (left) for a comparison of accuracy, speed, and annotation sparsity.

In the dense regime our method achieves 33.3% accuracy for 80% relative improvement
over OSVOS in the same time envelope. Given (much) more time fine-tuning significantly
improves in accuracy, but takes 10+min/video. Guidance is ⇠ 200⇥ faster at 3sec/video.
Our method handles extreme sparsity with little degradation, maintaining 87% of the dense
accuracy with only 5 points for positive and negative. Fine-tuning struggles to optimize over
so few annotations.

Interactive Video Segmentation By dividing guidance and inference, our guided
segmentor can interactively segment video in real time. As an initial evaluation, we simulate
interactions with randomly-sampled dot annotations. We define a benchmark by fixing the
amount of annotation and measuring accuracy as the annotations are given. The accuracy-
annotation tradeo↵ curve is plotted in Figure 4.6 (right). Our guided segmentor improves
with both dimensions of shot, whether images (S) or pixels (P ). Our guided architecture is
feedforward and fast, and faster still to update for changes to the annotations.

Semantic Segmentation Semantic segmentation is a challenge for learning from little
data due to the high intra-class variance of appearance. For this problem it is crucial to eval-
uate on not only held-out inputs, but held-out classes, to be certain the guided learner has
not covertly learned to be an unguided semantic segmentor. To do so we follow the experi-
mental protocol of [Sha+17] and score by averaging across four class-wise splits of PASCAL
VOC [Eve+10], with has 21 classes (including background), and compare to OSLSM.

Our approach achieves state-of-the-art sparse results that rival the most accurate dense
results with just two labeled pixels: see Figure 4.5 (right). OSLSM is incompatible with
missing annotations, as it does early fusion by masking, and so is only defined for {0, 1} anno-
tations. To evaluate it we map all missing annotations to negative. Foreground-background
is a strong baseline, and we were unable to improve on it with fine-tuning. The oracle is
trained on all classes (nothing is held-out).
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4.4.2 Switching between Class and Instance Tasks

We carry out a novel examination of meta-learning with cross-
task supervision. In the language of task distributions, the
distribution of instance tasks for a given semantic category are
nested in the distribution of tasks for that category. We inves-
tigate whether meta-training on the sub-tasks (instances) can
address the super-tasks (classes). This tests whether guidance
can capture an enumerative definition of a semantic class as
the union of instances in that category.

To do so, we meta-train our guided segmentor on interac-
tive instance segmentation tasks draw from all classes of PAS-
CAL VOC [Eve+10], and then evaluate the model on semantic
segmentation tasks from all categories. We experiment with (S, 1) support from semantic
annotations, where S varies from one image to all the images in the training set, shown in
the plot to the right. We compare to foreground-background as a class-agnostic accuracy
floor, and a standard semantic segmentation net trained with semantic labels as an oracle.
Increasing the amount of semantic annotations for guidance steadily increases accuracy.

4.4.3 Scaling between Few and Many Annotations

Thus far we have considered guidance in a variable but constrained scale of annotations,
ranging from a single pixel in a single image to a few fully annotated images. We meta-learned
our guided networks over episodes with such support sizes, and they perform accordingly
well in this regime. Here we consider a much wider spectrum of support sizes, with the goal
of understanding how guidance compares to standard supervised learning at both ends of the
spectrum. To the best of our knowledge, this is the first evaluation of how few-shot learning
scales to many-shot usage for structured output.

For this experiment we compare guidance and supervised learning on a transfer task
between disjoint semantic categories. We take the classes of PASCAL VOC [Eve+10] as
source classes, and take the non-intersecting classes of COCO [Lin+14] as the target classes.
We divide COCO 2017 validation into class-balanced train/test halves to look at transfer
from a practical amount of annotation (thousands instead of more than a hundred thousand
images). Our guided segmentor is meta-trained with semantic tasks sampled from the source
classes, then guided with 5,989 densely annotated semantic masks from the target classes.
For fair comparison, the supervised learner is first trained on the source classes, and then
fine-tuned on the same annotated target data. Both methods share the same ILSVRC pre-
training, backbone architecture, and (approximate) number of parameters. In this many-shot
regime, guidance achieves 95% of supervised learning performance. A key point of this result
is to shed light on the spectrum of supervision that spans few-shot and many-shot settings,
and encourage future work to explore bridging the two.
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4.5 Conclusion

Guided segmentation unifies annotation-bound segmentation problems. Guided networks
reconcile task-driven and interactive inference by extracting guidance, a latent task repre-
sentation, from any amount of supervision given. With guidance our segmentor revolver can
learn and infer tasks without optimization, improve its accuracy near-instantly with more
supervision, and once-guided can segment new images without the supervisor in the loop.
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Chapter 5

Learning & Adapting the Degree of
Locality

Although the visual world is varied, it nevertheless has ubiquitous structure. Structured
factors, such as scale, admit clear theories and e�cient representation design. Unstructured
factors, such as what makes a cat look like a cat, are too complicated to model analytically,
requiring free-form representation learning. How can recognition harness structure without
restraining the representation?

Free-form representations are structure-agnostic, making them general, but not exploiting
structure is computationally and statistically ine�cient. Structured representations like
steerable filtering [FA91; SF95; Jac+16], scattering [BM13; SM13], and steerable networks
[CW17] are e�cient but constrained to the chosen structures. We propose a new, semi-
structured compositional filtering approach to blur the line between free-form and structured
representations and learn both. Doing so learns local features and the degree of locality.

Free-form filters, directly defined by the parameters, are general and able to cope with
unknown variations, but are parameter ine�cient. Structured factors, such as scale and
orientation, are enumerated like any other variation, and require duplicated learning across
di↵erent layers and channels. Nonetheless, end-to-end learning of free-form parameters is
commonly the most accurate approach to complex visual recognition tasks when there is
su�cient data.

Structured filters, indirectly defined as a function of the parameters, are theoretically
clear and parameter e�cient, but constrained. Their e↵ectiveness hinges on whether or not
they encompass the true structure of the data. If not, the representation is limiting, and
subject to error. At least, this is a danger when substituting structure to replace learning.

We compose free-form and structured filters, as shown in Figure 5.1, and learn both end-
to-end. Free-form filters are not constrained by our composition. This makes our approach
more expressive, not less, while still able to e�ciently learn the chosen structured factors. In
this way our semi-structured networks can reduce to existing networks as a special case. At
the same time, our composition can learn di↵erent receptive fields that cannot be realized
in the standard parameterization of free-form filters. Adding more free-form parameters
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Figure 5.1: We compose free-form filters f✓ and structured Gaussian filters g⌃ by convolution
⇤ to define a more general family of semi-structured filters than can be learned by either
alone. Our composition makes receptive field scale, aspect, and orientation di↵erentiable in
a low-dimensional parameterization for e�cient end-to-end learning.

or dilating cannot learn the same family of filters. Figure 5.2 o↵ers one example of the
impracticality of architectural alternatives.

Gaussian structure represents scale, aspect, and orientation through covariance [Lin94].
Optimizing these factors carries out a form of di↵erentiable architecture search over receptive
fields, reducing the need for onerous hand-design or expensive discrete search. Any 2D
Gaussian has the same, low number of covariance parameters no matter its spatial extent,
so receptive field optimization is low-dimensional and e�cient. Because the Gaussian is
smooth, our filtering is guaranteed to be proper from a signal processing perspective and
avoid aliasing.

Our contributions include: (1) defining semi-structured compositional filtering to bridge
classic ideas for scale-space representation design and current practices for representation
learning, (2) exploring a variety of receptive fields that our approach can learn, and (3)
adapting receptive fields with accurate and e�cient dynamic Gaussian structure.

5.1 Related Work

Composing structured Gaussian filters with free-form learned filters draws on structured filter
design and representation learning. Our work is inspired by the transformation invariance
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Figure 5.2: Our composition (a) cannot be practically reduced to dilation (b) or more free-
form parameters (c). Adding more parameters, here about 10⇥ by 212 vs. 72, is ine�cient
and limited: more parameters take more data and optimization to learn and the maximum
scale is fixed. Dilating the filter has side e↵ects and is constrained: sparse sampling causes
artifacts and the sparsity and scale are fixed.

of scale-space [Lin94], the parsimony of steerable filtering [FA91; Per95; BM13; CW17], and
the adaptivity of dynamic inference [OAVE93; Jad+15; DB+16; Dai+17]. Analysis that the
e↵ective receptive field size of deep networks is limited [Luo+16], and only is a fraction of
the theoretical size, motivates our goal of making unbounded receptive field size and varied
receptive field shapes practically learnable.

Transformation Invariance Gaussian scale-space and its a�ne extension connect co-
variance to spatial structure for transformation invariance [Lin94]. We jointly learn struc-
tured transformations via Gaussian covariance and features via free-form filtering. Enumer-
ative methods cover a set of transformations, rather than learning to select transformations:
image pyramids [BA83] and feature pyramids [KSJ14; SLD17; Lin+17] cover scale, scatter-
ing [BM13] covers scales and rotations, and steerable networks [CW17] cover discrete groups.
Our learning and inferring covariance relates to scale selection [Lin98], as exemplified by the
scale invariant feature transform [Low04]. Scale-adaptive convolution [Zha+17a] likewise
selects scales, but without our Gaussian structure and smoothness.

Steering Steering indexes a continuous family of filters by linearly weighting a struc-
tured basis, such as Gaussian derivatives. Steerable filters [FA91] index orientation and
deformable kernels [Per95] index orientation and scale. Such filters can be stacked into a
deep, structured network [Jac+16]. These methods have elegant structure, but are con-
strained to it. We make use of Gaussian structure, but keep generality by composing with
free-form filters.

Dynamic Inference Dynamic inference adapts the model to each input. Dynamic rout-
ing [OAVE93], spatial transformers [Jad+15], dynamic filter nets [DB+16], and deformable
convolution [Dai+17] are all dynamic, but lack local structure. We incorporate Gaussian
structure to improve e�ciency while preserving accuracy.
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Proper signal processing, by blurring when downsampling, improves the shift-equivariance
of learned filtering [Zha19]. We reinforce these results with our experiments on blurred di-
lation, to complement their focus on blurred stride. While we likewise blur, and confirm the
need for smoothing to prevent aliasing, our focus is on how to jointly learn and compose
structured and free-form filters.

5.2 A Clear Review of Blurring

We introduce the elements of our chosen structured filters first, and then compose free-form
filters with this structure in the next section. While the Gaussian and scale-space ideas here
are classic, our end-to-end optimized composition and its use for receptive field learning are
novel.

5.2.1 Gaussian Structure

The choice of structure determines the filter characteristics that can be represented and
learned.

We choose Gaussian structure. For modeling, it is di↵erentiable for end-to-end learning,
low-dimensional for e�cient optimization, and still expressive enough to represent a variety
of shapes. For signal processing, it is smooth and admits e�cient filtering. In particular,
the Gaussian has these attractive properties for our purposes:

• shift-invariance for convolutional filtering,

• normalization to preserve input and gradient norms for stable optimization,

• separability to reduce computation by replacing a 2D filter with two 1D filters,

• and cascade smoothing from semi-group structure to decompose filtering into smaller,
cumulative steps.

In fact, the Gaussian is the unique filter satisfying these and further scale-space axioms
[Koe84; Bab+86; Lin94].

The Gaussian kernel in 2-D is

G(x;⌃) =
1

2⇡
p
det⌃

e
�xT⌃�1x/2 (5.1)

for input coordinates x and covariance ⌃ 2 R2⇥2, a symmetric positive-definite matrix.
The structure of the Gaussian is controlled by its covariance ⌃. Note that we are con-

cerned with the spatial covariance, where the coordinates are considered as random variables,
and not the covariance of the feature dimensions. Therefore the elements of the covariance
matrix are �2

y , �
2
x for the y, x coordinates and ⇢ for their correlation. The standard, isotropic

Gaussian has identity covariance [ 1 0
0 1 ]. There is progressively richer structure in spherical,
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Figure 5.3: Gaussian covariances come in families with progressively richer structure: (a)
spherical covariance has one parameter for scale; (b) diagonal covariance has two parameters
for scale and aspect; and (c) full covariance has three parameters for scale, aspect, and
orientation/slant.

diagonal, and full covariance: Figure 5.3 illustrates these kinds and the scale, aspect, and
orientation structure they represent.

Selecting the right spatial covariance yields invariance to a given spatial transformation.
The standard Gaussian indexes scale-space, while the full covariance Gaussian indexes its
a�ne extension [Lin94]. We leverage this transformation property of Gaussians to learn
receptive field shape in Section 5.3.1 and dynamically adapt their structure for local spatially
invariant filtering in Section 5.3.2.

From the Gaussian kernel G(x,⌃) we instantiate a Gaussian filter g⌃(·) in the standard
way: (1) evaluate the kernel at the coordinates of the filter coe�cients and (2) renormalize
by the sum to correct for this discretization. We decide the filter size according to the
covariance by setting the half size = d2�e in each dimension. This covers ± 2� to include
95% of the true density no matter the covariance. (We found that higher coverage did not
improve our results.) Our filters are always odd-sized to keep coordinates centered.

5.2.2 Covariance Parameterization & Optimization

The covariance ⌃ is symmetric positive definite, requiring proper parameterization for un-
constrained optimization. We choose the log-Cholesky parameterization [PB96] for iterative
optimization because it is simple and quick to compute: ⌃ = U

0
U for upper-triangular U with

positive diagonal. We keep the diagonal positive by storing its log, hence log-Cholesky, and
exponentiating when forming ⌃. (See [PB96] for a primer on covariance parameterization.)

Here is an example for full covariance ⌃ with elements �2
y , �

2
x for the y, x coordinates
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Figure 5.4: Recovering an unknown blur by optimizing over covariance. Gradient optimiza-
tion of the structured parameters ⌃ quickly converges to the true Gaussian. Although this
is a simple example, it shows the e↵ectiveness of the Gaussian for representing scale, aspect,
and orientation.
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Spherical and diagonal covariance are parameterized by fixing ⇢ = 0 and tying/untying
�y, �x. Note that we overload notation and use ⌃ interchangeably for the covariance matrix
and its log-Cholesky parameters.

Our composition learns ⌃ by end-to-end optimization of structured parameters, not sta-
tistical estimation of empirical distributions. In this way the Gaussian is determined by the
task loss, and not by input statistics, as is more common.

5.2.3 Learning to Blur

As a pedagogical example, consider the problem of optimizing covariance to reproduce an
unknown blur. That is, given a reference image and a blurred version of it, which Gaus-
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(a) limit as � ! 0 (b) � < 1 (c) limit as � !1
Figure 5.5: Special cases of the Gaussian are helpful for di↵erentiable model search. (a)
The identity is recovered by filtering with a delta as variance goes to zero. (b) A smoothed
delta from small variance is a good initialization to make use of pre-training. (c) Global
average pooling is recovered as variance goes to infinity. Each filter is normalized separately
to highlight the relationship between points.

sian filter causes this blur? Figure 5.4 shows such an optimization: from an identity-like
initialization the covariance parameters quickly converge to the true Gaussian.

Given the full covariance parameterization, optimization controls scale, aspect, and ori-
entation. Each degree of freedom can be seen across the iterates of this example. Had the
true blur been simpler, for instance spherical, it could still be swiftly recovered in the full
parameterization.

Notice how the size and shape of the filter vary over the course of optimization: this is
only possible through structure. For a Gaussian filter, its covariance is the intrinsic structure,
and its coe�cients follow from it. The filter size and shape change while the dimension of
the covariance itself is constant. Lacking structure, free-form parameterization couples the
number of parameters and filter size, and so cannot search over size and shape in this fashion.

5.3 Semi-Structured Compositional Filtering

Composition and backpropagation are the twin engines of deep learning [Fuk80; LeC+98b]:
composing learned linear operations with non-linearities yields deep representations. Deep
visual representations are made by composing convolutions to learn rich features and receptive
fields, which characterize the spatial extent of the features. Although each filter might
be small, and relatively simple, their composition can represent and learn large, complex
receptive fields. For instance, a stack of two 3 ⇥ 3 filters is e↵ectively 5 ⇥ 5 but with
fewer degrees of freedom (2 · 32 vs. 52). Composition therefore induces factorization of
the representation, and this factorization determines the generality and e�ciency of the
representation.
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Our semi-structured composition factorizes the representation into spatial Gaussian re-
ceptive fields and free-form features. This composition is a novel approach to making recep-
tive field shape di↵erentiable, low-dimensional, and decoupled from the number of parame-
ters. Our approach jointly learns the structured and free-form parameters while guaranteeing
proper sampling for smooth signal processing. Purely free-form filters cannot learn shape
and size in this way: shape is entangled in all the parameters and size is bounded by the
number of parameters. Purely structured filters, restricted to Gaussians and their derivatives
for instance, lack the generality of free-form filters. Our factorization into structured and
free-form filters is e�cient for the representation, optimization, and inference of receptive
fields without sacrificing the generality of features.

Receptive field size is a key design choice in the architecture of fully convolutional net-
works for local prediction tasks [SLD17]. The problem of receptive field design is commonly
encountered with each new architecture, dataset, or task. Optimizing our semi-structured
filters is equivalent to di↵erentiable architecture search over receptive field size and shape.
By making this choice di↵erentiable, we show that learning can adjust to changes in the
architecture and data in Section 5.4.2. Trying candidate receptive fields by enumeration is
expensive, whether by manual search or automated search [ZL17; Kan+18; LSY19]. Semi-
structured composition helps relieve the e↵ort and computational burden of architecture
design by relaxing the receptive field from a discrete decision into a continuous optimization.

5.3.1 Composing with Convolution and Covariance

Our composition f✓�g⌃ combines a free-form f✓ with a structured Gaussian g⌃. The computa-
tion of our composition reduces to convolution, and so it inherits the e�ciency of aggressively
tuned convolution implementations. Convolution is associative, so compositional filtering of
an input I can be decomposed into two steps of convolution by

I ⇤ (g⌃ ⇤ f✓) = I ⇤ g⌃ ⇤ f✓. (5.2)

This decomposition has computational advantages. The Gaussian step can be done by spe-
cialized filtering that harnesses separability, cascade smoothing, and other Gaussian struc-
ture. Memory can be spared by only keeping the covariance parameters and recreating the
Gaussian filters as needed (which is quick, although it is a space-time tradeo↵). Each com-
positional filter can always be explicitly formed by g⌃ ⇤ f✓ for visualization (see Figure 5.1)
or other analysis.

Both ✓ and ⌃ are di↵erentiable for end-to-end learning.
How the composition is formed alters the e↵ect of the Gaussian on the free-form filter.

Composing by convolution with the Gaussian then the free-form filter has two e↵ects: it
shapes and blurs the filter. Composing by convolution with the Gaussian and resampling
according to the covariance purely shapes the filter. That is, blurring and resampling first
blurs with the Gaussian, and then warps the sampling points for the following filtering by the
covariance. Either operation might have a role in representation learning, so we experiment
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(a) input (b) dilated filter (c) output (d) with blur

Figure 5.6: Blurring prevents aliasing or “gridding” artifacts by smoothing dilation to respect
the sampling theorem.

with each in Table 5.2. In both cases the composed filter is dense, unlike a sparse filter from
dilation.

When considering covariance optimization as di↵erentiable receptive field search, there
are special cases of the Gaussian that are useful for particular purposes. See Figure 5.5 for
how the Gaussian can be reduced to the identity, initialized near the identity, or reduced to
average pooling. The Gaussian includes the identity in the limit, so our models can recover
a standard networks without our composition of structure. By initializing near the identity,
we are able to augment pre-trained networks without interference, and let learning decide
whether or not to make use of structure.

Blurring for Smooth Signal Processing Blurring (and resampling) by the covariance
guarantees proper sampling for correct signal processing. It synchronizes the degree of
smoothing and the sampling rate to avoid aliasing. Their combination can be interpreted
as a smooth, circular extension of dilated convolution [Che+15; YK16] or as a smooth,
a�ne restriction of deformable convolution [Dai+17]. Figure 5.6 contrasts dilation with
blurring & resampling. For a further perspective, note this combination is equivalent to
downsampling/upsampling with a Gaussian before/after convolving with the free-form filter.

Even without learning the covariance, blurring can improve dilated architectures. Dila-
tion is prone to gridding artifacts [YKF17; Wan+18]. We identify these artifacts as aliasing
caused by the spatial sparsity of dilated filters. We fix this by smoothing with standard
deviation proportional to the dilation rate. Smoothing when subsampling is a fundamen-
tal technique in signal processing to avoid aliasing [OS09], and the combination serves as a
simple alternative to the careful re-engineering of dilated architectures. Improvements from
blurring dilation are reported in Table 5.3.

Compound Gaussian Structure Gaussian filters have a special compositional struc-
ture we can exploit: cascade smoothing. Composing a Gaussian g⌃ with a Gaussian g⌃0 is
still Gaussian with covariance ⌃ + ⌃0. This lets us e�ciently assemble compound receptive
fields made of multiple Gaussians. Center-surround [Kuf53] receptive fields, which boost
contrast, can be realized by such a combination as Di↵erence-of-Gaussian [RS65] (DoG) fil-
ters, which subtract a larger Gaussian from a smaller Gaussian. Our joint learning of their
covariances tunes the contrastive context of the receptive field, extending [Din+18] which
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learns contrastive filters with fixed receptive field sizes.
Design Choices Having defined our semi-structured composition, we cover the design

choices involved in its application. As a convolutional composition, it can augment any
convolution layer in the architecture. We focus on including our composition in late, deep
layers to show the e↵ect without much further processing. We add compositional filtering to
the output and decoder layers of fully convolutional networks because the local tasks they
address rely on the choice of receptive fields.

Having decided where to compose, we must decide how much structure to compose.
There are degrees of structure, from minimal structure, where each layer or stage has only
one shared Gaussian, to dynamic structure, where each receptive field has its own structure
that varies with the input. In between there is channel structure, where each free-form filter
has its own Gaussian shared across space, or multiple structure, where each layer or filter
has multiple Gaussians to cover di↵erent shapes. We explore minimal structure and dynamic
structure in order to examine the e↵ect of composition for static and dynamic inference, and
leave the other degrees of structure to future work.

5.3.2 Dynamic Gaussian Structure

Semi-structured composition learns a rich family of receptive fields, but visual structure
is richer still, because structure locally varies while our filters are fixed. Even a single
image contains variations in scale and orientation, so one-size-and-shape-fits-all structure
is suboptimal. Dynamic inference replaces static, global parameters with dynamic, local
parameters that are inferred from the input to adapt to these variations. Composing with
structure by convolution cannot locally adapt, since the filters are constant across the image.
We can nevertheless extend our composition to dynamic structure by representing local
covariances and instantiating local Gaussians accordingly. Our composition makes dynamic
inference e�cient by decoupling low-dimensional, Gaussian structure from high-dimensional,
free-form filters.

There are two routes to dynamic Gaussian structure: local filtering and deformable sam-
pling. Local filtering has a di↵erent filter kernel for each position, as done by dynamic filter
networks [DB+16]. This ensures exact filtering for dynamic Gaussians, but is too compu-
tationally demanding for large-scale recognition networks. Deformable sampling adjusts the
position of filter taps by arbitrary o↵sets, as done by deformable convolution [Dai+17]. We
exploit deformable sampling to dynamically form sparse approximations of Gaussians.

We constrain deformable sampling to Gaussian structure by setting the sampling points
through covariance. Figure 5.7 illustrates these Gaussian deformations. We relate the default
deformation to the standard Gaussian by placing one point at the origin and circling it with
a ring of eight points on the unit circle at equal distances and angles. We consider the
same progression of spherical, diagonal, and full covariance for dynamic structure. This low-
dimensional structure di↵ers from the high degrees of freedom in a dynamic filter network,
which sets free-form filter parameters, and deformable convolution, which sets free-form
o↵sets. In this way our semi-structured composition requires only a small, constant number
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(a)
3⇥ 3 filter

(b)
deformable [Dai+17]

(c)
standard Gauss.

(d)
spherical Gauss.

(e)
diagonal Gauss.

(f)
full Gauss.

Figure 5.7: Gaussian deformation (c-f) structures dynamic receptive fields by controlling
the sampling points (blue) through the covariance. The low-dimensionality of covariance is
more e�cient than free-form deformation (b) for learning and inference. Although it is less
general, it still expresses a variety of shapes.

of covariance parameters independent of the sampling resolution and the kernel size k, while
deformable convolution has constant resolution and requires 2k2 o↵set parameters for a k⇥k

filter.
To infer the local covariances, we follow the deformable approach [Dai+17], and learn

a convolutional regressor for each dynamic filtering step. The regressor, which is simply
a convolution layer, first infers the covariances which then determine the dynamic filtering
that follows. The low-dimensional structure of our dynamic parameters makes this regression
more e�cient than free-form deformation, as it only has three outputs for each full covariance,
or even just one for each spherical covariance. Since the covariance is di↵erentiable, the
regression is learned end-to-end from the task loss without further supervision.

We experiment with dynamic structure in Section 5.4.3.
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5.4 Results

We experiment with the local task of semantic segmentation, because our method learns the
size and shape of local receptive fields. As a recognition task, semantic segmentation requires
a balance between local scope, to infer where, and global scope, to infer what. Existing
approaches must take care with receptive field design, and their experimental development
takes significant model search.

Data CityScapes [Cor+16] is a challenging dataset of varied urban scenes from the per-
spective of a car-mounted camera. We follow the standard training and evaluation protocols
and train/validation splits, with 2, 975 finely-annotated training images and 500 validation
images. We score results by the common intersection-over-union metric—the intersection of
predicted and true pixels divided by their union then averaged over classes—on the valida-
tion set. We evaluate the network itself without post-processing, test-time augmentation, or
other accessories to isolate the e↵ect of receptive field learning.

Architecture and Optimization For backbones we choose strong fully convolutional
networks derived from residual networks [He+16]. The dilated residual net (DRN) [YKF17]
has high resolution and receptive field size through dilation. Deep layer aggregation (DLA)
[Yu+18] fuses layers by hierarchical and iterative skip connections. We also define a ResNet-
34 backbone as a simple architecture of the kind used for ablations and exploratory experi-
ments. Together they are representative of common architectural patterns in state-of-the-art
fully convolutional networks.

We train our models by stochastic gradient descent for 240 epochs with momentum 0.9,
batch size 16, and weight decay 10�4. Training follows the “poly” learning rate schedule
[Che+18a; Zha+17b] with initial rate 0.01. The input images are cropped to 800⇥ 800 and
augmented by random scaling within [0.5, 2], random rotation within 10 degrees, and random
color distortions as in [How13]. We train with synchronized, in-place batch normalization
[RBPK18]. For fair comparison, we reproduce the DRN and DLA baselines in our same
setting, which improves on their reported results.

Baselines The chosen DRN and DLA architectures are strong methods on their own,
but they can be further equipped for learning global spatial transformations and local de-
formations. Spatial transformer networks [Jad+15] and deformable convolution [Dai+17]
learn dynamic global/local transformations respectively. Spatial transformers serve as a
baseline for structure, because they are restricted to a parametric class of transformations.
Deformable convolution serves as a baseline for local, dynamic inference without structure.
For comparison in the static setting, we simplify both methods to instead learn static trans-
formations.

Naturally, because our composition is carried out by convolution (for static inference),
we compare to the baseline of including a free-form convolution layer on its own.

We will release code and reference models for our static and dynamic compositional
filtering methods.
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method IU

DRN-A [YKF17] 72.4
+ 3⇥ 3 Conv. 72.9
+ STN (static) [Jad+15] 70.5
+ Deformable (static) [Dai+17] 72.2
+ Composition (ours) 73.5
+ CCL [Din+18] 73.1
+ DoG (ours) 74.1

DLA-34 [Yu+18] 76.1
+ Composition (ours) 78.2

Table 5.1: Our composition improves the accuracy of strong, carefully designed architectures.

5.4.1 Learning Receptive Fields

We first show that semi-structured compositional filtering improves the accuracy of strong
fully convolutional networks. We then examine how to best implement our composition and
confirm the value of smooth signal processing.

Augmenting Backbone Architectures Semi-structured filtering improves the accu-
racy of strong fully convolutional networks. We augment the last, output stage with a single
instance of our composition and optimize end-to-end. See Table 5.1 for the accuracies of the
backbones, baselines, and our filtering. Static composition by convolution improves on the
backbone by 1-2 points, and dynamic composition boosts the improvement to 4 points (see
Section 5.4.3).

Our simple composition improves on the accuracy of the static receptive fields learned
by a spatial transformer and deformable convolution. Spatial transformers and our static
composition each learn a global transformation, but our Gaussian parameterization is more
e↵ectively optimized. Deformable convolution learns local receptive fields, but its free-form
parameterization takes more computation and memory. Our edition of DoG, which learns
the surround size, improves the accuracy a further 0.5 point.

Note that the backbones are agressively-tuned architectures which required significant
model search and engineering e↵ort. Our composition is still able to deliver improvement
through learning without further engineering. In the next subsection, we show that joint
optimization of our composition does e↵ective model search when the chosen architecture is
suboptimal.

How to Compose As explained in Section 5.3.1, we can compose with a Gaussian
structured filter by blurring alone or blurring and resampling. As either can be learned
end-to-end, we experiment with both and report their accuracies in Table 5.2. From this
comparison we choose blurring and resampling for the remainder of our experiments.

Blurred Dilation To isolate the e↵ect of blurring without learning, we smooth dilation
with a blur proportional to the dilation rate. CCL [Din+18] and ASPP [Che+18a] are care-
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method IU

ResNet-34 64.8
+ Blur 66.3
+ Blur-Resample 68.1
+ DoG Blur 70.3
+ DoG Blur-Resample 71.4

DRN-A [YKF17] 72.4
+ Blur 72.2
+ Blur-Resample 73.5

Table 5.2: For semi-structured composition, blurring + resampling improves on blurring
alone. This holds for the simple composition of a Gaussian and free-form filter, and the
compound composition of Di↵erence of Gaussian filtering.

method IU

DRN-A [YKF17] 72.4
w/ CCL [Din+18] 73.1
+ Blur 74.0
w/ ASPP [Che+18a] 74.1
+ Blur 74.3

Table 5.3: Blurred dilation respects the sampling theorem by smoothing in proportion to
the dilation rate. Blurring in this way gives a small boost in accuracy.

fully designed dilation architectures for context modeling, but neither blurs before dilating.
Improvements from blurred dilation are reported in Table 5.3. Although the gains are small,
this establishes that smoothing can help. This e↵ect should only increase with dilation rate.

The small marginal e↵ect of blurring without learning shows that most of our improve-
ment is from joint optimization of our composition and dynamic inference.

5.4.2 Di↵erentiable Receptive Field Search

Our composition makes local receptive fields di↵erentiable in a low-dimensional, structured
parameterization. This turns choosing receptive fields into a task for learning, instead of
designing or manual searching. We demonstrate that this di↵erentiable receptive field search
is able to adjust for changes in the architecture and data. Table 5.4 shows how receptive
field optimization counteracts the reduction of the architectural receptive field size and the
enlargement of the input. These controlled experiments, while simple, reflect a realistic lack
of knowledge in practice: for a new architecture or dataset, the right design is unknown.

For these experiments we include our composition in the last stage of the network and
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method no. params epoch IU �

DRN-A [YKF17] many 240 72.4 0

Smaller Receptive Field

ResNet-34 many 240 64.8 -7.6
+ 3⇥ 3 Conv. some +20 65.8 -6.6
+ Composition some +20 68.1 -4.6
+ DoG some +20 68.9 -3.5
. . . End-to-End many 240 71.4 -1.0

and 2⇥ Enlarged Input

ResNet-34 many 240 56.2 -16.2
+ 3⇥ 3 Conv. some +20 56.7 -15.7
+ Composition some +20 57.8 -14.6
+ DoG some +20 62.7 -9.7
. . . End-to-End many 240 66.5 -5.9

Table 5.4: Adjusting to architecture and data by di↵erentiable receptive field search. When
the architectural receptive field is reduced, the learned covariance compensates to enlarge it.
When the input is additionally enlarged 2⇥, the learned covariance grows further still.

only optimize this stage. We do this to limit the scope of learning to the joint optimization
of our composition, since then any e↵ect is only attributable to the composition itself. We
verify that end-to-end learning further improves results, but controlling for it in this way
eliminates the possibility of confounding e↵ects.

In the extreme, we can do structural fine-tuning by including our composition in a pre-
trained network and only optimizing the covariance. When fine-tuning the structure alone,
optimization either reduces the Gaussian to a delta, doing no harm, or slightly enlarges
the receptive field, giving a one point boost. Therefore the special case of the identity, as
explained in Figure 5.5, is learnable in practice. This shows that our composition helps or
does no harm, and further supports the importance of jointly learning the composition as
we do.

5.4.3 Adapting Receptive Fields

Learning the covariance optimizes receptive field size and shape. Dynamic inference of the
covariance takes this a step further, and adaptively adjusts receptive fields to vary with the
input. By locally regressing the covariance, our approach can better cope with factors of
variation within an image, and do so e�ciently through structure.

We compare our Gaussian deformation with free-form deformation in Table 5.5. Con-
trolling deformable convolution by Gaussian structure improves e�ciency while preserving
accuracy to within one point. While free-form deformations are more general in principle, in
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Cityscapes Validation

method dyn.?
no. dyn.
params

IU

DRN-A [YKF17] - 72.4
+ Static Composition (ours) - 73.5
+ Gauss. Deformation (ours) X 1 76.6
+ Free-form Deformation [Dai+17] X 2k2 76.6
ResNet-34 - 64.8
+ Static Composition (ours) - 68.1
+ Gauss. Deformation (ours) X 1 74.2
+ Free-form Deformation [Dai+17] X 2k2 75.1

Cityscapes Test

DRN-A [YKF17] - 71.2
+ Gauss. Deformation (ours) X 1 74.3
+ Free-form Deformation [Dai+17] X 2k2 73.6

Table 5.5: Dynamic Gaussian deformation reduces parameters, improves computational ef-
ficiency, and rivals the accuracy of free-form deformation. Even restricting the deformation
to scale by spherical covariance su�ces to nearly equal the free-form accuracy.

practice there is a penalty in e�ciency. Recall that the size of our structured parameteriza-
tion is independent of the free-form filter size. On the other hand unstructured deformable
convolution requires 2k2 parameters for a k ⇥ k filter.

Qualitative results for dynamic Gaussian structure are shown in Figure 5.8. The inferred
local scales reflect scale structure in the input.

In these experiments we restrict the Gaussian to spherical covariance with a single de-
gree of freedom for scale. Our results show that making scale dynamic through spherical
covariance su�ces to achieve essentially equal accuracy as general, free-form deformations.
Including further degrees of freedom by diagonal and full covariance does not give further
improvement on this task and data. As scale is perhaps the most ubiquitous transformation
in the distribution of natural images, scale modeling might su�ce to handle many variations.

5.5 Conclusion

Composing structured Gaussian and free-form filters makes receptive field size and shape
di↵erentiable for direct optimization. Through receptive field learning, our semi-structured
models do by gradient optimization what current free-form models have done by discrete
design. That is, in our parameterization changes in structured weights would require changes
in free-form architecture.
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Our method learns local receptive fields. While we have focused on locality in space, the
principle is more general, and extends to locality in time and other dimensions.

Factorization of this sort points to a reconciliation of structure and learning, through
which known structure is respected and unknown detail is learned freely.
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(a) (b) (c) (d)

Figure 5.8: Qualitative results for dynamic inference of scale: (a) input images; (b) truths;
(c) outputs; and (d) scale estimates with small visualized as blue/dark and large visualized
as yellow/bright. The scale estimates have a certain amount of structure: coherent segments
and boundaries between them can be seen.
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Chapter 6

Conclusion

Fully convolutional networks are local machines for image-to-image learning and inference.
By learning end-to-end and pixels-to-pixels they serve as a general framework for such tasks.
Following the release of this framework, there has been a broad convergence in approach,
not only for semantic segmentation [Com], but for a variety of tasks. By harnessing locality,
fully convolutional networks make deep learning for image-to-image tasks not only tractable
but attractive in their e↵ectiveness and e�ciency.

Blurring the line between structure and learning a↵ords optimization of not just local
models, but even the degree of locality. Composing structured Gaussian filters with free-
form filters, and learning both, optimizes over receptive field size. Dynamic inference adapts
receptive fields to cope with scale variation. By factorizing the representation into free-form
and structured parts, we define strictly more general models, which learn more and not less.

Rather than choose learning or structure, we can hope to reconcile both by composition.
Our best models do not perceive by parameters alone: convolution, residual connections,
certain receptive field geometries, and myriad other elements cannot be practically learned
or even represented without structure. Nor do our best models inspect by invariances alone:
there is more in the visual world than is dreamt of in our designs, and closing the gap is
a role for learning. Bridging old and new ideas in representation design and representation
learning, we can see to it that progress takes the path of a spiral, not a circle.

Future Directions Of course, more research is needed. We point out three directions for
locality and adaptivity to go from here.

• Locality in generality. We focused on spatial locality in the visual domain for supervised
learning tasks. However, locality is much more general. Temporal locality could be
learned and adapted for time series modeling. Spectral locality, in frequency, could be
learned and adapted for audio, alongside temporal locality. Spatio-temporal locality for
video and temporal-spectral locality for audio could be learned jointly but distinctly
through diagonal covariance. Apart from type and domain, locality could be tuned
to di↵erent families of learning task. The majority of architectures for unsupervised
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and self-supervised learning are adopted from supervised learning, but it could be the
case that they are suboptimal for these objectives. By optimizing over locality, the
representations learned from these objectives might prove more useful downstream,
while still being transferrable through fine-tuning.

• Learning more structure. Together, receptive field size and stride determine the locality
of a network. While we explored learning receptive field size, we did not attempt to
learn stride. It might be possible to learn stride by parameterizing the sampling by a
periodic function and optimizing end-to-end. This would in e↵ect decide the resolution
of the model through data.

• Adaptivity by optimization during inference. The adaptivity in this work was either
designed, for clockwork, or one-step and feedforward, for scale and guidance. While
this improves over fixed, non-adaptive inference it is nevertheless limited. For scale,
our convolutional scale predictor is limited as a local filter, and not itself immune
to scale variation. For guidance, the latent task representation extracted is limited
to averaging in a fixed embedding, and not further refined. Gradient optimization
during inference o↵ers an avenue to multi-step adaptivity. This directions requires
choosing what unsupervised objective to optimize and which variables to optimize
over. Minimizing output entropy with respect to scale could take advantage of our
factorization to improve task confidence through structure. Such a model would tune
itself, lowering the boundary between learning and inference.
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Appendix A

Brewing Ca↵e

Figure A.1: Ca↵eine.

Ca↵e was both a project and a community.
Thanks to everyone who contributed to the code1, to the
conversation2, and in a wealth of other ways. I would like to
share a few thoughtful sips of the experience, the last from
the bottom of the co↵ee cup.

• The ride never stops. The (frame)work is never done.
Decide what to do, and what not to do, deliberately.
Be honest with yourself about the purpose of your
work, and recognize progress from procrastination.

• Do it yourself, for yourself. Ca↵e was the engine of my
own projects. Make your own progress, for satisfaction
and sustainability, or risk exhaustion.

• Selflessness is self interest. No matter who you are,
the world can do more research. If you can open up
your projects to others, without losing your own science to service, you multiply your
own progress.

Each of us can locally convolve, making sense of input for research output, but open
science and community lets us globally integrate, making sure to have impact on the world.

Happy brewing!

1https://github.com/BVLC/caffe
2https://groups.google.com/forum/#!forum/caffe-users

https://github.com/BVLC/caffe
https://groups.google.com/forum/#!forum/caffe-users
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Appendix B

Brewing Co↵ee

There is always more science to be done, and ever more research is needed. But first: co↵ee.
Here I would like to share the recipe for the communal co↵ee that I have brewed many times
during my PhD as our BAIRista.

Figure B.1: The brewer.

What

• Brewer. Yama tower. 25 cup. Ideally rigged up at one’s
desk to appreciate the process.

• Filters. Multi-use ceramic filter & single-use paper filter.

• Grinder. Baratza Virtuoso. Excellent and reliable.

• Co↵ee. One pound. Light enough roast. Prefer floral,
natural process co↵ees for this purpose, but remember
that variety is nice.

• Water. 2.5 liters. Clear and cool.

• Time.

How

1. Measure out the water and fill the reservoir, making sure
to first close the valve.

2. Fit ceramic filter in the bottom of the middle chamber.

3. Grind the co↵ee at the eighth notch from finest. Pour
into the chamber such that the top is level, but do not
shake to distribute it evenly.
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4. Set paper filter on the co↵ee, and gently press flat.

5. Wet the co↵ee by opening the valve and letting enough
water flow to cover the the chamber with 1 inch of water.
Close valve, then slowly tilt chamber in a circle to distribute.

6. Brew: adjust the valve to a drip rate of 40 drips/minute
or one drip every 1.5 seconds.

7. Take time. Breathe. Do honest work. Sleep.
Brew for 12 hours.

8. Bottle and keep cool. Old-timey, swing cap bottles are best.

9. Pour yourself a glass and share.

Adjustment to other quantities, equipment, and life choices is left as an exercise to the
brewer. Experimentation is key, both in empirical science and in co↵ee.

Happy brewing!
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